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Abstract 
The wide distribution of smart phones allows to inform and interact with citizens in real-time, thus enabling the vision 
of smart cities. However, the reliability of smart city applications highly depends on the availability of appropriate, ac-
curate, and trustworthy data. To increase the reliability of smart city applications, the European project CityPulse em-
ploys knowledge-based methods for monitoring and testing at all stages of the data stream processing and interpretation 
pipeline. During design-time testing validates the behaviour of applications with regard to different levels of quality of 
information. During run-time monitoring assesses the reliability of data streams, the plausibility of information, and the 
correct evaluation of extracted events. The monitored quality is exploited by fault recovery and conflict resolution 
mechanisms to ensure fault-tolerant execution of applications. 
 
1 Introduction 
Mobile application usage became more and more im-
portant within the last years. The distribution of 
smartphones increases steadily. In Germany more than 
50% of the population uses a smartphone [8]. In other Eu-
ropean countries this amount is even higher [9]. This level 
of distribution enables the development of new applica-
tions to enhance the daily life of citizens. Especially smart 
cities and their extensive data sources offer new possibili-
ties to be used within mobile applications. These applica-
tions might show some kind of information, such as sim-
ple weather or pollution forecasts, or more complex ones 
like a shopping planer with integrated parking space find-
er, routing mechanism, and user preferences, which could 
consider specific attributes like “avoid pollution”, “use 
scenic routes”, or “avoid costs”. Within the CityPulse1 
project an application for travel planning is developed. 
This application uses public data sources from the city of 
Aarhus (DK) to inform users travelling in the city by car. 
But the extensive dependency on data from smart cities 
may result in bad application behaviour if the used data 
sources are faulty. 
The involvement of real-world actuators and sensors 
makes the testing Smart City applications a complex task. 
Testing before deployment requires means for application 
execution decoupled from the underlying hardware [1]. 
The suggested approach employs models of error sources 
enabling a systematic testing approach with a clear defini-
tion of possible error types [2]. Smart City applications 
often suffer from low sampling frequency and low sensor 
density [3]. Moreover, the effects of noisy environments 
require data pre-processing techniques [4] to make infor-
mation comparable and to process the data automatically. 
The remainder is structured as follows: Section 2 presents 
the state of the art whereas section 3 derives requirements 
for mobile applications in a smart city context. Section 4 
describes the testing concept and the two layered monitor-
ing approach used in the CityPulse framework. A conclu-
sion is discussed in section 5. 

                                                
1 This work is supported by the European Union 7th FP Project City 
Pulse  under grant agreement n_609035 

2 Reliable Smart City Application 
To demonstrate and evaluate the algorithms of the City-
Pulse framework an exemplary application for travel 
planning in the city of Aarhus has been developed. The 
CityPulse framework is organised in three consecutive 
iteratively applied processing layers: federation of hetero-
geneous data streams, large-scale IoT stream processing, 
and real-time reasoning for information extraction. The 
Travel Planer application asks the user for a destination in 
the city and selects a near parking garage with free park-
ing slots. The application contains powerful features to 
exploit user preferences to constrain the routing to the 
destination. The application is capable of determining 
new routes on-the-fly if the CityPulse framework detects 
events that would cause a violation of the given con-
straints. A major requirement for smart city applications 
and the CityPulse Travel Planer is the correctness of the 
utilised data sources. In case of the Travel Planner the 
used data sources are: 

• Available parking slots in parking garages 
• Traffic conditions on the road 
• Air pollution levels in the city 

These data streams have to be checked for their Quality of 
Information (QoI) before being used by the application. 
The CityPulse Quality Monitoring components allow re-
al-time QoI monitoring of data streams (see section 3.2). 
The data stream observations are annotated with the QoI 
using a Quality Ontology [10].  This allows to perform 
reasoning operations by the conflict resolution in case an 
application requires more reliable data streams. The 
framework can compare the data quality with the re-
quirement of the application (e.g. the correctness of a data 
stream must be above a certain level) and switch to anoth-
er stream if required and possible. This demands for 
measures describing the minimum QoI required for a suc-
cessful execution of the application. To measure the re-
quired QoI the application has to be executed with artifi-
cially degenerated data stream readings, prior to the de-
ployment in a testing phase. The results will provide de-
tails about the conditions when a reliable execution is 
possible. The following section will introduce the con-
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cepts for the testing and monitoring applied in the  
CityPulse framework. 

