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ABSTRACT 

 

As the global response to anthropogenic climate change evolves, centralised electricity supply 

systems have become a key focus for emission reduction efforts. While governments and industry 

mobilise to decarbonise the electricity sector, substantial opportunities have also begun to emerge at 

the residential level. Recent dramatic growth in the rate of rooftop solar photovoltaic (PV) adoption 

in Australia epitomises the opportunity, and the disruption, that can occur in response to falling 

technology costs, increasing retail electricity prices, and the emergence of more active and engaged 

electricity consumers. 

 

Residential battery energy storage is now on the threshold of mass-market uptake. When coupled 

with solar PV, battery technology could enable potentially millions of small-scale electricity end-

users to participate in the market as both generators and consumers, reducing total system demand 

while challenging the business models of incumbent utilities. This development will not only 

amplify existing operational complexity in Australian electricity markets, but if the technology is 

poorly integrated, negatively impact the efficient provision of electricity, an essential service that 

underpins the structure and function of modern economies.  

 

There is a clear imperative for government and industry to proactively manage the integration of 

residential PV and battery energy storage to avoid adverse or unintended consequences. A number 

of these risks have received considerable academic and industry attention, particularly from a 

techno-economic viewpoint. However, there exists a substantial gap in the literature regarding 

research into battery adoption dynamics from a whole-of-system perspective addressing the multi-

causal, socially complex nature of the problem. This dissertation aims to address this gap by 

identifying the key dynamics that will underpin battery adoption, how they could influence battery 

deployment rates and how these dynamics will manifest along the broader electricity supply chain.  

 

To most effectively incorporate the substantial uncertainty and complexity associated with 

consumer-led electricity sector transitions in this regard, a systems thinking methodology supported 

by a mixed method approach to data collection has been used. To generate meaningful results at an 

appropriate level of granularity, the state of Queensland in Australia is used as a case study to 

conceptualise and model battery dynamics. Queensland has many of the preconditions necessary for 

rapid residential battery uptake, and with a centralised electricity sector worth more than 

AU$30 billion, understanding the drivers that may underpin disruption to this system is critical. 
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Casual loop modelling, informed by an extensive participatory data collection exercise involving 

interviews with nearly 70 energy sector experts, was initially used to map the complex dynamics 

associated with residential battery adoption. This research found that a range of non-financial and 

financial reinforcing feedback loops encouraging battery adoption are currently dominant in 

Queensland. Should battery prices continue to fall as forecast – a necessary precondition for mass-

market uptake – the causal loop diagram demonstrates that multiple paths to market targeting a 

highly motivated consumer-base would make rapid battery uptake highly likely in coming years.  

 

To empirically test the conclusions drawn from causal loop modelling, and to more accurately 

understand the strength and influence of battery adoption drivers, a stock-and-flow simulation 

model was created. The model demonstrated that across all scenarios tested, battery adoption in 

Queensland is likely to achieve mass-market uptake prior to the end of the 30 year simulation 

period. The base-case simulation found that by 2036, approximately 570,000 batteries would be 

installed representing 5,444 megawatt hours of capacity. This outcome would see substantial private 

sector investment, exceeding $8 billion, while achieving material contributions to greenhouse gas 

emission mitigation equivalent to approximately 6.2 million tonnes of carbon dioxide. 

 

The results of scenario analysis show that rates of battery adoption are a function of complex 

interactions between endogenous and exogenous variables. Impacts in one part of the supply chain, 

be it the unilateral action of a market participant, introduction of government policy or a completely 

exogenous influence such as an extreme weather event, not only increase battery adoption in their 

own right but can also reinforce several endogenous feedback loops. This affects electricity prices 

and strengthens non-financial motivations, driving even larger increases in battery adoption. 

Importantly, the model also shows that proactive efforts to integrate the technology in an efficient 

manner can drive beneficial outcomes along the supply chain, particularly where batteries are 

installed to help improve utilisation of the existing network.   

 

The potential risks and opportunities of residential PV and battery energy storage in coming years 

could be substantial. This dissertation makes an important contribution in this regard. It provides 

the basis with which to better understand the dynamics that could drive battery uptake while 

identifying possible leverage points to more effectively integrate the technology. In doing so, this 

research will help contribute to ongoing efforts to accelerate the transition towards a more 

sustainable, low-emission electricity supply system. 
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Chapter 1 Introduction 

 

1.1 Issue overview  

In 2012, then United Nations Secretary-General, Ban Ki-moon stated that “energy is the golden 

thread that connects economic growth, social equity, and environmental sustainability” (Ki-moon 

2012, p. 1). This statement was an acknowledgement that in the past century, affordable and reliable 

energy has underpinned global economic development and delivered substantial human health and 

welfare advances. In particular, it has been the vast centralised electricity supply systems operating 

in most modern economies that have enabled some of the world’s most significant technological, 

manufacturing and social achievements. However, disruption to these electricity supply systems is 

accelerating as governments, industry and communities grapple with the so-called ‘energy 

trilemma’ – the challenge of providing secure, equitable and environmentally sustainable energy to 

an ever growing global population (World Energy Council 2016). 

 

Within this trilemma, the global imperative to reduce greenhouse gas emissions has driven much of 

the disruption currently impacting energy systems around the world. This is because energy 

provision is responsible for the largest share of global greenhouse gas emissions, with 82% of total 

primary energy supply sourced from fossil fuels contributing almost two-thirds of total emissions 

(IEA 2013a). Within the energy sector, electricity generation is the largest contributor, generating 

more than 40% of global energy related greenhouse gas emissions (IEA 2016d).  

 

As the anthropogenic causes of climate change are becoming better understood, the need for urgent 

action is increasing, making the energy sector a prime target for deep emission cuts. This imperative 

is reflected in the Paris Climate Change Agreement, the international accord designed to strengthen 

the global response to climate change. The Agreement which entered into force in November 2016 

seeks to minimise the threat of climate change by “holding the increase in the global average 

temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the 

temperature increase to 1.5°C above pre-industrial levels.” (UNFCCC 2015, p. 2). To achieve the 

objectives of the Agreement, it is widely accepted that “transformative change in the energy sector” 

is required (IEA 2016d, p. 21). 
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While substantial efforts are currently underway aimed at decarbonising centralised electricity 

supply systems, most mitigation scenarios indicate that the pace of change is too slow, and existing 

measures insufficient to avoid the worst impacts of climate change (IPCC 2014a). This is because 

two-thirds of power generation continues to rely on fossil fuels, despite rapid renewable energy 

deployment in recent years (IEA 2014a).  If society’s reliance on fossil fuels does not change, 

energy related greenhouse gas emissions will increase by more than 80% by 2050 (IPCC 2014a). In 

this scenario, the projected temperature increases, which would likely exceed 2°C by 2100, could 

result in significant negative climate change impacts (IPCC 2014a, 2014b).   

 

Addressing the risks posed by climate change represents only one element of the energy trilemma. 

The provision of secure and equitable electricity is an equally challenging task. With the world’s 

population estimated to increase to 9 billion people by 2040, and emerging economies seeking 

greater access to modern energy services, global energy production will need to double before the 

middle of this century to meet growing demand (Riesz et al. 2014; Larcher & Tarascon 2015; 

World Energy Council 2016). This does not include efforts to supply electricity to the 1.2 billion 

people who currently do not have any access to electricity whatsoever (IEA 2016d).  

 

At the same time, the global economy is expected to grow by 150% putting additional strain on 

existing energy assets (World Energy Council 2016). This enormous expansion of energy 

infrastructure must occur within the context of changing societal expectations, the decline of energy 

resources and shifting geopolitical dynamics. In this rapidly evolving environment, it is clear that if 

the issues inherent in the energy trilemma are to be addressed, a fundamental paradigm shift is 

required to help transform the structure and operation of the traditional centralised electricity supply 

system. However, with so many uncertainties “no path of development of the global energy system 

can be confidently drawn to 2040” (IEA 2016d, p. 33).  

 

As industry and governments struggle to develop cogent solutions to the challenge, it may be the 

emergence of a large and engaged residential consumer base that could provide the impetus for 

transformational change in the electricity sector (Agnew & Dargusch 2017). This development is a 

relatively new phenomenon, enabled by cost-effective demand-side energy technologies and the 

liberalisation of energy markets, which could empower consumers to change their relationship with 

the existing electricity supply system.  
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The recent multi-billion dollar global boom in residential solar photovoltaics (PV) symbolises both 

the power of consumer-led transition and the challenge. Global PV capacity increased from 

1.3 gigawatt (GW) in 2000 to 303 GW in 2016 (EPIA 2014; IEA 2017). However despite its many 

benefits, the rapid integration of PV into existing centralised electricity systems has not always been 

optimal, and in some cases has resulted in negative consequences. These included economic 

impacts for electricity sector participants, power quality and system stability issues, increasing 

electricity prices and negative social-equity outcomes (Noone 2013; Rickerson et al. 2014; Karimi 

et al. 2016; Simshauser 2016).  

 

As Government and industry attempt to respond to the issues associated with residential PV, the 

emergence of affordable battery energy storage represents the next wave of disruptive change likely 

to impact the electricity supply system. The implications of this development are substantial. Until 

recently the cost of storing electricity has been prohibitive in most circumstances. This means that 

almost all consumers, even those with PV, have been reliant on the existing centralised electricity 

supply system to ensure adequate supply is available at any given time. As price takers with little 

leverage, consumers have been largely captive to a small number of incumbent utilities.  

 

Cost-effective battery energy storage changes this paradigm. Consumers with an appropriately sized 

PV and battery system will be able to shift the times they use electricity, reduce how much 

electricity they use from the network, or disconnect from the network entirely (Agnew & Dargusch 

2015). For those consumers who can afford the technology, it can reduce electricity costs and 

provide positive security and reliability outcomes while reducing emissions. At a household level, 

this reflects a confluence of the drivers that comprise the broader energy trilemma. From a system-

wide perspective however, the implications of PV and battery energy storage are not so simple. 

 

PV and battery energy storage are classed as disruptive technologies, a term which refers to 

innovations that drive sudden and often unexpected change to established markets and products 

(Bower & Christensen 1995; Rickerson et al. 2014). Distributed energy technology of this nature is 

essentially the “antithesis of the central generation model” (Finkel et al. 2016, p. 2). This is because 

the technology will allow consumers to compete directly with incumbent utilities eroding their 

profitability and possibly impacting the operation and structure of the existing electricity supply 

system. Ultimately, this development could drive a ‘megashift’ which would see the electricity 

sector being “substantially restructured to accommodate a new reality” (CSIRO 2013a, p. 25).  
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This megashift will occur at a time when existing centralised electricity systems are already 

undergoing substantial change as governments and industry respond to the challenges inherent in 

the energy trilemma. The environment is characterised by policy and regulatory uncertainty, 

changing social, economic and sustainability drivers, and complicated relationships between public 

and private actors (World Energy Council 2012). The potential for suboptimal outcomes are 

markedly increased as policy makers grapple with increasing complexity and shifting priorities. 

 

Failure to proactively manage integration of residential PV with battery storage could result in 

substantial inefficiencies along the supply chain, including a decline in asset utilisation, asset 

impairment, increases in electricity costs and broader social and economic impacts (Agnew & 

Dargusch 2015). Despite these risks, there exists a fundamental gap in the academic literature that 

considers battery adoption dynamics from a holistic perspective, particularly with regard to the 

influence of reinforcing feedback mechanisms that may manifest under a range of different 

scenarios and how they may drive broader system change in response.  

 

This gap exists in part because energy systems, despite being frequently defined and modelled as 

techno-economic phenomenon, are socially driven and characterised by ‘messy’ real-world 

complexity (Miller, Richter & O’Leary 2015). Electricity sector transitions are highly dynamic, face 

challenges in conceptualisation and stem from multi-causal sources, including interactions between 

technology, the economy, society and institutional actors (Bale, Varga & Foxon 2015). Trans-

disciplinary techniques are required that are “capable of grasping the big picture, including the 

interrelationships among the full range of causal factors underlying them” (APSC 2012, p. iii). This 

is especially true for residential PV and battery energy storage where the outcome of the impending 

sector transformation could largely depend on the actions of the consumer, particularly the choice 

they make in regard to the type of battery they purchase and the way in which it is used.  

 

As the electricity supply system underpins vital economic and social outcomes, it is becoming 

increasingly urgent to address this gap. To avoid negative outcomes, it is imperative that 

governments and policy makers anticipate developments and plan now for the changes that could be 

triggered by residential PV with battery storage in coming years (Rickerson et al. 2014).  

 

To this end, and to most effectively address the research gap outlined above, a systems thinking 

method has been applied throughout this thesis. With substantial challenges remaining to the 

equitable and efficient integration of residential PV and battery energy storage, this study ultimately 

aims to develop a conceptual framework and apply empirical systems thinking techniques to better 

understand the dynamic complexity emerging from new consumer-led energy technologies. In 
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doing so, it will provide an important theoretical and practical contribution as electricity systems 

transition in coming years. 
 

1.2 Research problem and questions 

This dissertation is concerned with understanding the dynamics that will underpin PV and battery 

uptake, specifically the economic, environmental and social factors that could directly and 

indirectly reinforce battery adoption. This analysis takes place within the context of the rapidly 

accelerating energy transition – a marked shift to a more sustainable, decentralised electricity 

supply system – that is occurring as governments, industry and the community respond to the issues 

inherent in the energy trilemma. In this respect, this thesis will address the following research 

problem: What are the key dynamics that will underpin residential solar and battery adoption, how 

could these dynamics influence deployment rates and what are the implications from a broader 

energy sector transition perspective? To answer this problem, four key questions are addressed 

across four discrete stages of research (Figure 1).  
 

 

Figure 1 Overview of research approach and research questions 
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1.3 Research scope 

To clarify the scope of research, this dissertation is concerned primarily with: 

• Battery technology – Battery energy storage technologies can be deployed at a range of 

scales and can comprise many different hardware and software configurations (Devine-

Wright et al. 2017). A technologically agnostic approach is important in this regard, as 

advances in battery research are accelerating and it is unknown which technologies will be 

dominant over the medium to long-term. The research focus in this thesis is therefore 

primarily concerned with general battery attributes and functionality, noting however that 

model parameterisation is informed by the current market-leading residential battery 

chemistry (i.e. lithium-ion).  

• Residential sector – The research gap and research imperative being addressed in this thesis 

relate to residential sector dynamics. Specifically, the complexity, lack of homogeneity and 

the scale associated at the household-level that underpin both the challenge and broader 

risks inherent in battery adoption. Commercial and utility scale battery energy storage 

represent promising areas of research, particularly to help improve the utilisation of existing 

centralised systems, however their deployment and use have different characteristics and 

drivers and thus have not been considered in this thesis.  

• Prosumers – The availability of demand-side energy technologies such as PV and batteries 

has given rise to a new class of energy consumer referred to as a ‘prosumer’. Prosumers are 

“agents that both consume and produce energy” (Parag & Sovacool 2016, p. 1).  

• Solar PV systems – Household access to embedded generation, such as PV, is a key 

assumption in this study as residential battery storage in not considered economic without it 

before 2035 (QPC 2016a). While prosumers can produce their own power from a range of 

different options (e.g. fossil fuel generators, micro-wind turbines, geothermal etc), this thesis 

is primarily concerned with rooftop PV. It is currently the most technologically advanced, 

residential self-generation technology available and is widely deployed in the case-study 

area. Nearly half a million homes have PV installed in Queensland, comprising nearly a 

third of dwellings (APVI 2017b; Clean Energy Regulator 2017). 

• Modern centralised electricity supply systems – This thesis is concerned with the adoption 

and integration of PV and battery energy storage in first-world economies that have 

traditional centralised electricity supply systems. While the potential benefits of distributed 

PV and battery energy storage in developing countries is enormous and represents a 

promising area for future research, it is beyond the scope of this study. 
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1.4 Thesis structure and organisation  

This thesis is organised across nine chapters. The first chapter introduces the subject of the thesis 

with an overview of the key issues and the rationale for investigation. It describes the research 

problem and research questions. Chapter 2 provides a detailed review of the specific technology 

characteristics of both PV and battery energy storage along with an assessment of the current 

market and the implications associated with the mass market adoption of the technology. Chapter 3 

comprises a journal article published in Nature Climate Change by Agnew and Dargusch (2015), 

which highlights the imperative to address the research gap and outlines a systems framework that 

conceptualises at a high-level the issues considered as part of this thesis.  

 

The purpose of Chapter 4 is to describe the methodology used in the dissertation and the specific 

research techniques applied to address the research questions. It leads with a literature review of 

existing energy sector modelling approaches and their suitability for use in analysing energy sector 

transitions. This provides the context for using systems thinking as the conceptual and 

organisational framework underpinning the research methodology. The chapter also summarises the 

specific techniques used across each of the four stages of research. 

 

Based on the results of participatory research and extensive evaluation of secondary data sources, 

Chapter 5 presents an analysis of the case-study area of Queensland, Australia. This chapter 

provides context on both the physical supply system, its position within the National Electricity 

Market (NEM), and other relevant institutional and regulatory factors that could influence battery 

adoption. It also considers the factors that underpinned exponential growth in residential PV 

adoption in Queensland and analyses the state-specific structural drivers and emerging feedback 

loops that could underpin future battery adoption.  

 

Chapter 6 describes the method, results and findings that were generated from development of a 

dynamic hypothesis. Key variables were mapped and the causal relationships between them defined 

to inform the creation of a causal loop model that described the dynamics that could influence the 

uptake of residential battery energy storage in the case-study area. Building on these results, 

Chapter 7 describes the design, development and validation of a stock-and-flow simulation model 

for use in assessing residential PV and battery energy storage adoption dynamics. It includes 

general model assumptions and a detailed description of the model’s stock and flow structure 

including key data inputs and equations. This chapter also includes the results of model testing and 

validation.   
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Chapter 8 describes the results of model simulations, including the outcomes of sensitivity analysis 

and scenario analysis, which are used to more clearly understand the important causal relationships 

and the possible leverage points within the system. It concludes with a discussion on policy 

implications stemming from the research findings.  The last chapter, Chapter 9, summarises the key 

research outcomes, describes the limitations of the study and recommends areas for future research. 

It is followed by the appendices which includes supplementary material, relevant data sets 

generated throughout the study and a full version of the stock and flow model including 

assumptions and sources. 
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Chapter 2 Context and literature review 

 

Chapter overview 

 

This chapter provides context and a review of the issues associated with residential PV and battery 

adoption and integration. The chapter starts by characterising PV and battery energy storage 

technologies, defining commonly used terminology and describing market developments from a 

global and Australian perspective. This is followed by an assessment of the risks and opportunities 

of mass market adoption of residential PV and battery energy storage. The chapter finishes with a 

section outlining the challenges to optimal integration and the imperative to model and understand 

the system from a holistic perspective. 
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2.1 Solar photovoltaics 

2.1.1 Technology overview 

Solar PV has emerged in recent years as a cost-effective, low-emission technology that will change 

the way in which energy is provided to communities all over the world. PV is a versatile and 

elegant electricity generation technology which has no moving parts, makes no noise, does not 

generate waste during operation and is sealed so it can be used in almost any environment. PV is 

modular and can be scaled to meet load requirements ranging from a few watts to utility-scale 

generation comprising hundreds of megawatts.  

 

From a broader socio-economic perspective, PV can improve energy security, increase energy 

sector resilience, improve access to energy, create new industry and jobs and secure energy 

provision in remote areas (Sener & Fthenakis 2014). It encourages consumers to become actively 

engaged in managing their energy and provides them with greater choice and control over their 

electricity bills (Eadie & Elliott 2013). 

 

As a low emissions technology, PV also offers substantial mitigation potential. During operation, a 

PV array emits no greenhouse gas emissions and during its lifetime pays back the energy and 

emissions invested in its assembly multiple times (Louwen et al. 2016). Based on lifecycle 

assessment, average PV emissions equate to less than 50 grams of CO2 equivalent per kilowatt hour 

(gCO2e kWh−1). For comparison, the global average for centralised electricity supply systems is 532 

gCO2e kWh−1 (IEA 2013b; Nugent & Sovacool 2014).  

 

PV is classed as a form of distributed generation, which means the power source is located close to 

the point of consumption (Ackermann, Andersson & Söder 2001). For residential systems, the 

power that a PV array can generate is measured in kilowatts (kW). Generation is measured as the 

amount of electricity produced over one hour and is measured in kilowatt hours (kWh). On 

residential premises, PV arrays range in size from less than 1 kW to around 10 kW, with roof size 

limiting larger installations.  

 

Almost all PV systems in modern economies are ‘grid-tied’, which means that the dwelling remains 

connected to the electricity network (Luthander et al. 2015). Power generated by the solar array is 

first used by the home, with excess exported to the grid. When household demand exceeds power 

produced by the array, any additional electricity required is provided by the grid (Figure 2).  
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Source: (Mullendore & Milford 2015) 

Figure 2 A typical grid-tied PV configuration   

PV technology is based on a concept known as the photoelectric effect, which occurs when 

electrons are emitted from certain materials when exposed to sunlight (Mertens 2013). While the 

photoelectric effect was first observed nearly two hundred years ago, it was only in the 1950s that 

the modern PV cell was developed (Mertens 2013). These cells were made from silicon, a 

semiconductor material. When photons in the form of electromagnetic radiation from the sun 

dislodge electrons from their bonds, an electric current is created (IRENA 2013). Early PV cells had 

very low conversion efficiencies and were expensive, costing one thousand times more than modern 

PV cells (Mertens 2013). In the past few decades however, the technology has rapidly evolved. 

 

There are now two main commercialised PV technology types in the market. Crystalline silicon (c-

Si) dominate the market and comprise more than 90% of total installed PV (IRENA 2013; IEA 

2016c). There are two main forms of c-Si technology: mono-crystalline modules which are made 

from a single cut of silicon and have higher efficiencies; and multi-crystalline modules which are 

slightly cheaper and made from multifaceted crystalline silicon. While efficiencies for c-SI modules 

have been proven up to 25% for mono-crystalline (and up to 20.4% for multi-crystalline), mass 

produced modules tend to achieve efficiencies of around 16% (IRENA 2013; IEA 2016c). These 

modules can operate for a long time, with most manufacturers guaranteeing that they will produce 

at least 80% of their rated output after 20 years. Some studies have shown that modules actually 

degrade even more slowly with efficiency losses of only 0.5% per year  (Jordan & Kurtz 2013). 

 

Thin-film PV technologies represent the other common PV category and comprise approximately 

10% of total market share (IRENA 2013; IEA 2014f). Thin-film PV cells contain thin layers of PV 

materials such as amorphous silicon and cadmium-telluride on low-cost substrates such as glass, 

stainless steel or plastic (Kirkegaard et al. 2010). While they have lower average efficiency levels, 



 

12 

 

typically between 7% and 16.8%, thin-film PV cells are cheaper to produce, lighter and more 

flexible than c-Si cells (IEA 2016c). Multi-junction PV cells are a derivative of thin film technology 

which use multiple thin layers of different materials to capture a greater spectrum of energy. Multi-

junction technology is expensive but highly efficient and can exceed 40% efficiency (Nelson, 

Gambhir & Ekins-Daukes 2014). 

 

In addition to the two main commercial technologies, there are numerous pre-commercial PV 

technologies being investigated in laboratories around the world. Perovskite solar cells are one such 

example. They are characterised by a specific crystalline structure based on organic and inorganic 

components and can be manufactured more cheaply than traditional silicon-based cells (Green, Ho-

Baillie & Snaith 2014). They were first developed in 2009 achieving 3% efficiency. In only eight 

years, perovskite efficiencies have since increased to more than 22% (Stranks & Snaith 2016). 

Subject to addressing technical barriers relating to cell stability, perovskites are just one example of 

PV technology that when commercialised, could further revolutionise the field.  

 

The technological potential of PV in this respect is highly relevant. As PV continues to evolve, it is 

expected to become cheaper, more efficient and more customisable. For example, advances in 

printable, organic thin-film PV, mean that PV could be more effectively integrated into buildings at 

a price that will make it more accessible to a broader cross-section of the community. At scale, 

these developments will serve to provide consumers with new options to generate more of their own 

power and ultimately reduce their reliance on existing electricity supply systems. While the research 

and modelling in this thesis is based on assumptions regarding the performance and cost-curves of 

currently commercialised PV technologies, it is important to remain cognisant that should step-

changes occur in technology development, the magnitude of potential impacts could be amplified. 

 

2.1.2 Global market developments 

 

Until recently, the high cost of PV modules has been the primary impediment to sector growth. 

With PV costing nearly US$100/W in 1975, the technology remained largely unavailable to the 

public until price declines began to accelerate at the start of the new millennium (Louwen et al. 

2016). This was driven by generous subsidies in countries such as Germany, where an uncapped 

feed-in tariff (FiT) saw expansion of the market, driving growth in manufacturing capacity and 

development of the broader PV supply chain (Haegel et al. 2017).  
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Over the following decade, more than 75 countries introduced some form of solar subsidy (Burtt & 

Dargusch 2015). This, along with economies of scale, lower production costs, cell efficiency 

improvements, standardisation of technologies and cheaper feedstocks saw PV prices fall below 

$US0.70/W (Louwen et al. 2016; Reinders, van Sark & Verlinden 2016). During this period, 

learning rates show the average price of PV dropped by 20% with every doubling of installed 

capacity1 (de La Tour, Glachant & Ménière 2013; IEA 2013). 

 

As a result, the global PV market increased exponentially from approximately 1.3 gigawatts (GW) 

in 2000 to nearly 303 GW by the end of 2016, making a 1.8% contribution to global electricity 

demand (Figure 3) (EPIA 2014; IEA 2017). At the same time, it is estimated that PV was 

responsible for avoided emissions of more than 140 million tonnes of CO2 equivalent (IEA 2014f). 

Emissions reductions are expected to continue to rise as both a function of increasing capacity and 

efficiencies in the manufacturing process. For example, a recent study found that for every doubling 

of installed PV capacity, energy use and emissions costs associated with the PV production 

decrease by up to 13% and 24% respectively (Louwen et al. 2016). 

 

 
Source: (IEA 2017) 

Figure 3 Global growth in PV installations from 2000 to 2016  

 

                                                 

1 Learning rates are widely used to predict cost paths and relate production costs to the accumulation of learning, 

measured by cumulative production (de La Tour et al., 2013). 
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Despite recent rapid growth, there is no indication that PV saturation is close, as rates of 

deployment continue to exceed expectations. In 2016 alone, more than 75GW was installed 

globally, and projections from key industry bodies estimate continued high rates of installation 

(Figure 4)(IEA 2017; Schmela 2017). While it is unlikely that the cost of PV will see the dramatic 

falls of the past decade, analysts suggest that downward price trends will continue with PV 

becoming cost-competitive with traditional energy sources in coming years (National Renewable 

Energy Laboratory 2014). Should this occur, it is estimated that PV could generate up to 16% of the 

world’s energy by 2050 (IEA 2014f). 

 

 

Source: (Schmela 2017) 

Figure 4 Global PV uptake scenarios until 2021  

 

2.1.3 PV in Australia 

 

In Australia, PV capacity increased from 17 megawatts (MW) in 2008 to nearly 6GW in 2017 

(Figure 5) (APVI 2017a; Australian Energy Council 2017). Currently, residential PV in Australia 

generates approximately 5,600 gigawatt hours (GWh) per annum, approximately 10% of total 

residential demand and 2.76% of electricity requirements in the NEM (AEMO 2016b; CEC 2017b).  
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Source: (APVI 2017a) 

Figure 5 PV growth in Australia since 2001  

Penetration rates of PV in Australia are some of the highest in the world with approximately 

1.65 million installations on more than 15% of Australian dwellings (Finkel et al. 2016; Australian 

Energy Council 2017). Moreover, due to falling module prices, average PV arrays have increased in 

size from 1kW in 2009 to just over 5kW in 2017 (IEA2014c; APVI 2017a). Queensland leads the 

country in PV installations both in terms of total capacity (1.5GW), and the proportion of homes 

with PV (31% of dwellings) (APVI 2017b). This far exceeds equivalent per capita rates in other 

leading solar PV markets such as Germany, Italy, California and Hawaii (Finkel et al. 2016). The 

PV industry in Australia now directly employs more than 5,500 people (CEC 2017b). 

 

Rapid PV adoption in Australia was driven by a confluence of factors. Firstly, Australia has some of 

the best solar resources in the world. With the highest average solar radiation per square metre of 

any continent, Australia’s annual solar insolation is estimated at 10,000 times its annual energy 

consumption (Climate Commission 2013). Generous PV subsidies were also introduced in Australia 

which had two main effects: 

• Reduction in upfront capital costs - The Small-scale Renewable Energy Scheme under the 

Renewable Energy Target (RET) let consumers claim small-scale technology certificates, which 

could be sold to reduce the purchase price of a PV system (Wood, Blowers & Chisholm 2015). 

• Provision of ongoing financial incentives – Most states introduced solar FiTs which paid a 

premium for electricity generated from a PV system (Table 1). These schemes are classed as 

either “gross”, where households are paid for all of the electricity generated by their PV system, 

or “net”, where households are paid only for the electricity not used by their home and exported 

back to the network (Martin & Rice 2013).  
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 2008 2009 2010 2011 2012 

South Australia 44c 44c 44c 44c » 16c (Oct) 16c 

Western Australia No FiT No FiT 40c 40c » 20c (Jul) » 

closed (Aug) 

No FiT 

Tasmania 1 for 1 1 for 1 1 for 1 1 for 1 1 for 1 

Victoria No FiT 60c 60c 60c 25c 

New South Wales No FiT No FiT 60c gross » 20c 

net (Oct) 

20c » closed 

(April) 

No FiT 

Australian Capital 

Territory 

No FiT 50.5c 50.5c gross » 

45.7c (July) 

45.7c » closed 

(May) 

No FiT 

Queensland 44c 44c 44c 44c 44c » 8c (July) 

Note: » represents a change in tariff, 1 for 1 means that the FiT is equal to the price of electricity 

Source: Adapted from (Chapman, McLellan & Tezuka 2016) 

Table 1 Australian State and Territory Feed-in Tariff Schemes 

At the same time as subsidies were introduced, electricity prices in Australia increased dramatically 

(Figure 6) (QPC 2016a). They are now considered amongst the highest in the world (Mountain 

2017). This development, along with falling PV system costs meant that PV became a viable 

proposition for mass market consumers. Exponential growth ensued. The resultant efficiencies of 

scale saw the cost of PV installations fall further, with Australia achieving some of the cheapest 

residential install prices in the world (Edis 2015b). Together these factors mean that in most cities 

in Australia, the cost of electricity from residential PV is almost half the price of grid-sourced 

power (Australian Energy Council 2017).  

 

 
Source: (QPC 2016a) 

Figure 6 International real electricity retail price indexes (2007 = 100)  
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With the fundamentals for PV adoption remaining strong, the Australian Energy Market Operator  

(AEMO) predicts that business and residential PV will increase by approximately 350% by 2036, 

representing 20GW of capacity and generating 25,000 GWh of electricity (AEMO 2016b). The 

forecast influence of PV on total Australia operational consumption is shown in Figure 7. This 

graph shows that in addition to the large demand reductions likely to occur as a result of rooftop PV 

adoption, energy efficiency and the impact of increasing electricity prices will also serve to reduce 

residential consumption (AEMO 2016b). This indicates that despite continuing population growth, 

residential electricity demand from the centralised system could remain flat or decrease over this 

period. These dynamics, which will be discussed in more detail in later chapters, have important 

implications for residential battery uptake. 

 

 
Source: (AEMO 2016b) 

Figure 7 Forecast annual energy consumption for the National Electricity Market across key segments  
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2.2 Energy storage 

2.2.1 Technology overview 

Energy storage refers to a “chemical process or physical media that stores energy to perform useful 

work at a later time” (CSIRO 2015a, p. 9).  For modern centralised electricity supply systems, the 

ability to store energy means that the supply of energy can be decoupled from demand (IEA 2014e). 

This not only allows for more effective integration of renewable energy sources (where intermittent 

generation does not always match demand) but can also help realise a range of network operational 

efficiencies including improved grid stability, flexibility, reliability and resilience (IEA 2014e).  

 

There are several energy storage technologies that can be used in centralised electricity sector 

applications (Figure 8). However pumped storage hydropower, which involves using off-peak 

electricity to pump water into a reservoir for later use to generate hydro power, is by far the most 

common technology comprising 96% of total storage capacity (IEA 2016a). 

 

 
Source: (IEA 2016d) 

Figure 8 Energy storage technical characteristics and global capacity as at 2015 

Despite the many benefits of energy storage and its importance as an enabler to optimise integration 

of renewables and to help decarbonise centralised electricity supply systems, its uptake has been 

limited. In 2016, energy storage comprised only 3%, or 150GW, of global electricity capacity (IEA 

2016d). This reflects historic energy sector economics, where in the past it was more economically 

efficient to generate electricity in real-time using existing fossil fuel generators to instantaneously 

meet demand rather than install costly storage technologies (Marchment Hill 2012). 
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In recent years however, the interest in energy storage has increased dramatically in response to 

technology advances, falling costs and the growing imperative to address climate change. The 

greatest technology focus in this regard has been in relation to battery energy storage. 

 

Batteries are a mature technology that have been studied extensively since they were invented by 

Alessandro Volta more than 200 years ago (IRENA 2015). Batteries are a form of electrochemical 

storage that release energy via an oxidation-reduction reaction involving the transfer of electrons 

between electrodes (Salameh 2014). The electrodes, a cathode and an anode, comprise two different 

materials, typically metals, which when separated in an electrolyte matrix gain or lose electrons. 

This reaction, when connected to load, creates current and voltage (i.e. power). In primary batteries, 

the chemical reaction only works in one direction, so that when any of the materials becomes 

exhausted the battery is flat. Secondary batteries are rechargeable which means that the 

electrochemical reaction can be reversed by the application of an external electricity supply (Stock, 

Stock & Sahajwalla 2015).   

 

For residential applications with PV, secondary batteries are used. Typically, any excess electricity 

generated by the PV array that is not required to meet immediate household load is used to charge 

the battery. When the battery is full, excess electricity is then exported back to the grid. The 

consumer decides how and when electricity from the battery is used. Energy management systems 

now exist that can automatically manage electricity flows between the array, the battery, the 

household and the grid to optimise consumption and to maximise the financial benefit from the 

system. A common residential PV and battery configuration is shown in Figure 9.  

 

 
Source: (Mullendore & Milford 2015) 

Figure 9 Common AC grid-tied residential PV & battery configuration 
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To date, lead-acid batteries have been the most dominant electrochemical-based storage devices 

used in residential applications (Hoppmann 2013; Koohi-Kamali et al. 2013). Lead acid batteries, in 

which lead electrodes are sealed in a sulphuric acid electrolyte, are a mature technology and are 

well proven in small, renewable energy integration applications (Nair & Garimella 2010). While 

these batteries are well understood, they are primarily used in isolated, off-grid areas due to high 

costs. They also have some technical constraints which have limited broader uptake for use in 

residential applications. These include limited cycle-life, poor operation in high or low 

temperatures, failure from deep and continuous cycling and a negative environmental footprint due 

to the lead electrodes and acid electrolyte (Nair & Garimella 2010). 

 

In recent years, lithium-ion batteries have entered the market at scale. These batteries are generally 

defined as one in which lithium ions act as the charge carriers. Most lithium-ion batteries use 

carbon materials such as graphite for the electrodes and contain organic electrolyte solutions 

(Horiba 2014). There exist many different lithium-ion cell chemistries e.g. Lithium Cobalt Oxide 

(LiCoO2), Lithium Iron Phosphate (LiFePO4), Lithium Nickel Manganese Cobalt Oxide 

(LiNiMnCoO2 or NMC), each with different applications ranging from use in computing devices 

and appliances, to multi-MW scale installations (Horiba 2014)  

 

Lithium-ion batteries can significantly outperform more mature technologies in regards to delivered 

energy with high specific power (Dunn, Kamath & Tarascon 2011). For example, lithium-ion 

batteries can achieve 95% of overall system efficiency compared with 86% for lead-acid batteries in 

off-grid applications (Pistoia 2014). Lithium-ion also has higher energy densities and longer life-

cycle characteristics compared with many other battery technologies. These characteristics, when 

taken with the potential for improved economics and technology developments, mean lithium-ion 

batteries are rapidly replacing lead-acid as the dominant energy storage technology in residential 

applications (Nair & Garimella 2010; Hoppmann 2013; Pistoia 2014; Savvantidou et al. 2014).  

 

A number of common terms are used in industry and academia to help describe the operational 

characteristics of batteries (CSIRO 2015a; IRENA 2015). These terms, which are described below, 

are used throughout this thesis and underpin elements of modelling. They include: 

• Battery capacity and power rating – The battery capacity, or stored energy, in a battery is 

commonly measured in terms of the electricity it can produce in a certain time period 

represented as kWh or megawatt hours (MWh). The maximum power that a battery can 

produce at any given time is measured in kW or MW.  To illustrate the application of these 
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units, a 10kWh battery could provide 1kW of power constantly for 10 hours, or it could 

provide 10kW of power for one hour. Battery capacity can also be measured in ampere 

hours (Ah), which is the number of hours that any given current can be supplied. 

• Depth of discharge (DOD) refers to the amount of charge a battery holds and is expressed as 

a percentage of the battery’s total available capacity. For example, if a battery has used 60% 

of its capacity with 40% remaining, then its DOD is 60%. Should it be fully discharged, the 

DOD is 100%. Depending on the chemistry, the deeper a battery is discharged the more 

likely it will degrade faster reducing its operational life. Most battery manufacturers 

recommend that the DOD does not exceed 80% although some chemistries, particularly 

flow batteries can be discharged more deeply without consequence. 

• Cycle life refers to the amount of times a battery can charge and discharge at certain defined 

operating parameters, such as DOD and ambient temperature, before a material performance 

loss is experienced. This loss could be defined as a fully charged battery only delivering 

70% of its original capacity.  

• Battery lifetime can either be based on the total number of cycles that can be delivered by a 

battery or the length of the warranty, which assumes that the battery is used according to 

operational specifications for a certain period of time. 

• Round trip efficiency refers to the amount of energy discharged by the battery, relative to the 

amount of energy provided. Usually there are efficiency losses associated with the 

charge/discharge process (CSIRO 2015a; IRENA 2015).  

 

Failure to operate batteries within defined system parameters can have substantial implications for 

cost, performance and life. For example, the depth to which a battery is discharged, how frequently 

it is discharged and the temperature in which it is operated can all dramatically shorten a battery’s 

life. The above terms also provide a common nomenclature by which the strengths and weaknesses 

of different battery types can be compared. This is important because there are many types of 

battery technologies and their use can vary depending on chemistry (e.g. lead-acid versus lithium-

ion), design (e.g. redox flow batteries where the electrolyte solution is pumped through a membrane 

to generate current), application (e.g. starting a car versus supporting grid stability) and specific 

battery efficiencies and lifecycle characteristics.  
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2.2.2 Global market developments 

 

Until recently, the application and deployment of residential battery energy storage systems has 

been relatively limited, with technology cost the most fundamental issue slowing broad market 

penetration (DOE 2013). For this reason, battery energy storage has only been cost competitive in 

high value niche markets where purchasers were driven by non-financial motivations and were 

generally not expecting to see a financial return on the initial investment (Yang et al. 2011; 

Marchment Hill 2012). In addition to cost, other factors that have hampered uptake include issues 

associated with reliability, safety, regulatory barriers and limited industry acceptance (Yang et al. 

2011; Heymans et al. 2014; Savvantidou et al. 2014). 

 

In the past ten years however, the fundamentals for battery energy storage have changed 

dramatically. Substantial technological advances were initially made in the mobile phone and 

computing sectors, and were later followed by similarly important breakthroughs in the electric 

vehicle industry (AECOM 2015). Since 2008 for example, the energy density of electric vehicle 

batteries, increased by a factor of four while battery costs fell on average by 14% per year from 

$USD1000/kWh to $USD410/kWh in 2014 (Nykvist & Nilsson 2015). Between the second-half of 

2014 and the second-half of 2015, lithium-ion battery costs fell a further 35% (REN21 2016). 

Battery costs are now estimated at approximately $US210/kWh, reflecting learning rates of 22%, 

similar to PV learning rates from more than a decade earlier (Figure 10) (Stock, Stock & Sahajwalla 

2015; IEA 2016d).   

 

 

Source: (Stock, Stock & Sahajwalla 2015) 

Figure 10. Learning curves for lithium-ion batteries compared with PV until 2014 
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In addition to already impressive cost reductions, a number of drivers are coalescing which indicate 

that battery prices will continue to decline. In the past few years, the private sector has invested 

billions of dollars in new battery manufacturing capacity which is now starting to come online. 

Several large battery factories have been constructed in Europe, China and the United States 

providing a range of battery components for major battery companies including Enphase, 

SolarEdge, Tesla, NEC and Panasonic (REN21 2016). Tesla’s $5 billion battery factory in the 

United States received particular attention when its construction started in 2014 (Tesla 2014). It is 

estimated that when the Tesla factory reaches full capacity in 2018, it will produce 35GWh of 

batteries per year (i.e. more than all lithium-ion batteries produced globally in 2013) while driving 

down costs by 30% (Tesla 2017).  

 

At the same time, governments are developing subsidy programs to reduce upfront battery capital 

costs while implementing policy to improve battery integration. For example, US states such as 

California, Hawaii, New York and Texas have introduced incentive programs for residential battery 

energy storage (AECOM 2015). Japan’s battery subsidy program, with a budget of nearly $US100 

million, covers more than half of the price for residential consumers installing lithium-ion batteries 

(AECOM 2015). 

 

Most notable however was the German government’s rebate program which ran from 2013 to 2015 

offering up to a 30% reduction in upfront costs of residential battery storage systems to counter the 

impact of decreasing PV feed-in tariffs (Kelly-Detwiler 2013). This program was relaunched in 

March 2016 offering a smaller rebate covering up to 22% of costs to reflect the falling price of 

battery storage (Blackman 2016). The Germany subsidy program has seen more than 50,000 

residential solar battery systems installed to date, with estimates suggesting 100,000 systems could 

be installed by 2018 (Grigoleit, Rothacher & Hildebrandt 2014; Enkhardt 2017). Importantly, it was 

Germany’s decision to implement a solar FiT at the start of the millennium that helped contribute to 

the global PV boom by increasing manufacturing scale and driving technology innovation (Kelly-

Detwiler 2013). It remains to be seen whether German policy initiatives in this regard will enable a 

similar outcome to occur for battery energy storage. 

 

As a result of the above developments, several forecasts have been made predicting large future 

price reductions, with some analysists suggesting that battery prices could halve by 2020 (Byrd et 

al. 2014; Electric Power Research Institute 2014; Koh et al. 2014; AECOM 2015; IRENA 2015).  

Initially, these bullish forecasts were considered with scepticism by many in the broader electricity 
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industry. However, in early 2015, Tesla announced pricing for new home battery energy storage 

solutions that were more than seven years ahead of most projections and substantially undercut all 

previous price expectations (RMI 2015b). In 2016, just over a year later, Tesla upgraded its 

residential battery offering by doubling the usable capacity and including an integrated inverter 

while maintaining the original pricing. This represents an effective halving of costs in terms of price 

per kilowatt hour (Tesla 2016). While the extent of future battery price declines remain uncertain, 

some estimates suggest that costs could fall to US$100 per kWh by 2040, with the US Department 

of Energy indicating that they could fall to as low as US$80 kWh (IEA 2016d).  

 

2.2.3 Battery energy storage in Australia 

 

Until recently, residential battery storage in Australia was almost entirely limited to off-grid 

applications. In 2014, it is estimated that there were close to 5MWh of off-grid battery systems and 

only 500 grid connected systems in Australia (CEC 2015a). However, a number of factors are 

emerging that have stimulated the local market and make uptake at scale more likely in coming 

years.  

 

As previously stated, Australia leads almost all other jurisdictions in terms of proportion of 

dwellings with PV. With high electricity prices, the cost of electricity generated from PV in many 

locations in Australia is cheaper than that supplied by the grid, providing a clear financial 

motivation to maximise PV self-consumption in home (Australian Energy Council 2017). In 

addition, premium FiT rates which helped stimulate the PV boom have ended or are being phased 

out, resulting in households receiving a fraction of the value for their exported electricity. In most 

states this is less than a quarter of the retail tariff (QPC 2016b). Dwellings with PV, and those 

households considering installing PV will now more than ever be determined to increase self-

consumption from their PV systems. At the same time, a range of strengthening non-financial 

motivations in Australia are likely to encourage battery uptake including environmental values, 

desire for self-sufficiency, pursuit of reliability and resilience and frustration with incumbent 

utilities (Agnew & Dargusch 2017).  

 

These drivers coupled with falling battery prices have seen rapid battery market development. In 

2016, it was estimated that 6750 battery systems representing 52MWh were installed in Australia 

with nearly one-third of these batteries located in Queensland (Vorrath 2017b). There are currently 

more than 33 different battery systems with multiple configurations currently available across the 

country (SolarQuotes 2017). The levelised cost of storage for these systems (i.e. the cost over the 
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systems warranted lifetime to store each kWh of electricity), range from $0.19/kWh to $1.43/kWh 

(SolarQuotes 2017). The lower end of this range reflects storage costs that have dropped below the 

retail cost of electricity, which if battery price reductions continue, will make battery energy storage 

a viable financial proposition for many households in coming years. Indeed, some of the world’s 

largest battery manufacturers such as Tesla and Enphase identify Australia: “as the most 

prospective market in the world, thanks to its high grid prices, its abundance of rooftop solar, 

excellent solar resources and the nature of tariffs across the nation” (Edis 2015a, p. 1).  

 

2.3 What are the implications of residential PV and battery adoption at scale?  

 

Numerous industry-led studies in recent years predict that the rise of the engaged electricity 

consumer along with access to new disruptive technologies such as PV and battery energy storage 

will cause significant disruption to centralised electricity systems (Kind 2013; Newbury 2013; PWC 

2013; Koh et al. 2014; Leitch, Moller & Entchev 2014; PWC 2014; Rickerson et al. 2014; RMI 

2014a; Savvantidou et al. 2014). This is because access to distributed generation technology with 

battery storage means that electricity consumers will no longer be captive to the electricity utilities 

and will be able to change the way in which they interact with the existing electricity supply system 

(Severance 2011). This could impact “existing natural monopolies and render incumbent business 

models unsustainable” (Newbury 2013: p1).  

 

To understand the nature and extent of this disruption, it is first necessary to understand the 

structure and operation of existing electricity supply systems. In most modern economies, electricity 

is provided via centralised supply systems in which large generators, typically thermal-based hydro-

carbon, hydroelectric and/or nuclear power, supply customers through integrated electricity 

transmission and distribution networks (McDonald 2008). The transmission network transports 

electricity over long distances at high voltage for efficient transport. The voltage is then stepped-

down by transformers as electricity enters the distribution network. It is then transported to end-use 

consumers where it is typically on-sold by electricity retailers (AEMO 2010).  

 

Whenever electricity is consumed on the network, for example when a light is turned on, power 

flows instantaneously from generator to end user. A system and/or market operator typically 

manages the supply/balance arrangements in an electricity market to ensure security and reliability 

of supply, while reconciling financial transactions between participants. The generalised functional 

elements of a centralised supply system are represented in Figure 11 (Riesz et al. 2014).  
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Source: (Riesz et al. 2014) 

Figure 11 Generalised functional areas of an electricity supply system 

 

The centralised electricity supply model as described above is well-established and has helped 

underpin rapid industrialisation during the past century. Its architecture evolved in response to 

specific developments such as: new generation technologies (e.g. large steam turbines which 

improved economies of scale by increasing electricity output and reducing marginal cost); the 

ability to transport electricity over greater distances more efficiently; the ability to increase 

reliability (as multiple generators connected by transmission networks provide higher reliability 

than any single power plant); and a desire to locate highly polluting generators away from 

population centres (DOE 2007).  

 

The relevance and importance of these drivers however is now changing as new technologies 

emerge, climate change policy evolves, electricity prices increase and consumers become more 

engaged in the way they access electricity. Together these emerging issues have already begun to 

influence the social, economic and operational paradigm on which centralised electricity supply 

system are built. Amongst many other issues for the traditional supply model, these factors 

introduce new levels of temporal and spatial complexity, which in the past were of little relevance 

to operators of centralised supply systems (Pfenninger, Hawkes & Keirstead 2014).  

 

In this respect, the rise of residential PV epitomises the speed and the scale of change that can occur 

in response to emerging drivers and serves as a relevant example to examine the possible impacts of 

new energy technologies on existing supply systems. The intermittency of PV power for example 

has given rise to numerous technical integration challenges. PV systems can only generate 

electricity when they are exposed to sunlight. This means PV power output is limited to diurnal 

cycles with frequent volatility, from seconds to hours, making it difficult to match load with 

generation (Pasta et al. 2014). The challenge of matching intermittent supply from PV with varying 

household demand is illustrated in Figure 12. 
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Source: (Muenzel et al. 2015) 

Figure 12 Coincidence of intermittent PV generation with demand in an Australian household 

 

To address this issue from a consumer perspective, the majority of residential PV deployed in the 

past decade has been connected to the existing centralised electricity grid to provide reliability and 

security of supply (Eltawil & Zhao 2010; Obi & Bass 2016). However, existing electricity networks 

were generally designed for one-way power flows from the generator to the consumer. Intermittent 

generation being fed back into the grid from PV systems has caused a range of technical issues such 

as voltage fluctuations, harmonic distortion and reactive power being sent back to the grid, which 

has led to power quality degradation (Worthmann et al. 2014; Obi & Bass 2016). It has also 

increased uncertainty associated with demand forecasting, with some studies showing that 

concentrations of residential PV can see localised, short-term demand fluctuations of up to 60% due 

to passing clouds alone (ENA 2014).  

 

In addition to technical integration issues, PV also influences conventional generation supply 

dynamics. For example, PV generation hollows out daytime demand reducing the need for 

conventional generation from the grid. This serves to reduce wholesale electricity costs, and in 

cases of large volumes of PV generation, has actually resulted in negative wholesale costs 

(Parkinson 2014; Namovicz 2017). This effect is shown in Figure 13, which illustrates the influence 

of distributed PV on wholesale prices in California. The top chart shows total generation and the 

bottom shows wholesale prices during the same period. These effects become a problem if the 

profitability and competitiveness of generators diminish, resulting in reduced investment in the 

sector which could impact reliability and security of supply in the longer-term.  
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Source: (Namovicz 2017) 

Figure 13 The influence of PV generation on wholesale prices  

 

The above dynamic also exacerbates existing operational issues associated with worsening peak 

demand currently being experienced in many countries. Household electricity demand tends to 

increase in the evening, at the same time as PV generation decreases, requiring electricity utilities to 

rapidly ramp up their output. Using the Californian example again, this phenomenon is illustrated 

by the ‘duck curve’ (Figure 14). It shows that by 2020, 12GW of conventional generation will need 

to come online and ramp up in less than 3 hours to address peak demand (CAISO 2013). Most 

baseload generators, such as coal-fired plants, are not designed to operate in this way as they take 

hours to reach full generation capacity. While peaking plants such as gas generators are used to 

address this issue they are costly, poorly utilised and can represent substantial additional investment 

(Obi & Bass 2016).  

 

 
Source:(CAISO 2013) 

Figure 14 Net load in California showing impact of over-generation from renewables such as PV and wind 
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While PV growth has resulted in a range of technical issues, an additional challenge that has 

received considerable attention in the literature relates to the so called “death spiral” (Graffy & 

Kihm 2014; Rickerson et al. 2014; Khalilpour & Vassallo 2015; Simshauser 2016). This refers to 

the impact of falling demand from the residential sector on traditional utility revenue recovery 

mechanisms. Electricity prices are typically based on volumetric throughput, however much of the 

electricity supply sector infrastructure is based on sunk costs. In many modern economies, the 

network is a regulated monopoly entity where costs are recovered regardless of asset utilisation. 

This means as electricity volumes decline, electricity prices increase, further increasing the 

incentive for consumers to reduce their reliance on the grid. These dynamics can result in cost-

shifting and a range of negative social equity outcomes (Rickerson et al. 2014; Simshauser 2016). 

 

Many of the issues outlined above have seen significant attention from researchers attempting to 

develop solutions (Eltawil & Zhao 2010; Eftekharnejad et al. 2013). While technical or policy 

measures have been developed to respond to some of these challenges, they can entail substantial 

economic or social costs (ENA 2014). As industry and governments continue to grapple with cost-

effective and equitable responses, viable cost-effective battery energy storage systems have begun 

to enter the market.  This development could exacerbate many of the issues associated with PV, 

particularly if consumers continue to change their electricity consumption behaviour and/or reduce 

their reliance on the existing electricity network.  

 

To fully understand the possible implications stemming from residential PV and battery uptake, it is 

necessary to consider the ways in which these systems are most likely to be deployed. In this 

respect, there are three basic PV and battery size and functionality configurations that consumers 

could choose. They could: 

• Stay connected to the grid but use their PV to charge small batteries to optimally manage 

their electricity use so as to lower total electricity bills during peak times. 

• Stay connected to the grid but install larger batteries so that they can use most of the power 

that their PV systems generate in-home. They would only use the grid for emergency 

backup in case of extended periods of low solar insolation or in case their home energy 

system fails. 

• Disconnect entirely from the grid and meet all their needs from their home PV and battery 

energy storage system.  
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A key commonality across all three of these PV and battery configurations, is that grid electricity 

consumption will be reduced compared with either a PV-only dwelling or a non-prosumer dwelling. 

Depending on the size of the PV and battery, this reduction could be substantial and could 

significantly exacerbate the “death spiral” as described above. It also increases the differential in the 

cross-subsidy that occurs in this scenario i.e. when utilities increase rates, non-prosumers have 

greater exposure to those increases, meaning they take on a greater share of costs relative to the 

proportional costs they impose on the system (Picciariello et al. 2015).  

 

To illustrate this magnitude of this issue, current pricing mechanisms in Australia reward reduced 

consumption regardless of when the reduction occurs, which means prosumer dwellings do not 

meet the full cost of their network use (AER 2015c). For example, a household installing PV can 

save approximately $200 in network costs as a result of reduced consumption. However as this 

reduction is based on PV generated during daylight hours, and not peak times, it actually reflects a 

real reduction in network costs of only $80, meaning that consumers without PV must meet the 

$120 difference by paying higher network charges (AER 2015c). Given that PV and battery uptake 

initially at least will most likely be adopted by wealthier demographics, this could see a potentially 

regressive effect, whereby lower socio-economic households are locked into a cycle of ever-

increasing electricity bills as they become financially responsible for maintaining an under used, 

capital-intensive electricity network (CSIRO 2013a; Schill, Zerrahn & Kunz 2017). 

 

Batteries poorly integrated into the network could also result in additional technical issues. To 

demonstrate, a stylised example of two possible charging/discharging regimes is shown in Figure 

15. The graph on the left does not have system-oriented charging, which means as soon as the 

battery is full, it would impose a steeper gradient of PV feed-in back to the grid which could require 

costly, short-term system flexibility measures to be installed on the network (Schill, Zerrahn & 

Kunz 2017). At the same time, the battery’s ability to soak up and reduce PV intermittency during 

the day, or to minimise system exports during periods of already low grid demand, are constrained.  
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Source: (Schill, Zerrahn & Kunz 2017) 

Figure 15 Dwelling load, generation and storage profile under non-system oriented charging (left) and system-

orientated charging (right) 

 

Notwithstanding the seriousness of the above risks and challenges, it is important to recognise that 

battery energy storage configured to support the network could realise substantial system-wide 

benefits. For example, a key functionality of battery energy storage is its ability to store energy in 

periods of low demand for use during peak demand helping to flatten load profiles (as illustrated in 

the graph on the right in Figure 15 above). This could offset the additional generation required to 

service peak load which could lower capital infrastructure investments. Furthermore, as peak load is 

usually met with expensive fast-start generators such as gas, and as generators are typically 

dispatched in order from least to most expensive, it could help to reduce wholesale electricity costs 

(Silva-Monroy & Watson 2014).  

 

Flatter load profiles could also reduce congestion on transmission and distribution networks which 

would avoid or defer the need for costly system augmentation (Hanser et al. 2017). In terms of 

future planning, network operators could incentivise batteries in constrained areas as a cost-

effective alternative to traditional network infrastructure upgrades (Noone 2013). Furthermore, 

battery energy storage can reduce power quality issues associated with intermittent PV generation 

being fed back in the grid and can be used to manage voltage fluctuations and to stabilise local 

power flows (Hanser et al. 2017). From a system-wide perspective, PV with batteries increase 

generation diversity and as highly dispersed systems can improve overall reliability and security of 

supply (Bell, Creyts & Lacy 2014). 
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In recognition of the potential risks and opportunities associated with PV and battery energy storage 

technologies, a large body of research already exists in the literature that examines some of these 

issues. One of the most dominate areas of research relates to technical system optimisation. The 

volume and depth of these studies reflect the fact that early applications of PV and batteries 

(primarily lead acid) can be traced back nearly five decades, when even then they were the subject 

of significant research interest and technical characterisation (Khalilpour & Vassallo 2015). 

 

Initially this research reflected the potential at the time for PV and battery use in off-grid and 

remote areas (Gordon 1987). In recent years, studies have begun to examine the possibilities for 

grid-connected applications and interactions with the network (Hiremath, Shikha & Ravindranath 

2007; Manfren, Caputo & Costa 2011). Such studies have become highly sophisticated and have 

been used to: estimate optimal sizing characteristics and design criteria (Schmiegel & Kleine 2014; 

Weniger, Tjaden & Quaschning 2014); determine appropriate battery chemistries for use in various 

applications (Hammond & Hazeldine 2015); maximise beneficial battery characteristics such as 

optimal charge/discharge efficiency, energy density and cycle life (Pedram et al. 2010); and 

determine optimal operational scheduling for use in grid-connection applications (Lu & 

Shahidehpour 2005; Ratnam, Weller & Kellett 2015a). 

 

In the past decade, the number of techno-economic studies has also increased, examining issues 

associated with battery system costs, the influence of subsidies such as feed-in tariffs, and the 

impact of adoption on electricity prices (Ru, Kleissl & Martinez 2013; Bruch & Müller 2014; 

Hoppmann et al. 2014; Mundada, Shah & Pearce 2016). Many techno-economic studies also look to 

quantify the benefit from PV and storage based on maximising self-consumption as the primary 

value proposition or by leveraging incentives deriving from other network benefits (Mulder et al. 

2013; Luthander et al. 2015; Fares & Webber 2017; Schill, Zerrahn & Kunz 2017). Furthermore, 

several studies consider ways to use batteries to minimise residential electricity costs through time 

shifting while attempting to achieve broader network objectives (Hubert & Grijalva 2012; Nottrott, 

Kleissl & Washom 2013; Ru, Kleissl & Martinez 2013). The use of different electricity tariff 

pricing mechanisms such as time-of-use, critical peak pricing and real time pricing have also been 

modelled to determine their influence on the economic benefits of residential PV and battery energy 

storage (Lupangu & Bansal 2017).  
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The studies described above are almost all based on bottom-up optimisation or simulation models 

with resolutions of one hour or less spanning relatively short time periods (i.e. months to years as 

opposed to decades). They are data-rich and aim to estimate the best technical or financial 

configurations for a specific dwelling, the optimal mix of distributed technologies in a specific 

spatial area, or the best combinations in terms of broader economic or environmental outcomes 

(Manfren, Caputo & Costa 2011). As primarily linear-based models, they incorporate very little 

endogenous feedback. In addition, they do not address the diffusion characteristics in the energy 

system nor the transitional effects on broader system elements (Kubli & Ulli-Beer 2016).  

 

In contrast, several long-term planning studies based on hybrid modelling approaches have also 

been undertaken to better understand the implications of PV and battery integration from a broader 

perspective. These include studies that consider the economics of load and grid defection both from 

the individual and electricity sector perspective (RMI 2014a, 2015a), forecasts of PV and battery 

uptake to determine demand impacts over the medium to longer term for use in operational 

electricity sector planning (AEMO 2016b) and national energy policy planning studies (CSIRO 

2013a, 2017). In addition, the United States National Renewable Energy Laboratory is planning on 

including behind-the-meter storage in its Distributed Generation Market Demand model which 

simulates the potential adoption of distributed energy resources in the United States through 2050 

(Sigrin et al. 2016).  

 

Despite the substantial body of work described above, the assumptions underpinning the technology 

diffusion dynamics for residential PV and battery energy storage in the existing literature are almost 

entirely predicated on techno-economic factors. This means these models may not accurately 

account for the many factors that comprise the consumer decision making process, particularly non-

financial motivations, nor do they incorporate the differing feedback mechanisms that can reinforce 

consumer preferences in this regard. Currently diffusion characteristics for residential PV and 

battery adoption are addressed in the literature primarily in a qualitative way or through industry 

surveys. Simulation models dealing with “diffusion and transition aspects of the energy system are 

very rare” (Basu et al. 2011; Kubli & Ulli-Beer 2016, p. 73).   

 

While this is true of residential battery adoption dynamics, it is worth noting that residential PV 

without batteries has received far more attention in the literature. This reflects the significant PV 

growth seen over the past decade and the maturity of the PV market. The literature that considers 

PV adoption dynamics is more diverse and includes analysis of specific drivers of PV diffusion 
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such as consumer behaviour and preferences (Bollinger & Gillingham 2012; Sigrin, Pless & Drury 

2015; Dharshing 2017; Reeves, Varun & Robert 2017), more holistic modelling approaches such as 

agent-based modelling (Robinson et al. 2013; Sigrin et al. 2016) and diffusion models based on 

stated preference data (Islam 2014). The methods used in these studies were considered as part of 

the broader methodological development for this thesis.  

 

To address the gap for residential PV and battery energy storage in this regard, Kubli and Ulli-Beer 

(2016, p. 73) identify the need for “innovative simulation models addressing the diffusion aspects 

for distributed generation systems, taking into account the complex interlinkages between 

technology, actors, the economy and institutions”. In recognition of this requirement, a systems 

thinking framework has been identified as the most suitable methodology to address the research 

objectives of this thesis.  
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Chapter 3  Synthesis and significance 

 

Overview of chapter 

 

This chapter represents a synthesis of the project’s research objectives and summarises emerging 

issues including possible implications associated with broad uptake of residential PV with battery 

storage. The paper also outlines a systems framework that conceptualises at a high-level the 

methodological approach that is being applied as part of this research project. 
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3.1 Introduction 

 

A key focus of global climate change mitigation activities has been attempts to decarbonise 

centralised electricity systems. Although there have been some successes, a majority of mitigation 

scenarios indicate that the electricity sector must decarbonise more quickly, and more completely, 

over the next 50 years to avoid the worst impacts of climate change (IPCC 2014).  

 

With the electricity sector contributing nearly 40% of global energy-related greenhouse gas 

emissions, this represents a significant challenge (IEA 2014a). Modern centralised electricity 

systems, where electricity from large generators is transported to end-users along extensive 

transmission and distribution networks, are built on billions of dollars of investment, comprising 

infrastructure with very long asset-lives, supported by complex regulation. For existing electricity 

markets around the world, effective solutions to transition to a low-carbon economy in an 

economically efficient and socially equitable manner remain elusive.  

 

Clean-energy advocates are quick to point to the steep increase in renewables as a panacea for 

future low-emission growth of the electricity system. Despite impressive double-digit annual 

growth over the past decade, renewable energy is growing from a low base and must be considered 

within the broader context of the electricity supply system where fossil fuels over the past 10 years 

have accounted for more than 75% of new electricity generation (IEA 2014a).  

 

With electricity expected to increase its share as part of the total energy mix, a smoother, more 

efficient low-emission deployment pathway for the sector must be developed (IEA 2014a; IPCC 

2014). In this respect, one of the great emerging challenges for policy-makers and utility owners 

relates to the recent boom in residential solar photovoltaic (PV) power and the emergence of viable 

and potentially cost-effective electricity storage. 

3.2 The rise and rise of solar photovoltaic power  

Following PV module price drops of more than 80% in the past 5 years, global PV deployment has 

increased from a base of 3.7GW in 2004 to more than 150GW in early 2014, contributing nearly 

1% of total global electricity demand (EPIA 2014; IEA 2014a; IEA 2014d; IEA 2014f). In markets 

in Italy and Germany, PV is meeting 7.5% and 6.5% of demand respectively (EPIA 2014). Recent 

analysis by the International Energy Agency indicates that PV could generate up to 16% of the 

world’s energy by 2050 (IEA 2014f).  
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PVs, with average lifecycle greenhouse gas emissions of 49.9 gCO2e kWh−1, compared with a 

global average for the electricity sector of approximately 532 gCO2e kWh−1, is now making 

material contributions to emissions reductions in some countries (IEA 2013b; Nugent & Sovacool 

2014). At the end of 2013, installed PV systems were avoiding approximately 140 million tonnes of 

CO2 per year (IEA 2014f).  

 

For the residential sector, where a substantial proportion of global PV capacity has been deployed 

so far, this is highly relevant. On average, 30% of total electricity demand is consumed by the 

residential sector in Organisation for Economic Co-operation and Development (OECD) countries 

(IEA 2014b). Although some homes are not suitable for PV for reasons of size or shading, and 

generation can vary depending on location and siting, it is nonetheless clear that residential PV 

represents an important emissions mitigation target for policy-makers.  

