
National Aeronautics and 

Space Administration
National Aeronautics and 

Space Administration

National Aeronautics and 
Space Administration

Spacecraft Charging

Hazard Causes

Hazard Effects

Hazard Controls

ES4/Dr. Steve Koontz, ISS System Manager for Space Environments

NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas, 77058, USA,  281-483-8860

Email: steven.l.koontz@nasa.gov

FPMU (Floating Potential Measurement Unit)

https://ntrs.nasa.gov/search.jsp?R=20180002456 2019-08-29T17:39:31+00:00Z

mailto:steven.l.koontz@nasa.gov


National Aeronautics and 

Space Administration
National Aeronautics and 

Space Administration

Executive Summary

 Hazard Cause - Accumulation of electrical charge on spacecraft and spacecraft 
components produced by:
 Spacecraft interactions with space plasmas, energetic particle streams, and solar 

UV photons  (free electrons and photons typically drive these processes)
 Spacecraft electrical power and propulsion system operations

 Hazard Effects
 Electrical discharges leading to:

 Radiated and conducted “static” noise in spacecraft avionics systems 
 Failure of spacecraft electrical power system components 
 Failure of spacecraft avionics (C&DH, C&T, GN&C) hardware
 “Static” noise and possible hardware damage on docking of two spacecraft at 

very different electrical potentials (first contact bleed resistors don't always 
work here…)

 Hazard Controls
 “Safe and verified design” – follow NASA and DoD standards and guidelines

 Materials selection, grounding, bonding, and EMI/EMC compatibility, and 
screen for/eliminate potentially hazardous configurations, verified during 
acceptance testing (not everyone knows what the requirement means)

 Active charging controls (e.g., plasma contactor units or something like that) 
 In-flight operational hazard controls (if all else fails and assuming there are any)
 “Test like you fly and fly like you test” (to the extent possible)
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Presentation Outline

 Spacecraft Charging Environments and Processes: Summary and General Principles

 Why do we care about this?

 Spacecraft charging summary

 A simple, basic spacecraft charging/discharging circuit

 Spacecraft materials, configuration, and operations effects

 Internal vs. external charging

 The charge balance equation

 Some  Important Spacecraft Charging Environments and Processes

 Space Plasmas and Energetic Particles – The Numbers

 Simple worked examples and spacecraft flight data

 LEO/ISS - Cold/high density plasma and geomagnetic field - ISS PV Array  and 
Motional EMF  - structure charging

 Auroral Electron Charging in LEO and low (<1000 km) Polar Orbit – surface and 
structure charging

 GEO Charging - Hot/low density plasma – surface and internal charging

 Cis Lunar and Interplanetary Charging Environments - Solar Wind and SPE

 Hot/low density plasma and energetic particles

 Space Weather and Charging Environment Variability

 Ionosphere, Aurora, and GEO/Interplanetary

 So what do I do about all this and what happens if I don’t?

 Backup and References 3
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Spacecraft Charging Environments 
and Processes: 

Summary and General Principles
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Spacecraft Charging Environments 

and Processes: General Principles

Why do we care about this?

 Safety, Reliability, and Mission Success

 If not accounted for during spacecraft 
design development and test:

 You may get lucky and operate 
successfully via workarounds 

 Or you may fail to achieve mission 
objectives, operational reliability 
requirements, or in extreme cases, 
loose the entire spacecraft (e.g., 
ADEOS-II and  DSCS-9431)

 The most common hazard effects of the 
spacecraft charging hazard cause are:

 Avionics system failures and 
anomalies

 Electrical power system failures 
and anomalies

 Surface performance property 
degradation caused by arcing

 Increased attitude control 
propellant use rates (energetic 
surface arcing can be propulsive) 5

Aerospace Corp. Report TR-2000(8570)-2; 28 February, 2001

Mak Tafazoli; “A study of on-orbit spacecraft failures,”

Acta Astronautica, Volume 64, Issues 2–3, 2009, 195–205

See back-up for more on this)
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Spacecraft Charging Environments 

and Processes: 

Spacecraft Charging Summary

 Spacecraft Charging:

 Processes that produce an electrical potential or voltage difference between the 

spacecraft and the surrounding space plasma environment (absolute charging)

and/or voltage differences between electrically isolated parts of the spacecraft 

(differential charging)

 Electrical potential differences result from the separation of positive and negative 

charges, in the spacecraft, in the flight environment, or both with accumulation of an 

excess of one charge on the spacecraft or spacecraft components. 

 Current balance equations that account for the ion and electron currents to and from 

the spacecraft

 Determining factors - The flux and kinetic energy of high-energy charged particles, 

local space plasma density and temperature, spacecraft motion relative to the local 

space plasma and magnetic field, as well as spacecraft systems operating voltages and 

currents can all affect the spacecraft charging current balance.

 During charging and discharging, electrical currents will flow through or onto various 

parts of the spacecraft, and those currents can be damaging.