3 Testing and Monitoring Concept 
This section introduces the concepts of the testing and the 
monitoring. Testing assesses the minimum QoI for suc-
cessful execution of smart city applications utilising arti-
ficial stimuli. Monitoring deals with the evaluation of in-
formation quality during runtime utilising real sensors. 

3.1 Testing 
The goal of testing is to evaluate the reliability of smart 
city applications with respect to the reliability of the ex-
ternal resources required for its execution. For this a se-
ries of test cases has to be generated, where each consecu-
tive test case 'simulates' a data set for the external re-
sources with lower reliability (lower quality) than the pre-
decessor. Since a ground truth is not available, the first 
test case (T0) in such a series uses unmodified historic da-
ta, which acts representatively as ground truth. This his-
toric data was collected over the period of one month. It 
has been validated manually and is defined as a reference 
dataset for CityPulse [5]. In each following test case the 
output of the CityPulse framework is recorded. To pass a 
test case the distances between the inputs of a test case to 
T0 and the distances of the outputs of same test cases must 
correlate or lie below a threshold. 
The execution of a test case utilises the replay mode of 
the CityPulse framework, which is already capable of us-
ing historic datasets instead of live data and replaying it in 
an accelerated way. A setup for a test case is therefore the 
replacement of the original historic datasets by the ma-
nipulated, degenerated datasets. To limit the number of 
possible external resources involved in a test case an ap-
plication profile states the types of resources required dur-
ing execution. A geo-spatial search for relevant external 
resources for a specific test scenario will further reduce 
the test case input space. Both measures can reduce the 
test execution time significantly. Figure 1 illustrates the 
test execution process and highlights the loop, in which 
the ground truth is degenerated until the application out-
put changes sufficiently to be able to make a statement 
about its robustness. 

	

Figure 1: Execution of Test Cases 

Degeneration of Input Data for Iterative Test Case 
Derivation 
This section describes the test case generation process. 
The process uses various error models to generate the test 
case stimuli for a set of test cases (T).  
We define T as a tuple (E, S, H, Pe,s, n, r, Α, Ω), where S 
is the set of sensors involved, E is the set of error models 
applied to each sensor s ∈ S for each test case Ti in T, with 
i = (0,n). Pe,s denotes the activation probability functions 
for an error e ∈ E and a sensor s ∈ S. n is the total number 
of iterations and thus the number of test cases. H denotes 
the historic datasets, which act as ground truth. The 
statement H(s, τ) denotes the historic value of sensor s at 
a specific time τ. The tests are executed in a discrete sys-
tem, where each step (called tick) jumps forward in time.  
The sampling rate r denotes the difference in time be-
tween two successive ticks. Α and Ω represent the start 
and end date respectively. 
Let Pe,s: i à (0, 1), with i = (0, n) ∈ ℕ, be the activation 
probability function for an error e and the sensor s. The 
function returns the probability that e will be activated at 
iteration i. For example, a value of 0.1 represents a 10% 
chance that the error will be activated. The realisation us-
es a pseudorandom number generator with uniform distri-
bution. If the random number is lower than or equal to the 
activation probability the error generation is applied. 
An error e ∈ E is defined as e = (Δv, Δt, d). The triple 
represents the three effects an error can influence the out-
put signal of a measurement equipment [10]. Here Δv de-
notes the value change as an offset for a specific sample, 
Δt is the duration (number of ticks) how long the error is 
active. An error e for a sensor s is called active if the acti-
vation probability function Pe,s activates it or the last acti-
vation was less then Δt ticks ago. An activation probabil-
ity function should be monotonically increasing for sub-
sequent test cases in order to test increasingly unreliable 
sensors. The parameter d specifies the number of ticks the 
new value v’ is delayed, meaning the value is available 
for processing by the other CityPulse components.  
With these definitions the generation of test case stimuli 
for one test case can be described as follows: 
1 While τ = Α + (r * tick) < Ω: 
2  For each sensor s in S: 
3   v = H(s, τ) 
4   For each error e in E: 
5    If (Pe,s = true and e not active) 
6     activate e 
7    v' += apply e on v if e is active 

