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Lego DNA assembling, a simple in vitro method for 

constructing DNA molecule 

Abstract 

Digestion-ligation based and recombination based methods for constructing recombinant 

DNA are the basic techniques in molecular biology and thus built one of the foundations 

for the modern life sciences. Here we describe a new strategy that can radically simplify 

some of the same task. The lego DNA assembling, based on strand annealing, allows in 

vitro assembly of multi DNA fragments in one step with precise junctions and excludes 

the need for any enzyme. As a proof of concept, we rapidly constructed plasmids from 4, 

6 and 8 fragments with very high efficiencies (100%). And we found this method a 

powerful tool for synthetic biology, constructing a partial isoprene biosynthesis pathway 

(consisting of four genes) in 2 days. We also assembled a customized expression vector 

to show its modularity. 
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Introduction 

Modifying organisms at the molecular level is the main base for modern biotechnology. 

In most cases of the DNA manipulation part, people need to incorporate two or more 

DNA fragments together into a relative complex and functional structure. For this task, 

many methods have been invented in the last 40 years.  

When only two fragments are involved, the traditional restriction-enzyme-based 

assembly methods are most commonly used1.  Other methods based on PCR, including 

splicing by overlap extension (SOEing)2, PCR-induced (ligase-free) subcloning3, 

Ligation-independent cloning of PCR products (LIC-PCR)4, recombinant circle pcr5 and 

methods based on site-specific recombination in vitro or in vivo, e.g., the Univector 

Plasmid-fusion System6, Gateway system (Invitrogen), recombinational cloning7 and  

homologous recombination based cloning methods in yeast8-13  or  in E. coli14 are used 

in certain situations. 

Recently, genetic engineering has moved beyond this traditional single gene cloning.  

For example, in metabolic engineering, biosynthetic pathways with up to tens of steps  

are often set up in heterologous organisms to obtain products of interest15-17;  in 

synthetic biology, complex genetic circuits are constructed to achieve desired 

functionalities18-19. Consequently, assemblies of multi genetic elements are now widely 

required. The conventional strategy to do this is repeating the multiple-step cloning 

which includes PCR amplification, restriction digestion, in vitro ligation and 

transformation.  As the whole process is carried out in a sequential manner, it is very 

time and labor consuming. And as the number of fragments and the length of the 

recombinant DNA increase, it can be impossible to find unique restriction sites. To 
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address these limitations, two new methods able to assemble multiple DNA fragments in 

one single cycle and sequence–independent were recently reported. Both of them were 

based on homologous recombination. Sequence and ligation-independent cloning (SLIC) 

used T4 DNA polymerase and RecA in vitro to mimic the RecA-mediated recombination 

system of Escherichia coli20. DNA assembler directly used the in vivo homologous 

recombination in Saccharomyces cerevisiae21. Besides Ordered Gene Assembly in 

B.subtilis (OGAB) using restriction endonuclease SfiI and T4 DNA Ligase can also 

assemble up to 6 fragments simultaneously by exploiting the highly effective DNA 

uptake and plasmid establishment in B.subtilis22. Those methods either were limited to 

specific hosts or need enzymes. And faulty recombinations were observed for both in 

vivo and in vitro recombination based methods when the numbers of fragments increased 

or repeat sequences existed.  

Here we report a much simpler strategy for DNA fragments assembly called lego 

DNA assembling. As shown in Fig. 1 successive substrate fragments (SFs, analogues to 

the bricks of a lego cycle) that designed to have long overlaps with each other were 

mixed, denatured and annealed. As those overlaps are very long and can cover about 1/3 

to 2/3 of each SF, there are good chances for inter-fragment hybridization. Then a circle 

plasmid can form and be ready for transformation.   

 As a proof of concept, we applied this method to construct plasmids from 4, 6, 8 SFs 

respectively, and assemble a 4-gene partial isoprene-biosynthesis pathway and a 

customized expression vector. We found that the unique mechanism of lego DNA 

assembling gave it an outstanding performance.  
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Results 

SFs preparation 

SFs were prepared by simple PCR, overlap extension PCR2, long tailed primer PCR, 

ligation or chemical synthesis in this article. It is also reasonable to think that fragments 

prepared by other means will also work as long as they obey to the sequence principle 

shown in Fig. 1. 

