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Game-theoretic Scalable Offloading for Video 
Streaming Services over LTE and WiFi 

Networks 
Donghyeok Ho, Gi Seok Park, and Hwangjun Song  

Abstract— This paper presents a game-theoretic scalable offloading system that provides seamless video streaming services 
by effectively offloading parts of video traffic in all video streaming services to a WiFi network to alleviate cellular network 
congestion. The system also consolidates multiple physical paths in a cost-effective manner. In the proposed system, the 
fountain encoding symbols of compressed video data are transmitted through long term evolution (LTE) and WiFi networks 
concurrently to flexibly control the amount of video traffic through the WiFi network as well as mitigate video quality degradation 
caused by wireless channel errors. Furthermore, the progressive second price auction mechanism is employed to allocate the 
limited LTE resources to multiple user equipment in order to maximize social welfare while converging to the ε-Nash equilibrium. 
Specifically, we design an application-centric resource valuation that explicitly considers both the realistic wireless network 
conditions and characteristics of video streaming services. In addition, the scalability and convergence properties of the 
proposed system are verified both theoretically and experimentally. The proposed system is implemented using network 
simulator 3. Simulation results are provided to demonstrate the performance improvement of the proposed system. 

Index Terms— Fountain code, Game theoretic resource allocation, Progressive second price auction, Scalable traffic offloading, 
Video streaming  
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1 INTRODUCTION

HE growth in global mobile data traffic has been tre-
mendous. According to the Cisco visual network in-

dex [1], the overall mobile data traffic is expected to grow 
at a compound annual growth rate (CAGR) of 47% from 
2016 to 2021, reaching 49 exabytes per month by 2021, 
which represents a nearly sevenfold increase over 2016. 
The main catalyst of this exponential rise in mobile data 
traffic is the explosive increase in smartphones, tablets, 
laptops, and advanced multimedia applications such as 
YouTube and Netflix. In [1], Cisco estimates that mobile 
video traffic will attain at a CAGR of 54% per year for the 
period 2016–2021 and account for more than 78% of mo-
bile data traffic in 2021. Unfortunately, this massive surge 
in mobile video traffic has caused an unprecedented de-
gree of pressure on the limited capacity of cellular net-
works, and ultimately degrades the user-perceived video 
quality [2]. The provision of support for the explosive 
traffic growth in mobile networks is quite challenging. 
The most straightforward solution is to increase the cellu-
lar network capacity by adding base stations, or by up-
grading the cellular networks to next generation ad-

vanced networks such as long term evolution (LTE) [3], 
LTE-Advanced (LTE-A) [4], and worldwide interoperabil-
ity for microwave access (WiMAX) release 2 (IEEE 802.16 
m) [5]. However, simply increasing cellular network ca-
pacity may not always be economical. Even in fourth-
generation (4G) network, bandwidth remains a limited 
resource because of the rapid growth of user demand for 
advanced multimedia applications. Moreover, these ap-
proaches require both large capital (CAPEX) as well as 
operational (OPEX) expenditures. 

Mobile data offloading [6] refers to the use of comple-
mentary networks such as WiFi and femtocell to deliver 
mobile data traffic originally planned for transmission 
over cellular networks. In [1], Cisco estimates that 63% of 
global mobile data traffic will be offloaded to WiFi or 
small-cell networks by 2021. In recent years, global net-
work operators such as AT&T, T-Mobile, Orange, and 
China Mobile have deployed carrier-grade access points 
(APs) in high density user locations like malls, markets or 
cafes to increase the volume of offloaded traffic [7], [8]. 
WiFi offloading is emerging as a cost-effective solution 
for operators to accommodate the tremendous growth of 
mobile data traffic, because it is much cheaper to install 
new WiFi APs than to upgrade cellular network equip-
ment. There are practical issues faced by operators when 
offloading mobile data traffic to a WiFi network, such as 
the quality of the WiFi experience, limitations of the WiFi 
planning tools, deployment of WiFi hotspots, manual 
offloading, and pricing [9]. The foremost challenge asso-
ciated with mobile data offloading is user experience [6]. 
Service providers must ensure consistent user experience 
and service continuity. However, it is not easy to main-
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tain the quality-of-experience (QoE) of a video streaming 
service when WiFi offloading is performed. This is due to 
performance limitations in terms of data rate and service 
range needed to deliver high-quality video streaming 
services in a single wireless network environment [10]. 
Recently, a cooperation among heterogeneous wireless 
networks has attracted a huge amount of interest. 

Auction theory, which is a subfield of game theory, 
provides useful mathematical tools to analyze the com-
plex interactions among interdependent rational players 
(i.e., buyers and sellers). Auction has been widely exploit-
ed to provide mobile data offloading solutions since it is 
suitable for a large-scale decentralized and competitive 
environment. The fundamental design issues when ap-
plying auction theory in various wireless communications 
and networking domains is presented in [11]. In [12], a 
reverse auction-based incentive mechanism is proposed 
to motivate user equipment (UEs) to assist mobile data 
offloading, where the cellular operator offers an incentive 
to UEs in exchange for delay during which the data are 
not received via the cellular network. In the iterative 
double auction mechanism [13], the buyers (cellular oper-
ators) and sellers (AP owners) submit their bids to the 
broker to maximize their payoffs, and the broker then 
returns the auction outcome to maximize the social wel-
fare (i.e., the sum of players’ resource valuations). In [14], 
auction-based WiFi offloading in vehicular environments 
is proposed to improve the utility of vehicle users and 
increase the revenue of cellular network operator. In [15], 
the opportunistic decision-making algorithm is designed 
to maximize the vehicle user’s satisfaction, which is mod-
eled as the downloading cost and downloading delay. In 
[16], a seamless WiFi-based Internet access scheme is 
proposed to overcome high packet loss rate and frequent 
connection disruptions. By configuring all APs with the 
same medisum access control (MAC) and internet proto-
col (IP) addresses, the vehicle users get a graceful illusion 
that only one AP exists. In [17], a combinational reverse 
auction is proposed to implement a marketplace for mo-
bile data offloading. AP owners lease the unused network 
capacity and the cellular operator rents the available AP 
bandwidth. When performing mobile data offloading, 
efficient resource allocation is in particular important for 
multimedia applications, since the necessary bandwidth 
for these applications is huge and varies continuously 
based on the content. However, most of the previous 
studies allocate resources without considering the actual 
benefit to users in terms of video quality. Thus, these 
studies are not appropriate for the multimedia resource 
allocation scenario over time-varying wireless networks.  

In this paper, we propose a game-theoretic scalable of-
floading system for video streaming services over hetero-
geneous wireless networks. The main contributions are 
summarized as follows. 
 We propose scalable offloading, which finely con-

trols the amount of traffic transmitted through LTE 
and WiFi networks, to provide seamless video 
streaming services and alleviate cellular network 
congestion. When using multiple physical paths 
with diverse delays for proposed scalable offloading, 

the packets may arrive out-of-order to the receiver 
[18]. We adopt the fountain code [19], [20] as a for-
ward error correction (FEC) scheme to solve the 
packet reordering and packet loss problems in error-
prone wireless networks while adjusting the amount 
of offloading traffic in a flexible scale. 

 We frame the scalable offloading problem as a pro-
gressive second price (PSP) auction game [21] in 
which LTE resources are shared among multiple 
UEs. More importantly, we define an application-
specific resource valuation function based on the 
rate-distortion models of the encoded video se-
quences. 

 We design a feedback-based UE bid decision algo-
rithm with low communication and computational 
overheads to improve the convergence speed to an 
equilibrium point. In addition, the scalability of the 
proposed algorithm is verified both theoretically and 
experimentally.  

 For performance verification under the large-scale 
and decentralized wireless network environment, 
we implement the proposed system using network 
simulator 3 (NS-3) open source software [22].  

The remainder of this paper is organized as follows. 
The background and related work are reviewed in section 
2. The details of the proposed game-theoretic scalable 
offloading are described in section 3 and experimental 
results are given in section 4. Concluding remarks are 
provided in section 5. 

