
Thirteen students were sponsored by the Interactive NASA Space 
Physics Ionosphere Radio Experiments (INSPIRE) Project to monitor 

natural VLF noise to determine if an eclipse can enable nighttime-like 

VLF radio noise that is known to include tweeks and whistlers, in 

addition to the nearly omnipresent spherics, all caused by lightning.

Reverse Beacon Network (RBN) stations collect reports of received signals and send them back to central databases where they are archived and displayed in near-real time on the RBN website 

(reversebeacon.net). The RBN provides key information needed to characterize radio propagation conditions. RBN receiver “skimmer” servers generate reports (“spots”) by decoding continuous wave (CW, 

e.g. Morse code), teletype and more modern digital format signals.  

C.D. Fry1, J.K. McTernan2, R.M. Suggs1,L. Rawlins3, L.H. Krause1, D.L. Gallagher1, M.L. Adams1

1NASA Marshall Space Flight Center, Huntsville, AL, 2Universities Space Research Association, Huntsville, AL, 3NASA Retired Huntsville, AL 
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NN4SA WSPR Transmitter 
NASA Marshall Space Flight Center

Huntsville, AL (34.64N, 86.68W)

Partial eclipse, 5 watt transmitters on 80M and 40M.

Reports of SNR on 80M by two WSPR stations showed clear

enhancements of signals during the eclipse (red lines), but not

on the day after (green lines). Figures indicates the range and

azimuth from the NN4SA transmitter.
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Circles represent stations receiving NN4SA signals

WSPR Propagation Plot – 80m band (3.5 MHz)

WL7C RBN Receive Node APSU Farm in Clarksville, TN (36.56N,

87.34W), South of eclipse centerline; 82-ft fan dipole antenna.

K0DRK RBN Transmitter North of Hopkinsville, KY  (37.04N, 87.30W) 

on eclipse centerline; 80 watts feeding "L" antenna (gain pattern from 

4NEC2 simulations, oblique view).

Propagation paths of stations received by WL7C August 21, 2017

between 1400-2000 UT. WL7C is at the apparent radiant point.

All 40M spots reported by WL7C on eclipse day. Bubble

size represents Signal-to-Noise (SNR). Negative

distances show stations south of WL7C. Colored lines:

multiple spots from same stations.

WL7C and K0DRK sites were very near Greatest Eclipse, Hopkinsville, TN.
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IONORT - Simulated 7-MHz rays pointed toward WL7C 60.6 km (37.7 miles) 

away at various elevations (electron density profiles via IRI-2016).
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Weak Signal Propagation Reporter Network (WSPRnet) is a

global amateur radio propagation reporting system, similar to RBN but

with advantages (e.g., very low power, low error rates). Key to the

success of the RBN and WSPR is the participation of hundreds of

Amateur Radio volunteers who maintain these global propagation

reporters.

CONCLUSIONS 
Our eclipse radio science campaign during the 2017 total

solar eclipse demonstrated that meaningful science can be

done on a shoestring budget, while engaging citizen

scientists. We look forward to exciting results from further

analyses, and results from the broader HamSCI community.

However, data quality can be impacted by the social nature

of such crowd-sourcing observations due to uncertainties in

the reliability of user-provided information: e.g., location,

timing, and consistency of transmitter effective radiative

power (ERP).

Parameterized Ionospheric Model
(PIM) (Daniell et al., 1995) simulation of

eclipse-like ionospheric conditions* using

input parameters appropriate for solar and

ionospheric conditions observed on the day

of eclipse (GIRO; Reinisch and Galkin, 2011).

Low angle propagation at 7 MHz (40 meter

band) shows multiple hops. Near Vertical

Incident Sky waves (NVIS) (red and green

curves) do not return to the ground. [*PIM

has no D Region].
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INTRODUCTION
August 21, 2017 provided a unique opportunity to investigate the effects of the total solar

eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space

Flight Center’s partnership with the US Space and Rocket Center (USSRC) and Austin Peay State

University (APSU), we engaged citizen scientists and students in an investigation of the effects

of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based

data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and

after the eclipse to build a continuous record of changing propagation conditions as the moon’s

shadow marched across the United States. Post-eclipse radio propagation analysis provided

insights into ionospheric variability due to the eclipse.

OBJECTIVES
• Observe the propagation of HF radio signals that may be influenced by changes in the

ionosphere local to the eclipse shadow.

• Engage students and citizen scientists to participate in, and contribute to, a solar eclipse

radio science investigation.

• “Continuation and extension of the amateur's proven ability to contribute to the

advancement of the radio art.” (FCC 97. §97.1.b)

• Investigate the way eclipse radio propagation conditions evolve in a manner similar to

day/night transition scenarios that occur at the dawn and dusk terminators (Smith and

Silver, 2016).

