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Nanoparticles (NPs) typically accumulate in lysosomes. However, their

impact on lysosomal function, as well as autophagy, a lysosomal degradative

pathway, is still not well known. We have previously reported in the 1321N1

cell line that amine-modified polystyrene (NH2-PS) NPs induce apoptosis

through damage initiated in the lysosomes leading ultimately to release of

lysosomal content in the cytosol, followed by apoptosis. Here, by using a com-

bination of biochemical and cell biological approaches, we have characterized

in a mouse embryonic fibroblast cell line that the lysosomal alterations induced

by NH2-PS NPs is progressive, initiating from mild lysosomal membrane per-

meabilization (LMP), to expansion of lysosomal volume and intensive LMP

before the summit of cell death. Though the cells initially seem to induce

autophagy as a surviving mechanism, the damage of NH2-PS NPs to lyso-

somes probably results in lysosomal dysfunctions, leading to blockage of

autophagic flux at the level of lysosomes and the eventual cell death.
1. Introduction
Damage to lysosomes has recently been proposed as an emerging mechanism of

nanotoxicity [1,2], as most endocytosed nanoparticles (NPs) accumulate within

the lysosomal compartments without evident exit [3–5]. Evaluating lysosomal

function after NP accumulation in the lysosomes is important to analyse the toxi-

cological consequences of NPs [2,6]. The so-called ‘protein corona’, namely layers

of proteins and other biomolecules (adsorbed from the cell medium) on the sur-

face of NPs [7,8], also needs to be considered when examining nanotoxicity [9,10].

The composition of the corona is highly dependent on the properties of NPs and

media. When exposed to NPs, the cells ‘see’ the NP/corona complexes, but not

the pristine NPs per se [11,12]. Using amine-modified polystyrene (NH2-PS)

NPs as an example, we have previously shown that the NP/corona complexes

enter cells together and home in lysosomes [9,13]. Once inside lysosomes, the

corona gets degraded by lysosomal enzymes. The degradation of the original

corona layer is accompanied by strong lysosomal alterations [9,14,15]. Although

several reports have proposed the so-called ‘proton sponge’ effect as the mechan-

ism of lysosomal damage by nanomaterials [16,17], similar effects have been

reported also for materials not capable of buffering the lysosomal pH [9,18].

Other mechanisms have also been proposed, involving for instance damage to

chloride channels [19].

Lysosomal alterations are tightly related with lysosomal dysfunction and have

been shown to be crucial in a plethora of cell death scenarios and pathological
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contexts [20,21]. Lysosome-dependent cell death proceeds

upon lysosomal membrane permeabilization (LMP), resulting

in the release of lysosomal contents, including proteolytic

enzymes of the cathepsin family, to the cytoplasm [20,22].

Moreover, lysosomal alterations can be associated with dereg-

ulation of autophagy in cell death and diseases [20,23,24].

Autophagy is a self-digestive process dependent on lysoso-

mal degradation, and it is classified as macroautophagy,

chaperone-mediated autophagy and microautophagy. In

macroautophagy (hereafter referred to as autophagy), a

double membrane structure is generated to engulf some cyto-

solic components (such as damaged proteins and organelles)

to form autophagosomes. The resulting autophagosomes

further fuse with lysosomes to form autolysosomes, in which

lysosomal proteases could degrade the engulfed components

inside autophagolysosomes [25,26]. Therefore, when lyso-

somes suffer dysfunction, fusion between autophagosomes

and lysosomes and/or degradation of autophagosomes is

compromised, affecting autophagy.

The widely used method to analyse autophagy is the detec-

tion of the lipidated form of the microtubule-associated protein

1 light chain 3, or LC3-II, as it is recruited to the membrane

of autophagosomes. The amount of LC3-II is relative to the

amount of autophagosomes [27]. However, both induction

and blockage of autophagy could result in the increase of

LC3-II level [27,28]. The more precise autophagy analysis

is therefore to measure autophagic flux (or the rate of

autophagy), in which the turnover of LC3-II is analysed in

the presence and absence of lysosomal inhibitors, such as

chloroquine, bafilomycin A and protease inhibitors [27,29].

A number of NPs have been reported to either activate or

block autophagy, as is summarized in the review of Stern et al.
[2,30]. The autophagy modulating property of NPs can, on the

one hand, be employed for drug targeting purposes [1,31],

while on the other hand, it has been suggested as a toxicity

mechanism of NPs [2]. Nevertheless, very often the possibility

of autophagy blockage induced by NPs was overlooked, as

most detection of autophagy was done by measurement of

LC3-II level alone, as is also mentioned in the review of Stern

et al. [2]. Moreover, in order to be able to determine the flux,

this kind of assay should be done over time, rather than just at

a single time point with different NP doses [32].