2 BACKGROUND AND RELATED WORK 
In this section, we briefly review fountain code and the 
PSP auction mechanism in sections 2.1 and 2.2, respec-
tively. We then introduce the related works about mobile 
data offloading in section 2.3. 

2.1 Fountain Code 
Fountain codes such as Luby Transform (LT) [20], Online 
[23], and Raptor [24], [25] are block-based FEC schemes 
that provide high coding efficiency, flexibility, and low 
encoding and decoding processing times. Fig. 1 provides 
an example of an LT code deployment scheme for a video 
streaming service. For fountain encoding, the data stream 
should be divided into source blocks. Each source block is 
partitioned into source symbols of a predefined size. As 

Fig. 1. Example of LT code deployment scheme for a video stream-
ing service over error-prone wireless networks.  
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shown in Fig. 1, an encoding symbol is mapped to certain 
source symbols based on the degree distribution probabil-
ity. Each encoding symbol is generated by performing 
bitwise XOR operations on selected source symbols. This 
process is repeated until the last encoding symbol is cre-
ated. 

In general, the number of encoding symbols ( )k'  re-
quired for successful fountain decoding is calculated by  

 1 ,k k     

where k  is the number of source symbols and   is the 
symbol overhead with a very small real number. The 
aforementioned equation means that the number of re-
ceived encoding symbols must be slightly larger than k  
to reconstruct source symbols successfully. Fountain code 
can generate encoding symbols infinitely from a given 
finite number of source symbols (this is called rateless 
code). That is, 

,c k n  
where c  is the code rate and n  is the number of encod-
ing symbols. Thus, if a sufficient number of encoded 
symbols are available, the receiver can reconstruct all the 
source symbols even if some packets are lost or out-of-
order. The decoding process is equivalent to solving line-
ar equations. In general, the simple decoding algorithm 
through message passing [19] is widely used because of 
its low complexity. The decoding complexity of LT code 
is known to be   logO k k . Raptor code [24], [25], which 

is included in the 3rd generation partnership project 
(3GPP) [26] and digital video broadcasting-handheld 
(DVB-H) system [27], achieves linear time encoding and 
decoding complexity through a pre-coding stage of the 
source symbols [28]. In recent years, a more advanced 
Raptor code with greater flexibility and improved recep-
tion overhead, called RaptorQ, has been introduced into 
the IETF [29].  

2.2 Progressive Second Price Auction Mechanism 
A PSP auction [21], which is a generalized Vickrey auc-
tion [30] (also called second-price sealed-bid auction), is a 
decentralized mechanism to share variable-sized re-
sources among multiple users in a network framework. It 
is assumed that the total amount of network resource is R , 
and there are M  players participating in the auction, in-
dexed by {1,2,..., }i M I . Players submit a bid sequen-

tially and modify their bids as a reply to those submitted 

by others with a bid change fee ε. The thi  player’s bid is 

defined by  ,i i i ib q p B     0, 0,R   , where iq  is 

the desired quantity of resources, ip  is the offered price 

per unit, and iB  is the set of possible bid actions. The bid 

profile is    1,..., ,M i ib b b   b b B , where 

 1 1 1,..., , ,...i i i Mb b b b  b iB  denotes the bid profile of the 

thi  player’s opponents, and 
i i

B B
I

. After collecting 

bids, the auctioneer executes two functions: resource allo-
cation and payment computation. The allocation rule of 
the thi  player is defined by       ,i ii is a  b b b B , where 

 ia b  is the resources allocated to the thi  player, and  i b  

represents the payment for  ia b . Note that ip  is the 

price per unit and  i b  is the total cost. An allocation 

rule is deemed feasible if it satisfies the following. 

  ,  for ,i
i

Ra


   b b B
I

 

 0 ,  for ,i i ia q   b I                           (1) 

  ,0  for .ii iq p i   b I  

The allocation rule satisfying (1) is depicted in Fig. 2. 
When the thi  player participates in the auction with the 

bidding price ip , the amount of available resource ( )avail
ir  

that can be assigned to the thi  player is obtained by 

 
,

,
ii k

avail
i i k

k
i

p p

r p R q





 

 
  
 

b
I

, where    max ,0 .x x
   

Then,  ia b  is determined by     min , , avail
i i i i ia q r p b b  . 

The payment  i b  is calculated based on the externality 

that the player imposes on others through his or her par-
ticipation using      0, ,

i

i k i k i i
k

kp a a b


 


    b b b
I

.  

In game theory, a Nash equilibrium is a configuration 
of player strategies such that nobody can improve his or 
her utility by unilaterally changing strategy. In PSP, the ε-
Nash equilibrium is formally defined as follows. 

ε-Nash Equilibrium: For given opponent profiles, define 
the set of ε-best replies by 

 
    

*

* * * *: , , ,  fo  andr , 

i i

i i i i i i i i i ib u b u b b i







 



      

B b

B b b B I
 

where  iu   represents the utility of the thi  player, *
ib  is 

the ε-best reply of the thi  player with regard to *
ib , and 

 0    can be interpreted as a bid fee each time players 

submit a bid. An ε-Nash equilibrium is a fixed point of 

   *
i ii

 


B b B b
I

. Under elastic demand, the PSP auc-

tion is incentive compatible and stable, in that it has a 
truthful ε-Nash equilibrium in which all players bid at 
prices equal to their marginal valuation of the resource. In 
addition, PSP is economically efficient because the equi-
librium allocation maximizes the social welfare. 

 

Fig. 2. Example of the PSP auction-based resource allocation

mechanism for the thi  player with given opponent profiles.  
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2.3 Related Work 
Thus far, a considerable amount of research effort has 
been devoted to alleviating cellular network congestion 
by means of mobile data offloading. A comprehensive 
survey of mobile data offloading, including technical and 
business perspectives, was offered in [6]. Dimatteo et al. 
[31] evaluated the potential costs and gains for WiFi of-
floading in a metropolitan area by means of using large 
scale high mobility traces with the opportunistic network-
ing paradigm. Lee et al. [32] showed the promising results 
of WiFi offloading by means of using empirical pedestri-
an traces. The AP deployment algorithm based on realis-
tic mobility characteristics was proposed in [33], and 
more granular deployment algorithms in a city-wide sce-
nario was studied in [34]. In addition, the feasibility of 
WiFi offloading in high-speed vehicular environments 
was demonstrated in [35], [36], [37]. Motivated by these 
potential economic benefits, thus far efficient offloading 
mechanisms have been proposed. Wiffler [38] was devel-
oped to augment third-generation (3G) network capacity 
for delay-tolerant applications over vehicular networks. 
MultiNets [39] is a seamless offloading system that allows 
a mobile device to automatically switch to the most suita-
ble network interface based on user-defined policies such 
as energy saving and throughput. Wiffler and MultiNets 
make offloading decisions based on historical bandwidth 
records and signal strength that do not reflect the current 
traffic load. Thus, UEs cannot reasonably respond to real-
time wireless network states. MADNet [40] is a collabora-
tive mobile data offloading architecture, which is de-
signed mainly for extending mobile battery life. However, 
MADNet has focused on the vertical handover. In addi-
tion to added implementation cost and effort, these ap-
proaches require sophisticated architecture and mutual 
agreement between stakeholders. Although interoperabil-
ity is supported, an abrupt bandwidth change and sub-
stantial handover latency are unavoidable [41]. These 
negative effects lead to bursty packet loss of video data 
and error propagation in the successive frames until the 
next I-frame is received successfully. For these reasons, 
the vertical handover may seriously degrade the QoE of a 
video streaming service [42], [43]. 

