

CORE

Mining Co-expression Graphs: Applications to MicroRNA Regulation and Disease Analysis

Malay Bhattacharyya Senior Research Fellow MIU, Indian Statistical Institute, Kolkata, India

Presented at UoL, Slovenia

1

Some Concepts from Biology

Biogenesis of Genes and MicroRNAs

Mapping from Molecules to Systems

Disease Association of MicroRNAs

Outline of the Talk

- Expression studies to co-expression graph construction
- Co-expression graph mining
- Studying the differential co-expression graphs
- Co-expression to coregulation
- Disease analysis
- Future Goals

Expression Studies to Coexpression Graph Construction

Co-expression Measures

Name	Measure	Туре
Uncentered correlation coefficient/Cosine	$(\mathbf{E}_i ullet \mathbf{E}_j)/(\mathbf{E}_i \mathbf{E}_j)$	Similarity
Pearson correlation coefficient	$Cov(\mathbf{E}_i, \mathbf{E}_j) / (\sigma_{\mathbf{E}_i} \sigma_{\mathbf{E}_j})$	Similarity
Spearman's rank correlation	$\rho(Ranked(\mathbf{E}_i), Ranked(\mathbf{E}_j))$	Similarity
Cross-correlation 1	$\left(rac{1- ho(\mathbf{E}_i,\mathbf{E}_j)}{1+ ho(\mathbf{E}_i,\mathbf{E}_j)} ight)^{eta}$	Distance
Cross-correlation 2	$\sqrt{2(1- ho(\mathbf{E}_i,\mathbf{E}_j))}$	Distance
Root mean square	$rac{1}{n}\sqrt{ \mathbf{E}_i-\mathbf{E}_j ^2}$	Distance
Minkowski	$\sqrt[p]{ \mathbf{E}_i - \mathbf{E}_j ^p}$	Distance
Squared Euclidean	$ \mathbf{E}_i - \mathbf{E}_j ^2$	Distance
City block/Manhattan	$ \mathbf{E}_i - \mathbf{E}_j $	Distance
Chebyshev	$\max_t(\mathbf{E}_i(t) - \mathbf{E}_j(t))$	Distance
Kullback-Leibler	$\sum_{t=1}^{n} e_j(t) \ln \frac{e_j(t)}{e_i(t)}$	Distance

- Very few measures for quantifying positive and negative dependence
- How to signify the amount of deviation?

Variation of Deviation in Co-expression

A Novel Measure of Co-expression

$$M_{norm} = \frac{\alpha_1 \alpha_2}{|\alpha_1 \alpha_2|} \cdot \frac{\cos(|\alpha_1| - |\alpha_2|)}{1 + \cos(\min(|\alpha_1|, |\alpha_2|))}$$

$$BioSim = \frac{1}{N-1} \sum_{i=1}^{N-1} M_{norm_i}.$$

September 21, 2011

Presented at UoL, Slovenia

10

Combining Co-expression Graphs

Consensus Gene Co-expression Graph

$$N'_{1} = (N, A, W_{1}) \qquad N'_{2} = (N, A, W_{2})$$
$$S(N'_{1}, N'_{2}) = \frac{1}{|A|} \sum_{\forall i \in N \forall j \in N, i \neq j} \sum_{i \in N, i \neq j} 1 - |W_{1}(i, j) - W_{2}(i, j)|$$

A consensus gene co-expression graph, $N'_c = (N, A, W_c)$, of a set of *n* graphs $\{N'_1 = (N, A, W_1), N'_2 = (N, A, W_2), \dots, N'_n = (N, A, W_n)\}$, is defined to be a graph for which

 $\prod_{i=1}^{n} S(N'_{i}, N'_{c})$

becomes maximum.

$$W_{c}(i,j) = \alpha \sqrt{\sum_{k=1}^{n} \xi_{k}(i,j) W_{k}(i,j)^{\alpha}} \quad \xi_{k}(i,j) = \frac{\#Condition_{k}}{\sum_{k=1}^{n} \#Condition_{k}}$$

Co-expression Graph Mining

Co-expression Graph Mining

- Dense subgraphs in gene co-expression networks based on conventional definition of density
 - Requires relaxation in the definition of density
 - Significant participation of all the members should be considered
- Quasi-cliques in unweighted graphs
- Dense cores of autonomous systems in communication networks
 - What about unweighted graphs?
- CLIQUE-like problems on graphs
 - On finding all the dense groups
 - study specific to scale-free graphs

