
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

Energy-Aware Participant Selection for
Smartphone-Enabled Mobile Crowd Sensing

Chi Harold Liu, Member, IEEE, Bo Zhang, Xin Su, Member, IEEE, Jian Ma,
Wendong Wang, Member, IEEE, and Kin K. Leung, Fellow, IEEE

Abstract—Mobile crowd sensing systems have been widely used
in various domains but are currently facing new challenges. On
one hand, the increasingly complex services need a large number
of participants to satisfy their demand for sensory data with multi-
dimensional high quality-of-information (QoI) requirements. On
the other hand, the willingness of their participation is not always
at a high level due to the energy consumption and its impacts on
their regular activities. In this paper, we introduce a new metric,
called “QoI satisfaction ratio,” to quantify how much collected
sensory data can satisfy a multidimensional task’s QoI require-
ments in terms of data granularity and quantity. Furthermore,
we propose a participant sampling behavior model to quantify
the relationship between the initial energy and the participation
of participants. Finally, we present a QoI-aware energy-efficient
participant selection approach to provide a suboptimal solution to
the defined optimization problem. Finally, we have compared our
proposed scheme with existing methods via extensive simulations
based on the real movement traces of ordinary citizens in Beijing.
Extensive simulation results well justify the effectiveness and ro-
bustness of our approach.

Index Terms—Energy efficiency, mobile crowd sensing (MCS),
participant selection, sampling behavior.

I. INTRODUCTION

W ITH the development of mobile Internet, mobile crowd
sensing (MCS) has become popular in recent years [1].

The key idea of MCS is to recruit ordinary citizens to collect
and share sensory data from their surrounding environment by
using their energy-constrained smart devices [2], such as iPad,
smartphone, and Google Glass. Different from other sensing
systems (i.e., participatory sensing), mobile social networks
and mobile sensing are widely used in MCS.

Our research in this paper is motivated by an application
scenario as shown in Fig. 1, where a group of mobile users
subscribes to a central server, who receives sensing tasks
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Fig. 1. Considered MCS scenario to monitor the fire and extreme temperatures
in a city. A subset of all candidate participants is selected from all users with
different remaining energy levels and initial locations.

from either local or remote, online task publishers. A task is
associated with multidimensional quality-of-information (QoI)
requirements, including, but not limited to, the sensing region,
time period, data granularity quantity, and the affordable incen-
tive budget. Without loss of generality, we assume that a sensing
region is a 2-D area and is divided into multiple virtual subar-
eas of the same size based on the spatiotemporal granularity
requirement of a task. A task lasts for a certain period of time,
which is also divided into discrete time slots accordingly. In
each time slot on each area, a certain number of measurements
(i.e., sensory data samples) are requested by tasks. On the
participant’s side, they move around in the sensing region, and
when they receive a task and its associated QoI requirements,
they contact the central server to report their current GPS loca-
tion, required amount of incentives, remaining energy level of
their device, and their sensing capabilities on the carried smart
device. In our considered scenario, the sensing capability of a
participant is measured by how many data samples he/she can
collect in a time unit, determined by both the sampling interval
and the type/amount of sensors equipped on his/her devices.
To minimize the total energy consumption of all participants,
we assume that they can take samples with different sampling
intervals; for example, the participant carrying a low energy
level device can reduce his/her sampling interval to save power.

When a particular participant is selected by the central
server as a data collector, his/her smart device measures the
requested environmental parameters periodically and uploads
the collected data to the server. This data collection phase stops
either when all QoI requirements are fully satisfied, or no more
participants can provide better sensory data, or when the given
task budget runs out.

The participant selection scheme is critical to the efficient
operation of the aforementioned MCS systems, since the high
density of smart device users in urban areas makes it possible
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to select only a subset of all available participants; however,
different participant selection schemes may lead to different
system performances. According to [3], the accuracy of sensing
results is highly related to the number of collected samples, and
thus, the server tends to recruit as many participants as possible
to improve the QoI. On the other hand, collecting data from
colocated users may result in redundant data that cannot help
further improve QoI but may result in high usage of energy,
network bandwidth, and storage space. Furthermore, tasks often
have time-varying QoI requirements, e.g., sensing region and
data quality vary from time to time. Then, the system cannot
persistently recruit the same group participants covering the
entire region. Toward this end, in this paper, we propose a novel
MCS model, such that the system could meet the QoI require-
ments of tasks while all the participants feel no antipathy toward
the sensing tasks caused by possible energy consumption.

Although several participant selection strategies have been
proposed, they either assumed the participants’ trajectories are
known a priori and its fitness to the task’s sensing region
[4]–[13] or aimed to improve the energy efficiency by using
collaborative sensing, or replacing high energy-cost sensors
with low energy-cost sensors in specific application scenarios
[14]–[17]. Different from all these, our goal is to select a crowd
of participants to provide high-QoI satisfaction for multiple
sensing tasks simultaneously, while minimizing the overall
energy consumption. The contribution of this paper is fourfold.

1) We introduce a novel concept of “QoI satisfaction
ratio” to quantify the degree of how collected sensory
data can satisfy multidimensional QoI requirements of
tasks in terms of data granularity and quantity.

2) We propose a novel participant sampling behavior
model, to quantify and explicitly build up the rela-
tionship between their remaining energy level and the
willingness for participation, given that helping out a
sensing task may impact their ordinary device usage.
Based on this, we calculate the rejection probability
that represents the chance of a participant to reject
the sensing task if the recommended number of data
samples from the server cloud exceeds his/her sensing
capabilities.