Here, using mouse embryonic fibroblast (MEF), by combin-

ing fluorescence imaging, flow cytometry and cell fractionation

assays, we demonstrate that NH2-PS NPs cause progressive

lysosomal alterations, from earlier mild LMP to later lysosomal

expansion and massive LMP. We also decipher what are the cell

death ‘signals’ coming from the ‘leaking’ lysosomes that exacer-

bate cell death. Furthermore, we describe how autophagy was

affected during the dynamic change of lysosomal status after

NP treatment.
2. Results
2.1. Nanoparticles induce lysosomal alterations and

cell death

2.1.1. Nanoparticles accumulate in lysosomes and cause
lysosomal expansion and cell death

We and others have shown that most NH2-PS NPs enter cells

by endocytosis and are delivered to lysosomes in several
human cell lines [5,9,14,33]. We have examined the cellular

localization of NH2-PS NPs in MEF cells by confocal

fluorescence imaging. MEF cells were stained with the

lysosomotropic dye-LysoTracker Red (LTR) that selectively

accumulates in the cellular acidic compartments (mainly lyso-

somes). The confocal images in figure 1a illustrate that some

NH2-PS NPs (which fluoresce in blue channel but are coloured

in green here for better visualization) can be found to colocalize

with LTR (in red) as soon as 3 h exposure, confirming that NH2-

PS NPs accumulate to lysosomes in MEF cells, in agreement

with what has been observed in other cell types. Strikingly,

after 6 h exposure to NH2-PS NPs, the LTR positive vesicles

significantly expand (electronic supplementary material,

figure S1), indicative of lysosomal swelling, similar to the

observations in other cell types [9,14].

To further investigate the effect of NH2-PS NPs on lysosomal

function and cell viability, cells were co-stained with the

lysosomotropic dye-LysoTracker Green (LTG) and viability

dye-propidium iodide (PI), followed by flow cytometry

measurement. Untreated cells show positive lysosomal staining

and no rupture of the plasma membrane (LTGþ/PI2)

(figure 1b). After 3 h exposure to NH2-PS NPs, we have first

observed a reproducible increase of cells with mild or partial

LMP but still intact plasma membrane (LTG2/PI2, coloured

in cyan) (figure 1b,c), similar to the onset of lysosomal-dependent

cell death reported elsewhere [20,23].

We have included the positive control t-BuOOH, a classi-

cal LMP inducer that causes lysosomal damage via oxidative

stress [20,21]. The percentage of LTG2/PI2 cell population

increases with longer exposure time and higher concentration

of t-BuOOH (electronic supplementary material, figure S2,

coloured also in cyan), supporting that the LTG2/PI2 cell

population after 3 h exposure to NPs shows LMP. Cells even-

tually become LTG2/PIþ (coloured in green; electronic

supplementary material, figure S2) after t-BuOOH treatment,

which corresponds to total rupture of lysosomes and late

stage cell death.

Intriguingly, this LTG2/PI2 population (in cyan) cannot

be observed at longer exposure time to NH2-PS NPs

(figure 1b, NP 6 h, 8 h and 24 h; figure 1c; electronic sup-

plementary material, figure S3A). Instead, the LTG intensity

of the LTGþ/PI2 (in red) population increases over time, as

is quantified in figure 1d and electronic supplementary

material, figure S3B. This result is coherent with the lysosomal

swelling phenomenon, observed with confocal fluorescence

imaging in figure 1a and previously reported data obtained

with the same particles in 1321N1 cells [14].

Similar data were obtained with a different dye combi-

nation, namely lysosomotropic dye LTR and viability dye

TO-PRO-3, to exclude the artefacts potentially caused by

interference between fluorescence dyes. The results (electronic

supplementary material, figure S4) also show a population

with LTR2/TO-PRO-3- (highlighted in the cyan box) upon

3 h exposure to NH2-PS NPs, with an increase of LTR intensity

of LTRþ/TO-PRO-3- at the later exposure time points,

confirming the above results obtained with LTG/PI staining.

We further assessed the destabilization of lysosomes

after NP treatment by ultrastructure transmission electron

microscopy (TEM) analysis. Polystyrene NPs have an electron

density very similar to cells and could be very difficult to

detect once internalized. However, careful observations and

comparison with control cells allow us to define structures that

are likely to be NPs inside endolysosomes (ELs). Interestingly,

http://rsob.royalsocietypublishing.org/
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Figure 1. Confocal imaging and flow cytometric analysis show NH2-PS NPs induce lysosomal damage. (a) Confocal images of LTR staining. MEF cells were treated
with NH2-PS NPs (green) for 0, 3 and 6 h and stained with LTR (red). The images indicate accumulation of NPs into lysosomes at 3 h and lysosomal swelling at 6 h.
Zoomed images of cells are shown in the bottom panel. The quantification of lysosomal size is shown in electronic supplementary material, figure S1. (b) Flow
cytometric analysis of LTG/PI double staining. MEF cells were treated with NH2-PS NPs for indicated time points and stained with LTG and PI. The dot plots of PI
versus LTG are illustrated. (c) The percentage (%) of LTG2/PI2 cells in (b) at indicated time points. (d ) The MFI of LTG of LTGþ/PI2 cells in (b) at indicated time
points. Results are the mean of three experiments, each with two replicates, and the error bars are the standard deviations. (e) TEM images of 1321N1 cells treated
with NPs for 6 h. A whole cell is shown in the top panel and a lysosome from this cell is shown in the bottom panel. White arrows indicate permeabilized lysosomal
membrane.
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in some cases abnormal morphology of ELs was also observed

after exposure to NH2-PS NPs. In addition, some NP-loaded

ELs displayed clear interruptions of their membrane, indicative

of LMP (figure 1e; electronic supplementary material, figures S5

and S6, white arrows).

