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Abstract 10 

The sustainable management of aluminium has become crucial due to the exponential growth in 11 

global demand. The transition to a sustainable society with lightweight electric vehicles has led to the 12 

increasing use of aluminium in the transportation sector. This has consequently led to the importance 13 

of aluminium recycling to prevent the valuable material stream going to landfill. In addition, the 14 

extraction of primary aluminium has high environmental impact due to the high energy consumption 15 

and waste generation in comparison to secondary aluminium processing. Despite being one of the 16 

most recycled metals, ongoing trends of multi-material designs and the associated joining choices 17 

have caused increasing difficulty of separating aluminium with high purity. 18 

This paper evaluates the types of joining techniques causing impurities in the aluminium streams, 19 

and the relationship between particle size reduction and the presence of impurities due to joints 20 

particularly for end-of-life vehicles. An empirical experiment in a leading European recycling facility 21 

was conducted and demonstrated that mechanical fasteners, such as machine screws, socket 22 

screws, bolt screws and rivets, are the major types of joining technique causing impurities. Based on 23 

the observations from this case study, the characteristics of imperfectly liberated joints are examined. 24 

A Life Cycle Assessment (LCA) is also performed to evaluate the environmental impact of recycling 25 

different aluminium scrap qualities with varying impurity levels. The outcomes are then used to 26 
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provide ecodesign guidelines aimed at improving the quality and increase the quantity of recycled 27 

aluminium.  28 

Keywords 29 

Joining technologies; Al recycling; End-of-Life; recycling efficiency; ecodesign; Life Cycle Assessment 30 

1 Introduction 31 

Aluminium (Al) is used in a variety of products due to its high strength-to-weight ratio, good 32 

formability, and high corrosion resistance. The global demand for Al has seen significant growth, 33 

leading to the importance of sustainable metal management. The amount of Al used globally has 34 

been increasing since 1950, as can be seen in Figure 1, and this trend is projected to continue 35 

(Cullen and Allwood, 2013; Martchek, 2006). One of the major concerns is the continuous energy-36 

intensive extraction of primary Al to supply for the growing demand worldwide. This activity has 37 

contributed significantly to the global carbon dioxide emissions (Norgate et al., 2007). Although Al is 38 

one of the highly recycled metals, offering significant energy saving during secondary production, the 39 

benefits of Al recycling are influenced by the purity level of scrap sources (Liu and Müller, 2012). 40 

 41 

Figure 1: Amount of primary and recycled Al used globally (International Aluminium Institute, 2017). 42 
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The transportation industry is one of the major consumers of Al worldwide and is responsible for 44 

35-40% of the overall Al consumption (Nappi, 2013). In recent years, the focus on producing 45 

lightweight vehicles has led to the increasing use of high purity Al in vehicle design to replace 46 

conventional steels (Goede et al., 2008). Multi-material design concepts have been progressively 47 

adopted by vehicle manufacturers due to the emphasis on reducing vehicle mass, thereby lowering 48 

the vehicle carbon footprint (Cui et al., 2011; Miller et al., 2000). Al or Al alloys are among the most 49 

suitable material category candidates for the manufacture of multi-material car bodies for automotive 50 

applications such as Body-in-White (BIW), chassis components, doors closure and outer panels 51 

(Carle and Blount, 1999; Hirsch, 2011; Volkswagen Group, 2009). 52 

1.1 Joining Trends in Multi-Material Products – An Example using Vehicle Design 53 

The increasing use of multi-material products focussing on mass reduction has led to changing 54 

joining trends (Groche et al., 2014; Mori et al., 2013; Soo et al., 2015). For example, the material 55 

composition in newer vehicle designs has undergone significant transformation particularly with the 56 

use of light metals, such as Al (Barnes and Pashby, 2000a; Carle and Blount, 1999; Miller et al., 57 

2000), and lightweight materials, such as plastics and composites (U.S Department of Energy, 2013). 58 

As a result, the choice of joining techniques that are feasible to combine these multi-material 59 

combinations is limited (Meschut et al., 2014). Although there are several ongoing developments in 60 

more advanced joining technologies, their application in large-scale production is still restricted due to 61 

the proven design requirements in this risk averse sector (Barnes and Pashby, 2000a, 2000b), and 62 

the additional manufacturing costs of installing new equipment (Davies, 2012). Table 1 shows that the 63 

Al-intensive vehicle spaceframe structures (Audi A6 and A8) have increased the use of some joining 64 

techniques, while reducing others. The large amount of wrought Al used for these luxury vehicles is 65 

expected to be adopted also in electric vehicle and mass-optimised vehicle designs. Hatayama et al. 66 

(2012) have predicted the increasing demand of wrought Al to produce the power-supply box in 67 

electric vehicles. The growing Al composition in vehicle designs has led to the increasing use of 68 

mechanical joining techniques, such as screws and rivets, and adhesive bonding. In contrast, 69 

traditional welding techniques (e.g. spot welding and MIG welding) are showing a decreasing trend. 70 

The observed joining trends are also supported by the vehicle manufacturers’ viewpoint on the 71 
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development of joining processes used for future large scale vehicle production (Grote and 72 

Antonsson, 2009).  73 

Table 1: Joining trends of different vehicle models’ spaceframe structure (Adapted from European Aluminium Association, 74 

2013; Mirdamadi and Korchnak, n.d.). 75 

Jo int t ype  Audi A6  Trend  Audi A8  Trend  

2001-2004 2005-2008 1994-2002 2009-present  

Share of point joints (%) 

Spot welding 91.5 81.0 ↓ 28.1 7.5 ↓ 

Stud welding  3.3 6.5 ↑ 0 0  

Clinching  0.9 1.3  10.0 0 ↓ 

Screw joints 0 0  0 23.6 ↑ 

Rivets  0 5.8 ↑ 61.9 68.9 ↑ 

 

Share of linear joints (%) 

Laser welding  8.3 3.3 ↓ 0 8 ↑ 

MIG welding 6 4.3 ↓ 100 33.3 ↓ 

Laser brazing  0 3.1 ↑ 0 0  

Adhesive bonding  85.7 89.3 ↑ 0 58.7 ↑ 

 76 

Perfect material separation during the end-of-life (EoL) phase is not possible in the shredder-77 

based recycling practices due to the complex product designs and the difficulty in separating different 78 

material types from their associated joining techniques (Van Schaik and Reuter, 2007). Castro et al. 79 

