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Abstract 
 

The purpose of the present diploma thesis is the development of Compressive Sampling- 
based techniques for FSK signals demodulation in space communications. More 
precisely, is being studied the performance of a Compressive Sampling-based 
demodulation scheme for detection of FSK modulated signals, when they are being 
transmitted through the space communication channel, and have been altered due to their 
passage through the solar corona. 
 
It is presented in detail all the theory and implementation procedure of the FSK 
modulator at the transmitter side, as well as of the Compressive Sampling-based 
demodulator at the receiver end of the communication system. Performance results of 
the proposed system have been evaluated after simulations that have been conducted in 
AWGN channel, as well as in real space communication channel. The results 
demonstrate the efficiency of the Compressive Sampling-based FSK demodulation 
scheme in space communications, as there is achieved a performance of low Bit Error 
Rate values when the signal is transmitted through the space communication link, and 
meets hurdles due to the hard conditions in the space environment. 
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Περίληψη 
 

Ο σκοπός της παρούσας διπλωματικής εργασίας είναι η ανάπτυξη τεχνικών 
συμπιεσμένης δειγματοληψίας για αποδιαμόρφωση FSK σημάτων, με εφαρμογή σε 
συστήματα διαστημικών επικοινωνιών. Πιο συγκεκριμένα, μελετάται η απόδοση που 
θα έχει η βασισμένη σε μειωμένους ρυθμούς δειγματοληψίας αποδιαμόρφωση FSK 
μεταδιδόμενων σημάτων, τη στιγμή που αυτά μεταδίδονται μέσω του διαστημικού 
καναλιού και υπόκεινται σοβαρές αλλοιώσεις, εξαιτίας της διαπέρασής τους μέσω του 
ηλιακού στέμματος.  
 
Παρουσιάζονται αναλυτικά το απαιτούμενο θεωρητικό υπόβαθρο για την κατανόηση 
του συστήματος, καθώς και η διαδικασία υλοποίησης του FSK διαμορφωτή από τη 
πλευρά του πομπού και του βασισμένου σε συμπιεσμένη δειγματοληψία 
αποδιαμορφωτή στη πλευρά του δέκτη του τηλεπικοινωνιακού συστήματος. Η 
αξιολόγηση των αποτελεσμάτων απόδοσης του ανωτέρω συστήματος πραγματοποιείται 
μέσω προσομοιώσεων που υλοποιήθηκαν σε AWGN κανάλι, καθώς και σε αληθινό 
κανάλι διαστημικής επικοινωνίας. Τα αποτελέσματα τεκμηριώνουν την 
αποτελεσματικότητα και αποδοτικότητα της εφαρμογής τεχνικών συμπιεσμένης 
δειγματοληψίας για αποδιαμόρφωση FSΚ σημάτων στις διαστημικές εφαρμογές, καθώς 
επιτυγχάνονται χαμηλές τιμές σφάλματος bit όταν το σήμα μεταδίδεται μέσω του 
διαστημικού καναλιού, σε περιόδους στις οποίες συναντά εμπόδια κατά τη μετάδοσή 
του λόγω των δυσμενών συνθηκών που επικρατούν στο διαστημικό περιβάλλον. 
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Chapter 1 
Introduction 
 

Humanity’s interest in exploration of our universe is enduringly growing as technology 
advances. Deep space missions enable humans to investigate the unknown, the vastness 
of space, learn about the origins and evolution of planets, solar system, and galaxies. 
 
During each space mission, there is a lot of important information that has to be passed 
between the spacecraft and the ground station. Such information may include command 
data, satellite's location and status of hardware, images, and scientific data, as well as 
information about spacecraft subsystems. In addition, any issues with the spacecraft may 
have to be diagnosed, repaired, or moderated during their journey. Communication links 
consist the solely way for data exchange, while a consistently reliable communication 
system secures the success of the mission.   
 
However, communication links in deep space environment face many severe challenges. 
First of all, the transmitted signals weaken and being dispersed in serious degree due to 
the extremely long communication distance. Moreover, there are periods during in which 
the communication link between the Earth and Space may encounter ionospheric 
scintillation. These periods are called Superior Solar Conjunctions and are being mainly 
caused when the Sun lies between the Earth and satellite or spacecraft. As a consequence 
of this phenomenon, the increased intervening charged particles in the spacecraft signal 
links weaken the transmitted signal and obstruct the successful communication [1]. 
Apart from ionospheric scintillation, multipath propagation and interference affect the 
communication link. Significant amplitude scintillation, phase scintillation, and spectral 
broadening effects are produced on the carrier signal, which effects become greater as 
the Sun-Earth-Probe (SEP) angle decreases (Figure 1.1).  
 
 
 

 
Figure 1.1: Sun-Earth-Probe Solar Conjunction geometry [3]. 
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Signal modulation schemes that transmit data bits over frequency domain seem to 
provide improved data return under conditions of strong solar scintillation [2]. 
Frequency Shift Keying (FSK) constitutes the most conventional form of digital 
modulation in the high-frequency radio spectrum.  
 
In this thesis, we present the theory and implementation of an FSK modulator and 
Compressive Sampling-based demodulator pair of a communication system, in order to 
explore their performance in space communications. FSK is the chosen modulation 
scheme at the transmitter side, while at the receiver Compressive Sampling (CS) 
techniques are applied to the demodulation process of the transmitted signals. More 
specifically, taking in advantage the sparsity in the frequency domain of FSK modulated 
signals, Compressive Sampling enables us to reduce the system complexity, power 
consumption and sampling rate at the receiver side. The property of FSK signals being 
sparse in the frequency domain, allows them also to be successfully reconstructed for 
the final detection of the transmitted sequence. Basis Pursuit (BP) and Orthogonal 
Matching Pursuit (OMP) are the two reconstruction algorithms that we tested and 
compared in order to observe which of these methods has as a result the most 
encouraging recovery performance for the compressed signals. Simulations of the 
proposed communication system have been conducted in Additive White Gaussian 
Noise (AWGN) channel, as well as in real space channel for their performance 
evaluation. 
 
This thesis is structured as follows; in Chapter 2 is presented in detail all the theory on 
which is based the design of the FSK modulation and CS-based demodulation schemes 
of the communication system. More precisely, in the first part of Chapter 2 are expressed 
all the factors that motivated us to implement and test the performance of the FSK 
modulator and CS-based demodulator pair in space applications. In the following 
subsections of Chapter 2 is described the theory accompanied by the mathematical 
background, consisting essential factors for the comprehension of the implemented 
communication system model. In Chapter 3 are presented the experimental results for 
simulations of the communication system in AWGN channel and in the space channel 
model. Finally, in Chapter 4 is represented the conclusion and suggestions for future 
extensions for research in this topic.  
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Chapter 2 
Theory of System Model 
 

2.1 Overview of Incentives 
 
Solar scintillation effects can be significant for deep-space communication links, 
especially when the Sun lies between the Earth and spaceship, meaning that the angle 
between the Sun, Earth and the spaceship becomes extremely small. Such effects of solar 
interference are expected to corrupt the data signals in varying ways or even make the 
communication through the space channel link impossible.   
 