3) We formulate a constrained optimization problem to
select participants in an energy-efficient and QoI-aware
manner. Then, we propose a suboptimal solution to
solve this problem.

4) The effectiveness and flexibility of the proposed strat-
egy have been extensively evaluated by real trace-
driven simulations.

The rest of this paper is organized as follows. Section II re-
views the related research activities. Section III establishes for-
mal models of our systems. Section IV describes the proposed
QoI satisfaction ratio and builds up its connection with en-
ergy consumption and willingness for participation. Section V
introduces the definition of our considered optimization prob-
lem and provides a suboptimal solution. Section VI extensively
evaluates the performance of the proposed strategy by real
trace-driven simulations, and finally, Section VII concludes
this paper.

II. RELATED WORK

The concept of participatory sensing was first proposed in
[18] and then followed by many proposals. For example, the
Common Sense project [19] develops a participatory sensing
system that allows individuals to measure their personal ex-
posure to air pollution, and Rana et al. in [20] presented a
system that collects and shares the noise pollution information.
Kanjo in [21] first studied the platforms for multiple sensing
tasks and proposed a procedural programming language for col-
lecting multiple types of sensor data from a large number of mo-
bile phones. MEDUSA [22] synthesizes participatory sensing
and crowdsourcing and puts forward a runtime system for mul-
tiple sensing tasks with the following stages: task submission,
worker selection, and monetary incentive management. In [4],
Reddy et al. developed a selection framework to enable organiz-
ers to identify well-suited participants for data collection, based
on both geographic and temporal availability as well as partic-
ipation habits. In [5], Tuncay et al. exploited the stability of
user behaviors and proposed to select participants based on the
fitness of mobility history profiles. Similarly, Weinschrott et al.
in [6] and Zhong and Cassandras in [7] discussed the task
assignment problem for opportunistic in situ sensing, and the
research in [9] focuses on initiating sampling around specific
location “bubbles” (i.e., regions). Gaonkar et al. in [10] pro-
posed a coverage maximization algorithm that records par-
ticipants’ tracks and selects participants whose availability
matches the campaign coverage constraints. These schemes
highly rely on the knowledge of participant trajectories and,
thus, may lead to the increased risk of mobile users’ privacy
leakage. Riahi et al. in [11] and Duan in [12] further took into
account the incentive request of participants, and they aimed
mainly at how to optimize data acquisition quality by allocating
limited amount of incentive.

Many researchers have studied the issue of trajectory pre-
diction as the location-acquisition technologies (GPS, GSM
networks, etc.) are getting mature. The conclusion that a human
behaves a certain degree of temporal and spatial regularity
following simple and reproducible patterns proposed in [23]
and [24] shows a considerable predictable degree of human be-
havior. Moreover, it makes those trajectory prediction methods
reasonable and feasible. Zhang et al. in [25] investigated the
large-scale user mobility traces that are collected by a telecom
operator. Gambs et al. in [26] proposed a mobility model
called mobility Markov chain (MMC), which incorporates the
n previous visited locations. In [27] and [28], Ruan et al. and
Wu et al., respectively, used the Markov model to predict
moving trajectories of participants.

Zhang et al. in [29] attempted to fill the gap by dividing
the life cycle of the MCS process into four stages and using
“4W1H” (i.e., what/when/where/who/how) to characterize the
major research issues in each of the four stages of the MCS life
cycle as well as across the whole MCS process. Zhang et al.
in [30] designed a novel community-centric framework for
community activity prediction based on big data analysis and
proposed an approach to extract community activity patterns by
analyzing the big data collected from both the physical world
and virtual social space. Cardone et al. in [31] initialized a
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project, called “ParticipAct Living Lab testbed,” as an ongoing
experiment at the University of Bologna involving 300 students
for one year in crowd sensing campaigns that can passively
access smartphone sensors and also require active user collab-
oration. Pankratius et al. in [32] discussed an application of
crowdsourcing in space weather monitoring, called “the Mahali
project.” Mahali used GPS signals that penetrate the ionosphere
for science rather than positioning. A large number of ground-
based sensors will be able to feed data through mobile de-
vices into a cloud-based processing environment, enabling a
tomographic analysis of the global ionosphere at unprecedented
resolution and coverage.

Participant selection in multitask systems is quite different
than that in single-task systems. In [12], assuming that in-
centive requests of participants and the utility of sensory data
on all locations are known, Duan proposed to select a subset
of participants with maximum sensory data utility deducting
incentive requirements. In [11], Riahi et al. further improved
[12] by studying how to calculate sensory data utility on a
certain location. Both research works concentrate on selecting
participants to maximize the difference between value and price
of sensory data.

Finally, energy efficiency has recently been investigated for
MCS. Baier et al. in [15] and Nath in [16] improved device
battery lifetimes by inferring sensor readings by sensors with
lower energy consumption or temporal continuous readings,
since the values of various context attributes can be highly
correlated. Sheng et al. in [17] proposed several minimum
energy sensing scheduling algorithms. Different from all these,
our proposed participant selection scheme in this paper can
efficiently and dynamically select a desirable set of participants
to meet the required QoI levels with a limited task budget while
fully considering the impact of energy consumption on their
willingness for participation.