(2005) and Van Schaik and Reuter (2007) have shown that the increasing complexity in vehicle 80 

designs further hinders perfect liberation of dissimilar materials. As a result, lower grades and 81 

qualities of recyclates will be retrieved due to the presence of impurities that lead to cascade recycling 82 

(Paraskevas et al., 2015) and the loss of valuable material streams. This is particularly the case for 83 

recycling Al scrap that has more limitations during metallurgical recycling in comparison to other 84 

metals such as iron and copper (Nakajima et al., 2010). One of the main reasons is the relatively low 85 

melting point of Al, which makes it difficult to remove impurities or tramp elements—contaminants 86 

affecting the quality of metals that are not added on purpose—during the secondary Al smelting and 87 

refining processes. The most common strategies used to address this challenge are either dilution 88 

using primary Al or down-cycling to lower grade Al alloys that are associated to additional 89 
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environmental burden (Castro et al., 2004; Paraskevas et al., 2015). The ability to retrieve high quality 90 

Al with low impurities increases the scrap value for recyclers; however, the extra recycling costs need 91 

to be justified by the volume of different scrap qualities. 92 

1.2 Generic Design Guidelines for Joining Choices 93 

Most of the design rules specific to joining choices facilitate Design for Disassembly (DfD) for part 94 

repair or material reuse that may not cater well for destructive recycling (Ferrão and Amaral, 2006; 95 

Güngör, 2006; Kriwet et al., 1995; Reuter, 2011). Screwing, for example, is preferred over adhesive 96 

bonding to ease the maintenance and repair of highly complex products, as well as part reuse. 97 

However, most EoL products are put through a shredding process in industrialised regions. 98 

Consequently, screws may not be separated well from the base materials, particularly when they are 99 

used to combine different material types (Castro et al., 2005; Van Schaik and Reuter, 2007), whereas 100 

weak adhesive bonding might be easily released in a shredding process. With the increasing 101 

complexity of multi-material structures in products, there is a need to consider the implications of both 102 

product design and the choice of joining elements on the quality of recycled materials (Reuter, 2011). 103 

There are a few ecodesign guidelines that provide advice on joint selection for destructive 104 

recycling, such as the “Ten Golden Rules” (Luttropp and Lagerstedt, 2006) and VDI 2243 design 105 

guidelines (VDI 2243, 1993). In spite of that, the details on joint selection are very generic. According 106 

to the ‘golden rule number 10’, joining elements should be minimal, and the use of screws, adhesives, 107 

welding, snap fits and geometric locking should be appropriate for different life cycle scenarios. In 108 

contrast, VDI 2243 and recycling guidelines by Bras (2005) differentiate the guidelines between 109 

disassembly and destructive recycling to assist designers in choosing the most appropriate product 110 

design based on the fastening principles. 111 

The choice of joining techniques during the design phase is gaining prominence for the 112 

sustainability of high purity metal recycling due to the current recycling practices (Castro et al., 2005; 113 

Van Schaik and Reuter, 2007; Worrell and Reuter, 2014). Studies on the limitations of Al recycling are 114 

mostly focussed on the efficiency of current sorting and separation processes (Froelich et al., 2007; 115 

Gaustad et al., 2012) and the challenges during the metallurgical recycling phase (Nakajima et al., 116 

2010; Paraskevas et al., 2015; Reck and Graedel, 2012). There is a lack of understanding of the 117 
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influence of joining choices during initial product design on the quality of recycled Al that is retrieved 118 

from highly complex products. 119 

This work investigates the types of joining techniques causing impurities in the Al streams when 120 

advanced recycling technologies are applied. The study is based on an industrial trial carried out in a 121 

leading recycler located in Belgium. Impurities due to joints are identified to understand to what extent 122 

they are affecting the collected Al streams. The observations are then expanded to assess the 123 

correlation between the presence of impurities due to specific joint types, and the different particle 124 

liberation sizes. Based on the case study data, a Life Cycle Assessment (LCA) is performed to 125 

evaluate the environmental impact of recycling different Al scrap qualities. This study assists 126 

manufacturers and designers to promote closed-loop recycling by mitigating the source of impurities 127 

through effective joining technology selection during the initial design stage that caters for current 128 

recycling practices. In addition, recyclers and policy-makers can target effective recycling processes 129 

and standards to ensure perfectly liberated joints for high purity Al to minimise the loss of valuable 130 

material streams. 131 

2 Materials and Methods 132 

This study analyses the cause of impurities present in the different Al output fractions sampled 133 

from a Belgium recycling facility. Section 2.1-2.3 describe the Al recycling processes and sampling 134 

procedures. To assess to what extent the impurities are affecting the environmental impact of 135 

recycling different Al scrap qualities, the LCA method is used, as detailed in Section 2.4.  136 

2.1 Recovery of Aluminium in Belgium 137 

The types of scrap sources as considered in the studied Belgian recycling facility, one of the 138 

leading recyclers in Europe, are shown in Table 2. The high content of Al in different scrap sources 139 

has made it one of the most intensely recycled metals besides steel. Most of the Al scrap is 140 

contributed by the end-of-life vehicle (ELV) and household waste streams. The Al content in the ELV 141 

and household waste accounts for 4.9wt.% (Muchová and Eder, 2010; RDC Environment, 2015) and 142 

4.7wt.% (Muchová and Eder, 2010) respectively. The Al content in demolition and building scrap is 143 

relatively low, less than 1wt.% (Muchová and Eder, 2010).   144 
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Table 2: The sources of the Al containing scrap as recycled in the Belgian recycling facility. 145 

Scrap sources  Relative share of total scrap stream  (%) 

