
Design and Analysis of Mobile
Operating System Security

Architecture using Formal Methods

Hendra Gunadi

A thesis submitted for the degree of
Doctor of Philosophy

The Australian National University

November 2017

© Hendra Gunadi 2017

to my mother, Hennywati Surya
to my brothers, Julius Halim and Himawan Hutomo

to my wife, Maria Kristiyanti Tjandradjaja

Acknowledgments

First of all, I want to thank God for blessing me with such a great privilege that I
may finish this thesis. That even though I always forget about Him (especially in the
hectic times doing this thesis), He still loves me and care for me. I thank God for
putting these people around me who helped me through the whole time of my Ph.D.

I also want to thank my family for their support throughout my degree. Es-
pecially to my mom, Hennywati Surya who has sacrificed so much to support me
going to study here. And I want to thank my brothers, Julius and Himawan, as well,
because even though we are far apart, they still accompany me (online).

One big thanks to my supervisor Alwen Tiu for helping me by directing me
through this thesis. I really appreciate all the help and support that you have given
me. I know that the whole situation is not really conducive since we have to do long
distance correspondence, while you are also really busy with your own responsibil-
ity. You still patiently help me to work through this thesis (especially all the proof
readings!).

Not also forgetting to thank my lovely wife, Maria Kristiyanti Tjandradjaja. Your
involvement in my life has brought about significant changes. Thanks for all the
happy and hard times together, and also for your support, making sure that I am
motivated to finish this thesis.

I also want to say thanks to Rajeev Goré and Dirk Pattinson for their eagerness to
help even though you are busy. Thanks Raj for helping me in administrative area and
making sure that I progress throughout my Ph.D. Also thanks Dirk for your pointer
and discussion in finishing the formalization in Coq.

I want to say thanks as well to all the people I know who have been involved
in my life here during these 6 years in Canberra. For my Indonesian (in Indonesia)
friends who keep on “annoy”- ing me, for my office mate and fellow Ph.D student
Gary, for Micaiah and Elysia, and for my housemates John, Jing, and Kuangda. I
also want to thanks to Simon and Annabel for catching up with me regularly, dinner
gang that regularly meets every Friday, also for James for all the regularly catching
up after church for quite a while.

Finally, I also want to thank the reviewers for their valuable feedback.
This research is supported by an Australian Research Training Program (RTP)

Scholarship.

vii

Abstract

The Android operating system (OS) is now used in the majority of mobile devices.
Hence, Android security is an important issue to handle. In this work, we tackle
the problem using two separate approaches: directly modifying Android OS and
developed a framework to provide a guarantee of non-interference.

Firstly, we present a design and an implementation of a security policy specifi-
cation language based on metric linear-time temporal logic (MTL) to specify timing-
dependent security policies. The design of the language is driven by the problem of
runtime monitoring of applications in mobile devices. A main case of the study is the
privilege escalation attack in the Android OS, where an unprivileged app gains ac-
cess to privileged resource or functionalities through indirect flow. To capture these
attacks, we extend MTL with recursive definitions to express call chains between
apps. We then show how our language design can be used to specify policies to
detect privilege escalation under various fine-grained constraints. We present a new
algorithm for monitoring safety policies written in our specification language. The
monitor does not need to store the entire history of events generated by the apps. We
modified the Android OS kernel to allow us to insert our generated monitors mod-
ularly. We have tested the modified OS (LogicDroid) on an actual device, and show
that it is effective in detecting policy violations. Furthermore, LogicDroid is able to
prevent a previously unknown exploit to breach Android security which allows an
unprivileged application to access certain critical and privileged functionalities of an
Android phone, such as making phone calls, terminating phone calls, and sending
SMS, without having to ask any permissions to do so.

Subsequently, we provided a framework to ensure non-interference properties
of DEX bytecode. Each application in Android runs in an instance of the Dalvik
virtual machine, which is a register-based virtual machine (VM). Most applications
for Android are developed using Java, compiled to Java bytecode and further into
DEX bytecode. Following a methodology that has been developed for Java byte-
code certification by Barthe et al., we developed a type-based method for certifying
non-interference property of a DEX program. To this end, we develop a formal oper-
ational semantics of the Dalvik VM, a type system for DEX bytecode, and prove the
soundness of the type system with respect to a notion of non-interference. We have
also formalized the proof of a subset of DEX in Coq for an additional guarantee that
our proof is correct.

We then study the translation process from Java bytecode to DEX bytecode, as
implemented in the dx tool in the Android SDK. We show that an abstracted version
of the translation from Java bytecode to DEX bytecode preserves the non-interference
property. More precisely, we show that if the Java bytecode is typable in Barthe
et al.’s type system, then its translation is typable in our type system. This result

ix

x

opens up the possibility to leverage existing bytecode verifiers for Java to certify
non-interference properties of Android bytecode.

Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Introduction . 1
1.2 Research Motivation and Direction . 2
1.3 Thesis Outline . 5

2 Efficient Runtime Monitoring with Metric Temporal Logic 7
2.1 Related Work . 10
2.2 Background . 11
2.3 The policy specification language RMTL 13
2.4 Trace-length independent monitoring . 19
2.5 Examples . 24
2.6 Implementation . 25

2.6.1 Monitor Generator . 26
2.6.2 LogicDroid Architecture . 26
2.6.3 Performance . 30
2.6.4 Vulnerabilities in com.android.phone component 32

3 Design of Android Bytecode Certification 37
3.1 Related Work . 38
3.2 Proof-Carrying Code . 40
3.3 Non-Interferent Type System for JVM . 41

3.3.1 Overview of JVM Bytecode . 41
3.3.2 Operational Semantics . 42
3.3.3 Type System . 47

3.4 Infrastructure for Android Bytecode Certification 55

4 Non-Interferent Type System for Android Bytecode 59
4.1 Syntax, Semantics, and Type System for Android Bytecode 60

4.1.1 Overview of DEX Bytecode . 60
4.1.2 Operational Semantics . 60
4.1.3 Type System . 67
4.1.4 Examples . 73

4.2 Typable DEX Program Implies Non-Interference 77

xi

xii Contents

4.2.1 Auxilliary Lemmas . 80
4.2.2 Typable DEXI Implies Non-interference 82
4.2.3 Typable DEXO Implies Non-interference 83
4.2.4 Typable DEXC Implies Security . 86
4.2.5 Typable DEXG Implies Security . 89

5 Formalization of DEXI and DEXO 101
5.1 The Semantics of DVM . 102

5.1.1 Infrastructure . 102
5.1.2 Instructions . 107
5.1.3 The Operational Semantic of DEXI and DEXO Instructions . . . 108
5.1.4 Successor Relation and CDR . 117

5.2 Formalization of DEXI . 120
5.2.1 Transfer Rules . 120
5.2.2 Indistinguishability Relations . 123
5.2.3 Non-Interference Proof for DEXI 127

5.3 Formalization of DEXO . 132
5.3.1 Transfer Rules . 133
5.3.2 Indistinguishability Relations . 134
5.3.3 Non-Interference Proof for DEXO 137

6 Type-Preserving Compilation of Android Bytecode 141
6.1 Translation Phase . 141

6.1.1 Starting Instruction of a Block (StartBlock) 143
6.1.2 Resolving Parents-Successors Relationship (TraceParentChild) 145
6.1.3 Reading Java Bytecodes (Translate) 149
6.1.4 Ordering Blocks (PickOrder) . 151
6.1.5 Output DEX Instructions (Output) 152

6.2 Proof that Translation Preserves Typability 155
6.2.1 Compilation of CDR and Security Environments 155
6.2.2 Compilation Preserves Typability 163

6.3 Implementation for Type-Preserving Compilation 175
6.3.1 Component Details . 181

6.3.1.1 Certificate Structure . 181
6.3.1.2 Naive JVM Type Inference 187
6.3.1.3 Non-Optimizing Certificate Translation 189
6.3.1.4 DEX Type Checker . 191

6.3.2 Compact Certificate . 192

7 Conclusion 199
7.1 Future Work . 199

Contents xiii

A Intermediate Type System 201
A.1 Successor Relations . 201
A.2 Control Dependence Region . 202
A.3 Transfer Rules . 202

xiv Contents

List of Figures

1.1 Android OS architecture. Image source: Wikipedia. 2
1.2 App and permissions required to do a malicious activity: (a) App is

not granted any permission which can lead to a malicious activity (b)
App is granted a subset of the permissions (c) App has a superset of
the permissions (d) App is gaining more privilege 3

1.3 Non-Interferent Program . 5

2.1 The architecture of LogicDroid . 27
2.2 A hook in the Android framework to intercept phone calls 29
2.3 A hook placed in the Linux kernel to intercept calls to network sockets 30
2.4 Timing of Calls . 35
2.5 Vulnerabilities in the android.com.phone component. 36

3.1 PCC structure . 42
3.2 JVM Instruction List . 43
3.3 Full JVM Operational Semantic . 46
3.4 JVM Transfer Rule . 52
3.5 PCC structure for Android Bytecode . 56

4.1 DEX Instruction List . 61
4.2 DEX Operational Semantic . 63
4.3 DEX Transfer Rule . 71
4.4 Base Case for Type System Soundness . 77
4.5 Induction Case for Type System Soundness 77
4.6 Junction Point Indistinguishability in JVM 80

6.1 Overall architecture . 176
6.2 Certificate Structure . 177
6.3 Content of the Methods for the Sample Application 178
6.4 Certificate for the Sample Application . 180
6.5 Sample Certificate . 188
6.6 Sample Compact Certificate . 195

A.1 DEX Intermediate Transfer Rule . 206

xv

xvi LIST OF FIGURES

List of Tables

2.1 Performance Table (ms) . 31
2.2 Memory Overhead Table . 31

6.1 Instruction Translation Table . 150
6.2 Translation Table . 159

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

1.1 Introduction

Android is a popular mobile operating system (OS) that has been used in a range of
mobile devices such as smartphones and tablet computers. According to Sta [2017],
Android has the most significant market share for mobile devices, making it an at-
tractive target for malwares, so verification of the security properties of Android apps
is crucial. It uses Linux as the kernel, which is extended with an application frame-
work (middleware). Most applications of Android are written to run on top of this
middleware, and most of the Android-specific security mechanisms are enforced at
this level.