Annealing and construction 

The core step of our method, annealing, was carried out simply with a beaker. Briefly 

speaking, approximately equal quantity of SFs were mixed and sealed in a centrifuge tube 

and then submerged in a beaker of boiled water, left in room temperature till it cool down. 

Fig. 2 shows the annealing result of our 4-SF construction. The weakening of the 4 SFs 

bands and the appearance of new bands indicated that inter-fragment hybridization 

occurred during the annealing. Although the band of cycle molecules couldn’t be 

discerned, our following experiments showed that there were sufficient complete 

molecules for very fine transformation results. The annealed mixture was directly used 

for transforming Escherichia coli chemical competent cells. An aliquot of the mixture 

without annealing treatment was used as negative control. 

Construction of a 4-SF plasmid 

SF 2, 3, 4 were prepared by overlap extension PCR, while SF1 was amplified directly 

from pET28a. Three antibiotic (ampicillin, kanamycin, chloramphenicol) resistance 

genes and a replication region were coded by them in a pattern shown in Fig. 3a. After 

mixing and annealing, 5 microliters reaction was used to transform DH5а chemical 

competent cells by standard method.  Aliquots of the transformation reaction were 
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spread on LB plates containing the three antibiotics respectively. 100 resulting colonies 

randomly picked from each plate were screened by colony PCR. Then the positives were 

subjected to restriction mapping and antibiotic tests to see if they have correct structures 

and gene functions. On Cm and Amp plates about 51,000 and 73,000 colonies/ 

microgram SF DNA were obtained.  98 out of 100 passed the colony PCR screening. 

100% of the passed ones (10/10) exhibited the expected restriction map (supplementary 

Fig. 1a) and showed all three antibiotic resistances. On Kan plate, about 161,000 

colonies/ microgram SF DNA were got, 16% showed correct results in colony PCR 

screening, restriction mapping and antibiotic tests. In contrast, the negative control gave 0, 

0 and 265 colonies on Cm Amp and Kan plates respectively. The false positives from 

Kan plates were investigated by restriction mapping and identified to be pET 28a, the 

PCR template for SF1 (data not shown). Apparently some circular plasmids escaped 

linearization and DpnI digestion. But why they could cause so many background colonies 

is still unclear. High fidelity of lego DNA assembling was suggested since the PCR 

screening positives always showed all three antibiotic resistance activities.  

Construction of a 6-SF plasmid 

To show the scalability of this method, we constructed a 6-SF plasmid based on the 4-SF 

plasmid by replacing SF1 with SF 5, 6, 7. An ura3 selection marker and a 2μ replication 

origin for maintenance in Saccharomyces cerevisiae were thus added, making this 

plasmid a shuttle one (Fig. 3b). SF 5, 7 were prepared by overlap extension PCR; SF6 

was amplified directly from pDR19523. As the number of fragments increased, fewer 

colonies were yielded: 17,000, 16,000 and 26,000 colonies on Cm, Amp and Kan plates 

from 1 microgram SF DNA. 98%, 100% and 14% could be screened out by colony PCR. 
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All of the positives showed correct results in restriction mapping (supplementary Fig. 

1b), and antibiotic tests. 

Construction of an 8-SF plasmid  

To further demonstrate the capacity and flexibility of lego DNA assembling, we 

reconstructed the first plasmid from 8 SFs. 4 of the 8 overlaps were shortened to 50 nt. 

All 8 SFs were prepared by tailed primer PCR. Sequences of 25 nt were added to 5’ ends 

of primers to generate the 50-nt overlaps on one end of each SF (Fig. 3c). A mixture of 1 

microgram of each SF yielded 40, 144, and 96 colonies on Cm, Amp and Kan plates. 

80%, 72% and 50% of them were confirmed to be correctly constructed by PCR 

screening, restriction mapping (supplementary Fig. 1c) and antibiotic tests. 