When radio waves pass through the solar corona and solar wind regions close to the Sun, 
strong scintillation effects influence the signal as it is being transmitted. The most 
significant disturbances appear at their amplitude, frequency, and phase, especially in 
the regions very close to the Sun [1]. Amplitude fluctuation or scintillation is designated 
as the short-term fading of the signal, leading to a severe drop in its strength levels. Phase 
scintillation is characterized by rapid carrier-phase changes, which can produce 
discontinuities (known as cycle slips) in a receiver's continuous phase lock on a satellite's 
or spaceship's signal. Another effect, spectral broadening, causes an increase in the 
signal's bandwidth, wherein half of the signal power resides [2].  
 
Consequently, when the communication is feasible despite the non-favorable conditions, 
the received signal suffers from high rates of noise and may not include the original data 
information. This fact forces the receiver to attempt reacquisition of the satellite signal 
in order to get the desired information from the space mission.  
 
A modulation scheme, which transmits digital information over frequency domain, is 
expected to be more conducive and efficient in signal estimation. A communication 
system based upon Frequency Shift Keying (FSK) modulation and demodulation 
schemes, seems to provide improved data return under conditions of strong amplitude 
and phase scintillation [2].  
 
Furthermore, according to the Shannon-Nyquist sampling theorem, a band-limited signal 
x(t) must be uniformly sampled at least two times higher than the highest frequency 
presenting in the signal, to guarantee successful reconstruction at the receiver’s end. 
Nonetheless, when the bandwidth of the signal is too high, Analog to Digital Converters 
(ADCs) face a serious challenge to sample the signal and convert the latter into digital 
form. Moreover, it has been proved that most of the signals with large bandwidth include 
a small rate of information. This property of wideband signals makes them sparse in 
information, allowing them in that way to become compressed and represented in much 
fewer dimensions. 
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All the aforementioned factors motivated us to explore the combination of FSK 
modulation scheme with compressive sampling-based techniques for FSK demodulation 
at the receiver end, as well as their application in space communications, when the 
presence of challenging conditions in space environment constitute a great hurdle in 
signal transmission. Figure 2.1 illustrates the general form of the communication system 
model.  
 
 

 
Figure 2.1: Block diagram in general form of the Communication System. 

 
 

In the following subsections, is proposed in detail all the basic theory that underlies the 
design of the FSK modulation and CS-based demodulation schemes of the 
communication system. 
 
  
 
2.2 Frequency Shift Keying (FSK) Transmitter 
 
Binary Frequency Shift Keying (FSK) is the modulation scheme implemented at the 
transmitter side, in which digital information is processed and then transmitted through 
a pair of discrete frequency changes of a carrier wave. The frequency corresponding to 
the binary one is designated as the "mark" frequency, while the other referring to binary 
zero as the "space" frequency. Mark frequency always corresponds to the higher radio 
frequency. This difference in the frequency domain is what makes the binary symbols 0 
and 1 be distinguished from each other when the respective one of the two sinusoidal 
waves is transmitted.  
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The FSK signals are represented by the following continuous waveforms, 
 

       ( ) ( )0 0 ca t Acos t ,     0 t T= ω + θ < ≤                      (2.1) 

                              ( ) ( )1 1 ca t Acos t ,     0 t T= ω + θ < ≤                                            (2.2) 

 
 
for the binary bits 0 and 1 respectively. The signals are generated by the system 
illustrated in Figure 2.2. 
 
 

 
Figure 2.2: FSK transmitter system. 

 
 
The two fixed-frequency oscillators produce signals of higher and lower frequency, and 
then they are connected to a switch along with an internal clock. The binary input 
sequence m(t) is applied to the transmitter so as to pick out the right frequencies 
according to the binary input and give as a result the FSK modulated signal that is going 
to be passed. The signals are transmitted coherently, implying that each FSK signal is 
represented by two distinct waveforms, in terms of fixed mark and space frequencies. 
The combination of encoding and modulation in the transmitter can be expressed as  
  

discrete message mi  ai(t) continuous waveform. 
 
In Figure 2.3 can be observed the relationship between the digital binary data input and 
the FSK modulated signal in the time domain that is transmitted [6]. 
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Figure 2.3: (a) Binary data in digital form, (b) FSK modulated signal, (c) frequency 

difference [6]. 
 

 
Each FSK modulated signal is specified by some key parameters which determine the 
transmission performance. The first parameter which refers to the minimum duration of 
a mark or space condition is known as "element length". Element length rates vary, 
depending on the kind of communication system. An alternate way to determine the 
element length is in terms of the keying speed, as we can see in equation (2.3).  

               
1

Keying Speed
Element Length

=                                 (2.3) 

 
Keying speed is computed in "bauds", in the sense of symbols per second or pulses per 
second and is equal to the inverse of the element length in seconds. 
 
Frequency measurements of the FSK signal are usually stated in terms of "shift" and 
"center frequency". Shift is denoted as the frequency difference between the pair of 
frequencies 0f  and 1f , namely  
 
                                                       1 0Shift f f .= −                                                      (2.4) 
 
The nominal center frequency is in the middle of the mark and space frequencies, defined 
as 
 

                                                Center Frequency +
= 0 1f f

2
.                                         (2.5) 

 
Moreover, another parameter, "deviation" is equal to the absolute value of the difference 
between the center frequency and the mark or space frequencies. Deviation is also equal, 
numerically, to one-half of the shift.  
 

                                                Deviation 
+

= =0 1f f Shift
2 2

                                      (2.6) 
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Figure 2.4: FSK parameters [6]. 

 
 
 
2.3 Signal Transmission 
 
We consider a(t) being the FSK modulated signal that is transmitted and passes through 
the communication channel. If h(t) symbolizes the impulse response of the physical 
communications channel and n(t) the Additive White Gaussian Noise (AWGN), then the 
received signal x(t) can be represented as the sum of noise and convolution between the 
functions h(t) and a(t). 
 
                                                 = ∗ +x(t) h(t) a(t) n(t)                                               (2.7) 
 
where "*" refers to the convolution operation. 
 
