

Monitoring and Testing for Reliable Smart City Applications

Thorben Iggena, Daniel Kümper, Marten Fischer, Ralf Tönjes
University of Applied Sciences Osnabrück, Faculty of Engineering and Computer Science, Osnabrück, Germany
{t.iggena; d.kuemper; m.fischer; r.toenjes} @hs-osnabrueck.de

Abstract
The wide distribution of smart phones allows to inform and interact with citizens in real-time, thus enabling the vision
of smart cities. However, the reliability of smart city applications highly depends on the availability of appropriate, ac-
curate, and trustworthy data. To increase the reliability of smart city applications, the European project CityPulse em-
ploys knowledge-based methods for monitoring and testing at all stages of the data stream processing and interpretation
pipeline. During design-time testing validates the behaviour of applications with regard to different levels of quality of
information. During run-time monitoring assesses the reliability of data streams, the plausibility of information, and the
correct evaluation of extracted events. The monitored quality is exploited by fault recovery and conflict resolution
mechanisms to ensure fault-tolerant execution of applications.

1 Introduction
Mobile application usage became more and more im-
portant within the last years. The distribution of
smartphones increases steadily. In Germany more than
50% of the population uses a smartphone [8]. In other Eu-
ropean countries this amount is even higher [9]. This level
of distribution enables the development of new applica-
tions to enhance the daily life of citizens. Especially smart
cities and their extensive data sources offer new possibili-
ties to be used within mobile applications. These applica-
tions might show some kind of information, such as sim-
ple weather or pollution forecasts, or more complex ones
like a shopping planer with integrated parking space find-
er, routing mechanism, and user preferences, which could
consider specific attributes like “avoid pollution”, “use
scenic routes”, or “avoid costs”. Within the CityPulse1
project an application for travel planning is developed.
This application uses public data sources from the city of
Aarhus (DK) to inform users travelling in the city by car.
But the extensive dependency on data from smart cities
may result in bad application behaviour if the used data
sources are faulty.
The involvement of real-world actuators and sensors
makes the testing Smart City applications a complex task.
Testing before deployment requires means for application
execution decoupled from the underlying hardware [1].
The suggested approach employs models of error sources
enabling a systematic testing approach with a clear defini-
tion of possible error types [2]. Smart City applications
often suffer from low sampling frequency and low sensor
density [3]. Moreover, the effects of noisy environments
require data pre-processing techniques [4] to make infor-
mation comparable and to process the data automatically.
The remainder is structured as follows: Section 2 presents
the state of the art whereas section 3 derives requirements
for mobile applications in a smart city context. Section 4
describes the testing concept and the two layered monitor-
ing approach used in the CityPulse framework. A conclu-
sion is discussed in section 5.

1 This work is supported by the European Union 7th FP Project City
Pulse under grant agreement n_609035

2 Reliable Smart City Application
To demonstrate and evaluate the algorithms of the City-
Pulse framework an exemplary application for travel
planning in the city of Aarhus has been developed. The
CityPulse framework is organised in three consecutive
iteratively applied processing layers: federation of hetero-
geneous data streams, large-scale IoT stream processing,
and real-time reasoning for information extraction. The
Travel Planer application asks the user for a destination in
the city and selects a near parking garage with free park-
ing slots. The application contains powerful features to
exploit user preferences to constrain the routing to the
destination. The application is capable of determining
new routes on-the-fly if the CityPulse framework detects
events that would cause a violation of the given con-
straints. A major requirement for smart city applications
and the CityPulse Travel Planer is the correctness of the
utilised data sources. In case of the Travel Planner the
used data sources are:

• Available parking slots in parking garages
• Traffic conditions on the road
• Air pollution levels in the city

These data streams have to be checked for their Quality of
Information (QoI) before being used by the application.
The CityPulse Quality Monitoring components allow re-
al-time QoI monitoring of data streams (see section 3.2).
The data stream observations are annotated with the QoI
using a Quality Ontology [10]. This allows to perform
reasoning operations by the conflict resolution in case an
application requires more reliable data streams. The
framework can compare the data quality with the re-
quirement of the application (e.g. the correctness of a data
stream must be above a certain level) and switch to anoth-
er stream if required and possible. This demands for
measures describing the minimum QoI required for a suc-
cessful execution of the application. To measure the re-
quired QoI the application has to be executed with artifi-
cially degenerated data stream readings, prior to the de-
ployment in a testing phase. The results will provide de-
tails about the conditions when a reliable execution is
possible. The following section will introduce the con-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationsserver OPUS der Hochschule Osnabrück

https://core.ac.uk/display/157609529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cepts for the testing and monitoring applied in the
CityPulse framework.