Path diversity means that a mobile user can establish 
multiple physical paths over heterogeneous wireless ac-
cess networks. Path diversity has some advantages [44]: it 
can eliminate problematic vertical handover delay and 
increase the transmission rate and reliability, because the 
physical paths are independent of each other. In recent 
years, some efficient multipath transport protocols [18], 
[45], [46] and end-to-end virtual path construction sys-
tems [44], [47] have been proposed to overcome the limi-
tations of single path transmission by harmonizing the 
multiple physical paths simultaneously. In addition, an 
access network discovery and selection function (ANDSF), 
which is an optional network element in the 3GPP 
evolved packet core (EPC), has been specified in 3GPP 
standards [48], [49] for efficient interworking between 
3GPP and non-3GPP access networks. ANDSF assists UEs 
in discovering non-3GPP access networks such as WiFi 
and WiMAX, and provides UEs with operator-defined 

policies to support network selection and traffic routing 
decisions. However, several limitations of the ANDSF 
have been expounded in recent literature [50]. The cur-
rent ANDSF is not combined with the actual usage of the 
access networks. If ANDSF treats the traffic information 
of several access networks, traffic offloading techniques 
can efficiently resolve the congestion of 3GPP access net-
works. In addition to the network-side information, a 
considerable amount of intelligence is available locally in 
UEs, such as battery, mobility, and user preference (e.g., 
service type, quality, and cost). This information can be 
used to improve the performance of network selection 
and decisions. 3GPP also offers some alternative offload-
ing mechanisms that take advantage of the hybrid archi-
tecture of the EPC such as local IP access (LIPA), selected 
IP traffic offload (SIPTO) [51], and IP flow mobility 
(IFOM) [52]. 

3 PROPOSED GAME-THEORETIC SCALABLE 
OFFLOADING SYSTEM 

The goal of the proposed system is to alleviate LTE net-
work congestion by offloading parts of video traffic 
through a WiFi network in a flexible scale while improv-
ing video quality of all UEs at low monetary cost by effi-
ciently allocating limited LTE resources. Fig. 3 represents 
the proposed interworking architecture between 3GPP 
and non-3GPP access networks, which is based on the 
3GPP standard architecture [48], [49]. As shown in Fig. 3, 
the proposed scalable offloading module is implemented 
at the ANDSF server for compatibility with existing archi-
tecture. In addition, ANDSF has additional interfaces to 
the policy and charging rule function (PCRF) and packet 
data network gateway (P-GW) to apply real-time network 
condition-aware offloading policies. In this paper, WiFi 
APs are assumed to be deployed by the cellular network 
operator. Cellular network operator can effectively of-
fload the mobile traffic by turning on their APs when the 
current LTE network capacity experiences difficulty sup-
porting UEs.  

3.1 System Architecture 
The proposed system architecture under consideration is 
given in Fig. 4. The proposed system includes three main 

Fig. 3. Proposed interworking architecture between 3GPP and non-
3GPP access networks based on the 3GPP standard architecture. 
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entities: ANDSF, P-GW, and UE. In addition, it is tightly 
coupled with a media server to accommodate the various 
mobile users. Specifically, the media server performs real-
time transcoding to seamlessly provide a video stream 
compatible with the end-user’s device, and to meet the 
bandwidth constraints imposed by the user’s resource 
allocation. Mobile devices are assumed to be equipped 
with LTE and WiFi network interfaces. In order for path 
diversity to be utilized efficiently, the characteristics of 
each physical path must be recognized. In this paper, the 
pathChirp algorithm [53] is employed to estimate the 
available bandwidth of each physical path. The propaga-
tion delay and packet loss rate (PLR) are obtained by us-
ing the time stamp and index number in each packet 
header, respectively. Based on the path monitoring in-
formation, the control unit of UE determines parameters 
such as the fountain code rate, the packet transmission 
vector (i.e., the number of packets transmitted through 
LTE and WiFi networks), and the target video encoding 
rate while satisfying delay and fountain decoding failure 
rate constraints to support seamless video streaming. Af-
ter collecting the aforementioned parameters from UEs, 
the proposed offloading module in ANDSF computes the 
number of LTE packets that can be allocated to each UE 
as well as the corresponding payment for allocated re-
sources, and then delivers interim results to all participat-
ing UEs. This resource negotiation process is repeated 
until convergence is achieved. Finally, the optimal control 
parameters are forwarded to each associated entity. 

Now, the H.264/MPEG-4 AVC encoder compresses a 
video sequence at the target video encoding rate. At the 
P-GW, the fountain encoder generates encoding symbols 
at the fountain code rate, the packetizer allocates the en-
coding symbols to packets, and then the packet distribu-
tor assigns packets to selected physical paths according to 
the packet transmission vector. It is shown in [44], [54] 
that the packetization of encoding symbols is closely as-
sociated with the fountain decoding probability. In this 

paper, an encoding pattern-aware packetization algo-
rithm [44] is adopted as a component.  

Meanwhile, PCRF creates policy and charging control 
(PCC) rules based on the final negotiation results, which 
are forwarded by ANDSF. New rules are then delivered 
to policy and charging enforcement function (PCEF) (i.e., 
P-GW). P-GW enforces the PCC rules to the user service 
data flow (SDF). When IP packets arrive, P-GW detects 
SDFs to which each packet belongs, and applies the PCC 
rule to the packet according to its SDF. 

3.2 Problem Description 
In this section, we formulate the proposed scalable of-
floading problems for the video streaming services re-
garding UEs and the cellular network operator. Before 
presenting a detailed description, some symbolic descrip-
tions are given in the following.  1,2,...,MI  represents 

a set of UEs, where M  is the number of UEs. The control 
unit of UE determines its own packet transmission vector 

for an encoding block, represented by  ,  LTE W Fi
ii

i
iq qq 


 for 

1 i M  , where LTE
iq  and WiFi

iq  denote the number of 
requested packets through LTE and WiFi networks, re-
spectively. Considering the delay and complexity, a 
source block during the fountain encoding process is 
made up of a group of pictures (GOP) in a compressed 

video stream. The target video encoding rate,  ,  gop iir q c


, 

for a GOP is calculated by 

   
 , ,

/

LTE WiFi
i i pkt

go

i

p

rm

i

f

iq c
q q S c

r
N FR

 



                     (2) 

where pktS  is the size of a packet payload, frmN  is the 

number of frames in a GOP, and FR  is the video frame 
rate. We can now formulate the optimal problems as fol-
lows. 

Problem Formulation for the thi  UE: Determine the 

packet transmission vector iq


 and the fountain code rate 

ic  for i  I  to minimize the following function with the 
minimum monetary cost  

  ,  ,gop g p io iqr cd


                                (3) 

maxs.t.  ,blk blkt T                                 (4) 
max ,blk blk                                  (5) 

where  gopd   denotes the average distortion of com-

pressed video in a GOP, blkt  is the end-to-end delay for an 

encoding block, max
blkT  denotes the tolerable maximum 

end-to-end delay to avoid the receiver buffer underflow 
for an encoding block, blk  is the fountain decoding fail-

ure rate for a source block, and max
blk  denotes the tolerable 

maximum fountain decoding failure rate for a source 
block. The rate-distortion modeling techniques are essen-
tial to developing a real-time video encoding algorithm 
with low computational complexity over a time-varying 
wireless network. In this paper, we employ an empirical 
data-based GOP-level rate-distortion model [55] to esti-

 

Fig. 4. Proposed system architecture under consideration. 
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mate the corresponding average distortion ( )gopd  of com-

pressed video in a GOP without repeated video compres-
sion processes, that is, 

    , ,,gop gop igi ipi oq cr r cd q


 
 

                (6) 

where   0     and   0     are the model parame-

ters depending on the video sequence.  
The cellular network operator then allocates LTE re-

sources to UEs to maintain congestion at a tolerable level. 
The LTE packet allocation vector is represented by 

 1 2, ..., , LTE L
LTE

TE LTE
Ma a aa 


 where LTE

ia  denotes the number 

of LTE packets allocated to the thi  UE. Now, it can be 
formulated as follows. 