 Simple resistor/capacitor charging circuits can give you a feel for how this works

 Conductors and dielectrics charge and discharge in very different ways

6
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and Processes: Summary
A very simple, basic, spacecraft 

charging/discharging circuit

 Spacecraft charging isn’t magical 

 Electricity and magnetism along with 

some gas kinetics and plasma physics

 It appears magical at first because the circuit 

elements are exotic compared to what we 

encounter in the electronics lab – for example  

 V isn’t always a simple power supply 

voltage – depends on charged particle 

kinetic energy and vehicle electrical 

potential among other things

 R1 depends on vehicle current collecting 

area and  plasma density

 R2 can depend on a variety of things like 

dielectric breakdown arc plasma density 

and active vehicle charging control 

equipment

 C depends on vehicle configuration and 

plasma density among other things

V

7
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Spacecraft Charging Environments 

and Processes: Summary

 Spacecraft mission environments and velocity with respect to plasma or local 

magnetic fields

 Flight environment and mission timeline determine charging processes

 Spacecraft current and voltage sources interacting with the local environment

 Can drive current collection to and from space plasma environment

 Area of spacecraft metallic material exposed to energetic charged particle flux 

or ambient plasma 

 Current collection into spacecraft circuitry and conducting structure

 Electrical properties of spacecraft materials

 Secondary and photoelectron emission characteristics of the spacecraft materials

 Dielectric materials conductivity

 Dielectric material relaxation time

 Dielectric breakdown voltage 

 Are dielectrics static  dissipative?

Spacecraft mission environment, 

materials, configuration, con-ops

9
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and Processes: Summary

 Spacecraft capacitance and capacitance of electrically isolated 
spacecraft components 
 C = Q/V so V = Q/C; also stored energy  available to cause problems; E = ½ CV2

 C = 111.26501(R) pF   sphere

 C = 70.83350(R) pF   disk

 C = 111.26501(πR2/d) pF   coated sphere

 C = 70.83350(πR2/d) pF   coated disk 

 V in Volts, Q in Coulombs, R and d in meters

 Note that capacitance is defined for conductors but using the equations as an estimate 
for dielectrics is a common practice

 Note also that the plasma sheath around the spacecraft can and does contribute to net 
capacitance

 It should be clear that any object with a dielectric film thickness, d, on the 
order of 10 µ and an area, πR2, on the order of 1 m2,will have a parallel plate 
capacitance that is 104 times larger than the free-space capacitance and 

 Big capacitors require more charging current and time  (Q = i x t) than 
small capacitors

Spacecraft mission environment, 

materials, configuration, con-ops

10
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Spacecraft Charging Environments 

and Processes: General Principles.

Internal vs. Surface Charging

11

• Electron kinetic energy is of primary importance 
here (protons are less important)

• Surface charging: 0 to 50 keV

• Surface to internal charging transition: 50 to 100 
keV

• Internal charging > 100keV 

• Practical range of concern for GEO/cis-Lunar 
orbits:

• 0.1 to 3 MeV assuming ~ 0.08 to 0.3 cm Al shielding

• Grounded conducting structure can also be a 
charging target and spacecraft electrical systems 
operations can be a charging cause
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Spacecraft Charging Environments 

and Processes: General Principles.

Internal vs. Surface Charging

12

Charged particle range in Al vs. particle kinetic energy in MeV

Garrett, H. B., Whittlesey, A. C.; GUIDE TO MITIGATING SPACECRAFT  CHARGING  EFFECTS, John Wiley & Sons, Inc., Hoboken, New Jersey, 2012
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Spacecraft Charging Environments 

and Processes: General Principles.

Internal vs. Surface Charging

13

Surface charging/discharging Internal charging/discharging

Garrett, H. B., Whittlesey, A. C.; GUIDE TO MITIGATING SPACECRAFT  CHARGING  EF 
FECTS, John Wiley & Sons, Inc., Hoboken, New Jersey, 2012
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Spacecraft Charging Environments 

and Processes: Summary

Metal structure with thin dielectric 

coating – ISS MM/OD shields

1) Active electron (-) collection by ISS PV arrays drives ISS conducting structure to negative FP

2) Ionospheric ions (+) attracted to negative structure and produce positive charge on thin dielectric 

(anodized Al) surface coatings

3) Dielectric breakdown arc plasma provide conductive path for capacitor discharge and degrades 

PTCS on MM/OD shields with both conducted and radiated EMI

+ + + + + + + + + + + + + + + + + + + + + + + +

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C = eA/d

A = surface area of structural element

d= thickness of dielectric coating

e = dielectric constant

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ + + + + + + +                   + + + + + + + + + +

14
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Spacecraft Charging Environments 

and Processes: Summary

Dielectric breakdown in LEO

https://www.nasa.gov/offices/nesc/articles/understanding-the-potential-dangers-of-

spacecraft-charging

ESA EURECA satellite solar array sustained arc damage. 

Credits ESA

Arc damage in laboratory tests of the chromic acid anodized 

thermal control coating covering ISS orbital debris shields.

Credits: NASA/T. Schneider

15
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The Charge Balance Equation

Ie(V) – [Ii(V) + Iph(V) + Iother (V)] = Itotal(V)

V = Spacecraft Floating Potential (FP) - voltage relative to the 
local space plasma

Ie = electron current incident on spacecraft surface(s)

Ii = ion current incident on spacecraft surface(s)

I(other) = additional electron current from secondaries, 
backscatter, satellite hardware sources (electron guns, ion 
engines, plasma contactors, PV array collection, etc.)