Depolluted vehicle hulks (ELV) 30 

Demolition scrap 30 

Household waste 20 

Building scrap 20 

 146 

The material process flow specific to Al is shown in Figure 2. The processes involved in Al 147 

recycling can be categorised into three main clusters: Al sorting, refinement of sorted aluminium, and 148 

particle size sorting. For Al sorting, density separation is the first step to retrieve Al from the mixture of 149 

scrap. Subsequently, other major processes, such as eddy current separator, optical separator, and 150 

head pulley magnet, are used to further separate Al from other material types. 151 

 152 

Figure 2: Al material flow in the Belgian recycling facility. 153 

 154 
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The sorting process targeting Al begins with the density separation after the shredding and 155 

magnetic separation. Density separation sorts different materials based on their material densities. It 156 

typically starts with separating lighter material fractions (e.g. plastics, foam, rubber, etc.) and is 157 

followed by the sorting of materials with higher density. Through density separation at 3kg/l, Al alloys 158 

float and can be separated from materials with higher density, such as copper, zinc, and other heavy 159 

metals, that sink to the bottom. In some other recycling facilities, Al retrieval through eddy current 160 

separation is carried out (Gaustad et al., 2012). 161 

An air classifier is used to remove fine shredder residues targeted for energy recovery before the 162 

density separation. This allows the fine mixture of dust, metals, glass, and polymers to be removed 163 

before the first density separation for lighter material fraction. Other separation techniques, such as 164 

sievers, are also used. The material flow is sorted to different particle sizes based on the siever sizes 165 

used at various screening stages. This is a common practice in the recycling industry in Europe to 166 

segregate different material grades based on the particle sizes (Cui and Forssberg, 2003). 167 

An eddy current separator, optical separator and head pulley magnet are used to further sort 168 

unwanted materials that are still present in the Al flow. The remaining cable wires that did not sink 169 

during earlier density separation are further sorted using the eddy current separator. Through this 170 

process, an electrical current is induced within the conductive metal flow, and all metals are repelled 171 

through the rotor that produces an external magnetic field. Since Al and copper have a different 172 

conductivity, and thus produce varying eddy currents, they are ejected to different distances from the 173 

rotor. An optical separator is then utilised to further sort the commonly green coloured printed wiring 174 

board (PWB) from the grey coloured aluminium. To further remove small particles with ferrous content 175 

from the Al flow, a very strong head pulley magnet with a deeper magnetic field is used. 176 

2.2 Sampling Method 177 

The different Al fraction categories recovered from the facility are shown in Table 3. These 178 

categories were chosen for sampling to understand the effect of particle sizes on the purity level of 179 

various Al fractions, and the extent of impurities due to joints in the different particle sizes. Sampling 180 

was also carried out for Al with high Fe content. The collection of a minimum of 10 samples from each 181 

Al fraction was performed in accordance with the field sampling guidance for shredded scrap by the 182 
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United States Environmental Protection Agency (USEPA, 1993). The field sampling guidance 183 

provides information on different sampling methods, estimated sample size, and the statistical 184 

analysis methods to accurately approximate the impurity level of different Al fractions. These 185 

guidelines were based on previous case studies carried out at different shredder sites. 186 

Table 3: Amount of Al samples taken from each category, and the generated annual amount in the Belgian recycling facility. 187 

Category  Particle 

size class 

(mm) 

Number 

of 

samples 

Mass range of 

each sample (kg) 

Overall 

sample mass 

(kg) 

Annual 

amount 

(ton) 

Al with high Fe content 12-120 10 2.685-3.737 32.689 644 

Al fraction  40-120 20 2.290-3.896 61.363 6132 

Al fraction  12-40 10 1.506-2.408 19.210 4147 

Al fraction 4-12 10 1.494-1.947 16.662 1114 

 188 

There are different field sampling methods for shredded metal scraps on-site based on the 189 

guidelines by USEPA. Stockpile sampling, as explained in Figure 3, was chosen in this case study to 190 

obtain a more representative sample of the normal shredder output (USEPA, 1993). Al samples were 191 

taken from the Al stockpile warehouse where different qualities and particle sizes were stored 192 

separately. The bucket used to collect the samples has a diameter of 27.5cm with a height of 22.5cm. 193 

Each sample taken only filled up half the bucket. First, Al samples were collected at the edge of pile 194 

(location 1) at notch 1 and notch 2. The two notches were then dug to equal depth with the help of a 195 

front-loader truck. Finally, samples were gathered at locations 2 to 5 for notch 1 and 2. In total, there 196 

were 10 buckets of samples collected for each targeted Al output stream. 20 samples were taken only 197 

for the Al fraction 40-120mm to ensure a good representation of the stockpile, since it is the largest 198 

fraction produced in the facility.  199 
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(a) 

 

(b) 

 
Figure 3: Stockpile sampling of different Al fractions (a) Sampling location for each Al stockpile; (b) Location of notches made 200 

for each Al stockpile to carry out sampling. 201 

 202 

2.3 Sample Analysis Procedures 203 

The Al with high Fe content fraction was sieved through a 40mm mesh siever to separate 204 

particles to two particle size categories: 12-40mm and 40-120mm. This step was carried out to allow 205 

comparability with the observations made for the Al fractions of similar particle size classes.  206 

Each particle was weighed and hand-sorted according to the different liberation classifications, as 207 

shown in Figure 4 and as follows. 208 

• Liberated Al samples consisting of Al only (Figure 4a). 209 

• Liberated impurities were particles consisting of a single material type other than Al 210 

(Figure 4b).  211 

• Unliberated impurities were particles consisting of material combinations other than Al 212 

(Figure 4b). 213 

• Unliberated Al samples were particles consisting of Al that was still attached to other 214 

material types without the presence of a joint (Figure 4c).  215 

• Unliberated Al samples due to joint were particles consisting of Al that was still attached 216 

to other material types with the presence of a joint (Figure 4d). 217 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4: Examples of liberation classification for particles end up in the Al stream. (a) Liberated Al samples (Al particles only); 218 

(b) Liberated/unliberated impurities (liberated glass and unliberated Cu-Fe particles); (c) Unliberated Al sample not due to joint 219 

(PWB inserted in Al particle); (d) Unliberated Al sample due to joint (screw and bolt attached to Al particle). 220 