Generation of False DAV

Density of the graph = $2.(15+2)/[7.(7-1)] \sim 0.8$

* Participation density of 7 is = $2/6 \sim 0.3$

September 21, 2011

Presented at UoL, Slovenia

Statement of MAX-DAV

Given a weighted graph,

$$\tilde{G} = (V, \tilde{E}, \Omega)$$

and an *association density* threshold of an N-vertexlet δ , locate a dense N-vertexlet,

$$V_{let}^{N \max}$$

that has the maximum cardinality, i.e.,

$$N_{\max} \geq N_i : \forall \mu_{V_{let}}^{N_i} \geq \delta, \forall N_i = \{1, 2, ..., |V|\}$$

Scale-free Graphs

Degree distribution

 $P(k) \sim k^{-\gamma}; \gamma > 0$

Equivalence with Quadratic 0-1 Programming Problem

> Theorem 3: The MAX-DAV in a weighted graph,

$$G=(V,E,\Omega)$$

for a given association density threshold δ , is equivalent to the following optimization problem,

$$\min \ Z = -\sum_{i=1}^{|V|} v_i + \sum_{i=1}^{|V|} \left[\sum_{j=1}^{|V|} \delta\left(\sum_{j=1}^{|V|} v_j - 1\right) - \sum_{j=1}^{|V|} \Omega_{ij} v_i v_j\right]; \forall v_i, v_j \in \{0, 1\}$$

$$Maximizing DAV size Satisfying density constraint$$

where, $v_i = 1$, if x_i is in the maximum DAV, else $v_i = 0$, $\forall x_i \in V$.

Schematic Diagram of the Maximum Neural Network Model

Co-expression to Coregulation

Analysis of MicroRNA Regulation

- Mostly biological analysis
 - Not for an exhaustive collection of miRNAs (<10%)
 - No significant computational analysis based on expression profiling
- Sequence-based analyses based on the construction of positional weight matrices
 - How to establish a correspondence between co-expression, cofunctionality and co-regulation?

Studies on miRNAs (Schizophrenia Dataset)

t	δ_t	Module size	SE	$\sum SE$	$SI_{C/V}$
0	1	-	-	-	-
		-	-	-	-
3	0.9850	13	0.18	70.32	0.9966
4	0.9802	8	0.23	69.79	0.9953
5	0.9752	26	0.49	72.71	0.9913
6	0.9704	15	0.69	71.89	0.9857
$\overline{7}$	0.9655	4	0.85	70.25	0.9758
8	0.9607	14	1.25	72.51	0.9729
9	0.9559	25	1.22	72.86	0.9786
10	0.9511	6	1.37	64.76	0.9904

Biological and Statistical Validation

Priority modules	Schizophrenia dataset	Tissue-specific dataset	Stem cell dataset
PM1	589	1074	1585
PM2	51	235	148
PM3	81	0	211
PM4	260	291	2
PM5	0	12	8
PM6	13	40	30
PM7	1	20	110
PM8	24	64	13
PM9	-	-	0
PM10	-	-	0
PM11	-	-	13
PM12	-	-	0
PM13	-	-	73
	Dataset	p-value	
	Schizophreni	a < 1E-4	

Tissue-specific	< 1E - 4
Stem cell	< 1E - 4

Degree Distribution in TF-microRNA ^[11] Interaction Graph

Studying the Differential Coexpression Graphs

Relative Co-expression Score

Here, the constant $\varepsilon > 0$ is incorporated to map the range of *RCS* from $[0, \infty]$ to $[0, 1/\varepsilon]$ and *Cor* (*X*, *Y*) denotes the Pearson correlation coefficient between *X* and *Y*.