Together these data show dramatic and dynamic altera-

tions in lysosomal morphology after NP treatment, from

mild LMP to lysosomal swelling and destabilization.

2.1.2. Nanoparticles induce lysosomal membrane
permeabilization and cathepsin release

The characteristic sign of LMP is the release of lysosomal

content, such as cathepsins, into the cytosol [20]. Lysosomal

proteases cathepsin B and D normally reside within the
lysosomal lumen, and upon LMP they can be released to cyto-

sol, leading to cell death [20,34]. To verify the mild LMP after

3 h exposure to NH2-PS NPs, we performed cell fractionation,

followed by western blot, to detect cathepsin B and D in cyto-

solic fractions of cells after exposure to NH2-PS NPs. Cathepsin

D has an unprocessed form (58 kDa) and a processed form

(27 kDa). The smaller processed form was clearly observed

in the cytosolic fraction after 3 h exposure to NPs (figure 2a),

confirming that the LTG2/PI2 population observed above

(figure 1b,c) also after 3 h exposure time to these NPs is

indeed a cell population with LMP. After 6 h exposure to

NH2-PS NPs, cathepsin B (38 kDa) can also be detected in

cytosolic fractions (figure 2a). The cytosolic levels of both cath-

epsins increase with exposure time to NH2-PS NPs, consistent

with the progressive lysosomal damage observed with LTG/

http://rsob.royalsocietypublishing.org/
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PI staining in figure 1b and electronic supplementary material,

figure S3.

2.1.3. NH2-PS nanoparticles induce lysosomal-dependent cell
death

Release of cathepsins from lysosomes to cytosol can lead to var-

ious apoptosis signalling [20,35–37]. We have observed that

these NPs induce early apoptosis at around 8 h in MEF cells

as AnnexinVþ/PI2 cells can be detected (electronic sup-

plementary material, figure S7). As expected, at later time

points, apoptosis proceeds to necrosis, where most of the cells

are AnnexinVþ/PIþ. This is in line with what we have pre-

viously observed in 1321N1 cells [14,15]. To continue, we

examined whether the cell death induced by NH2-PS NPs was

dependent on cathepsins by using cathepsin inhibitors. Since

we have observed the release of cathepsin B and D into cytosol
upon NP treatment, we used E64d and pepstatin A (Pep A) to

inhibit their activities, respectively. Cells were exposed to

NH2-PS NPs with or without these inhibitors, and the percen-

tage of cell death was measured by flow cytometry analysis of

PI staining (figure 2b). The results show that E64d decreases

the cell death by 20% as compared with cells treated by NH2-

PS NPs alone, which may suggest a specific role for cathepsin

B in the cell death induced by these NPs. Inhibition of cathepsin

D by Pep A however does not seem to affect the extent of cell

death induced by these NPs, suggesting that either this drug

is less effective [38] or that cathepsin D plays a minor role in

propagating the damage and leading to cell death.

ROS is a well-known inducer of LMP [20,36]. Interestingly,

many NPs are known as ROS generators due to their reactive

particle surface [16,39]. However, it is essential to distinguish

this primary ROS generated at the surface of NPs from second-

ary ROS originated in cells as a consequence of cell damage of a

http://rsob.royalsocietypublishing.org/
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different nature (rather than a direct reaction on the NP surface).

In this context, NH2-PS NPs do not have the capacity to produce

ROS directly on their surface [40]. Thus, in this case, eventual

ROS in cells is due to the damage they induce on cell structures,

such as lysosomes and mitochondria. We have previously

studied in detail whether ROS are generated before or after

the observed lysosomal alterations induced by these NPs.

With a time-resolved study, we could determine that ROS is

generated downstream as a consequence of the release of the

lysosomal content in the cytosol in 1321N1 cells [14]. Here we

examined if NH2-PS NPs induced ROS in MEF cells as well.

In line with our previous observations in 1321N1 cells, we

have observed that in MEF cells NH2-PS NPs induce a fivefold

increase of ROS measured by CM-H2DCFDA, after 3 h incu-

bation of NPs (figure 2c), thus in the same time range in

which NPs are trafficked to lysosomes. A dramatic 20-fold

increase of ROS can be observed after 8 h exposure to NPs, indi-

cating a substantial mitochondrial damage (figure 2c; electronic

supplementary material, figure S8). Indeed, TEM images show

that after 8 h NP treatment, mitochondria lost their cristae,

indicative of damage to mitochondria (electronic supplemen-

tary material, figure S9). This massive amount of ROS

probably further amplifies the damage induced by these NPs,

leading ultimately to cell death [20,36].

Oxidative damage to lysosomes can be catalysed by intraly-

sosomal low mass iron, a majority part of cellular redox-active

iron, which sensitizes lysosomal membrane and leads to event-

ual lysosomal rupture and cell death. Iron chelators, such as

desferrioxamine (DFO), have been shown to protect cells from

oxidative stress [41]. DFO enters cells via endocytosis, and

accumulates to lysosomes, where it acts as a lysosomal ROS

inhibitor by chelating lysosomal redox-active iron. Pre-incu-

bation with DFO in MEF cells significantly reduces the cell

death induced by NH2-PS NPs (figure 2d), confirming that

the generation of ROS following exposure to NH2-PS NPs is

key in the following propagation of cell damage leading to

cell death.

