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Abstract

Once cognitive biological phenomena are recognized as neces-
sarily having ‘dual’ information sources, it is easy to show that
the information theory chain rule implies isolating coresident
information sources from crosstalk requires more metabolic
free energy than permitting correlation. This provides condi-
tions for an evolutionary exaptation leading to dynamic global
broadcasts of interacting cognitive biological processes analo-
gous to, but slower than, consciousness, itself included within
the paradigm. The argument is closely analogous to the well-
studied exaptation of noise to trigger stochastic resonance am-
plification in physiological subsystems.

Key Words: information theory, phase transition, suffi-
cient conditions

1 Introduction

Researchers have long speculated and experimented on the
role of noise in biological process via models of stochastic res-
onance (e.g., Park and Neelakanta, 1996; Gluckman et al.,
1996; Ward, 2009; Kawaguchi et al., 2011). The necessary
ubiquity of noise affecting information transmission under-
went an evolutionary exaptation (e.g., Gould, 2002) to be-
come a tool for amplification of weak signals. Here we exam-
ine the parallel necessary circumstance of information leak-
age between ‘adjacent’ communication channels or informa-
tion sources, a generally unwelcome signal correlation that the
electrical engineers call ‘crosstalk’. The evolutionary exap-
tation of crosstalk appears to be nested systems of shifting
global biological broadcasts analogous to, but both slower and
more general than, consciousness.

Baars’ global workspace model of animal consciousness at-
tributes the phenomenon to a dynamic array of unconscious
cognitive modules that unite to become a global broadcast
having a tunable perception threshold not unlike a theater
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spotlight, but whose range of attention is constrained by em-
bedding contexts (e.g., Baars, 1988, 2005; Baars and Franklin,
2003). The basic mechanism emerges ‘naturally’ from a re-
markably simple application of the asymptotic limit theorems
of information theory, once a broad range of unconscious cog-
nitive processes is recognized as inherently characterized by
information sources – generalized languages (Wallace, 2000,
2005, 2007). The approach allows mapping physiological un-
conscious cognitive modules onto an abstract network of inter-
acting information sources. This, in turn, permits a simplified
mathematical attack based on phase transitions in network
topology that, in the presence of sufficient linkage – crosstalk
– permits rapid, shifting, global broadcasts. While the mathe-
matical description of consciousness is itself relatively simple,
the evolutionary trajectories leading to its emergence seem
otherwise. Here we argue that this is not the case, and that
physical restrictions on the availability of metabolic free en-
ergy provide sufficient conditions for the emergence, not only
of consciousness, but of a spectrum of analogous phenomena
acting across a variety of biological scales of space, time, and
levels of organization.

The argument is, in a sense, an extension of Gould and
Lewontin’s (1979) famous essay “The Spandrels of San Marco
and the Panglossian Paradigm: A Critique of the Adaptation-
ist Programme”. Spandrels are the triangular sectors of the
intersecting arches that support a cathedral roof. They are
simple byproducts of the need for arches, and their occurrence
is in no way fundamental to the construction of a cathedral.
Our assertion is that crosstalk between ‘low level’ cognitive
biological modules is a similar inessential byproduct that evo-
lutionary process has exapted to construct the dynamic global
broadcasts of consciousness and a spectrum of roughly anal-
ogous physiological phenomena: Evolution built many new
arches from a single spandrel.

We first provide a minimal formal overview that will
be reexpressed in more complex form, much like Onsager’s
nonequilibrium thermodynamics.
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2 Cognition as ‘language’

Atlan and Cohen (1998) argue, in the context of a cognitive
paradigm for the immune system, that the essence of cogni-
tive function involves comparison of a perceived signal with
an internal, learned or inherited picture of the world, and
then, upon that comparison, choice of one response from a
much larger repertoire of possible responses. That is, cog-
nitive pattern recognition-and-response proceeds by an algo-
rithmic combination of an incoming external sensory signal
with an internal ongoing activity – incorporating the inter-
nalized picture of the world – and triggering an appropriate
action based on a decision that the pattern of sensory activity
requires a response.

More formally, incoming sensory input is mixed in an un-
specified but systematic manner with a pattern of inter-
nal ongoing activity to create a path of combined signals
x = (a0, a1, ..., an, ...). Each ak thus represents some func-
tional composition of the internal and the external. An ap-
plication of this perspective to a standard neural network is
given in Wallace (2005, p.34).