3 Testing and Monitoring Concept
This section introduces the concepts of the testing and the
monitoring. Testing assesses the minimum QoI for suc-
cessful execution of smart city applications utilising arti-
ficial stimuli. Monitoring deals with the evaluation of in-
formation quality during runtime utilising real sensors.

3.1 Testing
The goal of testing is to evaluate the reliability of smart
city applications with respect to the reliability of the ex-
ternal resources required for its execution. For this a se-
ries of test cases has to be generated, where each consecu-
tive test case 'simulates' a data set for the external re-
sources with lower reliability (lower quality) than the pre-
decessor. Since a ground truth is not available, the first
test case (T0) in such a series uses unmodified historic da-
ta, which acts representatively as ground truth. This his-
toric data was collected over the period of one month. It
has been validated manually and is defined as a reference
dataset for CityPulse [5]. In each following test case the
output of the CityPulse framework is recorded. To pass a
test case the distances between the inputs of a test case to
T0 and the distances of the outputs of same test cases must
correlate or lie below a threshold.
The execution of a test case utilises the replay mode of
the CityPulse framework, which is already capable of us-
ing historic datasets instead of live data and replaying it in
an accelerated way. A setup for a test case is therefore the
replacement of the original historic datasets by the ma-
nipulated, degenerated datasets. To limit the number of
possible external resources involved in a test case an ap-
plication profile states the types of resources required dur-
ing execution. A geo-spatial search for relevant external
resources for a specific test scenario will further reduce
the test case input space. Both measures can reduce the
test execution time significantly. Figure 1 illustrates the
test execution process and highlights the loop, in which
the ground truth is degenerated until the application out-
put changes sufficiently to be able to make a statement
about its robustness.

	

Figure 1: Execution of Test Cases

Degeneration of Input Data for Iterative Test Case
Derivation
This section describes the test case generation process.
The process uses various error models to generate the test
case stimuli for a set of test cases (T).
We define T as a tuple (E, S, H, Pe,s, n, r, Α, Ω), where S
is the set of sensors involved, E is the set of error models
applied to each sensor s ∈ S for each test case Ti in T, with
i = (0,n). Pe,s denotes the activation probability functions
for an error e ∈ E and a sensor s ∈ S. n is the total number
of iterations and thus the number of test cases. H denotes
the historic datasets, which act as ground truth. The
statement H(s, τ) denotes the historic value of sensor s at
a specific time τ. The tests are executed in a discrete sys-
tem, where each step (called tick) jumps forward in time.
The sampling rate r denotes the difference in time be-
tween two successive ticks. Α and Ω represent the start
and end date respectively.
Let Pe,s: i à (0, 1), with i = (0, n) ∈ ℕ, be the activation
probability function for an error e and the sensor s. The
function returns the probability that e will be activated at
iteration i. For example, a value of 0.1 represents a 10%
chance that the error will be activated. The realisation us-
es a pseudorandom number generator with uniform distri-
bution. If the random number is lower than or equal to the
activation probability the error generation is applied.
An error e ∈ E is defined as e = (Δv, Δt, d). The triple
represents the three effects an error can influence the out-
put signal of a measurement equipment [10]. Here Δv de-
notes the value change as an offset for a specific sample,
Δt is the duration (number of ticks) how long the error is
active. An error e for a sensor s is called active if the acti-
vation probability function Pe,s activates it or the last acti-
vation was less then Δt ticks ago. An activation probabil-
ity function should be monotonically increasing for sub-
sequent test cases in order to test increasingly unreliable
sensors. The parameter d specifies the number of ticks the
new value v’ is delayed, meaning the value is available
for processing by the other CityPulse components.
With these definitions the generation of test case stimuli
for one test case can be described as follows:
1 While τ = Α + (r * tick) < Ω:
2 For each sensor s in S:
3 v = H(s, τ)
4 For each error e in E:
5 If (Pe,s = true and e not active)
6 activate e
7 v' += apply e on v if e is active

Listing 1: Test Case Stimuli Definition

The new values v’ substitute the original values at H(s,τ)
for each sensor and form this way the test case Ti. The
process is repeated n times, leading to test cases with in-
creasing unreliable sensor data for a monotonically in-
creasing activation probability function.

