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Abstract 

The plant kingdom contains a large number of unique phytochemicals, some of 

which are known to be beneficial to the function of human cells.  Where the macro- 

and micronutrients in plant foods were once thought to be the reason for their 

essentiality in human health, phytochemicals have emerged as being significant non-

nutritive contributors.  The rapidly-evolving science of nutrigenomics directs greater 

focus on the intricate signalling pathways that relate dietary phytochemicals and 

human biomolecules. The effects of phytochemicals in modifying gene expression 

are becoming increasingly documented.  

This thesis investigates the nutrigenomic effects of two unrelated plant-derived 

materials (SOD/gliadin and sulforaphane) in terms of their clinical potential. The 

original plan was to conduct two clinical trials using SOD/gliadin only; however, the 

first study resulted in null findings leading to the decision to investigate a second 

supplement for the remainder of the thesis.  

The thesis is divided into two sections, with each covering one of the compounds. 

Section 1 contains Chapters 1-3 with Chapter 3 describing a randomised placebo-

controlled trial conducted to examine the potential health benefits of SOD/gliadin 

supplementation. This chapter has been published in the Journal, Phytomedicine. 

The trial examined the effects of 3 months of SOD/gliadin supplementation on 

perceived fatigue in 40 post-menopausal women. It was hypothesised that the 

SOD/gliadin would increase the activity of the primary antioxidant enzymes, 

superoxide dismutase (SOD) glutathione peroxidase (GPx) and Catalase (Cat) and 

that this would lead to a decrease in aconitase, the rate-limiting enzyme in the 

synthesis of adenosine triphosphate (ATP), with a view to reducing perceived fatigue 

in this population. The results showed that the SOD/gliadin supplement had no 

significant effect on self-perceived fatigue, antioxidants, oxidative stress or hormones 

in women aged 50-65 years. 

Section 2 (Chapters 4-9) sees the focus of the thesis shift to investigating a broccoli 

sprout-containing product which yields sulforaphane (SFN). Chapters 5 and 6 

contain two published review articles (Nutrition Reviews and Oxidative Medicine and 

Cell Longevity respectively). Chapter 7 highlights methodological issues associated 

with using phytochemicals like SFN in clinical trials.  
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Chapter 8 details the second clinical trial (The EASYGENEX Study).  The primary 

objective was to examine gene expression across two dose levels of encapsulated 

whole broccoli sprout raw material, optimised for its sulforaphane yield.  An open-

label dose-escalation study was conducted with 21 young, healthy, physically-active 

men.  Plasma was collected before and after consuming encapsulated whole 

broccoli sprout supplements over two 7-day continuous periods (53 g SFN/day 

during Week 1 then 106 g SFN/day in Week 2). Genotypes were identified from 

buccal swab samples. Liquid chromatography with tandem mass spectrometry was 

used to measure plasma SFN and its metabolites. Gene expression analysis was 

conducted using Ingenuity Pathway Analysis with peripheral blood mononuclear cells 

(PBMCs) on a microarray platform. 

Both upregulated and downregulated significantly differentially-expressed genes 

were identified over the 14-day period of the study, with downregulated genes 

predominating.  The major network identified by Ingenuity Pathway Analysis (IPA) 

centred on NF-kB, a transcription factor associated with pro-inflammatory effects; the 

study confirmed the known inhibitory effect of SFN on NF-kB. Also identified were 8 

differentially-expressed genes not documented elsewhere in association with SFN.   

Two were upregulated, DDC and ACSM2A, with the remainder downregulated: 

HERC6, PDIA4, ZBTB2, IGF2B2, DDX3X and GK5. All the significantly differentially-

expressed genes could be grouped by function into the six overlapping categories: 

immune modulation (anti-inflammatory), metabolism (adipogenesis, glucose 

metabolism, insulin sensitivity), neurotransmitter synthesis, cytoprotection, 

cardioprotection and redox modulation.  Some are known to exhibit multiple effects.   

Development of the EASYGENEX Study highlighted a number of significant 

methodological issues inherent in using phytochemicals like SFN as intervention 

materials.  Chapter 7 identifies these issues, describes their potential for flawed 

outcomes and suggests ways to mitigate against such design flaws.  In so doing, it 

highlights the background to the key genes discussed in Chapter 8, exploring 

relevant aspects of their mechanisms in the function of human cells. 

The summation and concluding remarks for this thesis form the final chapter, 

Chapter 9. 
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CHAPTER ONE 

Introduction 

1.0 General Principles 

We live in an era where modern medicine is strongly focused on relief of symptoms, 

the pharmaceutical industry providing many solutions to address this demand.  It is 

becoming increasingly apparent however, that the diseases which cause most 

distress at the individual level and are the most expensive at the public health level 

are typically managed by pharmaceuticals which may provide only short-lived 

symptomatic relief.  Few if any modern pharmaceuticals modulate fundamental 

etiological disease processes.  As a consequence, there is a groundswell of interest 

in therapies which address the fundamental upstream causes of disease as opposed 

to symptom-relief alone.  Strategies to address these fundamental causes of disease 

may help elucidate the pathophysiology of both chronic diseases and acute self-

limiting conditions.  Such findings may inform development of new therapeutic 

solutions. 

1.0.1 Searching for Upstream Factors 

A search for upstream factors in the etiological processes of disease is the focus of 

considerable global research, with such research closely investigating signalling 

pathways within cells and organelles.  Typical of the current trajectory for chronic 

disease as a whole is the increasing global prevalence of cardiovascular disease 

and type 2 diabetes.  It is emerging3 that the primary upstream factor which links 

endothelial dysfunction with cardiovascular disease and type 2 diabetes is closely 

related to oxidative stress.4  Attempts to intervene with the classical antioxidant 

vitamins to enhance endothelial function and related glucose regulation have largely 

resulted in no response in some studies and adverse effects in others.5-9 

1.0.2 Phytochemicals as Inducers of Endogenous Defences 

A possible alternative approach to the modulation of the oxidative stress 

underpinning such cellular dysfunction involves the application of phytochemicals 

with nutrigenomic potential.10   By definition, a phytochemical is a plant-derived 
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chemical substance that is biologically active but typically non-nutritive11; 

nutrigenomics describes the way in which phytochemicals may affect gene 

expression.  As such, the application of nutrigenomic principles may allow effective 

dietary intervention strategies to recover normal homeostasis and to prevent or even 

treat disease.12 

This thesis focuses on the modulation of gene expression that may occur using 

plant-derived compounds with desirable and demonstrable nutrigenomic properties.  

One of the intended effects of this strategy is to increase the production of 

endogenous antioxidant compounds, including the antioxidant enzymes.  Whilst 

some phytochemicals may upregulate cellular endogenous defences, others may 

downregulate pathways associated with undesirable effects, including prolonged 

inflammation.   

Although such plant-derived compounds may exhibit direct antioxidant activity, it is 

their indirect antioxidant effect which is attracting growing interest.  At the upstream 

cellular level, the effect of the antioxidant enzymes in quenching Reactive Oxygen 

Species (ROS) and Reactive Nitrogen Species (RNS) is catalytic, compared with 

non-enzyme antioxidants which exhibit only a one-for-one stoichiometric effect.  

There is considerable evidence to show that induction of such cytoprotective 

compounds has multiple beneficial effects.13,14,15,16  

The two compounds selected for investigation in this thesis are derived respectively 

from the fruit flesh of a particular strain of melon (Cucumis melo) and the young 

germinated seeds of broccoli (Brassica oleracea var. italica).  An extract from the 

melon, combined with wheat-derived gliadin polymers has been shown to contain a 

nutrigenomically-active SOD17; the germinated broccoli yields a similarly 

nutrigenomically-active isothiocyanate, sulforaphane (SFN). 

1.1 SOD/Gliadin as an Intervention Compound  

The melon-derived nutrigenomic compound (SOD/gliadin)17 has been shown to be 

capable of inducing the endogenous synthesis of the three antioxidant enzymes, 

SOD, glutathione peroxidase (GPx) and catalase (Cat).18 Each capsule claims to 

provide 250 U of SOD activity in an orally-bioavailable form, protected from digestive 

degradation by biopolymers of gliadin.  In one study19 of this compound, it was 
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shown that treatment with SOD/gliadin (but not vitamins C and E)20,21 was able to 

prevent the severe DNA damage associated with hyperbaric oxygen exposure.  

It could be hypothesised that treatment with SOD/gliadin may have benefit in any 

condition where oxidative stress is a contributor to redox dysregulation.  Two 

contrasting cellular events are relevant to this hypothesis: 1) endogenous synthesis 

of antioxidant and other protective enzymes is known to decline with age and illness.  

2) production of the superoxide radical increases with age, illness and various 

environmental conditions.22  

Fatigue is one of the most common complaints of patients seen by all health 

practitioners. In many cases, no obvious or specific cause is found.  Anecdotal 

evidence supplied by the patent-holder suggests that treatment with SOD/gliadin can 

decrease fatigue in those who use it.  The first study described in this thesis and 

forming Section 1 is the Fatigue Study2 which was designed as a randomised 

placebo-controlled trial to investigate the effect of SOD/gliadin capsules on 

unexplained fatigue in otherwise healthy post-menopausal women.  However, 

compared with placebo, this investigation did not find a significant change in fatigue 

in the subjects taking the intervention capsules.  It was subsequently decided to 

discontinue further investigation of this compound, having become aware of the 

more extensive and growing database of publications on bioactive compounds 

derived from cruciferous plants. 

1.2 Sulforaphane as an Intervention Compound  

1.2.1 Properties and Relevance 

Sulforaphane is a plant-derived biomolecule shown to demonstrate nutrigenomic 

potential.  Sulforaphane is naturally derived from certain species of the Brassica 

vegetable family23 and most notably from broccoli. These vegetables are also known 

as cruciferous vegetables,a well-known for their disease-preventive effects.24,25   

Broccoli has been shown to be the most significant dietary source26 of the precursor 

compound, glucoraphanin (GRN) which on ingestion in the presence of the 

myrosinase (MYR) enzyme, is metabolised to SFN.  Very young sprouted broccoli 

                                            
a Cruciferous Vegetables include broccoli, cabbage, cauliflower, Brussels sprouts, rocket, arugula, bok choy and others 
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seeds in the order of 3-7 days have been shown to contain the highest levels of 

GRN.27 

There is evidence to suggest that SFN’s nutrigenomic effects contribute to the 

enhancement of the cell’s antioxidant capacity.28 Of the endogenous antioxidants 

induced by SFN, the better-known include glutathione (GSH), Thioredoxin (Trx), 

Thioredoxin reductase (TrxR) and Haemoxygenase-1 (HO-1).  In addition, a 

significant role in endogenous cellular defence processes is emerging for the Phase 

2 detoxification enzyme, NAD(P)H: quinone oxidase reductase1 (NQO1) which is 

also substantially upregulated by SFN.27 

It has now been firmly established that NQO1 provides major antioxidant functions 

by virtue of its obligatory two-electron reduction mechanism which diverts quinones 

from participating in oxidative cycling and generation of reactive oxygen 

intermediates.  The finding that the gene coding for NQO1 is highly-inducible and 

that increased induction protected animals and their cells against oxidative stress, 

provided a major new perspective on the functional importance of this enzyme.29-31  

SFN is considered to be one of most potent phytochemical inducers of NQO1.32,33 

Given that classical antioxidant supplements have failed to demonstrate significant 

chemoprotection or preventive benefits against cancer, cardiovascular disease and 

type 2 diabetes,5,34-36 it could be hypothesised that intervention with SFN may 

provide an alternative but effective strategy.  A growing number of studies use 

broccoli sprouts to enhance cellular defences and have been described as showing 

promising results.37,38,39,40,41,42  However, these studies fail to provide consistent 

clinical responses that correlate with the concentration of SFN yielded from its plant 

source.  The issue of dose-response is discussed in greater detail in Chapter 7.  

The second more comprehensive study in this thesis and forming Chapter 8 was 

designed to investigate the potential for SFN to modulate gene expression in young 

healthy men, using a broccoli sprout ingredient which specifies its level of the key 

bioactive, glucoraphanin as well as the sulforaphane it yielded via a MYR-dependent 

enzymatic reaction.  The SFN-yielding ingredient was provided to participants at 

practical doses obtainable from taking broccoli sprout capsules.  Chapter 5 provides 

tabulated data of the available clinical trials for which a dose-response for a 
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quantifiable amount of SFN can be correlated with clinical outcomes in a variety of 

human illnesses and abnormalities.
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SECTION ONE 

CHAPTER 2 

Review of Literature – SOD/Gliadin 

2.0 Introduction 

This review of the literature provides the scientific foundation associated with the 

mechanisms and clinical application of a patented nutrigenomically-active 

melon/gliadin used in a clinical trial conducted by our group and published in 

Phytomedicine.2 

2.1 Background - the History of Superoxide Dismutase Research 

The antioxidant enzyme, superoxide dismutase (SOD) was discovered by McCord 

and Fridovich in 1968.  Following recognition of its role in cellular defence 

mechanisms,43,44 its potential in clinical medicine was considered appropriate for 

translation into therapeutic applications.  Injectable forms of bovine SOD appeared 

as pharmaceuticals and were used in a range of conditions45,46,47,48,49,50,51 for some 

years until the onset of Creutzfeldt-Jakob disease (‘mad cow’ disease) which 

necessitated their removal from the market. 

In the late 1990’s, plant alternatives to bovine SOD were sought.  Because SOD as 

an enzyme is degraded by proteolytic gastric, duodenal and pancreatic enzymes in 

humans, it was necessary that the SOD be protected against such proteolysis. A 

French company identified a source of SOD in a particular strain of cantaloupe, or 

melon (Cucumis melo LC) and in 2000, a U.S. patent for the SOD/gliadin 

combination was granted.52   The material is known commercially as GliSODin 

(www.glisodin.org). 

The resulting melon-based product was a unique compound bound with gliadin 

(8.3mg per 250 U enzyme dose), the resulting gliadin biopolymer protecting the SOD 

from proteolysis.17  In addition to protection against degradation by gastrointestinal 

secretions, ingestion of the SOD/gliadin combination was shown in rats to result in 

significant increases in the three primary antioxidant enzymes, SOD, Glutathione 

peroxidase (GPx) and Catalase (Cat).17,18 



Page 7 of 308 
 

These two SOD/gliadin proof-of-concept studies by Vouldoukis et al.17,18 showed that 

neither the melon nor the gliadin extract alone was capable of inducing endogenous 

synthesis of the antioxidant enzymes; it was the combination which demonstrated 

increases in all three antioxidant enzymes together with an increase in the anti-

inflammatory cytokine, interleukin-10 (IL-10). 

2.1.1 The SOD/Gliadin Research Timeline 

Figure 2.1 shows the evolution of SOD/gliadin research since patent issue in 2000, 

together with the nature of the clinical trials using SOD/gliadin as the intervention 

material. The studies undertaken include in vitro mechanistic and pharmacokinetic 

studies, animal studies and human clinical trials.  The latter studies focus on 

conditions known to be associated with cellular redox imbalance, investigating 

reduction of atheromatous plaque in adults with metabolic syndrome19 as well as 

investigations into SOD/gliadin’s protective effect against UV radiation-induced 

fibrosis,53 hyperbaric oxygen19 and surgical stress (as ischaemia-reperfusion).54  

The first intervention study undertaken as part of this thesis was to clinically test the 

hypothesis that the SOD/gliadin phytochemical combination could increase 

endogenous synthesis of SOD, Glutathione peroxidase (GPx) and Catalase (Cat) 

and in so doing might be capable of reducing fatigue in otherwise healthy older 

women. 
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Figure 2.1 Evolution of SOD/gliadin research 2000-2016.     

Source www.glisodin.org 
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2.2 More Recent SOD/Gliadin Research Investigation 

Since our study was published, there have been four publications focused on the 

SOD/gliadin compound.  In the first of these55 and using chloroplasts from the same 

cantaloupe strain, the patent-holders developed a stable recombinant Cu-Zn SOD 

fused to a gliadin peptide.  Unlike the SOD/gliadin used in our study which has 1 U 

SOD activity per mg, the recombinant form demonstrated ~ 5,000 U SOD activity per 

mg.  The authors concluded that although the fundamental action of the recombinant 

form was similar to the lower potency SOD/gliadin, it was also able to switch the 

gliadin-induced pro-inflammatory cytokine production to the anti-inflammatory 

pathway. 

The second of these studies investigated the effect of 500 mg daily of the same 

SOD/gliadin used in our trial on 19 male rowers exercising to exhaustion.56  SOD 

was shown to be higher in the supplemented group and C-reactive protein lower, 

although there was no effect on oxidative damage in muscle tissue.  A third 

publication57 is a review paper summarising the suggested mechanisms of action of 

the SOD/gliadin combination in addition to tabulating recent studies considered to be 

significant. The last of these studies53 examined the effect of SOD/gliadin in mice 

exposed to ionising radiation on Day 0 and then to the supplement over an 8-day 

period at age 6 months.  Excised tissue in those administered the supplement 

showed significantly reduced dermal thickness.  The value of this animal study may 

be of limited comparative value in that the doses were much greater than those 

administered in the reported human clinical trials.  However, the development by 

Intes et al. of the more potent recombinant SOD/gliadin form in their group’s study55 

may enable such findings to be replicated in humans. 

2.3 The Role of Endogenous Antioxidant Enzymes  

SOD is the primary human endogenously-synthesised antioxidant enzyme 

quenching the ROS, superoxide anion.  It is well understood that free radical injury 

plays a role in all types of cellular damage and is implicated in many diseases58,59-62 

including cardiovascular disease, diabetes and cancer.  SOD exists in three main 

forms, a cytosolic form which uses copper and zinc at its active site, a mitochondrial 

form which uses manganese at its active site and an extracellular form which also 

uses copper and zinc as its cofactors.  
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Dietary antioxidant supplements have been used as intervention tools in a variety of 

clinical expressions of oxidative stress63; the results are conflicting, with some 

studies showing benefit and others showing no benefit.5,64  Yet other studies65 have 

shown that in some circumstances, there may be reason to avoid the use of isolated 

antioxidant supplements in supraphysiological doses. 

It is known that endogenous synthesis of the three primary antioxidant enzymes, 

SOD, GPx and Cat declines with increasing age and with illness.22  It is also known 

that production of the superoxide radical increases with age, illness and various 

environmental situations.66,67 

2.3.1 Biochemical Considerations Associating Elevated ROS with Cellular 

Dysfunction 

In testing the hypothesis that elevated ROS may contribute to unexplained fatigue in 

humans, the following biochemical factors may be relevant: 

• The cell produces energy in the form of Adenosine Triphosphate (ATP), mostly 

via the mitochondrial electron transport system   

• Ageing typically results in a reduction of the endogenous synthesis of 

antioxidant enzymes, including mitochondrial manganese-dependent SOD 

(MnSOD).  The potential for a greater oxidative burden exists as individuals 

age.68 

• Superoxide radical in the presence of nitric oxide generates a toxic ROS, 

peroxynitrite.69   

• SOD is deactivated by peroxynitrite.70 

• A range of stressors can initiate stimulation of inducible nitric oxide synthase 

(iNOS) activity and its oxidant product, peroxynitrite (in the presence of 

superoxide).71 

• The ageing process is associated with pro-inflammatory NF-kappa B (NF-kB) 

activation.  Certain redox-modulating phytochemicals are capable of 

ameliorating such age-related alterations in signal transduction, in vitro.72 

• The transcription factor NF-kB stimulates iNOS activity, so that increased levels 

of nitric oxide are produced.  This initiates a feed-forward loop where an 
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initiation of inflammatory activity continues to produce more nitric oxide which in 

turn produces more peroxynitrite.73 

• Peroxynitrite has several effects which deplete ATP, including its effect on the 

mitochondrial electron transport system.  Nitric oxide inhibits one of the 

component enzymes of this system, cytochrome oxidase.74   Both of these 

factors produce increased superoxide, potentially providing further positive 

feedback 

• Peroxynitrite is formed during sepsis, inflammation, excito-toxicity and 

ischaemia-reperfusion of tissues, conditions under which cellular production of 

both superoxide and nitric oxide increase; such elevated sustained peroxynitrite 

can cause chronic fatigue syndrome.70 

• Multiple mechanisms have been found to produce increases in both superoxide 

and nitric oxide, leading to increased levels of the peroxynitrite free radical.75  

Because peroxynitrite inhibits mitochondrial energy production, it is plausible to 

consider that interventions directed at favourably regulating the production of 

superoxide and/or nitric oxide could be expected to impact on energy 

production.  It is on this hypothesis that this study is based 

• The cell’s redox status can have a modulating effect on aconitase in intact 

mitochondria.  As such, superoxide can inhibit the rate-limiting enzyme in the 

ATP-generating Kreb’s Cycle.76  

In considering these interactions which provide a plausible mechanism linking 

oxidative stress to reduced ATP synthesis and the possibility of subjective fatigue, 

the first study in this thesis investigates whether the SOD/gliadin combination has 

an effect on these processes. 

The challenge in such nutrigenomic investigations is to identify oral therapeutics 

with the ability to enhance activity of the cell’s endogenous antioxidant enzymes, 

since the findings for the therapeutic application of exogenous antioxidant 

vitamins are equivocal. 
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2.4 The Intervention Compound 

The SOD/gliadin compound has been designed to deliver SOD in an oral delivery 

system, typically a 2-piece hard vegetable capsule.  Its mode of action18 in inducing 

the primary antioxidant enzymes makes it different from other exogenous 

compounds such as the SOD-mimetics which are drugs seeking to mimic the effect 

of endogenous superoxide dismutase enzyme in human cells.  SOD/gliadin is not an 

SOD-mimetic.  The SOD/melon extract is specified for its SOD enzyme activity and 

has been shown to induce other enzymes apart from SOD.18  In this capacity, it 

could be classified as a nutrigenomically-active compound. 

As a complex of melon-derived SOD bound to a gliadin biopolymer, SOD/gliadin is 

structurally different from the SOD-mimetics which in turn are structurally different 

from native SOD.  Native SOD is a homo-tetramer, a polymer consisting of four 

identical monomers,77 with an individual subunit molecular weight of about 23,000 

Daltons and containing around 205 amino acids per monomer.  Although all three 

compounds have been shown to exhibit superoxide-quenching activity, each is 

structurally different. 

2.4.1 Studies Utilising SOD/Gliadin as the Intervention 

The timeline in Figure 2.1 lists the studies performed using SOD/gliadin. The 

manufacturer of the SOD/gliadin used in this study, (IsoCell NUTRA, Paris, France) 

has conducted research into the therapeutic properties of the compound. One of 

these studies demonstrated that in humans, treatment with SOD/gliadin was able to 

prevent the severe DNA damage associated with hyperbaric oxygen exposure in 

deep sea divers.19  By contrast, two similar studies21,20 using vitamins C and E as 

intervention tools failed to show any protection by these vitamins against hyperbaric 

oxygen.  Thus, it is hypothesised that treatment with SOD/gliadin is likely to have 

benefit in conditions wherein marked oxidative stress occurs and that this benefit 

may occur in conditions where no benefit results from supraphysiological dosages 

traditional antioxidant vitamin supplements. 
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2.5 The Rationale for Investigating Fatigue 

Fatigue is a common presenting complaint to primary care clinicians.78 It can be 

defined as a pervasive sense of tiredness or lack of energy that is not related 

exclusively to exertion.79 In many cases, no obvious or specific cause is found.  It 

has been estimated that there is an overall prevalence of fatigue of 27% in 

ambulatory Australians 60 years of age and over.80 Studies81,82,83 in other 

populations report prevalence from 10-25%, with marked cross-cultural variability.84  

Fatigue syndromes lie along a continuum of severity, from ubiquitous transient and 

mild states to the more severe and prolonged fatigue disorders, including chronic 

fatigue syndrome (CFS).  If fatigue is prolonged beyond six months, is disabling, and 

is accompanied by other characteristic constitutional and neuropsychiatric 

symptoms, then a diagnosis of CFS should be considered.79  Because the 

measurement of fatigue is usually based on subjective assessment, there can be 

considerable confusion in the minds of both patients and practitioners about how to 

define a particular patient’s condition even when it has been longstanding.  Is it 

simple fatigue caused by a medical condition, is it chronic fatigue which has been 

present over an extended period or is it the more complex CFS? 

Chronic Fatigue and CFS can be difficult to distinguish from neuropsychiatric 

syndromes and as such may confound studies on fatigue.85 Somatoform disorders 

wherein no physical cause can be found for a symptom, anxiety disorders and major 

depression can all contribute to fatigue.  Fatigue is often found in association with 

sleep apnea86 and with a muscle-related condition, fibromyalgia.87  A 2007 Canadian 

Consensus document88 reveals the complexity of the diagnostic process required to 

classify an individual with CFS, now more frequently described as ME/CFS to 

incorporate its Myalgic Encephalomyelitis aspects.   

The Canadian document classifies ME/CFS as “an acquired organic, 

pathophysiological, multi-systemic illness that occurs in both sporadic and epidemic 

forms (ICD10 G93.3)89 and stresses that ME/CFS must not be confused with 

‘chronic fatigue’ because ME/CFS represents pathophysiological exhaustion and is 

only one of many symptoms.  Other symptoms include post-exertional malaise, sleep 

dysfunction, autonomic, neuroendocrine and immune manifestations.  This situation 
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is made worse because there are no precise or validated diagnostic tests for this 

condition.  CFS is usually made on the basis of a diagnosis of exclusion.90   

The cause of chronic fatigue in apparently healthy individuals may not always be 

determined, even after established etiological factors such as lifestyle behaviours, 

anaemia, thyroid abnormalities and other medical conditions are excluded.  A high 

rate of co-morbidity with psychological disorders (most often anxiety and depression) 

has been noted91 but there still remains a significant percentage of fatigued 

individuals for whom there is no known somatic or psychological cause.92  About 

one-third of this group could be classified as experiencing chronic unexplained 

fatigue and thereby meeting the formal criteria for classification under WHO’s ICD-10 

as F48.0 neurasthenia.93   

2.5.1 The Potential for Oxidative Stress to be Associated with Chronic Fatigue    

Oxidative stress has been demonstrated to underpin a range of human illnesses and 

is the result of an imbalance between exogenously and endogenously-generated 

free radicals and the body’s defences.94,95,96,97,98  When the body is unable to 

adequately contain the adverse effects of free radical activity leading to redox 

imbalance, the result is oxidative stress.99  Not all free radical activity is responsible 

for adverse effects and indeed much of the body’s free radical activity is an essential 

component of a healthy immune response100 and with healthy cellular function in 

general.101,102  Free radicals are also an integral part of the signal transduction 

pathways which allow intra and inter-cell communication.103  

CFS has been associated with oxidative stress but there is little reference to the 

possible association of oxidative stress with uncomplicated but unexplained chronic 

fatigue.104,105,106  

2.5.2   Putative Mechanism - Effect of SOD/Gliadin on Superoxide Dismutase 

Activity  

SOD/gliadin has been developed to deliver SOD as an oral treatment to human cells.   

The data below is taken from a patent-holder sponsored proof-of-concept study18 

designed to show the effect of SOD/gliadin in mice.  The study compared the effects 
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of free SOD, free gliadin and the combined SOD/gliadin compound, GliSODin®, on 

blood levels of SOD.    

Figure 2.2   Effect of a supplementation with SOD/gliadin (GliSODin™) on circulating 

SOD activity. 

Only the SOD/gliadin compound was shown to increase SOD activity; maximal activity occurred within 

14 days with a slower increase thereafter for a total of 28 days. 

The same study measured the 

effects of supplementing the 

animals with only SOD/gliadin 

for a 28-day period and 

measured erythrocyte levels of 

the endogenous antioxidant 

enzymes SOD, GPx and Cat.  

As shown in Figure 10 of the 

Vouldoukis study below (and 

as Table 2.1 here), there were 

increases in Total Antioxidants, 

SOD, GPx and Cat. 

 

 

 

 

 

 

 

 

Table 2.1    Effect of SOD/gliadin on erythrocyte changes to antioxidant levels 

in mice. 
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2.6 The Role of SOD-mimetic Drugs in Human Pathophysiology 

Another avenue in therapeutics has been the exploration of SOD-mimetic drugs.  

Studies using SOD-mimetics as investigational drugs107,108,109 are helpful in gaining a 

better understanding of the role of SOD enzyme in human systems.  The use of 

SOD-mimetics illustrates the diverse application of SOD in a broad range of 

pathophysiological states.  SOD/gliadin differs from the SOD-mimetics in that it is 

manufactured from a plant extract,17 whereas the SOD-mimetics are synthetic and 

are structurally unrelated to those found in nature.  Research107,110 into the SOD-

mimetics provides some evidence of the clinical effects of increased levels of SOD in 

cells.  These findings may lend some support to the design of trials in which 

SOD/gliadin is the intervention compound. 

Acting nutrigenomically, SOD/gliadin provides a new class of antioxidant intervention 

tool for application in conditions related to oxidative stress.  By inducing the cell’s 

own antioxidant enzyme synthesis, it has the potential to quench free radicals such 

as superoxide much earlier in the process and before the cascade of free radical 

activity is well-established.  Where membrane-bound diet-derived lipophilic 

antioxidants such as vitamin E and β-carotene can act only when free radicals are in 

proximity to the membrane, antioxidant enzymes exist in several forms located 

throughout the cell and its organelles.  MnSOD is located in the mitochondria and is 

considered to offer significant protection against the continuously-generated 

superoxide anion radical.  A number of studies111,112,113,114 related to the secondary 

complications of diabetes refer to the role of MnSOD overexpression as a positive 

intervention in controlling the progression of such complications. 

In summary, SOD/gliadin is a nutraceutical material derived from Cucumis melo LC 

and bound to gliadin. Each nutrigenomically-active capsule provides 250 U SOD 

activity in an orally-bioavailable form, protected from digestive degradation by 

biopolymers of gliadin. 

2.7 Hypothetical Construct for the Study   

As described in 1.1, it is known that endogenous synthesis of the antioxidant 

enzymes, SOD, GPx and Cat declines with increasing age and with illness.22  It is 

also known that production of the free radical superoxide increases with age, illness 
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and various environmental conditions.115  As an individual ages, these opposing 

effects contribute to greater likelihood for the development of redox-related 

conditions. 

SOD is the primary human endogenously-synthesised antioxidant enzyme 

quenching the free radical superoxide anion.  It is well understood that free radical 

injury plays a role in all types of cellular damage and is implicated in many diseases, 

including cardiovascular disease, type 2 diabetes (T2DM) and cancer.  SOD exists in 

three main forms, a cytosolic form which uses copper and zinc at its active site, a 

mitochondrial form which uses manganese at its active site (MnSOD) and an 

extracellular form which also uses copper and zinc for its activity.  

It appeared that there existed sufficient biochemical evidence to suggest that the 

SOD/gliadin intervention may ameliorate subjective feelings of fatigue and change 

biomarkers indicated by earlier research. 
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CHAPTER 3 

The ‘Fatigue’ Study 

Effects of a Gliadin-combined Plant Superoxide Dismutase Extract on Self-

Perceived Fatigue in Women aged 50-65 years. 

 

This chapter was published in Phytomedicine (Elsevier) as an original investigation. 

The abbreviations and referencing style of this document have been altered slightly 

to more closely reflect the formatting of other chapters and published work in this 

thesis.   

A pdf version of the published manuscript is attached as Appendix A. 

 

 

Effects of a gliadin-combined plant superoxide dismutase extract on self-perceived 

fatigue in women aged 50-65 years. Phytomedicine. 2011 Apr 15;18(6):521-6  
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3.0 Abstract  

Fatigue syndromes exist on a continuum of severity from mild and transient to the 

disabling Chronic Fatigue Syndrome, with oxidative stress linked to its pathogenesis. 

A thermolabile gliadin-combined plant SOD extract has shown potential in clinical 

trials as a therapeutic antioxidant. This study investigated the effects of 12 weeks of 

500 mg/day of a SOD/gliadin supplement on fatigue. Thirty-eight women aged 50-65 

years with self-perceived fatigue entered this randomised, double-blind, placebo-

controlled trial. The primary outcome measure was general fatigue determined by the 

Multidimensional Fatigue Inventory (MFI). Secondary outcome measures included 

other measures of fatigue from the MFI and blood measures of oxidative stress, 

antioxidant status and hormones. There were no significant (P>0.05) differences 

between, or within groups, for decreases in general fatigue (active = 1.6%, placebo = 

4.1%). There were no within or between group differences (P>0.05) in other 

measures of fatigue (physical fatigue, reduced activity, reduced motivation, mental 

fatigue and total fatigue score). In regard to the biochemical measures, there were 

non-significant (P>0.05) differences in increases in plasma SOD activity 

(active=7.1%, placebo=12.2%), plasma GPx activity (active=2.4%, placebo=0.7%), 

red blood cell GPx activity (active=9.8%, placebo=4.4%).  Markers of oxidative stress 

were decreased but there were no differences (P>0.05) within or between groups; 

malondialdehyde (active=4.1%, placebo=1.6%), F-2 isoprostanes (active=14.7%, 

placebo=22.4%).  There was a trend (P=0.08) for a decrease in cortisol in the active 

group (24.6%), however this was not significantly different from the decrease in the 

placebo participants (4.1%). DHEA differences were not significant (P<0.05) and 

declined 1.3% in the active group and 14.4% in the placebo group.  In summary, the 

thermolabile SOD/gliadin supplement had no significant effect on self-perceived 

fatigue, antioxidants, oxidative stress or hormones in women aged 50-65 years. 

3.1 Introduction  

Fatigue is a complaint commonly presenting to primary care practitioners. It can be 

defined as a pervasive sense of tiredness or lack of energy that is not related 

exclusively to exertion. It has been estimated that there is an overall prevalence of 

fatigue of 27% in ambulatory Australians 60 years of age and over.80 The cause of 

fatigue in apparently healthy individuals may not always be determined, even after 
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established etiological factors are excluded.  A high rate of co-morbidity with 

psychological disorders (most often anxiety and depression) has been noted 91 but 

there still remains a significant percentage of fatigued individuals for whom there is 

no known somatic or psychological cause.92  Fatigue syndromes lie along a 

continuum of severity, from ubiquitous transient and mild states to the more severe 

and prolonged fatigue disorders, including CFS characterised in part by disabling 

fatigue prolonged beyond six months. 

Oxidative stress is defined as a disturbance in the balance between the production of 

reactive species (e.g. free radicals) and  antioxidant  defences,  which  may  lead  to  

tissue injury.116  CFS has been associated with oxidative stress104 but little work has 

been done on the possible association of oxidative stress with milder forms of 

uncomplicated but unexplained fatigue.  Although classical dietary antioxidants have 

been trialled extensively as therapeutic agents for fatigue, the results are 

conflicting.117,118,119 

Catalytic endogenous enzyme antioxidants such as SOD have a greater capacity to 

quench free radicals than the classical dietary or supplemental antioxidants.120, 6,121  

An orally-active SOD, derived from a combination of melon (Cucumis melo LC) and 

polymers of gliadin from wheat (Triticum vulgare) (SOD/gliadin) has shown promise 

as a novel means of inducing antioxidant enzyme activity (SOD, Glutathione 

peroxidase and Catalase) in human cells.122 

The gliadin-combined SOD preparation is a water-dispersible form of a SOD 

lyophilised extract from melon, spray-dried using maltodextrin as a support 

(Vouldoukis et al.2004b).  The gliadin biopolymer is used to firstly protect the enzyme 

against gastric proteolysis and secondly it exhibits bio-adhesive properties when in 

contact with the intestinal mucosa to improve and/or promote the delivery of the 

active ingredient.123 

The antioxidant and anti-inflammatory activities of SOD combined with a gliadin 

polymer have been demonstrated in animal and human trials, producing positive 

biochemical and clinical outcomes.17  In healthy volunteers, SOD/gliadin showed 

protection against DNA strand break induced by hyperbaric oxygen.19  The same 

research group later showed that 14 days pre-treatment with SOD/gliadin before 

aortic cross-clamping to simulate surgery, prevented the oxidative stress 
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characteristics of ischaemia/reperfusion.54   A recent study using restraint-stressed 

mice showed that SOD/gliadin prevented stress-induced impairment of cognitive 

function, decreased lipid peroxidation and maintained neurogenesis in the 

hippocampus.124  Furthermore, a double-blind placebo-controlled study using 

SOD/gliadin in metabolic syndrome patients following the Lyon Heart Diet showed 

that intima medial thickening regressed over a 2-year period.19 

Given that SOD/gliadin has shown positive responses and that oxidative stress may 

be associated with fatigue as it is with CFS, the aim of this study was to evaluate the 

effects of the supplement in reducing levels of fatigue in otherwise healthy women 

aged between 50 and 65 years who self-reported fatigue.  It was hypothesised that 

the encapsulated SOD/gliadin would decrease the perceived fatigue in these 

individuals.  

3.2 Materials and Methods 

3.2.1 Study Design 

A single-centre, randomised, double-blind, placebo-controlled trial was conducted 

with approval from the Ethics Committees of The University of Queensland and the 

Endeavour College of Natural Health. 

 3.2.2 Participants 

The participants were recruited in Brisbane, Queensland, Australia through 

newspaper advertisements.  Respondents underwent an initial telephone screening 

via non-structured questions to determine eligibility and severity of fatigue. Inclusion 

criteria were: women aged 50-65 years of age (inclusive) with longstanding (6 

months or more) unexplained fatigue. This was defined as fatigue to which a medical 

cause (e.g. CFS) had not been assigned. Participants needed a history of generally 

good health and be able to attend fortnightly assessments over a 12-week period.  

They were ineligible if any of the following exclusion criteria applied: Coeliac Disease 

or known gluten sensitivity, presence of any serious disease or condition or limited 

life expectancy of < 1 year due to pre-existing malignancy or other disease, 

depression according to the PHQ-9 nine item depression scale Questionnaire PHQ-9 

Depression Rating Scale during screening,125 history of alcohol or drug abuse, 
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primary sleep or movement disorders, recent history of anaemia, history of thyroid 

dysfunction, currently enrolled in another investigational study, unlikely to comply 

with study requirements, following a particular dietary pattern considered to be 

extreme or unbalanced, have had investigational drugs used for diagnosis or 

evaluation of health status during preceding 30 days, currently supplementing with 

antioxidants or has supplemented with antioxidants for at least 4 weeks in the 

previous 3 months or not in a position to obtain adequate sleep (7-8 hours), such as 

shift workers.  Where the women were also taking prescribed medication, they were 

included as long as the condition for which the medication had been prescribed had 

stabilised over time.     

The trial was conducted at the Clinic of the Endeavour College of Natural Health 

Clinic in Brisbane, Australia.  Two female clinicians experienced in the practice of 

Nutritional Medicine made all contact with the participants at these premises over 

seven fortnightly sessions. 

At the first meeting, the subjects were given information relating to the nature of the 

trial and its goals as well as the nature of the supplement they may be randomised to 

take.  Informed consent was obtained from each participant, anthropometric baseline 

measurements (height and weight) were taken and instructions for baseline collection 

of blood samples provided. In addition, further information regarding medical history, 

medications, menstrual status and whether the fatigue appeared to be related to 

onset of menopause was collected by individual interview. The survey asked 

participants to rate aspects of their fatigue and its effect on daily life on a Yes/No 

basis as a means of ensuring that subjects were not experiencing fatigue so 

debilitating that they were unable to perform normal daily activities.  Women were 

considered to be menopausal if they had finished their last menstruation at least 12 

months prior to enrolment in the study. 

3.2.3 Intervention 

Subjects were randomised to receive either 500mg/day of the SOD/gliadin 

supplement, or placebo, as 2 x 250 mg capsules per day.  The SOD/gliadin was 

encapsulated in a hard shell 2-piece vegetable cellulose capsule with maltodextrin as 

the excipient.   The placebo capsule appeared identical to the intervention capsule 

and contained only maltodextrin.  At the first group session, the participants were 
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issued with sufficient capsules for the 12-week trial period plus a small overage 

allowance (180 capsules supplied, 168 required). Compliance was monitored by 

counting unused tablets after completion of the trial. 

3.2.4 Randomisation and Concealment 

Randomisation was achieved using a computer-generated random number 

sequence at the Launceston General Hospital Pharmacy, Tasmania, Australia.  The 

randomisation sequence and trial codes were stored by the Hospital. Neither the 

participants nor the personnel implementing the trial had access to any un-blinded 

data until the code was revealed at the completion of all data collection.   

3.3 SOD/Gliadin 

Each capsule was specified as containing 3.11mg lyophilised orally-bioavailable and 

water-dispersible SOD derived from the fruit of Cucumis melo LC (melon) 

standardised to 90 IU/mg combined with a 40% hydro-alcoholic soft gel of gliadin (7.9 

mg per capsule).  The melon-gliadin combination is spray-dried using maltodextrin as 

a support and ratio adjusted to obtain a theoretical activity of 1 IU/mg of final dry 

powder (7.9 mg gliadin).18  Individuals with gluten intolerance were excluded from the 

study even though this amount of gliadin is unlikely to trigger a coeliac-like 

response.126 The product has been shown to exhibit no acute or chronic toxicity at 

doses up to 2000 mg/kg in rat studies performed by Laboratoires Lavipharm in Les 

Oncins, France in January 1999.127,128  Gliadin, a vegetable prolamine (biopolymer), 

protects SOD from gastric juices, delays release of the compound in the small 

intestine, and eases its passage into the bloodstream through the mucosa.  The SOD 

activity of the SOD/gliadin combination had been certified prior to randomisation 

using a specific enzymatic assay.129 The capsules (both active and placebo) were 

manufactured by BTT Synerlab, a division of the Synerlab Group, Erstein 67150, 

France. 

3.4 Outcome Measures 

The primary outcome measure was general fatigue determined by the MFI that was 

repeated at 2-week intervals throughout the 12-week period.  The developer of the 
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MFI recommends that for a single measure of non-specific fatigue, the score for 

General Fatigue only should be the main consideration.130 

Secondary outcome measures included other measures from the MFI; Physical 

Fatigue, Reduced Activity, Reduced Motivation, Mental Fatigue and Total Fatigue 

(assessed every two weeks). In addition, blood was collected at approximately 8am 

at baseline, six and twelve weeks and plasma was analysed for measures of 

oxidative stress (malondialdehyde; MDA and F2-isoprostanes), antioxidant status 

(SOD and glutathione peroxidase (GPx) activity, total antioxidant status) and 

hormones (dehydroepiandrosterone DHEA and cortisol).   

3.4.1 Multidimensional Fatigue Inventory (MFI)   

The MFI instrument consists of 20 questions that ask respondents to rate aspects of 

fatigue on a scale of 1 to 5.  The responses are then tallied according to a scale, 

which classifies the fatigue into 5 categories. It was developed using populations of 

both healthy and unhealthy people across a range of age groups.  The MFI has been 

validated in more than 1000 individuals, including cancer patients receiving 

radiotherapy, CFS patients, psychology students, medical students, army recruits 

and junior physicians.131  

3.4.2 Oxidative Stress 

High performance liquid chromatography (HPLC) was used to determine plasma 

MDA using a modification of the method of Sim.132 The principle is that MDA in 

plasma is derivatised with 2,4-di-nitrophenylhydrazine (DNPH), which forms stable 

hydrazones that can be easily separated by HPLC and detected with diode array 

detection (Shimadzu, Kyoto, Japan). F2-isoprostanes were quantified using stable 

isotope dilution capillary gas chromatography/electron capture negative ionisation 

mass spectrometry with slight modifications to the method of Mori et al.133 

3.4.3 Antioxidants 

Plasma SOD activity was quantified by a modified method of Madesh and 

Balasubramanian134 that measures the ability of the enzyme to inhibit reduction of a 

tetrazolium dye. Inhibition is calculated based on the absorbances of two blanks (0 

and 100% superoxide production – corresponding to 100 and 0% inhibition 
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respectively). Glutathione peroxidase (GPx) activity was measured via the oxidation 

of NADPH to NADP2+, according to the method of Wheeler et al.135 One unit of GPx 

activity was defined as 1 Kmol NADPH oxidised per minute. The total antioxidant 

status (TAS) of the plasma was measured using the method of Miller et al.136 The 

method uses the radical cation ABTS·+ that absorbs at 600 nm. The higher the 

antioxidant status of the plasma, the greater the quenching of the compound. The 

concentration of TAS in the plasma was calculated as the mean gradient of the 

absorbance (relative to trolox standards). All assays were adapted for use on an 

automated spectrophotometer (Cobas, Mira, Roche Diagnostics, Switzerland) and 

measured in duplicate. In our laboratory, the coefficients of variation for the SOD, 

GPx and TAS assays are 7%, 4% and 3% respectively. 

3.4.4 Hormones   

Serum cortisol was assayed with the ADVIA Centaur test, which is based on a 

competitive immunoassay using direct chemiluminescent technology.  Similarly, 

serum DHEA-S was measured using the Immulite 2000 solid-phase 

chemiluminescent enzyme immunoassay. Both tests were supplied by Siemens 

Healthcare Diagnostics. 

3.5 Adverse Events 

Adverse events were recorded at each fortnightly meeting with the investigators.  

3.6 Determination of Sample Size 

To observe a 95% chance of detecting a 2-point difference between the two groups 

in the mean MFI perceived General Fatigue Score (at the 2-sided 5% level) with an 

assumed standard deviation of 8 and a loss to follow-up of 20%, 20 women in each 

group (40 in total) were required.    

3.7 Statistical Analysis 

Data were first tested for normality using the Shapiro-Wilk normality test. The 

student’s t-test for dependent samples was used to compare baseline data. General 

linear model two-way (group x time) repeated measures ANOVAs with student t-test 
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post-hoc tests were used to assess the outcome measures. Two-sided significance 

tests were used throughout. A p-value of ≤ 0.05 was considered significant. 

3.8 Results 

Participant flow is shown in Figure 3.1. Forty-nine telephone respondents were 

interviewed. Seven were not eligible (based on inclusion and exclusion criteria), one 

was withdrawn due to an inability of the phlebotomist to obtain blood on two 

occasions, one withdrew after the first session and one was subsequently excluded 

after selection, due to admitting concealing information relating to current treatment 

for a serious illness. Table 3.1 shows there were no significant (P>0.05) differences 

between groups in age, body mass, body mass index, menopausal status and 

number of patients taking anti-hypertensive, anti-depressant or hormone replacement 

therapy.  

Compliance was 89% for the active group and 92% for the placebo group.  There 

were no adverse events reported by any of the women throughout the trial.   

There were no significant (P>0.05) changes within or between groups for the primary 

outcome measure; general fatigue (Figure 3.1). There was a trend for a decrease in 

the fatigue score in the placebo group from baseline to week 12 (P= 0.06).   

Table 3.2 presents secondary outcomes’ data. There were no within or between 

group differences (P>0.05) in other measures of fatigue (physical fatigue, reduced 

activity, reduced motivation, mental fatigue and total fatigue score). For the 

biochemical measures, there were no significant (P>0.05) differences in increases in 

plasma SOD activity, plasma GPx activity, red blood cell GPx activity, or total 

antioxidant status.  Markers of oxidative stress (malondialdehyde, F2 -isoprostanes) 

were decreased in both groups but there were no significant (P>0.05) differences 

within or between groups.   

 



Page 27 of 308 
 

 

Figure 3.1:   Fatigue Study; Participant flow through the study 
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Table 3.1.    Fatigue Study; Participant characteristics. Mean ± SD 

 
Active Placebo 

n=19 n=19 

Age (years) 56 ± 4.6 56 ± 4.3 

Body Mass (kg) 70.9 ± 14.5 71.0 ± 12.5 

Body Mass Index 27.0 ± 5.9 27.0 ± 5.4 

Pre-Menopausal n (%)  2 (11%) 1 (5%) 

Menopausal n (%) 7 (36.8%) 7 (36.8%) 

Post-Menopausal n (%) 10 (53%) 11 (58%) 

Medication  - Anti-hypertensive  n (%) 2 (11%) 2 (11%) 

Medication - Anti-depressant   n (%) 1 (5%) 4 (21%) 

Medication - HRT   n (%) 4 (21%) 3 (16%) 

 

 

 

 

 

 

 

 

 

Figure 3.2: Changes in general fatigue in active and placebo groups over the twelve 

weeks. Mean +/- SD 
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Table 3.2    Effects of SOD/gliadin supplementation on secondary outcome measures at baseline, and after 6 and 12 weeks of 

supplementation. Mean ± SD. 

 

AU = Arbitrary Units; SOD = Superoxide dismutase; MDA = Malondialdehyde; GPx = Glutathione peroxidase; TAS = Total 

Antioxidant Status; DHEA = Dehydroepiandrosterone.  

 Active Group (n=19) Placebo Group (n=19) 

Baseline 6 weeks 12 weeks Baseline 6 weeks 12 weeks 

General Fatigue (AU) 15.5 ± 2.5 14.8 ± 4.3 13.9 ± 4.2 15.3 ± 2.4 12.2 ± 3.8 11.2 ± 3.6 

Physical Fatigue (AU) 13.7 ± 13.7 13.3 ± 3.8 12.1 ± 4.0 14.3 ± 3.9 12.2 ± 3.8 11.2 ± 3.5 

Reduced Activity (AU) 12.1 ± 4.0 10.1± 3.8 10.3 ± 4.0 11.7 ± 4.6 9.5 ±3.6 8.6 ± 3.3 

Reduced Motivation (AU) 10.8 ± 2.7 9.7 ± 3.6 8.7 ± 3.6 9.7 ± 3.0 8.7 ± 3.5 8.1 ± 2.9 

Mental Fatigue (AU) 14.2 ± 6.2 10.6 ± 4.2 11.2 ± 3.8 12.8 ± 4.3 10.7 ± 4.2 9.8 ± 3.9 

Total Fatigue Score (AU) 66.0 ± 10.7 56.3± 4.4 54.4 ± 16.9 64.1± 13.5 55.2 ± 18.3 50.3 ± 15.2 

Plasma SOD activity (U/L) 2.0 ± 0.6 1.7 ± 0.3 2.2 ± 0.4 1.8 ± 0.3 1.9 ± 0.2 2.0 ± 0.3 

Plasma GPx activity (U/L) 453.2 ± 53.0 465.3±57.7 464.2±59.9 438.5 ± 47.0 450.5 ± 50.4 441.6 ± 50.0 

Red blood cell GPx activity 
(U/g Hb) 

37.7 ± 14.0 40.9 ± 11.8 41.8 ± 13.1 38.9 ± 11.0 40.9 ± 8.9 40.7 ± 8.2 

Plasma TAS (mmol/L) 1.8 ± 0.1 1.8 ± 0.1 1.8 ± 0.1 1.8 ± 0.05 1.8 ± 0.1 1.8 ± 0.1 

Plasma MDA µmol/L 11.7 ± 1.2 12.9 ± 3.3 11.3 ± 3.5 11.6 ± 1.4 13.5 ± 3.2 11.5 ± 2.8 

Plasma F-2 Isoprostanes 
pg/ml 

444.2 ± 107.3 427.7± 92.8 520.4± 122.2 658.5 ± 77.6 436.4 ± 65.1 538.1 ± 111.5 

Plasma Cortisol (ng/ml) 454.2 ± 143.3 421.6± 151.1 364.4± 151.1 499.5 ± 148.1 340.5± 128.0 478.3 ± 160.6 

Plasma DHEA (ng/ml) 1082.1± 612.1 998.9± 443.4 1068.4± 611.3 782.0 ± 372.3 719.5± 346.2 683.3 ± 268.4 

Cortisol/DHEA Ratio 0.42 0.42 0.34 0.64 0.47 0.70 
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3.9 Discussion 

Twelve weeks’ supplementation with a gliadin-combined plant SOD extract had 

no effect on general fatigue in women aged 50-65 years with longstanding 

unexplained fatigue. There was a trend (P=0.08) for the supplement to lower 

cortisol (24.4% decrease). There were no effects on plasma SOD activity or other 

antioxidants. In addition, the supplement did not significantly lower oxidative 

stress or change DHEA. 