2.2 Nanoparticles affect autophagic pathway

2.2.1. Nanoparticles alter autophagic flux

Lysosomal alterations could directly affect autophagy [23]. We

therefore examined the generation of autophagosomes and

their fusion with lysosomes, by co-transfecting MEF cells

with LC3-RFP (red) plasmid to label autophagosomes and

lysosomal associated membrane protein 1 (LAMP1)-GFP

(green) plasmid to label lysosomes, after exposure to NH2-PS

NPs (visualized as blue). The confocal fluorescence images

show that most NH2-PS NPs colocalize with LAMP1-GFP

and the enlargement of lysosomal compartments can be

observed after 6 h exposure to NH2-PS NPs (figure 3a; elec-

tronic supplementary material, figure S10), consistent with

the results obtained by LTR staining in figure 1a. The LC3-

RFP vesicles colocalize with LAMP1-GFP in the earlier hours

(0, 3 and 6 h), suggesting that autophagosomes, at this stage,

are capable of fusing with lysosomes. However, at 12 h and

16 h, there seems to be more LC3-RFP-positive autophago-

somes (with much bigger size) that do not colocalize with

LAMP1-GFP positive lysosomes (white arrows).

To further examine autophagosomes and their fusion with

lysosomes after treatment of NH2-PS NPs, MEF cells were

transfected with RFP-GFP tandem fluorescent-tagged LC3
(tf-LC3) plasmid that allows for autophagy flux assessment

[42]. After transfection, autophagosomes show yellow fluor-

escence, because LC3 is conjugated with both RFP and GFP;

when autophagosomes fuse with lysosomes to form autolyso-

somes, the GFP gets quenched in the acidic lysosomes,

therefore autolysosomes show red fluorescence [42]. In the

untreated cells, the numbers of yellow (autophagosomes)

and red (autolysosomes) punctate structures are both low

(figure 3b), which corresponds to the basal level of autophagy.

After 6 h NP treatment, more red autolysosomes can be

observed, indicative of functional autophagic flux at this

stage, which leads to the quenching of the GFP fluorescence

of tf-LC3 in autolysosomes. However, after 8 h exposure to

NH2-PS NPs, mainly yellow autophagosomes can be detected,

similar to the accumulation of yellow autophagosomes after

treatment of hydrochloroquine (HCQ) that is known to elevate

lysosomal pH and block autophagic flux [43–45]. Combining

the results of LC3-RFP/LAMP1-GFP and tf-LC3, we suspect

that a blockage of autophagy is likely after 8 h exposure to

NH2-PS NPs.

We have also performed TEM to examine the morphology

of autophagosomes and ELs. We have observed a massive

accumulation of double and multiple membrane structures,

namely autophagosomes (APs) and multivesicular bodies

(MVBs) [46], in the cells treated by NH2-PS NPs for 8 h

(figure 3c; electronic supplementary material, figure S11A).

Moreover, we have observed that vesicles containing NH2-PS

NPs (probably endosomes or lysosomes) are surrounded by

double membrane structures (black arrows in figure 3c, left

panel; electronic supplementary material, figure S11A),

suggesting that they could be amphisomes (formed by fusion

between autophagosomes and endosomes) or autolysosomes.

Finally, we have evaluated the autophagic flux through

western blot detection of LC3-II in the presence or absence of

lysosomal inhibitors and the levels of the autophagy substrate

p62. We have observed that NP treatment can increase the

levels of LC3-II after 8 h exposure to NH2-PS NPs (figure 4a;

electronic supplementary material, figure S11B), confirming

the accumulation of autophagosome after 8 h NP treatment.

The accumulation of LC3-II can be either induction or blockage

of autophagic flux [29]. To assess the autophagic flux, we have

compared the difference of LC3-II levels after NP treatment

with or without lysosomal inhibitor HCQ over time. The result-

ing plot indicates that autophagic flux is slightly induced after

3–6 h treatment of NH2-PS NPs; however, after 8 and 24 h

exposure to NH2-PS NPs, there is a decrease of autophagic

flux (figure 4b). This correlates with the western blot detection

of p62 (figure 4a), a substrate which is degraded by autophagy

[47]. We have first observed a decrease of p62 in the first 6 h of

NP treatment (indicative of induced autophagic flux), followed

by an increase of its amount after 8 and 24 h (reflecting the

blockage of autophagic flux). Together with the fluorescence

images shown above (figure 3a,b), our data strongly indicate

that in the first 6 h exposure to NPs, autophagy is functional,

while after 8 h NPs induce blockage of autophagic flux, prob-

ably due to the fact that lysosomes are severely damaged at

this time.

