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Genome Sequencing of Ancient Plant
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and Improvement of Modern Crops
Antimo Di Donato, Edgardo Filippone, Maria R. Ercolano* and Luigi Frusciante*

Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy

The advent of new sequencing technologies is revolutionizing the studies of ancient

DNA (aDNA). In the last 30 years, DNA extracted from the ancient remains of several

plant species has been explored in small-scale studies, contributing to understand

the adaptation, and migration patterns of important crops. More recently, NGS

technologies applied on aDNA have opened up new avenues of research, allowing

investigation of the domestication process on the whole-genome scale. Genomic

approaches based on genome-wide and targeted sequencing have been shown to

provide important information on crop evolution and on the history of agriculture. Huge

amounts of next-generation sequencing (NGS) data offer various solutions to overcome

problems related to the origin of the material, such as degradation, fragmentation of

polynucleotides, and external contamination. Recent advances made in several crop

domestication studies have boosted interest in this research area. Remains of any nature

are potential candidates for aDNA recovery and almost all the analyses that can be made

on fresh DNA can also be performed on aDNA. The analysis performed on aDNA can

shed light on many phylogenetic questions concerning evolution, domestication, and

improvement of plant species. It is a powerful instrument to reconstruct patterns of

crop adaptation and migration. Information gathered can also be used in many fields of

modern agriculture such as classical breeding, genome editing, pest management, and

product promotion. Whilst unlocking the hidden genome of ancient crops offers great

potential, the onus is now on the research community to use such information to gain

new insight into agriculture.
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INTRODUCTION

Over time, important plant families such as the Poaceae, Solanaceae, Fabaceae, and Cucurbitaceae
have been domesticated for human needs. Agriculture has had a dramatic impact on human
migration and settlements, providing access in most cases to a reliable food supply. Those who
through biogeographical good fortune first acquired domesticates gained enormous advantages
over other peoples and were able to expand their sphere of influence rapidly (Vinet and Zhedanov,
2010).
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Current knowledge of plant domestication is largely derived
from morphological analysis of archeological and herbarium
remains and/or population genetic analysis of present-day
samples. Tracing the domestication history of a species can
provide insights into the selection of important traits, facilitating
both the use of genetic resources and the management of
germplasm repositories (Blanca et al., 2015). The domestication
process has led to favorable phenotypic changes in traits such
as fruit, seeds or tubers in the genetic makeup of ancestral wild
species. For instance, enlarged fruit size was selected during
domestication whilst other traits were eliminated. However,
recovering wild ancestor alleles can still improve the productivity
of many crops (Soyk et al., 2017). Genetic studies of ancient
plants allow us to reconstruct the pattern of gene distribution
in an area as well as the gene introgression process in modern
crops. Indeed, species continually incorporate varying degrees of
population admixture, reassembling themselves.

Small-scale aDNA studies can help to reveal patterns of
crop adaptation and migration. However, they do not permit
investigation of the impact of such events on whole crop
genomes. For this reason, whole-genome scale studies on ancient
genomes have been conducted in recent years, paving the way for
many future studies in this fascinating field of research.

LOOKING FOR ANCIENT PLANT DNA

In the last 30 years, DNA has been extracted from several
ancient biological remains and substrates most frequently studied
in palaeogenetic research. Since the first successful attempts to
extract ancient DNA from horses in the 1980s (Higuchi et al.,
1984), plant aDNA has been obtained from different types of
biological material and/or artifacts (Table 1).

Seeds are among the most highly prized sources of aDNA,
especially when charred, desiccated, frozen, or deposited in
anoxic conditions (Green and Speller, 2017). Seeds of wheat
(Bilgic et al., 2016), barley (Mascher et al., 2016), cotton (Palmer
et al., 2012), grapevines (Wales et al., 2016) and other crops
have been found to contain DNA that can shed light on
the origin, evolution and domestication of age-old crops. In
addition to seeds, the DNA of ancient spikelets and combs
(Mascher et al., 2016; Ramos-Madrigal et al., 2016) has also
been analyzed. Successful aDNA extraction was even obtained
from fruit, especially from lignified material such as fruit stones,
rind, and peduncles (Pollmann et al., 2005; Elbaum et al.,
2006; Kistler et al., 2015). The ancient wood structure of plant
remains, such as residues present on building components and on
utensils, residues left during plowing, harvesting, transformation,
storage, and transport of crops, was also used for genetic
analysis (Liepelt et al., 2006). aDNA fragments inside 2,400-
year-old Classical Greek amphoras were amplified although in
the starting material there was no trace of plant residues under
naked-eye examination (Hansson and Foley, 2008). Another
important source of aDNA consists in lake and cave sediments,
where several kinds of ancient plant remains can be found. The
geological context of lakes provides a robust archive for the
retrieval of ancient plant DNA through time and reflects the effect

of all environments worldwide (Willerslev, 2003; Bremond et al.,
2017; Parducci et al., 2017). Plant residues can also be found in
ancient animal and human remains such as palaeofaeces, hair,
dental calculus, and gastrointestinal contents (Poinar et al., 2001;
Rawlence et al., 2014; Van Geel et al., 2014; Weyrich et al.,
2015).