Association of MicroRNAs with Alzheimer's Disease

AD related miRNAs [32]	miRN	As with aberrant expression in AD brains [25]			AD related miRNAs [20]	Brain-specific miRNAs [20]
miR124	miR-9	miR-21	miR100	miR-425	miR107	miR-661
miR125b	miR128	miR-222	miR-212	miR-30e-5p	miR-29a	mir-09369
miR103	miR146a	miR-91	miR-363	miR-92	miR-29b1	mir15903
miR107	miR146b	miR-9-2	miR125b	miR-200c	miR106b	mir-44691
miR15a	miR-29a/b1	miR-92b	miR-511	miR-423	miR146a	miR-325
miR15b	miR15a	miR-9-3	miR-320	miR-30c	miR17	miR-506
miR16	miR-27a	miR-34a	miR-27b	miR18b	miR-20a	miR-515-3p
miR195	miR19b	miR-326	miR-34a	miR-615	miR-21	miR-612
miR-424	let-7i	miR1291	miR145	miR-629		miR-768-3p
miR128	miR101	miR129-2	miR148a	miR-637		mir-06164
miR-29a	miR106b	miR136	miR-381	miR-657		mir-32339
miR-29b	miR-22	miR181c	miR-422a			mir-45496
miR-29c	miR-26a	miR197	miR-98			miR107
miR-214	miR-26b	miR-210	miR132			miR-93

Differential Co-expression Analyses

Method	Gray Ma	atter	White Matter		
	# AD related microRNAs	<i>p</i> -value	# AD related microRNAs	<i>p</i> -value	
Student's paired t- test	8 (15)	3.74E-02	4 (15)	6.96E-01	
SAM	5 (15)	4.66E-01	3 (15)	8.77E-01	

* Among the top 15 microRNAs selected by the respective analysis

Method	No cons	traint	Excluding miR-423-5p		
	# AD related microRNAs	<i>p</i> -value	# AD related microRNAs	<i>p</i> -value	
Correlation-based analysis	11 (16)	7.44E-04	5 (17)	4.66E-01	

* Among the top 15 pairs of microRNAs selected by the respective analysis

Comparative Studies on Different Graph Clustering Algorithms

Cluster No.	grPa	grPartition grPartition w		grPartition with GTOM		Layout
	$\mathbf{C}\mathbf{C}$	BC	CC	BC	CC	BC
1	0.1333	0.16667	0	0.4545	0.22414	0.0883
2	0.1732	0.22727	0	0.375	0.11579	0.404
3	0	0.71428	0	0	0.21875	0.3629
4	0	0.33333	0.0074	0.2353	0.21429	0.2917
5	0	0	0.0019	0.3043	0.16667	0.3333
6	0	0.55556	0	0.0769		
7	0	0.6	0	0.1875		
8	0	0.125	0.6667	1		
9	0.2532	0.3	0	0.1818		
10	0.1667	0.25	1	0.5		

Whether Differential Co-expression Patterns Do Exist within a Module?

The Proposed Approach

Input: A differentially co-expressed graph G = (V, E, W, S), a strict lower threshold of differential co-expression value T,
and a degree threshold TD.
Output: The set of largest DCSTs.
Remove the edges having weight $W \leq T$.
repeat
Remove the nodes from the reduced graph having no connectivity with the others.
repeat
Find the edge having the strongest weight (seed edge) and initialize it as a DCST.
Find the <i>switching pattern</i> of the seed edge.
Find the nodes s _i forming the strongest edges with the nodes <i>i</i> in the DCST such that none of them is
present in the DCST. Find the degree values of the s's.
Select the node s, to expand the DCST further by the inclusion of the edge (i, s) such that it possesses:
a. comparatively higher weight than the other edges.
b. degree value greater than <i>TD</i> .
c. same switching pattern as that of the seed edge.
Resolve the conflicts in 7.a by randomization.
until The current DCST is no more expandable by the inclusion of edges
if the DCST is empty then
Exit.
else
Return the current DCST and remove its belonging nodes from the original graph G.
end if
until The reduced graph is empty

Construction of the Differentially Coexpressed Switching Tree

Frequency Distribution of the Degree Values of MicroRNAs

Disease Analysis

Disease Analysis

- Differential expression pattern analysis based on different phenotypes and mostly biological
 - How to define co-expression/differential co-expression/co-expression dynamics
- Network based analysis
 - System level analyses are problem-specific

HIV-1–Human Protein Interaction Network

Ptak et al., AIDS Res Hum Retroviruses, 24(12):1497-502, 2008

Biclustering Approaches

- Biclustering approaches
 - Cheng and Church's algorithm (CCA), SAMBA, Co-clustering algorithm (CA), Divide-and-conquer based algorithm (DBA)
- Bicluster types fixed value (CCA, SAMBA, CA, DA), fixed row/column (CCA), additive coherent value, and coherent evolution
- Some are able to find overlapping biclusters (CCA, CA)

Directed Bipartite Graph

If V1, V2 are two distinct sets of vertices and E is a subset of V1xV2 then a directed bipartite graph is definable as

G = (V1, V2, E)

where the edges (*i*, *j*) and (*j*, *i*) in *E* are distinct.