The FSK signal a(t) for the k-th information symbol transmitted, is defined as, 
 

                                              ( ) =ka t  
−

=

δ −∑
N 1

n,k
n 0

a (t nT)                                               (2.8) 

 
where N is the total number of samples per information symbol and T is the sampling 
period. Each sample an,k is declared as  
 
                                                  π= j2 kn/N

n,ka  e .                                                         (2.9) 

 
Equation (2.7) can also be expressed in a matrix-vector notation like 
  
                                                    𝐱𝐱 = 𝐇𝐇𝐇𝐇 + 𝐧𝐧                                                          (2.10)  

  
where Η represents the channel convolution matrix and vectors 𝐱𝐱, 𝐚𝐚 and 𝐧𝐧 contain all 
the elements of xn , an   and  nn  as we can see in the expression (2.11). 
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1 1,1 1,n 1 1

n n,1 n,n n n 

x h h a n

x h h a n

      
      = +      
            



     



                                 (2.11) 

                
At the receiver side, by taking advantage of the characteristic of FSK signals being 
sparse in frequency domain, we first compress them in order to reduce the sampling rate 
and the system complexity without losing important information. Sparsity also allows 
signals to be reconstructed efficiently and then estimated from fewer linear 
measurements.  
 
 
 
2.4  Sparsity 

 
In terms of analog signals, sparsity may mean that a signal can be expressed in terms of 
a suitable basis, which can transform it into a sparse representation. A sparse structure 
usually is discerned as it contains few large coefficients and many zero or negligibly 
small coefficients. FSK analog signals are such signals which can have a sparse 
representation in frequency domain as we can see for instance in Figure 2.5 [8].  
 
 

 
Figure 2.5: (a) Time domain signal, (b) Fourier spectrum [8].  

 
 
In Figure (2.4) (a) is illustrated the intensity of an analog signal in time domain, while 
in Figure (2.4) (b) the different frequencies appearing in the signal are indicated by the 
Fourier transform f̂ .  
 
Fourier transform refers to both the mathematical operation that associates the 
representation of the frequency domain to a function of time as well as the frequency 
domain representation itself. The Fourier transform of an integrable function f : ℝ→ℂ is 
defined as  
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                                                    ( ) ( )
+∞

− π ξ

−∞

ξ = ∫ 2 ixf f x eˆ dx ,                                        (2.12) 

 
for any real number ξ  which represents frequency (with SI unit of Hertz), and for the 
independent variable x representing time (in seconds). The inverse Fourier transform is 
given by the equation; 
 

( ) ( )
+∞

π ξ

−∞

= ξ ξ∫ 2 ixf x f e dˆ                                            (2.13) 

 
for any real number x. In fact, many real-world signals have a sparse representation in a 
particular basis, as for instance in the time domain, frequency domain or wavelet domain.  
 
Conventional Analog to Digital Converters (ADCs), according to the Shannon-Nyquist 
sampling theorem, sample analog signals at least twice the bandwidth contained in the 
signal. A drawback of this approach is that the bandwidth of the signal may not be a 
reliable representation of how much real information includes the signal, leading in this 
way the ADCs to sample at unnecessarily high rates. High-rate sampling is inherently 
more complicated than low-rate sampling. Compressive Sensing, suggests that sparsity 
allows a signal be represented in much fewer dimensions, leading to a reduced sampling 
rate and, hence, reduced use of ADCs resources. 
 
At the receiver side of our system, Analog to Information Converter (AIC) utilizes the 
theory of Compressive Sensing in order to sample signals at reduced digital data rates. 
In this way, not only the complexity and energy consumption of ADC is reduced, but 
also there is focus only on the relevant information of the received signal. Compressive 
Sensing furthermore enables the discrete signal which has a sparse representation to be 
reconstructed from a small number of linear projections of that signal for the final 
estimation.  
 
Consequently, the received signal vector shall be first processed by the AIC to obtain a 
compressed representation and be sampled at rates much lower than Nyquist. Then the 
signal is being reconstructed through the chosen CS reconstruction algorithms, Basis 
Pursuit or Orthogonal Matching Pursuit, and then the final detection rule is applied over 
the reconstructed signal. 
 
In the following subsections of this chapter, is presented in detail the basic theory of 
compressive sampling, as well as the procedure of FSK signal compression and 
reconstruction that is implemented at the receiver side of the communication system.   
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2.5 Basic Theory of Compressive Sampling 
 
Compressive Sampling (CS), also referred to as Compressive Sensing or Compressed 
Sensing, is a Digital Signal Processing technique efficiently acquiring and transforming 
a signal into a compressed representation, by taking only a limited set of linear 
measurements of the signal. In other words, Compressive Sampling can be thought of as 
a concept to reduce the number of measurements required to approximate a signal, 
without any loss of important information. Therefore, it can be processed with fewer 
resources and then finally reconstructed to its original form.  
 
We consider a finite-length, one-dimensional discrete-time signal xN×1, which is sparse 
on some basis and can be viewed  as a  N×1  column vector in   N with elements x[n], 
n = 1, 2, …, N. If ΨN×N represents the matrix containing the basis factors of x and sN×1 

its respective coefficients, then x can be expressed as 

   x s= Ψ .                                                       (2.14) 
 
More specifically, the vectors x and s constitute equivalent representations of the same 
signal, with x illustrated in the time domain, and s in the Ψ domain. From the above 
expression, the sparsity of x means that it contains very few large coefficients and at the 
same time many zeroes or negligibly small valued coefficients. Therefore x is 
compressible, in the sense that it can be represented by M linear measurements with 
M ≪ N. Let ΦM×N be the transform operator N M   →  , with M linear functionals as its 
rows. Then x can be transformed into a new vector representation My∈  with M ≪ N, 
which is defined as 
 

                 y x= Φ  or y s= ΦΨ                                                   (2.15) 
 
where Φ is the measurement or sensing matrix, and the basis matrix Ψ is the sparsity 
matrix. The measurement process is non-adaptive since Φ is fixed and does not depend 
in any way on the signal x. Sensing matrix Φ plays a key role in the process of 
compression, as it does not only have to ensure that any K-sparse or compressible signal 
is not damaged by the dimensionality reduction from x N∈ down to y M∈  but should 
also allow for its successful reconstruction.  
 
There are two fundamental conditions in CS under which the accurate signal recovery is 
feasible. The first one is the sparsity of the signal, which means that the signal has to be 
sparse in some basis Ψ, as for instance in the frequency domain. Secondly, sensing 
matrix has to satisfy a condition known as the Restricted Isometry Property (RIP).  
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RIP characterizes matrices which are nearly orthonormal, at least when operating in 
sparse vectors. It has been found that with exponentially high probability, random 
Gaussian, Bernoulli, and partial Fourier matrices satisfy the RIP with a number of 
measurements nearly linear in the sparsity level [8]. 
 
Assuming that   :=Θ ΦΨ  and signal x is K-sparse, the formal concept of RIP states as 
following; Matrix Θ acts as an approximate isometry on the set of vectors that are K-
sparse, and Θ satisfies the K-RIP if there exists the smallest number Kδ , such that  

 

s s s
2 2 2

2 2 2
K l l l

(1 ) (1 )Κ− δ ≤ ≤ + δΘ                                        (2.16) 

 
where the sparsity constant Kδ depends on K, Φ and s, with Κδ ∈[0,1] . This means that 
every set of K or fewer columns of Θ is approximately orthogonal, or that Θ is 
approximately orthogonal for any K-sparse vector. 
 