Problem Formulation for Cellular Network Operator: 

Determine the LTE packet allocation vector  LTEa


 to max-
imize 

,LTE
i

i

a



I

                                      (7) 

s.t.   ,  LTE
i

i

a R



I

                                    (8) 

0 , for ,LTE LTE
i iq ia   I                      (9) 

where R denotes the available LTE network resource for 
video streaming services, which is shared among UEs. 
The cellular network operator can determine R by estab-
lishing the specific policies of the LTE radio resource 
management (RRM) module, such as dynamic resource 
allocation (DRA) and packet scheduling for video stream-
ing flows [56]. 

The aforementioned UE problem can be simplified to 
obtain an effective solution with low computational com-
plexity using the following properties.  

Property 1. To satisfy (4), the maximum number of pack-
ets through each physical path is calculated based on its 
available bandwidth and observed delay. The transmis-
sion delay of a packet through LTE and WiFi networks is 

calculated by , ,
trans
L pTE ii kt LTEt S bw  and , ,

trans
W piF k ii ii t W Fit S bw , 

where ,LTE ibw  and ,WiFi ibw  are the available bandwidths of 

the LTE and WiFi networks, respectively. The maximum 
number of packets that can be transmitted through LTE 
and WiFi networks within max

blkT  for an encoding block is 

then obtained by 
max

,

,

prop
blk LTE iLTE

i trans
LTE i

T t
Q

t

 
  
  

 and 

max
,

,

prop
blk WiFi iWiFi

i trans
WiFi i

T t
Q

t

 
  
  

, where ,
prop
LTE it  and ,

prop
WiFi it  denote the 

propagation delay of the LTE and WiFi networks, respec-
tively, and x    refers to the largest integer less than x . 

Now, the feasible ranges of the number of packets trans-
mittable through LTE and WiFi networks are determined 
by 0 LTE LTE

i ia Q   and 0 WiFi WiFi
i ia Q  . 

Property 2. The optimal fountain code rate ( )opt
ic  that sat-

isfies the fountain decoding failure rate constraint can be 

represented as a function of iq


 under the assumption that 

each channel condition is known during the subsequent 
block transmission [47]. That is, 

    arg min ,   for 0 1,
i

op
i iic

t
iiq g q c cc   

 
        (10) 

     max max,      if 
,  

                              otherwise,

blk blk i blk blki
ii

q c
g q c

      





      (11) 

where  ,  blk iiq c


 denotes the fountain decoding failure 

rate calculated based on the packet loss rates of each 
physical path [47]. Based on the aforementioned proper-
ties, the previous problem formulation for a UE is simpli-
fied as follows under the assumption that free WiFi re-
sources are fully utilized to reduce monetary cost. 

Simplified Problem Formulation for the thi  UE: Deter-

mine LTE
iq  for i  I  with the given WiFi

iq  to minimize the 
following function with the minimum monetary cost  

   ,
WiFi WiFi
i i

LTE
gop gop i

q Q
d r q



                        (12) 

s.t.  LTE LTE
i iq Q .                         (13) 

3.3 Proposed PSP Auction-based Resource 
Negotiation  

In a large-scale decentralized and competitive environ-
ment, it is difficult for UEs and cellular network operator 
to solve the aforementioned optimization problems. In 
this paper, we employ the PSP auction mechanism [21] to 
obtain an effective solution with relatively low computa-
tional complexity. Since the PSP auction is designed to 
assign variable-sized portions of a divisible resource 
among multiple bidders, it is more suitable to the pro-
posed system to allocate wireless resources to UEs. We 
first present the PSP auction-compatible system model 
and then verify the feasibility of resource valuation func-
tion, designed for video streaming services. Finally, the 
proposed bid decision algorithm and its convergence 
analysis are described in detail.  

3.3.1 PSP Auction-compatible System Model 
In this paper, we envision an offloading market where a 
set of UEs (the buyers) competes to obtain the LTE re-
sources of the cellular network operator (the seller) for the 
video streaming service. It is assumed that there is only 
one seller, and this seller performs the role of an auc-
tioneer who conducts the auction and clears the market. 
As soon as the current traffic demand exceeds the availa-
ble LTE resource R, the cellular network operator an-
nounces the auction for sharing the LTE resource and 
collects bids from the UEs. After collecting bids from the 
UEs, the cellular network operator computes the optimal 
resource allocation according to the PSP rules, defined by 

      ,LTE
i i is a b b b  for i  I  and delivers the feed-

back to corresponding UE. The UE waits for an auction 
announcement, and then decides whether or not to bid. 
Although the LTE network is congested, some UEs may 
not want to participate in the auction to obtain LTE re-
sources, because they perceive a good WiFi channel. In 
this case, the video streaming services are provided 
through a WiFi single network only. If the UE decides to 
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join the auction, it submits the bid  ,LTE
ii iqb p  and 

waits for the interim auction results (the details of the bid 
decision algorithm are described in section 3.3.3).  When 
the interim auction results have been revealed, the UEs 
update their bid based on the feedback information to 
achieve better utility. This resource negotiation process is 
repeated until all UE bids are converged to the ε-Nash 
equilibrium to satisfy the objectives of both UEs and the 
cellular network operator simultaneously. The overall 
system procedure is presented in Fig. 5. 

Now, the simplified UE problem formulation in sec-
tion 3.2 is changed to be compatible with the PSP auction 
mechanism as follows. 
Modified Problem Formulation for the thi  UE Compati-

ble with PSP Auction: Determine a bid  ,LTE
ii iqb p  for 

i  I  with the given WiFi
iq  to maximize the following 

utility function 

      , , , ,WiFi WiFi WiFi WiFi
i i i i

LTE
i i i i i i i iQ i

Q
iq q

u b a b b 
  b b b   (14) 

s.t.  ,LT
i

E LTE
iq Q                                (15) 

where  i   denotes the resource valuation of the thi  UE, 

which is defined by 

     0 ,WiFi WiFiWiFi WiFi WiFi WiFi
i ii i i i

LTE LTE
i i i

q QQ Q qq
q PSNR q PSNR

 
  (16) 

where   WiFi WiFi
i i

LTE

q Q
iPSNR q


 represents the peak-signal-to-

noise ratio (PSNR), which is defined by 

  210 log 255
WiFi WiFi
i i

LTE
gop gop i

q Q
d r q



   
 

 , and  ,i i ib b  is a 

payment for allocated resources to the thi  UE (for details, 

refer to section 2.2).  

3.3.2 Verification of Utility and Resource Valuation 
Functions  

In this section, we verify the feasibility of our utility and 
resource valuation functions in (14) by confirming the 
requirements of the PSP auction. Fig. 6 depicts the thi  
UE’s utility and payment according to the amount of allo-
cated resource ( )LTE

ia  under the assumption that the op-
ponent profiles are given. The diagonal region (red) and 
rectangles (yellow) represent the utility and payment val-
ues of the thi  UE, respectively. When the utility function 
in (14) is concave, the PSP auction-based resource alloca-
tion mechanism guarantees that the social welfare, 

 LTE
i i

i

a



I

, is maximized at the ε-Nash equilibrium [21] 

while satisfying the given constraints in (1). As shown in 

 

Fig. 6. Example of the thi  UE’s utility and payment with given oppo-

nent profiles.  

1 t t
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       ,  for LTE
i i is t a i   Ib b b

   ,LTE
i iib t q p

   1 1,.., , ,.., MMQ q q C c c 
 

 

Fig. 5. Proposed PSP auction-based resource negotiation process. 
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Fig. 6, the second term of (14), namely,  i b , is a non-

decreasing convex function with respect to LTE
ia  because 

the first derivation of  i b  is represented as a staircase 

function. Thus, the resource valuation function must be 
monotonically non-decreasing and concave with respect 
to increased resources in order to guarantee that the ε-
Nash equilibrium exists.  

Proposition 1. The resource valuation  i   in (16) is differen-

tiable,   00i  , monotonically non-decreasing with in-

creased resources, and concave. 

Proof. By combining (2) and (16),   WiFi WiFi
i i

LTE
i

Q
i

q
q


 can be 

represented as follows. 