Definition 1 (DBClique). A DBClique is a fully connected subgraph $G' = (V'_1, V'_2, E') \subseteq G$ of a directed bipartite graph G such that either $i \in V'_1, j \in V'_2, \forall (i, j) \in E'$ or $i \in V'_2, j \in V'_1, \forall (i, j) \in E'$.

Correspondence of a DBClique to an Interaction Matrix

	1	2	3	4	5	6
Ι	-1	0	X	0	0	-1
	0	1	1	1	0	0
	0	1	X	1	0	0
IV	-1	0	0	-1	1	0

Formalization of an Interaction Matrix for a Directed Bipartite Graph

Definition 2 (Interaction matrix of a directed bipartite graph). The interaction matrix of a directed bipartite graph $G = (V_1, V_2, E)$ is defined as a $|V_1| \times |V_2|$ matrix \mathcal{I} such that

$$\mathcal{I}_{ij} = \begin{cases} 0, & \text{if } (i,j) \notin E \text{ and } (j,i) \notin E \\ 1, & \text{if } (i,j) \in E \text{ and } (j,i) \notin E \\ -1, & \text{if } (i,j) \notin E \text{ and } (j,i) \in E \\ X, & \text{if } (i,j) \in E \text{ and } (j,i) \in E \end{cases},$$

The Approach

Algorithm 1 An Algorithm for Finding out Bicliques in Digraphs

Input: A directed bipartite graph $G = (V_1, V_2, E)$.

Output: The set of maximal DBCliques.

Steps of the algorithm:

- 1: Obtain the correspondent interaction matrix \mathcal{I} from G
- 2: Replace the entries 'X' with '1' and '-1' with '0' in \mathcal{I} // Finding the all '1' biclusters
- 3: Partition $\mathcal{I} = \mathcal{I}_0 \cup \mathcal{I}_1 \cup \mathcal{I}_2$ such that the size of \mathcal{I}_0 maximizes and it contains only 0's.
- 4: Go to the previous step and apply the same individually on \mathcal{I}_1 and \mathcal{I}_2 until no further partitioning is possible.
- 5: Return the DBCliques corresponding to the biclusters
- 6: Replace the entries 'X' with '-1' and '1' with '0' in \mathcal{I} // Finding the all '-1' biclusters
- 7: Partition $\mathcal{I} = \mathcal{I}_0 \cup \mathcal{I}_1 \cup \mathcal{I}_2$ such that the size of \mathcal{I}_0 maximizes and it contains only 0's.
- 8: Go to the previous step and apply the same individually on \mathcal{I}_1 and \mathcal{I}_2 until no further partitioning is possible.
- 9: Return the DBCliques corresponding to the biclusters

Division of the Interaction Matrix

* Figure taken from [21]

Details of the Data and the DBCliques Obtained

- Direct physical interactions/indirect interactions categorized into 65 more specific types
- 19 HIV-1 proteins and 1448 human proteins
- 5134 interactions (18.66% of the total possible)

Table 1. The DBCliques obtained from the HIV-1-human protein interaction network containing at least three HIV-1 and human proteins each. The size of a DBClique is defined based on the number of edges it contains.

Bicluster type	Don't care allowed	# DBCliques obtained	Maximum size
			(HIV-1, Human)
All '1'	Yes	113	(6, 5)
All '-1'	Yes	25	(3, 13)
All '1'	No	54	(4, 5)
All '-1'	No	7	(3, 8)

Comparative Results

Table 2. Comparison of the largest bicliques (consisting of at least three HIV-1 and human proteins) derived by various algorithms from the HIV-1-human protein interaction network. The proposed method exclude the *Don't care* conditions and returns DBCliques. Crossed cells in the third column represent insignificant p-values.