Listing 1: Test Case Stimuli Definition 

The new values v’ substitute the original values at H(s,τ) 
for each sensor and form this way the test case Ti. The 
process is repeated n times, leading to test cases with in-
creasing unreliable sensor data for a monotonically in-
creasing activation probability function. 

3.2 Monitoring 
The availability of smart city applications highly depends 
on the availability of appropriate, accurate, and trustwor-
thy data. This includes the availability of necessary data 



 

 

sources as well as accessing their QoI descriptions. The 
reliability of the extracted sensor information has to be 
monitored during run-time. Monitoring methods are used 
to compare the information quality of data streams with 
the QoI-requirements of an application.  To meet the real-
time requirements in a smart city, the monitoring is divid-
ed into two separate components that act in different lay-
ers. The first component, named Atomic Monitoring, ob-
serves incoming observations on isolated data streams and 
performs rudimentary but high performance, real-time 
sanity checks. The second component, named Composite 
Monitoring validates detected events by investigating cor-
relations between spatial-correlated streams. Since the lat-
ter case is computationally more complex, the process is 
only triggered by new events and does not comply with 
real-time requirements. 

3.2.1 Atomic Monitoring 
The Atomic Monitoring is responsible for the real-time 
quality annotation of newly fetched sensor observations. 
To fulfil the real-time requirements, the Atomic Monitor-
ing is integrated directly into the data streams’ Data 
Wrappers, a modular concept acting as an entry point for 
external data resources into the CityPulse framework. 
Furthermore, it includes only basic QoI checks based on a 
sensor description, containing basic parameters about the 
sensor and provided data fields. The sensor description is 
the anchor point for the QoI calculation of the Atomic 
Monitoring. A short introduction of the functionality was 
first given in [6]. Currently, Atomic Monitoring calculates 
the following metrics: 
Age: The QoI metric Age ensures, that an observation 
was made within a certain time frame before being deliv-
ered to the CityPulse framework. In technical terms it cal-
culates the difference of the current time to a timestamp 
delivered within an observation. If this difference is too 
large (the observation is too old) the QoI metric Age is 
lowered. By default, the updateInterval, provided in the 
sensor description, is also considered as maximum age. 
Figure 2 depicts the process of the QoI calculation. 

 
Figure 2: Determination of QoI Metric Age 

Completeness: The Completeness of observations within 
a data stream is calculated by a comparison between the 
received data and the annotation of the stream in the form 
of the sensor description. Within the description a list of 
fields v1 to vn indicates, which values have to be delivered 
in one data segment of the stream. The received data will 
be checked for containing the fields v1 to vn. The QoI is 
decreased if one of the fields, not annotated as being op-
tional, is missing. An additional check ensures that the 
data fields contain values different from empty strings, 
Null values or NA (not available). 
Correctness: This QoI metric checks the delivered values 
within the observation to the dataType, min, and max pa-
rameters of the description. The QoI is lowered if one of 
these values differs from the description. 

Frequency: The parameter updateInterval from the sen-
sor description indicates how often the framework should 
expect an update from the data stream in the form of an 
observation. If there is no update or the update is received 
later than expected this QoI metric will be lowered.  
Latency: For observations pulled by the CityPulse 
framework, the network latency is measured, to determine 
the amount of time required to transfer an observation. To 
rate the Latency QoI metric, the value is compared with 
the maxLatency stated in the sensor description. For 
pushed observations this QoI metric is left out, as it would 
require synchronising the clocks of the transmitting sys-
tem and the CityPulse framework.  