3.2 Monitoring
The availability of smart city applications highly depends
on the availability of appropriate, accurate, and trustwor-
thy data. This includes the availability of necessary data

sources as well as accessing their QoI descriptions. The
reliability of the extracted sensor information has to be
monitored during run-time. Monitoring methods are used
to compare the information quality of data streams with
the QoI-requirements of an application. To meet the real-
time requirements in a smart city, the monitoring is divid-
ed into two separate components that act in different lay-
ers. The first component, named Atomic Monitoring, ob-
serves incoming observations on isolated data streams and
performs rudimentary but high performance, real-time
sanity checks. The second component, named Composite
Monitoring validates detected events by investigating cor-
relations between spatial-correlated streams. Since the lat-
ter case is computationally more complex, the process is
only triggered by new events and does not comply with
real-time requirements.

3.2.1 Atomic Monitoring
The Atomic Monitoring is responsible for the real-time
quality annotation of newly fetched sensor observations.
To fulfil the real-time requirements, the Atomic Monitor-
ing is integrated directly into the data streams’ Data
Wrappers, a modular concept acting as an entry point for
external data resources into the CityPulse framework.
Furthermore, it includes only basic QoI checks based on a
sensor description, containing basic parameters about the
sensor and provided data fields. The sensor description is
the anchor point for the QoI calculation of the Atomic
Monitoring. A short introduction of the functionality was
first given in [6]. Currently, Atomic Monitoring calculates
the following metrics:
Age: The QoI metric Age ensures, that an observation
was made within a certain time frame before being deliv-
ered to the CityPulse framework. In technical terms it cal-
culates the difference of the current time to a timestamp
delivered within an observation. If this difference is too
large (the observation is too old) the QoI metric Age is
lowered. By default, the updateInterval, provided in the
sensor description, is also considered as maximum age.
Figure 2 depicts the process of the QoI calculation.

Figure 2: Determination of QoI Metric Age

Completeness: The Completeness of observations within
a data stream is calculated by a comparison between the
received data and the annotation of the stream in the form
of the sensor description. Within the description a list of
fields v1 to vn indicates, which values have to be delivered
in one data segment of the stream. The received data will
be checked for containing the fields v1 to vn. The QoI is
decreased if one of the fields, not annotated as being op-
tional, is missing. An additional check ensures that the
data fields contain values different from empty strings,
Null values or NA (not available).
Correctness: This QoI metric checks the delivered values
within the observation to the dataType, min, and max pa-
rameters of the description. The QoI is lowered if one of
these values differs from the description.

Frequency: The parameter updateInterval from the sen-
sor description indicates how often the framework should
expect an update from the data stream in the form of an
observation. If there is no update or the update is received
later than expected this QoI metric will be lowered.
Latency: For observations pulled by the CityPulse
framework, the network latency is measured, to determine
the amount of time required to transfer an observation. To
rate the Latency QoI metric, the value is compared with
the maxLatency stated in the sensor description. For
pushed observations this QoI metric is left out, as it would
require synchronising the clocks of the transmitting sys-
tem and the CityPulse framework.

Results
This section describes the results of the Atomic Monitor-
ing for two used data streams: Parking and Traffic within
the city of Aarhus.
Figure 3 shows the Correctness distribution for three
parking garages of the data stream for December 2015.

Figure 3: Parking Correctness

It can be determined that the Correctness quality is slight-
ly different. According to the Correctness metric, the
“Bruuns” garage delivers correct data for most of the time
whereas the “Norreport” garage is a bit worse. Compared
with these both garages the “Busgadehuset” delivers
faulty data for the whole period. Further inspection of the
data set reveals that this garage indicates more free park-
ing slots than total slots available. Hence, the data stream
of the sensor is erroneous. Without monitoring and fault
detection this could result in cars waiting in front of the
parking garage although no free parking slot is available.
The traffic data stream is slightly different from the park-
ing data stream. It contains about 449 different traffic sen-
sors. To give an overview of the Correctness Figure 4
shows the distribution of this QoI metric for all sensors.