The Android OS is built on top of the Linux kernel, so at the most basic level, it
inherits most of the security architecture of Unix/Linux. Figure 1.1 shows Android’s
architecture. Android treats each application as a distinct user with a unique user
ID. At the kernel level, the standard Unix permission mechanism enforces access
control based based on the user id (and group id) of the app. Since Android 4.3,
Android also uses SELinux (McCarty [2004]) to enforce other security policies on top
of standard Unix security.

To install an application, users can download applications from Google Play or
third-party app stores in the form of an Android Application Package (APK). An-
droid’s applications, however, do not run directly on Linux. Rather they run inside
a virtual machine called the Dalvik Virtual Machine (DVM), that are insulated from
the rest of the system. This method of sandboxing an application is similar to the
sandboxing implemented in the Java virtual machine but does not include certain se-
curity features, such as the Security Manager. All Android applications are running
in their own instance of the Dalvik virtual machine, and communication and sharing
between apps are allowed only through an inter-process communication (IPC) mech-
anism. Android middleware provides a list of resources and API to access specific
functionalities of the device, such as making phone calls, sending an SMS, query-
ing some GPS location information, or querying unique device ID (such as the IMEI
number), etc. Inter-component communication (ICC) uses the same communication
mechanism within the same application, so we shall use ICC to refer to both ICC and
IPC.

Android enforces access control to device’s functionalities via its permission mech-

1

2 Introduction

Figure 1.1: Android OS architecture. Image source: Wikipedia.

anism: each service/resource is associated with a certain unique permission tag, and
each app must request permissions to the services it needs at installation time. For
example, to be able to connect to the internet, an app in Android needs to have the
INTERNET permission. Similarly, to access fine location information (such as that ob-
tained through a GPS device), an app needs to have the ACCESS_FINE_LOCATION
permission. For a list of permissions in Android, the reader is referred to the Android
developer website.1. Every time app requests access to a specific service/resource,
the Android’s runtime security monitor checks whether the app has the required
permission tags for that particular service/resource. This permission mechanism
and the Linux security features Android inherits address the traditional operating
system security issues. However, most of the interesting problems arise on the level
of applications, and a separate security mechanism is required to deal with those. A
more detailed discussion of the Android’s security architecture can be found in Enck
et al. [2009b].

1.2 Research Motivation and Direction

Most of the time, a permission on its own does not lead to a security concern. That
said, security issues may arise the moment access to several sensitive resources are
obtained. For example, if an app only has the capability of accessing SMS then users
do not have to be worried about the loss of their privacy, but when it also has the
capability of accessing the Internet, then users might be worried that the app leaks

1http://developer.android.com

http://developer.android.com

§1.2 Research Motivation and Direction 3

A Malicious
Action

Malicious
Action

A Malicious
Action

A
A Malicious

Action
B

X

X

(a) (b)

(c) (d)

Figure 1.2: App and permissions required to do a malicious activity: (a) App is not
granted any permission which can lead to a malicious activity (b) App is granted
a subset of the permissions (c) App has a superset of the permissions (d) App is

gaining more privilege

the content of their SMS online. Adding to the mix, an app may also gain access
to sensitive resources even though it does not have permission to do so through
other apps. In Android where reusability of a component is encouraged, an app
(in particular its components) may expose its functionalities. It is expected that the
app will make use of the Android’s permission system to impose a guard on the
functionalities it exposed. The problem is, this assumption does not always hold.
Some apps do not impose permission checking on the caller, either intentionally
(collusion attack) or unintentionally (confused deputy). This problem is known as
privilege escalation, where an app gains more privilege than its granted permission.

See Figure 1.2. Ideally, Android should be able to prevent apps from doing any
malicious activity, e.g., by only allowing an app to have a subset of permissions
which can be misused to do a malicious activity (b), or deny the permissions al-
together (a). In practice, developers generally request more permissions than what
the app actually need (c), and end users have to grant such request in order to use
the app. Furthermore, even when an app does not have a full set of permissions
to do a malicious activity, it can gain more privilege than its granted permission
(Privilege Escalation) through colluding with other apps or by exploiting unguarded
functionalities of other apps (confused deputy).

To give an example, assume that the malicious activity we are interested in is
leaking the content of the SMS to the attacker somewhere on the Internet. In this
case, we have two particular permission that will be required in order to mount the
attack: permission to read SMS and permission to access the Internet. We go through
possible scenarios where an app can / cannot access a sensitive resource or perform

4 Introduction

malicious actions:

(a) The app does not have both read SMS and access Internet permissions, and it
does not try to gain the restricted access, so it is not possible for the app to do
the malicious activity.

(b) The app only has either read SMS permission or access the Internet permission.
The app also does not try to gain access to the other permission. So, in this case,
the app is safe in that it does not have the capability of executing the malicious
activity.

(c) The app has some permissions including both permissions to read SMS and
access the Internet. In this case, although it may not always be the case, there is
a possibility for the app to perform the malicious activity.

(d) The app only has either read SMS permission or access the Internet permission.
But in this particular case, the app is trying to gain access to the other resource
that it does not have. In this case, the app may make use of the resource it
obtained to do the malicious activity.

In both scenario (c) and (d), Android cannot prevent the app to do the malicious
activity due to the nature of the permission mechanism. In (c), the app is allowed
to access both resources and Android’s permission is not fine grained enough to
say that only one permission may be activated at a time, e.g., if an app already
read the SMS, then it should not access the Internet for some period. Android also
depends on the app to secure its own interface, so in scenario (d) where another
app is exposing access to a sensitive resource, Android will only check that the other
app has the permission to access it, not the app that takes advantage of this exposed
functionalities.

A study by Enck [2011] reveals some of these problems, e.g., leaking of phone
identifiers (which can be tied to personal identification information) to advertisement
and analytics servers, leaking of location information to advertisement servers, leak-
ing of private information via IPC and logs, and applications can unsafely delegate
actions. We also note that there are times when developers expose functionalities
without a proper guard, e.g., a vulnerability in the Android system which allows
apps without proper permission to make a call (see Section 2.6.4).

We explore centralized approach where we modify Android OS to deal with the
issue of accessing resources (see the next chapter). We implement a monitor that is
placed on the resources’ hook to help Android regulate access to resources. Although
our solution is more general in that it is designed as an access control mechanism,
we decided to focus on Privilege Escalation as our case study because it has practical
significance and it is not currently enforced in Android framework. We designed a
policy language which can capture transitive calls, which is the essence of handling
privilege escalation, and show that our approach is able to detect and prevent such
problem.

§1.3 Thesis Outline 5

A

A

Observable
Input

Observable
Output

Input
Secret

X

Input
Secret

Y
≠

Figure 1.3: Non-Interferent Program

It is appealing to continue along the same vein to deal with the issue of apps
leaking sensitive data, but we realize that there are many problems associated with
centralized monitoring. To begin with, end users will not be able to adopt the central-
ized monitoring approach easily as it requires a modification to the OS. We also note
that the modification has to be done for each version of Android, which is evolving
rapidly. Hence it requires substantial effort to keep up with the latest version. Fur-
thermore, a centralized approach to prevent leakage of data would require an active
taint tracking, such as TaintDroid (Enck et al. [2014]), which incurs a heavy overhead.

Considering the shortcomings of the centralized approach, we switch our focus
on the apps instead. In particular, we design a type system to ensure non-interference
property for Android bytecode (DEX). A program is non-interferent when a se-
cret / private input is not affecting (interfering with) its observable output, or to
put it another way, a program is non-interferent when observable output only de-
pends on observable inputs (See Figure 1.3). One clear advantage of this approach
is that we target DEX bytecode directly, which is considerably constant through An-
droid’s evolution. Even with the introduction of the new runtime environment in
Android (ART), our solution is still applicable since ART still uses DEX bytecode.
The main bulk of this dissertation will be on this latter approach. We also provide
implementations for both as proof of concepts.

The focus of this thesis, then, is to improve Android security using formal method
approaches. The first approach is centralized monitoring using modified Metric Tem-
poral Logic (MTL) as the policy language. The second approach is designing type
system which enforces non-interference (inspired by the non-interferent type system
for JVM bytecode described in Section 3.3) and proves that typable JVM bytecode is
compiled (using non-optimizing dx compiler) into typable DEX bytecode. The two
approaches are complementary and work together to improve the overall security of
Android.

1.3 Thesis Outline

The next chapter outlines our attempt to tackle Android information flow security
from the perspective of centralized monitoring. Section 2.3 introduces a policy lan-

6 Introduction

guage RMTL, an extension (restriction) to Metric Temporal Logic (MTL). In Sec-
tion 2.4, We present the monitoring algorithm for RMTL and state its correctness.
Section 2.5 describes some example policies. Section 2.6 discusses our implementa-
tion of the monitors for RMTL, and the required modification of Android OS kernel
to integrate our monitor into the OS. Details of the implementation of the monitor
generator and the binaries of the modified Android OS, which constitutes Logic-
Droid, are available online. 2 We also give details of the exploit in the Android
component com.android.phone that leads to privilege escalation, and how Logic-
Droid mitigates this exploit in Section 2.6.4.