During the cooling process of the fragments mixture, the longer overlaps should anneal 

first leaving the shorter 50-nt overlaps still free as single strands. As a result, four 

intermediates with 50-nt cohesive ends would form and be further combined into a cycle 

mediated by those cohesive ends as the mixture get cooler. In this way, it bears some 

resemblance to an existing cloning strategy which is based on the phenomenon: relatively 

longer cohesive ends (usually more than 12nt, compared with the 2- or 4-nt ends created 

in restriction-ligation cloning) can mediate more stable joint between insert fragment and 

vector, making the ligation treatment unnecessary24. Such strategy has many variations 

according to how the cohesive ends are created, e.g., using exonuclease (LIC-PCR4 and 

SLIC20), using mixed PCR (Enzyme-free cloning25 and SLIC 20), using terminator 

primers PCR26, or using incomplete PCR (SLIC)20. Compared with them, our method is 

simpler to practice and can join more fragments together. 

Construction of a 4-gene partial isoprene-biosynthesis pathway 
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By lego DNA assembling, we finished this construction within 2 days, including the time 

for SFs preparation. The vector backbone and genes encoding the last 4 enzymes of S. 

cerevisiae MVA pathway, ERG12 (coding for mevalonate kinase), ERG8 (coding for 

phosphomevalonate kinase), ERG19 (coding for mevalonate pyrophosphate 

decarboxylase) and idi (coding for isopentenyl pyrophosphate isomerase), were first 

constructed in 6 SFs by simple PCR or overlap extension PCR and then combined 

together by lego DNA assembling. Three RBS-containing sequences of about 45bp each 

were introduced by tailed primers during the PCR to separate and organize all 4 genes 

into a single operon (Fig. 3d). Out of 30 picked colonies, 16 were screened out as 

positive. All of them had the correct map (supplementary Fig. 1d). One was further 

sequenced for the operon area. No mutation was found in this 5.1 kb area. 

The resulting plasmid, pTRICLow, was cotransformed with pACY-Isp4 (coding for 

isoprene synthase, constructed previously in our lab by traditional cloning) into E. coli 

BL21 (DE3). The constructed strain was cultured in a McCartney bottle for isoprene 

biosynthesis from mevalonate (MVA). GC-MS headspace analysis was carried out to 

detect the isoprene production. Culture not treated with MVA or culture of strain 

containing empty plasmids was used as negative control. The isoprene peak was 

identified by both retention time and mass spectrometry. As shown in Fig. 4 the strain 

harboring the partial isoprene-biosynthesis pathway gave out a prominent isoprene peak 

when MVA was added. As E. coli can also produce low concentration of 

dimethylallylpyrophosphate, the substrate for isoprene synthase, by native DXP pathway, 

a much smaller peak was also observed for the culture without MVA treatment (Fig. 4, 

negative control 1). 
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We also demonstrated that BL21 (DE3) could be transformed by the annealed mixture 

directly and similar efficiency was observed to that of DH5α.  

Construction of a customized Bacillus subtilis expression vector 

A vector is typically consisted of one or two replication origins, selectable markers, and 

multiple cloning sites. Other genetic elements such as promoter, terminator, expression 

regulatory element, reporter gene, targeting sequence can also be included. Till now, 

people have discovered and developed lot kinds of elements for vector construction 

which can endow the vector with different functional traits, e.g., host range, copy number, 

maintenance stability, temperature sensitivity, screening method, induction method, 

expression intensity, and product location in the cell. There are almost numerous kinds of 

possible combination of those genetic elements. On the other hand, existing vectors are 

usually limited and can’t exactly meet all of our needs for a specific task. For example, in 

biosynthesis study, we may be satisfied with the stability and expression intensity of the 

commonly used commercial vectors but prefer a less costly induction method for scaling 

up our fermentation. So it is very desirable if we can pick every element we need and 

assemble them into a vector right before using. Similar to playing a lego game, we can 

get a great diversity of vectors from collections of genetic bricks by lego DNA 

assembling. The whole process can be finished in less than 2 days.  

To demonstrate this, we constructed a shuttle vector for E. coli and B. subtilis containing 

5 elements. A 3 kb long replication region from theta-replicating plasmid pBS72 

provided the vector with full structural stability in B. subtilis 27-28. A DNA segment from 

vector pNZ8901 containing chloramphenicol acetyltransferase gene and spaS promoter 

provided a selectable marker and the subtilin induction property29. Amp resistance gene 
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and replication origin of pBR322 made the vector can be maintained and selected in E. 

coli (Fig. 3e). Four SFs were first prepared by chemical synthesis (3SF3 and 3SF4) and 

overlap extension PCR (3SF1 and 3SF2), and then mixed and annealed.  