III. SYSTEM MODEL

This section presents a formal model for our system. We
consider a multitask-oriented MCS system in a 2-D region L,
as shown in Fig. 1. The system is composed of a set of task
publishers, a central server, a set of M smart device carriers
M � {m = 1, 2, . . . ,M}, and all of them are associated with
a set of sensing tasks Q � {q = 1, 2, . . . , Q}.

When a sensing task q and its budget cq is received, the
central server gathers the whole budget from all tasks, which is
denoted by C, then the central server selects a set of participants
as the sensory data contributors from candidate participants,
who are moving in the region L. The region L is divided into a
set of l subregions, denoted by L � {l = 1, 2, . . . , L}. The re-
gion inside the boundary of each task q is denoted by Lq, ∀ q ∈
Q,Lq ⊆ L. The sensing task will last for t time slots, denoted
by T = {t = 1, 2, 3, . . . , T}. Then, the participants need to up-
load the sensory readings from their devices and finally received
their incentive as a reward for their participation. In each time
slot and in each subregion, a minimum of rqlt samplings are
required to obtain accurate sensing results. Without loss of
generality, we also assume that sensing tasks are independent of
each other, both temporarily and spatially, as shown in Fig. 2.

Fig. 2. Time distribution of different sensing tasks.

During T , when a participant m is selected as a data con-
tributor, his/her device then samples the required environmental
parameters, such as fire and temperature, periodically by the
equipped sensor(s). Then, sqm, ∀m ∈ M, ∀ q ∈ Q is used to
denote the sensing capability of participant m to task q, where

sqm =

{
0, if m cannot collect data for q

1, otherwise.
(1)

In MCS, data samples (i.e., sensor readings), such as temper-
ature, humidity, noise levels, etc., could be taken within a few
milliseconds, which is much less than the duration of a time
slot, so that we can safely assume that the effect of sampling
time could be ignored. We also assume that each candidate
participant’s smart device has an initial remaining energy when
entering the sensing region, denoted by em, ∀m ∈ M.

Since the trajectories of participants are unknown as a priori
when they enter the sensing region, the system needs to estimate
the potential data contributions from these participants during
their future movement, so that their potential data contributions
can be computed to aid the participant selection decision.
We assume that only the initial locations of each participant
m ∈ M is known when entering the sensory region, denoted
by Em(0), which can be inferred from their uploaded GPS
records; however, their future trajectories are not known but
can be estimated. The general procedure of trajectory prediction
consists of two stages:

1) Step 1. Training the prediction model based on historical
trajectory data.

2) Step 2. Taking the trained model and the current move-
ments of individuals needed to be predicted as input to
predict the future movements.

Here, we use a kth-order Markov chain as the trajectory
prediction model, which is introduced in [33]. Let P (n) denote
the n-step transition probability matrix for a particular partici-
pant and pl1l2 denote the probability of that participant moving
from area li to lj , ∀ i, j ∈ L. Then, given his/her historical
trajectory information, we are able to calculate the probability
of a participant moves from li to lj , denoted by Nij , and pl1l2
can be calculated as follows:

pl1l2 =
Nij∑n
j=1 Nij

(2)

and the one-step transition probability matrix can be denoted by

P =

⎡
⎢⎢⎣
p11 p12 · · · p1L
p21 p22
· · · · · ·
pL1 pLL

⎤
⎥⎥⎦ . (3)
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TABLE I
LIST OF IMPORTANT NOTATIONS AND THEIR DESCRIPTIONS

Then, we can calculate the n-step transition probability
matrix, dented as P (n) = Pn. In our model, we use the last
k positions and P (k) to estimate the future locations of a
participant, which is described as the prediction step in the
following sections. Since the most recent position could have
a higher impact than previous positions when estimating their
future trajectory, we simply weight the historical data as

x(i+ 1) =

i∑
j=i−k

ajx(i− j + 1)P j (4)

where x(i+ 1) denotes the probability matrix of the next po-
sition, ak denotes the weight, and we set a1 > a2 > · · · > ak.
Next, we can calculate the probabilities of a participant moving
from the current position to all other positions in the discretized
sensing region, and we simply use the position with highest
probability as the predicted point that he/she will most likely
visit in the next time slot. Iteratively, the entire future trajectory
can be calculated for all participants in the sensing region.

Table I shows the list of important notations used in this paper.

IV. ENERGY-AWARE QoI MODEL

Here, we first introduce a novel concept of “QoI satisfaction
ratio” as an index to measure to what degree the QoI require-
ments of a task is satisfied. Then, we propose a novel scheme
to map the remaining energy level to recommended sampling
behavior and study the potential task rejection probability due
to limited device resource.

A. QoI Satisfaction Ratio

As its name implies, the QoI satisfaction ratio is used to
describe the level of QoI satisfaction that the collected sensory
data can provide to the QoI requirements of a task. When
a sensing task is published, there should be some limit for
the required sensory data. Generally, the limit consists of two
parts: the total number and the distribution requirement of the

sensory data. Thus, when we formulate the QoI satisfaction
ratio, we should consider these two aspects. On one hand,
based on MCS, the total number of the sensory data could
be satisfied by the large number of participants. On the other
hand, with the division of the sensing region, if we can collect
“enough” sensory data in each subregion, we can consider that
the distribution requirement is satisfied.