The rest of the thesis outlines our attempt to tackle Android information flow
security from the perspective of securing the apps. It is organized as follows: we start
by providing the background of this approach in Chapter 3 which contains Barthe
et al.’s non-interferent type system for JVM bytecode (Section 3.3). The following
chapter outlines the non-interferent type system for DEX (Chapter 4) and shows in
Section 4.2 that the DEX type system we proposed enforce non-interference, i.e., if
a DEX program is typable then it is non-interferent. We formalize the proof of the
type system soundness for a subset of DEX in Coq, and we give more detail on the
formalization in Chapter 5

Chapter 6 describes the non-optimized compilation of the dx tool (Section 6.1)
and the proof of typability preserving compilation of non-optimized dx tool (Sec-
tion 6.2). We also give examples to demonstrate how our methodology is able to
detect interference by the failure of typability in Section 4.1.4.

The next section (Section 6.3) provides an overview of the certification frame-
work while Section 6.3.1 details each component in the architecture: JVM naive type
inference, DEX type checker, certificate translation and certificate structure.

The dissertation chapters are based upon the following published / under sub-
mission papers:

• Gunadi, H and Tiu, A. Efficient Runtime Monitoring with Metric Temporal
Logic: A Case Study in the Android Operating System. In International Sym-
posium on Formal Methods, pp. 296-311. Springer International Publishing,
2014.

• Gunadi, H; Tiu, A; and Gore, R. . Formal certification of android bytecode.
arXiv preprint arXiv:1504.01842.

A note about the centralized monitoring is that the initial part of LogicDroid imple-
mentation was done in my Master’s thesis. Since then it has been improved in many
ways. For example, we streamlined the theory, give correctness proof of the moni-
toring algorithm, and we significantly revise the design and the implementation of
the monitoring framework due to the problem of implementing hook of the socket,
which must be done at the Linux kernel level. As a result of this design improvement,
LogicDroid becomes practically usable.

2http://users.cecs.anu.edu.au/~hengunadi/LogicDroid.html.

http://users.cecs.anu.edu.au/~hengunadi

Chapter 2

Efficient Runtime Monitoring with
Metric Temporal Logic

Despite all the security mechanisms mentioned in the introduction, Android is still
vulnerable to various attacks. We shall focus mostly on attacks that target the per-
mission mechanism at the application level. A weakness in the Android permission
mechanism lies in the so-called permission leakage problem described in Grace et al.
[2012]. In Android, an app can provide a “service” to another app. Through this
provision of services, an app can “leak” certain capabilities to an unprivileged app.
For example, an app which has access to the ability to make phone calls could act as
a proxy for another app. This leads to the problem of privilege escalation, i.e., an app
obtains a permission it was not granted by exploiting other apps.

Obviously privilege escalation is a common problem of every OS, e.g., when a
kernel bug is exploited to gain root access. However, in Android, privilege escalation
is possible even when apps are running in the confines of Android sandboxes (see
Lineberry et al. [2010]; Davi et al. [2011]; Bugiel et al. [2012]). According to Bugiel
et al. [2012], there are two types of attacks that can lead to privilege escalation: the
confused deputy attack and the collusion attack. In the confused deputy attack, a legit-
imate app (the deputy) has permissions to certain services, e.g., sending SMS, and
exposes an interface to this functionality without any guards. This interface can then
be exploited by a malicious app to send SMS, even though the malicious app does not
have the permission. Recent studies, e.g., Lineberry et al. [2010]; Grace et al. [2012];
Chan et al. [2012], show some system and consumer apps expose critical functional-
ities that can be exploited to launch confused deputy attacks. The collusion attack
requires two or more malicious apps to collaborate. We have yet to encounter such
malware, either in the Google Play market or the third party markets, although a
proof-of-concept malware with such properties, called SoundComber (Schlegel et al.
[2011]), has been constructed.

A recent study by Grace et al. [2012] on major brands of Android phones shows
that there are some built-in apps that ship with the phones that expose critical inter-
faces without any permission enforcements that can be exploited to perform privilege
escalation attack. Even assuming that the app manages to guard all these interface
adequately, there still exist simple exploits that cannot be easily fixed, simply because

7

8 Efficient Runtime Monitoring with Metric Temporal Logic

it will affect users experience significantly. For example, by default, in Android any
app can launch the default browser without requiring any permission. With some
work, a malicious app can be developed to launch a browser undetected (e.g., when
the device screen is off) to leak sensitive data, as demonstrated in Lineberry et al.
[2010].

Several security extensions to Android have been proposed to deal with privi-
lege escalation attacks (see Dietz et al. [2011]; Felt et al. [2011]; Bugiel et al. [2012]).
Unlike these works, we aim at designing a high-level policy language that is expres-
sive enough to capture privilege escalation attacks but is also able to express more
refined policies (see Section 2.5). Moreover, we aim at designing a lightweight mon-
itoring framework, where policy specifications can be modified easily and enforced
efficiently. Thus we aim to automate the generation of security monitors from a given
policy that can efficiently enforce input policies written in our specification language.

On the specific problem of detecting privilege escalation, it is essentially a prob-
lem of tracking (runtime) control flow, which is, in general, a difficult problem and
would require a certain amount of static analysis, e.g., Denning and Denning [1977];
Enck et al. [2010]. So we adopt a ‘lightweight’ heuristic to ascertain causal depen-
dency between ICC calls: we consider two successive calls, say from A to B, followed
by a call from B to C, as causally dependent if they happen within a certain reason-
ably short time frame. This heuristic can be easily circumvented if B is a colluding
app. So the assumption that we make here is that B is honest, i.e., the confused
deputy. For example, a privilege escalation attack mentioned in Lineberry et al.
[2010] involves a malicious app, with no permission to access the internet, using the
built-in browser (the deputy) to communicate with a server. In our model, the actual
connection (i.e., the network socket) is treated as a virtual app, so the browser here
acts as a deputy that calls (opens) the network socket on behalf of the malicious app.
In such a scenario, it is reasonable to expect that the honest deputy would not inten-
tionally delay the opening of sockets. So our heuristic seems sensible in the presence
of confused deputy attacks but can be of course circumvented by colluding apps (col-
lusion attacks). There is probably no general solution to detect collusion attacks that
can be effective in all cases, e.g., when covert channels are involved (Schlegel et al.
[2011]), so we shall restrict to addressing the confused deputy attacks.

The core of our policy language, called RMTL, is essentially a past-fragment of
metric linear temporal logic (MTL) (see Alur and Henzinger [1990]; Thati and Rosu
[2005]; Basin et al. [2008]). We consider only the fragment of MTL with past-time
operators, as this is sufficient for our purpose to enforce history-sensitive access
control. This also means that we can only enforce some, but not all, safety properties
specified in Lichtenstein et al. [1985], e.g., policies capturing obligations as in, e.g.,
Basin et al. [2008], cannot be enforced in our framework. Temporal operators are
useful in this setting to enforce access control on apps based on histories of their
executions; see Section 2.5. Such a history-dependent policy cannot be expressed in
the policy languages used in Dietz et al. [2011]; Felt et al. [2011]; Bugiel et al. [2012].

MTL by itself is, however, insufficient to express transitive closures of relations,
which is needed to specify ICC call chains between apps, among others. To deal

9

with this, we extend MTL with recursive definitions, e.g., one would be able to write
a definition such as:

trans(x, y) ∶= call(x, y) ∨ ∃z.⟐n trans(x, z) ∧ call(z, y), (2.1)

where call denotes the ICC event, and x, y, z denote the apps. This equation defines
trans as the transitive closure of call. The metric operator ⟐nφ means intuitively
φ holds within n time units in the past; we shall see a more precise definition of
the operators in Section 2.3. Readers familiar with modal µ-calculus Bradfield and
Stirling [2007] will note that this is but a syntactic sugar for µ-expressions for (least)
fixed points.

To be practically enforceable in Android, the RMTL monitoring algorithm must
satisfy an important constraint, i.e., the algorithm must be trace-length independent
(Bauer et al. [2013]). This is because the number of events generated by Android can
range in the thousands per hour, so if the monitor must keep all the events generated
by Android, its performance will degrade significantly over time. Another practi-
cal consideration also motivates a restriction to metric operators that we adopt in
RMTL. More specifically, MTL allows a metric version of the ‘since’ operator of the
form φ1 S[m,n) φ2, where [m, n) specifies a half-closed (discrete) time interval from
m to n. The monitoring algorithm for MTL in Thati and Rosu [2005] works by first
expanding this formula into formulas of the form φ1 S[m′,n′) φ2 where [m′, n′) is a
moving window of the interval (with the minimum value of 0). A similar expansion
is also used implicitly in monitoring for first-order MTL in Basin et al. [2008], i.e.,
in their incremental automatic structure extension in their first-order logic encoding
for the ‘since’ and ‘until’ operators. In general, if we have k nested occurrences of
metric operators, each with interval [m, n), the number of formulas produced by
this expansion is bounded by O(nk) In Android, event timestamps are in millisec-
onds, so this kind of expansion is not practically feasible. For example, suppose we
have a policy that monitors three successive ICC calls that happen within 10 seconds
between successive calls. This requires two nested metric operators with intervals
[0, 104) to specify. The above naive expansion would produce around 108 formulas,
and assuming the truth value of each formula is represented with 1 bit, this would
require around 100 MB of storage to store all their truth values, something which is
not preferable in the setting of smartphones where storage is limited.

An improvement to the expansion mentioned above is proposed in Basin et al.
[2012]; Reinbacher et al. [2013], where one keeps a sequence of timestamps for each
metric temporal operator occurring in the policy. This solution, although avoids
the exponential expansion, is strictly speaking not trace-length independent. This
solution seems optimal, so it is hard to improve it without further restriction to the
policy language. We show that, if one restricts the intervals of metric operators to
the form [0, n), one only needs to keep one timestamp for each metric operator in
monitoring; see Section 2.4.