The lack of an effect of the SOD/gliadin supplement is in contrast to previous 

studies that have shown positive benefits of an oral SOD supplement.18,19,137 This 

includes protection against DNA damage following exposure to hyperbaric 

oxygen,19 regression of carotid intima medial thickening in metabolic syndrome 

subjects,137 prevention of oxidative stress following ischaemia/reperfusion138 and 

prevention of stress-induced impairment of cognitive function.124  The dosage 

used in these studies was equivalent to that used in our study.  

In two of these studies the SOD/gliadin increased tissue activity of SOD, 

Glutathione peroxidase and Catalase.19,138  However, we failed to find any 

changes in either endogenous antioxidant enzymes or oxidative stress. 

Therefore, a lack of antioxidant effect in our study is a potential explanation for 

the lack of an impact on general fatigue. 

It is possible that the supplement did not have the necessary bioactivity. We did 

not assay the SOD/gliadin capsules for SOD enzyme activity prior to 

randomisation.  SOD/gliadin contains the temperature-sensitive SOD enzyme 

which, when exposed to temperatures greater than 40OC can be irreversibly 

damaged.139 SOD/gliadin has a shelf life of 2 years when stored between 5 and 

25OC.41  Even though assay of an intervention tool is not customary prior to 

commencement of a trial, we do not know whether the capsules were exposed to 

higher temperatures during transit and therefore we cannot be certain that the 

capsules were bioactive at point of distribution to the participants in the study.  

Our findings are in agreement with Zidenberg-Cherr140 who also failed to find an 

effect of an oral SOD supplement. However, they used a form of SOD which was 

degraded by gastric proteolytic enzymes and as such is not likely to increase 

SOD activity. 
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Another possible explanation is that fatigue is not responsive to this intervention.  

Although there were no significant differences in the effects of the SOD/gliadin 

supplement on general fatigue, there was a substantial non-significant (P=0.06) 

4.1% decrease in the placebo group.  This is likely explained by a placebo effect 

although it is surprising that the same was not seen in the active group. It is 

possible that other biases may have been present and not assessed. For 

example, some of the participants were being treated for depression (albeit 

controlled with medication) whilst others reported living in family circumstances 

that caused them considerable anxiety. These incidental findings were not 

systematically recorded during the trial.  It is known that anxiety/depression and 

fatigue can be closely correlated and up to three-quarters of patients with fatigue 

syndromes have co-morbid mood or anxiety disorders.141  If the underlying and 

undiagnosed anxiety is contributing to the observed fatigue, rather than oxidative 

stress, then the supplement would not likely affect this process.  

There was a trend for a decrease in cortisol over the twelve weeks in the active 

group with a non-significant (P<0.08) 24.4% decrease compared to a 4.2% 

decrease in the placebo group. Elevated cortisol levels are associated with 

extreme fatigue.142 An association between CFS and abnormalities of the 

hypothalamo-pituitary-adrenal axis has also been described.143  The non-

significant lowering of cortisol is interesting but more research, perhaps over a 

longer period, would need to further investigate this. 

In summary, supplementation with the thermolabile SOD/gliadin had no effect on 

general fatigue in women aged 50-65 years experiencing fatigue. No adverse 

effects towards the intervention were recorded. The failure of the supplement to 

affect plasma SOD activity or lower oxidative stress implies that there was either 

a lack of antioxidant ability or that fatigue in this population was not related to 

oxidative stress.  
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SECTION TWO 

CHAPTER 4 

Sulforaphane Literature Review 

INTRODUCTION 

The introductory material for this section is supported by two published review 

papers on clinical aspects of SFN.  These publications are separately entitled, 

Sulforaphane: translational research from laboratory bench to clinic144 and 

Sulforaphane and Other Nutrigenomic Nrf2 Activators: Can the Clinician’s 

Expectation be Matched by the Reality?145 

These reviews follow this chapter’s background discussion as Chapters 5 and 6. 

 

4.0 OVERVIEW  

It is 25 years since the identification and isolation of the transcription factor, Nrf2 

(coded by the gene NF-E2-related factor 2) was first described in the scientific 

literature.146  In the ensuing years, Nrf2 has become a focus of active research 

on mechanisms of defence in mammalian cells.147,148,149  The role of Nrf2 in 

human cells is very relevant to the subject matter of this thesis because SFN 

significantly activates Nrf2 and as such has the potential to modulate the 

expression of genes associated with cellular defence.  Figure 4.1 illustrates the 

upward trend in SFN research over the period.   

Nrf2 has been variously described by several researchers as an ‘activator of 

cellular defence mechanisms,’150 ‘the master redox switch’151 and ‘a guardian of 

health span and gatekeeper of species longevity’.152  As a mediator for 

amplification of the mammalian defence system against various stressors, Nrf2 

sits at the interface between our prior understanding of oxidative stress and the 

endogenous mechanisms cells use to deal with it.153   

What is emerging is that diseases known to be underpinned by oxidative stress 

are proving to be more responsive to such amplification of cellular defences via 
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Nrf2 activation than by administration of direct-acting antioxidant 

supplements.154,35   

Figure 4.1   Sulforaphane Research Timeline.   

Sulforaphane research appears to be accelerating, showing that by mid-2017, the number of 

published studies is already ~75% of that for the same period in the previous year. 

4.1 Phytochemicals on the Drug Discovery Path? 

For a phytochemical to be considered as a therapeutic agent, it must be 

evaluated using many of the same tools used in pharmaceutical product 

development.  Whereas a pharmaceutical is typically a single molecule, plants 

are complex multicomponent mixtures, the phytochemical composition of which is 

not constant due to factors which include inherent agricultural and environmental 

variability.155  Of the published SFN research to date, the intervention materials 

are non-standard, with some studies using the pure chemical SFN as the 

intervention material where others use broccoli vegetable or fresh, dried  or 

homogenised broccoli sprouts; therefore comparison of clinical trial outcomes 

becomes more difficult.   

Nevertheless, when working with isolated bioactive phytochemicals and whole 

foods as a source of the same bioactive, the biopharmaceutical processes 

typically used in pharmaceutical development should equally apply.  The LADME 

principles (liberation, absorption, distribution, metabolism, and excretion) 

described in connection with the pharmacokinetics of pharmaceuticals are 
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equally relevant to phytochemicals.156  However, such data is seldom available 

for the more popular phytochemicals used preventively or medicinally.155  A 

comprehensive review on this subject by Pferschy-Wenzig and Bauer155 

highlights the many issues that can be under-appreciated by consumers who 

self-medicate on the basis of limited safety and efficacy data. 

The literature for SFN indicates that many researchers have addressed the 

various LADME principles, thereby producing a more extensive database that is 

useful for interpreting the dose-response. 

4.2 Pleiotropic Effects of SFN 

Although SFN is most often considered for its Nrf2-dependent effects, largely 

associated with the induction of antioxidant and Phase 2 detoxification enzymes, 

other less well-characterised mechanisms are associated with this lipophilic, low 

molecular weight pleiotropic phytochemical molecule.  The Nrf2-independent 

mechanisms include but are not limited to the induction of apoptotic pathways, 

suppression of cell cycle progression, inhibition of angiogenesis and anti-

inflammatory activity and inhibition of metastasis, primarily relevant to cancer.157   

One such effect is its action as a Histone Deacetylase Inhibitor (HDAC)158,159 and 

there is a growing focus on the role of SFN and other phytochemicals on such 

epigenetic effects160,161 and more recently on the role of SFN as an inhibitor of 

microRNAs.162 Epigenetic effects are of particular clinical interest in that such 

changes are potentially reversible and thereby may provide an opportunity for 

intervention in earlier stages of the cancer process.163  Tumour suppressor genes 

may be epigenetically inhibited so that therapies aimed at removing such 

suppression are attractive options, especially if they can be available through 

dietary means. 

No discussion of SFN and Nrf2 would be complete without reference to the fact 

that both Nrf2 activators and Nrf2 inhibitors can be utilised in cancer therapy.  A 

very recent paper164 highlights this dual role and its implications for Nrf2 

activation. It suggests that because Nrf2 can modulate the detoxification 

pathways, its effect on anti-cancer drugs may lead to chemoresistance and that 

the switch between a beneficial and a detrimental role for Nrf2 in cancer cells 
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depends on a number of factors which include the tight control of its activity. This 

poses an obvious dilemma which is already under active discussion and 

investigation165-167; SFN and other phytochemicals capable of modulating Nrf2 

form part of such investigation.164 

4.3 History and Evolution of Sulforaphane Research  

Interest in SFN as a food-derived compound with significant clinical potential 

began in 1992 when a group at Johns Hopkins University published its findings.27  

It appeared that SFN was capable of activating a cytoplasmic transcription factor, 

Nrf2 which in turn translocated to the nucleus to activate the Antioxidant 

Response Element (ARE) in the promoter region of several hundred identified 

genes,13,168,169,170 many of which are related to cellular defence processes.  

Interestingly, SFN was identified here as a potent activator of cellular defence 

mechanisms approximately two years before the isolation of Nrf2.27,146   

Of the earlier studies, the potential for SFN to intervene in the prevention and/or 

treatment of cancer through several relevant mechanism gained most 

attention.151,171  As SFN research has continued and laboratory techniques have 

become more sophisticated and widely-available, it has become apparent that 

this molecule exerts its actions at the level of several of the most fundamental 

disease-causing biochemical processes.151  Its mechanism would appear to have 

clinical implications for chronic disease in general and in this context, SFN has 

been shown to inhibit endothelial dysfunction172,173,174 and other aspects of 

cardiovascular and endocrine174 function.  As endothelial dysfunction 

compromises normal function of the circulatory system, it has the potential to 

contribute to chronic disease in general. 

4.3.1 Development of Sulforaphane Analogues 

Initially, the research focused on SFN itself but as this evolved, SFN 

analogues175,176,177 were being developed and investigated for their biochemical 

and clinical effects.   Interestingly however, attempts to develop synthetic 

analogues have failed to produce compounds with any greater potency and 

pleiotropy than SFN itself.178  Some analogues have demonstrated greater 
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effects in particular aspects under investigation but none has been shown to 

replicate all the properties of plant-derived SFN.   

Nevertheless, pharmaceutical research has resulted in molecules capable of 

more potently mimicking some of the actions of SFN.  A pharmaceutical, 

Bardoxolone methyl,179 discussed in context in Chapters 6 and 7 is capable of 

activating the same transcription factor, Nrf2 as SFN but is many times more 

potent in this action. 

4.3.2 Broccoli Sprout vs Vegetable 

In addition to their findings that SFN is a powerful inducer of endogenous 

antioxidant enzymes and Phase 2 detoxification enzymes,28 the Johns Hopkins 

group found that the 3-day germinated broccoli seed contained 10-100 times 

more of the bioactive precursor glucoraphanin than the mature broccoli 

vegetable.169  It was this finding that enabled the design of trials which could 

achieve clinically-relevant SFN effects with small practical doses of dried broccoli 

sprouts. 

Of all vegetables, the cruciferous vegetables are the ones for which most 

evidence exists for a cancer-preventive effect.180  Early research on SFN focused 

on its potential in prevention and to a lesser extent as therapy against cancer.  

Several of the effects of SFN are directly related to the initiation and progression 

of the cancer process but as described above, Nrf2 activation is only one aspect 

of SFN’s pleiotropic role in this context.157   

4.4 Sulforaphane – Structure, Properties and Mechanism of Action 

The structure of this small lipophilic molecule (M.W. 177.29), confers upon SFN 

some unique advantages not afforded other phytochemicals such as the 

polyphenols which are structurally large and essentially hydrophilic.181  One of 

the major advantages for SFN is its higher bioavailability which is a consequence 

of its structure (Figure 4.2) 
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4.4.1 Bioavailability 

SFN has been demonstrated as having an absolute bioavailability of around 

80%182 and has been shown to peak in the bloodstream around 1 hour following 

ingestion.183 By comparison, the polyphenols typically exhibit bioavailability184 at 

around 1-8%.  SFN can therefore be considered as having at least one of the key 

properties necessary to be considered for development as a nutraceutical 

compound. 

4.5 The SFN-Nrf2 Relationship 

The essence of a very complex biochemical process147 is that in its basal state, 

Nrf2 is sequestered to Kelch-like ECH-associated protein 1 (Keap-1) and 

associated with cytosolic actin filaments; however, when Keap-1 detects a 

stressor which may threaten the cell’s integrity, activation of the complex leads to 

a dissociation of Nrf2 from Keap-1.185  Hereafter, it translocates to the nucleus 

where it  may induce expression of its many target genes, aligning with the ARE 

in the promoter region of these genes.  The ARE is a cis-acting enhancer 

sequence that is upstream of many Phase 2 detoxification and antioxidant 

genes.33  (Figure 4.3) 

Loss of the Nrf2-ARE function in mice has been shown to increase 

susceptibility186 to acute toxicity, inflammation and carcinogenesis due to the 

inability to mount adaptive responses. The elucidation of this process showed 

that activation of Nrf2-ARE induces a large battery of cytoprotective enzymes.187 

 

 

 

Figure 4.2   Sulforaphane (C6H11NOS2) – molecular structure of sulforaphane 

(4-methylsulfinylbutyl isothiocyanate)  
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Cellular Nrf2 levels are under strict control by multiple mechanisms but the best-

characterised is the one which is mediated by interaction with (Keap-1.)188  Keap-

1 not only binds Nrf2 to actin filaments in the basal state but it also acts a sensor, 

especially of subtle redox changes in the cell.  Very recently, it has been reported 

that the regulation of Keap-1/Nrf2/ARE is more complex than previously thought, 

with other mechanisms including epigenetic regulation of Nrf2 now known to be 

involved.149 

The chemistry of sulfur plays an integral role in Nrf2 activation and subsequent 

modulation of gene expression.  All Nrf2 activators react with thiol groups.  Keap-

1 is rich in sulfur-rich cysteine residues187 and is under oxidation-reduction (and 

alkylation) control via its highly reactive thiol groups.  

 

 

 

 

 

 

 

 

Figure 4.3   Mechanism by which an inducer affects expression of Phase 2 

detoxification genes 

An inducer such as SFN activates the Nrf2-Keap-1 complex, with sulfur chemistry playing an 

important role.  The presence of sulfur in Keap-1 and Nrf2 inducers is illustrated.187 

4.5.1 The Significance of the Nrf2-SFN Relationship 

Nrf2 is ubiquitously expressed with the highest concentrations (in descending 

order) in the kidney, muscle, lung, heart, liver, and brain.146  Because SFN is 

readily-bioavailable, such universal Nrf2 tissue distribution enhances SFN’s 

potential to modulate systemic gene expression.  In this context Nrf2189 has been 
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described as a ‘master switch’ involved in the induction of cytoprotective genes 

by some chemopreventive phytochemicals.   

4.5.2 Multiple Gene Targets and the Nrf2 /ARE Pathway 

It has been suggested that in excess of 500 genes have been identified as being 

activated by sulforaphane via the Nrf2/ARE pathway190,191,192 and it is likely that 

this under-estimates the number as others are being discovered. 

The large battery of upregulated cytoprotective genes includes those coding for 

the endogenous enzyme and non-enzyme antioxidants as well as Phase 2 

detoxification enzymes.168  Nrf2 plays a crucial role in the coordinated induction 

of those genes encoding many stress-responsive and cytoprotective enzymes 

and related proteins.193  These include NAD(P)H:quinone reductase-1 (NQO1), 

haemoxygenase-1 (HO-1), glutamate-cysteine ligase (GCL), glutathione-S-

transferase (GST), glutathione peroxidase (GPX1), thioredoxin (TXN), 

thioredoxin reductase (TXNRD1)189 and PPAR-γ (PPARG).194    

When Zhang and colleagues27 of the Johns Hopkins group had been 

investigating chemoprevention in the early 1990s, they had been working on 

cytoprotective genes including those coding for the Phase 2 detoxification 

enzymes NQO1 and the GST families; the discovery that these genes were 

significantly induced by broccoli sprout-derived SFN provided the foundation for 

the rapid interest in research in this field. 

Of the available SFN clinical trials associated with genes induced via Nrf2 

activation, many demonstrate a linear dose-response (Table 4.1).  More recently, 

it has become apparent that SFN can behave hormetically195 with different effects 

responsive to different doses and this is in addition to its varying effects on 

different cell types as outlined in 4.6. and tabulated in Table 4.2 

4.6 Published Clinical Trials 

At time of writingb there are 1592 published papers which appear in a PubMed 

search using the term, ‘sulforaphane’. However, a limited number of these are for 

clinical trials utilising either fresh or processed broccoli sprouts (Table 5.1 from 

                                            
b August, 2017 
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Chapter 5 and Table 4.1 here).  Not all trials quantitatively specify the bioactive 

content of the intervention material.  As a result, it is difficult to interpret their 

findings in a clinical context.  In considering SFN as a therapeutic intervention, 

some important questions to be asked are; ‘What quantity of starting material is 

needed to achieve a micromolar concentration which generates a significant 

clinical outcome?’  ‘How can a broccoli sprout raw material be produced which 

will be consistent in its composition?’ and ‘Is it possible to produce a broccoli 

sprout raw material that is a practical solution to consumer needs for a SFN-

yielding supplement?’   

4.7 The Clinician’s Dilemma in Applying Clinical Trial Data 

Unlike most of the products categorised by U.S. law as ‘dietary supplements’, the 

sub-groups of products claiming to be ‘nutraceutical supplements’ are typically 

standardised for their bioactivity; this may require that one or more bioactives is 

specified with each batch produced.  Of the various available supplements which 

include a dried broccoli sprout ingredient, the label disclosure is inconsistent; this 

is discussed in some detail later in this chapter and again in Chapters 5 and 6.  A 

consumer or a clinician intending to select an available SFN-yielding supplement 

on the basis of its dose compared with those used in the peer-reviewed 

published clinical trials will have great difficulty in doing so.   

This thesis explores the issues associated with the process of standardising label 

disclosure with a view to clarifying a dose-response relationship that can be 

compared with the currently available SFN clinical trial data.  In evaluating the 

available dose-response evidence, it may be concluded that it is simply too early 

in the process for clinicians to confidently make such recommendations.  Issues 

associated with dose-response considerations are addressed in some depth in 

Chapter 7.   

4.8 Valuable Contributions from Available Clinical Trial Data. 

Table 4.1 lists 33 of the 42 published clinical trials using SFN in a range of forms 

from pure chemical SFN to fresh sprouts, homogenised fresh sprouts and dried 
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sprout powder/capsules.c  These studies have been selected as each contributes 

significantly to the enhancement of our understanding of this phytochemical’s 

potential in human health and disease.  Although dose forms, study populations 

and endpoints are different across the selected trials, a pattern is emerging to 

show that clinical outcomes are achievable in conditions such as asthma196 with 

daily SFN doses of around 18 mg daily and from 27 - 40 mg in type 2 

diabetes.197,198  Positive outcomes were achieved at a lower SFN dose of around 

9-14 mg daily for the autism study by Singh et al.199  Reduction of Prostate 

Specific Antigen (PSA) doubling time after radical prostatectomy may require a 

higher 60 mg daily dose.200 Chapter 7 explores and analyses the dose-responses 

when considering an appropriate SFN dose for the gene expression study 

detailed in Chapter 8. 

                                            
c PubMed accessed 22nd July, 2017 
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Table 4.1   Selected Clinical Studies Investigating a Dose-Response for Sulforaphane, listed chronologically (2013 – 2017) 

The selected trials utilise various forms of intervention to provide a dose of SFN designed to positively affect the chosen endpoint(s).  These studies have 

been published subsequent to our Review paper (Chapter 5) which includes a more comprehensive list of published trials. 

 

Lead Author 

& Year of 

Publication 

Subject 

Number 
Intervention Endpoint Finding Dosage or Clinical Relevance 

Poulton et al. 

(2013)201 

24 

450 μmols SFN (~ 

80 mg) in broccoli 

sprout extract 

CYP3A4 induction 

in relation to drug 

adverse effects via 

the pregnane and 

xenobiotic receptor 

(PXR) 

SFN did not reduce 

CYP3A4 induction 

alone or as co-

treatment in co-

administration with 

drugs. 

A dose of 80 mg is significantly 

higher than available from 

foods or from practical intake 

from supplements. 

Singh; 2014199 44 

9 - 14 mg SFN 

based on body 

weight of a 

stabilised 

sulforaphane 

supplement. 

Validated 

questionnaire-

based disease 

markers for autism 

Positive responses in 

Aberrant Behaviour 

and Social 

Responsiveness.  

Reduced markers of 

redox imbalance and 

inflammation. 

Favourable effects at 18 weeks 

gradually trended towards 

baseline for further 4 weeks.  

Effect may not have plateaued 

at 18 weeks. 
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Lead Author 

& Year of 

Publication 

Subject 

Number 
Intervention Endpoint Finding Dosage or Clinical Relevance 

Egner et al.; 

2014202 
267 

262 mg GRN + 7 

mg SFN with MYR 

from daikon in juice 

Detoxification of 

Atmospheric 

pollutants via 

urinary excretion of 

the mercapturic 

acids of the 

pollutants, 

benzene, acrolein, 

and 

crotonaldehyde. 

Increased levels of 

excreted glutathione-

derived conjugates of 

toxins. 

Benzene-derived mercapturic 

acid was higher in participants 

who were GSTT1-positive than 

in the null genotype.  

Implications for polymorphism 

(SNP) screening in individuals. 

Heber et al.; 

2014203 
29 

18 mg SFN from 

GRN extract + 

daikon MYR in 

mango juice 

Nasal Allergic 

Response. White 

cell count (WBC) 

after exposure to 

diesel exhaust 

particles (DEP). 

85% increased WBC in 

nasal cells 24 hours 

after DEP exposure. 

Potential preventive therapy for 

those exposed to 

environmental inhaled 

toxins/particles. 
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Lead Author 

& Year of 

Publication 

Subject 

Number 
Intervention Endpoint Finding Dosage or Clinical Relevance 

Baier et al; 

2014204 

8 

Claimed to be 18 

mg SFN per gram 

fresh broccoli 

sprouts d at doses of 

34, 68 and 102 g. 

Activation of long 

terminal repeats 

(LTRs) as off target 

effects of SFN  

SFN increased LTRs 

dose-dependently, 

showing peak 10-fold 

increase at higher 

dose. 

May need to use caution with 

higher SFN doses. 

Brown et al.; 

2015203 

45 

18 mg SFN as GRN 

extract + daikon 

MYR in mango juice 

Reduction of 

symptoms in 

moderate asthma; 

redox and 

inflammation 

biomarkers 

SFN reduced airway 

resistance and 

reduced inflammatory 

markers. 
Potential benefit for asthmatics. 

                                            
d The SFN yield claimed by Baier et al is in stark disagreement with those stated by Myzak et al (2006) using the same fresh sprouts (Broccosprouts®).  Refer 
Chapter 7 for related discussion. 
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Lead Author 

& Year of 

Publication 

Subject 

Number 
Intervention Endpoint Finding Dosage or Clinical Relevance 

Cipolla et al.; 

2015200 

78 

60 mg SFN as 

stabilised SFN from 

seed extract 

PSA Doubling 

Time in mean with 

biochemical 

recurrence after 

radical 

prostatectomy 

SFN effects prominent 

after 3 months. PSA 

slopes were 

consistently lower in 

SFN group. 

Potential therapy following 

prostatectomy where PSA 

gradually increases. 

Atwell et al.; 

2015 

54  

SFN not specified. 

GRN supplement  

(180 mg daily). 

Breast Tissue 

Biopsy – presence 

of SFN and its 

mercapturic acid 

metabolites 

No change on breast 

tissue tumour 

biomarkers. SFN 

metabolites present. 

Confirmation of bioavailability 

in tissue of women with 

abnormal mammograms but 

query dose and SFN Yield. 

Doss et 

al.;2016205 

16 

SFN not specified.  

Broccoli sprout 

homogenate  

(50, 100, 150 g). 

Sickle Cell 

Disease – Nrf2 

activation 

Dose-dependent 

increase in Nrf2 target 

genes, NQO1, HBG1 

and HMOX1. 

Nrf2 is not maximally activated 

in sickle cell disease, thereby 

suggesting SFN as a 

therapeutic option. 
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Lead Author 

& Year of 

Publication 

Subject 

Number 
Intervention Endpoint Finding Dosage or Clinical Relevance 

Wise et al; 

2016206,207 

89 

Daily SFN at 4.4 mg 

and 26.6 mg. Whole 

broccoli sprout 

powder, described 

as a broccoli sprout 

extract (BSE). 

COPD – effects on 

two types of 

respiratory cells 

via Nrf2 

No change in Nrf2 

target genes at either 

dose. 

In diseases where Nrf2 is 

expressing maximally as a 

compensatory effect of the 

disease, Nrf2 activators may 

be ineffective. 

Axellson et 

al.;2017 

198(Supplement

ary material) 

97 

Daily SFN of 27 mg 

in a 5-gram powder 

dose. Whole 

broccoli sprout 

powder, described 

as a broccoli sprout 

extract (BSE). 

Type 2 diabetes 

biomarkers. 

Lowered fasting 

glucose, Inhibition of 

hepatic 

gluconeogenesis and 

lowered fatty liver 

index.  No effect in 

well-regulated 

diabetics. No effect on 

insulin resistance. 

Greater effect in patients with 

elevated HOMA-IR and in 

obese patients.  Potential 

treatment for those with poor 

glucose control. 
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4.9 Diversity of Effect of SFN in Various Cell Types. 

Part of the difficulty in the process of establishing an appropriate dose is that in vitro 

evidence clearly shows that effects are tissue-specific and more so, specific to 

different cell lines of the same tissue.  Table 4.2 illustrates this diversity and is also 

included in our published Review paper included in this thesis as Chapter 5.  For 

example, Ritz et al.208 showed that bronchial cells exposed to diesel extract in two 

bronchial cell lines responded differently to the same SFN concentration when 

measuring Nrf2-induced targets.    

Brooks et al.209 used six different prostate cell lines to show the broad diversity in 

effect of SFN.  Here, normal cells produced 1.35-fold induction of NQO1 at 0.1 µM 

SFN and 2.46 at 1 – 3 µM but in a prostate cancer cell line, 10 µM was required to 

produce 4.6-fold induction.  Interestingly, the group showed that simultaneous 

incubation with just 10 nM N-acetyl cysteine (NAC), a direct-acting antioxidant, 

abrogated all effects of SFN.  This may be significant because NAC is available as 

a dietary supplement and has recently been very actively promoted to non-

conventional clinicians who recommend it for a variety of off-label conditions 

associated with mental health.210-216 

An animal in vitro study investigating tissue- and organ-specific effects with SFN 

exposure suggested that there may be a need for prioritizing organs when 

considering the chemopreventive study of SFN.217 

These large variations are more clearly illustrated in Table 4.4 which shows the 

lowest effective SFN dose across a range of cell types and a brief summary of the 

effects. 

As in vitro studies, these data are not directly relevant to the in vivo environment.  

However, the data linking the intracellular SFN concentrations to a measurable 

effect is an important step moving such dose responses closer to prediction of 

clinical responses.  These in vitro findings are also essential in elucidating the 

mechanisms that underpin the observed effects. 
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Table 4.2.  Summary of effects of increasing sensitivity to SFN in different tissues or cell types (ascending order) 

Tissue or Cell Type Brief Summary of Effect  Lowest Effective 

SFN Dose (µM) 

Prostate cells, normal 

and cancer cell lines.209 

SFN increased activity of GSTP1, silenced in prostate 

cancer cells.  Also increased other Phase 2 enzymes in 

normal cells   

0.1 

Neural cortical cells.218 SFN protects against dopamine toxicity 0.1 

Aortic cells.219 Significant dose-dependent induction of Nrf2 target 

cytoprotective genes 

0.25 

Bronchial epithelial 

cells.208  

Upregulates Phase 2 enzymes and downregulates 

inflammatory cytokines 

0.3 

Brain – Substantia nigra 

cells.220 

 Significant increases in GSH and NQO1 at both doses 0 .5 

Bronchial epithelial 

cells.221 

Normal cells  significant increases in Nrf2 targets; no 

effects on cancerous cells 

0.5 

Retinal epithelial cells.222 Linear cytoprotective effects with increasing SFN dose 1.25 

Pancreatic β-cells.223 Protection against cytokine-induced cell death 2.5 
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Endothelial cells - arteries 

and veins.224 

SFN protective against endothelial lipase at lower dose  2.5 µM (arterial) 

10 µM (venous) 

 

Cardiomyocytes.225 Greatest effects with SFN exposure up to 48 hours 5 µM 

Prostate cancer cells.226 Strong Cell Cycle Arrest in Prostate Cancer 10 µM. (No effect at 

<3 µM) 
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4.10 Major Actions of SFN at the Cellular Level 

The major documented cellular actions SFN are listed in the non-exhaustive summary 

shown in Table 4.3 along with commentary on their clinical implications.  These upstream 

processes have significant downstream effects and are associated with the observed 

effects in clinical trials using SFN or a dietary source of SFN. 

 

Table 4.3 Summary of Clinically-Relevant Actions of SFN 

 ACTION CLINICAL IMPLICATIONS 

1. Increases synthesis of 

Glutathione.227 

 

This has implications for oxidative stress 

and detoxification as glutathione is the 

substrate for both pathways.  Glutathione 

is also an antioxidant in its own right. 

2. Inhibits some Phase 1 

detoxification enzymes that 

activate chemical 

carcinogens.228 

This reduces the level of toxic 

intermediates with carcinogenic potential.  

It also allows Phase 2 to ‘keep pace’ with 

Phase 1 processing. 

3. Increases activity of Phase 2 

detoxification enzymes.  

Sulforaphane is considered the 

most potent of the Phase 2 

inducing substances.27 

As a monofunctional inducer, 

sulforaphane is considered to be a 

significant component of the 

anticarcinogenic action of broccoli. 

4. Provides significant antioxidant 

activity, largely due to its ability 

to induce glutathione synthesis. 

Glutathione is a critical factor in 

protecting organisms against toxicity and 

disease.229  The ability of sulforaphane to 

upregulate glutathione synthesis is highly 

significant. 

5. Acts as a Histone Deacetylase 

inhibitor, providing DNA 

protection.230, 231, 232. 

Development of Histone Deacetylase 

inhibitors is a key avenue for cancer drug 

research. 
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6. Induces apoptosis, inhibits 

MMP-2 (metastasis), inhibits 

angiogenesis, cell cycle 

arrest40,158,233, 234 (interacts at 

several levels). 

Therapeutic interventions which exhibit 

several related actions targeting the 

same underlying defect are considered 

highly desirable. 

7. Limits pro-inflammatory effects 

of diesel chemicals by 

upregulation of Phase 2 

enzymes.208 

Environmental pollutants are known to 

contribute to various lung diseases.  

Removal of the toxins reduces tendency 

to disease. 

8. Induces Thioredoxin (Trx) as 

part of the ARE. 

Thioredoxin is implicated in 

cardioprotection by triggering several 

survival proteins.235  Sulforaphane may 

have beneficial effects in cardiovascular 

disease. 

9. Bactericidal against 

Helicobacter pylori and also 

blocks gastric tumour formation 

in animals.236 

Helicobacter is known to contribute to 

development of stomach cancer.  

Elimination of the organism without the 

use of typical antimicrobial Triple Therapy 

could protect the colonic microflora. 

10. Protects dopaminergic cells 

from cytotoxicity and 

subsequent neuronal death 

(cell culture).237 

Dopaminergic neurones are associated 

with Parkinson’s’ Disease.  

Pharmaceuticals to treat Parkinsonism 

are not without risk and the disease is not 

usually detected until more than 50% of 

the neurones have been lost.  A 

chemoprotective tool could prevent 

premature loss. 
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11. Increases p-53 (associated with 

tumour suppression) and bax 

protein expression, thereby 

enhancing cellular protection 

against cancer.238 

Sulforaphane is an attractive 

chemotherapeutic agent for tumours with 

a p53 mutation.157 

12. Limits effect of Aflatoxin on 

Liver Cells.38 

Interventions which can offer significant 

protection against environmental and 

food-borne pollutants could prevent the 

consequences of these factors.  

Appropriate doses of Sulforaphane-

yielding substances are yet to be 

determined. 

13. Enhances Natural Killer Cell 

activity and other markers of 

enhanced immune function.227 

The immune system is a critical part of 

the body’s defences against inflammatory 

as well as infectious diseases.  Most 

diseases benefit from enhancement to 

immune function. 

14. Suppresses NF-kB, a key 

regulator of inflammation.227   

NF-kB expression is 

downregulated by sulforaphane 

and as such downregulates 

inducible pro-inflammatory 

enzymes such as Cyclo-

oxygenase (COX-2) and NO 

synthase (iNOS). 

As an inhibitor of NF-kB as well as an 

activator of Nrf2, SF modulates many 

cancer-related events, including 

susceptibility to carcinogens, cell death, 

cell cycle, angiogenesis, invasion and 

metastasis.227 

 

15. Sulforaphane is not directly 

anti-oxidant.  Instead it exhibits 

a weak pro-oxidant effect.239 

Because sulforaphane is not directly 

antioxidant but exerts its antioxidant 

effect primarily by induction of glutathione 

and other antioxidant compounds, it is 

considered to exhibit an indirect 

antioxidant effect. 
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16. Potent inducer of HO-1, 

Haemoxygenase-1. 

Haemoxygenase-1 plays an important 

role in modulating the effects of oxidants 

in the lungs.240 

 

4.11 Cruciferous Vegetables, Composition and Bioactivity 

Cruciferous vegetables are known to contain high but variable levels of glucosinolates.241  

Glucosinolates (GSN) are not inherently bioactive but become so when enzymatically 

converted to their individual isothiocyanates (ITCs) in a hydrolysis reaction catalysed by 

the enzyme, MYR.242  GSNs found in the Brassica species exhibit their own 

characteristic properties; the broccoli-derived GRN is the best-known precursor to the 

bioactive compound, SFN but not the only one.26  Glucoerucin found in Rocket (Eruca 

sativa Mill) sometimes called ‘arugula’ is also a source of SFN.243 SFN is the ITC derived 

from GRN via a MYR-catalysed hydrolysis reaction.  Minimal quantities of GRN are found 

in several other Brassica species.26 

 

Figure 4.4   Conversion of Glucosinolates to Isothiocyanates in the presence of the 

enzyme, MYR.242    

In a hydrolysis reaction, glucose is cleaved from the glucosinolate and after a rearrangement, the 

ITC is produced.  GRN is the GSN from which SFN is derived. 

4.11.1 Stability of Bioactives and Effects of Cooking 

GSNs are compartmentalised in vacuoles within the plant cell and separated from the 

MYR which catalyses its hydrolysis.  In this way, the GSN remains inactive until the cell 

structure is disrupted.242  When the vegetable is cut, chewed or macerated in any way, 

the enzyme is released from its protective vacuole and immediately reacts with the GSN.  
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Figure 4.5   Effect of ESP on conversion of GRN to 

SFN and SFN Nitrile.1   

 

The resulting product is the bioactive ITC shown in Figure 4.4.  Once produced, the ITC 

is relatively unstable with a half-life of around 1.8 hours in humans.244    

Cooking and especially prolonged cooking denatures the enzyme.245,246  It becomes 

clear that for cruciferous vegetables to retain their bioactivity and maintain their efficacy, 

they must be handled carefully and with thorough understanding of the factors 

associated with their degradation.247,248 

MYR activity from broccoli vegetable has been reported to be thermolabile, with loss of 

approximately 90% activity after only 2 minutes of microwave cooking.246  Boiling and 

microwaving cause an initial loss of the MYR-inhibiting SFN nitrile, with a concomitant 

increase in SFN, followed by loss of SFN, all within 1 minute.249   By contrast, steaming 

enhanced SFN Yield between 1.0 and 3.0 min in some broccoli cultivars.249  

In contrast, it appears that MYR in broccoli sprouts and seeds is much less thermolabile 

than that of the mature vegetable250; nevertheless, the subtle differences in vegetable 

cooking method and times makes it virtually impossible for a consumer to be assured 

that MYR activity has been preserved. 

4.11.2 Effect of a MYR Inhibitor  

To compound the issue of variation in SFN Yield, broccoli seeds and the plants derived 

from them contain a thermolabile MYR inhibitor, Epithiospecifier protein (ESP)251,1 which 

converts a proportion of the GRN to a less active ITC, SFN nitrile (Figure 4.5).   

Measuring only GRN may lead to 

erroneous assumptions regarding the 

expected SFN Yield.   

A detailed knowledge of these 

processes is essential in the 

production of an enzyme-active 

broccoli sprout raw material to be used 

in clinical trials. 

In studies which use fresh or dried 

broccoli sprouts as the intervention, it 

is clearly essential to characterise the product for its SFN Yield and not just its GRN 
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content.  Failure to do so will impede the ability to interpret clinical findings; these issues 

are detailed in Chapter 5. 

4.11.3 Comparative Glucosinolate Quantity of Mature Broccoli vs the Sprout 

SFN is the most potent naturally-occurring monofunctional inducer of Phase 2 

enzymes209 and has been estimated to be around 10 times greater in its inducer activity 

than other GSNs.252  The highest source of SFN Potential has been found in the young 

germinated seedling of certain cultivars of Brassica oleracea italica (broccoli), with as 

much as 10 to100-fold the quantity of GRN per gram than found in the mature 

vegetable.169  

As the seedling matures, its levels of GRN proportionately diminish within the increasing 

plant volume,253 leading to substantial research interest in the young broccoli sprout.  A 

separate line of research has focused on the development of broccoli vegetable with 

higher GRN content; this has been developed by hybridisation and the vegetable has 

been subsequently commercialised.254  Broccoli sprouts as young as 3 days have been 

used to supply GRN in a number of studies and more recently MYR-inert, GRN-

containing extracts of broccoli seeds and sprouts have become commercially-available; 

the clinical relevance of the MYR-active and MYR-inactive forms is discussed in Chapter 

5 and 6. 

4.11.4 Variation in Composition of Glucosinolates in Mature Broccoli vs the Sprout  

GSNs can be classified into a number of chemical classes on the basis of their structural 

similarities.  The most extensively studied GSNs are the aliphatic, ω-methylthioalkyl, 

aromatic and heterocyclic (e.g. indole) forms, typical of those found in the Brassica 

vegetables.255  Individual Brassica plant species contain mixtures of GSN types and 

these vary significantly between and within species.255  Not all GSNs yield 

isothiocyanates with health-promoting properties.256   

The mature broccoli vegetable contains higher levels of a GSN, glucobrassicin which 

generates indole-3-carbinol (I-3-C).  I-3-C as a bifunctional inducer, upregulates Phase 1 

and to a very limited extent Phase 2 detoxification enzymes, whereas SFN as a 

monofunctional inducer, more significantly induces Phase 2 enzymes.257  The sprouted 
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broccoli seed contains high levels of GRN but little to no glucobrassicin, whereas the 

mature plant contains comparatively much less of the SFN precursor, GRN.253   

Significantly, the indoles are virtually absent in the broccoli sprout compared with their 

abundance in the mature vegetable.  More specifically, seeds or young sprouts of 

broccoli (Brassica oleracea var. italica) can contain 70±100 mmol total GSN per gram 

fresh wt., with <1% contributed by indole glucosinolates and the balance consisting 

almost entirely of the aliphatic GSNs, GRN, glucoerucin and glucoiberin.255 

4.11.5 Variability in Glucosinolate and Isothiocyanate Content and Effect 

Broccoli oleracea varieties are known to vary widely in their content of bioactives and 

inhibitor.256  The most commonly-consumed cruciferous vegetable is broccoli, Brassica 

oleracea var. italica.258  Within this classification are further sub-groups known as 

cultivars.  Analysis of the GRN and SFN Yield varies significantly between the 

cultivars.256,259   

A 2003 report showed that only 20% of the GRN in the Marathon cultivar is converted to 

SFN with 80% converting to the inactive sulforaphane nitrile.260  In other cultivars, 

conversion to the inactive SFN nitrile in each case was greater than 50%.251  At 

supermarket level, it is not possible for a consumer (or even the merchant) to make an 

informed choice without knowing what variety or cultivar is being offered. 

Some species contain high levels of other GSNs including the potentially thyrotoxic 

progoitrin which prevents the incorporation of iodine into thyroxine.261  Indole compounds 

such as indole-3-carbinol and 3–acetonitrile are formed from the hydrolysis of indole 

glucosinolates and these have the potential to form mutagenic N-nitroso compounds.262  

However, others suggest that the combined effects of the total GSN composition of a 

whole crucifer may be quite different from that of an isolated compound and that synergy 

has been demonstrated when assessing the effects of such combinations.253 

In considering cruciferous plants as suitable sources of medicinal compounds with 

clinical efficacy, these factors are among the more important to be considered. 

4.12 SFN – Its Potential Clinical Relevance 

4.12.1 Nrf2 and Endogenous Cellular Defence Mechanisms 
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The non-enzyme antioxidant GSH is a major contributor to cellular redox status and the 

rate-limiting enzyme for its synthesis, glutamate-cysteine ligase (coded by the gene GCL) 

can be induced by SFN.263  Antioxidants in general and glutathione in particular can be 

depleted rapidly under conditions of oxidative stress and this can signal inflammatory 

pathways associated with NF-kB.264  Nrf2 has been found to be the primary factor 

inducing the cell’s survival system under GSH depletion.265  Also of interest is the finding 

that Nrf2 transcriptional activity declines with age,266 leading to age-related GSH loss 

among other losses associated with Nrf2-activated genes.  This effect has implications 

too for decline in vascular function with age.267  

Some of the age-related decline in function can be restored with Nrf2 activation by 

SFN.268  Studies in aged mice showed that age-related changes in Th1 immunity could 

be restored using SFN as an intervention. This finding is compatible with the growing 

recognition of the importance of the Nrf2 pathway in innate immunity and has 

implications for human health.269  As Nrf2 targets, other cytoprotective enzymes such as 

HO-1 and Trx are also supportive of cellular redox modulation.  

4.12.2 Phase 1 vs Phase 2 Detoxification Pathways 

As long ago as 1993,171 it was determined that the ideal chemoprotective compounds are 

monofunctional inducers of Phase 2 detoxification enzymes. Monofunctional inducers 

function by upregulating Phase 2 detoxification pathways to metabolise the oxidative and 

carcinogen-activating products of the Phase 1 enzymes, without having any significant 

effect on Phase 1 activity itself.  Toxins presented to the Phase 1 enzymes produce 

intermediate compounds which are sometimes more toxic to cells than the initial toxin.270  

It is therefore important that Phase 2 is sufficiently active that the intermediate products 

cannot accumulate in the cellular environment.  Figure 4.6 illustrates the Phase 1 and 

Phase 2 detoxification pathways.271 The majority of chemical carcinogens require 

metabolic activation before they can initiate cancer.272  

As a monofunctional inducer, SFN has been described as an ideal detoxifier as its effect 

on Phase 1 is minimal compared with its significant activity on Phase 2.273  By 

comparison, many of the most potent of the synthetic SFN analogues274 are bifunctional 

inducers and not the monofunctional inducers having the most chemopreventive effect.  

Several synthetic compounds275 have been investigated for their chemopreventive 
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potential against lung cancer in smokers.175  Human cells are adapted to naturally-

occurring L-sulforaphane; they are not necessarily adapted to synthetic analogues.  

SFN’s role as the most potent inducer of the Phase 2 enzyme NADPH: oxido-reductase 

(NQO1) is discussed in detail in Chapter 6.   

 

Figure 4.6    Interaction of Phase 1 and Phase 2 metabolites in detoxification  

The process of cellular detoxification of both exogenous and endogenous factors entails two phases: 

Phase 1 (oxidative activation reactions), and Phase 2 (conjugative reactions), effected by several large and 

diverse gene families. 276 

 

4.12.3 Significance of Induction of Phase 1 and Phase 2 Detoxification Enzymes 

Not all Brassica-derived compounds are monofunctional inducers.  Indole-3-carbinol (I-3-

C) derived from the mature broccoli vegetable is a bifunctional inducer and as such may 

lead to the generation of highly toxic intermediate compounds which may overwhelm the 

capacity of the localised antioxidants to quench them or the Phase 2 processes to 

detoxify them.277  

By contrast, SFN selectively upregulates Phase 2 detoxification enzymes, minimising the 

risk of generating excessive amounts of reactive intermediates (Figure 4.6).276  As a 

consequence, although some I-3-C animal studies show an anticarcinogenic effect, other 

studies using I-3-C show it to have carcinogenic potential where comparable studies 

using SFN do not.278,279,280  It should be noted that the comparatively small quantity of I-

3-C generated from the GSNs in broccoli vegetable is unlikely to replicate the effects of 

isolated I-3-C concentrations used in cell culture studies.26 

http://genomebiology.com/2007/8/7/R132/figure/F3?hig
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4.13 Exploring SFN’s Clinical Potential in Relation to Upstream Mechanisms 

With the knowledge that Nrf2 has broad upstream effects on endogenous cellular 

defence processes, it is to be expected that SFN’s clinical effects will be applicable to a 

broad range of conditions.  Endothelial dysfunction adversely affects circulation as 

described earlier and is known to be a major pathophysiological factor in type 2 diabetes 

(T2DM).  For this reason, T2DM has been selected to model the potential for SFN in 

chronic disease states underpinned by endothelial dysfunction. 

4.13.1 Type 2 Diabetes as a Model to Explore Putative Mechanisms  

The first clinical trial using quantified SFN as the intervention material in T2DM was 

published in 2011.197  An earlier 2004 study by another group examined markers of 

metabolic syndrome but did not quantify SFN in a fresh broccoli sprout intervention.37  A 

dose of 10 g of a 0.4% SFN-yielding broccoli sprout powder demonstrated beneficial 

effects in several cardio-metabolic biomarkers.  The trial did not investigate the 

mechanism to explain the effects but other researchers have hypothesised on the 

upstream etiological factors that closely link T2DM and cardiovascular disease 

(CVD).4,6,281   

Uncontrolled T2DM typically results in microvascular complications that significantly 

contribute morbidity and mortality, with one-third of patients with end-stage kidney 

disease being diabetic.282 

4.13.2 Effectiveness of Current Therapy 

Although the mainstay of diabetic treatment is in glucose-lowering, there is evidence to 

suggest that intensive glucose-lowering therapy has no significant effect on the rates of 

major cardiovascular events, death, or microvascular complications in T2DM patients 

with longstanding disease.283, 284 Intensive glucose-lowering may  potentially-harmful.285 

Intensive lifestyle modification as an intervention strategy has been shown to be at least 

comparable286 in its effect to the drug, metformin, typically the first pharmaceutical a 

patient will be prescribed.  Both metformin therapy and intensive lifestyle intervention 

reduced the risk of developing diabetes (by 31% and 58%, respectively, in comparison 

with placebo), showing that it may be possible to use a lifestyle-only approach to reduce 

the risk of T2DM. 
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4.13.3 Searching for an Upstream Etiological Factor  

 An evolving paradigm in the putative etiology of T2DM relates to oxidative stress as 

being the primary upstream factor4,6,3,287 from which all other manifestations of the 

disease ensue.  Furthermore, it has been stated288 that oxidative stress as the “root 

cause” underlies all aspects of the condition: i.e. the development of insulin resistance, 

beta-cell dysfunction, impaired glucose tolerance and T2DM itself (Figure 4.7). 

 

 

Figure 4.7   Oxidative Stress as a putative upstream cause of T2DM and its complications4.   

The primary causes, overnutrition and decreased physical activity create an oxidative environment which 

affects endothelial cells, muscle cells and adipocytes and pancreatic β-cells, each contributing to the 

disease presentation. 

4.13.4 Vulnerability of Endothelium and Pancreas 

At least six biochemical pathways contribute to oxidative stress in the pancreas and 

endothelia.289,290  Pancreatic beta-cells are equipped with about 50% of the SOD activity 

of liver cells.  GPx and Cat activity are even lower at 1%, making beta-cells highly 

susceptible to the effects of ROS.   

Glucose is transported291 between bloodstream and cells of both endothelium and 

pancreatic beta-cells via a concentration gradient and facilitated by insulin-independent 

transcription factors; GLUT-1 in endothelia and GLUT- 2 in beta-cells.  This process 
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being insulin-independent, both endothelia and beta-cells are exposed to high glucose 

levels during hyperglycaemia.  This is unlike the situation in muscles and adipose cells 

which use an insulin-dependent GLUT- 4 transporter and are better protected against the 

effects of ROS.292 

4.13.5 Influencing the Gene-Environment Interaction 

The completion of the Human Genome Project in 2003 led to a surge of interest in 

cataloguing genes associated with particular diseases. In 2007, it was thought that there 

were more than 50 genes known to be associated with T2DM, although these genes 

proved to be low-penetrance and not the high-penetrance genes that were expected to 

target the disease.293  In the last decade, other genes have been identified through gene 

expression studies and these more recent studies have reaffirmed the common upstream 

genetic associations between diabetic cardiovascular and renal complications.294  Much 

of the association is localised in the endothelium, such that endothelial dysfunction is a 

common upstream etiological event. 

A study295 using human microvascular endothelial (HMEC-1) cells showed that in the 

presence of hyperglycaemia, SFN was able to prevent biochemical dysfunction via 

multiple pathways.  SFN was shown to activate Nrf2 with consequent increases in the 

cellular enzymes, transketolase and glutathione reductase after a concentration of 4 

µmol/l-sulforaphane was added to the cells in the presence of 5 µmol/l glucose.  

4.13.6 Are Antioxidant Vitamin Supplements a Logical Therapy in T2DM Patients? 

Given that oxidative stress is emerging as the primary upstream factor in T2DM, 

antioxidants have been considered as likely therapeutic agents.  Perhaps surprisingly, 

these trials have been almost uniformly disappointing in their results.  A 2010 analysis296 

of major randomised placebo-controlled trials (98,886 subjects in total – Table 4.5) 

investigating the effects of antioxidant supplementation on prevention of diabetes or 

glucose homeostasis showed no effect from vitamin E, vitamin C, beta-carotene, 

selenium, zinc and combinations of these.  

Table 4.5   Major randomised placebo-control trials investigating the effects of antioxidant 

supplement on prevention of diabetes or glucose homeostasis.  (Table 1 from Chang and 

Chuang; 2010)296 
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4.14 Can Endogenously-generated Antioxidants Play a Role? 

Given the role of SFN in induction of Nrf2-dependent cytoprotective genes, SFN might be 

a useful candidate for modulation of upstream genes associated with the etiology of 

T2DM.  A 2016 review paper reaffirms the rationale for the ‘unifying hypothesis’ proposed 

by Brownlee in 2001281 in which generation of ROS is the key central theme linking the 

pathogenesis of T2DM and CVD.294  In further support of this hypothesis, Rask-Madsen 

and King reinforce the possibility that endogenous protective pathways could protect 

against vascular complications in T2DM.297 

The Nrf2-dependent target genes of possible relevance are those encoding synthesis of 

GSH, Trx, HO-1 and NQO-1.  Each has been shown to be induced by SFN in a variety of 

cell types, including endothelial cells.298,299  In addition, SFN has been shown to inhibit 

NF-kB in endothelial cells,300 an effect which may retard inflammation in these and other 

cell types.  A 2006 study174 using human aortic cells showed that activation of the Nrf2-

ARE pathway may represent a novel therapeutic approach for the treatment of 

inflammatory diseases such as atherosclerosis. 
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In support of this approach, a 2009 combined cell culture/animal study173 showed that 

shear stress in blood vessels keeps Nrf2 in an activated state and as such protects 

against endothelial function.  Activated by SFN, Nrf2 was shown to prevent endothelial 

cells from exhibiting a pro-inflammatory state via the suppression of p38–VCAM-1 

signalling, providing a novel therapeutic strategy to prevent or reduce atherosclerosis. 

In other tissues of the cardiovascular system, Nrf2 has been shown to regulate both 

basal and inducible ARE-controlled cytoprotective genes in cardiomyocytes.301  As with 

endothelia, Nrf2 is required for protection against glucose-induced oxidative stress and 

cardiomyopathy in the heart. 