2.2.2. Nanoparticles interact with PI3 K/AKT/mTOR signalling
pathway

The phosphatidylinositol-3-kinase (PI3 K)/AKT/mTOR (mam-

malian target of rapamycin) signalling pathway is known to

http://rsob.royalsocietypublishing.org/
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regulate autophagy in response to nutritional status and other

stimuli [48]. PI3 K activated by pro-surviving signals could in

turn activate and phosphorylate AKT. Activated AKT signals

to mTOR, which activates and phosphorylates its downstream

effector p70S6 kinase (S6 K). This pathway negatively regulates

autophagy [49]. Therefore, the amount of phosphorylated ATK

and S6 K (pATK and pS6 K) negatively correlate with autop-

hagy activation. After exposure to NH2-PS NPs, we have

observed a decrease of pAKT at 8 h and pS6 K at 24 h (electronic

supplementary material, figure S11C), indicative of inhibition of

mTOR and activation of autophagy. This is consistent with the

induction of autophagy observed above. Similar activation of

autophagy through PI3 K/AKT/mTOR signalling pathway

after exposure to NH2-PS NPs has been observed in RAW
264.7 and BEAS-2B cells [50]. In conclusion, NH2-PS NPs

regulate mTOR-dependent autophagy.

2.2.3. Inhibition of autophagy sensitizes cells to
nanoparticle treatment

The role of autophagy can be different in different cell death

scenarios. In many cases, autophagy serves as a survival mech-

anism to cope with the cellular stress; however, in other cases,

cells also die with autophagic features [51,52]. Here, we exam-

ine the role of cell death with pharmacological inhibitors of

autophagy, including both 3-methyladenine (3-MA) and wort-

mannin. When MEF cells were treated with NH2-PS NPs in the

presence of 3-MA or wortmannin, we observed an elevated
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level of cell death (figure 4c; electronic supplementary material,

figure S12), indicating that autophagy is a pro-survival mech-

anism in the cell death induced by NH2-PS NPs. This result

also supports the results of inhibition of mTOR after 8 h

(§2.2.2) that autophagy is indeed activated in order to deal

with the damage induced by NPs. Interestingly, autophagy

induction with rapamycin augmented cell death (figure 4c;

electronic supplementary material, figure S12), suggesting

that increasing autophagosome formation under conditions

of lysosomal dysfunction is detrimental for cell survival. In

all, lysosomes are no longer functional after NP treatment

and autophagy fails to save the cells from the NP-induced

stress, leading to accumulation of autophagosomes and

eventual cell death [23,42].

2.2.4. Impact of nanoparticles on autophagy in 1321N1 cells

We have previously demonstrated that in 1321N1 cells, NH2-PS

NPs induce accumulation of autophagosomes by both western

blot and confocal fluorescent imaging of LC3-II [14]. Here, we

have complemented this study by examining autophagosomes

via TEM, assessing autophagic flux and monitoring PI3 K/
ATK/mTOR signalling pathway in parallel with the above

studies in MEF cells. First, TEM (electronic supplementary

material, figure S13A) results show that double and multiple

membrane structures can be found after NP treatment in

1321N1 cells, confirming the accumulation of autophagosomes.

Then we have analysed the autophagic flux in 1321N1 cells after

exposure to NH2-PS NPs. The analysis of LC3-II levels upon NP

exposure with or without HCQ suggests that the autophagic

flux is decreased after NH2-PS NPs treatment even after 1 h

exposure to NH2-PS NPs (electronic supplementary material,

figure S13b,c), indicating that the accumulation of LC3-II is

due to blockage of autophagy after NP treatment. We have

also tested E64d as a lysosomal inhibitor, and we have observed

no increase of LC3-II in the presence of E64d upon exposure to

NH2-PS NPs compared with that of NP treatment alone (elec-

tronic supplementary material, figure S13D), supporting that

autophagic flux was indeed blocked upon NP treatment. p62

level was also assessed, and we have observed only a small

decrease of p62 after 1 h treatment, and the amount increases

after 3 h NP treatment (figure 13B), confirming the blockage

of autophagy after exposure to NH2-PS NPs at this exposure

time. The decrease of pAKT and pS6 K has been observed at
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6 h exposure to NH2-PS NPs. All these results suggest that in

both MEF and 1321N1 cells, autophagy could be activated

upon NP exposure; however, the final consequence is the over-

all blockage of autophagic flux, due to the severe damage to

lysosomes.
3. Discussion
3.1. The time profile of lysosome and autophagy

alternations induced by nanoparticles
We summarize the progression of alternations of lysosomes and

autophagy induced by NH2-PS NPs in MEF cells in figure 5.

NPs accumulate to lysosomes as early as 3 h after exposure

and they lead to mild LMP, detected by loss of LysoTracker

staining (figure 1b,c) and release of cleaved cathepsin D

(27 kDa), a relatively small component from lysosomes, into

the cytosol (figure 2a). After 6 h of incubation with NPs, lyso-

somes have been found to be dramatically expanded,

illustrated by increased intensity of LysoTracker (figure 1a,b,d)

and enlarged lysosomes (electronic supplementary material,

figure S1). At the same time, a larger lysosomal component,

cathespin B (38 kDa), can be found in the cytosol, reflecting a

larger extent of LMP than that after 3 h exposure time to NPs.

At this stage, autophagy is still functional and autophagosomes

can fuse with lysosomes for degradation (figures 3a,b and 4b).