Recently, herbarium archives have demonstrated their long-
term genetic potential through successful recovery of aDNA from
historic plant collections (Chomicki and Renner, 2015; Exposito-
Alonso et al., 2016; Zedane et al., 2016), probably constituting the
best conserved and most abundant resources in the modern era
(Bakker, 2017; Green and Speller, 2017).

THE PROCESS OF aDNA EXTRACTION
AND AUTHENTICATION

Studies conducted on ancient plant DNA use different extraction
techniques (Table 1), standard procedures being modified
according to the starting material in question. Commercially
available DNA extraction kits, with key modifications, have
proved to be very efficient in recovering ancient plant DNA
(Parducci et al., 2005; Elbaum et al., 2006; Liepelt et al., 2006;
Kistler and Shapiro, 2011; Chomicki and Renner, 2015; Zedane
et al., 2016). Protocols based on cetyltrimethylammonium
bromide (CTAB) were adapted for more difficult samples
(Pollmann et al., 2005; Bilgic et al., 2016; Fornaciari et al.,
2018). Silica-based extraction methods also proved successful
in many cases (Rollo et al., 2002; Palmer et al., 2012;
Van Geel et al., 2014). Identifying the most efficient DNA
extraction method is crucial since DNA yield and quality
can vary considerably depending on the substrates and the
preservation conditions. All ancient tissues or substrates contain
a small amount of endogenous DNA, and the quality of
the DNA is very poor due to the large number of post-
mortem mutations occurring (Carpenter et al., 2013). Moreover,
present-day human and bacterial contaminations are inevitably
introduced during excavation, preservation and laboratory
work (Gansauge and Meyer, 2014). The use of non-efficient
extraction methods could increase the likelihood of recovering
very limited, degraded and/or contaminated DNA (Threadgold
and Brown, 2003). A well-calibrated combination of DNA
extraction and purification steps is necessary to prevent further
degradation of the already damaged and fragile ancient nucleic
acid. Suitable methodologies should maximize the recovery
of good quality aDNA from ancient plant specimens and
minimize co-extraction of other DNA as well as substances
that inhibit PCR. Non-destructive and non-invasive sampling
methods have been developed and implemented in order
to maintain the integrity of archaeobotanical samples and
store sufficient material for further analysis (Green and
Speller, 2017). Precise cataloging and characterization of
archaeobotanical remains can lead to improvements in genotype
and phenotype authentication of ancient organisms. A wide
range of analytical approaches can be used to both complement
and validate ancient genetic information, including microscopy,
lipid analysis, proteomics, metabolomics, radiocarbon dating,
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collagen peptide mass fingerprinting, and bioinformatics (Green
and Speller, 2017). In particular, bioinformatic approaches and
molecular methodologies may improve the process of obtaining
information from minute samples.

FROM MOLECULAR MARKERS TO
SEQUENCING TECHNOLOGIES

In recent years, the methodologies used in aDNA investigation
have changed enormously, providing an even better
understanding of the genetic diversity of crop species over time
and space. The development of polymerase chain reaction (PCR)
and of PCR-derived molecular markers in the 1980s proved to
be crucial for early aDNA analysis. Most aDNA phylogenetically
informative studies concern the DNA amplification of specific
organelles such as the plastids. Ribosomal DNA (rDNA) genes are
also of interest for aDNA research (Elbaum et al., 2006; Zedane
et al., 2016), whereas plant mitochondrial (mtDNA) studies
are rarer in plant aDNA research. Organelle nucleotide regions
are conserved among plant organisms, greatly simplifying the
design of primers, amplification of target sequence and the
Sanger sequencing of small fragments (Schlumbaum et al., 2008).
Moreover, aDNA, which by its very nature is extremely degraded,
often damaged, and typically short and fragmented, is better
preserved in organelle genomes where it exists in multiple copies
per cell. Over the years researchers have developed advanced
molecular technologies for investigating ancient nuclear DNA
(nuDNA) since it carries several important loci. Genetic studies
on archaeobotanical remains have been conducted using
nuclear sequences or markers based on important genes related
to agronomic traits (Blatter et al., 2002; Freitas et al., 2003;
Jaenicke-Despreés, 2003). NuDNA is also more susceptible
to degradation, and some polynucleotides are more damaged
than others (Weiß et al., 2016). For instance, substitutions
resulting from deamination cytosine residues are vastly over-
represented in aDNA sequences. Miscoding of C to T and G
to A accounts for the majority of errors (Gansauge and Meyer,
2014).