Analytical details	Bimax	CC	ISA	Proposed
# Bicliques obtained	197	60	10	61
Largest biclique found	(4, 9)	(19, 392)	(5, 76)	(3, 8)
Best p -value from GO	$1.9E{-}6$	×	×	2.3E - 12
Best annotation	Regulation of cytokinesis	Not	Not	Response to protein
(GO Term)	(GO:0032465)	applicable	applicable	stimulus (GO:0051789)

Future Goals

Extended Regulation Including MicroRNAs

September 21, 2011

Presented at UoL, Slovenia

Major references

- 1. S. Bandyopadhyay and M. Bhattacharyya, A Biologically Inspired Measure for Coexpression Analysis, *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, 8(4), pp. 929-942, 2011.
- 2. M. Bhattacharyya and S. Bandyopadhyay. Integration of Co-expression Networks for Gene Clustering. In *Proceedings of the 7th International Conference on Advances in Pattern Recognition*, pp. 355–358, Kolkata, India, 2009.
- M. Bhattacharyya and S. Bandyopadhyay. Information Fusion in Bioinformatics. *Technorama*, The Institution of Engineers (India), Summer-Winter 2008-09:21–25, 2009.
- 4. S. Bandyopadhyay and M. Bhattacharyya. Mining the Largest Dense Vertexlet in a Weighted Scale-free Graph. *Fundamenta Informaticae*, 96(1-2):1–25, 2009.
- M. Bhattacharyya and S. Bandyopadhyay. Analyzing Topological Properties of Proteinprotein Interaction Networks: A Perspective towards Systems Biology. In *Computational Intelligence and Pattern Analysis in Biology Informatics*, U. Maulik, S. Bandyopadhyay and J. T. L. Wang (Eds.), John Wiley & Sons, Inc., pp. 349–368, 2010 (ISBN: 978-0-470-58159-9).

Major references (continued)

- 6. M. Bhattacharyya and S. Bandyopadhyay. Mining the Largest Quasi-clique in Human Protein Interactome. In *Proceedings of the International Conference on Adaptive and Intelligent Systems*, pp. 194–199, Klagenfurt, Austria, 2009.
- M. Bhattacharyya and S. Bandyopadhyay. A Combinatorial Counterpart of the Maximum Quasi-clique Problem. In *Proceedings of the International Conference on Discrete Mathematics, Algebra and their Applications*, pp. 129–130, Minsk, Belarus, 2009.
- 8. M. Bhattacharyya and S. Bandyopadhyay, Solving Maximum Fuzzy Clique Problem with Neural Networks and its Applications, *Memetic Computing*, Thematic Issue on "Adaptive Soft Computing Techniques and Applications", 1(4), pp. 281-290, 2009.
- 9. S. Bandyopadhyay and M. Bhattacharyya. A Chaotic Neuro-GA Synergism for Solving Maximum Fuzzy Clique Problem, *In Proceedings of the 15th International Conference on Neural Information Processing*, Auckland, New Zealand, November 25–28, pp. 209-210, 2008.
- 10. S. Bandyopadhyay and M. Bhattacharyya. Analyzing miRNA co-expression networks to explore TF-miRNA regulation. *BMC Bioinformatics*, 10:163, 2009.

Major references (continued)

- S. Bandyopadhyay and M. Bhattacharyya. PuTmiR: A database for extracting neighboring transcription factors of human microRNAs. *BMC Bioinformatics*, 11:190, 2010.
- 12. M. Bhattacharyya and S. Bandyopadhyay. Computational Discovery of Different Categories of Human Oncogenic MicroRNAs. In *Proceedings of the 1st IFIP International Conference on Bioinformatics*, no. 94, Surat, India, 2010.
- 13. S. Bandyopadhyay and M. Bhattacharyya. A Novel Method of Studying the Disease Regulatory Activities of MicroRNAs. *Current Bioinformatics*, 4(3):234–241, 2009.
- M. Bhattacharyya, S. Bandyopadhyay and U. Maulik, Finding Bicliques in Digraphs: Application into Viral-host Protein Interactome, In Proceedings of the 4th International Conference on Pattern Recognition and Machine Intelligence, Moscow, Russia, June 27-July 01, Springer LNCS 6744, pp. 412-417, 2011.
- 15. M. Bhattacharyya and S. Bandyopadhyay, Co-expression Toggling of MicroRNAs in Alzheimer's Brain, *SiNAPSA Neuroscience Conference*, Ljubljana, Slovenia, 2011.
- 16. U. Maulik, M. Bhattacharyya, A. Mukhopadhyay, S. Bandyopadhyay, Identifying the Immunodeficiency Gateway Proteins in Human and their Involvement in MicroRNA Regulation, *Molecular Biosystems*, 7(6), pp. 1842-1851, 2011.

Thank you