Eight hours seems to be a critical point after NP treatment,

when many signalling events occur. The lysosomal volume is

increased even more (figure 1b,d), accompanied by even more

severe LMP (figure 2a). The released cathepsins could cleave

cytosolic proteins and lead to caspase-independent cell death

(figure 5, process a), and at the same time they can also perturb
mitochondria, resulting into ROS generation that further

propagates the cell damage (figure 5, process b) [20,36,37,53].

Mitochondrial outer membrane permeabilization is marked

as the ‘point-of-no-return’ for cell death (figure 5, process c).

The massive ROS generated by damaged mitochondria could

in turn further damage lysosomal membranes, forming a

‘feedback’ loop (figure 5, process d) [54]. The damaged mito-

chondria and ROS could induce autophagy to remove the

damaged mitochondria (figure 5, process e) [55]. However,

because the lysosomes are not functional any more, the

generated autophagosomes are no longer able to fuse with lyso-

some and get degraded (figure 5, process f), which aggravates

NP-induced cell death.

3.2. The lysosomal membrane permeabilization induced
by NH2-PS nanoparticles is progressive

In this study, using two distinct methods, we provide a very

refined illustration of LMP induced by NH2-PS NPs in MEF

cells, where mild LMP can be detected as early as after 3 h

exposure to these NPs, probably in a small population of

MEF cells that are more sensitive to NPs. The mild LMP

can be detected by the loss of LysoTracker dyes already at

3 h exposure to these NPs (figure 1b,c), preceding cell

death, as those cells are still negative to the viability dye PI.

It correlates well also with the detection of cleaved cathepsin

D (27 kDa), a relatively small component from lysosomes, in

the cytosol at 3 h (figure 2a). After 6 h exposure, cathepsin B,

with higher molecular weight (38 kDa), can be detected in the

cytosol as well. This strongly supports that the LMP induced

by these NPs is mild and partial at the earlier exposure times

to NPs and progressively aggravates with time. This size-

selective LMP has been reported earlier, in which smaller
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FITC-dextran molecules were released from apoptosis-associ-

ated LMP, while larger dextran molecules were retained [56].

This early LMP at 3 h is likely to be upstream of all other

apoptotic events, as a small percentage of cells are detected

as Annexin Vþ/PI2 only at 8 h exposure to NPs.

Our data support that detecting lysosomal content in the

cytosol is probably the best way to analyse LMP, as LMP

cannot be followed only by flow cytometric analysis of LTG

and PI in the later time points (after 6 h). Two hypotheses

could be given to explain the disappearance of LTG2/PI2

population, which is supposed to represent the cells with

LMP, in the later time points. First, we suspect that the

global dramatic increase of LTG intensity masks the small

decrease of LTG in the cells with mild LMP. Second, these

might be the most sensitive cells, which die directly after a

few hours of exposure to these NPs. Overall, caution needs

to be taken when interpreting flow cytometry results using

LysoTracker dyes, because an increase in its intensity (as an

example) could be due to an increase in lysosomal volume,

lysosomal numbers or their acidity. Other techniques are

needed to be able to discriminate these different options.

Finally, NH2-PS NPs can cause LMP through three differ-

ent mechanisms. First, the positive charge of these NPs could

damage lysosomal membrane, because they accumulate

inside lysosomes and positive charges are known to

damage biological membranes [57,58]. Second, lysosomal

enlargement induced by these NPs can sensitize lysosomes

to LMP, as larger lysosomes are proposed to be more suscep-

tible to rupture [59]. Third, ROS could be an important factor

in LMP as lysosomes are highly sensitive to ROS [35].

Increase of ROS has been observed after 3 h exposure to

NPs, the same time when NPs have been found accumulating

to lysosomes. After 8 h exposure, there is a dramatic increase

of ROS, which we think might be related to the extensive

LMP, leading to release of lysosomal proteases (cathepsin B

and D) which damage mitochondria. Damaged mitochondria

could lead to release of ROS, amplifying the ROS level and

cell death signalling as discussed above. Our previous data

suggest that damage to mitochondria is a downstream pro-

cess after LMP induced by these NPs. In 1321N1 cells,

lysosomal protease inhibitors (pepstatin A and E64d) could

retard not only cell death, but also decrease the levels of

ROS and caspase 3/7 [14].

We have also observed that the ROS-induced cell death

could be partially inhibited by iron chelator DFO. The involve-

ment of iron in the cell death induced by these NPs could be

related to ferroptosis, a recently discovered form of regulated

cell death [60]. Ferroptosis is characterized by lipid peroxi-

dation dependent on ROS generation and iron availability

[61], the involvement of which in the toxicity induced by

cationic NPs still needs to be explored.

Lysosomal enlargement after treatment of NH2-PS NPs

could be due to the ‘proton sponge effect’ of these protonatable

NPs [16,18]. However, we and others have observed that posi-

tive NPs that are unprotonatable could also result in lysosomal

swelling [9,18], suggesting that other damages to lysosomal

membrane structures (proton pumps, chloride proton exchan-

gers, etc.) could lead to increase of lysosomal volume [19].

Another possible explanation for lysosomal swelling is based

on the recent findings on the activation of transcription factor

EB (TFEB), a master regulator of lysosomal biogenesis, upon

exposure to NH2-PS NPs in Hela and PC12 cells [62]. TFEB is

probably upregulated as a feedback mechanism to compensate
the dysfunctional lysosomes, as was observed in lysosomal sto-

rage diseases [63]. However, this possibility remains to be

studied in MEF cells after NP treatment.