Furthermore, assuming that  xi  constitutes the elements of  x,  and  the  support of x is  
T = supp{i: xi ≠ 0}, with K = |T|, if ΘT represents a submatrix of Θ with columns 

i  :  i  Tθ ∈ , then RIP implies that the eigenvalues of t
T ΤΘ Θ  are in ( ) ( )2 2

K K1 ,   1 − δ + δ 
[12]. Moreover, RIP of order K implies that RIP holds for sparsity less than K as well. 
It is important to note that the RIP is predominantly used to establish theoretical 
performance guarantees when either the measurement vector y is corrupted with noise 
or the vector x is not strictly K-sparse. 
 
 
 
2.6 CS for FSK modulated signals 
 
We consider that the N×1 vector s represents the FSK modulated signal transmitted in 
the time domain. As the FSK signal s is sparse in frequency domain, it can be expressed 
by the product of the N×N basis matrix B and the sparse coefficient N×1 vector a, like 
 

s = Ba                                                          (2.17) 
 

where B is equal with the normalized inverse discrete Fourier transform (IDFT) matrix 
FH, and each element of a corresponds to a carrier frequency. If F represents the N×N 
normalized discrete Fourier transform (DFT) matrix, then   
 

FH = (F)-1                                                                                (2.18) 
 

is the normalized inverse discrete Fourier transform (IDFT) matrix, where H(.)  stands 
for the Hermitian matrix of F, so that FHF = I. The non-zero components of aN×1 

represent the active carriers. So, equation (2.17) can also be written as 
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s = FHa.                                                        (2.19) 

 
The transmitted signal passes through the communication channel, and additive white 
Gaussian noise (AWGN) is added to the signal. When the signal arrives at the receiver 
has the form 
 

Hx HF a n= +                                                 (2.20) 
 

where HN×N denotes the channel convolution matrix and nN×1 the noise vector. 
Subsequently, in order to reduce the complexity and sampling rate at the receiver, we 
compress the received signal and then estimate the original one from fewer linear 
measurements. Since the signal x is sparse in frequency domain, it can be represented 
by M linear measurements with M≪N. After compressed sensing, we can write the 
received signal as 
 

y x= Φ                                                     (2.21) 
or as, 

Hy HF a n= +Φ Φ                                           (2.22) 
 

where ΦM×N  is the transform operator or measurement matrix with Μ functionals as its 
rows, and yM×1 the compressed signal vector. As measurement matrix, we define Μ rows 
from the M×N IDFT matrix. In figure 2.6 for instance, it can be seen how the sparse 
vector x8×1 can be expressed in reduced dimensions of vector y4×1, after its product 
computation with matrix Φ4×8. 

                                 
 

 
Figure 2.6: Matrix representation for the CS model y = Φx. 
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By using the equation FHF = I, we can write equation (2.22) as, 
 

 Hy F Da n= +Φ Φ                                        (2.23) 
 

with the N×N matrix D := FHFH. In terms of our model equations (2.14) and (2.15), we 
can transform equation (2.23) as, 
 

    y s n= +ΦΨ Φ                                             (2.24) 
 

where Ψ = FH  and s = Da. 
 

     

 

2.7 Signal Reconstruction  
 
After the compressed sensing operation and before the final detection of the signal at the 
demodulator side, the compressed signal is being reconstructed. We tested and compared 
in our simulations two CS reconstruction algorithms, the Basis Pursuit (BP) and 
Orthogonal Matching Pursuit (OMP).  
 
 
2.7.1 Basis Pursuit 
 
Basis pursuit is an optimization problem of finding a minimum l1-norm solution to an 
underdetermined linear system, likewise the one that we have as a result of the 
compressed sensing operation. Our underdetermined system as we have seen in equation 
(2.21) has the form   
 

y x= Φ  

 
where Φ is the M×N sensing matrix, y is a vector of length M, and x a vector of length 
N, where M≪N. It can be observed that the system has more unknowns than equations. 
Assuming that the matrix ΦΦH is invertible, the system then will have infinitely many 
solutions. Basis Pursuit is based on the idea of minimizing the sum of absolute values of 
x, namely, to solve the optimization problem: 

 

x
x

1
arg min                                                   (2.25) 

such that y x= Φ  
 
where x

1
 is the l1 norm of x, defined as 
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x
1
∶= ( )

N 1

n 0

x n
−

=
∑ .                                              (2.26) 

 
The solution of Basis Pursuit can be found by solving traditional linear programming 
techniques whose computational complexities are polynomial in N. To obtain the 
solution we used the iterative "Split Augmented Lagrangian Shrinkage Algorithm", 
known as SALSA, which is very efficient with high-speed performance, especially for 
l1 norm-based algorithms. In the following section is described in more detail the SALSA 
algorithm and its particular application in signal reconstruction. 
 
 
 
2.7.1.1 SALSA algorithm  
 
SALSA is an iterative optimization algorithm based on the idea that combining the 
"augmented Lagrangian" approach and the "variable splitting technique," will lead to an 
effective algorithmic approach for solving linear inverse problems with sparse 
regularization. SALSA algorithm is known for its flexibility in handling various 
problems and its high convergence speed among all existing l1 norm-based algorithms. 
The fast convergence is achieved using an alternating direction method of multipliers 
(ADMM), which is based on the augmented Lagrangian method (ALM) [9]. 
 
SALSA is used to obtain a solution to the basis pursuit problem for the efficient signal 
reconstruction. Basis pursuit as has been aforementioned picks the one sparse solution, 
the coefficients of which have a minimum l1 norm, among the many possible solutions 
to y = Φx, and has the following form:  
   

      
x

x xopt

1
arg min=                                                  (2.27) 

                                      such that y x= Φ  
 

where x is the N×1 solution vector, y is the M×1 vector of observations and Φ is a M×N 
measurement matrix with M ≪ N.  
 
SALSA is mainly based on the method of Augmented Lagrangian, which for the 
constraint optimization problem,  
 

                                ( )z
z

arg min E                                                         (2.28) 

                                      such that Cz b 0− = , 
 

is defined as  
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z a z a Cz b Cz b 2T
A 2

L ( , , ) E( ) ( )µ = + − +µ −                          (2.29) 

 
In equation (2.29) the vector, a, are Lagrange multipliers. Augmented Lagrangian 
Method (ALM) for solving the constrained problem is given by the following operations 
which are iterated until convergence after the definition of variables μ > 0 and vector d. 
 