 

Despite recent growth, there is no indication that PV saturation is close, as rates of deployment 

continue to exceed expectations with at least 36.9 GW of PV capacity installed in 2013 (IEA 

2014d). At the same time, PV system prices continue to fall, with US price reductions in 2013 

exceeding 12% (Feldman et al. 2014). These reductions are occurring at the same time as the costs 

to build new conventional generators increase substantially.  

 

There is also the possibility that PV technology will continue to get cheaper. The average price of 

PVs has dropped by 20% with every doubling of installed capacity over the past two decades (de La 

Tour, Glachant & Ménière 2013; IRENA 2013). With analysts in the United States predicting the 

downward trend for PV pricing to continue, albeit at a slower rate, it is likely that the US 

Department of Energy will reach its target to drive down the cost of solar electricity to US$0.06 

kWh to make solar “fully cost-competitive with traditional energy sources before the end of the 

decade” (NREL 2014, p. 1).  

 

On the surface, these developments are positive. As an electricity generation technology, PVs have 

no moving parts, makes no noise, do not generate waste during operation, are sealed so can be used 

in almost any environment, are modular, and can be scaled up or down to meet load requirements. 

From a broader socio-economic perspective, PVs can improve energy security, increase energy 

sector resilience, drive reductions in greenhouse gas emissions, improve access to energy, create 

new industries and jobs, and provide power to remote communities (Sener & Fthenakis 2014). PV 

use also encourages consumers to become actively engaged in managing their energy and provides 

them with greater control over their electricity bills.  
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Despite these benefits, the rapid rate of PV deployment has caused disruption to centralised 

electricity supply systems, resulting in operability issues (Passey et al. 2011). Existing electricity 

systems were designed for unidirectional power flow from generators to consumers; increasing 

volumes of intermittent generation fed back into the grid from rooftop PV are now having an impact 

on power quality (Zahedi 2011).  

 

Managing many of the technical issues, such as harmonic distortion, voltage spikes and power 

output fluctuations, can be costly, but these issues are not insurmountable. More difficult to address 

are the emerging economic impacts. Residential households with PV participate in the electricity 

market as both generators and consumers, reducing total system demand, while effectively 

challenging the business models of entrenched utility providers.  

 

A recent study reported that 94% of energy sector executives surveyed predict a “complete 

transformation or important changes to the power utility business model” as a result of disruptive 

technology, the changing role of the consumer, and the emergence of distributed generation 

including PV and storage (PWC 2013, p. 1). More than 56% stated that the fall in solar prices 

would have “a high or very high impact on their market” (PWC 2013, p. 9).  

3.3 The importance of storage  

So far, electrochemical storage in the form of lead–acid batteries has been the most common form 

of electricity storage for residential PVs. Because of its high costs, it has almost exclusively been 

used in off-grid applications. Now, with electricity prices increasing in some regions and battery 

prices decreasing, viable battery storage options are emerging for grid-connected households.  

 

This development is very important from the perspective of global climate change mitigation and 

sustainable energy supply. Traditional centralised electricity supply systems require instantaneous 

balancing of supply with demand. Residential battery storage with PVs and smart invertor 

technology will change this paradigm and allow consumers to shift the times they use electricity, 

reduce how much electricity they use from the network, or disconnect from the network entirely. 

Although consumers will choose the configuration most appropriate to their needs, not all options 

will result in net positive benefits to the system as a whole.  

 



 

39 

 

A widespread shift by consumers towards complete grid independence could see network asset use 

drop, causing electricity prices to increase as network costs are recovered over smaller volumes of 

electricity (CSIRO 2013a). This represents substantial societal cost. Households that cannot afford 

to reduce electricity from the grid could be locked into a cycle of ever-increasing electricity bills as 

they become financially responsible for maintaining an under used, capital-intensive electricity 

network (CSIRO 2013a).  

 

In contrast, residential battery storage technologies could be configured to support the network and, 

when deployed in conjunction with subsidies or supportive tariff structures, help to achieve 

financial outcomes for consumers. For example, time-of-use electricity pricing provides an 

opportunity for consumers to store electricity when tariffs are cheap and use it during peak periods 

to avoid higher rates. This reduces demand on the network, resulting in better asset use while 

reducing system-wide costs. Batteries with smart invertor technology can also be used to help to 

manage power quality and improve reliability, resilience and diversity of supply across the network. 

In some instances, carefully managed grid defection on costly-to-maintain networks, particularly in 

regional and remote areas, could reduce network costs and improve reliability.  

3.4 The rapidly evolving storage sector  

High costs remain the fundamental issue slowing broad market penetration of residential battery 

storage (Yang et al. 2011; Heymans et al. 2014). At present, battery storage is only cost-competitive 

in some high-value niche markets and in instances where purchasers are motivated by non-

economic drivers (Yang et al. 2011). At “current cost and performance levels”, the IEA questions 

the transformative impact of storage, stating that it “falls short of delivering the conceptual 

flexibility potential when compared with competing options” (IEA 2014a, p. 239). But a number of 

factors are coalescing that may trigger a rapid decline in the costs of battery storage while 

accelerating technology development.  

 

Some governments have developed generous policy measures to help to drive demand for battery 

storage. Pressure to reduce battery costs is also intensifying as battery manufacturing facilities scale 

up to respond to increasing demand for electric vehicles (EV). The EV manufacturer Tesla has 

committed to a US$5 billion manufacturing facility that aims to produce 500,000 EV batteries by 

2020 while reducing battery costs by 30% by 2017 (Tesla 2014). Tesla’s Model S battery has the 

capacity to power the average US household for up to 3.5 days (Byrd et al. 2014). With a global EV 

fleet of 350,000 vehicles in 2013, and estimates of tens of millions of vehicles on the road in 
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coming decades, there are good prospects for reuse of EV batteries in residential applications in the 

longer term (Heymans et al. 2014; IEA 2014a).  

 

In response to these developments, forecasts suggest that the cost of some battery technologies 

could halve by 2020 (IEA 2012; EPRI 2014; Pistoia 2014). Investment bank Morgan Stanley states 

that the storage market is larger than predicted and that battery costs will decline more rapidly than 

previously thought, with a total of 240GW of residential and commercial storage likely to be 

deployed in the United States alone (Byrd et al. 2014). In addition, at least two studies have found 

that PV and storage has already reached grid parity for certain consumers in Hawaii, and with 

falling battery prices, parity could be achieved in other US markets, such as New York and 

California, in less than 10 years (Koh et al. 2014; RMI 2014a).  

 

Should battery storage drop in price as forecast, enabling widespread uptake, the impacts could 

challenge the fundamental assumptions of centralised power system design and the operation of 

electricity markets (PWC 2014). In early 2014, global investment bank Barclays downgraded the 

corporate bond market for the entire US electricity sector, suggesting that the industry is unprepared 

for the threat posed by residential PV and storage (Koh et al. 2014). Barclays states that costs of 

residential-scale storage are falling quickly, and with PV, this development will “reconfigure the 

organisation and regulation of the electric power business over the coming decade” (Koh et al. 

2014, p. 1). At the same time, Australia’s national science agency, CSIRO, predicts that electricity 

storage could play “a future game-changing role in many aspects of the electricity system” and in 

one possible scenario it estimates that by 2050, a third of Australian electricity customers could 

leave the grid entirely (CSIRO 2013a, p. 30; 2013b).  

 

3.5 Managing the transition  

 

With the world’s energy systems on the cusp of unprecedented transformation, it is becoming more 

important to understand system-wide impacts from disruptive technology to ensure that the delivery 

of secure and reliable electricity is not compromised. For PV and storage, this will be a difficult 

objective to achieve. The existing electricity system is complex and characterised by multiple 

disruptive influences and substantial uncertainty. The emergence of the end-user as a primary driver 

of change is amplifying system complexity.  
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Comprehending complexity in the electricity sector and addressing issues with long-term 

consequences have in the past proven difficult. For example, California’s well-known attempt to 

reform its electricity supply system and lower costs in the 1990s led to higher prices and a financial 

crisis that saw blackouts, the collapse of the state’s largest energy company, declining productivity, 

job losses and public costs in the billions of dollars (Sterman 2001).  

 

Traditional linear approaches to modelling can be limited in understanding and anticipating change 

in complex systems over time (Hjorth & Bagheri 2006). Such approaches break a system into its 

component parts to investigate the linear impact of cause and effect while often ignoring the 

interactions from which the complexity and the behaviour of the system are derived. A ‘systems 

thinking’ approach avoids these pitfalls. It can effectively map and quantify multidimensional 

causal relationships, while incorporating the impacts of feedback loops and time delays (Sterman 

2000).  

 

A key strength of a systems approach is its ability to transcend traditional boundaries between the 

sciences and humanities to connect often disparate variables (Hjorth & Bagheri 2006). This is 

particularly relevant for consumer-led transformations in the electricity sector, where large numbers 

of small end-users with differing motivations have the ability to disrupt an essential service that 

underpins fundamental social, economic and environmental outcomes.  

 

Figure 16 displays a conceptual framework that demonstrates key variables and important feedback 

loops that could drive a consumer-led boom in rooftop PV and storage. This framework applies to 

established, centralised, fossil-fuel-based electricity systems in developed world economies where 

rising electricity prices, deregulation and new technology are empowering end-use consumers to 

participate in the electricity market.  
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Figure 16 Factors influencing the rate and scale of solar PV and storage deployment 

This systems model helps to demonstrate the paradigm shift underway in the residential sector 

where key feedback loops are encouraging energy self-sufficiency and challenging entrenched 

business models that are reliant on volumetric sales of electricity. Attempts by incumbents to 

preserve the profitability of existing business models may end up achieving the opposite by 

reinforcing consumer drivers for grid independence.  

 

Consumer motivation will be central to determining the rate and scale of storage uptake. Although 

consumers’ financial objectives are one of the most important drivers, the pursuit of energy self-

sufficiency, frustration with incumbent utilities, and environmental concerns will also influence 

behaviour (Balcombe, Rigby & Azapagic 2014). These motivations, along with technology cost and 

the ability to pay, will drive the type and size of storage that consumers purchase and the way in 

which they use them. This in turn will determine the system response.  

 

A failure by incumbents to respond to these trends will impact their ongoing competitiveness, 

allowing new entrants with new business models to cater to consumers’ needs. Even with high bat-

tery costs, a range of energy service companies around the world are already offering packages that 

combine storage with other energy efficiency technologies and innovative financing options. 
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3.6 Where next for residential PV and storage? 

Despite the compelling forecasts regarding falling prices and rates of technology improvement, the 

residential storage market is still very much in its infancy. With sparse empirical data, the extent of 

future disruption stemming from residential PVs and storage remains uncertain. What is known, 

however, is that the centralised electricity sector, the form and function of which have remained rel-

atively static for nearly a century, is no longer immune to the power of consumer-led disruption. 

 

For residential storage, this understanding precludes a wait-and-see approach if the problems 

associated with the PV boom are to be avoided. In this environment, with industry and new entrants 

mobilising to maintain or build market share, the risks of suboptimal outcomes along the supply 

chain and for society more broadly are increased. 

 

A systems modelling approach is well suited to help government and industry plan for, and 

optimise, the looming market transformation. Once the structure of the system is mapped, multiple 

simulations can be run to determine the impact of interventions anywhere along the supply system 

from different stakeholder perspectives. This helps in identifying the key leverage points and can 

determine where policy resistance may occur; that is, where the initial intervention is compromised 

by the response of the system to the intervention itself (Sterman 2001).  

 

Should they choose, governments will have substantial power to influence this system to achieve 

stated environmental, social or economic outcomes. But balancing the diverse expectations of 

different stakeholders is a challenging task, particularly in the absence of any best-practice policy 

template or roadmap to address issues such as this (Rickerson et al. 2014). Although incumbent 

utilities have immense economic and market power, the increasing numbers of households with 

PVs, in some countries numbering in the millions, wield a different but no less effective type of 

power. 

 

Ultimately, the extent to which PVs with storage confer net positive or negative outcomes over the 

coming decades will be influenced by the ways in which the market attempts to realise financial 

value, and the manner in which governments intervene to achieve political or social good 

objectives. For market participants with differing strategic and commercial objectives, and for 

governments, particularly those that retain ownership of electricity infrastructure, this will require a 

fundamental rethink of the form and function of the existing electricity supply system.  
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Chapter 4 Methods 

 

Chapter overview 

 

The purpose of this chapter is to outline the rationale and epistemological basis for the methodology 

used in this dissertation and the specific research techniques applied to address the research 

questions. To help articulate the justification for a systems approach, the chapter leads with a 

review of common energy modelling approaches. It describes the challenges inherent in modelling 

energy sector transitions, particularly those involving disruptive demand-side technologies. Systems 

thinking is identified as the conceptual and organisational framework underpinning the research and 

its past and current application in the energy sector is reviewed. The second section of this chapter 

provides an overview of the methodological process applied in this thesis. It describes a mixed 

methods approach for data collection and analysis, introduces the use of case study research and 

summarises the specific techniques used across four stages of research.  
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4.1 Theoretical approach and justification 

4.1.1 Characterising energy sector disruption   

Centralised electricity supply systems in the past have been relatively immune to sector-wide 

disruption. The monopolistic nature and relative inertia of the electricity supply system has in many 

respects underpinned its stability. A relatively small number of institutional stakeholders operating 

highly technical, capital intensive assets, interact within complex regulatory and financial markets. 

Participation in the sector has required substantial financial resources and specialised expertise. 

This has limited competition and with very few cost-effective alternatives, ensured that market 

structure and function has not changed materially for many years.  

 

The growing global imperative to address the energy trilemma – the provision of secure, equitable 

and low emission energy – has seen the beginnings of an unprecedented shift in the way electricity 

is generated, distributed and used (World Energy Council 2016). In this respect, residential PV and 

batteries typify the dynamic and complex nature of the transition. Distributed technology in the 

hands of a large, diverse and actively-engaged consumer base, supported by new nimble market 

participants with access to increasingly sophisticated digital technologies, represent an antithesis of 

the existing supply system. It is this juxtaposition that underlies the difficulty inherent in 

understanding and modelling the rate and scale of PV and battery adoption and consequently, the 

steps required to achieve efficient and optimal integration.  

 

Drawing from complexity science and systems theory, it is possible to more clearly articulate the 

specific characteristics of the energy sector that make rigorous analysis of disruptive transitions so 

challenging. Energy systems are classified as complex adaptive systems in which “there is no 

autonomous control over the whole system, and…self-organised emergent behaviour arises that 

cannot be predicted by understanding each of the component elements separately” (Bale, Varga & 

Foxon 2015, p. 152). This is due to several contributing factors: 

• agents within energy systems are diverse, with all levels of society, including the public, 

industry and government, having vested interests regarding energy supply and access; 

• agents are heterogeneous in their preferences, they do not have access to perfect information 

and lack perfect foresight and rationality; 

• agents influence, or are influenced within a highly interconnected physical, economic, social 

and institutional network where decisions taken at any level can have far reaching effects in 

both time and space; 
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• these relationships and interactions ultimately shape the characteristics of the system 

however no one agent has absolute control;  

• dynamic equilibrium is rarely achieved due to the influence of multiple feedbacks which 

means that the system is constantly changing; and  

• the emergent nature of the system cannot be predicted based on the past due to the non-

linearity of interactions described above (Bale, Varga & Foxon 2015). 

 

With energy sector disruption accelerating, a failure to account for these complex characteristics 

increases the risk of suboptimal outcomes. It is therefore imperative that fit-for-purpose research 

methodologies are identified and implemented when addressing specific research problems. With 

this in mind, the following section reviews common approaches to energy modelling to assess their 

various strengths and weaknesses.  

 

4.1.2 Overview of traditional energy modelling approaches  

 

Energy models, like models in most other disciplines, are simplified representations of real systems 

(Hiremath, Shikha & Ravindranath 2007). They allow testing of highly complicated systems, which 

would be beyond the ability of individual humans to comprehend and would be either impractical or 

impossible to test in the real world (Hiremath, Shikha & Ravindranath 2007).  

 

Energy modelling has been used for many decades to assist in energy forecasting and policy 

development. The use of modern macroeconomic energy models originated in the middle of last 

century, however it wasn’t until the 1970s that energy modelling began to evolve as a distinct field  

(Herbst et al. 2012). This occurred in response to energy shocks such as the OPEC oil crisis, which 

prompted governments and industries to recognise the critical importance of longer-term strategic 

planning for the energy sector (Helm 2002).  

 

Since that time, a vast number of energy models have been developed with diverse methodological 

designs and data outputs to reflect their specific uses. They range in scale and application from 

minute-to-minute electricity dispatch models based on highly granular data to long-term energy 

sector planning models that span decades (Pfenninger, Hawkes & Keirstead 2014). To reflect this 

diversity, there exist at least nine separate classification systems for energy models based on model 

purpose, model structure, analytical approach, mathematical approach, geographic scale, sectoral 

coverage, time horizons and data requirements (Grubb et al. 1993; Hiremath, Shikha & 

Ravindranath 2007). These different classification systems reflect the fact that energy models have 
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evolved in a multitude of ways based on the target audience (government, utilities, researchers, 

public), intended use (forecasting, optimisation, planning), spatial coverage (local, national, 

international), temporal coverage (minutes, hours, days, years), data access (accuracy, availability) 

and application of analytical theoretical frameworks (top-down macroeconomic approach, bottom-

up technical approach) (Herbst et al. 2012).   

 

Despite the increasing diversity of energy models, most have historically been framed based on 

whether they are “top-down” or “bottom-up”, terminology which refers to the level of aggregation 

(top) or disaggregation (bottom) of data (Bruce, Yi & Haites 1996). Such models differ mainly with 

respect to “emphasis placed on a detailed, technologically based treatment of the energy system 

[bottom-up], and a theoretically consistent description of the general economy [top-down],” 

(Löschel 2002, p. 107; Nakata 2004).  

 

Top-down models apply macroeconomic theory to predict future outcomes based on extrapolation 

of past trends for analysis of energy-economy interactions (Van Beeck 2000). Econometric methods 

for example, are frequently used to model the operation of the energy sector as part of the broader 

economy using aggregated data (e.g. for energy supply and demand) which are then related to 

production factors, such as labour and capital, to determine the impact on welfare, employment and 

economic growth (Herbst et al. 2012). Economic equilibrium models focus on long-term effects and 

are primarily concerned with the conditions that achieve equilibria in either specific elements of the 

economy such as energy demand and supply sectors, referred to as partial equilibrium, or the entire 

economy, referred to as general equilibrium (Van Beeck 2000).  

 

In contrast, bottom-up models contain a high level of technical data often with detailed performance 

and costs parameters (Nakata 2004). They frequently describe specific elements of an energy 

system in substantial detail by integrating microeconomic and/or technical elements to analyse 

specific technology or policy combinations (Després et al. 2015). Because of their specific 

characteristics, the two types of modelling frameworks are generally used to answer different 

questions. For example, bottom-up models are better at examining complex technology substitution 

options (“exploration”) whereas top-down models are more suited to forecasting wider economic 

impacts (“prediction”) (Bruce, Yi & Haites 1996). 

 

Many of the traditional energy models have been successfully applied to a range of energy sector 

challenges in the past. However, there remain a number of limitations inherent in these approaches 

which could limit their effectiveness in addressing emerging issues associated with energy sector 

transitions.  
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Linear energy models that rely on historical data to forecast future outcomes do so despite 

increasing uncertainty and disruption in the energy sector. The rapidly changing energy sector gives 

credence to the fact that “the future cannot be known as a result of past experiences” (Holt, 

Pressman & Spash 2009, p. 11). This issue is not a new phenomenon. For example, a review of 

demand models following the 1970s oil shocks in the US found almost all models systematically 

underestimated uncertainties and failed to incorporate endogenous feedback such as the ability of 

the US economy to adopt energy efficient practises in response to high energy prices (Craig, Gadgil 

& Koomey 2002, p. 94). An additional weakness in this respect, is that trend-based approaches, 

including many econometric projection models, discourage searches for underlying driving forces 

and “do not include causality and cannot identify emerging contradictions, both of which can be 

critical in understanding how the future might unfold”(Craig, Gadgil & Koomey 2002, p. 94).  

 

Failing to account for these factors can result in highly inaccurate modelling outputs that can drive 

unintended consequences. To illustrate this point, in 2009 modelling undertaken by AEMO for 

electricity sector planning purposes assumed that electricity demand would continue to grow in line 

with economic growth as it had in past years. While economic growth increased by 13% between 

2008-09 to 2013-14, electricity demand actually fell by 7% in response to energy efficiency, 

distributed generation and broader economic structural change (Sandiford et al. 2015). AEMO’s 

modelling results found that electricity demand would increase by 14% during this period which 

signalled the need for sector expansion. This forecast ultimately underpinned an overinvestment in 

electricity infrastructure resulting in a corresponding underutilisation of assets which helped to 

drive up electricity prices (Sandiford et al. 2015). 

 

Another limitation of traditional energy models relates to the assumptions underpinning 

neoclassical economic theory, which provides the foundation for many top-down energy sector 

models (Colander, Holt & Rosser 2004; Holt, Pressman & Spash 2009). Based on rationality, 

selfishness and equilibrium, the theory assumes that individuals have access to perfect information, 

can accurately quantify benefits and will make rational decisions based on logic (Rai & Benjamin 

2013). This means that with individuals able to maximise utility, and firms attempting to maximise 

profitability, efficient resource allocation occurs in markets that achieve equilibrium which can lead 

to continual, or limitless, growth. These assumptions, which have been the subject of considerable 

debate and criticism in recent years, deliver modelling results that provide for optimal sectoral 

outcomes, or technology configurations which are deployed in an economically rational manner 

(Colander, Holt & Rosser 2004; Holt, Pressman & Spash 2009).  
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While modelling based on these approaches may have value from a theoretical perspective, they fail 

to recognise that decision making at all levels (i.e. individual, business and government) is 

imperfect and adoption and integration of new technologies often stem from a diverse range of non-

financial motivations (Wilson & Dowlatabadi 2007; Kemp & Volpi 2008; Rai & Henry 2016). For 

new energy technology adoption, this includes the influence of decision heuristics, anchoring, path-

dependence, risk aversion, trust-based information networks, and social norms amongst others (Rai 

& Robinson 2015). 

 

The body of literature that identifies the shortcomings of neoclassical economic theory continues to 

grow, and while the theory itself remains dominant, there is momentum gaining around new 

modelling techniques based on “dynamics, recursive methods and complexity theory” (Colander, 

Holt & Rosser 2004). These developments have seen energy models become far more holistic, so 

that in addition to technical and economic issues, social and environmental issues are also 

considered (Ahmad et al. 2016).  

 

In this respect, hybrid models, which link bottom-up approaches with top-down economic models 

are becoming increasingly popular. These models aim to realise the benefits of combining both 

aggregated macro-economic data and disaggregated technical elements to better forecast and 

characterise possible impacts resulting from electricity system change (Pfenninger, Hawkes & 

Keirstead 2014). In recent years, these hybrid approaches have provided the basis for useful 

analysis for industry and policy makers, however, they still remain somewhat limited in their ability 

to represent “the drivers and barriers to long-term change in energy systems”(Bale, Varga & Foxon 

2015). 

 

MARKAL, a bottom-up reductionist model is one of the more widely used energy modelling tools, 

which, along with a number of other common models, such as LEAP, WASP, EGEAS and 

MESSAGE, adopt a more holistic approach to modelling (Bale, Varga & Foxon 2015; Ahmad et al. 

2016). These models have become important for informing policy and strategic business decisions 

regarding low emission technology adoption in many countries (Dodds, Keppo & Strachan 2015). 

However, recent reviews have found that even these sophisticated modelling tools “provide 

normative optimised scenarios in which real implementation bottlenecks are ignored (e.g. 

uncertainty, heterogeneity of decision makers and market imperfections)” (Dodds, Keppo & 

Strachan 2015, p. 85). In addition, they tend to ignore causal relationships, the feedback 

mechanisms that underpin them, non-linearities and system delays (Ahmad et al. 2016).   
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While the limitations of traditional energy models are becoming better understood, and approaches 

to energy transition modelling continue to evolve, techno-economic models remain dominant, 

despite being unable to reflect the full complexity of energy systems and the multitude of 

interactions between system and actors (Bale, Varga & Foxon 2015). To improve modelling 

accuracy and usefulness, a greater focus on systemic analysis is required that integrates 

technological, economic and social behavioural aspects to help achieve a holistic understanding of 

the interplay associated with adoption dynamics (Kubli & Ulli-Beer 2016). In this respect, and 

noting the characteristics and complexities associated with energy sector transitions described in the 

first section of this chapter, the application of a systems thinking methodology has been identified 

as the most appropriate way to meet the objectives of this study. 

4.1.3 Systems thinking  

Systems thinking is an approach to analysis that helps to better understand “change and complexity 

through the study of dynamic cause and effect over time” (Maani & Cavana 2007, p. 7). A system 

can be defined as a functionally related assembly of interacting, interrelated, or interdependent 

elements that combine to form a complex whole (Shaked & Schechter 2017). Systems thinking 

recognises that a system is something more than a sum of its parts; it is an ordered, cognitive 

endeavour, that balances the focus between the whole and its parts (Cabrera, Colosi & Lobdell 

2008; Wright & Meadows 2012). 

 

Systems thinking is not discipline nor content specific but rather provides a conceptual framework 

and the empirical tools to better understand complexity to help create lasting solutions for difficult 

problems (Cabrera, Colosi & Lobdell 2008). It is a “structured approach to thinking about complex 

issues that stimulates new and deeper insights” (Forrest 2008, p. 333). It attempts to see beyond 

events, which are typically point-in-time snapshots of reality, to uncover the patterns, systemic 

structures and the mental models that actually drive change in the system (Maani & Cavana 2007).  

 

The concept of ‘systems’ is not new. For millennia, scholars and philosophers have pondered the 

structure and order of the world around them. Lao Tsu wrote about systems more than two thousand 

years ago and Aristotle is credited with the popularised phrase: “the whole is greater than the sum 

of its parts” (Cabrera, Colosi & Lobdell 2008; Flood 2010).  Systems thinking however emerged as 

a theory in its own right in the early twentieth century when scientists began to question the 

dominance of reductionism in science, that is, the practise of breaking phenomena down into 

constituent parts and studying these elements in terms of cause and effect (Flood 2010).   
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Ludwig Von Bertalanffy, a biologist, articulated this shift in thinking when he wrote that “since the 

fundamental character of the living thing is its organisation, the customary investigation of the 

single parts and processes cannot provide a complete explanation of the vital phenomena” (Von 

Bertalanffy 1972, p. 410). Bertalanffy postulated that models, principles and laws exist that could 

apply to generalised systems, irrespective of their kind. He saw the systems perspective, with its 

focus on relationship, as the foundation for a new paradigm in science (Hammond 2003). This type 

of thinking represented an important shift away from classical science of the time, which was 

frequently concerned only with one-way causality, the relationship between two variables and the 

resolution into elementary units (Von Bertalanffy 1972).   

 

In the 1950s, Bertalanffy went on to develop general systems theory, a biological and holistic 

theory of organisation (Von Bertalanffy 1972). At the same time, work in other disciplines 

recognised similar phenomenon. For example, the term cybernetics was defined in 1948 as "the 

scientific study of control and communication in the animal and the machine" and recognised the 

importance of feedback mechanisms and communication (Wiener 1948, p. 1). Another important 

systems thinking methodology, system dynamics, emerged in the 1950s. Shaped more by 

economists and engineers (rather than biologists and physiologists as with cybernetics), it examined 

dynamic behaviour in complex industrial systems (Forrester 1961; Schwaninger 2006). System 

dynamics has now been used extensively across many different sectors and has arguably become 

the most dominant systems methodology in use.  

 

Despite the increasing popularity of systems thinking, there still remains some ambiguity as to how 

best to define it and how to apply it in various circumstances (Cabrera, Colosi & Lobdell 2008; 

Monat & Gannon 2015). This is because the field of systems thinking draws from, and is informed 

by, systems ideas, systems methods, systems theories, systems sciences, and the systems movement 

(Cabrera, Colosi & Lobdell 2008). Indeed, leading experts in the field acknowledge this ambiguity 

and recognise that systems thinking can be an: “inconsistent amalgam of logic, heuristics, 

perspectives, and processes for communicating and thinking about complex issues and problems 

that newcomers often find confusing” (Forrest 2008, p. 333).  

 

What is common among all theories and methodologies is the idea of systems as organised wholes 

(Schwaninger 2006). While there are many different approaches to systems thinking, they all share 

“a worldview focused on complex dynamic systems, and an interest in describing, explaining and 

designing or at least influencing them” (Schwaninger 2006, p. 583). This reflects emerging 
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agreement from systems thinking theorists that systems are ultimately conceptual constructs and it 

is these constructs that can be used for engaging with and improving situations of real world 

complexity (Reynolds & Holwell 2010).  

4.1.4 Applying a multi-methodological approach 

Since Bertalanffy’s seminal work on general systems theory, there has been considerable growth in 

the field of systems thinking with the emergence of many different system methodologies and 

theories (Páucar-Cáceres 2002). This includes approaches such as operational research and systems 

engineering/analysis, systems dynamics, soft systems modelling, cognitive mapping methodologies, 

critical systems thinking and total systems intervention to name a few (Páucar-Cáceres 2002). These 

methodologies are generally characterised as hard (i.e. quantitative or positivist) or soft (i.e. 

qualitative or interpretivist) (Maani & Cavana 2007).  

 

Hard systems thinking approaches assume objectivity and rationality whereas soft systems thinking 

recognises that the real-world is a complex mess, comprising ‘wicked problems’ that are difficult 

for agents to understand and respond to (Byrne et al. 2002). A hard perspective assumes a 

functionalist view of the world (i.e. the world is…), whereas a soft perspective assumes social 

constructivism (i.e. the world may be described as…) (Brown, Cooper & Pidd 2006). In this sense, 

soft systems thinking ultimately becomes a construct that can be used to examine the ‘messes’ that 

exist in the world (Byrne et al. 2002). It acknowledges that the critical perspectives of both science 

and society are necessary in modelling while recognising that knowledge “is culturally, spatially, 

and historical relative” (Mingers 2006, p. 4).   

 

These distinctions are important because they recognise both the existence of objective reality, and 

the fact that efforts to change this reality are generated by individuals motivated by a subjective 

perception of that reality, referred to as a “mental model”(Kim & Andersen 2012). Ineffective 

decision making occurs when there is a misalignment between the objective and subjective reality; 

in this respect systems thinking is used to “improve decision making by making subjective mental 

models explicit and testable through simulation” (Kim & Andersen 2012, p. 315).  

 

Despite the many different system thinking methodologies available, there is growing support in the 

literature that system thinking practitioners will be best served by moving beyond single 

methodologies towards a multi-methodological approach to most effectively incorporate real-world 

complexity (Mingers & Brocklesby 1997). While soft system thinking approaches can be limited in 
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explicit model creation and simulation due to a reliance on subjective input or intuition, they 

nonetheless contribute useful insights by eliciting information from-real-world participants 

(Forrester 1994). At the same time, the contribution of ‘hard’ quantitative-based simulation models 

can help provide rigour and clarity to soft systems thinking approaches.  

 

Soft methods therefore can be useful for problem structuring and the development of model 

architecture (i.e. making sense of the system) while establishing the context within which the hard, 

or quantitative techniques are used to seek insights and solutions to specific problems (Forrester 

1994). For the energy sector, quantitative elements associated with the generation, movement and 

consumption of electricity and related financial interactions lend themselves to hard system theory. 

The dynamics that will ultimately control and influence the effects of disruptive technologies on the 

system are more likely to be related to socio-political influences, more the domain of soft system 

theory.  

 

When used correctly, these complementary techniques can provide new perspectives, new insights 

and generate greater understanding without impacting the integrity of the underlying contextual 

paradigm or by reducing the methodological rigour (Byrne et al. 2002). Indeed, such approaches are 

recognised as valuable ways to examine complex human-based problems, particularly involving 

transitional dynamics such as those currently presenting in the energy sector (Seidl et al. 2013).  

 

To capture the full benefits of applying a systems thinking approach, the methodology used in this 

thesis therefore incorporates both qualitative and quantitative elements. It is based on a staged 

approach to research that is commonly applied in the systems literature, drawing from both systems 

thinking theory and the application of a system dynamics methodology. The full method is 

described in detail in Section 4.2 below. 

 

4.1.5 The suitability of systems thinking for energy sector transitions  

 

Systems thinking is well suited for use in the electricity sector as “energy systems have many of the 

properties that can be described easily using system dynamics models: for example, nonlinearities 

(such as resource depletion), stocks and flows (of resources and capital), feedback loops (primarily 

through price), emphasis on dynamic behaviour, and the need for policy analysis” (Naill 1992, p. 

17). Systems thinking has been used extensively in other aspects of the energy sector for several 

decades and has been useful in analysing a range of energy policy challenges such as global 
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warming, deregulation, conservation and efficiency (Qudrat-Ullah & Seong 2010).  It has also been 

specifically identified by the International Energy Agency as a valuable modelling framework that 

can assist in energy policy development and planning (IEA 2014a). 

 

The use of systems thinking in the electricity sector can be traced back to the 1970s in the US when 

a national energy modelling program called Fossil was developed. Based on system dynamics 

methods, the model incorporated energy sources and demand projections for use in policy analysis 

(Ford 1997). In those early years, system dynamics models were also used to underpin research into 

electricity privatisation and deregulation, fuel and resource planning, power sector dynamics and 

electric vehicles (Ford 1997).  

 

Interest in the field increased rapidly in the 1990s when policy makers and planners recognised the 

benefits of systems thinking in addressing increasing uncertainty and complexity in response to 

electricity sector deregulation and market liberalisation (Qudrat-Ullah 2016). This led to a 

substantial research effort that saw system dynamics models increase in size and sophistication 

culminating in the development of the IDEAs model, which became the official US department of 

energy planning model until 1995, and the ENERGY 2020 model, which was used for energy and 

emissions analysis (Qudrat-Ullah 2016).  

 

Since that time there have been at least 80 studies published which used system dynamics models as 

the primary methodology for use in electricity sector analysis (Teufel et al. 2013; Leopold 2015). 

The most common application was for planning models which assessed the impact of policy 

interventions in regards to issues such as support for renewable energy technologies, market and 

institutional investment, tariff design, environmental incentives and efficient market operation 

(Ahmad et al. 2016). Optimisation of physical electricity system operation and planning, such as 

generation capacity expansions, have also seen considerable attention (Leopold 2015; Qudrat-Ullah 

2016). 

 

While systems thinking has been used extensively in a range of electricity sector modelling studies 

as described above, its application in energy sector transitions is far more limited. A recent 

literature review that examined the use of systems thinking in energy modelling explicitly identified 

this gap and concluded that further systems research was required to address: “transformation 

processes within energy system, and transition issues to renewable energy, energy-consumer centric 

modelling and modelling-based assessment of alternative energy technology potentials” (Leopold 

2015, p. 258).  
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In this respect, the use of systems thinking to explore issues associated with residential PV and 

battery adoption is even more limited. Only three related papers were found in the literature. Kubli 

and Ulli-Beer (2016) developed a system dynamics model to assess the likely diffusion patterns of 

distributed generation concepts and their impact on network effects in a generic simulation based on 

a hypothetical region in Europe. Technology adoption was based on net present value (NPV) 

calculations and elements of diffusion theory. The study found that network effects comprised the 

main component of the investment decision for distributed generation technologies (Kubli & Ulli-

Beer 2016) 

 

Laws et al. (2017) created a system dynamics model to examine the impact of utility rate structures 

on residential PV and energy storage and their influence on the utility death spiral. PV and battery 

adoption is calculated using a bass diffusion equation with estimations for adoption rates based on a 

look-up function which varies linearly based on NPV. The model examines three pricing structures 

(net metering, wholesale compensation and demand charges) which are applied to three locations 

(Los Angeles, Boulder and Sydney). The study found that the likelihood of a utility death spiral was 

unlikely in these scenarios and would require grid-defection at scale driven by a “perfect storm of 

high intrinsic adoption rates, rising utility costs and favourable customer financials” (Laws et al. 

2017, p. 627). 

 

Despite the value of these two studies, particularly from a theoretical perspective, they have a 

number of substantial limitations. For example, the system dynamics models are highly generic 

representations of stylised electricity systems. Laws et al. (2017) applied the same model structure 

in three different locations. While input parameters were varied for each location, the model 

nonetheless assumes that the structure underpinning electricity price creation is the same. For 

Sydney at least, the model does not accurately represent the way in which electricity prices are 

actually set. As retail tariff structure is a key element in their study this appears to be a significant 

shortcoming.   

 

Furthermore, important variables in both models, such as consumption patterns, PV generation and 

battery system capacities, are represented in most cases by just one averaged parameter. Kubli and 

Ulli-Beer (2016) explicitly identify this as a weakness stating the model is “overly aggregated and 

simplifying”. In addition, both studies appear to be informed only by desktop analysis with no 

qualitative data collection or analysis used to help inform model architecture and key feedback 

loops. The way in which consumer decision making processes are represented is also limited.  
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In contrast to the above studies, Grace (2015) uses a more data driven approach to model and 

examine the influence of PV and batteries on the Western Australian electricity system. This study 

finds that exponential PV and battery growth will affect base-load generation and could 

substantially disrupt the existing network. Unlike Laws et al. (2017), the model shows this would 

result in an electricity death spiral. While the model includes a far more detailed and accurate 

representation of the broader electricity supply system, consumer adoption dynamics themselves are 

far more simple, based on financial feedback only and are based on highly aggregated demand-side 

data both in terms of dwellings and system sizes. 

 

Notwithstanding the limitations of the above studies, they still make important contributions to help 

address a substantial gap in the literature. They also demonstrate the applicability of using systems 

thinking and system dynamics modelling approaches to better understand electricity disruption 

arising from residential distributed generation. Accordingly, the research approach outlined in this 

thesis, which is described in detail below, aims to build on this early work. It applies a 

comprehensive systems thinking methodology to address the research objectives of this project and 

in doing so aims to provide an important theoretical and practical contribution in its own right. 
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4.2 Research methodology overview 

The research methodology applied in this thesis comprises four distinct yet interrelated stages 

which correspond to each of the research questions (Figure 17). The specific research approach is 

based on accepted systems thinking methodologies adapted from Sterman (2000) and Maani and 

Cavana (2007). It is described in the section below which leads with an overview of the data 

collection and case study approach, followed by a summary of the methods used in each research 

stage. Note that this chapter is written to provide an overview of the research approach. More 

detailed descriptions of the methodology and modelling assumptions are provided in each of the 

subsequent chapters. 

 

Figure 17 Overview of research stages and their relationship to the research objective 
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4.3 Case study and data collection approach  

4.3.1 Case study 

In setting the boundary and scope for this research project, it was decided to focus on one specific 

case study area so that appropriate levels of granularity could be applied to theory development, 

testing and modelling. A case study is part of a “research strategy which focuses on understanding 

the dynamics present within single settings” (Eisenhardt 1989, p. 534). The use of case studies has 

been extensively evaluated in the academic literature and is considered an appropriate way in which 

to develop and test theory (Ravenswood 2011). Case study research uses a range of data collection 

methods, such as interviews, survey analysis, observations, and can include both qualitative or 

quantitative data to examine issues within a real world setting (Eisenhardt 1989). Chapter 5 

provides a detailed description of the case study area. While the state of Queensland is used as the 

case study area, there are a number of jurisdictions around the world experiencing similar 

challenges (Rickerson et al. 2014). Despite a diversity in electricity market ownership and 

structures in these countries, the research findings described in this thesis are broadly applicable.  

 

4.3.2 Mixed methods approach 

 

For research involving issues characterised by substantial complexity and uncertainty, a mixed 

methods approach to data collection used in conjunction with grounded theory techniques is 

commonly applied. Grounded theory is defined as the discovery of theory from data that is 

systematically obtained and analysed as part of the research process (Glaser & Strauss 2009, p. 2). 

Mixed methods study refers to the use of both quantitative and qualitative data collection, analysis, 

and inference techniques to achieve greater depth and accuracy in addressing research questions 

(Johnson, Onwuegbuzie & Turner 2007). Quantitative and qualitative approaches typically involve 

different data collection methods (e.g. interviews, surveys), data types (numerical and textual) and 

data analysis (statistical and thematic) to help inform research conclusions based on both objective 

and subjective representations (Tashakkori & Creswell 2007). Mixed methods study ensures that 

research is informed by multiple perspectives rather than just single perspective while helping to 

alleviate a reliance on one form of data collection, for example data-heavy statistical methodologies 

which can miss the depth that comes from qualitative research (Wheeldon & Ahlberg 2012). The 

different data collection approaches used throughout this thesis are discussed below. 
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4.3.3 Participatory data collection 

 

The primary qualitative data collection method used in this thesis involved an extensive stakeholder 

consultation process. Participatory methods of data collection, such as interviews and workshops, 

are particularly useful in systems thinking research (Sterman 2000). They allow for the collection of 

contextualised, site specific information that reflects relevant local economic, political, social and 

environmental conditions (Chan et al. 2010). Structured correctly, stakeholder interviews and 

workshops can capture the ‘mental models’ of individuals and organisations that influence why 

things work the way they do and represent “a deeper level of thinking that hardly ever comes to the 

surface” (Maani & Cavana 2007, p. 15). In this way, participatory stakeholder engagement methods 

can help provide predictive, explanatory and enduring descriptions of the dynamic behaviour in a 

system (Yearworth & White 2013). 

 

For this study, 68 energy sector experts were interviewed individually, or participated in small 

group workshops. Stakeholders included regulators and policy makers from national, state and local 

governments; representatives from the electricity supply chain (including generators, network 

service providers and retailers); new market entrants; technology developers; PV and battery 

installers; consumer advocacy groups; and consumer representatives. Due to the requirement for 

human participation in this study, ethical clearance was obtained from the University of Queensland 

Behavioural and Social Sciences Ethical Review Committee. To ensure informed consent, an 

information sheet with specific details about the study was provided to any participants consulted, 

and a consent sheet was used to record participants’ agreement. 

 

A semi-structured interview approach was used that has proven to be effective in systems thinking 

applications (Sterman 2000). While a script was developed that included a number of pre-set 

questions, the interviewer was able to deviate from the script at any time to pursue areas of 

relevance in greater detail. Interview questions were structured to help with problem articulation 

and to identify key feedback loops and other important causal relationships. This technique is 

particularly well suited for use in causal loop development as it can help provide predictive, 

explanatory and enduring descriptions of the dynamic behaviour in a system (Yearworth & White 

2013). A dedicated scribe manually recorded meeting outcomes and a representative from the 

Queensland Government was in attendance for each meeting. All meetings were held in Brisbane, 

the Queensland state capital, and typically ran for approximately 1 hour. 
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A large volume of data was generated from the interview process and was analysed using a method 

adapted from Kim and Andersen (2012), which describes an approach to systematically code 

qualitative data specifically as part of a broader systems thinking methodology. Coding refers to a 

technique for organising and interpreting data with the intent of formulating a logical, systematic 

and explanatory theory that can explain behaviour and actions (Glaser & Strauss 2009).  

 

The first step involved thematic content analysis and open-coding of data for problem definition and 

identification of the system boundary (Kim & Andersen 2012). This step involved extracting and 

grouping concepts, or codes, from the interview data according to key words and phrases based on 

the hierarchy described above. Codes were determined and defined primarily by the research 

context. In this case, both in vivo codes (i.e., descriptions sourced directly from the interviews) and 

codes based on commonly used terms sourced from the literature were used (Kim & Andersen 

2012).  

 

The second step involved identifying key variables and their causal relationships by extracting 

single units of analysis that relate to the system’s structure or behaviour (Kim & Andersen 2012). 

This involved breaking the data down further into sub-categories, or child nodes, representing a far 

more granular representation of the system being modelled. Within these sub-categories, specific 

variables were identified from the data.  Memos were used to record key aspects of analysis 

associated with each variable2. They included the initial observation and an explanation describing 

the variable and its relevance based on the theory that emerged from the interview data. Each memo 

also detailed the key causal relationships and explicit feedback loops associated with the variable. 

All variables and memos were reviewed and validated by examining a range of secondary data 

sources including relevant government, industry and academic research.  

 

The results of this process were used to inform outputs across every stage of research described in 

this thesis.  A more detailed description of the participatory data collection method, including the 

approach to stakeholder identification, participant engagement, ethics, interview structure and data 

analysis, is described in Chapter 6. 

 

 

                                                 

2 Memos are commonly used as part of the coding process and are simply a record or product of analysis 
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4.3.4 Secondary data and statistics 

 

In addition to the data acquired through the interview process, a large amount of information from a 

wide diversity of secondary sources was also accessed as part of the mixed method approach used 

in this thesis. These sources included: 

• Publicly available data sets from AEMO and the Australian Energy Regulatory (AER) which 

provided detailed information on a range of electricity sector metrics such as historical and 

forecast demand, and financial, reliability and network benchmarking data. The national 

Renewable Energy Certificate registry includes raw data on the number and size of PV installed 

throughout Australia. Demographic data and trends were accessed from the Australian Bureau 

of Statistics. Solar insolation data was sourced from the National Renewable Energy 

Laboratory. Any raw data used in this thesis was aggregated and analysed directly in Excel. 

• Regulatory documents including Queensland Government Gazettes, Queensland Competition 

Authority (QCA) pricing determinations, AER network regulatory determinations and industry 

annual reports. These references were used to both provide data for use as inputs in model 

initialisation and also to inform model design. For example, QCA and AER documents include 

descriptions of the actual methodologies used to calculate electricity prices in Queensland which 

were then adapted for the model.  

• Consumer and industry stated preference data, including government funded annual surveys 

such as the Queensland Household Energy Survey and academic based surveys such as 

Romanach, Contreras and Ashworth (2013) and Agnew and Dargusch (2017) were used to more 

clearly understand consumer relationships with the energy sector and distributed energy 

technologies. Industry surveys such as PWC (2013) and UtilityDIVE (2015) were also used to 

gain a broader understanding of drivers from an industry perspective. 

• Market statistics and technical system data – analysis of PV and battery technical specifications 

along with current and historic system pricing from market based sites such as SolarQuotes 

(2017) were used to help inform model assumptions and structure.  

 

The above list is not exhaustive and is only a representative sample to demonstrate the breadth of 

data used to help address the research questions. This data was used to not only corroborate the 

results of stakeholder interviews but also to inform theory creation in its own right, provide 

quantitative inputs for initialisation of the simulation model, underpin modelling assumptions and 

inform scenario analysis.  



 

62 

 

4.4 Stages of research 

4.4.1 Stage 1. Problem structuring – significance, scope and boundary selection 

 

Conceptualising and framing the fundamental parameters for a systems thinking model represents 

one of the most difficult, yet crucial steps in the development of a whole of system model 

(Kopainsky & Luna-Reyes 2008). It sets the foundation for the entire research process by 

articulating the specific problem under investigation while identifying major issues and challenges 

(Sterman 2000). The scope and system boundary (both spatial and temporal) must be clearly 

specified. In addition, a thorough assessment of the system’s existing and historical characteristics 

is important to provide context and to help show how issues have developed and potentially how 

the system may respond in the future (Sterman 2000). 

 

To address the first research question and to provide the basis for causal loop modelling, the 

following elements are addressed in the first stage of research:  

• System characteristics and sector context – what are the key technical and operational features 

of residential PV and battery energy storage? How has the market developed? What have been 

the challenges and benefits of integration to date? What are the current fundamentals of the 

residential energy sector, its linkages within the electricity industry and its relationship with 

broader socio-economic frameworks?  

• Problem articulation – what are the problems to be addressed? 

• Project scope and boundary – what are the system boundaries? What level of data aggregation is 

required? Who are the key stakeholders? 

• Timeframes – what is the modelling time horizon, both past and future? 

 

To achieve the objectives of this stage of research, the methodology was broadly adapted from 

Maani and Cavana (2007), Sterman (2000) and Kim and Andersen (2012). While a more detailed 

description of these methods are provided in subsequent chapters, this stage of research involved a 

comprehensive review of academic, government and industry literature which was initially used to 

define and characterise the system under investigation and to “justify the seriousness and clarify the 

scope and magnitude of the problem/issue identified”(Maani & Cavana 2007, p. 18). The data and 

analysis undertaken as part of this process was used to help identify key stakeholders, formulate a 

stakeholder engagement plan and help devise questions used in interviews and workshops. 

Thematic content analysis and open-coding of data from both the industry review and stakeholder 

interviews were then used to inform problem definition and identification of the system boundary. 

Throughout this process, results were verified in separate meetings with key energy experts.  
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Contribution to research objectives 

 

Stage 1 research outcomes directly address Research Question 1 by describing the current 

characteristics of the residential PV and battery market domestically and internationally. This stage 

of research also underpins many other key elements of the thesis, particularly as problem 

articulation, scope and boundary setting form the foundation on which assumptions are made, data 

is collected and conclusions made.  

 

Specific inclusion of Stage 1 data and analysis is referenced in the thesis as follows: 

• Context – system characteristics and sector context (Chapter 2)   

• Synthesis and significance of research from a global perspective (Chapter 3) 

• Case study characteristics (Chapter 5) 

• Problem articulation, scope, boundary selection (Chapter 6)  

• Data inputs and assumptions for stock and flow model (Chapter 7) 

 

4.4.2 Stage 2. Causal loop modelling – understanding the behaviour of the system 

 

This second stage of research involves theory creation using causal loop modelling, a process that 

involves taking information from the real world and generating a unifying and coherent hypothesis, 

effectively a theory of system behaviour (Forrester 1994). This process involves the development of 

Causal Loop Diagrams (CLD) to graphically reflect system feedback structure by showing the 

relationships amongst a system’s parts and how they interact with each other (Sterman 2000; Hjorth 

& Bagheri 2006).  

 

CLD development is an important step in conceptualising and understanding complexity as it helps 

create “a framework for seeing interrelationships…for seeing patterns of change rather than static 

snapshots” (Senge 2006, p. 68). In this manner, the behaviour of the system as a whole can be better 

understood. CLDs are frequently referred to as a dynamic hypothesis, because they represent a 

working theory of how a problem arises while providing an explanation that describes the problem 

in terms of the underlying feedback and stock-and-flow structure of the system (Sterman 2000).  

 

CLDs helps develop an endogenous explanation of system behaviour, which then provides the tools 

to identify system archetypes and identify leverage points for policy intervention (Maani & Cavana 

2007). A strength of CLDs is that they challenge entrenched mental models and test assumptions; in 
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doing so the process can lead to important and sometimes counterintuitive insights about the 

structure and behaviour of a system (Hovmand 2014). They also form the basis for development of 

simulation models which can be used to provide a deeper understanding of system behaviour. 

 

CLDs are visually represented by variables (words or phrases) that are linked to other variables that 

have a cause and effect relationship. The relationship between variables is denoted by an arrow with 

an assigned polarity in the form of a ‘+’ (same) or a ‘-’ (opposite) to indicate the nature of the cause 

and effect relationship. A ‘+’ polarity indicates that cause and effect move in the same direction. A 

‘-’ polarity indicates that cause and effect move in opposite directions.  When linked these variables 

form part of a feedback loop, which can be reinforcing (R) or balancing (B). Reinforcing loops 

accelerate change within systems to produce growth or decline, while balancing loops counteract 

change within systems to produce stabilising behaviour. To illustrate the structure and notations 

used in a CLD, Figure 18 provides a simplified example demonstrating population dynamics.  

 

 

Source: (Sterman 2000) 

Figure 18 CLD example demonstrating feedback loops 

There exist multiple methodologies that can be used to elicit causal structures from qualitative and 

quantitative data for use in CLD development (Sterman 2000; Maani & Cavana 2007; Kopainsky & 

Luna-Reyes 2008; Kim & Andersen 2012). Drawing from these studies, the key steps used in CLD 

design for this thesis included: 

 

1. Identification of the key variables and their causal relationships using data extracted from 

interviews and other secondary sources. The open-coding techniques used in stage 1 were 

expanded so that a more granular level of data analysis was achieved and individual variables 

could be identified.  Due to the large volume of variables described, axial coding (which 

involves reassembly of data into related categories) was also used to simplify concepts and 

identify the key relationships.  

2. Review and validation of identified variables and their relationships using secondary data 

sources and verification with individual energy experts. 
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3. Development of a subsystem diagram to visualise the overarching structure of the system 

particularly the main subunits and their relationship to each other.  

4. Translation of data into a CLD that describes the factors influencing residential PV and battery 

adoption and how these dynamics manifest in the broader system. For this purpose, the CLD 

was built using Vensim PLE, a software package designed for developing and analysing 

dynamic feedback models (Ventana Systems 2017). 

 

Contribution to research objectives 

 

Stage 2 research outcomes address Research Question 2 by explicitly describing the causal 

dynamics that will influence residential PV and battery adoption in Queensland. The method, 

results and discussion for this stage of research are described in detail in Chapter 6. Stage 2 results 

were also used to provide the foundation for, and to inform the design of a stock-and-flow 

simulation model which is discussed in Chapter 7. 

 

4.4.3 Stage 3. Dynamic modelling - system simulation and quantification  

 

Energy system analysis is typically underpinned by quantitative energy models which can provide a 

powerful tool to support decision making and policy development (Horschig & Thrän 2017). This is 

also true of systems thinking approaches. As described above, causal loop diagrams represent an 

important step in conceptualising and understanding the relationship between key variables. 

However, in complex systems the total impact of feedback loops cannot be established with a CLD 

alone, particularly where multiple negative and positive loops impact variables (Heath et al. 2011). 

This is because CLDs do not distinguish levels (stocks) from rates (flows) which can hinder the 

ability to properly identify the system elements that generate dynamic behaviour (Forrester 1994). 

 

To understand more clearly what is driving system behaviour and the way in which this behaviour 

will impact the system, a dynamic simulation model must be developed. Specialist systems 

software, Stella Architect (version 1.1) was used to build the model. Stella Architect provides a 

graphical interface to help define the integral and differential equations which mathematically 

represent the model’s variables and relationships (ISEE systems 2016).  
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A stock and flow model comprises a number of elements as illustrated in Figure 19. Each of these 

elements is described below based on Sterman (2000); Maani and Cavana (2007); Caponio et al. 

(2015); ISEE systems (2016). 

 

 

Figure 19 The key building blocks of a stock and flow model 

• Stocks are entities that represent accumulated quantities, moderated by inflows or depleted by 

outflows. In Stella they are represented by rectangles. They characterise the state of the system 

at any point in time. Mathematically, a stock (S) over a specified time (t) period is represented 

by the equation:   

 

𝑺𝒕 =   ∫ [𝒊𝒏𝒇𝒍𝒐𝒘(𝒕) − 𝒐𝒖𝒕𝒇𝒍𝒐𝒘(𝒕)]
𝒕

𝒕𝟎
 𝒅𝒕 + 𝑺(𝒕𝟎)      

• Flows change the volume of the stock during any period of time. In Stella they are represented 

as valves. Flows, also referred to as rates, comprise both inflows which add to the stock and 

outflows which deplete the stock. The ‘clouds’ on either sides of flows represent the boundaries 

of the system.  

• Convertors control flows by defining inputs such as constants, graphical functions or algebraic 

relationships. In Stella they are represented as circles. Convertors are also known as auxiliary 

variables.  

• Connectors are arrows that link the various components in a stock and flow model and denote 

causality. 

 

One of the most common ways to build a stock and flow model is by translating it directly from a 

CLD. For this study, a systematic approach to model design (described in detail in Chapter 7) 

involved identifying the relevant stocks, flows and convertors based on key elements of the CLD 

created in Chapter 6. The structure of the model was then built by defining structural relationships 

between variables using constants, graphical and mathematical functions. Initial values for the 

model’s stocks and variable parameterisation were based on data sourced from the first two stages 

of research. 
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Upon model completion, an extensive testing and validation phase was undertaken. This is a critical 

element of model development. It helps ensure that the model most accurately represents the system 

it is based on and, in doing so, provides confidence in modelling outputs and its usefulness in 

addressing its purpose (Barlas 1994). In this context, validation and testing refers to the process of 

assessing a model with “empirical reality for the purposes of corroborating or refuting the model” 

(Forrester & Senge 1980, p. 414). While there is no single approach to validate system dynamic 

models, a number of structural and behavioural tests were used in this study to validate the model. 

This included structural confirmation, dimensional consistency, conservation of matter and extreme 

conditions testing. A discrepancy coefficient, which statistically compares model-generated 

behaviour to observed behaviour, was also generated for key parameters. 

 

Contribution to research objectives 

 

Stage 3 research outcomes address Research Question 3 to better understand how residential PV 

and battery adoption dynamics manifest in the Queensland context. This is achieved through the 

design, development and simulation of a dynamic stock and flow model. The method, assumptions, 

testing and validation for the model are detailed in Chapter 7. The results of model simulations are 

included in Chapter 8.  

 

4.4.4 Stage 4. Scenario analysis, evaluation and policy implications 

 

Despite the compelling forecasts regarding battery price declines and rates of technology 

improvement, the residential storage market is still very much in its infancy. With little empirical 

data, the extent of future disruption stemming from residential battery storage remains largely 

uncertain. Within this environment scenario analysis can be used to better understand how battery 

adoption dynamics could change under a range of different conditions.  

 

Scenarios are hypothetical future events incorporating drivers, trends and policies which are 

designed to clarify a possible chain of causal events along with their decision points (Amer, Daim 

& Jetter 2013). For energy sector planning, scenario analysis provide a useful tool to orient and 

contribute to discussions about energy futures while helping to support strategic decision making in 

the sector (Cao et al. 2016). Of particular interest is how endogenous feedback mechanisms 

manifest and drive broader system change when input values and exogenous variables are modified.  
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To this end, a five-step method for creating and using scenarios has been adapted from Huss and 

Honton (1987) and Amer, Daim and Jetter (2016). This approach leverages one of the most well 

established scenario methodologies, the intuitive logic approach, while incorporating elements from 

a relatively new method that can combine the outputs of causal cognitive maps. To help inform 

scenario analysis and to understand uncertainty in the model, sensitivity analysis was also applied 

by varying values of input parameters to determine the relative influence on dependant variables 

and, more broadly, model output (Saltelli et al. 2008). Detailed descriptions of the methodologies 

used to underpin scenario and sensitivity analysis are included in Chapter 8. 

 

The final element in this stage of research includes an assessment of the policy implications 

stemming from the results of model simulation and scenario analysis. The first step in this respect 

requires clarification of purpose or rationale for intervention. The OECD states that good policy and 

regulation must serve “clearly identified policy goals, and be effective in achieving those goals” 

(OECD 2005, p. 3). This is necessary to ensure issues are properly targeted with the right measures 

to address the problem in the most effective and efficient way (QPC 2016b). In this regard, the 

scope of research, problem articulation and system boundaries are clearly referenced throughout the 

thesis. With a stated focus on broader socio-economic outcomes (as opposed to specific commercial 

or market issues), policy implications in this section are therefore considered through a social-good 

and economic efficiency framework. 

 

The method for policy analysis is undertaken through a systems thinking lens, which recognises that 

complex problems rarely have solutions that are complete or final (Rittel & Webber 1973). While it 

is beyond the scope of this dissertation to outline a comprehensive policy roadmap for PV and 

battery integration, this section describes and assesses leverage points in the system that represent 

good targets for policy intervention. The concept of leverage points is well enshrined in systems 

thinking theory. They refer to measures that address long-term solutions and drive fundamental 

changes as opposed to actions that merely address the symptoms of a problem at a point in time 

(Maani & Cavana 2007). Depending on their nature, leverage points can have varying levels of 

success in achieving change within a system. In this regard, a framework developed by Meadows 

(1999, p. 3), which describes the places to intervene in a system in increasing order of effectiveness, 

is used as a reference point to consider policy interventions.  
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Contribution to research objectives 

 

The outcomes of this stage of research address Research Question 4. The results of simulations and 

scenario analysis are used to better understand the implications of residential PV and battery 

adoption from an energy sector transition perspective. This stage of research also considers some of 

the leverage points and policy measures that could be applied to achieve more efficient integration 

of the technology. The outcomes of scenario analysis and relevant policy implications are included 

in Chapter 8. 
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Chapter 5 Description of the case study area 

 

Chapter overview 

 

This chapter provides a detailed description of the case study area and considers the structural 

drivers in Queensland that could underpin future PV and battery adoption. The chapter leads with a 

discussion regarding the existing electricity supply system in Queensland, its relationship to the 

NEM, and other relevant institutional and regulatory factors. The second section describes the 

drivers responsible for exponential PV growth in Queensland and considers their relevance in 

regards to battery adoption. The chapter finishes with a description of the current state of the battery 

market in Queensland and reviews existing battery adoption forecasts for the State. The data and 

analysis presented in this chapter is used to help inform all four stages of research, including causal 

loop development and the structure and parameterisation of the simulation model. Data for this 

chapter was sourced from an extensive review of industry and government reports, market-based 

data and the academic literature. Interview data was used to cross-check and where possible 

validate the results of this analysis.  
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5.1 Introduction  

Queensland is the second largest state in Australia, with a land area of 1.7 million km2, seven times 

the size of Britain (Queensland Government 2017a). With a population of nearly 5 million people, 

Queensland has a strong and stable economy with high average wealth per capita compared with 

global rankings (Queensland Government 2017a). The state also has some of the best solar 

insolation in the world, with an average of 12 hours of sunshine per day and approximately 

263 days of sunshine per year (Queensland Government 2017b). 

 

While the deployment of residential PV and battery energy storage is already occurring in a number 

of countries around the world, Queensland is considered a global test-bed for battery energy storage 

uptake (Edis 2015a). With quality solar resources and cheap PV systems by global standards, it has 

some of the highest per capita PV installation rates in the world. In addition, Queensland has a 

range of other drivers such as high electricity prices, a poorly utilised and emissions intensive 

centralised system, and strengthening non-financial motivations which make the state a target 

market for battery technologies.  

 

The supply of electricity in Queensland has seen significant institutional and structural reform in the 

past decade. These developments are highly relevant when considering the uptake of distributed 

generation technologies. Many of the systemic structures which underpin consumers’ financial and 

non-financial motivations occurred during this period and remain dominant today. It is therefore 

important to understand the environment in which they formed and how they influenced system 

behaviour, particularly when considering the structure and dynamics that could underpin residential 

battery storage adoption. 

 

5.1.1 Queensland’s electricity supply system  

 

Like any modern centralised electricity supply system, Queensland’s electricity sector is comprised 

of generators, transmission and distribution networks, retailers and end-use consumers. This 

structure along with the key operational participants in Queensland is illustrated in Figure 20.  
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Source: Adapted from Powerlink (2016) 

Figure 20 Queensland’s electricity supply system 

Each component of the above figure is described in more detail below. 

 

• Power generation 

 

Queensland has just over 14GW of installed electricity generation capacity with approximately 

12.5GW connected to the NEM, comprising 8.2GW of coal and 3.1GW of gas (AEMO 2016a). 

Queensland has the lowest level of renewable energy capacity in the NEM with approximately 

540MW of large-scale grid connected renewable capacity (Mugglestone et al. 2016). The 

breakdown of Queensland’s generation capacity is shown in Figure 21. 

 

 
Source: (Mugglestone et al. 2016) 

Figure 21 Queensland’s generation capacity 
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Due to the state’s fossil fuel dominated generation, the emissions intensity of the sector is relatively 

high at 0.94 kg CO2-e/kWh, compared to a global average of approximately 0.53 kg CO2-e/kWh 

(IEA 2013b; DOEE 2016). Queensland is the largest emitter of greenhouse gases in Australia. The 

state contributes approximately 150Mt CO2-e of greenhouse gas emissions per year, with the  

electricity sector the single largest emitter generating approximately 30% of total state emissions 

(DOEE 2017).  

 

Two government owned corporations, CS Energy and Stanwell Corporation, comprise 65% of the 

generation market with the balance made up of private, largely gas-fired owner/operators (QPC 

2016b). In 2016, total operational demand in Queensland was just under 50,000GWh and, despite 

maximum demand exceeding 9GW for the first time, Queensland still has spare generation capacity 

(AEMO 2016a, 2016b). AEMO predicts that no additional generation capacity will be required in 

Queensland beyond 2025-26 (AEMO 2016a). This means that PV and battery adoption, which will 

continue to hollow out demand from the residential sector, will occur in an already highly 

competitive generation market.  

 

The Queensland Government’s commitment to achieve a 50% renewable energy target by 2030, 

which aims to encourage substantial investment in new renewable energy capacity will exacerbate 

this issue (DEWS 2017b). As part of this policy, the Queensland Government has also set an 

aspirational target to achieve 1 million PV systems, or 3,0000MW of PV by 2020. This could be a 

challenging undertaking, particularly as it would require nearly 500,000 installs in the next three 

years if the target was to be met by the residential sector. With minimal new funding allocated to 

meet this target, it appears that the focus of this policy will be utility-scale and commercial PV 

installations. 

 

- Electricity networks 

 

Queensland’s electricity transmission network is 1,700 km long and transports bulk electricity to the 

distribution networks and to large industrial customers that are directly connected to the 

transmission network (Powerlink 2016). The transmission network is owned by Powerlink, a 

Government Owned Corporation (GOC) and comprises assets worth approximately $5 billion 

(Powerlink 2016). 
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Queensland’s distribution network is owned and operated by two GOCs, Ergon Energy and 

Energex. In 2016, they were merged to form Energy Queensland to become the largest distribution 

business in Australia, with AU$24 billion worth of assets (Energy Queensland 2016). Queensland’s 

distribution network covers an area of 1.7 million km2 and comprises more than 200,000 km of 

electricity lines and cables (Energy Queensland 2016).  