• Iph = photoelectron current from spacecraft surfaces in 
sunlight, typically on the order of 10-9 amps/cm2 at Earth 
orbit and decreases as distance from the sun increases (1/R2)

• Only applies to surface charging – no effect on deep dielectric/internal 
charging

• If Iph > Ie, spacecraft surface will charge positive. 

Itotal = total current to spacecraft: Itotal =  0 (at equilibrium)

16



National Aeronautics and 

Space Administration
National Aeronautics and 

Space Administration

Some Important Spacecraft Charging 
Environments and Processes

17
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Environments: 

LEO Ionosphere 

http://giro.uml.edu/IRTAM/
18
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LEO: Ionospheric Plasma 
and Geomagnetic Field 
Charging Environments 
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Environments: 

Magnetosphere and GEO 
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Some important GEO and magnetospheric environment charging data spacecraft:

ATS-5, ATS-6, SCATHA, CRRES, ISEE Geotail, Lunar Prospector, 

Themis/Atremis,  Van Allen Probes, and many listed in the graphics below
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Environments: Cis-Lunar 

Wendel, J., and M. Kumar (2017), Biogenic oxygen on the Moon could hold secrets to Earth’s past, 
Eos, 98, https://doi.org/10.1029/2017EO066979. Published on 30 January 2017.
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Environments: Geomagnetic 

Storm and Aurora 

Video Simulation  Credit NASA GSFC
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Spacecraft Charging Environments 

and Processes:

 Plasma – an ionized gas that conducts electricity
 Consists of neutral atoms/molecules, electrons (e- ), and ions (i+)

 Displays collective behavior (plasma, not just an ionized gas) if -

 Debye Length (λd) << L (length of system),  and Plasma Parameter (Λ) >> 1

 Gas Kinetic Theory (Maxwell-Boltzmann Equation) applies

 All particles in a gas have the same temperature at equilibrium

 So all particles have the same average kinetic energy; vavg = [(2 k Ti)/( mi)]
1/2

 KEavg = ½ mvavg
2 =>  particle speed depends on mass

 All else being equal, electrons much faster than ions so that objects in the plasma tend 
to charge negative relative to the plasma in a way that depends on electron 
temperature and electron/ion mobility; 

 Important Plasma Parameters  

 λd - Plasmas can rearrange charges to exclude electric fields, like any conductor

 ωpe - Electron Plasma Frequency   

 Λ - Need a large number of particles inside the λd length for collective behavior

 FP - Floating potential of an object in the plasma

 Energetic Particles
 Auroral Electrons,  Relativistic Trapped Electrons, SPE Electrons and Protons

 Not a plasma effect - more like a high voltage power supply driving current onto and into 
the spacecraft

Space Plasmas and Energetic Particles

23
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 λd is also known as the sheath or shielding length

 At distances greater than a few λd , the electric field of a charged object is cancelled by 

redistribution of plasma charged particles

 λd = 7400 x √(Te/Ne), λd in m, Te in eV, Ne in e/m3

 1 eV = 1.16 x 104 degrees Kelvin

 ωpe determines how radio frequency (RF) electromagnetic (EM) waves interact with plasma

 ωpe = 9 √(Ne) in Hz

 If ω > ωpe RF signal passes through plasma

 If ω < ωpe RF signal is refracted or reflected by plasma

 Plasma sheaths can contribute to the capacitance of an object immersed in or moving through 

the plasma

 For a sphere of radius R moving through the plasma, and neglecting wake effects:

𝐂 = 𝟒𝛑𝐑𝟐𝛜𝟎
𝟏

𝐑
+
𝟏

𝛌

Same equation as for two concentric spheres with separation distance λ

(remember - λ depends on plasma density and temperature)
24
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Plasma
Density

ne(m
-3)

Electron 

Temperature

T(K)

Magnetic 

Field

B(T)

Debye 

Length

λD(m)

Electron 

Plasma 

Frequency 

(MHz)

Small Object  

FP (V)

Gas discharge
high density/hot

1016 105 -- 10−4 1000 -10

Ionosphere
high density/cold

1012 103 10−5 10−3 10 -1

Magnetosphere
low density/hot

107 107 10−8 102 0.01
Day,  +10

Night, - 10K

Solar wind
low density/hot

106 105 10−9 10 0.01
Sun, +10

Eclipse, -20 

A useful on-line plasma parameter calculator =>   http://pepl.engin.umich.edu/calculator.html

25

E. C. Whipple, “Potentials of Surfaces in Space,”  Reports on Progress in Physics, Vol. 44, pp. 1197-1250, 1981

http://pepl.engin.umich.edu/calculator.html
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Environments 

Auroral (diffuse + arc) Average Differential Electron Flux for an F13 DMSP charging 

anomaly event: e- K.E. 0.01 to 100 KeV and flux from 102 to 106

26

David L. Cook, “Simulation of an 
Auroral Charging Anomaly on 
the DMSP Satellite,”  6th 
Spacecraft Charging Technology 
Conference, AFRL-VS-TR-
20001578, 1 Sept. 2000
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Environments 