4.14.1 Glutathione 

Disturbances of thiol-related mechanisms have been observed302 in diabetes, with 

plasma levels of protein-bound thiols lower in T2DM than in controls.  These thiols 

include GSH and Trx.  An animal study303 illustrates the relationship between depressed 

GSH and the development of atherosclerosis.  In this experiment4, the rate-limiting 

enzyme needed to synthesise GSH, (gamma-glutamyl cysteine synthetase) was shown 

to be downregulated early in the atherosclerosis process.  This effect preceded the 

appearance of lipid peroxidation products by several months.  The antioxidant enzyme, 

GPx was simultaneously downregulated.   

The researchers suggest that “depressed glutathione generation is a key early event and 

may lead to oxidative alterations involved in the development of coronary artery disease. 

This suggests that glutathione depression is a contributory factor in oxidative stress 

rather than a consequence of increased cellular exposure to oxidant species.” 

In a study on spontaneously-hypertensive rats, SFN (0.05±1 µmol/l) induced significant 

and concentration-dependent increases in cellular GSH levels304, HO-1 protein content 

and activities of GSH-reductase and GPx in vascular smooth muscle cells.  Whether this 

SFN concentration would have the same effect in humans is yet to be determined. 

Erythrocyte levels of GSH have been shown to change depending on the stage of the 

diabetic process of the individual.305  Australian research306 has shown that compared to 

controls, pre-diabetic patients exhibit a significant lowering of GSH.  As the disease 

progresses to diabetes and later to diabetes with cardiovascular complications, GSH 
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levels rise; however, they don’t reach the levels of controls.  The variability in GSH levels 

depending on the stage of the disease makes it difficult to use GSH as an effective 

biomarker to measure change in clinical trials. 

An infusion of GSH as an intervention in a clinical trial307 was shown to reverse 

endothelial dysfunction by strongly potentiating the effect of acetylcholine-mediated 

vasodilation via enhanced nitric oxide activity.  Because GSH as a tripeptide molecule is 

degraded by gastric proteolytic enzymes, it is not suitable as an oral therapeutic.308  If 

sulforaphane can be shown to induce GSH in endothelial cells, this may provide an 

alternative means of enhancing GSH levels in endothelial and pancreatic beta-cells with 

a view to reducing the complications of T2DM. 

4.14.2 Thioredoxin – Protection from Elevated Blood Glucose 

Thioredoxin (Trx) is a potent protein disulfide that participates in many thiol-dependent 

cellular reductive processes and plays an important role in antioxidant defence, signal 

transduction and regulation of cell growth and proliferation.  As a cellular thiol, Trx has 

been shown281 to be associated with the development of diabetic complications.  Like 

GSH, Trx has been shown to protect cells against high ambient glucose.309   Trx is at its 

highest levels in metabolically active tissues like the heart and it is critical for normal 

heart function. 

The thioredoxin system (Figure 4.8) consists of thioredoxin, thioredoxin reductase and 

NAD(P)H. Like GSH, Trx contributes to the cellular thiol pool310 with the thioredoxin 

system shown to exhibit cardio-protective effects.311  The pentose phosphate pathway 

which generates reducing equivalents in the form of nicotinamide adenine dinucleotide 

phosphate (NADPH) can alleviate much of the oxidative stress created by excess 

glucose.  By upregulating Trx, SFN contributes to cardioprotection by this additional 

mechanism. 

Figure 4.8.  The thioredoxin system and its relationship with glucose metabolism in the 

pentose phosphate cycle. 312 
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The pentose phosphate cycle generates reducing equivalents which are transferred along a series of 

cycling redox reactions.  Induction of Trx and Trx reductase by SFN enables glucose to be metabolised as 

an alternative to the synthesis of superoxide radical, thereby alleviating much of the metabolic stress 

associated with T2DM. 

 

There are few studies to associate SFN with heart disease but significant 

cardioprotection was demonstrated in an animal study235 using fresh broccoli 

homogenate. Changes included improved post-ischaemic ventricular function, reduced 

myocardial infarct size and decreased cardiomyocyte apoptosis after the rats were 

sacrificed.  These findings correlated with increased levels of Trx as well as HO-1, with 

the function of the latter discussed in relation to SFN in 4.14.7. 

A 1997 study313 investigating the role of thioredoxin in vascular biology describes the 

induction of mitochondrial MnSOD by Trx.  The researchers also comment that Trx 

reduces and protects the function of several classes of proteins during oxidative stress.  

These include proteins important in cell homeostasis and intermediary metabolism such 

as glyceraldehyde-3-phosphate dehydrogenase(GADPH),6 an enzyme which has a 

‘gatekeeper’ function in glucose regulation.  In addition, Trx influences hormones such as 

insulin as well as glucocorticoid receptors and other proteins such as endothelial nitric 

oxide synthase (NOS) and signalling proteins such as transcription factors.  The findings 

of a Phase 1 clinical trial37 demonstrated that 100 g of fresh broccoli sprouts over a 7-day 

period provided cardiovascular benefits which included favourable changes in blood 
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lipids as well as reduction in biomarkers of oxidative stress.  This study however did not 

assay the broccoli sprouts for their sulforaphane yield, limiting its usefulness. 

4.14.3 Quinone Reductase 

NQO1, often described simply as Quinone reductase (or QR) is emerging as an Nrf2-

induced enzyme with broad cytoprotective properties.  A paper314 published almost two 

decades ago claims that an extensive body of evidence supports the conclusion that 

catalysing obligatory two-electron reductions of quinones to hydroquinones, (NQO1) 

protects cells against the deleterious effects of redox cycling of quinones and their ability 

to deplete glutathione.  The same researchers30 have since published again on this topic 

discussing what they describe as a multifunctional antioxidant enzyme and exceptionally 

versatile cytoprotector.  They suggest too that NQO1 with cytoprotective roles which 

extend well beyond its catalytic function could be considered as a ‘marker cytoprotective 

enzyme’.  Further, they state that NQO1 is one of the most consistently and robustly 

inducible genes among members of the cytoprotective proteins.   

 

 

 

 

 

 

 

 

Figure 4.9. Induction of the chemoprotective enzyme NQO1 by phytochemicals in cell 

culture. 

The comparatively much higher induction by SFN against popular plant-derived supplements is evident.32 

NQO1’s antioxidant capacity extends to scavenging superoxide directly,315 albeit not as 

efficiently as does SOD.  As well as its antioxidant properties, NQO1 is also a key Phase 

2 detoxification enzyme, capable of being induced by SFN.  It has been claimed here and 
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elsewhere that sulforaphane is the most potent naturally-occurring inducer of of this 

enzyme (Figure 4.9).32,316  

4.14.4 Other Functions of NQO1 

NQO1’s other functions extend to the maintenance of quinones, Coenzyme Q 10 

(Ubiquinone) and vitamin E in their reduced active forms.30,317  Induction of NQO1 by 

SFN also co-ordinately induces168 genes encoding cellular NADPH-regenerating 

enzymes such as glucose-6-phosphate dehydrogenase, 6-phosphogluconate 

dehydrogenase and malic enzyme.  NADPH in turn assists in maintaining GSH in its 

reduced state.  NQO1, a highly-inducible enzyme provides major antioxidant functions by 

virtue of its two-electron reduction mechanism; this diverts quinones from participating in 

oxidative recycling and production of ROS.30   

4.14.5 Pharmacokinetics of NQO1 Following Induction by SFN 

(a)  Sulforaphane and its metabolites Women were given a single serve of broccoli 

sprout homogenate containing 200 μmols SFN one hour before reduction 

mammoplasty.183    

Figure 4.10 shows that SFN peaks in the blood at around 1 hour, with a subsequent peak 

at 12 hours and then declining until 48 hours, in both plasma and tissue.   Knowledge of 

these relationships contributes valuably to the determination of a dose-response for SFN 

in various tissues and under different conditions.   

(Special Note:  It would appear that the units on the right y axis are incorrect in listing 

pmol/mg; with respect to the left y axis, the correct units are more likely to be pmol/g.) 
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Figure 4.10   Plasma and tissue dithiocarbamate levels over time following 

sulforaphane ingestion. 183 

The pharmacokinetics of the SFN plasma dithiocarbamate (DTC) levels are shown in μM concentrations on 

the left vertical axis and the tissue pmol DTC concentrations on the right vertical axis, illustrating the 

significantly lower concentrations available to cells. 

(b) Transcripts of NQO1 and Haemoygenase-1 (HO-1).    In the same study, NQO-1 

and HO-1 transcripts both peaked at around 12 hours, declining until around 48 hours 

(Figure 4.11) 

 

 

 

 

 

 

Figure 4.11.   Plasma and tissue NQO-1 and HO-1 transcripts over time following SFN 

ingestion.318 

Both NQO-1 and HO-1 transcripts reached their maxima at 12 hours.  However, HO-1 transcripts remained 

more elevated than NQO-1 at 12 hours. 

(c) NQO1 activity Maximal induction of NQO-1 occurs at around 24 hours, declining 

over time.  This peak represents an approximate 2.8-fold induction (Figure 4.12). 
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4.14.6 The Effect of NQO1 Polymorphisms  

The relationship between the risk of NQO1 C609T polymorphisms and carotid artery 

atherosclerosis in patients with type 2 diabetes has been investigated.319  The major 

finding of the study was that the NQO1 C609T polymorphism is associated with carotid 

atherosclerosis in patients with T2DM. The gene coding for NQO1 has a genetic 

polymorphism320 (C → T) at nucleotide position 609.  This polymorphism was shown to 

reduce NQO1 enzyme activity, thereby diminishing the protection provided by NQO1.  

Whether diminished NQO1 activity can be influenced nutrigenomically in individuals with 

one variant allele is not known.  Nevertheless, knowledge of the NQO1 genotypic 

presentation in clinical trials could be useful, given the consequent variation in protein 

expression.   

In a later chapter, the role of the better-known GST family of polymorphisms in relation to 

SFN metabolism are explored. 

4.14.7 Haemoxygenase-1 (HO-1) 

HO-1 is an inducible isoform of the first and rate-controlling enzyme of the degradation of 

haem into iron, carbon monoxide, and biliverdin, the latter being subsequently converted 

into bilirubin.321  HO-1 is considered to have potent cytoprotective effects which include 

 

 

 

Figure 4.12   NQO-1 activity over time following sulforaphane ingestion.183 
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antioxidant and anti-inflammatory properties in cardiovascular and other tissues.  It has 

been suggested that cytoprotection may be due to bilirubin directly inhibiting NADPH 

oxidase activity, thereby reducing superoxide generation.322 

Although the mechanism for the anti-inflammatory effect of HO-1 has not been fully 

elucidated, there are known associations between HO-1 and a number of cytokines.  The 

5’-flanking region of the HO-1 gene contains binding sites for the transcription factors that 

regulate inflammation, including NF-κB and Activator Protein-1 (AP1).323  Leukocyte HO-

1 gene expression is significantly lower in patients with and without diabetic 

microangiopathy compared with control subjects and normalisation of blood glucose 

results in a reduction in HO-1 antigen in the cytoplasm of mononuclear leukocytes.324 

Hyperglycaemia is known to increase the formation of advanced glycation end products 

(AGEs).  In endothelial cells, the interaction of the AGE with its receptor, (RAGE) induces 

generation of ROS, NF-kB translocation and expression of several pro-inflammatory and 

pro-coagulatory molecules.325  In normal cells, RAGE is present at low levels but is 

increased in the endothelia of diabetics.322 

Both NQO-1 and HO-1 are upregulated in response to AGEs.326  Both are products of 

Nrf2 induction and may provide an effective endogenous defence mechanism in diabetes 

and other vascular diseases.  Given the effect of SFN on induction of both genes as 

discussed in 14.4.5, a further mechanism to explain the observed beneficial effects of 

SFN in T2DM may be associated. 

4.14.8 8-OH-2-deoxy-guanosine (8-OHdG) 

Because rising levels of oxidative stress play an important role in the pathogenesis of 

T2DM, it is useful to have a marker which can detect individuals who are at risk.  As 

diabetes progresses from normal through pre-diabetes to diagnosed type 2 diabetes, 

DNA damage increases.  Superoxide anions which are elevated in hyperglycaemic 

states cause DNA strand breakage with a consequent increase in 8-OHdG.  A 2010 

study327 showed a significant and progressive increase in 8-OHdG in prediabetics and 

diabetics compared to controls.  Because markers such as GSH may again increase in 

later stages of disease following an initial drop,306 measurement of 8-OHdG may be a 

more reliable marker for the early detection of diabetic risk and or a tool for monitoring 

treatment. 
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4.15 The Role of Selenium in Sulforaphane Chemistry   

Although identified 200 years ago, selenium continues to be recognized as an essential 

element in biology and medicine.328  Its biochemistry resembles that of sulfur, yet differs 

from it by virtue of both redox potentials and stabilities of its oxidation states.329  

Selenium can substitute for the more ubiquitous sulfur of cysteine and as such plays an 

important role in more than a dozen selenoproteins.  These proteins include the Nrf2-

induced GSH, GPx, Trx and Trx reductase. 

4.15.1 Selenium Dietary Requirement 

Selenium is an essential trace element with most diet-derived organic forms being highly-

bioavailable at > 90%.330  By contrast, inorganic selenium, typically sodium selenite, is 

only about 50% bioavailable.  Compared with populations in the United States, 

Australians tend towards selenium deficiency due to the nature of the local soils331 and 

soil levels appear to be further declining.  Australians average an intake of 57-87µ 

selenium/day with the Recommended Dietary Intake (RDI)  listed as 85 µ per day.332   

4.15.2 Potential Selenium Toxicity  

There is increasing evidence linking selenium status to cancer risk and immune 

dysfunction but blood levels are poorly correlated to tissue levels.333,334  The eight-fold 

gap between the estimated average requirement and the upper limit of safe intake is 

relatively narrow.335  For this reason, supplements in Australia are closely regulated to 

limit the daily intake from supplements to 150 µg.336  Selenium is representative of a 

micronutrient for which the dose-response is hormetic; both low and high doses exhibit 

adverse effects in human cells.337  The concept of hormesis is very relevant to 

consideration of the dose-response and is further addressed in later chapters. 

4.15.3 Synergy Between Sulforaphane and Selenium 

The activation of Nrf2/Keap-1 by SFN results in the induction of several selenoproteins 

each of which contains an ARE in its promoter region. Translational realisation of the 

enhanced transcripts depends on adequate selenium supply, which explains the 

synergism of Nrf2 activators and selenium.338   
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If selenium incorporation at the active site of the enzyme is the rate-limiting step, then 

less than optimal levels of the enzyme will be synthesised.  Synergy between SFN and 

selenium in the induction of Trx-1 reductase requires both transcriptional and 

translational modulation.339  A cell culture study using human hepatocytes340 investigated 

the induction of Trx reductase-1 due to a SFN-yielding broccoli sprout material and 

selenium separately and then combined.  The results showed that induction by SFN at 

1.6-8 µM ranged from 1.7 to 2.2-fold. When the cells were co-treated with selenium (0.2 

– 1 µM), the enzyme activity was high in the range from 3.0 to 3.3-fold, demonstrably 

greater 

Another study338 using a human endothelial cell line, EAhy926, showed that the 

combination of selenium and SFN produced an increase in Trx-1 reductase expression 

that was significantly greater than that achieved when each agent was added alone.  The 

study also showed that SFN increased Trx-1 reductase but not GPx and in doing so 

conferred protection against oxidative damage in vascular endothelial cells. In contrast to 

these cell culture findings, a long-term (7.7 years) selenium supplementation study341 on 

individuals with T2DM showed that 200 µg daily of selenium does not seem to prevent 

disease risk and in fact, may increase risk.  Further investigation of these findings is 

warranted, especially in the context of the use of isolated nutrients as intervention 

materials.  Such study protocols may be more suited to a pharmaceutical intervention 

than a nutrient intervention. 

4.16 Implications for Type 2 Diabetes as a Representative Chronic Disease 

4.16.1 Oxidative Stress – Is It the Common Upstream Factor Linking CVD and T2DM? 

It is widely-accepted that we are in the midst of a global epidemic of T2DM. It has been 

estimated that up to 70% of patients with acute myocardial infarction have either diabetes 

or impaired glucose tolerance.342  Diabetes-specific microvascular disease is a leading 

cause of blindness, renal failure and nerve damage with diabetes-accelerated 

atherosclerosis leading to increased risk of myocardial infarction, stroke and limb 

amputation.281   

The observation that these seemingly-unrelated conditions are all manifestations of 

prolonged hyperglycaemia in certain individuals has led to a search for a common 
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upstream factor to provide an etiological mechanism.  It has been proposed4,343 that 

oxidative stress is the pathogenic mechanism linking insulin resistance with dysfunction 

of both beta-cells and endothelium, eventually leading to overt diabetes and 

cardiovascular disease. 

4.16.2 Pancreatic Beta-Cell and Endothelial Cell Vulnerability 

The beta-cells of the pancreas and those of the endothelium are particularly susceptible 

to the effects of oxidative stress.289  As the first line of protection for the vascular wall and 

occupying a strategic position between the blood and underlying tissues, endothelial cells 

appear very susceptible to glucose toxicity.344  This is especially so when compared with 

regulation of glucose uptake via glucose transporters by smooth muscle cells.291  

Several metabolic pathways which link hyperglycaemia in the endothelia to clinical 

diabetes are associated with oxidative stress.6,345  Recent studies demonstrate that a 

hyperglycaemia-induced process of overproduction of superoxide by the mitochondrial 

electron transport chain seems to be the first and key event in the activation of all other 

pathways involved in the pathogenesis of diabetic complications.3 

4.16.3 Antioxidant Vitamins as Therapy? 

Although it might appear that classical antioxidants such as vitamins C, E and beta-

carotene would play a role in reducing oxidative stress in diabetes, they have been 

generally unsuccessful346 and there would seem to be a significant disconnect when 

comparing the findings of epidemiological and intervention studies.347  Furthermore, it 

appears that megadoses of vitamin antioxidants may impair induction of endogenous 

antioxidant enzymes and other cytoprotective compounds.348  This may help to explain 

some of the negative findings of studies using doses of vitamins well in excess of 

reasonable dietary intake. 

4.16.4 Exploring Nutrigenomic Strategies 

Investigation into alternative redox-regulating strategies continues.  The catalytic effect of 

antioxidant enzymes such as SOD provides greater potential to reduce oxidative 

stress121 than do antioxidants acting stoichiometrically.  SOD-mimetics, as introduced in 

Chapter 2,  have been used experimentally to show that quenching excessive superoxide 
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anion reduces endothelial dysfunction.349  Since epidemiological studies350 show that a 

diet high in fruits and vegetables confers protection against disease, various non-nutrient 

compounds of plant origin are also under consideration as suitable agents to prevent 

oxidative stress-induced cell damage. 

Polyphenolic compounds from plant foods have significant in vitro antioxidant potential 

but their low bioavailability351,352 limits their clinical usefulness as systemic antioxidants.  

On the other hand, SFN derived primarily from broccoli and with absolute 

bioavailability182 of around 80%, shows promise as a nutrigenomically-active compound 

capable of increasing several endogenous antioxidant compounds via the transcription 

factor, Nrf2.168   

These cytoprotective compounds28 which include NQO1 can protect the vascular wall 

against inflammatory processes.174   There is evidence353 to suggest that strategies to 

increase antioxidant activity of GSH and GPx in particular within the pancreatic islet cell 

may protect it against glucose toxicity.  Substantially reduced levels of erythrocyte GSH 

occur in the pre-diabetic stage306 rising with disease progression for 6-10 years after 

diagnosis.  Estimates suggest that 40-50% of individuals with pre-diabetes will develop 

type 2 diabetes within 10 years354 and this highlights the value of early detection of 

glucose dysregulation.  As SFN is known to be a potent inducer182, 355,301 of Nrf2 and has 

shown promise in clinical trials related to diabetes and its complications, this may 

indicate that SFN might play a preventive and therapeutic role in this disease epidemic. 

295,172 ,173, 356, 357, 198 

To more fully elucidate the Nrf2-dependent and Nrf2-independent mechanisms that 

underpin the observed effects of SFN, further investigation will be required.  Better 

understanding of these mechanisms may extend the clinical application for SFN, 

especially those associated with redox imbalance.  

4.17 DIRECTION OF FUTURE SFN RESEARCH  

4.17.1 The potential for SFN to be Used in Conjunction with Pharmaceuticals 

The diverse properties of Nrf2 are such that it is being increasingly considered as a novel 

drug target with potential applications across a broad range of conditions.  Interestingly, 

the Nrf2-activating properties of SFN have been experimentally used in conjunction with 
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pharmaceuticals.   As one example, SFN’s effect on Nrf2 has been investigated in this 

context as a means of minimising the nephrotoxicity which typically limits the use of the 

chemotherapeutic drug, cisplatin.358    

A further very recent example illustrates the effects of combining members of the 

chemotherapeutic taxane drug family with SFN.359  Taxanes are widely-used 

chemotherapeutic drugs for triple negative breast cancer (TNBC) which is unresponsive 

to more common receptor-targeted therapies. Taxane therapy typically targets only 

differentiated cancer cells without exerting any beneficial effect on the disease-promoting 

cancer stem cells (CSCs).  More significantly, taxanes may result in expansion of the 

breast CSC population. 

Because SFN has been shown to eliminate CSCs in some cancer cell types, it was 

trialled in conjunction with taxane.  Where taxane enhanced inflammatory cytokine 

production in TNBC cell lines, SFN reduced production of IL-6, IL-8, and NF-kB activity to 

inhibit CSCs.  These newer studies wherein SFN is tested in combination with an existing 

therapy provide numerous avenues for further SFN research. 
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CHAPTER 5 

Sulforaphane: Translational Research from Laboratory Bench to Clinic 

This chapter was published in Nutrition Reviews as Review – Special Article. The 

abbreviations, formatting and referencing of this document have been altered slightly to 

more closely reflect the formatting of other chapters and published work in this thesis.  

Section 5.11 has been updated to include reference to studies comparing the differing 

effects of SFN on normal and cancer cells. 

A pdf version of the published manuscript is attached as Appendix B. 

 

Houghton CA, Fassett RG, Coombes JS. Sulforaphane: translational research from 

laboratory bench to clinic. Nutr Rev. Nov 2013;71(11):709-726. 
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5.0 Abstract 

The chemopreventive benefits of cruciferous vegetables in human health are widely 

acknowledged but these vegetables are not generally consumed at levels which effect 

significant change in biomarkers of health.  Because consumers have embraced the 

notion that dietary supplements may prevent disease, this review considers whether an 

appropriately validated sulforaphane-yielding broccoli sprout supplement may deliver 

clinical benefit.  The crucifer-derived bioactive phytochemical, sulforaphane is a 

significant inducer of Nrf2 (nuclear factor erythroid 2-related factor 2), the transcription 

factor which activates the cell’s endogenous defences via a battery of cytoprotective 

genes. For a broccoli sprout supplement to demonstrate in vivo bioactivity, it must retain 

both the sulforaphane-yielding precursor compound, glucoraphanin and the activity of its 

intrinsic MYR enzyme.   Many such supplements are MYR-inactive but current labelling 

does not reflect this.  For the benefit of clinicians and consumers, this review summarises 

in vitro and clinical trial findings, interpreting these in the context of clinical relevance.  

Standardisation of sulforaphane nomenclature and assay protocols will be necessary to 

remove the inconsistency and ambiguity in the labelling of currently available broccoli 

sprout products.  

Key Words sulforaphane, broccoli sprout, myrosinase-active, bioactivity, bioavailability, 

glucoraphanin, broccoli seed extract 

5.1 Introduction  

The cruciferous vegetable family includes broccoli, cauliflower, cabbage, kale and 

others and consumption is associated with reduced cancer risk.180,360  As foods, 

crucifers are a significant source of micronutrients including folate and vitamin C but 

perhaps more significant is their nutrigenomic potential.361   This potential is due to 

generation of a family of bioactive compounds, known as isothiocyanates (ITC).  

Broccoli-derived ITCs for example, are not present in the plant cell but produced when 

the cell wall is ruptured, resulting in an enzymatic reaction between the MYR enzyme 

and an inert precursor, glucoraphanin.  The well-researched broccoli-derived ITC is 

sulforaphane (SFN) and it is this compound which appears to be responsible for the 

larger part of the plant’s health-promoting and cancer-preventive properties beyond its 

nutrient content.362,363,364  Whereas many plant-derived nutraceutical supplements 
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contain extracts of the major identified bioactive compound(s), the intrinsic 

instability365,366 of the naturally-occurring SFN molecule presents a challenge for which 

a manufacturing solution has yet to be found; SFN per se is simply not sufficiently 

stable to enable production as a supplement.  Alternative means of addressing this 

challenge are discussed herein. 

Given the prevalence of diet-related chronic disease and the evidence that many 

consumers have accepted a role for complementary medicines in their personal health 

management, there may be a place for a validated bioactive plant-derived SFN-

yielding supplement capable of modifying biochemical and physiological risk factors for 

disease.   It is against this background that this review investigates the possibility of 

delivering such supplements with significant clinical potential.   

5.2 The Emergence of Nutrigenomics 

Described in 2004367 as the ‘next frontier in the post-genomic era’, nutritional genomics 

(more commonly ‘nutrigenomics’) harnesses multiple disciplines and rests at the 

interface between the nutritional environment and cellular/genetic processes.368  

Understanding the relationships between phytochemicals and their ability to affect an 

individual’s gene expression underpins the principle of an evolving model of 

‘personalised nutrition’.369   Where pharmacogenomics370 describes the individual effects 

of pharmaceuticals on a patient’s genome, nutrigenomics describes similar responses to 

bioactive molecules in foods.371  Plant biomolecules as components of the human diet 

take on a new significance as the relevance of their roles in intracellular signalling and 

nutrigenomic modulation of gene expression continue to unfold.372   

As a weak pro-oxidant, SFN is a phytochemical with demonstrable nutrigenomic 

potential, activating the expression of a battery of cytoprotective genes via the 

transcription factor, Nrf2 (nuclear factor erythroid 2-related factor 2).373  Nrf2 co-ordinates 

the regulation of over 200 genes in humans and animals,192,194,219 largely related to 

mechanisms of endogenous cellular defence and survival.374 Nrf2 has been variously 

described as, ‘the master redox switch’,151 an ‘activator of cellular defence 

mechanisms150 and ‘a guardian of health span and gatekeeper of species longevity’.152   

As a mediator for amplification of the mammalian defence system against various 

stressors, Nrf2 sits at the interface between our prior understanding of oxidative stress 
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and the endogenous mechanisms cells use to deal with it.  The knowledge that a weak 

pro-oxidant such as SFN can initiate a sequence of events culminating in increased 

expression of endogenous anti-oxidant molecules such as glutathione, thioredoxin and 

hemoxygenase suggests that we re-examine the premise that dietary antioxidant 

supplements are generally beneficial to human health.34,375   

5.3 Nutrigenetics 

Where nutrigenomics investigates the effects of food nutrients and bioactive food-derived 

compounds on gene expression, nutrigenetics identifies and characterises gene variants 

associated with differential responses to nutrients, relating this variation to disease 

states; both aim to unravel diet-genome relationships.376  Nutritional epidemiology 

investigates the association between patterns of food consumption and disease risk, with 

nutrigenetics asserting that the effects of particular foods or food components may vary 

with genetic differences that affect the metabolic makeup of the individual.377  

Furthermore, nutrigenetics helps to explain why the findings of epidemiologic trials are 

often inconsistent, since to express their bioactivity, phytochemicals may need to be 

metabolised by enzymes with known single nucleotide polymorphism (SNP) 

variants.378,379   

5.4 Differential Responses Due to Nrf2-Target SNPs 

Glutathione S-transferases (GST) constitute a large multigene family of Phase 2 

enzymes involved in detoxification of potentially genotoxic chemicals.378  The bioactive 

ITCs of cruciferous vegetables are metabolised via the mercapturic acid pathway to form 

a GSH conjugate, catalysed by GST enzymes.379  Polymorphisms in these enzymes 

have a significant nutrigenetic impact on overall ITC metabolism, affecting SFN 

bioavailability, so that in some cases cruciferous vegetable intake confers greater 

chemoprevention in those with certain GST polymorphisms; in other studies, the opposite 

is observed.380-382  It has been reported that the differing effects of phenotypic expression 

of GSTM1 on SFN metabolism is such that GSTM1 null subjects excreted almost 100% 

of ingested SFN.383  In a later study, Gasper et al showed that there were apparent 

thresholds of intracellular SFN concentration below which gene expression did not 

occur.384  This could have implications for dietary recommendation to consume more 

cruciferous vegetables because it has been shown that some fresh broccoli purchased 
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from retail stores yielded very low SFN, even consumed raw and even when ingested 

repeatedly.385  The same study in humans consuming 300mls of liquidised commercially-

available raw broccoli florets achieved peak plasma SFN level of just 0.07 μM.  A later 

study386 which compared the peripheral SFN exposure in volunteers consuming a single 

serving of lightly-cooked fresh broccoli with lightly-cooked frozen broccoli showed an 

approximately 10-fold difference in plasma concentration, ~ 0.2 μM for the fresh vs ~ 

0.02 μM for the frozen.   Moreover, the lower physiological concentrations observed after 

ingestion of the frozen vegetable were described as being below the threshold required 

to cause a range of responses in cellular models.  GSTM1 on SFN metabolism is such 

that GSTM1 null subjects excreted almost 100% of ingested SFN.  In a later study, 

Gasper et al showed that there were apparent thresholds of intracellular SFN 

concentration below which gene expression did not occur.  This could have implications 

for dietary recommendation to consume more cruciferous vegetables because it has 

been shown that some fresh broccoli purchased from retail stores yielded very low SFN, 

even consumed raw and even when ingested repeatedly.   

 

Wide variations exist in glucosinolate content among varieties of the Brassica oleracea 

seeds387 from which broccoli sprouts are grown.  This would suggest the likelihood of 

marked variation in the quantities of isothiocyanates derived from hydrolysis of their 

glucosinolates (GSNs) from which broccoli sprouts are grown.  This would suggest the 

likelihood of marked variation in the quantities of isothiocyanates derived from hydrolysis 

of their GSNs.  A 27-fold difference between the highest and the lowest levels of 

glucoraphanin has been observed.256  As a consequence, for a nutraceutical supplement 

to demonstrate consistent responses, it will be essential for a MYR-active plant powder 

to contain a standardised content of glucoraphanin, with selection of an appropriate seed 

cultivar an important consideration.  

 

GST polymorphisms can be prevalent in the population, with up to 50% of people 

exhibiting the null genotype for the GSTM1 isoenzyme.382  Such a genotype may confer 

an advantage to GSTM1-null individuals because their reduced GST activity could result 

in slower elimination and longer exposure to ITCs after cruciferous vegetable 

consumption.388  The GST-null phenotypes have been associated with reduced risk of 

breast, prostate and colon cancers, adding support to SFN’s potential as a 

chemopreventive and cytoprotective agent25,389,390,391 but not all studies show that the 



 

Page 81 of 308 
 

null genotype confers such protection.392  A study in which human hepatocytes were 

treated with the hepatocarcinogen Aflatoxin B1 after pre-exposure to SFN at doses from 

10-50 μM were investigated for their ability to resist DNA adduct formation; reduction in 

DNA adduct formation occurred at both doses, with greater reduction at the higher 

concentration.393   Analyses of gene expression in the SFN-treated hepatocytes 

demonstrated that SFN greatly decreased cytochrome P450 (CYP3A4) mRNA but did 

not induce the expression of GSTM1, suggesting that GST induction is but one means by 

which SFN exerts chemoprevention.  The effects of SFN on CYP3A4 are discussed in 

more depth in a later section.387  

5.5 Sulforaphane’s Diverse Modes of Chemoprotection 

A number of cell defects have been observed in cancer cells.394  Among such defects, 

mutation of the p53 suppressor gene occurs in about 50% of all cancers.395  

Accumulated and varied defects in the cell’s intrinsic cytoprotective mechanisms 

gradually weaken these defences.  The most common molecular genetic change in 

prostate cancer involves silencing of the expression of the gene which codes for GSTP1, 

a critical enzyme of carcinogen defence.209  This change occurs early in prostate 

carcinogenesis because it is found in virtually all cases of intraepithelial neoplasia (PIN) 

and is a near universal finding in clinical prostate cancers regardless of the grade or 

stage.209 

Normal GST function is required to detoxify potential carcinogens; without it, prostate 

cells are exposed to the damaging effects of endogenous and exogenous toxins.  

Fimognari396 showed that SFN is capable of offsetting the effects of a mutated p53 gene 

by virtue of its various modes of action, providing evidence that SFN confers 

chemoprotection even when genetic defects are already apparent, a finding of 

considerable clinical significance.  These findings reaffirm the value of cruciferous 

vegetables in human diets. 

Whether it is possible to develop a clinically efficacious supplement based on the 

nutrigenomic potential and the pharmacokinetic properties of phytochemicals like SFN is 

a key question posed by this review.397,398  A close investigation of many of the 

phytochemical-derived supplements popular with consumers reveals that many of these 

exhibit poor bioavailability, in contrast to that of SFN.399,400,41  As a result, it is doubtful 
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that some of the bioactive compounds which demonstrate impressive effects in highly-

publicised in vitro studies exist in sufficient systemic concentration to exhibit a clinical 

effect.401   

5.6 Developing an Evidence-Based Sulforaphane Supplement 

The finding that SFN is both a potent32 and a bioavailable41 inducer of Nrf2 places it in 

a category distinct from most other supplemental phytochemicals, especially the 

polyphenols.352  Cell culture studies are a valuable starting point in dose determination 

and various human cell types have been investigated as substrates for SFN 

intervention studies.402  Of particular value are the studies which reveal the 

biochemical effect of a specific micromolar concentration of SFN.318,402  These data 

can then be reviewed in relation to the SFN Yield from a specified oral dose.   

Whereas the primary bioactive component of many phytochemicals is extracted and 

the standardised extract used in the manufacture of a nutraceutical supplement, the 

intrinsic instability of the SFN molecule prevents this method of delivery.366  As such, 

broccoli-derived foods or supplements require the hydrolysis of the glucoraphanin 

precursor in the presence of the MYR enzyme; typically, this occurs when the fresh 

plant cell is ruptured or when a dry whole powder becomes moist.  In short, SFN must 

be formed close to the time of ingestion.  The challenge for the manufacturer of a 

SFN-yielding supplement lies in the ability to retain both the glucoraphanin and the 

MYR enzyme during the processing from fresh whole plant to powder; this aspect is 

explored in more detail later. 

5.7 Sulforaphane Yield vs Sulforaphane Content 

Broccoli sprouts yield more SFN than any other known plant and contain10-100 times 

the concentration of glucoraphanin (the major glucosinolate in broccoli)  of the mature 

broccoli vegetable.32,169  The broccoli seed therefore contains more glucoraphanin per 

gram than does the sprout or the vegetable of the same seed. The higher level in 

broccoli seeds compared to young sprouts is apparently due to the fact that there is no 

significant net synthesis of the glucosinolates over the few days following 

germination.169,403  As the maturing plant becomes established and is exposed to 

environmental factors including the influence of herbivorous predators, additional 
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glucosinolates can be synthesised as part of the plant’s defence against predators.404  

Nevertheless, the very young broccoli sprout is typically a far more significant source 

of SFN on a weight basis compared with the vegetable and it is for this reason that the 

sprout is chosen as a source of sulforaphane-yielding precursors in many clinical trials. 

In addition, different cultivars of Brassica oleracea contain varying levels of 

glucoraphanin, further establishing the wide variation in glucosinolate content between 

broccoli sprout and the broccoli vegetable.387  Importantly however, the plant does not 

contain any SFN, instead producing it during the hydrolysis of glucoraphanin in the 

presence of MYR.27   As a result, broccoli sprouts are correctly described as    As a 

result, broccoli sprouts are correctly described as releasing, generating or yielding but 

not containing SFN.  The ideal broccoli sprout ingredient contains separately 

compartmentalised glucoraphanin and MYR which react at, or close to the time of 

ingestion.387  The absence of MYR in a broccoli sprout food powder or supplement 

renders the product unable to produce SFN on ingestion.398    

5.8 Role of Epithiospecifier Protein (ESP) 

The presence of a pH-sensitive modifier protein, ESP affects the amount of SFN 

produced on hydrolysis.405  In broccoli, the primary glucosinolate glucoraphanin, can 

be converted to two principal products, SFN and SFN nitrile, the latter being several 

orders of magnitude lower in Nrf2-activating potency than SFN.253  The importance of 

this finding is that, whereas SFN has been shown to have anticarcinogenic properties, 

SFN nitrile has not.406  Because ESP is temperature-sensitive, heating broccoli sprouts 

to 60 degrees C decreases the formation of SFN nitrile.251  A challenge for 

manufacturers of a SFN-yielding supplement lies in deactivating the ESP without 

simultaneously deactivating the MYR enzyme or degrading the glucoraphanin. 

5.9 Presence of Erucic Acid in Broccoli Seed Lipid Fractions 

Erucic acid is a lipid found in broccoli seeds as well as in other members of the 

Brassicaceae family.  Its toxic effects in animals consuming rapeseed (another 

member of the Brassicaeae family) are well-known and include myocardial lipidosis, 

myocardial necrosis, and impaired oxidative phosphorylation.407  Concerns regarding 

its possible effects in humans are sufficiently important that erucic acid in rapeseed is 
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regulated in the U.S.408  Broccoli seeds contain about 28% lipid but broccoli sprouts 

contain only about 1%.   Therefore, as further described by West et al (2002), one 

gram of broccoli seed may contain approximately 120mg of erucic acid but 28 g of 

broccoli sprouts contains 90mg of erucic acid407 ; this would indicate that the seed 

contains around 37-fold more than the sprout.  They calculate that 35 g per week of 

broccoli seeds could equal the estimated maximum allowable amount of erucic acid, 

extrapolating from FDA requirement to limit the content of erucic acid in canola oil to a 

level not exceeding 2% of the component fatty acids.  Although it is unlikely that an 

individual would consume 35 or more g of broccoli seed per week, it is not impossible; 

consumption of supplements derived from broccoli seeds is therefore not 

recommended.408   

The production of an aqueous broccoli seed extract provides a way of removing the 

erucic acid; however, this process also activates the enzymatic conversion of 

glucoraphanin to SFN, which exhibits relatively high reactivity,387 making SFN 

unsuitable as a compound for direct fortification of foods or supplements.   A number 

of MYR-inactive broccoli seed extracts are commercially-available; these products are 

a source of glucoraphanin but are devoid of the MYR necessary to convert it to SFN 

on ingestion.397 

5.10 Sulforaphane’s Effects on Target Genes 

The more than 200 identified Nrf2 target genes can be classified194 broadly as those 

which code for a range of cytoprotective proteins, including antioxidants (enzyme and 

non-enzyme), drug-metabolising enzymes, drug-efflux pumps, heat shock proteins, 

NADPH regenerative enzymes, growth factors, growth factor receptors, heavy metal 

binding proteins and various transcription factors including PPAR-γ as well as for Nrf2 

itself.409  

An illustrative study318 investigated the effect of a single oral dose of 200 µmols of pure 

SFN in women immediately before undergoing reduction mammoplasty.  This dose 

can be calculated to be equivalent to 35 mg SFN, given that 5.7 µmols SFN is equal to 

1mg SFN (M.W. = 177.29).  Two important biomarkers in this study were 

hemoxygenase-1 (HO-1), a cytoprotective enzyme expressed following Nrf2 induction 

of the target gene410 and NAD(P)H:Quinone oxido-reductase (NQO1), a Nrf2-inducible 
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Phase 2 detoxification enzyme253 exhibiting a range of other cytoprotective properties.  

The dose selected was based on an earlier study411 which showed that SFN 

dithiocarbamate metabolites were detected at 15 minutes in the plasma and peaked at 

2.00 ±0.3 µM one hour after ingestion, indicating rapid uptake.   

A maximal 12-fold induction of NQO1 transcripts was observed in the mammary gland 

12 h after dosing, with significant induction as early as 2 h.  A biphasic pattern of HO-1 

transcript induction was observed, with an initial peak at 2 h followed by a subsequent 

peak at 12 h, indicative of the delayed effect of SFN conversion to dithiocarbamates 

(DTCs). The minimal time to statistically-significant HO-1 induction was 1 h.   

Cornblatt’s study183 is significant in providing a guide to the expected micromolar 

concentration for a given quantity of ingested SFN.  A dose of 35mg SFN (200 µmols) 

appears to be achievable from a MYR-active broccoli sprout powder, provided such a 

powder is able to yield 1% SFN per gram of powder.  As such, a supplement weight of 

3.5 g is within a practical human dose range, ingested either as a powder or as several 

capsules.   

5.11 Relevance of in vitro Studies 

Much of the preclinical research on SFN examines its effect in various cell types and 

at varying micromolar concentrations.  It soon becomes clear that different tissues 

respond differently to a specified dose.  Even different cell types in the same organ 

can respond differently.208   

The expression of Nrf2 target genes such as NQO1 occurs at lower SFN 

concentrations, whereas other effects appear to require much higher intracellular 

concentrations.157   SFN exhibits effects beyond its ability to activate Nrf2; these 

effects include HDAC (Histone Deacetylase) inhibition,412 apoptosis,159 anti-

angiogenesis413 and anti-metastasis414 in cancer cells.   Induction of NQO1 in the rat 

colon is 3-fold higher than it is in the liver for the same dose.415  Clearly, an effect 

detected in one tissue cannot be extrapolated to others.  This may also suggest that 

the beneficial effects from both dietary crucifers and supplements may be greater in 

organs such as the digestive tract and bladder than in organs reached only 

systemically.  A recent study416 showed that SFN levels measured in the stomach and 
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bladder are higher than for the other organs measured.  It is possible that tissue 

uptake of SFN is highest in the stomach due to direct exposure but the levels are seen 

to decline rapidly in the descending gastrointestinal tract, possibly a result of metabolic 

conversion.416,417  Paradoxically, induction of GST and NQO1 are relatively modest in 

the stomach; the authors state that the reason for high gastric uptake of SFN but low 

induction of GST and NQO1 remains unexplained.  An earlier study by the same 

researchers showed that SFN tissue uptake level in the bladder was second only to 

that in the stomach.  There would appear to be remarkably high exposure of the 

bladder epithelium to dietary SFN, with a peak at 6 h after dosing and levels 64–5509 

times higher than in the plasma.416  Unlike the relatively low extent of enzyme 

induction observed in the stomach, significant induction of GST and NQO1 occurred in 

bladder cells.416 This may have clinical implications for patients with bladder cancer.418 

It would seem too that the doses required for disease prevention are far lower than 

those required to effect change in established disease.  A study419 on men at risk of 

prostate cancer showed that increasing intake of cruciferous vegetables from one 

serve per week to more than three serves per week (presumably cooked) was enough 

to provide 41% decreased apparent risk.  Data shown in Table 5.1 review a number of 

in vitro studies208,209,218-226 which evaluated the effect of SFN in different tissue and cell 

types.  Notably but not surprisingly, the micromolar concentrations to effect change are 

highly variable across cell types and it has also been shown that the time during which 

the cells were exposed to SFN markedly altered the response.  In cardiomyocytes 

exposed to hydrogen peroxide (H2O2), a 5 μM SFN dose for 6 hours maintained 45% 

cell viability but when exposed for 24 and 48 hours, cell viability increased to 82% and 

92% respectively.225  How the findings of such cell culture studies translate to the 

human in vivo situation is not yet known. 

The examples shown in Table 5.1 are a cross-section of the many published in vitro 

SFN trials of this type.  The data show that in some cell types, the required 

biochemical changes could be readily achievable by supplementation of a MYR-active 

standardised broccoli sprout supplement.  It is equally likely that in some cells and in 

certain conditions, such supplementation may not provide the required micromolar 

concentration.  For example, inhibition of transcription factor, NF-κB and induction of 

transcription factor, Nrf2 appear to be achievable at micromolar concentrations much 
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lower than for the induction of HDAC inhibition, cell cycle arrest or anti-angiogenesis in 

cancer cell lines.232,420  As an example, where low SFN doses between 0.1 and 3 μM 

activate Nrf2-related cellular defences in prostate cells,209 higher doses of 10 μM for 

DU145 cells and 30 μM  for LNCaP cells are necessary to induce cell cycle arrest and 

apoptosis.226    

As a further consideration, when comparing the effects of SFN in normal and cancer 

cells, SFN has been shown to exhibit different behaviours.  A study comparing the 

effect of SFN on three tumour cell lines and a normal cell line showed differing abilities 

of SFN to induce apoptosis and arrest the cell cycle for the three tumour cell lines; 

more significantly, in the normal cell line, SFN was shown to be less toxic than to the 

tumour cell lines.421   In a separate study investigating effects on prostate cells, SFN 

was shown to exhibit a different pattern of chemoprevention-related gene expression 

when comparing normal and cancer cells.422  These effects extend beyond  

comparison of cancer and normal cells, so that  in a rheumatoid arthritis model, SFN 

induces the cytoprotective transcription factor Nrf2 in naïve synoviocytes, whereas it 

induces apoptosis in inflamed synoviocytes.423
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Table 5.1    Studies showing the diversity of effects in different cell types when varying µM SFN and incubation time.  

 

Lead Author & 

Year of 

Publication  

Tissue SFN µM Conc. Cell Type & Effect Finding 

Brooks et al. 

(2001)209 

 

Prostate 0.1 – 15 µM  6 prostate cancer cell lines 

+ normal cells.  Effect of 

SFN evaluated – including 

effect on GSTP1 silencing 

• Normal cells:  SFN after 48 hours 
1.35-fold NQO1 induction at 0.1 µM and 
2.46 at 1 – 3 µM 

• LNCap cells:  SFN  4.6-fold induction 
at 10 µM  

• Modest induction of GST isoforms to 
1.7-fold in all cell lines 

• All effects of SFN completely abrogated 
by 10 nM NAC 

Gao et al. 

(2004)222 

 

Retinal 

epithelium 

1.25 – 5 µM  Human adult retinal pigment 

epithelial cells (ARPE-19). 

 

Challenged with UV light + 

all-trans retinaldehyde on 

photo-oxidative damage 

• Increased cell survival with increasing 
SFN doses; linear cytoprotective effect 
with dose 

• Where only 9.4% of cells survived, pre-
incubation with SFN raised survival 3-
fold to 27.4% at SFN = 5 µM  

Cho et al. Prostate 10 µM Effect of SFN on prostate • Strong cell cycle arrest (G2/M phase) 
and apoptosis at SFN = 10 µM.  No 
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Lead Author & 

Year of 

Publication  

Tissue SFN µM Conc. Cell Type & Effect Finding 

(2005)226 

 

Cancer cancer cell line DU145 effect at < 3 µM 

• LNCaP cells required SFN > 30 µM for 
arrest 

• Effects of SFN completely abrogated by 
NAC 

Ritz et al. 

(2007)208 

 

Bronchial 

epithelium 

0.3 – 10 µM Effect of SFN on bronchial 

cells exposed to diesel 

extract in two cell lines 

BEAS-2B and NHBEC 

• All doses induced GST, NQO1 but to 
different degree in each cell line 

• SFN at 5 µM  15-fold increase in 
NQO1 in BEAS-2B cells 

• GST increased 1.9-fold in NHBEC at 
SFN = 1.25 µM  1.43-fold increase in 
BEAS-2B 

• Expression of inflammatory cytokines, 
IL-8, IL-1β and GM-CSF were all 
significantly reduced at SFN = 0.625 µM 

Zhu et al. 

(2008)219 

 

Aorta 0.25 – 5 µM  Effect of SFN in aortic cell 

cytoprotection in rat aortic 

smooth muscle cells (A10 

cell line) 

• Significant dose-dependent induction of 
cytoprotective Nrf2 target genes at SFN 
as low as 0.25 µM. 

• SFN at 0.25 µM  25% increase in 
GST and 66% increase in NQO1. 

• SFN at 0.5 µM   33% increase in GSH 
levels. 

• SFN protected against toxicity of 
superoxide, H2O2, acrolein and 
peroxynitrite. 

Angeloni et al. Cardiac 5 µM Effect of SFN on • Greater effects when pre-dosing for 48 
hours 



 

Page 90 of 308 
 

Lead Author & 

Year of 

Publication  

Tissue SFN µM Conc. Cell Type & Effect Finding 

(2009)225  tissue cardiomyocyte cell viability 

in presence of reactive 

oxygen species (ROS) over 

6-48 hours 

• H2O2 reduced cell viability to 40% 

• SFN at 5 µM for 6 hours  45% viability 

• SFN at 5 µM for 12 hours  75% 
viability 

• SFN at 5 µM for 24 hours  82% 
viability 

• SFN at 5 µM for 48 hours  92% 
viability 

Song et al. 

(2009)223 

 

Pancreatic    

β-cells 

 

0.1 – 10 µM Effect of SFN in protecting 

β-cells (RIN cell line) 

against oxidative damage, 

restoring insulin secretion 

and preventing type 1 

diabetes in STZ-treated 

mice 

• ~ Linear response in Nrf2 target genes 
to induction by 2.5, 5.0 and 10.0 µM 
SFN. 

• Protection against cytokine-induced β-
cell death by SFN. 

• Cytokines reduced cell viability to ~54%.   

• SFN at 10 µM increased viability to 
~96%. 

• SFN at 5.0 µM increased viability to 
~92%. 

• SFN at 2.5 µM increased viability to 
~80%. 

Kivela et al. 

(2010)224 

 

Endothelial 

cells or 

arteries and 

veins 

Human 

Umbilical 

Endothelial 

Cells (HUVEC)   

Effect of SFN on Endothelial 

Lipases (EL) and TNF-α 

expression in HUVEC and 

HAEC cells 

• SFN at 10 µM inhibits EL in HUVECS 
venous cells  

• SFN at 2.5 µM inhibits EL in HAEC 
arterial cells 

• EL activation occurs through classical 
(canonical) NF- κB pathway 
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Lead Author & 

Year of 

Publication  

Tissue SFN µM Conc. Cell Type & Effect Finding 

0 - 10 µM  

Human arterial 

endothelial cells 

(HAEC) 0 - 10 

µM 

 

Mas et al. 

(2011)220 

 

Brain – 

Substantia 

nigra 

0 .5 - 5 µM Dopaminergic human 

neuroblastoma cells (SK-N-

SH cells). 

Potential for SFN to protect 

against ox stress-induced by 

anti-psychotics 

• 2.5 µM and 5.0 µM  60% and 140% 
increase in GSH. 

• 2.5 µM and 5.0 µM  175% and 250% 
increase in NQO1 activity. 

• Doses > 5 µM reduced cell viability. 

• 2.5 µM and 5.0 µM maintained normal 
lipid peroxidation in the presence of 
Haloperidol. 

• SFN at these doses protects 
dopaminergic cells from the oxidative 
stress-induced by antipsychotic drugs, 
including Haloperidol at a dose to 
reduce cell viability by 80%. 

Tan et al. 

(2010)221 

Bronchial 

epithelium – 

normal and 

0.5 – 2.0 µM Normal human bronchial 

epithelial cells (NHBE)  

• NHBE cells:  SFN  ~ 4-fold increase in 
NQO1 at 0.5 and 1.0 µM at 24 hours 
and 11.8-fold at 6 days 

• HBEC cells:  SFN  7.5-fold increase in 
NQO1 at 2.0 µM, only at 48 hours 
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Lead Author & 

Year of 

Publication  

Tissue SFN µM Conc. Cell Type & Effect Finding 

 cancerous & Immortalised human 

bronchial epithelial cells 

(HBEC) 

Malignant lung 

adenocarcinoma cells (A549 

cells) 

• A549 cells:  SFN  no change at the 
doses tested 

• No toxicity at 10 µM SFN 

Vauzour, D et al. 

(2010)218 

 

Neural cortex 0.1 – 1.0 µM Cortical neurones.  