Results 
This section describes the results of the Atomic Monitor-
ing for two used data streams: Parking and Traffic within 
the city of Aarhus. 
Figure 3 shows the Correctness distribution for three 
parking garages of the data stream for December 2015. 

 
Figure 3: Parking Correctness 

It can be determined that the Correctness quality is slight-
ly different. According to the Correctness metric, the 
“Bruuns” garage delivers correct data for most of the time 
whereas the “Norreport” garage is a bit worse. Compared 
with these both garages the “Busgadehuset” delivers 
faulty data for the whole period. Further inspection of the 
data set reveals that this garage indicates more free park-
ing slots than total slots available. Hence, the data stream  
of the sensor is erroneous. Without monitoring and fault 
detection this could result in cars waiting in front of the 
parking garage although no free parking slot is available.  
The traffic data stream is slightly different from the park-
ing data stream. It contains about 449 different traffic sen-
sors. To give an overview of the Correctness Figure 4 
shows the distribution of this QoI metric for all sensors. 

 
Figure 4: Traffic Correctness 



 

 

 
Figure 5: Traffic Frequency 

Another interesting behaviour is shown in Figure 5 pre-
senting the Frequency metric of the traffic data stream of 
each individual sensor. A high number of sensors never 
reach a 100% correct Frequency value (1.0). This is inter-
esting because most of the sensors perform much better 
and all are contained within the same data stream. To in-
vestigate the problem a map of these sensors was plotted, 
showing the maximum reached Frequency within the in-
vestigated month. The analysis revealed that the sensors 
within the harbour area of Aarhus and on one highway 
leaving the city cannot provide frequent updates. This 
could indicate a possible failure within the infrastructure 
and should be inspected by the stream provider of the traf-
fic data. 

3.2.2 Composite Monitoring 
The objective of monitoring is to predict errors and to 
evaluate the plausibility of events. The main challenge for 
evaluating the correctness and information quality of het-
erogeneous data sources in smart city environments is a 
missing ground truth for comparing results. If no exactly 
planned infrastructure exists, the process identifying the 
correct sensor measurements from contradictory meas-
urements becomes very complex.  Therefore, monitoring 
employs model-based analysis of different spatially and 
temporally related sensor values. The model-based ap-
proach allows detecting outliers in sensor readings that 
are caused by defect sensors and cannot be explained by 
similar information of related sensors. For example a traf-
fic jam can be detected by traffic sensors reporting exten-
sively slower traffic speeds. This can be validated by an 
analysis of consecutive traffic sensors on a road. There-
fore, in contrast to the Atomic Monitoring, the Composite 
Monitoring does not only use the current value of one da-
ta stream. It utilises historic time series of various de-
pendent sensor streams. Thus, for a large-scale deploy-
ment like a smart city, a dedicated live-evaluation for eve-
ry sensor measurement is not feasible. The Composite 
Monitoring is only triggered by events or for a manual 
evaluation. To evaluate the plausibility of a reported 
event, in the first step, the sensor sources used to create 
the event (see Figure 4) are identified. Based on the cate-
gory (e.g. Temperature, Parking, Traffic) of these sources 
further sensors located nearby are selected. According to 
the used model the event should also affect neighbouring 
sensors and cause a similar behaviour. Real world events 
exhibit a typical spatial propagation that can be modelled.  
For example, traffic propagates along the roads whereas 
noise propagates in every direction. Figure 6 describes the 

evaluation process of the Composite Monitoring. The 
goal is to determine a correctness value (Ce) for the event 
(e). A set of correlating data streams (Se) is used as vali-
dation source. A set of sensor specific validation func-
tions Vs is used to compute the plausibility of the event. 
Figure 6 shows the four phases of the validation process: 

 
Figure 6: Composite Monitoring Process 

1) Determine relevant sensors in the set of all streams (s). 
Find spatially correlated streams by using a suitable 
distance model (Md), which describes the means of 
propagation of the event (air/street)  

2) Determine the temporal distance by analysing the di-
rection (d) of expansion, propagation velocity (v), and 
range (r) of the impact as function of Md 

3) Compute the correlations between streams and the 
event e by applying  

a) Vs as the set of validator functions for event e and 
each stream s ∈ Se 

b) τs as the set of temporal direction (is the change 
in s a result of e or the cause for e?) 

