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Abstract
Aiming at extremely efficient algorithms for big data sets, we introduce property testing of rela-
tional databases of bounded degree. Our model generalises the bounded degree model for graphs
(Goldreich and Ron, STOC 1997). We prove that in this model, if the databases have bounded
tree-width, then every query definable in monadic second-order logic with modulo counting is
testable with a constant number of oracle queries and polylogarithmic running time. This is
the first logical meta-theorem in property testing of sparse models. Furthermore, we discuss
conditions for the existence of uniform and non-uniform testers.
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1 Introduction

As technology advances, there is an increased need for new extremely efficient algorithms
that deal with typical computational problems on ever larger databases. Approximate Query
Processing [4] addresses this by seeking to provide approximate answers to queries at a
fraction of the cost of traditional query execution, thus opening the path for revealing
new insights into voluminous data sets. In this spirit, we study a relaxation of Boolean
Query Evaluation on relational databases of bounded degree, including performance and
(probabilistic) accuracy guarantees.

The problem of Boolean Query Evaluation asks, for a Boolean query Q and a relational
database D, whether D satisfies Q. Relaxing this problem, we want to distinguish with
high probability correctly the case that D satisfies Q from the case that D is ε-far from
satisfying Q, i. e. from the case that we need to modify (add / delete) more than an ε-fraction
of the tuples in relations of D to make the database satisfy Q. For ε ∈ (0, 1], an ε-tester is
a probabilistic algorithm that makes this distinction by only looking at a small number of
small parts of the input database. More precisely, the ε-tester receives the size n of the input
database and has oracle access to the database. For each given element of the domain, the
tester can query the oracle for tuples (in any of the relations) containing the element. The
query complexity q(n) of the ε-tester is the maximum number of oracle queries performed,
over all input databases on n elements.
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6:2 Property Testing for Bounded Degree Databases

In this paper we only consider databases of degree bounded by a constant d, i. e. every
element participates in at most d tuples in relations, and we assume that the oracle can
answer queries in constant time. Due to the degree bound, a database D on n elements has
at most dn tuples in relations. We say D is ε-far from satisfying query Q, if we need to
delete or insert more than εdn tuples in D to satisfy Q. Given our interest in highly efficient
algorithms, we study testers with constant query complexity q, i. e. q is independent of n
(but may depend on ε and the degree d). Here, we view a Boolean query as an isomorphism
closed class of relational databases. We use the term property instead of Boolean query.
We say that a property Q is testable, if for every ε, there is an ε-tester for Q with constant
(oracle) query complexity.

In [2], Alon, Krivelevich, Newman and Szegedy proposed a systematic study of the
testability of logically defined properties. We obtain the first such logical meta-theorem for
property testing in the bounded degree model, which relates logical definability to time
efficient uniform testability. This is the main result of our paper. It can be thought of as
testability-analogue of the well-known theorem Courcelle [6], which states that each property
of relational databases which is definable in monadic second-order logic with counting (CMSO)
is decidable in linear time on relational databases of bounded tree-width. We show that each
such property is testable on structures of bounded degree and bounded tree-width.

Our model extends the bounded-degree model for property-testing of graphs, introduced
by Goldreich and Ron [15], and the bidirectional model for directed graphs of [3, 9]. In [21],
Newman and Sohler showed that every hyperfinite graph property is testable. This includes
properties such as planarity and minor-closed graph classes. Their testers are non-uniform
in the number n of vertices of the input graph. (Indeed, it is not hard to come up with
a property of (edgeless) graphs that is undecidable but hyperfinite, and hence testable.)
We generalise this result to databases of bounded degree over a fixed finite signature. We
then study conditions that allow for time efficient uniform testers, and we characterise both
non-uniform testability and uniform testability. We introduce a combinatorial criterion which
characterises non-uniform testability with constant query complexity. This criterion which
we call locality is similar to the concept of Hanf locality from mathematical logic which
provides a combinatorial method for proving non-definability results for first-order logic and
its counting extensions (cf. [17]). It captures the intuition that testability of a property with
constant query complexity means that the property is determined by the distribution of
substructures of a constant radius r (r-discs) in a structure. We also introduce a concept
which we call effective locality and which characterises uniform testability. This pinpoints
that uniform testability of a property is closely related to solving a relaxation of a realisability
problem of r-disc distributions. This problem asks for a given distribution D and a natural
number n whether there exists a structure on n elements satisfying the property and where
the r-discs are distributed according to D.

Techniques. Similar to the evaluation of scale independent queries in [12], our algorithms
only explore a constant size sub-database before outputting the answer. For this, we explicitly
require the database to have bounded degree, whereas scale-independent queries use a degree
restriction implicit in the access schema.