Protection against dopamine 

toxicity 

• SFN  maximum protection (~ 30%) at 
0.1 µM and ~ 24% at 1.0 µM 

• No toxicity at 10 µM SFN. 
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5.12 Data from Clinical Studies  

A summary of twenty-two published clinical studies using a variety of intervention 

materials is tabulated in Table 5.2.37,38,41,197,245,318,383-385,397-399,412,424-432  These 

materials include mature broccoli vegetable (raw and cooked), fresh broccoli sprouts, 

MYR-inactive broccoli extract beverage,  MYR-inactive powdered broccoli sprout 

extract (BSE), MYR-active broccoli sprout powder and capsules made from MYR-

inactive broccoli extract.  Several of the studies38,397,398,430 confirm the necessity for 

MYR in optimising SFN Yield, citing cooking and extraction as being the primary 

processes leading to loss of activity. confirm the necessity for MYR in optimising 

SFN Yield, citing cooking and extraction as being the primary processes leading to 

loss of activity.424,245,399  The SFN bioavailability399 from raw broccoli was shown to 

be 10-fold higher than for cooked broccoli.   Plasma SFN peaked at about 1.6 hours 

after ingesting raw broccoli but peaked later at around six hours after cooked 

broccoli. Also apparent in the MYR-inactive materials was that inter-individual 

variability in SFN concentration was considerably higher in those taking the MYR-

inactive material.430  The SFN bioavailability from raw broccoli was shown to be 10-

fold higher than for cooked broccoli.   Plasma SFN peaked at about 1.6 hours after 

ingesting raw broccoli but peaked later at around six hours after cooked broccoli. 

Also apparent in the MYR-inactive materials was that inter-individual variability in 

SFN concentration was considerably higher in those taking the MYR-inactive 

material.    

Others425,428,433,434 demonstrate the bactericidal effect on the Helicobacter pylori 

organism associated with gastric reflux and cancer.  Forty-eight H pylori-infected 

subjects were given 70 g fresh broccoli sprouts daily.428  Three markers of H pylori 

infection declined within eight weeks to below the diagnostic cut-off point.  However, 

once the intervention had stopped, the levels of H pylori returned to baseline levels 

after 8 weeks. 

In evaluating the effect of 25 to 200 g of a 1:4 fresh broccoli sprout homogenate, a 

dose-escalation study41 found that there was a safe and effective induction of Phase 

2 enzyme expression in the upper airways in a dose-dependent manner.  At the 

highest intake, there was a 200% increase in NQO1 activity.  This study is valuable 
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in that it demonstrates the dose required to double activity of NQO1 in tissues of the 

human airway; more importantly, it shows that such doses are achievable through 

diet. 

HDAC inhibition is an epigenetic phenomenon associated with chemoprotection.  

SFN was shown to act as an HDAC inhibitor412 in a mechanism unrelated to its 

activation of Nrf2.  In this study, a single dose of 68 g of broccoli sprouts (claimed to 

yield 105mg SFN) “inhibited HDAC activity significantly in peripheral blood 

mononuclear cells 3 and 6 hours following consumption”.  The effect lasted 24-48 

hours.  

 An important question a clinician might ask relates to the possibility that the 

beneficial effects bestowed upon normal cells by SFN might also protect cancer 

cells.  To be certain that SFN as a therapeutic intervention is both safe and clinically-

relevant, a recent cell culture study compared the effects of SFN on cancer cells and 

normal cells.435  Using four cell types in a prostate model, normal (PrEC), cancer 

(LnCaP and PC3) and benign prostatic hypertrophic (BPH1) cells were subjected to 

15 µM SFN for varying time periods.  The results showed that SFN selectively 

targets benign hyperplastic cells and cancerous prostate cells whilst leaving the 

normal prostate cells unaffected.  These findings hold clinical significance, 

highlighting the potential of SFN as a non-toxic chemopreventive agent readily 

incorporated into the diet as an uncooked vegetable or taken as a MYR-active 

supplement.
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Table 5.2   Clinical studies investigating Sulforaphane (2000 – 2012) 

 

Lead Author 
& Year of 

Publication  

Subject 
Number 

Intervention Endpoint Finding Dosage Relevance 

Conaway et 
al. (2000)424 

 

12 200g fresh or 
steamed 
broccoli 
vegetable– 
single dose 

Compare 
metabolic fate 
of steamed vs 
fresh broccoli 

Bioavailability of 
isothiocyanates from fresh 
broccoli is approximately three 
times greater than that from 
cooked broccoli. 

• Total isothiocyanate plasma 
metabolites peaked between 1 
and 8 hours 

• Total urinary excretion of total 
isothiocyanate equivalents (esp. 
SFN-NAC) occurred at 2-12 
hours 

Galan et al. 
(2004)425 

 

9 14, 28, 56 g 
fresh broccoli 
sprouts twice-
daily for 7 
days 

Can orally 
consumed 
broccoli 
sprouts 
eradicate 
Helicobacter 
pylori 
infection? 

Consumption of oral broccoli 
sprouts was temporally 
associated with eradication of 
H pylori infection in three 
subjects. 

No data provided on sprout 
composition or SFN Yield 

Murashima 
et al. 
(2004)37 

 

12 100 g daily 
fresh broccoli 
sprouts for 7 
days 

Markers of 
oxidative 
stress and lipid 
metabolism in 
healthy males 
and females 

Improved lipid parameters and 
reduced oxidative stress 
markers.  HDL increased only 
in females. 

No data provided on sprout 
composition or SFN Yield 
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Lead Author 
& Year of 

Publication  

Subject 
Number 

Intervention Endpoint Finding Dosage Relevance 

Kensler et al. 
(2005)38 

 

200 Hot water 
infusions of 3 
day-old 
broccoli 
sprouts 
nightly for 2 
weeks 

Could MYR-
inactive 
infusion alter 
the disposition 
of aflatoxin 
and 
phenanthrene, 
predisposing 
to hepatic 
carcinoma 

Significant inter-individual 
differences in bioavailability but 
no overall difference between 
intervention arms was 
observed. 

• Each dose contained 400 µmol 
SFN 

•  Inter-individual variability 
between 1-45% of dose 

• DTC (Dithiocarbamate) 
excretion = 49 µmol/12 hours 

 

Gasper et al. 
(2005)383 

 

16 3-phase 
crossover 
dietary trial of 
standard 
broccoli 
vegetable, 
super 
broccoli 
vegetable, 
and water 

Comparison of 
sulforaphane 
metabolism in 
GSTM1-null 
and GSTM1-
positive 
subjects in 
different 
broccoli types 

GSTM1 genotypes have a 
significant effect on the 
metabolism of sulforaphane 
derived from standard or high-
glucosinolate broccoli - greater 
protection that GSTM1-positive 
persons. 

• GSTM null subjects excreted ~ 
100% of urinary metabolites 

• GSTM positive subjects 
excreted ~ 70% SFN 

Shapiro et al. 
(2006)426 

 

12 as 3 
groups of 4.   

3:1 active to 

21 doses for 
7 days of 
glucoraphani
n or SFN 

Evaluation of 
safety, 
tolerance and 
metabolism 

No significant or consistent 
subjective or objective 
abnormal events (toxicities) 
associated with any of the 
sprout extract ingestions were 

Non-toxic at well in excess of any 
practical dose 
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Lead Author 
& Year of 

Publication  

Subject 
Number 

Intervention Endpoint Finding Dosage Relevance 

placebo  observed. 

Cornblatt et 
al. (2007)318  

8 Single dose 
oral broccoli 
sprout 
delivering 
200 µmol 
SFN ~ 1 hour 
pre-surgery 

Evaluation of 
plasma DTC 
concentration 
at ~ 100 
minutes after 
ingestion 

Approx 40-fold increase in 
urine SFN metabolites and a 
90-fold increase in plasma 
SFN metabolites. 

200 µmol oral SFN  2µM in 
breast tissue 

 

Rungapames
try et al. 
(2007)245 

 

12 Single meal 
broccoli 
vegetable 

Comparison of 
beef meal 
composition on 
150g lightly-
cooked or 
broccoli or 
broccoli seed 
with 3 g 
mustard 

SFN Yield 3-fold higher after 
lightly-cooked than fully-
cooked.  No effect of meal 
matrix, only with cooking. 

No effect of meal matrix on SFN 
bioavailability.  Complete cooking 
more destructive than light 
cooking which is more destructive 
than raw 

Gasper et al. 
(2007)384 

 

16 3-phase 
crossover 
dietary trial of 
standard 
broccoli, 3-
fold higher 
glucosinolate 

Comparison of 
gene 
expression in 
gastric mucosa 
6 hours after 
consuming 
broccoli 

Only one gene upregulated by 
more than 1.5-fold in standard 
broccoli. Several genes 
upregulated in the high-
glucosinolate broccoli. 

Apparent threshold for doses of 
SFN influencing gene expression 
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Lead Author 
& Year of 

Publication  

Subject 
Number 

Intervention Endpoint Finding Dosage Relevance 

broccoli, and 
water 

vegetable of 
varying 
glucosinolate 
content 

Traka et al. 
(2008)427 

 

22 Broccoli 
vegetable-
rich diet over 
6 months 
(400 g 
broccoli per 
week) 

Does broccoli 
alter 
expression of 
GSTM1 to 
perturb 
oncogenic 
signalling in 
prostate? 

Broccoli interacts with GSTM1 
genotype to result in complex 
changes to signalling. 
pathways associated with 
inflammation and 
carcinogenesis in the prostate. 

Only the broccoli-rich diet 
influenced expression of genes in 
the androgen receptor pathway, 
insulin signalling TGF-β and EGF 
(Epidermal Growth Factor) 
receptors 

Vermeulen et 
al. (2008)399 

 

8 200 g 
broccoli 
vegetable, 
raw and 
cooked 

Determine the 
bioavailability 
and kinetics of 
sulforaphane 

Broccoli eaten raw 
(bioavailability of 37%) versus 
cooked (3.4%).  

SFN absorption delayed when 
cooked broccoli was 
consumed (peak plasma time - 
6 h) versus raw broccoli (1.6 
h). 

10% greater bioavailability from 
raw vs cooked 

Myzak et al. 3 68 g broccoli 
sprouts 

Effect of SFN 
on HDAC 

Strong inhibition of HDAC 
activity 3-6 hours after 

• 68 g fresh sprouts  105mg SFN 

• Human HDAC activity reduced to 
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Lead Author 
& Year of 

Publication  

Subject 
Number 

Intervention Endpoint Finding Dosage Relevance 

(2007)412 

 

containing 
approx 105 
mg 
sulforaphane 

activity in 
peripheral 
blood 
mononuclear 
cells 

ingestion. Trend towards 
increased histone acetylation. 

~65% after 3 hours - lasted 24-48 
hours 

Riedl et al. 
(2009)41  

 

65 Dose-
escalation 
from 25 g to 
200g fresh 
broccoli 
sprouts 

Effect of SFN 
on the 
expression of 
GSTM1, 
GSTP1, 
NQO1, HO-1 
in the upper 
airway of 
human 
subjects 

Safe and effective induction of 
mucosal Phase 2 enzyme 
expression in the upper airway 
of human subjects, in a dose-
dependent manner. 

• 125 g dose (64 µmol SFN)  > 
50% in NQO1 activity 

• 200 g dose   > 200% NQO1 
activity 

Yanaka et al. 
(2009)428  

 

48 

H. pylori-
infected 
patients 

70 g/day 
broccoli 
sprouts for 8 
weeks 
(glucoraphani
n 420 
µmol/day) vs 
alfalfa 
sprouts 

Effect of SFN 
on gastric H. 
pylori infection 

Markers of H. pylori diminished 
in the broccoli sprout group 
only, remaining low for 8 
weeks after cessation. 

• HO-1 increased 2 to 3-fold 24 
hours after single 50 g dose of 
sprouts 

• 3 markers of H. pylori infection 
declined to below cut-off after 8 
weeks 

• Levels returned to baseline 8 
weeks after end of study 
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Lead Author 
& Year of 

Publication  

Subject 
Number 

Intervention Endpoint Finding Dosage Relevance 

Hanlon et al. 
(2009)385 

 

6 Single and 
repeated 
intake of raw 
broccoli 
vegetable. 
(Noted lower 
than 
expected 
SFN Yield in 
the 
commercial 
broccoli) 

Pharmacokinet
ic study of 
SFN 

Sulforaphane was rapidly 
absorbed with peak plasma 
levels within 1.5h, 
characterised by a long 
terminal elimination phase.  No 
impact of repeated intake, nor 
accumulation. 

• Rapid decline in plasma levels to 
50% after ~ 3 hours, whether as 
single or repeated doses 

• Fresh broccoli from retail sources 
generates very low SFN, even 
when raw 

Kumar et al. 
(2010)429 

 

85 3 diet groups 
to include 
different 
dietary 
glucosinolate
s over 4 
weeks 

Develop a 
method to 
measure 
isothiocyanate 
albumin 
urinary 
adducts 

Hb and albumin adducts are a 
useful marker of isothiocyanate 
intake. 

• More stable adducts for easier 
quantification 

Egner et al. 
(2011)430 

 

50 2 groups over 
7 days. 2 
broccoli 
sprout-
derived 
beverages, 

Comparison of 
bioavailability 
and tolerability 
of SFN from 
beverages with 
and without 

Bioavailability of MYR-active 
SFN-rich beverage = 70% vs 
5% for glucoraphanin-rich 
MYR-inactive beverage. 

• Inter-individual variability in 
excretion was considerably lower 
with SFR than with GRR 
beverage 

• Bioavailability SFR=70% vs GRR 
5% 
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Lead Author 
& Year of 

Publication  

Subject 
Number 

Intervention Endpoint Finding Dosage Relevance 

one 
glucoraphani
n-rich (GRR 
= 325 µmol 
glucosinolate/
g powder) 
and the other 
SFN-rich 
(SFR 
(Sulforaphan
e)= 202 µmol 
SFN/g) 

 

MYR • Taste preference significant for 
GRR 

• 34% null for GSTM1 genotype 

• 51% null for GSTT1 

• SFR better bioavailability and 
more rapid uptake 

• GRR more stable but 
unpredictable and overall poor 
bioavailability 

Clarke et al. 
(2011)397 

 

12 40 g broccoli 
sprouts for 4 
weeks vs 6 x 
broccoli 
sprout MYR-
inactive pills 
(equiv. 3g 
dried sprouts) 

To compare 
glucosinolate 
metabolites 
SFN and 
erucin in MYR-
active broccoli 
sprouts and 
MYR-inactive 
pills 

Broccoli supplements devoid of 
MYR activity do not produce 
equivalent plasma 
concentrations of bioactive 
isothiocyanate metabolites 
compared to broccoli sprouts.   

• Plasma level ~ 2.3 µM from 
sprouts 

• 7-fold higher peak conc. from 
sprouts 

• 74% recovery from fresh sprouts 
vs 19% from MYR-inactive pills 

• Significant inter-individual 
variability 

• SFN and another isothiocyanate 
erucin (ERN) are inconvertible 
but effect is variable between 
subjects 
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Lead Author 
& Year of 

Publication  

Subject 
Number 

Intervention Endpoint Finding Dosage Relevance 

Cramer et al. 
(2011)398  

 

4 42 g fresh 
broccoli 
sprouts (74 
µmol SFN);  
2 g of MYR-
inactive 
broccoli 
sprout 
powder (120 
µmol SFN) 

Can MYR-
active broccoli 
sprouts 
enhance SFN 
Yield of a 
glucoraphanin-
rich MYR-
inactive 
broccoli sprout 
powder? 

The 24 h urinary SFN-N-
acetyl-cysteine recovery was 
65, 60 and 24 % of the dose 
ingested from combination, 
broccoli sprout and GRN 
(Glucoraphanin) powder 
meals, respectively. 

• Enhanced conversion to SFN 
when MYR-inactive powder is 
combined with MYR-active whole 
sprout powder 

• Synergistic effect of combination 

• Fresh sprouts + MYR-inactive 
powder enabled earlier SFN 
conversion 

Bahadoran et 
al. (2011)197  

81 x Type 2 
diabetic 
patients 

10 g and 5 g 
daily of a 
MYR-active 
broccoli 
sprout 
powder 

Can a MYR-
active broccoli 
sprout powder 
reduce 
biomarkers of 
oxidative 
stress in type 2 
diabetes? 

Significant decrease in MDA, 
ox. LDL cholesterol, Oxidative 
Stress Index, and significant 
increase in TAC. No effects 
were found on Total Oxidant 
Status.  Greater effects for 
higher dose. 

• 5g dose    112 µmol SFN 

• 10g dose  225 µmol SFN 

• Higher dose  9% lower MDA, 
~5% lower Ox-LDL, ~16% higher 
TAC 

• Lower dose  4.6% lower MDA, 
no change in ox-LDL and 10.3% 
higher TAC 
   

Clarke et al. 
(2011)431 

 

24 68 g broccoli 
sprouts for 4 
weeks vs 6 x 
broccoli 
sprout MYR-
inactive pills 

Metabolic 
comparison 
between fresh 
broccoli 
sprouts and 
MYR-inactive 

Broccoli sprout supplement 
results in significantly lower 
excreted isothiocyanate 
metabolites, compared to fresh 
sprout. (5-fold lower excretion 
of SFN metabolites). 

• Fresh sprouts demonstrate 
HDAC activity 

• Supplement did not show HDAC 
activity  
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Lead Author 
& Year of 

Publication  

Subject 
Number 

Intervention Endpoint Finding Dosage Relevance 

(equiv. 3g 
sprout 
powder in 
glucoraphani
n content: 
~220µmol) 

supplements.  
Comparison of 
HDAC effects 

Conversion of SFN metabolites 
to ERN metabolites.  HDAC 
findings inconclusive. 

Bahadoran et 
al. (2012)432 

81x type 2 
diabetic 
patients 

5 and 10g 
MYR-active 
broccoli 
sprout 
powder daily 
for 4 weeks 

Cardiovascular 
Risk 
parameters 

At the 10g dose, significant 
decrease in serum 
triglycerides, oxidised LDL: 
LDL and Atherogenic Index of 
Plasma (AIP).   

Required 10g daily dose to 
achieve statistically-significant 
change 
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5.13 Characterisation of the Intervention Material 

The intervention material used in some of the published SFN studies is not well-

characterised, making it difficult in some cases to attribute relevance.  For a food to 

be considered within the realm of medicine as either a functional food or a 

nutraceutical, the properties and effects of its bioactive constituents on human 

cellular function must be well understood.  As described earlier in relation to GST 

polymorphisms, such an understanding should allow for the variable effects in 

individuals in whom gene variants impacting on the relevant pathways demonstrate a 

different response.381,383  Development of a plant-derived medicine or supplement 

requires the knowledge that a certain concentration of the bioactive will result in a 

measurable change at the cellular level.  In the case of studies using broccoli sprouts 

as the intervention material, it is essential that the factors responsible for generating 

bioactive SFN are assayed and quantified.   Such characterisation should include at 

least the level of the precursor, glucoraphanin and the quantity of SFN released.  

Additional assays to quantify the MYR enzyme and ESP, as a modifier of SFN 

release may also be performed but are not essential if yield of SFN and perhaps the 

other broccoli sprout bioactive ITCs, erucin and iberin is known.436  In the presence 

of ESP, variable amounts of glucoraphanin are enzymatically converted to the 

relatively inactive SFN nitrile,253 so removal of ESP is a desirable goal in optimising a 

broccoli sprout ingredient for SFN. If such an ingredient is to be used as a 

nutraceutical, it must be standardised to one or more of the bioactives in order to 

provide within tolerance, clinical predictability.  In a clinical trial, the outcome is less 

meaningful if the data do not exist to draw a relationship between the intervention 

material and the observable effects.  

In a 2004 study, Murashima37 used 100 g fresh sprouts in 12 subjects over seven 

days and reported positive outcomes in a number of parameters related to lipid 

metabolism.  Sprouts vary widely in their composition387,437 due to a range of factors; 

because the sprouts in this study had not been characterised, the study is of limited 

value as a basis from which to extrapolate its findings in the development of an 

efficacious supplement.  Subsequent studies using fresh sprouts have more fully-

characterised the intervention material.  A study397 which compared fresh sprouts 

against a MYR-inactive sprout powder in tablet form measured the plasma 
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concentration of SFN after a dose of 40 g fresh sprouts containing 150 μmols 

glucoraphanin; SFN Yield of the sprouts was not specified.  An earlier unrelated 

study438 using 68 g of fresh sprouts had shown that this dose released 105 mg SFN, 

so that 40 g of fresh sprouts may proportionately yield around 62 mg SFN. 

The effect of a MYR-active broccoli sprout powder was investigated in type 2 

diabetics.432  Eighty-one patients were randomised to receive placebo, 5 g or 10 g 

powder daily over four weeks.  The manufacturer of the powder specified it as 

yielding 22.5 µg/ gram but this was not confirmed by assay as part of the trial.  Using 

these values, subjects received respectively 112 and 224 µmols SFN daily.  The 10-

gram dose resulted in a 9% reduction in markers of oxidative stress as measured by 

malondialdehyde (MDA) and ~ 16% increase in total antioxidant capacity (TAC).  

The lower dose resulted in 4.6% lower MDA values and 10.3% higher TAC.   Effects 

on lipid peroxidation parameters were seen only with the higher dose.  Fasting blood 

glucose dropped by 11.3% at the higher dose and 4.9% at the lower dose.   

In a dose-escalation study41 investigating the effects of SFN in nasal cells in the 

upper airways, subjects were given from 25 – 200 g of fresh sprout homogenate 

daily.  Increased Phase 2 enzyme expression in nasal lavage cells occurred in a 

dose-dependent manner, with maximal enzyme induction observed at the highest 

dose.  The sprouts used in the study claimed a glucosinolate content of 6 µmol/ 

gram.  The SFN levels of the 175g and 200g doses were assayed at 89 and 102 

µmols, respectively.  At doses yielding > 51 µmol SFN (by calculation), a significant 

dose-response in Phase 2 enzyme expression was observed.  At the highest dose 

(102 µmols SFN), there was a 200% increase in NQO1 activity with a 50% increase 

at the dose yielding 64 µmols SFN.  These findings may imply a protective effect of 

SFN in diseases of the airways such as asthma and chronic obstructive pulmonary 

disease and also in countering the effects of airborne pollutants. 

5.14 What Micromolar Concentrations are Possible? 

Based on the available, albeit limited clinical data, we have estimated the micromolar 

concentration which may be possible using a MYR-active whole broccoli sprout 

supplement.  These data are based on the effects of single doses and so do not 
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adequately reflect the clinical situation and the significant effect of cellular 

accumulation of SFN and its metabolites.439 

Ye et al411 and Cornblatt183 showed that 200 µmols SFN was capable of producing a 

2 µM concentration in breast cells.  A dose of 200 µmols corresponds to ~ 35 mg 

SFN.  Our lab’s own unpublished tapped density data on a whole sprout powder 

show that a Size ‘00’ capsule is capable of holding 700mg of powder, with allowance 

for a small quantity of encapsulation processing aids.440  Bahadoran’s 2011 study on 

type 2 diabetics showed that 5 g of their powder contained a dose of 112.5 µmols 

SFN, or 19.7 mg SFN (3.94 mg per gram or 0.4% SFN Yield).197  Had they used 

capsules instead of powder in their study, each subject would have needed more 

than 12 x 700 mg capsules daily to supply 35 mg SFN, a number which is not 

clinically practical. 

To provide 35mg SFN, 8.9 g of the grade of broccoli sprout powder used by 

Bahadoran would be required.  Therefore, to achieve ~2 µM using Bahadoran’s 

powder in human breast cells, around 13 capsules would be required, again 

impractical.  It is likely that other grades of MYR-active broccoli sprout powder 

contain higher levels of glucoraphanin and yield more SFN; in such cases, fewer 

capsules would be required to achieve the same outcome.  If a daily dose of 4 

capsules is practical and a powder with a 1% SFN Yield were available, an 

intracellular concentration of around 2.0 µM may be achieved.   

Clarke et al used 68 g of fresh sprouts, which they claim contained 105 mg SFN.397  

With a drying ratio typically of ~12:1, the fresh sprouts would be calculated to be 

equivalent to ~5.7 g of powder.   For comparison and (unrealistically) assuming no 

processing losses, SFN Yield of such a powder could be 18.4 mg SFN per gram 

(~1.8 % SFN Yield).  The powder used in Bahadoran’s trial yielded 0.4%, so that 

Clarke’s fresh sprouts could have provided around 4-fold more SFN.  There are not 

sufficient available data to make similar calculations for other cell types represented 

in Table 5.1 but it is clear that there can be wide variability in the SFN Yield from 

different forms.  Clarke et al compared their fresh sprout product against a MYR-

inactive broccoli seed extract capsule to demonstrate the marked contrast in SFN 

Yield between the two.397  They conclude that their findings have implications for 
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people who purchase supplements devoid of MYR, believing incorrectly they are 

receiving a dose equivalent to that of fresh broccoli sprouts. 

5.15 Toxicity Issues 

Many of the in vitro studies (Refer Table 5.1) show that micromolar concentrations of 

SFN in various cell types needed to activate cellular defences via Nrf2, range from 

0.2 – 5 µM.209,222,208,219,225,220,221,218  In vitro studies using endothelial cells show that 

SFN is cytotoxic to these cells at concentrations of 20-40 µM and that such 

cytotoxicity is mediated through death receptors and apoptotic signalling.295 These 

levels are well in excess of anything that can be achieved through diet or indeed via 

the broccoli sprout supplements currently available.441  Toxicology studies utilising 

32 different haematology and chemistry tests in human subjects have supported the 

safety of MYR-active broccoli sprouts.426 

5.16 Detoxification Interactions  

As phytochemicals have grown in popularity as supplements, the issue of drug-

phytochemical interactions must be considered.442  In particular, phytochemicals 

which modulate detoxification pathways can have unpredictable adverse effects on 

patients by either increasing or decreasing the available concentration of prescribed 

pharmaceuticals.443  As an added complication, the patient may fail to inform the 

attending medical practitioner that one or more supplements is being ingested 

concomitantly.442   

The Cytochrome P450 (CYP P450) family are drug-metabolising enzymes involved 

in the activation and detoxification of a large number of pharmaceuticals, with the 

CYP3A sub-family involved in the metabolism of more than 50% of all therapeutic 

drugs in clinical use.444  Perhaps surprisingly, naturally-occurring chemicals, at 

dietary levels of intake, can modulate the hepatic and extra-hepatic expression of 

cytochrome P450 levels, resulting in marked changes in the metabolism of 

pharmaceutical drugs.443  Once thought to be relatively benign in their effects on 

drug metabolism, phytochemicals can potentially increase the risk of an adverse 

drug reaction.   
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A well-studied example of such drug-phytochemical interactions is Hypericum 

perforatum (commonly known as St John’s Wort) which can adversely affect the 

immunosuppressant effect of the drug cyclosporine, thus potentially putting the well-

being of the transplanted patient at risk.442 

Similarly, grapefruit and its bioactive component, naringenin have been known for 

over 20 years to inhibit CYP3A4 and patients are often advised to avoid its 

consumption when taking pharmaceuticals.445,446  To illustrate the uncertainty 

associated with trying to classify these phytochemical-drug responses, a series of 

reviewed clinical studies were unable to verify green tea’s known potent in vitro 

inhibition of CYP3A4.447 

If the metabolism of a pharmaceutical is significantly inhibited, it can accumulate to 

higher levels than intended, thereby providing a greater than expected dose.  

Phytochemicals have the potential to both elevate and suppress cytochrome P450 

activity, so that both over- and under-dosing effects can be observed.442    Coupled 

with CYP3A4 inhibition, there are other documented effects of phytochemical-drug 

reactions; the effects on the rate or amount of absorption and interaction with ATP-

dependent transporters can modify the clinical response.  Adding to the complexity is 

the fact that genetic polymorphisms and environmental factors have been shown to 

alter CYP activities, resulting in inter-individual differences in drug effects.448 

If the degree of inhibition is significant, the clinical implications may be relevant for 

the many patients chronically ingesting commonly-prescribed pharmaceuticals such 

as statins, benzodiazepines, antihypertensives, antimicrobials and numerous 

others.445     

Whilst SFN can be an inhibitor of the Phase 1 enzyme CYP3A4, it is also a potent 

inducer of the Phase 2 detoxification enzymes, including GST and NQO1.449  SFN 

typically does not induce Phase 1 enzymes but does induce Phase 2; this is thought 

to retard the activation of a presenting toxin to its more toxic intermediate, enabling 

metabolic conversion to excretable non-toxic compounds via the Phase 2 

enzymes.391 
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There are limited data on the extent to which SFN inhibits CYP3A4.   However, a 

series of experiments using both broccoli extracts and SFN evaluated CYP3A4 

protein levels in human hepatocytes; there was a reduction of CYP3A4 protein to 33 

± 5% and 37 ± 8% for the 10 and 25 μM SFN concentrations respectively.393  The 

authors consider whether it is possible for SFN to reach a concentration in the liver 

sufficient to inhibit CYP3A4 expression following dietary exposure, given that a 

single dose of 200 μmols (35 mg SFN) has been shown to be necessary to achieve 

a plasma level of 2 μM.411  They comment that substantially higher peak 

concentrations are likely to be seen in the liver because of extensive first pass 

clearance of SFN by the liver.393  SFN in this study was shown to reduce DNA 

adduct formation following exposure to aflatoxin B1.  Where repression of genes 

involved in CYP3A4 gene activation can lead to undesirable interactions with 

pharmaceuticals, such repression can also have beneficial effects; in this case, 

reduction of aflatoxin B1 bioactivation with subsequent reduction in DNA damage.  In 

a tissue culture study using Caco-2 cells, Lubelska et al. recently described the 

variable effects of different concentrations of SFN in combination with several 

pharmaceutical drugs; SFN was shown to alter the metabolism and transport of the 

drug. How this might translate to the in vivo situation is not known.450 

Clearly, this complex area is in need of much more investigation and clinicians 

should be aware that when any phytochemical supplement is ingested in conjunction 

with a pharmaceutical, the patient’s response should be monitored with a view to 

modifying dosages if necessary.  

5.17 Anticoagulants Reliant on Vitamin K1 Inhibition  

The pharmaceutical drug, coumadin (Warfarin) is an anti-coagulant drug with a 

narrow therapeutic index.  As such, too much or too little of the drug can lead to 

either haemorrhage or formation of vascular blood clots.  Its principal mechanism is 

reliant on inhibition of endogenous synthesis of vitamin K-dependent clotting factors.  

Because vitamin K is found abundantly in plant foods and especially green leafy 

vegetables including crucifers, patients taking this drug are typically advised to avoid 

consuming these vegetables and to ensure that such intake is consistent.451  In 

considering whether or not to recommend a broccoli sprout supplement to a patient 
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prescribed coumadin, the effect of such a supplement on the drug’s vitamin K-related 

metabolism is of clinical relevance. 

Where a standard 80 gram (1/2 cup) serve of broccoli vegetable contains around 

110 µg of vitamin K,452 a 28 gram (½ cup serve) of fresh sprouts contains ~ 38 µg.453  

Since no direct data are available regarding the vitamin K content of dried whole 

broccoli sprouts, hypothetically assuming no losses, an estimate could be made as 

follows:  A half cup of fresh sprouts is equivalent to about 2.3 g of powdered broccoli 

sprout, assuming a typical 12:1 drying ratio.  In most instances, a daily dose of the 

powder would be less than 2.3 g, providing less than one-third of the vitamin K found 

in a single serve of broccoli vegetable.   

A dose-response study examined the effect of broccoli vegetable on the stability of 

oral anti-coagulant treatment in healthy adults.454   The relative bioavailability of 

vitamin K from broccoli was 29% compared with that of vitamin K supplements, 

illustrating the unlikelihood that vegetables consumed in dietary quantities would 

adversely affect coagulation.454  Furthermore, it was shown that the threshold dose 

causing a statistically-significant lowering of the International Normalised Ratio (INR) 

occurred at a dose of 150 μg daily.   

It is not known how the bioavailability of dried whole broccoli sprouts compares with 

fresh sprouts or fresh mature broccoli vegetable.  Even though it might appear that 

an amount of less than 38 µg obtained from less than 2.3 g of broccoli sprout powder 

might be unlikely to destabilise the activity of the drug, the evidence does not exist 

and further investigation is needed.   

As a separate issue, any biochemical which induces the expression of CYP2C9 can 

increase warfarin clearance, thereby reducing the antithrombotic response to a given 

warfarin dose.  Whereas watercress-derived phenyl-ethyl isothiocyanate (PEITC) 

can inhibit CYP2C9, it is not clear if SFN does the same.455    Given the growing 

popularity of broccoli sprouts as functional foods and supplements, knowledge of the 

relationship between regular consumption of the dried sprouts and possible 

interactions with pharmaceuticals including coumadin is of clinical importance. 
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5.18 Thyroid Dysfunction  

A toxic effect of certain glucosinolates on livestock has been known for 

decades261,456 and animals consuming rapeseed meal as a major food source have 

been especially susceptible to the adverse physiological effects of various 

degradative products of glucosinolates.  In humans, such products can block iodine 

uptake by the thyroid gland and retard synthesis of T3 and T4 hormones in the 

gland; hypothyroid goitre may be the outcome.457  Just how significant this is in 

humans regularly consuming broccoli or other crucifers is not clear.   A study on 

thyroid cancer-prone Melanesian women concluded that relatively high crucifer 

intake of ~ 70 g/day increased the risk of thyroid cancer only in those women who 

were moderately iodine deficient (daily iodine intake below 96 µg/day).458 The same 

effect was not demonstrated in European women. 

Clinicians tend to be mindful of the need for caution when counselling ‘thyroid 

patients’ about the consumption of cruciferous vegetables457; however, little is known 

about the threshold levels requiring such caution.  It may be that at risk individuals 

unnecessarily avoid cruciferous vegetables which could provide more benefits than 

risk.459  In the absence of more definitive guidelines, it would seem prudent to 

consider the possibility of iodine deficiency. 

In a mechanistic study, it was recently shown that the administration of thyroid 

hormone, T3 to rats triggers a redox-mediated translocation of Nrf2 from the cytosol 

to the nucleus in rat liver.460  This may represent a cytoprotective mechanism of T3 

to counter electrophile toxicity.  The induction of Nrf2 in this rat model was blocked 

by pre-treatment with NAC.  This has clinical implications since NAC is being 

consumed with increasing frequency as a dietary supplement promoted as providing 

a precursor compound for GSH synthesis.  Such negative implications of NAC are 

not just relevant to thyroid function but also to the numerous cytoprotective 

compounds generated in response to Nrf2 activation. 

5.19 Classical ‘Antioxidant’ Supplements 

It may not be intuitive to consider that vitamins A, C and E could counter the effects 

of Nrf2-activating phytochemicals.   However, several lines of evidence converge on 
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the notion that modulation of the intracellular redox environment by use of 

supraphysiological doses of ‘antioxidant’ vitamins significantly interferes with Nrf2 

signalling mechanisms.36,461-463  That the results of numerous clinical trials using 

‘antioxidant’ vitamins have been disappointing is well-known.464  The mechanism to 

explain this failure is not yet certain but it would seem reasonable to hypothesise that 

interference with Nrf2 signalling may offer one possible explanation.461  It could be 

hypothesised that SFN-initiated gene expression of cytoprotective genes via 

activation of Nrf2 can be inhibited by altered redox state due to the presence of 

direct-acting antioxidants.  How this translates to the clinical environment is not 

known but may signify the need for caution when combining supplements.  In the 

context of a SFN-yielding broccoli sprout supplement, concomitant ingestion with 

supraphysiological doses of redox-modulating supplements such as vitamins A, C, E 

and NAC might negate the potential benefits of the broccoli sprout supplement. 

5.20 Criteria for a Sulforaphane-Releasing Supplement - both preventive and 

therapeutic  

For a broccoli sprout supplement to be suitable as a preventive and/or therapeutic 

agent, it must meet a number of criteria.  These criteria include demonstrating 

retention or presence of both glucoraphanin and MYR in quantifiable amounts, 

elimination of factors which favour SFN nitrile formation over SFN, standardisation 

for a specified glucoraphanin content and/or SFN Yield, a potency capable of 

significantly activating Nrf2, low residue of particulate seed matter and oil, 

compliance with specified microbiological species/concentration for supplements and 

it must maintain stability for a period of at least 24 months. 

5.21 Current Status of Broccoli Sprout Supplements 

A number of broccoli-derived supplements are already commercially-available and 

fall into several categories, each with its own properties.    

5.21.1 Broccoli Sprout/Seed Extracts Delivered as Powders 

An extract is a common delivery form for phytochemical supplements.  To produce a 

powder, typically only the fibrous plant material and water are removed, with or 

without added solvent(s).  Although extraction is a time-honoured method of 
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concentrating bioactive compounds, in the case of cruciferous plants, extraction is 

not appropriate.   Because the reaction between the precursor glucoraphanin and 

the enzyme MYR is initiated in the presence of moisture, the conversion to SFN may 

be complete before the extraction process is finished.  Although glucoraphanin is 

stable over a long period, SFN is not.365  Consequently, the final extract is not likely 

to contain the bioactive components.   

To avoid total loss of glucoraphanin content in producing an extract, MYR in the 

broccoli sprout material must be completely deactivated prior to extraction.465  The 

product of this process is a water-soluble glucoraphanin-rich powder devoid of MYR 

and as such has no intrinsic ability to generate SFN on ingestion.  Such products 

abound in the market where the label typically specifies a quantity of ‘sulforaphane 

glucosinolate’.  However, ‘sulforaphane glucosinolate’ is not a scientific term and 

consumers and clinicians alike understandably but erroneously assume that the 

quantity of the material shown on the label refers to SFN, when in fact, it refers to 

glucoraphanin.466  Any reference to ‘sulforaphane’ is inappropriate for extracts, 

especially given the fact that no SFN is present in any broccoli sprout powder; it is 

generated only with the addition of water and then only in a MYR-active powder.   

MYR-inactive products such as extracts claim to rely on the uncertain composition of 

the colonic microflora to produce limited quantities of SFN.467,387  It is claimed 

extracts have the advantage of being water-soluble and have a milder flavour than a 

whole sprout powder.466  

5.21.2 Broccoli Seed or Minimally-sprouted Powders  

Some products labelled as ‘broccoli sprout powder’ are derived from minimally-

sprouted seed (less than 3 days’ sprouting).  These powders appear yellow-brown, 

coarse and contain a high proportion of particulate matter including visible seed 

husks.  Such products tend to contain a high proportion of oil, making the finely-

milled sprout powder difficult to handle if it is to be used for manufacturing ingestible 

capsules.  Because this oil may also be a source of potentially toxic erucic acid, such 

seed powders are unsuited to production of encapsulated supplements.  Seed 

powders are sometimes marketed as food supplements where bioactives are not 
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named or quantified.  These powders typically retain both glucoraphanin and MYR, 

although these values are typically not assayed. 

5.21.3 Broccoli Whole Sprout Powders  

Although whole broccoli sprout products have been developed with the aim of 

optimising SFN Yield, there are other bioactive substances in the broccoli plant with 

similar and supporting activities.468 The value of a wholefood supplement has been 

highlighted by studies that compare the SFN Yield of a whole sprout with that of an 

extract. The recent work by Clarke et al.397 comparing the in vivo effects of SFN ITCs 

in whole sprouts versus those in a MYR-inactive supplement in humans not only 

reaffirms that erucin and SFN are capable of interconversion but also provides 

further evidence that the bioavailability of SFN and erucin is dramatically lower when 

subjects consume MYR-inactive broccoli supplements versus fresh broccoli sprouts. 

Although there do exist some whole broccoli sprout powders retaining both 

glucoraphanin and MYR, they are not as widely-available as are the extracts.  Their 

appearance is typically more olive-green than yellow-brown and they may or may not 

be finely-milled.  Most are available as unspecified food powders, although some 

manufacturers produce higher-grade finely-milled material, optimised for SFN 

bioactivity.  These ingredients are much better suited to medicinal applications.   The 

dilemma for the clinician is in identifying those commercially-available supplements 

capable of delivering the required clinical outcomes. 

5.21.4 What Can a Clinician Expect of a MYR-active Supplement? 

Clinicians are aware that there are many factors which can prevent the patient from 

adopting changes in eating behaviour; failure is common.   If a patient simply does 

not consume the recommended diet, is there a case for appropriate 

supplementation, not just of nutrients but also of phytochemicals such as SFN, 

known to enhance cellular defences?   

At this incomplete stage of SFN research, clinical trial data regarding therapeutic 

interventions are limited.  Nevertheless, a large body of epidemiological evidence 

shows that even several serves per week of (presumably cooked) broccoli vegetable 
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may confer measureable cytoprotection.419  Therefore, even small amounts of a 

MYR-active broccoli sprout supplement may offer at least the same degree of 

protection.  As a preventive, especially in those whose poor vegetable intake is 

unresponsive to clinical advice, appropriate SFN supplementation may be indicated. 

However, for therapeutic purposes, a relevant therapeutic dose is much more difficult 

to determine. Examining the in vitro data shown in Table 5.1 and the in vivo data 

shown in Table 5.2, it is clear that there is wide variability in the response to SFN in 

different tissue types.  For example, the neural cortex is protected against dopamine 

toxicity at intracellular SFN concentrations as low as 0.1 µM.218  Pancreatic β-cells 

respond to slightly higher doses, with SFN at 2.5 µM increasing cell viability to ~80% 

under conditions of oxidative stress.223  Aortic levels of GSH and NQO1 levels 

increased 25% and 66% respectively at just 0.25 µM.219  However, cardiomyocytes 

required a SFN level of 5 µM to retain 92% cell viability over a 48-hour period.225  

Table 5.3208,209,218-226 summarises the effects of increasing sensitivity to SFN in 

different tissues or cell types.    

Doses required for HDAC inhibition and direct cancer cell kill appear to be much 

higher.  Tan et al221 showed that malignant lung adenocarcinoma cells were 

unresponsive to doses up to 2 µM, even though normal lung cells showed up to a 

7.5-fold increase in cytoprotective NQO1 at this dose.  Inhibition of HDAC activity 

required 15 µM in prostate epithelial cells.232 

5.21.5 Clinically-relevant Doses 

The earlier estimate indicated that ~ 0.6 µM SFN could be achieved in breast cells 

with 4 capsules daily of the powder used in Bahadoran’s trial.  This may be sufficient 

for cytoprotection in pancreatic β-cells, neurons, aortic cells and other cell types. 

Table 5.1 shows that induction of cytoprotective genes coding for NQO1 and GST 

can occur at low intracellular concentrations in a range of tissues.  This should be 

readily achievable with modest intake of a whole sprout powder supplement.  

However, SFN has been shown to accumulate in cells and to conjugate with GSH so 

that both SFN and its metabolites are bioactive.  Accumulation can lead to millimolar 

concentrations.193   Ye and Zhang417 show that Area Under Curve (AUC) calculations 
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based on multiple doses over an extended period may better correlate with inducer 

capacity than that derived from a single dose.  In this way, multiple dosing in a fixed 

time period may enhance induction by some ITCs with initially low activity.  This is 

clinically-relevant in that multiple dosing has a different effect from the single doses 

used in many in vitro studies.    

5.22 Future Research 

Development of a pharmaceutical is a multi-faceted, complex, protracted and 

expensive process.  Many of the same steps are essential in the development of a 

functional food or nutraceutical supplement but since the FDA does not formally 

approve a supplement prior its market release,469 a consumer or a clinician cannot 

be assured of either its quality or the potential efficacy. 

There is a popular perception470 that dietary supplements are inherently safer than 

pharmaceuticals and in 1994, the U.S.  Congress enacted the Dietary Supplement 

and Health Education Act (DSHEA)471 to authorise the regulation of such 

supplements.  The implementation of DSHEA however has led to considerable 

confusion for manufacturers and marketers.  Aware of the growing consumer interest 

in supplements together with the burgeoning costs of delivering health care to the 

community, the FDA recently released proposed guidelines which, if implemented, 

will significantly affect the supplement industry.472  The guidelines specify that new 

ingredients in supplements must be proven to be safe, a situation likely to incur 

considerable extra manufacturing costs.469  However, if inexpensive dietary 

supplements are found to be safe and effective, the requirement for additional 

research could yield significant community cost savings as well as health benefits.473 

The number of published clinical trials for SFN is comparatively small, although 25 

planned or in-process  studies are currently listed with the U.S. National Institutes of 

Health.474  Consideration of the existing SFN clinical trial data against a background 

of epidemiological and in vitro data for cruciferous vegetables and SFN itself would 

seem to indicate that an appropriately-produced MYR-active broccoli sprout 

supplement is safe and could have preventive and clinical value.  In order to give 

clinicians the confidence they need to recommend such supplements, 

standardisation of both nomenclature and assay protocols is essential.   
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Not only is labelling of the currently available broccoli sprout supplements 

inconsistent but there is no reliable way for a clinician or consumer to know if the 

product will yield SFN on ingestion.   The ability to influence cell function is entirely 

due to the yield of SFN and other ITCs, so that reporting other parameters is largely 

irrelevant. 

5.23 Conclusion 

Nutrition professionals and public health authorities encourage individuals to 

consume a diet with the appropriate proportion of plant foods; however, clinician 

experience and large-scale survey data continue to show that adherence to such 

recommendations is generally poor.  Even though no supplement can replace the 

value of a balanced and varied diet, a SFN-yielding supplement capable of 

nutrigenomically inducing the expression of cytoprotective genes may provide a 

health benefit not achievable with the more popular ‘antioxidant’ vitamin 

supplements. A MYR-active SFN-yielding standardised whole broccoli sprout 

supplement may make the health-promoting benefits of the unpopular cruciferous 

vegetable more widely and conveniently available.  
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CHAPTER 6 

Sulforaphane and other Nutrigenomic Nrf2 Activators:  can the Clinician’s 

Expectation be Matched by the Reality? 

This chapter was published in Oxidative Medicine and Cellular Longevity as a 

Review Article.  The abbreviations, formatting and referencing of this document have 

been altered slightly to more closely reflect the formatting of other chapters and 

published work in this thesis.   

A pdf version of the manuscript is attached as Appendix C. 
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6.0 ABSTRACT 

The recognition that food-derived non-nutrient molecules can modulate gene expression 

to influence intracellular molecular mechanisms has seen the emergence of the fields of 

nutrigenomics and nutrigenetics.  The aim of this review is to describe the properties of 

nutrigenomic activators of transcription factor Nrf2 (nuclear factor erythroid 2-related 

factor 2), comparing the potential for SFN and other phytochemicals to demonstrate 

clinical efficacy as complementary medicines.  Broccoli-derived SFN is emerging as a 

phytochemical with this capability, with oral doses capable of favourably modifying 

genes associated with chemoprevention. Compared with widely-used phytochemical-

based supplements like curcumin, silymarin and resveratrol, SFN more potently 

activates Nrf2 to induce the expression of a battery of cytoprotective genes.  By virtue of 

its lipophilic nature and low molecular weight, SFN displays significantly higher 

bioavailability than the polyphenol-based dietary supplements that also activate Nrf2.  

Nrf2 activation induces cytoprotective genes such as those playing key roles in cellular 

defence mechanisms including redox status and detoxification.  Both its high 

bioavailability and significant Nrf2-inducer capacity contribute to the therapeutic potential 

of SFN-yielding supplements. 

KEYWORDS:  glucoraphanin, myrosinase, nutrigenomics, antioxidant, oxidative stress. 

6.1 INTRODUCTION 

Whilst early 20th century nutrition science resolved issues related to micronutrient 

deficiency states and the latter part focused more on macronutrient excesses,475 the first 

decade of the 21st century has already seen old paradigms challenged and new theories 

proposed.  The recognition that food-derived non-nutrient molecules can modulate 

intracellular molecular mechanisms has seen the emergence of the fields of 

nutrigenomics and nutrigenetics, disciplines derived from the interweaving of the 

sciences of nutrition, biochemistry, molecular biology and genomics.  It has been 

estimated that there are more than 5000 different phytochemicals present in food476 and 

our current knowledge is limited to a reasonable understanding of the function of just a 

few.   

Against this background sits the quest to identify biomolecules with significant 

nutrigenomic potential.  A growing body of research highlights one such biomolecule, 

SFN, an isothiocyanate (ITC) derived from the cruciferous vegetable family and in 
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particular from Brassica oleracea.477  Although the plant kingdom is the source of 

thousands of phytochemicals, little is known about the way in which food-derived 

phytochemicals support the maintenance of human health and especially those 

associated with cellular defence mechanisms.  As the science of nutrigenomics evolves 

and our understanding of the many interactions between phytochemicals and 

endogenous cytoprotective mechanisms grows, the significance of plant foods in human 

health becomes clearer.   

A critical review of the formulations of some available supplements reveals numerous 

flaws, shedding doubt on their potential efficacy.478  There are few published clinical 

trials using phytochemicals as the intervention material and only a small number of 

these withstand scientific scrutiny.  However, even when benefit for a compound has 

been demonstrated, it is common for a commercial product to include the ingredient at a 

dose many-fold lower than that shown to be efficacious in either clinical trials or as it 

was traditionally employed by cultures of the past.  As a further trap for the unwary 

consumer or uninformed clinician, supporting commentary may include citations for in 

vitro and animal studies, giving the reader a false impression of the product’s likely 

efficacy as a supplement for humans. 

Because it appears that many consumers have accepted a role for complementary 

medicines in their personal health management, it is important to review the evidence 

on whether plant-derived supplements can assist in modifying various biochemical and 

physiological risk factors for disease.  The aim of this review is to describe the properties 

of nutrigenomic activators of Nrf2, focusing on the potential for SFN and other activators 

of gene expression to demonstrate clinical efficacy as complementary medicines.  

 

6.2 BEYOND NUTRITIONAL DEFICIENCIES AND EXCESSES  

6.2.1 Nutrigenetics and Nutrigenomics   

The interlinked sciences of nutrigenetics and nutrigenomics provide the clinician with a 

more targeted opportunity to personalise a patient’s treatment programme,369 revealing 

those genetic polymorphisms which may compromise individual biochemical function.  

Even without access to sophisticated genome profiling, a clinician’s knowledge that 
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potent food-derived biomolecules can interact with intracellular signalling pathways 

provides another dimension to clinical management and disease prevention processes.   

The realisation that food-derived molecules are in constant conversation with complex 

intracellular control systems via signalling pathways, has unveiled the role of food as so 

much more than a source of micro- and macro-nutrients.479  What becomes immediately 

apparent in this model is that no multi-nutrient supplement can substitute for the 

enormous diversity in phytochemicals present in a balanced human diet.  Also evident is 

that the health benefits of the popular polyphenolic phytochemicals such as those found 

in green tea, grape seed, red wine, curcumin, pomegranate and olives are unlikely to be 

due to direct-acting antioxidant effects demonstrated by these molecules in numerous in 

vitro studies.480,481  Polyphenols are typically large bulky molecules which are poorly 

absorbed and poorly-bioavailable,184 so that it is unlikely that the intracellular micromolar 

concentrations necessary to scavenge free radicals can be achieved.  Polyphenols can 

also behave as either antioxidants or pro-oxidants depending on the experimental 

conditions.482  In addition, newer evidence suggests polyphenols and other 

phytochemicals may function hormetically, whereby dose-response is characterised by 

low dose stimulatory response and high dose inhibition.483   

In a bioactive-specific approach, a recent comprehensive review of phytochemicals 

indicated for cardiovascular disease, focused on both preclinical and clinical beneficial 

effects of four commonly-supplemented compounds.484  The review concluded that 

there are few definitive trials in this area and in some studies the exact dose used is not 

clear.  However, the authors confirm the findings of others in that the use of a very high 

dose is associated with the most protective effects for a few phytochemicals, whereas 

the lowest dose turns out to be the most effective for other compounds. 

As with vitamin ‘antioxidants’, the notion that ingested polyphenol supplements act as 

‘antioxidants’ in human cells is called into question.480 Emerging evidence suggests that 

polyphenols or their metabolites exert their systemic intracellular effects not as direct 

‘antioxidants’ per se but as modulators of signalling pathways.  