To summarise, our contributions are as follows:

1. Regarding results in runtime verification, our contribution is in the design of

10 Efficient Runtime Monitoring with Metric Temporal Logic

a new logic-based policy language that extends MTL with recursive defini-
tions, that avoids exponential expansion of metric operators, and for which the
policy enforcement is trace-length independent. In Bauer et al. [2013], a pol-
icy language based on first-order LTL and a general monitoring algorithm are
given, but they do not allow recursive definitions nor metric operators. Such
definitions and operators could perhaps be encoded using first-order constructs
(e.g., encoding recursion via Horn clauses, and define timestamps explicitly as
a predicate), but the resulting monitoring procedure is not guaranteed to be
trace-length independent.

2. Regarding the application domain, ours is the first implementation of a logic-
based runtime security monitor for Android that can enforce history-based ac-
cess control policies, including those that concern privilege escalations. Our
monitoring framework can express temporal and metric-based policies not pos-
sible in existing works Dietz et al. [2011]; Felt et al. [2011]; Bugiel et al. [2012].

2.1 Related Work

There is a large body of works in this area, more than what we can reasonably
survey here, so we shall focus on the most relevant ones to our work, i.e., those that
deal with privilege escalation. For a more comprehensive survey on other security
extensions or analysis, the interested reader can consult Backes et al. [2014]. QUIRE,
by Dietz et al. [2011], is an application-centric approach to privilege escalation, done
by tagging the intent objects with the caller’s UID. Thus, the recipient application
can check the permission of the source of the call chain. Felt et al. [2011] propose IPC
Inspection, another application-centric solution that works by reducing the privilege
of the recipient application when it receives a communication from a less privileged
application.

At the time of the development of our solution, the closest work to our solution
is XManDroid Bugiel et al. [2012], which is also a system-centric solution just like
ours. Its security monitor maintains a call graph between apps. The difference in our
solution lies in that we are using temporal logic to specify a policy, and our policy
can be modified modularly. This way, a system administrator can have flexibility
in designing a policy that is suited to the system in question. Moreover, should
an attacker find a way to circumvent the current monitor, we can easily modify the
monitor to enforce a different policy that addresses the security hole.

Our policy language is also more expressive than XManDroid, as we can specify
both temporal and metric properties. As a result, XManDroid will have better per-
formance in general (exploiting the persistent link in the graph by using cache), yet
there are policies that our monitor can enforce but XManDroid cannot. For example,
consider Policy 4 in Section 2.5. XManDroid can only express whether an application
has the permission to access contact database, but not the fact that contact database
was accessed in the past. So, in this case, XManDroid would forbid an app with per-
mission to access contact to connect to the internet, whereas in our case, we prevent

§2.2 Background 11

the connection to the internet only after contact was actually accessed.
TaintDroid Enck et al. [2010] is another system-centric solution, but it is designed

to track data flow, rather than control flow, via taint analysis. In this case, we can
infer privilege escalation happened from leakage of data.

Since then, there are many solutions developed such as Scippa (Backes et al.
[2014]) and IacDroid (Zhang et al. [2016]) which deal with the problem of privilege
escalation by maintaining call chain through an extension of the binder mechanism.
IEM is also an interesting solution (Yagemann and Du [2016]) although it is not
dealing with the problem of privilege escalation directly. Instead, they propose a
framework to intercept intents and allows a user space application to specify their
own policy, which can be geared toward handling privilege escalation.

Apart from work on monitoring M(FO)TL by Thati and Rosu [2005]; Basin et al.
[2008, 2012]; Reinbacher et al. [2013] mentioned in the introduction, it is also worth
mentioning prècis (a work by Chowdhury et al. [2014]). In their work, they are con-
sidering both past and future fragment of the MFOTL. They first analyze buildable
formulas (B formulas) and then incrementally build the summary structures for B
formulas. In the case where the formula is not a B formula, it then recursively calls
on the sub-formulas and computes the substitutions brute force. Even though this
means that prècis has a great capability, we do not really benefit much since we are
only considering past fragment of the MTL. Moreover, by considering both intervals
for building a summary structure, it is not necessarily trace-length independent, one
of the main criteria that we require.

2.2 Background

Linear Temporal Logic
LTL (Blackburn et al. [2007]) is a logic defined in Kripke semantics where each

event corresponds to a world. We first need to define LTL formally because we want
to use its interpretation of infinite event traces. LTL extends propositional logic with
temporal operators. Since we are only interested in the past call events, we only
consider the fragment of LTL with past operators. The set of LTL formulas is defined
as follows as follows :

φ = ⊺ ∣ � ∣ p ∈ P ∣ ¬φ ∣ φ1 ∧ φ2 ∣ φ1 ∨ φ2 ∣ ● φ ∣ ◇−1 φ ∣ φ1Sφ2 ∣ ⟐−1 φ

We do not have ◻−1φ here as ◻−1φ = ¬ ◇−1 ¬φ

We view history of calls a sequence of worlds in Kripke semantics. We denote
that the 1st world corresponds to the 1st event in the history, 2nd world corresponds
to the 2nd event, and so on. We denote this world as a pair (h, i) where h is the whole
history of the events, and i is the index of an event from the history. For simplicity,
we can denote this pair (h, i) in a shorter notation as hi. Index 1 (h1) is used to denote
the initial world where the history is empty.

The symbol ’⊧’ is used to denote that certain predicate or formula holds in that
particular world. We distinguish between event predicates P and static predicates S,

12 Efficient Runtime Monitoring with Metric Temporal Logic

where we define an event predicate as a predicate whose interpretation may differ
for each world, and we define a static predicate as a predicate whose interpretation
is fixed. We need this static predicate to express predicates that persists in all the
worlds, for example, a predicate that indicates whether an application is a system
application.

The semantics of the operators are the following :

- (h, i) ⊧ true is always true

- (h, i) ⊧ f alse is always false

- (h, i) ⊧ p, where p ∈ P, iff p ∈ hi

- (h, i) ⊧ s, where s ∈ S, iff s is true

- (h, i) ⊧ ¬φ iff (h, i) ⊭ φ

- (h, i) ⊧ φ1 ∧ φ2 iff (h, i) ⊧ φ1 and (h, i) ⊧ φ2

- (h, i) ⊧ φ1 ∨ φ2 iff (h, i) ⊧ φ1 or (h, i) ⊧ φ2

- (h, i) ⊧ ●φ iff for i > 1, (h, i − 1) ⊧ φ otherwise false

- (h, i) ⊧ ◇−1φ iff ∃j≤i(h, j) ⊧ φ

- (h, i) ⊧ ⟐−1φ iff (h, i) ⊧ ● ◇−1 φ

- (h, i) ⊧ φ1Sφ2 iff ∃j≤i(h, j) ⊧ φ2, and (h, k) ⊧ φ1 for all j < k ≤ i

The problem of monitoring in our case is essentially a word problem, where we
want to check whether a given word contains a “bad” prefix. Here, word corresponds
to the history of events. We adopt the approach where we incrementally process
the event as they come. More formally, we define the word problem as checking
whether for any history (h, i) and an LTL formula Φ, (h, i) ⊧ Φ. Once a “bad”
prefix is detected, no matter how the events unfold the property will always be
violated. Hence, once an action which causes “bad” prefix is detected, we preempt
the execution of such action.
First-Order Extension This extends the LTL described before with first-order quanti-
fiers and predicates (see Bauer et al. [2009]; Basin et al. [2010]). In this case, we have
a domain D (in this case a list of all applications), list of constants C, list of predicates
R with its arity list A, and variable V, and the universal and existential operators. A
constant can be seen as a predicate with zero arity. This extension enables us to state
a policy where it applies to all the applications. The semantics of this extension is as
follows :

- (h, i) ⊧ p(c1, ..., cn) ∈ P iff c1, ..., cn ∈ D and p(c1, ..., cn) ∈ hi

- (h, i) ⊧ ∀x1,...,xn φ iff for all c1, ..., cn ∈ D, (h, i) ⊧ φ[x1 ∶= c1, ..., xn ∶= cn]

- (h, i) ⊧ ∃x1,...,xn φ iff there exists c1, ..., cn ∈ D, (h, i) ⊧ φ[x1 ∶= c1, ..., xn ∶= cn]

§2.3 The policy specification language RMTL 13

Note that the notation φ[x1 ∶= c1, ..., xn ∶= cn] means that for every occurrence of
variable x1, ..., xn, they were replaced with the corresponding object c1, ..., cn ∈ D

Since we assume that the domain is finite, we can enumerate the quantifiers.
That is, we instantiate the variable as the ground truth and treat the formula as a
propositional logic formula. Then we will have the existential quantifier as a big
disjunction, while the universal quantifier as a big conjunction, over the subformula
where every occurrence of the variable is replaced with the object from the domain.
Metric Extension The extension of MTL over LTL is that we give each world a time
stamp (τi = time stamp at world i) of when it occurred, and add the notation of
interval accompanying the temporal operators. The time stamp related to each of
the worlds has the property of τi ≤ τj whenever i ≤ j (events in history are sorted
according to the time it happened). The form of the interval is [m, n) where m, n
are natural numbers with m < n. m is the lower bound, and n is the upper bound
of a formula to be still included in the evaluation (the difference between the time
stamp of the worlds). The original LTL is a special case of MTL where the temporal
operators have m = 0 and n = ∞.