 

( )z z Cz b 2

2z
arg min E  ← + µ −                                    (2.30a)    

            d d Cz b(    ) ← − −                                                             (2.30b) 
 
This method is also known as the method of multipliers (MM), so this iterative algorithm 
is referred to as ALM/MM in [11]. The ALM/MM algorithm calls for a positive scalar 
μ, which is like a step-size parameter. Its value can affect the convergence speed of the 
algorithm, but not the solution to which it converges.  The vector d is initialized before 
the iteration and usually with a value equal to zero.  
 
 
2.7.1.2 SALSA for Basis Pursuit    
 
More precisely, the implementation of SALSA algorithm for solving the problem of 
basis pursuit is formulated as below. First of all, by using the variable splitting technique, 
the classical expression of basis pursuit  
 

              
x

x   xopt

1
arg min = λ                                                (2.31) 

                                              such that y x= Φ  
 
can be transformed to an equivalent optimization problem 
 

         
opt

x
 

1
arg min ux = λ                                               (2.32) 

                                              such that y x= Φ  
                                                             u x 0− = , 
 
where the ⊙ operator denotes the element-wise multiplication. For instance, for the 
equal-size vectors λ and u, it is, [λ⊙u]i=λi ui while when all elements of vector λ are the 
same value, (i.e. λi = λ ∈  R+ ), then equation (2.32) can be written as  
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x uopt
1x

=arg minλ                                                    (2.33) 

                                               such that y x= Φ  
                                                             u x 0− = . 
 
Subsequently, by using the augmented Lagrangian expression  
 

( ) ( ) ( )2T
A 21 2

L , , ,        0.5x u u u x u x x yµ = + − + µ − + −λ λ λ λ Φ ,       (2.34) 

 
as well as the ALM/MM to solve the problem, the algorithm obtains the following form: 
 
Step 1: initialize the variables μ > 0, d 
Step 2: iteration until convergence  
  

            
2

1 2x,u
arg min   u 0.5 u x d

x, u   
such that y x

 + − −← 
=

λ µ

Φ

 
                                           (2.35a) 

 ( )d d u x← − −                                                            (2.35b) 

 
At this point, a technique known as Alternating Direction Method of Multipliers 
(ADMM), states that if the minimization is performed alternately between two vectors, 
like in expression (2.35a) between x and u, then the algorithm will still converge to the 
global minimum[9]. Taking into consideration this method and by alternating between 
minimization with respect to each of x and u, we get the following form of the algorithm: 
 
Step 1: initialize the variables μ > 0, d 
Step 2: iteration until convergence  
 

 uu u x d 2

1 2u
arg min 0.5← + µ − −λ                                                      (2.36a) 

           x

2

2
arg min

such that 
x

y x

u x d←
=

− −

 Φ
                                                (2.36b) 

 ( )d d u x← − −                                      (2.36c) 

 
The minimization with respect to u in equation (2.36a) can be expressed in terms of 
"soft-thresholding".  
 
Soft-thresholding is a popular tool which allows us to find an efficient solution in a fast 
way (or low computation time) and usually has application in l1 penalties. The function 
soft: +× →    is defined as Soft(x, T) = max(1-T/|x|,0) · x.  
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Figure 2.7: The soft-threshold function in real time [9]. 
 
 

With regards to minimization of x, which is a constrained least squares problem, there 
is a distinct solution in terms of matrix inverses. By exploiting these alternative solutions 
to each of the two minimization problems, the algorithm transforms to: 
 
Step 1: initialize the variables μ > 0, d 
Step 2: iteration until convergence  
 

u← x dsoft   ,  ( /    )+ µλ                                                (2.37a) 

x←  ( ) ( ) ( )( )u d y u d
 1H H     –         

−
− + −Φ ΦΦ Φ                               (2.37b) 

           ( )d d u x← − −                                      (2.37c) 

 
With a substitution of v u d= − , the arithmetic operations in iteration can be reduced as 
below: 
 
            v← x d dsoft   , /     )    ( + µ −λ                         (2.38a) 

 x ←  ( ) ( ) 1H H   –       v y
−

+Φ ΦΦ Φv                                                       (2.38b)  

            d x v← −                                       (2.38c)
       
The algorithm can be further simplified by a slight rearrangement of operations: 
 
Step 1: initialize the variables μ > 0, d 
Step 2: iteration until convergence  
 
 ( )v x d dsoft , /   ← + µ −λ                                                (2.39a) 

 ( ) ( )1H H   d y
−

← −Φ ΦΦ Φv                                                     (2.39b) 

 x d v← +                                                  (2.39c) 
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It could be noted that at every iteration, x satisfies Φx = y. This is because, 
 

( ) ( ) ( )d v y v
1H − + = − +  

Φ Φ Φ ΦΦ Φv               

     ( ) ( )y v v
1H H 
−

= − +ΦΦ ΦΦ Φ Φ  

                ( )y v v= − +Φ Φ  

                y= .                                                         (2.40) 
      
In our implementation, matrix Φ is the inverse N-point DFT matrix, and due to the 
orthogonality properties of complex sinusoids, this matrix satisfies IH p ,   p 0= >ΦΦ . 

 
As a result, SALSA algorithm for solving the Basis Pursuit problem takes the final form: 
 
Step 1: initialize the variables μ > 0, d 
Step 2: iteration until convergence  
 
 ( )v x d d soft , /  ← + µ −λ                                            (2.41a) 

 ( )d y vH1
 

p
← −Φ Φ                                                         (2.41b) 

 x d v← +                                                  (2.41c) 
 
 
 
2.7.2 Orthogonal Matching Pursuit (OMP) 
 
Orthogonal Matching Pursuit (OMP) is an alternative algorithm for signal reconstruction 
having as a major advantage the low computational complexity and the opportunity for 
simple and fast implementation. Especially when the signal vector is highly sparse, the 
computational cost and time seem to have better results, compared to the Basis Pursuit.  
We use the OMP algorithm for  recovery  of  the  K-sparse signal  x  under  the model  
y = Φx. The aim is to identify the location of the basis vectors in Φ which represent 
ideally the received signal x. The columns can be determined by projecting the signal 
onto its measurement matrix Φ. More specifically, OMP is an iterative greedy algorithm 
that selects at each step the column of Φ which is most correlated with the current 
residuals. The column is then added to the set of the already selected columns. One of 
the most important properties of the algorithm is that the same atom is not chosen twice. 
The residuals are being updated by projecting the observation onto the linear subspace 
spanned by the columns that have already been selected, and then the algorithm 
continues to iterate a number of times as per requirement for the algorithm to converge.   
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In our case, the measurement matrix ΦM×N is the IDFT matrix and the M×1 dimensional 
column vectors φi, where i = 1, 2, 3, …, N, constitute the matrix Φ. So it is  
 

Φ 1  2 3 N[   ]= …ϕ ϕ ϕ ϕ . 
 