6.2.2 Cruciferous Vegetables Harbour Nutrigenomic Potential    

The classification, cruciferous vegetables (crucifers) includes species predominantly 

from the Brassicaceae family and the more common members are cultivars of the 

Brassica oleracea genus including broccoli, cabbage, cauliflower, Brussels’ sprout and 
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kale but also of the Raphanus genus which includes various types of radish.  Although 

these vegetables are good sources of micronutrients, their value to human health would 

seem to be at least partly due to the nature of the phytochemicals they contain and in 

particular the glucosinolates,485 the enzymatic hydrolysis products of which are capable 

of modifying gene expression.486  Although vegetables such as broccoli are not popular 

dietary choices,258 the unique health-promoting value of crucifers continues to be 

reaffirmed.487  A recent review488 investigating the effect of crucifers on total and 

cardiovascular mortality, found that several prospective studies showed no association 

for total vegetable consumption but did show a significant inverse association for 

cruciferous vegetable consumption.  The potential benefits of green leafy vegetables in 

general and cruciferous vegetables in particular are not limited to their effects in cancer 

and cardiovascular disease.  In a 27-year prospective cohort study on cognitive decline 

in ageing women (n=15,080), those in the highest quintile of cruciferous vegetable 

intake declined more slowly than those in the lowest quintile, with a linear dose-

response evident.489  Those in the highest quintile of green leafy vegetable intake also 

experienced slower cognitive decline.  The association did not change when data for 

participants with cardiovascular disease and diabetes were excluded. 

Most research on crucifers has focused on broccoli, Brassica oleracea (both vegetable 

and sprouts) as a source of bioactive compounds with nutrigenomic potential.  The last 

two decades have seen accelerating interest in the role of broccoli in human health 

following evidence that induction of detoxification enzymes might be responsible for the 

majority of the observed health benefits of vegetables.27,490  After isolating broccoli-

derived SFN, Zhang’s group showed that SFN was a major and very potent Phase II 

enzyme inducer.  The group of induced enzymes includes NAD(P)H:NQO1 (quinone 

reductase) and the family of GSTs, both of which are required for the detoxification of 

steroids and the ubiquitous environmental toxin, benzo(a)pyrene.491-493  Zhang et al. 

concluded that the induction of detoxification enzymes by SFN may significantly 

contribute to the anticarcinogenic action of broccoli.  The way that SFN demonstrably 

increased target enzymes is indicative of a nutrigenomic effect, even though the precise 

mechanism to explain such gene expression was not known at the time.  It would be 

another two years before the mechanism to explain the effect of SFN would be 

elucidated.146 
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6.3 INFLUENCING SIGNALLING PATHWAYS  

6.3.1 Nrf2 as ‘Master Regulator’ of Cell Defence  

Although SFN interacts in a number of mammalian biochemical pathways, its effect on 

the redox-sensitive transcription factor, Nrf2 (nuclear factor erythroid 2-related factor 2) 

appears to be responsible for its greatest clinical potential when administered at 

practical oral doses.494  Reference to Nrf2 first appeared in the scientific literature in 

1994 and has subsequently been the subject of over 5,500 MEDLINE published 

papers.146  In the ensuing two decades, Nrf2 has emerged as a key modulator of the 

cell’s primary defence mechanism, countering many harmful environmental toxicants 

and carcinogens.495  Considerable research has focused on Nrf2’s role in preventing the 

activation of carcinogens to toxic metabolites, especially by induction of the Phase II 

detoxification enzyme, NAD(P)H:Quinone reductase (NQO1).496 

The elucidation of the mechanism by which Nrf2 acts as a cytoplasmic ‘switch’ to 

activate a battery of cytoprotective genes arguably heralds a new paradigm in nutrition 

science.  Identification of Nrf2 gave the first real clue that bioactive diet-derived 

compounds like SFN had the potential to co-ordinately influence large banks of function-

specific genes.497 

Nrf2 has been variously described as an activator of cellular defence mechanisms,150 

the master redox switch151 and a guardian of health span and gatekeeper of species 

longevity.152   As a mediator for amplification of the mammalian defence system against 

various stressors, Nrf2 sits at the interface between our prior understanding of oxidative 

stress and the endogenous mechanisms cells use to deal with it.  What has become 

clear is that although attempts to counter oxidative stress by ‘antioxidant’ vitamin 

supplementation have been disappointing,34 many phytochemicals have the capacity to 

activate Nrf2 and thereby induce genes192 which collectively regulate much of the cell’s 

endogenous defence system, enhancing its survival.498  This finding may be clinically 

significant in that diseases known to be underpinned by oxidative stress may prove to 

be more responsive to such amplification of cellular defences via Nrf2 activation than by 

the administration of direct-acting antioxidant supplements.154 
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6.3.2 Sulforaphane - an Inducer of Nrf2 Target Genes    

Notably and perhaps surprisingly, given its significant cytoprotective potential, SFN does 

not exhibit a direct antioxidant effect; instead it is weakly pro-oxidant.499  As further 

evidence to support the critical role of redox signalling in cellular defence mechanisms, 

the ability of SFN to induce NQO1 and cell cycle arrest in prostate cancer cell lines was 

shown to have been completely abrogated by pre-treatment with the glutathione (GSH) 

precursor, N-acetyl-cysteine.209,226  This finding has implications for the regular ingestion 

of readily-available supplements of NAC. 

Sulforaphane [1-isothiocyanato-(4R)-(methylsulfinyl) butane: CH3S(O)(CH2)4 -N =C =S] 

is a small (M.W. = 177.29) aliphatic lipophilic organosulfur molecule which is not present 

in cruciferous or other plants (Supplementary Data; Figure 1).  Instead, plants of the 

Brassica genus contain a biologically inactive precursor compound, glucoraphanin 

(GRN) which is contained within a plant cell vacuole together with an enzyme, MYR 

which is separately compartmentalised.500   It is when the plant cell ruptures and the 

GRN  and MYR come into contact that SFN is enzymatically produced.501 

(Supplementary Data; Figure 2).   Compared with its stable GRN  precursor, the 

resulting SFN aglycone is relatively unstable366;  this has implications for culinary 

applications of broccoli and other cruciferous vegetables.  Broccoli is not the only 

crucifer which yields SFN but it yields the highest amounts, with its GRN content around 

75%431  of total glucosinolates.  Notably, glucosinolate-containing plants contain variable 

quantities of both precursor and enzyme.502  As a result, the yield of SFN and other 

isothiocyanates can vary widely.  

Cutting, chewing or otherwise disrupting the broccoli plant cell structure initiates the 

synthesis of SFN which, compared to its stable GRN precursor, begins degrading soon 

after synthesis.365  For consumers to take advantage of the cytoprotective benefits of 

broccoli and other crucifers, steps must be taken to conserve the integrity of the SFN 

released.   

SFN belongs to one of nine identified classes of chemical Nrf2 activator.503  Structurally 

varied, the only property shared by all inducers is their ability to react with sulfhydryl (-

SH) groups.  Nrf2 therefore is intimately tied to sulfur chemistry and provided dietary 

protein is adequate, a balanced diet should furnish sufficient sulfur.  However, there are 

concerns that sulfur intake in many may be marginal,504 with some researchers 
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suggesting that deficiency of sulfur amino acids can compromise GSH synthesis to a 

greater extent than for protein synthesis in both the presence and absence of 

inflammatory stimuli.505  Whilst vegan diets may provide significant levels of 

phytochemicals,506 there may be a need for vigilance regarding sulfur adequacy, given 

that the sulfur-containing amino acids are least abundant in plant proteins and that 

vegans typically consume about half of the sulfur consumed by those consuming a 

mixed balanced diet.504 

6.3.3 Broccoli Sprout vs. Broccoli Vegetable  

Much of the clinically-relevant Brassica research relates to broccoli sprouts169 rather 

than to the mature vegetable, with most of the early work in this field done by a group at 

the Johns Hopkins University beginning in the early 1990s.  The group found that 3-day-

old sprouts of cultivars of certain crucifers contained 10–100 times higher concentration 

of GRN than the corresponding mature plants.169  With a focus on identifying plants with 

cancer chemopreventive properties, they found that the sprouts were highly effective in 

reducing the incidence, multiplicity and rate of development of mammary tumours in 

dimethylbenz(a)anthracene-treated rats.  Broccoli sprouts also had the added 

advantage of containing mostly the methylsulfinylalkyl glucosinolate (75% of the total) 

and very little of the indole glucosinolate found in the mature plant and which is a 

potential tumour promoter.278  Their realisation that small quantities of broccoli sprouts 

may protect against cancer as effectively as much larger quantities of the vegetable 

stimulated subsequent research. 

6.3.4 How Nrf2 Activators Influence Gene Expression   

Although the complexity of Nrf2- pathways has not yet been fully elucidated, the 

principal elements are depicted in Figure 6.1.252  Essentially, Nrf2 is sequestered in the 

cytoplasm by the actin-bound cytosolic repressor Keap-1 (Kelch-like ECH-associated 

protein 1), a cysteine-rich protein which also acts as a sensor of variations in 

cytoplasmic redox status.  When the appropriate signal is detected by cysteine thiols 

within Keap-1, its ability to bind and retain the transcription factor Nrf2 in the cytoplasm 

is lost.  Keap-1 typically responds to an electrophilic or oxidative stress signal.252  

Thus released, Nrf2 translocates to the nucleus where it aligns with a short nucleotide 

base sequence in the promoter region of its target genes; this sequence is commonly 
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known as the Antioxidant Response Element (ARE) or the Electrophilic Response 

Element (EpRE), the latter considered a more correct descriptor, although the terms are 

used interchangeably.507  To bind, Nrf2 dimerises with other basic leucine zipper (bZIP) 

proteins such as small Maf proteins (MafG) to form a transactivation complex that binds 

to AREs.508 

 

 

Figure 6.1   The mechanism by which Nrf2 activation increases the expression of 

genes with an ARE in their promoter regions.   

Human Keap-1 contains 27 cysteine residues providing sulfhydryl groups (-SH) which act as sensors 

of ARE inducers including oxidative stress.509   Small Maf proteins are essential for Nrf2 function.510  

Figure adapted from Kensler, 2003 with permission.50 

 

When an electrophilic or oxidative stressor challenges the cell, Keap-1 senses the 

disturbance to its cytoplasmic redox equilibrium.   After release from Keap-1, Nrf2 levels 

rapidly rise in the nucleus, upregulating a battery of cytoprotective genes, each 

containing at least one ARE.  Of significance is the effect of Nrf2 on induction of the 
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rate-limiting enzyme for (GSH) synthesis, γ-glutamyl-cysteine synthetase, thereby 

elevating tissue GSH levels.511 

For the Nrf2-Keap1 pathway to such a play a key role in cytoprotection, its activity must 

be capable of being regulated in tandem with the ever-changing cellular environment.  

Under basal non-stressed conditions, Nrf2 is continuously degraded via the ubiquitin-

proteasome pathway.512  With a half-life of around 20 minutes,513 Nrf2 is maintained at a 

low cellular level.514 Exposure to stressors inactivates Keap1 by direct modification of 

cysteine thiol residues, thereafter releasing Nrf2 in a derepression-type stress 

response.515 

The clinical significance of this mechanism is apparent when considering the 

hepatotoxic effects of acetaminophen, a drug responsible for considerable drug-induced 

liver injury.516 Excessive doses of this common analgesic/ antipyretic drug rapidly 

deplete intracellular GSH reserves.  However, the cell activates an adaptive response 

whereby Keap-1 senses the acetaminophen metabolite, N-acetyl-p-benzoquinoneimine 

(NAPQI), subsequently activating Nrf2.517  GSH is synthesised rapidly along with a 

battery of other Nrf2 target genes. This mechanism may not be adequate to increase 

GSH levels in an acute care setting, given that translation times for protein synthesis of 

various Nrf2 target genes can take hours.  A study investigating the effect on gene 

expression of cytoprotective hemoxygenase-1 (HO-1) in neurons after subarachnoid 

haemorrhage showed that Nrf2 levels increased ~ 4-fold at 12 hours, peaking at > 4.5-

fold at 24 hours, with HO-1 levels increased to >3-fold at 12 hours and peaking at >4.5-

fold at 24 hours.518 

6.3.5 Phase II Enzymes and the Detoxification Mechanisms  

The mechanisms that cells use to detoxify potentially-harmful compounds, often 

carcinogens,157,271 can involve a Phase I component associated with monoamine 

oxidases of the Cytochrome P450 family and a Phase II component where the 

intermediate compound produced by Phase I is metabolised in a way that permits ready 

excretion.  A compound which activates Phase I and Phase II enzymes is known as a 

bifunctional inducer; however, if it activates only Phase II enzymes, it is a 

monofunctional inducer.519   Phase II enzymes are induced by Nrf2 and as such are 

integral to this discussion.  For safe and efficient detoxification, a toxin will ideally 
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undergo a relatively slow Phase I reaction followed by a more rapid Phase II; this tends 

to prevent accumulation of the Phase I metabolite which can be more toxic than its 

precursor.13   

Therefore, for an optimal cellular detoxification environment, Phase II reactions should 

be at a rate which prevents intermediate products of Phase I from accumulating.  

Aliphatic SFN acts as a monofunctional inducer, whereas the indole ITCs from mature 

broccoli are bifunctional inducers derived from the glucosinolate glucobrassicin.169  Of 

clinical significance is the finding that Phase II enzymes have a relatively long half-life, 

so that upregulated expression of these proteins can remain for several days.  In a study 

using human adult retinal pigment epithelial cells (ARPE-19), NAD(P)H:Quinone 

reductase remained active for more than 5 days.520  

6.4 INDUCERS OF Nrf2 TARGET GENES 

Nrf2 can be activated by a variety of inducers, not all of which are obtained orally. For 

example, the pro-oxidant signals generated by the ROS released during exercise521 or 

from inhaled environmental chemicals522 are capable of upregulating the cellular 

endogenous defences, provided exposure is sufficiently modest that it does not 

overwhelm the cell’s defences.   

6.4.1 Diet-derived Nrf2 Inducers  

Although a number of phytochemicals have been investigated in relation to their Nrf2-

inducer ability, the mechanistic studies to explain the nature of the induction are limited.   

A 2008 review paper which focused on molecular mechanisms of phytochemicals in 

chemoprevention listed a number of natural and synthetic Nrf2 inducers; many others 

are known.  The authors showed that a number of these have been mechanistically 

investigated but the mechanisms are not known for all.  Of the three naturally-occurring 

molecules they discuss, only SFN, carnosol and quercetin have been mechanistically 

investigated on the basis of their Nrf2 nuclear accumulation.  Furthermore, they state 

that only SFN has been studied for its roles in multiple mechanisms.509   

 

Given the more extensive literature on SFN, we hereafter consider its potential as a 

supplement of clinical significance and where the data exist, comparing its potential with 

that of popular and widely-available phytochemical supplements.  
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6.4.2 Sulforaphane – in Vitro Effects 

SFN is a potent Nrf2 inducer with consequent induction of cellular defences.168  The 

effect is rapid in cell culture with activation by SFN occurring within 30 minutes in human 

bronchial epithelial BEAS-2B cells.523   Using microarray analysis to investigate the 

effect of SFN in the wild-type murine liver, Hu et al. showed that expression levels of 

1725 genes were increased after 3 hours’ exposure and 3396 genes were changed 

after 12 hours.192 Comparing expression patterns at different time points, they also 

showed that maximal change occurred 12 hours after a single administration of SFN, 

based on fold changes greater than 2-fold.  The identified Nrf2 target genes can be 

classified broadly as those coding for a range of cytoprotective proteins, including 

antioxidants (enzyme and non-enzyme), drug-metabolising enzymes, drug-efflux 

pumps, heat shock proteins, NADPH regenerative enzymes, growth factors and growth 

factor receptors, heavy metal binding proteins and various nuclear receptors including 

PPAR-γ as well as for Nrf2 itself.192  

Vitamin D’s protective effects on human cells are well-recognized524; it may be 

nutritionally significant that the vitamin D receptor (VDR) is a Nrf2 target gene inducible 

by SFN525; in turn, vitamin D can increase Nrf2 expression.526  To further illustrate this 

diversity, Nrf2 target genes include those coding for β-defensin-2 (HBD-2), an 

antimicrobial peptide associated with innate immunity, protecting the intestinal mucosa 

against bacterial invasion.  HBD-2 can be induced by SFN525 and was shown in a cell 

culture study using human Caco-2 cells to be significantly induced 1.6-fold at 24 hours 

and 2-fold at 48 hours by SFN concentrations of > 5 µM.  These results may have 

relevance in disorders of the intestinal epithelium but systemically, an intracellular 

concentration of 5 µM is probably higher than can be readily achieved by diet or even 

via practical doses of available oral SFN-yielding supplements. 

The downstream enzyme products of Nrf2 target genes are efficient and versatile.  They 

include those which constitute the glutathione and thioredoxin systems, the major 

cellular reducing systems in the body.191  Several reasons explain their efficiency and 

versatility:28  1) they are not consumed stoichiometrically, as are direct-acting 

antioxidants such as ascorbate and tocopherols; 2) their duration of action is long with 

half-lives measured in days, so their induction need not be continuous; 3) they restore 

the endogenously-produced direct-acting antioxidants like coenzyme Q10 and the 
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tocopherols by returning them to the reduced state (in particular via NQO1 because 

both coenzyme Q10 and tocopherols are quinones).  Major products of Nrf2 target 

genes and their roles in cytoprotection are listed in Table 6.1. 

Table 6.1    Major Products of Nrf2 Target Genes 

PRODUCTS OF Nrf2-TARGET 

GENES 

ROLE IN CYTOPROTECTION 

Glutathione (non-enzyme) 

(GSH) 

Abundant intracellular sulfur-containing direct 

antioxidant – predominant intracellular thiol.264  

Essential in function of Glutathione peroxidase 

and GST for redox balance and detoxification.264   

Haemoxygenase-1  

(HO-1) 

Redox-regulating, broad protection against 

oxidative stress.527   Metabolises haem, also 

producing bilirubin which scavenges peroxyl 

radicals.  Anti-inflammatory and immune-

modulating properties. 528  

Thioredoxin (Trx) (non-enzyme) Ubiquitous intracellular sulfur-rich protein. 

Singlet oxygen quencher and hydroxyl radical 

scavenger.529  

Thioredoxin reductase  

(TrxR) 

An oxido-reductase which regenerates Trx and 

GSH.530  

Glutathione-S-transferase  

(GST) 

A Phase II detoxifying enzyme with broad 

spectrum of activity, depending on subclass.28  

Quinone reductase 

NAD(P)H:Quinone oxido-reductase 

(NQO1) 

A multifunctional redox-regulating and 

detoxifying enzyme, including protection against 

oestrogen quinone metabolites.531   Directly 

scavenges superoxide but less efficiently than 

SOD.315  Stabilises the p53 tumour suppressor 

protein,30 especially under exposure from γ-

irradiation or other oxidative stress. Protective 
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against dopamine cytotoxicity where SOD and 

Catalase were not.532 

Ferritin Binding of free iron to prevent its reaction with 

superoxide to produce hydroxyl radical.533   

Metallothionein Removal of heavy metals such as mercury and 

cadmium.534  

Peroxisome proliferator-activated 

receptor 

(PPAR-γ) 

Regulator of adipogenesis and central integrator 

of glucose metabolism, energy homeostasis and 

skeletal metabolism.535  

Nuclear factor erythroid 2-related 

factor 2  (Nrf2) 

Nrf2 induces its own synthesis.409    

NADPH regenerative enzymes Restores reducing equivalents and reduces 

oxidised GSH to its reduced form.30 
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6.7 QUINONE REDUCTASE (NQO1) – A TOOL TO EVALUATE INDUCER 

CAPACITY 

Initially considered as an Nrf2-activated Phase II enzyme associated with detoxification 

pathways, the function of NQO1 is now considered to be much broader30.   NQO1 has 

been described as a “quintessential cytoprotective enzyme” and is coded by what is 

considered ‘one of the most consistently and robustly inducible genes within its class’.30  

Furthermore, its activity declines with age whilst upregulation of its activity by Nrf2 

induction is described as an avenue for maintaining cellular defences with advancing 

age.152  Furthermore, animal studies show significant decline in Nrf2 activity between 

youth and old age.536-538  Humans genetically deficient in NQO1 are more susceptible to 

the carcinogenicity of benzene exposure.314  NQO1 is highly active in pulmonary 

tissues539 as well as in epithelial and endothelial cells in general,494 suggesting that it 

could act defensively against compounds absorbed via the airways, gut and 

bloodstream.  NQO1 activity is used as a rapid screening procedure and a biomarker of 

the anticarcinogenic activity of phytochemicals.253,503   The assay490 uses cells defective 

in Phase I function to provide the means for selectively distinguishing monofunctional 

inducers that elevate Phase II enzymes.540 

6.7.1 The CD Value as a Comparative Marker 

The term ‘CD value’ describes the concentration required to double NQO1 activity in 

murine hepatoma cells.541  A CD value is also useful for comparing the potential in vivo 

nutrigenomic effect of an ingestible bioactive compound.  The CD value has also been 

used 27,253  to classify Brassica spp. according to their relative ‘anti-cancer potential’.  

When several crucifers were compared for their Nrf2-inducer effect,542  ITCs of cabbage, 

kale and turnips exhibited less NQO1 inducer capacity than broccoli-derived SFN.   SFN 

returned ~33,000 units NQO1 inducer activity/g fresh weight for broccoli, cabbage 

returned ~11,000 units, kale ~10,000 units with turnip ~2,000 units.  This property may 

partly explain why broccoli is researched more extensively than are other Brassica spp. 

6.7.2 Clinical Significance of CD Value 

In data from studies comparing CD values of well-known phytochemicals, SFN showed 

the highest potency, with a concentration as low as 0.2 µM required to double the 

activity of NQO1.27,541  The comparative CD values of other phytochemicals have been 
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documented by others, 32,543-545  with lower micromolar concentrations representing 

those with the higher inducer activity. (Figure 2) 

CD values are available for phytochemicals used in common oral supplements 

32,253,543,544,546: SFN (0.2 µM), andrographolides (1.43 µM), quercetin (2.50 µM), β-

carotene (7.2 µM ), lutein (17 µM), resveratrol  (21 µM ), indole-3-carbinol from mature 

broccoli vegetable (50 µM), chlorophyll (250 µM), α-cryptoxanthin (1.8 mM) and 

zeaxanthin (2.2 mM),  An earlier study conducted in a different laboratory546 had shown 

curcumin (2.7 µM), silymarin (3.6 µM ), tamoxifen (5.9 µM), genestein (16.2 µM ), 

epigallocatechin-3-gallate (EGCG)  (>50 µM ) and ascorbic acid (>50 µM ).  The 

comparative NQO1 inducer activity of these phytochemicals is: SFN> 

andrographolides> quercetin> curcumin> silymarin> tamoxifen> beta-carotene> 

genestein> lutein> resveratrol> I-3-C> chlorophyll> α-cryptoxanthin > zeaxanthin.   

Notably, the CD value of SFN is 13.5-fold greater than that of curcumin, 18-fold greater 

than silymarin and 105–fold greater than resveratrol, all phytochemicals which are 

extensively promoted for their claimed health-promoting properties.  It may be useful for 

relevant oral supplements to be evaluated in relation to the CD value of their primary 

ingredient(s), given that an internet search will readily reveal many self-select and 

clinician-recommended supplements claiming to ‘enhance detoxification’ and ‘promote 

longevity’, even though supporting evidence is not apparent.  Many such supplements 

claiming to target ‘detox’, are based on ingredients such as chlorophyll and vitamin C, 

both of which have comparatively low NQO1 inducer capacity. 

It is also important to note that the CD values discussed above are generated from in 

vitro cell culture data and that both the ranking and the magnitude of these values can 

change substantially when the same compounds are investigated in an in vivo 

environment.  When considering the clinical relevance of such findings, it is useful to do 

so in the context of bioavailability as discussed later in 6.10. 
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Figure 6.2   CD Values of popular phytochemicals used as supplements and a 

commonly-prescribed pharmaceutical.  

CD Values refer to the concentration of a compound required to double the activity of the Phase II 

detoxification enzyme, Quinone reductase.32,253,543,544,546  

6.7.3 Comparing Effects of Indole Glucosinolates 

Indole-3-carbinol (I-3-C), the ITC found in mature broccoli vegetable (but not significantly 

in the sprout) required > 50 µM to double NQO-1 activity253.  In vivo, I-3-C must be 

dimerised in the acidic environment of the stomach to 3,3’-diindolymethane (DIM) to be 

active.547  This has certain clinical implications as synthetic molecules of both I-3-C and 

DIM are available as supplements.  With significantly lower inducer capacity than 

SFN,546 it bears mention that DIM is also a bifunctional inducer of the detoxification 

pathway, thus limiting its cytoprotective potential.  Early research on broccoli sprouts 

suggested potential limitations to the use of indole glucosinolates such as I-3-C as 

chemoprotectors in humans.169  Not only are they weak inducers of Phase II enzymes 

but as bifunctional inducers, they simultaneously activate Phase I enzymes.  They may 

also have estrogen receptor binding activity, adding to their potential as tumour 

promoters.169   
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Interestingly, DIM is sometimes recommended clinically for patients with compromised 

estrogen metabolism, the theory being that DIM inhibits CYP1B.  Inhibition of CYP1B1 

shifts estrogen metabolism towards 4-hydroxyestrone, a metabolite which can 

contribute to carcinogenesis.531  Not all data agree; a 2007 cell culture study analysed 

gene expression using microarray profiling and quantitative real-time–polymerase chain 

reaction in MCF7 breast cancer cells treated simultaneously with estradiol and  DIM.548  

CYP1B1 was upregulated with a fold-change of 3.93 ± 0.25.  Such findings would tend 

to suggest that DIM may not protect against the metabolism of estrogen to the 4-

hydroxy metabolites.  Such conflicting data indicates that clinical trials are required to 

establish the in vivo effects of such an intervention when using a clinically-relevant dose 

of a readily-available supplement. 

To illustrate the differences in potency between SFN and I-3-C in a study using a 

prostate cell line, it was found that both compounds inhibited the proliferation of the 

prostate cancer cells in a dose-dependent manner but the inhibitory concentration of 

SFN required was just 10% that of I-3-C.549  They may also be safety issues which 

require caution in the recommendation of I-3-C supplements, available at many times 

the quantity of I-3-C achievable from broccoli vegetable consumption.  Although I-3-C 

administered one-week after the last dose of the carcinogen has been shown in rats to 

result in a latency delay of mammary tumour formation, it did not alter tumour incidence 

or multiplicity among survivors.550  Any research showing a preventive benefit of this 

compound must be considered against the risk that it may promote liver and colon 

cancer.550 

6.8 OTHER MODES OF ACTIVATING Nrf2  

Although our focus is to compare the inducer capacity of phytochemicals, Nrf2 in human 

cells is activated by a range of stressors, not all of which are chemical in nature.  The 

diverse nature of Nrf2 activators is highlighted in the three examples which follow.  We 

use several examples of pharmaceuticals with pleiotropic Nrf2-inducing effects.  

Furthermore, we illustrate that when pharmaceutical Nrf2 activation occurs at 

supraphysiological levels, the outcome may be unexpected, indicating that the 

significantly lower inducer capacity of diet-derived Nrf2 activators may represent a 

hormetic effect.551 
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6.8.1 Mechanical Effects 

The mechanical effect of blood flow in regions where arteries are exposed to high shear 

stress are protected from inflammation and atherosclerosis.  By contrast, low-shear 

regions are susceptible and this effect has been shown to be due to the effect of Nrf2 in 

reducing activation of the endothelium at atherosusceptible sites.173     

6.8.2 Pharmaceutical Drugs 

The pharmaceutical tamoxifen, commonly-prescribed to women following treatment for 

breast cancer is an NQO1 inducer but its CD value is 30–fold lower than that for SFN.552  

Nrf2 inducer activity may play some role in this drug’s therapeutic profile in addition to its 

primary role as a selective estrogen receptor modulator (SERM).552  These comparative 

data may be clinically significant when considering the potential value of a drug or 

supplement with cytoprotective potential.   A number of other pharmaceuticals activate 

Nrf2.  The redox-modulating activity of the frequently-prescribed statins and Angiotensin 

Converting Enzyme (ACE) inhibitors has been attributed to their Nrf2-inducer ability.553  

Similarly, gold salts, once the mainstay of treatment for rheumatoid arthritis, are Nrf2 

inducers.554  Indomethacin, now seldom used in reducing the symptoms of inflammatory 

joint diseases has Nrf2-inducing properties, illustrating that non-steroidal anti-

inflammatory drugs (NSAIDs) exhibit properties other than their anti-inflammatory 

effects.555   

A relatively new pharmaceutical, Bardoxolone Methyl (BARD) was shown to enhance 

estimated glomerular filtration rate (eGFR) in patients with chronic kidney disease, a 

disease characterised by significant oxidative stress.556,557,558  BARD is a synthetic 

analogue of oleanolic acid, a triterpenoid found extensively in edible plants559 and with 

broader cytoprotective properties attributed to Nrf2 induction.179   The Phase 3 BEACON 

Trial560 was halted in October 2012 following adverse events including 57 deaths out of 

2185 participants in the BARD arm.561  In comparing the inducer activity of BARD with 

that of SFN, a 2005 study comparing a range of triterpenoids showed that BARD was 

230-fold more potent than SFN as a NQO1 inducer.562   The adverse effects 

demonstrated by the synthetic triterpenoid analogue in the BEACON trial may be 

representative of a hormetic response at the upper end of a bifunctional dose-response. 

By contrast, phytochemicals at the doses provided by foods are typically non-toxic.551 
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6.8.3 Exercise 

Exercise is associated with an increased flux of glucose and oxygen through the 

mitochondria, a process which increases levels of ROS such as superoxide.  An 

essential role for exercise-induced ROS formation in activating transcription factors and 

co-activators has been proposed.119  Ristow et al demonstrated that typical exercise-

related changes in gene expression were almost completely abrogated by daily 

ingestion of supplements of vitamins C and E at doses of 1000 mg and 400 IU 

respectively.   

A review highlighted 23 studies showing that antioxidant supplementation interferes with 

exercise training-induced adaptations.463  An emerging theme375 supports the view that 

because Nrf2 is activated by a mild pro-oxidant signal, high doses of antioxidant 

supplements may blunt signals required to activate endogenous defences.563,564  

Ristow’s assertion that antioxidant supplementation blocks many of the beneficial effects 

of exercise is supported by such evidence. 

6.9 OTHER ACTIONS OF NQO1 WHICH CAN BE INFLUENCED BY 

SULFORAPHANE 

NQO1 exhibits broad substrate specificity extending well outside its better-known role as 

a Phase II inducer; its other roles as described in the following section may contribute to 

its cytoprotective capacity.   Its actions include: 1.) Protection against benzene-derived 

quinones such as benzo(a)pyrene, a carcinogen found commonly in petrochemical 

exhaust gases and in barbecued meats 565;  2.) NQO1 can reduce catechol estrogen 

quinones to catechol estrogens, a process associated with lowering breast cancer risk 

due to elevated estrogen metabolites.566 3.) NQO1 can scavenge superoxide, albeit at a 

lower order of magnitude than does SOD.567  4.) NQO1 stabilises p53, the tumour 

suppressor gene30; 5.) NQO1 restores oxidised coenzyme Q10 (ubiquinone) and the 

tocopherols to their reduced forms.30 

Several NQO-1 polymorphisms exist and these have been associated with risk of 

carcinogenesis. The C609T gene variant is one of very few common SNPs known to 

almost completely eliminate enzymatic activity; consequently, NQO1 is attracting 

considerable research attention given its multiple effects in cellular defences.568  
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6.9.1 Other Mechanisms – Animal Studies 

Although a large volume of the published SFN research is associated with its Nrf2-

inducer potential, some studies point to other mechanisms.  A recent study used 

broccoli sprout juice as the intervention material in stroke-prone spontaneously-

hypertensive rats to investigate possible effects on renal damage.569  After 4 weeks, the 

animals were shown to have been largely protected against renal damage.  

Mechanistically, the effect was shown to be independent of systemic blood pressure but 

to parallel stimulation of the AMPK/SIRT1/PGC1a/PPARa/UCP2 axis.  Whether this can 

be replicated in humans at practical doses has not yet been investigated. 

6.10 THE ISSUE OF BIOAVAILABILITY 

6.10.1 Comparative Effects of Popular Phytochemical Supplements 

Aside from wide variation in Nrf2 inducer capacity, a second barrier to clinical efficacy is 

bioavailability.  When bioavailability is low, cell culture studies may significantly over-

estimate the intracellular concentration that ingestion of such a compound can achieve, 

being unlikely to demonstrate the expected clinical benefit indicated by the in vitro 

work.570,571  In considering the potential clinical efficacy of a phytochemical, the active 

compound and/or any of its active metabolites must reach the cells of the target 

organ(s) in appropriate concentration.  Oral bioavailability of polyphenols is typically < 

10%, ranging between 2 and 20%,572 with many closer to 1%; cooking and processing 

significantly reduce polyphenol content.352   By comparison, a pharmacokinetic animal 

study showed that SFN was rapidly absorbed with its absolute bioavailability 82%.573 

Many phytochemical-containing supplements contain polyphenolic molecules such as 

curcumin (turmeric), catechins (green tea), resveratrol (grapes), and ellagic acid (berries 

and pomegranate), hydroxytyrosol and oleuropein (olives).  Much of the evidence used 

to promote these supplements is either from in vitro or animal studies, with limited 

clinical evidence to support the assertions.  Supplements of these phytochemicals 

frequently bear an ‘antioxidant’ claim, even though the amount of polyphenol reaching 

the circulation or target cells is seldom adequate to alter redox status,480,574 gene 

expression studies have helped in quantifying likely systemic responses.  Preclinical cell 

culture or animal studies may involve very high doses of an isolated polyphenol.  Such 

doses are seldom clinically practical, considering average dietary intake of mixed 
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polyphenols in food is approximately 1gram per day of poorly-bioavailable 

compounds.181  

 

   Figure 6.3. Comparative Bioavailability of Phytochemicals commonly used in 

supplements.182,545,575-578 

 

Curcumin, resveratrol and silybin are examples of popular polyphenol supplements for 

which preclinical findings cannot be readily extrapolated to the clinical environment.  

Figure 6.3 compares the  bioavailability of several polyphenols with that of SFN [native 

curcumin at ~ 1%,575 resveratrol < 1%,577 and silybin ~ 0.73% 576].   In each case, the 

systemic bioavailability compares the plasma concentration of an oral dose to an 

intravenous dose and is expressed as a percentage, where F = Bioavailability.545    

F oral = (AUC oral/Dose oral) / (AUC i.v./Dose i.v.) × 100% 

The high intracellular concentrations of polyphenols required to replicate in vitro findings 

are difficult to achieve in humans with practical oral doses.   

There is some evidence to suggest that the activity of some polyphenols may instead 

reside in their metabolites,579  so that small quantities absorbed intra-cellularly act as 

signalling molecules and may act synergistically with other biomolecules.580  It is likely 

that any direct antioxidant effects occur only within the lumen of the gut and not 

systemically. 482,581  
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Quercetin naturally found in onions, watercress, tea and other plants, is a popular oral 

supplement typically promoted as an ‘antioxidant’ or ‘anti-inflammatory’ agent.  Some 

studies suggest that quercetin may have anti-cancer potential582 but other studies 

describe potential for risk,583 given that quercetin may exhibit pro-oxidant effects, 

especially in a GSH-depleted cellular environment.584 

Specifically, quercetin can exert an inhibitory effect on the metabolism of catechols via 

the catechol-O-methyltransferase enzyme (COMT).585  This may have implications in 

estrogen-related disorders where inappropriately-metabolised estrogens can form DNA 

adducts.531  Whether oral doses of quercetin have these effects in humans is not known 

but the issue has been flagged as ‘concerning’ since readily-available quercetin 

supplements represent up to 100 times the quantity typically available in a Western 

diet.586  

6.10.2 Curcumin 

Curcumin is regarded as having in vitro anti-inflammatory activity by virtue of its ability to 

inhibit the transcription factor, NF-κB.587  In a study investigating inflammation in human 

tenocytes, high concentrations of 5–20 µM were required to inhibit IL-1β-induced 

inflammation.588  However, very high oral doses in humans (up to 8 g) yielded curcumin 

peak intracellular levels of only 0.5 – 2.0 µM, clearly not attaining a concentration of the 

same order; commonly-recommended supplemental doses of up to 180 mg were 

undetectable in plasma.589,590  Laboratory findings demonstrating an impressive and 

diverse array of cytoprotective effects for curcumin may not generally apply to practical 

oral doses in humans.591   

By contrast, there is evidence for an effect in gastrointestinal tissue, where transport 

occurs across a single enterocyte membrane.592,593  Patients with colorectal cancer 

were administered doses up to 3.6 g curcumin daily.594  M1G, a marker of DNA damage, 

decreased 38% in the colorectal tissue, showing that a dose of 3.6 g daily achieves 

pharmacologically efficacious levels in colonocytes but with negligible distribution 

outside the gut, confirming its poor systemic bioavailability.   

When considering both CD value and bioavailability, native curcumin with bioavailability 

of ~ 1% would appear to be less clinically-relevant than SFN which shows both high 

inducer activity and high bioavailability.  Even enhanced forms of curcumin with ~ 7-fold 
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higher bioavailability still exhibit comparatively low bioavailability.595  Investigating 

physiologically-achievable doses of curcumin, Lao et al, administered from 500 - 12,000 

mg of a curcumin powder; no curcumin was detected in any of 74 participants taking up 

to 8,000 mg; low serum levels in the ng/ml range were detected only for doses > 

8,000mg, with doses below 4,000 mg barely detected.596  Similarly, curcumin was not 

detected in normal liver or colorectal liver metastases in patients receiving 3.6 g/d for 1 

week.594 Howells et al conclude that in vitro studies with curcumin in the high 10 μmol/L 

range or below might have human physiological relevance but that its role as a 

chemopreventive agent may lie primarily within the gastrointestinal tract.590 

6.10.3 Resveratrol 

Resveratrol achieved international acclaim after studies in mice and lower organisms 

indicated that it was responsible for a longevity effect.597 Only mice administered 

resveratrol from birth lived longer; those started at middle age had no longevity 

benefit.598  The benefit appeared due to enhanced expression of survival genes, a 

number of which are also expressed during caloric restriction.599 

The longevity effect has never been tested in humans, so an appropriate dose is not 

known nor even if a longevity benefit is likely.600,601  Although well-absorbed, resveratrol 

displays low bioavailability; at least 70% of an oral 25 mg dose in human subjects was 

shown to appear as resveratrol metabolites in plasma, with most of the oral dose 

subsequently recovered in the urine.577  Like curcumin, resveratrol is readily absorbed 

by enterocytes/ colonocytes,578 showing potential benefit to intestinal tissues.  A daily 

resveratrol dose of 3000 mg administered to overweight or obese men with non-

alcoholic fatty liver disease (NAFLD) over 8 weeks, did not significantly improve any of 

the features of NAFLD over placebo.602   

A review of 3650 publications on resveratrol concluded that the evidence is not 

sufficiently strong to justify a recommendation for resveratrol to humans beyond the 

dose which can be obtained from dietary sources, estimated to be ~ 4mg daily for 

adults.603   
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6.10.4 Silymarin 

Silymarin, the major flavonoid complex in Silybum marianum has a long history of 

traditional use in liver disorders.604  Silymarin supplements claiming to target human liver 

detoxification mechanisms are readily-available.  Silibinin, the most bioactive of the 

complex is insoluble in water, not lipophilic and with low bioavailability of 0.73% in 

rats.576  Its CD value ranks next below curcumin and third after SFN.  Where optimising 

Phase II detoxification is the desired outcome, there may be value in considering both 

CD values and bioavailability.  Such evidence sheds considerable doubt on the likely 

efficacy of many such phytochemicals at doses typically found in commercially-available 

supplements.  Nevertheless, published trials show that silymarin exhibits hepato-

protective properties in humans, indicating that other mechanisms may be 

responsible.604,605 

6.10.5 Sulforaphane 

SFN’s lipophilic nature and low molecular weight readily enable passive diffusion into 

cells.573  It is rapidly absorbed, peaking in plasma as early as 1 hour after ingestion.318 

Predictably, dose-dependent pharmacokinetics in rats reveals that bioavailability 

decreases with increasing dose.573  The doses corresponded to ~ 0.5mg, 1.0 mg and 

5.0 mg/kg of pure SFN, a relatively high for humans who typically consume a Brassica 

vegetable and not pure SFN.  It is unlikely that humans, through diet would ingest such 

high quantities of SFN.  By calculation, a MYR-active whole broccoli sprout supplement 

yielding 1% SFN could deliver 10 mg SFN per gram of powder, corresponding to ~ 12 g 

of fresh broccoli sprouts (dried powder retains ~ 8% moisture).  Administering 5.0 mg/kg 

of SFN to a 70 kg human at the upper end of the animal dose range represents an 

intake of 350 mg or 35-fold the quantity that a human might reasonably ingest from 

dietary the fresh sprouts.  Clearly, these quantities are not a practical means of 

providing a broccoli sprout supplement for human use. 

6.10.6 Dose Considerations in Humans 

An indication of what might be practically achievable with supplementation is illustrated 

by several human studies.  Ye et al. showed that after a single 200 µmol oral dose of 

SFN, both SFN and its metabolites were detected in plasma and erythrocytes in just 15 

minutes, peaking in all four subjects at ~ 2.00 µM after 1 hour and declining with first-
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order kinetics, with a mean half-life of 1.77 ± 0.13 hours.411  To investigate effects in 

systemic tissue, Cornblatt et al. showed that one hour after a single 200 µmol oral dose 

of SFN administered to 8 women, metabolites were detected in resected left and right 

breast tissue at concentrations of 1.45 ± 1.12 and 2.00 ± 1.95 pmol/mg tissue 

respectively.  (Section 4.14.5 queried the validity of the units shown here; more likely, 

the correct units were pmol/g.)  This proof-of-principle study observed a significant 

induction of NQO1 enzymatic activity in the same tissue.318  In another example, a 

dose-escalation placebo-controlled study investigated Phase II gene expression in 

human airways mucosa, showing that a 200 gram broccoli sprout homogenate 

delivering 102µmol of SFN increased NQO1 mRNA expression by almost 200%.41 

Given that oral doses appear capable of increasing NQO1, we consider whether it may 

be possible that a SFN-yielding broccoli sprout powder might deliver a plasma 

concentration of ~ 2.00 µM.  By calculation, a 1% powder yields 56.4 µmol SFN per 

gram.  Ye et al. showed that a single 200 µmol dose resulted in a peak plasma 

concentration of ~ 2.0 µM after 1 hour.   As Ye411 et al. had shown that a 200 μmol oral 

dose had resulted in a plasma concentration of ~ 2.0 µM and Riedl41 had shown that 

102 μmol had increased NQO1 mRNA expression by ~ 200%, these orders of 

magnitude could be achievable with a SFN-yielding broccoli sprout powder.  

Theoretically and by calculation, an individual could consume around 2 g of a 1% SFN-

yielding broccoli sprout powder to achieve what Riedl et al. achieved with 200 g broccoli 

homogenate and 4 g to achieve what Ye et al, achieved with a single 200 µmol dose. 

6.11 FACTORS GOVERNING SULFORAPHANE YIELD 

6.11.1 The Role of MYR 

Glucosinolates as Brassica-derived precursor compounds are converted to their 

bioactive forms only under the action of MYR because GRN has no inherent bioactivity.  

Investigating the metabolic fate of ingested broccoli phytochemicals, Shapiro et al. 

showed that MYR-inactivated broccoli resulted in 10-20% lower conversion to ITCs.  

When the colonic microflora were reduced, recovery of ITCs in a MYR-free environment 

was negligible.  It may be inferred that MYR is essential for SFN synthesis and that the 

colonic microflora may exhibit MYR-like activity. 
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The colonic microflora appear capable of limited MYR activity, with conversion to the 

bioactive ITC varying from 1% to 40% of the dose.606  Several genera of human 

microflora such as Bifidobacterium, Lactobacillus and Bacteroides have been reported 

to possess MYR-like activity 607 but with wide variability in their population, the ability to 

hydrolyse glucosinolates cannot be reliably estimated.  So unpredictable is this factor 

that a large clinical trial using a MYR-inactive BSE could not achieve statistical 

significance.38   Many available broccoli sprout supplements are MYR-inactive extracts 

which claim their clinical benefit is due to the alleged conversion to SFN by the colonic 

microflora.  Neither consumers nor clinicians have any way of knowing if an individual 

harbours MYR-active microflora. 

6.11.2 The Nitrile Factor 

Among crucifers, broccoli contains significant amounts of Epithiospecifier protein (ESP), 

a non-catalytic inhibitor of MYR activity.251  ESP produces inactive SFN nitrile. Under 

certain conditions, the nitrile pathway is favoured, with the hydrolysis product 

constituting as much as 75% nitrile (Figure 6.4).   The colonic microflora also support 

nitrile formation, thereby further limiting the potential of a MYR-inactive supplement608  

ESP deactivation can significantly enhance SFN Yield, illustrating that broccoli and 

broccoli sprout products cannot be meaningfully evaluated on the basis of their GRN 

content alone.   

It is likely that clinical trials using either fresh or powdered broccoli sprouts may give 

conflicting results when the presence or absence of nitrile has not been considered. The 

presence of ESP means that assayed measurement of the SFN Yield is critical in order 

to estimate the real efficacy of a broccoli sprout powder intended for a supplement; 

measurement only of GRN and MYR does not allow for the effect of ESP on enzyme 

activity.  
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Figure 6.4   Epithiospecifier protein (ESP), an inhibitor of myrosinase enzyme 

The presence of Epithiospecifier Protein (ESP) prevents complete conversion of glucoraphanin to 

sulforaphane.  Instead, part of the glucoraphanin is converted to inactive sulforaphane nitrile.  As 

much as 75% of the product of MYR activity on glucoraphanin can be sulforaphane nitrile. 

6.12 CLINICAL IMPLICATIONS 

6.12.1 Cruciferous Vegetable Consumption 

The presence of unquantified amounts of ESP in raw broccoli has clinical implications; 

as a salad vegetable, raw broccoli may not be an efficient means of obtaining the 

benefits conferred by SFN.  Similarly, cooking has been shown to destroy the enzyme in 

as little as 3 minutes of steaming.609.  Five minutes of microwave cooking resulted in 

74% loss of glucosinolates from broccoli florets with high-pressure cooking and boiling 

leading respectively to 33% and 55% losses.253    

Even consumers and clinicians conscious of the importance of cruciferous vegetables in 

the diet may be unaware that open-air storage of broccoli as occurs during transport 

and in retail environments may lose 55% of its glucosinolates after 3 days and storage 

in plastic bags at 22 degrees C may result in similar losses over 7 days.253 

Also of significance is the fact that broccoli cultivars for vegetable production are not 

selected on the basis of their SFN Yield.  It is possible that the cultivars available to 

consumers are not good sources of cruciferous bioactives.  Until Food Law allows 

appropriate health claims to be associated with cruciferous vegetables, there is no 

incentive for growers to select higher yielding cultivars.  In short, neither a clinician nor a 

consumer has the information needed to make an appropriate choice.  
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6.12.2 Supplements Derived from Cruciferous Vegetables 

Similarly, it is not generally known if a producer of broccoli sprout powder as a 

supplement ingredient has deactivated the ESP.  If two supplements contain high levels 

of GRN but one has had the ESP deactivated, the comparative SFN Yield from these 

broccoli sprout powders may be markedly different.  Ideally, a SFN-yielding supplement 

would be characterised on the basis of the various determining factors; the presence of 

quantifiable GRN, active MYR together with the inhibitory ESP.  

These concerns are reflected in a recent study which compared a commercially-

available supplement labelled as containing 30 mg ‘sulforaphane glucosinolate’ per 

dose with a quantity of fresh sprouts containing the same amount of GRN.397 The study 

showed that consumption of a MYR-devoid broccoli supplement when compared with 

broccoli sprouts produced 7-fold lower plasma concentrations of the bioactive ITC 

metabolites in the subjects. Clarke et al concluded that these findings have implications 

for people who consume the recommended dose of such a MYR-inactive broccoli 

supplement believing they are obtaining equivalent doses of ITCs.  This is significant in 

that the available broccoli sprout supplements are dominated by the MYR-inactive 

‘extracts’, even though MYR-active whole broccoli sprout supplements do exist. 

There is a further strong case for a whole food broccoli sprout supplement on the 

grounds that although GRN is the primary glucosinolate found in broccoli and broccoli 

sprouts, it is not the only one; erucin (ERN) and iberin comprise most of the remaining 

25% of the glucosinolate content of broccoli.  Although it has been known for two 

decades that ERN and SFN are interconvertible610, Clarke’s more recent study 

suggested that the clinical effects are likely to be due to the combined effects of all the 

glucosinolate hydrolysis products.397   

6.13 STANDARDISATION 

To compound the difficulties associated with determining the clinical potential of a SFN-

yielding supplement, variations in nomenclature add to the problem.  The term, 

‘sulforaphane glucosinolate’ which has recently appeared in the scientific literature is 

now associated with and specified for commercially-available MYR-inactive extracts 

derived from broccoli seed or sprout extracts.144,397  Since ‘sulforaphane glucosinolate’ 

describes only the quantity of ‘glucoraphanin’, this nomenclature could erroneously lead 



 

Page 147 of 308 
 

both clinicians and consumers to believe that the material will deliver SFN when 

consumed. 

6.13.1 Commercial Assay Protocols 

Various methods to describe a SFN supplement are commonly used in industry.  To 

evaluate and compare different broccoli sprout powders intended as supplements or for 

use in clinical trials, assay methodologies must be standardised.  There are several 

common practices for reporting the SFN derived from a broccoli sprout sample but 

because the assay protocol is almost never specified for a commercial product there is 

no way to reliably compare these values from one product to another. 

6.13.2 Sulforaphane Potential 

SFN Potential is a calculated value by measuring GRN and then assuming 100% 

conversion to SFN, whether or not MYR has been retained after processing.  Based on 

relative molecular weights, the measured amount of GRN is multiplied by 0.406 to arrive 

at a SFN Potential.  No provision is made for the presence or absence of either MYR or 

ESP.  Where ESP has not been fully deactivated, calculating SFN Potential will over-

estimate the amount of SFN that could be produced on ingestion. Broccoli sprout 

powdered ingredients or supplements which claim SFN Potential and for which the ESP 

has not been deactivated may yield limited SFN.  

6.13.3 Sulforaphane Yield with Addition of Exogenous MYR 

By adding enough exogenous MYR to ensure full conversion of GRN to SFN, this 

method overcomes the possibility that the starting material may contain only GRN and 

may be completely or partially MYR-inactive.  The assay results may not specify that 

exogenous MYR was added, so that the reader may incorrectly conclude that the 

material will yield SFN on ingestion.   

6.13.4 Sulforaphane Yield Due to Endogenous MYR 

This method more closely resembles the in vivo situation after ingestion of the 

supplement, in that conversion to SFN is entirely dependent on the quantities of ESP 

and MYR retained after processing.  It may provide a lower SFN value when compared 
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with the other methods, even though it may be the method which most reliably 

approximates SFN’s metabolic fate in human physiology. 

The same supplement assayed by each of these procedures is likely to produce quite 

different results and more importantly, only supplements which have retained MYR 

activity are likely to demonstrate in vivo effects.  Methods which assess SFN’s inducer 

capacity in cell culture may more reliably evaluate the clinical potential of a supplement 

or enable comparison of supplements.  RT-qPCR-array and pathway analysis studies 

provide gene expression data which is another step closer to establishing the clinical 

effects of a supplement.611 

6.14 CONCLUSION 

The evolving science of nutrigenomics is in many ways legitimising the important role of 

plant foods in human health, not just as sources of nutrients but as a huge library of 

phytochemicals capable of interacting with intracellular biomolecules to influence gene 

expression.  Of the many thousands of phytochemicals in the food supply, SFN exhibits 

properties which may make it an ideal cytoprotective biomolecule, deliverable in 

practical doses as a whole food supplement.  Attempts to produce SFN-releasing 

supplements have resulted mostly in forms with little or no bioactivity, such as extracts 

of the seed or sprout, rather than as MYR-active whole food products.  When compared 

with other phytochemicals widely-used in dietary supplements, SFN is significantly more 

bioavailable than polyphenols such as curcumin, resveratrol and silymarin.  It is also 

significantly more able to induce NQO1, a Phase II enzyme essential in the metabolism 

of a number of exogenous toxins, oxidised nutrients and endogenous metabolites.  