 221 

Unliberated particles were further separated into their individual materials. The mass of each 222 

material was recorded. For cases where further material separation was not possible due to 223 

entanglement or rust, the mass of individual materials was calculated using their volumes and 224 

average material densities: Al (2745kg/m3), steel (7825kg/m3), copper (8595kg/m3), plastic 225 

(1253kg/m3), rubber (1270kg/m3), and foam (255kg/m3) (Callister and Rethwisch, 2013; Gaustad et 226 

al., 2012). The types and characteristics of joints causing impurities were observed, and the range of 227 

joint sizes, joint material liberation, and the number of rusty joints were recorded quantitatively. 228 

2.4 Environmental Impact Assessment 229 

To evaluate the environmental impacts associated with the quality of different Al scrap fractions 230 

collected from the case study, LCA was carried out to assess the dilution and quality losses in 231 

remelting the scrap to be reused as Al 6061 alloy (AA6061). During remelting, dilution losses occur 232 

due to the need to dilute the residual element concentration (e.g. Fe) with primary Al. To avoid quality 233 

losses, alloying elements (e.g. Si and Cu) are added (Paraskevas et al., 2015). The environmental 234 

impact assessment only takes into consideration the secondary Al processing of the defined system 235 

boundary shown in Figure 5. The wrought AA6061 was chosen as the target secondary alloy since it 236 
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is widely used in automotive applications and thus, likely to be close to the average composition of the 237 

Al scrap retrieved from ELV. To compare the environmental impact of smelting different Al scrap, the 238 

functional unit is defined as Al recycling to produce 1 tonne of AA6061. The calculations for the 239 

required primary Al for dilution purposes and the additional alloying elements are attached in 240 

Appendix A. The credits for subsequent recycling of by-products, such as dross and salt slag, were 241 

also taken into consideration. 242 

 243 

Figure 5: System boundary and functional unit of secondary Al processing for different Al scrap fractions. 244 

 245 

GaBi software was used to model all the processes and resources involved during the secondary 246 

Al processing. Electricity generation was modelled based on the average electricity consumption mix 247 

in Europe. The life cycle inventories were obtained from GaBi Professional database v6.115 and a 248 

previous comprehensive report from the Aluminium Association (The Aluminium Association, 2013), 249 

as detailed in Table 4. The environmental performance was calculated based on the midpoint 250 

categories of the International Reference Life Cycle Data System (ILCD recommendations v1.09). 251 

These recommendations were based on the ILCD handbook in accordance with the ISO 14040 series 252 

(European Commission et al., 2010; ISO, 2006). Following this method, the midpoint results were 253 

normalised to person-equivalent (PE) units—the environmental impact caused by an average 254 

European annually. An equal weighting was applied for the midpoint impact categories, and the 255 
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normalised PE scores for all midpoint categories were added to allow comparison of the overall 256 

environmental performance for different Al scrap fractions to achieve 1 tonne of AA6061. The single 257 

impact score for climate change (include biogenic carbon) and resource depletion, mineral, fossils and 258 

renewables impact are provided in Table 4 due to their significant contribution to the environmental 259 

performance. 260 

Table 4: The life cycle inventory data sources for materials and recycling processes, and the respective impact score for climate 261 

change (include biogenic carbon) and resource depletion, mineral, fossils and renewables. 262 

Process  Climate 

change 

(PE/ton) 

Mineral and 

fossil depletion 

(PE/ton) 

Source  Description  

Al scrap 

preprocessing 

6.01E-03 3.62E-04 (The Aluminium 

Association, 

2013) 

The dataset includes scrap 

collection, separation, cleaning, 

and preprocessing. 

Al scrap 

remelting 

2.59E-01 1.15E-02 (The Aluminium 

Association, 

2013) 

The dataset includes remelting, 

refining, alloying, and casting of 

secondary Al. Dross and salt 

slag recycling are included. 

Primary Al 

ingot 

1.08E+00 2.84E-01 GaBi 

Professional 

Database 

v6.115 

The dataset includes cradle to 

gate inventory for primary Al 

ingot production in Europe. 

Primary Cu 4.04E-01 3.56E+02 GaBi 

Professional 

Database 

v6.115 

The dataset includes cradle to 

gate inventory for primary Cu 

(99.999%) in Germany. 

Primary Si 5.45E-01 4.77E-02 GaBi 

Professional 

Database 

v6.115 

The dataset includes cradle to 

gate inventory for primary Si 

(99%) in global context. The 

chemical composition is 

approximated based on Si-2202 

(BAIDAO, 2007; SINOGU, 

2016). 

 263 
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3 Results 264 

The liberation categories of the collected Al samples from different fractions were studied. The 265 

average Al purity of each fraction was determined. The presence of impurities due to joints was 266 

further analysed, and the types of joining techniques causing impurities were characterised. 267 

3.1 Al Sample Analysis 268 

The mass distribution of particles in the different liberation categories is shown in Figure 6. 269 

Liberated and unliberated impurities were mainly caused by separation errors during the recycling 270 

processes, and can be characterised as fine particles (<4mm); materials with similar density range to 271 

Al; small and longitudinal heavy metal particles; and materials with density less than Al (<2kg/l). The 272 

types of impurities consisted of ferrosilicon fines, glass, PWB, Cu, Fe, wires, plastics, and other light 273 

fraction of non-metals. Ferrosilicon fines are an example of fine particles easily trapped in Al samples 274 

during the density separation. Glass and PWB have a density range of 2.47-2.54kg/l (Malone and 275 

Dolter, 2008) and 1.5-2.89kg/l (Bizzo et al., 2014; Zhang and Forssberg, 1997) respectively that can 276 

be similar to Al density. Small heavy metal particles, such as Cu, Fe and wires, with thin and long 277 

shapes caused them to be entangled between Al particles during the density separation. Plastics, 278 

rubber, fabric, fibrous materials and foam are examples of impurities that were not well separated 279 

through density separation at earlier stages. Unliberated Al samples both with or without the presence 280 

of joint have higher Al content in the particles by mass and therefore, they were more likely to end up 281 

in the Al streams. 282 
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 283 