E. coli chemically competent cells were transformed with the annealed reaction and 

plated on Amp plates. 10 colonies were picked. All of them passed the colony PCR 

screen and showed correct restriction map (supplementary Fig. 1e). One was further 

sequenced. No mutation was found. 

Discussion 

Lego DNA assembling got its name for two reasons. First, its mechanism is similar to 

assembling a lego cycle. Second, it owns great modularity like the lego game does, 

namely, we can rapidly assemble a customized structure by choosing desired component 

parts from collections. It is easy to use, doesn’t require special equipment or any enzyme. 

And it constructs DNA in vitro, so is not limited to particular host like the in vivo 

methods. 

Lego DNA assembling depends on the recognition between long DNA sequences. The 

whole sequence of the final molecule takes part in it. In all previous methods, no matter 

homologous recombination methods or sticky ends methods, only short sequences 

(usually no longer than 50 bp) take part in the recognition between two adjacent 

fragments. Firstly, this difference makes lego DNA assembling more robust. SFs don’t 

need to be purified or modified by any enzyme; simple chemical transformation is 

enough for getting sufficient colonies. Secondly and more importantly, unlike previous 

methods, lego DNA assembling is not affected by repeat sequences that might exist in the 

final structure. For example, SLIC is not suitable for constructing the plasmid pTRICLow. 
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Because in SLIC, the three RBS-containing sequences between the four genes would 

appear at the ends of the insert fragments, right in the areas that supposed to mediated the 

recombination. Another example is the plasmid pOKC2μUA. Constructing it by DNA 

Assembler in S. cerevisiae is questionable. Repeat sequences of 81bp, 65bp, and 55bp 

were found in this plasmid. They are even larger than the homologous areas for the 

planned recombinations, and thus may cause unwanted recombinations inside the 

structure such as deletion21.  

As in all our 5 constructions we succeeded in the first attempts, not much effort was 

made to optimize our protocol. It is likely with further improvement one could construct 

larger structure from more fragments. For example electroporation can be adopted to 

achieve higher transformation efficiency; protoplast and cosmid packaging can be used to 

facilitate larger DNA molecules taking up. 

As demonstrated in this article, SFs can be prepared by many ways. Among them, 

chemical synthesis is the most promising one. The sequence information is much easier 

to get than the physical molecule. And the cost of long DNA synthesis is dropping 

rapidly30. In the near future, a combination of DNA synthesis and lego DNA assembling 

may make the DNA manipulation an extremely easy task, giving people more freedom 

and time for DNA designing. 

Experimental Protocol 

Bacterical strains 

We used E. coli DH5α for all our lego DNA assemblings. BL21 (DE3) was used for gene 

expression. 
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Media, chemicals and enzymes. 

We used Luria-Bertani broth for culturing all our strains including E. coli and B. subtilis. 

Agar (1.5%) was added to make solid medium. We used antibiotics as follows: ampicillin 

(50 µg ml-1), kanamycin (50 µg ml-1), chloramphenicol (30 µg ml-1 for E. coli and 20 µg 

ml-1 for B. subtilis). IPTG (0.5 mM) was added to induce the expression of the 

T7-promoted genes.  

Pyrobest™ DNA polymerase from TAKARA was used for SFs preparation.  EastTaq™ 

DNA polymerase from Transgen was used for colony PCR screening. 

Mevalonate was prepared by the method of Campos31 from mevanolactone (Sigma)  

SFs preparation 

Regular PCR was carried out according to standard protocols. Overlap extension PCR 

was performed by the method of Shevchuk32, except that Pyrobest™ DNA polymerase 

was used. All plasmid templates were linearized before using by appropriate restriction 

enzymes. PCR products were treated with DpnI at 37oC for 1 h to further digest the 

templates. Primers and templates for PCR and primer sequences are given in 

Supplementary table 1 and 2. 

If relatively short overlaps were involved, like in the case of our 8-SF construction, PCR 

products were purified by E.Z.N.A.TM Cycle-Pure kit (OMEGA) to exclude residual 

primer oligonucleotides which’s lengths were comparable to that of the overlaps. In other 

cases, purification was omitted. 