In our considered scenario, a subset X (of size |X |) of all
participants is selected for task q, and let oqlt(X ) denote the
number of data samples collected by a group of participant X
for task q on a certain area l, at time slot t. The initial value of
each oqlt(X ) is set to zero. When a new data sample on area
l at time slot t is collected, if the amount of collected data
oqlt(X ) is less than the amount of required data rqlt, then oqlt(X )
is increased by 1; otherwise, if the amount of collected data
oqlt(X ) has reached the required amount of data, then rqlt, o

q
lt(X )

do not change.
Therefore, we use two matrices, Rq and O(X )q , to denote

the QoI requirements of task q, and the number of data sample
collected by X , respectively, as

Rq =

⎡
⎢⎢⎣
rq11 rq12 · · · rq1T
rq21 rq22
· · · · · ·
rqL1 rqLT

⎤
⎥⎥⎦ (5)

Oq(X ) =

⎡
⎢⎢⎣
oq11(X ) oq12(X ) · · · oq1T (X )
oq21(X ) oq22(X )
· · · · · ·

oqL1(X ) oqLT (X )

⎤
⎥⎥⎦ (6)

where ∀ l ∈ L, t ∈ T , we have

oqlt(X ) = oqlt

( ∑
∀m∈X

m

)
. (7)

To meet a task’s multidimensional QoI requirements, an
index, as the proposed QoI satisfaction ratio in this paper, is
used to explicitly quantify the degree of QoI satisfactions for
task q in area l and time slot t, as

uq
lt = min

(
1,

oqlt
rqlt

)
∈ [0, 1], ∀ q ∈ Q. (8)

Then, we use uq(X ) to represent the total achieved level of QoI
satisfactions for task q by a group of participants X as

uq(X ) =

∑
∀ l∈Lq,∀ t∈Tq u

q
lt

Lq · Tq
, ∀ q ∈ Q,X ⊆ M (9)

and we call uq(X ) as the “QoI satisfaction ratio” of task q;
it ranges from 0 to 1. While lower bound 0 indicates that
no data have been collected for task q, upper bound value 1
means that all QoI requirements at each area and within each
time slot are fully satisfied. If the collected data Oq(X ) do not
meet the QoI requirement matrix Rq , this QoI satisfaction ratio
may further increase when more data are collected. Then, task
publishers can request a certain level of QoI satisfaction ratio,
when publishing sensing asks, denoted by gq, ∀ q ∈ Q, and the
default value is 1 (fully satisfied).
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Fig. 3. Fitting result of α, β by using the data obtained from an online
questionnaire.

B. Energy-Aware Recommended Sampling Behavior

We consider the impact of data collection on the participants’
regular activities, i.e., the energy consumption and the distur-
bance by frequent samplings. Here, the goal is to study the
relationship between initial energy and recommended sampling
behavior and ultimately calculate the task rejection probability
by participants due to their limited device energy.

We denote the recommended number of data samples for
a participant as bm, ∀m ∈ M, ∀ q ∈ Q, based on his/her re-
maining energy level and initial location. A lower bm value
indicates that if the smart device’s energy of the participant is
in a low level, the central server will suggest him/her to collect
less sensory data, so that the participant may be more likely to
accept the sensing task. On the contrary, if the smart device’s
energy of the participant is in a high level, the central server
will recommend a higher bm. Thus, if every participant can
receive an appropriate recommended number of data samples,
he/she would be more likely to accept the sensing task, and the
central server also can obtain satisfactory sensory data. Thus,
bm should be set to a higher value when the initial energy em is
in a higher level. Then, the relationship between the appropriate
bm and the initial energy em of participant m can be established
by a generic formulation bm = y(em), where y : R → R.

To obtain the mapping function y(·), we conduct an online
questionnaire. We specified a few questions including: “What
is the maximum suitable number of data samples that you are
willing to contribute, to the environmental sensory data gather-
ing, when your remaining energy is (10%, 20%, . . . , 100%).”
Then, volunteers tick the choices (0, 10, 20, . . . , 100) data
samples of their wish. Because the central server could not
get the property of each participant in the sensing task, to reflect
the participants’ property of randomization, we do not limit
the scope of the volunteers. However, we limit that the online
questionnaire can be answered once for each IP, so that we will
not receive too much repetitive survey results. As a result, 130
questionnaires are returned. The amount of volunteers is not
many; thus, some online tools such as Amazon’s Mechanical
Turk can be used for more survey results. As shown in Fig. 3,
we use the mean square error to demonstrate the upper and
lower bounds of the collected statistics, and also the averaged
value. By observing the curve connected by average values of

Fig. 4. Fitting result of jm, bm, em by using the data obtained from the online
questionnaire.

the statistics at points (10%, 20%, . . . , 100%), we found that
we can use the following formulation for y as

bm � α(em)β , ∀m ∈ M. (10)

By fitting parameters α, β, we obtain that α = 8.179, β =
0.4633, and the fitting coefficient is 0.9951. We use them for the
following derivation and experiments. Nevertheless, it is worth
noting that for different MCS scenarios, different α, β values
can be chosen by conducting similar empirical studies.