Figure 6: Liberation categories for particles in different Al fractions. 284 

 285 

From Figure 6, the total mass of unliberated Al samples both with and without joint is showing an 286 

increasing trend when the particle sizes are larger. This observation is valid for both the Al fraction 287 

and Al with high steel content fraction. To understand the purity level of Al samples for different 288 

particle sizes, the mass fraction of impurities was calculated and the result is shown in Table 5. 289 

Table 5: Al purity for different Al fractions with 95% confidence interval. 290 

Category  Particle size c lass (mm)  Al p urity (wt.%)  

Al with high Fe content fraction 40-120 82.07 ± 3.86 

Al with high Fe content fraction 12-40 80.75 ± 3.38 

Al fraction  40-120 98.66 ± 0.58 

Al fraction  12-40 99.57 ± 0.29 

Al fraction 4-12 98.11 ± 0.58 

 291 

In general, the quality of recycled Al can be separated into two classes: Al purity more than 98%, 292 

and Al purity less than 83%. Al purity less than 83% consisted of Al with high steel content fractions 293 
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that were separated through a strong head pulley magnet as the final separation process in the 294 

recycling facility. 295 

Based on the analysis of the shredded samples, smaller particle sizes do not indicate higher Al 296 

purity. Al with high Fe content fraction (40-120mm), and Al fraction (12-40mm) have higher Al purity 297 

values in their respective categories. The geometry, joint size, and material types of the combined 298 

parts also affect the purity levels of Al fractions in different particle sizes. For instance, when a large 299 

number of small steel screw fasteners (e.g. steel screw with diameter and length of 2mm and 4mm 300 

respectively) are used, the likelihood of Fe impurities due to screw fasteners present in the Al fraction 301 

in smaller particle sizes is quite high with respect to mass. 302 

The material types of impurities were identified to understand the extent of contamination in the Al 303 

samples. Some of the impurity types can be removed easily during the secondary Al production 304 

whereas others, such as Fe, require a dilution process using primary Al. As seen in Table 6, the types 305 

of impurities are Fe, Cu, organic and inorganic. It can be observed that the smaller particle size 306 

fraction, 4-12mm has a higher impurity level than the 12-40mm fraction due to the material types and 307 

the physical characteristics of impurities. These impurities are largely contributed by ferrosilicon fines 308 

(consisting of ferrous and silicon), thin and long-shaped wires (consisting of Cu and plastics), small 309 

pieces of shattered glass (silicon) and plastics that typically have small dimensions or high brittleness. 310 

One of the most undesired tramp elements during Al recycling are Fe impurities (Cho et al., 2015; 311 

Paraskevas et al., 2015) due to their detrimental effect on the mechanical properties of Al alloys 312 

(Belov et al., 2002). Therefore, this case study focussed on the source of Fe impurities in unliberated 313 

samples due to joints to understand the impact of joining choices on the purity level of recycled Al. 314 

Table 6: Types of impurities present in the Al output streams in the Belgian recycling facility. 315 

Category  Particle size 

class (mm) 

Average mass p ercentage (wt.%)  

Fe 

impurities 

Cu 

impurities  

Organic 

impurities 

Inorganic 

impurities 

Al with high Fe fraction 40-120 11.32 0.27 5.82 0.42 

Al with high Fe fraction 12-40 9.82 1.38 6.40 1.56 

Al fraction  40-120 0.36 0.25 0.71 0.05 

Al fraction  12-40 0.03 0.13 0.23 0.06 

Al fraction 4-12 0.14 0.26 0.96 0.43 
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3.2 Observations on the Joint Type Causing Impuriti es 316 

From the collected Al samples, it was observed that mechanical fastening and adhesive bonding 317 

were the two main types of joining techniques causing impurities. The amount of unliberated Al 318 

samples due to adhesive bonding was extremely small. They were mostly combinations of Al and 319 

lower density materials, such as Al-plastic and Al-foam particles, using lap joint. Lower density 320 

materials assisted in breakage during the shredding process due to centrifugal force, and hence, were 321 

less likely to cause impurities in the Al samples.  322 

In contrast, mechanical fasteners were the major type of joining method contributing to the 323 

presence of Fe impurities in the Al stream, since they are typically made of steel. They were further 324 

classified to understand the different types of mechanical fasteners, and how their characteristics 325 

contributed to the presence of impurities. Figure 7 shows the various types of mechanical fasteners 326 

that were observed in the unliberated Al samples due to joints. 327 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 7: Classification of different mechanical fastening joining methods (Bolt Depot, 2013). (a) Machine screw; (b) Bolt screw; 328 

(c) Socket screw; (d) Rivet; (e) Pin; (f) Steel clip. 329 

 330 

3.2.1 Al with High Steel Content Fraction (12-120mm ) 331 

In Figure 8, it can be observed that the likelihood of Fe impurities due to separation errors 332 

decreases for larger particle sizes in Al fraction. The Fe impurities observed in the Al with high Fe 333 

content fraction (12-40mm) were mostly small in size due to the inability of the head pulley magnet to 334 

pick up small Fe content. There were no Fe impurities due to separation errors observed in the larger 335 

particle sizes. Fe impurities that were larger in size have higher likelihood of being separated by the 336 
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magnetic separator after the shredding process. On the other hand, impurities due to imperfect 337 

material liberation were largely caused by structural design, such as enclosures (parts surrounded by 338 

different material types) and entanglement (parts that were twisted together or caught in), after the 339 

shredding process. Therefore, the likelihood of Fe impurities due to imperfect material liberation 340 

increases for larger particle sizes in the Al fraction. 341 

  

(a) Al with high steel content fraction (12-40mm) without Fe 

impurities due to unliberated rivets and pins 

(b) Al with high steel content fraction (40-120mm) without Fe 

impurities due to separation errors 

 Impurities due to separation error  Impurities due to imperfect material liberation 

 Impurities due to unliberated joint-Machine screw  Impurities due to unliberated joint-Socket screw 

 Impurities due to unliberated joint-Bolt screw  Impurities due to unliberated joint-Rivet 

 Impurities due to unliberated joint-Steel clip  Impurities due to unliberated joint-Pin 

Figure 8: Fe impurities present in the Al with high steel content fraction with 95% confidence intervals. 342 