 

The regional component of the network, operated by Ergon Energy, is particularly large. It covers 

97% of the state making it the most extensive network in the NEM (Ergon Energy 2016). This 

results in Ergon Energy having the highest cost per customer, spending approximately double 

compared with other Australian network service providers (AER 2016a). When considering the size 

of the state’s electricity network it is perhaps not unsurprising that network costs comprise the 

largest component of retail tariffs in Queensland, contributing approximately 45% of the final cost 

of electricity for small retail customers (QCA, 2015c).  

 

Electricity network revenues and network prices are regulated in Queensland. As electricity 

networks are highly capital intensive, it is more efficient for services in a particular geographic area 

to be provided by a single supplier. This leads to a natural monopoly industry structure, which 

without regulation could see negative outcomes for consumers such as higher prices or substandard 

service provision (AER 2016a). To avoid this outcome, the AER  is responsible for regulating 

network prices; it administers Chapters 6 and 6a of the National Electricity Rules which detail the 

economic regulation framework for electricity networks (AER 2015c). For every five year 

regulatory period, the AER caps the revenues that a network can earn based on forecast revenue 

requirements that cover efficient costs including a commercial return on capital (AER 2015c). 

While the application of this approach to network regulation is necessary in the current 

environment, it can drive a range of unintended consequences by stimulating overinvestment, 

artificially increasing electricity prices and influencing negative consumer perceptions of 

incumbents. These issues are discussed below and explored in greater detail in subsequent chapters. 

 

Finally, and as stated, Queensland’s network companies are all GOCs and pay substantial dividends 

to government. For the 2015/16 financial year, Ergon Energy paid a final dividend of $1.925 

billion, Energex paid $1.295 billion and Powerlink paid $218.3 million (Energy Queensland 2016; 

Powerlink 2016). Any decline in the value of these network assets, particularly in response to 

disruption stemming from residential PV and battery adoption, will clearly have broader economy-

wide impacts. 
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- Electricity retail sector  

 

In Queensland, the electricity retail sector is the primary point of contact for most residential 

consumers. Electricity retailers buy electricity from generators and resell to consumers, as well as 

providing a range of other services such as connections, disconnections and billing. In Queensland 

there are 16 active retailers servicing more than 1.8 million residential consumers and 200,000 

commercial consumers (QPC 2016b).  

 

The retail electricity sector was heavily regulated in the past, however recent electricity market 

reform has resulted in greater competition and transparency. Since 2007, consumers have been able 

to choose their own retailer and enter into a market contract where the price is set by the retailer, or 

remain on a regulated tariff which is set annually by the Queensland Competition Authority (QPC 

2016a). For south-east Queensland (SEQ), this reform increased competition and saw 70% of 

customers adopt market based contracts ultimately resulting in full price deregulation from 1 July 

2016 (QCA 2015c). 

 

Competition is more limited in areas outside SEQ, primarily because of the Queensland 

Government's Uniform Tariff Policy (UTP). This policy requires regulated regional electricity 

pricing to be based on the cost of supply in SEQ, despite the fact that these prices are well below 

that in regional areas (QCA 2016c). This differential in pricing occurs due to the high costs of 

transporting electricity along extensive regional networks to a sparsely populated consumer base. 

The average cost of supply in some regional areas can be 140% higher than the cost of supply in 

SEQ (QPC 2016b). In 2014-15, the cost of the UTP was approximately $600 million (QCA 2016a). 

As it is only provided to Ergon Retail, the one remaining government owned electricity retailer in 

Queensland, the ability of other retailers to compete against such highly subsidised prices is 

extremely limited (QCA 2016a).  

 

It is these characteristics amongst others, that help to highlight the enormous potential of PV and 

battery energy storage in regional areas. When installed to support network objectives, the 

technology not only offsets the higher cost of electricity provision in regional areas but could also 

help to reduce the size of the UTP subsidy which reflects a broader benefit to the Queensland tax 

payer.  
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While Queensland households have historically been relatively high energy users, consuming on 

average approximately 7.5MWh per annum, average demand has declined in recent years to 

6.1MWh (Simshauser 2016). In regard to tariff structures, almost all residential electricity 

consumers in Queensland are connected to the standard residential tariff (tariff 11) which includes a 

volumetric component and a fixed component. Two controlled load tariffs also exist (tariff 31 and 

33) which provide cheaper power but they can only be used under certain conditions (e.g. for 

hardwired appliances such as electric hot water heaters) and at certain times of the day. Tariff 31 

guarantees supply for only 8 hours a day whereas tariff 33 guarantees supply for 18 hours a day 

(DEWS 2017a). 

 

Two new tariffs have been introduced more recently: a time-of-use tariff (tariff 12a) which imposes 

higher prices during peak times i.e. between 3 and 9.30pm; and a demand tariff (tariff 14) where 

charges are based on demand (kW) during peak periods but has lower volume (kWh) and fixed 

costs (DEWS 2017a). Uptake of these new tariffs has been limited with only 250 dwellings 

subscribing to the time-of-use tariff when it was released (Wardill 2014). Since then it is estimated 

only a very small proportion of Queensland households have signed up to either time-of-use or the 

demand tariff (Colmar Brunton 2017).  The different pricing structures for all Queensland 

residential tariffs for 2016-17 are included in Table 2.   

 

 
Source: (QCA 2016c) 

Table 2 Queensland regulated regional residential retail tariffs 2016-17 excluding GST 
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5.1.2 Structural and institutional reform of the Queensland electricity sector 

 

Prior to the introduction of competition reforms in the mid-1990s, Queensland’s electricity supply 

system was controlled through the Queensland Electricity Commission and regional electricity 

boards that were responsible for the operation of vertically integrated and publicly owned 

infrastructure (DEWS 2013). In this environment, the provision of electricity was heavily 

subsidised but very cheap by OECD standards (DEWS 2013).  

 

In 1998, Queensland became part of the NEM. The NEM is a wholesale spot market linking five 

jurisdictions (Queensland, New South Wales, Victoria, South Australia and Tasmania) with 

approximately $10 billion worth of electricity traded to meet the needs of more than nine million 

consumers (AEMO 2016c). The NEM has total generation capacity of 45,000MW with about 

200 terawatt hours (TWh) of electricity traded each year (AEMO 2016c). Fossil fuels make up 

nearly 87% of total generation, which makes the emissions intensity of the system high at 

approximately 0.79 tCO2e/MWh (CCA 2013; BREE 2014). 

 

The NEM is unique in that it is one of the world longest interconnected power systems.  The total 

length of the transmission and distribution network is approximately 800,000 km (AER 2013). Not 

only is maintenance and augmentation of this network costly, it is relatively inefficient with line 

losses of 10% across the system representing around 20TWh and 18 MtCO2e (DOI 2014). The 

potential benefits of distributed generation technologies, such as PV and battery energy storage, 

where generation occurs at point of use, are particularly significant in this regard. 

 

A key feature of the NEM is the way in which supply is instantaneously matched to demand 

through a competitive wholesale pool. This works by way of a spot market where generation 

capacity is bid into a central dispatch system. The dispatch price is calculated every five minutes 

and averaged over each half hour to determine the spot price for each NEM region (AEMO 2016c). 

To determine the order of dispatch, the market operator stacks the bids of all generators and 

dispatches electricity from the cheapest generator to the most expensive until demand is met. The 

highest priced bid used sets the dispatch price and all bidders with generation dispatched are paid 

this price regardless of how they bid (AER 2015c). A consequence of this system is that if PV and 

battery energy storage are deployed at scale, reducing both average and maximum demand, this 

could decrease the frequency that higher priced generators bid into the market putting downward 

pressure on wholesale electricity costs (McConnell, Hearps & Eales 2013). 
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To demonstrate the volatility in the NEM, the maximum spot price allowed is currently set at 

$13,800/MWh whereas the market floor price is set at -$1000/MWh (AEMO 2016c). These price 

caps illustrate the high cost of critical peak demand events when the spot price hits its ceiling, 

particularly when compared with average wholesale electricity prices. For example, average 

wholesale prices in Queensland in 2014/15 were $61MWh (AER 2015c). The price at which the 

market floor is set also highlights the risks to utilities from periods of surplus electricity stemming 

from over-generation of renewable energy which can reduce prices or see them go below zero.  

 

In addition to the operational and technical complexity associated with provision of electricity 

throughout the NEM, the underpinning regulatory framework is also highly complex. When taken 

together, this complexity illustrates the difficulties in understanding and planning for change in the 

sector. For example, regulation and governance of the NEM occurs through a national framework 

overseen by the Council of Australian Government’s Energy Council, which includes all Australian 

states and territories. The Energy Council provides direction to three national energy market 

institutions: the Australian Energy Market Commission (i.e. the rule maker and market developer), 

the Australian Energy Market Operator (the system operator) and the Australian Energy Regulator 

(economic regulator and rule enforcer) (ECRC 2015). The institutional arrangements for the NEM 

are illustrated in Figure 22 below. 

 
Source: (Productivity Commission 2013a) 

Figure 22 Institutional arrangements in the NEM (modified to reflect recent governance changes) 
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The regulatory framework is enshrined in the National Electricity Law (NEL) which informs the 

development of the National Electricity Rules (NER) that provide the detailed arrangements that 

govern the operation of the NEM. The NEL also includes the National Electricity Objective (NEO) 

which articulates the objective of the NEL to:  

 

“promote efficient investment in, and efficient operation and use of, electricity services for the long 

term interests of consumers of electricity with respect to – price, quality, safety, reliability, and 

security of supply of electricity; and the reliability, safety and security of the national electricity 

system.”(AEMC 2017, p. 1) 

 

The NEO is important because it effectively articulates the policy rationale on which the Australian 

Government considers regulatory intervention in the market. For state-based jurisdictions however, 

the NEO must be considered in conjunction with state-based policy and legislative frameworks. 

This is because all jurisdictions in the NEM are able to derogate from national laws so that unique 

state requirements can be met.  

 

In this regard, the Queensland Government retains a number of specific policy and regulatory roles 

For example, Queensland administers the Electricity Act 1994 which amongst other powers enables 

licensing of generation and network assets, sets minimum service standards for the number and 

length of power interruptions and provides for setting of notified prices for standing offer customers 

(Queensland Government 2017c). Small electricity customer disputes (Energy and Water 

Ombudsman Act 2006), electrical safety (the electricity Safety Act 2002)  and electricity 

infrastructure planning (Sustainable Planning Act 2009) are also the responsibility of the 

Queensland Government (Queensland Government 2017c). 

 

Furthermore, in early 2017, the Queensland Government released a long-term strategic energy 

policy with the objective of delivering “stable energy prices, ensure long-term security of electricity 

supply, transition to a cleaner energy sector and create new investment and jobs” (DEWS 2017b, p. 

1). Despite the similarities between this policy statement and the NEO, the inclusion of a 

sustainability objective in the Queensland policy is worth noting. This is because there is no 

environmental or emission reduction objectives in the NEO, which has been a significant point of 

contention since its inception (Finkel et al. 2017). This distinction in policy in Queensland has 

important implications for the integration of low emission technologies into the existing supply 

system and development of an efficient transition pathway. 



 

80 

 

 

While the Queensland Government has less powers than it did in the past to regulate the sector, its 

changing role conflicts with public perception, which still sees the state government directly 

accountable for electricity prices (DEWS 2013). In addition, the role of government as owner of 

generation, network and retail utilities which return large dividends, can directly conflict with its 

responsibility to ensure the delivery of an affordable essential service. These factors can reduce 

consumer confidence in the electricity supply system and strengthen drivers for self-sufficiency and 

grid independence. 

 

5.2 The rise of residential PV – drivers and implications for battery adoption 

In Queensland, the exponential growth of PV was both unanticipated and unprecedented in terms of 

the rate and scale of adoption. Within the past 10 years, PV installs increased from less than 1000 in 

2007, to just under half a million in 2017, comprising 1.5GW of capacity (Figure 23) (Clean Energy 

Regulator 2017). Nearly a third of dwellings have PV installed in Queensland making the state the 

Australian leader both in terms of total capacity and the proportion of homes with PV (APVI 

2017b).  

 

 

Source: data for graph from Clean Energy Regulator (2017) 

Figure 23 PV growth in Queensland 

The residential PV sector in Queensland is now considered a mature market (QPC 2016b).  

At its peak in 2011-12, nearly 1400 solar installers were employed in the sector which included a 

total of 3520 direct full-time equivalent positions (QCA 2015b). The number of installers has since 

stabilised following the winding back of subsidy schemes during this period (Figure 24).  
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Source: data for graph from CEC (2017b) 

Figure 24 Accredited PV installers in Queensland 

 

The rise of residential PV in Queensland, in many ways epitomises the transformation and 

disruption that new demand side technologies pose. Understanding the factors that drove this 

growth is highly relevant when considering the adoption of residential battery energy storage. These 

drivers help illustrate the way in which structure and feedback dynamics can manifest in electricity 

transitions.  Key drivers in this respect include: (1) PV system prices; (2) electricity prices; (3) 

rebates and subsidies; and (4) the changing role of the Queensland consumer. 

 

5.2.1 PV install prices 

 

Queensland, like many other countries around the world, was the beneficiary of rapid PV price 

declines. Driven initially by generous subsidy regimes in countries such as Germany, price declines 

further accelerated in response to technology advances such as better cell efficiencies, process 

improvements and manufacturing scale (Bazilian et al. 2013). As the local market developed 

rapidly in Queensland, there were further cost reductions associated with installation (in response to 

learning effects) and financing (as comfort increased in response to technology familiarisation). To 

illustrate the magnitude of declines, Figure 25 shows the unsubsidised price declines in module 

costs and total system costs in Queensland.  
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Source: data for graph from APVI (2016). 

Figure 25 Unsubsidised module and total system install price declines. 

 

5.2.2 Electricity prices  

 

The retail price of electricity is a key determinant of PV adoption. It directly influences the scale of 

ongoing savings that consumers accrue from their PV systems. The relative contribution of each 

component of Queensland’s electricity prices is illustrated in Figure 26.  

 

 
Source: (QPC 2016a) 

Figure 26 Cost breakdown of primary residential tariff 
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Prior to 2006, electricity prices in Queensland were low and increased generally in-line with the 

consumer price index (QPC 2015). However in the subsequent decade, electricity prices increased 

by nearly 110% (QPC 2015). A key driver was the impact of clean energy schemes. In 2015-16, the 

cost pass-through associated with the national RET and the Queensland premium FiT, the Solar 

Bonus Scheme (SBS), made up approximately 11% of a residential electricity bill with 8% 

attributed to the SBS and 3% to the RET (QCA 2015a). These policies not only provide a direct 

financial subsidy in their own right, but by helping to increase the price of electricity, further 

incentivise PV adoption. They are discussed in more detail in section 5.2.3 below. 

 

An even larger contributor to electricity price increases were network costs. Since 2006, network 

costs increased by 243%, so that they now contribute around 45% to a typical residential electricity 

bill (QPC 2015).  Network cost increases were driven by three main factors: 

• Introduction of new reliability standards - In 2004, extreme weather saw severe storms and 

high temperatures cause network instability and outages. The public backlash resulted in a 

substantial investment in networks to increase resilience.  

• Increasing peak demand - Population growth and the uptake of energy intensive appliances 

saw a large increase in peak demand requiring additional network investment. Peak demand 

increased by 104% in the 12 years to 2010, driven in part by a large increase in air 

conditioner ownership, from 23% to 72% over the same period (Simshauser, Nelson & 

Doan 2010).  

• Cost of capital - The influence of the global financial crisis in 2008 exacerbated network 

price increases. Network businesses receive a regulated rate of return on their assets based 

on a Weighted Average Cost of Capital (WACC). In response to the volatility in financial 

markets impacting debt and equity markets at the time, the WACC for the network 

businesses was set at 9.72% for the 2010-15 regulatory determination period (QPC 2016a). 

This return was calculated against a regulated asset base worth approximately AU$15 

billion. The large WACC (compared to 6.01% for the following regulatory period) and the 

corresponding increase in distributor revenues resulted in large electricity price increases 

(QPC 2016a).  

 

There is also increasing evidence that both the direct and indirect costs associated with integrating 

PV are influencing electricity prices. With PV growth continuing in Queensland, the ‘duck curve’ 

as described in Chapter 2 is becoming more pronounced. For example, since 2011, the net system 

load profile has seen a material decline during the day due to PV, while peak demand continues to 

increase (Figure 27).  
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Source: Adapted from QCA (2017a) 

Figure 27 Energex net system load profile based on T11 

In some areas this issue is acute. A network feeder in SEQ with 37% PV uptake saw energy demand 

decline by 22.9% while peak demand increased by 2.8% between 2009 and 2014 (Simshauser 

2016). Peak demand represents an increasingly serious issue in terms of network utilisation with 

Energex estimating that 16% of its network has been built to meet a level of demand that occurs for 

the equivalent of 88 hours a year, while approximately 6% of Ergon’s network is used for less than 

nine hours of the year (DEWS 2013).  These dynamics drive a decline in asset utilisation while 

pushing up electricity prices. This is because critical peak demand events are the primary factor 

responsible for increasing network costs. PV has little effect on peak demand, and therefore 

contributes no material reduction in network costs (Nelson, Simshauser & Nelson 2012). This is 

illustrated in Figure 28, which shows how peak demand at a residential 11 kW feeder in Brisbane is 

unaffected by PV.  

 
Source: (Energex 2016a) 

Figure 28 Impact of PV at the feeder level at Kallangur on a peak day 
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Furthermore, high penetrations of PV in Queensland are causing a range of technical issues. 

Changes to power flow in the network, where PV generation reverses flow along the low voltage 

network, can require significant augmentation, the cost of which is passed back through to 

consumers as higher electricity prices (CEC 2015b). Energex has already reported an increase in 

customer complaints stemming from power quality issues and have forecast that in the next five 

years the number of distribution transformers likely to have power quality issues will rapidly 

increase (Energex 2016a). In recognition of these issues, the AER included an allowance of $25.3 

million and $26.4 million for Energex and Ergon respectively to manage power quality issues; costs 

which are passed through to all electricity consumers, including those without solar (QPC 2016b). 

5.2.3 Rebates and subsidies 

At the same time as electricity prices began to increase in Queensland, subsidies were introduced at 

both the national and state level aimed at encouraging PV uptake.  The two primary incentive 

schemes included the national RET and the Queensland SBS. 

 

The RET is a legislated, market-based mechanism that requires at least 20% of Australia’s 

electricity supply to come from renewable energy by 2020. Following a review of the scheme in 

2014, a revised target requiring 33,000 GWh of large-scale renewable generation was implemented, 

which if successful, would equate to approximately 23.5% of electricity generation coming from 

renewables in 2020 (Department of the Environment 2017). The scheme works by placing an 

obligation on retailers to buy a proportion of their electricity from accredited renewable sources. 

The RET included a Small-Scale Renewable Energy Scheme, which provided the equivalent of an 

upfront subsidy for PV in the form of small-scale technology certificates (STCs) based on the 

deemed generation of a system over 15 years. One STC is worth 1MWh of electricity and the price 

is either fixed at $40 or can be sold through the open market at the going price.  

 

From July 2009, this scheme involved a multiplier effect so that the value of small-scale technology 

certificates were increased by 5 times which provided the equivalent of an upfront subsidy of 

approximately $7,500 (Climate Change Authority 2012). The size of this multiplier gradually 

reduced back to one from January 2013. Even with this reduction, the capital subsidy for the small 

scale renewable energy scheme came at a cost to electricity consumers of more than $4 billion 

between 2011 to 2013 alone (Origin 2014). This cost occurred at a time when module prices were 

dropping and helped drive rapid deployment, contributing to many of the financial and technical 

issues experienced by network participants. 
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The Queensland SBS is a premium net FiT introduced by the Queensland Government in 2008. The 

stated objectives of the SBS are to: “make solar power more affordable for Queenslanders; 

stimulate the solar power industry; and encourage energy efficiency” (QPC 2016b, p. 5). The SBS 

provided 44 cents/kilowatt hour (c/kWh), or roughly double the retail cost at the time, for any 

electricity not used in the home and sent back to the grid. More than 278,000 participants signed up 

to the SBS before it was closed to new applications in 9 July 2012 (QPC 2016a). Provided that 

participants maintain their eligibility, they will continue to receive the FiT until the scheme ends in 

2028. For customers who signed up after the closure of the SBS, they were eligible for a transitional 

FiT of 8 cents/kWh which ran until 2014. After this time, customers in SEQ could negotiate a FiT 

directly with their retailer, while regional Queensland customers could access a FiT price set 

annually by the QCA (QPC 2016b, p. 5).  

 

Although the SBS achieved its objective to encourage PV uptake, it did so at an enormous cost and 

represented a highly regressive intervention from a social welfare perspective (Nelson, Simshauser 

& Nelson 2012). The scheme is administered through the distribution network businesses with 

scheme costs passed through to all electricity consumers. This creates equity issues for consumers 

who do not have PV but are required to pay for the SBS through their electricity bills. In 2015-16, 

these costs added approximately $89 to a typical residential bill, with total scheme costs estimated 

to reach $4.4 billion by 2028 (Figure 29) (QPC 2016b).  

 

 

Source: (QPC 2016b) 

Figure 29 Annual and cumulative costs of the Solar Bonus Scheme 
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The scheme also resulted in a number of unintended consequences. The generous nature of the 

subsidy saw a rush effect resulting in exponential PV growth. This caused a boom-bust scenario for 

the industry which resulted in poor industry practices and the installation of substandard systems 

(Eadie & Elliott 2013). The scheme also encouraged households to maximise their export to the grid 

(to increase the value of the incentive) which exacerbated many of the technical issues while 

locking in certain undesirable consumption patterns (i.e. increasing export to the grid) for as long as 

a household remains subscribed to the scheme. 

 

With rebates and subsidies already being introduced around the world to encourage battery storage 

uptake, there remain important lessons to be learned from the way in which subsidies were applied 

for PV and their broader impact on the community. These issues are considered in more detail as 

part of consideration of policy implications in Chapter 8. 

 

5.2.4 Understanding Queensland electricity consumers  

 

As described above, unprecedented PV growth in Queensland was clearly driven by a number of 

structural elements relating to technology-specific advances, policy interventions and broader 

electricity supply sector dynamics. It was however, the Queensland residential electricity consumer 

that was central to this growth and ultimately responsible for the rate and scale of PV adoption in 

Queensland. With battery energy storage poised on the cusp of a similar trajectory as PV, 

understanding the characteristics of the increasingly engaged electricity consumer is crucial.  

 

There exists a substantial body of research that aims to better understand electricity consumers and 

their relationship with the electricity supply sector (Stern 1992; Wilson & Dowlatabadi 2007; Caird, 

Roy & Herring 2008; Boughen, Castro & Ashworth 2013; Romanach, Contreras & Ashworth 

2013). In recent years, research examining consumer preferences and drivers related specifically to 

PV adoption has also expanded considerably (Bollinger & Gillingham 2012; Sigrin, Pless & Drury 

2015) (Rickerson et al. 2014; Dharshing 2017; Reeves, Varun & Robert 2017). These studies aim to 

better understand consumer decision making from a financial, social and behavioural perspective 

using theoretical frameworks such as behavioural economics and diffusion of innovations  (Sigrin, 

Pless & Drury 2015). As there is currently very limited research regarding the role and preferences 

of the consumer in battery adoption, these studies provide a useful foundation to draw generalised 

assumptions about consumer drivers. 
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What these studies find is that consumers are motivated to adopt distributed generation technology 

for a variety of reasons. In recognising that financial drivers are a key determinant for mass market 

uptake of demand-side energy technologies, these studies also find that there is substantial evidence 

to suggest that consumers’ “motivations and actions on household energy are more complex than 

suggested by a rational model of decision making based on information, regulations and 

economics” (Caird, Roy & Herring 2008, p. 150).  

 

A review of the aforementioned studies revealed a range of common non-financial drivers that 

could underpin a residential consumer’s decision to install PV and battery energy storage. This 

includes motivations to: 

• minimise emissions or reduce environmental impact from energy use;  

• reduce reliance on the grid to insulate against possible future price increases while 

minimising concerns about long-term energy security issues, particularly in regards to those 

associated with energy commodities that are outside the consumer’s control;  

• have greater control over all aspects of energy use, including both how it is used, how much 

is used and how it is produced; 

• achieve reliability and resilience outcomes. For example, consumers may seek alternative 

energy supply solutions to minimise the impact of blackouts or to increase individual 

household resilience to possible climate change or terrorism impacts on existing centralised 

electricity supply systems;  

• minimise exposure to electricity sector incumbents in response to increasing frustration and 

dissatisfaction with the broader utility sector. This is stemming from electricity price 

increases, new rules (particularly where they restrict or penalise distributed generation 

adoption), perceived profiteering, and broader shifting public perception;    

• achieve status and prestige outcomes associated with advanced energy technologies; and/or  

• access government subsidies. 

 

For Queensland, many of these non-financial drivers have been reinforced in recent years. For 

example, the electricity price spike of the past decade, means that electricity costs have become a 

source of significant concern for many households. The results of a recent ongoing quarterly 

consumer survey found that the price of electricity remains the number one cost concern for 80% of 

consumers (Choice 2016). The ability to afford future electricity price rises represents an important 

motivator to implement measures now, such as installing PV and battery energy storage, to 

minimise future exposure (QPC 2016a). 
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Electricity price increases in Queensland have not only served to improve the financial case for new 

distributed generation technologies but has also underpinned a growing frustration with incumbent 

utilities and mistrust of the government. In 2015, a national survey found that electricity utilities 

were one of the least trusted sectors in Australia (Browne 2015). This is supported by surveys in 

Queensland, one of which found that only 5% of respondents thought the network businesses were 

acting in the best interests of consumers (Agnew & Dargusch 2017). 

 

The public perception of network overinvestment, commonly referred to as gold plating, has been a 

key driver in this regard. While it is argued that the growth in network spend was in response to 

government mandated reliability standards and was based on forecast demand data (that later 

proved to be incorrect), it is the perception that networks have expanded their assets to increase 

profits, knowing that the costs will be passed through to consumer, that has prevailed (ECRC 2015).  

 

The impact of this practice has been reinforced by extensive media coverage. A Senate inquiry on 

the issue found that high network costs had increased the burden on households and businesses as 

“a result of perverse incentives in the regulatory rules that encourage significant investment in an 

electricity network that may not be used to the same extent in the future” (ECRC 2015, p. 18). The 

Inquiry found that these dynamics encouraged consumers to seek out ways to reduce energy 

consumption and directly encouraged uptake of distributed generation, with access to battery energy 

storage likely to further change consumer behaviour in this regard (ECRC 2015).  

 

Consumers have also raised concerns that the network businesses discriminate against households 

with solar by increasing fixed charges and putting barriers in place to connection, such as limiting 

system size and imposing additional charges (ECRC 2015). The reduction and phase out of some 

premium FiTs and the perception of unfair pricing for electricity exported back to the grid from 

solar PV are also factors (ECRC 2015; Solar Citizens 2015).  

 

While some of these claims are unwarranted, they nonetheless create negative perceptions which 

can have a strong influence on consumer perception and behaviour. A survey for Ergon Energy 

found that its brand had been damaged in response to a reduction in FiTs wrongly attributed to the 

company (Ergon Energy 2015). In addition, applications for PV that were declined by Ergon, 

regardless of the reason also impacted negatively on public perception (Ergon Energy 2015). 
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Despite these insights, the understanding of consumer behaviour regarding preferences and drivers 

for battery energy storage in Queensland remains limited. There is only one study to date that 

specifically examines consumer motivations and how they relate to battery attributes and 

functionality in Queensland (Agnew & Dargusch 2017). The study used stated preference data and 

choice modelling to make inferences regarding the specific financial and non-financial factors that 

could motivate battery uptake. The study involved 268 participants from a primarily early adopter 

demographic and included a discrete choice experiment (DCE). Estimation of part-worth utilities 

from the DCE determined the relative importance of battery attributes for each respondent such as 

cost, size, payback etc. These utilities were then cross-referenced with participants attitudes and 

beliefs to better understand the influence of non-financial motivations on preferred battery attributes 

(Agnew & Dargusch 2017).   

 

Several important conclusions were made in the study. A majority of respondents were highly 

supportive of battery energy storage technology with a high stated intention to install a battery 

system in coming years. Cost was unsurprisingly the most important individual driver. However, 

when considered collectively with other battery attributes (i.e. as part of the total system ‘utility’), 

the study found most respondents preferred medium or larger batteries, which require higher 

upfront costs with longer payback periods when compared with small, cheaper batteries. These 

outcomes correlated with respondent’s non-financial attitudes and beliefs regarding support for the 

environment, negative perception of incumbents, desire for resilience and concerns about future 

electricity price rises. Interestingly the demographics of the survey sample, while not precisely 

representative of the entire Queensland population, was characteristic of an early adopter 

demographic. This result, when considered through the lens of diffusion of innovation theory, 

reflects the early stage of battery market development but also suggest important implications for 

technology path dependency.  

 

Prior to this study, the only information on consumer battery preferences in Queensland were found 

in general energy surveys. For example, a study by Colmar Brunton (2015) which surveyed a 

representative sample of Queensland consumers on their household energy use characteristics 

included a small number of questions related to battery storage. The findings indicated that 

consumers will be motivated to purchase storage to help prevent the impact of rising electricity bills 

and to achieve self-sufficiency (Colmar Brunton 2015). The primary barriers to uptake were a lack 

of information, the cost, and a lack of home ownership. The survey also found evidence of rising 

interest in battery storage but purchase intent was still low (Colmar Brunton 2015). 
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5.3 Battery energy storage in Queensland – the current state 

As discussed previously, many of the preconditions for battery energy storage adoption are already 

in place in Queensland. However, as is the case globally, the residential battery market is still at the 

very earliest stages of development. The most recent market data suggests that Queensland has 

approximately 2000 residential battery systems installed comprising nearly 15MWh of capacity 

representing 29% of all such installations in Australia (CEC 2017b). While this represents only a 

tiny fraction in terms of eligible dwellings, a number of recent forecasts suggest that battery uptake 

will increase substantially in Queensland in coming years. 

 

Modelling undertaken for the Queensland Productivity Commission in 2016 forecast that 

approximately 130,000 residential and commercial battery systems would be installed in 

Queensland by 2034-35 representing 900MWh of storage (QPC 2016a). This can be compared with 

a study by AEMO (2015c) which found that residential and commercial storage would reach 

2046MWh of capacity by 2034-35 representing more than 300,000 residential and battery systems. 

The most recent study was undertaken by CSIRO (2017) which projected 10,000MWh of storage in 

Queensland by 2030, comprising 760,000 residential battery energy systems.  

 

Clearly there is a wide spectrum of results from each of these studies which reflect the variation in 

underpinning assumptions. In this respect, assumptions were only publicly available for the AEMO 

and CSIRO studies. The AEMO study listed a number of important limitations. For example, it only 

considered the uptake of new installations of PV and batteries with no inclusion made for 

retrofitting existing PV dwellings with a battery. In addition, adoption was based on financial 

metrics only with no inclusion of non-financial motivations. These limitations suggest that the 

AEMO forecasts are likely to be conservative.  

 

The CSIRO study is extremely comprehensive and does include assumptions regarding consumer 

behaviour. However, inclusion of behavioural aspects appeared to be based purely on a logistic 

curve which incorporated behaviour from an economic point of view, and did not appear to include 

endogenous feedbacks that might reinforce particular non-financial motivations. In addition, 

assumptions in the model regarding specific Queensland drivers, such as the impact of the premium 

FiT over time on battery adoption, appear not to have been taken into account. 

 

This is important because consumers subscribed to the FiT are less likely to install batteries due to 

loss of income from exported electricity. While the scheme is closed to new applicants, there 
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currently remain more than 200,000 Queenslanders subscribed, which means if they remain 

eligible, they can continue to receive the FiT until 2028. Finally, the assumptions underpinning 

saturation in the CSIRO model appear to be very high with one scenario assuming 90% residential 

uptake (Graham 2015). In many other models, this is typically around 75% (AEMO 2013). This 

means that the magnitude of PV and battery installs in the CSIRO forecast could be overstated. 

 

In recognition of the potential risks and opportunities associated with battery energy storage should 

the above forecasts come to pass, Queensland’s distributors and retailers are currently undertaking a 

number of trials to determine the impact of batteries on the sector and to evaluate the specific 

characteristics of technologies in the Queensland context. Energex, for example, has installed 

several batteries in SEQ and is looking at their impact on peak demand and power quality in 

residential areas (Energex 2017). Ergon Energy Retail has installed PV and batteries in 33 homes 

across regional Queensland to test the efficacy of new business models. This involves customers 

entering into a long-term contract in which they pay a monthly fee to the retailer but no upfront cost 

for the system; in return they save money on their electricity bill and the company uses the battery 

remotely to manage load curtailment (Ergon Energy 2017). These trials are also being used to test 

battery safety, operation and functionality. 
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Chapter 6 Causal loop modelling – understanding the behaviour of the system 

 

Overview of chapter 

 

The purpose of this chapter is to describe the use of causal loop modelling to show the structure and 

dynamics that could underpin battery storage adoption in Queensland. It provides a detailed 

description of the methodology used to collect data and describes how key variables were mapped, 

and the causal relationships between them defined, to inform the creation of a causal loop model. 

The results of this stage of research are then considered in terms of battery diffusion dynamics and 

how they could influence broader electricity sector outcomes. This chapter also provides the basis 

for future empirical analysis using a system dynamics simulation model.  

 

Citation 

Agnew, S. Smith, C. Dargusch, P. (2017) Causal loop modelling of residential solar and battery 

adoption dynamics: a case study of Queensland, Australia, Journal of Cleaner Production (In Press) 

 

 

  



 

94 

 

6.1 Introduction 

 

Centralised electricity supply systems are experiencing rapid and material change in response to a 

confluence of climate policy, technology development and the rise of the ‘engaged’ electricity 

consumer. The unprecedented growth of residential solar photovoltaics (PV) epitomises this 

transition. In just over a decade, global PV capacity has increased from approximately 1.3 gigawatts 

(GW) in 2000 to nearly 230 GW by the end of 2015 (EPIA, 2014; IEA, 2016b).  

 

Despite its many benefits however, the rapid integration of PV into existing centralised electricity 

systems has not always been ideal. Two-way power flows, voltage fluctuations and intermittent 

generation have negatively impacted power quality in areas of high PV density (Eltawil & Zhao 

2010; Passey et al. 2011; Noone 2013). At the same time, falling electricity volumes have 

challenged traditional revenue recovery mechanisms resulting in increased electricity prices, cost-

shifting and in some cases, negative social equity outcomes (Rickerson et al. 2014; Simshauser 

2016). 

 

Residential battery energy storage systems represent the next wave of consumer-led energy 

technology that could exacerbate electricity sector disruption. Battery energy storage with PV 

enables consumers to reduce the volume of electricity they use from the network, shift the times 

they use the network or disconnect from it entirely (Agnew & Dargusch 2015). This represents a 

paradigm shift for traditional centralised electricity supply systems, which generally require 

instantaneous balancing of supply with demand.  

 

While high costs in the past have hindered residential battery uptake, recent multi-billion dollar 

investments in technology development and manufacturing have seen dramatic price declines. In 

early 2015, electric vehicle manufacturer Tesla announced pricing for new home battery energy 

storage solutions that substantially undercut all previous price expectations (RMI, 2015b). In 2016, 

Tesla upgraded its home battery system by doubling the usable capacity and including an integrated 

inverter (Tesla 2016). The new system, selling at approximately the same price as the original, 

represents an effective halving of costs in terms of price per kilowatt hour.  

 

Other battery manufacturers have also mobilised and a range of new competitive battery products 

and services have been released. At the same time, governments have implemented subsidy 

arrangements while innovative financing approaches have helped reduce high upfront capital costs 

(AECOM 2015). These developments have seen battery learning rates (i.e. the reduction in cost for 
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every doubling of cumulative installed capacity) exceed 20% since 2010 (IEA 2016a). While the 

extent to which battery prices will decline remains uncertain it is estimated that costs could decline 

to $US100 per kWh by 2040, with the US Department of Energy suggesting they could fall to as 

little as $US80 kWh (IEA 2016d). With these factors coalescing, much like they did for PV more 

than a decade ago, it is likely that mass market uptake of residential battery energy storage will be 

possible within the next decade (Byrd et al. 2014; EPRI, 2014; Koh et al. 2014; AECOM 2015; 

IRENA, 2015). 

 

Should this occur, the implications for the physical electricity supply system, the financial markets 

that underpin them and future power system design are substantial (PWC, 2014). For example, 

consumers seeking self-sufficiency will be able to install PV and battery systems that substantially 

reduce their reliance on the existing network. At scale, this will drive sector-wide demand 

reductions that will increase electricity prices (as predominately fixed costs are recovered overs 

smaller volumes of electricity), which in turn encourages more consumers to further reduce 

electricity demand (Simshauser & Nelson 2012). For those consumers who are unable to change 

their electricity consumption patterns or install demand-side technologies, rising electricity costs 

will have a disproportionate and inequitable impact (Simshauser & Nelson 2012) .   

 

At the same time, these dynamics will drive poor asset utilisation and impede future planning and 

investment, which will weaken the long-term viability of incumbent businesses and the stability of 

the electricity market. In many modern electricity supply systems, generation and network assets 

represent multi-billion dollar investments that have been paid for, or heavily subsidised by 

taxpayers. Poor utilisation, falling dividends and asset impairment can therefore have broader socio-

economic impacts. 

 

These risks have received considerable industry attention and an extensive body of research is 

emerging. Studies include those relating to technical and system optimisation (Castillo-Cagigal et 

al. 2011; Hammond & Hazeldine 2015; Ratnam, Weller & Kellett 2015a), economic implications 

(Hoppmann et al. 2014; Ratnam, Weller & Kellett 2015b; Mundada, Shah & Pearce 2016),  

environmental issues (McManus 2012; Fares & Webber 2017) and policy and regulatory integration 

(Rickerson et al. 2014; AEMC 2015). 

 

 



 

96 

 

A fundamental gap in the academic literature is an assessment of battery adoption dynamics from a 

whole-of-system perspective, reflecting the multi-causal, socially complex nature of the problem. 

This gap exists in part because energy systems, despite being frequently conceptualised and 

modelled as techno-economic phenomenon, are socially driven and socially embedded systems 

characterised by ‘messy’ real-world complexity (Miller, Richter & O’Leary 2015). Traditional 

econometric models that assume consumer objectivity and rationality fail to incorporate this 

distinction (Byrne et al. 2002).  

 

Instead, transdisciplinary techniques are required that are “capable of grasping the big picture, 

including the interrelationships among the full range of causal factors underlying them”(APSC, 

2012). In this respect, a “systems thinking” approach is well suited to the task.  

Systems thinking is a process for establishing the relationship between system behaviour and 

system structure (Forrest 2008, p. 333). It provides a conceptual framework and the empirical tools 

to better understand dynamic complex systems while bridging the gap between the sciences and 

humanities to connect often seemingly incongruent variables (Hjorth & Bagheri 2006).  

 

In this paper, we use systems thinking theory to identify some of the ambiguous and multi-

dimensional problems that relate to the adoption and integration of residential PV with battery 

energy storage. We develop a dynamic hypothesis using causal loop modelling based on extensive 

interview data sourced from participants along the electricity supply chain. To our knowledge this is 

the first time primary interview data collected as part of the study has been applied to map the 

complex dynamics associated with residential battery adoption. This is an important step in 

conceptualising and understanding complexity as it helps create “a framework for seeing 

interrelationships…for seeing patterns of change rather than static snapshots” (Senge 2006, p. 68). 

 

We use the state of Queensland Australia as a case study to model these dynamics. With some of 

the highest per capita PV installations in the world, a well-established solar industry, ongoing PV 

growth and high electricity prices, it has many of the preconditions necessary for rapid battery 

uptake (AEMO, 2014b). As Queensland’s centralised electricity sector comprises assets worth more 

than $AU30 billion, disruption to this system has the potential to result in substantial negative 

economic, environmental and social impacts. This makes Queensland an excellent target to apply a 

systems thinking methodology, particularly as the residential battery energy market is currently at 

an embryonic stage of development and there exists very little market data and limited primary 

research regarding adoption dynamics. 
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This paper is structured as follows:  Section 2 describes the method used for data collection, an 

explanation of how the data was used to address the research objectives and a description of the 

case study area. Section 3 comprises the results used for problem articulation, creation of a sub-

system diagram (i.e. an overview of the system architecture) and formulation of a dynamic 

hypothesis using causal loop modelling. Section 4 concludes with a summary on the broader 

implications of the research. 

 

6.2 Methods 

 

We apply systems thinking theory to help explain the structure and dynamics underpinning battery 

energy storage adoption and integration in Queensland. Systems thinking uses feedback theory to 

develop a testable hypothesis, referred to as a dynamic hypothesis, that explains past and future 

system behaviour. In the development of this hypothesis, systems thinking works best when it takes 

multiple perspectives into account by engaging people who work within and manage the system 

under study (Cabrera, Colosi & Lobdell 2008).  

 

To date, systems thinking has been used to analyse a range of energy policy challenges such as 

emissions reduction, energy conservation and market liberalisation (Teufel et al. 2013; Leopold 

2015; Qudrat-Ullah 2016). Systems thinking is well suited to these applications as “energy systems 

have many of the properties that can be described easily using system dynamics models: for 

example, nonlinearities (such as resource depletion), stocks and flows (of resources and capital), 

feedback loops (primarily through price), emphasis on dynamic behaviour, and the need for policy 

analysis” (Naill 1992, p. 17). The International Energy Agency (IEA) specifically identifies systems 

thinking as a framework to help transition to future energy systems. The IEA state that for 

disruptive technologies such as residential battery energy storage, the use of systems thinking could 

help to increase efficiency, resilience and the economics of the entire energy infrastructure  (IEA, 

2014a). 

 

Successful application of a systems thinking approach typically involves a number of stages. These 

are: 1) problem articulation,  2) formulation of a dynamic hypothesis (causal loop modelling),  3) 

formulation of a quantitative simulation model,  4) testing and validation, and  5) policy design and 

evaluation (Sterman 2000; Maani & Cavana 2007). As the objective of our study is to develop a 
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holistic understanding of the dynamics underpinning adoption and integration of residential PV and 

battery energy storage, we implement the first two stages. This work can then be used to provide the 

foundation to address the remaining three stages, particularly the design of a stock-and-flow 

simulation model to empirically model the system. 

 

Problem articulation helps to clarify the purpose of the research while defining the boundary and 

scope of work (Sterman 2000). Articulating problems can be challenging in the electricity sector, as 

stakeholders frequently have misaligned or conflicting strategic objectives and therefore assess risk 

and impact differently. In systems thinking, the term dynamic hypothesis refers to a working theory 

of how a problem arises and provides an explanation “characterising the problem in terms of the 

underlying feedback and stock and flow structure of the system” (Sterman 2000, p. 95).  

 

Our dynamic hypothesis is the product of two elements. We create a subsystem diagram, which 

shows the overall architecture of the system and is useful for visualising the main subunits and their 

relationship to each other (Sterman 2000). Causal loop modelling is then used to create causal loop 

diagrams (CLD) that explicitly portray the feedback structure between variables. CLDs develop an 

endogenous explanation of system behaviour that allow system archetypes and leverage points to be 

identified for policy intervention (Maani & Cavana 2007). A strength of CLDs is that they 

challenge entrenched mental models and test assumptions; in doing so the process can lead to 

important and sometimes counterintuitive insights about system structure and behaviour (Hovmand 

2014). 

 

In regards to notation used in causal loop modelling, CLDs comprise variables (words or phrases) 

that have cause and effect relationships. A pair of variables within a CLD are related using an 

arrow, and this arrow is assigned a polarity in the form of a ‘+’ (same) or a ‘-’ (opposite) to indicate 

the nature of the cause and effect relationship. A ‘+’ polarity indicates that cause and effect move in 

the same direction (i.e. if the cause increases, the effect also increases). A ‘-’ polarity indicates that 

cause and effect move in opposite directions (i.e. if the cause increases, the effect decreases). The 

cause and effect relationships between pairs of variables form causal chains, and when these chains 

start and end at the same variable they form a feedback loop. Feedback loops can be reinforcing (R) 

or balancing (B). Reinforcing loops accelerate change within systems to produce growth or decline, 

while balancing loops counteract change within systems to produce stabilising behaviour. 
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To support the development of our dynamic hypothesis, grounded theory techniques were used for 

data collection and analysis. Grounded theory is the discovery of theory from data that is 

systematically obtained and analysed as part of the research process (Glaser & Strauss 2009, p. 2). 

It is a commonly used approach in systems thinking, particularly where substantial complexity 

exists and can be particularly useful where there is limited quantitative data available. The 

following sections outline the method for (1) data collection, (2) an explanation of how this data 

was used in problem articulation and the formulation of a dynamic hypothesis, and (3) a description 

of the case study area.  

 

6.2.1 Data Collection 

 

The primary data collection process involved expert interviews supported by a review of secondary 

data including industry and academic literature. For our study, data collection was undertaken in 

collaboration with the Queensland Government Department of Energy and Water Supply.  The data 

collection approach involved:  

• Stakeholder identification – a systematic approach to stakeholder identification and 

prioritisation was adapted from Elias et al (2001). This included creation of a stakeholder map 

that showed key categories along the supply chain. For our study we interviewed regulators and 

policy makers from national, state and local governments; representatives from the electricity 

supply chain (including generators, network service providers and retailers); new market 

entrants; technology developers; PV and battery installers; and consumer advocacy groups and 

consumer representatives. Based on these categories, and to ensure a representative sample was 

included in the study, relevant organisations were assessed and participants were identified 

based on subject matter expertise and authority.  

• Participant engagement method and ethics – following initial contact, and prior to meeting, 

study participants were provided with a range of supporting material. This included project 

context, high-level questions to help frame and stimulate discussion and scenarios of possible 

future storage uptake to help challenge mental models. This material was tailored for each of the 

key supply chain categories. A participant consent form was also provided. Due to the 

requirement for human participation in this study, ethical clearance was received from the 

University of Queensland’s School of Geography, Planning and Environmental Management.  

• Interview approach – a semi-structured interview approach was used that has proven to be 

effective in systems thinking applications (Sterman 2000). While a script was developed for the 
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research team that included a number of pre-set questions, the interviewer was able to deviate 

from the script at any time to pursue areas of relevance in greater detail. Interview questions 

were structured to help with problem articulation and to identify key feedback loops and other 

important causal relationships. This technique is particularly well suited for use in causal loop 

development as it can help provide predictive, explanatory and enduring descriptions of the 

dynamic behaviour in a system (Yearworth & White 2013). Experts were either interviewed 

individually or in small groups according to stakeholder category. A dedicated scribe manually 

recorded the outcomes of each meeting. To ensure confidentiality and encourage meaningful 

input, neither participants nor specific organisations were identified. Instead, data was collated 

and referenced according to stakeholder category. 

 

6.2.2 Data analysis  

 

In total, 68 stakeholders were interviewed. The method used for data analysis was adapted from 

Kim and Andersen (2012), which describes an approach to systematically code qualitative data for a 

systems thinking methodology. The high-level hierarchy for our study was structured accordingly to 

those stakeholder elements along the supply chain that could influence battery adoption dynamics. 

Effectively, this hierarchy reflected each of the specific stakeholder groups included in the 

consultation process (Figure 30). 

 

 

Figure 30. High-level nodal hierarchy based on stakeholder groups 
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The first step in our approach involved thematic content analysis and open-coding of data for 

problem definition and identification of the system boundary (Kim & Andersen 2012). This step 

involved extracting and grouping concepts, or codes, from the interview data according to key 

words and phrases based on the hierarchy described above. Codes were determined and defined 

primarily by the research context. In this case, we used both in vivo codes (i.e., descriptions sourced 

directly from the interviews) and codes based on commonly used terms sourced from the literature  

(Kim & Andersen 2012). The concepts extracted from this analysis were used in problem 

articulation and boundary setting (see Table 3 in results).   

 

The second step involved identifying key variables and their causal relationships by extracting 

single units of analysis that relate to the system’s structure or behaviour (Kim & Andersen 2012). 

This involved breaking the data down further into sub-categories, or child nodes, representing a far 

more granular representation of the system being modelled. Within these sub-categories, specific 

variables were identified from the data.  Memos were used to record key aspects of analysis 

associated with each variable3. They included the initial observation and an explanation describing 

the variable and its relevance based on the theory that emerged from the interview data. Each memo 

also detailed the key causal relationships and explicit feedback loops associated with the variable.  

 

All variables and memos were reviewed and validated by examining a range of secondary data 

sources including relevant government, industry and academic research. The variables and 

associated memos were then directly translated into a CLD. The CLD was built using Vensim PLE, 

a software package designed for developing and analysing dynamic feedback models. Throughout 

its development, the CLD was reviewed and verified by academic and industry stakeholders.  

 

6.2.3 Description of the case study area  

 

The state of Queensland in Australia has more than 1.8 million residential consumers and 200,000 

commercial customers serviced by 16 retailers (QPC, 2016b). While there is limited publicly 

available market data regarding the uptake of residential battery energy storage in Queensland, the 

status of PV deployment is well reported. PV installations in Queensland increased from less than 

                                                 

3 Memos are commonly used as part of the coding process and is simply a record or product of analysis 
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1,000 in 2008 to more than 400,000 in early 2016 equating to nearly 1.5GW of capacity  (QPC, 

2016b; APVI, 2017b).  This growth was driven in part by rapidly falling module costs, generous 

upfront government subsidies and a premium net feed-in tariff (FiT). The FiT was introduced in 

2008 and provided 44 cents/kilowatt hour (c/kWh), or double the retail cost at the time, for any 

electricity sent back to the grid. Queensland now has the most PV installed of any state in Australia 

and with PV installed on nearly one third of all homes, has some of the highest per capita 

installation rates in the world.  

 

Almost all Queensland consumers receive their power from a capital (and emissions) intensive 

centralised electricity supply systems with large transmission and distribution networks that connect 

generators with end-users. Queensland’s generation fleet is primarily coal (59%) and gas (26%) 

with two government owned corporations controlling approximately 65% of the generation market 

(QPC, 2016b). No new generation capacity is likely to be needed in Queensland at least until 2024-

25 (AEMO, 2015b). Queensland has an extensive electricity network comprising two government-

owned companies that individually manage transmission and distribution. These monopoly 

businesses are regulated under a revenue cap administered by the Australian Energy Regulator that 

sets the maximum allowable revenue in every five year regulatory period (QPC, 2016b). Network 

costs comprise the largest component of retail tariffs, contributing approximately 50% of the final 

cost of electricity for small customers (QCA, 2015c).  

 

6.3 Results and Discussion 

6.3.1 Problem articulation  

Analysis of stakeholder input revealed a number of key themes relating to possible problems and 

issues associated with the integration of residential PV with battery storage. The concepts extracted 

from this analysis were ordered according to three broad stakeholder groups (Table 3). Study 

participants acknowledged that mass-market uptake of battery storage will create winners and losers 

in the market. However, it is the extent to which these dynamics manifest in supply chain 

inefficiencies (both operational and financial) and the corresponding influence on the end-use 

consumer (in terms of access to reliable and affordable electricity) that is relevant from a broader 

socio-economic perspective. How these issues may arise, and the behaviours that could support 

inefficient integration of battery storage, are considered in more detail in the following sections. 
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Government Electricity sector stakeholders Consumer 

• Complexity/pace of reform 

• Risk of politicised, poorly 

targeted intervention 

• Asset ownership and role as 

shareholder 

• Ongoing provision of 

essential service 

• Consumer protections 

• Asset utilisation and 

impairment 

• Technical challenges 

• Revenue recovery 

• Regulatory impediments 

• Barriers to competition 

• Incumbent viability 

• Equity 

• Impacts on vulnerable 

customers 

• Consumer protections 

and safety 

• Electricity affordability 

• Complexity and literacy 

 

Table 3 Problems identified by stakeholders that could impede efficient integration of solar with storage. 

6.3.2 Subsystem diagram 

The subsystem diagram demonstrates the high-level causal dynamics at play between the consumer, 

the electricity supply sector, the market and government (Figure 31). It shows how consumers, 

responding to both financial and non-financial motivations, will select home battery systems that 

will impact on the demand and load profile of the existing electricity supply system. This in turn 

will change market dynamics prompting a strategic response from existing supply chain 

participants. The nature of this response, the emergence of new entrants and the extent to which 

government intervenes to achieve social-good outcomes will in turn influence continued storage 

uptake and its future impact on the market. While the subsystem diagram helps define the model 

scope and boundary, the next stage of the process (i.e. the development of a CLD), more explicitly 

describes the key feedback loops influencing the behaviour of the system.  

 
Figure 31 Subsystem diagram - an overview of the model architecture 
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6.3.3 Development of a dynamic hypothesis - causal loop modelling  

 

The CLD below is presented in three parts, each focusing on a separate component of the final 

model with an explanation of the key causal dynamics. It is important to note that the final CLD is 

not designed to replicate the entirety of the electricity supply system but rather to represent the main 

elements that drive behaviour in the systems of relevance to this study.  

 

Causal loop diagram 1 – solar PV and the building blocks for residential batteries 

 

The first component of our dynamic hypothesis describes drivers for residential PV uptake, the key 

variables that influence household self-consumption, and its impact on broader grid function 

(Figure 32). This represents the building block for our dynamic hypothesis because access to 

embedded local generation such as PV is central to the adoption of residential battery energy 

storage; without it storage is not considered economic before 2035 (QPC, 2016b).  

 

 

Figure 32 PV dynamics relevant to battery storage uptake in Queensland 

One of the key dynamics associated with PV uptake identified by interview participants is its 

relationship to falling residential network demand, which can in turn drive electricity cost increases 

(loop R1). This occurs because fixed network costs, which make up the majority of electricity costs 
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in Queensland, are primarily recovered through volumetric charging. Any reduction in demand as a 

result of PV generation means costs must be recovered over a smaller base. As unit cost of 

electricity increases, more consumers attempt to reduce their exposure to electricity prices by 

installing PV or implementing other energy efficiency measures.  

 

At the same time, PV has only a small influence on peak residential demand, the primary driver of 

network investment. This means while total use of the system declines due to PV uptake, the same 

level of network capacity is still required to ensure reliability at peak times (CSIRO 2015c). The 

differential between peak demand and average consumption contributes to poor asset utilisation and 

inefficiency along the supply chain. 

 

The dominance of this feedback loop (loop R1) over the past decade, along with falling module 

costs and generous government subsidies has resulted in exponential PV growth. In response to 

high PV penetrations, reduced demand and a range of technical integration issues, network service 

providers have introduced PV connection restrictions in certain locations and increased fixed costs 

to achieve more equitable cost recovery (loop B1). These interventions serve to reduce both the 

financial case for new residential PV installations and the financial returns for pre-existing PV 

systems. Whilst utility intervention in this respect is understandable, it serves to increase consumer 

frustration and mistrust of the electricity sector. These dynamics, which are explored in more detail 

in the third CLD, may have profound implications in coming years as battery energy storage 

becomes more affordable.  

 

Study participants noted that whilst loop B1 is strengthening, loop R1 remains dominant and is 

likely to remain so for some time. This is because there is still a strong financial case to purchase 

PV, even as subsidies are gradually withdrawn. Module prices continue to fall and electricity prices 

remain high by global standards. Queensland also has some of the best solar insolation rates in the 

world. Based on these factors, PV payback periods are forecast to continue to decline in 

Queensland, falling from 6.5 years in 2018 to 4.8 years in 2035 for a 4kW system (AEMO, 2015c). 

With up to one million rooftop PV systems forecast for Queensland by 2035, representing as much 

as 5.3GW of capacity generating approximately 7 gigawatt hours (GWh) per annum, residential PV 

generation will represent a substantial share of total demand (AEMO, 2015a; QPC, 2016a). Clearly, 

PV penetration of this magnitude, coupled with mass-market uptake of battery storage will have 

enormous implications for the existing centralised electricity supply system.  
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Finally, the inclusion in the CLD of the exogenous variable “access to premium FiT” is worth 

mentioning. The premium FiT provides 44 c/kWh for any electricity sent back to the grid until the 

scheme closes in 2028. While access to the FiT is closed to new entrants, more than 60% of PV 

households still receive 44c/kWh for any electricity not used in their home and exported to the 

network (QPC, 2016b). For those households receiving a premium for exported electricity from 

their PV systems, there is less of a financial incentive to use self-generated electricity in home or to 

charge a battery.  This means consumers not subscribed to the premium FiT are far more likely to 

install storage in the short-term. It also means when the scheme closes in 2028, there could be a 

spike in battery installations as consumers seek to maximise PV self-consumption. This could be 

particularly dramatic if battery prices decline as forecast and other drivers continue to strengthen.   

  

Causal loop diagram 2 – the case for residential PV with battery energy storage 

 

The second element of the dynamic hypothesis describes the financial and non-financial 

motivations that could encourage residential battery energy storage adoption and how these 

dynamics could impact residential demand and load profiles (Figure 33). Unlike PV which is now 

considered a mass market technology in Queensland (and its continued diffusion is primarily the 

function of financial drivers), residential battery energy storage is still at the earliest stages of the 

innovation adoption curve. The results of stakeholder interviews indicate that while battery prices 

are decreasing, non-financial motivations are primarily underpinning adoption at present.  

 

Stakeholders identified a range of non-financial motivations including environmental drivers, 

concerns about future electricity price rises and perceived risks to future electricity supply, e.g. 

from energy commodity fluctuations, climate change and terrorism. These non-financial drivers 

correlate with a desire for greater resilience, self-sufficiency and ultimately grid independence 

(Agnew & Dargusch 2017).   

  

In Queensland, consumer dissatisfaction with incumbent utilities was identified as a particularly 

strong non-financial driver (loops R7 and R8). This stems from the fact that electricity utilities have 

been identified as one of the least trusted sectors in Australia (Browne 2015).  A recent survey in 

Queensland found that only 5% of respondents thought the network businesses were acting in the 

best interests of consumers (Agnew & Dargusch 2017). These negative perceptions stem from rapid 

electricity price increases driven in part by network over-investment, large increases in fixed 

charges, barriers to PV connection and perceived unfair pricing of electricity exported back to the 

grid from PV (ECRC 2015).  
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Figure 33 Drivers for residential battery energy storage 
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As the technology matures (loop R6) and technology costs decline (loop R5), it is likely that the 

financial feedback loops in the CLD will become more dominant and drive broader consumer 

uptake.  In this respect, study participants identified that a number of key variables would contribute 

to the financial case for storage. These include: 

• Household electricity costs (loop R2). 

• The household’s energy management potential, that is, the ability of a household to reduce 

electricity consumption and peak demand (loop R3). This improves the financial case for 

storage as it reduces the energy (kWh) and peak output (kW) of the battery required. This also 

has the consequence of further decreasing residential grid consumption, which reinforces loop 

R1. 

• The size of a PV system, a household’s generation potential and the value of any feed-in tariff, 

which will influence any incentive to self-consume or export to the grid (loop R4).  

• The ability to leverage and respond to price based signals (loop R10).  

 

Ultimately, it will be the trade-off between financial and non-financial factors and the availability of 

price based incentives that will determine the type of system installed, the way in which it is used 

and the way in which it is integrated with the existing network. This in turn will influence the type 

of control consumers will exercise over their electricity use and the broader impact this has on the 

total residential demand profile (loop R9).  For example, if appropriate price-based signals exist to 

support the stability and economic efficiency of the network, consumers will have incentives to use 

their batteries to even out peaks and help manage power quality. This will help balance network 

costs while having a moderating impact on wholesale generation costs (loops B3 and B4).  

 

What this component of the CLD demonstrates, is the pervasiveness of financial and non-financial 

reinforcing loops that could encourage battery adoption. Should battery prices halve by 2020 as 

forecast and payback periods continue to fall, it is likely that a positive financial proposition could 

exist for mainstream adoption in Queensland within a decade or sooner (Ergon Energy Retail 2015) 

(Pistoia 2014). Whilst cost will be a key determinant for mass-market battery uptake, study 

participants acknowledged that the influence of non-financial motivations on consumer purchasing 

behaviour could bring forward participation in the market in advance of a ‘rational’ financial case. 

The impact of these changes and the industry response are considered in the final CLD below.  
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Causal loop diagram 3 – Market impact and system response 

 

The final component of our dynamic hypothesis describes how residential PV with battery energy 

storage could interact with the existing electricity supply chain (Figure 34). It shows that vastly 

different outcomes could be reinforced depending on the response of key stakeholders.   

 

For generators, increased uptake of PV with battery energy storage will result in decreased demand 

and flatter load profiles from the residential sector. With a current over-supply of capacity in 

Queensland, exacerbated by large inflows of electricity from PV during the day, generators are 

already operating in a highly competitive market. Whilst residential demand in Queensland 

represents only 26% of total consumption, reduced electricity volumes and decreased volatility 

could contribute further to a decline in generator profitability.  

 

Study participants stated that the ability of the generation sector to respond to these issues is 

currently limited within the Queensland context. There is majority government ownership of the 

generation fleet in Queensland and limited vertical integration. At the same time, wholesale 

generation costs are only one component of retail tariffs, yet the sector must compete with 

distributed generation that is valued against the total delivered cost of electricity to consumers. 

Finally, the generation sector is not consumer facing, i.e. generation businesses do not interact 

directly with residential consumers, which limits options for strategic intervention to improve 

profitability and competitiveness.  

 

Despite the possible risks to the generation sector associated with residential PV and battery energy 

storage, study participants noted that a response from generators to the challenge was still in its 

infancy. This may be because generator profitability is currently more contingent on other macro-

economic factors, particularly changing electricity demand from the industrial sector and policy 

driven large-scale renewable energy development. 
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Figure 34 The market impact and response to solar with battery energy storage 
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For Queensland’s distribution network service providers (DNSPs), the traditional supply 

model based on unidirectional flows of electricity and volumetric pricing is already being 

challenged by the rapid growth in residential PV. Our dynamic hypothesis shows that the 

emergence of affordable battery energy storage technologies will further test the network 

business model. This is in part because existing regulated revenue recovery mechanisms 

encourage DNSPs to pursue conventional approaches to network augmentation (i.e. by 

building more poles and wires) which in an environment of declining demand ultimately 

pushes up electricity prices. As the DNSPs are guaranteed a return on revenue, there is little 

incentive in the short term to change their approach.  

 

Study participants identified a number of factors that question the validity of this approach in 

the face of increasing residential PV and battery energy storage adoption. For example, under 

current regulations, the DNSPs must meet minimum service and reliability standards, 

meaning the networks will need to be maintained even as residential grid consumption 

declines. With peak demand forecast to exceed average demand growth in Queensland in 

coming years, this challenge will be compounded as additional network investment may be 

required to meet peak demand, putting further upward pressure on electricity prices (QPC, 

2016a). In the past, consumers have not had access to cost-effective, demand-side technology 

to respond to these drivers. However, with battery prices declining and new entrants and new 

business models in the market, consumers will be able to directly compete with DNSPs. The 

viability of the existing regulated monopoly structure could weaken in this scenario (loop 

R14). In response to likely political pressure arising from high electricity prices and 

increasing inequity, such dynamics would necessitate regulatory intervention that could see 

changes to regulated revenue recovery mechanisms, which could in turn further weaken the 

existing incumbent business models (loop R18).  

 

As Queensland’s network businesses are owned by the state government, any decline in 

productivity or asset impairment could result in broader budgetary consequences. For 

example, in the past two years alone the network businesses have paid dividends exceeding 

$AU1 billion annually to the state government (Queensland Government 2015). Should 

dividends fall or the value of the companies decrease, government as sole shareholder could 

directly intervene or even seek sale of the network businesses (loop R16). In either case, this 

would most likely result in a net loss of value for Queensland taxpayers.  
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Queensland’s DNSPs appear to be aware of many of the risks and are examining ways in 

which to use batteries to optimise existing network assets while providing choice and control 

to consumers (ECRC 2015, p. 117).  However, despite a number of DNSP-led trials and 

reviews in this regard, many non-network stakeholders remain skeptical of efforts made to 

date, particularly as DNSPs continue to support measures that are perceived to be barriers to 

distributed generation uptake.  

 

As discussed previously, DNSPs have responded to high penetrations of PV and falling 

demand by introducing PV connection barriers, increasing fixed charges and introducing new 

fees. Whilst these measures ostensibly improve the cost reflectivity and equity of network 

tariffs, they may in fact be ‘fixes that fails’.  

 

Fixes that fail occur where an initial fix alleviates a problem in the short-term, however 

unintended consequences of the fix mean that the problem returns after a delay. To 

demonstrate, between 2012 and 2015 fixed charges in Queensland increased by more than 

400% from 26.2 c/day to 106.7 c/day (QCA, 2013b; QCA, 2015a). These charges serve to 

reduce the value of PV systems already installed while diminishing the financial case for new 

systems. While a delay in new system installations is achieved, this action substantially 

increases consumers’ non-financial motivations, particularly dissatisfaction with incumbents.  

 

At the same time, increased fixed charges reduce the consumer’s ability to proactively and 

autonomously manage their electricity costs. This could increase electricity consumption and 

peak demand, which could further increase electricity costs. Over time, these dynamics 

reinforce consumer desire to reduce reliance on network utilities and when financial 

motivations align, increase uptake of non-network solutions, ultimately increasing the 

severity of the original problem. This dynamic is represented as a CLD in Figure 35 below. 
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Figure 35 Fixes that fail - the impact of increasing fixed costs on residential solar and storage 

 

While study participants acknowledged the magnitude of the challenge for DNSPs in 

integrating home battery storage, there was also a broad consensus that effective integration 

of the technology could provide as much benefit to the networks as it does to the household. 