The proof of the CMSO-result involves a number of steps. By our characterisation of
uniform testability it suffices to show that all CMSO-definable properties are effectively
local. To prove this, we generalise the Local-Global Theorem [21, Thm. 3.1] from graphs
to databases. We then show that the realisability problem can be solved efficiently. For
this, we use the fact that many-sorted spectra of CMSO formulas on bounded tree-width are
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semilinear, a result by Fischer and Makowsky [13], that is based on Parikh’s Theorem [22].
This allows to encode the problem as an integer linear program (ILP) with a fixed number
of variables and inequalities. Using a result of Lenstra [18] for solving such ILPs we obtain
polylogarithmic running time.

Let us remark that some work goes into generalising tools from property testing on
graphs to relational databases. For this we could reprove the relevant results in our slightly
more general setting (this is not done in this extended abstract for space constraints). A
different approach would be to encode relational structures as (coloured) incidence graphs,
and apply the known results for graphs. This can be done, because bounded degree, bounded
tree-width and hyperfiniteness carry over to incidence graphs. Nevertheless, it involves some
technicalities, in particular when simulating testing algorithms on incidence graphs. We plan
to take this approach in the journal version.

Structure of the paper. Section 2 introduces the notation and general definitions used
throughout the paper. Section 3 is devoted to the discussion of our model, including
illustrating examples. Section 4 contains our logical meta-theorem, together with the
generalisations of known results about graphs to databases. Section 5 characterises testability
by our notion of locality, and uniform testability by effective locality. We conclude in
Section 6.

Proofs. Several proofs are omitted due to space contraints for this extended abstract. We
indicate this by (∗).

2 Preliminaries

We let N denote the set of natural numbers including 0. For each n ∈ N with n ≥ 1, we let
[n] := [1, n] ∩ N. A partition of a set A is a collection P of non-empty, pairwise disjoint
subsets of A whose union is A. For an element a ∈ A we let P [a] denote the unique member
of P containing a.

Relational structures. In this paper, we consider relational databases as finite relational
structures over finite signatures. A signature is a finite set σ := {R1, . . . , R`} of relation
symbols, each of which has an arity, ar(Ri) ∈ N. We let ar(σ) denote the maximum arity of
the relation symbols contained in σ. A σ-structure is a tuple A := (A,RA1 , . . . , RA` ) where A
is a finite set, called the universe of A, and RAi is a ar(Ri)-ary relation on A. The members
of the universe are the elements of A. We let |A| := n denote the number n of elements of
A. We assume that all structures are linearly ordered in some way or, equivalently, that
the universe of a structure with n elements is [n]. We extend the linear order on A to a
linear order on each relation of A via lexicographic ordering. We say that a σ-structure B is
a substructure of another σ-structure A, if B can be obtained from A by deleting a (possibly
empty) set of elements from A and a (possibly empty) set of tuples from the relations of
A. Note that we have to relabel the elements of B after deleting elements to be sure that
the universe of B is still an initial segment of the natural numbers. A substructure of A is
induced by a set M ⊆ A if it can be obtained from A by deleting all elements of A \M (and
all incident tuples). We denote such a structure by A[M ]. A property is a class of structures
that is closed under isomorphism. Indeed, we only consider isomorphism closed classes of
structures. For each class C of structures, we define C|n := {A ∈ C : |A| = n}. The degree
deg(a) of an element a in a structure A is the total number of tuples in all relations which
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6:4 Property Testing for Bounded Degree Databases

contain a. We define the degree deg(A) of a structure A as the maximum degree of its
elements. A class C of structures has bounded degree d if deg(A) ≤ d for each A ∈ C. A class
C is of structures is closed under removing tuples, if for every structure A ∈ C, the structure
A′ obtained from A by deleting a tuple from some relation of A is also a member of C.

A class C has bounded degree if there exists a number d such that C has bounded degree
d. We write Cσ,d for the class of all σ-structures of degree at most d. Most of the time,
σ will be fixed and we omit it from this notation. The Gaifman graph of a structure A is
the undirected graph G(A) = (A,E), where {x, y} ∈ E if x and y occur together in a tuple
belonging to some relation of A. Observe that our notion of bounded degree classes coincides
with the notion where the degree of A is defined as the (usual graph-theoretical) maximum
degree of G(A).

We transfer the usual graph theoretic (shortest path) distance and related notions (e.g.
radius, connectivity) from Gaifman graphs G(A) to structures A. A non-empty induced
substructure B of A is a connected component of A, if G(B) is a connected component of
G(A). For each r ∈ N, an r-disc is a pair (A, a) where A is a relational structure of radius
at most r and a is a central element of A. Two r-discs (A, a) and (B, b) are isomorphic
(written (A, a) ∼= (B, b)) if there is an isomorphism of A and B which maps a to b. An r-type
is an ∼=-equivalence-class of r-discs. The number of r-types is bounded by a constant which
depends only on the signature σ and the fixed degree bound d. We write c(r) to denote this
constant. For a given structure A and an element a of A, the r-neighbourhood of a in A,
written NAr (a) is the set of all elements with distance at most r to a. The r-disc around a in
A is the structure DAr (a) := (A[NAr (a)], a). We say that an element a realises an r-disc-type
τ , if DAr (a) ∈ τ . For each structure A, the r-histogram of A denotes the vector hr(A) with
c(r) components, indexed by the r-disc types, where the component corresponding to type
τ contains the number of elements of A which realise τ . More generally, we call a vector v̄
an r-histogram with n elements if it has c(r) components and if n =

∑
i≤c(r) v̄[i]. For every

class of structures C and each r ∈ N, we let Hr(C) := {hr(A) : A ∈ C}. If there exists a
structure A ∈ C such that v̄ = hr(A), we say that v̄ is C-realisable. For each r-histogram v̄

and each r-disc D, we let v̄[D] := v̄[i] where τi is the unique r-disc type with D ∈ τi. For an
r-histogram v̄ with n elements, the vector v̄/n specifies a distribution of r-types.