Let Ω be the set of vectors which are more correlated with the signal and can represent 
it in the best way. At each iteration, the set will have a new index of the suitable vector 
with the most correlated column. In addition, Ω is an empty set at the time of 
initialization, i.e., Ω0 = {∅}. The steps involved in the implementation of the 
reconstruction algorithm OMP are the following: 
 
Step 1: Initialize the set Ω0 = {∅} and the residual equal with the received signal y;   

r0  =  y. 
 

Step 2: At the k-th iteration, rk is projected onto all columns of Φ and the value which    
           is most correlated is selected for the set Λ; 
 

k 1 k imax , : i 1, 2, 3, , N kc r+ = = … −ϕ ,                           (2.42) 

and let,  
 

k 1 k, i k 1{i : a :  i 1, 2, 3, , N k and  0 a 1}r c+ +Λ = ≥ = … − < <ϕ ,         (2.43) 

 
where the set Λk+1 contains the indices of the candidate basis vectors. 
 
Step 3: Among the vectors in the set Λ, the most appropriate vector seems to be the one 
which gives the minimum residual after being projected upon by the current residual, 
taking into consideration also the already most suitable selected vectors Ωk. 
 

{ }{ }r r
t kk 1 k span :t

2
arg min   P+ Φ ∪λ ∈Ωλ∈Λ

= −λ ,                               (2.44) 

 
Where the projection onto the linear space spanned by the elements of Ωk is defined as  
 

{ } ( )
t k

1

k k k kspan :t
T TP  

−

θ ∪λ ∈Ω = Ω Ω Ω Ω                                   (2.45) 
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Figure 2.8: Geometry scheme of Projection. 

 
Step 4: Then there is a union operation between the vector λk+1 with the set of  Ωk;  
 

k 1 k k 1   + +Ω = Ω ∪ λ                                              (2.46) 
 
Step 5: The residual is updated; 
 

{ }r y y
t k 1k 1 span :tP  

++ Φ ∈Ω= −                                      (2.47) 

 
The iteration continues until a certain level of residual error or until a maximum number 
of allowed iterations is achieved.  
 
 
 
2.8 Signal Detection 
 
Signal detection or demodulation is the procedure of extracting the original information 
content from the modulated carrier wave that is transmitted. When the signal passes 
through the communication channel, noise obscures and reduces the clarity of the signal 
to a great extent. For the proposed system, FSK demodulator is able to determine which 
of the two possible frequencies, representing transmission data bits 0 and 1, is present at 
a given time point, despite the presence of noise.  
 
The FSK demodulator is CS-based, in the sense that before the final decision for which 
of the waveforms appear in the transmitted sequence, each one of them is being 
compressed so as to be estimated from fewer samples at reduced Nyquist rate. The signal 
estimation is then applied over the sub-sampled signal, which is being recovered using 
the CS reconstruction algorithms of BP or OMP. 
 
Coherent FSK is the chosen demodulation scheme. The receiver by knowing the two 
prototype FSK modulated waveforms decides in favor of the one which is closest in 
Euclidean distance to the received noisy signal, in frequency domain. The decision about 
each waveform appearing in the received sequence is based on the minimum Euclidean 
distance between the DFT of the received reconstructed part of the signal after the CS 
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operation and the DFT two possible carrier waves that have been passed from the 
transmitter. The observed signal is defined as  
 

𝐬𝐬� =  argminsi‖𝐜𝐜 − 𝐬𝐬i‖2                                       (2.48) 
 

where c is the DFT vector of the received signal and 𝐬𝐬i stands for the DFT of the two 
possible carrier waves a0(t) = Acos(ω0t + θc)  and a1(t) = Acos(ω0t + θc), representing the 
binary data 0 and 1 respectively. In the end, the combination of detection and 
demodulation leads to the analog-to-digital conversion of the signal, in terms of mapping 
 

continuous waveform x(t)�   m�  discrete message. 
 
The analog to digital conversion process produces sequences of binary numbers that 
represent the observed analog data at particular regular points. In Figure 2.9 is illustrated 
in detail the whole proposed communication system model.   
 
 
 

 
 

Figure 2.9: Block diagram of the proposed System Model. 
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Chapter 3  
Simulation and Results 
 
 
3.1 Simulation Approach 
 
After successfully developing the software of all the blocks of the proposed system 
model illustrated in Figure 2.9 in MatLab (Matrix Laboratory) environment, simulations 
have been conducted so as to estimate the efficiency of the system. We evaluate their 
performance initially through simulations in AWGN channel and then in space channel 
model, being able in that way to compare and estimate whether the  FSK modulator and 
FSK CS-based demodulator pair would be effective in applications of space 
communications despite the non-favorable communication conditions in the space 
environment.  
 
More precisely, the communication system consisting of the transmitter, the 
communication channel and the receiver, has been simulated as follows; as an initial 
step, a long sequence of random bits are being generated, which are being provided as 
input to the transmitter. At the transmitter, FSK modulation is applied in the input 
sequence, which is synthesized in terms of two waveforms with specific frequencies as 
a reference, representing each one the binary bits 0 and 1. The modulated carrier signal 
in analog form is then transmitted through the simulated channel. We tested the 
transmission performance of the signal through two separate channel models, in the 
AWGN channel, as well as in the space channel model. During the transmission, a 
controlled amount of noise is being added to the transmitted signal, which then becomes 
the input to the receiver. At the receiver side, the received signal is being compressed in 
the frequency domain, so as to be estimated then from fewer linear measurements, 
reducing in this way the sampling rate. The sub-sampled signal is being reconstructed 
through the CS recovery algorithms of BP and OMP, for the demodulation process. 
Finally, by computing the minimum value of the Euclidean distance between the 
frequency spectrum of the reconstructed signal and corresponding one of the prototype 
FSK waveforms, is specified the final sequence of the received message. 
 
 
3.2 Simulation in AWGN Channel 
 
Additive White Gaussian Noise (AWGN) channel is commonly used to simulate 
background noise of the channel under study. White Gaussian noise is normally 
distributed in time domain with zero mean and variance 𝜎𝜎2. In the following simulations 
we use it as a reference channel for the proposed communication system, the behavior 
of which we will compare next with its performance in the space channel model. 
 



 

27 
 

The performance results of the system based on FSK modulation and CS-based detection 
is presented in the plot of Figure 3.1. Evaluation of the performance is based on metrics 
of Bit Error Ratio (BER) and Signal-to-Noise Ratio (SNR).  
 
BER indicates the number of bit errors divided by the total number of transmitted bits 
during a time interval. For each error that occurs means that the received bit is not equal 
with the transmitted one. Our goal is to provide a receiver in which the probability of 
errors is minimized for transmission in the simulated communication channels. SNR is 
defined as the ratio between the power of the signal and the power of background noise 
expressed in decibels (dB).  
 