     

   

10

   log log log 0 .

0 WiFi WiFiWiFi WiFi WiFi WiFi
i ii i i i

WiFi WiFiWiFi WiFi
i ii i

LTE LTE
i i i qq q

WiFi
opt LTE opti
i i iLTE WiFi qq

i

QQ

Q
i

Q

Q

q PSNR q PSNR

Q
c q c

q Q




 



 

  

   
 
 Since it is difficult to represent  opt

ic   as a closed form 

as shown in (10) and (11), we empirically derive the es-
timation model ( )opt

ic  by using a curve fitting method. 
That is, 

    ,
WiFi WiFi
i i

opt LTE LTE WiFi
i i

Q
i i

q
c q q Q





               (17) 

 where   and   are the model parameters. With val-

ues of WiFi
iQ  varying from 50 to 200, and average PLR 

from 0 to 0.05, we verify the accuracy of the proposed 
code rate model as shown in Fig. 7. The resulting R2 
values are larger than 0.98 in all cases, as shown in Ta-
ble 1. Consequently, the proposed model fits the ob-
served data well. Furthermore, the table clearly indi-

cates that both   and   are always positive.  

 Now,   WiFi WiFi
i i

LTE
i

Q
i

q
q


 is approximately represented by 

  

 

  
    

10 log log

log 10 1 log .

WiFi WiFi
i i

LTE
i i

q

WiFi
LTE WiFii
i iLTE WiFi

i i

WiFi
WiFi i
i LTE WiFi

i i

Q
q

Q
q Q

q Q

Q
Q

q Q







 

  








     

 
      

  

 (18) 

 The first derivation of   WiFi WiFi
i i

LTE
i

Q
i

q
q


 is then obtained 

by 

   
 

110 1
.

ln10WiFi WiFi
i i

LTE
i i LTE WiFi

Qq
i i

q
q Q

 




     


   (19) 

 Because   is negative and   is positive,   0LTE
i iq    

in 0LTE
iq  . The second derivation of   WiFi WiFi

i i

LTE
i

Q
i

q
q


 is 

next obtained by 

    
 2

10 1 1
.

ln10WiFi WiFi
i i

LTE
i i

LTE Wi
i

Q Fiq
i

q
q Q

 




    


      (20) 

 For the same reason,   0LTE
i iq    in 0LTE

iq  . Thus, the 

resource valuation  i   is differentiable, monotonical-

ly non-decreasing, and concave with respect to allocat-
ed resources. In addition,   00i  . 

3.3.3 Feedback-based Bid Decision Algorithm  
During the PSP auction, the game converges to an ε-Nash 
equilibrium using the truthful ε-best reply strategy [21] 
under the assumption that a player determines a bid 
based on complete knowledge of its opponent profiles 
( )ib  in the previous round and that bids are always 
submitted asynchronously, with only one player submit-
ting a new bid in each round. However, when a time-
varying wireless network environment is considered, the 
aforementioned assumption is not reasonable [57]. Each 
mobile device has limited computational capabilities, so it 
may be infeasible for it to process all of its opponent pro-
files in order to determine the bid that will maximize its 
payoffs within a tolerable delay. In addition, considerable 
communication overhead is incurred as players repeated-
ly exchange bid information every auction period. Thus, 
it is important to design a practical bid decision algorithm 
that can be deployed successfully in a realistic environ-
ment. In this section, we design the feedback-based bid 
decision algorithm to improve the convergence speed to 
an equilibrium point while maximizing social welfare 
without complete knowledge of opponent information. It 

TABLE 1 
CODE RATE MODEL PARAMETERS AND R-SQUARED VALUE 

Model Index     R2 

Fig. 7 (a) 0.9163 0.0103 0.9885 
Fig. 7 (b) 0.9245 0.0088 0.9964 
Fig. 7 (c) 0.7929 0.0242 0.9878 
Fig. 7 (d) 0.8099 0.0206 0.9962 

 

 
(a)                                                   (b) 

 
(c)                                                  (d) 

Fig. 7. Examples of the proposed code rate model: (a) code rate with
WiFi
iQ  = 100 and PLR = 1%, (b) code rate with WiFi

iQ  = 200 and PLR =

1%, (c) code rate with WiFi
iQ  = 100 and PLR = 5%, and (d) code rate

with WiFi
iQ  = 200 and PLR = 5%. 
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is assumed that the cellular network operator sends UEs 
the feedback information on the previously submitted bid. 
To determine the thi  UE’s bid in round t , two forms of 

feedback information are required: 1)  1LTE
iq t  , which is 

the amount of requested resource in round 1t  ; and 2) 

  1LTE
ia t b , which is the amount of allocated resource in 

round 1t  . It is assumed that all participating players are 
rational and selfish to maximize their own utility accord-
ing to the following.  

Property 3. If the requested resource from the previous 

round is fully allocated (i.e.,  LTE LTE
i ia qb ), UE will not 

decrease the amount of requested resource in the next 
round. 

Property 4. If the requested resource from the previous 

round is not fully allocated, (i.e.,  LTE LTE
i ia qb ), UE will 

not increase the amount of requested resource in the next 
round. 

Property 5. The UE submits a truthful bid reflecting indi-

vidual’s true valuation (i.e.,    for LTE
i i i iqp    I ), 

which is a dominant strategy in PSP [21].  

Properties 3 and 4 can be easily verified by contradiction. 
The proposed algorithm is designed based on the above 
properties, and the details are described as follows. 
Step 1. Initialize system parameters such as max

blkT , max
blk , 

and ε, and  0 b . 

Step 2. In round 1t  , each UE initializes the bid 

       1 1 , 1LTE
i ii

LTE
ib q q  , where  1LTE

iq  is set to E
i
LTQ . 

According to Property 5, ip  is set to  LTE
i iq  . Go to 

Step 4. 
Step 3. In round  2,3,...t , each UE updates its bid 

based on the feedback information. If the requested re-
source is fully allocated in round 1t   (i.e., 

    1 1LTE LTE
i ia t q t  b ), then go to Step 3-1. Other-

wise, go to Step 3-2. 
Step 3-1. According to Property 3, the UE does not de-

crease the amount of requested resource. The bid 

       ,LTE LTE
i i iib t tqtq    in round t  is determined by 

   1LTE LTE
i iq t q t  . This means that the UE continuous-

ly uses the previous round bid without incurring a bid 
submission fee ε [21]. Go to Step 4.  

Step 3-2. According to Property 4, the UE does not in-
crease the amount of requested resource. The bid 

       ,LTE LTE
i i iib t tqtq    in round t  is determined by 

       
 

if 

oth

1

erw e,1 is

new new LTE
i i i i iLTE

i LTE
i

q q a t
q t

q t

    








b
 (21) 

    where         1 1 1new LTE LTE LTE
i i i i iq a t q t a t     b b  

and  (0 1)i i    is the weighting factor. The UE will 

send a bid as long as it improves the current utility by 
ε. 

Step 4. If all of UE’s current bids are the same as the pre-

vious bid profiles (i.e.,    1t t b b ), then terminate 

the process under the assumption that the ε-Nash 
equilibrium is achieved. Otherwise, the ANDSF calcu-
lates   LTE

ia tb which is delivered to UE. With the up-

dated feedback information, go to Step 3 to proceed to 
the next round auction. 
An example of the proposed bid decision algorithm 

with two UEs is depicted in Fig. 8. In round 1, each UE 
requests the LTE packets, initialized by  1 LLTE E

i
T

iq Q . It is 

observed in Fig. 8 (a) that UE 1 does not receive as many 
LTE packets as requested. In this case, UE 1 decreases the 
number of requested LTE packets in round 2 according to 
Property 4. On the other hand, UE 2 maintains the same 
bid in round 2 according to Property 3, because the 
amount of requested resource in round 1 is fully allocated. 
In round 2, UE 1 successfully obtains the requested LTE 
resource since UE 1’s marginal valuation becomes larger 

(a) 

(b) 

(c) 

Fig. 8. Example of the proposed feedback-based bid decision algo-

rithm with two UEs: (a) round 1 when     1 11 1LTE LTEa qb  and

    2 21 1LTE LTEa qb , (b) round 2 when     1 12 2LTE LTEa qb  and

    2 22 2LTE LTEa qb , and (c) round 3 when     1 13 3LTE LTEa qb  and

    2 23 3LTE LTEa qb . 
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than that of UE 2, as shown in Fig. 8 (b). Thus, UE 2 at-
tempts to reduce the number of requested LTE packets in 
round 3 to improve its utility, as shown in Fig. 8 (c). Final-
ly, the amount of LTE resource, requested by all UEs, is 
comprehensively assigned in round 3. The UEs no longer 
change their bids, since convergence is achieved, and thus 
the algorithm is terminated.  

