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Outline of the presentation

• Motivation

• Related works
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• Proposed methodology

• Results & discussion
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Motivation
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Motivation
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Protein interactome

• Total number of proteins in Homo Sapiens is in the order

of 105, whereas the interactome size is as low as 0.0002%

[1]

• Protein-protein interaction networks are scale-free [2]

• Mining protein-protein interaction networks for prediction

of functions
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Quasi-complete graph [3]

• A γ-quasi-complete graph (γ = 0.25)
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• A graph G = (V, E) of degree at least r is γ-quasi-complete 

for γ ≤ r/(|V|-1).

• An acyclic graph G = (V, E) of order at least 2 is (|V|-1)-1-

quasi-complete.
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Maximum quasi-clique problem in 

protein-protein interaction network
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Related works
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Related works
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Finding quasi-cliques for classifying 

molecular sequences [4]

• Definition of a quasi-clique based on individual degrees

• The problem addressed was to cover all the vertices in a

graph with a minimum number of quasi-cliques
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graph with a minimum number of quasi-cliques

• Greedy approximation algorithm with O(n3) average time

complexity

• No approximating factor
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Finding quasi-cliques in very large 

graphs with GRASP [5]

• Definition of a quasi-clique based on total number of edges

• Neither find out the complete set of quasi-cliques nor the

largest one
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largest one

• Greedy randomized adaptive search algorithm
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Finding cross-graph quasi-cliques 

with Crochet [3]

• Definition of a quasi-clique based on individual degrees

• Joint mining of different types of networks for exploring 

quasi-cliques
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quasi-cliques

• Time complexity of this algorithm linearly grows with the 

number of quasi-cliques
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Finding cross-graph quasi-cliques 

with Crochet+ [6]

• Improvement of Crochet

• Definition of a quasi-clique based on individual degrees
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• Joint mining of different types of networks for exploring 

quasi-cliques

• Time complexity of this algorithm linearly grows with the 

number of quasi-cliques
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Finding maximal quasi-cliques [7]

• Definition of a quasi-clique based on total number of edges 

and individual degrees

• Time complexity of this algorithm linearly grows with the 
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• Time complexity of this algorithm linearly grows with the 

number of maximal quasi-cliques
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Proposed methodology
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Proposed methodology
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Precursory details

• Inspired from a dynamic local search algorithm (DLS-MC) 

used for finding the maximum clique [8]

• Exploits the heuristics that a vertex with degree k cannot • Exploits the heuristics that a vertex with degree k cannot 

be in a γ-quasi-clique of size N if k < γ.(N−1).

• Guided by the scale-free property
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The proposed algorithm

Input:A PPIN N = (P, I) and the parameter γ

Output: The largest quasi-clique N˜ with respect to γ

Algorithmic Steps:

N˜ ← N

while Number of iterations is not sufficient do

if Γ(N˜) < γ then
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if Γ(N˜) < γ then

Select a minimum degree protein pi by breaking the tie arbitrarily

Remove the protein pi and all the interactions connected to it from N˜

else

Identify the set of proteins P′ which have the maximum connectivity with the

proteins in N˜ and its degree is supported by the heuristics

Select a protein pi from the set P′ by breaking the tie arbitrarily

Attach the protein pi and all the interactions provided between pi and the current

network N˜ to expand the network N˜

end if

end while
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Results & discussion

September 25, 2009 ICAIS 2009 16

Results & discussion
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Features of the interaction network

• Resource: Human Protein Reference Database (HPRD) [1]

• # Proteins: 25,661

• # Interactions: 37,107

• Clustering coefficient: ~1.13E–4
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Power-law degree distribution [2]
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Stepwise analytical details

• Initial pruning selected 5648 proteins with 35021

interactions therein

• The parameter γ = 0.7• The parameter γ = 0.7

• Number of iterations = 10,000

• Proteins selected in the largest quasi-clique = 15
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The largest 0.7-quasi-clique module
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Analysis of functions
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Analysis of functions (contd…)
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Future directions

• Integration of protein networks obtained from multiple

sources

• Deriving stringent upper bounds for the algorithm
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• Deriving stringent upper bounds for the algorithm

• Improvement with more efficient adaptive heuristics

• Rational drug design by targeting significant hub proteins

in the network
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Thank you
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Thank you
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