Battery energy storage behind the meter could reduce peak demand, increase system 

resilience, improve power quality and defer network upgrades. These outcomes help ensure 

that the delivery of power comes at the lowest whole-of-system cost, which ultimately results 

in lower electricity tariffs. This in turn reduces some of the drivers that underpin consumers’ 

desire for self-sufficiency and grid independence.  

 

The key to unlocking these benefits is capturing and assigning value among all sectors of the 

supply chain, particularly consumers. Tariff reform could play an important role in this 

respect, as appropriate price-based signals represent a mechanism to incentivise the use of 

battery storage to support network objectives (loop B5). Study participants acknowledged 

however, that a failure to get tariff reform right could result in poorly structured or complex 

price signals, which risk further alienating electricity consumers. With alternatives to the 

network monopoly rapidly emerging, network pricing must be competitive with those options 

whilst maintaining high standards of reliability to keep consumers connected.  

 

To explicitly recognise the changing role of the consumer and influence of new technology,  

DNSPs may need to fundamentally rethink the form and function of the network if effective 

integration is to be achieved (loop R15). Study participants identified that this would 

necessitate cultural and structural change within these organisations. Whilst reform and a 
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strategic restructure of this nature could see a possible decline in DNSPs financial position in 

the short-term, it would most likely improve their commercial viability in the long-term. This 

could also help encourage retention of grid-connected consumers and provide more avenues 

to leverage the most efficient use of existing network assets while paving the way for new 

and innovative solutions in the future.   

 

Unlike the DNSPs, the consumer-facing electricity retailers have had a more immediate 

imperative that has necessitated a more timely response to the challenges associated with 

residential battery energy storage. This stems in part from the impact PV has already had on 

retailer revenues with earnings per electricity customer dropping in recent years; providing a 

clear indication to the sector that new demand-side technology can impair the profitability of 

the traditional electricity retailer business model (loop R13). In the next five years, PV with 

storage could exacerbate these issues with reductions in earnings for Australia’s two largest 

retailers, Origin and AGL, estimated at more than AU$100 million (Koh et al. 2015). Indeed, 

AGL has predicted that in just over a decade, approximately a third of households will be 

partially or fully off-grid (AGL 2014).  

 

In recognition of these developments, and with barriers to competition being removed 

through ongoing regulatory reform, electricity retailers are now offering a range of new 

services, products and financing options in an attempt to realise growth opportunities and 

strategically realign themselves as ‘energy services companies’ (loop R15). For some 

companies this includes the creation of new divisions within the business that will compete 

directly with the traditional retail divisions. 

 

While incumbent electricity retailers are rapidly mobilising, continued technology 

development and new paths to customers have also seen new entrants become active in the 

electricity market. With little or no vested interest in the existing supply model, these 

companies can be nimble, innovative and consumer-focused.  

 

As ‘change agents’, new entrants appear to give little attention to consequence other than 

those beneficial results that accrue to their customers (Rogers 2003). This pro-innovation bias 

means that new entrants could have a disproportionate effect on electricity sector disruption 

(loops R18, 23, 24). New entrants are targeting early adopters and leveraging consumer 



 

115 

 

distrust and frustration with incumbents as they test the market with a number of products 

aimed at directly addressing consumer drivers for self-sufficiency.  

 

Innovation theory suggests that the activities of these early adopters could have a substantial 

impact on future market characteristics. This is because some technologies exhibit path 

dependence where the influence of systemic factors, expectations and small events can shape 

how that technology develops (Foxon & Pearson 2008). This means that for PV with battery 

energy storage, the way in which the market responds to initial conditions, the way in which 

products and services are targeted (i.e. to support the network or to further reduce reliance on 

the network) and the support or opposition by incumbents could have a large influence on the 

market as it matures.  

 

Finally, our dynamic hypothesis considers the role of the government and other regulatory 

agencies. In Australia, most jurisdictions are pursing market liberalisation frameworks, which 

over time will likely degrade the viability of traditional incumbent business models as 

competition increases (loops R11, 12, 13). A majority of study participants identified the 

importance of this regulatory reform work, stating that the current framework designed for 

traditional electricity supply models was impeding the ability of the market to efficiently 

deploy new technologies such as home battery energy storage.  

 

Study participants also identified the need for government to assist in accelerating the 

development of battery safety and technical standards. Rigorous safety standards are a 

necessary precondition for mass-market uptake, with consumers highly sensitive to safety 

issues (Agnew & Dargusch 2017). This is particularly pertinent for home battery storage 

technologies as they can be susceptible to chemical leaks, fires or explosion. Damage to 

property or individuals could have serious implications for continued uptake of the 

technology (loop R6).  At the same time, there is a growing imperative for governments to 

reform consumer protection frameworks. Access to battery energy storage will increase the 

complexity of technology and service offerings. For consumers this may result in contractual 

issues, miscommunication and misleading behaviour, which could increase mistrust of the 

sector and impede technology uptake. 
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Our analysis also considers the impact governments can have when they intervene directly in 

the market to achieve stated policy outcomes or politically motivated objectives. This can 

include the introduction of upfront subsidies (loop R25) or other measures such as 

intervening directly in the setting of electricity prices (loop B6). When poorly planned, 

targeted or implemented, these interventions can drive unintended consequences, social 

inequity and industry boom-and-bust cycles. For residential battery energy storage, a lack of 

market and consumer data, an evolving regulatory framework and unclear policy objectives 

means artificial stimulus at this time must be carefully calibrated to avoid negative outcomes.  

6.4 Conclusion 

The recent global PV boom was a precursor, and enabler, of growing consumer-led 

disruption in modern centralised electricity supply systems. Battery storage is now emerging 

as the next generation of residential energy technology on the cusp of mass-market 

penetration.  With markets, regulators and incumbents still struggling to integrate large 

volumes of PV into the existing electricity supply system, the rise of affordable battery 

storage could compound existing challenges.  

 

Whole-of-system analysis is urgently required to chart an integration pathway in order to 

avoid adverse social and economic consequences. Our study provides the foundation for this 

work. Using systems thinking we have mapped key variables and the causal relationships 

between them that will influence the uptake of residential battery energy storage in the future.  

 

While we use the state of Queensland, Australia as our case study, there are a number of 

jurisdictions around the world, such as Germany, Italy, Japan and some states within the USA 

(such as Hawaii and California), that are experiencing similar demand-side pressures 

particularly rising electricity prices (Rickerson et al. 2014). Like Queensland, these 

jurisdictions have many of the preconditions for rapid residential battery uptake such as an 

increasing desire for self-sufficiency and falling system prices, and despite a diversity in 

electricity market ownership and structures in these countries, our findings remain broadly 

applicable. 

 

In particular, our analysis shows that mass-market uptake of residential PV with storage will 

erode the dominance of the traditional electricity supply model. This model, once 

characterised by a small number of incumbents each with substantial market power in their 
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respective domains, will weaken as technology develops, new avenues for competition 

emerge and market concentration disperses.  

 

In Queensland, a range of non-financial and financial reinforcing feedback loops encouraging 

battery storage uptake are currently increasing in strength. Should battery prices continue to 

fall as forecast - a necessary precondition for mass-market uptake - multiple paths to market 

targeting a highly motivated consumer-base make large-scale battery uptake highly likely in 

coming years.  

 

How incumbents and new entrants respond to these changes during the early phase of battery 

uptake could have lasting effects on the way in which PV with battery energy storage is 

deployed and used in the future. With feedback loops highlighting the increasing power of 

the consumer, our model shows that incumbent efforts to maximise revenues under the 

current regulatory framework by impeding competition or frustrating customer preferences 

are likely to reinforce drivers for greater battery uptake and disruption to the existing 

electricity supply system in the longer-term.  

 

Moreover, the current structure and interconnectedness of the existing centralised electricity 

supply system could amplify these impacts, as individual action by any supply chain 

participant could have disproportionate impacts on other areas of the supply chain by 

increasing costs or influencing non-financial motivations for households to disconnect from 

the electricity grid. These dynamics could lead to adverse societal outcomes, such as the loss 

of value in publicly owned assets, increased electricity prices, destabilisation of electricity 

services and social inequity. 

 

The role of governments and regulators will be critical to minimise these negative outcomes 

while balancing the needs of the consumer to maintain affordable access to an essential 

service. Responsible stewardship will require a clear articulation of policy intent, a supportive 

regulatory environment and a forward plan so that the market can develop and respond to 

regulatory signals. Inherent in this approach must be the recognition that consumers 

collectively now have the ability to materially impact electricity sector dynamics. For 

markets and governments, strategically meeting the needs of this emerging consumer-base 

will be essential in ensuring an efficient transition to a more sustainable, decentralised 

electricity supply system.  
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Chapter 7 Design, testing and validation of a system dynamics model 

 

Chapter overview 

 

The main purpose of this chapter is to describe the design, development and validation of a 

stock-and-flow simulation model for use in assessing residential PV and battery energy 

adoption dynamics in the case study area of Queensland. This chapter includes four main 

sections. The first section includes a brief introduction to the model and its development. The 

second section describes the high-level model assumptions including details on the model run 

time, PV system parameters, battery system parameters, household electricity consumption 

and household load profiles. The third section includes a detailed description of the model’s 

stock and flow structure including key data assumptions and equations. The final section 

includes the results of model testing and validation.  
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7.1 Introduction 

As part of the broader systems thinking methodology outlined in this dissertation, each 

preceding chapter has made an iterative contribution towards addressing the overarching 

research problem. Data collection and analysis has thus far been based primarily on 

qualitative research techniques. This is a necessary and well accepted approach to help 

articulate the research case, conceptualise the key issues and clarify the relationship between 

system structure and behaviour. The next stage in the process involves the design and 

development of an empirically-based system dynamics simulation model to enable a more 

quantitative analysis of battery adoption dynamics.  

 

As discussed in Chapter 4, the methodology for developing a simulation model is well 

documented in the literature. The design is typically informed by causal loop modelling 

which describes the fundamental architecture of the system and underpins the three primary 

structural elements of a system dynamics model. These include ‘stocks’, which are 

accumulations that determine the state of the system; ‘flows’, which are changes over time 

that influence stocks; and ‘convertors’, which control flows by defining inputs such as 

constants, graphical functions, or algebraic relationships. These elements are linked by 

connectors which denote causality. In this thesis, specialist systems software Stella Architect 

(version 1.1) was used to assist in the creation of the simulation model (ISEE systems 2016).  

 

Within the Stella software environment, key elements of the CLD described in Chapter 6, 

were parameterised and converted into a simulation model resulting in three broad 

interconnected sub-sectors4. They include a PV and battery adoption sector; electricity price 

sector; and an electricity system impact sector. Within these sectors, the model incorporates 

several different PV and battery system capacities combined with multiple household load 

profiles. When arrayed, the model includes a total of 108 specific dwelling configurations. In 

total, the base-case simulation model comprises 395 variables, 16 stocks, 22 flows, 357 

convertors, 47 constants, 332 equations and 32 graphical functions.  

  

                                                 

4 Note, not all elements of the CLD from Chapter 6 were replicated in the model; where these have been 

excluded, an explanation is provided in the assumptions section below. 



 

120 

 

7.2 General model assumptions 

7.2.1 Model run time 

The simulation model is designed to run for 30 years in monthly time-steps starting in 2006 

and ending in 2036. The base year was selected so that relevant historical developments, such 

as early exponential PV growth, large increases in electricity prices and changing electricity 

load consumption profiles are reflected in the model. Inclusion of these dynamics provides a 

sound basis for structural model testing and validation. In addition, initial data inputs used in 

the model from this period are relatively accurate ensuring that the model has a strong 

empirical foundation.  

 

The 30-year length of the simulation was selected to ensure that possible prosumer 

technology price trajectories can be appropriately factored into analysis while providing 

adequate scope to include the influence of longer-term policy scenarios, such as the 

introduction of climate change policy and the impacts of the closure of Queensland’s 

premium FiT in 2028 (which currently creates a financial disincentive to install battery 

systems). At the same time, the length of the simulation period reflects the fact that the 

existing electricity system is characterised by long-lived assets where structural change can 

take many decades.  

 

The model’s Delta Time (DT) is set to 1, which means values are calculated once every time 

step, resulting in 372 calculations across all variables in any simulation run. This DT is 

considered appropriate when considering the nature of the system under investigation and the 

length of the simulation period (Ford 2010).  

7.2.2 PV system parameters  

Four PV system size categories were included in the model that reflect common capacities 

installed in the market i.e. less than 2kW, 2-4kW, 4-6kW, and 8-10kW. The generation 

potentials of these system categories are calculated based on specific system capacities, 

assumed to be 1.5kW, 3kW, 5kW and 10kW for each size category respectively, multiplied 

by solar insolation measured in kWh/m2/day. Solar insolation data was sourced from the 

National Renewable Energy Laboratory (2016) which has daily solar data from several 

locations throughout Queensland.  
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While the model does have the ability to calculate different PV generation outputs based on 

insolation from different locations, an average for the state has been calculated based on solar 

data from the main population centres. This approach recognises that in most cases there are 

relatively marginal differences in insolation in the main areas of population density across the 

state e.g. the average insolation in south east Queensland is 5.42 kWh/m2/day, compared with 

5.64 kWh/m2/day in Cairns. Moreover, as Queensland already has some of the highest 

average insolation rates in the world, helping to make PV financially attractive in almost all 

regions of the state, these differences in insolation are assumed to have a minimal impact on 

adoption.  

 

Another assumption related to PV system parameters is the effect of PV panel degradation 

over the system life. Most PV systems are estimated to degrade over time so that they 

produce at least 80% of their rated output after 20 years (Jordan & Kurtz 2013). Due to the 

long run period of the model, the effect of PV panel degradation is included as an auxiliary 

variable and is averaged over the system life.  

7.2.3 Battery system parameters  

As very few battery systems have been installed to date there is limited market data to 

determine the most popular battery sizes. To account for this, three battery system capacities 

were selected to reflect likely consumer preference and functionality (i.e. 5kWh, 15kWh and 

30kWh). The smallest system would cost less in terms of total capital outlay but would have 

limited functionality due to its size. The medium sized system would help maximise self-

consumption of solar power while reducing reliance on the grid. The large system, coupled 

with an appropriate sized PV system would enable consumers to become almost entirely 

independent from the grid. In some circumstances, this combination could enable grid 

defection particularly for low and medium consumption households.  

 

It is important to note that the ability of a dwelling to disconnect from the grid would vary 

enormously and would depend on existing household energy consumption, peak demand, 

geographic location, size of PV system, solar insolation and options for backup generation. 

Except for low to medium demand households, grid defection in the short-term appears to be 

unlikely, as the cost and the size of a solar system to maintain reliable power would deter 

many urban households (Wood, Blowers & Chisholm 2015).  
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For this reason, ‘possible’ off-grid systems in the model are calculated as a function of 

specific household consumption and load profile combinations paired with minimum system 

capacities e.g. they require at least a 5kW PV system and/or 15kWh battery to be eligible and 

have zero grid demand along with unused PV capacity. The model assumes that based on 

these configurations a dwelling could conceivably disconnect from the network (noting that 

in reality this would require pairing with smart inverters and/or backup power such as a small 

generator).  

 

The model assumes that battery operation, i.e. the frequency and depth of battery charging 

and discharging, is relatively simple. Any PV generation that is not required to meet 

instantaneous household demand is used to charge the battery. The battery either charges 

until it is completely full or to a level constrained by the generation potential of the PV 

system. If the battery is fully charged, any additional PV generation is exported back to the 

grid. At night, the model assumes the battery is fully discharged. If the PV and battery 

capacity are unable to meet the household demand then electricity is imported from the grid.  

 

Other relevant battery performance characteristics used in the model are shown in Table 4 

(note, these terms were defined in Chapter 2). The data used to inform these parameters were 

based on an assessment of the operational specifications of currently available battery 

systems on the market, noting that due to the diversity of different battery chemistries, there 

can be considerable variation between battery types (Martin 2016; SolarQuotes 2017).  

 

Parameters Values 

Depth of discharge  90% 

Battery life (warranted) 10 years 

Cycle life 3650 (assumes 1 discharge per day) 

End of life capacity (degradation) 70% 

Peak output • 5kW (for the 5kWh and 15kWh systems) 

• 10kW (for the 30kWh system) 

Table 4 Battery performance characteristics 
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7.2.4 Household electricity consumption and load profiles 

 

Battery adoption and its use is highly dependent on specific household energy usage 

characteristics (CSIRO 2015b). Residential electricity consumption and load profiles are 

extremely variable and are a function of factors such as location, socio-economic 

characteristics, house size, occupancy, appliance use etc. Not only do these elements 

influence the financial drivers for uptake (including the optimal battery size required to meet 

the specific requirements of the household at the lowest cost), but they also underpin  

non-financial drivers such as concerns about exposure to future price increases, resilience and 

desire for self-sufficiency. Whilst it is impractical to model the enormous diversity of 

residential load profiles and battery system combinations, the simulation model has been 

designed to better incorporate this diversity by incorporating several different consumption 

profiles that represent a range of consumer segments. The assumptions underpinning these 

elements include:  

 

Household electricity consumption - The simulation model includes three consumption values 

to reflect low, medium and high-use electricity consumers. The initial 2006 daily 

consumption values used in the model are 11kWh (4MWh/year), 21kWh (7.6MWh/year) and 

30kWh (11MWh/year) respectively. These inputs reflect the fact that Queensland electricity 

consumers have historically been high electricity users (Simshauser 2014). Due to energy 

efficiency improvements (as a result of building and appliance standards and household 

responses to rising electricity prices), these consumption values decline yearly by 

approximately 1% (AEMO 2016b).     

 

Household load profiles – In Australia, there is a scarcity of rigorous, publicly available, 

residential load profile datasets (Frontier Economics 2012). In Queensland, this issue is 

exacerbated as the majority of existing electricity meters are accumulation types which only 

measure the total electricity volume consumed, unlike digital/interval meters that can 

measure time of use (Simshauser 2016). This means load profiles in Queensland have 

generally been developed using pilot interval meter data, distribution substation data or net 

system load profiles (Frontier Economics 2012; Simshauser & Downer 2014; Simshauser 

2016).  
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Based on a review of existing load profiles used by industry and academia, three general load 

profiles have been developed for use in the model. These profiles are characterised by: 

(1) low daytime use with morning and evening peaks e.g. working households;  

(2) moderate daytime use with morning and evening peaks e.g. families with children; and  

(3) high daytime use e.g. retirees.  

 

Half hourly demand values (kW) were calculated for each of these profiles based on the three 

household consumption values described in the section above (i.e. low, medium and high). 

The three load profiles based on a low consumption household are shown in Figure 36. In 

total nine household consumption profiles have been developed which are used to help 

determine likely PV and battery configurations, electricity imports/exports and the 

contribution of batteries to peak reduction. 

  

 

Figure 36 Representative load profiles for Queensland houses based on low electricity consumption 
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7.3 Model formulation – stock and flow structure and assumptions  

This section describes the model’s key design and structural elements along with rationale for 

initial values and other important parameters and equations. The model comprises three high-

level sectors – a PV and battery adoption sector, electricity price sector and an electricity 

system impact sector – with each comprising several sub-sectors. Feedback mechanisms 

operate both within individual sectors and across sectors. Each of these sectors is described in 

detail below. Where relevant, representative components of the model are included to 

visually demonstrate system structure and to illustrate important feedback loops. Full details 

on the assumptions underpinning the model including all elements of the model’s structure 

are included in Appendix B. 

7.3.1 Sector 1: PV and battery adoption 

The simulation model calculates system install rates for three stocks including: dwellings 

with PV only; dwellings with PV with a battery retrofit; and dwellings with new bundled PV 

and battery. The structure of the PV and battery adoption sector as designed in Stella is 

shown in Figure 37.  

 

Individual install rates for each system type are calculated as a function of financial and non-

financial coefficients, market penetration and market saturation. This approach represents an 

adaptation of the Bass diffusion model where the relationship between early adopters and 

later adopters (typically expressed as constants called a coefficient of innovation and 

coefficient of imitation respectively), is used to describe the rate of new technology adoption 

(Rogers 2003). In this model however, instead of using constant coefficients, several 

explanatory variables based on financial and non-financial values are formulated into an 

adoption fraction, which is loosely based on studies described in Laws et al. (2017) and Islam 

(2014). This approach aims to ensure that the influence of individual feedback loops between 

variables across each time step are reflected more accurately in terms of the rate and scale of 

adoption. It also aims to increase the visibility of the underlying assumptions that make up 

the install rate so they can be critically examined and/or modified.  
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Figure 37 Model structure for PV and battery adoption sector 
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The generalised equation is represented as: 

 

Actual install rate = eligible dwellings*saturation rate*adoption fraction [i.e. financial 

coefficient*non-financial coefficient]         

 

Where:           

• Eligible dwellings are defined as homes suitable for PV. 

• Saturation rate shows declining adoption rates as market saturation is approached. 

• Financial coefficient represents adoption as a function of payback period. 

• Non-financial coefficient represents adoption as a function of non-financial drivers based on 

diffusion of innovations and utility theory. 

 

Each of the key components of this equation are described in detail below. 

 

1. Eligible dwellings 

 

PV and battery adoption rates are both a function of, and dependent on, the number of dwellings in 

Queensland that are suitable for PV installations5. Eligible prosumer dwellings are households that 

can be physically fitted with PV but do not already have a PV or battery system installed. While PV 

can be installed on semi-detached homes, townhouses, and/or apartments, they are less common and 

more expensive due to body corporate restrictions, installation challenges and smaller roof space 

(IES 2012). For this reason, eligible dwellings are defined as detached homes only. The stock and 

flow component of this sector is depicted in Figure 38.  

 
Figure 38 Model structure for eligible dwellings 

                                                 

5 This is because household access to embedded generation, namely PV, is a key assumption in this study as residential 

battery storage in not considered economic without it before 2035 (QPC, 2016a).  
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Key assumptions underpinning this element of the model include the following: 

• Dwellings in the model are connected to the existing electricity network. As currently is the case 

in Queensland, almost all residential dwellings represent one electricity connection point 

(referred to as a National Metering Identifier). 

• Initial dwelling values and dwelling growth rates for the base-case simulation model are based 

on medium-growth census and electricity connection forecast data (ABS 2016; AEMO 2016b).  

• The model assumes that dwellings continue to increase over the simulation period and that 

dwelling growth is consistent across dwelling classes.  

• The convertor “eligible PV fraction” has been included to reflect the fact that not all detached 

dwellings will be suitable for PV installations due to shading, council restrictions, aesthetic 

considerations, lack of interest and split-incentive issues for rental properties. The proportion of 

detached dwellings eligible for PV installations is assumed to be 75% as per AEMO (2013). 

 

This component of the model also calculates the number of all occupied dwellings and non-

prosumer dwellings. These stocks and convertors influence several other parameters used 

throughout the model (e.g. the contribution of total residential demand to electricity prices).  

 

2. Saturation rate  

 

As market saturation approaches, it is assumed that system install rates will slow at an accelerating 

rate. In the model, this is simply calculated as the number of dwellings with PV divided by the total 

number of dwelling suitable for PV. As the model assumes that battery adoption requires a PV 

installation, saturation for battery installs is calculated the same way. The saturation threshold value 

for the model, i.e. when the effects of saturation would appear, is 50% based on AEMO (2014a), 

with the rate of decline increasing exponentially to zero when 100% saturation is achieved. This 

relationship is represented as a graphical function (Figure 39). 
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Figure 39 Graphical function used to determine impact of saturation on adoption 

 

3. Adoption fraction  

 

The third component of the ‘install rate equation’ is the adoption fraction which comprises both a 

financial and non-financial coefficient. These are described separately below. 

 

Financial coefficient 

 

The financial coefficient used in the model is primarily a function of payback period, that is, the 

time taken to recover the cost of an initial upfront capital investment based on ongoing cash flows. 

While Net Present Value and or Internal Rate of Return are widely accepted in academia and 

industry as methods to determine the financial benefits of investing in projects, these techniques 

require a degree of financial literacy and don’t reflect the way in which most consumers actually 

evaluate the financial attractiveness of an investment.  

 

Instead, simple payback is the most commonly used financial measure by solar adopters and 

consumers more broadly (Kempton & Montgomery 1982; Rai & Benjamin 2013; Rai & Robinson 

2015). In one study nearly 90% of study participants used payback periods to calculate the financial 

attractiveness of PV (Rai & McAndrews 2012). While the use of a simple payback period (i.e. non-

discounted payback which fails to factor in the time-value of money) will most likely overstate the 

financial case for investment, this reflects the way in which a majority of consumers actually make 

decisions. In this respect it is “perceived gain, not the real gain which matters most” (Kemp & 

Volpi 2008, p. 16). This distinction is important as one of the primary objectives of this model is to 

more accurately and realistically reflect the factors that underpin battery adoption in the residential 

sector. 
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To model the relationship between the payback period and the adoption fraction, a curve is used 

which displays adoption as a function of payback based on historical growth rates (Figure 40). This 

graph was developed to model PV growth for the Clean Energy Council in 2012 and has since been 

used and adapted by AEMO for national forecasting (IES 2012; AEMO 2013).  

 

 

Figure 40 PV adoption rates based on payback 

The adoption curve shows that as payback periods increase, adoption rates decrease until payback 

equals 13 years, reflecting baseline demand of 1% (IES 2012). This declines to zero when the 

payback period equals 25 years, which is considered the maximum life of a PV system. At lower 

payback periods, the curve assumes a maximum uptake rate of 9.5%, which is based on the 

maximum capacity of the solar industry to deploy PV at that time (IES 2012).  

 

For the simulation model, the industry capacity limitation of 9.5% is retained. The data used to 

inform this curve was sourced from 2011-12, a period characterised by the largest annual rate of PV 

growth ever in Queensland.  During that year the number of solar PV installers peaked at 1391 and 

nearly 130,000 systems were installed, which was driven by falling module prices, a rush to access 

subsidies before they were withdrawn and high electricity prices (QPC 2016b; Clean Energy 

Regulator 2017). It is unlikely such a confluence of drivers will repeat, making the maximum 

industry capacity an appropriate benchmark for the model.  

 

Despite the curve being specifically designed to determine PV adoption rates, it has also been 

adapted for use in the model to calculate battery adoption rates. As the battery market is at the 

earliest stage of development and minimal market data exists, it is difficult to develop an empirical 
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relationship between payback and adoption for batteries. Using uptake rates of analogous 

technologies such as PV to generate a financial coefficient for battery uptake is considered 

reasonable because both technologies “are applicable to the same market (electricity consumers), 

are of a similar order of magnitude of upfront capital cost, and have benefits corresponding to a 

reduction of energy bills” (CSIRO 2015b, p. 104). This assumption is supported by and has been 

used in the past for energy sector modelling by AEMO (2015c) and CSIRO (2015b), who recognise 

that “the uptake of rooftop PV provides the closest indicator of potential storage uptake behaviour” 

with the relationship between payback and adoption likely to be similar (AEMO 2015c, p. 30). The 

only modification to the curve for use with battery adoption has been made to reflect the fact that 

batteries have a shorter lifespan (i.e. batteries are generally warranted for between 10-15 years). 

This means baseline demand in the battery curve decreases to 1% sooner before decreasing to zero 

at a payback of 15 years.  

 

Payback period calculations in the model 

 

To inform adoption rates using the above graphical function, the model calculates the payback 

period for each prosumer dwelling type across each of the household consumption profiles using the 

following generalised equation: 

 

Payback period = capital costs /ongoing savings                                                   

 

The assumptions underpinning the payback period i.e. the (1) capital costs and (2) ongoing savings 

for each technology type are described below.  

 

1. Capital costs  

 

The upfront capital investment for PV and batteries comprise the technology cost itself (i.e. the cost 

of modules for PV and the cost of the battery pack for battery systems), the cost of installation, and 

the balance of system (BOS) costs which include wiring, racking etc. Any applicable rebate or 

subsidy is subtracted from total system cost. Note that maintenance costs for both PV and battery 

systems have not been included in the model. There is a lack of data on the extent to which 

consumers maintain their systems. As maintenance costs are considered low compared to the capital 

costs of these systems, they are considered to have a negligible impact on potential adoption 

(CSIRO 2015b). In addition, no allowance has been made to replace inverters should they fail 
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during the life of the system. These exclusions could introduce an upward bias to the estimated 

financial returns of installed systems (QPC 2016b).  

 

It is also worth noting that movements in foreign currency can influence battery system costs, 

particularly as most PV and battery components are imported from overseas. While this element is 

not explicitly included in the model, sensitivity analysis is used to determine the influence of 

changing battery costs on adoption. 

 

Finally, this component of the model includes a sector that considers the influence of high upfront 

capital costs on purchase likelihood. This is important because numerous studies have shown that 

high upfront costs associated with distributed generation technologies such as PV rank as one of the 

key barriers to adoption (Allen, Hammond & McManus 2008; Scarpa & Willis 2010; Dharshing 

2017). The model recognises this relationship and incorporates a function that reduces adoption for 

highly capital-intensive systems, even if they have payback periods that would otherwise encourage 

uptake. 

 

For PV capital costs, the model structure is included below in Figure 41. ‘PV module costs’ are 

added to ‘BOS and installation costs’ to generate a per watt price. This is then multiplied by system 

size to generate an unsubsidised installed cost.  The influence of rebates and subsidies is then 

subtracted from the total to generate ‘total PV cost’. 

 

 

Figure 41 Model structure to generate PV capital costs 
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For battery capital costs, the model structure is shown in Figure 42. There are fundamental 

differences in the way in which battery capital costs are calculated compared to PV systems which 

are demonstrated by the differences in model structure. Furthermore, as battery uptake is at a far 

earlier stage of diffusion, learning rates associated with battery installation will have a greater 

impact on cost declines when compared with PV. This endogenous factor has therefore been 

included separately and is calculated as a function of market penetration.  

 

 

Figure 42 Model structure to generate battery capital costs 

 

For dwellings that already have PV and later retrofit a battery, the model assumes that the capital 

cost of the PV is a sunk cost. For dwellings that install a new bundled PV and battery system, 

upfront costs include the addition of the total installed PV system cost and the total installed battery 

cost. However, buying a PV and battery system at the same time has the potential to lower the total 

system price as installation and soft costs are generally cheaper. Only one visit to the premises is 

required, and bundled systems are usually installed with only one inverter, which can account for up 

to 15% of the total cost of a PV system (Gill 2016). To reflect these savings, the model includes a 

10% bundling efficiency coefficient.   
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As there are no subsidies for batteries in Queensland at present, none are included in the base-case 

simulation. Subsidies are introduced as part of scenario analysis. In addition, this sector includes the 

variable ‘financial value to mitigate blackouts’ which recognises that there is a financial value 

associated with power outages. A study by AEMO (2014c) estimates that the value of customer 

reliability in response to a loss of power was worth AU$25.42/kWh. As the cost of an outage to a 

consumer would vary according to the duration and time when the interruption occurred, this value 

has been used conservatively and scaled accordingly with a cap set on the possible reduction in 

install prices that it could achieve.  

 

2. Ongoing savings  

 

In addition to the capital cost calculations described above, the second element of the payback 

equation involves calculating the ongoing savings for each of the system configurations. This is 

achieved for each of the three prosumer dwelling types by making a number of assumptions about 

how the systems are used to generate savings. They include: 

 

• Dwellings with PV only – The model assumes that electricity generated by PV meets the daily 

daytime electricity demand first with any excess exported back to the grid (Figure 43).  Ongoing 

savings in this respect includes the avoided cost of grid sourced electricity (i.e. the amount of 

electricity used in home due to PV multiplied by the current retail rate) plus the value of any 

excess PV electricity that is exported to the grid. In Queensland from mid-2008 until mid-2012, 

consumers could access a premium FiT worth 44c/kWh scheduled to run until 2028. Post mid-

2012, new PV consumers can access a voluntary retail FiT - as there is some variation in the 

value of the FiT depending on the retailer, it has been averaged out across all Queensland 

electricity retailers and is assumed to be worth 7c/kWh (QCA 2016b).  
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Figure 43 Ongoing annual savings for PV only dwelling 

 

• Dwellings with PV with a battery retrofit – The model assumes that battery systems are 

retrofitted to existing PV dwellings with the intention of maximising PV consumption in home. 

As the payback is calculated using only the capital cost of the battery itself (not that of the PV 

system, as it is considered a sunk cost), ongoing savings are only those savings that occur as a 

result of the battery install i.e. PV generation that was previously exported and is now used in 

home (Figure 44).  
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Figure 44 Ongoing annual savings for PV with battery retrofit dwelling 

 

• Dwellings with new bundled PV and battery – Ongoing savings reflect both the value of 

avoided electricity costs due to the PV and battery bundle and the value of any export back to 

the grid (Figure 45). Bundled PV and battery systems that maximise in home consumption and 

minimise exports will ultimately present with shorter payback periods.  
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Figure 45 Ongoing annual savings for new bundled PV and battery 

 

Non-financial coefficient  

 

The second component of the adoption fraction includes the calculation of a non-financial 

coefficient. This is an important element of the model as it deviates from commonly applied 

neoclassical economic approaches to technology adoption which assumes consumer decision 

making is based purely on financial considerations. These assumptions deliver modelling results 

that provide for optimal technology configurations which are deployed in an economically rational 

manner. However, they fail to recognise that consumer decision making is imperfect and adoption 

of new technologies often stem from a diverse range of non-financial as well as financial 

motivations (Wilson & Dowlatabadi 2007; Kemp & Volpi 2008; Rai & Henry 2016).  
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While there is an increasing body of research focusing on the psychological and social factors that 

affect consumer decision making in regards to distributed generation technologies, determining the 

individual drivers that will underpin a decision to purchase a complex product for a large and 

diverse population remains exceedingly difficult (Wolske, Stern & Dietz 2017). To address some of 

the complexity in this regard it is useful to consider the role of the consumer through the lens of 

diffusion of innovation theory. Diffusion in this case refers to the “process of how new technologies 

spread throughout society over time” (Dong, Sigrin & Brinkman 2017, p. 252).  

 

Models based on diffusion of innovation theory, most notably the Bass diffusion model, are the 

most common methods used to predict technology adoption (Rogers 2003). These models assume 

that product adoption follows an s-curve which occurs as a function of both early adopters 

(represented as an innovation coefficient), later adopters (represented as an imitation coefficient) 

and market potential (Meade & Islam 2006). The rate of adoption of a new technology is not only 

dependent on the perceived attributes of an innovation (there are five common attributes referred to 

in the diffusion literature: relative advantage, compatibility, complexity, trialability and 

observability) but also the social system in which it is diffusing, the effectiveness of communication 

channels, and the nature of the innovation-decision itself (Rogers 2003).  

 

A common extension of diffusion curves is to segregate heterogeneous populations based on their 

propensity to innovate, which is a useful way to conceptualise market growth. First described in 

Rogers (1962), diffusion can be categorised into five groups based on when individuals are likely to 

adopt new ideas. These categories include: innovators (first 2.5%), early adopters (next 13.5%), 

early majority (following 34%), late majority (next 34%) and laggards (final 16%) (Figure 46). 

Adopters in the early categories are typically better educated, more wealthy and have higher social 

status than later adopters (Meade & Islam 2006).  

 

Figure 46 Stylised diffusion curve showing adopter categories (Tungsten 2009) 
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While diffusion of innovation theory helps to conceptualise likely adoption characteristics, 

incorporation of non-financial motivations still rests heavily on assumptions. This is because 

understanding the extent to which non-financial motivations comprise part of the consumer’s 

cognitive choice process when buying a new product can be difficult to ascertain, particularly for 

disruptive technologies with limited market data. While this makes parameterisation of this element 

of the model difficult and reliant on rule-of-thumb assumptions, omitting variables that are known 

to influence system behaviour because empirical data is unavailable is “equivalent to saying they 

have zero effect – probably the only value that is known to be wrong.” (Forrester 1961, p. 57).  

 

With this in mind, the design and structure of the model used in this thesis borrows from elements 

of random utility and diffusion theory to help underpin assumptions regarding the consumer 

decision making process and how it could relate to adoption. As there is very little published market 

data to help quantify the factors influencing consumer buying preferences, variable selection and 

parameterisation was primarily informed by interview outputs and other secondary data sources 

described in Chapter 4.  

 

The model structure shown in Figure 47 comprises two main elements which together are used to 

calculate the ‘battery non-financial coefficient’.  

 

 

Figure 47 Battery non-financial motivation sector 
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On the left, the model determines the influence of non-financial factors on battery preference. It 

does this by nesting several non-financial factors that could contribute to the consumer decision-

making process. These include a desire for greater resilience, environmental motivations, concerns 

about future electricity price increases and the impact of fixed cost increases. Together these factors 

influence consumers’ desires for self-sufficiency and ultimately their willingness to pay for a 

battery system. The model is structured so that changes in non-financial variables as a result of both 

endogenous and exogenous factors are assigned a value based on relative importance, which when 

aggregated, are used to calculate the extent to which a consumer’s preference for certain battery 

types increase or decrease. To reflect the uncertainty associated with the assumptions in this 

component of the model, it has been designed to generate conservative values. For example, the 

base-case simulation generates an average value for ‘influence on battery preference’ that never 

exceeds 5%. 

 

This value is then multiplied by the second element of the sector, a ‘non-financial motivation factor’ 

(shown on the right side in Figure 47), which works as a multiplier to increase the strength of non-

financial motivations in the consumer’s decision-making process based on the stage of market 

penetration. This element assumes different adoption characteristics for each group of consumers 

depending on the stage of technology diffusion based on the categories described by Rogers (1962). 

It assumes that prior to mass market uptake, innovators and early adopters will place a greater value 

on non-financial value drivers than later adopters. In other words, in the early stages of product 

adoption, non-financial motivations make a greater contribution to the willingness to pay for a 

battery and bring forward investment in the absence of a purely financial case. For innovators, this 

increases adoption by 5%, which then declines to zero as mass market uptake is achieved. Due to 

the uncertainty associated with this assumption it has been set at a low level. 

 

It should be noted however that the results from the few studies available, suggest this figure could 

in fact be much higher. Agnew and Dargusch (2017) showed that non-financial factors could bring 

forward purchasing behaviour even in the face of longer payback periods, and could increase 

preference for more costly batteries with larger capacities. Another recent study found that the 

effects of these motivations can be substantial, suggesting that loss aversion (i.e. a consumer’s 

propensity to strongly prefer avoiding losses compared to acquiring gains), can result in consumers 

paying a premium of up to 20% above what they rationally should pay to reduce their electricity 

costs (Vorrath 2017a).  
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7.3.2 Sector 2: Electricity price 

 

The second main sector in the simulation model is an electricity price module. The price of 

electricity is a key determinant in PV and battery adoption. As electricity prices rise, they improve 

the financial case for system installation while also affecting a range of non-financial drivers. In 

Australia, electricity bills are already considered one of the greatest household cost pressures, and 

recent increases have contributed to consumer concerns about future price rises (Browne 2015; 

ECRC 2015). Consumers respond to high prices by reducing electricity consumption, which under 

the existing regulatory framework, results in higher electricity prices as fixed network costs are 

spread across smaller volumes of electricity (QPC 2016a). 

 

To capture these dynamics and their effect on battery adoption and the broader electricity supply 

system, a detailed electricity pricing model has been developed. Electricity retail tariffs comprise a 

number of components that include energy costs, network supply costs and retailer costs. While 

there are a number of different tariffs in Queensland, the pricing model is based only on the 

standard retail electricity tariff (Tariff 11). This is because all Queensland residential consumers are 

connected to this tariff, and it represents a common cost base to aggregate demand data, apply 

relevant proportions for each of the building blocks associated with electricity prices, and 

extrapolate inputs to achieve more accurate retail electricity prices. 

 

In Queensland, the QCA estimates the cost of supply for retail tariffs using an N+R cost build‐up 

approach, in which they treat the N component (network cost) as a pass‐through, and determine the 

R component (energy and retail cost) (QCA 2016c). These elements are passed through to 

consumers as a fixed cost (for access) and/or a variable charge (based on actual consumption). 

While the electricity price module is based on these elements (Figure 48), it is important to 

recognise that past Queensland governments have frequently intervened to unilaterally change 

electricity prices to achieve specific political objectives. For example, in 2012-13, the government 

froze Tariff 11 at 2011-12 prices (QCA 2013a). The model includes the effect of such historical 

interventions by including an annual adjustment that modifies the retail electricity price generated 

using the building block approach. 
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Figure 48 Variable and fixed retail tariff components 

 

Each of the key design principles and assumptions for (1) energy costs, (2) network costs, and 

(3) retailer costs are described below. 

 

1. Energy costs  

 

Electricity retailers incur several costs when they purchase electricity from the wholesale market to 

meet end-user electricity demand. These costs comprise three main categories (Figure 49). 

 

Figure 49 Energy cost components 
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Wholesale energy costs – Refers to the costs of generating electricity in the NEM. Historical data 

included in the model is sourced from actual data used in QCA determinations. Future projections 

are based on government commissioned modelling and assume real wholesale price increases of 

2.1% per annum  (QPC 2016a). While mass market battery adoption is likely to have some 

endogenous influences on the generation sector (e.g. generators can realise significant profits from 

peak volatility often as a result of constraints stemming from the residential sector; battery adoption 

at scale will likely flatten out some of these peaks and create a more stable generation profile 

possibly resulting in downward pressure on wholesale prices), the wholesale energy price in the 

model is categorised primarily as an exogenous variable. This is because wholesale energy prices 

are more likely to be materially influenced by a range of factors outside the scope of the model 

including:  

• changes in industrial demand (the residential sector in Queensland only consumes around 25% 

of total generation);  

• increasing fuel prices (gas prices in Queensland are now subject to global market dynamics 

following the commissioning of liquified natural gas trains in Gladstone and as a result have 

increased dramatically);  

• interconnector constraints; and  

• extreme weather events (e.g. wholesale energy prices in Queensland spiked during the 2007-08 

drought as access to water for cooling towers was severely constrained). 

 

Cost of clean energy schemes – In the past decade, several state and national clean energy policies 

have been included in the energy cost component of retail electricity bills. For example, the 

Queensland Gas Scheme introduced in 2005 and phased on out in 2013 imposed costs to encourage 

investment in gas fired generation. The introduction in 2012 and repeal in 2014 of the Carbon 

Pricing Mechanism saw a price on carbon included in energy costs. Currently, the national RET is 

the only remaining clean energy scheme that contributes to energy costs in Queensland. (Note the 

costs associated with the Queensland SBS are recovered through network prices). The historical 

cost of clean energy schemes in the model are based on the actual data used in QCA calculations. 

For future projections, costs are assumed to remain at 2016 prices in real terms until the closure of 

the RET in 2030, at which point the cost returns to zero. The base-case model assumes no carbon 

pricing mechanism. 
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Market fees, ancillary services, charges and losses – These costs reflect a relatively small 

component of total energy costs and are levied on retailers to cover the costs of operating the NEM 

and paying for services used to manage power system security, reliability and safety (QCA 2016c). 

Historical data included in the model is sourced from actual data used in QCA determinations with 

future projected costs remaining at 2016 prices in real terms until the end of the simulation period. 

 

2. Network Costs  

 

Network costs are those associated with the transmission and distribution of electricity and 

comprise a variable (Figure 50) and fixed (Figure 51) component 

 

 

 

Figure 50 Network variable cost components 
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Figure 51 Network fixed cost components 

 

To recover their costs as regulated entities, network businesses are allocated an annual revenue cap 

from the AER referred to as Total Allowed Revenue (TAR) (prior to 2015-16 this was known as 

Maximum Allowable Revenue). The TAR is recovered from the various customer classes through 

network tariffs which are structured to ensure the network business can recover regulated revenue 

across their entire customer base.  

 

In the model, historical data for the TAR is sourced from AER regulatory determinations.  For 

future projections, data is sourced from the current AER regulatory determination which includes 

projections of the TAR for Energex until 2020 and Powerlink until 2023. From then on, it is 

assumed that minimal new network investment will be required to service existing customers in the 

short to medium term as a consequence of the large network infrastructure augmentation program of 

the past decade (QPC 2016a). The model therefore assumes that future network costs will only 

change as a function of population growth (which is correlated with changes in peak demand) and 

in response to the endogenous influence of PV and batteries which, depending on how they are 

integrated with the network, will act to put downward pressure on network costs.  
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As stated, the TAR is recovered from customers through network tariffs. In Queensland, Energex 

network tariffs are used as the basis for the network component of notified prices for residential 

customers. These include their own distribution network costs along with a pass-through of 

Powerlink's transmission network costs (QCA 2016c). As a result of recent rule changes, the 

revenue to be recovered from each network tariff must reflect the network business' total costs of 

providing services to the specific consumers assigned to that tariff (AEMC 2014). This is a key 

assumption underpinning the network pricing component of the model and implies that any change 

in the amount of revenue generated due to a change in consumption (e.g. from PV and battery 

energy storage) will be recovered from the customer class that has caused that change in 

consumption to occur (Harris & Hoch 2013).  

 

Accordingly, the model is structured so that the residential proportion of the distribution and 

transmission TAR is allocated in the correct proportions to a single residential network tariff. These 

proportions are calculated using values based on analysis of tariff cost allocations from Energex 

network pricing proposals and analysis of raw data sourced from AER network benchmarking data 

(AER 2015b; Energex 2016b).  

 

The model is also structured so that the revenue allocated to the residential network tariff can be 

split into variable and fixed components. Fixed costs in the past were levied on a relatively arbitrary 

allocation of fixed and sunk costs and reflected a small component of the two part tariff 

(Simshauser & Downer 2014). Based on data from QCA determinations, the ratio of fixed to 

variable costs is calculated and then applied against the TAR so that per dwelling daily fixed 

charges can be calculated (i.e. the proportion of the TAR allocated to fixed costs divided by 

numbers of residential dwellings). The variable component is calculated by dividing residential 

electricity demand by the amount of revenue not recovered through fixed costs to calculate a 

network cost per MWh. In this way, as residential network consumption changes as a result of PV 

and battery adoption, variable electricity prices also change reflecting a key feedback loop in the 

model. 

 

For the base case scenario, the model assumes that in the future, the ratio of fixed to variable costs 

remain the same as that generated by the model for 2016. This is because a substantial reform 

process was completed in 2015-16 to improve the cost-reflectivity of tariffs so that nearly one-third 

of network revenue is now recovered through fixed costs. Only a few years prior, fixed costs 

generally comprised just over 10% of an average electricity bill (Simshauser & Downer 2014). 
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While this development reflects a substantial increase in fixed costs, it is important to note that the 

actual fixed and sunk capital costs of an electricity distribution system typically comprise 70-80% 

of the total network cost structure (Simshauser & Downer 2014). Scenario analysis is used to 

consider the impact on PV and battery adoption on further increasing the ratio of fixed costs in the 

medium to longer term. 

 

3. Retailer costs 

 

In addition to energy and network costs, the other main contribution to retail tariffs are the costs 

levied directly by the electricity retailer which are also passed through as a combination of both 

fixed and variable costs.  The variable cost elements were included in Figure 48 (on page 142) and 

the fixed cost elements are shown below in Figure 52. 

 

 

Figure 52 Retailer fixed cost components 

The way in which retailer costs have been calculated for notified prices have changed substantially 

since 2006. Currently electricity retailer costs comprise: 

• Retail operating costs (ROC) – Includes costs associated with the services retailers provide to 

their customers e.g. customer administration, call centres, corporate overheads, billing and 

revenue collection, IT systems, regulatory compliance, and customer acquisition and retention 

(QCA 2016c). 

• Retail Margin – Represents the return investors expect from providing retail electricity services 

which can also include costs such as such as depreciation, amortisation, interest payments and 

tax expenses and is applied against all fixed and variable components including the retail 

component itself (QCA 2016c).  
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• Headroom – An allowance for ‘headroom’ is included in retail tariffs. It is additional to the 

estimated efficient cost of providing electricity retail services and aims to encourage 

competition in the semi-regulated market. 

 

The data used to compile historical retailer costs in the model have been sourced directly from QCA 

determinations. For future projections, the model uses the structure, proportions and values assigned 

to retailer costs based on QCA (2016c). In summary, this assumes:  

• Fixed costs - ROC of $155 per customer remains in real terms throughout the simulation period. 

Headroom of 5% is applied to all fixed costs. Retail margin of 5.7% is applied to sum of all 

fixed costs including headroom. 

• Variable costs – Headroom of 5% is applied to all variable costs (i.e. energy and network costs). 

The retail margin of 5.7% is then applied to the total. 

 

7.3.3 Sector 3: Electricity supply system impacts 

 

The third main sector in the simulation model calculates broader electricity supply system impacts 

that stem from PV and battery adoption. The way in which residential electricity consumers 

collectively impact the existing electricity supply system is based on changes in how much 

electricity is used from the network, when it is used and whether any electricity is exported back to 

the grid. These dynamics directly influence electricity prices, total household electricity costs and 

the competitiveness of incumbents.  

 

The model comprises five main elements in this regard including: 

 

1) Total residential grid consumption – Residential grid consumption is calculated by summing 

daily consumption values across each of the four dwelling types i.e. non-prosumer dwellings, 

dwellings with PV only, dwellings with PV with a battery retrofit, and dwellings with new bundled 

PV and battery (Figure 53). Residential grid consumption for prosumer dwellings will depend on 

the specific household profile (i.e. daily consumption and load profile) and the capacity of the PV 

and/or PV and battery combination. Grid consumption for each profile type is calculated and then 

multiplied by the specific number of households with that description. 
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Figure 53 Residential grid consumption 

 

2) Total PV generation and emissions savings – Total daily PV generation is calculated by 

multiplying the capacity of each PV system installed by the average generation for that system type. 

This figure is then multiplied by Queensland’s centralised electricity emission intensity factor 

(DOEE 2016). Emissions savings are an important metric to better understand the residential 

contribution to the emissions intensity of the electricity supply system. As emissions are generated 

during PV array construction, these lifecycle emissions are subtracted to achieve total emissions 

savings (Figure 54).  
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Figure 54 Total PV generation and emissions savings 

 

3) Annual PV generation used in home and exported – To reflect the changing way in which 

consumers use the network, the model calculates the volume of PV used in home and how much is 

exported (Figure 55). As per above, this is a product of the numbers of each dwelling type 

multiplied by the export/in-home use for each household profile type. 

 

 

Figure 55 Annual PV used in-home and exported to grid 
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4) Electricity bill impacts – To determine changes in household electricity costs over the simulation 

period, the model calculates average electricity bill changes for each of the consumers classes 

(Figure 56). This involves adding variable electricity costs (a function of individual electricity 

household demand and PV and battery system type, multiplied by the variable retail tariff) with 

fixed costs and averaging for each consumer class.  

 

Figure 56 Average electricity bill impacts across all consumer classes 

 

5) Residential peak demand – A key benefit of PV and battery energy storage is its potential to 

reduce the impact of peak demand on network costs. Residential peak demand drives the need for 

investment in new network assets and the replacement and maintenance of existing network 

infrastructure (AEMC 2011). In the past, Queensland has had some of the highest demand driven 

capital expenditure, equating to approximately 50% of total proposed capital expenditure for the 

state’s DNSPs (Ernst & Young 2011). The component in the model that calculates network peak 

demand and the battery contribution to peak demand reduction is shown in Figure 57. 
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Figure 57 Network peak demand and battery effect on peak reduction 

In the model, existing residential peak demand is estimated by calculating the maximum demand 

for each of the nine different load profiles used in the model. The average of this demand is 

multiplied by all occupied dwellings to calculate business-as-usual peak demand (i.e. in the absence 

of batteries and other demand management activities). To determine the impact of battery uptake on 

peak demand, total household consumption for each load profile is calculated for the peak demand 

period. This period occurs between 4pm and 8pm based on Energex analysis of overall residential 

demand in its network area (Energex 2016c).  

 

The model assumes that as evening household load increases and PV generation decreases, battery 

capacity meets the difference in load. Based on the capacity of each of the battery sizes included in 

the model, the proportionate reduction in peak is calculated. For example, the model shows that a 

working household (i.e. a dwelling with medium consumption, low daytime use with an evening 

peak) with a nominal 5kWh battery would reduce its average household peak demand by half.  
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To determine the effect of batteries on network costs, the model estimates the value of batteries to 

the network specifically during critical peak periods. This is because network augmentation is 

generally required in response to critical peak periods, typically experienced during the hottest days 

of the year which in some cases has seen an increase in peak demand by up to 90% (Simshauser & 

Downer 2011; Simshauser 2016). To this end, a critical peak escalation factor is applied to average 

peak demand (a value of 40% is used in the model reflecting a more conservative lower bound). 

The maximum average peak demand of dwellings with batteries can then be subtracted from the 

business as usual projection described above to determine the contribution of batteries to peak 

reduction.  

 

To calculate the financial value of peak demand reductions, attempts have been made by both 

DNSPs and the AER to specifically calculate the value of network demand augmentation on a 

$/MW basis so that the overall benefits of demand-side management can be determined (Ernst & 

Young 2011). Historical $/MW values have been used in the model and directly sourced from 

DNSP benchmarking datasets from AER (2016b). Future projected values are assumed to remain at 

2016 prices (AU$286,224/MW) in real terms until the end of the simulation period. 

 

It should be noted that while the model provides a relatively generalised estimate, determining the 

impact and the cost associated with peak demand is highly complex, particularly as demand related 

expenditure is designed to meet localised demand constraints, and not necessarily aggregated 

system-wide peak demand (Ernst & Young 2011). Reducing network costs associated with peak 

demand requires identifying the localised area of constraint and determining the cost of solutions to 

address that specific constraint (Ernst & Young 2011). This could vary considerably depending on 

whether short or long term drivers of augmentation are considered (Energex 2016c). As part of 

scenario analysis, the model therefore provides varying estimates of peak demand reductions based 

on assumptions which estimate the extent that batteries are proactively integrated into the network 

to reduce constraints. 
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7.4 Model testing and validation  

7.4.1 Overview 

While there is no single approach to validate system dynamic models, two main types of test have 

been developed and are commonly applied. These tests are based either on a model’s structural 

validity to ensure the structure of model is an appropriate representation of the system, and its 

behavioural validity to ensure the model is able to produce an acceptable output behaviour 

(Forrester & Senge 1980; Barlas 1989). On this basis, the following tests were used to validate the 

model: 

 

• Structure confirmation test – This test involves comparing model equations with the 

relationships that exist in the real system (Forrester & Senge 1980). The process used to 

undertake this type of analysis is generally qualitative in nature, as the process involves 

comparing “the form of the equations of the model, directly with the form of the relationships 

that exist in the real system” (Barlas 1996, p. 191).  For the simulation model, this was achieved 

by assessing the model structure in terms of (1) the relationships between key variables as 

defined by stakeholders during the development of the dynamic hypothesis; (2) ensuring that the 

positive and negative polarity as described in the final CLD were replicated in the model and (3) 

ensuring that reinforcing and balancing loops produced empirical outputs accordingly. In 

addition, an internal consistency test was undertaken that involved checking the right-hand and 

left-hand side of all equations to ensure that units in the simulation are consistent (Barlas 1996). 

  

• Conservation of matter test – All stocks in the model were checked to make sure they obeyed 

the conservation of matter law, which requires that any change in a stock must equal the sum of 

inflows minus the sum of its outflows. This was calculated by summing each inflow and 

outflow after the first time step, subtracting the two values and adding it to the initial stock 

value. The simulation was then run to determine the value calculated by the model. 

 

• Extreme conditions test – This involves assigning extreme input values to parameters and then 

comparing the model output with the predicted behaviour of the real system should it experience 

the same conditions (Forrester & Senge 1980). This test is useful for uncovering flaws in model 

structure, particularly as formulations can appear plausible until tested with very high or low 

inputs. The test also ensures that the model will behave rationally even under a wide range of 

conditions which increases the model’s usefulness, particularly for dealing with policy issues 
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that move the system out of historical ranges (Forrester & Senge 1980). The extreme conditions 

test was applied in the simulation model by changing the values by 25% and 175% of the 

original value. Results were generated for three dependant variables including total number of 

batteries, residential grid demand and electricity prices.  

 

• Discrepancy coefficient – This is a quantitative system behaviour test that compares model-

generated behaviour to observed behaviour. It is a summary measure to statistically evaluate the 

behaviour of system dynamic models and represents the sixth step in a procedure that includes 

(1) trend comparison, (2) period comparison, (3) mean comparison, (4) variance comparison 

and (5) testing for phase lag (Barlas 1989).  

 

The discrepancy coefficient (U) is given by (Barlas 1996): 

 

𝑈 =  
√∑(𝑆𝑖 −  𝑆̅ − 𝐴𝑖 +  �̅�)2 

√∑(𝐴𝑖 −  �̅�)2 +  √∑(𝑆𝑖 −  𝑆̅)2
 

 

Where:  

A = historical data (i.e.  A1, A2…AN)  

S = simulated data (i.e. S1, S2…SN) 

 

The discrepancy coefficient ranges from 0 (representing a perfect prediction) to 1 (representing 

the worst prediction) with values between 0.4 and 0.7 implying good to average models (Barlas 

1989). In the simulation model, the discrepancy coefficient was calculated for three variables 

including PV installs, electricity prices and residential demand. These variables are supported 

by historical trend data and represent key leverage points within the model. Battery installs were 

not included as there are very few installs currently and no historical data.  

 

7.4.2 Model test and validation results 

 

All structural elements tested within the simulation model behaved as expected. Feedback loops in 

the model demonstrated appropriate polarity with simulations run to empirically prove the existence 

of reinforcing and balancing loops.  In addition, each stock was assessed to ensure that they did not 

violate the conservation of matter test, units were assessed for consistency and equations were 

checked to ensure they correctly represented the relationships assigned to them based on the 

consultation and CLD development stage.  
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Extreme conditions test 

 

The extreme conditions test was applied against three key parameters to demonstrate the robustness 

of the model. A summary of the results, with the outputs at the end of the simulation period 

provided for each of the parameters tested are presented in Table 5. Graphs that demonstrate trends 

over time in response to the extreme conditions test are presented in Appendix C. Across all tests, 

the system responded as expected and the observed behaviour was explainable and rationale.  

 

 Variables 

 Total batteries 

(dwellings) 

Residential demand 

(GWh/year) 

Electricity prices 

($/kWh) 

Base run 570742 8903 0.3357 

Battery payback    

Low 968620 8102 0.3478  

High 103032 10315 0.3161 

Total network recoverable revenue    

Low 258559 9811 0.2233 

high 693418 8627 0.4488 

Non-financial motivations    

Low  189040 10006 0.3201 

High 802101 8235 0.3471 

Table 5 Values for extreme conditions test at end of simulation period 

 

Trend analysis and results of discrepancy coefficient calculations 

 

Trend analysis and calculation of the discrepancy coefficient found that the simulated behaviour 

trends agreed with the historical data for each of the four variables examined. All discrepancy 

coefficients were less than 0.3, which is considered a very good result (Barlas 1989).  Full working 

for the discrepancy coefficient including outputs for each of the six steps required to calculate it, are 

included in Appendix D. Specific test results include: 

 

• Total PV installations – Comparison of total number of PV installations returned a discrepancy 

coefficient of 0.11 (Figure 58). Historical data was sourced from postcode data for small-scale 

PV installations from the Clean Energy Regulator (2017). 
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Figure 58 Total PV installs – trend analysis 

 

PV system types – As total PV installs comprise four different system sizes, the model was run to 

ensure that the trends were consistent with historical data (Figure 59). The model fit was very good 

with discrepancy coefficients less than 0.28 for all system types. Note, that specific system size data 

is only available from 2010 and was sourced from APVI (2017c). 

 

 

Figure 59 PV installations by size – trend analysis 

 

• Retail electricity price – Trend analysis and the discrepancy coefficient for the retail electricity 

price is calculated against historical data based on the building block approach developed by the 

QCA (Figure 60). This data was taken from annual final QCA determinations from 2006 until 

2017 and excludes GST. The discrepancy coefficient calculated was 0.24 demonstrating very 
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good fit. The main variation in simulated output relates to period from 2013-14 to 2015-16 

when the QCA established a transitional path to rebalance the fixed and variable components of 

Tariff 11 so that each component was cost-reflective by 1 July 2015.  

 

 

Figure 60 Retail electricity prices based on building block approach – trend analysis 

• Residential demand – comparison of residential demand against historical data returned a 

discrepancy coefficient of 0.27 demonstrating a very good fit (Figure 61). Historical values 

were obtained from datasets sourced from AER (2016b) and AEMO (2017). 

 

  

Figure 61 Residential demand – trend analysis 

In view of the results of model testing and validation, the structure and behaviour of the simulation 

model is considered appropriate for use in addressing the research objectives of this dissertation.   
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Chapter 8 Understanding PV and battery adoption dynamics 

 

Chapter overview 

 

The purpose of this chapter is to describe and discuss the results of model simulations, including the 

outcomes of sensitivity analysis and scenario analysis. It aims to build on the earlier qualitative 

analysis to more accurately describe the key causal relationships and the possible leverage points 

within the system that will influence battery adoption dynamics. The chapter leads with an 

overview of the approach used, the results of sensitivity analysis, and the rationale and assumptions 

underpinning scenario development. The second part of the chapter presents the results of all 

simulation runs. The chapter concludes with a discussion on the implications of residential PV and 

battery adoption from a broader energy sector transition perspective. This includes consideration of 

policy measures that could help achieve more efficient integration of the technology.  
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8.1 Introduction  

Sensitivity analysis along with scenario analysis and planning are used in this thesis to enable 

deeper and more insightful evaluation of the outputs of model simulation. They are both well 

accepted methods for use with system dynamics models and have been used extensively in the past 

for energy sector modelling. An overview of these approaches, along with the way in which they 

are applied to help address this study’s research objectives, are detailed below. 

8.1.1 Sensitivity analysis  

Sensitivity analysis is used to help understand uncertainty in a model by varying the value of input 

parameters to determine their relative influence on dependant variables and, more broadly, model 

output (Saltelli et al. 2008). The need for sensitivity analysis stems from the inherent uncertainty in 

any scientific model. This occurs because modellers effectively design an ‘arbitrary enclosure’ 

which by necessity is bounded by assumptions to represent an otherwise open, interconnected 

system (Saltelli et al. 2008).  

 

Sensitivity analysis is particularly well suited for use with system dynamics models as they 

generally reflect complex systems and involve considerable uncertainty (Tian et al. 2016). In this 

respect, sensitivity analysis can help identify variables that have the greatest impact on the dynamic 

behaviour of the model while helping to better understand key leverage points for policy 

intervention (Maani & Cavana 2007).  

 

For this study, the sensitivity analysis method is based on an approach designed specifically for use 

with system dynamics models as described by Maani and Cavana (2007). It involves four steps:  

1. Select parameters most likely to influence model behaviour and/or variables with values 

underpinned by more uncertain or imprecise assumptions. 

2. Individually modify selected parameters by a percentage (e.g. 10%) and run a simulation for 

each. 

3. Based on the output of the sensitivity analysis, identify variables that drive significant change in 

the model. 

4. Analyse the results to determine if such change is justified or whether the assumption 

underpinning the parameters requires modification.  

 

Based on the above approach, a total of 12 parameters were tested as part of the sensitivity analysis 

process with values for each parameter adjusted by ±10%. To assess the results of the sensitivity 
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analysis, the number of dwellings with batteries was used as the dependent variable. At the end of 

the simulation period, the percentage change in battery dwellings was calculated for each adjusted 

parameter against the base case.  

8.1.2 Results of sensitivity analysis 

The results of sensitivity analysis showing input parameters ranked in order of influence on battery 

dwelling numbers are presented in Figure 62.  

 

 

Figure 62 Results of sensitivity analysis 

Unsurprisingly, the sensitivity analysis shows that the electricity price and total battery cost - the 

two main contributing factors to battery payback - have the greatest influence on battery adoption. 

A 10% increase in electricity prices results in an 8.7% increase in dwellings with batteries, while a 

10% decrease results in a 12.3% decrease. This result reflects a confluence of several reinforcing 

loops in the model. As consumers install batteries, grid demand declines and unit costs of electricity 

increase, which improves the financial viability of PV and battery energy storage. Rising electricity 

prices also influence non-financial motivations, such as a desire to reduce exposure to future 

electricity price increases. As the market increases in size, learning effects put downward pressure 

on total battery install costs. In contrast, if electricity prices decrease, these reinforcing loops will 

operate to discourage battery adoption. 
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Interestingly, there is a large asymmetry associated with the ‘total battery costs’ and ‘total PV costs’ 

result. Higher battery costs have a greater negative influence on battery adoption when compared 

with an equivalent reduction. This is likely both a function of consumer sensitivity to higher upfront 

battery costs and a reduction in dominance of the reinforcing loops described above. For PV, a 10% 

increase in costs results in an 8.5% decrease in battery adoption while a 10% decrease in PV costs 

results in an only 2.5% increase in battery adoption. Unlike battery costs, this result reflects the fact 

that PV prices are already extremely low. This means that continued price drops have less of an 

impact on battery adoption whereas an increase in costs are more likely to materially impact battery 

payback, particularly on already marginal systems making them ineligible for adoption. 

 

The influence of reliability and resilience on battery adoption is also interesting. This variable is 

informed by both financial motivations (i.e. the model uses a ‘value of reliability’ metric developed 

by AEMO to determine the financial value consumers place on reliable access to electricity) and 

non-financial motivations, which cumulatively act to increase battery adoption. As the existing 

electricity system already provides relatively reliable electricity, improvements in reliability do not 

result in an equivalent decrease in battery adoption.  