More formally, the semantics of this metric extension are the followings :

- (h, i) ⊧ ●[m,n)φ iff for i ≥ 1, (h, i − 1) ⊧ φ and m ≤ τi − τi−1 < n, otherwise false

- (h, i) ⊧ ◇−1
[m,n)φ iff ∃j≤i(h, j) ⊧ φ and m ≤ τi − τj < n

- (h, i) ⊧ ⟐−1
[m,n)φ iff ∃j<i(h, j) ⊧ φ and m ≤ τi − τj < n

- (h, i) ⊧ φ1S[m,n)φ2 iff ∃j≤i(h, j) ⊧ φ2 and m ≤ τi − τj < n, and (h, k) ⊧ φ1 for all
j < k ≤ i

Note that we explicitly say there are metric operators ◇ and ⟐ because they have
a subtle difference compared to that of the original LTL one, and we cannot recon-
cile the definition by using ⟐ ⇔ ●◇ either. The main difference is due to the time
difference to the reference world. Let’s say that we have (h, i) ⊧ φ, then we will have
(h, j) ⊧ ●[0,10] ◇[0,10] φ but (h, j) ⊭ ⟐[0,10]φ for j > i, τi = 0, and τj = 10.

In the following, we will discuss the modifications to the logic so that we can
accommodate the requirements to track transitivities and be able to do so efficiently.
Then, we will describe the decision procedure to process the incoming events. We
will extend the approach to dynamic programming in Thati and Rosu [2004] for this
monitoring process. We will do this inductively, where the base case is when the first
world (h1) is created before receiving any input. In the case of handling recursive
definition, since it is "guarded" and is processed for every incoming event, we can
treat it as a normal predicate within the temporal operator.

2.3 The policy specification language RMTL

Our policy specification language, which we call RMTL, is based on an extension of
metric linear-time temporal logic (MTL) by Thati and Rosu [2004]. The semantics

14 Efficient Runtime Monitoring with Metric Temporal Logic

of LTL (Pnueli [1977]) is defined in terms of models which are sequences of states
(or worlds). In our case, we restrict to finite sequences of states. MTL extends
LTL models by adding timestamps to each state and adding temporal operators that
incorporate timing constraints. For example, MTL features temporal operators such
as ◇[0,3)φ which expresses that φ holds in some state in the future, and the timestamp
of that world is within 0 to 3-time units from the current timestamp. We restrict to a
model of MTL that uses discrete time, i.e., timestamps, in this case, are non-negative
integers. We shall also restrict to the past-time fragment of MTL.

We extend MTL with two additional features: first-order quantifiers and recursive
definitions. Our first-order language is a multi-sorted one. We consider only two
sorts, which we call prop (for ‘properties’) and app (for denoting applications). Sorts
are ranged over by α. We first fix a signature Σ for our first-order language, which
is used to express terms and predicates of the language. We consider only constant
symbols and predicate symbols, but no function symbols. We distinguish two types
of predicate symbols: defined predicates and undefined ones. The defined predicate
symbols are used to write recursive definitions, and to each of such symbols, we
associate a formula as its definition.

Constant symbols are ranged over by a, b, and c, undefined predicate symbols are
ranged over by p, q, and r, and defined predicate symbols are ranged over by P, Q,
and R. We assume an infinite set of sorted variables V , whose elements are ranged
over by x, y, and z. We sometimes write xα to say that α is the sort of variable x. A
Σ-term is either a constant symbol c ∈ Σ or a variable x ∈ V . We use s, t, and u to range
over terms. To each symbol in Σ, we associate a sort information. We shall write c ∶ α

when c is a constant symbol of sort α. A predicate symbol of arity n has sort of the
form α1 ×⋯× αn, and such a predicate can only be applied to terms of sorts α1, . . . , αn.

Constant symbols are used to express permissions in the Android OS, e.g., read-
ing contacts, sending SMS, etc., and user ids of apps. Predicate symbols are used
to express events such as ICC calls between apps, and properties of an app, such as
whether it is a system app, a trusted app (as determined by the user). As standard
in first-order logic (see e.g., Fitting [1996]), the semantics of terms and predicates
are given in terms of a first-order structure, i.e., a set Dα, called a domain, for each
sort α, and an interpretation function I assigning each constant symbol c ∶ α ∈ Σ an
element of cI ∈ Dα and each predicate symbol p ∶ α1 ×⋯ × αn ∈ Σ an n-ary relation
pI ⊆ Dα1 ×⋯×Dαn . We shall assume constant domains in our model, i.e., every world
has the same domain.

We define the formulas of RMTL via the following grammar:

F ∶= � ∣ p(t1, . . . , tm) ∣ P(t1, . . . , tn) ∣ F ∨ F ∣ ¬F ∣ ●F ∣ F S F ∣ ⧫F ∣ ⟐F ∣
●nF ∣ F Sn F ∣ ⧫nF ∣ ⟐nF ∣ ∃αx.F

where m and n are natural numbers. The existential quantifier is annotated with a
sort information α. For most of our examples and applications, we only quantify
over variables of sort app. The operators indexed by n are metric temporal operators.
The n ≥ 1 here denotes the interval [0, n), so these are special cases of the more

§2.3 The policy specification language RMTL 15

general MTL operators in Thati and Rosu [2004], where intervals can take the form
[m, n), for n ≥ m ≥ 0. We use φ, ϕ and ψ to range over formulas. We assume that unary
operators bind stronger than the binary operators, so ●φ∨ψ means (●φ)∨ψ. We write
φ(x1, . . . , xn) to denote a formula whose free variables are among x1, . . . , xn. Given
such a formula, we write φ(t1, . . . , tn) to denote the formula obtained by replacing xi
with ti for every i ∈ {1, . . . , n}.

To each defined predicate symbol P ∶ α1 ×⋯×αn, we associate a formula φP, which
we call the definition of P. Notationally, we write P(x1, . . . , xn) ∶= φp(x1, . . . , xn). We
require that φP is guarded, i.e., every occurrence of any recursive predicate Q in φP
is prefixed by either ●, ●m, ⟐ or ⟐n. This guardedness condition is important to
guarantee termination of recursion in model checking.

Given the above logical operators, we can define additional operators via their
negation, e.g., ⊺ is defined as ¬�, φ ∧ψ is defined as ¬(¬φ ∨¬ψ), φ → ψ is defined as
¬φ ∨ψ, and ∀αx.φ is defined as ¬(∃αx.¬φ), etc.

Before proceeding to the semantics of RMTL, we first define a well-founded or-
dering on formulae of RMTL, which will be used later.

Definition 2.3.1. We define a relation ≺S on the set RMTL formulae as the smallest relation
satisfying the following conditions:

1. For any formula φ of the form p(t⃗), �, ●ψ, ●nψ, ⟐ψ and ⟐nψ, there is no φ′ such that
φ′ ≺S φ.

2. For every recursive definition P(x⃗) ∶= φP(x⃗), we have φP(t⃗) ≺S P(t⃗) for every terms t⃗.

3. ψ ≺S ψ ∨ψ′, ψ ≺S ψ′ ∨ψ, ψ ≺S ¬ψ, and ψ ≺S ∃x.ψ.

4. ψi ≺S ψ1 S ψ2, and ψi ≺S ψ1 Sn ψ2, for i ∈ {1, 2}

We denote with ≺ the reflexive and transitive closure of ≺S .

Lemma 2.3.1. The relation ≺ on RMTL formulas is a well-founded partial order.

Proof. We first show that ≺ is well-founded. Suppose otherwise: then there is an
infinite descending chain of formulas:

⋯ ≺S φn ≺S φn−1 ≺S ⋯ ≺S φ2 ≺S φ1.

Obviously, none of the φi’s can be a bottom element (i.e., those that take the form as
specified in clause (1) of Definition 2.3.1). Furthermore, there must be an i such that
φi = P(t⃗) and φi+1 = φP(t⃗) where P is a recursive predicate defined by P(x⃗) ∶= φP(x⃗). If
no such i exists then all the instances of the relation ≺S in the chain must be instances
of clause (3) and (4) in Definition 2.3.1, and the chain would be finite as those two
clauses relate only strict subformulas. So without loss of generality, let us assume
that φ1 = P(t⃗). We claim that for every j > 1, every occurrence of any recursive
predicate in φj is guarded. We prove this by induction on j. If j = 2 then we have
φ2 ≺S P(t⃗). In this case, φ2 must be φP(t⃗), and by the guardedness condition, all
recursive predicates in φP are guarded. If j > 2, then we have φj ≺S φj−1. By induction

16 Efficient Runtime Monitoring with Metric Temporal Logic

hypothesis, all recursive predicates in φj−1 are guarded. In this case, the relation
φj ≺S φj−1 must be an instance of either clause (3) or clause (4) of Definition 2.3.1, and
therefore φj also satisfies the guardedness condition.

So now we have that none of φi’s is recursive predicates. This means that all
instances of ≺S in the chain must be instances of clause (3) and (4) in Definition 2.3.1,
and consequently, the size of the formulas in the chain must be strictly decreasing.
Thus the chain cannot be infinite, contrary to the assumption.

Anti-symmetry follows immediately from well-foundedness. Suppose ≺ is not
anti-symmetric. Then we have a chain

φ = φ1 ≺S φ2 ≺S φ3 ≺S ⋯ ≺S φn = φ

where n > 1. We can repeat this chain to form an infinite descending chain, which
contradicts the well-foundedness of ≺ .

For our application, we shall restrict to finite domains. Moreover, we shall restrict
to an interpretation I which is injective, i.e., mapping every constant c to a unique
element of Dα. In effect we shall be working in the term model, so elements of Dα are
just constant symbols from Σ. So we shall use a constant symbol, say c ∶ α, to mean
both c ∈ Σ and cI ∈ Dα. With this fix interpretation, the definition of the semantics (i.e.,
the satisfiability relation) can be much simplified, e.g., we do not need to consider
valuations of variables. A state is a set of undefined atomic formulas of the form
p(c1, . . . , cn). Given a sequence σ, we write ∣σ∣ to denote its length, and we write σi
to denote the i-th element of σ when it is defined, i.e., when 1 ≤ i ≤ ∣σ∣. A model is a
pair (π, τ) of a sequence of states π and a sequence of timestamps, which are natural
numbers, such that ∣π∣ = ∣τ∣ and τi ≤ τj whenever i ≤ j.