Figure 4: Traffic Correctness

Figure 5: Traffic Frequency

Another interesting behaviour is shown in Figure 5 pre-
senting the Frequency metric of the traffic data stream of
each individual sensor. A high number of sensors never
reach a 100% correct Frequency value (1.0). This is inter-
esting because most of the sensors perform much better
and all are contained within the same data stream. To in-
vestigate the problem a map of these sensors was plotted,
showing the maximum reached Frequency within the in-
vestigated month. The analysis revealed that the sensors
within the harbour area of Aarhus and on one highway
leaving the city cannot provide frequent updates. This
could indicate a possible failure within the infrastructure
and should be inspected by the stream provider of the traf-
fic data.

3.2.2 Composite Monitoring
The objective of monitoring is to predict errors and to
evaluate the plausibility of events. The main challenge for
evaluating the correctness and information quality of het-
erogeneous data sources in smart city environments is a
missing ground truth for comparing results. If no exactly
planned infrastructure exists, the process identifying the
correct sensor measurements from contradictory meas-
urements becomes very complex. Therefore, monitoring
employs model-based analysis of different spatially and
temporally related sensor values. The model-based ap-
proach allows detecting outliers in sensor readings that
are caused by defect sensors and cannot be explained by
similar information of related sensors. For example a traf-
fic jam can be detected by traffic sensors reporting exten-
sively slower traffic speeds. This can be validated by an
analysis of consecutive traffic sensors on a road. There-
fore, in contrast to the Atomic Monitoring, the Composite
Monitoring does not only use the current value of one da-
ta stream. It utilises historic time series of various de-
pendent sensor streams. Thus, for a large-scale deploy-
ment like a smart city, a dedicated live-evaluation for eve-
ry sensor measurement is not feasible. The Composite
Monitoring is only triggered by events or for a manual
evaluation. To evaluate the plausibility of a reported
event, in the first step, the sensor sources used to create
the event (see Figure 4) are identified. Based on the cate-
gory (e.g. Temperature, Parking, Traffic) of these sources
further sensors located nearby are selected. According to
the used model the event should also affect neighbouring
sensors and cause a similar behaviour. Real world events
exhibit a typical spatial propagation that can be modelled.
For example, traffic propagates along the roads whereas
noise propagates in every direction. Figure 6 describes the

evaluation process of the Composite Monitoring. The
goal is to determine a correctness value (Ce) for the event
(e). A set of correlating data streams (Se) is used as vali-
dation source. A set of sensor specific validation func-
tions Vs is used to compute the plausibility of the event.
Figure 6 shows the four phases of the validation process:

Figure 6: Composite Monitoring Process

1) Determine relevant sensors in the set of all streams (s).
Find spatially correlated streams by using a suitable
distance model (Md), which describes the means of
propagation of the event (air/street)

2) Determine the temporal distance by analysing the di-
rection (d) of expansion, propagation velocity (v), and
range (r) of the impact as function of Md

3) Compute the correlations between streams and the
event e by applying

a) Vs as the set of validator functions for event e and
each stream s ∈ Se

b) τs as the set of temporal direction (is the change
in s a result of e or the cause for e?)

4) Analyse partial correlation values to analyse the cor-
rectness by using a set of weights (Ws) for each stream
s ∈ Se and a combination function (∑), e.g. min,
mean.

As a result, we get the combined correctness value as:
Ce = (S, Md, d, v, r, Vs, τs, Ws, ∑)

An example event may be the detection of a moderate
traffic jam, which is reported by a sensor. The Composite
Monitoring is triggered by an event and uses the event
location to determine relevant neighbouring sensors (see
Figure 7). This example uses the Euclidian distance to se-
lect the four nearest sensors.

Figure 7: Location of Event and Traffic Sensor Stream

Since the event is directly located in the sensor measure-
ment area, the temporal distance has no impact on the
measurements. An analysis of the time series (displayed
in Figure 8) shows that during event the traffic sensors
(179202 and 179228) are detecting a relatively slow traf-
fic movement for this road (compared to the average and
the daily minimum). Since these two independent sensors
are showing a similar pattern it can be assumed that the
sensor measurement and thus the event are plausible.