 

For the rest of the parameters tested, the results are mostly symmetrical, with the differences 

between parameters reflecting their relative influence on battery adoption. These results have been 

used to inform the development of scenarios described below.  

 

8.1.3 Scenario analysis 

 

Scenario analysis is used in this thesis to help better understand how battery adoption dynamics 

change under a range of different conditions. Of particular interest is how endogenous feedback 

mechanisms manifest and drive broader system change when input values and exogenous variables 

are manipulated. Scenario analysis has been used extensively in the energy sector since the 1970s 

when it was pioneered by Royal Dutch Shell to respond to increasing complexity in the energy 

supply chain (Wack 1985; Riesz et al. 2014). It can be defined as the process of designing 

“informed, plausible and imagined future environments” to better understand complexity and 

uncertainty (Chermack & Lynham 2002, p. 376).  
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Scenario analysis is particularly useful when addressing new challenges that deviate from 

established organisational norms. The complexity and uncertainty associated with disruptive 

technologies such as PV and battery energy storage make scenario analysis highly relevant in this 

respect. It provides a framework that focuses on the dynamic interactions within the changing 

environment and as such helps stakeholders understand the forces that are driving change (Wack 

1985). In this way, scenario analysis challenges mental models, helps improve decision making and 

enhances human and organisational understanding of a system (Chermack & Lynham 2002). 

 

Due to the complexity in the energy sector, energy-based scenario analysis is typically supported by 

modelling to better incorporate qualitative and quantitative elements (Cao et al. 2016). Although 

there are several scenario analysis methodologies described in the literature with no single agreed 

upon approach, many of the methods share common characteristics (Amer, Daim & Jetter 2013).  

 

The method of scenario analysis used in this thesis was adapted from two approaches and involves a 

five-step process. The primary method draws upon one of the most well established scenario 

methodologies, the Intuitive Logic Approach, which was originally used by Shell (Huss & Honton 

1987). Comprising a number of logical steps, the approach is able to accommodate highly complex 

and qualitative relationships.  

 

Methodological elements have also been drawn from an approach described in Amer, Daim and 

Jetter (2016) called Fuzzy Cognitive Mapping. This is an intuitive scenario building method 

designed for use with quantitative analysis and is based on causal cognitive maps, an approach well 

suited for use in systems thinking (Amer, Daim & Jetter 2016).  

 

Accordingly, the steps used to develop the scenarios in this study include: 

1) Analysing the nature of the problem and identifying strategic concerns – This step is necessary 

to clarify the purpose and scope of the scenario analysis. Problem articulation is a key step in a 

systems thinking approach and has been well covered in previous chapters 

2) Identifying and prioritising key uncertainties and causal relationships – This step identifies 

relevant parameters to be included and modified in scenario analysis. The results of the 

participatory data collection process and the creation of a dynamic hypothesis using causal loop 

modelling as described in Chapter 6, provides the foundation from a qualitative perspective. 

Expert stakeholder input in this regard is useful to facilitate debate, discussion and consensus 

regarding the main issues and the various combinations of input vectors to be included in the 

analysis (Amer, Daim & Jetter 2016). The sensitivity analysis as described above represents an 

additional measure to help identify the relevant parameters from a quantitative perspective.   
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3) Defining the scenario logic – Scenario logic includes the “organising themes, principles, or 

assumptions that provide each scenario with a coherent, consistent and plausible logical 

underpinning” (Huss & Honton 1987, p. 22). Based on the outcomes of step 2, a brief narrative 

describing each scenario was developed and is listed in Table 6 below.  

4) Parameterising the simulation model – Based on the outcomes of step 3, the model was 

modified for each scenario by changing key parameter inputs with data and assumptions 

sourced from the literature and/or the CLD development process. 

5) Analysing scenario implications – This step involves analysing the outputs of each scenario to 

determine the magnitude of system change, the key issues that emerge and the resilience of the 

system in response to future uncertainty. This can then be used to inform policy analysis and 

planning interventions to address the scope of the study identified in Step 1. 

 

Using the above method, four scenarios were developed, including the base case. The scenario logic 

and key assumptions are described in Table 6. These scenarios represent a spectrum of possible 

future outcomes ranging from the relatively conservative base-case scenario to a more pessimistic 

climate change scenario. Due to the highly interconnected nature of the system under investigation, 

only a small number of parameters were modified in each scenario to generate meaningful results.  

 

Table 6 Overview of scenarios used in the simulation model 

Scenario Scenario description 

Base-case The base case reflects a business-as-usual scenario. It assumes all exogenous 

inputs are based on 2016 values as per the assumptions described in Chapter 7. It 

assumes no new PV or battery subsidies, no new emissions policy and no 

climate change impacts. PV module and battery price reductions are based on 

generally accepted trajectories as described in the literature. There is no strategic 

response from incumbents in response to battery adoption. Battery integration is 

not coordinated and makes minimal contribution to a reduction in network costs 

through peak reduction in constrained areas. 

Scenario 1 – proactive 

battery integration  

In response to falling demand and declining asset utilisation, government and 

industry develop a subsidy scheme that provides rebates for small battery 

systems with eligibility subject to network control of batteries during periods of 

high peak demand. The rebate can only be used for a small battery (i.e. 5kWh) 

and is worth 50% of the system cost to a maximum of $1000. This scenario 

assumes network utilisation is significantly improved and that 100% of peak 

demand savings from battery adoption flow through to reduce network costs. 

This serves to balance rising electricity prices, which along with improved 

reliability and system resilience, helps moderate non-financial motivations.  
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Scenario 2 – barriers to 

battery adoption  

With continuing PV uptake reducing network demand, the variable cost of 

electricity rising in response, and the spectre of increasingly rapid battery 

adoption exacerbating these issues, network utilities decide to restructure their 

tariffs to more accurately reflect the costs associated with distributing electricity 

(this could be in response to government pressure to address social equity issues 

arising from the ‘death spiral’, or as a strategic decision to impede distributed 

energy technologies which challenge the network monopoly business model). At 

the end of the current regulatory period ending in 2020, network utilities 

transition over a five year period to a network tariff in which 75% of residential 

revenue is recovered through fixed costs to more closely reflect the actual fixed 

and sunk capital costs that comprise the total network cost structure.  

Scenario 3 – climate change 

impacts (worst-case) 

As global temperatures continue to increase and the effects of climate change 

become more evident, a carbon price is introduced in Australia from 2020 to 

reduce the country’s emissions. This increases electricity prices, which occurs at 

the same time as severe weather events begin to impact the resilience of the 

existing electricity supply system. Consumers turn to batteries and larger PV 

systems to manage these risks and maintain a more reliable supply of electricity. 

The influence of climate change in the model is a function of temperature 

increases. For this scenario, the temperature follows a linear trajectory reaching a 

global average increase of 1.5°C by 2036. A number of recent studies suggest 

that based on current trajectories, this could be a conservative estimate (King & 

Henley 2016; Henley & King 2017). The model assumes a carbon price starting 

in 2020 that increases wholesale electricity costs by $25, rising to $70 by 2036. 

This estimate is informed by Australian Government modelling that was used to 

forecast carbon price trajectories for the Carbon Pricing Mechanism (Australian 

Government 2011).   
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8.2 Results and discussion 

The outputs of the base-case simulation model and the results of scenario analysis provide a clearer 

understanding of the key adoption dynamics that may influence residential PV and battery uptake. 

In doing so, the model helps identify a number of important relationships that could develop in 

coming years with substantial implications for industry, government and society more broadly. This 

section examines these relationships and draws a number of conclusions which form the basis for 

additional analysis in Section 8.3 that considers policy implications aimed at ensuring more 

efficient integration of the technology.  

8.2.1 The base-case 

 

PV and battery adoption rates and characteristics 

 

The base-case simulation results demonstrate that battery adoption over the simulation period will 

increase rapidly. Adoption appears to follow s-shaped growth, with battery uptake increasing slowly 

until 2020 at which point it begins to accelerate. Early-majority market penetration, as per Bass 

diffusion adoption categories, occurs from 2029 (Figure 63). By the end of 2036, approximately 

570,742 battery systems have been installed representing 5,444 MWh of capacity. The majority of 

battery dwellings comprise installations with new bundled PV and battery systems (~390,000) 

compared with dwellings that had batteries retrofitted to existing PV systems (~180,000). Total PV 

installations across all prosumer dwellings exceed 1 million and comprise 4,434 MW of capacity. 

 

 

Figure 63 Battery adoption and market penetration 
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To better understand the rate and scale of battery adoption, it is worthwhile comparing it with the 

growth of residential PV from a decade earlier. While the base-case simulation shows that battery 

adoption is likely to be substantial in coming years, the rate of PV uptake was even higher, 

achieving similar penetrations as those projected for batteries over the entire 30-year simulation 

period in less than 10 years (Figure 64 shows the rate of PV adoption from 2006 to 2016).  

 

 

Figure 64 PV adoption between 2006 and 2016 

As previously discussed, exponential PV growth was underpinned by a confluence of events 

including generous subsidy arrangements, rapidly falling PV prices and increasing electricity costs, 

which all created strong reinforcing loops encouraging rapid uptake. In contrast, the base-case 

simulation model represents a business-as-usual scenario; it assumes no subsidies and includes 

relatively conservative estimates for key initial variables. In addition, the influence of non-financial 

motivations is relatively muted in this scenario. The model shows that depending on market 

penetration, non-financial motivations will influence battery adoption throughout the simulation 

period by between 5-9%.  

 

In regards to the types of battery system installed, the simulation model shows that 15kWh batteries 

are most common (~288,000 installs), followed closely by 5kWh systems (~240,000 installs) and 

then 30kWh systems (~43,000 installs) (Figure 65). For off-grid systems, and noting the challenges 

associated with accurately modelling uptake as discussed in Chapter 7, the model shows that 

138,000 dwellings could be classed as possible off-grid systems by 2036 representing 

approximately one quarter of all battery dwellings.  
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Figure 65 Number of dwellings by installed battery capacity 

It is important to consider the above results for battery system sizes in conjunction with data outputs 

for PV system size. This is because both the financial and non-financial drivers for battery adoption 

are highly dependent on the amount of electricity that can be generated on site. The numbers of 

installed PV systems across all sizes is shown in Figure 66. In Queensland, dwellings with PV 

systems that were less than 2kW were initially the most popular, due in part to the structure of 

historical subsidies and higher system costs at the time (Australian Energy Council 2017). With 

module prices falling, it is now financially viable for many of these households to upgrade to larger 

PV systems by installing more panels, or if considering a battery, installing a totally new PV and 

battery bundle. Moving forward, the base-case simulation shows a marked preference for 4-6kW 

PV systems which comprise almost half of all PV installs by 2036. This finding reflects a 

continuation of the current trend in actual installs which shows that 5kW systems are now the most 

common PV installs in Queensland (KPMG 2016). 

 

 

Figure 66 Number of dwellings by installed PV capacity 
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In terms of the most popular PV and battery system combination, nearly half of all installs by 2036 

will include a 5kW PV system and a 15kWh battery. The attractiveness of this combination reflects 

the falling price of PV and batteries and the rising price of electricity, which effectively make it 

cheaper for most consumers to generate their own electricity rather than import it from the grid. It is 

also a function of non-financial motivations. The model shows that as willingness to pay for greater 

self-sufficiency increases, the preference for smaller battery systems declines by just under 10%, 

whereas the preference for larger systems increases by 13%. 

 

For these, the grid would be used primarily as backup, most likely for short periods throughout the 

year. By 2036, the model shows that dwellings with a 5kW PV and 15kWh battery, averaged across 

all different load profiles and consumption types, will use only 0.16MWh/year of electricity from 

the grid. In contrast, dwellings with the smallest PV (2kW) and battery combination (5kWh) across 

all different load profiles and consumption types, would use 3MWh/year from the grid on average.  

 

- Financial drivers for battery adoption 

 

The importance of financial drivers for mass market uptake of new energy technologies is well 

documented (Boughen et al., 2013; Caird et al., 2008; Rickerson et al., 2014; RMI, 2014; 

Romanach et al., 2013; Stern, 1992). For residential PV and battery energy storage, the simulation 

model not only demonstrates the pervasive nature of feedback loops that reinforce financial drivers, 

primarily on the upside, but also the sensitivity of battery adoption to both exogenous and 

endogenous influences.  

 

The base-case model shows that payback periods for PV and battery systems continue to improve in 

coming years. Currently the payback period for many PV and battery system configurations is less 

than 15 years with some as low as 7 years, depending on household load profile and consumption. 

At the end of the simulation period, the average payback for bundled PV and battery systems is 

approximately 6 years with some combinations achieving paybacks of less than 4 years. Table 7 

shows the payback for bundled PV and battery systems based on battery size (values have been 

averaged out across load profile, electricity consumption and PV size). 
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 Payback period (years)  
5kWh 15kWh 30kWh 

2006 111.8 113.7 167.6 

2011 30.5 39.2 70.0 

2016 10.3 11.4 19.2 

2021 6.5 7.3 11.5 

2026 6.4 6.9 10.4 

2031 6.0 6.3 9.1 

2036 5.2 5.3 7.4 

Table 7 Average payback period for bundled PV and battery systems 

 

As previously described, the payback period in this model is effectively a function of the total 

installed system cost and the ongoing savings that it generates. Within each of these elements, there 

exist several factors which help characterise the dynamics underpinning battery adoption. These are 

considered individually in more detail below.  

 

Firstly, the model shows that total installed system costs are one of the key factors underpinning PV 

and battery adoption. As Figure 67 shows, the decline in the unit costs of fully installed PV systems 

($/W) and batteries ($/kWH) have already been dramatic.  

 

 

Figure 67 PV and battery fully installed and unsubsidised average cost reductions 
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While further large decreases in price for PV installs are less likely6 there remains considerable 

scope for reductions in battery prices. In Queensland, battery system costs are currently the function 

of exogenous drivers, with battery packs, PV modules and inverter costs subject to global 

technology, manufacturing and market developments. While the rate of decline of battery system 

costs represent a source of considerable uncertainty, the exogenous battery cost assumptions in the 

model generate a price trajectory that is well within the bounds of industry expectations.  

 

Indeed, and as discussed in Chapter 2, there are in fact a number of factors coalescing globally that 

suggest battery price reductions could possibly exceed the rate of decline used in the model. New 

manufacturing capacity and advances in complementary technologies, such as electric vehicles, are 

driving technology and manufacturing improvements which are seeing efficiencies of scale further 

reinforcing battery price declines. At the same time, demand for residential batteries is increasing in 

many jurisdictions, encouraging competition and innovation and further driving system cost price 

reductions. The availability of government rebates or market-led subsidies could also have a 

substantial impact on upfront battery system costs (the influence of rebates in this respect is 

considered as part of scenario analysis).  

 

In addition to hardware costs, soft costs such as installation, customer acquisition and permitting, 

also make an important contribution to total installed battery system costs. Soft costs contain an 

endogenous component, with cost reduction rates influenced by learning as a function of market 

penetration. The simulation model shows soft costs initially reducing by 5% per annum. As the rate 

of adoption increases, soft costs decline further and reach a maximum rate of reduction of 10% per 

annum before slowing as mass-market penetration is achieved. 

 

To understand the causal dynamics at play in this regard, it is worth examining the soft cost 

reductions achieved for PV installations in the past decade. PV soft costs in Australia are now some 

of the lowest in the world. In 2014, they were $2.19 per watt less compared with those in the USA 

(RMI 2014b). The reason for this differential can be traced back to the early expansion of the 

Australian PV market. High demand for residential PV, driven initially by subsidies, saw a rapid 

increase in PV installers, rising from 961 in 2009 to 4,246 in 2012 (RMI 2014b). This market 

concentration underpinned high levels of competition and transparency and, as the market size 

                                                 

6 This assumption is predicated on existing learning curves for c-Si technologies. There exist a number of new PV 

technologies that are still in development that promise substantial cost and efficiency benefits. However as these have 

not yet been proven commercially, their specific characteristics and related input values have not been included. 
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increased, Australian PV installers had to innovate to stay competitive. By reducing the time for 

installs and introducing efficiencies in other areas of their businesses, soft costs fell from $5 per 

watt in 2008 to $1.20 per watt in 2013 (RMI 2014b).  

 

For battery energy storage, these developments are highly relevant. While the residential battery 

market is still nascent in Queensland and the extent of soft cost reductions remain uncertain (the 

relationships defined in the model and the initial values used are necessarily conservative), it is 

possible that battery soft cost reductions could be far more rapid as battery penetration increases in 

the market. Queensland already has a mature distributed generation energy market, which has 

become highly sophisticated following the rapid growth of PV in recent years, and is well placed to 

leverage past learnings and apply them to battery installations.  

 

The value of possible ongoing savings that accrue from the use of a PV and battery system is the 

other major component used to assess the financial viability of a system. In this respect, the results 

of simulation demonstrate that there are multiple variables and feedback loops in the model that 

influence this value. These include exogenous and endogenous parameters nested within electricity 

prices, household demand and load profiles, residential peak demand and total residential sector 

consumption. These elements are considered in more detail below. 

 

Firstly, the model shows that electricity prices increase from 27.11c/kWh in 2016 to 33.57c/kWh at 

the end of the simulation period, reflecting a 25% increase. The model shows that this price rise is 

driven in almost equal parts by the impact of falling demand on network revenue recovery, and 

increasing wholesale energy prices. The contribution of batteries to a reduction in network peak 

demand has a slight moderating influence on electricity price rises.  

 

The structures and endogenous feedback loops that underpin the impact of falling demand on 

network revenue recovery have been discussed in detail in earlier chapters. The simulation model 

clearly demonstrates the impact of these relationships and shows how individual decisions to install 

PV and batteries at the household level, when taken as an aggregate, have widespread impacts along 

the electricity supply system.  

 

To demonstrate, the model shows that approximately 1 million PV systems are installed by 2036, 

comprising nearly 4434MW of capacity. Total generation from prosumer dwellings in 2036 is 

8,340GWh with approximately half used in homes with the remainder exported back to the grid.  
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Despite total numbers of dwellings forecast to increase by almost two-thirds by the end of 2036, 

grid demand from the entire residential sector drops to 8,903GWh per annum, down from 

11,500GWh per annum at the end of 2016 (Figure 68).   

 

 

Figure 68 Residential grid demand compared with dwelling growth 

While it is clear that PV dwellings contribute to reduced residential grid demand in their own right, 

dwellings with batteries substantially exacerbate this trend. For example, at the end of the 

simulation period, dwellings with PV only, use more than 3MWh/year of grid power on average. In 

contrast, dwellings with PV and batteries on average use less than 0.9 MWh/year of electricity from 

the grid.  

 

The influence of these dynamics on non-prosumer dwellings must also be considered as they could 

reinforce other feedback loops within the system. For example, should non-prosumer dwellings 

respond to higher electricity prices by reducing their electricity use (e.g. by installing energy 

efficiency appliances or changing energy use behaviour), total demand on the network will fall 

further, adding to the effects stemming from PV and battery adoption. To test this assumption, an 

additional 10% reduction in non-prosumer household energy consumption was artificially simulated 

in the model. This resulted in an additional 5% increase in electricity prices but also a similarly 

large increase in battery adoption.  

 

Wholesale energy price increases were the other major factor to make a substantial contribution to 

electricity price increases in the base-case simulation. Wholesale energy prices, despite having 

some endogenous elements, are represented in the model as a primarily exogenous variable. In the 
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highly dynamic electricity generation sector, wholesale prices are susceptible to a multitude of 

forces outside the control of any individual agent e.g. utilities, government or customers. This 

means there can be wide unforeseen fluctuations in price (which are explored in greater detail as 

part of scenario analysis). 

 

A recent example in Queensland demonstrates the volatility in this regard. Wholesale price 

projections from 2016 based on Queensland Government commissioned analysis were assumed to 

increase by 2.1% per annum until 2036 representing a 50% increase in real terms over the entire 

simulation period (the assumption used in the model). However, in January 2017 wholesale prices 

in Queensland hit record highs, and are on average expected to increase by up to 40% in 2017-18 

compared with the year before (Killoran 2017; QCA 2017b). These price increases were caused by 

tightening supply-demand balance in the NEM stemming from multiple simultaneous changes. 

Increased demand for gas, the closure of the Hazelwood power Station (one of Australia’s largest 

and cheapest fossil fuel generators), the continued operation of the Portland aluminium smelter in 

Victoria (which represents a large demand sink on the NEM), and limited new renewable energy 

capacity entering the market in Queensland resulted in large increases in wholesale electricity prices 

(QCA 2017b).  

 

While it is anticipated that wholesale prices in Queensland will return to more normal levels in the 

short-term, this example demonstrates the rate and scale of change that can now occur in the 

electricity sector. It also highlights the importance of sensitivity and scenario analysis in modelling 

energy transitions to take account of unexpected developments. Perhaps more importantly, this 

example also shows that wholesale energy prices are just one more variable that appears to have a 

higher probability of influencing battery adoption dynamics on the upside, rather than the downside, 

further strengthening reinforcing financial loops throughout the model.  

 

The other major factor that influences electricity prices relates to the capital investment cost of 

maintaining and augmenting the electricity distribution and transmission network. As previously 

stated, the cost of network expansions to meet peak demand are one of the primary drivers of 

electricity bill increases in Queensland. In this respect, the model shows that in the absence of 

batteries, critical peak demand for the residential sector is estimated at 4854MW in 2016 rising to 

8841MW at the end of the simulation period. When the influence of batteries is incorporated, the 

model shows that residential critical peak is 7543MW in 2036 representing a 1300MW reduction 

(Figure 69).  
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Figure 69 Battery contribution to critical peak demand reduction in the residential sector 

Attempts to value this reduction in peak, and the corresponding influence on electricity prices, are 

subject to a number of assumptions. As explained in Chapter 7, the benefits of network peak 

demand are generally spatially specific. To achieve maximum network benefit, batteries should be 

deployed in areas of existing or future network constraint and must include some element of 

network control. As the base-case simulation assumes there are no incentives to specifically manage 

peak demand through subsidies, supportive tariffs or regulatory approaches, the full potential of 

network savings are not achieved in this scenario.  

 

Having said that, due to the large number of batteries deployed across the state, the model assumes 

that incidental peak demand outcomes would still be achieved. This means that by 2036, battery 

adoption will contribute to an almost $75 million annual reduction in network prices, resulting in a 

2% reduction in electricity prices (approximately 1c/kWh). This dynamic represents an important 

balancing feedback loop and its potential is examined in more detail as part of scenario analysis.  

 

Access to premium FiTs was a major contributor to the recent residential PV boom as they 

comprised a substantial component of the ongoing savings achieved for system installation. For 

those dwellings that still receive the premium FiT, there is limited financial incentive to install a 

battery, particularly as the premium FiT remains above the retail electricity price. After 2028, when 

the FiT scheme closes and the incentive falls from 44c/kWh to 7c/kWh, the model shows a more 

rapid increase in retrofit battery installs as households on the premium FiT rush to install batteries 

to maximise their self-consumption. This is because at current FiT rates, the price differential when 
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compared with the retail price of electricity makes it far more beneficial for battery households to 

maximise self-consumption rather than to export back to the grid.  

 

- Broader system implications  

 

The simulation model also generates outputs for a number of additional system wide impacts 

resulting from PV and battery adoption including: 

• Equity issues - The model shows that amount of electricity used from the grid, and the size of 

household electricity bills vary substantially between the different consumer classes. For 

example, non-prosumer dwellings have average electricity prices of approximately $2235 a year 

in 2036, whereas the average household bill for dwellings with PV only is $914 per year. For 

dwellings with PV and battery the average household bill is $424 per year (with the fixed 

electricity cost comprising the main component). Equity issues arise as prosumer dwellings not 

only have smaller household bills but also indirectly contribute to increases in electricity prices 

for non-prosumers. To demonstrate, the simulation model shows that in 2036, an average 

dwelling with PV and battery using less than 1MWh from the network per year not only pays 

approximately 80% less on average than a non-prosumer household, but also contributes to 

demand reductions which collectively result in a 10% increase in electricity prices. 

• Emissions reductions - The reduction in use of grid sourced electricity represents greenhouse 

gas emissions savings of 6.2Mt CO2-e. While there remains considerable uncertainty regarding 

the true cost of carbon, with accepted values ranging from US$33 to US$220 (Moore & Diaz 

2015), this represents a saving of at least $200M.  

• Private investment and industry development - Total private sector investment over the 

simulation period for all prosumer dwelling types is approximately AU$8.7B, which would 

contribute to broader economic benefits including employment, industry and regional 

development, and local R&D outcomes. 
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8.2.2 Scenario analysis 

This section describes the results of scenario analysis. In addition to the base-case, three scenarios 

have been evaluated by comparing and contrasting model output across key variables. The scenarios 

include proactive battery integration (Scenario 1), barriers to battery adoption (Scenario 2) and 

climate change impacts (Scenario 3). 

 

All scenarios saw an increase in the numbers of battery dwellings across the simulation period. 

Scenario 3 had the highest number of installs with a total of 843,164, followed by Scenario 1 with 

654,959, the base-case at 570,742 and Scenario 2 with 300,486 (Figure 70). For the base-case and 

scenarios 1 and 3, the shape of the curve is similar and reflects strong reinforcing feedback. This 

effect is less clear with Scenario 2, however the rate of battery growth does begin to accelerate past 

2030 as falling PV and battery system prices improve financial viability, even in the face of 

continuing low electricity prices.  

 

 

Figure 70 Number of battery dwellings by scenario 

While the total numbers of dwellings represent an important value in its own right, broader system 

impacts also relate to the capacity and combinations of installed system types across each scenario.  

To demonstrate, Figure 71 shows total installed battery capacity for each scenario. Table 8 and 

Table 9 on page 179, break down the proportion of different battery and PV sizes between 

scenarios.   
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Figure 71 Total installed battery capacity by scenario 

 

The trends shown in Figure 71 and the data in the tables below help illustrate the influence of the 

different drivers and indicate the existence of strong leverage points for policy interventions. 

Scenarios 1 and 3 have the highest number of battery installations and similar battery adoption 

curves, despite the contrary nature of the assumptions underpinning these scenarios. The difference 

becomes clearer when the proportions of battery sizes installed and the effect on total capacity in 

each of the scenarios are examined.  

 

Scenario 1 had a much higher proportion of smaller battery systems (55%) than Scenario 3 (24%) 

which has far more medium and larger battery systems. The dynamics underpinning these results 

are important. Scenario 3 sees climate change policy initially drive higher electricity prices which 

reinforce feedback loops that encourage greater self-sufficiency. Residential demand falls more 

quickly at the same time as the impacts of climate change are felt. With blackouts becoming more 

common and prices continuing to rise, consumers become more frustrated with incumbents leading 

to a situation where both financial and non-financial reinforcing loops dominate.  

 

In contrast, financial incentives in Scenario 1 initially encourage smaller systems. A higher 

proportion of small systems not only result in less total grid reduction from the residential sector but 

when used strategically to reduce network constraints, creates a balancing feedback loop that helps 

keep electricity price rises in check. This serves to reduce non-financial motivations for self-

sufficiency as batteries integrated to support the network create net benefits in terms of resilience 

and reliability, further reducing desire for larger battery systems.  
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The model shows that the total cost of the subsidy that underpins the results in Scenario 1 is 

substantial, costing approximately AU$360M over the simulation period (although when taken over 

20 years it equates to a more moderate AU$18M per year). This cost however, must be considered 

in terms of the benefits that this subsidy accrues across the system. The model shows that the 

subsidy delivers a total reduction in network costs of AU$399M which helps to moderate increasing 

electricity prices, while minimising the impact of broader equity issues. Moreover, while the total 

cost of the subsidy appears high, it is relatively modest when compared with the cost of the 

Queensland Solar Bonus Scheme which is expected to exceed AU$4B over its 20 year life. 

 
 

Proportion of installed battery sizes 
 

5kWh 15kWh 30kWh 

Base-case 42% 50% 8% 

Scenario 1 55% 39% 6% 

Scenario 2  33% 59% 8% 

Scenario 3 24% 65% 11% 

Table 8 Proportion of installed batteries by size and scenario 

 
 

Proportion of PV sizes on battery dwellings 
 

<2kW 2-4kW 4-6kW 8-10kW 

Base-case 7% 27% 50% 16% 

Scenario 1 7% 29% 50% 15% 

Scenario 2  6% 20% 48% 25% 

Scenario 3 1% 23% 63% 13% 

Table 9 Proportion of installed PV on battery dwellings by size and scenario 

 

As already noted, the number of dwellings with PV and battery systems and the size of those 

systems also influence the amount of electricity sourced from the grid. In this respect, the outputs 

from the simulation model shows that residential demand across all scenarios will continue to fall 

(Figure 72). 
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Figure 72 Residential grid demand by scenario 

While the influence of residential demand on electricity prices has already been well covered, 

scenario analysis enables a closer examination of some of the other factors that could influence 

electricity prices. Variable electricity price trajectories across all scenarios are shown in Figure 73. 

 

 

Figure 73 Residential variable electricity prices by scenario 

As the above graph clearly shows there is a substantial difference in electricity prices across each of 

the scenarios. The results for the base-case primarily demonstrate the behaviour of the endogenous 

feedback loops already inherent in the system. The other three scenarios each help to demonstrate 

the influence of different assumptions underpinning the system structure. Scenario 1 shows that 

when batteries are deployed to strategically manage the network, cost savings can be achieved 

which are then passed on through to electricity prices. Scenario 3 demonstrates how a confluence of 

factors stemming from direct energy cost increases and rapid and pervasive battery adoption drive 

up electricity prices.  
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In contrast, Scenario 2 demonstrates how changes to tariff structures can dramatically change 

pricing dynamics which can have flow-on effects throughout the system. In this scenario, a 

recalibration of variable to fixed costs sees a substantial reduction in the variable unit price of 

electricity. Low variable and high fixed electricity costs serve to reduce the amount of ongoing 

savings that can be realised from on-site generation, thereby reducing the incentive for households 

to install PV and battery systems. Battery adoption will be delayed, with the model showing that 

nearly 50% less PV and battery systems are installed in Scenario 2 when compared with the base-

case.  

 

On the surface, this appears to be a positive outcome, particularly in the short-term as electricity 

prices stabilise and there is increasing utilisation of the network. However, while the low variable 

electricity price pushes out the timeframe in which PV and batteries become financially viable, it 

also serves to increase frustration with incumbents, particularly for those households who have 

already installed PV systems and have seen the value of their investment diminish. For electricity 

consumers more broadly, high fixed costs reduce the ability to proactively manage electricity costs 

through energy efficiency measures as the magnitude of savings is proportionately reduced. These 

effects are particularly pronounced for low consumption dwellings that would be disproportionately 

penalised by high fixed costs.  

 

Together these dynamics will underpin non-financial motivations for self-sufficiency and grid 

defection. In this scenario, with electricity prices remaining low contributing to high system 

payback periods, PV and battery adoption will unlikely occur at scale. However, as the energy 

sector transitions and monopoly control and ownership erodes, unforeseen actions or the actions of 

any supply chain participant could independently result in electricity price rises. If this occurs at the 

same time as there are improvements in battery technology, battery price declines, or broader 

market-based innovation, a perfect storm could occur with both financial and non-financial drivers 

encouraging mass grid defection.  

 

To assess equity issues associated with battery adoption, total household bills are calculated across 

the scenarios for each dwelling type with a breakdown of fixed and variable costs (Table 10). The 

base-case and Scenario 3 have the highest household electricity prices for non-prosumers, which 

acts as both a driver for increased adoption and a source of inequity for consumers unable to install 

a PV and battery system. Scenario 1 results in a moderate household electricity price increase whilst 

scenario 2 has the lowest household electricity bill, reflecting both the impact of tariff restrictions 

and the corresponding low uptake of PV and battery systems.  
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Variable Fixed cost Average household electricity bills 

 
$/kWh  $ per year Non-prosumer PV only   PV & Battery 

Base-case 0.336 310 $2238 $915 $424 

Scenario 1 0.307 289 $2051 $802 $365 

Scenario 2  0.231 638 $1965 $910 $613 

Scenario 3 0.438 307 $2817 $1235 $557 

Table 10 Electricity bill components and average household electricity bills across dwelling categories in 2036 

 

Finally, it is worthwhile considering how the assumptions underpinning each of the scenarios could 

encourage preferences for possible off-grid systems. The number of possible off-grid systems and 

their proportion as a function of total battery dwellings in each scenario is shown in Figure 74.   

 

 

Figure 74 Possible off-grid dwellings by scenario 

 

Not unsurprisingly, Scenario 3 has the largest number of possible off-grid systems. It also has the 

highest proportion with 35% of all dwellings able to defect. High electricity prices in this scenario 

along with several strong non-financial drivers, particularly declining network reliability and 

resilience, underpin this outcome. In contrast, Scenario 1 has the lowest proportion of possible off-

grid systems, despite having 15% more batteries in total compared with the base-case. This reflects 

the influence of the subsidy, which encourages smaller systems, combined with the effect of 

endogenous feedback loops which keep downward pressure on both electricity prices and non-

financial motivations. 
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Perhaps the most interesting finding from the data in Figure 74, is that Scenario 2 has an almost 

equivalent proportion (32%) of possible off-grid systems as Scenario 3. While this result was 

expected to some extent, its occurrence in conjunction with relatively low electricity prices was 

somewhat surprising. This result may be due to PV and battery payback periods becoming low 

enough by the end of the simulation period that when compared with total household electricity 

prices, grid defection becomes a more viable alternative to grid sourced electricity.  

 

The point at which battery market saturation is reached will also be highly relevant in regards to the 

severity and scale of broader system impacts.  Only Scenario 3 shows PV and battery adoption 

approaching market saturation, and as the ‘worst case’ scenario, this helps illustrate the magnitude 

of possible impacts. It is interesting however, to consider this finding in conjunction with the well-

known systems thinking archetype referred to as ‘limits-to-growth’. Visually represented in Figure 

75, this archetype recognises that growth in most systems is eventually constrained as feedback 

dominance shifts from reinforcing to balancing loops.  

 

 

Figure 75 Simplified CLD illustrating limits-to-growth archetype as it applies to PV and battery storage 

For residential PV and battery adoption, this dynamic underpins an important observation. Detached 

dwellings represent just under 70% of total housing stock in Queensland and at maximum 

saturation, it is assumed that approximately 75% of eligible dwellings will install PV and batteries. 

This means that even at 100% saturation, just over half of all dwellings would have PV and battery 

installed. This finding does not diminish the broader system-wide impacts that could arise from 

mass market uptake of PV and battery adoption. It does however demonstrate the importance of 

maintaining the existing electricity network and underscores the imperative to ensure that 

integration of PV and battery technology occurs in the most efficient way possible. It also 

challenges much of the hype in the popular media which suggests that the wholesale decline of the 

existing electricity supply system is imminent as a result of mass market PV and battery adoption 

(Bateman 2016). 
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8.3 Policy analysis 

8.3.1 Key implications  

Simulation of the system dynamics model and the outcomes of scenario analysis have reinforced the 

findings from earlier chapters while eliciting a deeper understanding of the causal relationships, 

possible unintended consequences, and potential leverage points within the system that will 

influence battery adoption dynamics. This section evaluates these findings from a policy 

perspective and uses them as the basis for consideration of possible measures to achieve more 

efficient integration of the technology.  

 

Firstly, the modelling results support the findings from Chapter 6, which showed that battery 

adoption is highly likely to occur at scale in Queensland in coming years. Model simulations 

demonstrate empirically that the structures and dynamics that underpin battery adoption, if not 

proactively managed, could create path dependence where endogenous feedback loops continue to 

increase consumer desire for self-sufficiency. This is because battery adoption at scale will drive 

further declines in residential electricity demand across the electricity supply system, resulting in 

increased electricity prices as well as strengthening non-financial motivations, which in turn 

reinforces continued battery adoption. These effects are magnified if consumers are driven to 

maximise the size of PV and battery installations to specifically reduce their reliance on the 

network. In the current environment, as depicted by the base-case scenario, the probability of this 

outcome appears to be strengthening. 

 

The model also quantifies the rate of battery adoption and demonstrates that it will most likely be 

rapid in coming years with mass market penetration achieved within the simulation period for all 

scenarios. This was the finding even in the case of the second scenario where reinforcing loops 

were less dominant. The speed of battery adoption and eventual saturation will have important 

implications for successful integration. Many of the challenges associated with PV integration in 

Queensland were related to the rate of uptake and the inability of government or industry to respond 

in a timely way to unforeseen and unexpected impacts. This resulted in a situation that 

demonstrated the “folly of making policy on the run” with substantial regressive wealth transfers in 

addition to many of the technical challenges at the time (Nelson, Simshauser & Nelson 2012, p. 

299).  
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The imperative to proactively address these issues is becoming more urgent. The model shows that 

based on probable system price trajectories, batteries will become financially viable for many 

Queensland households well within the coming decade. This is likely to occur even in the unlikely 

event that electricity prices stabilise at current levels. As system payback periods fall, consumers 

that install PV and battery systems will benefit from lower total electricity costs while insulating 

against further price increases and directly addressing any additional non-financial motivations. 

While this outcome may be advantageous from an individual perspective, the results of modelling 

demonstrate that this would not necessarily be a beneficial outcome from a whole-of-system 

perspective.  

 

Social equity issues could be substantial. Most households that install PV and battery systems are 

likely to stay connected to the grid in the short term, using it both as backup and to generate revenue 

from any excess PV power they export back to the grid. These prosumer households not only 

contribute to higher electricity prices but proportionately pay a far smaller amount to use the 

existing network when compared with non-prosumers. 

 

If left unchecked, the distributional effect of this dynamic will impose a particularly high burden on 

lower socio-economic households as they spend relatively larger amounts on electricity compared 

with more wealthy households. In Queensland, households with the lowest income spent 

approximately 6% of their weekly income on electricity versus only 0.8% for high-income 

households (QPC 2016b). Moreover, low income households are less likely to be able to install new 

PV and battery systems to reduce their exposure. This is because they are already budget 

constrained, more likely to rent (there is a strong correlation between home ownership, household 

income and PV uptake) and/or live in homes such as apartments that are less suitable for PV and 

battery installations (QPC 2016b). 

 

Model simulations also show the emergence of other whole-of-system issues. Battery adoption at 

the rate and scale generated by the model will erode the monopolistic basis of the traditional supply 

system and further impact already declining asset utilisation. The challenge for incumbents will be 

to maintain productivity, even as large proportions of residential electricity consumers use PV and 

battery energy storage technologies to reduce their reliance on the grid. This undertaking will be 

difficult, particularly because the utilisation of Queensland’s electricity networks is already so low. 

In 2014, Energex’s asset utilisation was only 25.7% and Ergon Energy’s was 34.2% (QPC 2016a). 

For multi-billion dollar assets, this is clearly a serious issue in terms of energy productivity and 

economic efficiency.  
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The results of simulation indicate that without intervention, the productivity of Queensland’s energy 

supply system will continue to decline as residential PV and battery adoption increases. Moreover, 

the model shows that this inefficiency could be replicated at the household level. Scenario analysis 

demonstrates that drivers for self-sufficiency result in a larger proportion of dwellings installing 

oversized PV and battery systems. As consumers seek to reduce their reliance on the grid, assets at 

the dwelling level will be built to meet the majority of household consumption, including maximum 

demand. This means that the same challenges being experienced by the broader network (i.e. 

oversizing infrastructure to meet demand that only occurs during short periods of the year) will be 

replicated across possibly millions of dwellings as systems are oversized to meet individual peak 

requirements resulting in excessive capacity that is infrequently used. This is costly and inefficient 

from a broader societal perspective, creates substantial redundancies and reduces the collective 

benefits of a communally used and financed electricity supply system. This dynamic is particularly 

perverse when taken with the fact that the publicly funded electricity network will become further 

under-utilised in these scenarios.   

 

8.4 Policy leverage points 

 

To help minimise the risks described above and to enable more efficient integration of residential 

PV and battery energy storage in Queensland, there is a clear role for government and industry, to 

anticipate and plan for the potential changes that could be triggered by mass market uptake in 

coming years. This will involve balancing consumer choice with broader economic efficiency 

outcomes to maximise “the aggregate or collective wellbeing of the members of the community” 

(Productivity Commission 2013b, p. 3).  

 

While governments and industry may not have direct control over many of the prosumer drivers 

discussed in this thesis, they can nonetheless attempt to guide more efficient integration through the 

use of targeted policy measures (Rickerson et al. 2014). In doing so, it is important that any 

interventions address the cause of the problem, and not just the symptoms. This has been a problem 

for energy policy in the past which has “been quite well designed to solve yesterday's problems” 

(Helm 2002, p. 181).  Poor energy policy can make problems worse or at the very least, “introduce 

new inefficiencies, have unintended impacts and impose compliance and administration costs—

which itself imposes costs on the community” (QPC 2016a, p. 72). To avoid these outcomes, it is 

useful to consider policy analysis through a systems thinking lens, which involves using key 
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leverage points to drive fundamental longer-term changes rather than just addressing the short-term 

symptoms of the problem (Maani & Cavana 2007).  

 

8.4.1 Subsidies 

 

With modelling results showing that battery system cost factors are a key component affecting the 

rate and scale of battery adoption, measures used to influence this leverage point are an obvious 

place to begin. Perhaps the most widely used policy tool in this respect is the provision of 

government rebates or market-led subsidies (Hsu 2012). Subsidies can comprise several different 

forms such as capital subsidies, feed-in tariffs, tax concessions or loan guarantees to name a few. 

Typically, they are used to lower technology adoption costs to achieve stated policy outcomes such 

as emissions reduction, technology specific outcomes and/or industry development.  

 

Currently there exist only two battery subsidy programs in Australia. The city of Adelaide offers a 

discount of up to 50% off the cost of a battery up to a value of AU$5000 while the Australian 

Capital Territory subsidies upfront costs through a competitive tender process (ACT Government 

2017; City of Adelaide 2017).  

 

While no such subsidies currently exist for batteries in Queensland, the results of modelling suggest 

that the use of subsidies to influence battery adoption and integration may only be appropriate in a 

limited number of circumstances. The model shows that residential PV and battery energy storage 

systems will become financially viable for most households within the short to medium term 

without government support. The rationale for government intervention to accelerate battery uptake 

is therefore questionable when it appears that market development will occur in a timely manner 

without the need for financial stimulus. 

 

The use of subsidies to support battery adoption also has the potential to reinforce certain 

systematic structures, such as the common ‘success-to-the-successful’ archetype, potentially 

exacerbating inherent equity issues already prevalent in the system. In this case, those households 

already most able to afford PV and battery technology are further incentivised to adopt, resulting in 

an ongoing financial benefit to the detriment of those households who can’t afford the technology. 

This situation can be particularly regressive when the costs of subsidies are shared by all electricity 

users as was done for the SBS. This means non-adopters, who are often low-income households, are 
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directly paying for adopters to implement measures that reduce their electricity costs. This issue is 

compounded for PV and batteries, the uptake of which strengthens endogenous feedback that 

directly increase electricity prices. This imposes a further cost on non-prosumer dwellings which 

further reduces their viability. A simplified CLD illustrating this dynamic is shown in Figure 76. 

 
Figure 76 CLD demonstrating the success-to-the-successful archetype 

 

Despite the above issues, the use of subsidies can be appropriate where benefits outweigh the costs 

and, instead of just addressing symptomatic issues, help modify other leverage points in the system 

to drive positive longer-term outcomes (Meadows 1999). The assumptions underpinning the use of 

subsidies in Scenario 1 were based in part on this logic. This scenario demonstrated the potential of 

using specifically targeted subsidies to change purchasing behaviour and to incentivise management 

of batteries to achieve network benefits. It also demonstrated the way in which changes to a 

leverage point can cascade throughout the system to affect both financial and non-financial 

motivations and in turn realise broader system benefits. 

 

8.4.2 Tariff reform  

 

Another area of policy reform that could help achieve more efficient integration of PV and battery 

storage relates to the way in which consumers are charged for their electricity. Existing tariff 

structures in Queensland do not appropriately cost the use of the network for prosumer dwellings7. 

Recent research indicates that Queensland dwellings with PV and high peak load from air 

                                                 

7 This is a historical legacy where simple consumption-based pricing was necessary because the metering technology 

did not exist or was too expensive to enable appropriate allocation of costs (Simshauser & Downer 2014). 
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conditioners are already the beneficiaries of an implicit subsidy worth 28.1%, whereas dwellings 

with lower demand and no PV, typically lower socio-economic households, paid network charges 

39.5%, or $295 per annum, higher than they should (Simshauser 2016). This differential occurs 

because prosumer dwellings, despite using less energy, still impose a burden on the grid, 

representing a cost not only to the DNSPs, but also to electricity retailers who must still provide 

billing services despite generating far less revenue from prosumers.  

 

Tariff reform could help address these inequities while helping to encourage consumers to use PV 

and battery technologies to support the objectives of the broader electricity network. An extensive 

body of research already exists examining tariff design, efficacy, equity and likelihood of consumer 

adoption (Nijhuis, Gibescu & Cobben 2017). Central to this work is the recognition that consumers 

are not homogenous and some will place a greater burden on the network than others.  

 

Tariff reform rests on the assumption that all consumers, irrespective of their characteristics, should 

face cost-reflective, non-distortionary pricing that reflects their use of the network. This not only 

removes issues associated with cross-subsidisation (where costs are not appropriately assigned 

between tariff classes reflecting the true cost of supply), but also means that consumers would face 

appropriate price signals to change their behaviour if they choose (CEER 2016).  

 

Three tariff classes have received the most attention in this respect: time-of-use tariffs where 

electricity is charged at different rates depending on the time of day (i.e. off-peak, shoulder and 

peak); critical peak pricing tariffs where very high prices are charged during extreme peak events; 

and capacity-based tariffs which are priced primarily according to household demand (i.e. a kW 

charge as opposed to a volumetric kWh charge) (DEWS 2013; QPC 2016a). While the cost-

reflectivity and equitability of these tariffs vary, they all represent more sophisticated designs 

compared with the status quo.  

 

When used in conjunction with residential PV and battery installations, the benefits of these tariff 

regimes could be substantial. Firstly, prosumers would pay an appropriate and equitable amount for 

their use of the network, reducing the disproportionate impost of their use of PV and battery 

technology on non-prosumers. Secondly, these tariffs are designed to incentivise behaviour change 

to support broader system objectives. Under an appropriate pricing regime, prosumer households 

could directly respond to price signals by charging and discharging their batteries in response to 

network cues, saving themselves money and reducing their impact on the network. Over time, and 
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supported by smart invertors and central coordinating services, batteries deployed at scale in 

conjunction with dynamic cost-reflective tariffs could dramatically increase the efficiency, 

resilience and utilisation of the network while enabling a far more equitable allocation of costs.  

 

Despite the promise of tariff reform to enable more efficient integration of residential PV and 

battery systems, there is a major caveat associated with the rollout of new pricing structures. Like so 

many issues in the energy sector, it is the response of the consumer to new tariffs that will 

determine their success. In this regard, the relationship between distributed energy technology, 

retail tariffs and consumer adoption is highly complex. Studies have found that the way in which 

people understand, use and pay for electricity is the outcome of cultural, technical and social 

considerations and no single ideal approach to cost reflective pricing currently exists (Graham 

2015). Furthermore, behavioural studies are finding that consumers prefer simplicity, such as flat 

rate tariffs, over all other forms of cost-reflective pricing (Stenner et al. 2015).  

 

Indeed, poorly structured, overly complex price signals or incorrectly incentivised tariffs risk 

further alienating electricity consumers driving possible unintended consequences. This dynamic – 

the fixes-that-fail archetype – was identified as part of the participatory research outlined in Chapter 

6. The results of simulation and scenario analysis support the existence of this archetype, 

reinforcing yet again the importance of understanding consumer dynamics in proactively preparing 

for battery adoption.  

 

8.4.3 Regulatory intervention 

 

Policy measures which aim to modify existing regulatory frameworks to remove impediments to 

technology uptake can also represent a highly effective target for intervention (Meadows 1999). The 

Queensland Productivity Commission (2016) specifically acknowledges the importance of ensuring 

that regulatory frameworks should promote the development of competition for new electricity 

products or services and not act as a barrier. They note that “energy policy and the associated 

regulatory framework must be able to adapt to technological change to facilitate a dynamic market 

response and promote the efficiency and productivity of the electricity sector” (QPC 2016a, p. 65). 

Reform of this nature not only helps improve the operation of the market but can influence 

consumer perception of incumbents, particularly with the removal of perceived barriers to battery 

adoption. 
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For residential PV and battery energy storage there are many examples where rules and regulatory 

guidelines have not kept up with new technology developments. In some jurisdictions, outdated 

network connection rules do not distinguish between a battery and a PV system. This means for 

example, that if a 5kW PV system is already installed, an application for a 5kW battery inverter 

could be denied because of the perceived load on the network, despite the fundamental technical 

difference between the two systems and their respective impacts on the grid (CEC 2017a). Should 

this barrier persist, consumers may contemplate installing an off-grid system and bypassing the 

network entirely as the financial proposition for battery systems improves. 

 

At a broader sector-wide level, regulatory frameworks continue to favour existing incumbent 

business models, impeding new market entrants and acting as a barrier to battery adoption. These 

include the existing rules in the NEM which support capital investments in network assets such as 

poles and wires over distributed solutions. While there is a regulatory requirement for DNSPs to 

consider alternatives to traditional network infrastructure, there is a $5M minimum threshold, which 

means that lower cost alternatives to poles and wires, such as batteries, do not need to be considered 

(AEMC 2015).  

 

Even the rules that govern the wholesale market have not changed to reflect the potential of new 

technology. Existing 30-minute price settlement provisions are due to the technical parameters that 

existed when the NEM was first designed (i.e. primarily large centralised generators). A shift to 

shorter settlement times would enable more efficient bidding, improve price signals and enable new 

technologies and new market entrants to enter and operate in the market (CEC 2017a). The potential 

of third-party residential battery aggregators in this respect could be significant.  

 

Aggregators represent a new wave of energy market entrants that apply innovative communication 

technologies to remotely manage large numbers of residential battery systems to directly respond to 

market based-signals in the wholesale market (AEMC 2015). Australian company Reposit Power 

has developed a technology platform that can capture additional value from residential PV and 

battery systems on the consumer’s behalf by trading capacity in the NEM (Reposit 2017). When 

prices are high, smart inverters discharge electricity back into the grid with the consumer receiving 

a financial incentive for their participation (Heber 2015).  
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Aggregated at scale in this way, residential batteries could provide substantial benefits to the 

network. This includes frequency regulation and voltage support (voltage and frequency must stay 

within specified ranges or grid instability occurs), spinning reserves (generation capacity 

immediately able to meet load following unexpected outages), energy arbitrage (when stored energy 

is sold back to the grid at periods of high wholesale prices) and black starts (when an entire network 

goes down and power is required to restart operation of large generators) (Fitzgerald et al. 2015).  

 

To realise the full benefit of these approaches to both the network and the individual, further reform 

is required that encourages new entrants to participate in the market. This requires removal of 

barriers to competition, an increase in data transparency and access (e.g. by providing detailed 

technical information for areas of network constraint), and introduction of measures to 

appropriately value a full range of network benefit such as ancillary services (CEC 2017a). These 

efforts could help increase the size of the incentive that can be paid to the consumer, increasing the 

desirability to participate, and improving the benefits to the network.   

 

8.4.4 A portfolio approach 

 

While this discussion on policy measures is not meant to be exhaustive, it aims to demonstrate how 

a diversity of very different approaches can influence the rate, scale and integration of residential 

PV and battery energy storage technologies. When taken with the results of modelling, it becomes 

clear that a portfolio approach will be required to enable efficient battery integration. With no single 

solution available, a mix of policy interventions must be implemented. These measures will be most 

effective if they do not attempt to hinder uptake but rather recognise the rapidly emerging primacy 

of the active and engaged electricity consumer.  

 

For supply side participants in particular, such an approach may seem counterintuitive. This is 

because actions to remove regulatory barriers, reduce information asymmetry, minimise connection 

barriers, encourage competition and allocate fair value for the use of batteries on the network will 

further accelerate adoption, which in the short-term will continue to destroy value along the existing 

electricity supply chain and reduce the viability of traditional electricity supply business models. 

While there is no denying the possibility of this outcome occurring, interventions that target 

structural problems, as opposed to addressing symptomatic issues, have the best chance of 

achieving long-term success. These actions will result in more efficient use of the network which 
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will increase its resilience, put downward pressure on electricity prices and decrease the emissions 

intensity of the sector. In contrast, actions taken now to impede battery adoption, while possibly 

successful in the short-term, will reinforce drivers for grid-defection as the technology further 

develops and prices continue to fall. For industry, this recognition may necessitate costly structural 

change in the near term, but will ultimately be required to maintain viability and future 

competitiveness.  

 

From a broader system-wide perspective, development and implementation of a suite of policy 

measures to help ensure the most efficient integration of residential PV and battery technologies 

will be best achieved by, and may be contingent on, a sector-wide paradigm shift. Changing the 

“mindset or paradigm out of which the system – its goals, structure, rules, delays, parameters – 

arises” is considered one of the most effective intervention points in a system (Meadows 1999). 

They are also one of the most difficult to change. The results of modelling, and a confluence of 

systemic structural issues point to the need for a new reality in the energy sector. This new reality 

must recognise the imperative and increasing inevitability of a shift away from reliance on fossil 

fuels toward a smarter, integrated decentralised grid. It needs to acknowledge that consumers are no 

longer passive participants in the sector but collectively have the power to materially impact 

electricity sector dynamics.  

 

Achieving this paradigm shift will require governments, industry and consumers to change the way 

they think about electricity supply and use. With clear articulation of policy intent in this respect 

and a complementary regulatory reform program, governments can help support industry efforts to 

identify and unlock shared value along the supply chain. Industry participants must also recognise 

that the profitability inherent in the monolithic business models of the past can no longer be 

guaranteed, and future viability will be contingent on broad structural change. If battery adoption at 

scale is likely to occur regardless, as the results of this research indicate, a positive, proactive 

approach to integration could see the technology act as a catalyst for a new era of consumer 

engagement and participation in the electricity market. This could drive productivity improvements 

and market innovation along the supply chain, realising new sources of profit for the sector and 

ultimately achieving the best outcomes for individuals and society more broadly. 
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Chapter 9 Conclusion 

 

Residential PV and battery energy storage systems deployed at scale could help to drive a 

consumer-led, low emission transformation of modern electricity supply systems. While the 

benefits are potentially enormous, if poorly integrated, the technology could become one of the 

most disruptive influences to impact the electricity sector in decades. To help avoid this outcome, 

this dissertation aims to make a fundamental research contribution by addressing the following 

research problem: What are the key dynamics that will underpin residential solar and battery 

adoption, how could these dynamics influence deployment rates and what are the implications from 

a broader energy sector transition perspective? The purpose of this chapter is to articulate the key 

findings and conclusions that help to address this question. It does this by summarising the results 

generated from each of the four stages of research described in this thesis. This chapter also 

discusses the limitations of research along with opportunities for future study. It concludes with a 

brief discussion describing the implications of this research and its broader contribution. 

9.1 Key findings in response to Research Questions 

The first stage of research clarified the scope of work, its significance and the specific nature of the 

problem to be addressed. This involved a review of the specific technology characteristics of both 

PV and battery energy storage, along with an assessment of the current market and the implications 

associated with the mass market adoption of the technology. In doing this, it addresses the first 

research question: “What are the current characteristics of the residential PV and battery market 

domestically and internationally”.  

 

The findings from this stage of research reveal the complex nature of both the technology and the 

system within which it is to be deployed. It illustrates the dichotomy between the inertia of the 

existing capital intensive, heavily regulated, monopolistic electricity supply system, and the 

flexibility and accessibility of new distributed generation technologies. This stage of research shows 

that while the residential battery market is still at the earliest stages of development, the technology 

itself is on the cusp of a rapidly declining price trajectory. Should adoption rates begin to accelerate, 

a failure to proactively manage battery integration could result in substantial inefficiencies along the 

supply chain, including a decline in infrastructure utilisation, asset impairment, increases in 

electricity costs and broader social and economic inefficiencies. 
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The second stage of work addresses Research Question 2: “What are the causal dynamics that will 

influence residential PV and battery adoption in Queensland?” Based on extensive stakeholder 

interviews, a causal loop model was used to generate a coherent theory of system behaviour. It also 

leveraged the findings from a detailed review and evaluation of the case-study area.  

 

This review found that the supply and use of electricity in Queensland epitomises the complexity 

inherent in the electricity supply system in many modern economies. It also demonstrated that the 

structural elements that underpinned past exponential PV growth in the state persist, and would 

likely contribute to the dynamics underpinning future adoption of home battery systems. When 

taken with the results of causal loop modelling several important findings were revealed.  

 

Many of the preconditions for battery energy storage adoption are already in place in Queensland. If 

battery prices fall as forecast, multiple paths to market exist in Queensland targeting a highly 

motivated consumer-base making large-scale battery uptake highly likely in coming years. Causal 

loop modelling shows how consumers, responding to both financial and non-financial motivations, 

will select home battery systems that will impact on the demand and load profile of the existing 

electricity supply system. This in turn will affect market dynamics, necessitating a strategic 

response from existing supply chain participants. The nature of this response, the emergence of new 

entrants and the extent to which government intervenes to achieve social-good outcomes will 

influence continued battery storage uptake and its future impact on the market.  

 

To help quantify the nature of the dynamics inherent in the system, the third stage of research 

involved the development of a system dynamics model. This stage addresses Research Question 3: 

“How could residential PV and battery adoption dynamics manifest in the Queensland context?” To 

address this question, a stock-and-flow simulation model comprising nearly 400 variables was used 

to empirically simulate adoption dynamics over a 30-year period. The model includes 108 different 

dwelling combinations comprising several different PV and battery system configurations arrayed 

with different household electricity consumption and load profiles. Model testing and validation 

demonstrated that structural elements behaved as expected. Trend analysis along with the 

calculation of a discrepancy coefficient showed that model-generated behaviour agreed with the 

trends generated from historical data.   

 

Simulation of the base-case model revealed how battery adoption dynamics could manifest in the 

system based on a business-as-usual scenario. The results show that battery adoption follows s-
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shaped growth, with uptake increasing slowly until 2020 when it begins to accelerate with mass 

market uptake achieved from 2029. At the end of the simulation period, approximately 570,000 

battery systems would be installed representing 5,444 MWh of capacity.  

 

Importantly, the results of model simulation demonstrate that the rate and scale of battery adoption 

in Queensland will be driven by a complex interaction of exogenous and endogenous feedback 

loops operating throughout the system. Electricity prices increased by nearly 25% in real terms at 

the same time as module prices fell. Improved payback periods enable consumers to select for 

systems that address both financial and non-financial motivations, which ultimately sees a 

preference for larger system capacities. In this respect, the model shows that a majority of 

consumers are likely to install a 15kWh battery system coupled with a 5kW PV system, a 

combination that for most dwelling types will see a substantial reduction in grid demand. These 

dwellings will use on average only 0.16MWh of electricity from the grid compared with nearly 

3MWh for the smallest PV/battery combination (i.e. 2kW/5kWh). As more consumers adopt PV 

and batteries, falling residential demand serves to further increase electricity prices. This highlights 

a considerable source of inequity, with the model showing that non-prosumers pay proportionately 

more to maintain the existing electricity network. The declining use of Queensland’s multi-billion 

electricity supply infrastructure as a result of these dynamics represents a substantial economic 

inefficiency in its own right.  

 

To build on the results described above and to enable a deeper evaluation of model outputs, the 

fourth stage of research involved sensitivity and scenario analysis. This work, along with a review 

of results from a broader policy perspective, address Research Question 4: “What are the 

implications of residential PV and battery adoption from an energy sector transition perspective and 

what measures could help achieve more efficient integration?” 

 

Scenario analysis demonstrated that while the number of battery dwellings increases across each 

scenario, the characteristics of deployment varied enormously. These results not only reinforced the 

findings from earlier stages of research but also helped demonstrate the strength of various leverage 

points throughout the system. For example, the climate change scenario shows how changes to 

exogenous influences would reinforce existing dynamics in the system which underpin consumer 

preference for self-sufficiency. With the highest numbers of systems installed of any scenario, 

nearly 850,000 battery systems, the cumulative negative impacts from a system-wide perspective 

are substantial.  
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In contrast, where efforts are made to proactively integrate batteries into the existing network as in 

Scenario 1, the effects were impressive. Despite more than 650,000 battery systems installed, 

electricity prices are nearly 40% lower than the climate change scenario. Moreover, the disparity 

between total household costs for prosumer versus non-prosumer dwellings is much lower. With 

smaller systems installed, network utilisation and resilience is also expected to be far greater.  

 

These results can be compared with Scenario 2 which sees the lowest battery adoption rate of all the 

scenarios with approximately 300,000 system installs. The actions of incumbents to maintain the 

status quo by implementing what is effectively a barrier to uptake appears to work in this scenario. 

However, closer examination of model outputs show that the systems being installed are larger, 

including a far higher proportion of ‘possible’ off-grid systems than would be expected under 

normal circumstances. This scenario shows that by only addressing the symptoms and not the actual 

structures underpinning consumer drivers for self-sufficiency, the non-financial feedback loops 

reinforcing battery adoption and possible grid defection are strengthened. If the financial viability of 

battery systems were to improve independent of, and despite the actions of incumbents, then the 

likelihood of these dynamics occurring would increase dramatically. 

 

To more clearly understand the implications of the above research from a broader energy transition 

perspective, the final stage of work included a review of key findings from a system-wide policy 

perspective. This analysis finds that the substantial complexity inherent in the system under 

investigation precludes simple solutions. Instead, efforts to achieve efficient integration of 

residential PV and battery energy storage will be contingent on a portfolio approach. This must 

include a variety of measures that address consumers’ non-financial motivations for self-sufficiency 

while concurrently incentivising the strategic management of home battery energy storage to 

achieve beneficial whole-of-system outcomes. Price-based signals that assign fair-value along the 

supply chain have substantial promise in this regard, along with efforts to remove barriers and 

increase the efficiency and competitiveness of the market.  

 

To be most successful however, this analysis suggests that industry and government may need to 

fundamentally rethink the form and function of the network if effective integration is to be 

achieved. This requires an explicit recognition of the changing role of the consumer and the 

influence of new technology. This could help encourage retention of grid-connected consumers and 

provide more avenues to leverage the most efficient use of existing network assets, while paving the 

way for new and innovative solutions in the future.   
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9.2 Limitations and suggestions for future research 

Despite the compelling nature of the findings presented in this thesis, there exist several limitations. 

Firstly, as Sterman (2002, p. 525) states: “all models are wrong…because a model is a 

simplification, an abstraction, a selection”. The model developed in this thesis is no different. Its 

design is restricted by imposed boundaries based on the scope and objectives of this study. It is also 

not possible to include all variables that exist in reality, nor the possibility of rapid or unforseen 

step-changes in technology. Instead, the model was designed to incorporate as many of the key 

elements identified by expert stakeholders during the participatory stage of research that could be 

practically included. There are a number of specific omissions in this regard that need to be 

identified, both as limitations inherent in the current study and as suggestions for areas of focus for 

future research.   

 

As previously stated, the wholesale energy price in the model is categorised primarily as an 

exogenous variable. While the extent to which residential PV and battery energy storage will have a 

material impact on the generation sector during the simulation period is unclear, the model would 

nonetheless benefit from the inclusion of a module that shows the interactions between the 

residential electricity and generation sectors. Because of the way in which the wholesale generation 

market is structured and operated in Queensland, this undertaking would entail modelling the 

operation of the NEM. This would be a highly data intensive undertaking, particularly as it would 

be ideally modelled in half-hourly time-steps requiring the inclusion of both financial and 

operational parameters. An interesting focus of future research would be to explore the extent to 

which existing bottom-up operational models of the NEM could be incorporated into a system 

dynamics model. This could possibly improve the depth and accuracy of the existing system 

dynamics model while providing an interesting contribution from a theoretical perspective. 

 

The way in which network effects stemming from PV and battery adoption are calculated in the 

model do not capture the spatially specific way in which networks actually make decisions when 

addressing peak demand. This could be improved by designing an additional sector in the model 

that would more accurately capture the required level of detail on a spatial scale. The application of 

agent-based modelling in conjunction with the broader system dynamics model could be a useful 

approach in this respect. Again, this would be an interesting area of future research from both a 

practical and theoretical perspective. In this case, the specific household characteristics of many 

different consumer segments could be created within the model and replicated within spatially-

defined areas based on different network characteristics. The level of network constraint, when it 
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occurs and the influence of the different consumer segments in response, could be simulated at a 

more detailed level and as such could more accurately value the contribution of residential PV and 

battery systems in this respect.  

 

The model also relies on only one electricity pricing structure, Tariff 11. This means the model does 

not consider the dynamics that could evolve in response to the many new electricity tariffs currently 

being developed and implemented. The design and inclusion of these dynamics in a detailed system 

dynamics model would represent a valuable area for future research, particularly as implementation 

of cost-reflective, dynamic pricing tariffs represent substantial potential in helping to integrate PV 

and batteries in an efficient way. In this respect, understanding the consumer response to new tariff 

structures and the likelihood of uptake will be particularly important. The presumed benefits of 

dynamic tariffs rest heavily on one critical assumption: that consumers will respond ‘rationally’ to 

price signals and shift their consumption accordingly (Stenner et al. 2015, p. 4). New research is 

urgently required that challenges this assumption, particularly as there have been no large-scale 

systemic studies examining the likelihood of Australian consumers accepting dynamic tariffs nor 

how they may respond to such tariffs (Stenner et al. 2015).  