4) Analyse partial correlation values to analyse the cor-
rectness by using a set of weights (Ws) for each stream 
s ∈ Se and a combination function (∑), e.g. min, 
mean. 

As a result, we get the combined correctness value as:  
Ce = (S, Md, d, v, r, Vs, τs, Ws, ∑) 

An example event may be the detection of a moderate 
traffic jam, which is reported by a sensor. The Composite 
Monitoring is triggered by an event and uses the event 
location to determine relevant neighbouring sensors (see 
Figure 7). This example uses the Euclidian distance to se-
lect the four nearest sensors. 

 
Figure 7: Location of Event and Traffic Sensor Stream 

Since the event is directly located in the sensor measure-
ment area, the temporal distance has no impact on the 
measurements. An analysis of the time series (displayed 
in Figure 8) shows that during event the traffic sensors 
(179202 and 179228) are detecting a relatively slow traf-
fic movement for this road (compared to the average and 
the daily minimum). Since these two independent sensors 
are showing a similar pattern it can be assumed that the 
sensor measurement and thus the event are plausible. 
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Figure 8: Unfiltered Traffic Time Series and the Detected 

Event 

The superposition of seasonal patterns and the low meas-
urement frequencies make the data analysis of raw data 
difficult. Therefore, pre-processing can significantly im-
prove the data analysis. The following pre-processing 
methods are used (and visualised in Figure 9) before cal-
culating the correlations between the data streams: 
Unmodified input data (Raw) has limited significance 
on the long term due to the superposition of seasonal and 
daily patterns (e.g. work traffic, or weekends). However, 
it can be useful to evaluate detected events because only a 
small amount of data has to be available. For example, it 
can be used to compare the last 15 minutes (e.g., 3 meas-
urements surrounding the event). 
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Figure 9: Pre-processing for Time Series Data 

Discrete cosine transform (DCT): The discrete cosine 
transform (DCT) expresses a finite sequence of data 
points as a sum of cosine waves with different frequencies 
and amplitudes. The implemented discrete cosine trans-
form filter depicted in Figure 10 uses the DCT to convert 
a signal (1) to an ordered sequence of frequencies and as-
sociated amplitudes (2). In the frequency domain the se-
quence is multiplied with a low pass (3) to remove high 
frequencies (4). The inverse discrete cosine transforms 
(IDCT) the low pass filtered sequence back to the time 
domain resulting in a smoothed signal (5). 

 
Figure 10: Applied DCT Smoothing 

Random Part of Time Series (TS-Random): The ex-
traction of the seasonally adjusted random part of the time 
series allows identifying irregular changes in the time se-
ries. While the absent of traffic during the night may be 
normal, absent traffic during day time could be caused by 
a traffic jam or defect sensor.  
Random Part of Time Series + DCT (TS-Random + 
DCT): The combination of TS-Random and DCT allows 
easy comparability of acute and irregular events between 
time series. 
Seasonal Part of Time Series (TS-Seasonal): Figure 9 
also shows the seasonal part that was extracted from the 
time series. The following results highlight the im-
portance of pre-processing to cope with seasonal patterns 
and low measurement frequencies and to improve the 
evaluation of the correlations between data streams. 