3.3.4 Convergence Analysis of the Proposed 
Feedback-based Bid Decision Algorithm 

In this section, we theoretically analyze the convergence 
of the proposed algorithm, i.e., all participating UEs reach 
a mutual agreement. If the auction game ends at the disa-
greement point, some UEs receive an unfair resource allo-
cation which may cause a serious QoE degradation. Thus, 
the convergence is one of the most important factors in 
the auction game. We now show that the bid profiles b  
converge in a finite number of negotiation rounds. 

Proposition 2. In the proposed feedback-based bid decision 
algorithm, the bid profiles b  converge in 

 1

I

LTE
i i

i

O Q R  



    
  
  rounds. 

Proof. In the auction game, the amount of requested re-
source can be classified into two cases: 1) 

 
I

1LTE
i

i

q t R
 

   and 2)  
I

1LTE
i

i

q t R
 

  . In the pro-

posed algorithm, the UEs in each case determine their 
bid in round t as follows. 
1)  

I

1LTE
i

i

q t R
 

  : the number of packets requested 

from all UEs is fully allocated. In this case, 

   1LTE LTE
i iq t q t   for Ii  , and the algorithm is ter-

minated. 
2)  

I

1LTE
i

i

q t R
 

  : there exists at least one UE where 

the number of requested packets is partially allocated. 
In this case,  LTE

iq t  for Ii   is determined as follows. 

If     11LTE LTE
i ia q tt  b , then    1LTE LTE

i iq t q t  . 

If     11LTE LTE
i ia q tt  b , then    1LTE LTE

i iq t q t  . 

Note that if     11LTE LTE
i ia q tt  b , the UE reduces 

 LTE
iq t , provided that it improves the current utility 

by ε. In every round, there must exist at least one UE 
Ii   such that    1LTE LTE

i iq t q t  . Thus, the number 

of packets requested from all UEs in round t is always 
smaller than that in round 1t  . Consequently, the se-

quence  
I

:  1LTE
i

i

q t t


  
 
   gradually decreases and 

thus converges in  1

I

LTE
i i

i

O Q R  



    
  
   rounds.  

4 SIMULATION RESULTS 
The proposed system is implemented using NS-3, which 
is a well-known discrete-event network simulator. The 

simulation environment is set up as follows, and details 
of the system parameters are summarized in Table 2. 
(1) Network: We create a network topology consisting of 

25 UEs, two eNBs, and four APs (802.11g/n/ac 
standards). The initial position and distance between 
the entities is shown in Fig. 9. The UEs are randomly 
located within 50 m of the AP, a greater number of 
UEs are distributed around AP 4. The UE mobility is 
arbitrarily set between 1 and 5 m/s. The Friis propa-
gation loss model [58] and a trace-driven fading loss 
model specified by 3GPP [59] are employed for the 
LTE network. For the WiFi channel, yet another net-
work simulator (YANS) model [60] is employed, 
which is most commonly used in NS-3. During the 
simulation, R is fixed to 12 Mbps for the eNB 1 and 20 
Mbps for the eNB 2. The simulation is performed 
over 300 s. 

(2) Handover: For X2 handover between eNBs, the refer-
ence signal received quality (RSRQ)-based handover 
algorithm is employed, in which the handover deci-
sion is primarily based on event A2 measurements 
(serving cell’s RSRQ becomes worse than threshold) 
and event A4 measurements (neighbor cell’s RSRQ 
becomes better than threshold) [61]. In contrast, the 
current IEEE 802.11 specification does not explicitly 
support the handover. Thus, we have implemented a 
signal-to-noise ratio (SNR)-based handover algorithm. 
When the signal strength of the AP weakens, a user 
scans available channels and then connects to the AP 
with the best SNR under the assumption that adja-
cent APs have identical identifiers.  

(3) Video: We use two full high-definition (HD)-sized 

 
Fig. 9. Wireless network environment for performance evaluation. 
 

TABLE 2 
SYSTEM PARAMETERS 

Parameter Description Value 
M Number of UEs 25 

max
blkT  

Tolerable maximum end-to-end  
delay 

500 ms 

i  Weighting factor for bid update 0.3 ~ 0.9 

pktS  Packet payload size 1024 bytes 

 
TABLE 3 

RATE-DISTORTION MODEL PARAMETERS 

GOP Index 
Rush Hour  Sunflower 

         

1 3087.3 -1.049  1970.4 -1.011 
2 8102.6 -1.233  1747.3 -0.997 
3 4917.0 -1.168  3094.5 -1.098 
4 4800.9 -1.158  2160.3 -1.028 
5 4588.2 -1.154  2753.5 -1.055 

 

1.6 m/s

X-position (m)
0 150 200 250

Y
-p

os
it

io
n

 (
m

)

150

100

50

300 350

eNB 1
AP 1

g
AP 2

n
AP 3

ac

50 100 400 450 500

AP 4
n

: UE watching Rush Hour
: UE watching Sunflower

UE 1

550

eNB 2



1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2748592, IEEE
Transactions on Mobile Computing

AUTHOR:  TITLE 11 

 

(1920 x 1080) video sequences, Rush Hour and Sun-
flower [62]. The video stream is encoded by 
H.264/MPEG-4 AVC codec with 25 frames per sec-
ond, and a GOP consists of 25 frames (IPPP…PPP). 
The rate-distortion model parameters for each GOP 
are provided in Table 3 (parameters after the 5th GOP 
are omitted because of space limitations). 

(4) Fountain code: LT code [20] is employed during the 
simulation. The symbol size is set to 32 bytes. Thus, 
one packet includes 32 encoding symbols. During the 
simulation, max

blk  is fixed to 0.01 and   is empirically 
set to the average value for 1,000 receptions to main-
tain the successful fountain decoding probability at 
0.99 [44]. Thus, in most cases, fountain decoding is 
successful, but sometimes fail when the wireless 
channel state is very unstable. In this case, if the re-
ceiver buffer contains enough video data (e.g., several 
GOPs) for playout, the receiver requests more encod-
ing symbols and attempts to decode again. Otherwise, 
the receiver attempts decoding with an insufficient 
number of encoding symbols. Because we adopt mes-
sage passing [19] as a decoding algorithm, the source 
block can be partially recovered even if sufficient en-
coding symbols are not available. 