This path is fed into a highly nonlinear, but otherwise sim-
ilarly unspecified, decision oscillator, h, which generates an
output h(x) that is an element of one of two disjoint sets B0

and B1 of possible system responses. Let

B0 ≡ {b0, ..., bk},

B1 ≡ {bk+1, ..., bm}.

Assume a graded response, supposing that if

h(x) ∈ B0,

the pattern is not recognized, and if

h(x) ∈ B1,

the pattern is recognized, and some action bj , k + 1 ≤ j ≤ m
takes place.

The principal objects of formal interest are paths x which
trigger pattern recognition-and-response. That is, given a
fixed initial state a0, we examine all possible subsequent paths
x beginning with a0 and leading to the event h(x) ∈ B1. Thus
h(a0, ..., aj) ∈ B0 for all 0 < j < m, but h(a0, ..., am) ∈ B1.

For each positive integer n, let N(n) be the number of
high probability grammatical and syntactical paths of length
n which begin with some particular a0 and lead to the condi-
tion h(x) ∈ B1. Call such paths ‘meaningful’, assuming, not
unreasonably, that N(n) will be considerably less than the
number of all possible paths of length n leading from a0 to
the condition h(x) ∈ B1.

While combining algorithm, the form of the nonlinear os-
cillator, and the details of grammar and syntax, are all un-
specified in this model, the critical assumption which permits
inference on necessary conditions constrained by the asymp-
totic limit theorems of information theory is that the finite
limit

H ≡ lim
n→∞

log[N(n)]

n

(1)

both exists and is independent of the path x.
Call such a pattern recognition-and-response cognitive pro-

cess ergodic. Not all cognitive processes are likely to be er-
godic, implying that H, if it indeed exists at all, is path de-
pendent, although extension to nearly ergodic processes, in a
certain sense, seems possible (e.g., Wallace, 2005, pp. 31-32).

Invoking the spirit of the Shannon-McMillan Theorem, it
is possible to define an adiabatically, piecewise stationary, er-
godic information source X associated with stochastic variates
Xj having joint and conditional probabilities P (a0, ..., an) and
P (an|a0, ..., an−1) such that appropriate joint and conditional
Shannon uncertainties satisfy the classic relations

H[X] = lim
n→∞

log[N(n)]

n
=

lim
n→∞

H(Xn|X0, ..., Xn−1) =

lim
n→∞

H(X0, ..., Xn)

n
.

(2)

This information source is defined as dual to the underlying
ergodic cognitive process, in the sense of Wallace (2000, 2005).

The essence of ‘adiabatic’ is that, when the informa-
tion source is parameterized according to some appropriate
scheme, within continuous ‘pieces’, changes in parameter val-
ues take place slowly enough so that the information source
remains as close to stationary and ergodic as needed to make
the fundamental limit theorems work. By ‘stationary’ we
mean that probabilities do not change in time, and by ‘er-
godic’ (roughly) that cross-sectional means converge to long-
time averages. Between ‘pieces’ one invokes various kinds of
phase change formalism, for example renormalization theory
in cases where a mean field approximation holds (Wallace,
2005), or variants of random network theory where a mean
number approximation is applied. More will be said of this
latter approach below.

Recall that the Shannon uncertainties H(...) are
cross-sectional law-of-large-numbers sums of the form
−
∑

k Pk log[Pk], where the Pk constitute a probability
distribution. See Cover and Thomas (2006), Ash (1990), or
Khinchin (1957) for the standard details.
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A recent series of articles has applied this perspective to
cognitive paradigms for gene expression (Wallace and Wal-
lace, 2009, 2010), the regulation of protein folding (Wallace,
2010, 2011a, b), and the production and regulation of the
glycan determinants that coat cellular surfaces and, in fact,
constitute the principal means of biological information trans-
mission (Wallace, 2012). The essential point is that such reg-
ulatory machineries can become nodes on a network of inter-
acting information sources whose connections, by crosstalk,
become the means for shifting, tunable, global broadcasts
analogous to neural consciousness that dedicate chosen sets
of physiological subsystems to selected problems.