Such comparative findings call into question the clinical efficacy of many of the 

supplements popular among consumers.  Alleged benefits of such supplements appear 

to require much higher intracellular concentrations than can be achieved with 

reasonable oral intake. 

Initial attempts to produce high-potency pharmaceutical Nrf2 inducers have so far been 

unsuccessful.  Given the prevalence of diet-related disease and the evidence that many 

consumers have accepted a role for complementary medicines in their personal health 

management, appropriately validated SFN-releasing supplements may provide another 

avenue for supporting human health.  Such supplements will need to demonstrate 
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sufficient nutrigenomic potential that they can modify key biochemical and physiological 

risk factors for disease. 
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CHAPTER 7 

Methodological Considerations in Investigating 

the Effects of Sulforaphane on Gene Expression 

-  referencing the EASYGENEX Study 

7.0 BACKGROUND 

The EASYGENEX Study (Effect of a Sulforaphane-Yielding supplement on Gene 

Expression) was initially planned by the candidate to investigate the effect of a SFN 

supplement on a population of otherwise apparently healthy type 2 diabetic men not 

using insulin replacement.  As discussed in Chapter 2, type 2 diabetes has been 

mechanistically associated with perturbed cellular redox status in human cells 

including pancreatic beta-cells.6,281  It seemed reasonable that because antioxidant 

vitamin supplements had not been shown overall to favourably change the course of 

disease progression,5,612 it may be possible to help restore redox status and related 

disease biomarkers by supplementing with a phytochemical Nrf2 activator such as 

SFN.  Induction of Nrf2 target genes is known to generate a range of cytoprotective 

compounds including antioxidant enzymes and non-enzymic biomolecules such as 

glutathione and thioredoxin. 

Interest in type 2 diabetes was partly influenced by Bahadoran’s 2011 trial197 and 

subsequent publications432,613 in which her group had used a manufacturer-specified 

0.4% SFN-yielding whole broccoli sprout powder to demonstrate positive changes in 

metabolic syndrome/ cardiovascular biomarkers.  Their study used large dose 

volumes of an unpleasant-tasting powder, making this clearly impractical as a 

recommendation for regular use by individuals when compared to a standard Size 

‘00’ capsule of the same material which can contain no more than 700 mg.  By 

calculation, the 5- and 10-gram powder doses would have yielded daily SFN doses 

of approximately 20 and 40 mg respectively.  Bahadoran showed some benefits from 

a 5-gram daily dose and greater benefits from a 10-gram dose.  In a low-density 

powder with a tapped density of around 0.4e, 10 g occupies a volume of 25 millilitres, 

clearly impractical for long-term regular therapeutic use. 

                                            
e Typical tapped density measured on the samples used in our university laboratory from sprouts 
grown using Caudill seed stock.  http://www.caudillsprouting.com/Seeds/index.html  

http://www.caudillsprouting.com/Seeds/index.html
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As the powder used in the EASYGENEX trial had been separately assayed by an 

independent commercial laboratoryf to yield around 1.8% SFN, it was postulated that 

the higher yield would enable supplementation with just a few daily capsules as a 

more practical option.  A small pilot study using real-time quantitative polymerase 

chain reaction (RT-qPCR Array) had been planned to investigate gene expression in 

a range of around 40 redox and inflammation-sensitive genes expected to be 

relevant in individuals with type 2 diabetes as well as to investigate plasma SFN 

metabolites and relevant disease biomarkers. Thereafter, the plan had been to 

review the PCR gene expression findings in conjunction with the polymorphisms 

obtained separately for each participant for a number of the same genes on the PCR 

test panel.  In a further step, the plan had been to investigate protein levels for 

several of the genes showing greatest expression. 

Originally named the EASYDIAB2 Study, it was planned to recruit around six 

participants for this pilot study, expecting that the outcomes would provide 

pharmacokinetic and dose-response relationship data that would inform a larger 

study. 

It later became apparent that in order to select as homogeneous a population as 

possible, the selected exclusion criteria were so narrow that it was difficult to recruit 

suitable individuals to the study.  Consequently, the study design was modified to 

investigate the effect of similarly high SFN-yielding broccoli sprout capsules on a 

population of twenty healthy young men.  To broaden the potential findings of the 

study by accessing a larger gene set, it was decided to utilise microarray instead of 

the more restrictive RT-qPCR platform, even though it is well-established that 

microarrays tend to generate a significant noise-to-signal ratio.614   The detailed 

methodology for the EASYGENEX Study is described in Chapter 8. 

7.1 DESIGNING A STUDY TARGETING Nrf2 MODULATION 

A recent Special Issue editorial615 highlights the role of Nrf2 as an emerging 

therapeutic target.  A number of small-scale clinical trials utilising SFN as the 

intervention compound in various doses and forms have shown positive outcomes, 

                                            
f Eurofins Supplement Analysis Center. http://www.eurofinsus.com/food  

http://www.eurofinsus.com/food
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with authors typically describing the observed responses being associated with 

activation of the transcription factor Nrf2. (Table 7.1) 

In conducting these trials, other known Nrf2 activators and modulators must be 

considered and ideally excluded.  Typically excluded are dietary glucosinolates from 

cruciferous and related plant foods, phytochemical supplements such as green tea, 

pomegranate or turmeric and other polyphenols,200 antioxidant vitamin supplements 

which may attenuate SFN’s weak Nrf2-activating pro-oxidant signal,616 medications 

known to activate Nrf2 such as statins617 and metformin618 and environmental 

stressors such as cigarette smoke.619  The one significant and likely Nrf2 activator 

that had not been excluded is exercise and this factor is addressed in some detail 

later as it appears that the failure to exclude regularly-exercising individuals may 

have impacted the expected findings of the EASYGENEX Study. 

7.2 DOSE CONSIDERATIONS 

What has emerged in recent years is the fact that Nrf2 activation appears to act 

hormetically in that whilst low Nrf2 activity can compromise normal cellular function, 

persistently high Nrf2 activity can also be detrimental to cells.620,621  The latter aspect 

has been harnessed in chemotherapy in which specific pharmaceuticals have been 

developed to inhibit Nrf2 activity in cancer cells, since it is now known that cancer 

cells too can take advantage of the cytoprotective properties of Nrf2 activation.622,166  

Pharmaceutical Nrf2 activation in non-cancer cases must be equally considered with 

caution; the failed Bardoxolone methyl trial561 in patients with chronic kidney disease 

acts as stark warning that attempting to exceed normal physiological limits can have 

serious and sometimes fatal consequences.  As discussed in Chapter 6, the trial had 

to be stopped prematurely when increased number of heart failure events including 

some deaths became apparent.  Chapter 6 referred to the fact that Bardoxolone 

methyl has more than 200-fold greater ability to activate Nrf2 than does SFN.560 

Therefore, what becomes of critical importance in clinically utilising the beneficial 

effects of Nrf2 activators is that an appropriate dosage range can be established for 

both preventive and therapeutic applications.  The review material in Chapters 4, 5 

and 6 addresses many of the issues associated with the significant variability in Nrf2 

inducer potential by phytochemicals as well as the large observed differences in 

bioavailability when attempting to translate in vitro effects into in vivo responses.  
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SFN has been shown to be a potent inducer of Nrf2 as well as being highly-

bioavailable, especially when compared to some popular phytochemical 

supplements.153   

In Chapter 6, it was suggested that it may not be possible that oral dosing of existing 

SFN-yielding supplements could achieve the high intracellular concentrations 

described in the various in vitro studies or in those using large daily quantities of 

fresh broccoli sprouts or sprout homogenates.623  More recently, some supplements 

have been shown to yield higher levels of SFN, such that it may be important to 

more cautiously consider supplement dosage.  Holmstrom et al. highlight similar 

cautions in the conclusion to their paper investigating the role of Nrf2 in 

mitochondrial function by suggesting that both “insufficient and persistently high Nrf2 

activity can have detrimental consequences”.621  SFN has been shown to induce 

Nrf2 in cancer cells as well as in normal cells, highlighting the need for further in vivo 

investigation, since Nrf2 activation is just one of multiple synergistically-acting 

mechanisms by which SFN may confer chemoprotection.157    

7.2.1 EASYGENEX Study – Selecting the Dose 

Because it is well-established that SFN is a potent activator of Nrf2, in most clinical 

trials in which SFN is the intervention material, pathways and outcomes associated 

with Nrf2 activation are the primary focus.  Even so, SFN’s pleiotropic nature has 

been noted in a range of other less well-understood cellular events.157  In this 

context, SFN is also known to exhibit epigenetic effects which include post-

translational histone modification, DNA methylation and post-transcriptional gene 

expression regulation by non-coding microRNAs.163 

A number of in vitro studies have used microarray analysis as their platform for 

investigating gene expression via Nrf2.  A relatively recent study used human retinal 

pigment epithelial cells to examine the effect of SFN on the expression of oxidative 

stress-related genes.  The study found that 10μM SFN was the optimal dose needed 

to enable the cells to counter the oxidative assault.  Mechanistically, SFN was shown 

to activate Nrf2 and induce a number of its target genes.624  

In determining the dose for the EASYGENEX Study, consideration of the range of 

doses utilised in in vitro studies played little part.  Instead, the focus was on the more 
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relevant doses used in the published clinical trials in which SFN has been used as 

the primary intervention.  Comparison was difficult due to the variety of forms in 

which SFN had been administered; some studies used the synthetic form, others 

generated SFN in situ by combining GRN with a plant source of MYR, whilst others 

used fresh broccoli sprouts, an aqueous homogenate of fresh sprouts or a powder of 

dried whole sprouts.  One study claimed to be using a broccoli sprout BSE but the 

Supplementary Materials describing the material showed that it was, in fact a dried 

whole broccoli sprout powder.198  Daily doses of SFN in these studies ranged from 

4.4 mg daily as the lower dose in the chronic obstructive pulmonary disease (COPD) 

study by Wise et al. to 105 mg in the prostate xenograft study by Myzak et al. in 

2007, with others studies selecting doses in between (Table 7.1). 

Where fresh sprouts or their minimally-processed derivatives are used, SFN is not 

the only bioactive compound being investigated, even though it is the most 

abundant.  Other isothiocyanates (ITCs) and a range of other phytochemicals and 

micronutrients may all impact gene expression.  The second most abundant ITC 

generated from MYR hydrolysis of broccoli sprouts is erucin which has been shown 

to readily interconvert with SFN.  When a whole broccoli sprout or whole plant 

derivative is used as the intervention material, converted erucin may contribute to the 

total SFN yield and subsequent effect on gene expression.397 

Table 7.1 Selection of clinical trials utilising various forms of broccoli sprouts or 

sulforaphane as the primary intervention to evaluate their effect on disease 

biomarkers. 

Disease 

and/or 

Biomarker 

Daily Dose Form Reference 

Metabolic Syndrome SFN not specified 
Fresh sprouts    

(100 g) 

Murashima et al.; 

200437 

Helicobacter pylori 

infection 

14 – 56 g fresh sprouts 

(SFN not specified)  

Fresh broccoli sprouts  

(14-56 g) 

Galan et al.; 

2006425 

Prostate xenograft – 

HDAC activity in 

PBMCs 

68 g fresh broccoli 

sprouts, yielding 105 mg 

SFN (as a single dose) 

Fresh broccoli sprouts (68 

g as a single dose) 

Myzak et al; 

2007438 

SFN metabolite 

effects in female 

breast tissue 

35 mg SFN 
Fresh sprout extract + 

daikon MYR 

Cornblatt et 

al;2007183 
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Chronic Obstructive 

Lung Disease 
19 mg SFN 

Broccoli sprout 

homogenate 
Riedl et al.; 200941 

Type 2 diabetes 
40 mg SFN 

(calculated) 
Broccoli sprout powder 

Bahadoran et al.; 

2011and 

2012197,432,613 

Autism 
9 - 14 mg SFN based on 

body weight 
Stabilised SFN supplement Singh; 2014199 

Detoxification 

(Atmospheric 

pollutants) 

262 mg GRN + 7 mg 

SFN 
GRN + daikon MYR in juice 

Egner et al.; 

2014202 

Nasal Allergic 

Response 
18 mg SFN  

GRN extract + daikon MYR 

in mango juice 

Heber et al.; 

2014203 

Off target effects of 

SFN and HDAC 

inhibition 

Claimed to be 18 mg 

SFN per gram fresh 

sprouts g 

Fresh broccoli sprouts  

(34, 68 and 102 g) 
Baier et al; 2014204 

Asthma 18 mg SFN  
GRN extract + daikon MYR 

in mango juice 

Brown et al.; 

2015203 

Prostate – PSA 

doubling time 
60 mg SFN  

Stabilised SFN from seed 

extract 

Cipolla et al.; 

2015200 

Breast tissue 

(biopsied) 

SFN not specified. SFN 

metabolites measured 

GRN supplement  

(180 mg daily) 
Atwell et al.; 2015 

Sickle Cell Disease SFN not specified 

Broccoli sprout 

homogenate  

(50, 100, 150 g) 

Doss et al.;2016205 

COPD – effects on 

two types of 

respiratory cells via 

Nrf2 

Daily SFN at 4.4 mg and 

26.6 mg 

SFN extracted from fresh 

broccoli sprouts 

Wise et al; 

2016206,207 

Type 2 diabetes – 

hepatic glucose 

production 

Daily SFN of 27 mg in a 

5-gram powder dose 

Whole broccoli sprout 

powder, described as a 

broccoli sprout extract 

(BSE) 

 

Axellson et 

al.;2017198 

(Supplementary 

material) 

                                            
g The SFN yield claimed by Baier et al is in stark disagreement with those stated by Myzak et al 
(2006) using the same fresh sprouts (Broccosprouts®).  Myzak et al. claim that 68 g fresh sprouts 
yield 105 mg SFN, whereas Baier et al. claim that their sprouts yield 18 mg/ gram fresh weight.  It is 
unlikely that Baier et al are correct when comparing their values with those used in other studies.  
Baier et al state later in their paper that their dose is similar to that available in a BroccoMax® 
supplement that lists one serving of the product to contain ‘30 mg sulforaphane glucosinolate’.  Baier 
et al. don’t comment that such a supplement is devoid of myrosinase and is therefore not equivalent 
to a supplement that yields 30 mg sulforaphane. 
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The highest daily dose used in the studies listed in Table 7.1 is 102 g of fresh 

broccoli sprouts.  If it is assumed that Baier’s stated SFN Yield is incorrect (explained 

in Footnote g above) and instead use Myzak’s stated SFN Yield for fresh 

commercially-available sprouts carrying the same brand name, then Baier’s highest 

dose of 102 g fresh sprouts would then have been equivalent to 158 mg SFN.  

Myzak’s stated SFN Yield from fresh broccoli sprouts is in agreement with the order 

of magnitude stated by Riedl et al41 in their study which used a homogenate of fresh 

broccoli sprouts. 

Myzak and Baier both use HDAC inhibition as their outcome measure.  Two earlier 

cell culture studies by Myzak et al230,232 showed that 15 µM SFN significantly 

inhibited HDAC in human embryonic kidney cells, colorectal cancer cells and three 

different prostate epithelial cell lines.  The group’s working hypothesis was that it was 

not so much SFN itself that was responsible for the observed HDAC inhibition but 

more the SFN metabolites produced through the mercapturic acid pathway; the 

EASYGENEX Study therefore includes measurements of the SFN metabolites. 

Chapter 5 queried whether it is possible to achieve the higher intracellular levels 

shown to be associated with HDAC inhibition in tissue culture.  In 2002, Ye et al411 

reported that in four human volunteers, a single total ITC dose of 200 µmols (~ 35 

mg, most of which is likely to be SFN) from a MYR-hydrolysed extract of 3-day 

broccoli sprouts resulted in 0.943 ± 2.27 µmol/l in plasma, serum and erythrocytes at 

one hour after feeding.  They further comment that peak plasma levels reached 2 

µM. The authors of the study comment that the ITC and ITC metabolite levels in 

erythrocytes contained only low micromolar concentrations in contrast to the much 

higher millimolar concentrations that can accumulate in tissue culture studies.625  

They suggest that this is because most of the ITCs in the blood were in the form of 

conjugates rather than as free ITCs, given that most conjugates are absorbed very 

slowly in tissue culture studies compared with the rapid absorption of ITCs.   

In the EASYGENEX Study, participant blood samples were collected at 0, 7 and 14 

days of continuous twice daily dosing, whereas the pharmacokinetic study by Ye et 

al discussed above used a single dose with sampling at several time points within 

hours of dosing.  The participants were expected to accumulate SFN and its 
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metabolites over the extended time frame of the study, increasing the likelihood that 

the intracellular concentrations in the EASYGENEX Study would be higher.  

Accumulation of metabolites has been shown to be particularly cytoprotective in 

epithelial cells lining the gut626 (especially the stomach) and the urinary bladder.627  

In both types of epithelia, a single membrane is the only barrier to SFN absorption 

into these cells.  In the urinary bladder, concentration of SFN metabolites in the urine 

for extended time periods prior to voiding may explain the observed cytoprotective 

effects of SFN in this organ.628  

Myzak et al.629 report that HDAC inhibition was apparent in murine colonic mucosa 

and peripheral mononuclear cells, suggesting that dietary SFN is capable of 

inhibiting HDAC in vivo.  It is worth noting that in general, HDAC inhibitors exhibit 

greater effects on cancer cells than on normal cells,630 raising the possibility that 

such differential effects may provide an opportunity to utilise SFN in cancer therapy 

as well as in prevention.   

Where in vitro HDAC studies typically employ 15μM SFN, the human retinal pigment 

epithelial cell culture study referred to in 3.1 used the lower 10μM SFN 

concentration.   

A concentration of 10μM SFN was found to be the optimal dose needed to enable 

the cells to counter an oxidative assault.  Mechanistically, SFN was shown to 

activate Nrf2 and induce of a number of its target genes.624  Whether a lower 5μM 

more typical Nrf2-activating dose would have also been effective in modulating gene 

expression in these cells is not known. 

In practice, there are fewer in vivo opportunities to study the concentrations of SFN 

and its metabolites in cells compared with those of the in vitro situation, so that the 

available evidence for intracellular SFN concentrations is limited.  Muscle biopsy is 

one mode of investigating such concentrations following SFN dosing but the 

procedure carries enough risk as well as participant discomfort that it is not often a 

test method of choice.   Cornblatt et al,183 in a proof-of-principle pilot study of eight 

women, were able to show the presence of SFN and its metabolites in 

epithelial/stromal-enriched mammary tissue excised during reduction mammoplasty 

60-90 minutes after a 200 µmol (35 mg) SFN dose of a freeze-dried powder.   Where 
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the pre-dose plasma metabolite concentration was 0.01µM ± 0.02, the post-dose 

dose level was much higher at 0.92µM ± 0.72.  The post-dose level shown here is in 

agreement with the peak plasma SFN concentration shown by Ye et al as 0.943µM ± 

2.27. 

To demonstrate that the metabolites had significantly accumulated in urine at the 

same time as plasma was sampled post-surgery, urinary metabolite concentrations 

were assayed.  The pre-dose metabolite concentration was shown to average 

4.07µM ± 5.22, with the post-dose level much higher at 158.85µM ± 93.89.  The 

accumulation of SFN metabolites in the urinary bladder is considered to provide a 

cytoprotective environment for the prevention of bladder cancer.  The potential for 

SFN as a therapy in the context of bladder cancer prevention is discussed in some 

detail in a recent review paper.628 

Overall, review of the published literature on SFN shows that the doses required for 

Nrf2 induction are lower than those for HDAC inhibition and a number of other 

putative cytoprotective processes.157  When considering the higher dose levels, one 

must consider the potential for toxicity.  Although Shapiro et al.426 showed that SFN 

is safe and generally well-tolerated in humans, a more recent study631 raised the 

question of safety in comparing desirable and potentially toxic cellular effects of SFN 

in Hepa1c1c7 cells.  When comparing increasing intracellular concentrations of SFN 

with curcumin, quercetin and resveratrol on this hepatic cell line, it was found that 

only SFN and curcumin significantly increased NQO1 protein expression and activity 

without triggering G2/M cell arrest or mitotic catastrophe.  Quercetin was found to 

disrupt mitosis at a concentration 100-fold higher than that required to induce NQO1.  

Since quercetin has been a popular dietary supplement over many decades, one 

might question whether this in vitro study is applicable to the in vivo situation.  

Nevertheless, it highlights the need for caution when using doses much higher than it 

is practically possible to obtain from food, especially of isolated compounds 

extracted from their whole plant sources. 

7.2.2 The Dose Employed in the EASYGENEX Study 

Having considered the range of doses used in studies focused separately on Nrf2 

induction and HDAC inhibition, a dose in the higher range but in keeping with other 

studies was selected for the EASYGENEX Study.   Myzak showed in a human study 
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that 68 g of fresh broccoli sprouts yielding 105 mg SFN strongly inhibited HDAC 

activity in PBMCs 3 and 6 hrs following consumption.438  Two dose levels were 

selected, with the highest dose of capsules approximating the SFN Yield of Myzak’s 

68 g of fresh broccoli sprouts.   

The EASYGENEX Study participants were therefore administered 4 capsules (~ 50 

mg daily SFN Yield) in the first week and 8 capsules (~ 101 mg daily SFN Yield) in 

the second week.  The capsules had been produced from whole fresh dried broccoli 

sprouts using the same seed stock used by Myzak et al. as described in Footnote g. 

7.2.3 Ingestion of dried broccoli sprouts from powder vs capsules 

The reaction between GRN and MYR is so rapid that SFN is released in the mouth 

when a SFN-yielding broccoli sprout powder is ingested.  As a result, supplementing 

with such a powder may generate different in vivo responses from supplementing 

with a capsule containing exactly the same quantity of the same powder.  An 

innovative study632 used an in vitro digestion model to compare, among other things, 

the conversion and bioaccessibility of SFN in the mouth, stomach, and small 

intestine.  In minimally-steamed (one minute) broccoli vegetable, approximately 30% 

as much SFN was generated in the mouth as in the stomach and with only around 

23% as much SFN nitrile produced in the mouth. 

The capsules typically used in phytochemical supplements are manufactured from 

vegetable cellulose.  The Size ‘00’ Vcaps selected for the EASYGENEX Study and 

described in 8.2.2 are specified by the manufacturer as disintegrating in no more 

than 30 minutes (NMT < 30 mins).  As a consequence, studies where powder has 

been used are likely to reveal different levels of SFN conversion and absorption from 

those where a capsule is the intervention dose form. 

7.3 THE ROLE OF EXERCISE IN Nrf2 ACTIVATION 

When designing the EASYGENEX Study, the role of exercise as a significant 

contributor to Nrf2 activation had not been considered; in retrospect, it should have 

been listed for exclusion along with dietary factors, particular supplements and 

pharmaceuticals, especially since the participants recruited were young, healthy men 

predominantly from the university’s School of Human Movement and Nutrition 
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Sciences.  As described in Chapter 8, the participants were in the habit of 

undertaking significant regular aerobic and resistance exercise sessions.  When the 

differential gene expression microarray data from baseline to day 7 and day 14 was 

reviewed, the expected induction of the Nrf2 target genes was not detected.  

However, plasma analysis showed that there were significant levels of SFN and its 

metabolites in the samples, confirming that the intervention material did yield SFN in 

situ.  What appeared to be the study’s major response was related to inhibition of 

inflammation-related genes associated with the Nuclear Factor-kappa B (NF-κB) 

network. 

In reviewing what might have led to failure to demonstrate Nrf2 activity, consideration 

should have been given to whether the participants at baseline and throughout the 

study had already optimised their Nrf2 activity in some other way; the effect of 

exercise seemed the most likely possibility 

7.3.1 Known Association Between Exercise and Nrf2 Activation 

When reviewing the literature on the relationship between Nrf2 and exercise, it was 

apparent that although there were limited human data to quantify such a relationship, 

there were, nevertheless many peer-reviewed publications that focused on relevant 

mechanistic aspects.  Aerobic exercise in particular increases respiration which 

results in greater generation of the stressor, superoxide anion.  Since such stressors 

are the signal detected by Keap-1 to release Nrf2, it should not have been surprising 

that these participants at baseline might already have been exhibiting significant 

expression of the Nrf2 target genes.  If Nrf2 had already been maximally activated in 

these young men, the addition of another weak stressor in the form of SFN would not 

have changed the status quo.  Two of the EASYGENEX participants had lower 

exercise output than the average of the study group (but still averaged 30 minutes of 

moderate intensity walking daily).   When considering if they might have displayed a 

different response to SFN, no difference could be demonstrated.  

Although the relationship of exercise to Nrf2 activation has not been extensively 

reported in humans or in animals, a recent review paper633 summarises what is 

known about the effects of acute and regular exercise on Nrf2 activity and 

downstream targets of Nrf2 signalling.  The authors raise the possibility that because 
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some phytochemicals have also been shown to activate Nrf2, there may be 

synergistic effects between exercise training and ingested phytochemicals.  

The authors highlight human studies which showed that the response to exercise 

differed significantly between younger and older individuals, between the trained and 

untrained and between acute bouts of exercise and regular exercise.  In addition, 

even where Nrf2 had been activated, some Nrf2 target genes and their protein 

expression products did not always respond as expected.  Of significance when 

considering the results of the EASYGENEX study, the authors state that there are no 

studies to date that investigate the role of exercise intensity and Nrf2 activation.   

Some of the salient points which emerge from the review by Done et al. are these: a) 

regular exercise in rodent models consistently results in Nrf2 signalling and protein 

abundance across multiple tissues.  b) more active older individuals had significantly 

greater Nrf2 protein and a higher Nrf2/Keap-1 ratio in muscle tissue, suggesting that 

there is the potential to restore Nrf2 signalling in older age. c)  short, intense bouts of 

exercise as in interval training deliver repeated shifts in redox balance, differentially 

affecting the frequency of Nrf2 activation. d) both animal and human studies in this 

area are almost exclusively on males. e) nuclear accumulation of Nrf2 was 

demonstrated only in younger men, showing that ageing is associated with 

impairment to nuclear import of Nrf2. f) Nrf2 mRNA was increased 2 hours after 

acute exercise in middle-aged women who were regular exercisers but not in 

sedentary women who showed no change in Nrf2 or its target genes. g) there may 

be an upper limit to the stimulatory effects of exercise. h) there may be a synergistic 

effect when combining exercise with Nrf2-activating dietary supplements. i) direct-

acting antioxidant vitamin supplements may attenuate the beneficial effects of 

exercise. 

Overall, Nrf2 activation varied with acute vs regular exercise, with age, with fitness 

status and possibly with sex.  What becomes immediately apparent is that there is a 

dearth of research on the role of exercise in Nrf2 signalling.  The ability to quantify 

this effect would contribute greatly to our understanding of how to more effectively 

apply exercise prescriptions. 

In the EASYGENEX Study, wherein the participants were young males, most of 

whom exercised regularly, it may not have been possible to detect differential gene 
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expression across the two one-week trial periods because these young men had 

already achieved maximal Nrf2 activation. Nevertheless, the study did show that a 

range of other genes not associated with Nrf2 activation were differentially-

expressed.  It is likely that gene expression in these networks may have been 

substantially altered by the effect of exercise on other transcription factors and their 

downstream pathways, perhaps limiting the ability to detect the real effect of the SFN 

intervention. 

It is likely that a potential weakness in some other studies may have been uncovered 

and where exercise is not typically considered in the list of exclusion criteria when 

considering the effects of a dietary intervention on Nrf2.  Just one peer-reviewed 

published SFN-based study could be located (also conducted by a Nutrition and 

Exercise Science department) wherein those engaged in vigorous activity for more 

than 6 hours per week were excluded.397 

7.3.2 Immune-related Effects of Exercise. 

Brief bouts of exercise are widely-known to lead to robust increase in circulating 

PBMCs in humans634 but it is not known whether this might impact on the 

simultaneous effect of SFN.  An acute bout of exercise can cause tissue injury and 

the release of both pro- and anti-inflammatory cytokines, whereas regular physical 

activity seems to promote an anti-inflammatory environment in the body, attenuating 

the inflammatory effect.635  T-lymphocytes are sometimes grouped as T helper-1 

(Th1) cells or T helper-2 (Th2) cells; Th1 cells are primarily pro-inflammatory in their 

actions whilst Th2 cells are anti-inflammatory.  This is significant in the context of the 

EASYGENEX Study because the Th1-Th2 balance is largely determined by NF-κB 

activity which was shown to be significantly downregulated by SFN. Clinically, this 

may also be relevant in that Th1-dominated responses are involved in the 

pathogenesis of organ-specific autoimmune disorders but in contrast, allergen-

specific Th2 responses are responsible for atopic disorders in genetically susceptible 

individuals.636 

The effect of exercise is also affected by sex and pubertal phase.  A study637 

investigating the effect of brief bouts of exercise on young, healthy individuals 

showed that the genes commonly regulated by exercise in all tested groups are 

related to growth, apoptosis, inflammation and tissue repair.  Using the same 
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Affymetrix U133 + 2.0 arrays for gene expression that was selected for the 

EASYGENEX Study, the group identified 894 genes significantly altered by exercise 

in PBMCs.  They also noted distinct gene alterations likely to affect monocytes in an 

anti-inflammatory, anti-atherogenic pathway, including downregulation of TNF-α and 

TLR4.  SFN is also known to downregulate TLR4, an effect in common with that of 

exercise and discussed further in Chapter 8.638 

7.4 NF-κB INFLAMMATION-RELATED PATHWAYS 

Of the exercise-related studies, there is extensive reference to the mechanistic 

relationship of exercise to inflammation and as such to the transcription factor, NF-

κB.   In relation to its observed anti-inflammatory activity, SFN has been shown to 

modulate the activity of the transcription factor NF-κB, well-known for its role in the 

immune system.  Whereas SFN directly activates cytosolic Nrf2, its action on NF-κB 

is to inhibit NF-κB binding to the DNA.639  Such anti-inflammatory mechanisms are 

suggested to contribute to SFN-mediated cancer chemoprevention.  Since the 

EASYGENEX Study detailed in Chapter 8 highlights the effect of SFN on 

downregulating in the NF-κB network, the next section describes relationships and 

pathways that may be relevant to the study’s findings. 

7.4.1 Regulation of NF-κB     

Members of the NF-κB family of transcription factors function as dominant regulators 

of inducible gene expression in virtually all cell types in response to a broad range of 

stimuli, with particularly important roles in coordinating both innate and adaptive 

immunity.640  NF-κB is controlled by various mechanisms of post-translational 

modification and subcellular compartmentalisation as well as by interactions with 

other cofactors or corepressors.641  The NF-κB family of transcription factors includes 

RelA (p65), RELB and others and as a complex, NF-κB mediates immune responses 

to cellular challenges that include bacterial and viral infection and inflammation.188  

These transcription factors play critical roles in both adaptive and innate immunity, 

inflammatory responses, cell differentiation, proliferation and apoptosis.  The 

EASYGENEX Study identified RELB as one of the significantly downregulated genes 

in the NF-κB network.  The activity of NF-kB is tightly regulated at multiple levels, a 

factor that may be associated with its influence on the expression of numerous 
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genes.642  Nuclear translocation of NF-κB is primarily controlled by signalling 

associated with IkB kinase (IKK) in two related pathways associated respectively 

with the NF-κB classical (canonical) and alternative pathways. 

Among the most potent NF-κB activators are tumour necrosis factor (TNF-α), 

interleukin (IL)-1β and bacterial lipopolysaccharide (LPS), with TNF-α activation 

being one of the best-characterised of the NF-κB signalling pathways.643  

Furthermore, several cross-talk relationships associated with NF-κB have been 

identified and three clinically-relevant relationships are described below. 

7.4.2 Cross-talk Between Nrf2 and NF-κB.   

Given that SFN is associated with cellular defences via the essentially opposing 

mechanisms of Nrf2 and NF-κB, it is not unexpected that molecular cross-talk 

between these transcription factors has been reported.188  Imbalance between Nrf2 

and NF-κB is associated with a significant number of diseases across various body 

systems and these relationships are the subject of extensive research in cancer 

biology.644   

Although the complex interplay between Nrf2 and NF-κB has been highlighted, there 

remains much to be explored in order to understand how such relationships may 

impact on disease pathophysiology at the molecular level.  As part of the cross-talk 

between these two transcription factors, NF-κB has been shown to regulate Nrf2-

mediated ARE expression.  Several mechanisms exist by which p65 (the canonical 

NF-κB subunit) can exert negative effects on ARE-linked gene expression.645  It 

would seem that the cross-talk between Nrf2 and NF-κB enables cells to more finely 

regulate their responses to cellular stressors. 

7.4.3 Cross-talk Between NF-κB and CEBPB 

CCAAT-enhancer-binding proteins (C/EBPs) are activated by a high-fat diet or a diet 

especially when high in the fatty acid palmitic acid.  C/EBPβ governs a network of 

genes crucial for dietary-driven inflammatory activity and insulin resistance.646  

C/EBPβ overexpression induces NF-κB DNA binding, JNK activation and pro-

inflammatory cytokine expression but when C/EBPβ expression is downregulated, 

(as in murine C/EBPβ -/- knockdown), palmitic acid-induced inflammation was 
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inhibited.  C/EBPβ is known to be central to the pathogenesis of several 

inflammatory and metabolic disorders.646  The two families of transcription factor, 

NF-κB and C/EBPβ have been considered as a complex that may act 

synergistically.647  More recently, C/EBPβ overexpression has been shown to 

promote cardiomyocyte hypertrophy and that C/EBPβ knockdown protects these 

cells from hypertrophy via inhibition of NF-κB transcriptional activity.648   

7.4.4 Cross-talk Between NF-κB and Phase 1 Detoxification. 

Other forms of molecular cross-talk have been investigated with the NF-κB RELB 

subunit closely interacting with the Acyl hydrocarbon receptor (AhR).  Numerous 

exogenous compounds have been shown to bind to activate the AhR.649  The 

ArH/Rel B dimer can bind to DNA response elements as well as NF-κB.  RELB has 

been implicated in breast cancer and is also a critical factor in the function and 

differentiation of dendritic cells.  Furthermore, AhR can regulate the generation of 

regulator T cells (Treg) or pro-inflammatory T cells, positioning it as a key factor in the 

immune system.649   

The AhR plays a key role in the cellular defence mechanisms in that it regulates a 

number of the CYP450 genes, particular CYP1A1, CYP1B1 and CYP1A2 which 

respectively encode the Cytochrome P450 enzymes 1A1, 1B1 and 1A2.  Many 

substrates for CYP1 enzymes are AhR ligands.650  These reactions occur not only in 

Phase 1 detoxification of environmental toxicants but also in the metabolism of 

endogenous compounds such as steroid hormones.651  The product of the Phase 1 

reaction may be a compound with greater carcinogenicity than the initial CYP450 

substrate.  Many of the enzymes active in the subsequent Phase 2 detoxification 

reactions are products of Nrf2 target genes, such as NQO1, GST and UDP-

glucuronosyl transferase (UGT), linking Nrf2, NF-κB and the AhR in the initial stages 

of detoxification.531   

7.4.5 NF-κB and clinical implications of dysregulation 

As the relationship between NF-κB and AhR has been only recently known, there is 

as yet, little data to support the relationship. Several observations by Vogel et al 

(2009) suggest that RELB contributes to cancer cell survival and tends to be 

overexpressed in the inflammatory breast cancer phenotype, the form with highest 
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metastatic potential.  Perhaps surprisingly, the AhR binds to the NF-κB consensus 

site, suggesting that the AhR may affect the canonical NF-κB pathway.  This 

suggests that the AhR may function not only on AhR signalling but also NF-κB 

signalling that is activated by classical NF-κB inducers such as LPS.649  In addition, 

RELB has been shown, by inducing manganese superoxide dismutase (MnSOD) to 

act as a major cancer cell survival factor by conferring radiation resistance and by 

inhibiting cancer cell apoptosis.652   

7.5 MICROARRAY vs RT-qPCR PLATFORMS IN STUDYING GENE 

EXPRESSION 

Any study investigating gene expression must select the most appropriate platform 

on which to do so.  When it had been initially planned to use SFN to investigate 

differential gene expression in type 2 diabetes, the RT-qPCR platform was chosen 

as it is considered most accurate when expression of a relatively small number of 

specific process-related genes is under investigation.  This technique is generally 

considered the ‘gold standard’ in precision when quantifying gene expression.653  

The plan had been to use probes associated with around 40 Nrf2-target genes, 

including those coding for antioxidant/detoxification enzymes, non-enzymic 

glutathione and inflammation biomarkers because their roles in the redox imbalance 

associated with glucose dysregulation has been well-documented.  Given what may 

now be presumed to be the effect of exercise in the EASYGENEX Study, it is 

fortuitous that this platform was not adopted, as none of the Nrf2-target genes was 

differentially-expressed by the SFN intervention. 

Instead, an oligonucleotide microarray platform, the Affymetrix HG U133 plus 2.0 

Genechip was selected to enable investigation of a large number of human genes. 

The manufacturerh describes this chip as “a single array representing14,500 well-

characterised human genes that can be used to explore human biology and   

disease processes.”  Although microarrays permit the simultaneous investigation of a 

very large number of genes, they lack the precision of RT-qPCR.  Microarray is a 

multi-stage process in which the accuracy of each step may influence the gene 

expression estimates.654  The weakness of microarrays is generally considered to be 

                                            
h www.affymetrix.com/support/technical/datasheets/human_datasheet.pdf  

http://www.affymetrix.com/support/technical/datasheets/human_datasheet.pdf
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their low accuracy, precision and specificity655 and have been criticised as a method 

that fails to identify clinically-relevant information.654     

Their usefulness in the EASYGENEX Study lay in the ability to identify genes and 

pathways which may not have been expected.  In Chapter 8, the steps needed to 

enhance the signal-to-noise ratio are described as a way of providing more 

meaningful data.  Having identified that the genes expressed in the EASYGENEX 

Study were primarily related to the NF-κB network, a further study might utilise RT-

qPCR as the platform to focus on the role of SFN in attenuating inflammation in 

human cells. 
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CHAPTER 8 

Effect of a Sulforaphane-Yielding supplement on Gene Expression in 

Healthy Young Exercising Men; a Microarray Analysis 

(THE EASYGENEX STUDY) 

8.0 Abstract 

The broccoli-derived phytochemical, sulforaphane (SFN) has been extensively 

studied for its beneficial effects on human health, exerting many of its known effects 

by activation of the transcription factor, Nrf2.  Its additional Nrf2-independent effects 

are of increasing interest. A primary aim of this study was to investigate SFN gene 

expression using two SFN dose levels with the expectation that Nrf2-dependent 

genes would express at the lower dose and that Nrf2-independent genes would also 

express at the higher dose.  SFN is metabolised extensively by the gut microflora 

with GSTP1 genotypic differences largely determining the nature and extent of the 

metabolites produced.  A further aim of this study was to investigate the effects of 

the two doses of a broccoli sprout-containing supplement on plasma SFN and its 

mercapturic acid metabolites and to determine if the responses in plasma SFN and 

metabolites vary between participants with different GSTP1 genotypes. An open-

label dose-escalation study was conducted with 21 young, healthy, physically-active 

men.  Plasma was collected before and after consuming encapsulated whole 

broccoli sprout supplements over two 7-day continuous periods (53 g SFN/day 

during week 1 and then 106 g SFN/day in week 2). Genotypes were identified from 

buccal swab samples. Liquid chromatography with tandem mass spectrometry was 

used to measure plasma SFN and its metabolites. Gene expression analysis was 

conducted using Ingenuity Pathway Analysis on PBMCs using a microarray platform. 

The presence of significant levels of plasma SFN and its metabolites confirmed that 

SFN had been generated in situ by ingestion of the broccoli sprout capsules, with 

SFN reaching 0.08 μM in those carrying the wild-type genotype and 0.02 μM in those 

with polymorphisms for GSTP1. The SFN-NAC metabolites reached 0.03 μM in wild-

type GSTP1 genotypes and 0.06 μM in those with polymorphisms.  Over the 14-day 

supplementation period there was a significant downregulation of the NF-kB network. 

There were 10 upregulated and 26 downregulated genes, 8 of which have not 
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previously been associated with SFN (DDC, ACSM2A, HERC6, PDIA4, ZBTB2, 

IGF2B2, DDX3X and GK5).  All 36 differentially-expressed genes can be broadly 

grouped into 6 overlapping categories related to their cellular functions; immune 

modulation (anti-inflammatory), metabolism (adipogenesis, glucose metabolism, 

insulin sensitivity), neurotransmitter synthesis, cytoprotection, cardioprotection and 

redox modulation.  

This study provides evidence that whole MYR-active broccoli sprout capsules yield 

significant SFN and that in the study population, the intervention resulted in 

significant differential expression of Nrf2-independent genes only.  

8.1 Introduction 

Epidemiologically, cruciferous vegetable consumption is associated with reduced 

cancer risk,180 whilst vegetables in general are associated with chronic disease 

prevention.656  In the last 25 years, interest in the chemopreventive properties of 

broccoli-derived SFN has grown significantly, such that it has been employed as the 

intervention compound in a number of human clinical trials.  The range of disease 

processes targeted in these clinical trials is diverse, providing evidence that the 

application of bioavailable SFN is potentially much broader than chemoprevention; 

the nature of these studies and the range of forms and doses employed were 

discussed in Chapter 7. 

When reviewing the available clinical trials utilising different forms of SFN 

intervention, it is clear that some of these may not be appropriate for practical daily 

dosing, even though studies using fresh sprouts and their homogenates or powdered 

forms have demonstrated significant clinical responses.  One of the goals in 

designing the current study was to gain greater insight into SFN’s dose-response in 

healthy individuals ingesting an encapsulated SFN-yielding dietary supplement.  In 

working with nutraceuticals and functional foods as interventions, one must be 

mindful that the techniques being utilised are largely designed for pharmaceuticals 

rather than for foods and that there are important differences that are not easy to 

separate and appropriately quantify.657 

What is emerging is that diseases known to be underpinned by redox imbalance and 

uncontrolled inflammation are proving to be more responsive to amplification of 
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cellular defences via Nrf2 activation than to administration of direct-acting antioxidant 

supplements.154,35   Cellular Nrf2 levels are under strict control by multiple 

mechanisms, the best-characterised of which is mediated as described in Chapter 4 

by interaction with Kelch-like ECH-associated protein 1 (Keap-1).188 

The greater focus of SFN research has been on its nutrigenomic role as a potent 

activator of the transcription factor Nrf2 (coded by the gene NF-E2-related factor 2), 

even though it is known to participate in other cellular processes.157  Where many 

studies have focused on plasma disease biomarkers and clinical disease outcomes, 

others employ gene expression platforms as a means of discovering more about 

mechanistic aspects of Nrf2 activation and its downstream targets as well as to 

search for novel processes and molecular pathways. 

Nrf2 and its target genes can be activated at the lower end of the SFN dose 

continuum631 but other effects such as HDAC inhibition are thought to require higher 

intracellular concentrations; the SFN concentration reported in in vitro HDAC 

studies39,412,435 is typically 15μM but there is limited information on how this might 

compare with oral doses required in human populations.658  Similarly, the doses 

required to modulate inflammation via NF-kB are poorly-defined.  A PubMed search 

on the grouped terms ‘sulforaphane’ and ‘NF-kappa B’, at time of writing returned 

more than 80 publications but when the limit, ‘clinical trial’ is applied, there are none. 

Further confounding the ability to quantify a dose-response relationship, it has been 

long known that polymorphisms in genes of the GST families of Phase 2 

detoxification enzymes modulate SFN metabolism in vivo but the effect appears to 

be inconsistent.659,660  The primary route of in vivo metabolism of SFN and other 

ITCs is by the mercapturic acid pathway, a major pathway for elimination of many 

xenobiotics, ultimately via the urine.661  Of the three major human GST families, 

cytosolic GSTs form the largest of the seven classes.662   The most efficient GST 

isozyme catalysts of ITC metabolism are GSTM1-1 and GSTP1-1.663   

Polymorphisms of GSTP1 are common but are not distributed equally by ethnicity.  

In a study664 reviewing GSTP1 polymorphisms across population groups, the wild-

type GSTP1 (Ile/Ile) was represented in 47% of Europeans, 61% of Asians and 50% 

of Indians.  Additionally, the GSTP1 heterozygote (Ile/Val) was carried by 43%, 34% 
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and 44% of these ethnic groups respectively, with the homozygote (Val/Val) carried 

by just 10%, 5% and 6% of the same groups. 

Human GSTP1 enzyme catalyses thioether conjugation of reduced glutathione 

(GSH) with potentially toxic electrophile reactive intermediates, acting as a 

detoxifying enzyme.665  A key enzyme in the Phase 2 detoxification pathways, the 

GSTP1 enzyme selectively detoxifies the toxic epoxide of benzo(a)pyrene, a highly 

carcinogenic metabolite of polycyclic aromatic hydrocarbon (PAH).  The role of the 

GST in its various forms plays a key role in protecting cells from a wide range of 

endogenous and exogenous potentially toxic chemical entities.664 

This fact highlights an important aspect of the GSTP1 gene and its enzymatic 

product in human health.666  Furthermore, it is overexpressed in tumours following 

chemotherapy and has been associated with poor prognosis in breast cancer.  A 

recent study identified a novel regulatory function of GSTP1 in which it modulates 

Estrogen Receptor-alpha (ERα) signalling events in a non-enzymatic manner, 

thereby closely associating it with estrogen-dependent cancers such as breast, 

uterine and prostate cancer.667 

As discussed in some detail in Chapter 5, SFN has been identified as a molecule 

with potential as an effective chemopreventive for bladder cancer by multiple 

mechanisms including its ability to induce genes of the GST family, even though not 

all studies agree on whether GST polymorphisms are generally cytoprotective.   

In a 2011 study considering bladder cancer susceptibility in relation to GST 

polymorphisms, it was shown that patients carrying the GSTP1 homozygous 

genotype were at increased risk for developing high-grade and muscle invasive 

bladder cancer.668  Another meta-analysis two years later confirmed this by 

concluding that the presence of the homozygous GSTP1 polymorphism is a strong 

predisposing risk factor for bladder cancer.669  Contrary to these findings, a more 

recent 2016 meta-analysis showed no association between GSTP1 polymorphisms 

and bladder cancer susceptibility.670   

SFN’s effects are pleiotropic such that it is not known to what extent GSTP1 

contributes to its observed chemopreventive effects. Interestingly and in support of 

SFN’s chemopreventive potential, a very recent 2017 review article suggested that, 
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based on available evidence from epidemiological, in vitro, preclinical, and early 

phase trials, phytochemicals such as ITCs and specifically SFN, represent a 

promising potential chemopreventive agent in bladder cancer.628   

Clearly, many factors are involved and to further confound opportunities to draw any 

definitive conclusions, it has been suggested that genotypes associated with more 

favourable handling of carcinogens may be associated with less favourable handling 

of phytochemicals.659 

Knowing that SFN is a substrate for the gut microflora which produce SFN 

mercapturic acid metabolites, a further aim was to determine if the responses in 

plasma SFN and metabolites vary between participants with different GSTP1 

genotypes.  Usually considered as a key Phase 2 detoxification enzyme, GSTP1 

codes for the glutathione-S-transferase enzyme, known also to be pivotal to SFN 

conjugation.   

It was anticipated that the findings might be clinically-relevant in that individuals 

known to carry GSTP1 polymorphisms could expect a higher levels of plasma SFN 

and its metabolites in response to SFN supplement from those expressing the wild-

type GSTP1 gene.   

Whether or not regular consumption of broccoli vegetable as the primary dietary 

source of SFN is sufficient to achieve the higher doses indicated by in vitro studies 

and preliminary clinical trials continues to be a key research consideration.384,671,672  

Broccoli sprouts as a more concentrated source of broccoli bioactives are commonly 

the intervention material in this context.  The EASYGENEX Study selected a SFN-

yielding broccoli sprout capsule as its intervention; a detailed rationale for the 

selected form and dosage is discussed in Chapter 7.   

Chapter 7 also describes the way in which SFN has been shown to exhibit anti-

inflammatory effects which are at least in part due to its ability to modulate the 

activity of the transcription factor NF-kB, well-known for its role in immune function.  

Unlike its direct activation of Nrf2, SFN has no direct effect on release of NF-kB from 

its complex with the IκB kinase enzyme (IKK) but instead acts to inhibit the binding of 

NF-kB to the DNA.639 
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Microarray techniques provide an avenue to investigate gene expression and in 

some cases, to discover hitherto unknown target genes and their related pathways.  

This study therefore utilised a microarray platform as its means of investigating the 

effects of SFN on gene expression in young, healthy men.   

8.1.1 The Aims of the EASYGENEX Study 

The primary aim of this dose-escalation study was to investigate two doses of SFN 

on gene expression, with the second dose double that of the first.  A further aim was 

to determine if the responses in plasma SFN and metabolites vary between 

participants with different GSTP1 genotypes.  As detailed in Chapter 7, the higher 

dose has been used in other studies utilising broccoli sprout forms other than orally-

ingestible capsules.  Since other studies have shown that SFN induces expression of 

Nrf2-dependent target genes, it was expected that this would similarly occur in the 

EASYGENEX Study.   

Furthermore, there was the expectation that Nrf2-independent genes would also be 

expressed at the higher dose and that the higher dose would reveal different and 

more quantitatively significant effects. The study’s hypothesis extended to 

consideration that genes associated with HDAC inhibition and inflammation might be 

negatively expressed. SFN is also known to be associated with other processes like 

cell cycle regulation, apoptosis, angiogenesis, metastasis and microtubule 

disruption673 and so it was considered that the expression of these genes might be 

modulated by the intervention. 

8.2 MATERIALS AND METHODS 

8.2.1 Study Design 

The study was an open-label dose-escalation clinical trial conducted in accordance 

with the ethical guidelines laid down by the Declaration of Helsinki, 1975 and 

approved by the Ethics Committee of the University of Queensland (Clearance 

Number: 2013000222).   

Healthy, non-medicated, young adult men with BMI in the normal range and of 

average age 25 ± 4 years were recruited by advertisement from the university 

campus and neighbouring areas.  Prospective participants were excluded if they 
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were female, aged under 18 or over 35, a smoker or regularly took dietary 

supplements considered to potentially interfere with the treatment.  This intervention 

study was conducted over the period from 14th September, 2016 to 7th October, 2016 

in two 7-day blocks with the intervention for the second week at double the dosage 

administered in the first week.  Following a 3-day washout period during which 

cruciferous vegetables, other known Nrf2 activators and redox-modulating foods and 

supplements were excluded from the diet, participants attended the university 

laboratory in the fasted state for collection of baseline anthropometric data, blood 

and buccal swab sampling; questionnaires were used to collect details of each 

participant’s usual dietary intake and physical activity.  Items for the Active Australia 

Survey were used to quantify physical activity in METmins This self-report approach 

has been shown to be valid.674 Details appear with Table 8.1 which also lists 

participant anthropometric data, participant ethnicity and GSTP1 genotype. 

Participants were given a 14-day diary in which to record daily details of diet and 

sleep as well as any adverse effects.  Each participant was given sufficient capsules 

for the following 7 days with instructions that these be taken as two capsules in the 

morning and two capsules in the evening (a total of 28 capsules).  The dietary and 

other exclusions undertaken during the 3-day washout period were to be continued 

throughout the 14-day intervention period.  Participants returned in the fasted state 

on the 7th day for blood sample collection and to return any unused capsules. 

Sufficient capsules to cover Day 7 to Day 14 with instructions to take 4 capsules 

night and morning were provided (a total of 56 capsules).  On Day 14, the final 

fasting blood sample was taken.  Any remaining capsules were collected and 

counted for the Day 7 and Day 14 visits respectively.  On Day 14, participants were 

asked to provide feedback on the treatment, including any adverse or other effects 

experienced.  Adherence to the protocol was assessed through interview and by 

counting the number of capsules returned at the end of the study. 