= =signal b

noise 0

P E
SNR  

P N
                                                      (3.1) 

 
In Figure 3.1 can be seen the performance of the FSK CS-based detector compared to 
the one in which the signal is being sampled at the Nyquist rate. More specifically, the 
Figure 3.1 shows four curves, where the two of them illustrate the CS-based demodulator 
which uses the BP and OMP as reconstruction algorithms, the third one the FSK detector 
without using CS operation, and the last one the theory BER of FSK detection.   
 
 
 

 
 
Figure 3.1: Average BER of FSK signal demodulation for CR = 0.8, AWGN channel, 

measurement matrix = IDFT matrix, reconstruction algorithms BP and OMP. 
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It can be observed that the theoretical curve is closely followed by the one that represents 
FSK detection at Nyquist-rate, while the latter appears better performance compared to 
the CS-based detectors. In this simulation for the CS-detectors, we assume a 
compression ratio of 0.8 (with M = 0.8N) per transmitted symbol, with the compression 
ratio (CR) measured as 
 

=
M

CR  
N

                                                             (3.2) 

 
where M and N represent the compressed data size and the original data size (number of 
Nyquist-rate samples of an FSK symbol), respectively. As measurement matrix IDFT 
matrix is used. Furthermore, a coding gain up to 1 dB appears in the CS-based detection 
with reconstruction algorithm the BP, in comparison with the detection using OMP as 
recovery algorithm. For both the CS-based detections, the proposed system shows 
favorable results, as the SNR loss is not large compared with the one corresponding to 
the performance of demodulation without using Compressive Sampling technique. The 
overall results of the simulated detectors show a good Bit Error Rate performance, as the 
values of BER are close enough to the values of theory prediction for FSK detection, 
and moreover, there is a continuous drop in Bit Error values as the SNR increases.  
 
 
 

 
Figure 3.2: Average BER of FSK signal demodulation for CR = 0.6, AWGN channel, 

measurement matrix = IDFT matrix, reconstruction algorithms BP and OMP. 
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In the simulation of Figure 3.2 a compression ratio of 0.6 with M = 0.6N is applied, with 
measurement matrix the IDFT as well. We observe in general that as the sampling rate 
is being reduced, from 0.8 to 0.6, the Bit Error Rate for individual values of SNR is 
increased. Nonetheless, the difference between the plots with CS operation and the one 
without CS is around 2 and 3 dB, which is a good performance taking into consideration 
that the compression ratio is equal to 0.6. 
 
In Figure 3.3 is represented simulation results for the probability of bit error as a function 
of compression ratio for SNR value of 10 dB. In this case, it is considered as N = 16 and 
M = 1:N, with measurement matrix the IDFT matrix. In the plot of Figure 3.3 the 
detection which is based on the reconstruction algorithm OMP shows better performance 
for compression ratio until 50%, while for larger compression ratios BP appears better 
BER performance.  
 
However, the overall BER results of the both CS-based detectors are close enough to 
each other. It can also be observed that for a fixed value of SNR, as the number of 
samples per bit is rising, which means that the value of the relation M/N is increasing, 
then the probability of bit error appears a relatively steady drop. There are points where 
the BER values are increased for certain compressive ratios instead of having a 
continuous falling behavior. This behavior depends on the algorithms for signal 
reconstruction and the number of iterations they execute until convergence to obtain the 
final reconstructed signal. 
 

 
 

Figure 3.3: BER Vs Compression Ratio for 10 dB, AWGN channel, measurement 
matrix = IDFT matrix, N = 16, M = [1:N], reconstruction algorithms BP and OMP. 
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3.3 Simulation in Space Channel 
 
We reveal the performance of the developed FSK modulation and CS-based 
demodulation schemes under the space channel model; a model introduced and 
implemented by HELIOS (Highly rEliable LInks during sOlar conjunctionS) project, an 
integrated project receiving funding from the European Space Agency (ESA) [1]. The 
space channel used is a Rician channel based on experimentally derived power spectral 
densities for the phase and amplitude of X-band signals propagating through the solar 
corona [1].  
 
Rician fading is a stochastic model for radio propagation caused by the partial 
cancellation of a radio signal, and is typically used in space link communications, where 
the signal is strongly affected by amplitude and phase scintillation. We evaluate the 
performance of our implemented system through simulations in this Rician-based space 
channel, during periods of Solar Conjunction, when the Sun-Earth-Probe angle becomes 
extremely small reaching about 3º. The coherent sampling time is set equal to 0.1 
seconds, while Kr  = 10 is the Rician K-factor, denoting the ratio between the power in 
the direct path and the power in the scattered paths of the channel. 
 
Figure 3.4 illustrates the performance of the Compressive Sampling-based demodulator 
for FSK modulated signals which are transmitted through the space communication link. 
More specifically, in Figure 3.4 are shown three curves, the two of them representing 
the CS-based demodulator which uses for signal reconstruction the BP and OMP 
algorithms, and a third one denoting the demodulator which samples at Nyquist-rate.  
 
 

 
 
Figure 3.4: Average BER of FSK signal demodulation for CR = 0.8 in Space Channel, 

measurement matrix = IDFT matrix, reconstruction algorithms BP and OMP. 
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In the above simulation is considered a compression ratio of 0.8 (with M = 0.8N) per 
symbol transmitted through the space communication link, with the IDFT matrix as 
measurement matrix used. Although the optimum performance regarding BER-SNR is 
shown up from the detection based on Nyquist-rate sampling, Compressive Sampling-
based detectors also appear a very effective performance under the space communication 
channel. As it can be observed, the curves representing the CS-based detectors reach Bit 
Error Rate close enough to the reference plot corresponding to demodulation of Nyquist-
rate sampling. 
 
More precisely, the simulation results for CR = 0.8 show a coding gain of 1 dB for the 
non-CS-based detector, compared with the CS-based one which uses BP as 
reconstruction algorithm, as well as a coding gain of 2 dB in comparison with 
demodulator using OMP as a recovery method.  
 
In Figure 3.5 are illustrated the results of the Compressive Sampling-based 
demodulators, when there is applied a more strict Compression Ratio equal to 0.6. As it 
was expected, this drop of CR = 0.8 to CR = 0.6, leads to a relative increment in the 
values of Bit Error Rate. For instance, we observe that in case of CR = 0.6, for SNR = 5 
dB, BER reaches values a little higher than 10-1 for the both CS-based detectors, while 
in the above simulation of CR = 0.8, is achieved a BER little less than 10-1 for SNR equal 
to 5 dB. Although the sampling rate is significantly reduced, the results confirm the 
efficiency of the proposed implemented system, as there is not large divergence between 
the BER values of the cases above in which are applied different compressive sampling 
ratios (in the first instance CR = 0.8, while in the second CR = 0.6). Furthermore, BER 
appears a stable downward behavior when the SNR values raise. 
 