20

40

60

11:30 12:00 12:30 13:00 13:30 14:00 14:30
Sampling time

Av
er

ag
e

S
pe

ed

179202 179228 181251 185131 185157

Figure 8: Unfiltered Traffic Time Series and the Detected

Event

The superposition of seasonal patterns and the low meas-
urement frequencies make the data analysis of raw data
difficult. Therefore, pre-processing can significantly im-
prove the data analysis. The following pre-processing
methods are used (and visualised in Figure 9) before cal-
culating the correlations between the data streams:
Unmodified input data (Raw) has limited significance
on the long term due to the superposition of seasonal and
daily patterns (e.g. work traffic, or weekends). However,
it can be useful to evaluate detected events because only a
small amount of data has to be available. For example, it
can be used to compare the last 15 minutes (e.g., 3 meas-
urements surrounding the event).

−20

0

20

40

60

Jan 12 Jan 14 Jan 16 Jan 18
Sampling time

Ve
hi

ck
le

 C
ou

nt

Raw DCT TS−Random TS−Random+DCT TS−Seasonal
Figure 9: Pre-processing for Time Series Data

Discrete cosine transform (DCT): The discrete cosine
transform (DCT) expresses a finite sequence of data
points as a sum of cosine waves with different frequencies
and amplitudes. The implemented discrete cosine trans-
form filter depicted in Figure 10 uses the DCT to convert
a signal (1) to an ordered sequence of frequencies and as-
sociated amplitudes (2). In the frequency domain the se-
quence is multiplied with a low pass (3) to remove high
frequencies (4). The inverse discrete cosine transforms
(IDCT) the low pass filtered sequence back to the time
domain resulting in a smoothed signal (5).

Figure 10: Applied DCT Smoothing

Random Part of Time Series (TS-Random): The ex-
traction of the seasonally adjusted random part of the time
series allows identifying irregular changes in the time se-
ries. While the absent of traffic during the night may be
normal, absent traffic during day time could be caused by
a traffic jam or defect sensor.
Random Part of Time Series + DCT (TS-Random +
DCT): The combination of TS-Random and DCT allows
easy comparability of acute and irregular events between
time series.
Seasonal Part of Time Series (TS-Seasonal): Figure 9
also shows the seasonal part that was extracted from the
time series. The following results highlight the im-
portance of pre-processing to cope with seasonal patterns
and low measurement frequencies and to improve the
evaluation of the correlations between data streams.

Results
The spatial infrastructure exhibits a high impact on the
interdependency of neighbouring sensors [7]. While the
temperature will be similar in the neighbourhood, noise
propagation will depend on shielding buildings and traffic
flows depend on road networks, on-going construction
work, traffic density etc. Hence, spatial reasoning requires
appropriate distance measures that are based on the
adapted propagation model. The use of the Euclidean dis-
tance between two locations is suited, for example, for
certain events affecting nearby entities or persons. How-
ever, applied in a complex city environment this metric
does not reflect the relevance of nearby events.
To evaluate the applicability of different distance metrics
a traffic dataset covering 12 months was used. The result
is documented in Figure 11 and described in the following
paragraphs. The time series (vehicle count and average
speed) of 449 traffic sensors was pairwise compared using
the Pearson correlation. The resulting 201152 similarity
values have been calculated for each combination and
every week in the given period for all above data modifi-
cations.
euclidean_distance: Direct Euclidean distance between
two sensors in metres.
route_distance: Route distance (shortest path on roads)
between two sensors in metres.
route_duration: Travel time by car of the route between
two sensors.
route_steps: Number of steps (road crossover, turns, etc.)
of the route between two sensors.
directed_duration: Additive composition of the route dis-
tance and the angle between two sensors measurements
(to prefer sensors that measure the same direction).
sensor_hops; Number of sensors to passed to get from
one sensor to another.
Figure 11 shows the results of the experiment. The major-
ity of correlation values is negative since the similarity
between traffic sensor time series increases with shorter
distances. It depicts the different correlations with the
consideration of the full data set Raw+DCT filter (left
box), TS-Random+DCT filter (middle), and TS-
Random+DCT+Offset of time (right box). The offset
shifts between different time series were used to enable
the modelling of propagation speed between sensors (traf-

fic moving on route). Before applying the first similarity
metric step, the compared time series were shifted accord-
ing to the estimated time difference needed for the propa-
gation of the traffic.

Figure 11: Correlations for Different Metrics and Pre-

Processing

As visible in Figure 11 the lessons learned are:
• Euclidean distance does not reflect the real-world

situation for traffic-related data. A combined metric
that utilises infrastructure knowledge, e.g. road net-
works, shows much better correlation.