 

Another limitation of this research involves its reliance on qualitative assumptions in some sectors 

of the model. As the battery market is still at such an early stage there is little empirical data. This 

means parameterisation in some cases has been based on, or extrapolated from limited datasets or 

qualitative studies. The inclusion of non-financial motivations in the model reflects one of the 

sectors most heavily dependent on assumptions. As previously stated, omitting variables that are 

known to influence system behaviour because of a lack of quantitative data is “equivalent to saying 

they have zero effect – probably the only value that is known to be wrong.” (Forrester 1961, p. 57). 

In recognising these limitations, it is essential that assumptions underpinning the model are visible, 

open to critical evaluation and can be modified to reflect the specific needs of any stakeholder that 

uses the model. For this reason, the entirety of the model, including assumptions and equations have 

been included in Appendix B. As the residential PV and battery market continues to develop, more 

rigorous and robust methodologies will be able to inform parameterisation and the model can be 

modified accordingly.  

9.3 Concluding remarks 

With the challenge to provide secure, equitable and environmentally sustainable energy to an ever-

growing global population, the worlds’ energy systems are experiencing a wave of transformative 
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change. The emergence of new demand-side technologies, and the rise of the active and engaged 

electricity consumer represent just one element of this transformation. As was amply demonstrated 

by the recent boom in residential PV installations, a failure by industry and government to 

understand the dynamics that underpin technology adoption not only hinders effective integration 

but can drive suboptimal outcomes along the entire supply chain. With the sector still struggling to 

respond to the challenges of PV, the emergence of battery energy storage and its potential to enter 

the residential market at scale, underscore both the imperative and urgency to better understand the 

dynamics that could underpin adoption so as to avoid the mistakes of the past.  

 

This thesis, and the research approach described throughout, has been drafted specifically in 

response to this imperative. It not only conceptualises the risks, and the opportunities, associated 

with the impending transition but provides a model to empirically demonstrate the underlying 

dynamics. Importantly, the design and development of the model has been informed by an extensive 

stakeholder interview process. This underpins its usefulness as a practical tool that can be used by 

policy makers and industry to simulate and test the outcomes of various scenarios to help 

understand how residential PV and battery energy storage may manifest within the context of the 

broader electricity sector transition. Moreover, the model’s structure and the assumptions 

underpinning them, are visible and open to scrutiny meaning the model lends itself to be modified, 

expanded and/or adapted to meet the needs of any client wishing to better understand and plan for 

the rise of residential PV and battery energy storage.  

 

With the results of research showing that the Queensland residential sector is primed for battery 

adoption, the imperative now is for government and industry to recognise and respond to the 

pervasive dynamics that are driving the transition. A key finding from this thesis demonstrates that 

these dynamics stem in part from the failure of the existing electricity sector to recognise and 

respond to the changing needs of the residential electricity consumer. Should these needs remain 

unmet, and consumers turn to grid-alternatives such as PV and battery energy storage, the 

probability of negative consequences along the supply chain increase dramatically. Instead, 

proactive measures that address existing systemic issues have the best chance of achieving optimal 

integration of the technology. This will require broad structural change in the industry - a paradigm 

shift - that recognises that for the first time, consumers have a viable cost-effective alternative to the 

existing centralised electricity supply system. For markets and governments, strategically meeting 

the needs of this emerging consumer-base will be essential in ensuring an efficient transition to a 

more sustainable, decentralised electricity supply system.  
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Appendix B Model design and assumptions 

 

The following section includes the full version of the system dynamic model described in Chapter 

7. Each of the major sectors of the model are included with a description of the sector, the key 

assumptions, a visual representation of the sector in Stella, and the actual equations directly 

transcribed from Stella. Figure 77 provides a simplified overview of the entire simulation model. 

Due to the highly interconnected nature of the model, linked variables between sectors are 

frequently represented using the ‘ghost’ icon represented as a . To avoid replication, the 

assumptions underpinning these variables are only described in the sector from which they 

originate.  

 

 

Figure 77 Overview of system dynamics model 
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1. Eligible dwellings sectors 

Key assumptions 

• Initial values: ‘all occupied dwellings’ = 1,625,827 and ‘detached dwellings’ = 1,154,403 (AER 

2015a; ABS 2016). 

• ‘dwelling growth’ (0.0013 per month). Average of ABS data with total dwelling increase in a 

medium scenario by 1.6% per year between 2011 and 2036 and AEMO forecast active 

residential NMI connections in Queensland to increase by 1.5% (ABS 2016; AEMO 2016b). 

• ‘eligible PV fraction’ (0.75). Reflects the fact that not all detached dwellings will be suitable for 

PV installations due to shading, council restrictions, aesthetic considerations, lack of interest 

and split-incentive issues for rental properties (AEMO 2013). 

 

Representation in Stella 

 

 

********** 

Eligible_dwellings: 

********** 

all_occupied_dwellings(t) = all_occupied_dwellings(t - dt) + (new_dwellings) * dt 

INIT all_occupied_dwellings = 1625827 

INFLOWS: 

new_dwellings = dwelling_growth*all_occupied_dwellings 

detached_dwellings(t) = detached_dwellings(t - dt) + (new_detached_dwellings) * dt 

INIT detached_dwellings = 1154403 

INFLOWS: 

new_detached_dwellings = detached_dwellings*dwelling_growth 

dwelling_growth = 0.0013 

dwellings_suitable_for_PV = eligible_PV_fraction*detached_dwellings 

eligible_prosumer_dwellings = IF dwellings_suitable_for_PV <= total_prosumer_dwellings THEN 0 ELSE 

dwellings_suitable_for_PV-total_prosumer_dwellings 

eligible_PV_fraction = 0.75 

non_prosumer_dwellings = all_occupied_dwellings-total_prosumer_dwellings 

total_prosumer_dwellings = all_PV_only_dwellings+all_battery_dwellings 
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2. PV adoption sectors 

 

2.1. PV adoption fraction 

This section includes each of the sectors that comprise the PV adoption fraction. This is a function 

of a non-financial and financial coefficient. 

 

Representation in Stella 

 

********** 

PV_install_rate: 

********** 

PV_adoption_fraction[PV_size, Loadprofile, Electricityconsumption] = PV_financial_coefficient*"PV_non-

financial_coefficient"[PV_size] 

 

 

2.2. PV financial motivations 

PV financial motivations is a function of three elements which are described separately below. 

 

Representation in Stella 

 

********** 

PV_financial_motivations: 

********** 

PV_financial_coefficient[PV_size, Loadprofile, Electricityconsumption] = adoption_rate_as_function_of_payback/12 

*PV_upfront_capital_effect *PV_adoption_adjustment_based_on_similar_payback 
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2.3. PV upfront capital effect 

Key assumptions 

• Consumers have an aversion to high upfront costs which can act as a barrier to adoption (Allen, 

Hammond & McManus 2008; Scarpa & Willis 2010; Dharshing 2017). 

• To reflect this assumption, this variable assumes that adoption rates will be restricted depending 

on the upfront cost of the system and is based on numbers of households in certain income 

brackets from ABS (2016). For example, 10% of Queensland households earn $3000 or more a 

week. Therefore, the model assumes that if the upfront cost of a system exceeds $15,000, then 

only 10% of households would adopt based on household income.  

• If payback periods are below 4 years, then the model assumes adoption will occur without any 

restriction. This is because once paybacks become short enough, the financial incentive will be 

high enough that most consumers will access finance.  

 

Representation in Stella 

 

********** 

PV_upfront_capital_effect_sector: 

********** 

PV_upfront_capital_effect[PV_size, Loadprofile, Electricityconsumption] = IF PV_payback_period < 4 THEN 1 ELSE 

Upfront_capital_factor[PV_size] 

Upfront_capital_factor[PV_size] = IF total_PV_cost[PV_size]>15000 THEN 0.1 ELSE IF 

total_PV_cost[PV_size]>10000 AND total_PV_cost[PV_size] <= 15000 THEN 0.6 ELSE IF 

total_PV_cost[PV_size]>7000 AND total_PV_cost[PV_size] <=10000 THEN 0.8 ELSE 1 
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2.4. PV payback period calculation 

Comprises two elements: total PV cost and PV annual savings described below.  

 

Representation in Stella 

 

********** 

PV_payback_period_calculation: 

********** 

PV_payback_period[PV_size, Loadprofile, Electricityconsumption] = (total_PV_cost[PV_size]/PV_annual_savings) 
 

 

2.5. PV total costs 

Key Assumptions 

• PV module cost – the initial 2006 value is $8.50/watt (Watt 2007). 

• PV module cost reduction rate - is an exogenous variable with past values calculated directly 

from historic module costs (Johnston & Egan 2016). From 2016, future forecast reduction rates 

are assumed at 1.5% per annum in real terms based on international and Australian studies 

(Galanis 2016). 

• BOS and installation costs – the initial 2006 value for BOS and installation costs is $4/watt 

(Watt 2007). BOS costs include inverter, wiring and racking.  

• BOS cost reduction rate - is an exogenous variable and, like PV module costs, is calculated 

directly from historical module costs with future forecast reduction rates assumed to be 1.5% 

based on cost reductions in inverters and mounts  (Galanis 2016; Johnston & Egan 2016). The 

cost of installation in Queensland is already considered one of the cheapest install rates globally 

and with substantial efficiencies already realised, continued learning rates are considered 

minimal (Barbose et al. 2013; CSIRO 2015b).  

• Rebates and subsidies – this variable includes rebates from the Photovoltaic Rebate Program 

worth up to $4000 (between 2006-2007) and the Solar Homes and Communities Plan worth up 

to $8000 (between 2007 – 2009) (Macintosh & Wilkinson 2010) . From July 2009, the 
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Commonwealth Solar Credit Scheme rebate is included, where small-scale technology 

certificates (STC) which are worth $35 (on average) and deemed for 15 years. This scheme 

involved a multiplier effect so that the value of STCs were multiplied by 5 times from July 2009 

to June 2011, 3 times from July 2011 to June 2012, 2 times from July 2012 to December 2012 

and returning to normal from January 2013. From 2017. The 15 year deeming period is reduced 

each year until it reaches 1 in 2030 (Department of the Environment 2017). 

 

Representation in Stella 

 

 

********** 

Total_installed_PV_system_costs: 

********** 

BOS_and_installation_cost_reduction_rate = GRAPH(TIME) 

(0.0, 0), (12.0, 0), (24.0, 0), (36.0, 0.0208), (48.0, 0.0055), (60.0, 0.038), (72.0, 0.0139), (84.0, -0.026), (96.0, 0.014), 

(108.0, 0.017), (120.0, 0.00125), (132.0, 0.00125), (144.0, 0.00125), (156.0, 0.00125), (168.0, 0.00125), (180.0, 

0.00125), (192.0, 0.00125), (204.0, 0.00125), (216.0, 0.00125), (228.0, 0.00125), (240.0, 0.00125), (252.0, 0.00125), 

(264.0, 0.00125), (276.0, 0.00125), (288.0, 0.00122), (300.0, 0.00125), (312.0, 0.00125), (324.0, 0.00125), (336.0, 

0.00125), (348.0, 0.00125), (360.0, 0.00125), (372.0, 0.00125) 

BOS_and_installation_costs(t) = BOS_and_installation_costs(t - dt) + ( - change_in_BOS_cost) * dt 

INIT BOS_and_installation_costs = 4 

OUTFLOWS: 

change_in_BOS_cost = IF BOS_and_installation_costs > minimum_BOS_andinstallation_cost THEN 

(BOS_and_installation_costs*BOS_and_installation_cost_reduction_rate) ELSE 0 

minimum_BOS_andinstallation_cost = 0.4 

minimum_PV_cost = 0.1 

PV_average_installed_cost_per_W = PV_module_cost+BOS_and_installation_costs 

PV_module_cost(t) = PV_module_cost(t - dt) + ( - change_in_PV_cost) * dt 

INIT PV_module_cost = 8.50 

OUTFLOWS: 

change_in_PV_cost = IF PV_module_cost > minimum_PV_cost THEN 

(PV_module_cost*PV_module_cost_reduction_rate) ELSE 0 

PV_module_cost_reduction_rate = GRAPH(TIME) 

(0.0, 0), (12.0, 0.0049), (24.0, 0), (36.0, 0.02), (48.0, 0.04), (60.0, 0.03), (72.0, 0.02), (84.0, 0.09), (96.0, -0.01), (108.0, 

0), (120.0, 0), (132.0, 0.0015), (144.0, 0.0015), (156.0, 0.0015), (168.0, 0.0015), (180.0, 0.0015), (192.0, 0.0015), 
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(204.0, 0.002), (216.0, 0.0015), (228.0, 0.0015), (240.0, 0.0015), (252.0, 0.0015), (264.0, 0.0015), (276.0, 0.0015), 

(288.0, 0.002), (300.0, 0.0015), (312.0, 0.0015), (324.0, 0.0015), (336.0, 0.0015), (348.0, 0.0015), (360.0, 0.0015), 

(372.0, 0.0015) 

rebates_and_subsidies[Less_than_2_kW] = IF TIME <= 12 THEN (4000) ELSE IF TIME > 12 AND TIME <= 42 

THEN (8000) ELSE IF TIME > 42 AND TIME <= 66 THEN (5*31*35) ELSE IF TIME > 66 AND TIME <= 78 

THEN (3*31*35) ELSE IF TIME > 78 AND TIME <= 84 THEN (2*31*35) ELSE IF TIME > 84 AND TIME <= 132 

THEN (31*35) ELSE IF TIME >132 AND TIME <=144 THEN (29*35) ELSE IF TIME > 144 AND TIME <=156 

THEN (26*35) ELSE IF TIME > 156 AND TIME <= 168 THEN (24*35) ELSE IF TIME >168 AND TIME <= 180 

THEN (22*35) ELSE IF TIME >180 AND TIME <= 192 THEN (20*35) ELSE IF TIME > 192 AND TIME <= 204 

THEN (18*35) ELSE IF TIME > 204 AND TIME <= 216 THEN (16*35) ELSE IF TIME > 216 AND TIME <= 228 

THEN (14*35) ELSE IF TIME > 228 AND TIME <= 240 THEN (12*35) ELSE IF TIME > 240 AND TIME <= 252 

THEN (10*35) ELSE IF TIME > 252 AND TIME <= 264 THEN (8*35) ELSE IF TIME > 264 AND TIME <= 276 

THEN (6*35) ELSE IF TIME > 276 AND TIME <= 288 THEN (4*35) ELSE IF TIME > 288 AND TIME <= 300 

THEN (2*35) ELSE 0 

rebates_and_subsidies[Between_2_and_4_kW] = IF TIME <= 12 THEN (4000) ELSE IF TIME > 12 AND TIME <= 

42 THEN (8000) ELSE IF TIME > 42 AND TIME <= 66 THEN (5*31*35+31*35) ELSE IF TIME > 66 AND TIME 

<= 78 THEN (3*31*35+31*35) ELSE IF TIME > 78 AND TIME <= 84 THEN (2*31*35+31*35) ELSE IF TIME > 84 

AND TIME <= 132 THEN (61*35) ELSE IF TIME >132 AND TIME <=144 THEN (58*35) ELSE IF TIME > 144 

AND TIME <=156 THEN (53*35) ELSE IF TIME > 156 AND TIME <= 168 THEN (49*35) ELSE IF TIME >168 

AND TIME <= 180 THEN (45*35) ELSE IF TIME >180 AND TIME <= 192 THEN (41*35) ELSE IF TIME > 192 

AND TIME <= 204 THEN (33*35) ELSE IF TIME > 204 AND TIME <= 216 THEN (28*35) ELSE IF TIME > 216 

AND TIME <= 228 THEN (25*35) ELSE IF TIME > 228 AND TIME <= 240 THEN (22*35) ELSE IF TIME > 240 

AND TIME <= 252 THEN (18*35) ELSE IF TIME > 252 AND TIME <= 264 THEN (16*35) ELSE IF TIME > 264 

AND TIME <= 276 THEN (12*35) ELSE IF TIME > 276 AND TIME <= 288 THEN (8*35) ELSE IF TIME > 288 

AND TIME <= 300 THEN (4*35) ELSE 0 

rebates_and_subsidies[Between_4_and_6kW] = IF TIME <= 12 THEN (4000) ELSE IF TIME > 12 AND TIME <= 42 

THEN (8000) ELSE IF TIME > 42 AND TIME <= 66 THEN (5*31*35+72*35) ELSE IF TIME > 66 AND TIME <= 

78 THEN (3*31*35+72*35) ELSE IF TIME > 78 AND TIME <= 84 THEN (2*31*35+ 72*35) ELSE IF TIME > 84 

AND TIME <= 132 THEN (103*35) ELSE IF TIME >132 AND TIME <=144 THEN (96*35) ELSE IF TIME > 144 

AND TIME <=156 THEN (89*35) ELSE IF TIME > 156 AND TIME <= 168 THEN (82*35) ELSE IF TIME >168 

AND TIME <= 180 THEN (75*35) ELSE IF TIME >180 AND TIME <= 192 THEN (46*35) ELSE IF TIME > 192 

AND TIME <= 204 THEN (37*35) ELSE IF TIME > 204 AND TIME <= 216 THEN (28*35) ELSE IF TIME > 216 

AND TIME <= 228 THEN (25*35) ELSE IF TIME > 228 AND TIME <= 240 THEN (22*35) ELSE IF TIME > 240 

AND TIME <= 252 THEN (18*35) ELSE IF TIME > 252 AND TIME <= 264 THEN (16*35) ELSE IF TIME > 264 

AND TIME <= 276 THEN (12*35) ELSE IF TIME > 276 AND TIME <= 288 THEN (8*35) ELSE IF TIME > 288 

AND TIME <= 300 THEN (6*35) ELSE 0 

rebates_and_subsidies[Between_8_and_10kW] = IF TIME <= 12 THEN (4000) ELSE IF TIME > 12 AND TIME <= 

42 THEN (8000) ELSE IF TIME > 42 AND TIME <= 66 THEN (5*31*35+176*35) ELSE IF TIME > 66 AND TIME 

<= 78 THEN (3*31*35+176*35) ELSE IF TIME > 78 AND TIME <= 84 THEN (2*31*35+176*35) ELSE IF TIME > 

84 AND TIME <= 132 THEN (207*35) ELSE IF TIME >132 AND TIME <=144 THEN (195*35) ELSE IF TIME > 

144 AND TIME <=156 THEN (181*35) ELSE IF TIME > 156 AND TIME <= 168 THEN (167*35) ELSE IF TIME 

>168 AND TIME <= 180 THEN (153*35) ELSE IF TIME >180 AND TIME <= 192 THEN (139*35) ELSE IF TIME 

> 192 AND TIME <= 204 THEN (125*35) ELSE IF TIME > 204 AND TIME <= 216 THEN (111*35) ELSE IF TIME 

> 216 AND TIME <= 228 THEN (97*35) ELSE IF TIME > 228 AND TIME <= 240 THEN (83*35) ELSE IF TIME > 

240 AND TIME <= 252 THEN (69*35) ELSE IF TIME > 252 AND TIME <= 264 THEN (55*35) ELSE IF TIME > 

264 AND TIME <= 276 THEN (41*35) ELSE IF TIME > 276 AND TIME <= 288 THEN (27*35) ELSE IF TIME > 

288 AND TIME <= 300 THEN (13*35) ELSE 0 

total_PV_cost[Less_than_2_kW] = (unsubsidised_installed_system_cost[Less_than_2_kW]-

rebates_and_subsidies[Less_than_2_kW]) 

total_PV_cost[Between_2_and_4_kW] = (unsubsidised_installed_system_cost[Between_2_and_4_kW] - 

rebates_and_subsidies[Between_2_and_4_kW]) 

total_PV_cost[Between_4_and_6kW] = (unsubsidised_installed_system_cost[Between_4_and_6kW] - 

rebates_and_subsidies[Between_4_and_6kW]) 

total_PV_cost[Between_8_and_10kW] = (unsubsidised_installed_system_cost[Between_8_and_10kW] - 

rebates_and_subsidies[Between_8_and_10kW]) 

unsubsidised_installed_system_cost[Less_than_2_kW] = IF TIME <= 96 THEN 

PV_average_installed_cost_per_W*1000*1.5 ELSE IF TIME > 96 THEN 

PV_average_installed_cost_per_W*1000*1.5*1.2 ELSE 0 

unsubsidised_installed_system_cost[Between_2_and_4_kW] = PV_average_installed_cost_per_W*1000*0.95*3 

unsubsidised_installed_system_cost[Between_4_and_6kW] = PV_average_installed_cost_per_W*1000*0.81*5 

unsubsidised_installed_system_cost[Between_8_and_10kW] = PV_average_installed_cost_per_W*1000*0.9*10 
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2.6. PV ongoing annual savings 

Key assumptions 

• The model assumes that electricity generated by PV meets the daily daytime electricity 

demand first with any excess exported back to the grid.  

• Ongoing savings in this respect includes the avoided cost of grid sourced electricity (i.e. the 

amount of electricity used in home due to PV multiplied by the current retail rate) plus the 

value of any excess PV electricity that is exported to the grid.  

• Four PV system size categories were included in the model that reflect common capacities 

installed in the market i.e. less than 2kW; 2-4kW; 4-6kW; and 8-10kW. The generation 

potentials of these system categories are calculated based on specific system capacities, 

assumed to be 1.5kW, 3kW, 5kW and 10kW for each size category respectively, multiplied 

by solar insolation based on average of population centres in SEQ (5.42 kWh/m2/day) and 

regional Qld (6.03 kWh/m2/day).  Solar insolation data was sourced from the National 

Renewable Energy Laboratory (2016).  

• PV degradation is average over the system life based on Jordan and Kurtz (2013). 

• Medium daily electricity demand (21kWh) for 2006 is based on Simshauser (2016). Low 

(11kWh) and high (30kWh) values are extrapolated.   

• Energy efficiency improvements is a graphical function that reflects energy efficiency 

savings not as a result of PV. Assumes approximately 1% reduction per annum from 2010 

based on (Acil Allen Consulting 2015; AEMO 2016b). 

• ‘Prop of electricity demand during daying light hours’ is calculated based on load profiles 

extrapolated from (Frontier Economics 2012; Simshauser & Downer 2014; Simshauser 

2016) and is based on how many kWh are used between 8am and 6pm.   

• ‘Peak demand improvements’ has no value associated as part of this study however it is 

included in the model for use by stakeholders. This is relevant if future demand management 

incentives are introduced, or future tariff reform results in peak demand improvements for 

non-prosumer dwellings which will change when household energy is used and/or reduce 

electricity prices, which then influences viability of PV and batteries.  

• In Queensland from mid-2008 until mid-2012, consumers could access a premium FiT 

worth 44c/kWh scheduled to run until 2028. Post mid-2012, new PV consumers can access 

a voluntary retail FiT. As there is some variation in the FiT depending on the individual 

retailer, it has been averaged out across all Queensland electricity retailers and is assumed to 

be worth 7c/kWh (QCA 2016b). 
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Representation in Stella 

 

 

 
********** 

PV_ongoing_annual_saving: 

********** 

annual_PV_power_consumed[PV_size, Loadprofile, Electricityconsumption] = daily_PV_power_consumed*365 

annual_PV_power_exported[PV_size, Loadprofile, Electricityconsumption] = annual_PV_power_generated[PV_size]-

annual_PV_power_consumed 

annual_PV_power_generated[PV_size] = daily_PV_generation_by_size[PV_size]*365 

array_size[Less_than_2_kW] = 1.5 

array_size[Between_2_and_4_kW] = 3 

array_size[Between_4_and_6kW] = 5 

array_size[Between_8_and_10kW] = 10 

average_annual_electricity_demand_non_prosumer_dwellings[Electricityconsumption] = 

daily_electricity_demand*365 

daily_daytime_electricity_demand[Loadprofile, Electricityconsumption] = 

daily_electricity_demand[Electricityconsumption]*prop_electricity_demand_during_daylight_hours[Loadprofile] 

daily_electricity_demand[low_consumption] = 11*energy_efficiency_improvements[low_consumption] 

daily_electricity_demand[medium_consumption] = 21*energy_efficiency_improvements[medium_consumption] 

daily_electricity_demand[high_consumption] = 30*energy_efficiency_improvements[high_consumption] 

daily_PV_generation[PV_size, Location] = 

solar_insolation[Location]*array_size[PV_size]*degradation_averaged_over_life 

daily_PV_generation_by_size[PV_size] = MEAN(daily_PV_generation [PV_size, *]) 
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daily_PV_power_consumed[PV_size, Loadprofile, Electricityconsumption] = IF 

daily_PV_generation_by_size[PV_size]<=daily_daytime_electricity_demand[Loadprofile, Electricityconsumption] 

THEN daily_PV_generation_by_size[PV_size] ELSE IF daily_PV_generation_by_size[PV_size] 

>daily_daytime_electricity_demand[Loadprofile, Electricityconsumption] THEN 

daily_daytime_electricity_demand[Loadprofile, Electricityconsumption] ELSE 0 

daily_PV_power_exported[PV_size, Loadprofile, Electricityconsumption] = daily_PV_generation_by_size[PV_size]-

daily_PV_power_consumed 

degradation_averaged_over_life = 0.9 

energy_efficiency_improvements[Electricityconsumption] = GRAPH(TIME) 

(0.0, 1.000), (12.0, 1.000), (24.0, 1.000), (36.0, 1.000), (48.0, 1.000), (60.0, 1.000), (72.0, 0.9801), (84.0, 0.970299), 

(96.0, 0.96059601), (108.0, 0.95099005), (120.0, 0.941480149), (132.0, 0.932065348), (144.0, 0.922744694), (156.0, 

0.913517247), (168.0, 0.904382075), (180.0, 0.895338254), (192.0, 0.886384872), (204.0, 0.877521023), (216.0, 

0.868745813), (228.0, 0.860058355), (240.0, 0.851457771), (252.0, 0.842943193), (264.0, 0.834513761), (276.0, 

0.826168624), (288.0, 0.817906938), (300.0, 0.809727868), (312.0, 0.80163059), (324.0, 0.793614284), (336.0, 

0.785678141), (348.0, 0.777821359), (360.0, 0.770043146), (372.0, 0.760) 

FiT = IF TIME <30 THEN (0.06) ELSE IF TIME>30 AND TIME <78 THEN (0.44) ELSE IF TIME >=78 AND TIME 

< 102 THEN (0.08) ELSE (0.07) 

peak_demand_improvements = GRAPH(TIME) 

(0.0, 1.000), (12.0, 1.000), (24.0, 1.000), (36.0, 1.000), (48.0, 1.000), (60.0, 1.000), (72.0, 1.000), (84.0, 1.000), (96.0,  

1.000), (108.0, 1.000), (120.0, 1.000), (132.0, 1.000), (144.0, 1.000), (156.0, 1.000), (168.0, 1.000), (180.0, 1.000), 

(192.0, 1.000), (204.0, 1.000), (216.0, 1.000), (228.0, 1.000), (240.0, 1.000), (252.0, 1.000), (264.0, 1.000), (276.0, 

1.000), (288.0, 1.000), (300.0, 1.000), (312.0, 1.000), (324.0, 1.000), (336.0, 1.000), (348.0, 1.000), (360.0, 1.000), 

(372.0, 1.000) 

prop_electricity_demand_during_daylight_hours[Low_daytime_use] = 0.3*peak_demand_improvements 

prop_electricity_demand_during_daylight_hours[Medium_daytime_use] = 0.5*peak_demand_improvements 

prop_electricity_demand_during_daylight_hours[High_daytime_use] = 0.6 

PV_annual_savings[PV_size, Loadprofile, Electricityconsumption] = 

(value_of_PV_exports+value_of_avoided_electricity_costs) 

PV_house_annual_grid_demand[PV_size, Loadprofile, Electricityconsumption] = 

average_annual_electricity_demand_non_prosumer_dwellings[Electricityconsumption]-annual_PV_power_consumed 

PV_house_daily_grid_demand[PV_size, Loadprofile, Electricityconsumption] = 

daily_electricity_demand[Electricityconsumption]-daily_PV_power_consumed 

solar_insolation[SEQ] = 5.42 

solar_insolation[Regional] = 6.03 

value_of_avoided_electricity_costs[PV_size, Loadprofile, Electricityconsumption] = 

annual_PV_power_consumed*variable_retail_tariff_including_gst 

value_of_PV_exports[PV_size, Loadprofile, Electricityconsumption] = annual_PV_power_exported*FiT 

 

 

2.7. PV adoption adjustment based on similar payback 

Note this sector is described in the bundled battery adoptions sectors. It is simply a function that 

reflects the fact that if a PV system has a similar payback period as a PV and battery system, most 

consumers will install the PV and battery system. 

 

2.8. PV adoption rate as function of payback 

Key assumptions 

• To model the relationship between the payback period and the adoption fraction, a curve is used 

which displays adoption as a function of payback based on historical growth rates.  

• This graph was developed to model PV growth for the Clean Energy Council in 2012 and has 

since been used and adapted by AEMO for national forecasting (IES 2012; AEMO 2013).  
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• The payback function graph represents a relationship based on the average payback across all 

system types for the entire population (IES 2012).  

• As the model incorporates numerous system configurations, this sector calculates the individual 

contributions of each system to the adoption rate.  

• It assumes the biggest contribution to the average adoption rate is from the system with the 

shortest payback period. It also assumes that a system that takes twice as long to payback would 

be adopted at half the rate of the system with the shortest payback.  

• This means the relationship between the shortest payback and the actual payback of the system 

in question is used to determine its relative contribution of the total adoption rate, which in turn 

is used to generate the actual adoption rate for that system configuration type.  

 

Representations in Stella 

 

 

********** 

PV_adoption_rate_as_function_of_payback_calculation: 

********** 

adoption_rate_as_function_of_payback[PV_size, Loadprofile, Electricityconsumption] = 

adoption_rate_fraction*best_adoption_rate 

adoption_rate_fraction[PV_size, Loadprofile, Electricityconsumption] = best_payback/PV_payback_period 

best_adoption_rate = PV_uptake_as_function_of_payback/sum_of_adoption_rate_fraction 

best_payback = MIN(PV_payback_period) 

PV_denominator[PV_size, Loadprofile, Electricityconsumption] = IF (PV_payback_period) <25 THEN 1 ELSE 0 

PV_mean_payback = IF SAFEDIV (sum_numerator, sum_denominator) =0 THEN 25 ELSE SAFEDIV 

(sum_numerator, sum_denominator) 

PV_numerator[PV_size, Loadprofile, Electricityconsumption] = IF PV_payback_period<25 THEN 

PV_payback_period ELSE 0 

PV_uptake_as_function_of_payback = GRAPH(PV_mean_payback) 
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(0.00, 0.0950), (1.04166666667, 0.0920), (2.08333333333, 0.0890), (3.125, 0.0860), (4.16666666667, 0.08128), 

(5.20833333333, 0.07671), (6.25, 0.07078), (7.29166666667, 0.0600), (8.33333333333, 0.0500), (9.375, 0.0400), 

(10.4166666667, 0.0300), (11.4583333333, 0.0200), (12.50, 0.0100), (13.5416666667, 0.0092), (14.5833333333, 

0.0083), (15.625, 0.0075), (16.6666666667, 0.0067), (17.7083333333, 0.0058), (18.75, 0.0050), (19.7916666667, 

0.0042), (20.8333333333, 0.0033), (21.875, 0.0025), (22.9166666667, 0.0017), (23.9583333333, 0.0008), (25.00, 

0.0000) 

sum_denominator = SUM(PV_denominator) 

sum_numerator = SUM(PV_numerator) 

sum_of_adoption_rate_fraction = SUM(adoption_rate_fraction) 

 

2.9. PV non-financial motivations 

Key assumptions 

• The variable ‘PV adoption rate as a function of payback’ described above is based on financial 

factors. Most consumers however consider a range of other non-financial factors when choosing 

to install a system and may install a system, even if the payback period is long, or choose not to 

install even if the payback is short (CSIRO 2009).  

• The variable ‘roof size’ recognises that even with attractive payback periods, some dwellings 

will be constrained by the size of their roof. As data does not exist on the distribution of size of 

household roofs in Queensland, the following assumptions, informed by Galanis (2016), are 

made. It is assumed all eligible dwellings will be able to install a system less than 2kW, 95% of 

homes could install a 2-4kW system, 90% of homes could install a 5kW system and only 50% 

of eligible homes could install a 8-10kW system. 

• The ‘self sufficiency drivers’ variable is a graphical function that acts as a multiplier based on 

the assumption that as PV modules become cheaper, consumers are opting for larger systems, 

even when small systems are cheaper or have better payback periods (Gill 2016).    

• ‘subsidy rush effect’ refers to the rush that occurs at the start and end of subsidy schemes where 

consumers move forward a decision to purchase a system (IES 2012; Hughes & Podolefsky 

2015). For PV, this impact was substantial, particularly for smaller systems which were the 

beneficiary of the most generous subsidies. A graphical function was created, representing a 

multiplier based on assumptions from historical data sourced from APVI (2017c). 

• ‘electricity price effect’ is based on studies that suggest that consumers will install PV to avoid 

possible future perceived electricity price increases (CSIRO 2009; Agnew & Dargusch 2017) . 

It is a simple index based multiplier that with every doubling of electricity prices, PV adoption 

increases by 10%. 
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********** 

"PV_non-financial_motivation": 

********** 

electricity_price_effect = MEAN(electricity_price_increase_effect) 

electricity_price_increase_effect[Electricityconsumption] = GRAPH(household_electricity_bill_index) 

(0.000, 1.0000), (0.250, 1.0000), (0.500, 1.0000), (0.750, 1.0000), (1.000, 1.0000), (1.250, 1.0250), (1.500, 1.0500), 

(1.750, 1.0750), (2.000, 1.1000), (2.250, 1.1250), (2.500, 1.1500), (2.750, 1.1750), (3.000, 1.2000), (3.250, 1.2250), 

(3.500, 1.2500), (3.750, 1.2750), (4.000, 1.3000) 

"PV_non-financial_coefficient"[PV_size] = 

subsidy_rush_effect*electricity_price_effect*self_sufficiency_drivers*roof_size 

roof_size[Less_than_2_kW] = 1 

roof_size[Between_2_and_4_kW] = 0.95 

roof_size[Between_4_and_6kW] = 0.9 

roof_size[Between_8_and_10kW] = 0.5 

self_sufficiency_drivers[Less_than_2_kW] = GRAPH(TIME) 

(0.0, 1.000), (12.0, 1.000), (24.0, 1.000), (36.0, 1.000), (48.0, 1.000), (60.0, 1.000), (72.0, 1.000), (84.0, 1.000), (96.0,  

1.000), (108.0, 0.700), (120.0, 0.550), (132.0, 0.400), (144.0, 0.200), (156.0, 0.100), (168.0, 0.100), (180.0, 0.100), 

(192.0, 0.100), (204.0, 0.100), (216.0, 0.100), (228.0, 0.100), (240.0, 0.100), (252.0, 0.100), (264.0, 0.100), (276.0, 

0.100), (288.0, 0.100), (300.0, 0.100), (312.0, 0.100), (324.0, 0.100), (336.0, 0.100), (348.0, 0.100), (360.0, 0.100), 

(372.0, 0.100) 

self_sufficiency_drivers[Between_2_and_4_kW] = GRAPH(TIME) 

(0.0, 1.000), (12.0, 1.000), (24.0, 1.000), (36.0, 1.000), (48.0, 1.000), (60.0, 1.000), (72.0, 1.000), (84.0, 1.000) , (96.0, 

1.000), (108.0, 1.000), (120.0, 1.000), (132.0, 1.000), (144.0, 1.000), (156.0, 1.000), (168.0, 1.000), (180.0, 1.000), 

(192.0, 1.000), (204.0, 1.000), (216.0, 1.000), (228.0, 1.000), (240.0, 1.000), (252.0, 1.000), (264.0, 1.000), (276.0, 

1.000), (288.0, 1.000), (300.0, 1.000), (312.0, 1.000), (324.0, 1.000), (336.0, 1.000), (348.0, 1.000), (360.0, 1.000), 

(372.0, 1.000) 

self_sufficiency_drivers[Between_4_and_6kW] = GRAPH(TIME) 

(0.0, 1.000), (12.0, 1.000), (24.0, 1.000), (36.0, 1.000), (48.0, 1.000), (60.0, 1.000), (72.0, 1.000), (84.0, 1.200), (96.0, 

1.400), (108.0, 1.500), (120.0, 1.600), (132.0, 1.700), (144.0, 1.800), (156.0, 1.900), (168.0, 2.000), (180.0, 2.000), 

(192.0, 2.000), (204.0, 2.000), (216.0, 2.000), (228.0, 2.000), (240.0, 2.000), (252.0, 2.000), (264.0, 2.000), (276.0, 

2.000), (288.0, 2.000), (300.0, 2.000), (312.0, 2.000), (324.0, 2.000), (336.0, 2.000), (348.0, 2.000), (360.0, 2.000), 

(372.0, 2.000) 

self_sufficiency_drivers[Between_8_and_10kW] = GRAPH(TIME) 

(0.0, 1.000), (12.0, 1.000), (24.0, 1.000), (36.0, 1.000), (48.0, 1.000), (60.0, 1.000), (72.0, 1.000), (84.0, 1.200), (96.0, 

1.400), (108.0, 1.500), (120.0, 1.600), (132.0, 1.700), (144.0, 1.800), (156.0, 1.900), (168.0, 2.000), (180.0, 2.000), 

(192.0, 2.000), (204.0, 2.000), (216.0, 2.000), (228.0, 2.000), (240.0, 2.000), (252.0, 2.000), (264.0, 2.000), (276.0, 

2.000), (288.0, 2.000), (300.0, 2.000), (312.0, 2.000), (324.0, 2.000), (336.0, 2.000), (348.0, 2.000), (360.0, 2.000), 

(372.0, 2.000) 

subsidy_rush_effect[Less_than_2_kW] = GRAPH(TIME) 

(0.0, 1.00), (6.0, 1.00), (12.0, 1.00), (18.0, 1.00), (24.0, 1.00), (30.0, 1.00), (36.0, 1.00), (42.0, 1.00), (48.0, 3.00), (54.0, 

3.00), (60.0, 5.00), (66.0, 5.00), (72.0, 5.00), (78.0, 5.00), (84.0, 1.00), (90.0, 1.00), (96.0, 1.00), (102.0, 1.00), (108.0, 

1.00), (114.0, 1.00), (120.0, 1.00), (126.0, 1.00), (132.0, 1.00), (138.0, 1.00), (144.0, 1.00), (150.0, 1.00), (156.0, 1.00) , 

(162.0, 1.00), (168.0, 1.00), (174.0, 1.00), (180.0, 1.00), (186.0, 1.00), (192.0, 1.00), (198.0, 1.00), (204.0, 1.00), (210.0, 

1.00), (216.0, 1.00), (222.0, 1.00), (228.0, 1.00), (234.0, 1.00), (240.0, 1.00), (246.0, 1.00), (252.0, 1.00), (258.0, 1.00) , 

(264.0, 1.00), (270.0, 1.00), (276.0, 1.00), (282.0, 1.00), (288.0, 1.00), (294.0, 1.00), (300.0, 1.00), (306.0, 1.00), (312.0, 

1.00), (318.0, 1.00), (324.0, 1.00), (330.0, 1.00), (336.0, 1.00), (342.0, 1.00), (348.0, 1.00), (354.0, 1.00), (360.0, 1.00) , 

(366.0, 1.00), (372.0, 1.00) 
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subsidy_rush_effect[Between_2_and_4_kW] = GRAPH(TIME) 

(0.0, 1.00), (6.0, 1.00), (12.0, 1.00), (18.0, 1.00), (24.0, 1.00), (30.0, 1.00), (36.0, 1.00), (42.0, 1.00), (48.0, 1.00), (54.0, 

1.00), (60.0, 1.00), (66.0, 3.00), (72.0, 5.00), (78.0, 5.00), (84.0, 5.00), (90.0, 1.00), (96.0, 1.00), (102.0, 1.00), (108.0, 

1.00), (114.0, 1.00), (120.0, 1.00), (126.0, 1.00), (132.0, 1.00), (138.0, 1.00), (144.0, 1.00), (150.0, 1.00), (156.0, 1.00), 

(162.0, 1.00), (168.0, 1.00), (174.0, 1.00), (180.0, 1.00), (186.0, 1.00), (192.0, 1.00), (198.0, 1.00), (204.0, 1.00), (210.0, 

1.00), (216.0, 1.00), (222.0, 1.00), (228.0, 1.00), (234.0, 1.00), (240.0, 1.00), (246.0, 1.00), (252.0, 1.00), (258.0, 1.00), 

(264.0, 1.00), (270.0, 1.00), (276.0, 1.00), (282.0, 1.00), (288.0, 1.00), (294.0, 1.00), (300.0, 1.00), (306.0, 1.00), (312.0, 

1.00), (318.0, 1.00), (324.0, 1.00), (330.0, 1.00), (336.0, 1.00), (342.0, 1.00), (348.0, 1.00), (354.0, 1.00), (360.0, 1.00), 

(366.0, 1.00), (372.0, 1.00) 

subsidy_rush_effect[Between_4_and_6kW] = GRAPH(TIME) 

(0.0, 1.00), (6.0, 1.00), (12.0, 1.00), (18.0, 1.00), (24.0, 1.00), (30.0, 1.00), (36.0, 1.00), (42.0, 1.00), (48.0, 1.00), (54.0, 

1.00), (60.0, 1.00), (66.0, 1.00), (72.0, 1.00), (78.0, 3.00), (84.0, 3.00), (90.0, 1.00), (96.0, 1.00), (102.0, 1.00), (108.0, 

1.00), (114.0, 1.00), (120.0, 1.00), (126.0, 1.00), (132.0, 1.00), (138.0, 1.00), (144.0, 1.00), (150.0, 1.00), (156.0, 1.00), 

(162.0, 1.00), (168.0, 1.00), (174.0, 1.00), (180.0, 1.00), (186.0, 1.00), (192.0, 1.00), (198.0, 1.00), (204.0, 1.00), (210.0, 

1.00), (216.0, 1.00), (222.0, 1.00), (228.0, 1.00), (234.0, 1.00), (240.0, 1.00), (246.0, 1.00), (252.0, 1.00), (258.0, 1.00), 

(264.0, 1.00), (270.0, 1.00), (276.0, 1.00), (282.0, 1.00), (288.0, 1.00), (294.0, 1.00), (300.0, 1.00), (306.0, 1.00), (312.0, 

1.00), (318.0, 1.00), (324.0, 1.00), (330.0, 1.00), (336.0, 1.00), (342.0, 1.00), (348.0, 1.00), (354.0, 1.00), (360.0, 1.00), 

(366.0, 1.00), (372.0, 1.00) 

subsidy_rush_effect[Between_8_and_10kW] = GRAPH(TIME) 

(0.0, 1.00), (6.0, 1.00), (12.0, 1.00), (18.0, 1.00), (24.0, 1.00), (30.0, 1.00), (36.0, 1.00), (42.0, 1.00), (48.0, 1.00), (54.0, 

1.00), (60.0, 1.00), (66.0, 1.00), (72.0, 1.00), (78.0, 2.00), (84.0, 1.00), (90.0, 1.00), (96.0, 1.00), (102.0, 1.00), (108.0, 

1.00), (114.0, 1.00), (120.0, 1.00), (126.0, 1.00), (132.0, 1.00), (138.0, 1.00), (144.0, 1.00), (150.0, 1.00), (156.0, 1.00), 

(162.0, 1.00), (168.0, 1.00), (174.0, 1.00), (180.0, 1.00), (186.0, 1.00), (192.0, 1.00), (198.0, 1.00), (204.0, 1.00), (210.0, 

1.00), (216.0, 1.00), (222.0, 1.00), (228.0, 1.00), (234.0, 1.00), (240.0, 1.00), (246.0, 1.00), (252.0, 1.00), (258.0, 1.00), 

(264.0, 1.00), (270.0, 1.00), (276.0, 1.00), (282.0, 1.00), (288.0, 1.00), (294.0, 1.00), (300.0, 1.00), (306.0, 1.00), (312.0, 

1.00), (318.0, 1.00), (324.0, 1.00), (330.0, 1.00), (336.0, 1.00), (342.0, 1.00), (348.0, 1.00), (354.0, 1.00), (360.0 , 1.00), 

(366.0, 1.00), (372.0, 1.00) 
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3. Retrofit battery adoption sectors 

 

3.1. Battery retrofit adoption fraction 

This section includes each of the sectors that comprise the battery retrofit adoption fraction. This is 

a function of a non-financial and financial coefficient. 

 

Representations in Stella 

 

 

********** 

retro_battery_install_rate: 

********** 

battery_retrofit_adoption_fraction[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

retro_battery_financial_coefficient *battery_non_financial_coefficient[Electricityconsumption, Battery_size] 

 

 

3.2. Retrofit battery financial motivations 

This is a function of two elements which are described separately below.  

 

 

 

********** 

retrofit_financial_motivations: 

********** 

retro_battery_financial_coefficient[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

retro_battery_upfront_capital_effect*retro_adoption_rate_as_function_of_payback/12 
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3.3. Retro upfront capital effect 

The assumptions underpinning the upfront capital effect for batteries is the same as that described 

above for PV systems 

 

Representation in Stella 

 

********** 

retro_upfront_capital_effect_sector: 

********** 

retro_battery_upfront_capital_effect[PV_size, Loadprofile, Electricityconsumption, Battery_size] = IF  

actual_retrofit_battery_payback_period < 4  THEN   1  ELSE  retro_battery_upfront_capital_factor[Battery_size] 

retro_battery_upfront_capital_factor[Battery_size] = IF total_installed_battery_cost >15000   THEN 0.1  ELSE IF  

total_installed_battery_cost >10000 AND total_installed_battery_cost <= 15000  THEN  0.6  ELSE  IF  

total_installed_battery_cost>7000  AND total_installed_battery_cost <=10000  THEN  0.8  ELSE  1 

 

3.4. Retrofit battery payback period 

Comprises two elements: total installed battery cost and retrofit battery annual savings which are 

described below.  

 

Representation in Stella 

 

********** 

retrofit_battery_payback_period: 

********** 

actual_retrofit_battery_payback_period[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

SAFEDIV(total_installed_battery_cost[Battery_size],  retrofit_battery_annual_savings) 
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3.5. Total installed battery costs 

Key assumptions 

• Battery pack cost per kWh – the initial value for 2006 is $1700/kWh based on data extrapolated 

from historic battery prices (Nykvist & Nilsson 2015). 

• Battery cost reduction rate – historic battery cost reduction rates gradually increase from 2011 

where they spike with the release of the Powerwall in 2015 and the Powerwall 2 in 2016 (RMI 

2015b; Tesla 2016). From 2017, annual reductions are assumed to reduce by 10% per annum 

until 2021 i.e. a total 50% reduction in 5 years which is well covered in literature (IEA 2012; 

EPRI 2014; Pistoia 2014). From 2022, more modest annual reductions of 5% per annum are 

used reflecting the position of batteries on the technology development curve. 

• Battery install and soft costs – initial values for 2006 install costs are informed by Galanis 

(2016) and estimated at $600 (5kWh), $800 (15kWh) and $1500 (30kWh). 

• Installation learning rate – the values for installation learning rates are informed by diffusion 

dynamics which assumes that in the early stages of battery diffusion, installation and soft costs 

reduce by a larger amount (i.e. 10% per annum). As battery uptake achieves 50% market 

penetration this then reduces to 5% annum until a minimum battery install cost is reached.  

• Battery BOS cost - the estimated initial values in 2006 for BOS costs, which include inverter 

and battery management systems, are informed by Galanis (2016) and assumed to be $1200/kw. 

• Battery BOS cost reduction rate – is assumed to be 3% per annum, double the rate used for PV 

BOS reduction rates, reflecting the opportunity for cost savings in emerging battery hybrid 

inverter technology.  

• Battery rebates and subsidies – as there are no subsidies for batteries in Queensland at present 

none are included in the base-case simulation. Subsidies are introduced as part of scenario 

analysis.   

• Note the variable ‘financial value to mitigate blackouts’ is based on research undertaken by 

AEMO to determine the cost of blackouts to residential consumers. This variable is an extension 

of the non-financial motivaton section and is described in detail in the relevant section below. 
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Representation in Stella 

 

 

********** 

Total_installed_battery_costs: 

********** 

battery_average_installed_cost_per_kWh = MEAN(total_installed_cost_per_kWh) 

battery_BOS_cost(t) = battery_BOS_cost(t - dt) + ( - change_in_battery_BOS_cost) * dt 

    INIT battery_BOS_cost = 1200 

    OUTFLOWS: 

        change_in_battery_BOS_cost = IF battery_BOS_cost > minimum_battery_BOS_cost THEN 

(battery_BOS_cost*battery_BOS_cost_reduction_rate) ELSE 0 

battery_BOS_cost_per_size[five_kWh] = battery_BOS_cost*5 

battery_BOS_cost_per_size[fifteen_kWh] = battery_BOS_cost*5 

battery_BOS_cost_per_size[thirty_kWh] = battery_BOS_cost*10 

battery_BOS_cost_reduction_rate = 0.003 

battery_cost_reduction_rate = GRAPH(TIME) 

(0.0, 0), (12.0, 0), (24.0, 0), (36.0, 0), (48.0, 0), (60.0, 0.004), (72.0, 0.004), (84.0, 0.008), (96.0, 0.008), (108.0, 0.03), 

(120.0, 0.03), (132.0, 0.008), (144.0, 0.008), (156.0, 0.008), (168.0, 0.008), (180.0, 0.008), (192.0, 0.008), (204.0, 

0.004), (216.0, 0.004), (228.0, 0.004), (240.0, 0.004), (252.0, 0.004), (264.0, 0.004), (276.0, 0.004),  (288.0, 0.004), 

(300.0, 0.004), (312.0, 0.004), (324.0, 0.004), (336.0, 0.004), (348.0, 0.004), (360.0, 0.004), (372.0, 0.004) 

battery_install_and_soft_costs[five_kWh](t) = battery_install_and_soft_costs[five_kWh](t - dt) + ( - 

change_in_battery_install_cost_rate[five_kWh]) * dt 

    INIT battery_install_and_soft_costs[five_kWh] = 600 

battery_install_and_soft_costs[fifteen_kWh](t) = battery_install_and_soft_costs[fifteen_kWh](t - dt) + ( - 

change_in_battery_install_cost_rate[fifteen_kWh]) * dt 

    INIT battery_install_and_soft_costs[fifteen_kWh] = 800 

battery_install_and_soft_costs[thirty_kWh](t) = battery_install_and_soft_costs[thirty_kWh](t - dt) + ( - 

change_in_battery_install_cost_rate[thirty_kWh]) * dt 

    INIT battery_install_and_soft_costs[thirty_kWh] = 1500 

    OUTFLOWS: 
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        change_in_battery_install_cost_rate[Battery_size] = IF  battery_install_and_soft_costs > 

minimum_battery_install_cost   THEN   (installation_learning_rate*battery_install_and_soft_costs)   ELSE 0 

battery_pack_cost_per_kWh(t) = battery_pack_cost_per_kWh(t - dt) + ( - change_in_battery_cost) * dt 

    INIT battery_pack_cost_per_kWh = 1700 

    OUTFLOWS: 

        change_in_battery_cost = IF battery_pack_cost_per_kWh > minimum_battery_cost THEN 

(battery_pack_cost_per_kWh*battery_cost_reduction_rate) ELSE 0 

battery_pack_cost_per_size[five_kWh] = battery_pack_cost_per_kWh*5 

battery_pack_cost_per_size[fifteen_kWh] = battery_pack_cost_per_kWh*14 

battery_pack_cost_per_size[thirty_kWh] = battery_pack_cost_per_kWh*30 

battery_rebates_and_subsidies[Battery_size] = 0 

installation_learning_rate = IF  TIME < 108  THEN  0  ELSE IF   TIME >=108 AND  

battery_market_uptake_as_proportion_of_eligible_dwellings < 0.005  THEN  0.004  ELSE IF   

battery_market_uptake_as_proportion_of_eligible_dwellings >=0.005 AND 

battery_market_uptake_as_proportion_of_eligible_dwellings < 0.5  THEN   0.008  ELSE   0.004 

minimum_battery_BOS_cost = 100 

minimum_battery_cost = 100 

minimum_battery_install_cost[five_kWh] = 200 

minimum_battery_install_cost[fifteen_kWh] = 400 

minimum_battery_install_cost[thirty_kWh] = 600 

total_installed_battery_cost[Battery_size] = (unsubsidised_installed_battery_cost_per_size-

(battery_rebates_and_subsidies+financial_value_to_mitigate_blackouts)) 

total_installed_cost_per_kWh[five_kWh] = total_installed_battery_cost[five_kWh]/5 

total_installed_cost_per_kWh[fifteen_kWh] = total_installed_battery_cost[fifteen_kWh]/15 

total_installed_cost_per_kWh[thirty_kWh] = total_installed_battery_cost[thirty_kWh]/30 

unsubsidised_installed_battery_cost_per_size[Battery_size] = 

battery_install_and_soft_costs+battery_BOS_cost_per_size+battery_pack_cost_per_size 

 

3.6. Battery retrofit ongoing annual savings 

Key assumptions 

• The model assumes that battery systems are retrofitted to existing PV dwellings with the 

intention of maximising PV consumption in home. 

• As the payback is calculated using only the capital cost of the battery itself (not that of the PV 

system, as it is considered a sunk cost), ongoing savings are only those savings that occur as a 

result of the battery install i.e. PV generation that was previously exported and is now used in 

home.  

• ‘nominal battery capacities’ includes small (5kWh), medium (15kWh) and large (30kWh) 

battery systems. 

• ‘useable battery capacity’ reflects the fact that due to technical restrictions, the ‘nominal battery 

capacity’ does not reflect the actual kWh that is useable. Accordingly, this variable includes 

assumptions on battery degradation (~90% averaged over life) and depth of discharge (87.5%) 

based on common battery specs from (Martin 2016; SolarQuotes 2017).  
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Representation in Stella 

 

********** 

battery_retrofit_ongoing_annual_savings: 

********** 

annual_battery_capacity[Battery_size] = useable_battery_capacity*365 

daily_battery_retrofit_export[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

daily_PV_generation_by_size[PV_size] -total_daily_PV_used_in_retrofit 

"daily_value_of_non-exported_PV_power_due_to_retrofit"[PV_size, Loadprofile, Electricityconsumption, 

Battery_size] = excess_PV_now_used_in_home_due_to_battery*variable_retail_tariff_including_gst 

degradation_averaged_over_battery_life = 0.875 

depth_of_discharge = 0.9143 

excess_PV_now_used_in_home_due_to_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size] = IF   

PV_export_that_could_be_used_by_battery_to_meet_house_demand[PV_size, Loadprofile, Electricityconsumption] < 

useable_battery_capacity[Battery_size]  THEN  

PV_export_that_could_be_used_by_battery_to_meet_house_demand[PV_size, Loadprofile, Electricityconsumption]  

ELSE  IF   PV_export_that_could_be_used_by_battery_to_meet_house_demand[PV_size, Loadprofile, 

Electricityconsumption] >=  useable_battery_capacity[Battery_size]  THEN   useable_battery_capacity[Battery_size]  

ELSE  0 

nominal_battery_capacity[five_kWh] = 5 

nominal_battery_capacity[fifteen_kWh] = 15 

nominal_battery_capacity[thirty_kWh] = 30 

PV_export_that_could_be_used_by_battery_to_meet_house_demand[PV_size, Loadprofile, Electricityconsumption] = 

IF  daily_PV_power_exported >= PV_house_daily_grid_demand  THEN  PV_house_daily_grid_demand  ELSE IF  

daily_PV_power_exported< PV_house_daily_grid_demand  AND  daily_PV_power_exported>0  THEN  

daily_PV_power_exported  ELSE  0 

retrofit_battery_annual_savings[PV_size, Loadprofile, Electricityconsumption, Battery_size] = "daily_value_of_non-

exported_PV_power_due_to_retrofit"*365 

retrofit_battery_daily_grid_demand[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

daily_electricity_demand[Electricityconsumption]-total_daily_PV_used_in_retrofit 

total_daily_PV_used_in_retrofit[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

excess_PV_now_used_in_home_due_to_battery+daily_PV_power_consumed[PV_size, Loadprofile, 

Electricityconsumption] 
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useable_battery_capacity[Battery_size] = 

depth_of_discharge*nominal_battery_capacity*degradation_averaged_over_battery_life 

value_of_retro_exports[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

daily_battery_retrofit_export*365*retailer_FiT 

 

3.7. Retrofit adoption rate as function of payback calculation 

Key assumptions 

• To model the relationship between the payback period and the adoption fraction, a similar curve 

is used to that described above for the PV adoption fraction.  

• The only modification to the curve for use with battery adoption has been made to reflect the 

fact that batteries have a shorter lifespan (i.e. batteries are generally warranted for between 10-

15 years). This means baseline demand in the battery curve decreases to 1% sooner before 

decreasing to zero at a payback of 15 years.  

• Using uptake rates of analogous technologies such as PV to generate a financial coefficient for 

battery uptake is considered reasonable and this assumption is supported by and has been used 

in the past for energy sector modelling by both AEMO (2015c) and CSIRO (2015b). 

• As with PV, the model incorporates numerous battery system configurations. This sector 

calculates the individual contributions of each system to the adoption rate based on the same 

logic as that used for PV.  

 

Representation in Stella 
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********** 

Retrofit_adoption_rate_as_function_of_payback_calculation: 

********** 

best_retro_payback = MIN(retro_payback_adjustment) 

retro_adoption_rate_as_function_of_payback[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

retro_adoption_rate_fraction*retro_best_adoption_rate 

retro_adoption_rate_fraction[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

SAFEDIV(best_retro_payback, actual_retrofit_battery_payback_period) 

retro_best_adoption_rate = SAFEDIV(retro_uptake_as_function_of_payback, retro_sum_of_adoption_rate_fraction) 

retro_denominator[PV_size, Loadprofile, Electricityconsumption, Battery_size] = IF  

actual_retrofit_battery_payback_period >0  AND   actual_retrofit_battery_payback_period<15  THEN  1  ELSE   0 

retro_mean_payback = IF   SAFEDIV (retro_sum_numerator, retro_sum_denominator) = 0   THEN 15  ELSE  

SAFEDIV (retro_sum_numerator, retro_sum_denominator) 

retro_numerator[PV_size, Loadprofile, Electricityconsumption, Battery_size] = IF   

actual_retrofit_battery_payback_period<15  THEN actual_retrofit_battery_payback_period  ELSE 0 

retro_payback_adjustment[PV_size, Loadprofile, Electricityconsumption, Battery_size] = IF   

actual_retrofit_battery_payback_period =0  THEN  1000  ELSE actual_retrofit_battery_payback_period 

retro_sum_denominator = SUM(retro_denominator) 

retro_sum_numerator = SUM(retro_numerator) 

retro_sum_of_adoption_rate_fraction = SUM(retro_adoption_rate_fraction) 

retro_uptake_as_function_of_payback = GRAPH(retro_mean_payback) 

(0.00, 0.0950), (1.00, 0.0924), (2.00, 0.0899), (3.00, 0.0869), (4.00, 0.0830), (5.00, 0.0750), (6.00, 0.0650), (7.00, 

0.0550), (8.00, 0.0400), (9.00, 0.0250), (10.00, 0.0100), (11.00, 0.0090), (12.00, 0.0069), (13.00, 0.0049), (14.00, 

0.0029), (15.00, 0.0000) 

 

3.8. Battery non-financial motivations  

Key assumptions 

• Due to an almost complete lack of empirical data regarding non-financial motivations relating to 

battery adoption, parameterisation of this element of the model necessarily rests on rule-of-

thumb assumptions.  

• The first part of this model (the structure on the right-hand side) is based on the characteristics 

of technology adopters based on Rogers (1962). It assumes a ‘non-financial motivation factor’ 

which effectively works as a multiplier to increase the strength of non-financial motivations in 

the decision-making process based on the stage of market penetration. For innovators, this 

increases adoption by 5%, which then declines to zero as mass market uptake is achieved.  

• The second part of the model (on the left), is structured so that changes in non-financial 

variables as a result of both endogenous and exogenous factors are assigned a value based on 

relative importance. This is based on an index that ranges between 1 and 5 for each variable 

reflecting the magnitude of the multiplier applied for each factor.   

• To determine their impact on adoption, the value of all the non-finanical variables are 

aggregated and then averaged in ‘WTP for self sufficiency’ (nb WTP = willingness to pay).  

• ‘influence on battery preferences’ multiplies the above index against graphical functions for 

each system size. Effectively as WTP for self-sufficiency increases, preference for smaller 

batteries decrease while preferences for larger batteries increase. This is then reflected in the 

model as a multiplier that increases or decreases adoption.   
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• To reflect the uncertainty associated with the assumptions in this component of the model, it has 

been designed to generate very conservative values. For example, the base-case simulation 

generates an average value for ‘influence on battery preferences’ that never exceeds 5%. In the 

climate change scenario, where non-financial motivations are strongest, this average remains 

below 20% for the majority of the scenario. 

•  In regards to each of the specific variables, ‘fixed cost effect’ reflects the fact that as the 

proportion of total household electricity costs comprising fixed costs increases, it reduces the 

value of installed PV while reducing the effect of efforts by consumers to reduce household 

electricity bills through energy efficiency or other measures.  These factors all serve to increase 

frustration with incumbents increasing non-financial motivations to reduce reliance on the grid. 

• ‘concern about price increases’ is based on the same logic as that described for PV, namely as 

electricity prices increases, concern about future prices increases. Research shows that 

consumers strongly prefer avoiding losses compared to acquiring gains and can be willing to 

pay a premium of up to 20%, versus what they rationally should pay to reduce their electricity 

costs (Vorrath 2017a). 

• ‘climate change temp increases’ is effectively a proxy for climate change impacts. It is a 

graphical function that can incorporate possible future changes in average global temperature. 

For the base-case, it is assumed to remain at the current level (i.e. approximately 1oC above 

average). The influence of this variable is limited except for the climate change scenario where 

global temperatures are assumed to increase to 1.5oC.  

• The model assumes that as temperature increases the ‘probability of extreme weather events’ 

(such as cyclones and floods) and ‘heatwaves’ increase, both of which impact the operation of 

the electricity sector through ‘large-scale power outages’ (loss of supply for significant periods 

of time) and ‘short power outages’ (i.e. blackouts). This has an effect on both financial and non-

financial motivations for consumers considering purchasing PV and batteries. 

• The model calculates these effects based on the probability of these events occurring as a 

function of temperature increases. For example, it is assumed that extreme weather events (with 

the capacity to knock out significant electricity capacity across the state) currently occur 

approximately every 6 years. If global temperature increases by 10%, then it is assumed severe 

weather events will occur every five years. At the same time, as temperatures increase, the 

likelihood of ‘blackouts’ also increase (extreme heat is a key driver of critical peak demand 

days). These general assumptions are based on review of IPCC reports (IPCC 2014b) and other 

climate change studies such as Nierop (2014) and Australian Government (2016). 

• ‘climate change temp increases’ impacts three main components of the sector.  
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• The non-financial variable ‘environment effect’ assumes that many consumers will consider PV 

and batteries to reduce their environmental footprint associated with energy use. While this is 

frequently a stated objective for purchasing low emission technologies, its actual influence in 

the decision-making process is less clear (Boughen, Castro & Ashworth 2013). For this reason, 

the variable has been designed to have limited influence on adoption. 

• ‘resilience effect’ assumes that as power outages increase, consumers will be motivated to adopt 

batteries to hedge against future outages. This was amply evidenced following blackouts in 

South Australia in 2016, where battery installers saw a 228% increase in inquiries for batteries 

in the 24 hours after the event (Parkinson 2016). 

• ‘financial value to mitigate blackouts’ is actually a financial motivation and reflects that there is 

a financial value to consumers associated with power outages. A study by AEMO (2014c) 

examined the financial value of customer reliability and found that a loss of power was worth 

approximately AU$25.42/kWh to Queensland consumers. This value has therefore been used to 

generate a financial cost associated with a loss of power – this is then used to offset a proportion 

of the ‘total installed battery cost’. As the cost of an outage to a consumer would vary according 

to the type of interruption, the use of this value has been used conservatively and scaled 

accordingly, with a cap set on the possible reduction in install price that it may achieve.   