3 Dynamic networks of ‘low level’
cognitive modules and the No Free
Lunch Theorem

Given a set of biological cognitive modules that become linked
to solve a problem – e.g., riding a bicycle in heavy traffic, fol-
lowed by wound healing – the famous ‘no free lunch’ theorem
of Wolpert and Macready (1995, 1997) illuminates the next
step in the argument. As English (1996) states the matter,

...Wolpert and Macready... have established that
there exists no generally superior [computational]
function optimizer. There is no ‘free lunch’ in the
sense that an optimizer ‘pays’ for superior perfor-
mance on some functions with inferior performance
on others... gains and losses balance precisely, and
all optimizers have identical average performance...
[That is] an optimizer has to ‘pay’ for its superior-
ity on one subset of functions with inferiority on the
complementary subset...

Another way of stating this conundrum is to say that a
computed solution is simply the product of the information
processing of a problem, and, by a very famous argument,
information can never be gained simply by processing. Thus
a problem X is transmitted as a message by an information
processing channel, Y , a computing device, and recoded as
an answer. By the extended argument of the Mathematical
Appendix, there will be a channel coding of Y which, when
properly tuned, is most efficiently ‘transmitted’, in a purely
formal sense, by the problem. In general, then, the most ef-
ficient coding of the transmission channel, that is, the best
algorithm turning a problem into a solution, will necessarily
be highly problem-specific. Thus there can be no best algo-
rithm for all sets of problems, although there will likely be an
optimal algorithm for any given set.

Based on the no free lunch argument, it is clear that dif-
ferent challenges facing an entity must be met by different
arrangements of basic ‘low level’ cognitive modules. It is pos-
sible to make a very abstract picture of this phenomenon,
not based on anatomy, but rather on the linkages between
the information sources dual to the basic physiological and
learned unconscious cognitive modules (UCM). That is, the

Figure 1: By the no free lunch theorem, two markedly differ-
ent problems will be optimally solved by two different linkages
of available lower level cognitive modules – characterized now
by their dual information sources Xj – into different tem-
porary networks of working structures, here represented by
crosstalk among those sources rather than by the physiolog-
ical UCM themselves. The embedding information source Z
represents the influence of external signals whose effects can
be accounted for by an application of network information
theory.

remapped network of lower level cognitive modules is reex-
pressed in terms of the information sources dual to the UCM.
Given two distinct problems classes (e.g., digesting food vs.
wound healing), there must be two different ‘wirings’ of the
information sources dual to the physiological UCM, as in fig-
ure 1, with the network graph edges measured by the amount
of information crosstalk between sets of nodes representing
the dual information sources. A more formal treatment of
such coupling can be given in terms of network information
theory (Cover and Thomas, 2006), particularly incorporating
the effects of embedding contexts, implied by the ‘external’
information source Z – signals from the environment.

The possible expansion of a closely linked set of information
sources dual to the UCM into a global workspace/broadcast
– the occurrence of a kind of ‘spandrel’ – depends, in this
model, on the underlying network topology of the dual infor-
mation sources and on the strength of the couplings between
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the individual components of that network. For random net-
works the results are well known, based on the work of Erdos
and Renyi (1960). Following the review by Spenser (2010)
closely (see, e.g., Boccaletti et al., 2006, for more detail), as-
sume there are n network nodes and e edges connecting the
nodes, distributed with uniform probability – no nonrandom
clustering. Let G[n, e] be the state when there are e edges.
The central question is the typical behavior of G[n, e] as e
changes from 0 to (n − 2)!/2. The latter expression is the
number of possible pair contacts in a population having n in-
dividuals. Another way to say this is to let G(n, p) be the
probability space over graphs on n vertices where each pair
is adjacent with independent probability p. The behaviors of
G[n, e] and G(n, p) where e = p(n− 2)!/2 are asymptotically
the same.

For ‘real world’ biological and social structures, one can
have p = f(e, n), where f may not be simple or even mono-
tonic. For example, while low e would almost always be asso-
ciated with low p, beyond some threshold, high e might drive
individuals or nodal groups into isolation, decreasing p and
producing an ‘inverted-U’ signal transduction relation akin to
stochastic resonance. Something like this would account for
Fechner’s law which states that perception of sensory signals
often scales as the log of the signal intensity.