GEO Average Integral Electron Flux: 

e- K.E. 0.1 to 4 MeV and flux from 103 to 107

27

GEO worst case design environment vs AE-8 model for 

solar minimum 

Garrett, H. B., Whittlesey, A. C.; GUIDE TO MITIGATING SPACECRAFT  CHARGING  EF FECTS, John Wiley & Sons, Inc., Hoboken, New Jersey, 2012
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Environments 

Earth’s Radiation Belt Transit Average Integral 

Electron Flux: e- K.E. 1 to 7 MeV and flux 101 to 108 28

SLS-SPEC-159 REVISION 
D November 4, 2015
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Environments 

Oct. – Nov. 2003 (10/28 to 11/7) SPE events electron differential spectra – ACE spacecraft 

Electron Flux: e- K.E. 0.1 to 7 MeV and flux 101 to 106

29

Mewaldt et al.  JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, A09S18, doi:10.1029/2005JA011038, 2005
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Spacecraft Surface Charging 

Environment Risks: Geo-space

Garrett, H. B., Whittlesey, A. C.; GUIDE TO MITIGATING SPACECRAFT  CHARGING  EF FECTS, John Wiley & Sons, 

Inc., Hoboken, New Jersey, 2012, page 2
30
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Environments Risks: 

Geo-space 

Garrett, H. B., Whittlesey, A. C.; GUIDE TO MITIGATING SPACECRAFT CHARGING EFFECTS, John Wiley & Sons, Inc., 

Hoboken, New Jersey, 2012, page 2 31
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A Simple Worked Example:

Solar Array Driven Charging in 

LEO ( ~ ISS) 

1) Rectangular PV array (length L, width W) and string voltage V (end-to-end) in sunlight, 

with exposed metallic PV cell interconnects and a negative structure ground and 

negligible capacitance.

2) We want to calculate the FP as a function of position along the string.

3)   Now, calculate the steady-state current balance, Ji = Je.

Ji = NiqviAi and Je = 0.25 NeqveAe;

vi = VISS = 7.7 km/sec and  ve = 163 km/sec (corresponding to Te = 0.1 eV) 

Ae/Ai = Le/Li = vi/0.25ve = 7.69/40.75 = 0.19; 

4) The electron collecting area is a small fraction of the total area (and length) at steady-state 

and we can calculate FP voltage at each end of the PV array in this model.  

5) For a 160V string, the FP at the negative structure ground is about -130V and the FP at the 

positive end is about +30V.

6) This simple calculation works well for UARS, HTV,  and many other LEO satellites (even 

DMSP when ionospheric density is high enough at 800 km)

7) This is not what we see on ISS (worst case maximum expected is -80 volts and that very, 

very rarely) – WHY? 32
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A Simple Worked Example:

Solar Array Driven Charging in 

LEO ( ~ ISS) 

ISS doesn’t embody the assumptions underlying the simple model

 While it is true that Ae/Ai << 1  => 

Ri >> Re, but in fact Ri > Re 

because:

 1) ISS has some exposed 

conducting structure to increase 

ion collection

 2) ISS PV array electron 

collection is limited by burying 

PV cell metallic interconnects and 

current collection busses in 

dielectric

 The steady-state assumption is not 

valid given the size of the charging 

currents and the size of the ISS 

capacitor

 3) ISS capacitance >> 109 pF

 ISS FP is modeled accurately (for 

EVA safety assessments) using the 

Boeing Plasma Interaction Model 

(PIM)

33
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LEO Ionospheric Plasma and 
Geomagnetic Field Charging 

Environments 

34
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Another Simple Worked Example:

Motional EMF (magnetic induction 

charging) of ISS at high latitude 

• V = end-to-end voltage the spacecraft length L = 100 m for ISS Truss 

• v = spacecraft velocity = 7.67 km/sec

• B = geomagnetic field vector

• 400 km altitude and orbital inclination

51.60 => V ~ 50 V at high latitude

• Using the same simple, approximate 

analysis used for solar-array driven 

charging and 50 V instead of  160 V, 

the area ratios will be the same with 

the negative end at about - 42 V and the 

positive end at about + 8 V

• Motional EMF depends on orbital 

velocity and decreases with increasing 

altitude. Motional EMF is 0 at GEO

Flying big metallic structures in LEO can lead to big motional EMF voltages 

across the structure as a result of the Lorentz force:  

V = (v x B) . L

35
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Floating Potential Measurement 

Unit - 2006 to 2017

• FPMU Data Validation

ISS fly-over – MIT’s Millstone Hill 
incoherent scatter radar 

ISS orbital conjunctions with DoD 

C/NOFS Satellite

(Ben Gingras-Boeing Space Environments)
36



National Aeronautics and 

Space Administration
National Aeronautics and 

Space AdministrationISS Charging Measurements:
Floating Potential Measurement 

Unit - 2006 to 2017

• 4 orbits of FPMU data  - PCUs off

37
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Unit - 2006 to 2017

• 4 orbits of FPMU data  - PCUs on

38
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Unit - 2006 to 2017

Solar Array Un-shunting (and Power on Reset, POR) Impact on ISS FP.  Other rapid FP increases have been 
observed without un-shunt or POR (correlated with very low ionospheric plasma density)

39
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And where else might we encounter 

ionospheric plasmas and magnetic 

fields like those in the example?