  

Representation in Stella 
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********** 

"battery_non-financial_motivations": 

********** 

battery_market_uptake_as_proportion_of_eligible_dwellings = 

all_battery_dwellings/(sum_eligible_dwellings_without_a_battery+all_battery_dwellings) 

battery_non_financial_coefficient[Electricityconsumption, Battery_size] = IF TIME > 132 THEN  "non-

financial_motivation_factor"*influence_on_battery_preference   ELSE 1 

climate_change_temp_increases = GRAPH(TIME) 

(0.0, 0.941), (12.0, 0.941), (24.0, 0.941), (36.0, 0.941), (48.0, 0.959), (60.0, 0.959), (72.0, 0.977), (84.0, 0.977), (96.0, 

0.995), (108.0, 0.996), (120.0, 0.997), (132.0, 0.998), (144.0, 1.000), (156.0, 1.000), (168.0, 1.000), (180.0, 1.000), 

(192.0, 1.000), (204.0, 1.000), (216.0, 1.000), (228.0, 1.000), (240.0, 1.000), (252.0, 1.000), (264.0, 1.000), (276.0, 

1.000), (288.0, 1.000), (300.0, 1.000), (312.0, 1.000), (324.0, 1.000), (336.0, 1.000), (348.0, 1.000), (360.0, 1.000), 

(372.0, 1.000) 

concern_about_price_increases[Electricityconsumption] = GRAPH(household_electricity_bill_index) 

(0.000, 1.000), (0.250, 1.000), (0.500, 1.000), (0.750, 1.000), (1.000, 1.000), (1.250, 1.500), (1.500, 2.000), (1.750, 

2.500), (2.000, 3.000), (2.250, 3.500), (2.500, 4.000), (2.750, 4.500), (3.000, 5.000), (3.250, 5.000), (3.500, 5.000), 

(3.750, 5.000), (4.000, 5.000) 

cost_of_blackouts = value_of_reliability*short_power_outages*4 

cost_of_large_outages[five_kWh] = 

large_scale_power_outages*value_of_reliability*useable_battery_capacity[five_kWh] 

cost_of_large_outages[fifteen_kWh] = 

large_scale_power_outages*value_of_reliability*useable_battery_capacity[fifteen_kWh] 

cost_of_large_outages[thirty_kWh] = 

large_scale_power_outages*value_of_reliability*useable_battery_capacity[thirty_kWh] 

environmental_effect = GRAPH(influence_of_climate_change) 

(1.0000, 0.000), (1.1250, 1.500), (1.2500, 2.500), (1.3750, 3.500), (1.5000, 5.000) 

financial_value_to_mitigate_blackouts[five_kWh] = cost_of_large_outages[five_kWh]+cost_of_blackouts 

financial_value_to_mitigate_blackouts[fifteen_kWh] = cost_of_large_outages[fifteen_kWh]+cost_of_blackouts 

financial_value_to_mitigate_blackouts[thirty_kWh] = cost_of_large_outages[thirty_kWh]+cost_of_blackouts 

fixed_cost_effect[Electricityconsumption] = GRAPH(proportion_of_bill_from_fixed_costs) 

(0.000, 1.000), (0.100, 1.000), (0.200, 1.000), (0.300, 1.500), (0.400, 2.000), (0.500, 2.500), (0.600, 3.000), (0.700, 

3.500), (0.800, 4.000), (0.900, 4.500), (1.000, 5.000) 

frequency_and_severity_of_power_interruptions = IF TIME  <=132  THEN   1  ELSE IF TIME >132   THEN  

(short_power_outages+large_scale_power_outages)  ELSE 1 

heatwaves = GRAPH(climate_change_temp_increases) 

(1.000, 1.00), (1.010, 2.00), (1.040, 2.27), (1.060, 2.80), (1.080, 3.07), (1.100, 3.40), (1.120, 3.73), (1.140, 4.00), (1.160, 

4.33), (1.180, 4.73), (1.200, 5.09), (1.220, 5.35), (1.240, 5.56), (1.260, 5.80), (1.280, 5.90), (1.300, 6.03), (1.320, 6.32) , 

(1.340, 6.56), (1.360, 6.88), (1.380, 7.17), (1.400, 7.43), (1.420, 7.69), (1.440, 8.01), (1.460, 8.22), (1.480, 8.41), (1.500, 

8.62), (1.520, 8.85), (1.540, 9.14), (1.560, 9.43), (1.580, 9.80), (1.600, 10.12), (1.620, 10.46), (1.640, 10.86), (1.660, 

11.23), (1.680, 11.57), (1.700, 11.96), (1.720, 12.44), (1.740, 12.86), (1.760, 13.31), (1.780, 13.78), (1.800, 14.36), 

(1.820, 14.97), (1.840, 15.52), (1.860, 16.02), (1.880, 16.55), (1.900, 17.00), (1.920, 17.52), (1.940, 18.08), (1.960, 

18.58), (1.980, 19.08), (2.000, 19.58) 

influence_of_climate_change = climate_change_temp_increases 

influence_on_battery_preference[low_consumption, five_kWh] = GRAPH(WTP_for_greater_self_sufficiency) 

(1.000, 1.000), (2.000, 0.750), (3.000, 0.500), (4.000, 0.250), (5.000, 0.100) 

influence_on_battery_preference[low_consumption, fifteen_kWh] = GRAPH(WTP_for_greater_self_sufficiency) 

(1.000, 1.000), (2.000, 1.250), (3.000, 1.500), (4.000, 1.750), (5.000, 2.000) 

influence_on_battery_preference[low_consumption, thirty_kWh] = GRAPH(WTP_for_greater_self_sufficiency) 

(1.000, 1.000), (2.000, 1.250), (3.000, 1.500), (4.000, 1.750), (5.000, 2.000) 

influence_on_battery_preference[medium_consumption, five_kWh] = GRAPH(WTP_for_greater_self_sufficiency) 

(1.000, 1.000), (2.000, 0.750), (3.000, 0.500), (4.000, 0.250), (5.000, 0.100) 

influence_on_battery_preference[medium_consumption, fifteen_kWh] = GRAPH(WTP_for_greater_self_sufficiency) 

(1.000, 1.000), (2.000, 1.250), (3.000, 1.500), (4.000, 1.750), (5.000, 2.000) 

influence_on_battery_preference[medium_consumption, thirty_kWh] = GRAPH(WTP_for_greater_self_sufficiency) 

(1.000, 1.000), (2.000, 1.250), (3.000, 1.500), (4.000, 1.750), (5.000, 2.000) 

influence_on_battery_preference[high_consumption, five_kWh] = GRAPH(WTP_for_greater_self_sufficiency) 

(1.000, 1.000), (2.000, 0.750), (3.000, 0.500), (4.000, 0.250), (5.000, 0.100) 

influence_on_battery_preference[high_consumption, fifteen_kWh] = GRAPH(WTP_for_greater_self_sufficiency) 

(1.000, 1.000), (2.000, 1.250), (3.000, 1.500), (4.000, 1.750), (5.000, 2.000) 

influence_on_battery_preference[high_consumption, thirty_kWh] = GRAPH(WTP_for_greater_self_sufficiency) 

(1.000, 1.000), (2.000, 1.250), (3.000, 1.500), (4.000, 1.750), (5.000, 2.000) 
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large_scale_power_outages = IF   probability_of_extreme_weather_events <= 1/72  THEN  0  ELSE IF   

probability_of_extreme_weather_events > 1/71 AND probability_of_extreme_weather_events <= 1/60  THEN  1  

ELSE IF   probability_of_extreme_weather_events >1/60 AND probability_of_extreme_weather_events <=1/48  THEN 

2  ELSE IF   probability_of_extreme_weather_events >1/48  THEN 3  ELSE   1 

"non-financial_motivation_factor" = GRAPH(battery_market_uptake_as_proportion_of_eligible_dwellings) 

(0.000, 1.0500), (0.025, 1.0400), (0.160, 1.0300), (0.320, 1.0200), (0.500, 1.0000), (0.550, 1.0000), (0.600, 1.0000), 

(0.700, 1.0000), (0.800, 1.0000), (0.900, 1.0000), (1.000, 1.0000) 

probability_of_extreme_weather_events = IF   climate_change_temp_increases <1  THEN  1/72   ELSE   IF 

climate_change_temp_increases >=1 AND climate_change_temp_increases <1.1  THEN   1/60  ELSE   IF 

climate_change_temp_increases>=1.1 AND climate_change_temp_increases<1.2  THEN   1/48   ELSE   IF 

climate_change_temp_increases >=1.2  THEN   1/36   ELSE 0 

resilience_effect[Battery_size] = GRAPH(frequency_and_severity_of_power_interruptions) 

(0.00, 1.000), (1.00, 1.370), (2.00, 1.804), (3.00, 2.169), (4.00, 2.694), (5.00, 3.082), (6.00, 3.516), (7.00, 3.790), (8.00, 

4.110), (9.00, 4.498), (10.00, 5.000) 

short_power_outages = IF  heatwaves >= 2 AND heatwaves < 3  THEN  2  ELSE  IF  heatwaves >=3 AND heatwaves 

< 5  THEN 3  ELSE  IF  heatwaves >= 5  THEN   5  ELSE  1 

sum_eligible_dwellings_without_a_battery = eligible_prosumer_dwellings+all_PV_only_dwellings 

value_of_reliability = 25.42 

WTP_for_greater_self_sufficiency[Electricityconsumption, Battery_size] = 

(concern_about_price_increases[Electricityconsumption]+fixed_cost_effect[Electricityconsumption]+resilience_effect[

Battery_size]+environmental_effect)/4 
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4. Bundled battery adoption sectors 

 

4.1. Bundled PV and battery adoption fraction 

This section includes each of the sectors that comprise the bundled battery adoption fraction. This is 

a function of a non-financial and financial coefficient. 

 

Representations in Stella 

 

 

********** 

bundled_battery_install_rate: 

********** 

bundled_PV_&_battery_adoption_fraction[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

bundled_battery_financial_coefficient*battery_non_financial_coefficient[Electricityconsumption, Battery_size] 

 

 

4.2. Bundled battery financial motivations 

This is a function of three elements which are described separately below.  

 

Representations in Stella 

 

 

********** 

bundled_battery_financial_motivations: 

********** 

bundled_battery_financial_coefficient[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

bundle_adoption_rate_as_function_of_payback/12 *bundled_battery_upfront_capital_effect 

+bundle_adoption_adjustment_based_on_similar_payback 
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4.3. Bundled upfront capital effect 

The assumptions underpinning the upfront capital effect for batteries is the same as that described 

above for PV and retrofit battery systems. 

 

Representations in Stella 

 

********** 

bundled_battery_upfront_capital_effect_sector: 

********** 

bundled_battery_upfront_capital_effect[PV_size, Loadprofile, Electricityconsumption, Battery_size] =   IF  

bundle_battery_payback < 4  THEN   1  ELSE  bundled_battery_upfront_capital_factor[PV_size, Battery_size] 

bundled_battery_upfront_capital_factor[PV_size, Battery_size] = IF   total_installed_bundled_battery_cost >15000   

THEN  0.1  ELSE  IF  total_installed_bundled_battery_cost >10000 AND total_installed_bundled_battery_cost <= 

15000  THEN  0.6  ELSE  IF  total_installed_bundled_battery_cost>7000  AND total_installed_bundled_battery_cost 

<=10000  THEN  0.8  ELSE  1 

 

4.4. Bundled adoption adjustment based on similar payback 

Key assumptions 

This sector assumes that if a PV system has a similar or slightly shorter payback period when 

compared with a PV and battery system, most consumers will still install the PV and battery 

system.  

 

Representations in Stella 
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********** 

Adoption_adjustment_based_on_similar_payback: 

********** 

bundle_adoption_adjustment_based_on_similar_payback[PV_size, Loadprofile, Electricityconsumption, Battery_size] 

= IF   bundle_battery_payback>0  AND  (PV_payback_period[PV_size, Loadprofile, Electricityconsumption] >= 

bundle_battery_payback-1)  THEN  PV_adoption_fraction[PV_size, Loadprofile, Electricityconsumption]  ELSE   0 

PV_adoption_adjustment_based_on_similar_payback[PV_size, Loadprofile, Electricityconsumption] = IF   TIME >132 

AND  (PV_payback_period >=   MEAN(bundle_battery_payback[PV_size, Loadprofile, Electricityconsumption, *])-1)   

THEN  0  ELSE   1 

 

4.5. Bundled battery payback period 

Comprises two elements: total installed bundled battery cost and annual savings bundled PV and 

battery which are described below.  

 

Representation in Stella 

 

********** 

bundled_battery_payback_period: 

********** 

bundle_battery_payback[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

SAFEDIV(total_installed_bundled_battery_cost[PV_size, Battery_size], annual_savings_bundled_PV_&_battery) 

off_grid_install_rate = "monthly_install_rate_possible_off-grid" 

 

4.6. Total installed bundled battery costs 

Key assumptions 

• ‘total installed bundled battery costs’ include the addition of the total installed PV system cost 

and the total installed battery cost. 

• However, buying a PV and battery system at the same time has the potential to lower the total 

system price. Installation and soft costs are generally cheaper as only one visit to the premises is 

required, and bundled systems are usually installed with only one inverter, which can account 

for up to 15% of the total cost of a PV system (Gill 2016).  

• To reflect these savings, the model includes a 10% ‘bundling efficiency coefficient’.   
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Representation in Stella 

 

 

********** 

Total_installed_bundled_PV_&_battery_costs: 

********** 

bundling_efficiency_coefficient = IF TIME > 120  THEN  0.90  ELSE   1.4 

total_installed_bundled_battery_cost[Less_than_2_kW, five_kWh] = 

total_PV_cost[Less_than_2_kW]+total_installed_battery_cost[five_kWh]*bundling_efficiency_coefficient 

total_installed_bundled_battery_cost[Less_than_2_kW, fifteen_kWh] = total_PV_cost[Less_than_2_kW] 

+total_installed_battery_cost[fifteen_kWh] *bundling_efficiency_coefficient 

total_installed_bundled_battery_cost[Less_than_2_kW, thirty_kWh] = total_PV_cost[Less_than_2_kW] 

+total_installed_battery_cost[thirty_kWh] *bundling_efficiency_coefficient 

total_installed_bundled_battery_cost[Between_2_and_4_kW, five_kWh] = 

total_PV_cost[Between_2_and_4_kW]+total_installed_battery_cost[five_kWh]*bundling_efficiency_coefficient 

total_installed_bundled_battery_cost[Between_2_and_4_kW, fifteen_kWh] = total_PV_cost[Between_2_and_4_kW] 

+total_installed_battery_cost[fifteen_kWh] *bundling_efficiency_coefficient 

total_installed_bundled_battery_cost[Between_2_and_4_kW, thirty_kWh] = total_PV_cost[Between_2_and_4_kW] 

+total_installed_battery_cost[thirty_kWh] *bundling_efficiency_coefficient 

total_installed_bundled_battery_cost[Between_4_and_6kW, five_kWh] = 

total_PV_cost[Between_4_and_6kW]+total_installed_battery_cost[five_kWh]*bundling_efficiency_coefficient 

total_installed_bundled_battery_cost[Between_4_and_6kW, fifteen_kWh] = total_PV_cost[Between_4_and_6kW] 

+total_installed_battery_cost[fifteen_kWh] *bundling_efficiency_coefficient 

total_installed_bundled_battery_cost[Between_4_and_6kW, thirty_kWh] = total_PV_cost[Between_4_and_6kW] 

+total_installed_battery_cost[thirty_kWh] *bundling_efficiency_coefficient 

total_installed_bundled_battery_cost[Between_8_and_10kW, five_kWh] = 

total_PV_cost[Between_8_and_10kW]+total_installed_battery_cost[five_kWh]*bundling_efficiency_coefficient 

total_installed_bundled_battery_cost[Between_8_and_10kW, fifteen_kWh] = total_PV_cost[Between_8_and_10kW] 

+total_installed_battery_cost[fifteen_kWh] *bundling_efficiency_coefficient 

total_installed_bundled_battery_cost[Between_8_and_10kW, thirty_kWh] = total_PV_cost[Between_8_and_10kW] 

+total_installed_battery_cost[thirty_kWh] *bundling_efficiency_coefficient 
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4.7. Battery bundle ongoing annual savings 

Key assumptions 

• The model calculates how much self-generated electricity is consumed in home depending on 

each of the different PV and battery system types and load/consumption profile combinations. 

• Ongoing savings reflect both the value of avoided electricity costs due to the PV and battery 

bundle and the value of any export back to the grid.  

 

Representations in Stella 

 

 

 

********** 

battery_bundle_ongoing_annual_savings: 

********** 

annual_savings_bundled_PV_&_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

daily_savings_bundled_battery*365 

bundle_daily_grid_demand[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

daily_electricity_demand[Electricityconsumption]-daily_PV_used_in_home_bundle 

daily_bundled_battery_exports[PV_size, Loadprofile, Electricityconsumption, Battery_size] = IF   

daily_PV_used_in_home_bundle>0  AND  daily_PV_generation_by_size[PV_size] >  

daily_PV_used_in_home_bundle  THEN  daily_PV_generation_by_size[PV_size]-daily_PV_used_in_home_bundle  

ELSE   0 
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daily_PV_used_in_home_bundle[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

PV_and_battery_used_in_home+no_PV_for_battery 

daily_savings_bundled_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

(value_of_bundled_battery_exports+value_of_avoided_electricity_costs_due_to_bundle) 

no_PV_for_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size] = IF   

daily_PV_generation_by_size[PV_size] <= daily_daytime_electricity_demand[Loadprofile, Electricityconsumption]  

THEN  daily_PV_generation_by_size[PV_size]  ELSE   0 

PV_and_battery_capacity[PV_size, Loadprofile, Electricityconsumption, Battery_size] = IF  

PV_available_for_battery>0  AND   PV_available_for_battery <=  useable_battery_capacity[Battery_size]  THEN 

PV_available_for_battery+daily_daytime_electricity_demand[Loadprofile, Electricityconsumption]  ELSE   IF   

PV_available_for_battery>0  AND  PV_available_for_battery>useable_battery_capacity[Battery_size]  THEN   

useable_battery_capacity[Battery_size]+daily_daytime_electricity_demand[Loadprofile, Electricityconsumption]  

ELSE 0 

PV_and_battery_used_in_home[PV_size, Loadprofile, Electricityconsumption, Battery_size] = IF  

PV_and_battery_capacity>0  AND   PV_and_battery_capacity<=daily_electricity_demand[Electricityconsumption]  

THEN PV_and_battery_capacity  ELSE IF  PV_and_battery_capacity>0  AND   

PV_and_battery_capacity>daily_electricity_demand[Electricityconsumption]  THEN  

daily_electricity_demand[Electricityconsumption]  ELSE 0 

PV_available_for_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size] = IF   

daily_PV_generation_by_size[PV_size] > daily_daytime_electricity_demand[Loadprofile, Electricityconsumption]  

THEN  daily_PV_generation_by_size[PV_size]-daily_daytime_electricity_demand[Loadprofile, 

Electricityconsumption]  ELSE   0 

retailer_FiT = IF TIME >132  THEN  0.07  ELSE 0 

value_of_avoided_electricity_costs_due_to_bundle[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

variable_retail_tariff_including_gst*daily_PV_used_in_home_bundle 

value_of_bundled_battery_exports[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

daily_bundled_battery_exports*retailer_FiT 

 

4.8. Bundle adoption rate as function of payback calculation 

Key assumptions 

The logic underpinning this sector is based on that described for the ‘retrofit adoption rate as 

function of payback calculation’. 

 

Representation in Stella 
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********** 

Bundle_adoption_rate_as_function_of_payback_calculation: 

********** 

bundle_adoption_rate_as_function_of_payback[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

bundle_adoption_rate_fraction*bundle_best_adoption_rate 

bundle_adoption_rate_fraction[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

SAFEDIV(bundle_best_payback, bundle_battery_payback) 

bundle_best_adoption_rate = SAFEDIV(bundle_uptake_as_function_of_payback, 

bundle_sum_of_adoption_rate_fraction) 

bundle_best_payback =  MIN(bundle_payback_adjustment) 

bundle_denominator[PV_size, Loadprofile, Electricityconsumption, Battery_size] = IF  (bundle_battery_payback>0)  

AND  (bundle_battery_payback) <15  THEN  1  ELSE 0 

bundle_mean_payback = IF   SAFEDIV (bundle_sum_numerator, bundle_sum_denominator) =0   THEN 15  ELSE  

SAFEDIV (bundle_sum_numerator, bundle_sum_denominator) 

bundle_numerator[PV_size, Loadprofile, Electricityconsumption, Battery_size] = IF   bundle_battery_payback<15  

THEN bundle_battery_payback  ELSE 0 

bundle_payback_adjustment[PV_size, Loadprofile, Electricityconsumption, Battery_size] = IF   

bundle_battery_payback =0  THEN  1000  ELSE bundle_battery_payback 

bundle_sum_denominator = SUM(bundle_denominator) 

bundle_sum_numerator = SUM(bundle_numerator) 

bundle_sum_of_adoption_rate_fraction = SUM(bundle_adoption_rate_fraction) 

bundle_uptake_as_function_of_payback = GRAPH(bundle_mean_payback) 

(0.00, 0.0950), (1.00, 0.0924), (2.00, 0.0899), (3.00, 0.0869), (4.00, 0.0830), (5.00, 0.0750), (6.00, 0.0650), (7.00, 

0.0550), (8.00, 0.0400), (9.00, 0.0250), (10.00, 0.0100), (11.00, 0.0090), (12.00, 0.0069), (13.00, 0.0049),  (14.00, 

0.0029), (15.00, 0.0000) 
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5. Prosumer dwellings sector 

Key assumptions 

• ‘effect of saturation on install rate’ is a graphical function. The saturation threshold value for the 

model, i.e. when the effects of saturation would appear, is 50% with the rate of decline 

increasing exponentially to zero when 100% saturation is achieved (AEMO 2014a) 

• ‘dwellings with PV only’ (1116 total installs in 2006) split among PV size categories based on 

assumed likely uptake with very high cost key factor limiting large size (Clean Energy 

Regulator 2017) 

• The model assumes zero grid-connected batteries in Qld in 2006 so both battery dwellings 

stocks are assumed to have initial values of zero. 

• The stock ‘dwellings receiving premium FiT’ is used to calculate the numbers of households 

subscribed to the Queensland Solar Bonus Scheme and is included because the model assumes 

that as there is no financial incentive to purchase batteries while receiving the premium FiT, 

these dwellings are excluded from retrofitting batteries. 

• This section of the model assumes that all residential PV systems installed in Qld were 

subscribed from when the scheme started in 2008 until it was closed to new entrants in 2012.  

• The ‘premium FiT discard rate’ (0.06 per year) calculates the number of dwellings each year 

that lose their eligibility (e.g. for moving house) (Rod 2017). When taken with the variable 

‘proportion of PV dwellings on premium FIT by PV size’ this is used to determine ex-premium 

FiT subscribers whom are now eligible to be considered for a retrofit battery installation.   

• PV life-span and battery life-span is 25 and 10 years respectively based on accepted industry 

estimates. 
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Representation in Stella 

 

 

 

********** 

Prosumer_dwellings: 

********** 

battery_lifespan = 10*12 

battery_replacement_install_rate = 1 

battery_replacement_install_rate_bundle = 1 

bundled_dwellings_with_old_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size](t) = 

bundled_dwellings_with_old_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size](t - dt) + 

(bundle_battery_aging[PV_size, Loadprofile, Electricityconsumption, Battery_size] - 

bundle_battery_replacement_rate[PV_size, Loadprofile, Electricityconsumption, Battery_size]) * dt 

INIT bundled_dwellings_with_old_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 0 

INFLOWS: 

bundle_battery_aging[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

dwellings_with_bundled_PV_&_battery/battery_lifespan 

OUTFLOWS: 

bundle_battery_replacement_rate[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

(bundled_dwellings_with_old_battery*battery_replacement_install_rate_bundle) 

discard_rate[Less_than_2_kW] = 0.9 

discard_rate[Between_2_and_4_kW] = 0.1 

discard_rate[Between_4_and_6kW] = 0.1 

discard_rate[Between_8_and_10kW] = 0.1 

dwellings_receiving_premium_FiT[PV_size, Loadprofile, Electricityconsumption](t) = 

dwellings_receiving_premium_FiT[PV_size, Loadprofile, Electricityconsumption](t - dt) + 

(premium_FiT_install_rate[PV_size, Loadprofile, Electricityconsumption] - premium_FiT_discard_rate[PV_size, 

Loadprofile, Electricityconsumption]) * dt 
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INIT dwellings_receiving_premium_FiT[PV_size, Loadprofile, Electricityconsumption] = 0 

INFLOWS: 

premium_FiT_install_rate[PV_size, Loadprofile, Electricityconsumption] = IF TIME >=30 AND TIME <=84 THEN 

PV_monthly_install_rate ELSE 0 

OUTFLOWS: 

premium_FiT_discard_rate[PV_size, Loadprofile, Electricityconsumption] = IF TIME <84 THEN 0 ELSE IF TIME >= 

84 AND TIME <= 264 THEN 0.06/12*dwellings_receiving_premium_FiT ELSE IF TIME > 264 THEN 

dwellings_receiving_premium_FiT ELSE 0 

dwellings_with_bundled_PV_&_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size](t) = 

dwellings_with_bundled_PV_&_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size](t - dt) + 

(bundle_battery_replacement_rate[PV_size, Loadprofile, Electricityconsumption, Battery_size] + 

bundled_PV_&_battery_install_rate[PV_size, Loadprofile, Electricityconsumption, Battery_size] - 

bundle_battery_aging[PV_size, Loadprofile, Electricityconsumption, Battery_size]) * dt 

INIT dwellings_with_bundled_PV_&_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size] = ROUND 

(0) 

INFLOWS: 

bundle_battery_replacement_rate[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

(bundled_dwellings_with_old_battery*battery_replacement_install_rate_bundle) 

bundled_PV_&_battery_install_rate[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

bundled_PV_&_battery_adoption_fraction *effect_of_saturation_on_install_rate*eligible_prosumer_dwellings 

OUTFLOWS: 

bundle_battery_aging[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

dwellings_with_bundled_PV_&_battery/battery_lifespan 

dwellings_with_old_PV[PV_size, Loadprofile, Electricityconsumption](t) = dwellings_with_old_PV[PV_size, 

Loadprofile, Electricityconsumption](t - dt) + (PV_aging[PV_size, Loadprofile, Electricityconsumption] - 

PV_replacement_rate[PV_size, Loadprofile, Electricityconsumption] - complete_uninstall[PV_size, Loadprofile, 

Electricityconsumption]) * dt 

INIT dwellings_with_old_PV[PV_size, Loadprofile, Electricityconsumption] = 0 

INFLOWS: 

PV_aging[PV_size, Loadprofile, Electricityconsumption] = IF TIME >132 THEN 

dwellings_with_PV_only/PV_lifespan ELSE 0 

OUTFLOWS: 

PV_replacement_rate[PV_size, Loadprofile, Electricityconsumption] = 

PV_replacement_install_rate[PV_size]*dwellings_with_old_PV 

complete_uninstall[PV_size, Loadprofile, Electricityconsumption] = dwellings_with_old_PV*discard_rate[PV_size] 

dwellings_with_PV_only[Less_than_2_kW, Low_daytime_use, low_consumption](t) = 

dwellings_with_PV_only[Less_than_2_kW, Low_daytime_use, low_consumption](t - dt) + 

(PV_monthly_install_rate[Less_than_2_kW, Low_daytime_use, low_consumption] + 

PV_replacement_rate[Less_than_2_kW, Low_daytime_use, low_consumption] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Low_daytime_use, low_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Low_daytime_use, low_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Low_daytime_use, low_consumption, thirty_kWh] - 

PV_aging[Less_than_2_kW, Low_daytime_use, low_consumption]) * dt 

INIT dwellings_with_PV_only[Less_than_2_kW, Low_daytime_use, low_consumption] = 0 

dwellings_with_PV_only[Less_than_2_kW, Low_daytime_use, medium_consumption](t) = 

dwellings_with_PV_only[Less_than_2_kW, Low_daytime_use, medium_consumption](t - dt) + 

(PV_monthly_install_rate[Less_than_2_kW, Low_daytime_use, medium_consumption] + 

PV_replacement_rate[Less_than_2_kW, Low_daytime_use, medium_consumption] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Low_daytime_use, medium_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Low_daytime_use, medium_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Low_daytime_use, medium_consumption, thirty_kWh] - 

PV_aging[Less_than_2_kW, Low_daytime_use, medium_consumption]) * dt 

INIT dwellings_with_PV_only[Less_than_2_kW, Low_daytime_use, medium_consumption] = 0 

dwellings_with_PV_only[Less_than_2_kW, Low_daytime_use, high_consumption](t) = 

dwellings_with_PV_only[Less_than_2_kW, Low_daytime_use, high_consumption](t - dt) + 

(PV_monthly_install_rate[Less_than_2_kW, Low_daytime_use, high_consumption] + 

PV_replacement_rate[Less_than_2_kW, Low_daytime_use, high_consumption] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Low_daytime_use, high_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Low_daytime_use, high_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Low_daytime_use, high_consumption, thirty_kWh] - 

PV_aging[Less_than_2_kW, Low_daytime_use, high_consumption]) * dt 
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INIT dwellings_with_PV_only[Less_than_2_kW, Low_daytime_use, high_consumption] = 0 

dwellings_with_PV_only[Less_than_2_kW, Medium_daytime_use, low_consumption](t) = 

dwellings_with_PV_only[Less_than_2_kW, Medium_daytime_use, low_consumption](t - dt) + 

(PV_monthly_install_rate[Less_than_2_kW, Medium_daytime_use, low_consumption] + 

PV_replacement_rate[Less_than_2_kW, Medium_daytime_use, low_consumption] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Medium_daytime_use, low_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Medium_daytime_use, low_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Medium_daytime_use, low_consumption, thirty_kWh] - 

PV_aging[Less_than_2_kW, Medium_daytime_use, low_consumption]) * dt 

INIT dwellings_with_PV_only[Less_than_2_kW, Medium_daytime_use, low_consumption] = 0 

dwellings_with_PV_only[Less_than_2_kW, Medium_daytime_use, medium_consumption](t) = 

dwellings_with_PV_only[Less_than_2_kW, Medium_daytime_use, medium_consumption](t - dt) + 

(PV_monthly_install_rate[Less_than_2_kW, Medium_daytime_use, medium_consumption] + 

PV_replacement_rate[Less_than_2_kW, Medium_daytime_use, medium_consumption] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Medium_daytime_use, medium_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Medium_daytime_use, medium_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Medium_daytime_use, medium_consumption, thirty_kWh] - 

PV_aging[Less_than_2_kW, Medium_daytime_use, medium_consumption]) * dt 

INIT dwellings_with_PV_only[Less_than_2_kW, Medium_daytime_use, medium_consumption] = 900 

dwellings_with_PV_only[Less_than_2_kW, Medium_daytime_use, high_consumption](t) = 

dwellings_with_PV_only[Less_than_2_kW, Medium_daytime_use, high_consumption](t - dt) + 

(PV_monthly_install_rate[Less_than_2_kW, Medium_daytime_use, high_consumption] + 

PV_replacement_rate[Less_than_2_kW, Medium_daytime_use, high_consumption] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Medium_daytime_use, high_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Medium_daytime_use, high_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, Medium_daytime_use, high_consumption, thirty_kWh] - 

PV_aging[Less_than_2_kW, Medium_daytime_use, high_consumption]) * dt 

INIT dwellings_with_PV_only[Less_than_2_kW, Medium_daytime_use, high_consumption] = 0 

dwellings_with_PV_only[Less_than_2_kW, High_daytime_use, low_consumption](t) = 

dwellings_with_PV_only[Less_than_2_kW, High_daytime_use, low_consumption](t - dt) + 

(PV_monthly_install_rate[Less_than_2_kW, High_daytime_use, low_consumption] + 

PV_replacement_rate[Less_than_2_kW, High_daytime_use, low_consumption] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, High_daytime_use, low_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, High_daytime_use, low_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, High_daytime_use, low_consumption, thirty_kWh] - 

PV_aging[Less_than_2_kW, High_daytime_use, low_consumption]) * dt 

INIT dwellings_with_PV_only[Less_than_2_kW, High_daytime_use, low_consumption] = 0 

dwellings_with_PV_only[Less_than_2_kW, High_daytime_use, medium_consumption](t) = 

dwellings_with_PV_only[Less_than_2_kW, High_daytime_use, medium_consumption](t - dt) + 

(PV_monthly_install_rate[Less_than_2_kW, High_daytime_use, medium_consumption] + 

PV_replacement_rate[Less_than_2_kW, High_daytime_use, medium_consumption] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, High_daytime_use, medium_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, High_daytime_use, medium_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, High_daytime_use, medium_consumption, thirty_kWh] - 

PV_aging[Less_than_2_kW, High_daytime_use, medium_consumption]) * dt 

INIT dwellings_with_PV_only[Less_than_2_kW, High_daytime_use, medium_consumption] = 0 

dwellings_with_PV_only[Less_than_2_kW, High_daytime_use, high_consumption](t) = 

dwellings_with_PV_only[Less_than_2_kW, High_daytime_use, high_consumption](t - dt) + 

(PV_monthly_install_rate[Less_than_2_kW, High_daytime_use, high_consumption] + 

PV_replacement_rate[Less_than_2_kW, High_daytime_use, high_consumption] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, High_daytime_use, high_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, High_daytime_use, high_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Less_than_2_kW, High_daytime_use, high_consumption, thirty_kWh] - 

PV_aging[Less_than_2_kW, High_daytime_use, high_consumption]) * dt 

INIT dwellings_with_PV_only[Less_than_2_kW, High_daytime_use, high_consumption] = 0 

dwellings_with_PV_only[Between_2_and_4_kW, Low_daytime_use, low_consumption](t) = 

dwellings_with_PV_only[Between_2_and_4_kW, Low_daytime_use, low_consumption](t - dt) + 

(PV_monthly_install_rate[Between_2_and_4_kW, Low_daytime_use, low_consumption] + 

PV_replacement_rate[Between_2_and_4_kW, Low_daytime_use, low_consumption] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Low_daytime_use, low_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Low_daytime_use, low_consumption, fifteen_kWh] - 
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battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Low_daytime_use, low_consumption, thirty_kWh] - 

PV_aging[Between_2_and_4_kW, Low_daytime_use, low_consumption]) * dt 

INIT dwellings_with_PV_only[Between_2_and_4_kW, Low_daytime_use, low_consumption] = 0 

dwellings_with_PV_only[Between_2_and_4_kW, Low_daytime_use, medium_consumption](t) = 

dwellings_with_PV_only[Between_2_and_4_kW, Low_daytime_use, medium_consumption](t - dt) + 

(PV_monthly_install_rate[Between_2_and_4_kW, Low_daytime_use, medium_consumption] + 

PV_replacement_rate[Between_2_and_4_kW, Low_daytime_use, medium_consumption] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Low_daytime_use, medium_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Low_daytime_use, medium_consumption, fifteen_kWh] 

- battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Low_daytime_use, medium_consumption, thirty_kWh] 

- PV_aging[Between_2_and_4_kW, Low_daytime_use, medium_consumption]) * dt 

INIT dwellings_with_PV_only[Between_2_and_4_kW, Low_daytime_use, medium_consumption] = 0 

dwellings_with_PV_only[Between_2_and_4_kW, Low_daytime_use, high_consumption](t) = 

dwellings_with_PV_only[Between_2_and_4_kW, Low_daytime_use, high_consumption](t - dt) + 

(PV_monthly_install_rate[Between_2_and_4_kW, Low_daytime_use, high_consumption] + 

PV_replacement_rate[Between_2_and_4_kW, Low_daytime_use, high_consumption] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Low_daytime_use, high_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Low_daytime_use, high_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Low_daytime_use, high_consumption, thirty_kWh] - 

PV_aging[Between_2_and_4_kW, Low_daytime_use, high_consumption]) * dt 

INIT dwellings_with_PV_only[Between_2_and_4_kW, Low_daytime_use, high_consumption] = 0 

dwellings_with_PV_only[Between_2_and_4_kW, Medium_daytime_use, low_consumption](t) = 

dwellings_with_PV_only[Between_2_and_4_kW, Medium_daytime_use, low_consumption](t - dt) + 

(PV_monthly_install_rate[Between_2_and_4_kW, Medium_daytime_use, low_consumption] + 

PV_replacement_rate[Between_2_and_4_kW, Medium_daytime_use, low_consumption] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Medium_daytime_use, low_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Medium_daytime_use, low_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Medium_daytime_use, low_consumption, thirty_kWh] - 

PV_aging[Between_2_and_4_kW, Medium_daytime_use, low_consumption]) * dt 

INIT dwellings_with_PV_only[Between_2_and_4_kW, Medium_daytime_use, low_consumption] = 0 

dwellings_with_PV_only[Between_2_and_4_kW, Medium_daytime_use, medium_consumption](t) = 

dwellings_with_PV_only[Between_2_and_4_kW, Medium_daytime_use, medium_consumption](t - dt) + 

(PV_monthly_install_rate[Between_2_and_4_kW, Medium_daytime_use, medium_consumption] + 

PV_replacement_rate[Between_2_and_4_kW, Medium_daytime_use, medium_consumption] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Medium_daytime_use, medium_consumption, 

five_kWh] - battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Medium_daytime_use, 

medium_consumption, fifteen_kWh] - battery_retrofit_monthly_install_rate[Between_2_and_4_kW, 

Medium_daytime_use, medium_consumption, thirty_kWh] - PV_aging[Between_2_and_4_kW, Medium_daytime_use, 

medium_consumption]) * dt 

INIT dwellings_with_PV_only[Between_2_and_4_kW, Medium_daytime_use, medium_consumption] = 200 

dwellings_with_PV_only[Between_2_and_4_kW, Medium_daytime_use, high_consumption](t) = 

dwellings_with_PV_only[Between_2_and_4_kW, Medium_daytime_use, high_consumption](t - dt) + 

(PV_monthly_install_rate[Between_2_and_4_kW, Medium_daytime_use, high_consumption] + 

PV_replacement_rate[Between_2_and_4_kW, Medium_daytime_use, high_consumption] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Medium_daytime_use, high_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Medium_daytime_use, high_consumption, fifteen_kWh] 

- battery_retrofit_monthly_install_rate[Between_2_and_4_kW, Medium_daytime_use, high_consumption, thirty_kWh] 

- PV_aging[Between_2_and_4_kW, Medium_daytime_use, high_consumption]) * dt 

INIT dwellings_with_PV_only[Between_2_and_4_kW, Medium_daytime_use, high_consumption] = 0 

dwellings_with_PV_only[Between_2_and_4_kW, High_daytime_use, low_consumption](t) = 

dwellings_with_PV_only[Between_2_and_4_kW, High_daytime_use, low_consumption](t - dt) + 

(PV_monthly_install_rate[Between_2_and_4_kW, High_daytime_use, low_consumption] + 

PV_replacement_rate[Between_2_and_4_kW, High_daytime_use, low_consumption] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, High_daytime_use, low_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, High_daytime_use, low_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, High_daytime_use, low_consumption, thirty_kWh] - 

PV_aging[Between_2_and_4_kW, High_daytime_use, low_consumption]) * dt 

INIT dwellings_with_PV_only[Between_2_and_4_kW, High_daytime_use, low_consumption] = 0 

dwellings_with_PV_only[Between_2_and_4_kW, High_daytime_use, medium_consumption](t) = 

dwellings_with_PV_only[Between_2_and_4_kW, High_daytime_use, medium_consumption](t - dt) + 

(PV_monthly_install_rate[Between_2_and_4_kW, High_daytime_use, medium_consumption] + 
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PV_replacement_rate[Between_2_and_4_kW, High_daytime_use, medium_consumption] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, High_daytime_use, medium_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, High_daytime_use, medium_consumption, fifteen_kWh] 

- battery_retrofit_monthly_install_rate[Between_2_and_4_kW, High_daytime_use, medium_consumption, thirty_kWh] 

- PV_aging[Between_2_and_4_kW, High_daytime_use, medium_consumption]) * dt 

INIT dwellings_with_PV_only[Between_2_and_4_kW, High_daytime_use, medium_consumption] = 0 

dwellings_with_PV_only[Between_2_and_4_kW, High_daytime_use, high_consumption](t) = 

dwellings_with_PV_only[Between_2_and_4_kW, High_daytime_use, high_consumption](t - dt) + 

(PV_monthly_install_rate[Between_2_and_4_kW, High_daytime_use, high_consumption] + 

PV_replacement_rate[Between_2_and_4_kW, High_daytime_use, high_consumption] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, High_daytime_use, high_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, High_daytime_use, high_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Between_2_and_4_kW, High_daytime_use, high_consumption, thirty_kWh] - 

PV_aging[Between_2_and_4_kW, High_daytime_use, high_consumption]) * dt 

INIT dwellings_with_PV_only[Between_2_and_4_kW, High_daytime_use, high_consumption] = 0 

dwellings_with_PV_only[Between_4_and_6kW, Low_daytime_use, low_consumption](t) = 

dwellings_with_PV_only[Between_4_and_6kW, Low_daytime_use, low_consumption](t - dt) + 

(PV_monthly_install_rate[Between_4_and_6kW, Low_daytime_use, low_consumption] + 

PV_replacement_rate[Between_4_and_6kW, Low_daytime_use, low_consumption] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, Low_daytime_use, low_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, Low_daytime_use, low_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, Low_daytime_use, low_consumption, thirty_kWh] - 

PV_aging[Between_4_and_6kW, Low_daytime_use, low_consumption]) * dt 

INIT dwellings_with_PV_only[Between_4_and_6kW, Low_daytime_use, low_consumption] = 0 

dwellings_with_PV_only[Between_4_and_6kW, Low_daytime_use, medium_consumption](t) = 

dwellings_with_PV_only[Between_4_and_6kW, Low_daytime_use, medium_consumption](t - dt) + 

(PV_monthly_install_rate[Between_4_and_6kW, Low_daytime_use, medium_consumption] + 

PV_replacement_rate[Between_4_and_6kW, Low_daytime_use, medium_consumption] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, Low_daytime_use, medium_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, Low_daytime_use, medium_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, Low_daytime_use, medium_consumption, thirty_kWh] - 

PV_aging[Between_4_and_6kW, Low_daytime_use, medium_consumption]) * dt 

INIT dwellings_with_PV_only[Between_4_and_6kW, Low_daytime_use, medium_consumption] = 0 

dwellings_with_PV_only[Between_4_and_6kW, Low_daytime_use, high_consumption](t) = 

dwellings_with_PV_only[Between_4_and_6kW, Low_daytime_use, high_consumption](t - dt) + 

(PV_monthly_install_rate[Between_4_and_6kW, Low_daytime_use, high_consumption] + 

PV_replacement_rate[Between_4_and_6kW, Low_daytime_use, high_consumption] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, Low_daytime_use, high_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, Low_daytime_use, high_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, Low_daytime_use, high_consumption, thirty_kWh] - 

PV_aging[Between_4_and_6kW, Low_daytime_use, high_consumption]) * dt 

INIT dwellings_with_PV_only[Between_4_and_6kW, Low_daytime_use, high_consumption] = 0 

dwellings_with_PV_only[Between_4_and_6kW, Medium_daytime_use, low_consumption](t) = 

dwellings_with_PV_only[Between_4_and_6kW, Medium_daytime_use, low_consumption](t - dt) + 

(PV_monthly_install_rate[Between_4_and_6kW, Medium_daytime_use, low_consumption] + 

PV_replacement_rate[Between_4_and_6kW, Medium_daytime_use, low_consumption] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, Medium_daytime_use, low_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, Medium_daytime_use, low_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, Medium_daytime_use, low_consumption, thirty_kWh] - 

PV_aging[Between_4_and_6kW, Medium_daytime_use, low_consumption]) * dt 

INIT dwellings_with_PV_only[Between_4_and_6kW, Medium_daytime_use, low_consumption] = 0 

dwellings_with_PV_only[Between_4_and_6kW, Medium_daytime_use, medium_consumption](t) = 

dwellings_with_PV_only[Between_4_and_6kW, Medium_daytime_use, medium_consumption](t - dt) + 

(PV_monthly_install_rate[Between_4_and_6kW, Medium_daytime_use, medium_consumption] + 

PV_replacement_rate[Between_4_and_6kW, Medium_daytime_use, medium_consumption] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, Medium_daytime_use, medium_consumption, five_kWh] 

- battery_retrofit_monthly_install_rate[Between_4_and_6kW, Medium_daytime_use, medium_consumption, 

fifteen_kWh] - battery_retrofit_monthly_install_rate[Between_4_and_6kW, Medium_daytime_use, 

medium_consumption, thirty_kWh] - PV_aging[Between_4_and_6kW, Medium_daytime_use, medium_consumption]) 

* dt 

INIT dwellings_with_PV_only[Between_4_and_6kW, Medium_daytime_use, medium_consumption] = 16 
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dwellings_with_PV_only[Between_4_and_6kW, Medium_daytime_use, high_consumption](t) = 

dwellings_with_PV_only[Between_4_and_6kW, Medium_daytime_use, high_consumption](t - dt) + 

(PV_monthly_install_rate[Between_4_and_6kW, Medium_daytime_use, high_consumption] + 

PV_replacement_rate[Between_4_and_6kW, Medium_daytime_use, high_consumption] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, Medium_daytime_use, high_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, Medium_daytime_use, high_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, Medium_daytime_use, high_consumption, thirty_kWh] - 

PV_aging[Between_4_and_6kW, Medium_daytime_use, high_consumption]) * dt 

INIT dwellings_with_PV_only[Between_4_and_6kW, Medium_daytime_use, high_consumption] = 0 

dwellings_with_PV_only[Between_4_and_6kW, High_daytime_use, low_consumption](t) = 

dwellings_with_PV_only[Between_4_and_6kW, High_daytime_use, low_consumption](t - dt) + 

(PV_monthly_install_rate[Between_4_and_6kW, High_daytime_use, low_consumption] + 

PV_replacement_rate[Between_4_and_6kW, High_daytime_use, low_consumption] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, High_daytime_use, low_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, High_daytime_use, low_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, High_daytime_use, low_consumption, thirty_kWh] - 

PV_aging[Between_4_and_6kW, High_daytime_use, low_consumption]) * dt 

INIT dwellings_with_PV_only[Between_4_and_6kW, High_daytime_use, low_consumption] = 0 

dwellings_with_PV_only[Between_4_and_6kW, High_daytime_use, medium_consumption](t) = 

dwellings_with_PV_only[Between_4_and_6kW, High_daytime_use, medium_consumption](t - dt) + 

(PV_monthly_install_rate[Between_4_and_6kW, High_daytime_use, medium_consumption] + 

PV_replacement_rate[Between_4_and_6kW, High_daytime_use, medium_consumption] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, High_daytime_use, medium_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, High_daytime_use, medium_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, High_daytime_use, medium_consumption, thirty_kWh] - 

PV_aging[Between_4_and_6kW, High_daytime_use, medium_consumption]) * dt 

INIT dwellings_with_PV_only[Between_4_and_6kW, High_daytime_use, medium_consumption] = 0 

dwellings_with_PV_only[Between_4_and_6kW, High_daytime_use, high_consumption](t) = 

dwellings_with_PV_only[Between_4_and_6kW, High_daytime_use, high_consumption](t - dt) + 

(PV_monthly_install_rate[Between_4_and_6kW, High_daytime_use, high_consumption] + 

PV_replacement_rate[Between_4_and_6kW, High_daytime_use, high_consumption] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, High_daytime_use, high_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, High_daytime_use, high_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Between_4_and_6kW, High_daytime_use, high_consumption, thirty_kWh] - 

PV_aging[Between_4_and_6kW, High_daytime_use, high_consumption]) * dt 

INIT dwellings_with_PV_only[Between_4_and_6kW, High_daytime_use, high_consumption] = 0 

dwellings_with_PV_only[Between_8_and_10kW, Low_daytime_use, low_consumption](t) = 

dwellings_with_PV_only[Between_8_and_10kW, Low_daytime_use, low_consumption](t - dt) + 

(PV_monthly_install_rate[Between_8_and_10kW, Low_daytime_use, low_consumption] + 

PV_replacement_rate[Between_8_and_10kW, Low_daytime_use, low_consumption] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, Low_daytime_use, low_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, Low_daytime_use, low_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, Low_daytime_use, low_consumption, thirty_kWh] - 

PV_aging[Between_8_and_10kW, Low_daytime_use, low_consumption]) * dt 

INIT dwellings_with_PV_only[Between_8_and_10kW, Low_daytime_use, low_consumption] = 0 

dwellings_with_PV_only[Between_8_and_10kW, Low_daytime_use, medium_consumption](t) = 

dwellings_with_PV_only[Between_8_and_10kW, Low_daytime_use, medium_consumption](t - dt) + 

(PV_monthly_install_rate[Between_8_and_10kW, Low_daytime_use, medium_consumption] + 

PV_replacement_rate[Between_8_and_10kW, Low_daytime_use, medium_consumption] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, Low_daytime_use, medium_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, Low_daytime_use, medium_consumption, fifteen_kWh] 

- battery_retrofit_monthly_install_rate[Between_8_and_10kW, Low_daytime_use, medium_consumption, thirty_kWh] 

- PV_aging[Between_8_and_10kW, Low_daytime_use, medium_consumption]) * dt 

INIT dwellings_with_PV_only[Between_8_and_10kW, Low_daytime_use, medium_consumption] = 0 

dwellings_with_PV_only[Between_8_and_10kW, Low_daytime_use, high_consumption](t) = 

dwellings_with_PV_only[Between_8_and_10kW, Low_daytime_use, high_consumption](t - dt) + 

(PV_monthly_install_rate[Between_8_and_10kW, Low_daytime_use, high_consumption] + 

PV_replacement_rate[Between_8_and_10kW, Low_daytime_use, high_consumption] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, Low_daytime_use, high_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, Low_daytime_use, high_consumption, fifteen_kWh] - 
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battery_retrofit_monthly_install_rate[Between_8_and_10kW, Low_daytime_use, high_consumption, thirty_kWh] - 

PV_aging[Between_8_and_10kW, Low_daytime_use, high_consumption]) * dt 

INIT dwellings_with_PV_only[Between_8_and_10kW, Low_daytime_use, high_consumption] = 0 

dwellings_with_PV_only[Between_8_and_10kW, Medium_daytime_use, low_consumption](t) = 

dwellings_with_PV_only[Between_8_and_10kW, Medium_daytime_use, low_consumption](t - dt) + 

(PV_monthly_install_rate[Between_8_and_10kW, Medium_daytime_use, low_consumption] + 

PV_replacement_rate[Between_8_and_10kW, Medium_daytime_use, low_consumption] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, Medium_daytime_use, low_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, Medium_daytime_use, low_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, Medium_daytime_use, low_consumption, thirty_kWh] - 

PV_aging[Between_8_and_10kW, Medium_daytime_use, low_consumption]) * dt 

INIT dwellings_with_PV_only[Between_8_and_10kW, Medium_daytime_use, low_consumption] = 0 

dwellings_with_PV_only[Between_8_and_10kW, Medium_daytime_use, medium_consumption](t) = 

dwellings_with_PV_only[Between_8_and_10kW, Medium_daytime_use, medium_consumption](t - dt) + 

(PV_monthly_install_rate[Between_8_and_10kW, Medium_daytime_use, medium_consumption] + 

PV_replacement_rate[Between_8_and_10kW, Medium_daytime_use, medium_consumption] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, Medium_daytime_use, medium_consumption, 

five_kWh] - battery_retrofit_monthly_install_rate[Between_8_and_10kW, Medium_daytime_use, 

medium_consumption, fifteen_kWh] - battery_retrofit_monthly_install_rate[Between_8_and_10kW, 

Medium_daytime_use, medium_consumption, thirty_kWh] - PV_aging[Between_8_and_10kW, Medium_daytime_use, 

medium_consumption]) * dt 

INIT dwellings_with_PV_only[Between_8_and_10kW, Medium_daytime_use, medium_consumption] = 0 

dwellings_with_PV_only[Between_8_and_10kW, Medium_daytime_use, high_consumption](t) = 

dwellings_with_PV_only[Between_8_and_10kW, Medium_daytime_use, high_consumption](t - dt) + 

(PV_monthly_install_rate[Between_8_and_10kW, Medium_daytime_use, high_consumption] + 

PV_replacement_rate[Between_8_and_10kW, Medium_daytime_use, high_consumption] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, Medium_daytime_use, high_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, Medium_daytime_use, high_consumption, fifteen_kWh] 

- battery_retrofit_monthly_install_rate[Between_8_and_10kW, Medium_daytime_use, high_consumption, thirty_kWh] 

- PV_aging[Between_8_and_10kW, Medium_daytime_use, high_consumption]) * dt 

INIT dwellings_with_PV_only[Between_8_and_10kW, Medium_daytime_use, high_consumption] = 0 

dwellings_with_PV_only[Between_8_and_10kW, High_daytime_use, low_consumption](t) = 

dwellings_with_PV_only[Between_8_and_10kW, High_daytime_use, low_consumption](t - dt) + 

(PV_monthly_install_rate[Between_8_and_10kW, High_daytime_use, low_consumption] + 

PV_replacement_rate[Between_8_and_10kW, High_daytime_use, low_consumption] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, High_daytime_use, low_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, High_daytime_use, low_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, High_daytime_use, low_consumption, thirty_kWh] - 

PV_aging[Between_8_and_10kW, High_daytime_use, low_consumption]) * dt 

INIT dwellings_with_PV_only[Between_8_and_10kW, High_daytime_use, low_consumption] = 0 

dwellings_with_PV_only[Between_8_and_10kW, High_daytime_use, medium_consumption](t) = 

dwellings_with_PV_only[Between_8_and_10kW, High_daytime_use, medium_consumption](t - dt) + 

(PV_monthly_install_rate[Between_8_and_10kW, High_daytime_use, medium_consumption] + 

PV_replacement_rate[Between_8_and_10kW, High_daytime_use, medium_consumption] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, High_daytime_use, medium_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, High_daytime_use, medium_consumption, fifteen_kWh] 

- battery_retrofit_monthly_install_rate[Between_8_and_10kW, High_daytime_use, medium_consumption, thirty_kWh] 

- PV_aging[Between_8_and_10kW, High_daytime_use, medium_consumption]) * dt 

INIT dwellings_with_PV_only[Between_8_and_10kW, High_daytime_use, medium_consumption] = 0 

dwellings_with_PV_only[Between_8_and_10kW, High_daytime_use, high_consumption](t) = 

dwellings_with_PV_only[Between_8_and_10kW, High_daytime_use, high_consumption](t - dt) + 

(PV_monthly_install_rate[Between_8_and_10kW, High_daytime_use, high_consumption] + 

PV_replacement_rate[Between_8_and_10kW, High_daytime_use, high_consumption] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, High_daytime_use, high_consumption, five_kWh] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, High_daytime_use, high_consumption, fifteen_kWh] - 

battery_retrofit_monthly_install_rate[Between_8_and_10kW, High_daytime_use, high_consumption, thirty_kWh] - 

PV_aging[Between_8_and_10kW, High_daytime_use, high_consumption]) * dt 

INIT dwellings_with_PV_only[Between_8_and_10kW, High_daytime_use, high_consumption] = 0 

INFLOWS: 

PV_monthly_install_rate[PV_size, Loadprofile, Electricityconsumption] = 

eligible_prosumer_dwellings*PV_adoption_fraction*effect_of_saturation_on_install_rate 



 

269 

 

PV_replacement_rate[PV_size, Loadprofile, Electricityconsumption] = 

PV_replacement_install_rate[PV_size]*dwellings_with_old_PV 

OUTFLOWS: 

battery_retrofit_monthly_install_rate[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

(battery_retrofit_adoption_fraction *SUM(dwellings_with_PV_only)) * (1-

proportion_of_PV_dwellings_on_premium_FIT_by_PV_size[PV_size, Loadprofile, Electricityconsumption]) 

PV_aging[PV_size, Loadprofile, Electricityconsumption] = IF TIME >132 THEN 

dwellings_with_PV_only/PV_lifespan ELSE 0 

dwellings_with_retrofit_PV_&_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size](t) = 

dwellings_with_retrofit_PV_&_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size](t - dt) + 

(retrofit_battery_replacement_rate[PV_size, Loadprofile, Electricityconsumption, Battery_size] + 

battery_retrofit_monthly_install_rate[PV_size, Loadprofile, Electricityconsumption, Battery_size] - 

retrofit_battery_aging[PV_size, Loadprofile, Electricityconsumption, Battery_size]) * dt 

INIT dwellings_with_retrofit_PV_&_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 0 

INFLOWS: 

retrofit_battery_replacement_rate[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

(retrofit_dwellings_with_old_battery*battery_replacement_install_rate) 

battery_retrofit_monthly_install_rate[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

(battery_retrofit_adoption_fraction *SUM(dwellings_with_PV_only)) * (1-

proportion_of_PV_dwellings_on_premium_FIT_by_PV_size[PV_size, Loadprofile, Electricityconsumption]) 

OUTFLOWS: 

retrofit_battery_aging[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

dwellings_with_retrofit_PV_&_battery/battery_lifespan 

effect_of_saturation_on_install_rate = GRAPH(total_prosumer_dwellings/dwellings_suitable_for_PV) 

(0.000, 1.000), (0.100, 1.000), (0.200, 1.000), (0.300, 1.000), (0.400, 1.000), (0.500, 1.000), (0.600, 0.950), (0.700, 

0.900), (0.800, 0.850), (0.900, 0.750), (1.000, 0.000) 

maximum_dwellings_on_premium_FiT = ROUND (IF TIME >=30 AND TIME <=83 THEN 

SUM(dwellings_receiving_premium_FiT) ELSE 0) 

proportion_of_PV_dwellings_on_premium_FIT_by_PV_size[PV_size, Loadprofile, Electricityconsumption] = IF 

dwellings_with_PV_only <=0 THEN 0 ELSE dwellings_receiving_premium_FiT/dwellings_with_PV_only 

PV_lifespan = 25*12 

PV_replacement_install_rate[Less_than_2_kW] = 0 

PV_replacement_install_rate[Between_2_and_4_kW] = 0.1/12 

PV_replacement_install_rate[Between_4_and_6kW] = 0.1/12 

PV_replacement_install_rate[Between_8_and_10kW] = 0.1/12 

retrofit_dwellings_with_old_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size](t) = 

retrofit_dwellings_with_old_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size](t - dt) + 

(retrofit_battery_aging[PV_size, Loadprofile, Electricityconsumption, Battery_size] - 

retrofit_battery_replacement_rate[PV_size, Loadprofile, Electricityconsumption, Battery_size]) * dt 

INIT retrofit_dwellings_with_old_battery[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 0 

INFLOWS: 

retrofit_battery_aging[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

dwellings_with_retrofit_PV_&_battery/battery_lifespan 

OUTFLOWS: 

retrofit_battery_replacement_rate[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

(retrofit_dwellings_with_old_battery*battery_replacement_install_rate) 
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6. Adoption characteristics for PV and battery system types 

Key assumptions 

• This sector is primarily used to calculate model outputs regarding total numbers of PV and 

battery dwellings, numbers of system by size, capacity etc.  

• Assumptions regarding ‘possible off-grid systems’ are included in this sector. They are based on 

specific system configurations based on household consumption, minimum PV size (5kW) and 

minimum battery size (15kWh). To be eligible, these dwellings must have zero grid demand 

along with unused PV capacity.  

 

Representation in Stella 

 

********** 
Adoption_characteristics_for_PV_and_battery_system_types: 

********** 
all_battery_dwellings = ROUND (total_retrofit_dwellings+total_bundle_dwellings) 

all_PV_only_dwellings = SUM(arrayed_sum_PV_only_dwellings) 

arrayed_sum_all_batteries[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

arrayed_sum_retrofit+arrayed_sum_bundle 

arrayed_sum_bundle[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

bundled_dwellings_with_old_battery+dwellings_with_bundled_PV_&_battery 
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arrayed_sum_PV_only_dwellings[PV_size, Loadprofile, Electricityconsumption] = 

dwellings_with_old_PV+dwellings_with_PV_only 

arrayed_sum_retrofit[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

dwellings_with_retrofit_PV_&_battery+retrofit_dwellings_with_old_battery 

installed_PV_by_size_for_bundle[PV_size] = SUM(dwellings_with_bundled_PV_&_battery[PV_size, *, *, 

*])+SUM(bundled_dwellings_with_old_battery[PV_size, *, *, *]) 

installed_PV_by_size_for_retofit[PV_size] = SUM(retrofit_dwellings_with_old_battery[PV_size, *, *, *]) + 

SUM(dwellings_with_retrofit_PV_&_battery[PV_size, *, *, *]) 

mean_battery_size_kWh = SAFEDIV(total_MWh_of_battery_storage*1000, all_battery_dwellings) 

monthly_battery_install_rate[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

bundled_PV_&_battery_install_rate+battery_retrofit_monthly_install_rate 

"monthly_install_rate_possible_off-grid" = SUM(monthly_battery_install_rate[Between_8_and_10kW, *, *, *])-

SUM(monthly_battery_install_rate[Between_8_and_10kW, *, *, five_kWh]) + 

SUM(monthly_battery_install_rate[Between_4_and_6kW, *, low_consumption, fifteen_kWh]) + 

SUM(monthly_battery_install_rate[Between_4_and_6kW, *, medium_consumption, fifteen_kWh]) + 

SUM(monthly_battery_install_rate[Between_4_and_6kW, *, low_consumption, thirty_kWh]) 

"possible_off-grid_systems"(t) = "possible_off-grid_systems"(t - dt) + (off_grid_install_rate) * dt 

INIT "possible_off-grid_systems" = 0 

INFLOWS: 

off_grid_install_rate <-- bundled_battery_payback_period: 

sum_bundle_battery_size[Battery_size] = SUM(dwellings_with_bundled_PV_&_battery[*, *, *, Battery_size]) + 

SUM(bundled_dwellings_with_old_battery[*, *, *, Battery_size]) 

sum_kW_of_PV_by_size_for_battery_dwellings[Less_than_2_kW] = 

1.5*sum_total_PV_sizes_for_all_battery_dwellings[Less_than_2_kW] 

sum_kW_of_PV_by_size_for_battery_dwellings[Between_2_and_4_kW] = 

3*sum_total_PV_sizes_for_all_battery_dwellings[Between_2_and_4_kW] 

sum_kW_of_PV_by_size_for_battery_dwellings[Between_4_and_6kW] = 

5*sum_total_PV_sizes_for_all_battery_dwellings[Between_4_and_6kW] 

sum_kW_of_PV_by_size_for_battery_dwellings[Between_8_and_10kW] = 

10*sum_total_PV_sizes_for_all_battery_dwellings[Between_8_and_10kW] 

sum_kW_of_PV_by_size_for_PV_only_dwellings[Less_than_2_kW] = 

(SUM(dwellings_with_PV_only[Less_than_2_kW, *, *]) + SUM(dwellings_with_old_PV[Less_than_2_kW, *, *]) ) 

*1.5 

sum_kW_of_PV_by_size_for_PV_only_dwellings[Between_2_and_4_kW] = ( 

SUM(dwellings_with_PV_only[Between_2_and_4_kW, *, *]) + 

SUM(dwellings_with_old_PV[Between_2_and_4_kW, *, *])) *3 

sum_kW_of_PV_by_size_for_PV_only_dwellings[Between_4_and_6kW] = 

(SUM(dwellings_with_PV_only[Between_4_and_6kW, *, *]) + SUM(dwellings_with_old_PV[Between_4_and_6kW, 

*, *])) *5 

sum_kW_of_PV_by_size_for_PV_only_dwellings[Between_8_and_10kW] = 

(SUM(dwellings_with_PV_only[Between_8_and_10kW, *, *]) + 

SUM(dwellings_with_old_PV[Between_8_and_10kW, *, *])) *10 

sum_kWh_of_battery_storage_by_size[five_kWh] = 4*sum_of_battery_sizes[five_kWh] 

sum_kWh_of_battery_storage_by_size[fifteen_kWh] = 12*sum_of_battery_sizes[fifteen_kWh] 

sum_kWh_of_battery_storage_by_size[thirty_kWh] = 24*sum_of_battery_sizes[thirty_kWh] 

sum_of_battery_sizes[Battery_size] = sum_retrofit_battery_size+sum_bundle_battery_size 

sum_PV_sizes[PV_size] = SUM(dwellings_with_PV_only[PV_size, *, *])+SUM(dwellings_with_old_PV[PV_size, *, 

*]) 

sum_PV_sizes_all_dwellings[PV_size] = sum_PV_sizes+sum_total_PV_sizes_for_all_battery_dwellings 

sum_retrofit_battery_size[Battery_size] = SUM(retrofit_dwellings_with_old_battery[*, *, *, 

Battery_size])+SUM(dwellings_with_retrofit_PV_&_battery[*, *, *, Battery_size]) 

sum_total_PV_installs_on_all_prosumer_dwellings = SUM(sum_PV_sizes_all_dwellings) 

sum_total_PV_sizes_for_all_battery_dwellings[PV_size] = 

installed_PV_by_size_for_retofit+installed_PV_by_size_for_bundle 

total_bundle_dwellings = SUM(arrayed_sum_bundle) 

total_installed_PV_only_dwellings_MW = SUM(sum_kW_of_PV_by_size_for_PV_only_dwellings)/1000 

total_MWh_of_battery_storage = SUM(sum_kWh_of_battery_storage_by_size)/1000 

total_PV_on_all_dwellings_MW = ROUND 

(total_installed_PV_only_dwellings_MW+total_PV_on_battery_dwellings_MW) 

total_PV_on_battery_dwellings_MW = SUM(sum_kW_of_PV_by_size_for_battery_dwellings)/1000 

total_retrofit_dwellings = SUM(arrayed_sum_retrofit) 
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7. Retail price sectors 

Two broad assumptions must be noted. 

• Firstly, there are numerous components comprising the variable and fixed retail electricity price. 

The inclusion of various elements and their values were subject to change on a yearly basis 

depending on the final decision made by the QCA. The values used in this model have therefore 

been made to best reflect the findings in each QCA determination from 2005-06 until 2016-17 

(all of which can be sourced from http://www.qca.org.au/electricity).  

• Following the deregulation of the SEQ market, many consumers in SEQ are now on ‘market 

contracts’. To attract customers, retailers can provide discounts, which on average means that 

market contracts can be approximately 5% less than notified prices (QCA 2016c). As these 

discounts vary considerably and as not all consumers take advantage of them (for example they 

are not available to many consumers outside SEQ), they are excluded.  