For the simple random case, however, we can parameterize
as p = c/n. The graph with n/2 edges then corresponds to
c = 1. The essential finding is that the behavior of the random
network has three sections:

[1] If c < 1 all the linked subnetworks are very small, and no
global broadcast can take place. This is taken as the standard
operating mode for nonminded organisms.

[2] If c = 1 there is a single large interlinked component of
a size ≈ n2/3.

[3] If c > 1 then there is a single large component of size
yn – a global broadcast – where y is the positive solution to
the equation

exp(−cy) = 1− y.

(3)

Then

y =
W (−c/ exp(c)) + c

c
,

(4)

where W is the Lambert W function.

Figure 2: Fraction of network nodes in the giant component
as a function of the crosstalk coupling parameter c. The solid
line represents a random graph, the dotted line a star-of-
stars-of-stars network in which all nodes are interconnected,
showing that the dynamics of giant component emergence are
highly dependent on an underlying network topology that,
for UCM, may itself be tunable. For the random graph, a
strength of c < 1 precludes emergence of a larger-scal ‘global’
broadcast.

The solid line in figure 2 shows y as a function of c, rep-
resenting the fraction of network nodes that are incorpo-
rated into the interlinked giant component – a de-facto global
broadcast for interacting UCM. To the left of c = 1 there is
no giant component, and large scale cognitive process is not
possible.

The dotted line, however, represents the fraction of nodes in
the giant component for a highly nonrandom network, a star-
of-stars-of-stars (SoS) in which every node is directly or indi-
rectly connected with every other one. For such a topology
there is no threshold, only a single giant component, showing
that the emergence of a giant component in a network of infor-
mation sources dual to the UCM is dependent on a network
topology that may itself be tunable (Wallace and Fullilove,
2008).

4 Information and free energy: how
a spandrel can become an arch

The information sources dual to unconscious cognitive mod-
ules represented in figure 1 are not independent, but are corre-
lated, so that a joint information source can be defined having
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the properties

H(X1, ..., Xn) ≤
n∑

j=1

H(Xj).

(5)

This result is known as the information chain rule (e.g.,
Cover and Thomas, 2006), and has very profound implica-
tions: Feynman (2000) describes in great detail how informa-
tion and free energy have an inherent duality. Feynman, in
fact, defines information precisely as the free energy needed
to erase a message. The argument is surprisingly direct (e.g.,
Bennett, 1988), and for very simple systems it is easy to design
a small (idealized) machine that turns the information within
a message directly into usable work – free energy. Information
is a form of free energy and the construction and transmission
of information within living things consumes metabolic free
energy, with inevitable losses via the second law of thermo-
dynamics.

Information catalysis arises most simply via the informa-
tion theory chain rule. Restricting the argument to two in-
formation sources, X and Y , one can define jointly typical
paths zi = (xi, yi) having the joint information source un-
certainty H(X,Y ) satisfying H(X,Y ) = H(X) + H(Y |X) ≤
H(X) +H(Y ).

Of necessity, then, H(X,Y ) ≤ H(X) +H(Y ) if H(Y ) 6= 0.
Within a biological structure, however, there will be an

ensemble of possible reactions, driven by available metabolic
free energy, so that, taking Ĥ as representing an average,

Ĥ(X,Y ) < Ĥ(X) + Ĥ(Y ).

(6)

This is a very general result that, by the equivalence of
information and free energy, leads to a model in which inter-
acting biological signals can ‘canalize’ the overall behavior of
the system: Interaction consumes less metabolic free energy
than signal isolation.

Typically, letting Q(κM) ≥ 0, Q(0) = 0 represent an inten-
sity measure of available metabolic free energy, and C be the
maximum channel capacity available to the cognitive biolog-
ical processes of interest, one would expect

Ĥ =

∫ C

0
H exp[−H/Q]dH∫ C

0
exp[−H/Q]dH

=
Q[exp(C/Q)− 1]− C

exp(C/Q)− 1
.

(7)

κ is an inverse energy intensity scaling constant that may
be quite small indeed, a consequence of entropic translation
losses between metabolic free energy and the expression of
information. Note that, near M = 0, we can expand Q as a
Taylor series, with a first term Q ≈ κM .

This expression tops out quite rapidly with increases in ei-
ther C or Q, producing energy- and channel capacity- limited
results

Ĥ = Q(κM), C/2.