3 The Model

Algorithms with direct access. Let σ be a signature. We consider algorithms which process
σ-structures of bounded degree d. An algorithm that processes A does not obtain an encoding
of A as a bit string in the usual way. Instead, it has direct access to A using an oracle which
answers queries about the relations of A in constant time. The (usual) input of the algorithm
consists of auxiliary information. In our case, this will always be the size n of the universe of
A in binary representation. The oracle accepts queries of the form (R, i, j), for R ∈ σ, i ≤ n,
and j ≤ deg(A), to which it responds with the j-th tuple of the relation RA which contains
the i-th element, or with ⊥ if there are strictly less than j tuples in RA which contain i. The
running time of the algorithm is defined as usual, i.e. with respect to the auxiliary input
n. As common in property testing, we use a uniform cost model, i. e. we assume that all
basic arithmetic operations including random sampling can be performed in constant time,
regardless of the size of the numbers involved.

Distance. For two graphs G and H, both with n vertices, dist(G,H) denotes the minimum
number of edges that have to be inserted or removed from G and H to make G and H

isomorphic. For two σ-structures A,B with the same number n of elements, dist(A,B)
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denotes the minimum number of tuples that have to be inserted or removed from A and B
to make A and B isomorphic. Let ε ∈ [0, 1] and d ∈ N. If deg(A),deg(B) ≤ d, we say that A
and B are ε-close (with respect to d) if dist(A,B) ≤ εdn. Usually, the number d is fixed and
will not be mentioned. If A,B are not ε-close, then they are ε-far. We say that a structure
A is ε-close to a property P if A is ε-close to some B ∈ P. Otherwise, A is ε-far from P.
Given a class of structures C, we write ε -closeC(P) and ε -farC(P) for the set of σ-structures
from C which are ε-close and ε-far to P, respectively. Usually, we omit C from this notation
if it can be inferred from the context. Note that since P is closed under isomorphism, both
ε -close(P) and ε -far(P) are closed under isomorphism as well.

Degree bounds and distances carry over from structures to their Gaifman graphs as
follows.

I Lemma 1 (∗). Let σ be a signature of maximum arity α := ar(σ) and let A,B be
σ-structures of degree at most d ≥ 1. Then deg(G(A)) ≤ dα, and dist(G(A),G(B)) ≤(
α
2
)

dist(A,B).

I Definition 2 (ε-tester). Let σ be a signature and let d ∈ N. Let C be a class of σ-structures
of bounded degree d and let P ⊆ C be a property. An ε-tester for P on C is a probabilistic
algorithm with direct access to σ-structures. Given oracle access to a σ-structure A ∈ C and
given n := |A| as auxiliary input, the algorithm does the following:
1. If A ∈ P, then the tester accepts with probability at least 2

3 .
2. If A ∈ ε -far(P), then the tester rejects with probability at least 2

3 .
The query complexity of a tester is the maximum number of oracle queries made. A property
P ⊆ C is uniformly testable in time f(n) on C, if for each ε ∈ (0, 1] there is an ε-tester for
P which has constant query-complexity (i. e. independent of n) and whose running time on
structures with n elements is f(n). Note that this tester must work for all n.

A property P is non-uniformly testable, if for each n, the class P|n is testable on C|n,
i.e. there may be a different tester for each input size. (Note that this definition of uniform
testability is non-standard. Some authors define uniform testability as being uniform with
respect to ε.)

Our definitions subsume the bounded degree model of graph property testing. Let
σ := {E}, where E is a binary relation symbol, and let C denote the class of all undirected
graphs (viewed as symmetric, irreflexive directed graphs) of degree at most d. Then, up
to a constant factor in the query- and time complexity, all results about testability in the
bounded degree graph model carry over to testability in our model. In the same way, our
model generalises the bidirectional model for directed graphs of bounded degree introduced
in [3]. We illustrate the model by two simple examples.

I Example 3 (Keys). A component of a relation is a key if there are no two tuples in the
relation which contain the same value in this component. Let σ := {R} be a signature.
Consider the property Key containing all σ-structures A where the first component of RA is
a key. Let d ∈ N. We show that on the class Cσ,d, Key is uniformly testable with constant
running time. Let ε ∈ (0, 1]. Given oracle access to a σ-structure A on n elements, the
ε-tester proceeds as follows.
1. Sample α := log1−ε

1
3 elements from [n] uniformly and independently.