Lego DNA assembling 

Prepared SFs were checked by agarose gel electrophoresis. Roughly equal molar amounts 

of SFs were mixed in a 1.5 ml polyethylene tube and sealed with Parafilm for water-proof. 
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The tube was then submerged in a beaker of boiled water, left in room temperature till it 

cool down. Putting the beaker in a 4oC freezer can accelerate the cooling process without 

affecting the efficiency of assembling. 

The reaction was transformed into chemically competent cells with standard heat shock 

method. 

Restriction mapping  

Plasmids were isolated from overnight cultures using E.Z.N.A. ™ Plasmid Mini Kit from 

OMEGA, and then subjected to restriction digestion. The reaction mixtures were loaded 

to 1% agarose gels to check the correct restriction digestion pattern by DNA 

electrophoresis. Restriction endonucleases used and their expected results are given in 

Supplementary table 3. 

Functional analysis of the 4-gene partial isoprene-biosynthesis pathway 

Colonies were picked into 15 ml LB liquid medium containing Amp and Cm, grown 

overnight. 0.5 ml fresh overnight cultures were diluted 100-fold and incubated at 37 °C to 

an OD 600 between 0.6 and 0.8, then treated with 0.5 mM IPTG for 2 hours at 30 °C to 

express the genes. The cultures together with 6 mM MVA were transferred into sterile 

McCartney bottles and incubated for another 12h at 30 °C. The rubber seals of the 

McCartney bottles were smeared with silicone grease so that they would not contact with 

and absorb the isoprene generated inside the bottle33. Both the aerobic and anaerobic 

incubation were done at 180 rpm on an orbital shaker.  

For sampling the headspace, an 85 μm polyacrylate fiber was inserted into the McCartney 

bottle with the help of a manual holder system (Supelco Inc, USA), allowed to equilibrate 
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with the headspace volatiles for 30 min at 50oC and then placed into the GC injector 

immediately.  

GC-MS analyses were performed with an Agilent 5975C GC-MS System equipped with 

a DB-5ms column (50 m length, 0.25 mm ID, 0.25 mm film thickness, Agilent, Palo Alto, 

CA, USA). Experimental chromatographic conditions were as follows: injector set at 

250oC; Helium carrier gas at 1ml/min; oven temperature program: 1 min isotherm at 

40oC followed by a linear temperature increase of 5oC min−1 up to 80oC and then 25oC 

min−1 to 300oC held for 5min.  MS scan conditions: source temperature 230oC, interface 

temperature 300oC, E energy 70 eV, mass scan range 2–150 amu. 

The isoprene peak was identified by both retention time and mass spectrometry. 
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Figure Legends 

Figure 1 scheme of lego DNA assembling (take an 8-SF assembling for example). 

Mixture of SFs is denatured at 100oC to free all single strands. Every SF is designed to 

have its 3’-half sequence overlapped with the 5’-half sequence of the next SF. And the 

5’-half sequence of the first SF overlaps with the 3’-half sequence of the last SF. As a 

result, when the mixture cools down to room temperature, annealing between those 

sequences can assemble the single strands one after another into a cycle.    

Figure 2 For constructing plasmid pOKCA, SF 1-4 were mixed (resulting M), annealed 

(resulting M&A) before transformation. Those six were added to agarose gel in a volume 

ratio of 1:1:1:1:4:4 then separated and visualized by ethidium bromide staining. From the 

comparison between M and M&A, we can find that, the bands corresponding to SF 1-4 

weakened while at least two new visible bands emerged after the annealing treatment.   

Figure 3 concentric circle schemes of the plasmids constructed in this article. The outer 

cycle shows the main genetic elements and the restriction map sites of each plasmid; the 

two inner cycles show the SFs used and the sequence ranges they covered.  

Figure 4 GC-MS analysis of isoprene biosynthesis from MVA. Negative control 1: 

culture of strain containing empty plasmids, treated with MVA. Negative control 2: 

culture of strain containing pTRICLow and pACY- Isp4, not treated with MVA. (Mass 

spectrometric indentification of isoprene peak was shown in supplementary Fig. 2) 
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