The average values of the statistics seem to be a solution
for the appropriate recommended number of data samples.
However, based on the curve connected by average values of
the statistics at points (10%, 20%, . . . , 100%), we observe that
if the central server requires the same recommended number
of data samples for the participants with the same remaining
energy level of their devices, some participants may reject the
sensing task due to their devices’ limited remaining energy
level; however, they may appear at some less-visited locations
of the sensing region, where other participants seldom visit.
Therefore, allowing these participants to join the sensing tasks
(rather than immediate rejection) is sometimes essential to
improve the overall data quality. On the other hand, when too
many participants appear in the same subregions, the central
server could improve the value of bm, so that the participants
who accept the sensing task will upload more sensory data
without any more incentive. In this case, the central server can
save costs but will also face the risk of user rejection at the
same time. To this end, we denote this “rejection probability”
of a participant as jm, ∀m ∈ M, as a function of the remaining
energy level of the participants’ devices and the recommended
number of data samples. Given the online questionnaire data,
we are able to plot this mapping function jm = f(bm, em),
where f : R2 → R, as shown in Fig. 4. The relationship be-
tween jm, bm, and em can be established by jm = f(bm, em),
where f : R2 → R, and we found that we can use a cubic
function to approximate it. By fitting parameters, we obtain a
fitting coefficient of 0.9837. The curved surface denotes the
value of rejection probability when the recommended number
of data samples and the remaining energy level are certain.
Each black point is an actual value calculated by the number of
volunteers who choose a lower value than bm when em is given
and the total number of all volunteers. It is worth noting that the
value of jm will increase with increasing bm or decreasing em.
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V. QoI-AWARE AND ENERGY-EFFICIENT

PARTICIPANT SELECTION

Here, we first formally define our considered constrained op-
timization problem and then analyze this problem and propose
our suboptimal solution with low computational complexity.

A. Optimization Problem Definition

Our objective is to find an optimal crowd of participants to
collect sufficient amount of sensory data with required data
quality. Let X∗ denote this optimal set of selected participants,
and we formulate the following optimization problem:

Maximize: uq(X ) =

∑
∀ l∈Lq,t∈Tq u

q
lt

LqTq
, ∀ q ∈ Q

subject to:
∑

∀m∈X
dm ≤ C, X ⊆ M (11)

where uq(X ) denotes the averaged achieved QoI satisfaction
ratio on all areas of task’s lifetime, dm denotes the amount
of requested incentives by participant m, and C denotes the
incentive budget given by all tasks. Therefore, the goal of
the above optimization problem is to maximize the achieved
QoI satisfaction ratio of all tasks simultaneously, under the
constraints of the limited incentive budget.

B. Proposed Suboptimal Solution

The objective function of (11) is similar to the knapsack
problem (KP), where it maximizes a multiple-objective func-
tion subjected to one binary and linear capacity constraint. For
a generic KP, there are a set of items, each with a weight,
to determine the number of each item as to be included in
a collection, so that the total weight is less than or equal to
each given limit, and the total value is as large as possible. The
general statement is

Maximize: f(x) subject to: m(x) � p, x ∈ S. (12)

Since KP is NP-complete, to obtain the optimal solution of
(11), the number of iterations should be

∑M
m=1 C

m
M , so its

complexity is O(2M ), and thus, we are seeking an efficient
suboptimal solution.

To solve a KP, the greedy algorithm is suitable; however, the
standard way will not fit our scenario of multitask systems. To
accelerate convergence, we propose a hybrid iterative greedy
algorithm by weighting the tasks from different scales. Here,
the weight for task q, denoted by ωq , can be calculated as

ωq =
1− uq∑

∀ q∈Q (1− uq)
(13)

so that the QoI of all the tasks could be satisfied at the same
time frame.

The steps of the proposed solution is as follows. First, we
calculate the total contributions of each participant by summing
up their weighted contributions of each task and then find the
participant who is associated with the highest value. Second,

Fig. 5. Attained QoI satisfaction ratio over time.

we select participants one by one until the QoI requirements
of all tasks are fully satisfied, or the task budget runs out.
In such an iterative way, the proposed algorithm selects the
most “efficient” participants. Here, we define the efficiency of
a participant m in each round of iteration as

ϑ(m,X ′) =
1− jm
dm

·
∑
∀ q∈Q

ωq (uq(X ′ +m)− uq(X ′)) (14)

where X ′ denotes the set of participants that were selected in
the previous round, and ϑ(m,X ′) denotes the efficiency of a
participant m in the current round. jm is the rejection prob-
ability obtained in Section IV-B that discounts the calculated
efficiency due to possible task rejections.

When the central sever requires the amount of collected
sensory data bm for participant m, where bm is calculated
based on (10), the central server will obtain the efficiency
ϑ(m,X ′) of a participant m in the current round. However, if
the central server requires a different value of bm, the value of
ϑ(m,X ′) should be changed. Obviously, with the growth of the
recommended number of data samples, the amount of possible
sensory data and the rejection probability of a participant will
also increase; thus, there should be a highest value of ϑ(m,X ′).
Hence, we can calculate the maximum efficiency ϑ′(m,X ′) of
participant m in the current round as follows:

ϑ′(m,X ′) = max (ϑ(m,X ′)) , ∀ bm > 0. (15)

Then, we use the number as the recommended number of
data samples when we obtain ϑ′(m,X ′).

Proposition 1: According to the definition of submodular
functions [34], with more iteration steps, the attained QoI
satisfaction ratio of a participant m will become attenuated, as:
∀X1,X1 ⊂ M, ∀m ∈ M, given X1 ⊂ X2,m /∈ X1,m /∈ X2,
we have ϑ(m,X ′

2) ≤ ϑ(m,X ′
1).