• Explain changes in radio propagation in terms of evolving ionospheric conditions as the

eclipse shadow marches across the U.S.

• Have Fun!

HYPOTHESIS
• It has long been known that the Earth’s ionosphere responds to changes in solar

illumination during a solar eclipse (e.g., Chapman, 1931; Hurlbert, 1941; Mitra, 1952;

Davies, 1990).

• Changes in the ionosphere during an eclipse would influence the propagation of radio

waves traversing the ionosphere, and could be explained by observing the behavior of radio

propagation.

• The most dramatic changes in radio signal strength during the eclipse should occur in the

ionospheric D Region (e.g., Nichols, 2015).

BACKGROUND
Radio propagation at low HF frequencies, 80 meters (80M, 3.5-4.0 MHz) and 40 meters (40M,

7.0 – 7.3 MHz), are typically good during the night, but during the day, the D-Region

ionospheric density increases due to ionization, and the lower frequency waves are attenuated

via radio wave absorption. In the ionospheric D region, radio wave absorption per unit path

length is roughly proportional to nen/(n 2+w 2), where ne is electron density, n is collision

frequency, and w is radio wave angular frequency.

As solar illumination and ionization decrease in the shadow of the eclipse, electrons recombine

with ions at a faster rate than they are produced. The result is a decrease in ne and the product

nen during eclipse resulting in less absorption (Davies, 1990). Monitoring lower band HF

propagation can help interpret and understand eclipse effects.

Propagation (radiowave path) at lower (white),

higher (red) frequencies and take-off angles.

http://www.swpc.noaa.gov/phenomena/ionosphere

Left, normal day 80M and 40M signal paths.

Right, signal path during eclipse.

PRELIMINARY RESULTS
Preliminary results from analysis of WL7C RBN data collected on eclipse day indicate an increase in

propagation distance on the 40M band during the eclipse. On the 80M band, WSPR receivers from hundreds

of kilometers away recorded NN4SA transmissions, whereas this was not the case on the day after the

eclipse. These results point to decrease of absorption in the D region during the eclipse and suggest F region

ionospheric propagation, and/or multi-hop modes. Numerical simulations using the PIM ionospheric model

(Jones– Stephenson ray tracing) and IRI-2016 ionospheric model (IONORT raytracing) support these

assumptions.

Why didn’t WL7C hear K0DRK?
Three modes that enable propagation of radio waves between two nearby stations include Direct Wave (line of

sight), Groundwave (follows the Earth’s surface), and Near Vertical Incidence Sky Wave (NVIS) via ionospheric

refraction. Of the three, on WL7C/K0DRK operating band of choice, 40M, NVIS would be the most likely mode

because distance and terrain put the stations beyond the line of sight, and ground waves are rapidly

attenuated. The UMass. Lowell GIRO database (Reinisch and Galkin, 2011), included 6 Digisonde ionospheric

sounder stations operating in the mainland U.S. at 18:00 UT on August 21 (near peak eclipse at our field

locations). Measured peak plasma frequencies in the F2 layer, foF2, were near 4.0 +/- 0.5 MHz, with the height

of F2 layer peak, hmF2, ranging 196-244 km. NVIS propagation between WL7C and K0DRK (53 km separation)

was unlikely because the high-angle sky wave would have punched through the ionosphere rather than

returning to the surface.
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Representative frequency vs. time plot showing spherics and a

tweek (hook-like feature).

No change from the typical midday local VLF noise was 

found for the shorter approximately 2 minute 40 second 

period of totality at the VLF observing site, only about 1.35 

miles from the totality centerline. It is speculated that 

more night time like VLF noise may accompany the longest 

eclipse periods of totality that can last about 7 minutes.

Reverse Beacon Network Skimmer
Date flow at the WL7C RBN Skimmer

McTernan, 2017

1000-mm Schmidt-Cassegrain, Canon Rebel XTi

1/125 shutter, 200 ISO, No filter

KN4EZR setting up the transmitter

Next Steps:
We plan to install the RBN skimmer server

at NASA Marshall Space Flight Center

(MSFC) to fill a sorely needed gap in RBN

observation coverage in the southeast U.S.

to use as a teaching resource, and to enable

new MSFC ionospheric and radio

propagation research and public outreach.

The experience and knowledge gained, and

mistakes made, will better prepare us for

future eclipse radio science campaigns. On

to Chile in 2019!

Active, receive only antenna 

for RNB, WSPR networks 

installed on the roof at MSFC. 

We are engaging other NASA 

facilities to install RBN and/or 

WSPR nodes as well.

NASA Saturn V

(in background)

Active antenna
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AF Geospace-simulated 7-MHz ray using

Parameterized Ionospheric Model (PIM).
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