• Strong planetary magnetic fields?

• In the inner solar system, only Earth and Mercury have 
significant magnetic fields

• The Mercuric field is only about 1% as strong as Earth’s

• The Moon, Mars, Venus, and the near-Earth and main 
belt asteroids have insignificant global magnetic fields

• Cold, dense, ionospheric plasmas like Earth’s?

• Venus below about 420 km altitude (See back-up)

• Mars below about 200 km altitude (See back-up)

• And one other place you might not expect…

40
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• Surrounding your > 200+ kilowatt class, “high” 
thrust, interplanetary transport with electric 
propulsion whenever the Hall effect, 
electrostatic, or VASMIR engines are operating

• If EPS is photovoltaic, you can expect high PV 
string voltages ( > 160V) for efficiency and 
large PV areas for total power requirement

• Some risk questions to consider:

• How much PV array-driven spacecraft charging 
can I expect when the electric engines are 
operating? 

• None if your PCUs are operating

• What happens to vehicle floating potential when 
the high voltage strings are un-shunted?

• What happens if the electric engine neutralizers 
(e.g, PCUs) degrade or fail? 

• Will the PV arrays and power cables be at risk 
for arc tracking? 

• Nuclear power reduces risk, but doesn’t 
eliminate it

• thermoelectric power conversion can also lead to 
high voltage strings exposed to the plasma (NASA 
SP-100) 
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/
19890003294.pdf )

Image credit:ATK Corp.

41

Ira Katz, Alejandro Lopez Ortega, Dan M. Goebel, Michael J. 

Sekerak, Richard R. Hofer, Benjamin A. Jorns, John R. Brophy; 

“EFFECT OF SOLAR ARRAY PLUME INTERACTIONS ON 

HALL THRUSTER CATHODE COMMON POTENTIALS,”  14 th

Spacecraft Charging Technology Conference, ESA/ESTEC, 

Noordwijk, NL, 04-08 APRIL 2016 

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890003294.pdf
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LEO Auroral Charging 
Environments

“11:30:   Transited through a 

very unusual aurora field.  

Started as a faint green cloud 

on the horizon, which grew 

stronger as we approached.  

Aurora filled our view field 

from SM (Service Module) 

nadir ports as we flew through 

it.  A faint reddish plasma 

layer was above the green field 

and topped out higher than 

our orbital altitude.”

Excerpt from ISS Commander 

William Shepherd’s deck log of  

Nov. 10, 2000

42
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LEO Auroral Charging 

Environments

Top: Histogram showing the charging voltage in 

the Freja charging events, which are binned in 

logarithmically spaced intervals.

Bottom: Polar plot illustrating their distribution in 

geomagnetic coordinates. Dots and stars mark 

weak and strong charging (less or more negative 

than −100 V, respectively). Rings denote events in 

sunlight.

ERIKSSON AND WAHLUND: CHARGING OF THE FREJA SATELLITE IN THE 

AURORAL ZONE, IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 5, 

OCTOBER 2006

Freja 
http://space.irfu.se/freja/

590 to 1763 km

43

http://space.irfu.se/freja/
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Another  Simple, Worked Example:
Auroral Charging vs. Capacitance

 Some examples of spacecraft voltage (FP) values that might be expected using 

basic concepts to construct a simple auroral charging model 

 Assumptions 

 The radius of the sphere or the disk is 1 m. 

 Final voltages were calculated using V = Q/C with charge Q in coulombs. Q = i 

πR2  t, where Q is charge in coulombs, i is the net auroral electron current per unit 

area in amps per m2 (2 x 10-5 amps/m2) , πR2 is the area of the object in m2, and t is 

the spacecraft auroral electron stream exposure time in seconds. 

 The particle stream kinetic energy is assumed to be 30 keV; and t, the exposure time, 

is 10 seconds. Note that the voltage cannot exceed the assumed kinetic energy of the 

incoming charged particle current. 

 2 x 10-5 Coulombs/sec/m2 x 10 sec  =  2 x 10-4 Coulombs/m2

 Note that the assumed auroral electron current to the spacecraft is a net current; 

i.e., it is the difference between the incoming auroral electron current and the 

total neutralizing current, which is simply the sum of secondary and 

photoelectron ejection currents and the ion current; Inet = Iaur – (Isec + Iphotoelect + 

Iion). 44
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Another  Simple, Worked Example:
Auroral Charging vs. Capacitance

Effects of Spacecraft Capacitance on Auroral Charging

Auroral charging current =  2 x 10-5 amps/m 2 sec ; duration 10 sec.

Case Capacitance (pF) Floating Potential, (-Volts)

Sphere – free space (R=1 m) 111.26 30,000 (charging time < 1 second)

Sphere – 10-µ dielectric film 1.26  106 2000

Disk – free space ( R = 1m) 70.83 30,000 (charging time < 1 second)

Disk – 10-µ dielectric film 3.3  105 3806

Estimated International Space 

Station 

1.1  1010 ~ 13

Extravehicular Mobility Unit 1.5  106 ~ 27
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And how does that compare to ISS 
flight experience (FPMU data)

Auroral charging events have been 

observed in the FPMU data during 

eclipse at high latitudes.  These events 

correlate with local electron density 

(Ne) enhancements caused by the 

heating  and collisional ionization of 

the plasma.