 343 

There were a variety of mechanical fastener types causing Fe impurities in the Al with high Fe 344 

content fractions. Fe impurities observed in smaller particle sizes were caused by unliberated 345 

machine screws, socket screws, bolt screws, rivets, and steel clips. No pins were observed for this 346 

fraction due to the smoother joining surface that allowed them to be well liberated when shredded to 347 

smaller particle sizes. The types of mechanical fasteners causing Fe Impurities in the larger particle 348 

sizes were machine screws, socket screws, bolt screws, rivets, steel clips and pin. For both fractions, 349 

machine screws were more likely to cause impurities when compared to other mechanical fastener 350 

types. 351 
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The types of mechanical fasteners causing impurities were further characterised through 352 

observation of their physical attributes, as shown in Table 7. The percentages are with respect to the 353 

total number of units for each joint type. It is observed that the number of mechanical fasteners in the 354 

larger particle sizes were higher compared to the smaller particle sizes except for machine screws 355 

and steel clips. Moreover, the fraction with larger particle sizes has a wider range of joint sizes when 356 

compared to smaller particle sizes. In spite of that, the number of joint sizes with diameter and length 357 

more than 6mm and 10mm respectively (large joint sizes) is similar for both particle size classes. 358 

Partial liberation joints, those with more than 50 wt.% of the joint material liberated, were more likely 359 

for threaded fasteners such as machine screws and bolt screws. In most cases, the fasteners’ head 360 

was liberated due to protrusion. Rusty threaded fasteners were also more likely to cause impurities in 361 

the Al samples. 362 

Table 7: Characteristics of joint causing Fe impurities in Al with high Fe content fractions. 363 

Joint t ypes  Total 

(unit) 

Joint s ize (mm)  Large joint 

size (%) 

Partial 

liberation (%) 

Rust (%)  

Diameter  Length  

12-40mm  

Machine screw 101 2-10 3-30 12 9 86 

Socket screw 11 4-7 9-36 27 0 64 

Bolt screw 16 4-10 8-50 56 0 94 

Rivet 13 4-5 3-13 0 0 46 

Steel clip 19 2-3 10 0 0 0 

 

40-120mm  

Machine screw 94 2-12 2-30 12 4 76 

Socket screw 20 3-9 10-60 30 0 85 

Bolt screw 39 3-14 7-125 52 8 76 

Rivet 48 5-6 3-50 1 0 48 

Steel clip 2 2-3 12 0 0 0 

Pin 1  10 0 0 0 

 364 

3.2.2 Al Fraction (4-120mm) 365 

Similar to Al samples with high Fe content, the likelihood of Fe impurities due to separation errors 366 

decreases for larger particles sizes in the Al fraction, as seen in Figure 9, since they can be easily 367 

sorted through magnetic separation. In contrast, impurities due to imperfect material liberation could 368 
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potentially be higher for larger particle sizes, although they were not observed in the Al fraction (12-369 

40mm). 370 

  

(a) Al fraction (4-12mm) with Fe impurities due to 

separation errors, imperfect material liberation, and 

unliberated machine screws 

(b) Al fraction (12-40mm) with Fe impurities due to separation 

errors and unliberated machine screws 

 

(c) Al fraction (40-120mm) with Fe impurities due to a variety  

of unliberated joint types 

 Impurities due to separation error  Impurities due to imperfect material liberation 

 Impurities due to unliberated joint-Machine screw  Impurities due to unliberated joint-Socket screw 

 Impurities due to unliberated joint-Bolt screw  Impurities due to unliberated joint-Rivet 

Figure 9: Fe impurities present in the Al fraction with 95% confidence intervals. 371 

 372 

The likelihood of Fe impurities due to mechanically fastened joints in the Al fraction is higher for 373 

larger particle sizes. There was more variety of mechanical fastener types that contribute to the Fe 374 
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impurities in the Al fraction (40-120mm). Machine screws were the only type of joint causing impurities 375 

in the smaller particle sizes, whereas machine screws, socket screws, bolt screws and rivets were 376 

observed in Al fraction (40-120mm). Despite the use of a strong head pulley magnet to remove small 377 

Fe content, machine screws contaminating the different Al fractions were still present.  378 

Table 8 shows the attributes of mechanical fasteners causing Fe impurities in the different Al 379 

fractions. The number of machine screws observed in Al fraction (40-120mm) was larger compared to 380 

the fraction containing the smaller particle sizes. However, there was still a small number of machine 381 

screws present in this smaller particle size fraction. This was due to the lower magnetic force 382 

experienced by small screws located at enclosed spots despite the use of a strong head pulley 383 

magnet. In contrast, the presence of mechanical fasteners other than machine screws (socket screws, 384 

bolt screws, and rivets) was only seen in Al fraction (40-120mm). Socket screws and bolt screws have 385 

a more protruded head compared to machine screws that facilitate liberation during the shredding 386 

process. On the other hand, rivets have a smooth surface that allows them to be easily set free when 387 

shredded into smaller particle sizes. The likelihood of impurities due to larger joint sizes or of partial 388 

liberation is higher for larger particle sizes particularly for the machine screw fastener type. 389 

Table 8: Characteristics of joint causing Fe impurities in Al fractions. 390 

Joint t ypes  Total 

(unit) 

Joint s ize (mm)  Large joint 

size (%) 

Partial 

liberation (%) 

Rust (%)  

Diameter  Length  

4-12mm  

Machine screw 2 3-4 8 0 0 100 

 

12-40mm  

Machine screw 1 5 20 0 0 100 

 

40-120mm  

Machine screw 17 3-8 5-25 18 12 50 

Socket screw 1 4 18 0 0 0 

Bolt screw 2 4 11-12 0 0 50 

Rivet 2 5 7 0 0 0 

 391 
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4 Environmental Impact Assessment Results 392 

From the LCA results presented in Figure 10, the total environmental impact for Al with high Fe 393 

scrap fractions (both particle sizes) has increased by at least 28 times in comparison to the Al scrap 394 

fractions (4-12mm, 12-40mm, and 40-120mm). This is caused by the higher concentration of Fe, that 395 

can be considered as impurities rather than useful alloying elements, and the addition of Si and Cu 396 

alloying elements to produce AA6061. The contribution of different midpoint impact categories for the 397 

different Al scrap fractions to produce 1 tonne of AA6061 is provided in Appendix A. The use of 398 

primary Al as dilution agent is the major contributor to the environmental impact for Al scrap with high 399 