Proposition 1 suggests that if we consider the participant se-
lection scheme as a step-by-step procedure where they are iter-
atively selected, the achieved QoI satisfaction ratio is increased
by recruiting a candidate m into a smaller group X1 than into
a bigger group X2, if |X1| < |X2|. It therefore implies that the
achieved QoI gain decreases by recruiting more participants,
which will be verified by our observation in the experiment, as
shown in Fig. 5.

Our proposed dynamic participant selection scheme runs at
the beginning of each time period to select participants by a few
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rounds of iterations. The pseudocode is given in Algorithm 1,
and a detailed description is as follows.

Algorithm 1 Proposed solution for (11)

Require:
A set of sensing tasks Q;
total task budget C; task budget left Cleft;
area and time division Lq, T q;
required QoI satisfaction ratio gq;
task QoI requirements Rq;
A set of participants M;
incentive requirement of each participant cm;
sensing capability of each participant sqm;
initial locations of participants Em(0), ∀m ∈ M;
interval between samples Δt;
transition matrix obtained from historic traces P .

Ensure: Selected participants as set X∗;
1: set of selected participants A = NULL
2: set of unselected participants B = M
3: sort the unselected participants B
4: while 1 do
5: flag ← 0
6: qoiflag ← 0
7: selected_id ← 0
8: max_efficiency ← 0
9: for mobile user m ∈ B do
10: compute m’s max efficiency ϑ′(m,A) in (15)
11: if ϑ′(m,A) > max_efficiency then
12: selected_id ← m
13: max_efficiency ← ϑ(m)
14: flag ← 1
15: end if
16: end for
17: if flag = 0 or selected_id = 0 or cm ≥ Cleft

then
18: break
19: end if
20: A ← A+ selected_id
21: B ← B − selected_id
22: for task q ∈ Q do
23: if uq(X ) < gq then
24: qoiflag ← 1
25: end if
26: end for
27: if qoiflag = 0 then
28: break
29: end if
30: end while
31: Return: final selected participant set X∗ = B.

1) Step 1—Initialization. At the beginning of the sensing
time period, the participant selection strategy is initial-
ized. All available participants are divided into two sets:
the selected set A and the unselected set B. In this step,
all participants are put in B, and A is set to ∅.

Fig. 6. Real movement traces with 612 user trajectories in Beijing.

2) Step 2—Select one participant at a time from B to A.
For each participant m in B, his/her maximum efficiency
is calculated by (14), and the most efficient participant is
selected in each round and is moved from B to A.

3) Step 3—Loop. Keep selecting participants as Step 2,
until the given budget for this sensing time period can
afford no more participants, or the QoI requirements of
all tasks are fully satisfied.

VI. PERFORMANCE EVALUATION

Here, we first describe our experiment setup including the
used data set, and then, we present results and discussions.

A. Experiment Setup

We evaluate the proposed scheme by using the real move-
ment traces of ordinary citizens from Microsoft Research Asia
GeoLife’s data set [35]. The GeoLife project has collected 182
volunteers’ trajectories in Beijing for three consecutive years.
Each trajectory is marked by a sequence of time-stamped GPS
readings that contain users’ latitude, longitude, and altitude at
a given time. We adopt the following procedures to set up our
simulation platform.

1) As all traces spread in different parts of Beijing, a spe-
cific rectangular region where the traces mostly appear
is needed. We stored all trajectories in a geographical
MySQL database and found a 200× 500 m2 region with
high movement density, as shown in Fig. 6(a), that hap-
pens to be around the area of the Microsoft Research Asia
site. We used this region as the simulation area for the
considered data collection application.

2) The entire region is divided into 8 × 20 areas of 25×
25 m2, i.e., |Lq| = 160, ∀ q ∈ Q. Moreover, by setting
|Tq| = 2, the lifetime of all tasks is composed of two time
slots. We considered different sensing tasks in the sensing
region; the different tasks include different numbers of
subregions and need different amounts of samples in each
subregion. For example, for task q1, the required amount
of data in a time slot is set to 100 (rq1lt = 100, ∀ l ∈ L, t ∈
T ), the sensing region is set to 20 subregions (Lq1 = 20);
for task q2, rq2lt is set to 80, and Lq2 is set to 30.

3) All 612 trajectories in the considered region were taken
as candidate participants, i.e., |M| = 612. Since these
traces were recorded at different times, in our simulation,
we simply neglect their time index. For each mobile
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Fig. 7. Simulation results of attained QoI satisfaction ratio versus prediction steps when varying different required QoI satisfaction ratios.

user, given that the best GPS accuracy is about 5 m, we
used the divided region as the mobile users’ locations
instead of the original GPS coordinates. The first GPS
record of each trajectory that falls into the aforementioned
simulation region was used as the initial location of a
mobile user. Users’ initial energy was randomly generated
as a uniformly distributed random variable ranging from
10% to 100%.

4) To construct the location transition matrix P (Δt), we
analyzed the adjacent movements of all 612 trajectories
from one location to another. Then, we sum up the
transition possibility matrix of all 612 trajectories, as
shown in Fig. 7(d). Each square in the figure represents
an area l, ∀ l ∈ L, and its gray value denotes the summed-
up possibility for a participant to appear in this area from
any initial location. It can also be regarded as the average
amount of time that a participant spends in a specific area
during the duration of simulation.