(8)

Then, expanding Q near zero, the two limiting relations
imply

Q(κMX,Y ) < Q(κMX) +Q(κMY )→MX,Y < MX +MY ,

CX,Y < CX + CY .

(9)

The channel capacity constraint can be parsed further for
a noisy Gaussian channel. Then (Cover and Thomas, 2006)

C = 1/2 log[1 + P/σ2] ≈ 1/2P/σ2

(10)

for small P/σ2, where P is the ‘power constraint’ such that
E(X2) < P and σ2 is the noise variance. Assuming in-
formation sources X and Y act on the same scale, so that
noise variances are the same and quite large, then we may
take P = Q(κM) – channel power is determined by available
metabolic free energy – and we recover the expression

Q(κMX,Y ) < Q(κMX) +Q(κMY ).

Both limiting inequalities are, then, free energy relations
leading to a kind of ‘reaction canalization’ in which a set of
lower level cognitive modules consumes less metabolic free
energy if interaction among them is permitted than under
conditions of individual signal isolation.
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The global broadcast mechanisms of consciousness and its
slower physiological generalizations make an arch of this span-
drel, using the lowered free energy requirement of crosstalk
interaction between low level cognitive modules as the spring-
board for launching (sometimes) rapid, tunable, more highly
correlated, global broadcasts that link those modules to solve
problems.

5 Reaction to environmental signals

Lower level cognitive modules operate within larger, highly
structured, environmental signals and other constraints whose
regularities may also have a recognizable grammar and syn-
tax, represented in figure 1 by an embedding information
source Z. Under such a circumstance the splitting criterion
for three jointly typical sequences is given by the classic rela-
tion of network information theory (Cover and Thomas, 2006,
Theorem 15.2.3)

I(X1, X2|Z) = H(Z) +H(X1|Z) +H(X2|Z)−H(X1, X2, Z)

(11)

that generalizes as

I(X1, ..., Xn|Z) = H(Z) +

n∑
j=1

H(Xj |Z)−H(X1, ..., Xn, Z)

(12)

More complicated multivariate typical sequences are
treated much the same (e.g., El Gamal and Kim, 2010, p.2-
26). Given a basic set of interacting information sources
(X1, ..., Xk) that one partitions into two ordered sets X(J )
and X(J ′), then the splitting criterion becomes H[X(J |J ′)].
Extension to a greater number of ordered sets is straightfor-
ward.

Then the joint splitting criterion – I,H above – however
it may be expressed as a composite of the underlying infor-
mation sources and their interactions, satisfies a relation like
the first expression in equation (2), where N(n) is the num-
ber of high probability jointly typical paths of length n, and
the theory carries through, now incorporating the effects of
external signals as the information source Z.

6 A formal model

Given the splitting criteria I(X1, ..., Xn|Z) or H[X(J |J ′)]
as above, the essential point is that these are the limit, for
large n, of the expression log[N(n)]/n, where N(n) is the
number of jointly typical paths of the interacting information
sources of length n. Again, as Feynman (2000) argues at great
length, information is simply another form of free energy, and
its dynamics can be expressed using a formalism similar to
Onsager’s nonequilbrium thermodynamics.

The argument is direct.
First, the physical model. Let F (K) be the free energy

density of a physical system, K the normalized temperature,
V the volume and Z(K,V ) the partition function defined from
the Hamiltonian characterizing energy states Ei. Then

Z(V,K) ≡
∑
i

exp[−Ei(V )/K],

(13)

and

F (K) = lim
V→∞

−K log[Z(V,K))

V
≡ log[Ẑ(K,V )]

V
.

If a nonequilibrium physical system is parameterized by a
set of variables {Ki}, then the empirical Onsager equations
are defined in terms of the gradient of the entropy S ≡ F −∑

j KjdF/dKj as

dKj/dt =
∑
i

Li,j∂S/∂Ki,

(14)

where the Li,j are empirical constants. For a physical sys-
tem having microreversibility, Li,j = Lj,i. For an information
source where, for example, ‘ the ’ has a much different prob-
ability than ‘ eht ’, no such microreversibility is possible, and
no ‘reciprocity relations’ can apply.