Fe content with an impact share of at least 92%, as supported in other studies (Amini et al., 2007; 400 

Paraskevas et al., 2015). To achieve higher purity wrought Al alloy, a substantial amount of primary Al 401 

is required for the dilution of these streams, and alloying elements are added to meet the 402 

compositional limits. This results in scrap underutilisation since only 3-6wt.% of the produced AA6061 403 

consists of recycled Al scrap. The use of primary Al for dilution can be minimised by using other high 404 

purity scrap streams and optimised Al scrap blending (Paraskevas et al., 2015). 405 

 406 
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Figure 10: Total environmental impact and the share of recycling, dilution and quality losses for different Al scrap fractions to 407 

achieve 1 tonne of AA6061. 408 

A sensitivity analysis was carried out to assess the influence of varying element values for 409 

different Al scrap fractions. The range of values for Fe, Si and Cu elements are shown in Table 9. As 410 

can be seen from Figure 10, the total environmental impact is sensitive to the range of values for Fe, 411 

Si and Cu in different Al scrap fractions. It is shown that the margin of error for the total environmental 412 

impact can be up to ±0.5 person equivalent per tonne. However, the trend of the total environmental 413 

impact for the range of element values is largely unaffected. The total environmental impact for Al with 414 

high Fe scrap fractions is greatly influenced by the dilution losses. In contrast, the total environmental 415 

impact for Al scrap fractions is largely contributed by recycling process and quality losses since no 416 

dilution losses occur. Despite the sensitivity to the range of Fe, Si and Cu values, the negative impact 417 

of the Al scrap fractions is insignificant compared to Al scrap with high Fe content. 418 

Table 9: The range of values for Fe, Si and Cu present in the different Al scrap fractions with 95% confidence interval. 419 

Category  Particl e sizes (mm)  Fe (wt.%)  Si (wt.%)  Cu (wt.%)  

min  max min  max min  max 

Al with high Fe fraction 40-120 9.95 12.69 0.00 0.94 0.00 0.46 

Al with high Fe fraction 12-40 7.12 12.53 0.00 3.51 0.51 2.24 

Al fraction  40-120 0.03 0.68 0.00 0.11 0.06 0.46 

Al fraction  12-40 0.00 0.06 0.03 0.09 0.00 0.28 

Al fraction 4-12 0.07 0.20 0.27 0.54 0.14 0.38 

 420 

As can be seen from Figure 11, about 70% of the total impact share of dilution losses for Al scrap 421 

with high Fe content is caused by unliberated joints. Dilution losses due to material separation errors 422 

can only be observed for Al with high Fe scrap in smaller particle sizes due to the presence of silicon 423 

from the shattered glass. The environmental evaluation based on the case study data shows that the 424 

dilution and quality loss impacts are tightly-linked to the quality or purity level of the recovered Al 425 

streams resulting from material liberation. The high Fe content due to improper material liberation has 426 

become a limiting factor for the recyclability of the Al streams. It is worth noting that the environmental 427 

performance may vary according to the efficiency of recycling technologies used in different countries.  428 
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 429 

Figure 11: The impact share of dilution losses (primary Al addition) and the environmental impact (person equivalent per tonne) 430 

due to liberation categories. 431 

5 Discussion 432 

The annual Al output streams in the Belgian recycling facility are shown in Table 10. The material 433 

composition in each Al stream is estimated from the performed sampling, and subjected to the 434 

variation based on the 95% confidence interval. Despite the large variance for certain tramp elements 435 

in different Al output streams, the impact on the environmental performance is insignificant. Al 436 

fractions (12-40mm) and (40-120mm) are the two largest fractions with high Al purity levels of 99.57% 437 

and 98.66% respectively, whereas the Al with high Fe content fraction has the lowest annual amount 438 

with low Al purity level of 81.28% (combination of both particle sizes). With the increasing complexity 439 

of multi-material designs, particularly in the automotive sector which is one of the largest consumers 440 

of Al, it is projected that the Al with high Fe content fraction will be growing and thus, lead to the 441 

reduction of the Al fraction with higher purity (Soo et al., 2015, 2016).   442 
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Table 10: Estimated material composition for the Belgian recycling facility's annual Al output streams based on the 443 

extrapolation of sampling results. 444 

Material t ype  Al with high Fe 

content fraction  

(12-120mm) 

Al fraction  

(40-120mm) 

Al fraction  

(12-40mm) 

Al fraction  

(4-12mm) 

ton wt. % ton wt. % ton wt. % ton wt. % 

Al 523.46 81.28 6048.50 98.64 4128.60 99.56 1093.00 98.11 

PWB 2.09 0.32 3.14 0.05 1.45 0.03 6.04 0.54 

Wire 4.21 0.65 18.80 0.31 2.41 0.06 2.72 0.24 

Cu 0.62 0.10 7.60 0.12 4.24 0.10 0.61 0.06 

Plastic/composite 12.13 1.88 19.44 0.32 3.87 0.09 3.57 0.32 

Rubber 18.26 2.84 6.71 0.11 2.67 0.06 0.20 0.02 

Steel 75.82 11.77 21.39 0.35 0.73 0.02 1.29 0.12 

Foam 0.57 0.09 0.46 0.01 0.21 0.01 0 0 

Fabric 2.19 0.34 2.16 0.04 0 0 0 0 

Synthetic leather 0.28 0.04 0 0 0 0 0 0 

Glass 0 0 0 0 0 0 5.06 0.45 

Fibrous material 2.66 0.41 0 0.41 0 0 0.40 0.04 

Ferrosilicon fine 1.70 0.26 3.86 0.06 2.80 0.07 1.16 0.10 

TOTAL:  644 100 6132 100 4147 100 1114 100 

 445 

5.1 Observational Study Outcomes 446 

From the analysed samples, most of the Fe impurities were due to unliberated joints particularly 447 

for Al with high Fe fractions, and Al particles of larger sizes, as seen in Table 11. Particles with 448 

unliberated joints in the Al with high Fe fractions have contributed at least by 69% to the total Fe 449 

impurities. When the particle sizes for different Al fractions decrease, the total Fe impurities due to 450 

unliberated joints decrease by at least 33%. Therefore, smaller particle sizes can assist in reducing Fe 451 

impurities due to unliberated joints. However, the proportion of Fe impurities due to separation errors 452 

or imperfect material liberation is higher for Al fractions with smaller particle sizes. The presence of 453 

these impurities is strongly influenced by the material structural design, joint size used, and the 454 

efficiency of the recycling processes in sorting small to fine particles. Thus, additional loops in Fe 455 

impurity removal or adjustment of the installation with strong magnets could assist in reducing 456 

material separation errors for smaller particle sizes.  457 
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Table 11: The proportion of Fe impurities due to separation error, imperfect material liberation and unliberated joint. 458 