Here, we also give an example for calculating the QoI
satisfaction ratio. In this example, a sensing region is divided
into two subareas. A task publisher requires 28 samples for two
time slots in this task q, and there are 34 samples uploaded by
the participant set X , as

Rq =

[
7 5
9 7

]
, Oq(X ) =

[
8 2
19 5

]
. (16)

Thus, based on (8) and (9), the QoI satisfaction ratio for this
task can be calculated as follows:

uq(X ) = (min(8/7, 1) + min(2/5, 1) + min(19/9, 1)

+min(5/7, 1)) /4 = 0.7786. (17)

B. Results and Discussions

As shown in Fig. 1, during the participant selection, the piece
of information exchanged between the base station and smart
devices only includes the properties of the remaining energy
level of participants’ devices and the requested incentive value,
but not the actual sensory data. Moreover, the information from
each participant will be reported only once. Thus, we need only
a few bits for the information, as 32 bits for the remaining
energy level and 32 bits for the requested incentive value in
our case. To this end, the feature of low bandwidth utilization
and signaling overhead makes our approach a suitable solution
for MCS network. On the other hand, the personal information
of each participant will not be uploaded to the central server;
thus, the participants do not need to worry about the danger of
privacy.

We conduct a set of simulations to explicitly evaluate the
performance of our participant selection approach. First, we
investigate the impact of the prediction step, which is used
to calculate the probabilities of a participant moving from the
current position to all other positions in the discretized sensing
region, as discussed in Section III. As shown in Fig. 7, when the
requested QoI satisfaction ratio gq increases from 0.5 to 1.0, we
can observe that with more mobility model prediction steps, the
attained QoI satisfaction ratio grows rapidly. We also observe
that this prediction step should be more than 5, if gq = 0.5, but
when gq = 1.0 (i.e., full satisfaction is required), the prediction
step of the mobility model should be more than 13. Further-
more, when the specified gq is satisfied, it will not continue
to increase by allowing more prediction steps. Therefore, the
system can be operated at an appropriate state where sufficient
prediction steps are enforced to receive the highest amount of
QoI satisfaction given its requirement from task publishers.
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Fig. 8. Simulation results of (a) attained QoI satisfaction ratio, (b) total number of selected participants, and (c) average initial energy of selected participants
when varying the recommended number of data samples.

It is worth noting that the fitted curve in (10) only represents
the average user behavior/willingness in a probabilistic manner.
In other words, some participants may afford more data samples
while others may only allow less. Therefore, we next investi-
gate the impact of the recommended number of data samples
for all participants, as shown in Fig. 8(a). We observe that
the attained QoI satisfaction ratio increases when the system
requests more data samples from each participant when the
volume is relatively still small, which may be acceptable by
most participants. However, when the number of the demanded
data samples reaches the maximum preferable amount a par-
ticipant can accept (due to their limited device resources),
they start to reject the sensing tasks, and this is particularly
why we observe that the attained QoI satisfaction ratio starts
to decrease.

Fig. 8(b) shows the impact of the recommended number of
data samples on the total number of selected participants. When
we increase bm per participant, it is obvious that a fewer number
of participants is required. Then, continuously increasing bm
will lead to the task rejections from some participants, who
were contributing more than others. Thus, the system then tends
to recruit more, but less efficient, participants although their
individual contribution may not be large enough; this is why
the number of selected participants increases later. Therefore,
we observe an “optimal” system operating point in terms of the
number of selected participants, where the operator can tune bm
to reach the desired state.

Fig. 8(c) demonstrates the impact of the recommended num-
ber of data samples on the average initial energy of those
selected participants. With the increase of demanded number of
samples, we observe an abrupt change of the average initial en-
ergy when 50 samples are required. This highly likely indicates
the change of selected group of participants, which can be quite
different from before. Combined with Fig. 8(a) and (b), it is
proven that 50 is the changing point for system operations to se-
lect participants. When the recommended number of data sam-
ples is less than 50, the QoI satisfaction ratio grows rapidly, and
the number of selected participants decreases; however, when
the recommended number of data samples exceeds 50, both
metric values go to the opposite direction. Therefore, the system
should not demand a very high recommended number of data
samples to participants.

Then, we conduct another set of simulations to evaluate
the performance of user rejection (or human intervention). As
shown in Fig. 9, we vary different numbers of required data
samples, ranging from 10 to 100 units. The performance is
verified against three metrics, namely, average attained QoI
satisfaction ratio of all tasks, QoI loss after rejection, and
attained QoI satisfaction ratio per participant. We compare our
proposed approach, referred as “Proposed, before rejection,”
and “Proposed, after rejection,” with the approach without con-
sidering user rejection, referred as “w/o considering user rejec-
tion, before rejection” and “w/o considering user rejection, after
rejection.” All simulation points are implemented in 100 runs
with different sets of parameters, and results are averaged.

Then, we compare our proposed approach with two other
approaches as benchmarks, as shown in Fig. 9(a)–(f).

1) Random selection: The central server will not consider
the individual difference of participants and, thus, ran-
domly selects a participant one by one. This process will
stop when the required QoI satisfaction ratio is reached
or all participants are selected.

2) Approach with equal samples: It requires the same
amount of samples from each participant, and the process
will also stop when the required QoI satisfaction ratio
is reached or all the participants are selected. In this
approach, we study the amount of samples from 10 to
100 and use the “best result” (i.e., the number of required
samples (50) corresponding to the optimal point shown
in Fig. 8).