2. For each of these elements i, perform the queries (R, i, 1),. . . ,(R, i, d) to obtain all tuples
of RA which contain i.

3. If, in the previous step, two tuples with the same elements in their first components are
found, the tester rejects A. Otherwise, A is accepted.
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6:6 Property Testing for Bounded Degree Databases

Call a tuple belonging to RA bad if RA contains another tuple with the same first component.
An element is bad if it occurs in the first component of a bad tuple. The tester clearly accepts
A if A ∈ Key, i.e. it contains no bad tuples. Suppose that A is ε-far from Key. Then there
are at least εdn bad tuples. Since A has degree at most d, at least εn different elements
occur in the first components of these bad tuples. The probability that a uniformly random
element of A is bad is hence at least ε. The probability that our sample of α independently
selected elements contains no bad element is (1− ε)α ≤ 1

3 . Hence, with probability at least
2
3 the algorithm samples a bad element i. Since i is bad, there are at least two tuples which
contain i and hence the algorithm rejects A. The running time is constant.

I Example 4 (Symmetry). A k-ary relation is symmetric if for each tuple ā := (a1, . . . , ak)
of the relation and each permutation π of [k], the tuple π(ā) := (aπ(1), . . . , aπ(k)) is also
contained in the relation. Let σ be an arbitrary signature and let R ∈ σ be a k-ary relation
symbol. We show that the class Sym of σ-structures which interprete R by a symmetric
relation is strongly uniformly testable on the class Cσ,d, for each d ∈ N. Let ε ∈ (0, 1]. Given
oracle access to a σ-structure A on n elements, the tester proceeds as follows.
1. Sample α := log1−ε

1
3 elements uniformly and independently from the universe [n].

2. For each sampled element i, perform the queries (R, i, 1),. . . ,(R, i, d) to obtain all (at
most d) tuples ā of RA which contain i, and for each such tuple ā = (a1, . . . , ak) and for
each permutation π of [k], check whether the tuple π(ā) is also present.

3. If this is true for all α elements, accept. Otherwise reject.

The tester clearly accepts A if A ∈ Sym. Suppose that A is ε-far from Sym. Then there
are at least εdn bad tuples, i. e. tuples ā ∈ RA such that π(ā) /∈ RA for some permutation
π. Since each element of the universe is in at most d tuples, there are at least εn different
elements that are contained in bad tuples. Hence the probability that a random element is in
a bad tuple is at least εn/n = ε. Hence the probability that none of the α sampled elements
is in a bad tuple is at most (1− ε)α = 1/3. Hence the algorithm accepts with probability at
least 2/3. The tester has query complexity d log1−ε

1
3 and constant running time.

4 Monadic second-order logic and bounded tree-width

We are interested in identifying general conditions which ensure the time efficient uniform
testability of a wide range of properties on relational structures. In this section we consider
properties which are definable by sentences of monadic second order logic with counting
(CMSO) on classes of structures of bounded degree and bounded tree-width.

Before we state the main theorem of this section, we briefly introduce logic. We use
the notation which is usual in finite model theory (cf. e.g. [19] for a general overview and
[7] for an overview regarding CMSO and the notion of tree-width). Fix a signature σ. An
atomic formula, is a formula of the form x = y or R(x1, . . . , xr), where R ∈ σ is an r-ary
relation symbol and x, y, x1, . . . , xr are (individual) variables. The formulas of first-order
logic are built up from atomic formulas using the usual Boolean connectives and existential
and universal quantification over the elements of the universe of a structure. The class
of all formulas of first-order logic is denoted by FO. Monadic second-order logic (MSO)
is the extension of first-order logic allowing quantification not only over elements of the
universe of a structure, but also over subsets of the universe. Formally, we have two types of
variables: individual variables (denoted by small letters x, y, z, x1, ...), which are interpreted
by elements of a structure, and set variables (denoted by upper-case letters X,Y, Z,X1, ...),
which are interpreted by subsets of the universe of a structure. In addition to the atomic
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first-order formulas, in MSO we also have atoms Xx saying that x is an element of set X.
Furthermore, we have existential and universal quantification over both individual and set
variables. CMSO extends MSO by first-order modular counting quantifiers ∃m, for each
integer m, where ∃mϕ is true in a structure if the number of its elements for which ϕ is
satisfied is divisible by m. A free variable of a formula ϕ is an (individual or set) variable v
that does not occur in the scope of a quantifier ∃v or ∀v. A sentence is a formula without
free variables. For a structure A and a sentence ϕ we write A |= ϕ to denote that A satisfies
ϕ. Detailed introductions can be found in [10, 19].

By Mod(ϕ) we denote the class of all structures satisfying ϕ. For an arbitrary formula
ϕ and an assignment a in A to the free variables of ϕ, we write (A, a) |= ϕ to denote that
A satisfies ϕ if the free variables are interpreted according to a. We say that a property
P is definable in logic L, if there is a sentence ϕ of L with P = Mod(ϕ). For a class C of
structures, we say that Mod(ϕ) ∩C is the property defined by ϕ on C.