Category  Particle size 

class (mm) 

Total Fe i mpurities (wt.%)  

Separation 

error 

Imperfect material 

liberation 

Unliberated 

joint 

Al with high Fe fraction 40-120 0 3.52 7.88 

Al with high Fe fraction 12-40 1.41 1.47 6.94 

Al fraction  40-120 0.04 0.08 0.24 

Al fraction  12-40 0.03 0 0.01 

Al fraction 4-12 0.06 0.07 0.01 

 459 

5.2 Recommendations to Improve Al Scrap Quality 460 

Based on the case study observations, the suggestions to improve the quality of Al recycling from 461 

ecodesign (materials and connections) and recycling process perspectives are as follows. 462 

Ecodesign 463 

• Encourage the use of low cost disassembly embedded design, such as the use of active 464 

fasteners (connections that can be unfastened simultaneously through a specific trigger 465 

or a combination of triggers), to maximise the material/part reuse without compromising 466 

the product use phase (Duflou et al., 2008; Peeters et al., 2015; Peeters et al., 2017). 467 

• Encourage the use of mechanical fasteners with greater protrusion and smoother joining 468 

surface, such as socket screws, rivets and pins, to ease particle liberation. 469 

• Avoid the use of machine screws. Otherwise, minimise the total number and sizes of 470 

joints particularly for machine screws to reduce the mass of Fe impurities. 471 

Recycling processes 472 

• Encourage shredding of particles into smaller sizes to decrease the presence of 473 

impurities due to mechanical fastening joints and imperfect liberation.  474 

• Encourage the use of strong head pulley magnets to further sort small Fe content 475 

particularly for Al particles that still contain smaller size mechanical fastening joints. This 476 

process is not commonly used in recycling facilities. 477 
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• Encourage the use of more efficient sorting processes for PWB, Cu and wires to refine Al 478 

scrap after density separation, such as wet shaker tables (Jordão et al., 2016), kinetic 479 

gravity separators (Rem, 2009), and nail roll separators (Fabrizi et al., 2003). 480 

The feasibility of the proposed recommendations can be influenced by other factors, such as the 481 

economic aspects and legislative boundaries (Soo et al., 2017). Recycling of high purity materials can 482 

be affected by the additional recycling costs, the profit of the end products, or the generated mass or 483 

volume of different quality scrap fractions. In addition, a governmental role can also be of importance 484 

through the imposing of a minimum purity level required for outputs from recycling activities. 485 

6 Conclusions and Future Work 486 

Despite the rigorous recycling processes used in the Belgian recycling facility, unliberated joints 487 

are one of the major contributors to the presence of Fe impurities in the Al output streams, particularly 488 

for Al with high steel content fractions. The Fe content level highly influences the recyclability of Al 489 

scrap; thus, the environmental impact of dilution and quality losses during Al recycling needs to be 490 

integrated into LCA for better-informed decisions towards closed-loop recycling. 491 

The main type of joining techniques causing impurities in the Al streams are mechanical 492 

fasteners, such as machine screws, socket screws, bolt screws and rivets, which are commonly used 493 

for assembling Al with other materials. Although adhesive bonding was also observed to cause 494 

impurities in the Al particles, these were relatively small and almost negligible when compared to the 495 

effects of mechanical fastening joints.  496 

Based on the observations of the collected samples, machine screws were the major type of 497 

mechanical fasteners causing Fe impurities in different Al fractions due to their joint characteristics. 498 

This was consistently observed for various particle sizes. Machine screws are normally less protruded 499 

compared to other mechanical fasteners, such as bolt screw, and socket screw. A higher level of 500 

protrusion eases liberation during the shredding process. In addition, machine screws that were 501 

smaller in size, and corroded due to moisture will make particle liberation more challenging. There 502 

were also cases of partial liberation due to the threaded structure that further hindered full material 503 

liberation. 504 
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Unliberated Al samples due to the presence of joints are less likely for smaller shredder output 505 

fractions with respect to the total mass of particles. It was found that smaller particle sizes ease 506 

liberation of Fe impurities from the joints. However, when considering the Al purity level for different 507 

particle sizes, they do not indicate a higher purity level for smaller particle sizes. This was largely 508 

caused by the increasing proportion of Fe impurities due to separation errors and imperfect material 509 

liberation. Although sorting of Al scrap into different fractions is proven to be effective in obtaining high 510 

quality Al in most European countries, it is important to understand the quality of recycled Al scrap in 511 

high consumption countries, such as in China (RBC Capital Markets, 2015), from a global 512 

perspective. 513 

It can be concluded that the choice of joining techniques during the design phase has a significant 514 

impact on the environmental performance during the EoL phase. The share of unliberated joints 515 

causing the environmental impact due to dilution losses in the Al scrap with high Fe content is the 516 

highest compared to material separation errors and imperfect material liberation. Dilution losses 517 

cause a significant environmental impact and reduce the avoided environmental impact during Al 518 

recycling. 519 
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Highlights  

• Identified the types of joining techniques causing impurities in the Al streams. 

• Characterised the joints causing Fe impurities in the Al streams. 

• Recycling efficiency of Al was measured through an industrial trial in Europe. 

• Identified the linkage between particle sizes and impurities due to joints. 

• Assessed the environmental impact of dilution and quality losses due to joints. 