 

 
Figure 3.5: Average BER of FSK signal demodulation for CR = 0.6 in Space Channel, 

measurement matrix = IDFT matrix, reconstruction algorithms BP and OMP. 
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We tested furthermore the performance of the system not only for the instances presented 
in Figures 3.4 and 3.5, but also for more values of Compression Ratio which are greater 
and lower of the above. Our inference is that as the Compression Ratio declines further, 
the coding gain of the detector based on Nyquist rate sampling raises, but that is not to 
a large extent, if we take into consideration all the benefits of Compressive Sensing that 
results in a low-complexity hardware in the receiver of the communication system. The 
observations prove that Compressive Sensing could be efficiently used in practical space 
communication environments. 
 
Figure 3.6 shows the simulation outcomes for the probability of bit error as a function 
of compression ratio, when the SNR equals to 10 dB. For this scenario, we considered 
N = 16, M = 1:N, and IDFT matrix as measurement matrix. The simulation has been 
conducted under the space channel model, the results of which show that in this case the 
overall performances of both CS-based demodulators using BP and OMP as 
reconstruction algorithms respectively, are sufficiently close to each other as the CR 
increases.  
 
In addition, this simulation confirms the observation that as the compression ratio 
increases, the probability of bit error falls. In the CS plots of Figure 3.6 appear some 
fluctuations in values of BER, which can be attributed to the effect of each IDFT 
measurement matrix used in the 16 distinct Compressive Sampling simulated processes, 
represented by the points appearing in the plots. This behavior of BER fluctuations as 
the CR increases also depends on the reconstruction algorithms BP and OMP used, as 
well as on the number of iterations they execute until convergence to obtain the final 
reconstructed signal on which is based the final bit decision. 
 
 

Figure 3.6: BER Vs Compression Ratio for 10 dB, Space Channel, measurement 
matrix = IDFT matrix, N = 16, M = [1:N], reconstruction algorithms BP and OMP. 
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Consequently, all the above simulation results of the implemented system model, prove 
the efficiency of Compressive Sampling-based techniques for FSK signals demodulation 
for transmission over the space communication link. Therefore, the proposed system 
would achieve a reliable communication between Earth and Space, being able to be also 
used in periods when communications face severe difficulties due to the hard conditions 
in the space environment. 
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Chapter 4 

Conclusions and Future Work 
 
Space link communications face severe challenges in a great extent, especially during 
periods of Solar Conjunction, when the angle between Sun-Earth and Probe appears a 
significant drop. The signal that is being transmitted under these conditions suffers from 
amplitude and phase scintillation, as well as from spectral broadening effects. Within 
this thesis, we focus on the study and development of Compressive Sampling-based 
techniques for FSK signals demodulation, exploring the performance of the system when 
the signals that are being transmitted through the space communication link have been 
altered, due to their passage through the solar corona.  
 
Initially, all the essential theoretical background for the system's structure 
comprehension has been presented in detail, as well as the procedure that we followed 
for the development of the proposed system in MatLab environment. Afterwards, we 
evaluate the performance of the implemented scheme initially under the AWGN channel, 
and then under real Space channel assignment. The results demonstrate the effectiveness 
of the Compressive Sampling-based FSK demodulation scheme in space 
communications, as the Bit Error Rate shows low values in short SEP angles between 
the Spacecraft and the Earth. Compressive Sampling-based demodulation secures 
significant reduction in system's hardware complexity, power consumption and 
sampling rate at the receiver side of the communication system. 
 
As a future research extension, Frequency-Hopping Spread Spectrum (FHSS) 
transmission through the Space communication link could be studied, in which the radio 
signals are being transmitted over rapidly changing frequencies, optimizing in that way 
the already implemented system. Furthermore, it could be studied alternative methods 
for compressed signals' reconstruction, which would ensure even better BER results and 
the overall system's optimum performance.  
 
 
 
 
 
 
 
 
 
 
 



 

35 
 

References 
 
[1] A.J. Stocker, D.R. Siddle, E.M. Warrington, G. Mariotti, D. Silvestri, A. Zeqai, P. 
Tortora, A. Argyriou, J. De Vicente, R. Abello, and M. Mercolino, "A channel model 
for the propagation of X-band radio waves through the solar corona," URSI 2017. 
 
[2] D. Morabito and R. Hastrup. "Communicating with Mars during periods of solar 
conjunction." In: IEEE Aerospace Conference Proceedings, pp. 1271- 1281, 2002. 
 
[3] Q. Li, L. Yin and J. Lu. "Performance Study of a Deep Space Communications 
System with Low-Density Parity-Check Coding under Solar Scintillation." In: 
International Journal of Communications, Vol. 6(1), pp. 1-9. 
                  
[4] S. Gishkori, G. Leus and H. Deliç. "Energy detectors for sparse signals." In: Signal 
Processing Advances in Wireless Communications (SPAWC), IEEE Eleventh 
International Workshop, pp.1-5, 2010. 
 
[5] I. Selesnick. "Introduction to Sparsity in Signal Processing." Connexions Website. 
http://cnx.org/content/m43545/, 2012. 
 
[6] Watkins-Johnson Company. "FSK: Signals and Demodulation." Tech Notes. 
Vol.7(5), pp. 1-13, 1980. 
 
[7] E.J. Candes and M.B. Wakin. "An Introduction To Compressive Sampling." In: IEEE 
Signal Processing Magazine, Vol. 25(2), pp. 21-30, 2008.  
 
[8] M.M. Abo-Zahhad, A.I. Hussein, A.M. Mohamed "Compressive Sensing Algorithms 
for Signal Processing Applications: A Survey." In: International Journal of 
Communications, Network and System Sciences, Vol.8(6), pp. 197-216, 2015. 
 
[9] I. Selesnick. L1-Norm Penalized Least Squares with SALSA. Connexions, 2014 
http://cnx.org/content/m4893. 
 
[10] T.T. Cai and L. Wang. "Orthogonal Matching Pursuit for Sparse Signal Recovery 
with Noise." In: IEEE Transactions on Information Theory Vol.57(7), pp. 4680-4688, 
2011. 
 
[11] M.V. Afonso, J.M. Bioucas-Dias and M.A.T. Figueiredo. "Fast image recovery 
using variable splitting and constrained optimization." In: Journal IEEE Transactions on 
Image Processing, Vol.19(9), pp. 2345-2356, 2010. 
 
[12] A. Cohen, W. Dahmen, and R. DeVore, "Compressed sensing and best k-term 
approximation," preprint, pp. 1-23, 2006.  
   
 
 
 


	[11] M.V. Afonso, J.M. Bioucas-Dias and M.A.T. Figueiredo. "Fast image recovery using variable splitting and constrained optimization." In: Journal IEEE Transactions on Image Processing, Vol.19(9), pp. 2345-2356, 2010.