Recall that we have assumed that the universes of structures are initial segments of the
natural numbers. This was used for the definitions surrounding testability. We stress that
the linear orders on structures are not available in logical formulas.

I Proviso. Let d ∈ N, and fix a finite relational signature σ. From now on, all structures are
σ-structures and have degree at most d, unless stated otherwise. Moreover, we let α := ar(σ)
and C ⊆ Cσ,d.

We let Ctw
t denote the class of all σ-structures of degree at most d and tree-width at

most t. The main goal of this section is a proof of the following theorem.

I Theorem 5. Each property P which is CMSO-definable on Ctw
t is uniformly testable on

Ctw
t with polylogarithmic time complexity.

For the proof, we introduce a notion of locality, which is based on the distributions of
r-discs. In the next section, we will show that locality characterises non-uniform testability.
Newman and Sohler’s results [21] show that properties of hyperfinite graphs are non-uniformly
testable and local. We generalise these to relational structures, and we use the fact that
every class of relational structures of bounded tree-width is hyperfinite. This already implies
non-uniform testability. We then use semilinearity of Hr(P) for MSO-definable properties on
bounded tree-width and a restricted form of ILP to establish polylogarithmic running time.

Since Hanf’s paper [16], it is known that properties which are definable by formulas
of first-order logic are local, in the sense that whether or not a structure has a first-order
definable property depends only on the r-discs present in the structure. This is made precise
by several notions of locality such as Hanf locality and Gaifman locality (cf. [17]). These
yield a unified combinatorial method for showing that certain properties of sparse structures
are not first-order definable. Our notion of (approximate) locality is of similar spirit.

We introduce some notation. We identify each r-histogram vector v̄ with n components
with a structure A on n elements over a signature σr := {P1, . . . , Pc(r)} where each relation
symbol Pi is unary. The unary relations of A are pairwise disjoint sets such that |P v̄i | := v̄[i],
for each i ≤ c(r). In this way, we can transfer all definitions for structures (e.g., distance,
testability) to r-histograms. In particular, note that for all r-histograms ū, v̄ with the same
number n of elements, ū and v̄ are ε-close iff dist(ū, v̄) ≤ εn, because histogram vectors are
structures of degree d = 1. Recall that the `1-norm of a vector v̄ on ` components is defined
as ‖ū‖1 :=

∑`
i=1 |v̄[i]|.

I Lemma 6 (∗). dist(ū, v̄) = ‖ū − v̄‖1, for all r-histograms ū, v̄ with the same number of
elements.
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6:8 Property Testing for Bounded Degree Databases

I Definition 7 (Locality). Let ε ∈ (0, 1]. A property P ⊆ C is ε-local on C if there exist
r := r(ε) ∈ N and λ := λ(ε) ∈ (0, 1] such that for each A ∈ P and B ∈ C with the same
number of elements, if hr(A) is λ-close to hr(B), then B ∈ ε -close(P).

We call the parameters r and λ the locality radius and the disc proximity of P for ε,
respectively. A property is local if it is ε-local for each ε ∈ (0, 1].

The next example illustrates that locality and testability can indeed be established by very
similar arguments.

I Example 8 (Key is local). Recall the definitions of Example 3. We show that Key is
local on Cσ,d. Let ε ∈ (0, 1], let r := 1 and λ := ε. Consider structures A ∈ Key and B ∈ C
with n elements each and suppose that hr(A) and hr(B) are λ-close. Each bad tuple of RA
belongs to the 1-disc of its first component. Since A ∈ Key, the relation RA contains no
bad tuples, and hence h1(A)[D] = 0 for each 1-disc D such that RD contains two tuples
with the same first component. Since hr(A) and hr(B) are ε-close, the number of elements
whose 1-discs contain bad tuples in B is ≤ εn and each such element is contained in ≤ d

bad tuples. With ≤ εdn tuple deletions, we obtain a structure B′ ∈ Key from B. Hence,
B ∈ ε -close(Key).

We now generalise the results of Newman and Sohler [21] to properties on arbitrary
hyperfinite classes of relational structures of bounded degree. We begin with some definitions.

A substructure P of a structure A on n elements is a k-partition of A, if P and A have
the same universe (i. e. if P = A), every connected component of P contains at most k
elements, and for each element a ∈ A, the component P[a] of a in P is the substructure of
A induced by its universe P [a] ⊆ A. If, furthermore, dist(A,P) ≤ εn, we say that P is a
(ε, k)-partition of A. A class of structures C ⊆ D is ρ-hyperfinite on D if for each ε ∈ (0, 1]
and each structure A ∈ C there exists a (ε, ρ(ε))-partition P of A such that P ∈ D. We
call C hyperfinite on D if there exists a function ρ for which C is ρ-hyperfinite on D. This
definition generalises the notion of hyperfinite graph classes to general structures.