8.2.2 The Intervention Material 

The broccoli sprout powder used to make the capsules was supplied by Cell-Logic 

Pty Ltd (Queensland, Australia).  The sprouts had been grown, dried and milled to a 

fine powder, suitable for encapsulation.  The material (Batch EUCAPE 00080573) 

was assayed by Eurofins Supplement Analysis Center, 1365 Redwood Way, 
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Petaluma CA. 94954, USA to contain 3.77 ± 0.52% GRN and to yield 1.89 ± 0.30 % 

SFN per gram.  The SFN assay was specified to be performed without the addition 

of an exogenous source of MYR, so that the SFN Yield is determined only on the 

basis of the endogenous presence of both glucoraphanin (GRN) and MYR.  The 

powder was stored in a sealed foil bag in a dark, low-temperature, low-humidity 

environment.  Size ‘00’ vegetable capsules purchased from CapsuGel® in Sydney 

Australia were used to produce the study capsules, using the Cap-M-Quik hand-

filling device. (Cap-M-Quik.com. 40950 Bouvier Court, Murrieta, CA 92562).  Each 

capsule contained on average 700 ± 11 mg of broccoli sprout powder.  By 

calculation, each capsule contained 26.4 mg GRN and would yield 13.2 mg SFN.  

Assuming full conversion of GRN to SFN, participants in Week 1 of the study 

ingested 52.8 mg SFN daily and in Week 2, ingested 105.6 mg SFN daily. 

8.2.3 Sample Collection  

Blood samples from 21 apparently healthy human donors were obtained after 

informed consent was given.   Blood used for RNA extraction was collected in 

PAXgene (Qiagen) tubes and frozen at −80°C after a 2 h incubation at room 

temperature.  Serum and plasma samples were obtained after centrifugation of blood 

collected in vacutainer tubes (with and without EDTA).   

8.2.4 Plasma Extraction for Metabolite Analysis 

Plasma was first defrosted and 200µL transferred to a 1.5mL micro centrifuge tube. 

To this, 50µl of the internal standard solution (sulforaphane-d8 in methanol) was 

added followed by vortex mixing. To this solution, trifluoracetic acid (50µL) (TFA) 

was added to precipitate plasma proteins in the sample followed by brief vortex 

mixing and centrifugation at 11,600 x g for 10 min. 100µL of the resulting 

supernatant was removed and 10µL injected for analysis. Throughout the extraction 

process, samples were kept at 4°C. 

8.2.5 SFN Metabolite Assay Using LC–MS–MS  

An assay of plasma SFN and its metabolites was undertaken to establish the 

absorption and subsequent metabolism of the intervention material to its major 

metabolites and the difference in these concentrations at two dose levels.   
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Chromatographic separation was carried out on an Agilent 1260 Infinity HPLC 

system (Agilent Technologies, CA, USA) using a Kinetex 5µm C18, 250 x 4.6mm 

with an AQ C18 4 x 3mm Security Guard cartridge, all purchased from Phenomenex, 

Unit 35, 2-6 Chaplin Drive, Lane Cove West, NSW, 2066 Australia. The mobile 

phase consisted of solution A: distilled water with 0.1% formic acid, and solution B: 

75% acetonitrile, 25% methanol and 0.1% formic acid run with a gradient with a flow 

rate of 1mL/min. Starting with 10% solution B and increasing to 50% over the first 6 

minutes. This flow was held for 2 minutes before increasing to 90% solution B at 10 

minutes and holding for 2 minutes. The flow was returned to 10% solution B by the 

end of the run at 13 minutes. The column temperature was maintained at 30°C and 

the analytes were quantified with an Agilent 6460 triple quad mass spectrometer with 

transitions as follows: sulforaphane 179.2→115.2; sulforaphane-d8 187.2→123.2; 

sulforaphane NAC 342.0→179.0; sulforaphane glutathione 487.0→136.0; 

sulforaphane-cysteine 301.0→136.0. This method is based on and modified from a 

previously-published SFN method675 and an Agilent protocol for curcumin extraction 

and analysis.i      

8.2.6 RNA Extraction 

RNA was isolated from whole blood collected in PAXgene tubes using the 

PreAnalytiX PAXgene blood RNA kit (Qiagen) according to the manufacturer’s 

instructions. RNA was eluted in RNase-free water.  RNA quality was determined by 

spectrophotometry and by using the RNA 6000 NanoChip kit on an Agilent 2100 

Bioanalyzer (Agilent Technologies). RNA passing quality control criteria were used 

for further analysis.  Samples were shipped on dry ice to the Ramaciotti Centre for 

Genomics (The University of New South Wales) for microarray analysis. 

8.2.7 Reverse Transcription 

Reverse transcription reactions were performed using the AffinityScript QPCR cDNA 

Synthesis kit from Agilent Technologies and following the manufacturer’s 

instructions. 

                                            
i  Obtained from Agilent and accessed 18th May, 2017. 
https://www.agilent.com/cs/library/applications/5991-3340EN.pdf  

https://www.agilent.com/cs/library/applications/5991-3340EN.pdf
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8.2.8 Microarray Procedures   

Microarray analysis was performed in the Ramaciotti Centre for Genomics (The 

University of New South Wales) using the Affymetrix Human Genome U219 Array 

Plate.  Microarray data were analysed for each of the 3 times points of the study 

(Day 0, Day 7 and Day 14) using R (v3.4.0) (R Development Core Team 2005) and 

Bioconductor.676 The ‘.CEL’ data file was imported using the ‘affy’ package 

(v1.54.0).677  Custom microarray probe set definition (v21), updated according to the 

latest genome sequence and gene annotations, were used to map each probe to its 

corresponding gene.678  The data were normalised using the Robust Multi-array 

Average (RMA) function679 from the affy package. The quality of the normalised data 

were assessed using the ‘arrayQualityMetrics’ package (v3.32.0)680 and any outliers 

identified were excluded from subsequent analyses. Three samples were identified 

as outliers based on the gene expression distances between microarrays; these 

samples include participant 6 day 7, participant 5 day 14, and participant 20 day 0. 

Principal component analysis was performed using the ‘arrayQualityMetrics’ package 

and the ‘mixOmics’ package.681  The heat map was drawn using the ‘iheatmapr’ 

package (https://github.com/AliciaSchep/iheatmapr).  Information regarding the 

repeated measure of the subjects across the three time points was included as 

factors in all differential gene expression and unwanted variation analyses. 

Unwanted variations from the microarray data were identified using the remove 

unwanted variation (ruv) package (v0.9.6).682 Unwanted variations were identified 

from a set of negative control genes for which expression is not known to change 

with respect to the biological factor of interest.683  In this study, negative control 

genes were identified empirically from a preliminary analysis of significantly 

differentially-expressed genes, using the ‘limma’ package (v3.32.2).684  The 1,402 

empirical negative control genes consisted of those commonly found among the 30% 

least significant genes from all pairwise time points comparisons (day 0 – 7, day 7 – 

14, and day 0 – 14).  The 1,402 empirical negative control genes consisted of those 

commonly found among the 30% least significant genes from all pairwise time points 

comparisons (day 0 – 7, day 7 – 14, and day 0 – 14).  

The optimum number of unwanted factors was identified using the ‘getk’ function; 

there were 13 for unwanted factors for day 0 – 7 and 14 unwanted factors for both 

https://github.com/AliciaSchep/iheatmapr
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day 7 – 14 and day 0 – 14. The ‘ruv4’ function was used to identify the top 14 

unwanted factors. The unwanted factors were removed using the linear model during 

a subsequent ‘limma’ analysis and significantly differentially-expressed genes were 

identified for each pair of time. The log fold-change in gene expression was 

calculated as the difference between the latest date and the earliest date. The p-

values were adjusted using the Benjamini-Hochberg procedure and a gene was 

deemed significantly differentially-expressed if the adjusted p-value was < 0.05.  

Two samples from participants who reported being unwell between Day 0 and Day 7, 

participants #21 and #23, were suspected of having a viral infection since they 

showed an increased expression of genes involved in response to viral infection. 

Since removing these two samples would have decreased the number of 

significantly differentially-expressed genes across all time points, it was decided to 

focus the analyses on the comparison of day 0 versus day 14.  

8.2.9 Ingenuity Pathway Analysis (IPA)  

Significantly differentially-expressed genes were analysed using the IPA software 

(Ingenuity Systems Inc., Redwood City, CA). IPA was used to identify enriched 

canonical pathways and to identify significantly differentially-expressed genes in the 

context of the IPA Global Molecular Network. All 17,684 genes defined by the 

custom CDF file were used as the background gene set for the analysis of enriched 

canonical pathways.  

8.2.10 Buccal Swab Collection and Analysis 

Sample collection kits for analysis of polymorphisms of genes associated with 

cellular redox and cytokines were purchased from Fitgenes Pty Ltd who supplied the 

Isohelix T-Swabs manufactured by Cell Projects Limited.   

Samples collected using these kits were analysed by DNAiQ Genetic Testing 

Laboratories, using the following procedure. For DNA extraction & quality control, 

Genomic DNA from buccal swabs was extracted and purified using a paramagnetic 

particle automated method according to the manufacturer’s instructions (Maxwell 16 

instrument and AS1020 DNA purification kit, Promega). The DNA concentration and 

260/280 absorbance quality ratio for all samples extracted was determined using 
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spectrophotometry according to the manufacturer’s instructions (Nanodrop One 

instrument, Thermofisher). Samples with DNA concentration >=35 ng/μL and purity 

>=1.7 were used in the study. DNA was either diluted with RT-PCR grade water or 

evaporated to obtain a final concentration in the range of 50ng/μL. DNA was stored 

at -20C until use.    

For real-time PCR, genotyping from purified DNA was determined using a real-time 

PCR and fluorescence detection method according to the manufacturer’s instructions 

(QuantStudio 12k instrument Life Technologies). Each SNP was targeted using 

TaqMan SNP genotyping assay probes (ThermoFisher Scientific) in an OpenArray 

Genotyping plate format (Life Technologies). Standard cycling conditions were 

configured for SNP genotyping assays on an OpenArray Genotyping format 

according to the manufacturer’s instructions (QuantStudio 12k instrument Life 

Technologies). 

8.2.11 Data Analysis 

Analysis of the microarray data has been included in each relevant section above. 

The plasma SFN and metabolite concentration data were first checked for normality 

using the Shapiro-Wilk test. If data were not normally distributed, they were log-

transformed and rechecked. SFN data were normally distributed. The metabolite 

data were normally distributed after log transformation. A 2-way (group*time) 

repeated measures multivariate analysis was used to assess main effects (group 

and time) and any interaction. Statistical analysis was done with SPSS (version 24) 

                                                                                                                                                                                                        

8.3 RESULTS 

8.3.1 Study Flow, Adherence and Supplement Tolerance 

A total of 23 men gave written consent and were enrolled in the study. Figure 8.1 

shows the flow of participants through the study, in which three were subsequently 

withdrawn, two were unqualified (Participants #3 and #4) by not meeting the age 

criterion of 18 years and the other (Participant # 1) dropping out after 7 days, citing 

abdominal discomfort due to the supplement as the reason.   
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Figure 8.1 EASYGENEX Study Flow Chart 
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Most participants took capsules as instructed; however, there were exceptions; 

participants # 6, 9 and 25 each missed one dose, with #9 missing the last evening 

dose before the end of the study. Nevertheless, over the two 7-day periods, the 

overall amount ingested approximated the specified dosages, with the exception that 

the timing of the missed dose by #9 may have affected his final plasma metabolite 

level.   

Furthermore, participant # 18 exercised at the gym before attending for his 7-day 

blood sample collection and failed to fast for the second blood test.  Four participants 

reported that the capsules caused bloating, one reported that this eased in the 

second week and one reported nausea if the capsules were taken on an empty 

stomach.  Reported adherence with dietary exclusions appeared to be very good 

apart from one participant who reported a single occasion during which he 

consumed mustard, a food from the ‘excluded foods’ list.  However, plasma SFN 

data as described later in 8.6 indicated that actual adherence appeared to be 

different from reported adherence. 

From the Outlier Detection for Distances between Arrays (Table 8.2), 3 outlier 

samples were identified, these were participant 20 in day 0, participant 6 in day 7, 

and participant 5 in day 14.  Outlier samples were not included in the analyses of 

significantly differentially expressed genes. Table 8.3 classifies all participants as to 

their inclusion or exclusion from the final datasets analysed. 

8.3.2 Participant Characteristics  

Baseline data was collected for each participant with the demographic characteristics 

of the 20 men shown in Table 8.1.  The results of the genotyping analysis for GST 

polymorphisms is also recorded in Table 8.1. 
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Table 8.1.  Individual Participant Characteristics 

Anthropometric data, average physical activity output and GSTP1 genotype. 

Participant 
# 

Age 
(years) 

Height 
(m) 

Weight 
(kg) 

BMI Ethnicity 

Average 
Daily 

Exercise 
Physical 
Activity 

(METMins) a 

GSTP1 Genotype 

 

Wild-type (Normal)  
+313AA 

Homozygous Variant 
+313 GG  

Heterozygous Variant 
+313 A>G (Ile105V) 

1 25 1.72 73 24.7 Caucasian N/A N/A 

2 24 1.81 74.5 22.7 Asian 407  

3 17 
     

N/A 

4 17 
     

N/A 

5 30 1.78 78 24.6 Caucasian 1067 
 

6 20 1.81 88 26.9 Caucasian 467 
 

7 28 1.7 73 25.3 Asian 270 
 

8 20 1.8 95 29.3 Asian 643 
 

9 20 1.77 65 20.7 Caucasian 259 
 

10 31 1.7 74.8 25.9 Caucasian 150 
 

11 25 1.74 77 25.4 Caucasian 285 
 

12 28 1.67 72 25.8 Asian 764 
 

13 20 1.75 51 16.7 Asian 433 
 

14 23 1.7 70 24.2 Asian 120 
 

15 23 1.69 69 24.2 Asian N/A 
 

16 25 1.78 73 23.0 South Asian 1131 
 

17 23 1.8 90 27.8 Caucasian 694 
 

18 22 1.94 94 25.0 Caucasian 154 
 

19 29 1.86 83 24.0 South Asian 370 
 

20 31 1.78 78 24.6 South Asian 345 
 

21 30 1.85 86 25.1 Caucasian 360 
 

22 28 1.82 79 23.8 Caucasian 424 
 

23 29 1.65 65 23.9 Asian 287 
 

a 1 MET = the resting metabolic rate, equivalent to oxygen uptake of 3.5 mL/kg/hr.674  Walking and 

moderate activities were defined as having an energy expenditure rate equivalent to 3.5 METs and 

vigorous activities as 9.0 METs.  According to the Australian government recommendations, adults 

are recommended to undertake at least 500 MetMINs per week or total time (150 minutes of 

moderate activity).   2012 Development of Evidence-based Physical Activity Recommendations for 

Australian Adults (18-64 years) www.health.gov.au/internet/main/publishing.../DEB-PAR-Adults-18-

64years.pdf  

 

http://www.health.gov.au/internet/main/publishing.../DEB-PAR-Adults-18-64years.pdf
http://www.health.gov.au/internet/main/publishing.../DEB-PAR-Adults-18-64years.pdf


 

Page 183 of 308 
 

8.3.3 RNA Sample Integrity  

The measured RNA Integrity Number (RIN) for all samples was above 7.5, 

demonstrating that the RNA integrity was not ideal but satisfactory for analysis. 

Table 8.2 shows that in 3 samples, RNA had been degraded; these samples were 

Day 0 for participants # 10 and 12 and on Day 14 for participant # 20.  Insufficient 

RNA had been extracted for two samples (Participant #5 on Day 7 and Participant # 

7 on Day 7).  As a consequence, not all participants have data for all 3 time points.   

 

Table 8.2 RNA Quality by Sample at each Time Point. 

Collection data participant at each time point showing missing data points, low RNA concentration 

and degraded samples. 

 

8.3.4 Microarray Data Quality Analysis 

The arrayQualityMetrics tool generated a heatmap image that demonstrated 

Distance between Arrays Figure 8.2, with subsequent detection of outliers for the 

distances between arrays, Figure 8.3. 
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Figure 8.2 Distances between arrays  

This figure shows a false colour heatmap of the distances between arrays. The colour scale is chosen 

to cover the range of distances encountered in the dataset. Patterns in this plot can indicate clustering 

of the arrays either because of intended biological or unintended experimental factors (e.g. batch 

effects). The distance between two arrays a and b (dab) is computed as the mean absolute difference 

between the data of the arrays (using the data from all probes without filtering). Outlier detection was 

performed by looking for arrays for which the sum of the distances to all other arrays, Sa = Σb dab 

was exceptionally large.  Three such arrays were detected, and they are marked by an asterisk* as 

25, 41 and 47. (Shown lower left – both axes) 

 

8.3.5 Outlier Detection for Distances Between Arrays 

The heatmap shown in Figure 8.2 highlighted the three arrays, 25, 41 and 47 as 

being outside the determined threshold of 21.1 for outlier analysis.  Figure 8.3 

identifies the participant and time period which classifies them as outliers. 
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Figure 8.3 Outlier Detection for Distances between arrays.  

This figure shows a bar chart of the sum of distances to other arrays Sa, the outlier detection criterion 

from Figure 8.2. The bars are shown in the original order of the arrays. Based on the distribution of 

the values across all arrays, a threshold of 21.1 was determined, which is indicated by the vertical 

line.  Three arrays exceeded the threshold and were considered outliers.  

The following three samples were identified as the outliers: Participant 6 day 7; Participant 5 day 14; 

Participant 20 day 0  

8.3.6 Principal Component Analysis (PCA) 

PCA is an method for grouping the samples based on their similarity in the 

expressions of all the transcripts.  To explore genes for which expression changed 

due to SFN in two different doses from baseline, genome-wide expression profiles 

for the two dose levels were investigated.  The PCA data, illustrated graphically in 

Figure 8.4 do not show a visually-apparent PCA relationship.  The absence of 

clusters indicates that there were few significantly differentially-expressed genes 

across the time periods Days 0 – 7 and Days 7-14.    
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Figure 8.4 Principal Component Analysis.  

This figure shows a scatterplot of the arrays along the first two principal components, reflecting the 

overall data (dis)similarity between the arrays, with the larger points indicative of the outliers.   

8.3.7 Number of Differentially-expressed Genes  

Overall, when comparing the numbers of genes significantly differentially-expressed 

from Day 0 to Day 14, 36 genes with adjusted p-values <0.05 were identified; 10 of 

these genes were upregulated and 26 were downregulated.  For the positively-

expressed genes, the fold-change ranged from 1.1 to 1.3 and for the negatively-

expressed genes from 0.8 to 0.9. 

The results of the study appear to have been confounded by the presence of viral 

infection in two of the participants (#21 and #23) during Week 1.  Had the outliers 

and the subjects carrying the Day 7 viral load data been removed, there would have 

been an overall decrease in the number of significantly differentially-expressed 

identified genes. (Refer Table 8.4) 

Participants for whom one or two data points were missing were retained in this set 

of analyses.  This is illustrated in Table 8.3 and Figure 8.1, showing that the final 

sample number for each time period was 18.   

Review of the data overall and consideration of the sparseness of the differentially-

expressed genes shown by the Volcano Plots for each of the time periods confirmed 

the need to focus on the period Day 0 – Day 14. 
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Table 8.3 Samples that are included in this analysis. 

Of the 23 enrolled participants, 18 at each time point were included in the data analysis 

Time Point (Days) Participants  Number of Samples 

0 1, 2, 5, 6, 7, 8, 9, 11, 13, 14, 

15, 16, 17, 18, 19, 21, 22, 23 

18 

7 1, 2, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19, 20, 21, 22, 

23 

18 

14 2, 6, 7, 8, 9, 10, 11, 12, 13, 

14, 15, 16, 17, 18, 19, 21, 22, 

23 

18 

 

Table 8.4 shows the list of significantly differentially-expressed genes comparing two 

time points with baseline.  These three periods are: Day 14 versus Day 0, Day 14 vs 

Day 7 and Day 7 vs day 0.  The study’s primary focus as explained earlier is on the 

Day 0-Day 14 period. 

Table 8.4 The number of significantly differentially-expressed genes based on viral 

load. 

The numbers of differentially-expressed genes were reduced when the subjects with viral infections 

were included or excluded. (adjusted p-value <0.05).  The fold-change for positively-expressed genes 

ranged from 1.1 to 1.3 and the fold-change for negatively expressed genes ranged from 0.7 to 0.9.  

Refer Table S 8.1 for data.   

Comparisons 

Number of Genes 
with Positive 
fold-change 

Number of genes 
with Negative fold-
change 

Excluding the outliers 

Day 7 vs Day 0  17 83 

Day 14 vs Day 0  10 26 

Day 14 vs Day 7 36 90 

Excluding the outliers and subjects (virus) 21 and 23 from Day 7 

Day 7 vs Day 0  10 64 

Day 14 vs Day 0  8 13 

Day 14 vs Day 7 8 15 
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8.3.8 Revised PCA With Outliers Excluded 

After removal of outliers, the revised Ingenuity PCA data are graphed below wherein 

Figure 8.5a represents PCA of samples with the subject ID indicated. The first PCA 

plot showed that samples from the same subject tend to have similar gene 

expression and were clustered close together in the graph.  Figure 8.5b represents 

the PCA of samples with the sample collection day indicated.  

 

Figure 8.5 Principal component analysis (PCA) of the microarray data without outliers.  

There were no clearly defined clusters for Day 0- 7and Day 7-14, so that comparison of gene 

expression between the individual time periods is not expected to generate reliable data. This 

suggested that there were few significantly differentially expressed genes when comparing the gene 

expression from different time points. 

Review of the two principal components on the x and y axes respectively, showed 

that there was an absence of distinct clusters when considering the samples from 

Days 0, 7, and 14. This suggests that there were few significantly differentially-

expressed genes across Days 0 – 7 and Days 7-14.    

Each point in the scatter plot represents one microarray sample. Samples that have 

similar gene expression profiles will be close to each other. Figure 8.5a shows that 

for participant #17, the samples for all three time points had similar gene expression 

profile and where therefore close together on the PCA plot.  Some other participants 

a b
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also have their samples from different time points clustered closer together (e.g. #18, 

#9, and #13 as examples). This suggests that for the most part, the gene expression 

profile from different time points for the same person are similar. 

8.3.9 Summary of Microarray Quality Analysis Data 

The various quality control measures described above reaffirm that there are 

relatively few significantly differentially-expressed genes across the two 7-day time 

points. 

8.4 ANALYSIS OF SIGNIFICANTLY DIFFERENTIALLY-EXPRESSED GENES   

8.4.1 Day 0 – Day 14 Heatmap 

Figure 8.6 Heat map showing the expression level of the significantly differentially-

expressed genes for the 23 sets of participant data for Day 0 - Day 14.  

The rows represent the significantly differentially-expressed genes and the columns represent the 

identification numbers of the participants. Each cell of the heat map represents the gene expression 

values normalised using the RMA algorithm, in which red represents high gene expression, blue 

represents low gene expression and white represents medium expression. The bar on the right side 

of the heat map represents the significantly differentially-expressed genes, red = significantly 

increased expression, light blue = significantly decreased expression. The bar below the heat map 

indicates the number of days of SFN treatment, grey = 0 days and black = 14 days. The bottom left 
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region of the heat map highlighted a group of genes which had significantly increased expression in 

day 0 as compared to day 14. It also highlighted another group in the top right region of the heat map, 

showing genes with statistically significantly increased gene expression from Day 0 to Day 14. 

8.4.2 Further Confirmation of Differential Gene Expression via Volcano Plot. 

To further illustrate significant differential expression from Day 0 to Day 14, the R 

statistical programming language was used to generate a Volcano Plot (Figure 8.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7 Volcano plot showing the significantly differentially-expressed genes when 

comparing changes from Day 0 to Day 14.  

The y-axis represents the negative log adjusted p-values and the x-axis represents the log fold-

change, visually separating upregulated and downregulated genes.  Blue dots = significantly 

differentially-expressed genes (adj. p-value < 0.05) and Red dots = other genes.  
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8.4.3 Differentially-expressed Genes Day 0 – Day 14 

Table 8.5 Significantly differentially-expressed genes when comparing Day 0 to Day 

14.  (adjusted p < 0.05)  

Those marked as BOLD, are indicated as significant within the Ingenuity Network #1. 

Gene 
Symbol 

Log 
Fold-

change 

Fold-
change 

Adjusted 
p-value 

Description 

Increased Gene Expression at Day 14 compared with Day 0  

ARL17B 0.43 1.3 0.047 ADP ribosylation factor like GTPase 17B 

ANKRD52 0.30 1.2 0.030 ankyrin repeat domain 52 

RPS15A 0.26 1.2 0.016 ribosomal protein S15a 

ACSM2A 0.23 1.2 0.041 acyl-CoA synthetase medium-chain family member 2A 

GPC1 0.22 1.2 0.045 glypican 1 

TMEM132E 0.22 1.2 0.037 transmembrane protein 132E 

DDC 0.18 1.1 0.041 dopa decarboxylase 

CCDC82 0.16 1.1 0.042 coiled-coil domain containing 82 

BGN 0.15 1.1 0.037 biglycan 

C14orf2 0.14 1.1 0.045 chromosome 14 open reading frame 2 

Decreased Gene Expression at Day 14 compared with Day 0 

TMEM176B -0.39 0.8 0.037 transmembrane protein 176B 

ZFPM1 -0.37 0.8 0.004 zinc finger protein, FOG family member 1 

RELB -0.28 0.8 0.037 RELB proto-oncogene, NF-kB subunit 

NTAN1 -0.28 0.8 0.047 N-terminal asparagine amidase 

IGF2BP2 -0.28 0.8 0.037 insulin like growth factor 2 mRNA binding protein 2 

GK5 -0.28 0.8 0.041 glycerol kinase 5 (putative) 

HERC6 -0.25 0.8 0.038 
HECT and RLD domain containing E3 ubiquitin protein 
ligase family member 6 

TICAM1 -0.24 0.8 0.037 toll-like receptor adaptor molecule 1 

ZNF142 -0.24 0.8 0.038 zinc finger protein 142 

GAR1 -0.22 0.9 0.016 GAR1 ribonucleoprotein 

CFD -0.21 0.9 0.037 complement factor D 

SEC61A1 -0.21 0.9 0.041 Sec61 translocon alpha 1 subunit 

CEBPB -0.20 0.9 0.037 CCAAT/enhancer-binding protein beta 

GSR -0.19 0.9 0.045 glutathione-disulfide reductase 

ZBTB2 -0.19 0.9 0.044 zinc finger and BTB domain containing 2 

HSP90B1 -0.18 0.9 0.041 heat shock protein 90 beta family member 1 

ETF1 -0.18 0.9 0.037 eukaryotic translation termination factor 1 

PDIA4 -0.17 0.9 0.045 protein disulfide isomerase family A member 4 

EXOSC10 -0.16 0.9 0.045 exosome component 10 
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Gene 
Symbol 

Log 
Fold-

change 

Fold-
change 

Adjusted 
p-value 

Description 

SURF4 -0.16 0.9 0.037 surfeit 4 

CPVL -0.16 0.9 0.044 carboxypeptidase, vitellogenic like 

SETD2 -0.15 0.9 0.037 SET domain containing 2 

RPN1 -0.14 0.9 0.037 ribophorin I 

GSTP1 -0.14 0.9 0.041 glutathione S-transferase pi 1 

CSNK1G1 -0.14 0.9 0.041 casein kinase 1 gamma 1 

DDX3X -0.14 0.9 0.037 DEAD-box helicase 3, X-linked 

 

8.4.4 Differentially-expressed Genes for Periods Day 0 – Day 7 and Day 7 – Day 14 

The Supplementary Materials contain the tables of differentially-expressed genes for 

the periods Day 0 to Day 7 and Day 7 to Day 14.  These data have been removed 

from the Results section as they failed to meet the criteria for significance; even so, 

for completeness, they are included as supplementary material because elements of 

these data form part of the Discussion section in 8.7.  

8.5 NETWORK ANALYSIS 

8.5.1 Network #1 - NF-kB Interactive Network 

Based on the input dataset, the IPA library of canonical pathways identified the NF-

kB network as the most significant network, illustrated in the interactive network 

diagram in Figure 8.8.  Chapter 7 discussed in some depth the NF-kB network and 

its cross-talk relationships with both Nrf2 and the Aryl hydrocarbon receptor, the 

latter being integral to the Phase 1 detoxification pathway.   

Of the genes identified as interactive in the NF-kB pathway, IPA highlights RELB,685 

a component of the NF-kB sub-family and CEBPB,686 both of which are 

downregulated in the EASYGENEX Study.  The two aforegoing literature references 

suggest that the NF-kB complex also regulates RELB and CEBPB.   What this study 

has identified is possibly evidence of a negative feedback mechanism, wherein NF-

κB requires CEBPB and RELB subunit to function whilst NF-κB is a regulator of 

RELB and CEBPB expression.   

This is further evidenced in that a cross-talk relationship between NF-κB and CEBPB 

has been identified showing that these transcription factors can act synergistically.647  
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These transcription factors acting together have been shown to mediate the 

expression of the major acute phase reactant, serum amyloid A2 via IL-1 and IL-6.  

Downregulated CEBPB has been shown to protect cardiomyocytes from hypertrophy 

via inhibition of p65-NF-κB, further highlighting the close inter-relationships between 

these transcription factors.648    

These relationships are considered to be clinically significant in that a diet high in 

saturated fat, especially palmitic acid directly activates CEBPB protein expression in 

liver, adipocytes and macrophages, providing a putative link between dietary fat and 

the known inflammatory state associated with adiposity and type 2 diabetes.646   
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Figure 8.8 NETWORK 1.  The highest scoring interaction network comparing Day 0 to 

Day 14 highlighted a possible negative feedback mechanism for the activity of the NF-

kappa B (NF-kB) complex.  

Genes that have significantly increased expression are highlighted in red and genes with significantly 

decreased expression in Day 14 are highlighted in green. The shape of each node in the network 

references the following: trapezium = transporter; diamond = enzyme; concentric circles = protein 

complex; square = cytokine; triangle = phosphatase; tall rectangle = ion channel; long rectangle = 

ligand-dependent nuclear receptor; tall ellipse = transmembrane receptor; long ellipse = 

transcriptional regulator. Genes in this network are known to be involved in cell death and survival, 

protein synthesis, and inflammatory response. The network highlights the decreased expression of 

genes whose protein product is known to interact in the NF-kB complex. 
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8.5.2 Canonical Pathways 

IPA generated the Top 15 Enriched Canonical Pathways across the two 7- day 

periods and the overall 14-day period.  The Canonical Pathway for Day 0 - 14 

complements Network #1 by identifying the pathways highlighted by the statistically-

significant degree of enrichment above a -log (adjusted p-value) threshold.  For each 

of the Figure 8.9 enriched pathways expressed as -log(p-value), seven are 

significant and above the threshold.  

IPA identifies the relevant genes in the canonical pathway which had significantly 

increased gene expression compared to the average level of all genes but because 

these are expressed as grey bars, there is insufficient data to determine whether 

expression is up- or downregulated.  Those pathways for which the ratio was low 

(i.e. less than 0.1) are indicative of too few statistically-significant differentially-

expressed genes compared with the ratio to the total number of genes in the 

canonical pathway. Table 8.6 identifies the genes contributing to the pathways. 

Figure 8.9 Enriched canonical pathways for day 0 vs day 14 comparison.  

The left y-axis represents the significance of the canonical pathways as shown as the -log adjusted p-

value; the right y-axis represents the enrichment ratio.   The enriched canonical pathways are shown 

as labels on the x-axis. The bars represent the significance of each of the pathways and the threshold 

represents the adjusted p-value level of < 0.05. The enrichment ratio (orange line) represents the 

proportion of genes in the canonical pathways that are also the query genes.  
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Table 8.6 The five top Canonical Pathways identified by IPA for Day 0 - Day 14.   

Those pathways shown in bold and above the threshold are significant, with the higher bars indicating 

greater enrichment. 

The expression column represents the up- or downregulated genes, indicated in Table 8.5. 

Ingenuity Canonical 
Pathways 

-log 
(p-value) 

Ratio z-score Genes Expression 

Glutathione Redox 
Reactions I 

3.17 0.11 
NaN GSR, GSTP1 ↓ 

Serotonin and Melatonin 
Biosynthesis 

2.07 0.25 
NaN DDC ↑ 

Catecholamine 
Biosynthesis 

2.07 0.25 
NaN DDC ↑ 

Glutathione Redox 
Reactions II 

2.07 0.25 
NaN GSR ↓ 

Glycerol Degradation I 1.97 0.2 
NaN GK5 ↓ 

 

8.5.3 IPA Interpretive Summaries 

IPA provides summaries of the microarray data, grouped to include Top Canonical 

Pathways and Top Networks.  The highlighted networks for Day 0 – 14 are listed as 

relating to processes associated with the inflammatory response, cell death and 

survival, protein synthesis, cell-to-cell signalling, haematological system function, cell 

cycle, replication, recombination and repair, connective tissue, cancer, endocrine 

and gastrointestinal disorders.  The top up- and downregulated molecules are 

identified in this context; however, review of the literature reveals that limited data 

exist for a number of those genes and their molecular products.   

Of those Network #1 genes for which data is more extensive, a number bear 

mention, especially in relation to their differential expression following the 

intervention in this study.   
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8.5.4 Differentially-expressed Genes  

Of the significantly differentially-expressed genes across the Day 0 – Day 14 period, 

two upregulated and eleven downregulated genes have been listed in Table 8.7.  As 

each is described in the scientific literature in relation to its known function in 

humans, it has been selected for more detailed discussion. 

Table 8.7 Differentially-expressed genes from Network #1 and their key properties and 

functions 

Gene Properties and Functions 

Key Upregulated genes (Defined in Table 8.5) 

DDC 

DDC is required for synthesis of dopamine as well as epinephrine 

and norepinephrine.  DDC can also decarboxylate 5-

hydroxytryptophan to produce serotonin.687 

ACSM2A 

ACSM2A belongs to a family of mitochondrial Acyl-CoA synthetase 

enzymes essential for de novo lipid synthesis, fatty acid catabolism 

and remodelling of membranes.688 

Key Downregulated genes 

RELB 

The NF-kB or Rel protein family plays critical roles in adaptive and 

innate immunity, inflammation, cell differentiation, proliferation and 

apoptosis.  RELB is overexpressed in various cancers.649   

CEBPB 

Plays an essential role in cell proliferation (pro- or antiproliferative), 

differentiation and growth arrest in specific cell types, including 

adipocyte differentiation.689   

HERC6 

HERC proteins are key components of a wide range of cellular 

functions – neurodevelopment, DNA damage repair, cell growth 

and immune response.690   

TICAM1 

TICAM1 is an adaptor protein in TLR3 and TLR4 signalling 

pathways that mediate pro-inflammatory cytokine and interferon 

(IFN) responses.691  

PDIA4 PDIA4 inactivation restores a classical mitochondrial apoptosis 
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pathway.692 

ZBTB2 
A potential proto-oncogenic master control gene of the p53 

pathway.693   

IGF2BP2 
Associated with decreased insulin secretion and type 2 

diabetes.694  

DDX3X 
The helicases are nucleic acid-dependent ATPases, which unwind 

and remodel DNA or RNA695     

GSR 

GSH homeostasis is regulated by de novo synthesis (via GPX1) as 

well as the status of the GSH:GSSG redox couple (GSR).  Both 

GSR and GPX are Nrf2-dependent genes.696  Downregulation of 

GSR was observed but GPX was not. 

GSTP1 

Codes for a key Phase 2 detoxification enzyme which uses SFN 

as a substrate for the synthesis of mercapturic acid metabolites.  

Polymorphisms are associated with cancer susceptibility.697 

GK5 

Active in triacylglycerol biosynthesis and glycerol degradation 

pathways, especially high in hepatocytes but limited in adipocytes 

under normal conditions.698,699   

 

8.5.5 Enriched Canonical Pathway Comparisons. 

Figures 8.9, 8.10 and 8.11 illustrate the marked differences in the canonical 

pathways generated across the 3 study periods.  Although the Day 0 – Day 7 and 

Day 7 – Day 14 periods indicate there was significant differential expression, the 

enrichment ratio representing the proportion of query genes within the total number 

of genes in the canonical pathways is limited (orange line).  Furthermore, Day 7 - 

Day 14 shows the likely possibility that the significantly enriched canonical pathways 

such as Integrin Signalling and Vascular endothelial growth factor (VEGF) signalling 

were the result of viral infection in Participants #21 and #23 rather than the effect of 

the intervention.  Figure 8.12 shows the genes with significantly decreased gene 
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expression involved in response to viral infection as well as their upstream regulatory 

partners (IPA generated image). 

8.5.6 Day 0 – Day 7.  Top 15 Canonical Pathways 

IPA classifies the identified pathways as being related primarily to the signalling 

processes of fundamental cellular functions; movement, function and maintenance, 

development, growth and proliferation are compromised.  Since the enrichment ratio 

is low (i.e. ratio less than 0.1) for the canonical pathway query genes, no significance 

can be attached for this period. 

Figure 8.10 illustrates a number of downregulated pathways within the initial 7 days 

of the study.  Since all participants were included in the analysis, it is not possible to 

differentiate the observed effects of SFN or viral burden.  However, several of the 

identified pathways are known to be SFN targets. Of the four signalling pathways 

listed below (Integrin, ERK/MAPK, Extravasation and VEGF) and shown in Figure 

8.10, for three of these, SFN is already known to interact; these pathways are 

included for this reason.   

 

 

 

 

 

 

 

 

 

Figure 8.10 Day 0 – Day 7. Top 15 enriched canonical pathways  

For each, the left y-axis represents the significance of the canonical pathways shown as -log adjusted 

p-value; the right y-axis represents the enrichment ratio and the enriched canonical pathways are 

shown as labels on the x-axis. The bars represent the significance of each of the pathways and the 

threshold represents the adjusted p-value level of < 0.05. The enrichment ratio (orange line) 

represents the proportion of genes in the canonical pathways that were also the query genes. 
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8.5.7 Day 7 – Day 14.  Top 15 Canonical Pathways 

Day 7 vs day 14 analysis: As with the Day 0 – Day 7 period, the data for the IPA 

Enriched Canonical Pathway are not sufficiently robust to be considered significant. 

Reference to this period has been made as it reflects the effect of the virus in two 

participants on the entire dataset for this period.  The strong negative z-score 

identifies significant enrichment in Interferon Signalling but the ratio of query genes 

to the total for this pathway prevents us from drawing any conclusion.   It is likely that 

the significantly decreased downregulation of interferon was due to resolution of the 

virus and not related to SFN.  The analysis of the regulator effects supports the 

decreased expression of genes involved in response to viral infections (Figure ).  

Heat map analysis (not shown) indicated that two samples, subjects 21 and 23 from 

day 7, had increased expression of known viral infection-related genes as described 

earlier.  Although Participant #2 was suspected to have had a viral infection during 

the study, the expression of genes involved in response to viral infection were 

comparatively low for subject 2. 

  

Figure 8.11 Day 7 – Day 14. Top 15 enriched canonical pathways. 

Interferon signalling was highlighted as being significantly downregulated during the second 7-day 

period of the study. The enrichment ratio (orange line) represents the low proportion of genes in the 

canonical pathways that were also the query genes. 
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8.5.8 Viral Infection – a Possible Confounder 

Our rationale for considering that two of the study participants exhibited symptoms of 

infection as well as changes in gene expression was described earlier.  IPA identified 

the genes MX1, IFITM3, OAS1, PLSCR1 and OAS3 as being downregulated due to 

the presence of a virus.  Downregulation was due to their upstream regulatory 

partners, USP18, IFNL1, IFNA2 and EIF2AK2. 

 

Figure 8.12 Genes with significantly decreased gene expression involved in response 

to viral infections and their upstream regulatory partners.  

The shape of each node in the network references the following: tall diamond = enzyme; long 

diamond = peptidase; square = cytokine; octagon = biological process.  
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8.6 PLASMA SFN AND ITS MERCAPTURIC ACID METABOLITES. 

Participants #2, #8 and #9 had baseline SFN levels well above the average of 3.19 ± 

5.3 ng/ml indicating that they had not adhered to the study instructions. Data from 

these 3 participants was removed; all three carry the normal GSTP1 gene. Table 8.8 

lists plasma concentrations of SFN and its mercapturic acid metabolites of the 

remaining participants across each time period expressed in ng/ml as measured. 

The standard deviations of each of these indicated very large inter-individual 

variability.  

 

Table 8.8. Plasma concentrations of SFN and its mercapturic acid metabolites of all 

participants mean ± SD.  

SFN = sulforaphane; SFN-NAC = sulforaphane N-acetyl cysteine metabolite; SFN-GSH = 

sulforaphane glutathione metabolite; SFN-CYS = sulforaphane-cysteine metabolite.  High levels for 

SFN at baseline are a likely indicator that dietary exclusions were not followed by Participants #2, #8 

and #9. 

 

 

 

 

8.6.1 Presentation and Analysis of the Data according to Genotype 

The data for all participants were separated according to the nature of GSTP1 

genotype (derived from Table 8.1) and expressed initially as nanograms per millilitre 

(ng/mL) (Table 8.9) and later converted to micromolar concentrations (µM). (Utilised 

in Figures 8.13, 8.14 and 8.15) for ease of comparison with other studies.   

 

 

 

 

 

Day 
SFN  

(ng/ml) 
SFN-NAC 

(ng/ml) 
SFN-GSH 

(ng/ml)  
SFN-CYS 

(ng/ml) 

0 10.36 ± 19.7 13.62 ± 12.7 3.57 ± 7.3 0.60 ± 0.4 

7 37.25 ± 68.7 64.05 ± 83.9 3.77 ± 3.8 4.98 ± 9.8 

14 64.50 ± 65.1 97.15 ± 147.4 8.32 ± 21.2 7.52 ± 16.1 
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Table 8.9. Plasma SFN Concentrations via genotype 

Plasma concentrations of SFN and its metabolites considering GSTP1 genotype in accordance with 

the 3 time periods for which samples were collected.  SFN data is reported as Mean ± Standard 

Deviation with data for the three metabolites reported as Median Values with their Interquartile Range.   

SFN and SFN metabolite levels during the trial for all 
participants and according to GSTP1 polymorphism 

Metabolite 
Gene or 

Variant 
0 days 7 Days 14 days 

SFN 

(ng/ml)  

All 14.8± 22.3 53.2 ±77.3 82.3±65.9 

Normal 22.7 ± 26.9 36.0 ±38.7 78.2±56.8 

Homo/Hetero 4.2 ± 6.1 76.2±111.1 87.6±82.0 

SFN-NAC 

 (ng/ml) 

  

All 0.93 [0.50] 1.48 [1.27] 1.58 [1.14] 

Normal 0.88 [0.29 0.82 [1.30] 1.52 [1.01] 

Homo/Hetero 1.22 [0.72] 1.81 [0.64] 1.73 [1.74] 

SFN-GSH 

 (ng/ml) 

  

All 1.79 [0.85] 1.60 [3.52] 2.04 [2.34] 

Normal 1.91 [0.81] 1.54 [3.46] 1.81 [3.97] 

Homo/Hetero 1.69 [1.64] 1.78 [6.53] 2.58 [1.03] 

SFN-CYS 

 (ng/ml) 

  

All 0.52 [0.41] 0.86 [4.55] 0.52 [1.73] 

Normal 0.41 [0.45] 0.53 [2.77] 0.38 [6.48] 

Homo/Hetero 0.67 [0.36] 4.3 [21.95] 0.66 [1.96] 

 

8.6.2 Summary of Findings 

Overall, there was a significant (p<0.05) effect of time for SFN, SFN-NAC and SFN-

CYS. There were no significant (p>0.05) effects of group (wild type vs homo/hetero) 

and no significant group*time interactions. There was a trend for a group effect in 

SFN-NAC (p=0.09) indicating a greater number of participants would be needed to 

find a significant group effect.  

Figures 8.13, 8.14 and 8.15 show the differences in the micromolar concentrations 

and proportions of SFN and the measured metabolites, SFN-NAC, SFN-GSH and 

SFN-CYS.  Of the metabolites, SFN-NAC was significantly the highest of the three 

and in those carrying polymorphisms, SFN-NAC was higher than SFN itself.  
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Figure 8.13   Plasma SFN and mercapturic acid metabolites (μM) for all participants, 

combining wild-type, homozygous and heterozygous polymorphisms, with error bars 

indicating standard deviation. 

 

 

Figure 8.14  Plasma SFN and mercapturic acid metabolites (μM) for participants with 

wild-type GSTP1 genotype, with error bars indicating standard deviation. 
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Figure 8.15 Plasma SFN and mercapturic acid metabolites (μM) for participants with 

combined homozygous and heterozygous GSTP1 polymorphisms, with error bars 

indicating standard deviation. 

 

8.7 DISCUSSION 

SFN is the primary bioactive compound generated from broccoli sprouts following 

the enzymatic hydrolysis of GRN by MYR.  As a food-derived nutraceutical, the 

human genome is adapted to this readily-bioavailable low M.W. lipophilic molecule.  

Both SFN-yielding and GRN supplements are available to consumers, even though 

the dose-response for each form is not fully-characterised.  The broccoli sprout form 

utilised in this study provides the convenience of a capsule, designed to be taken 

daily over extended periods, thereby more closely approximating the regular dietary 

intake of a cruciferous vegetable.  As a whole food ingredient and not an extract of a 

specific bioactive compound, this intervention is more likely to provide the full 

spectrum of micronutrients and other phytochemical bioactives naturally-occurring in 

broccoli sprouts.   

In this study, a microarray platform was utilised to investigate the differential gene 

expression at two dose levels of a SFN-yielding encapsulated supplement.  The 

advantage of using a microarray platform lies in the ability to simultaneously evaluate 
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the effect of a specific intervention on many hundreds of genes.  The results of this 

study are intended to highlight important directions for future research in this field. 

SFN derived from food and supplements is best-known for its role in Nrf2-dependent 

effects associated with the induction of a large battery of cytoprotective genes.  

Clinical trials using SFN and broccoli sprouts have generally shown Nrf2-dependent 

effects. However, SFN also exhibits other effects for which gene expression data 

and related mechanistic findings are emerging.157,204  Surprisingly, there was no 

observed expression of Nrf2-dependent genes; instead, the study highlighted a 

series of Nrf2-independent effects, some of which may give preliminary indication of 

SFN’s involvement in new clinically-relevant areas such as neurotransmitter 

synthesis.  

8.7.1 Lack of Nrf2-dependent Effect on Differential Gene Expression 

The lack of an Nrf2-dependent effect in this study is hypothesised as being related to 

the fact that the participants in the intervention group were all young, healthy and 

physically-active.  Therefore, it might be expected that inflammation and other 

disease markers at baseline would already be in the normal range, potentially 

limiting any changes due to the intervention.  In Chapter 7, some of the beneficial 

effects of physical activity on human health were discussed, highlighting the fact that 

little has been published on the role of exercise on Nrf2 and in particular that there is 

no quantitative data for comparative consideration.  

Others have reported lack of effect of other phytochemical interventions under 

similar conditions to ours in that the trial participants were healthy.700 A study using 

the isolated phytochemical quercetin ± antioxidant vitamins in a healthy population 

failed to observe the expected response on cardiovascular lipid and coagulation 

markers, even though blood levels of quercetin were as expected.701   By contrast, 

they observed the predicted benefits of quercetin when health status was 

compromised by hypertension in a different study population. 

Other SFN studies showed that participants with chronic obstructive airway disease 

(COPD)206,207 and asthma702 failed to respond to SFN.  Here, it was postulated that 

upregulation of Nrf2 may have already been present at baseline as a compensatory 

mechanism for the disease process itself, making it difficult to further stimulate Nrf2 
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with SFN.  In these cases, SFN had been shown to be well-absorbed using 

measurement of SFN and its metabolites in plasma, just as demonstrated in the 

EASYGENEX Study. 

Similarly, SFN was not effective on glucose control biomarkers in metabolically well-

regulated animals on a high-fat diet compared to its positive effects on obese 

metabolically-dysregulated animals on the same diet, indicating that responses may 

differ between normal and abnormal states.198   

Chapter 7 described the process for determination of dosage in the EASYGENEX 

Study.  In summary, histone deacetylation (HDAC) is known to be inhibited by an 

Nrf2-unrelated mechanism and typically responds to higher doses than for Nrf2 

activation.  As such, it was expected that HDAC inhibition would be observed at the 

higher of the dosage levels as administered during the Day 0 – Day 14 period.  

However, little is known about the effect of exercise on HDAC inhibition.  A 2009 

study showed equivocal findings on the effect of 60 minutes of cycling on HDAC 

inhibition in human skeletal muscle tissue.703  During the Day 7 – 14 period, HDAC 

downregulation with a fold-change of 0.9 at the higher dose was observed but this 

effect was not seen in comparing Day 0 with Day 14.  As a consequence, it was not 

possible to determine whether failure to demonstrate significant HDAC inhibition was 

due to lack of effect of SFN or whether this group of young, healthy, regularly-

exercising men might already have optimised HDAC activity.   

Considering these data together with the known effects of exercise on Nrf2 

activation, the effect of the intervention in this study might therefore be more difficult 

to detect than had an older, less healthy, less active study population been selected. 

8.7.2 SFN’s Effect on Differential Gene Expression  

This study revealed relationships between SFN and a number of genes for which 

there are no reports in the scientific literature.  Notably are the genes DDC, 

ACSM2A, HERC6, PDIA4, ZBTB2, IGF2B2, DDX3X and GK5. 

From consideration of all the differentially-expressed genes across Day 0 – Day 14, 

a picture emerges of interactions in intricate signalling associated with many core 

cellular processes, particularly those associated with immune dysregulation.  In 
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addition to downregulation of pro-inflammatory processes, others appear to be 

related to inhibition of cancer cell development by downregulating genes associated 

with angiogenesis and metastasis and by protecting tumour suppressor genes such 

as p53 and p21, (RELB, HERC6, ZBTB2). 

Two of the genes negatively expressed (IGF2BP2 and CEBPB) may impact on 

glucose metabolism, potentially reducing changes that contribute to insulin 

resistance and adiposity.  These effects of SFN are already known; however, this 

study has uncovered specific genes not previously associated. These genes can be 

broadly grouped into 6 overlapping categories with some genes known to exhibit 

multiple effects:  immune modulation (anti-inflammatory), metabolism (adipogenesis, 

glucose metabolism, insulin sensitivity), neurotransmitter synthesis, cytoprotection, 

cardioprotection and redox modulation. 

8.7.3 Immune Modulation (Anti-inflammatory Effects) 

IPA highlighted the NF-kB Network as the most significant during Day 0 – Day 14, 

with the NF-kB subunit, RELB significantly downregulated.649  NF-kB subunits are 

known to strongly act in synergy with members of the C/EBP family of transcription 

factors704 and this study showed that both were downregulated.   

Toll-like receptor (TLR4) pathways mediate pro-inflammatory cytokine and interferon 

responses, with the adaptor protein TICAM1 essential in stopping TLR-mediated IFN 

production.691  SFN has been shown in a thiol-dependent manner to suppress TLR4 

oligomerization, an event that is critical to TLR4 activation in inflammation.  SFN’s 

suppression of TLR4 oligomerization was shown to downregulate NF-kB 

activation,705 potentially further regulating inflammation.  Saturated fatty acids are 

known to act as ligands for toll-like receptor 4 (TLR4) in macrophages and 

adipocytes, with these signals in turn regulating various pro-inflammatory 

transcription factors.646  IPA’s Network #1 shows TICAM1 to be downregulated by 

the SFN intervention, thereby highlighting the possibility that SFN was responsible 

for dysregulation in the expression of genes in the TLR4 pathway and consequently 

limiting a possible inflammatory response. 
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8.7.4 Dopamine Expression and its Little-Known Effect on Immune Function 

A lesser-known effect of dopamine is that it may inhibit cytokine production706 and is 

an endogenous regulator of inflammasome activation, bridging the nervous and 

immune systems.706  It was shown that SFN upregulated DDC, so that it may 

contribute an anti-inflammatory effect by this additional mechanism.  Substantial 

synthesis of neurotransmitters including dopamine occurs in the gastrointestinal 

tract707 but it is not known whether SFN might exhibit anti-inflammatory or other 

effects here by this mechanism. 