4.1 Performance Verification of the Proposed PSP 
Auction-based Resource Negotiation 

In this section, we demonstrate the performance of the 
proposed PSP auction-based resource negotiation pro-
cess. During the simulation, ε is set to 0.001. The simula-
tion results are presented in Fig. 10. Ten UEs participate 
in the auction of eNB 1 (UEs except for 1, 2, 6, and 9 are 
omitted in the figures because of space constraints). Since 
each UE experiences different WiFi channel conditions, 
the number of transmitted WiFi packets is variously de-
termined, as shown in Fig. 10 (a). With the given number 
of WiFi packets, the number of requested LTE packets 
and corresponding offered price are initialized (section 
3.3.3 Step 2). As the round proceeds, each UE dynamically 
updates the bid to maximize his or her utility based on 
the feedback information from the previous round bid 
(section 3.3.3 Step 3). Fig. 10 (b), (c), and (d) present this 
negotiation process in detail. In round 13, all UE bidding 
prices are converged to the ε-Nash equilibrium that max-
imizes social welfare, as shown in Fig. 10 (c) and (e). Ac-
cordingly, the payment also reaches the stable state, as 

shown in Fig. 10 (f). 
To verify the performance of the proposed feedback-

based bid decision algorithm, we implement three addi-
tional bid decision algorithms: bisection method, greedy 
algorithm [57], and ε-best reply [21]. The bisection meth-
od is a well-known technique for solving the optimization 
problem because of its simplicity and robustness. In a 
greedy algorithm for a PSP auction, a time-varying bid-
quantity step size is selected such that each step results in 
an approximately equivalent PSNR drop or increase. Dur-
ing the simulation, the constant PSNR step size is set to 
0.1 dB. In the ε-best reply (ε = 0.001), the UE submits the 
optimal bid with complete information of the opponent 

  
(a)                                                   (b) 

  
(c)                                                   (d) 

  
(e)                                                   (f) 

Fig. 10. Example of the PSP auction-based resource negotiation pro-
cess with the proposed algorithm (ε = 0.001): (a) the number of WiFi
packets, (b) the number of requested LTE packets, (c) offered price,
(d) the number of allocated LTE packets, (e) resource valuation, and
(f) payment.  

TABLE 4 
AVERAGE NUMBER OF ROUNDS, SOCIAL WELFARE, AND PAYMENT COMPARISON WITH EXISTING BID DECISION ALGORITHMS 

 Bisection 
Proposed feedback-based bid decision 

Greedy 
ε-best reply  
(ε = 0.001)  ε = 1 ε = 0.1 ε = 0.01 ε = 0.001 

Avg. number of rounds 9.43 4.62 9.65 13.99 14.99 30.25 331 
Max. number of rounds 10 8 14 18 19 46 524 
Min. number of rounds   9 2   6 10 11   8 186 
Avg. social welfare 22.25 22.72 22.76 22.77 22.77 22.75 22.78 
Avg. payment 11.82 12.01   4.19   0.12   0.06 0 0 

Required feedback information ,  LTE LTE
i iq a  

opponent bid  

profiles ( )ib  
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profiles by a round-robin order. Table 4 shows the results 
of performance comparisons for 300 repeated auctions. 
The bisection method achieves the fast convergence. 
However, it is not efficient because the equilibrium is 
reached at the point at which low social welfare and high 
payment are generated. In the greedy, ε-best reply, and 
proposed algorithms, each UE produces a better bid 
through iterative interaction, thereby improving their 
utility. As a result, on average, the equilibrium point is 
obtained in round 30.25, producing 22.75 social welfare 
with the greedy algorithm; in round 331, producing 22.78 
social welfare with the ε-best reply; and in round 14.99, 
producing 22.77, social welfare with the proposed algo-
rithm. Although the optimal solution can be obtained by 
the ε-best reply, it takes a long time to converge. Thus, the 
ε-best reply algorithms are difficult to apply to the time-
varying wireless network environment. In the proposed 
algorithm, an effective tradeoff between the number of 
rounds and social welfare can be attained by finely ad-
justing ε. When ε is set to 0.001, the proposed algorithm 
achieves near-optimal social welfare with relatively fast 
convergence speed compared to existing bid decision al-
gorithms. 

4.2 Performance Verification of the Proposed 
System with Dynamic Network Environment 

In a dynamic and realistic wireless network environment, 
we verify the performance of the proposed PSP-based 
scalable offloading system. As shown in Fig. 11, the UE 1 
moves at a speed of 1.6 m/s and is initially connected to 
the eNB 1. At about 25 s, the UE 1 detects an available 
WiFi AP and executes a scalable offloading by using LTE 
and WiFi networks, simultaneously. The performance in 
terms of PLR, code rate, bitrates, and PSNR observed by 
the UE 1 are provided in Fig. 12. Except for the cell 
boundary area of eNB (between 100 and 140 s), PLR over 
LTE networks is relatively stable compared to WiFi net-
works, as shown in Fig. 12 (a). For WiFi networks, PLR 
increases when a handover occurs between APs or a large 
number of UEs are concentrated, such as is the case for 
AP 4. Based on these wireless network states, the fountain 
code rate is adaptively adjusted to mitigate wireless 
channel errors, as shown in Fig. 12 (b). Fig. 12 (c) and (d) 
present the estimated and measured bitrates over WiFi 
and LTE networks, respectively. It is observed in Fig. 12 
(c) that 802.11n and 802.11ac provide a generally higher 
bitrate as compared to 802.11g. However, even with 
802.11n, the bitrate may vary depending on the density of 
the users in the service area of the AP. In the proposed 
system, the UE requests the LTE resource based on the 

estimated available bandwidth, as shown by the red line 
in Fig. 12 (d). In fact, the accuracy of the bandwidth esti-
mation algorithm affects the performance of the proposed 
system. If the estimated available bandwidth is greater 
than the actual bandwidth, the PLR is significantly in-
creased. Although fountain code is adopted to improve 
error robustness, the video quality may deteriorate when 
the UE cannot receive a sufficient number of encoding 
symbols to successfully reconstruct the source block. As 
shown by the blue line in Fig. 12 (d), the UE may not al-
ways obtain the requested resources because the LTE re-
source is allocated by considering user’s WiFi network 
state. According to the PSP auction rules, UEs with poor 
WiFi network conditions are generally allocated more 
LTE resources to avoid video quality degradation, and 
vice versa. Between 145 s and 210 s, the UE 1 has suffi-
cient WiFi resources available because it is connected to 
AP 3 with 802.11ac. Therefore, LTE resources are rarely 
allocated during that time, as shown in Fig. 12 (d). The 
corresponding video quality is shown in Fig. 12 (e). By 
efficiently utilizing the resources of WiFi and LTE net-
works, the quality of video streaming is almost guaran-
teed in the 40–45 dB PSNR range. 

4.3 Performance Comparison with Existing System 
In this section, we compare the performance of the pro-
posed PSP-based scalable offloading with those of the 
two existing systems, namely, the traditional PSP [21] and 
on-the-spot offloading [32]. In the traditional PSP, UEs 

 

Fig. 11. WiFi and LTE network connection status according to the 
user mobility. 

  
(a)                                                   (b)  

 
(c)                                                   (d) 

 
      (e) 

Fig. 12. Performance verification of UE 1: (a) PLR, (b) code rate, (c) 
WiFi bitrate, (d) LTE bitrate, and (e) PSNR. 
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share the single LTE network resources according to the 
PSP auction mechanism without activating the WiFi net-
work interface. On-the-spot offloading [32] is based on a 
spontaneous connectivity to WiFi, and traffic is only 
transmitted over the cellular network when WiFi is not 
available. During the on-the-spot offloading, users per-
form vertical handovers between heterogeneous wireless 
networks. When a vertical handover occurs, a substantial 
handover delay is unavoidable in the process of meas-
urement, initialization, decision, and execution [41]. 
However, we try to compare the performance of the pro-
posed scalable offloading with the more advanced on-the-
spot offloading. In the ideal on-the-spot offloading, the 
user knows in advance that a vertical handover will occur. 
Accordingly, the packets are buffered in advance by the 
network until the next wireless station is prepared to ac-
cept the packets, and the video encoding rate is appropri-
ately adjusted according to the significant bandwidth 
variation during a vertical handover to avoid discontinui-
ty in the video playback.  