The ISS was in the auroral zone for 

144 seconds; however the times when 

the FP was rising (i.e.,when ISS 

experienced discrete auroral events) 

were much shorter (~12 seconds).

-18V observed compares well with the 
-13V estimate in the worked example 
table

11/19/2015, Boeing Company, Drew Hartman, Leonard Kramer, 

Randy Olsen: ISS Space Environments SPRT meeting
46
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flight experience (FPMU+DMSP 
data)

11/19/2015, Boeing Company, Drew Hartman, Leonard Kramer, 

Randy Olsen;  ISS Space Environments SPRT meeting

Defense Meteorological Satellite 

Program (DMSP) data (GMT 2008_86) 

show a large frequency of current 

densities above 2x10-5 A/m2 along the 

ISS charging event flight path
http://www.ospo.noaa.gov/Operations/DMSP/

The red line (corresponding to 144 

seconds of flight time) displays the ISS 

trajectory where current densities can 

exceed 2x10-5 A/m2.

The assumption in the new model of 

current collection on ISS anodized Al 

materials (auroral electrons can penetrate 

30 micron chromic anodize coatings) is 

supported by the timelines and 

magnitudes of current densities.

47

http://www.ospo.noaa.gov/Operations/DMSP/


National Aeronautics and 

Space Administration
National Aeronautics and 

Space AdministrationAnd what does this look like on a 
real satellite like DMSP F13? 

Hint – looks like an assembly of smaller capacitors 

48

• USAF Polar charging 

code 

• Voltage and charging 

timeline

• Upper figures wake 

side of vehicle

• Lower figures ram 

side of vehicle

• Note that individual 

dielectrics and conducting 

structure (frame) charge 

differently
• David L. Cook, “Simulation of 

an Auroral Charging Anomaly 

on the DMSP Satellite,”  6th

Spacecraft Charging 

Technology Conference, 

AFRL-VS-TR-20001578, 1 

Sept. 2000
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GEO and Interplanetary 
Charging Environments

http://artemis.igpp.ucla.edu/news.shtml

https://www.fourmilab.ch/earthview/moon_ap_per.html
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GEO and Interplanetary 
Charging Environments

• So, why are we talking about this if there are no planned long-term human flight 
operations at GEO and the agency focus remains the Moon and Mars?

• The Moon is in the Geotail part of Earth’s magnetosphere about 6 days every month 
whenever the Moon is full, or close to it, as seen from Earth

• Similar to GEO or auroral zone charging environment and affected by geomagnetic storms

• The GEO environment is widely considered a worst-case hot-plasma and energetic-
particle spacecraft charging environment for the inner solar system

• Only Jupiter and Saturn are worse (and a lot worse)

• The SLS/Orion Joint Program Natural Environments Definition for Design 
Specification, SLS-SPEC-159 REVISION D November 4, 2015, calls out the GEO 
design environment for GEO and beyond

• Also called out in MPCV 70080, May, 13, 2015, Cross Program Electromagnetic 
Environmental Effects (E3) Requirements Document, Section 3.7, Electrostatic 
Charge Control

• Spacecraft functional verification to the SLS-SPEC-159 extreme GEO design 
environment by test and analysis is expected to cover other interplanetary natural 
environments like solar particle events and coronal mass ejections as well as 
geomagnetic storm effects in cislunar space.
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Charging Environments:

Surface Charging

• High temperature, low density plasma in GEO (and 
possibly SPE and CME) drives surface charging (relatively 
lower energy) environments – similar to auroral charging 
with much lower surface electron currents

• Not always a neutral plasma

• Thermal current to spacecraft surface ~ 0.1 nA/cm2   (<< 
photoelectron emission current) so charging rates can be minutes 
to hours - exposed surfaces can charge to high negative voltages 
in shade or eclipse and to small positive voltage in sunlight

• Possible high energy arcing between shadowed and illuminated 
spacecraft locations on eclipse exit or in sunlight

• Surface charging threat level is variable and affected by space-
weather events

• Some Mitigations

• Selection of static dissipative materials for exposed surfaces

• Static dissipative coating on exposed surfaces  ITO surface 
coatings are often used to mitigate differential surface charging

• Active detection of surface charging threat with PCU operations 
to create a static dissipative plasma around the spacecraft  during 
the threat interval 51

Differential surface charging because 

of self-shadowing in GEO surface 

charging environment

http://holbert.faculty.asu.edu/eee560/spc-chrg.html
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Charging Environments:

Internal Charging

• Internal charging processes are driven by the high- energy 
end of the plasma electron population and the electron 
component of the trapped radiation and possibly the SPE 
environments 

• Environmental risk is highly variable and driven by space-
weather events

• Safeing the spacecraft during high threat times can reduce risk

• Charging rates are on the order of hours to days

• Primary Spacecraft internal charging targets are:

• Insulators such as cable wrap, 

• Wire insulation, 

• Circuit boards and integrated circuits, 

• Electrical connectors, 

• Feed throughs,

• Arc-tracking can be an important hazard effect

• Internal charging hazard risk depends on material properties 
and configuration (shielding mass helps)

• Secondary electron emission yield

• Dielectric thickness - d

• Resistivity  - σ

• Relative permittivity  - ε

• And their ratio, the dielectric time constant  - τ =  ε/σ
52

descanso.jpl.nasa.gov/SciTechBook/st_series3_chapter.html

Very approximately we can estimate the voltage 

across the dielectric from the electron charging 

current and the material properties…

J [A/cm²] = [e/cm²·sec] q [C/e]

E(t) = V(t)/d = J /σ [1 - exp(-t/τ) )] 

For a more exact treatment see 

https://descanso.jpl.nasa.gov/SciTechBook/series3/11DIntnlChging.pdf

https://descanso.jpl.nasa.gov/SciTechBook/st_series3_chapter.html
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Charging modeling and observations in 
cislunar space

• The Moon has no atmosphere capable of blocking solar wind plasma or energetic particles

• Orbiting spacecraft and the lunar surface are exposed to similar charging threat environments

• Lunar Orbital/Surface Charging Threat Environments 

• Earth’s magneto-tail (current sheet) hot plasma electrons - A few days on each side of full moon 
as viewed form Earth

• Solar Particle Events (energetic electrons and protons)

• Lunar Prospector cislunar Charging Observations - SPE

• Lunar surface night-side surface potentials to -4.5 kV

• Spacecraft potentials to -100 to -300 V

• Lunar Prospector cislunar Charging Observations – Geotail current sheet region 

• Lunar surface potentials -100 V to -1000 V in sunlight

• Spacecraft potentials -40  to -80 V

• Artemis/Themis Charging Observations

• Lunar surface potentials -20 V to -600 V, depending on current sheet electron temperature

• Bottom line for now – cislunar environment can be similar to GEO and auroral charging 
environments, but less severe

• The GEO design environment should cover expected conditions

• However, more charging environment data is needed here 53
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Space Weather and Charging 
Environment Variability
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Space Weather and Charging 
Environment Variability

• Geospace, Cis-Lunar, and interplanetary environments are subject to 
substantial space weather driven variability

• Ionospehric and solar wind space plasmas

• Radiation belts

• Solar particle events

• Solar flares and Coronal Mass Ejections

• Geomagnetic storms

• http://spaceweather.com/
• A useful site for the novice and the experienced space environments 

specialist

• National Oceanics and Atmospherics Administration (NOAA) Space 
Weather Prediction Center – Boulder,  Colorado

• http://www.swpc.noaa.gov/

• Really massive resource that you should explore

• With respect to spacecraft charging, there isn’t a lot you can do to “safe” 
the vehicle during a space-weather event.  
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So what do I do about all this and 
what happens if I don’t?
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So what do I do about all this?

 What is the Charging Environment for the design reference mission, and does it 
cover a reasonable worst case?

 How much charging can I expect  and when?

 How do I prevent the charging or render it harmless?
 Grounding, bonding, and EMI/EMC compatibility

 PC board design rules to minimize internal charging/discharging risks

 Eliminate potentially hazardous EPS/Avionics configurations

 Can I direct charging/discharging currents around or away from critical, sensitive equipment and 
astronauts?

 Materials selection and static dissipative coatings

 Is shielding mass for worst-case energetic electron charging environment possible?

 Can I select static dissipative or low-charging materials? 

 Active control during severe charging events (i.e., a PCU or something like it)

 Are there any options for operational hazard controls such as powering down high-voltage 
systems during extreme charging events?

 Become familiar with NASA and DoD Standards, Guidelines, and Preferred 
Practices for managing spacecraft charging (see the back-up)

 See the JPL Voyager spacecraft charging design and verification process  -
Voyager survived the Jupiter and Saturn fly-by environments only because 
charging hazards were mitigated by design and verification before flight. 

 A. C. Whittlesey, “Voyager electrostatic Discharge Protection Program,”  IEEE International 
Symposium on EMC, Atlanta Georgia, pp. 377-383, June 1978

 Garrett, H. B., and A. C. Whittlesey. Guide to Mitigating Spacecraft Charging Effects, 
John Wiley and Sons, Hoboken, New Jersey, 2010 57
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And what happens if I don’t?

ADEOS – II:  Probable auroral
charging/discharging event, leading 

to loss of mission
 Orbit 

 Polar - Sun-synchronous 

 Orbit Altitude 802.92km 

 Inclination 98.62 deg

 Period 101 minutes 

 Failure

 On 23 October 2003, the solar electrical power system failed 

after passing though the auroral zone (high altitude)

 At 23:49 UTC, the satellite switched to "light load" operation 

because of an unknown error. This was intended to power 

down all observation equipment to conserve energy.

 At 23:55 UTC, communications between the satellite and the 

ground stations ended, with no further telemetry received.

 Further attempts to procure telemetry data on 24 October (at 

0025 and 0205 UTC) also failed.