The proof of Theorem 5 makes use of the following theorem, which can be seen as
the generalisation of [21, Theorem 3.1] from graphs to structures. After generalising all
ingredients from graphs to relational structures, the proof of Theorem 9 can be put together
as in [21, Theorem 3.1].

I Theorem 9 (∗)(Local-Global Theorem). Let C be closed under removing tuples. If P ⊆ C
is hyperfinite on C, then P is local on C.

We want to approximate the histogram vector of a structure that comes from a hyperfinite
class of structures of bounded degree. For this we will make use of Lemma 5.1 in [21], which
allows us to approximate the distribution of the r-discs of a graph by looking at a constant
number of elements. This lemma easily translates to structures as follows. We write
EstimateFrequenciesr,s to denote an algorithm that, given access to a σ-structure A of degree
at most d, samples s elements in A uniformly and independently and explores their r-discs.
The algorithm returns the distribution vector v̄ of the r-disc-types of this sample.

I Lemma 10. Let λ ∈ (0, 1), r ∈ N. If s ≥ c(r)2

λ2 · ln(c(r)+40), with probability at least 19/20
the vector v̄ returned by EstimateFrequenciesr,s on input A satisfies ‖v − hr(A)/|A| ‖1 ≤ λ.

Our approach to the proof of Theorem 5 can be summarised as follows. It is known that
each class of graphs of bounded tree-width (and, more generally, any class of graphs which is
minor-closed, cf. [21]) is hyperfinite. From this, it follows that each property P is hyperfinite
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on Ctw
t . Hence, by Theorem 9, P is local on Ctw

t . Our aim is to show that a CMSO-definable
property P is not only local, but also uniformly testable in polylogarithmic time.

To this end, we study the structure of the sets Hr(P) for CMSO-definable properties
and arbitrary values of r. Using known results from logic, we show that these sets have a
particularly simple shape (i.e., they are semilinear) if we consider only structures of bounded
tree-width. Using this and a result about the complexity of integer linear programming (ILP)
with a bounded number of constraints and variables from [11], we can show that there is
an algorithm which, on input of an r-histogram on n elements decides in polylogarithmic
time if v̄ is λ-close to the r-histogram of a structure on n elements which belongs to P. This
algorithm then, in particular, establishes the testability of Hr(P), finishing the proof.

The first ingredient to our proof is the following lemma, which carries over from graphs
to structures.

I Lemma 11 (∗). Each property P ⊆ Ctw
t is hyperfinite on Ctw

t .

Next, we consider the structure of Hr(P). For this, we need the following definition.

I Definition 12 (semilinear sets). A set is semilinear if it is a finite union of linear sets. A
set M ⊆ Nc is linear if M = {v̄0 + a1v̄1 + · · ·+ akv̄k : a1, . . . , ak ∈ N}, for v̄0, . . . , v̄k ∈ Nc.

I Lemma 13. For each r ∈ N and each property P ⊆ Ctw
t which is CMSO-definable on Ctw

t ,
the set Hr(P ) is semilinear.

Lemma 13 is a corollary to a result of [13] about many-sorted spectra of CMSO-sentences.

I Definition 14 (many-sorted spectrum). For every signature σ and each ` ∈ N, we let
σ` := σ ∪ {P1, . . . , P`} where P1, . . . P` are unary relation symbols which do not occur in σ.
A σ`-structure A is `-sorted if PA1 , . . . , PA` is a partition of A, i.e. P1 ∪ · · · ∪ P` = A and
PAi ∩ PAj = ∅ for all 1 ≤ i < j ≤ `. We let n(A) := (|PA1 |, . . . , |PA` |). The many-sorted
spectrum of a CMSO[σ`]-sentence ϕ is the set

spec(ϕ) := {n(A) : A is a finite σ`-structure, A |= ϕ}.

I Theorem 15 ([13]). If the class defined by a CMSO[σ`]-sentence ϕ on the class of all
finite σ`-structures has bounded tree-width, then spec(ϕ) is semilinear.

Now we can prove our lemma.

Proof of Lemma 13. Let ϕ be a CMSO[σ]-sentence defining P on Ctw
t . Let τ1, . . . , τc(r) be

an enumeration of all r-types according to the fixed ordered on r-types that was used in the
definition of Hr(P). For each 1 ≤ i ≤ c(r), let ψi(x) be an FO[σ]-formula such that for each
A ∈ Ctw

t and a ∈ A, (A, a) |= ψi(x) if (A, a) ∼= τi. There is an MSO-sentence ψCtw
t

which
defines the class Ctw

t on the class of all finite σ-structures (using the forbidden minors for
tree-width ≤ t, see e. g. [8]). Consider the sentence

ξ := ϕ ∧ ψCtw
t
∧ ∀x

∧
1≤i≤c(r)

(
Pi(x)↔ ψi(x)

)
.