For stochastic systems this generalizes to the set of stochas-
tic differential equations

dKj
t =

∑
i

[Lj,i(t, ...∂S/∂K
i...)dt+ σj,i(t, ...∂S/∂K

i)dBi
t]

= L(K1, ...,Kn)dt+
∑
i

σ(t,K1, ...,Kn)dBi
t,
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(15)

where terms have been collected and expressed in terms of
the driving parameters. The dBi

t represent different kinds of
‘noise’ whose characteristics are usually expressed in terms of
their quadratic variation. See any standard text for defini-
tions, examples, and details.

The essential trick is to recognize that, for the splitting
criteria I(X1, ..., Xn|Z) or H[X(J |J ′)], the role of informa-
tion as a form of free energy, and the corresponding limit in
log[N(n)]/n, make it possible to define entropy-analogs as

S ≡ I(...Ki...)−
∑
j

Kj∂I/∂Kj

S ≡ H[X(J |J ′)]−
∑
j

Kj∂H[X(J |J ′)]/∂Kj .

(16)

The basic information theory ‘regression equations’ for the
system of figures 1 and 2, driven by a set of external ‘sen-
sory’ and other, internal, signal parameters K = (K1, ...,Kn)
that may be measured by the information source uncertainty
of other information sources is then precisely the set of equa-
tions (15) above.

Several features emerge directly from invoking this ‘coevo-
lutionary’ approach.

The first involves Pettini’s (2007) topological hypothesis:
A fundamental change in the underlying topology of a sys-
tem characterized by any free energy ‘Morse Function’ is a
necessary condition for the kind of phase transition shown in
figure 2. What seems clear from the neurological context is
that a converse topological tuning of the threshold for the
global broadcast phase transition is possible.

Second, there are several obvious possible dynamic pat-
terns:

1. Setting equation (15) equal to zero and solving for sta-
tionary points gives attractor states since the noise terms pre-
clude unstable equilibria.

2. This system may converge to limit cycle or pseudoran-
dom ‘strange attractor’ behaviors in which the system seems
to chase its tail endlessly within a limited venue – a kind of
‘Red Queen’ pathology.

3. What is converged to in both cases is not a simple state
or limit cycle of states. Rather it is an equivalence class, or
set of them, of highly dynamic information sources coupled by
mutual interaction through crosstalk. Thus ‘stability’ in this
structure represents particular patterns of ongoing dynamics
rather than some identifiable static configuration.

We are deeply enmeshed in a highly recursive phenomeno-
logical stochastic differential equations (as in, e.g., Zhu et

al. 2007), but in a dynamic rather than static manner. The
objects of this dynamical system are equivalence classes of
information sources, rather than simple ‘stationary states’ of
a dynamical or reactive chemical system. The necessary con-
ditions of the asymptotic limit theorems of communication
theory have beaten the mathematical thicket back one layer.

Third, as Champagnat et al. (2006) note, shifts between
the quasi-equilibria of a coevolutionary system can be ad-
dressed by the large deviations formalism. They find that the
issue of dynamics drifting away from trajectories predicted by
the canonical equation can be investigated by considering the
asymptotic of the probability of ‘rare events’ for the sample
paths of the diffusion.

By ‘rare events’ they mean diffusion paths drifting far away
from the direct solutions of the canonical equation. The prob-
ability of such rare events is governed by a large deviation
principle: when a critical parameter (designated ε) goes to
zero, the probability that the sample path of the diffusion is
close to a given rare path φ decreases exponentially to 0 with
rate I(φ), where the ‘rate function’ I can be expressed in
terms of the parameters of the diffusion. This result, in their
view, can be used to study long-time behavior of the diffu-
sion process when there are multiple attractive singularities.
Under proper conditions the most likely path followed by the
diffusion when exiting a basin of attraction is the one minimiz-
ing the rate function I over all the appropriate trajectories.
The time needed to exit the basin is of the order exp(V/ε)
where V is a quasi-potential representing the minimum of the
rate function I over all possible trajectories.

An essential fact of large deviations theory is that the rate
function I which Champagnat et al. invoke can almost always
be expressed as a kind of entropy, that is, having the canonical
form

I = −
∑
j

Pj log(Pj)

(17)

for some probability distribution. This result goes under a
number of names; Sanov’s Theorem, Cramer’s Theorem, the
Gartner-Ellis Theorem, the Shannon-McMillan Theorem, and
so forth (Dembo and Zeitouni, 1998).