 

7.1. Variable retail tariff 

Key assumptions 

• Comprises both ‘total energy costs’ and ‘total variable network costs’ which are described 

separately below. 

• Headroom of 5% is applied to all variable costs (i.e. energy and network costs). The retail 

margin of 5.7% is then applied to the total. From 2016, a retail standing offer adjustment was 

included in variable retail prices. 

• ‘BRCI adjustment’ is a graphical function that reflects the difference between the building block 

approach used by the QCA and the final ‘variable retail tariff’. This difference frequently 

occurred as a result of government intervention in electricity price setting to achieve different 

policy outcomes. From 2015-16, and following a transitional period aimed at achieving cost-

reflectivity, it is assumed that for the rest of the simulation period the retail tariff will be based 

only on the building block approach.  

 

 

 

 

 

 

 

 

http://www.qca.org.au/electricity
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Representation in Stella 

 

 

********** 

Variable_retail_tariff: 

********** 

BRCI_adjustment = GRAPH(TIME) 

(0.0, 1.0519), (6.0, 1.0556), (12.0, 1.0593), (18.0, 1.1439), (24.0, 1.1483), (30.0, 1.1528), (36.0, 1.1571), (42.0, 1.1887),  

(48.0, 1.1926), (54.0, 1.2351), (60.0, 1.2359), (66.0, 1.2129), (72.0, 1.1992), (78.0, 1.2927), (84.0, 1.2836), (90.0, 

1.134), (96.0, 1.1277), (102.0, 0.9544), (108.0, 0.9511), (114.0, 0.986), (120.0, 0.9824), (126.0, 0.999), (132.0, 0.9954), 

(138.0, 1.000), (144.0, 1.000), (150.0, 1.000), (156.0, 1.000), (162.0, 1.000), (168.0, 1.000), (174.0, 1.000), (180.0, 

1.000), (186.0, 1.000), (192.0, 1.000), (198.0, 1.000), (204.0, 1.000), (210.0, 1.000), (216.0, 1.000), (222.0, 1.000), 

(228.0, 1.000), (234.0, 1.000), (240.0, 1.000), (246.0, 1.000), (252.0, 1.000), (258.0, 1.000), (264.0, 1.000), (270.0, 

1.000), (276.0, 1.000), (282.0, 1.000), (288.0, 1.000), (294.0, 1.000), (300.0, 1.000), (306.0, 1.000), (312.0, 1.000), 

(318.0, 1.000), (324.0, 1.000), (330.0, 1.000), (336.0, 1.000), (342.0, 1.000), (348.0, 1.000), (354.0, 1.000), (360.0, 

1.000), (366.0, 1.000), (372.0, 1.000) 

energy_cost_component_kWh = total_energy_costs/1000 

network_cost_component_kWh = total_variable_network_costs/1000 

retail_headroom = IF TIME  <90 THEN 0  ELSE  IF TIME  >= 90   THEN  .05  ELSE 0 

retail_margin = 1.057 

retail_standing_offer_adjustment = IF TIME < 126 THEN 0  ELSE IF TIME >=126  THEN 0.00172  ELSE 0 

retail_variable_component = IF TIME < 42  THEN 0.0056  ELSE IF TIME >=42 AND TIME < 54  THEN 0.0059  

ELSE IF TIME >=54 AND TIME < 66  THEN 0.0067  ELSE IF TIME >=66 AND TIME < 90  THEN 0.0073  ELSE 

IF TIME >= 90 AND TIME < 138  THEN  variable_tariff_without_retail*retail_headroom  ELSE  IF TIME >= 138  

THEN  variable_tariff_without_retail*retail_headroom +.0117  ELSE  0 

variable_retail_tariff_including_gst = variable_tariff*1.1 

variable_tariff = variable_tariff_with_retail_not_including_retail_margin*retail_margin*BRCI_adjustment 

variable_tariff_with_retail_not_including_retail_margin = 

variable_tariff_without_retail+(retail_variable_component)+retail_standing_offer_adjustment 

variable_tariff_without_retail = energy_cost_component_kWh+network_cost_component_kWh 
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7.2. Energy costs 

Key assumptions 

• Refers to the costs of generating electricity in the NEM.  

• Historical data for ‘wholesale energy costs’ is sourced from actual data used in QCA 

determinations. Future projections are based on government commissioned modelling and 

assume real wholesale price increases of 2.1% per annum  (QPC 2016a). 

• ‘clean energy schemes’ include the costs imposed on the generation sector from the Queensland 

Gas Scheme, the Carbon Pricing Mechanism, the national Renewable Energy Target. Data is 

sourced from annual QCA determinations. For future projections, costs associated with the RET 

(the only remaining clean energy scheme) are assumed to remain at 2016 prices in real terms 

until its closure in 2030, at which point the cost returns to zero. The base-case model assumes 

no carbon pricing mechanism 

• ‘Market fees, ancillary services, charges and losses’ are levied on retailers to cover the costs of 

operating the NEM and paying for services used to manage power system security, reliability 

and safety (QCA 2016c). Historical data included in the model is sourced from actual data used 

in QCA determinations with future projected costs remaining at 2016 prices in real terms until 

the end of the simulation period. 

 

Representation in Stella 

 

********** 

Energy_costs: 

********** 

clean_energy_schemes = GRAPH(TIME) 

(0.0, 2.99), (6.0, 2.99), (12.0, 2.99), (18.0, 3.37), (24.0, 3.37), (30.0, 3.64), (36.0, 3.64), (42.0, 4.99), (48.0, 4.99), (54.0, 

4.34), (60.0, 4.34), (66.0, 8.37), (72.0, 8.37), (78.0, 8.37), (84.0, 8.37), (90.0, 10.14), (96.0, 10.14), (102.0, 8.13), 
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(108.0, 8.13), (114.0, 8.72), (120.0, 8.72), (126.0, 8.00), (132.0, 8.00), (138.0, 8.00), (144.0, 8.00), (150.0, 8.00), (156.0, 

8.00), (162.0, 8.00), (168.0, 8.00), (174.0, 8.00), (180.0, 8.00), (186.0, 8.00), (192.0, 8.00), (198.0, 8.00), (204.0, 8.00) , 

(210.0, 8.00), (216.0, 8.00), (222.0, 8.00), (228.0, 8.00), (234.0, 8.00), (240.0, 8.00), (246.0, 8.00), (252.0, 8.00), (258.0, 

8.00), (264.0, 8.00), (270.0, 8.00), (276.0, 8.00), (282.0, 8.00), (288.0, 8.00), (294.0, 0.00), (300.0, 0.00), (306.0, 0.00) , 

(312.0, 0.00), (318.0, 0.00), (324.0, 0.00), (330.0, 0.00), (336.0, 0.00), (342.0, 0.00), (348.0, 0.00), (354.0, 0.00), (360.0, 

0.00), (366.0, 0.00), (372.0, 0.00) 

"market_fees,_ancillary_service_charges_and_losses" = GRAPH(TIME) 

(0.0, 0.61), (6.0, 0.61), (12.0, 0.61), (18.0, 0.63), (24.0, 0.63), (30.0, 0.71), (36.0, 0.71), (42.0, 0.73), (48.0, 0.73), (54.0, 

0.73), (60.0, 0.73), (66.0, 0.84), (72.0, 0.84), (78.0, 0.84), (84.0, 0.84), (90.0, 7.14), (96.0, 7.14), (102.0, 8.31), (108.0, 

8.31), (114.0, 5.58), (120.0, 5.58), (126.0, 7.56), (132.0, 7.56), (138.0, 7.00), (144.0, 7.00), (150.0, 7.00), (156.0, 7.00), 

(162.0, 7.00), (168.0, 7.00), (174.0, 7.00), (180.0, 7.00), (186.0, 7.00), (192.0, 7.00), (198.0, 7.00), (204.0, 7.00), (210.0, 

7.00), (216.0, 7.00), (222.0, 7.00), (228.0, 7.00), (234.0, 7.00), (240.0, 7.00), (246.0, 7.00), (252.0, 7.00), (258.0, 7.00), 

(264.0, 7.00), (270.0, 7.00), (276.0, 7.00), (282.0, 7.00), (288.0, 7.00), (294.0, 7.00), (300.0, 7.00), (306.0, 7.00), (312.0, 

7.00), (318.0, 7.00), (324.0, 7.00), (330.0, 7.00), (336.0, 7.00), (342.0, 7.00), (348.0, 7.00), (354.0, 7.00), (360.0, 7.00), 

(366.0, 7.00), (372.0, 7.00) 

total_energy_costs = 

clean_energy_schemes+"market_fees,_ancillary_service_charges_and_losses"+wholesale_energy_costs 

wholesale_energy_costs = GRAPH(TIME) 

(0.0, 52.3), (6.0, 52.3), (12.0, 52.3), (18.0, 49.4), (24.0, 49.4), (30.0, 50.31), (36.0, 50.31), (42.0, 55.49), (48.0, 55.49), 

(54.0, 58.55), (60.0, 58.55), (66.0, 55.47), (72.0, 55.47), (78.0, 55.47), (84.0, 55.47), (90.0, 69.43),  (96.0, 69.43), (102.0, 

84.38), (108.0, 84.38), (114.0, 63.73), (120.0, 63.73), (126.0, 75.32), (132.0, 75.32), (138.0, 75.7), (144.0, 77.1), (150.0,  

77.5), (156.0, 78.3), (162.0, 79.1), (168.0, 80.5), (174.0, 81.7), (180.0, 82.3), (186.0, 82.9), (192.0, 83.1), (198.0, 83.7), 

(204.0, 84.3), (210.0, 84.9), (216.0, 85.7), (222.0, 86.9), (228.0, 87.8), (234.0, 88.4), (240.0, 89.0), (246.0, 89.8), (252.0, 

90.6), (258.0, 91.2), (264.0, 92.0), (270.0, 92.8), (276.0, 93.4), (282.0, 93.8), (288.0, 94.8), (294.0, 96.0), (300.0, 97.2), 

(306.0, 98.0), (312.0, 99.4), (318.0, 100.6), (324.0, 101.6), (330.0, 102.8), (336.0, 104.0), (342.0, 105.2), (348.0, 106.0),  

(354.0, 106.6), (360.0, 107.6), (366.0, 109.0), (372.0, 109.0) 

 

 

7.3. Variable network costs 

Key assumptions 

• In Queensland, Energex network tariffs are used as the basis for the distribution network 

component of notified prices for residential customers. These include their own distribution 

network costs (Distribution Use of System (DUOS) along with a pass-through of Powerlink's 

transmission network costs (Transmission Use of System (TUOS) (QCA 2016c).  

• To recover their costs as regulated entities, network businesses are allocated an annual revenue 

cap from the AER referred to as Total Allowed Revenue (TAR). 

• The TAR is recovered from the various customer classes through network tariffs which are 

structured to ensure the network business can recover regulated revenue across their entire 

customer base.  

• The model is structured so that the residential proportion of the distribution and transmission 

TAR is allocated in the correct proportions to a single residential network tariff. These 

proportions are calculated using values based on analysis of tariff cost allocations (from 

Energex network pricing proposals - specifically Standard Asset Classes – non-demand) and 

raw data sourced from AER network benchmarking data (AER 2015b; Energex 2016b).  



 

276 

 

• Historical data for the TAR for both Energex and Powerlink is sourced from AER regulatory 

determinations.  For future projections, data is sourced from the current AER regulatory 

determination which includes projections of the TAR for Energex until 2020 and Powerlink 

until 2023. From then on, it is assumed that minimal new network investment will be required 

to service existing customers in the short to medium term as a consequence of the large network 

infrastructure augmentation program of the past decade (QPC 2016a).  

• The model assumes that future network costs will only change as a function of population 

growth (which is correlated with changes in peak demand) and in response to the endogenous 

influence of PV and batteries which, depending on how they are integrated with the network, 

will act to put downward pressure on network costs i.e. ‘avoided network costs’.  

• The model is also structured so that the revenue allocated to the residential network tariff can be 

split into variable and fixed components. The proportions of which are based on data from QCA 

determinations and calculated in the ‘fixed network costs’ sector below.  

• The variable component is calculated by dividing Energex’s proportion of total Queensland 

residential electricity demand by the amount of revenue not recovered through fixed costs to 

calculate a network cost per MWh. 

 

Representation in Stella 
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********** 

variable_network_costs: 

********** 

actual_distribution_revenue_to_be_recovered = 

residential_proportion_of_revenue_cap_distribution*total_recoverable_revenue 

actual_transmission_revenue_to_be_recovered = 

Powerlink_TAR*residential_proportion_of_revenue_cap_transmission 

distribution_costs_per_MWh = 

revenue_recovered_through_variable_component*1000/energex_component_of_residential_grid_demand 

energex_component_of_residential_grid_demand = 

total_annual_residential_grid_demand*energex_demand_proportion 

energex_demand_proportion = 0.64 

Energex_TAR = GRAPH(TIME) 

(0.0, 683.8), (6.0, 683.8), (12.0, 683.8), (18.0, 806.5), (24.0, 806.5), (30.0, 875), (36.0, 875), (42.0, 1000.3), (48.0, 

1000.3), (54.0, 1135.1), (60.0, 1135.1), (66.0, 1272.7), (72.0, 1272.7), (78.0, 1272.7), (84.0, 1272.7), (90.0, 1700.4), 

(96.0, 1700.4), (102.0, 1925.4), (108.0, 1925.4), (114.0, 1768.4), (120.0, 1768.4), (126.0, 1701.6), (132.0, 1701.6), 

(138.0, 1638.8), (144.0, 1638.8), (150.0, 1590.4), (156.0, 1590.4), (162.0, 1577.7), (168.0, 1600), (174.0, 1600), (180.0, 

1600), (186.0, 1600), (192.0, 1600), (198.0, 1600), (204.0, 1600), (210.0, 1600), (216.0, 1600), (222.0, 1600), (228.0, 

1600), (234.0, 1600), (240.0, 1600), (246.0, 1600), (252.0, 1600), (258.0, 1600), (264.0, 1600), (270.0, 1600), (276.0, 

1600), (282.0, 1600), (288.0, 1600), (294.0, 1600), (300.0, 1600), (306.0, 1600), (312.0, 1600), (318.0, 1600), (324.0, 

1600), (330.0, 1600), (336.0, 1600), (342.0, 1600), (348.0, 1600), (354.0, 1600), (360.0, 1600), (366.0, 1600), (372.0, 

1600) 

Powerlink_TAR = GRAPH(TIME) 

(0.0, 370.1), (6.0, 370.1), (12.0, 370.1), (18.0, 412.2), (24.0, 412.2), (30.0, 454.3), (36.0, 454.3), (42.0, 525.5), (48.0, 

525.5), (54.0, 625.5), (60.0, 625.5), (66.0, 707), (72.0, 707), (78.0, 835), (84.0, 835), (90.0, 882.6), (96.0, 882.6), 

(102.0, 933), (108.0, 933), (114.0, 986.2), (120.0, 986.2), (126.0, 1042.4), (132.0, 1042.4), (138.0, 710.8), (144.0, 710), 

(150.0, 730), (156.0, 740), (162.0, 750), (168.0, 750), (174.0, 760), (180.0, 770), (186.0, 770), (192.0, 780), (198.0, 

780), (204.0, 800), (210.0, 800), (216.0, 800), (222.0, 800), (228.0, 800), (234.0, 800), (240.0, 800), (246.0, 800), 

(252.0, 800), (258.0, 800), (264.0, 800), (270.0, 800), (276.0, 800), (282.0, 800), (288.0, 800), (294.0, 800), (300.0, 

800), (306.0, 800), (312.0, 800), (318.0, 800), (324.0, 800), (330.0, 800), (336.0, 800), (342.0, 800), (348.0, 800), 

(354.0, 800), (360.0, 800), (366.0, 800), (372.0, 960) 

residential_proportion_of_revenue_cap_distribution = 0.53 

residential_proportion_of_revenue_cap_transmission = 0.25 

revenue_recovered_through_variable_component = (actual_distribution_revenue_to_be_recovered-

revenue_recovered_through_fixed_costs) 

total_recoverable_revenue = (Energex_TAR-(avoided_network_costs*0.2)) 

total_variable_network_costs = distribution_costs_per_MWh+transmission_costs_per_MWh 

transmission_costs_per_MWh = 

transmission_costs_recovered_through_variable_component*1000/energex_component_of_residential_grid_demand 

transmission_costs_recovered_through_variable_component = (actual_transmission_revenue_to_be_recovered-

powerlink_revenue_recovered_through_fixed_costs) 

 

7.4. Fixed component of retail tariff 

Key assumptions 

The fixed component of the retail tariff comprises two elements based on network costs and retail 

costs. They are described in more detail below. 

 

Representation in Stella 
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********** 

fixed_component_of_retail_tariff: 

********** 

total_annual_fixed_costs = total_daily_fixed_costs*365 

total_annual_fixed_costs_including_gst = total_annual_fixed_costs*1.1 

total_daily_fixed_costs = total_retail_component_of_daily_fixed_cost+daily_network_fixed_cost 

 

 

7.5. Fixed network costs 

Key assumptions 

• Based on data from QCA determinations, the ratio of fixed to variable costs is calculated and 

then applied against the TAR so that per dwelling daily fixed charges can be calculated (i.e. the 

proportion of the TAR allocated to fixed costs divided by numbers of residential dwellings).  

• ‘proportion of Energex revenue recovered from fixed costs’ is a graphical function representing 

the shifting proportion of costs recovered through fixed element of the tariff. It is based on 

analysis of QCA data from review of annual determinations.  For Powerlink, the proportion of 

revenue recovered through fixed costs appears to be more constant. As such ‘proportion of 

Powerlink revenue recovered through fixed costs’ is assumed to be fixed at 15%.    

 

Representation in Stella 
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********** 

Fixed_network_costs: 

********** 

annual_fixed_energex_cost_per_customer = 

(revenue_recovered_through_fixed_costs/energex_residential_dwellings)*1000000 

annual_fixed_powerlink_cost_per_customer = 

powerlink_revenue_recovered_through_fixed_costs/energex_residential_dwellings*1000000 

annual_network_fixed_cost = annual_fixed_energex_cost_per_customer+annual_fixed_powerlink_cost_per_customer 

daily_network_fixed_cost = annual_network_fixed_cost/365 

energex_residential_dwellings = all_occupied_dwellings*proportion_of_dwellings_in_energex_area 

powerlink_revenue_recovered_through_fixed_costs = 

proportion_of_powerlink_revenue_recovered_through_fixed_costs*actual_transmission_revenue_to_be_recovered 

proportion_of_dwellings_in_energex_area = 0.67 

proportion_of_energex_revenue_recovered_through_fixed_costs = GRAPH(TIME) 

(0.0, 0.130), (6.0, 0.130), (12.0, 0.130), (18.0, 0.130), (24.0, 0.130), (30.0, 0.130), (36.0, 0.130),  (42.0, 0.130), (48.0, 

0.130), (54.0, 0.130), (60.0, 0.130), (66.0, 0.130), (72.0, 0.130), (78.0, 0.130), (84.0, 0.130), (90.0, 0.130), (96.0, 0.130), 

(102.0, 0.160), (108.0, 0.160), (114.0, 0.220), (120.0, 0.220), (126.0, 0.180), (132.0, 0.180), (138.0, 0.180), (144.0, 

0.180), (150.0, 0.180), (156.0, 0.180), (162.0, 0.180), (168.0, 0.180), (174.0, 0.180), (180.0, 0.180), (186.0, 0.180), 

(192.0, 0.180), (198.0, 0.180), (204.0, 0.180), (210.0, 0.180), (216.0, 0.180), (222.0, 0.180), (228.0, 0.180), (234.0, 

0.180), (240.0, 0.180), (246.0, 0.180), (252.0, 0.180), (258.0, 0.180), (264.0, 0.180), (270.0, 0.180), (276.0, 0.180), 

(282.0, 0.180), (288.0, 0.180), (294.0, 0.180), (300.0, 0.180), (306.0, 0.180), (312.0, 0.180), (318.0, 0.180), (324.0, 

0.180), (330.0, 0.180), (336.0, 0.180), (342.0, 0.180), (348.0, 0.180), (354.0, 0.180), (360.0, 0.180), (366.0, 0.180), 

(372.0, 0.180) 

proportion_of_powerlink_revenue_recovered_through_fixed_costs = 0.15 

revenue_recovered_through_fixed_costs = 

proportion_of_energex_revenue_recovered_through_fixed_costs*actual_distribution_revenue_to_be_recovered 

 

7.6. Fixed retail costs 

Key assumptions 

• The way in which retailer fixed costs have been calculated for notified prices have changed 

substantially since 2006 as different elements were introduced. Historical data is based on QCA 

determinations.  

• The ‘annual ROC per customer’ refers to the Retail Operating Costs (ROC) and was included as 

a fixed cost from 2013 

• ‘fixed headroom’ of 5% is applied to all fixed costs  

• ‘retail margin’ of 5.7% is applied to sum of all fixed costs including headroom. 

• ‘percentage change to achieve cost reflectivity’ is a graphical function that includes the changes 

to fixed retail costs resulting from the three-year transition process implemented by the QCA 

from 2013-14 to 2015-16. 
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Representation in Stella 

 

********** 

Fixed_retail_costs: 

********** 

annual_retailer_fixed_costs = total_retail_component_of_daily_fixed_cost*365 

annual_ROC_per_customer = GRAPH(TIME) 

(0.0, 0.0), (6.0, 0.0), (12.0, 0.0), (18.0, 0.0), (24.0, 0.0), (30.0, 0.0), (36.0, 0.0), (42.0, 0.0), (48.0, 0.0), (54.0, 0.0), (60.0, 

0.0), (66.0, 0.0), (72.0, 0.0), (78.0, 0.0), (84.0, 0.0), (90.0, 60.0), (96.0, 60.0), (102.0, 150.0), (108.0, 150.0), (114.0,  

155.0), (120.0, 155.0), (126.0, 155.0), (132.0, 155.0), (138.0, 155.0), (144.0, 155.0), (150.0, 155.0), (156.0, 155.0), 

(162.0, 155.0), (168.0, 155.0), (174.0, 155.0), (180.0, 155.0), (186.0, 155.0), (192.0, 154.8), (198.0, 154.8), (204.0, 

154.8), (210.0, 154.8), (216.0, 154.8), (222.0, 154.8), (228.0, 154.8), (234.0, 154.8), (240.0, 154.8), (246.0, 154.8), 

(252.0, 154.8), (258.0, 154.8), (264.0, 154.8), (270.0, 154.8), (276.0, 154.8), (282.0, 154.8), (288.0, 154.8), (294.0, 

154.8), (300.0, 154.8), (306.0, 154.8), (312.0, 154.8), (318.0, 154.8), (324.0, 154.8), (330.0, 154.8), (336.0, 154.8), 

(342.0, 154.8), (348.0, 154.8), (354.0, 154.8), (360.0, 154.8), (366.0, 154.8), (372.0, 154.8) 

daily_fixed_ROC_cost = annual_ROC_per_customer/365 

fixed_headroom_% = .05 

headroom_fixed_component = IF TIME >=90  THEN  fixed_headroom_%*sum_of_ROC_and_network_fixed_costs  

ELSE   0 

percentage_change_to_achieve_cost_reflectivity = GRAPH(TIME) 

(0.0, 1.000), (6.0, 1.000), (12.0, 1.000), (18.0, 1.000), (24.0, 1.000), (30.0, 1.000), (36.0, 1.000), (42.0, 1.000), (48.0, 

1.000), (54.0, 1.000), (60.0, 1.000), (66.0, 1.000), (72.0, 1.000), (78.0, 1.000), (84.0, 1.000), (90.0, 0.750), (96.0, 0.750), 

(102.0, 0.790), (108.0, 0.790), (114.0, 1.000), (120.0, 1.000), (126.0, 1.000), (132.0, 1.000), (138.0, 1.000), (144.0, 

1.000), (150.0, 1.000), (156.0, 1.000), (162.0, 1.000), (168.0, 1.000), (174.0, 1.000), (180.0, 1.000), (186.0, 1.000), 

(192.0, 1.000), (198.0, 1.000), (204.0, 1.000), (210.0, 1.000), (216.0, 1.000), (222.0, 1.000), (228.0, 1.000), (234.0, 

1.000), (240.0, 1.000), (246.0, 1.000), (252.0, 1.000), (258.0, 1.000), (264.0, 1.000), (270.0, 1.000), (276.0, 1.000), 

(282.0, 1.000), (288.0, 1.000), (294.0, 1.000), (300.0, 1.000), (306.0, 1.000), (312.0, 1.000), (318.0, 1.000), (324.0, 

1.000), (330.0, 1.000), (336.0, 1.000), (342.0, 1.000), (348.0, 1.000), (354.0, 1.000), (360.0, 1.000), (366.0, 1.000), 

(372.0, 1.000) 

retail_margin_% = .057 

retail_margin_fixed_component = IF TIME >= 90  THEN  retail_margin_%*sum_incl_headroom  ELSE  0 

sum_incl_headroom = headroom_fixed_component+sum_of_ROC_and_network_fixed_costs 

sum_of_ROC_and_network_fixed_costs = daily_network_fixed_cost+daily_fixed_ROC_cost 

total_retail_component_of_daily_fixed_cost = 

(daily_fixed_ROC_cost+headroom_fixed_component+retail_margin_fixed_component)*percentage_change_to_achiev

e_cost_reflectivity 
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8. Electricity supply sector impacts 

In determining electricity supply sector impacts, the primary method used throughout the following 

sectors is based on a bottom-up approach. This method is frequently used by electricity supply 

participants and involves multiplying total customer numbers against the specific metric being 

considered (Energex 2014). 

 

8.1. Prosumer investment 

Key assumptions 

• This sector multiplies the cost paid by prosumers for each system type against the number of 

specific systems installed.  

 

Representation in Stella 

 

 

 

********** 

Prosumer_investment: 

********** 

bundle_battery_costs = MEAN(total_installed_bundled_battery_cost)*total_bundle_dwellings 

PV_only_costs = MEAN(total_PV_cost)*all_PV_only_dwellings 

retro_battery_costs = MEAN(total_installed_battery_cost)*total_retrofit_dwellings 

total_prosumer_investment = bundle_battery_costs+PV_only_costs+retro_battery_costs 
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8.2 Total PV generation and emissions impact 

Key assumptions 

• Total daily PV generation is calculated by multiplying the capacity of each PV system installed 

by the average generation for that system type. 

• This figure is then multiplied by Queensland’s centralised electricity emission intensity factor, a 

graphical function based on data from (DOEE 2016).  

• To reflect the emissions created during PV construction a ‘PV lifecycle GHG emissions factor’ 

of 0.041 kgCO2e kWh−1 based on (Nugent & Sovacool 2014; Louwen et al. 2016). These 

lifecycle emissions are subtracted to achieve total emissions savings 

 

Representation in Stella 

 

 

********** 

Total_PV_generation_and_emissions_impacts: 

********** 

annual_emissions_savings_Mt = total_annual_emission_savings/1000000 

centralised_system_emission_intensity_factors = GRAPH(TIME) 

(0.0, 0.890), (6.0, 0.890), (12.0, 0.890), (18.0, 0.890), (24.0, 0.880), (30.0, 0.880), (36.0, 0.880), (42.0, 0.870), (48.0, 

0.870), (54.0, 0.850), (60.0, 0.850), (66.0, 0.820), (72.0, 0.820), (78.0, 0.800), (84.0, 0.800), (90.0, 0.790), (96.0, 0.790), 

(102.0, 0.780), (108.0, 0.780), (114.0, 0.780), (120.0, 0.780), (126.0, 0.780), (132.0, 0.780), (138.0, 0.780), (144.0, 

0.780), (150.0, 0.780), (156.0, 0.780), (162.0, 0.780), (168.0, 0.780), (174.0, 0.780), (180.0, 0.780), (186.0, 0.780), 

(192.0, 0.780), (198.0, 0.780), (204.0, 0.780), (210.0, 0.780), (216.0, 0.780), (222.0, 0.780), (228.0, 0.780), (234.0, 

0.780), (240.0, 0.780), (246.0, 0.780), (252.0, 0.780), (258.0, 0.780), (264.0, 0.780), (270.0, 0.780), (276.0, 0.780), 

(282.0, 0.780), (288.0, 0.780), (294.0, 0.780), (300.0, 0.780), (306.0, 0.780), (312.0, 0.780), (318.0, 0.780), (324.0, 

0.780), (330.0, 0.780), (336.0, 0.780), (342.0, 0.780), (348.0, 0.780), (354.0, 0.780), (360.0, 0.780), (366.0, 0.780), 

(372.0, 0.780) 
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daily_avoided_emissions_per_kg = (centralised_system_emission_intensity_factors*total_daily_PV_generation_kWh)-

(total_daily_PV_generation_kWh*PV_lifecycle_GHG_emissions_factor) 

daily_PV_generation_kWh[PV_size] = sum_PV_sizes_all_dwellings*daily_PV_generation_by_size 

monthly_avoided_emissions_per_tonne = (daily_avoided_emissions_per_kg/1000)*days_per_month 

monthly_PV_generation_MWh = (total_daily_PV_generation_kWh*days_per_month)/1000 

PV_lifecycle_GHG_emissions_factor = 0.041 

total_annual_emission_savings = monthly_avoided_emissions_per_tonne*12 

total_annual_PV_generation_GWh = (monthly_PV_generation_MWh*12)/1000 

total_daily_PV_generation_kWh = SUM(daily_PV_generation_kWh) 

 

8.3. Electricity bill impacts 

Key assumptions 

• For each consumer class, average electricity bills are calculated by adding variable costs (a 

function of individual electricity household demand and PV and battery system type, multiplied 

by the variable retail tariff) with fixed costs and averaging for each consumer class. 

 

Representation in Stella 
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********** 

electricity_bill_impacts: 

********** 

average_annual_electricity_bills_bundle_dwellings[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

((bundle_daily_grid_demand*365*variable_retail_tariff_including_gst) +total_annual_fixed_costs_including_gst)  -

(value_of_bundled_battery_exports*365) 

average_annual_electricity_bills_non_prosumer[Electricityconsumption] = 

(average_annual_electricity_demand_non_prosumer_dwellings*variable_retail_tariff_including_gst) 

+total_annual_fixed_costs_including_gst 

average_annual_electricity_bills_PV_dwelling[PV_size, Loadprofile, Electricityconsumption] = 

((PV_house_annual_grid_demand*variable_retail_tariff_including_gst) +total_annual_fixed_costs_including_gst)-

value_of_PV_exports 

average_annual_electricity_bills_retro_dwellings[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

((retrofit_battery_daily_grid_demand*365*variable_retail_tariff_including_gst) 

+total_annual_fixed_costs_including_gst)-value_of_retro_exports 

average_bill_battery_dwelling = (average_bundled_electricity_bill+average_retro_electricity_bill)/2 

average_bundled_electricity_bill = MEAN(average_annual_electricity_bills_bundle_dwellings) 

average_non_prosumer_electricity_bill = MEAN(average_annual_electricity_bills_non_prosumer) 

average_PV_electricity_bill = MEAN(average_annual_electricity_bills_PV_dwelling) 

average_retro_electricity_bill = MEAN(average_annual_electricity_bills_retro_dwellings) 

household_electricity_bill_index[Electricityconsumption] = average_annual_electricity_bills_non_prosumer/ 

INIT(average_annual_electricity_bills_non_prosumer) 

mean_proportion_of_bill_from_fixed_costs = MEAN(proportion_of_bill_from_fixed_costs) 

mean_proportion_of_bundled_bill_from_fixed_costs =   MEAN(proportion_of_bundled_bill_from_fixed_costs) 

mean_proportion_of_PV_bill_from_fixed_costs =   MEAN(proportion_of_PV_bill_from_fixed_costs) 

mean_proportion_of_retro_bill_from_fixed_costs =   MEAN(proportion_of_retro_bill_from_fixed_costs) 

proportion_of_bill_from_fixed_costs[Electricityconsumption] = 

total_annual_fixed_costs_including_gst/average_annual_electricity_bills_non_prosumer 

proportion_of_bundled_bill_from_fixed_costs[PV_size, Loadprofile, Electricityconsumption, Battery_size] = IF 

average_annual_electricity_bills_bundle_dwellings>= total_annual_fixed_costs_including_gst  THEN  

total_annual_fixed_costs_including_gst/average_annual_electricity_bills_bundle_dwellings  ELSE 1 

proportion_of_PV_bill_from_fixed_costs[PV_size, Loadprofile, Electricityconsumption] = IF 

average_annual_electricity_bills_PV_dwelling>= total_annual_fixed_costs_including_gst  THEN  

total_annual_fixed_costs_including_gst/average_annual_electricity_bills_PV_dwelling  ELSE 1 

proportion_of_retro_bill_from_fixed_costs[PV_size, Loadprofile, Electricityconsumption, Battery_size] = IF 

average_annual_electricity_bills_retro_dwellings>= total_annual_fixed_costs_including_gst  THEN  

total_annual_fixed_costs_including_gst/average_annual_electricity_bills_retro_dwellings  ELSE 1 

 

 

8.4. Residential peak demand 

Key assumptions 

• ‘average daily peak demand’ is estimated by calculating the maximum demand for each of the 

nine different load profiles used in the model and multiplying the average by all occupied 

dwellings to calculate business-as-usual peak demand (i.e. in the absence of batteries and other 

demand management activities).  

• To determine the impact of battery uptake on peak demand, total household consumption for 

each load profile is calculated for the peak demand period (between 4pm and 8pm).  

• The model assumes that as evening household load increases and PV generation decreases, 

battery capacity meets the difference in load. Based on the capacity of each of the battery sizes 

included in the model, the proportionate reduction in peak is calculated i.e. ‘reduction in peak 
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demand due to batteries’. The ‘total peak demand from battery dwellings by battery size’ is then 

calculated, which when summed with peak demand from other dwelling types calculates ‘total 

residential peak demand incl batteries MW’ 

• To determine the effect of batteries on network costs, the model estimates the value of batteries 

to the network specifically during critical peak periods which can be substantially higher than 

normal average peak demand. To this end, a ‘critical peak demand escalation factor’ of 40% is 

applied to average peak demand.  

• The maximum average peak demand of dwellings with batteries can then be subtracted from the 

business as usual projection described above to determine the contribution of batteries to peak 

reduction.  

• To calculate the financial value of peak demand reductions, historical $/MW values have been 

used in the model and directly sourced from DNSP benchmarking datasets from AER (2016b). 

Future projected values are assumed to remain at 2016 prices (AU$286,224/MW) in real terms 

until the end of the simulation period. 

 

Representation in Stella 
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********** 

Residential_peak_demand: 

********** 

annual_rate_of_peak_increase = (dwelling_growth-0.0001) 

average_daily_max_peak_demand_with_batteries[Electricityconsumption, Loadprofile, Battery_size] = 

average_daily_peak_demand[Electricityconsumption, Loadprofile]*reduction_in_peak_demand_due_to_batteries 

average_daily_peak_demand[low_consumption, Low_daytime_use](t) = 

average_daily_peak_demand[low_consumption, Low_daytime_use](t - dt) + (peak_increase[low_consumption, 

Low_daytime_use] - peak_decrease[low_consumption, Low_daytime_use]) * dt 

    INIT average_daily_peak_demand[low_consumption, Low_daytime_use] = 1.3 

average_daily_peak_demand[low_consumption, Medium_daytime_use](t) = 

average_daily_peak_demand[low_consumption, Medium_daytime_use](t - dt) + (peak_increase[low_consumption, 

Medium_daytime_use] - peak_decrease[low_consumption, Medium_daytime_use]) * dt 

    INIT average_daily_peak_demand[low_consumption, Medium_daytime_use] = 0.9 

average_daily_peak_demand[low_consumption, High_daytime_use](t) = 

average_daily_peak_demand[low_consumption, High_daytime_use](t - dt) + (peak_increase[low_consumption, 

High_daytime_use] - peak_decrease[low_consumption, High_daytime_use]) * dt 

    INIT average_daily_peak_demand[low_consumption, High_daytime_use] = 0.9 

average_daily_peak_demand[medium_consumption, Low_daytime_use](t) = 

average_daily_peak_demand[medium_consumption, Low_daytime_use](t - dt) + 

(peak_increase[medium_consumption, Low_daytime_use] - peak_decrease[medium_consumption, Low_daytime_use]) 

* dt 

    INIT average_daily_peak_demand[medium_consumption, Low_daytime_use] = 1.65 

average_daily_peak_demand[medium_consumption, Medium_daytime_use](t) = 

average_daily_peak_demand[medium_consumption, Medium_daytime_use](t - dt) + 

(peak_increase[medium_consumption, Medium_daytime_use] - peak_decrease[medium_consumption, 

Medium_daytime_use]) * dt 

    INIT average_daily_peak_demand[medium_consumption, Medium_daytime_use] = 1.55 

average_daily_peak_demand[medium_consumption, High_daytime_use](t) = 

average_daily_peak_demand[medium_consumption, High_daytime_use](t - dt) + 

(peak_increase[medium_consumption, High_daytime_use] - peak_decrease[medium_consumption, 

High_daytime_use]) * dt 

    INIT average_daily_peak_demand[medium_consumption, High_daytime_use] = 1.50 

average_daily_peak_demand[high_consumption, Low_daytime_use](t) = 

average_daily_peak_demand[high_consumption, Low_daytime_use](t - dt) + (peak_increase[high_consumption, 

Low_daytime_use] - peak_decrease[high_consumption, Low_daytime_use]) * dt 

    INIT average_daily_peak_demand[high_consumption, Low_daytime_use] = 2.05 

average_daily_peak_demand[high_consumption, Medium_daytime_use](t) = 

average_daily_peak_demand[high_consumption, Medium_daytime_use](t - dt) + (peak_increase[high_consumption, 

Medium_daytime_use] - peak_decrease[high_consumption, Medium_daytime_use]) * dt 

    INIT average_daily_peak_demand[high_consumption, Medium_daytime_use] = 2.1 

average_daily_peak_demand[high_consumption, High_daytime_use](t) = 

average_daily_peak_demand[high_consumption, High_daytime_use](t - dt) + (peak_increase[high_consumption, 

High_daytime_use] - peak_decrease[high_consumption, High_daytime_use]) * dt 

    INIT average_daily_peak_demand[high_consumption, High_daytime_use] = 1.85 

    INFLOWS: 

        peak_increase[Electricityconsumption, Loadprofile] = 

average_daily_peak_demand*annual_rate_of_peak_increase 

    OUTFLOWS: 

        peak_decrease[Electricityconsumption, Loadprofile] = 0 

avoided_network_costs = ((contribution_of_batteries_to_max_peak_reduction*total_cost_per_MW_demand)/1000000) 

BAU_maximum_residential_peak_demand = ROUND 

(BAU_total_residential_peak_demand_MW*critical_peak_demand_escalation_factor) 

BAU_total_residential_peak_demand_kW = all_occupied_dwellings*MEAN(average_daily_peak_demand) 

BAU_total_residential_peak_demand_MW = BAU_total_residential_peak_demand_kW/1000 

contribution_of_batteries_to_max_peak_reduction = (BAU_maximum_residential_peak_demand-

maximum_residential_peak_demand_incl_batteries) 

critical_peak_demand_escalation_factor = 1.4 

maximum_residential_peak_demand_incl_batteries =  

ROUND(total_residential_peak_demand_incl_batteries_MW*critical_peak_demand_escalation_factor) 
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reduction_in_peak_demand_due_to_batteries[low_consumption, Low_daytime_use, five_kWh] = 0.2 

reduction_in_peak_demand_due_to_batteries[low_consumption, Low_daytime_use, fifteen_kWh] = 0 

reduction_in_peak_demand_due_to_batteries[low_consumption, Low_daytime_use, thirty_kWh] = 0 

reduction_in_peak_demand_due_to_batteries[low_consumption, Medium_daytime_use, five_kWh] = 0.2 

reduction_in_peak_demand_due_to_batteries[low_consumption, Medium_daytime_use, fifteen_kWh] = 0 

reduction_in_peak_demand_due_to_batteries[low_consumption, Medium_daytime_use, thirty_kWh] = 0 

reduction_in_peak_demand_due_to_batteries[low_consumption, High_daytime_use, five_kWh] = 0.2 

reduction_in_peak_demand_due_to_batteries[low_consumption, High_daytime_use, fifteen_kWh] = 0 

reduction_in_peak_demand_due_to_batteries[low_consumption, High_daytime_use, thirty_kWh] = 0 

reduction_in_peak_demand_due_to_batteries[medium_consumption, Low_daytime_use, five_kWh] = 0.5 

reduction_in_peak_demand_due_to_batteries[medium_consumption, Low_daytime_use, fifteen_kWh] = 0.2 

reduction_in_peak_demand_due_to_batteries[medium_consumption, Low_daytime_use, thirty_kWh] = 0 

reduction_in_peak_demand_due_to_batteries[medium_consumption, Medium_daytime_use, five_kWh] = 0.5 

reduction_in_peak_demand_due_to_batteries[medium_consumption, Medium_daytime_use, fifteen_kWh] = 0.2 

reduction_in_peak_demand_due_to_batteries[medium_consumption, Medium_daytime_use, thirty_kWh] = 0 

reduction_in_peak_demand_due_to_batteries[medium_consumption, High_daytime_use, five_kWh] = 0.5 

reduction_in_peak_demand_due_to_batteries[medium_consumption, High_daytime_use, fifteen_kWh] = 0.2 

reduction_in_peak_demand_due_to_batteries[medium_consumption, High_daytime_use, thirty_kWh] = 0 

reduction_in_peak_demand_due_to_batteries[high_consumption, Low_daytime_use, five_kWh] = 0.7 

reduction_in_peak_demand_due_to_batteries[high_consumption, Low_daytime_use, fifteen_kWh] = 0.3 

reduction_in_peak_demand_due_to_batteries[high_consumption, Low_daytime_use, thirty_kWh] = 0.1 

reduction_in_peak_demand_due_to_batteries[high_consumption, Medium_daytime_use, five_kWh] = 0.7 

reduction_in_peak_demand_due_to_batteries[high_consumption, Medium_daytime_use, fifteen_kWh] = 0.3 

reduction_in_peak_demand_due_to_batteries[high_consumption, Medium_daytime_use, thirty_kWh] = 0.1 

reduction_in_peak_demand_due_to_batteries[high_consumption, High_daytime_use, five_kWh] = 0.7 

reduction_in_peak_demand_due_to_batteries[high_consumption, High_daytime_use, fifteen_kWh] = 0.3 

reduction_in_peak_demand_due_to_batteries[high_consumption, High_daytime_use, thirty_kWh] = 0.1 

sum_peak_demand_from_dwellings_with_batteries = 

SUM(total_peak_demand_from_battery_dwellings_by_battery_size) 

total_cost_per_MW_demand = GRAPH(TIME) 

(0.0, 229957), (12.0, 227557), (24.0, 225620), (36.0, 223909), (48.0, 220191), (60.0, 253157), (72.0, 274253), (84.0, 

275181), (96.0, 287039), (108.0, 286224), (120.0, 286224), (132.0, 286224), (144.0, 286224), (156.0, 286224), (168.0, 

286224), (180.0, 286224), (192.0, 286224), (204.0, 286224), (216.0, 286224), (228.0, 286224), (240.0, 286224), (252.0, 

286224), (264.0, 286224), (276.0, 286224), (288.0, 286224), (300.0, 286224), (312.0, 286224), (324.0, 286224), (336.0, 

286224), (348.0, 286224), (360.0, 286224), (372.0, 286224) 

total_peak_demand_from_battery_dwellings_by_battery_size[five_kWh] = 

sum_of_battery_sizes[five_kWh]*MEAN(average_daily_max_peak_demand_with_batteries[*, *, five_kWh]) 

total_peak_demand_from_battery_dwellings_by_battery_size[fifteen_kWh] = 

sum_of_battery_sizes[fifteen_kWh]*MEAN(average_daily_max_peak_demand_with_batteries[*, *, fifteen_kWh]) 

total_peak_demand_from_battery_dwellings_by_battery_size[thirty_kWh] = 

sum_of_battery_sizes[thirty_kWh]*MEAN(average_daily_max_peak_demand_with_batteries[*, *, thirty_kWh]) 

total_peak_demand_from_non_battery_dwellings = 

(non_prosumer_dwellings+all_PV_only_dwellings)*MEAN(average_daily_peak_demand) 

total_residential_peak_demand_incl_batteries_MW = 

(total_peak_demand_from_non_battery_dwellings+sum_peak_demand_from_dwellings_with_batteries)/1000 

 

8.5. PV used in home and exports 

Key assumptions 

• This sector calculates the volume of PV used in home and how much is exported. This is a 

product of the numbers of each dwelling type multiplied by the export/in-home use for each 

household profile type. 
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Representation in Stella 

 

 

********** 

PV_use_in_home_and_exports: 

********** 

annual_export_bundle_GWh = monthly_export_bundle_GWh*12 

annual_export_PV_GWh = monthly_export_PV_GWh*12 

annual_export_retrofit_GWh = monthly_export_retrofit_GWh*12 

annual_in_home_consumption_bundle_GWh = monthly_in_home_consumption_bundle_GWh*12 

annual_in_home_consumption_PV_GWh = monthly_in_home_consumption_PV_GWh*12 

annual_in_home_consumption_retrofit_GWh = monthly_in_home_consumption_retrofit_GWh*12 

annual_PV_exports_to_grid = annual_export_PV_GWh+annual_export_retrofit_GWh+annual_export_bundle_GWh 

annual_PV_used_in_home = annual_in_home_consumption_PV_GWh+ 

annual_in_home_consumption_retrofit_GWh+ annual_in_home_consumption_bundle_GWh 

daily_export_bundle_kWh[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

daily_bundled_battery_exports* arrayed_sum_bundle 

daily_export_bundle_MWh = SUM(daily_export_bundle_kWh)/1000 

daily_export_PV_kWh[PV_size, Loadprofile, Electricityconsumption] = 

arrayed_sum_PV_only_dwellings*daily_PV_power_exported 

daily_export_PV_MWh = SUM(daily_export_PV_kWh)/1000 

daily_export_retrofit_kWh[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

arrayed_sum_retrofit*daily_battery_retrofit_export 

daily_export_retrofit_MWh = SUM(daily_export_retrofit_kWh)/1000 

daily_in_home_consumpion_PV_MWh = SUM(daily_in_home_consumption_PV_kWh)/1000 

daily_in_home_consumption_bundle_kWh[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

daily_PV_used_in_home_bundle*arrayed_sum_bundle 

daily_in_home_consumption_bundle_MWh = SUM(daily_in_home_consumption_bundle_kWh)/1000 

daily_in_home_consumption_PV_kWh[PV_size, Loadprofile, Electricityconsumption] = 

arrayed_sum_PV_only_dwellings*daily_PV_power_consumed 

daily_in_home_consumption_retrofit_kWh[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

total_daily_PV_used_in_retrofit*arrayed_sum_retrofit 

daily_in_home_consumption_retrofit_MWh = SUM(daily_in_home_consumption_retrofit_kWh)/1000 

monthly_export_bundle_GWh = (daily_export_bundle_MWh/1000)*days_per_month 

monthly_export_PV_GWh = (daily_export_PV_MWh/1000)*days_per_month 

monthly_export_retrofit_GWh = (daily_export_retrofit_MWh/1000)*days_per_month 

monthly_in_home_consumption_bundle_GWh = (daily_in_home_consumption_bundle_MWh/1000)*days_per_month 

monthly_in_home_consumption_PV_GWh = (daily_in_home_consumpion_PV_MWh/1000)*days_per_month 

monthly_in_home_consumption_retrofit_GWh = (daily_in_home_consumption_retrofit_MWh/1000)*days_per_month 
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8.6. Residential grid consumption 

Key assumptions 

• Residential grid consumption is calculated by summing daily consumption values across each of 

the four consumer classes based on the specific household profile (i.e. daily consumption and 

load profile) and the capacity of the PV and/or PV and battery combination.  

• Grid consumption for each profile type is calculated and then multiplied by the specific number 

of households with that description to generate total residential grid consumption. 

 

Representation in Stella 

 

 

 

 

 

********** 

Residential_grid_consumption: 

********** 

annual_grid_demand_from_bundle_dwellings = monthly_grid_demand_bundle_GWh*12 

annual_grid_demand_from_non_prosumer_dwellings = 

monthly_grid_demand_from_non_prosumer_dwellings_GWh*12 

annual_grid_demand_from_PV_dwellings = monthly_grid_demand_PV_GWh*12 

annual_grid_demand_from_retrofit_dwellings = monthly_grid_demand_retofit_GWh*12 
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bundle_dwelling_average_annual_grid_demand = IF  TIME > 108  THEN  

SAFEDIV(annual_grid_demand_from_bundle_dwellings*1000,  SUM(arrayed_sum_bundle))  ELSE 0 

daily_bundled_grid_demand_by_PV_&_battery_size[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

arrayed_sum_bundle*bundle_daily_grid_demand 

daily_grid_demand_by_PV_size[PV_size, Loadprofile, Electricityconsumption] = arrayed_sum_PV_only_dwellings* 

PV_house_daily_grid_demand 

daily_grid_demand_from_bundle = SUM(daily_bundled_grid_demand_by_PV_&_battery_size)/1000 

daily_grid_demand_non_prosumers = 

(MEAN(daily_electricity_demand)*MEAN(energy_efficiency_improvements_non_prosumer_dwellings) 

*non_prosumer_dwellings)/1000 

daily_grid_demand_PV_only = SUM(daily_grid_demand_by_PV_size)/1000 

daily_grid_demand_retrofit = SUM(daily_grid_retrofit_demand_by_PV_&_battery_size)/1000 

daily_grid_retrofit_demand_by_PV_&_battery_size[PV_size, Loadprofile, Electricityconsumption, Battery_size] = 

arrayed_sum_retrofit*retrofit_battery_daily_grid_demand 

days_per_month = 365/12 

energy_efficiency_improvements_non_prosumer_dwellings[Electricityconsumption] = GRAPH(TIME) 

(0.0, 1.000), (12.0, 1.000), (24.0, 1.000), (36.0, 1.000), (48.0, 1.000), (60.0, 1.000), (72.0, 0.990), (84.0, 0.970299), 

(96.0, 0.96059601), (108.0, 0.95099005), (120.0, 0.941480149), (132.0, 0.932065348), (144.0, 0.922744694), (156.0, 

0.913517247), (168.0, 0.904382075), (180.0, 0.895338254), (192.0, 0.886384872), (204.0, 0.877521023), (216.0, 

0.868745813), (228.0, 0.860058355), (240.0, 0.851457771), (252.0, 0.842943193), (264.0, 0.834513761), (276.0, 

0.826168624), (288.0, 0.817906938), (300.0, 0.809727868), (312.0, 0.80163059), (324.0, 0.793614284), (336.0, 

0.785678141), (348.0, 0.777821359), (360.0, 0.770043146), (372.0, 0.760) 

monthly_grid_demand_bundle_GWh = (daily_grid_demand_from_bundle/1000)*days_per_month 

monthly_grid_demand_from_non_prosumer_dwellings_GWh = 

(daily_grid_demand_non_prosumers/1000)*days_per_month 

monthly_grid_demand_PV_GWh = (daily_grid_demand_PV_only/1000)*days_per_month 

monthly_grid_demand_retofit_GWh = (daily_grid_demand_retrofit/1000)*days_per_month 

nonprosumer_dwelling_average_annual_grid_demand = 

annual_grid_demand_from_non_prosumer_dwellings*1000/non_prosumer_dwellings 

PV_dwelling_annual_average_grid_demand = annual_grid_demand_from_PV_dwellings*1000/  

SUM(arrayed_sum_PV_only_dwellings) 

retrofit_dwelling_average_annual_grid_demand = IF  TIME > 108  THEN  

SAFEDIV(annual_grid_demand_from_retrofit_dwellings*1000, SUM(arrayed_sum_retrofit))  ELSE 0 

total_annual_residential_grid_demand = 

(annual_grid_demand_from_non_prosumer_dwellings+annual_grid_demand_from_PV_dwellings+annual_grid_deman

d_from_retrofit_dwellings +annual_grid_demand_from_bundle_dwellings) 

 

 

 

 

  



 

291 

 

Appendix C Extreme behaviour test – trends over time 

  

Extreme behaviour tests 

Each of the below parameters were tested by artificially increasing and decreasing the original value 

to examine the systems behaviour under extreme conditions. The graphs below show the system 

behaviour in response for each of three dependent variables. Data inputs were given a low and high 

value (25% and 175% respectively). The original value for the base-case simulation is included in 

the graphs for reference.  

 

Battery payback 

 
Figure 78 Extreme conditions test on battery payback period – effect on battery dwellings 

 
Figure 79 Extreme conditions test on battery payback period – effect on residential grid demand 

 
Figure 80 Extreme conditions test on battery payback period – effect on retail electricity tariff 
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Battery non-financial motivations 

 

 
Figure 81 Extreme conditions test on non-financial motivations – effect on battery dwellings 

 

 
Figure 82 Extreme conditions test on non-financial motivations – effect on residential grid demand 

 

 
Figure 83 Extreme conditions test on non-financial motivations - effect on retail electricity tariff 
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Total network recoverable revenue 

 

 
Figure 84 Extreme conditions test on network revenue - effect on battery dwellings 

 

 
Figure 85 Extreme conditions test on network revenue - effect on residential grid demand 

 

 

Figure 86 Extreme conditions test on network revenue - effect on retail tariff  
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Appendix D Discrepancy coefficient calculations 

 

Total PV installs 

 

 

 

PV systems by capacity 

• Note as there is only historical data from 2010 for specific PV sizes, the discrepancy coefficient 

is only calculated from 2010. 

 

PV total installs

Detrended cubed fourth

Historical Simulated Historical Simulated Hdev Sdev H S H S ERRR(i) Dev

2006 1116 1116 0 1116 1116 86383 86768 6.E+14 7.E+14 6.E+19 6.E+19 0 385

2007 1591 1269.336 1 -57739 -54483 27527 31169 2.E+13 3.E+13 6.E+17 9.E+17 3257 3642

2008 4678 2075.773 2 -113983 -109428 -28716 -23776 -2.E+13 -1.E+13 7.E+17 3.E+17 4555 4940

2009 22961 4752.942 3 -155030 -162503 -69764 -76851 -3.E+14 -5.E+14 2.E+19 3.E+19 -7473 -7088

2010 71658 39305.94 4 -165663 -183702 -80397 -98050 -5.E+14 -9.E+14 4.E+19 9.E+19 -18038 -17653

2011 166961 157077.8 5 -129691 -121682 -44424 -36030 -9.E+13 -5.E+13 4.E+18 2.E+18 8009 8394

2012 297213 292980.7 6 -58769 -41531 26497 44121 2.E+13 9.E+13 5.E+17 4.E+18 17238 17623

2013 368410 342028 7 -46902 -48235 38364 37416 6.E+13 5.E+13 2.E+18 2.E+18 -1333 -948

2014 426158 384196.9 8 -48485 -61818 36782 23833 5.E+13 1.E+13 2.E+18 3.E+17 -13333 -12948

2015 465070 428142.4 9 -68903 -73625 16363 12027 4.E+12 2.E+12 7.E+16 2.E+16 -4722 -4337

2016 499422 471241.7 10 -93882 -86277 -8615 -626 -6.E+11 -2.E+08 6.E+15 2.E+11 7604 7989

B0 -85266.5 -85651.5 Moments EBAR -385

M1 -85267 -85652

B1 59330.35 55751.9 M2 48819.9 52173.85 ESUMS 1.03E+09

ESTD 9685.627

N 11

Discrepancy coefficient

0.095903

PV <2kW

Detrended cubed fourth

Historical Simulated Historical Simulated Hdev Sdev H S H S ERRR(i) Dev

2010 49361 33986.56 0 49361 33987 -46477 -47472 -1.E+14 -1.E+14 5.E+18 5.E+18 -15374 -995

2011 130291 115555.5 1 103992 88519 8154 7060 5.E+11 4.E+11 4.E+15 2.E+15 -15473 -1093

2012 183304 174500.9 2 130705 120428 34867 38969 4.E+13 6.E+13 1.E+18 2.E+18 -10277 4102

2013 201286 188841.9 3 122388 107732 26550 26274 2.E+13 2.E+13 5.E+17 5.E+17 -14656 -276

2014 213345 200796.3 4 108147 92650 12309 11191 2.E+12 1.E+12 2.E+16 2.E+16 -15497 -1118

2015 221696 209091.2 5 90199 73908 -5639 -7550 -2.E+11 -4.E+11 1.E+15 3.E+15 -16291 -1911

2016 223872 215206.4 6 66075 52986 -29763 -28472 -3.E+13 -2.E+13 8.E+17 7.E+17 -13089 1291

B0 95837.81 81458.42 Moments EBAR -14379

M1 95838 81458

B1 26299.5 27036.66 M2 27298.2 28043.91 ESUMS 25658493

ESTD 1914.549

N 7

Discrepancy coefficient

0.034595
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PV 2-4kW

Detrended cubed fourth

Historical Simulated Historical Simulated Hdev Sdev H S H S ERRR(i) Dev

2010 7757 3243.493 0 7757 3243 -9983 -14143 -1.E+12 -3.E+12 1.E+16 4.E+16 -4513 -4160

2011 36647 32221.61 1 12999 9632 -4740 -7755 -1.E+11 -5.E+11 5.E+14 4.E+15 -3367 -3015

2012 74272 80266.32 2 26977 35087 9237 17700 8.E+11 6.E+12 7.E+15 1.E+17 8110 8463

2013 97904 100023.4 3 26960 32254 9221 14867 8.E+11 3.E+12 7.E+15 5.E+16 5293 5646

2014 120196 113581.5 4 25605 23222 7866 5835 5.E+11 2.E+11 4.E+15 1.E+15 -2383 -2031

2015 139233 126899.9 5 20995 13951 3255 -3436 3.E+10 -4.E+10 1.E+14 1.E+14 -7044 -6691

2016 144770 139858.5 6 2883 4319 -14856 -13068 -3.E+12 -2.E+12 5.E+16 3.E+16 1436 1788

B0 17739.41 17386.73 Moments EBAR -353

M1 17739 17387

B1 23647.79 22589.88 M2 9146.784 12018.45 ESUMS 1.82E+08

ESTD 5098.828

N 7

Discrepancy coefficient

0.240906

PV 4-6kW

Detrended cubed fourth

Historical Simulated Historical Simulated Hdev Sdev H S H S ERRR(i) Dev

2010 1569.6 1384.783 0 1570 1385 -94268 -80074 -8.E+14 -5.E+14 8.E+19 4.E+19 -185 14195

2011 8761.95 7765.701 1 -17538 -19271 -113375 -100729 -1.E+15 -1.E+15 2.E+20 1.E+20 -1733 12646

2012 29282.34 31546.24 2 -23317 -22527 -119154 -103986 -2.E+15 -1.E+15 2.E+20 1.E+20 790 15169

2013 50435.01 46005.73 3 -28463 -35104 -124301 -116563 -2.E+15 -2.E+15 2.E+20 2.E+20 -6641 7739

2014 71505.84 62025.73 4 -33692 -46121 -129530 -127579 -2.E+15 -2.E+15 3.E+20 3.E+20 -12429 1951

2015 94131.3 81101.75 5 -37366 -54082 -133204 -135540 -2.E+15 -2.E+15 3.E+20 3.E+20 -16715 -2336

2016 101878.4 101062.8 6 -55919 -61157 -151756 -142616 -3.E+15 -3.E+15 5.E+20 4.E+20 -5239 9141

B0 -3978.86 -3749.5 Moments EBAR -6022

M1 -27818 -33840

B1 18353.16 17006.63 M2 16498.13 20316.74 ESUMS 744207941

ESTD 10310.937

7

Discrepancy coefficient

0.280075

PV 8-10kW

Detrended cubed fourth

Historical Simulated Historical Simulated Hdev Sdev H S H S ERRR(i) Dev

2010 711.9 691.1115 0 712 691 -95126 -80767 -9.E+14 -5.E+14 8.E+19 4.E+19 -21 14359

2011 2485.65 1535.016 1 -23814 -25502 -119652 -106960 -2.E+15 -1.E+15 2.E+20 1.E+20 -1688 12692

2012 4241.25 6667.286 2 -48358 -47406 -144196 -128864 -3.E+15 -2.E+15 4.E+20 3.E+20 952 15331

2013 6807.33 7156.99 3 -72091 -73953 -167929 -155411 -5.E+15 -4.E+15 8.E+20 6.E+20 -1862 12518

2014 9229.53 7793.31 4 -95968 -100353 -191806 -181812 -7.E+15 -6.E+15 1.E+21 1.E+21 -4385 9995

2015 12306.45 11049.48 5 -119191 -124134 -215029 -205592 -1.E+16 -9.E+15 2.E+21 2.E+21 -4943 9437

2016 13444.29 15114.12 6 -144353 -147106 -240191 -228564 -1.E+16 -1.E+16 3.E+21 3.E+21 -2753 11626

B0 300.8732 348.4764 Moments EBAR -2100

M1 -71866 -73966

B1 2243.823 2265.142 M2 48113.21 49555.8 ESUMS 1.083E+09

ESTD 12438.937

7

Discrepancy coefficient

0.127358
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Residential demand 

 

 

Electricity price 

 

 

Residential demand Detrended cubed fourth

Historical Simulated Historical Simulated Hdev Sdev H S H S ERRR(i) Dev

2006 12655.59 12453.62 0 12656 12454 -588 -576 -2.E+08 -2.E+08 1.E+11 1.E+11 -202 12

2007 12518.99 12648.97 1 12676 12788 -568 -241 -2.E+08 -1.E+07 1.E+11 3.E+09 112 326

2008 13102.59 12845.43 2 13417 13124 173 95 5.E+06 8.E+05 9.E+08 8.E+07 -293 -79

2009 13082.07 13039.41 3 13553 13457 310 428 3.E+07 8.E+07 9.E+09 3.E+10 -96 118

2010 13519.17 13146.31 4 14147 13704 904 674 7.E+08 3.E+08 7.E+11 2.E+11 -444 -230

2011 12826.6 12620.55 5 13612 13317 368 288 5.E+07 2.E+07 2.E+10 7.E+09 -295 -81

2012 12613.42 12075.17 6 13556 12911 312 -118 3.E+07 -2.E+06 9.E+09 2.E+08 -644 -430

2013 12119.58 11914.02 7 13219 12890 -25 -140 -2.E+04 -3.E+06 4.E+05 4.E+08 -329 -115

2014 11666.36 11778.13 8 12923 12893 -321 -137 -3.E+07 -3.E+06 1.E+10 3.E+08 -30 184

2015 11470.54 11639.39 9 12884 12894 -360 -136 -5.E+07 -3.E+06 2.E+10 3.E+08 10 224

2016 11467.1 11500.19 10 13038 12894 -206 -136 -9.E+06 -3.E+06 2.E+09 3.E+08 -144 70

Moments

B0 13243.62 13029.62 M1 13244 13030

M2 438.8865 331.4529 EBAR -214

B1 -157.052 -139.357

0 ESUMS 473408.059

ESTD 207.453841

N 11

Discrepancy coefficient

0.269302

Electricity price Detrended cubed fourth

Historical Simulated Historical Simulated Hdev Sdev H S H S ERRR(i) Dev

2006 0.1136 0.118071 0 0.11 0.12 0.02 0.02 1.E-05 8.E-06 3.E-07 2.E-07 0.004 -0.003

2007 0.1136 0.11725 1 0.10 0.10 0.01 0.01 5.E-07 1.E-07 3.E-09 7.E-10 0.005 -0.003

2008 0.1151 0.122354 2 0.08 0.09 -0.01 0.00 -2.E-07 -6.E-08 1.E-09 2.E-10 0.010 0.002

2009 0.124 0.127976 3 0.08 0.09 -0.01 -0.01 -2.E-06 -2.E-06 3.E-08 2.E-08 0.007 0.000

2010 0.1373 0.143487 4 0.08 0.09 -0.01 -0.01 -3.E-06 -1.E-06 5.E-08 2.E-08 0.011 0.003

2011 0.1539 0.156633 5 0.08 0.09 -0.01 -0.01 -2.E-06 -2.E-06 3.E-08 2.E-08 0.009 0.001

2012 0.1641 0.172172 6 0.07 0.09 -0.02 -0.01 -7.E-06 -1.E-06 1.E-07 1.E-08 0.015 0.008

2013 0.1641 0.179864 7 0.06 0.08 -0.03 -0.02 -4.E-05 -5.E-06 1.E-06 9.E-08 0.024 0.017

2014 0.2673 0.236467 8 0.14 0.12 0.05 0.02 2.E-04 2.E-05 8.E-06 4.E-07 -0.022 -0.029

2015 0.28015 0.266091 9 0.14 0.14 0.05 0.04 1.E-04 7.E-05 7.E-06 3.E-06 -0.004 -0.011

2016 0.22238 0.225812 10 0.07 0.08 -0.02 -0.01 -1.E-05 -3.E-06 2.E-07 4.E-08 0.015 0.008

2017 0.2461 0.246753 11 0.08 0.09 -0.01 -0.01 -3.E-06 -4.E-07 3.E-08 3.E-09 0.013 0.006

B0 0.09054 0.097888 M1 0.09 0.10

M2 0.0272 0.017825 EBAR 0.01

B1 0.015381 0.014216

ESUMS 0.00141703

ESTD 0.01086672

n 12 Discrepancy coefficient

0.241348