Note that spec(ξ) = Hr(P) and that all models of ξ have tree-width at most t for some
p := p(t). By Theorem 15, we obtain that Hr(P) is semilinear. J

To finish the proof of Theorem 5 it remains to link the semilinearity of Hr(P) to the
testability of P. The following lemma shows that semilinearity of Hr(P) implies decidability
of ε -close(Hr(P)) with polylogarithmic running time.
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I Lemma 16 (∗) (Approximate realisability). Let r ∈ N and ε ∈ Q ∩ (0, 1], and let M ⊆ Nc(r)
be a semilinear set of r-histograms. Then there is an algorithm that, given an r-histogram
ū ∈ Nc(r) on n elements (in binary encoding), decides whether ū ∈ ε -close(M) in time
polylogarithmic in n.

For the proof of Lemma 16, we phrase the conditions for belonging to ε -close(M) as
an ILP with a constant number of variables and constraints. Using results of [18], [11], we
obtain the desired running time. It remains to prove the following lemma.

Proof of Theorem 5. Let P be a property defined by some fixed CMSO-formula on Ctw
t .

Given ε, we construct an ε-tester for P for inputs A ∈ Ctw
t on n elements. By Lemma 11, Ctw

t

is hyperfinite, and hence, by Theorem 9, P is local on Ctw
t . Let r = r(ε) be the locality radius

and λ = λ(ε) the disc proximity of P for ε, as in the definition of locality. Pick a sample
size s for r and λ/2 as required for the algorithm EstimateFrequenciesr,s of Lemma 10, and
run the algorithm to obtain an approximation v̄ of the frequency vector of A with high
probability. Accept, if n · v̄ is λ/2-close to Hr(P), and reject otherwise (using the algorithm
of Lemma 16). It is easy to see that the algorithm is correct. Since EstimateFrequenciesr,s
runs in constant time, and the algorithm of Lemma 16 runs in time polylogarithmic in n, we
obtain uniform testability with polylogarithmic running time. J

We remark that the vectors spanning the semilinear set Hr(P) (in the proof of Theorem 5)
can be computed from the CMSO-definition of P. This is implicit in [13].

The same argument as in the proof of Theorem 5 can be used to show the following
lemma.

I Lemma 17 (∗). If a property P ⊆ C is local and ε -closeHr(C)(Hr(P)) is decidable in
time polylog(n), for each ε ∈ (0, 1] and r ∈ N, then P is uniformly testable on C in time
polylog(n).

For the proof of Lemma 17, we first approximate the distribution of r-types by sampling.
Then we accept if this distribution is sufficiently close to the distribution of a structure in P
on the same number of elements as the input structure.

5 Locality and testability

In this section we characterise non-uniform testability by locality. Inspired by the proof
for uniform testability of MSO on bounded tree-width, we introduce the notion of effective
locality, which adds the requirement that a certain realisability problem for the neighbourhood
distributions be solvable. We use effective locality to characterise uniform testabilty (on
decidable classes). We believe that the characterisations are interesting, as they provide a
purely structural criterion for testability and non-testability. While it is implicitely clear
that non-uniform testability ‘only depends on the local neighbourhoods’, to our knowledge
this has not been cast into a characerisation in the literature so far. Uniform testability has
not been characterised before. Furthermore, they explain the role of uniformity which has
been brought up by the general results on non-uniform testability of Newman, Sohler [21].
In this section, with a few exceptions, we disregard the running times of testers since we are
interested in the structural properties of testability.

The first main theorem of this section shows that non-uniform testability is equivalent to
locality.

I Theorem 18 (Locality). Then for every property P ⊆ C, P is non-uniformly testable on C
if, and only if, P is local on C.
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We mention that from Theorems 18 and 9 it follows that every property of hyperfinite
databases is testable. This is a generalisation of [21].

I Corollary 19. Let C to be closed under removing tuples. If C is hyperfinite, then every
property P ⊆ C is non-uniformly testable on C.

For example, Theorem 18 can be used for purely graph-theoretic proofs of non-testability
(e.g. in the proof that bipartiteness is not testable with a constant number of queries [15]).
Note that locality of a property P is not enough to ensure uniform testability. This can
be easily shown since the halting problem for turing machines with empty input can be
trivially encoded as a local property of graphs of degree 0. Intuitively, we would like to
use the locality of P to construct a tester for P as follows: on input of a structure A, (1)
approximate the distribution of the r-types by random sampling and (2) accept A if this
distribution is sufficiently close to the distribution of some structure from P. The notion of
locality does not guarantee that step (2) can be implemented effectively, which motivates
introducing effective locality.

We now introduce effective locality. Recall from above that our notion of testability
applies, in particular, to properties of r-histograms which we treat as structures of degree 1.

I Definition 20. P ⊆ C is effectively local on C if it is local on C and for each ε ∈ (0, 1)
and for the corresponding locality radius r := r(ε), the problem Hr(P) is uniformly testable
on Hr(C). If the running time of the tester is T (n), we say that P is T (n)-effectively local.

The realisability problem (cf. e. g. [1]) for a graph parameter f which maps graphs G to
f(G) ∈ Nk and for a class C of graphs is the decision problem which, on input of a vector
v̄ ∈ Nk, asks if there exists a graph G ∈ C such that f(G) = v̄. Hence, the problem Hr(P)
can be viewed as a realisability problem for structures.