These considerations lead very much in the direction of
equation (15), but now seen as subject to internally-driven
large deviations that are themselves described as informa-
tion sources, providing K = f(I)-parameters that can trig-
ger punctuated shifts between quasi-stable modes. Thus
both external signals, characterized by the information source
Z, and internal ‘ruminations’, characterized by the informa-
tion source I, can provide K-parameters that serve to drive
the system to different quasi-equilibrium ‘conscious attention
states’ in a highly punctuated manner, if they are of sufficient
magnitude.
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7 Discussion and conclusions

A tuning theorem variant of the Shannon Coding Theorem
that expresses the no free lunch restriction allows construc-
tion of a broad spectrum of versions of Bernard Baars’ global
workspace/global broadcast model of animal consciousness
that apply to many interacting ‘low level’ cognitive biolog-
ical submodules, usually having much longer characteristic
time constants. Such generalized consciousness, via the giant
component linking lower level ‘unconscious’ cognitive modules
(and possibly inattentional blindness, via the no free lunch
condition), emerges directly, and the effects of external sig-
nals and internal ‘biological ruminations’ can be incorporated
through standard arguments leading to punctuated threshold
detection.

The central evolutionary process leading to this elaborate
range of mechanisms is that the spandrel of crosstalk between
‘unconscious’, lower level, cognitive modules becomes a suf-
ficient condition for evolutionary exaptation into the arch of
global broadcast through the information theory chain rule
that implies it takes more metabolic free energy to prevent
correlation than to allow it. Such generalization of neural
consciousness, in terms of tunable, shifting global broadcasts,
seems ubiquitous, as collective phenomena like wound heal-
ing and the many ‘psychoneuroimmuno’, gene expression, and
other phenomena imply.

The parallel argument is, of course, that the similar neces-
sary ubiquity of noise in the transmission of information has
been exapted into mechanisms of stochastic resonance ampli-
fication at various scales.

It should be obvious that roughly similar evolutionary exap-
tations would be available under a broad variety of astrobio-
logical circumstances, via the statistical regularities imposed
by the asymptotic limit theorems of information theory.
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10 Mathematical Appendix

Messages from an information source, seen as symbols xj from
some alphabet, each having probabilities Pj associated with
a random variable X, are ‘encoded’ into the language of a
‘transmission channel’, a random variable Y with symbols
yk, having probabilities Pk, possibly with error. Someone
receiving the symbol yk then retranslates it (without error)
into some xk, which may or may not be the same as the xj
that was sent.

More formally, the message sent along the channel is char-
acterized by a random variable X having the distribution

P (X = xj) = Pj , j = 1, ...,M.

The channel through which the message is sent is charac-
terized by a second random variable Y having the distribution

P (Y = yk) = Pk, k = 1, ..., L.

Let the joint probability distribution of X and Y be defined
as

P (X = xj , Y = yk) = P (xj , yk) = Pj,k

and the conditional probability of Y given X as

P (Y = yk|X = xj) = P (yk|xj).

Then the Shannon uncertainty of X and Y independently
and the joint uncertainty of X and Y together are defined
respectively as

H(X) = −
M∑
j=1

Pj log(Pj)

H(Y ) = −
L∑

k=1

Pk log(Pk)

H(X,Y ) = −
M∑
j=1

L∑
k=1

Pj,k log(Pj,k).

(18)

The conditional uncertainty of Y given X is defined as

H(Y |X) = −
M∑
j=1

L∑
k=1

Pj,k log[P (yk|xj)]

(19)

For any two stochastic variates X and Y , H(Y ) ≥ H(Y |X),
as knowledge of X generally gives some knowledge of Y .
Equality occurs only in the case of stochastic independence.

Since P (xj , yk) = P (xj)P (yk|xj), we have

H(X|Y ) = H(X,Y )−H(Y )

The information transmitted by translating the variable X
into the channel transmission variable Y – possibly with error
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– and then retranslating without error the transmitted Y back
into X is defined as

I(X|Y ) ≡ H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y )

(20)

Again, see Ash (1990), Cover and Thomas (2006) or
Khinchin (1957) for details. The essential point is that if
there is no uncertainty in X given the channel Y , then there
is no loss of information through transmission. In general this
will not be true, and herein lies the essence of the theory.