The development of massive parallel DNA sequencing, also
coupled with enriched capture-based methods, has improved
many critical issues of aDNA research (Green and Speller,
2017). The generation of gigabases of data through next-
generation sequencing (NGS) technologies has overcome many
of the limits of the previous methodologies, allowing huge
genomic regions or whole genomes to be covered. The
number of reads that can be processed in aDNA analyses
is constantly increasing thanks to new NGS technologies
that can achieve 1.8 billion reads in one run (Yin et al.,
2017). NGS produces large numbers of short sequencing
reads, which is particularly useful for aDNA analysis for
its fragmentation and degradation (Gutaker and Burbano,
2017).

New bioinformatics tools, protocols and studies have been
released to improve efficiency in analysing genomic aDNA data
(Binladen et al., 2006; Kistler et al., 2017). The sequencing errors
can be resolved, for example, by trimming some bases from

the 5′-end of reads, filtering contamination-derived reads, and
reducing the number of mismatched bases for mapping reads
(Schubert et al., 2012).

However, the use of true single molecule and nanopore
sequencing methods on ancient polynucleotides is currently
under discussion (Hofreiter et al., 2015). Indeed, the fragmented
structure of damaged aDNA molecules could make the use
of PacBio and Oxford Nanopore very difficult because these
technologies produce long reads and currently suffer from high
error rates (Laver et al., 2015; Rhoads and Au, 2015).

The “impossible genome” (Der Sarkissian et al., 2015)
of ancient crops or species related with modern crops is
now accessible, enabling the study of complex agronomic
traits. Ancient whole-genome sequencing with modern NGS
technologies were successfully conducted in recent years on
major crops, namely cotton and maize (Palmer et al., 2012;
Ramos-Madrigal et al., 2016), and other important plant species
(Exposito-Alonso et al., 2016). Not all samples can be analyzed
using whole shotgun sequencing since assembling complete plant
genomes is a major challenge even for modern samples due
to their large, highly repetitive and heterozygous genomes and
varying ploidy levels (Der Sarkissian et al., 2015).

Target hybridization enrichment technology provides an
approach to enrich a DNA pool for large genomic regions, such
as genes, exomes, organelle genomes, and even whole genomes.
This technique is useful to capture target DNA of interest and
discriminate exogenous polynucleotides (Di Donato et al., 2017).
aDNA of maize and of barley exomes has been captured and
sequenced (Mascher et al., 2016; Ramos-Madrigal et al., 2016),
paving the way for other targeted sequencing on ancient crop
remains.

ANALYSIS OF aDNA GENOMIC DATA

Sequences and other information from aDNA can be used in
different ways depending on the research aims. Almost all of the
analyses that can be performed on fresh DNA are also possible
on aDNA (Supplementary Figure 1). DNA barcoding is useful
to identify species, genera or families, using diagnostic variation
in a suitable DNA region (Sonstebo et al., 2010). Recent NGS
advances have boosted research interest in this methodology,
especially for its metagenomic application on lake sediments and
other complex materials (Murray et al., 2012; Leonardi et al.,
2016; Parducci et al., 2017).

The availability of DNA from ancient plants allows
phylogenetic analysis between ancient and modern samples
to be inferred. In recent years “omics” approaches have produced
an enormous amount of data on hundreds of plant species,
especially crops, making phylogenetic analysis on aDNA
increasingly effective. Indeed, land plant genetic distance
and evolution studies and Angiosperm Phylogeny Group
classification (APG) have been improved thanks to several
plant phylogenetic studies (Chase et al., 2016). Within such
approaches, aDNA can solve many phylogenetic questions
concerning the evolution, domestication and improvement of
plant species. Phylogenetic studies based on genetic markers
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have already successfully highlighted the genetic correlation
between ancient and modern samples (Kistler and Shapiro,
2011). However, such studies are not exhaustive because they
only analyse a small part of plant genomes. Hence, the latest
challenge for aDNA studies is phylogenomic analysis. Indeed,
specific bioinformatic suites have been developed to reconstruct
ancient genomes (Orlando et al., 2015).

Thanks to NGS technologies and the development of new
statistical approaches for detecting and quantifying admixture
from genomic data, previously unknown hybridization events
between living organisms have been revealed (Schaefer et al.,
2016). Historically aDNA studies were used to identify
relationships between species or populations and to discriminate
genotypes in widely distributed populations of maize (Ramos-
Madrigal et al., 2016) and barley (Mascher et al., 2016). with the
aid of aDNA admixture-based approaches.