We show that effective locality characterises uniform testability. In the following theorem,
we need the notion of a promise problem. Following e.g. [14], we define this as a pair of
disjoint languages (LYES, LNO) of binary strings. We say that (LYES, LNO) is solvable if
there exists an algorithm which accepts all inputs which belong to LYES and rejects all inputs
which belong to LNO. Note that a brute-force derandomisation of an ε-tester for a property
P yields a deterministic algorithm which solves the promise problem (P, ε -far(P)). From a
conceptual point of view, disregarding running times, it is more convenient to consider the
promise problem.

The second main theorem of this section characterises uniform testability.

I Theorem 21 (Effective Locality). Let C be a decidable class of structures, that is closed
under removing tuples. For each property P ⊆ C, the following statements are equivalent.
1. P is uniformly testable on C.
2. P is effectively local on C.
3. P is local and the promise problem (P, ε -far(P)) is solvable for each ε ∈ (0, 1].

We break the proofs of Theorem 18 and Theorem 21 into several lemmas.

I Lemma 22 (∗). Let C be a decidable class of σ-structures. Let P ⊆ C be a property
such that the promise problem (P, ε -far(P)) is solvable for each ε ∈ (0, 1]. Then the promise
problem

(
Hr(P), λ -far(Hr(P)

)
is solvable for each r ∈ N and λ ∈ (0, 1].

I Lemma 23 (∗). Let C be a decidable class of σ-structures. Let P ⊆ C be a local property
such that the promise problem

(
Hr(P), λ -far(Hr(P))

)
is solvable for each r ∈ N and λ ∈ (0, 1],

then P is uniformly testable.
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Without the solvability of the promise problem, we obtain non-uniform testability instead
of uniform testability.

Now we prove the implication from effective locality to uniform testability of Theorem 21.
The following lemma is stronger than what is needed here, because it also takes the running
time of the tester into account. It can be seen as a generalisation of Lemma 17.

I Lemma 24 (∗). If a property P ⊆ C is effectively polylog(n)-local on C, then it is uniformly
testable on C in time polylog(n).

I Corollary 25 (∗). If a property P is local on C, then it is non-uniformly testable on C.

Proof sketch. Since P|n is finite and local, it is effectively local and the result follows from
Lemma 24. J

I Lemma 26 (∗). If a property P ⊆ C is non-uniformly testable on C, then P is local on C.

Proof idea. It is intuitively clear that a tester with constant query complexity can only
inspect discs of a constant radius r. This is made precise by the Canonical Tester Lemma
which was proved by Czumaj, Peng, Sohler in the context of property testing for directed
graphs [9, Lemma 3.1]. This lemma extends to relational structures. It can be shown that,
on structures with sufficiently close r-histograms, a tester for P will see the same r-discs
with high probability. This is done in a similar way as in the proof of the “local versus global
graph structure”-theorem of Newman, Sohler [21, Theorem 3.1]. Hence, the tester will not
be able to distinguish between structures with close r-histograms, so if one of the structures
is in P, the other has to be in ε -close(P). This yields locality of P. J

We can now finish the proofs of both characterisation theorems.

Proof of Theorem 18. The theorem follows from Corollary 25 and Lemma 26. J

Proof of Theorem 21. The implication from statement 1 (uniform testability) to statement
3 (locality and solvability of (P, ε -far(P))) follows from Theorem 18 (locality) and by
derandomisation (solvability). The implication from 3 to 2 (testability of Hr(P)) is established
by Lemma 22. The implication from 2 to 1 is established by Lemma 23. J

6 Conclusion

We introduced property testing for relational databases of bounded degree. Our main result
is a logical meta-theorem proving testability of CMSO with constant query complexity
and polylogarithmic running time for databases of bounded tree-width, and we provide
characterisations of testability and uniform testability in the model. Our tester for CMSO
has two-sided error (because it samples the distribution of the r-discs), and it would be
interesting to know if a one-sided error can be achieved.

Since monadic second-order logic on words characterises the regular languages, Theorem 5
shows in particular, that regular languages are testable with a constant number of queries in
our model. In [2] testability of regular languages was already shown for a more restrictive
model, based on Hamming distance. Similarly, our result implies that regular (ranked) tree
languages are testable with a constant number of queries. In [20], testability of tree languages
was shown in a different model, using tree edit distance with an additional operation called
moves. The question of [5] (explicitly stated in [20]) whether regular tree languages with
Hamming distance are testable, remains open.
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A further interesting question is whether all properties definable in first-order logic are
(uniformly) testable is left open, and we are currently working on this. Furthermore, obtaining
a logical characterisation of the (uniformly) testable properties is interesting and challenging
open problem. It would also be interesting to determine the precise relation between our
notion of locality and Hanf-locality. Being reminiscent of realisability of degree sequences of
graphs, realisability of histograms seems worth studying in more detail.
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