The restriction to the application domain is good enough for our purpose since
we assume that during a monitor run, the applications will be relatively constant. In
the case where there is an update, i.e., there an app installed / uninstalled, then the
monitor is reloaded to accommodate the change in the domain.

Let < denote the total order on natural numbers. Then we can define a well-
order on pairs (i, φ) of natural numbers and formulas by taking the lexicographical
ordering (<,≺). The satisfiability relation between a model ρ = (π, τ), a world i ≥ 1
(which is a natural number) and a closed formula φ (i.e., φ contains no free variables),
written (ρ, i) ⊧ φ, is defined by induction on the pair (i, φ) as follows, where we write
(ρ, i) /⊧ φ when (ρ, i) ⊧ φ is false.

• (ρ, i) /⊧ �

• (ρ, i) ⊧ ¬φ iff (ρ, i) /⊧ φ.

• (ρ, i) ⊧ p(c1, . . . , cn) iff p(c1, . . . , cn) ∈ πi.

• (ρ, i) ⊧ P(c1, . . . , cn) iff (ρ, i) ⊧ φ(c1, . . . , cn) where P(x⃗) ∶= φ(x⃗).

• (ρ, i) ⊧ φ ∨ψ iff (ρ, i) ⊧ φ or (ρ, i) ⊧ ψ.

§2.3 The policy specification language RMTL 17

• (ρ, i) ⊧ ●φ iff i > 1 and (ρ, i − 1) ⊧ φ.

• (ρ, i) ⊧ ⧫φ iff there exists j ≤ i s.t. (ρ, j) ⊧ φ.

• (ρ, i) ⊧ ⟐φ iff i > 1 and there exists j < i s.t. (ρ, j) ⊧ φ.

• (ρ, i) ⊧ φ1 S φ2 iff there exists j ≤ i such that (ρ, j) ⊧ φ2 and (ρ, k) ⊧ φ1 for every
k s.t. j < k ≤ i.

• (ρ, i) ⊧ ●nφ iff i > 1, (ρ, i − 1) ⊧ φ and τi − τi−1 < n.

• (ρ, i) ⊧ ⧫nφ iff there exists j ≤ i s.t. (ρ, j) ⊧ φ and τi − τj < n.

• (ρ, i) ⊧ ⟐nφ iff i > 1 and there exists j < i s.t. (ρ, j) ⊧ φ and τi − τj < n.

• (ρ, i) ⊧ φ1 Sn φ2 iff there exists j ≤ i such that (ρ, j) ⊧ φ2, (ρ, k) ⊧ φ1 for every k
s.t. j < k ≤ i, and τi − τj < n.

• (ρ, i) ⊧ ∃αx.φ(x) iff there exists c ∈ Dα s.t. (ρ, i) ⊧ φ(c).

Note that due to the guardedness condition in recursive definitions, our semantics
for recursive predicates is much simpler than the usual definition as in µ-calculus,
which typically involves the construction of a (semantic) fixed point operator. Note
also that some operators are redundant, e.g., ⧫φ can be defined as ⊺ S φ, and ⟐φ can
be defined as ●⧫φ. This holds for some metric operators, e.g., ⧫nφ and ⟐nφ can be
defined as, respectively, ⊺ Sn φ and

⟐nφ = ⋁
i+j=n

●i⧫jφ (2.2)

This operator will be used to specify an active call chain, as we shall see later, so it is
convenient to include it in our policy language.

In the next section, we shall assume that ⧫, ⟐, ⧫n are derived connectives. Since
we consider only finite domains, ∃αx.φ(x) can be reduced to a big disjunction⋁c∈Dα φ(c),
so we shall not treat the ∃-quantifier explicitly. This can be problematic if the domain
of quantification is big, as it suffers the same kind of exponential explosion as with
the expansion of metric operators in MTL Thati and Rosu [2005]. We shall defer the
explicit treatment of quantifiers to future work.

Formulas of RMTL are interpreted in a semantic model which consists of a se-
quence of events, temporally ordered. In LTL, one is only concerned with the relative
ordering of events, but not the exact time and date an event occurred. So one can talk
about event A occurred before event B, but not that event A occurred at a specific
time, or within a specific interval of time from event B. Graphically, the semantic

18 Efficient Runtime Monitoring with Metric Temporal Logic

model of RMTL can be presented as follows:

E2 E3 E4 E5 E1 E6
…………..

System generated events

t2 t3 t4 t5 t1 t6

Timestamps of events

Each dot represents a time point in the timeline. At each time point, we keep two
kinds of information: the event that takes place at that particular time point, and the
timestamp of that event. Given such a model, we can then specify certain relations
between events in the timeline, from the perspective of a particular time point (e.g.,
the present time). The operators of RMTL provides the building blocks to specify a
rich collection of patterns of relations one can specify. We give a couple of examples
next.

For the first example, consider the formula ⟐50D. Intuitively, this formula states
that event D was observed sometime in the past within 50-time units from the pres-
ence. Graphically, this is illustrated as follows:Temporal Operators

A B D C C

B must happen sometime, within 50 seconds, in the
future.

Current time point
 (the present)

C

10:30 10:35 11:00 11:05 11:30 11:35

Temporal operators alone are not enough to specify some recursive patterns
needed to capture privilege escalation. For example, consider a sequence of ICC

§2.4 Trace-length independent monitoring 19

calls, as represented in the following model:Recursive Patterns

call(a,b) E F G

10:30 10:35 10:38 10:47 11:30 11:35

call(b,c) call(c,d)

How do we express the pattern that there is a chain of IPC
calls from a to d, and each call happened within 10 seconds?

The policy language needs to support recursion.

In this case, there is a call chain, starting with a and ending in d, such that each
successive call happened within 10-time units. One can imagine a generalization of
this case to an arbitrary number of successive calls that are chained together. To deal
with such a possibility, we introduce a notion of recursive definition. In this case, we
create a new predicate, called trans, that effectively defines the transitive closure of
the call events. This can be expressed in RMTL as follows:

trans(x, y) ∶= call(x, y) ∨ ∃z.⟐n trans(x, z) ∧ call(z, y)

where n is a time interval. Intuitively, this definition of trans(x, y) says that there is
a call chain from x to y if and only if either x calls y directly, or there is a call chain
from x to some z, and there is a direct call from z to y.

2.4 Trace-length independent monitoring

The problem of monitoring is essentially a problem of model checking, i.e., to decide
whether (ρ, i) ⊧ φ, for any given ρ = (π, τ), i and φ. In the context of Android
runtime monitoring, a state in π can be any events of interest that one would like
to capture, e.g., ICC call events, queries related to location information or contacts,
etc. To simplify discussions, and because our main interest is in privilege escalation
through ICC, the only type of event we consider in π is the ICC event, which we
model with the predicate call ∶ app × app.

Given a policy specification φ, a naive monitoring algorithm that enforces this
policy would store the entire event history π and every time a new event arrives at
time t, it would check (([π; e], [τ; t]), ∣ρ∣ + 1) ⊧ φ. where ; denotes concatenation. This
is easily shown decidable but is of course rather inefficient. In general, the model
checking problem for RMTL (with finite domains) can be shown to be PSPACE-hard
following the same argument as in Bauer et al. [2009]. One of the design criteria of
RMTL is that enforcement of policies does not depend on the length of history of
events, i.e., at any time the monitor only needs to keep track of a fixed number of
states. Following Bauer et al. [2013], we call a monitoring algorithm that satisfies this
property trace-length independent.

For PTLTL, trace-length independent monitoring algorithm exists, e.g., the algo-

20 Efficient Runtime Monitoring with Metric Temporal Logic

rithm by Havelund and Rosu [2002], which depends only on two states in a his-
tory. That is, satisfiability of (ρ, i + 1) ⊧ φ is a boolean function of satisfiability of
(ρ, i + 1) ⊧ ψ, for every strict subformula ψ of φ, and satisfiability of (ρ, i) ⊧ ψ′, for
every subformula ψ′ of φ. This works for PTLTL because the semantics of tempo-
ral operators in PTLTL can be expressed in a recursive form, e.g., the semantics of
S can be equally expressed as Havelund and Rosu [2002]: (ρ, i + 1) ⊧ φ1 S φ2 iff
(ρ, i + 1) ⊧ φ2, or (ρ, i + 1) ⊧ φ1 and (ρ, i) ⊧ φ1 S φ2. This is not the case for MTL. For
example, satisfiability of the unrestricted ‘since’ operator S[m,n) can be equivalently
expressed as:

(ρ, i + 1) ⊧ φ1 S[m,n) φ2 iff m = 0, n > 1, and (ρ, i + 1) ⊧ φ2, or
(ρ, i + 1) ⊧ φ1 and (ρ, i) ⊧ φ1 S[m′,n′) φ2

(2.3)

where m′ = min(0, m − τi+1 + τi) and n′ = min(0, n − τi+1 + τi). Since τi+1 can vary, the
value of m′ and n′ can vary, depending on the history ρ. We avoid the expansion of
metric operators in monitoring by restricting the intervals in the metric operators to
the form [0, n). We show that clause (2.3) can be brought back to a purely recursive
form. The key to this is the following lemma:

Lemma 2.4.1 (Minimality). If (ρ, i) ⊧ φ1 Sn φ2 [(ρ, i) ⊧ ⟐nφ] then there exists an m ≤ n
such that (ρ, i) ⊧ φ1 Sm φ2 [resp. (ρ, i) ⊧ ⟐mφ] and such that for every k such that 0 < k < m,
we have (ρ, i) /⊧ φ1 Sk φ2 [resp., (ρ, i) /⊧ ⟐kφ].

Proof. We show a case for (ρ, i) ⊧ φ1 Sn φ2; the other case is straightforward. We
prove this by induction on i.