THE APPLICATION OF aDNA GENOME
SEQUENCING FOR MODERN CROP
IMPROVEMENT AND PROMOTION

The information obtained from aDNA studies can be applied in
modern agriculture and various fields of research. Knowledge of
mechanisms and rates of evolution of land plants can be directly

achieved through experiments with both modern and ancient
samples (Gutaker and Burbano, 2017).

Ancient genomics can provide insights into plant-pathogen
interactions, revealing details about the coevolution of crops
and pathogens, with implications for modern crop breeding
and management. For example, DNA analysis of historical
herbarium specimens showed that the strain of Phytophthora
infestans involved in the nineteenth century Irish potato famine
differs from all examined modern strains (Yoshida et al., 2013).
A study of ancient genomes revealed a gene flow between
cultivated and sympatric wild populations of barley crops over
6,000 years ago, supported by phylogeographic data (Mascher
et al., 2016). Palaeo-ecological reconstructions over thousands
of years can be conducted from aDNA extracted from lake and
cave sediments. The sediment material created and stratified
year after year illustrates the history of species in a given
area, evidencing patterns of trade and migration, ecosystem and
agroecosystem changes. For instance, through meta-barcoding
studies on lake sediments it was possible to trace the introduction
and history of agriculture in Benin, detecting when the sweet
potato (Ipomoea sp.) was introduced into the region (Bremond
et al., 2017).

Ancient genomic data also allow us to determine the species
admixture randomly applied by man during crop cultivation.
For instance, if growers cultivated 10 plants belonging to

FIGURE 1 | Applications of ancient genome sequencing. (A) Starting material for NGS sequencing. (B) Upper part, aDNA short fragmented sequences difficult to

assemble; bottom part, modern crop genomes assembled in pseudomolecules (chromosomes). (C) NGS data analysis. aDNA mapping on the reference crop

genome identifies structural variants that influence some importance agricultural traits. Icons represent fruit sweetness, flavor, long fruit, color, resistance to abiotic,

and biotic stress. (D) Techniques unlocked through aDNA genome sequencing. Molecular marker design on ancient sequences for genotype assessment or for crop

breeding; Identification of new targets for genetic transformation by Agrobacterium tumefaciens or genome editing by CRISP/Cas9. (E) aDNA genome sequencing

data output utilization. Analyses conducted on aDNA genomes are useful for food tracing and certification (molecular marker) and for improvement of modern crops

(DNA editing and Marker Assisted Breeding).
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two different but inter-compatible species at the same time,
interspecific hybrids between the two species could be generated.
Specimen introgressions can only be observed through genome
sequencing, which is crucial especially for species that have
been widely grown and improved in recent centuries. Large-
scale and more in-depth studies using ancient plant genomes
can lead to validation or reintroduction of alleles or mutation
in modern crops, detected through aDNA sequencing (Figure 1).
NGS sequences obtained from aDNA mapped on modern crop
genomes with a good coverage can reveal a large number of
polymorphisms involved in determining traits of agricultural
interest (fruit shape, fruit color, resistance to biotic and abiotic
stresses, fruit flavor and so forth). The detected mutations can be
recorded in silico databases to preserve priceless biodiversity for
future generations or reintroduced intomodern crops (Figure 1).
If the mutations are retrieved in wild relative or cultivated crops,
they can be reintroduced with the aid of genomic selection
(Bevan et al., 2017). Alternatively, the ancient traits can be
recovered by using the latest genome engineering techniques
(Andolfo et al., 2016).

Moreover, with the aid of ancient genome sequencing the
recent history of local adaptation and improvement of some
major crops can be revealed. The production of many crops
(whether fresh or processed) has strict regional links worldwide.
This can be exemplified by many grape clones (Aversano et al.,
2017), Khorasan wheat and other crops (Cooper, 2015). aDNA
sequencing can “certify” the genetic correlation between ancient
crop remains and local present-day crops, giving added value
to produce, whether fresh, or processed, usually highly prized
by consumers (Figure 1). This kind of certification is perfectly
complementary with modern food tracing methods like bio-
markers (Raspor, 2005; Ercolano et al., 2008).

CONCLUSIONS

aDNA genome-wide sequencing studies are achieving greater
success thanks to progress in NGS technology. NGS techniques
fit well with the fragmented nature of ancient genomes and offer
different solutions for a wide range of starting materials and

types of studies. The unfathomable genome of ancient crops,
concealing extensive potential for modern agriculture, is now
accessible. Ancient genomes can shed light on crop evolution
and domestication, and also retrieve the history of agriculture
in a specific area. Information obtained can be used to steer
further research more effectively, aimed at varietal improvement
or the management of important crops as well as promoting
agricultural products historically connected with a specific area,
diet or culture.
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