3.2. Autophagy is induced at the upstream but suppressed at the
downstream

Autophagy is a multistep process, including the formation of

autophagosomes, fusion between autophagosomes and lyso-

somes, and degradation of autophagosomes by lysosomes

[28]. Our data strongly suggest that NH2-PS NPs induce

upstream autophagosome formation. However, because lyso-

somes suffer strong damage due to accumulation of NH2-PS

NPs, the downstream steps of autophagy, namely fusion

between autophagosomes and lysosomes and/or degra-

dation of autophagosomes, are compromised, leading to an

overall decrease of the autophagic flux.

Our results show that mTOR-dependent autophagy is acti-

vated after 8 h, reflected by the inhibition of pATK at this time

(electronic supplementary material, figure S11C). This acti-

vation of autophagy might be due to various factors related

to the observed lysosomal alterations, as a surviving mechan-

ism to help the cell to adapt from the NP-induced stress

(figure 4c). First, ROS could directly activate autophagy

[55,64]. We have observed a dramatic increase of ROS after

8 h incubation with NPs, the same time when we have

observed the inhibition of mTOR and activation of autophagy.

Second, we speculate that the released cathepsins could cause

damage in mitochondria, which could cue autophagy to

remove them through mitophagy, a type of selective auto-

phagy [65]. Third, lysophagy, another type of selective

autophagy, could be activated in order to remove the damaged

lysosomes [66]. Lastly, the activation of autophagy might be

related to the possible upregulation of TFEB as mentioned

above. Activation of TFEB could induce lysosomal expansion

as well as activation of autophagy [67].

Despite the activation of autophagy as a cell surviving

mechanism, the permeabilized lysosomes are no longer func-

tional at the later time points. Therefore, the generated

autophagosomes cannot be degraded by lysosome, leading

to blockage of autophagic flux. Similar results showing induc-

tion of autophagy and reduced autophagic flux have been

obtained in some other cell lines after exposure to NH2-PS

NPs [37,52], and in L-02 and HepG2 cells after treatment of

100 nm silica NPs [68].

It is worth mentioning again that analysing autophagy in

a time course allows us to monitor not only the activation/

blockage of autophagy at difference stages, but also the rate

of autophagic flux over time. At the same time, the time

profile allows us to correlate the progression of lysosomal

damage with that of autophagy activities. Furthermore, it is

strongly argued nowadays that a combination of techniques

(such as TEM, fluorescence imaging of autophagy reporters,

western blot of markers for autophagy and PI3 K/ATK/

mTOR pathway, as were used in this study) needs to be

used to in order to follow the highly dynamic process of

autophagy [69].
4. Conclusion
We demonstrated that NH2-PS NPs accumulate to lysosomes in

MEF cells, leading to the expansion of lysosomal volume and
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LMP in a progressive manner, accompanied by release of cath-

epsins into cytosol and generation of ROS. In a small fraction of

cells, mild LMP appears at earlier times without evident lyso-

some expansion. Autophagy is activated as a surviving

mechanism to deal with the NP-induced stress. However,

because lysosomes are extensively damaged upon NP

treatment, the clearance of generated autophagosomes via

lysosomes is greatly compromised and the autophagic flux

is decreased. Our data provide new evidence and detailed

mechanisms of lysosome and autophagy alternations induced

by cationic NPs. Furthermore, our data suggest that it is of

great importance to examine the impact of NPs on lysosomes

in the context of nanotoxicity, because most NPs accumulate

in this compartment, and once there, digestion of their

protein corona has been observed. This is also important for

drug delivery when lysosome-related pathways (such as

autophagy) are the designed target for NPs, as the impact

of NPs on lysosomes could dramatically change the course of

lysosomal-dependent pathways.
5. Material and methods
5.1. Cell culture and nanoparticles
The MEF cells were kindly provided by Noboru Mizushima

(Tokyo Dental and Medical University, Tokyo, Japan), and

1321N1 cells were obtained from the European Collection of

Cell Cultures (ECACC). Cells were routinely cultured in

Dulbecco’s Modified Eagle’s Medium Glutamax (DMEM)

(Life Technologies) supplemented with 1% glutamine, 10%

heat-inactivated fetal bovine serum (Life Technologies) and

50 units ml21 of penicillin and 50 mg ml21 of streptomycin

in a 378C incubator with 95% air/5% CO2 atmosphere. Cells

were grown to 70–80% confluency before treatment. Fifty

nanometres of blue fluorescently labelled NH2-PS NPs was

purchased from Sigma-Aldrich and their characterizations

can be found in [9,15]. NH2-PS NPs were used at 50 mg ml21

for all studies, as has been optimized previously for studies

of cell death [9,14,15,33].

5.2. Confocal fluorescence microscopy
To examine the colocalization of NPs and lysosomes, MEF cells

were treated with NH2-PS NPs for indicated time points, fol-

lowed by staining of 1 mM LTR (Life Technologies) in DMEM

for 30 min at 378C. Stained cells were washed with PBS and

fixed with 4% paraformaldehyde (PFA) at room temperature

for 30 min, followed by permeabilization with 0.1% SDS at

room temperature for 1 h and image acquisition.