Results 
The spatial infrastructure exhibits a high impact on the 
interdependency of neighbouring sensors [7]. While the 
temperature will be similar in the neighbourhood, noise 
propagation will depend on shielding buildings and traffic 
flows depend on road networks, on-going construction 
work, traffic density etc. Hence, spatial reasoning requires 
appropriate distance measures that are based on the 
adapted propagation model. The use of the Euclidean dis-
tance between two locations is suited, for example, for 
certain events affecting nearby entities or persons. How-
ever, applied in a complex city environment this metric 
does not reflect the relevance of nearby events. 
To evaluate the applicability of different distance metrics 
a traffic dataset covering 12 months was used. The result 
is documented in Figure 11 and described in the following 
paragraphs. The time series (vehicle count and average 
speed) of 449 traffic sensors was pairwise compared using 
the Pearson correlation. The resulting 201152 similarity 
values have been calculated for each combination and 
every week in the given period for all above data modifi-
cations. 
euclidean_distance: Direct Euclidean distance between 
two sensors in metres. 
route_distance: Route distance (shortest path on roads) 
between two sensors in metres. 
route_duration: Travel time by car of the route between 
two sensors. 
route_steps: Number of steps (road crossover, turns, etc.) 
of the route between two sensors. 
directed_duration: Additive composition of the route dis-
tance and the angle between two sensors measurements 
(to prefer sensors that measure the same direction). 
sensor_hops; Number of sensors to passed to get from 
one sensor to another.  
Figure 11 shows the results of the experiment. The major-
ity of correlation values is negative since the similarity 
between traffic sensor time series increases with shorter 
distances. It depicts the different correlations with the 
consideration of the full data set Raw+DCT filter (left 
box), TS-Random+DCT filter (middle), and TS-
Random+DCT+Offset of time (right box). The offset 
shifts between different time series were used to enable 
the modelling of propagation speed between sensors (traf-



 

 

fic moving on route). Before applying the first similarity 
metric step, the compared time series were shifted accord-
ing to the estimated time difference needed for the propa-
gation of the traffic. 

 
Figure 11: Correlations for Different Metrics and Pre-

Processing 

As visible in Figure 11 the lessons learned are: 
• Euclidean distance does not reflect the real-world 

situation for traffic-related data. A combined metric 
that utilises infrastructure knowledge, e.g. road net-
works, shows much better correlation. 

• Removing superposed daily and weekly behaviour 
patterns from the raw data enables better model-
based detection of spontaneous events.  

• Consideration of event propagation and the correc-
tion by appropriate offset-times improves the corre-
lation between different streams. 

These results can be used in the Composite Monitoring 
evaluation to select the most relevant sensors neighbour-
ing a reported events.  

4 Conclusion 
This paper discusses measures for ensuring and increasing 
the reliability of smart city applications. Testing is applied 
during design-time to evaluate the reliability of smart city 
applications in an error-prone environment with varying 
QoI of sensor data. An iterative test case generation pro-
cess has been defined, where each successive test case 
stimulates the CityPulse framework with less reliable data 
streams (lower quality) than its predecessor. The process 
is repeated until the framework's output differs sufficient-
ly from the original output (test run using original historic 
data) in order to make a statement about the quality 
threshold required by the application under test. 
During run-time monitoring observes the QoI of sensor 
observations. For scalability reasons and to be able to 
meet real-time requirements the monitoring is divided in-
to a two-stage approach. The first stage, Atomic Monitor-
ing, is responsible for single stream data quality metrics, 
such as Completeness, Age and Frequency. To be able to 
provide QoI values as soon as possible, the Atomic Moni-
toring was integrated directly into the data streams’ Data 
Wrappers. The second stage, the Composite Monitoring, 
is triggered by detected events, rapidly dropping QoI val-
ues or through manual interaction. It provides a multi in-

formation source plausibility evaluation scheme. To cor-
relate information sources a model-based approach is ap-
plied using appropriate spatiotemporal distance measures. 
The results emphasise the importance of an appropriate 
distance model reflecting infrastructure, e.g. roads, and 
physics, i.e. traffic or air movements.  
In conclusion, the suggested framework provides methods 
to cope error-prone and incorrect data sources for smart 
city applications, and in addition considers that the sen-
sors become unreliable over time. As a counter measure 
several actions to identify and react on varying infor-
mation qualities have been investigated and integrated in-
to the CityPulse framework. In the future we plan to in-
vestigate more closely the Composite Monitoring ap-
proach and to apply the concept to different domains, 
such as environment or noise pollution. 
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