As shown in Fig. 9(a), it is obvious that without considering
the rejection probability, the attained QoI satisfaction ratio is
high. Nevertheless, after participants perform task rejections,
the achieved QoI level turns to the lowest compared with our
proposed approach. We also observe that although our approach
does not achieve the same QoI level as the approach that does
not consider user rejection when the required amount of data
samples is small, the attained QoI satisfaction ratio after user
rejection is almost identical. This indicates that considering
human intervention is important when calculating the overall
achieved QoI level. Furthermore, we observe that when the
number of required samples for all participants is 100 units, our
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Fig. 9. Simulation results of (a) Average attained QoI satisfaction ratio of all tasks and (b) QoI loss after rejection, when varying the number of required samples;
(c) Average attained QoI satisfaction ratio of all tasks and (d) total amount of allocated incentives, when varying the total number of candidate participants;
(e) Average attained QoI satisfaction ratio of all tasks and (f) total number of selected participants, when varying incentive budget.

proposed approach can achieve 43.75 % more QoI satisfactions
than the approach without considering user rejections.

We next examine the QoI loss, which is calculated by the
difference between the attained QoI satisfaction ratios with
and without considering the rejection probability. As shown in
Fig. 9(b), the QoI loss of our proposed approach is less than
6.8% for different required samples, and the lowest point can
reach 0.45%. This indicates that the set of selected participants
is almost optimal in terms of achieving the highest QoI gain.
Furthermore, we observe that the QoI loss of the approach
without considering user rejection is always higher than 25.5%,
and the highest point reaches up to 67.3%, with the increase of
41.8%. Therefore, our proposed approach performs more stably
and reliably.

Then, we investigate the impact of the total number of can-
didate participants, as shown in Fig. 9(c) and (d). We randomly
generated six different sets of the total number of candidate
participants, ranging from 100 to 600, respectively. As shown
in Fig. 9(c), the attained QoI satisfaction ratio rises with the
increase of the total number of candidate participants, but
the speed gradually decreases. We observe that our proposed
approach can obtain 15% more QoI satisfaction ratio than the
approach with equal samples when the total number of candi-
date participants is 100. Moreover, the QoI satisfaction ratios of
these two approaches are much more than the random selection
approach. However, as shown in Fig. 9(d), we observe that
compared with our proposed approach, the random selection
approach nearly selected all of candidate participants, and the

total amount of allocated incentive for our proposed approach
is almost the same with the approach with equal samples.

Finally, we investigate the impact on total incentive budget.
As shown in Fig. 9(e), with the growth of total incentive
budget, the average attained QoI satisfaction ratios of all three
approaches keep rising. We observe that the attained QoI of
our proposed approach is always much higher than the others.
That is, 16% more than the approach with equal samples
and 126.5% more than random selection approach, when the
total incentive budget is 100. After the total incentive budget
reaches a certain value, which is labeled as “saturation point”
in the figure, all efficient participants calculated by our ap-
proach and the approach with equal samples are fully selected,
and thus, we cannot obtain any better QoI satisfactions, but it
is still higher than the one achieved by the random selection
approach.

We also observe that before the incentive budget reaches the
“saturation point,” the number of selected participant of our
proposed approach and the approach with equal samples are
almost the same and are much less than the random selection
approach, as shown in Fig. 9(f). Together with the result in
Fig. 9(e), it is obvious that our proposed approach is more
efficient than the approach with equal samples. Our proposed
approach only needs a few more participants to obtain a higher
QoI satisfaction ratio. Nevertheless, the random selection ap-
proach always exhausts the incentive budget; thus, the number
of selected participants also keeps rising and finally exceeds
other approaches.
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VII. CONCLUSION AND FUTURE WORK

In this paper, the problem of selecting an optimal set of
participants in a QoI-aware and energy-efficient manner has
been investigated. Specifically, a novel concept of the QoI
satisfaction ratio has been introduced to quantify how much
collected sensory data can satisfy a task’s multidimensional
QoI requirements in terms of data granularity and quantity.
To build up the mathematical relationship between the recom-
mended number of samples of a participant and his/her device’s
remaining energy level, a participant’s sampling behavior was
modeled, and task rejection probability was computed. Then, a
constrained optimization problem was formulated by incorpo-
rating the above key design elements, and a suboptimal solution
was proposed. Extensive simulation results, based on a real
trace in Beijing, were presented to justify the effectiveness and
robustness of our approach. The results are as follows.

1) A higher degree of QoI satisfaction can be obtained by
using more prediction steps for the mobility model.

2) The number of data samples required from each participant
is not always the more the better; an optimal value can
be found by careful analysis of the participants’ sampling
behaviors.

3) Our proposed suboptimal solution is a very effective
heuristic algorithm. Moreover, our solution can compen-
sate the possible inefficiency of the used mobility model,
which is verified by comparing with the mechanism when
applying our solution even on the known trajectories.

Apart from fully considering participants’ rejection probabil-
ity when accepting sensing tasks, more factors can be included
to improve both the quantity of quality of data. For example,
a design can consider participants’ reputation to only select
the most reputable ones for participation, or the platform can
employ a better incentive scheme to encourage participants to
gather more sensory data from remote places with sparse user
exposures.
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