The simulation results are provided in Fig. 13. Fig. 13 
(a) presents a timeline plot of the LTE bitrate at UE 1 with 
the traditional PSP over single LTE network. As the UE 1 
moves away from eNB 1, the bitrate gradually decreases, 
resulting in an X2 handover to eNB 2 at about 115 s. Alt-
hough the requested LTE resources are almost fully allo-
cated through the auction, it is difficult to ensure QoS for 
the video streaming because only a small amount of LTE 
resources are available due to poor LTE channel condi-
tions during X2 handover. As a result, the video quality 
degrades significantly, as shown by the blue dotted line 

in Fig. 13 (d). In the on-the-spot offloading, the UE 1 is 
initially connected to the eNB 1. At about 25 s, the UE 1 
detects an available WiFi AP and performs a vertical 
handover (from eNB 1 to AP 1 with 802.11g). Subsequent-
ly, the UE 1 performs a horizontal handover to other APs 
supporting various WiFi standards such as 802.11n/ac 
according to the mobility. In fact, the performance of on-
the-spot offloading depends on several factors [63]: avail-
able wireless technology (e.g., 802.11a/b/g/n/ac), the 
characteristics of the APs (e.g., range and capacity), the 
density of the users in the service area of the AP, and the 
simultaneous data sending/receiving requests from its 
users. Thus, it is difficult to guarantee the quality of the 
WiFi AP selected for mobile data offloading [6]. It is evi-
dent from Fig. 13 (b) that the bitrate sometimes decreases 
when connecting to a low-performance AP (AP 1 with 
802.11g between 25 s and 85 s) or sharing the same AP 
among dense users (AP 4 with 802.11n between 210 s and 
300 s). Accordingly, the video quality may deteriorate, as 
shown by the red dotted line in Fig. 13 (d). To alleviate 
the phenomenon in which video quality is entirely de-
pendent on the WiFi network states, users in the pro-
posed system effectively consolidate multiple physical 
paths. By default, all UEs fully utilize the available WiFi 
resources, and LTE resources are allocated to maximize 
the social welfare according to the PSP auction rule. Fig. 
13 (c) and (d) reveal that the proposed system achieves 
relatively high and consistent PSNR compared to existing 
systems. To provide a subjective video quality compari-
son, the captured 91th frame of Rush Hour of the pro-
posed and the existing systems are presented in Fig. 14. 

      
(a)                                                                             (b) 

      
(c)                                                                              (d) 

Fig. 13. Performance comparison with existing systems: (a) LTE bitrate with traditional PSP, (b) LTE and WiFi bitrate with on-the-spot offload-
ing, (c) LTE and WiFi bitrate with proposed PSP-based scalable offloading, and (d) PSNR. 
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As can be seen in the figures, the subjective video quality 
of the proposed system is much better than that of the 
existing systems. The average bitrate and PSNR values of 
all UEs are summarized in Table 5.  

4.4 Convergence and Scalability Evaluation of the 
Proposed System  

In this section, we evaluate the performance of the pro-

posed system in terms of the scalability and convergence 
speed, i.e., how fast the resource negotiation process con-
verges with an increasing number of UEs and the bid 
submission fee. During the simulation, the available LTE 
network resource R is fixed at 30 Mbps and the bid sub-
mission fee ߝ at 0.001. For each number of UEs, we per-
form 100 times auctions, and obtain the average number 
of rounds until convergence. The simulation results are 
provided in Fig. 15. It is observed that the average num-
ber of resource negotiation is less than 20 rounds, regard-
less of the number of UEs. In fact, the number of UEs that 
are not assigned the resources, i.e., LTE LTE

i ia q , increases 
as more UEs participate in the auction. As a result, the 
total number of packets requested from all UEs rapidly 
approaches R, and thus, the negotiation process can be 
terminated in a short round. Fig. 16 shows an example of 
the social welfare trend as the round proceeds when ߝ is 
set to 0.001. It is apparent that that the social welfare val-
ue is gradually increased and maximized in the final 

 
Fig. 15. Average number of rounds until the convergence according 
to the number of UEs (ε = 0.001). 
 

 
Fig. 16. Social welfare trend as the round proceeds (ε = 0.001). 
 

TABLE 6 
AUCTION RESULT SUMMARY ACCORDING TO THE NUMBER OF 

UES (ε = 0.001) 

 M=20 M=40 M=60 M=80 M=100 
Avg. round 15 18.2 18.6 18.2 18.4 
Max. round 19 21 20 22 21 
Min. round   9 11 12 13 12 
Avg. social  
welfare 

126.8 145.44 162.5 171.1 182.5 

 

  
(a)                                                 (b) 

Fig. 17. Relation between the convergence speed and social welfare 
according to bid submission fee: (a) when the number of UEs is 50 
and (b) when the number of UEs is 100. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 14. Subjective video quality comparison of the 91th frame: (a) 
traditional PSP over single LTE network, (b) on-the-spot offloading, 
and (c) proposed PSP-based scalable offloading. 
 
 

TABLE 5 
AVERAGE BITRATE AND PSNR COMPARISON WITH EXISTING 

SYSTEMS 

 
LTE  

bitrate 
 (Mbps) 

WiFi  
bitrate 
(Mbps) 

LTE+WiFi 
bitrate 
(Mbps) 

PSNR 
(dB) 

PSNR  
std. dev. 

Proposed 1.44 3.62 5.06 42.61 1.38 
Traditional PSP 1.45 0 1.45 35.81 2.25 
On-the-spot 0.26 4.01 4.27 41.16 2.65 
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round. The simulation results are summarized in Table 6. 
We now discuss the relation between the convergence 

speed and social welfare according to ߝ. As mentioned in 
Proposition 2, the convergence speed strongly influences 
the bid submission fee ߝ. The smaller ߝ, the closer to the 
value-optimal allocation can be achieved; however, when 
the value of ߝ is smaller, the iteration takes longer to con-
verge. Fig. 17 clearly reveals that the system more quickly 
reaches convergence as ߝ increases. In addition, the social 
welfare value in Fig. 17 (b) is larger than that in Fig. 17 (a). 
In fact, the social welfare value becomes larger as more 
UEs participate in the auction since the UE’s resource 
valuation function in (16) is monotonically increasing and 
concave.  

5 CONCLUSION 
In this paper, we have presented a game-theoretic scalable 
offloading for video streaming services over LTE and WiFi 
networks. One of the important features of the proposed 
system is that scalable offloading of video streaming traffics 
through LTE and WiFi networks is realized without any 
noticeable video quality degradation. We have adopted the 
PSP auction mechanism to efficiently allocate the limited 
LTE resources to UEs. In addition, fountain code was de-
ployed to simultaneously deliver the video traffic through 
LTE and WiFi networks with diverse characteristics since it 
can adjust the amount of offloading traffic in a flexible man-
ner and solve packet reordering and packet loss problems in 
error-prone heterogeneous wireless networks. The proposed 
feedback-based bid decision algorithm maximizes social 
welfare while achieving the truthful ε-Nash equilibrium 
with fast convergence compared to existing bid decision 
algorithms. For performance verification, we have built the 
test-bed using NS-3. The simulation results have demon-
strated that the proposed system efficiently alleviates the 
LTE traffic congestion by scalable offloading through a WiFi 
network, and provides a higher quality of video streaming 
services than existing system.  

There are still problems to be addressed in the pro-
posed system. One of the challenges is the energy con-
sumption of mobile devices, which have limited battery 
capacity. In general, more power is spent to enable multi-
ple network interfaces concurrently. In addition, power 
consumption depends on service type and data patterns 
because the on/off process of network interfaces uses 
more power and incurs longer delays. Large-scale de-
ployment of the proposed system is another challenge 
because the current cellular network architecture is diffi-
cult to expand, difficult to manage, inflexible, and expen-
sive [64]. Recently, a 5G cellular network architecture 
based on software-defined networking (SDN) [64], [65] 
has been proposed to develop a programmable mobile 
cellular network that allows greater flexibility in man-
agement and configuration, and thus overcomes the 
shortcomings of traditional wireless networks. By deploy-
ing the emerging SDN technology, the majority of the 
LTE EPC functional entities can be migrated to the appli-
cation plane of the controller. Furthermore, new applica-
tions or advanced functions will be easily implemented in 

software without a specific hardware support. Under the 
SDN-enabled wireless environment, we will frame the 
mobile data offloading problem for video streaming to 
optimize network utilization and application perfor-
mance, and to enhance the user experience. 
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