

Using Data Assimilation Diagnostics to Assess the SMAP Level-4 Soil Moisture Product

Rolf Reichle^{*1}, Qing Liu¹, Gabrielle De Lannoy², Wade Crow³, John Kimball⁴, Randy Koster¹, and Joe Ardizzone¹

¹NASA Global Modeling and Assimilation Office, NASA/GSFC, Greenbelt, MD
²Division of Soil and Water Management, KULeuven, Leuven, Belgium
³Hydrology and Remote Sensing Laboratory, USDA/ARS, Beltsville, MD
⁴College of Forestry & Conservation, University of Montana, Missoula, MT

*Rolf.Reichle@nasa.gov, +1-301-614-5693

Motivation

Sensitive only to surface soil moisture (~0-5 cm)

Key Objectives of the

<u>Level-4 Soil Moisture</u> (L4_SM) product:

- 1. "Root-zone" soil moisture (0-100 cm)
- 2. Spatially & temporally complete

1. Algorithm Overview

- 2. Validation vs. In Situ Measurements
- 3. Assimilation diagnostics
 - a) Data Counts
 - b) Observation-Minus-Forecast Residuals
 - c) Assimilation Increments
- 4. Summary and Conclusions

Algorithm Overview

Land Modeling System

Land Modeling System

GMAO

Algorithm Overview

Algorithm Overview

Soil Moisture Analysis

 $\underline{G} = Cov(SM_{ens}, Tb_{ens}) [Cov(Tb_{ens}) + Cov(Tb_{obs})]^{-1}$

NASA

Algorithm Overview

L4_SM

Data available publicly for 3/31/2015-present from http://nsidc.org.

Used here (unless indicated otherwise):

Version 3 April 2015 – March 2017

Since 2015, L4_SM data have been produced and published once daily about ~2.5 days behind real-time.

Main driver for L4_SM latency is the wait for precipitation observations.

1. Algorithm Overview

- 2. Validation vs. In Situ Measurements
- 3. Assimilation diagnostics
 - a) Data Counts
 - b) Observation-Minus-Forecast Residuals
 - c) Assimilation Increments
- 4. Summary and Conclusions

L4_SM Analysis - 2100 UTC 8 May 2016

L4_SM Analysis - 2100 UTC 8 May 2016

L4_SM Analysis – 2100 UTC 8 May 2016

GMAO

Soil Moisture at Little Washita (Oklahoma)

Soil Moisture at South Fork (lowa)

Validation vs. Core Site In Situ Measurements

- L4_SM shows small but consistent improvements over model-only data.
- L4_SM meets ubRMSE accuracy requirement of 0.04 m³ m⁻³.

# Ref. Pixels	
SFSM 9 km	26
SFSM 36 km	17
RZSM 9 km	9
RZSM 36 km	7

Validation vs. USGS Streamflow

R: L4_SM (mean=0.55, N=236)

ΔR: L4_SM minus Model (mean=0.03, N=236)

- 1. Algorithm Overview
- 2. Validation vs. In Situ Measurements
- 3. Assimilation diagnostics
 - a) Data Counts
 - b) Observation-Minus-Forecast Residuals
 - c) Assimilation Increments
- 4. Summary and Conclusions

New in L4_SM Version 3

Updated brightness temperature (Tb) scaling factors based on:

- Newer & more SMOS Tbs where available (6 years of v6, rescaled to v5)
- SMAP Tbs elsewhere (2 years of Version 3)
- Model Tbs from updated "Nature Run" (NRv4.1)

Retrospective forcing is better and more consistent w/ 2015-present data.

More SMAP observations assimilated.

Unchanged Catchment model version & 2015-present forcing (w/minimal exceptions).

Objective was to avoid recalibration of L4_C algorithm.

National Aeronautics and Space Administration Number of Assimilated SMAP L1C_TB Observations

GM

Std-dev Increments

Version 2

<u>GM</u>A

Mean O-F

GIObal Modeling and Assimilation Office gmao.gsfc.nasa.gov

Std-dev O-F

Average: O-F: 6 K O-A: 4 K

cf. Tb obs error = 4 K

includes

instrument error = 1.3 K & representativeness error = 3.8 K

GIObal Modeling and Assimilation Office gmao.gsfc.nasa.gov

What is the Quality of the Error Estimates?

Normalize O-Fs with (assumed) error stddevs supplied to the analysis.

How Efficiently do we Use the Observations?

O-F time series at Little Washita, Oklahoma.

O-F auto-correlation measures "efficiency" of assimilation system.

Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

GMA

How Efficiently do we Use the Observations?

SMAP L4_SM Documentation

Data Archive & HTML Doc http://nsidc.org/data/smap

http://gmao.gsfc.nasa.gov/GMAO_products/SMAP_L4

Summary

- The L4_SM algorithm <u>assimilates SMAP brightness temperature</u> (Tb) observations into the NASA Catchment model using a distributed (3d) EnKF.
- The L4_SM product provides global, 9-km, 3-hourly estimates with ~2.5-day latency.
- <u>Version 3</u> of the L4_SM algorithm also assimilates SMAP Tbs in RFI-prone regions.
- The L4_SM analysis is largely <u>unbiased</u>, but there are modest regional biases in the O-F Tb residuals (<3 K).
- Typical instantaneous values are <u>~6 K for O-F Tb residuals</u> and <u>~0.01 (~0.004) m³ m⁻³</u> for surface (root-zone) soil moisture increments.
- Actual errors are over-estimated in deserts and densely vegetated regions and under-estimated in agricultural regions and wet-dry transition zones.
- SMAP observations are assimilated efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the northern high latitudes.

Thanks for listening!

Global Modeling and Assimilation Office gmao.gsfc.nasa.gov