• Removing superposed daily and weekly behaviour
patterns from the raw data enables better model-
based detection of spontaneous events.

• Consideration of event propagation and the correc-
tion by appropriate offset-times improves the corre-
lation between different streams.

These results can be used in the Composite Monitoring
evaluation to select the most relevant sensors neighbour-
ing a reported events.

4 Conclusion
This paper discusses measures for ensuring and increasing
the reliability of smart city applications. Testing is applied
during design-time to evaluate the reliability of smart city
applications in an error-prone environment with varying
QoI of sensor data. An iterative test case generation pro-
cess has been defined, where each successive test case
stimulates the CityPulse framework with less reliable data
streams (lower quality) than its predecessor. The process
is repeated until the framework's output differs sufficient-
ly from the original output (test run using original historic
data) in order to make a statement about the quality
threshold required by the application under test.
During run-time monitoring observes the QoI of sensor
observations. For scalability reasons and to be able to
meet real-time requirements the monitoring is divided in-
to a two-stage approach. The first stage, Atomic Monitor-
ing, is responsible for single stream data quality metrics,
such as Completeness, Age and Frequency. To be able to
provide QoI values as soon as possible, the Atomic Moni-
toring was integrated directly into the data streams’ Data
Wrappers. The second stage, the Composite Monitoring,
is triggered by detected events, rapidly dropping QoI val-
ues or through manual interaction. It provides a multi in-

formation source plausibility evaluation scheme. To cor-
relate information sources a model-based approach is ap-
plied using appropriate spatiotemporal distance measures.
The results emphasise the importance of an appropriate
distance model reflecting infrastructure, e.g. roads, and
physics, i.e. traffic or air movements.
In conclusion, the suggested framework provides methods
to cope error-prone and incorrect data sources for smart
city applications, and in addition considers that the sen-
sors become unreliable over time. As a counter measure
several actions to identify and react on varying infor-
mation qualities have been investigated and integrated in-
to the CityPulse framework. In the future we plan to in-
vestigate more closely the Composite Monitoring ap-
proach and to apply the concept to different domains,
such as environment or noise pollution.

5 References
 [1] E. Reetz, D. Kuemper, K. Moessner, R. Tönjes,

"How to Test IoT Services before Deploying them
into Real World," 19th European Wireless Confer-
ence (EW2013), Guildford, UK, April 2013.

[2] NASA. NASA Measurement Quality Assurance
Handbook – ANNEX 2. In: Measuring and Test
Equipment Specifications, 2010.

 [3] X. Zhou, S. Shekhar, & R. Y. Ali, Spatiotemporal
change footprint pattern discovery: an in-
ter-disciplinary survey. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery, 4(1),
1-23, 2014.

[4] B. Frénay & M. Verleysen,. Classification in the
presence of label noise: a survey. Neural Networks
and Learning Systems, IEEE Transactions on, 25(5),
845-869, 2014.

[5] CityPulse-D2.3, Reference Dataset Website :
 http://iot.ee.surrey.ac.uk:8080, last visited

14.04.2016.
[6] D. Kuemper et al., CityPulse D4.1 – Measures and

Methods for Reliable Information Processing, Febru-
ary 2015.

[7] R. Toenjes, D. Kuemper, M. Fischer, "Knowledge-
Based Spatial Reasoning for IoT-Enabled Smart City
Applications", 2015 IEEE International Conference
on Data Science and Data Intensive Systems
(DSDIS), pp. 736-737, 2015.

[8] Bitcom website:
 https://www.bitkom.org/Presse/Presseinformation/44

-Millionen-Deutsche-nutzen-ein-Smartphone.html,
last visited 14.04.2016

[9] TNS Gallup, “Mobile Devices 2015 En undersøgelse
om danskernes brug af mobile enheder”, June 2015

[10] D. Puiu et al., "CityPulse: Large Scale Data Analyt-
ics Framework for Smart Cities," in IEEE Access,
vol. 4, pp. 1086-1108, 2016.

http://iot.ee.surrey.ac.uk:8080
https://www.bitkom.org/Presse/Presseinformation/44-Millionen-Deutsche-nutzen-ein-Smartphone.html
https://www.bitkom.org/Presse/Presseinformation/44-Millionen-Deutsche-nutzen-ein-Smartphone.html