Given a fixed vocabulary for the transmitted variable X,
and a fixed vocabulary and probability distribution for the
channel Y , we may vary the probability distribution of X in
such a way as to maximize the information sent. The capacity
of the channel is defined as

C ≡ max
P (X)

I(X|Y )

(21)

subject to the subsidiary condition that
∑
P (X) = 1.

The critical trick of the Shannon Coding Theorem for send-
ing a message with arbitrarily small error along the channel
Y at any rate R < C is to encode it in longer and longer
‘typical’ sequences of the variable X; that is, those sequences
whose distribution of symbols approximates the probability
distribution P (X) above which maximizes C.

If S(n) is the number of such ‘typical’ sequences of length
n, then

log[S(n)] ≈ nH(X)

where H(X) is the uncertainty of the stochastic variable de-
fined above. Some consideration shows that S(n) is much
less than the total number of possible messages of length n.
Thus, as n→∞, only a vanishingly small fraction of all pos-
sible messages is meaningful in this sense. This observation,
after some considerable development, is what allows the Cod-
ing Theorem to work so well. In sum, the prescription is to
encode messages in typical sequences, which are sent at very
nearly the capacity of the channel. As the encoded messages
become longer and longer, their maximum possible rate of
transmission without error approaches channel capacity as a
limit. Again, the standard references provide details.

This approach can be, in a sense, inverted to give a ‘tuning
theorem’ variant of the coding theorem.

Telephone lines, optical wave guides and the tenuous
plasma through which a planetary probe transmits data to

earth may all be viewed in traditional information-theoretic
terms as a noisy channel around which we must structure
a message so as to attain an optimal error-free transmission
rate.

Telephone lines, wave guides and interplanetary plasmas
are, relatively speaking, fixed on the timescale of most mes-
sages, as are most sociogeographic networks. Indeed, the
capacity of a channel, is defined by varying the probability
distribution of the ‘message’ process X so as to maximize
I(X|Y ).

Suppose there is some message X so critical that its prob-
ability distribution must remain fixed. The trick is to fix the
distribution P (x) but modify the channel – i.e., tune it – so
as to maximize I(X|Y ). The dual channel capacity C∗ can
be defined as

C∗ ≡ max
P (Y ),P (Y |X)

I(X|Y )

(22)

But

C∗ = max
P (Y ),P (Y |X)

I(Y |X)

since

I(X|Y ) = H(X) +H(Y )−H(X,Y ) = I(Y |X).

Thus, in a purely formal mathematical sense, the message
transmits the channel, and there will indeed be, according
to the Coding Theorem, a channel distribution P (Y ) which
maximizes C∗.

One may do better than this, however, by modifying the
channel matrix P (Y |X). Since

P (yj) =

M∑
i=1

P (xi)P (yj |xi),

P (Y ) is entirely defined by the channel matrix P (Y |X) for
fixed P (X) and

C∗ = max
P (Y ),P (Y |X)

I(Y |X) = max
P (Y |X)

I(Y |X).

Calculating C∗ requires maximizing the complicated ex-
pression

I(X|Y ) = H(X) +H(Y )−H(X,Y )

which contains products of terms and their logs, subject to
constraints that the sums of probabilities are 1 and each prob-
ability is itself between 0 and 1. Maximization is done by
varying the channel matrix terms P (yj |xi) within the con-
straints. This is a difficult problem in nonlinear optimization.
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However, for the special case M = L, C∗ may be found by
inspection:

If M = L, then choose

P (yj |xi) = δj,i

where δi,j is 1 if i = j and 0 otherwise. For this special case

C∗ ≡ H(X)

with P (yk) = P (xk) for all k. Information is thus transmitted
without error when the channel becomes ‘typical’ with respect
to the fixed message distribution P (X).

If M < L matters reduce to this case, but for L < M infor-
mation must be lost, leading to Rate Distortion limitations.

Thus modifying the channel may be a far more efficient
means of ensuring transmission of an important message than
encoding that message in a ‘natural’ language which maxi-
mizes the rate of transmission of information on a fixed chan-
nel.

We have examined the two limits in which either the distri-
butions of P (Y ) or of P (X) are kept fixed. The first provides
the usual Shannon Coding Theorem, and the second a tuning
theorem variant, i.e. a tunable, retina-like, Rate Distortion
Manifold, in the sense of Glazebrook and Wallace (2009).
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