 JAXA determined that the total loss of ADEOS-II, a PEO satellite 

with bus voltage of fifty volt, attributed to interaction between the 

auroral electron/plasma environment and the improperly grounded 

MLI around  the main EPS wire harness causing a destructive “arc 

tracking” failure of the wire harness. 

 The loss of ADEOS-II investigation revealed that auroral charging 

of a polar satellite could cause serious failure, including total loss.

 MM/OD impact creating an arc plasma and triggering the main 

discharge on the power harness is another possibility
58

1) Kawakita, S., Kusawake, H., Takahashi, M. et al., 

“Investigation of Operational anomaly of ADEOS-II 

Satellite,” Proc. 9th Spacecraft Charging Technology 

Conf., Tsukuba, Japan, 4-8 April 2005.

2) Nakamura, M., “Space Plasma Environment at the 

ADEOS-II anomaly,” Proc. 9th Spacecraft Charging 

Technology Conf., Tsukuba, Japan, 4-8 April 2005.
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And what happens if I don’t?

ADEOS – II:  Probable auroral
charging/discharging event, leading 

to loss of mission
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References and Back-Up
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Spacecraft-charging 
material properties
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Spacecraft-charging 
material properties
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Some recommended materials Some materials to avoid (if you can)

https://descanso.jpl.nasa.gov/SciTechBook/series3/07Chapter6MatlNotesTables.pdf
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ESA – Mars Express

http://sci.esa.int/mars-express/51106-dayside-and-night-side-profiles-of-the-martian-ionosphere/
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ESA – Venus Express Radio Science

The structure of Venus' middle atmosphere and ionosphere
M. Pätzold, B. Häusler, M. K. Bird, S. Tellmann, R. Mattei, S. W. Asmar, V. Dehant, W. Eidel, T. Imamura, R. A. Simpson & G. L. Tyler
Nature 450, 657-660(29 November 2007)
doi:10.1038/nature06239
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Earth’s  Ionosphere: Altitude 
Profile and Geography

http://giro.uml.edu/IRTAM/
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Earth’s  Ionosphere: 
Altitude Profile

http://www.haystack.edu/obs/mhr/index.html
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FPMU on ISS
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FPMU vs. Boeing Plasma Interaction 

Model  - 2007 to 2013

STARBOARD TRUSS TIP, Scatter 

Plot, 2007-188 to 2013-105

PORT TRUSS TIP, Scatter 

Plot 2007-188 to 2013-105

Scatter Plot at FPMU Location,

2007-188 to 2013-105 (2328 points)

These points are associated with a phenomena that we call “rapid increase in potential or rapid charging peaks”. 

These events have a duration of 2 to 3 seconds or less and do not contribute significantly to the EVA shock hazard.
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Final SSPCB approval of ISS EVA shock hazard management plan

https://iss-www.jsc.nasa.gov/nwo/ppco/cbp_sscb/bbt_docs/bbtcal/Agenda.6.20-Oct-2015.htm

https://iss-www.jsc.nasa.gov/nwo/ppco/cbp_sscb/bbt_docs/bbtcal/Agenda.6.20-Oct-2015.htm
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A Simple Worked Example:

Solar Array Driven Charging in 

LEO ( ~ ISS) 
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Acronyms and Abbreviations 

• ADEOS Advanced Earth Observation Satellite

• ATK Alliant Techsystems, Inc.

• C&DH Command and Data Handling

• cm centimeter

• CNOFS Communications and Navigation Outage forecast Satellite

• C&T communications & tracking

• DMSP Defense Meteorological Satellite Program

• DoD Department of Defense

• DSCS Defense Services Communications Satellite

• EM electromagnetic

• EMC electromagnetic compatibility

• EMF electromagnetic force

• EMI electromagnetic interference

• EPS Electrical Power System

• ESA European Space Agency 

• ESD electrostatic discharge

• EURECA European Retrievable Carrier

• EVA extravehicular activity

• FP floating potential

• FPMU Floating Potential Measurement Unit

• GEO Geosynchronous/Geostationary orbit

• GN&C guidance, navigation, and control

• GSFC Goddard Space Flight Center

• HTV H-II Transfer Vehicle

• ISS International Space Station

• ITO indium tin oxide

• JAXA Japan Aerospace Exploration Agency

• JPL Jet Propulsion Laboratory

• keV kilo electron volt

• km kilometer

• L length

• LEO low Earth orbit

• MeV mega  electron volt

• MLI multi layer insulation

• MM/OD micrometeoroid/orbital debris

• MPCV                    Multi Purpose Crew Vehicle (Orion)

• Ne electron density

• NOAA National Oceanic and Atmospheric Administration

• PCU                        Plasma Contactor Unit

• PEO Polar Earth Orbit

• PIM                        Plasma Interaction Model 

• POR                       Power on Reset

• PTCS                      Passive Thermal Control Surface

• PV                          Photovoltaic

• RF radio frequency

• SM Service Module

• SPE Solar Particle Event

• SPRT                      System Problem Resolution Team

• UARS Upper Atmospheric Research Satellite

• USAF United States Air Force

• UT universal time

• UV                         Ultraviolet Light

• V volt

• VASMIR        Variable Specific Impulse Magnetoplasma Rocket
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