• Base case: i = 1. Since (ρ, i) ⊧ φ1 Sn φ2, it must be the case that (ρ, i) ⊧ φ2. In this
case, let m = 1. Obviously (ρ, i) ⊧ φ1 Sm φ2 and m is minimal.

• Inductive case: i > 1. We have (ρ, i) ⊧ φ1 Sn φ2. By the definition of ⊧, there
exists j ≤ i such that (ρ, j) ⊧ φ2 and (ρ, k) ⊧ φ1 for every k s.t. j < k ≤ i and
τi − τj < n. If (ρ, i) ⊧ φ2, then we have (ρ, i) ⊧ φ1 S1 φ2. In this case, let m = 1. If
(ρ, i) /⊧ φ2, then it must be the case that j < i. It is not difficult to see that in this
case, we must have

(ρ, i − 1) ⊧ φ1 Sn−(τi−τi−1) φ2.

By the induction hypothesis, we have there is an m′ such that

(ρ, i − 1) ⊧ φ1 Sm′ φ2

and for every l s.t. l < m′, we have (ρ, i − 1) /⊧ φ1 Sl φ2. In this case, we let
m = m′ + τi − τi−1. It is straightforward to check that (ρ, i) ⊧ φ1 Sm φ2.

Now, we claim that this m is minimal. Suppose otherwise, i.e., there exists k < m
s.t. (ρ, i) ⊧ φ1 Sk φ2. Since (ρ, i) /⊧ φ2, we must have (ρ, i − 1) ⊧ φ1 Sk−(τi−τi−1) φ2.
However, (k − (τi − τi−1)) < m′, so this contradicts the minimality of m′.

§2.4 Trace-length independent monitoring 21

Lemma 2.4.2 (Monotonicity). If (ρ, i) ⊧ φ1 Sn φ2 [resp., (ρ, i) ⊧ ●nφ and (ρ, i) ⊧ ⟐nφ]
then for every m ≥ n, we have (ρ, i) ⊧ φ1 Sm φ2 [resp., (ρ, i) ⊧ ●mφ and (ρ, i) ⊧ ⟐mφ].

Proof. Straightforward from the definition of ⊧ .

Given ρ, i and φ, we define a function m as follows:

m(ρ, i, φ) = { m, if φ is either φ1 Sn φ2 or ⟐nφ′ and (ρ, i) ⊧ φ,
0, otherwise.

where m is as given in Lemma 2.4.1; we shall see how its value is calculated in
Algorithm 3. The following theorem follows from Lemma 2.4.1.

Theorem 2.4.1 (Recursive forms). For every model ρ, every n ≥ 1, φ, φ1 and φ2, and every
1 < i ≤ ∣ρ∣, the following hold:

1. (ρ, i) ⊧ φ1 Sn φ2 iff (ρ, i) ⊧ φ2, or (ρ, i) ⊧ φ1 and (ρ, i − 1) ⊧ φ1 Sn φ2 and n − (τi −
τi−1) ≥ m(ρ, i − 1, φ1 Sn φ2).

2. (ρ, i) ⊧ ⟐nφ iff (ρ, i− 1) ⊧ φ and τi − τi−1 < n, or (ρ, i− 1) ⊧ ⟐nφ and n−(τi − τi−1) ≥
m(ρ, i − 1,⟐nφ).

Proof. We show the case for Sn; the other case is similar.
Suppose (ρ, i) ⊧ φ1 Sn φ2. By definition, there exists j ≤ i such that

(ρ, j) ⊧ φ2, (2.4)

τi − τj ≤ n, (2.5)

and for every k s.t. j < k ≤ i we have

(ρ, k) ⊧ φ1, (2.6)

Suppose that the right-hand side of iff doesn’t hold, i.e., we have (ρ, i) /⊧ φ2, and that
one of the following hold:

• (ρ, i) /⊧ φ1,

• (ρ, i − 1) /⊧ φ1 Sn φ2, or

• n − (τi − τi−1) < m(ρ, i − 1, φ1 Sn φ2).

The first case contradicts our assumption in (2.6), so it cannot hold. Note that since
(ρ, i) /⊧ φ2, it must be the case that j ≤ i − 1, so (2.4), (2.5), and (2.6) above entail that
(ρ, i − 1) ⊧ φ1 Sn φ2, so the second case can’t hold either. For the third case: from (2.5)
we have τi − τj = (τi − τi−1) + (τi−1 − τj) ≤ n so

τi−1 − τj ≤ n − (τi − τi−1).

22 Efficient Runtime Monitoring with Metric Temporal Logic

Algorithm 1 Monitor(ρ, i, φ)
Init(ρ, φ, prev, cur, mprev, mcur)
for j = 1 to i do

Iter(ρ, j, φ, prev, cur, mprev, mcur);
return cur[idx(φ)];

This, together with (2.4) and (2.5), implies that (ρ, i − 1) ⊧ φ1 Sn−(τi−τi−1) φ2. If n − (τi −
τi−1) < m(ρ, i− 1, φ1 Sn φ2) holds, then it would contradict the fact that m(ρ, i− 1, φ1 Sn

φ2) is the minimal index as guaranteed by Lemma 2.4.1. Hence the third case cannot
hold either.

For the other direction, suppose that either of the following holds:

• (ρ, i) ⊧ φ2, or

• (ρ, i) ⊧ φ1 and (ρ, i − 1) ⊧ φ1 Sn φ2 and n − (τi − τi−1) ≥ m(ρ, i − 1, φ1 Sn φ2).

If it is the first case, i.e., (ρ, i) ⊧ φ2, then trivially (ρ, i) ⊧ φ1 Sn φ2. So suppose it is the
second case. By Lemma 2.4.1, we have (ρ, i − 1) ⊧ φ1 Sm φ2, where m = m(ρ, i − 1, φ1 Sn

φ2). Since n − (τi − τi−1) ≥ m, by Lemma 2.4.2, we have (ρ, i − 1) ⊧ φ1 Sn−(τi−τi−1) φ2.
This means there exists j ≤ i − 1 such that

• (ρ, j) ⊧ φ2,

• (τi−1 − τj) ≤ n − (τi − τi−1), and

• (ρ, k) ⊧ φ1, for every k s.t. j < k ≤ i − 1.

The second item implies that (τi − τj) ≤ n. These and the fact that (ρ, i) ⊧ φ1 entail
that (ρ, i) ⊧ φ1 Sn φ2.

Given Theorem 2.4.1, we can adapt the monitoring algorithm for PTLTL in Havelund
and Rosu [2002], but with an added data structure to keep track of the function m.
In the following, given a formula φ, we assume that ∃, ⧫ and ⟐ have been replaced
with its equivalent form as mentioned in Section 2.3.

Given a formula φ, let Sub(φ) be the set of subformulas of φ. We define a closure
set S∗(φ) of φ as follows: Let Sub0(φ) = Sub(φ), and let

Subn+1(φ) = Subn(φ) ∪ {Sub(φP(c⃗)) ∣ P(c⃗) ∈ Subn(φ), and P(x⃗) ∶= φP(x⃗)}

and define Sub∗(φ) = ⋃n≥0 Subn(φ). Since Dα is finite, Sub∗(φ) is finite, although its
size is exponential in the arities of recursive predicates. For our specific applications,
the predicates used in our sample policies have at most arity of two (for tracking
transitive calls), so this is still tractable. In future work, we plan to investigate ways
of avoiding this explicit expansion of recursive predicates.

We now describe how monitoring can be done for φ, given ρ and 1 ≤ i ≤ ∣ρ∣. We
assume implicitly a preprocessing step where we compute Sub∗(φ); we do not de-
scribe this step here, but it is quite obvious from the definition. Let φ1, φ2, . . . , φm be

§2.4 Trace-length independent monitoring 23

Algorithm 2 Init(ρ, φ, prev, cur, mprev, mcur)
for k = 1, . . . , m do

prev[k] ∶= f alse, mprev[k] ∶= 0 and mcur[k] ∶= 0;
for k = 1, . . . , m do

switch (φk)
case (�): cur[k] ∶= f alse;
case (p(c⃗)): cur[k] ∶= p(c⃗) ∈ π1;
case (P(c⃗)): cur[k] ∶= cur[idx(φP(c⃗))]; {Suppose P(x⃗) ∶= φP(x⃗).}
case (¬ψ): cur[k] ∶= ¬cur[idx(ψ)];
case (ψ1 ∨ψ2): cur[k] ∶= cur[idx(ψ1)] ∨ cur[idx(ψ2)];
case (●ψ): cur[k] ∶= f alse;
case (⟐ψ): cur[k] ∶= f alse;
case (ψ1 S ψ2): cur[k] ∶= cur[idx(ψ2)];
case (●nψ): cur[k] ∶= f alse;
case (⟐nψ): cur[k] ∶= f alse; mcur[k] ∶= 0;
case (ψ1 Sn ψ2):

cur[k] ∶= cur[idx(ψ2)];
if cur[k] = true then mcur[k] ∶= 1;
else mcur[k] ∶= 0;
end if

end switch
return cur[idx(φ)];

an enumeration of Sub∗(φ) respecting the partial order ≺, i.e., if φi ≺ φj then i ≤ j.
Then we can assign to each ψ ∈ Sub∗(φ) an index i, s.t., ψ = φi in this enumera-
tion. We refer to this index as idx(ψ). We maintain two boolean arrays prev[1, . . . , m]
and cur[1, . . . , m]. The intention is that given ρ and i > 1, the value of prev[k] corre-
sponds to the truth value of the judgment (ρ, i − 1) ⊧ φk and the truth value of cur[k]
corresponds to the truth value of the judgment (ρ, i) ⊧ φk. We also maintain two
integer arrays mprev[1, . . . , m] and mcur[1, . . . , m] to store the value of the function
m. The value of mprev[k] corresponds to m(ρ, i − 1, φk), and mcur[k] corresponds to
m(ρ, i, φk). Note that this preprocessing step only needs to be done once, i.e., when
generating the monitor codes for a particular policy, which is done offline, prior to
inserting the monitor into the operating system kernel.