8.7.5 Metabolism – Adipogenesis, Glucose Metabolism, Insulin Sensitivity 

Our study showed upregulation of CEBPB, a gene associated with adipogenesis. 

Activation of an associated transcription factor PPARγ, in turn activates expression 

of adipogenic genes.689  SFN (20 μM) has been shown to decrease the expression of 

CEBPB and PPARγ during early stage adipogenesis in a cell culture model.708  An 

animal study concluded that  SFN may induce anti-obesity activity by inhibiting 

adipogenesis through downregulation of PPARγ and C/EBPα and by suppressing 

lipogenesis through activation of the AMP-activated Protein Kinase (AMPK) 

pathway.709   The study’s data did not identify PPARγ.   

Upregulation of ACSM2A was observed; this is a gene that codes for the 

mitochondrial Acyl-CoA synthetase enzymes abundant in human liver and specific 

for medium-chain triglycerides (MCT).  MCTs are known to fuel the lipid β-oxidation 

and ATP-generating pathway to induce thermogenesis and reduce de novo lipid 

synthesis.710  SFN was shown here for the first time to upregulate ACSM2A.  How 

this might impact regulation of adiposity is not known but since several association 

studies have linked ACSM2A polymorphisms to traits of insulin resistance.711, this 

may be an avenue for further investigation of the properties of SFN, especially given 

that SFN has already been shown to have positive effects in patients with type 2 

diabetes.197,432  ACSM2A is also associated with enhanced glycine conjugation in 

detoxification of xenobiotics like benzoate, ibuprofen and aspirin.712  The possible 

role of SFN in this context deserves further investigation.  

Another metabolically-related gene, IGF2BP2 is associated with decreased insulin 

secretion but effects on type 2 diabetes risk of its polymorphisms are unclear.694  It 
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was hypothesised that SFN’s observed downregulation of IGF2BP2 may assist in 

restoring insulin secretion. 

SFN was shown to downregulate GK5.  Glycerol is a primary factor determining 

plasma glucose,713 with catecholamines inducing lipolysis, thereby increasing the 

release of free fatty acids and glycerol from fat into the bloodstream.714 This study 

showed upregulation of DDC, inferring enhanced catecholamine synthesis with a 

possible tendency towards lipolysis; it is not possible to say whether downregulation 

of GK5 was in response to SFN. Aberrant function of the glycerol kinase enzyme has 

implications for adiposity and insulin resistance but as this study investigated 

PBMCs, its significance in relation to broader physiological function is not known. 

A recent in vitro study investigating brown vs white adipocytes showed that SFN 

enhanced glucose uptake and oxidative utilisation, lipolysis and fatty acid oxidation 

together with adipocyte ‘browning’ in an Nrf2-related manner.715  Another study 

showed that SFN stimulates lipolysis via a decrease in energy-sensitive AMPK 

signalling.716  However, the genes identified in these studies were not differentially-

expressed in the EASYGENEX Study.  Clearly, SFN is affecting a number of 

adipose-related genes although the mechanisms are as yet poorly-characterised. 

8.7.6 Neurotransmitter Synthesis and Neuroprotection.   

The effect of an increase in Dopa Decarboxylase activity (DDC) may have 

implications for neuropsychiatric effects related to upregulation of synthesis of 

neurotransmitters dopamine, serotonin, epinephrine, norepinephrine and melatonin 

(a downstream product of serotonin).  The relationship to neurotransmitter synthesis 

is reflected in the IPA Enriched Canonical Pathway (Figure 8.9) which shows 

Serotonin, Melatonin and Catecholamine pathways as enriched.  This is the first time 

a relationship between SFN and DDC has been reported, although SFN’s effect on 

dopamine is anti-glycative717 and in other ways neuroprotective in an Nrf2-dependent 

manner718.  SFN can prevent oxidation of dopamine in cells of the substantia nigra of 

the brain, with implications for patients with Parkinson’s Disease.   

In relation to neuroprotection, the Day 7 – 14 canonical pathway data highlighted the 

Methylglyoxal Degradation I pathway which is close to the threshold for significance 

but for which the activity pattern is not known.  Methylglyoxal is the most potent 
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precursor of the AGEs, oxidant molecules that contribute to the etiopathogenesis of 

various neurodegenerative diseases. In a 2015 study, high levels of methylglyoxal 

have been found in the cerebrospinal fluid of Alzheimer patients.719  In the same 

study, SFN was shown to enhance the methylglyoxal detoxifying system, increasing 

the expression and activity of GLO1 (glyoxalase -1) in a glutathione-dependent 

manner.  As SFN demonstrated a protective anti-glycative effect in that study, one 

might postulate that the direction of expression of the Methylglyoxal pathway in the 

EASYGENEX Study was downregulation.   

In Day 7 – 14, GLO1 was shown to be downregulated with a fold-change of 0.9.  A 

related gene, GLOD4 was also downregulated to a similar degree during Day 7 – 14.  

However, these genes were not present in the Day 0-14 data listed in Table 8.5. 

8.7.7 Cytoprotection 

This study highlighted a number of downregulated genes associated with cancer.  

The role of CEBPB in relation to adiposity overlaps its role in cancer.  Increased 

CEBPB expression is implicated in development of some tumours with expression 

correlated with invasive activity.720  Similarly, IGF2BP2 described earlier in relation to 

insulin secretion has been shown also to contribute to colorectal carcinogenesis.721   

Loss of function of the tumour suppressor protein p53 is known to be a frequent and 

early event in cancer.722  ZBTB2 is a potential proto-oncogenic master control gene 

of the p53 pathway, potently repressing the cell cycle arrest genes, p21 and the 

tumour suppressor gene p53.693  The EASYGENEX Study showed for the first time, 

downregulation of ZBTB2, further illustrating the known cytoprotective effect of SFN 

by reducing or removing the suppression of p53.157 Response to chemotherapy has 

been shown to be associated with polymorphisms in the GST gene family, including 

GSTP1.723  Knowledge of an individual patient’s GST polymorphisms may inform  

dose determination when administering these highly potent pharmaceuticals.  

Downregulation of HERC6 was observed and there is currently no published 

association between SFN and HERC6.  Small HERCs such as HERC6 are related to 

male fertility, antiviral responses and cancer development.  Where HERC2 regulates 

BRCA1 stability during the cell cycle and regulates p53 signalling, much less is 

known of the physiological functions of the small HERCs (3-6).690   
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For the first time SFN’s effect in downregulating DDX3X was observed; this gene 

that can promote metastasis with worse overall survival in patients with high DDX3X 

expression in metastatic tissue.724  DDX3X regulates the NF-kB pathway but its 

interaction with NF-kB in cancer is controversial.695,725 

There is no published relationship between SFN and PDIA4, a gene downregulated 

in this study.  The protein disulfide isomerases are a superfamily of oxidoreductases 

localised in the endoplasmic reticulum (ER), nucleus, cytosol, mitochondria and cell 

membrane.   PDIA4 is intimately tied to the switch between pro-survival and pro-

death pathways during ER stress, with PDIA4 shown to play dual roles.  This effect 

has been demonstrated in secretory cells such as pancreatic beta-cells, B-

lymphocytes, hepatic cells and osteoblasts.  Failure of this pathway to restore ER 

homeostasis results in the activation of apoptotic pathways.726  Such PDIA4 

inactivation restores a classical mitochondrial apoptosis pathway, suggesting a 

possible association with chemoresistance.692  How this relates to the observed 

PDIA4 downregulation is not known but is likely to be associated with redox-related 

disulphide chemistry. 

Dopamine can suppress systemic inflammation.706,727  As it was shown that SFN 

upregulated DDC to increase dopamine synthesis, this may also contribute to 

cytoprotection because low DDC mRNA has been correlated to poor tumour 

prognosis in head and neck cancers.728   

8.7.8 Cardioprotection 

CEBPB may participate in cardiac hypertrophy with CEBPB knockdown protecting 

cardiomyocytes from hypertrophy via inhibition of p65-NF-kB.648  As discussed in 

some detail in the previous chapter, NF-κB and C/EBPβ have long been known to 

function synergistically as a complex.647  The significance of the observed 

downregulation of SFN in this context is not known. 

8.7.9 Redox-related Effects 

IPA identified Glutathione Redox Reactions as being significant overall for Day 0 – 

Day 14, highlighting two genes GSR and GSTP1.  GSR is one of two Nrf2-

dependent genes associated with GSH homeostasis;696 the other is GPX1. Together, 
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the enzymes for which these two genes code are responsible for maintaining the 

GSH:GSSG couple, often used as a marker for oxidative stress.  Here, GSH is 

oxidised by GPx and GSSG is returned to its reduced state by GSR.729  The study 

showed downregulation of GSR but did not identify GPX.  The reason that GSR was 

downregulated in this study is not clear, given that in a resting cell, the molar 

GSH:GSSG ratio exceeds 100:1730 and it might be expected that upregulated GSR 

would tend to maintain this ratio.   

Since Nrf2 is typically activated by SFN, GSTP1 too might be expected to be 

upregulated.  Here it is downregulated at Day 14.  When the participants with a viral 

burden were excluded, GSTP1 remained downregulated.  Decrease in GSTP1 gene 

expression in PBMC may be specific for these cells, since other studies have 

reported a reduction in GSTP1 on mRNA and protein level in dietary intervention 

studies. PBMCs may be also adversely affected by cryopreservation.731   

Juge et al673 in their comprehensive review of SFN in cancer refer to a similar 

glutathione-related counter-intuitive finding in that glutathione reductase (GSR) 

needed for the regeneration of glutathione was consistently inhibited by SFN in 

several cell culture lines.732  Nevertheless, this study showed that the intervention 

resulted in increased plasma GSH conjugates, the presence of which is dependent 

on the action of enzymes of the glutathione-S-transferase family of which GSTP1 is 

one member.  One might question whether this anomalous finding might be resolved 

by closer examination of the simultaneous effect of exercise in the young, healthy 

study population and the use of a different cell type for gene expression analysis.   

8.7.10 Review of Day 0 – Day 7 and Day 7 – Day 14 Canonical Pathways 

Although IPA identified a number of pathways by degree of enrichment in the study’s 

sub-groups, there were proportionately few genes representative of this pathway.  

Even so, SFN-related processes possibly deserving further investigation are 

highlighted later. 

8.7.11 Integrin Signalling Pathway: Day 0 – Day 7 

The Integrins are a family of transmembrane proteins expressed in almost every cell 

type that mediate attachment to the extracellular matrix.  They are important 
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regulators of cell survival, proliferation, adhesion and migration with established 

relationships in cancer.733  In an in vitro study on renal carcinoma cells, SFN was 

shown to downregulate integrins, demonstrating reduced tumour growth and 

proliferation in a drug resistance model.734  Integrins form numerous cellular 

signalling relationships, some of which are associated with metabolism.  A recent 

review described integrins being interwoven in a network of interdependent 

regulatory pathways with cell metabolism, highlighting the emerging control of cell 

physiology by metabolic cues.733   Integrins are also intimately associated with viral 

penetration of cells, being physiologically important receptors that have been 

usurped by viruses for attachment and/or cell entry.735 

8.7.12 ERK/MAPK Signalling Pathway: Day 0 – Day 7 

The molecular events linking cell surface receptors to activation of ERKs are 

complex and are closely linked to the process of metastasis in cancer, implicating 

SFN in the inhibition of cell motility.  Various cellular stresses, as well as pro-

inflammatory cytokines such as IL-1β and TNFα, can activate multiple MAP kinase 

signalling pathways which then play major effector roles in numerous cellular 

responses.736   Small GTP-binding proteins activate MAP kinase kinase kinases 

(MAP3K) and the phosphorylation reactions which activate the MAP kinases (MAPK) 

to elicit cellular responses. Inhibitors of these pathways are effective in preventing 

induction of pro-inflammatory genes.737   

In a cell culture model, SFN inhibited glioblastoma cell migration and invasion.738  

SFN (20 µM) reduced the formation of cell pseudopodia by phosphorylating ERK1/2 

in a sustained way, contributing to the downregulated MMP-2 (matrix 

metalloproteinase) expression and activity associated with metastasis. 

As with the Integrin signalling pathway, viruses interact with and hijack some of the 

cell’s core defence mechanisms.  The influenza viral infection modifies the signalling 

pathways, ERK-MAPK, NF-kB, MAPK and others important for viral entry, viral  

replication, viral propagation and apoptosis.739  Activation of the NF-kB pathway is a 

primary requirement for influenza virus infection and its efficient replication.739  SFN 

and viruses impact some of the same pathways but the expression data revealed in 

this study are insufficient for any conclusion to be drawn. 
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8.7.13 VEGF: Day 0 – Day 7 

VEGF is a potent angiogenic factor which is known to be suppressed by SFN, 

thereby limiting the spread of cancer.740 Still below the threshold for significant 

enrichment, this study also highlighted inhibition of Leukocyte Extravasation 

Signalling which does not appear to be hitherto related to SFN.  Leukocyte 

extravasation is a critical step in the inflammatory response, involving the migration 

of leukocytes from the bloodstream towards target tissues. The process promotes 

the rapid influx of leukocytes to inflammatory foci without compromising the integrity 

of the endothelial barrier741; no conclusions can be drawn. 

In a 2007 review paper, SF showed time- and concentration-dependent inhibitory 

effects on expression of VEGF and two angiogenesis-associated transcription 

factors on human endothelial cells (HUVECs) in a concentration range of 0.8–25 

mM; this is higher than the concentrations typically employed in cell culture 

studies.157 

8.7.14 Acetyl-CoA III Biosynthesis (from Citrate):  Day 7-14  

Although no activity pattern for the pathway shown as Acetyl-CoA III Biosynthesis 

(from citrate) is available, it is above the threshold for significance and the ratio of the 

query genes to the total in this pathway is significantly higher than for other identified 

pathways.  The ATP Citrate Lyase gene (ACLY), essential for synthesis of Acetyl-

CoA from citrate produced in the Kreb’s Cycle was shown to have been 

downregulated.  The lack of significant data for this pathway prevents any conclusion 

but given the central role of Acetyl-CoA in many aspects of metabolism, it would be 

of interest to explore this further in relation to the SFN intervention. 

8.8.15 SFN and Plasma Mercapturic Acid Metabolite Data Quality 

An initial review of the Table 8.8 data on SFN and its metabolites reveals an 

anomaly.  It would be expected that the Day 0 SFN levels shown in Table 8.8 would 

be close to zero, given that the 3-day washout period was intended to remove SFN 

and its metabolites from the system before the introduction of the capsules.  

The plasma data showed that three participants had relatively high plasma SFN 

levels at baseline, indicating either likely failure to adhere to the dietary exclusions 
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during the preliminary washout period or that our list of Dietary Exclusions had 

overlooked a significant contributor; the participant dietary intake diaries did not 

clarify the issue.  It is not possible to say whether this had any significant effect on 

the overall outcome, especially if the participants had continued to consume the food 

or foods and thereby still enabling detection of a differential effect of the intervention 

from their baseline.  These participants were removed from the analysis, further 

limiting the opportunity to observe the effect of the GSTP1 polymorphism on SFN 

metabolism. 

8.8.16 Comparison of SFN Metabolite Data with Other Studies 

There are several limitations associated with quantification of SFN metabolites and 

described by Al Janobi et al.675  These limitations are related to rapid plasma 

clearance, the potential for irreversible reactions with plasma proteins and possible 

instability of the metabolites during sample processing. 

In addition, it is difficult to compare our metabolite data with that from other studies, 

most of which examine the effect of a single dose on the pharmacokinetics over 

several hours, to record peak values.  Al Janobi et al675 showed in their validation 

study that SFN and its metabolites all peaked between 1 and 2 hours with SFN’s 

peak value of 0.8 μmol/L.  All samples declined rapidly to 6 hours from where they 

declined more slowly thereafter.   

In our study which involved twice-daily dosing over 14 days, we did not record 

measurements on time from last dose to blood collection, so that in our study no 

data on peak values are available for comparison.  The inclusion of a 

pharmacokinetic step in our study would have been useful in enabling comparison 

with data from other studies, especially in relation to the plasma peak SFN value and 

the time point at which SFN peaked. 

8.8.17 The Effects of GSTP1 polymorphisms in the EASYGENEX Study 

Of the 20 participants (of diverse ethnicity), one was found to be homozygote, six 

were heterozygote and the remaining 13 carried the normal GSTP1 gene showing 

that roughly one-third of participants carried a GSTP1 variant.  As described in the 

Introduction to this chapter, GSTP1 variants vary by ethnicity but the homozygote 
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form is the least prevalent across all ethnicities examined.664 Table 8.1 lists the 

EASYGENEX study population by ethnicity, grouping participants by Caucasian, 

Asians and Southern Asian. 

There was a significant effect of time on plasma levels of SFN and its NAC and CYS 

conjugate. In those with the GSTP1 variants, with the > 3-fold increase in the NAC 

metabolite greatest for the GSTP1 variant group at 14 days. Such an effect is 

considered in some studies to confer a chemopreventive advantage for those 

carrying either the homo- or heterozygote GSTP1 polymorphism.   

8.9 LIMITATIONS and FUTURE PERSPECTIVES. 

The EASYGENEX Study showed several limitations likely to have affected the 

outcome.  Participant numbers were initially small but reduced even further by the 

presence of a viral infection in some and degradation of RNA samples for others.  

The presence of the virus made it difficult to separate the effect of SFN from that of 

the virus.  Selection of a young, healthy, physically-active male population may have 

limited the potential for expression of genes also modulated by exercise.  By 

selecting this population, the study had inadvertently failed to exclude all significant 

Nrf2 activators; nor was any allowance made for sex differences which may or may 

not have had an effect.  Gene expression data were taken from PBMC cells which 

are not necessarily representative of all cells, even though this cell type is 

considered a satisfactory surrogate tissue in dietary investigations.  PBMCs are 

known to give less sensitive responses and reveal high inter-individual differences.  

They may also be adversely affected by cryopreservation.731  The nature of 

microarray studies is that they query large gene datasets but lack the accuracy of 

platforms such as RT-qPCR.  In a next step, it would be advantageous to select and 

investigate a number of the genes of interest from the EASYGENEX Study, using 

this more sensitive tool. 

This investigation of plasma SFN and its mercapturic acid metabolites confirmed that 

SFN had been generated in vivo after ingestion of the broccoli sprout capsules.  It 

was expected that participants would achieve steady state by taking these capsules 

over a number of days.  As no pharmacokinetic studies in the minutes and hours 

after ingestion of the capsules were undertaken, it was not possible to identify the 

peak plasma levels.  Given that two different doses were tested, it would have been 
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useful to have identified the peak plasma level for each dose.  This is a limitation in 

that it was not possible to draw any conclusions regarding a dose-response.  This 

further limited any ability to compare these findings with those of other studies where 

peak values and other pharmacokinetic markers had been recorded. 

A number of other identified genes did not reach statistical significance.  As some of 

these are known to be related to the functions identified in IPA Canonical Pathways, 

it would be advantageous to explore these further in relation to SFN but in a different 

population. The genes TNFSF8, IL6R, IFI6, IRS2, LDLR, HDL, ACLY and HLA-DRA 

are all directly clinically-relevant with relationship to inflammation and autoimmunity, 

lipid metabolism, glucose metabolism and energy synthesis. 

Future studies could further investigate these effects on a more sensitive platform 

such as RT-qPCR and might also select an older, less healthy population to study 

these and other effects on disease markers. 

8.10 CONCLUSION 

As a phytochemical, low molecular weight, lipophilic SFN is structurally quite 

different from the more extensively-researched higher molecular weight, bulky 

polyphenol molecules abundant in plant foods.  Where the polyphenols as a group 

are limited by their low bioavailability, SFN does not have this limitation.  As a result, 

there is greater likelihood that its in vivo effects will more closely approximate what is 

observed in in vitro studies.  The EASYGENEX Study showed that an ingested 

whole broccoli sprout capsule yielded sufficient SFN in situ to cross several 

membranes to be detected in white blood cells, the PBMCs.  This study also 

supported the known effect of GSTP1 polymorphisms on SFN metabolism. 

Furthermore, it was demonstrated that SFN differentially-modified the expression of 

genes associated with core cellular processes related to immune modulation (anti-

inflammatory), metabolism (adipogenesis, glucose metabolism, insulin sensitivity), 

neurotransmitter synthesis, cytoprotection, cardioprotection and redox-regulation; a 

number of genes is known to be associated with more than one process.  Of the 

differentially-expressed genes in this study, eight were identified for which no prior 

reference in association with SFN could be found.  This finding might reaffirm the 

known pleiotropic character of the SFN molecule, suggesting the requirement for 
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more targeted investigation of its nutrigenomic effects and their potential clinical 

significance. 

8.10 SUPPLEMENTARY MATERIALS 

Table S8.1   Significantly differentially-expressed genes on Day 0 compared to Day 7. 

(p<0.05) 

Gene 
Symbol 

Log 
Fold-

change 
Adjusted 
p-value Description 

Increased Gene Expression on Day 7, compared to Day 0 

SIGLEC1 0.40 0.0303 sialic acid binding Ig like lectin 1 

GDPD5 0.28 0.0419 
glycerophosphodiester phosphodiesterase domain 
containing 5 

C20orf173 0.27 0.0419 chromosome 20 open reading frame 173 

DYRK1B 0.24 0.0331 
dual specificity tyrosine phosphorylation regulated 
kinase 1B 

MEPE 0.21 0.0419 matrix extracellular phosphoglycoprotein 

RIC8B 0.21 0.0303 RIC8 guanine nucleotide exchange factor B 

CWC15 0.20 0.0392 CWC15 spliceosome associated protein homolog 

SYNDIG1L 0.19 0.0248 synapse differentiation inducing 1 like 

CENPX 0.18 0.0240 centromere protein X 

MLF1 0.17 0.0248 myeloid leukemia factor 1 

MT2A 0.17 0.0191 metallothionein 2A 

ATP6V1F 0.17 0.0232 ATPase H+ transporting V1 subunit F 

TGM2 0.16 0.0240 transglutaminase 2 

ATG9A 0.16 0.0400 autophagy related 9A 

CCDC82 0.16 0.0347 coiled-coil domain containing 82 

TUBA1B 0.13 0.0459 tubulin alpha 1b 

HDLBP 0.13 0.0347 high density lipoprotein binding protein 

Decreased Gene Expression on Day 7, compared to Day 0 

TNFSF8 -0.45 0.0050 tumour necrosis factor superfamily member 8 

F2RL1 -0.37 0.0255 F2R like trypsin receptor 1 

ZNF92 -0.32 0.0115 zinc finger protein 92 

CYP4F3 -0.30 0.0065 cytochrome P450 family 4 subfamily F member 3 

DUSP1 -0.29 0.0322 dual specificity phosphatase 1 

IL6R -0.28 0.0003 interleukin 6 receptor 

MAT2A -0.26 0.0065 methionine adenosyltransferase 2A 

HIST1H2AC -0.26 0.0111 histone cluster 1 H2A family member c 

CD46 -0.26 0.0017 CD46 molecule 



 

Page 220 of 308 
 

PIK3IP1 -0.26 0.0068 phosphoinositide-3-kinase interacting protein 1 

IRS2 -0.25 0.0393 insulin receptor substrate 2 

EIF3L -0.25 0.0179 eukaryotic translation initiation factor 3 subunit L 

PHC2 -0.25 0.0069 polyhomeotic homolog 2 

ATP6V1A -0.25 0.0485 ATPase H+ transporting V1 subunit A 

PTTG1IP -0.24 0.0021 pituitary tumour-transforming 1 interacting protein 

CEACAM4 -0.24 0.0065 
carcinoembryonic antigen related cell adhesion 
molecule 4 

SRSF1 -0.24 0.0073 serine and arginine rich splicing factor 1 

TM6SF1 -0.21 0.0065 transmembrane 6 superfamily member 1 

ROCK1 -0.21 0.0395 Rho associated coiled-coil containing protein kinase 1 

VASP -0.21 0.0111 vasodilator-stimulated phosphoprotein 

LGMNP1 -0.21 0.0347 legumain pseudogene 1 

PRNP -0.20 0.0179 prion protein 

RAB6A -0.20 0.0471 RAB6A, member RAS oncogene family 

CSF2RA -0.19 0.0065 colony stimulating factor 2 receptor-alpha subunit 

IL7R -0.19 0.0232 interleukin 7 receptor 

PELI1 -0.19 0.0208 pellino E3 ubiquitin protein ligase 1 

EP300 -0.19 0.0322 E1A binding protein p300 

SACM1L -0.19 0.0234 SAC1 suppressor of actin mutations 1-like (yeast) 

DDX3X -0.19 0.0021 DEAD-box helicase 3, X-linked 

SGK1 -0.19 0.0155 serum/glucocorticoid regulated kinase 1 

CRK -0.19 0.0069 CRK proto-oncogene, adaptor protein 

USO1 -0.19 0.0287 USO1 vesicle transport factor 

TANGO2 -0.19 0.0155 transport and golgi organization 2 homolog 

RTN3 -0.18 0.0065 reticulon 3 

SURF4 -0.18 0.0065 surfeit 4 

SHOC2 -0.18 0.0391 SHOC2, leucine rich repeat scaffold protein 

ABTB1 -0.18 0.0232 ankyrin repeat and BTB domain containing 1 

CFL1 -0.17 0.0419 cofilin 1 

TPRG1L -0.17 0.0127 tumour protein p63 regulated 1 like 

HMGB1 -0.17 0.0322 high mobility group box 1 

RTN3P1 -0.17 0.0208 reticulon 3 pseudogene 1 

LBR -0.17 0.0234 lamin B receptor 

PRKAR1A -0.17 0.0239 
protein kinase cAMP-dependent type I regulatory 
subunit alpha 

CD82 -0.17 0.0322 CD82 molecule 

PTAFR -0.17 0.0355 platelet activating factor receptor 

SLBP -0.17 0.0232 stem-loop binding protein 

RPS6KA5 -0.17 0.0069 ribosomal protein S6 kinase A5 

CDC42SE2 -0.17 0.0419 CDC42 small effector 2 

POLR2C -0.17 0.0127 RNA polymerase II subunit C 
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NAP1L4 -0.17 0.0239 nucleosome assembly protein 1 like 4 

GRN -0.17 0.0347 granulin precursor 

SDCBP -0.17 0.0118 syndecan binding protein 

RAD21 -0.16 0.0347 RAD21 cohesin complex component 

ORAI2 -0.16 0.0419 ORAI calcium release-activated calcium modulator 2 

FBXL3 -0.16 0.0239 F-box and leucine rich repeat protein 3 

ACTB -0.16 0.0118 actin beta 

IFNGR1 -0.16 0.0207 interferon gamma receptor 1 

CAPZB -0.16 0.0303 capping actin protein of muscle Z-line beta subunit 

STAT3 -0.16 0.0322 signal transducer and activator of transcription 3 

TMEM154 -0.16 0.0069 transmembrane protein 154 

STX3 -0.16 0.0342 syntaxin 3 

RAB11FIP1 -0.16 0.0065 RAB11 family interacting protein 1 

VNN2 -0.16 0.0240 vanin 2 

RPN1 -0.16 0.0069 ribophorin I 

PTPRE -0.16 0.0234 protein tyrosine phosphatase, receptor type E 

SNAP23 -0.15 0.0240 synaptosome associated protein 23 

TOR1AIP1 -0.15 0.0322 torsin 1A interacting protein 1 

CLRN3 -0.15 0.0455 clarin 3 

CD164 -0.15 0.0347 CD164 molecule 

CRLF3 -0.15 0.0275 cytokine receptor like factor 3 

FPR2 -0.15 0.0248 formyl peptide receptor 2 

TAGLN2 -0.14 0.0370 transgelin 2 

NARS -0.14 0.0155 asparaginyl-tRNA synthetase 

TAB2 -0.14 0.0268 TGF-beta activated kinase 1/MAP3K7 binding protein 2 

AKIRIN1 -0.14 0.0148 akirin 1 

CAB39 -0.14 0.0419 calcium binding protein 39 

NT5C2 -0.13 0.0431 5'-nucleotidase, cytosolic II 

VMP1 -0.13 0.0337 vacuole membrane protein 1 

ARF4 -0.13 0.0347 ADP ribosylation factor 4 

ACTN1 -0.13 0.0303 actinin alpha 1 

TBL1X -0.12 0.0322 transducin beta like 1X-linked 

LAMP2 -0.12 0.0419 lysosomal associated membrane protein 2 

PPT1 -0.12 0.0419 palmitoyl-protein thioesterase 1 
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Table S8.2   Significantly differentially-expressed genes on Day 14 compared to Day 7. 

(p<0.05) 

Gene Symbol 
Log 

Fold-
change 

Fold-
change 

Adjusted 
p-value 

Description 

Increased Gene Expression on Day 14 compared to Day 7 

CYP4F3 0.29 1.2    0.0060 
cytochrome P450 family 4 subfamily F 
member 3 

RPS15A 0.27 1.2    0.0029 ribosomal protein S15a 

PIK3IP1 0.24 1.2    0.0039 
phosphoinositide-3-kinase interacting 
protein 1 

EIF3L 0.23 1.2    0.0193 
eukaryotic translation initiation factor 3     
subunit L 

IL7R 0.22 1.2     0.0058 interleukin 7 receptor 

IL6R 0.22 1.2     0.0019 interleukin 6 receptor 

USP10 0.22 1.2 0.0495 ubiquitin specific peptidase 10 

KLRG2 0.22 1.2 0.0228 killer cell lectin like receptor G2 

GOLGA8A 0.22 1.2 0.0435 golgin A8 family member A 

VCPKMT 0.21 1.2 0.0315 
valosin containing protein lysine 
methyltransferase 

SRSF5 0.20 1.1 0.0428 serine and arginine rich splicing factor 5 

CD46 0.20 1.1 0.0083 CD46 molecule 

CSGALNACT1 0.20 1.1 0.0264 
chondroitin sulfate N-
acetylgalactosaminyltransferase 1 

HAL 0.19 1.1 0.0427 histidine ammonia-lyase 

TM6SF1 0.19 1.1 0.0120 transmembrane 6 superfamily member 1 

DDX17 0.19 1.1 0.0040 DEAD-box helicase 17 

TNFSF14 0.19 1.1 0.0380 
tumour necrosis factor superfamily member 
14 

CD200 0.19 1.1 0.0482 CD200 molecule 

LAT2 0.18 1.1 0.0315 
linker for activation of T-cells family member 
2 

MME 0.18 1.1 0.0466 membrane metalloendopeptidase 

OXNAD1 0.18 1.1 0.0123 
oxido-reductase NAD binding domain 
containing 1 

SRSF1 0.18 1.1 0.0432 serine and arginine rich splicing factor 1 

CEACAM4 0.18 1.1 0.0131 
carcinoembryonic antigen related cell adhesion 
molecule 4 

SGK1 0.17 1.1 0.0228 serum/glucocorticoid regulated kinase 1 

LUC7L3 0.17 1.1 0.0266 LUC7 like 3 pre-mRNA splicing factor 

ARGLU1 0.15 1.1 0.0269 arginine and glutamate rich 1 

RB1CC1 0.15 1.1 0.0495 RB1 inducible coiled-coil 1 

MYO1F 0.15 1.1 0.0432 myosin IF 

ATG16L2 0.15 1.1 0.0315 autophagy related 16 like 2 
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TAB2 0.15 1.1 0.0206 
TGF-beta activated kinase 1/MAP3K7 
binding protein 2 

PTTG1IP 0.14 1.1 0.0459 
pituitary tumour-transforming 1 interacting 
protein 

NAP1L4 0.14 1.1 0.0334 nucleosome assembly protein 1 like 4 

ZNF791 0.14 1.1 0.0466 zinc finger protein 791 

CRLF3 0.13 1.1 0.0450 cytokine receptor like factor 3 

SPSB3 0.13 1.1 0.0495 
splA/ryanodine receptor domain and SOCS box 
containing 3 

TMEM154 0.11 1.1 0.0479 transmembrane protein 154 

     

 Decreased Gene Expression on Day 14 compared to Day 7 

Gene Symbol 
Log 

Fold-
change 

Fold-
change 

Adjusted 
p-value 

Description 

LAP3 -0.50 0.7 0.0019 leucine aminopeptidase 3 

PPIHP1 -0.49 0.7 0.0069 peptidylprolyl isomerase H pseudogene 1 

GDPD5 -0.49 0.7 0.0019 
glycerophosphodiester phosphodiesterase domain 
containing 5 

SERPING1 -0.46 0.7 0.0241 serpin family G member 1 

C12orf76 -0.45 0.7 0.0040 chromosome 12 open reading frame 76 

SIGLEC1 -0.42 0.7 0.0233 sialic acid binding Ig like lectin 1 

OAS3 -0.37 0.8 0.0083 2'-5'-oligoadenylate synthetase 3 

KLF10 -0.36 0.8 0.0466 Kruppel like factor 10 

IFITM3 -0.35 0.8 0.0019 interferon induced transmembrane protein 3 

CDKN1C -0.33 0.8 0.0281 cyclin dependent kinase inhibitor 1C 

ETFB -0.32 0.8 0.0459 electron transfer flavoprotein beta subunit 

RBBP8 -0.32 0.8 0.0466 RB binding protein 8, endonuclease 

ATP8B4 -0.32 0.8 0.0264 
ATPase phospholipid transporting 8B4 
(putative) 

ACSF2 -0.32 0.8 0.0083 acyl-CoA synthetase family member 2 

HERC6 -0.31 0.8 0.0040 
HECT and RLD domain containing E3 ubiquitin 
protein ligase family member 6 

VRK1 -0.31 0.8 0.0410 vaccinia related kinase 1 

GPR84 -0.31 0.8 0.0176 G protein-coupled receptor 84 

PFKM -0.31 0.8 0.0228 phosphofructokinase, muscle 

CENPU -0.30 0.8 0.0450 centromere protein U 

CDC42EP2 -0.30 0.8 0.0174 CDC42 effector protein 2 

RCBTB1 -0.29 0.8 0.0466 RCC1 and BTB domain containing protein 1 

IFI6 -0.28 0.8 0.0438 interferon alpha inducible protein 6 

NTAN1 -0.27 0.8 0.0380 N-terminal asparagine amidase 

LAG3 -0.27 0.8 0.0264 lymphocyte activating 3 

CHCHD4 -0.26 0.8 0.0495 
coiled-coil-helix-coiled-coil-helix domain 
containing 4 



 

Page 224 of 308 
 

DDX60 -0.26 0.8 0.0241 DExD/H-box helicase 60 

OAS2 -0.25 0.8 0.0181 2'-5'-oligoadenylate synthetase 2 

ZFPM1 -0.25 0.8 0.0233 zinc finger protein, FOG family member 1 

LDLR -0.25 0.8 0.0113 low-density lipoprotein receptor 

MTMR2 -0.25 0.8 0.0019 myotubularin related protein 2 

OAS1 -0.24 0.8 0.0334 2'-5'-oligoadenylate synthetase 1 

C12orf75 -0.24 0.8 0.0241 chromosome 12 open reading frame 75 

IDH2 -0.23 0.9 0.0083 
isocitrate dehydrogenase (NADP(+) 2, 
mitochondrial 

CCDC162P -0.23 0.9 0.0435 
coiled-coil domain containing 162, 
pseudogene 

FUNDC1 -0.23 0.9 0.0280 FUN14 domain containing 1 

GBP4 -0.22 0.9 0.0046 guanylate binding protein 4 

PPIH -0.22 0.9 0.0148 peptidylprolyl isomerase H 

HEG1 -0.22 0.9 0.0147 
heart development protein with EGF like 
domains 1 

ATIC -0.22 0.9 0.0459 
5-aminoimidazole-4-carboxamide 
ribonucleotide formyltransferase/IMP 
cyclohydrolase 

NUP93 -0.21 0.9 0.0086 nucleoporin 93 

MX1 -0.21 0.9 0.0438 MX dynamin like GTPase 1 

CDKN1A -0.21 0.9 0.0255 cyclin dependent kinase inhibitor 1A 

ACLY -0.21 0.9 0.0123 ATP citrate lyase 

TTC9C -0.21 0.9 0.0227 tetratricopeptide repeat domain 9C 

NAGA -0.20 0.9 0.0065 alpha-N-acetylgalactosaminidase 

THYN1 -0.20 0.9 0.0228 thymocyte nuclear protein 1 

PLSCR1 -0.20 0.9 0.0327 phospholipid scramblase 1 

TUBA1B -0.20 0.9 0.0019 tubulin alpha 1b 

KIF1C -0.20 0.9 0.0315 kinesin family member 1C 

CHST12 -0.19 0.9 0.0450 carbohydrate sulfotransferase 12 

GLOD4 -0.19 0.9 0.0193 glyoxalase domain containing 4 

SCARB2 -0.19 0.9 0.0193 scavenger receptor class B member 2 

MT2A -0.19 0.9 0.0086 metallothionein 2A 

GPN3 -0.19 0.9 0.0269 GPN-loop GTPase 3 

TJP2 -0.19 0.9 0.0131 tight junction protein 2 

CIZ1 -0.19 0.9 0.0233 CDKN1A interacting zinc finger protein 1 

CEBPB -0.19 0.9 0.0206 CCAAT/enhancer-binding protein beta 

NDUFA8 -0.18 0.9 0.0450 
NADH:ubiquinone oxidoreductase subunit 
A8 

CD300C -0.18 0.9 0.0281 CD300c molecule 

RIC8B -0.18 0.9 0.0457 RIC8 guanine nucleotide exchange factor B 

ARPP19 -0.18 0.9 0.0435 cAMP regulated phosphoprotein 19 

TMEM41A -0.18 0.9 0.0427 transmembrane protein 41A 
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GLO1 -0.18 0.9 0.0457 glyoxalase I 

IL1RN -0.18 0.9 0.0450 interleukin 1 receptor antagonist 

FUCA2 -0.18 0.9 0.0233 fucosidase, alpha-L- 2, plasma 

RUVBL1 -0.17 0.9 0.0280 RuvB like AAA ATPase 1 

NEXN -0.17 0.9 0.0233 nexilin F-actin binding protein 

CTNNA1 -0.17 0.9 0.0311 catenin alpha 1 

ZBTB2 -0.17 0.9 0.0426 zinc finger and BTB domain containing 2 

HARS -0.17 0.9 0.0391 histidyl-tRNA synthetase 

HDAC1 -0.17 0.9 0.0438 histone deacetylase 1 

SAMD9 -0.17 0.9 0.0469 sterile alpha motif domain containing 9 

ZC3H4 -0.17 0.9 0.0450 zinc finger CCCH-type containing 4 

GAR1 -0.16 0.9 0.0264 GAR1 ribonucleoprotein 

GSE1 -0.16 0.9 0.0130 Gse1 coiled-coil protein 

TAOK3 -0.16 0.9 0.0130 TAO kinase 3 

DDX24 -0.16 0.9 0.0112 DEAD-box helicase 24 

EIF4EBP1 -0.16 0.9 0.0315 
eukaryotic translation initiation factor 4E 
binding protein 1 

MRPL51 -0.16 0.9 0.0365 mitochondrial ribosomal protein L51 

CDK5RAP2 -0.15 0.9 0.0438 
CDK5 regulatory subunit associated protein 
2 

RUNX3 -0.15 0.9 0.0450 runt related transcription factor 3 

SDF2L1 -0.14 0.9 0.0318 stromal cell derived factor 2 like 1 

ARSB -0.14 0.9 0.0162 arylsulfatase B 

LRRFIP2 -0.14 0.9 0.0495 LRR binding FLII interacting protein 2 

DTL -0.14 0.9 0.0438 
denticleless E3 ubiquitin protein ligase 
homolog 

RAB8A -0.13 0.9 0.0416 RAB8A, member RAS oncogene family 

ANO6 -0.12 0.9 0.0432 anoctamin 6 

HLA-DRA -0.12 0.9 0.0438 
major histocompatibility complex, class II, 
DR alpha 

SMAP1 -0.12 0.9 0.0428 small ArfGAP 1 

ELF4 -0.12 0.9 0.0499 E74 like ETS transcription factor 4 
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CHAPTER 9 

Thesis Conclusion 

9.0 Final Impressions 

The major focus of this work has been on Brassica-derived SFN but in exploring this 

bioactive phytochemical, a much broader base has been traversed, a base which 

has examined principles that apply to many phytochemicals.  This journey has 

highlighted controversies, investigated unresolved opposing views and has raised 

questions for which there are not yet answers; such are the challenges faced by a 

collaborative scientific community in any investigative endeavour. 

9.1 The Role of Serendipity in Science 

The clinical trials that were undertaken in delivering this thesis confirmed that there 

are no failed experiments in science; instead, these are valuable opportunities for 

enlightenment.  The Fatigue Study described in Chapters 3 highlighted the 

importance of assaying the raw material to be used as an intervention rather than 

relying on the specification provided by the supplier.  Had this been done, there 

would have been greater likelihood of determining whether the intervention had 

failed to provide a significant clinical response or instead that the enzyme-active 

intervention material simply did not meet its specification and as a result, failed to 

deliver the assumed bioactive content; an important lesson well-learned. 

The EASYGENEX Study in Chapter 8 provided a different type of learning 

opportunity in that the study failed to exclude all the factors capable of activating 

Nrf2.  Given that the intervention was expected to reflect similar findings to that of 

other studies investigating Nrf2 activation, this oversight had important ramifications.  

In reviewing the literature on exercise and Nrf2, it became apparent that, even 

though much is known about the health-promoting effects of exercise, little evidence 

exists to quantify its effect on Nrf2 activation.   

This revelation may provide a valuable avenue for future investigation, especially 

since supraphysiological doses of antioxidant vitamin supplements are frequently 

ingested by sportspeople of all ages, even though it has been found that such 
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supplements can abrogate the beneficial effects of exercise.119  It may be that 

quantifying the relationship between exercise and Nrf2 activation would more 

effectively deliver measurable benefit. 

Chapter 8 postulated that exercise and SFN may have had similar effects in 

activating Nrf2 in the young, healthy males investigated.  The genes differentially-

expressed in this study were representative of Nrf2-independent targets and it would 

be valuable to know how many of these are also modulated by exercise and to what 

extent; existing data are limited.  

9.2 Why Sulforaphane? 

Of the many thousands of identified phytochemicals, SFN is just one.  This single 

molecule is not the only Brassica-derived ITC with clinical potential but it is the one 

for which most evidence exists at this time, especially when few clinical trials have 

been conducted on other members.  There may in fact be advantages in more 

intensively investigating other ITCs because although preservation of MYR activity is 

important for all ITCs, not all MYR-active GSNs contain the ESP inhibitor.  Daikon 

radish for example does not contain ESP, whereas cabbage does.  Regardless of 

the specific GSN precursor, the presence of ESP will impact the generation of the 

associated ITC.406 

In the production of a SFN-yielding broccoli sprout raw material, the application of 

heat must be able to simultaneously retain MYR whilst degrading the ESP.  It is 

perhaps for this reason that the MYR-inert broccoli sprout and broccoli seed extracts 

have been developed as a way to avoid addressing this challenging issue.  A whole 

MYR-active broccoli sprout material is able to endogenously generate SFN, so that it 

is not reliant on the largely unknown and variable status of the gut microflora 

required to provide MYR-like activity when only GRN is ingested. 

The EASYGENEX Study showed that daily ingestion of capsules of MYR-active 

dried broccoli sprouts resulted in the presence of SFN and its metabolites in the 

plasma, confirming that SFN in this form is bioavailable.  It also confirmed that the 

presence of the metabolites was associated with the GSTP1 genotype of the 

individual, showing that those carrying either homo- or heterozygous polymorphisms 

had higher plasma levels of both SFN and its metabolites than those with the normal 
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genotype.  This may have implications for anticipating clinical responsiveness when 

employing SFN in both prevention and therapy. 

9.3 Sulforaphane Amidst a Sea of Polyphenols 

When comparing the clinical potential of SFN with other dietary phytochemicals such 

as the abundant polyphenols, SFN has clear advantages.  Chapters 5 and 6 

highlight the low bioavailability of the intact unmetabolised polyphenols as being a 

major barrier to their use systemically, even though they can function as direct-acting 

antioxidants in the gut, especially effective when consumed with carcinogen-

containing foods.  Figure 6.3 in Chapter 6 presents a comparison of SFN with the 

four polyphenols, andrographolides, quercetin, curcumin and silymarin, illustrating 

the far higher bioavailability of SFN over the four polyphenols, all of which are 

readily-available as dietary supplements.   

The possibility that the metabolites of the polyphenols are both bioactive and 

bioavailable has been explored by some.  However, the role of the gut microflora in 

producing an unpredictable range of possible metabolites is a largely unexplored but 

emerging research area.  Greater clarity on the underlying processes may help to 

explain why there exist a few clinical trials showing positive outcomes for 

polyphenolic interventions with very low bioavailability, even though in vitro studies 

show that the intact polyphenols could not be detected in tissues at such doses.  

SFN by contrast can be readily detected in micromolar amounts in various cell types. 

As a further significant difference, Figure 6.2 illustrates the superior capacity of SFN 

as an inducer of the cytoprotective Phase 2 detoxification gene NQO1 by comparing 

the CD value of SFN with other phytochemicals, not all of which are polyphenols.  

On both counts, SFN is not only a more potent inducer of the Nrf2-dependent NQO1 

gene but is also more bioavailable than others that have been investigated, 

establishing SFN as a candidate for further independent or comparative research 

with clinical endpoints. 

9.4 Sulforaphane and the Intricacies of Signalling 

The NF-κB network was the predominant Canonical Pathway discussed in Chapter 8 

and whilst some of the genes identified were already known to be associated with 
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SFN, others were not.  The microarray data showed that the intervention resulted in 

the differential expression of 8 genes not previously associated with SFN.  These 

genes are known to function in six overlapping pathways associated with a range of 

core cellular processes.  This finding is worthy of more targeted gene expression 

techniques such as RT-qPCR in order to reject or validate the gene expression 

relationship to SFN.  If one or more of these genes can be validated for its 

association with SFN, this may lead to new avenues for SFN research. 

When exploring the functions of the genes found to be significantly differentially-

expressed by SFN in this study, it becomes immediately apparent that there is 

substantial cross-talk and interactivity among their related biochemical pathways, 

such that each of these genes functions in multiple pathways.  By way of example, 

two of the downregulated genes, RELB and CEBPB are known to act synergistically 

in downregulating inflammation.  But CEBPB is also integral to the processes of 

adipogenesis, glucose metabolism and insulin sensitivity.  Furthermore, the role of 

CEBPB in adiposity overlaps its role in cancer because increased CEBPB 

expression is implicated in the development of some tumours with expression 

correlated with more invasive activity.   

Similarly, DDX3X as a member of the large DEAD-box protein family is known to 

regulate NF-kB, with dysregulation of this gene implicated in tumorigenesis.  SFN 

was shown in the EASYGENEX Study to downregulate this gene along with four 

other cancer-related genes, ZBTB2, HERC6, PDIA4 and IGF2BP2.  This suggests 

that there may be additional roles for SFN in chemoprevention. 

Chapter 8 referred to a more recent published discussion of cancer cell survival 

mechanisms involving a redox-related process wherein cancer cells can switch 

between survival and death pathways.  The EASYGENEX data showed for the first 

time that SFN may downregulate the PDIA4 gene.  Since PDIA4 expression is 

upregulated in a variety of tumour cell lines, its yet-to-be-confirmed downregulation 

by SFN may be indicative of alternative signalling mechanisms used by cells to 

determine whether and when a cancer cell switches from death to pro-survival 

signals or vice versa.  
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An upregulated gene with multiple functions and identified in this study was DDC, the 

gene coding for dopa decarboxylase. Dopamine is usually considered for its role as 

a neurotransmitter and as the precursor for other catecholamine neurotransmitters.  

However, dopamine also has a lesser-known role in modulating the inflammatory 

process; the IPA data highlighted its presence in the NF-κB Network.  If subsequent 

RT-qPCR and protein studies validate its induction by SFN, it would be intriguing to 

know whether this action is also applicable in neuropsychiatry and 

neurodegeneration.  SFN is known to inhibit dopamine oxidation and has already 

been investigated in relation to Parkinson’s Disease in which dopamine is both 

under-secreted and readily oxidised. 

9.5 The Emerging Dual Roles of Nrf2 – a Certain Dilemma 

Surely, one of the dilemmas of our time in this research field lies in attempting to 

unravel the dual role of Nrf2 activation in human cells.  Where such activation has 

been demonstrated to be protective of healthy cells, the same may be equally 

protective of cancer cells, giving these cells a distinct survival advantage; it has 

already been shown that resistance to chemotherapeutic drugs (chemoresistance) 

could result from such induction.  This leaves us to ponder how the observed 

positive clinical outcomes via Nrf2 activation can be reconciled against the potential 

adverse effects in individuals who may be in an undiagnosed preliminary stage of 

cancer cell progression. 

Cancer cells are known to upregulate their own Nrf2 pathway so that strategies that 

attempt to enhance the cell’s endogenous defences may not be advantageous in 

active disease.  Although the precise signalling that governs Nrf2’s pro-survival 

mode in cancer cells is not known, it is conceivable that induction of the Phase 2 

detoxification genes via Nrf2 might reduce the effective dose of the 

chemotherapeutic agent.  Pharmaceuticals designed to inhibit Nrf2 are already part 

of the cancer therapy armamentarium.   

So, on the one hand, there is evidence to support the chemoprotective effects of 

Nrf2 activation742 but on the other hand, Nrf2 inhibition is being already used to 

sensitise cancer cells to chemotherapeutic agents, thereby eliminating 

chemoresistance.743 
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9.6 So Many Questions – So Few Answers 

To put these issues into perspective, it is important to consider them against the 

larger body of epidemiological evidence which connects chemoprevention with diet.  

A number of questions invariably arise from such consideration: Is there any 

documented evidence that dietary consumption of Nrf2 activators such as broccoli 

promotes cancer or retards recovery?  Does a synthesised more potent Nrf2 

activator behave in the same way as SFN and other phytochemical Nrf2 activators?   

Is there any evidence that dietary intake of plant foods promotes cancer in 

established disease?  Could Nrf2 activation in healthy cells assist in restoring the 

endogenous mechanisms cells use to mount a successful challenge on a cancer 

cell? What does simultaneous activation of Nrf2 in healthy and cancer cells achieve? 

Is such plant food contra-indicated when a patient is undergoing chemotherapy?  

Does a diet high in plant food promote chemoresistance in such a patient? Do other 

benefits of a diet high in plant foods outweigh the possible adverse effects?   

Given that cancer patients in particular are known to search for alternative therapies 

in addition to their conventional treatments, it is imperative that the answers to at 

least some of these questions are found.  How do supplemental Nrf2 activators 

impact treatment with potent pharmaceuticals, many of which are designed to 

promote redox imbalance in the cancer cells? And if the answer to this question is 

not known, how should a medically- or even nutritionally-trained clinician advise a 

patient in relation to diet and/or particular supplements?   

9.7 Multiple Mechanisms – Which are at Play? 

One very important consideration is that Nrf2 is only one component of the cancer 

process and other mechanisms are known to modulate the process. Throughout this 

thesis, the pleiotropic nature of the SFN molecule has been highlighted and many of 

its Nrf2-independent effects are related to cancer.  Is it possible that a phytochemical 

like SFN can simultaneously engage some or all of its multiple signalling pathways in 

healthy cells to over-ride the cancer cell’s Nrf2 activation? Is there evidence that all 

of SFN’s anti-cancer effects are similarly active in the cancer cell? 
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9.8 Concluding Remarks 

This thesis set out to explore the role of phytochemicals in modulating intrinsic 

human cellular defence processes.  Even though the focus is primarily on SFN, it is 

cast against a backdrop of other phytochemicals more abundant in the human diet. 

This has enabled the differences between this low molecular weight lipophilic 

molecule to be compared and contrasted with the typically larger, bulkier 

polyphenolic molecules in terms of their relative clinical potential. 

An underlying theme running throughout this thesis is the awareness that the rapidly-

evolving science of nutrigenomics holds promise as a more personalised model for 

health care.  Phytochemicals are integral to this model with SFN arguably a 

promising future candidate for wider application.   
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