To monitor the cellular location of autophagosomes

in respect to lysosomes after NP treatment, MEF cells were

transfected either with GFP-LAMP1 (kindly provided by

J. Lippincott-Schwartz), and RFP-LC3 plasmids together, or

with tf-LC3 (both provided by T. Yoshimori), using Lipofecta-

mine 2000 (Life Technologies) according to manufactures’

instruction. The transfected MEF cells were exposure to

50 mg ml21 NH2-PS NPs for indicated time points. Cells were

subjected to imaging immediately without fixation.

All imaging acquisition was carried out with a Leica TCS

SP5 confocal laser scanning microscope equipped with

405 nm, 488 nm and 562 nm lasers to excite NPs, GFP and

RFP (or LTR), respectively.
5.3. Flow cytometry measurement
After exposure to NPs for indicated time points or to positive

control t-BuOOH for indicated concentrations and time

points, cells were harvested by trypsin and stained with

100 nM LTG (Life Technologies) for 15 min at 378C and

20 mg ml21 PI (Sigma) for 3 min at room temperature. After

staining, the cell fluorescence was immediately measured

with a Cyan ADP flow cytometer (Beckman Coulter), using a

488 nm laser to excite both fluorophores, FL1 (520+20 nm)

band pass filter to collect LTG fluorescence and FL2 (613+
20 nm) band pass filter to collect PI fluorescence. The data

analysis was carried out using SUMMIT software (DAKO).

Gates were set to discriminate cell debris and cell doublets

according to the forward and side scattering. The dot plots of

PI versus LTG were compensated with proper controls. A quad-

rat gate in these dot plots was set according to the 0 h untreated

cells and used throughout the analysis. The four populations

were coloured accordingly to facilitate visualization. Results

are representative of three independent experiments, each

performed with two replicates. Alternatively, cells were stained

with 100 nM LTR and 1 mM TO-PRO 3 and analysed in

the same way. The results are presented in the electronic

supplementary material.

5.4. Cellular fractionation and western blot
The MEF cells were firstly exposed to NPs for indicated

times. Separation of cytosolic fractions (lysosome-free) and

membrane fractions (containing lysosomes and mitochon-

dria) of MEF cells after treatment of NH2-PS NPs was

performed as previously described [37]. Twenty micrograms

of protein extract was resolved by 12% SDS-PAGE and trans-

ferred onto polyvinylidene difluoride (PVDF) membranes.

The membranes were blocked for 1 h in PBS-Tween-20

(0.05% (v/v)) containing 5% non-fat milk and probed with

primary antibodies against cathepsin B and D (Abcam,

Cambridge, MA, USA), followed by incubation with corre-

sponding horseradish peroxidise conjugated secondary

antibodies (Sigma). LAMP-1 (Sigma) was used as a control

to show no contamination of lysosomes in cytosolic

fractions; glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) (Cell Signalling) was an endogenous control to

show equally loading.

For the other western blot experiments, cells were treated

with NPs for indicated time points and cellular proteins were

extracted with home-made lysis buffer (50 mM Tris–HCl pH

6.8, glycerol 10% (v/v), 2% SDS (w/v), 10 mM DTT and

0.005% bromophenol blue) and subjected to western blot as

previously described [23]. LC3 antibody was purchased from

Sigma. Antibodies against p62, pAKT, pS6 were purchased

from Cell Signaling (Danvers, MA, USA), and GAPDH from

Abcam. Densitometry was performed using IMAGEJ software

(Nationcal Institute of Health).

5.5. Treatment of pharmacological compounds and cell
death assay

In figure 2b, MEF cells were pre-treated with 50 mM pepstatin

A (Pep A) or/and 30 mM E64d (Sigma-Aldrich) for 16 h

before exposure to NPs. In figure 2d, MEF cells were pre-

treated with 1 mM DFO for 1 h before NP treatment. In
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figure 4c, MEF cells were pre-treated with 2 mM

3-MA (Sigma-Aldrich), 5 mM wortmannin (Calbiochem) or

200 nM rapamycin (Sigma-Aldrich) for 1 h before NP treat-

ment. All inhibitors were present when cells were exposure

to NPs for 16 h, except that DFO was removed before NP

treatment. Cells were stained with 20 mg ml21 PI for 3 min

before measurement with flow cytometry; 15 000 cells were

recorded in each analysis in an EPICS XL flow cytometer

(Beckman Coulter, Barcelona, Spain). The percentage of cell

death was determined by the percentage of PI positive cells

with flow cytometry. The values are the average of two

replicates from three individual experiments.

5.6. Transmission electron microscopy
The MEF cells treated with NPs for 8 h or untreated were

fixed with 3% glutaraldehide and postfixed with 1%

osmium and 1.5% potassium ferricyanid. The samples were

dehydrated in an ethanol series and embedded in LX 112

resin (Fisher Scientific). Ultra-thin sections of 60 nm were

cut and stained with 2% uranyl acetate and lead citrate.

Samples were subjected to imaging with a JEOL transmission

electron microscope (80 kV) equipped with TemCam-F416

TVIPS camera.
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