The main monitoring algorithm is divided into two subprocedures: the initial-
ization procedure (Algorithm 2) and the iterative procedure (Algorithm 3). The
monitoring procedure (Algorithm 1) is then a simple combination of these two. We
overload some logical symbols to denote operators on boolean values. In the actual
implementation, we do not actually implement the loop in Algorithm 1; rather it is
implemented as an event-triggered procedure, to process each event as they arrive
using Iter.

Theorem 2.4.2. (ρ, i) ⊧ φ iff Monitor(ρ, i, φ) returns true.

Proof. The proof is quite straightforward because each step in the calculation of the

24 Efficient Runtime Monitoring with Metric Temporal Logic

truth values of subformulas of φ corresponds to their (recursive-form) semantics
reading and Theorem 2.4.1. Moreover, by the well-foundedness of ≺, this algorithm
terminates, and at each step, the calculation of a subformula φ uses only values of
other subformulas smaller than φ in the ordering ≺, or truth values of subformulas
in the previous world (which are already defined). In the case of Sn, the updates of
the value mcur and mprev correspond exactly to the construction shown in the proof
of Lemma 2.4.1.

The Iter function only depends on two worlds: ρi and ρi−1, so the algorithm is
trace-length independent. In principle, there is no upper bound to its space com-
plexity, as the timestamp τi can grow arbitrarily large, as is the case in Basin et al.
[2012]. Practically, however, the timestamps in Android are stored in a fixed size data
structure, so in such a case, when we fix the policy, the space complexity is constant
(i.e., independent of the length of history ρ).

2.5 Examples

We provide some basic policies as an example of how we can use this logic to specify
security policies. From now on, we shall only quantify over the domain app, so
in the following, we shall omit the sort annotation in the existential quantifier. The
predicate trans is the recursive predicate defined in Equation (2.1) in the introduction,
i.e.,

trans(x, y) ∶= call(x, y) ∨ ∃z.⟐n trans(x, z) ∧ call(z, y).

The constant sink denotes a service or resource that an unprivileged application tries
to access via privilege escalation, e.g., send SMS, or access to the Internet. The
constant contact denotes the Contact provider app in Android. We also assume the
following “static” predicates (i.e., their truth values do not vary over time):

• system(x): x is a system app or process. By system app here we mean any app
that is provided and certified by Google (such as Google Maps, Google Play,
etc.) or an app that comes preinstalled on the phone.

• hasPermissionToSink(y): y has permission to access the sink.

• trusted(x): x is an app that the user trusts. This is not a feature of Android,
rather, it is a specific feature of our implementation. We build into our imple-
mentation a ‘trust’ management app to allow the user a limited control over
apps that he/she trusts.

The following policies refer to access patterns that are forbidden. So given a
policy φ, the monitor at each state i make sure that (ρ, i) /⊧ φ holds. Assuming that
(ρ, i) /⊧ φ, where i = ∣ρ∣, holds, then whenever a new event (i.e., the ICC call) e is
registered at time t, the monitor checks that (([π; e], [τ; t]), i + 1) /⊧ φ holds. If it does,
then the call is allowed to proceed. Otherwise, it will be terminated.

§2.6 Implementation 25

1. ∃x.(call(x, sink) ∧ ¬system(x) ∧ ¬trusted(x)).

This is a simple policy where we block a direct call from an untrusted ap-
plication to the sink. This policy can serve as a privilege manager where we
dynamically revoke permission for the application to access the sink regardless
of the static permission it asked during installation.

2. ∃x(trans(x, sink) ∧ ¬system(x) ∧ ¬hasPermissionToSink(x)).

This policy says that transitive calls to a sink from non-system apps are forbid-
den unless the source of the calls already has permission to the sink. This is
then a simple privilege escalation detection (for non-system apps).

3. ∃x(trans(x, sink) ∧ ¬system(x) ∧ ¬trusted(x)).

This is a further refinement to the policy in that we also give the user privilege
to decide for themselves dynamically whether or not to trust an application.
Untrusted apps cannot make a transitive call to the sink, but trusted apps are
allowed, regardless of their permissions.

4. ∃x(trans(x, internet) ∧ ¬system(x) ∧ ¬trusted(x) ∧⟐(call(x, contact))).

This policy allows privilege escalation by non-trusted apps as long as there is no
potential for data leakage through the sink. That is, as soon as a non-system and
untrusted app accesses contact, it will be barred from accessing the internet.
Note that the use of non-metric operator ⟐ ensures that the information that
a particular app has accessed contact is persistent. This policy resembles the
well-known Chinese Wall policy Brewer and Nash [1989] that is often used to
manage conflict of interests. Here accessing contacts and connecting to the
internet are considered as different conflict-of-interests classes.

2.6 Implementation

We have implemented the monitoring algorithm presented in the previous section in
Android 4.1. Some modifications to the application framework and the underlying
Linux kernel are necessary to ensure our monitor can effectively monitor and stop
unwanted behaviors. We have tested our implementation in both Android emulator
and an actual device (Samsung Galaxy Nexus phone).

Our implementation consists of two parts: the code that generates a monitor
given a policy specification, and the modifications of Android framework and its
Linux kernel to hook our monitor and to intercept ICCs and access to Android re-
sources. The modification of the Android framework mainly revolves around Activ-
ity Manager Service, a system component which deals with processing intent. We
add a hook in the framework to redirect permission checking (either starting activity,
service, or broadcasting intent) to pass through our monitor first before going to the
usual Android permission checking. The modification to the kernel consists mainly
of additional system calls to interact with the framework and a monitor stub which

26 Efficient Runtime Monitoring with Metric Temporal Logic

is activated when the monitor module is loaded. To improve runtime performance,
the monitor generation is done outside Android; it produces C code that is then
compiled into a kernel module, and inserted into the Android boot image.

2.6.1 Monitor Generator

The monitor generator takes an input policy, encoded in an XML format extending
that of RuleML. The monitor generator works by following the logic of the monitor-
ing algorithm presented in Section 2.4. It takes a policy formula φ, and generates the
required data structures and determines an ordering between elements of Sub∗(φ)
as described earlier, and produces the code illustrated in Algorithm 2, 3 and 1. The
main body of our monitor lies in the Linux kernel space as a kernel module. The
reason for this is that there are some cases where Android leaves the permission
checking to the Linux kernel layer, e.g., for opening network socket. However, to
monitor the ICC events between Android components and apps, we need to place a
hook inside the application framework. The ICC between apps is done by passing
a data structure called Intent, which gets broken down into parcels before they are
passed down to the kernel level to be delivered. So intercepting these parcels and
reconstructing the original Intent object in the kernel space would be more difficult
and error-prone. The events generated by apps or components will be passed down
to the monitor in the kernel, along with the application’s user id. If the event is a
call to the sink, then depending on the policy that is implemented in the monitor, it
will decide whether to block or allow the call to proceed. We do this through custom
additional system calls to the Linux kernel which go to this monitor.

2.6.2 LogicDroid Architecture

The LogicDroid architecture is given in Figure 2.1. The detection of events is done via
various “hooks” into the Android OS; these include hooks in the framework layer,
system library and the Linux kernel itself. Events intercepted, such as requests to
resources by an app, are forwarded to the reference monitor for further evaluation.
We will discuss some implementations of the hooks below. The reference monitor
resides in the Linux kernel underlying the Android OS. It processes events as they
come, and for each new event, it checks whether the new event, together with the
history of events processed so far, violates the current security policy. Note that
we implement our security checking mechanisms on top of the Android permission
mechanism, so in the case where our reference monitor does nothing, the default
Android permission mechanism would still be enforced.

The current security policy to be enforced is hardcoded in the monitor for effi-
ciency reasons. This, however, makes it slightly complicated to update the security
policy in the monitor. We need to provide a facility to update security policies since
this might be required to counter new forms of attacks that may not be handled by
the current policy. Our current approach is to design the monitor as a kernel mod-
ule; this allows it to be removed and reinstalled on a live system. We then devise an

§2.6 Implementation 27

Fi
gu

re
2.

1:
Th

e
ar

ch
it

ec
tu

re
of

Lo
gi

cD
ro

id

28 Efficient Runtime Monitoring with Metric Temporal Logic

offline monitor generation process. The monitor generator takes as input a security
policy (specified in RMTL, using XML as the representation language) and generates
C code that corresponds to the kernel module of the policy. This appears to be a
good compromise between performance and security.

Our implementation places hooks in four services, namely accessing the Internet
(opening network sockets), sending SMS, accessing location, and accessing contact
database. For each of these sinks, we add a virtual UID in the monitor and treat it as a
component of Android. We currently track only ICC calls through the Intent passing
mechanism. Android sandboxing restricts how apps can communicate. Commu-
nication between apps is typically done through the so-called Intent objects in the
Android framework. It is essentially a form of inter-process communication (IPC)
mechanism specific to Android. At the application level, we can often track leakage
of permissions tracking the passing of Intent objects, so our framework tracks this
kind of intents objects to infer privilege escalation. The most time-consuming part of
our implementation was actually in tracing how Intent objects are processed, and in
figuring out where to put the hooks to be most effective in intercepting requests to
resources.
The phone call hook In general, resources in Android that are protected by the An-
droid permission mechanism are located on the framework level. One such resource
is the ability to make phone calls. In the source code of Android, this functional-
ity is located in the OutgoingCallBroadcaster.java file. This file is compiled into
a component, and when an app wants to make a phone call, it will need to send
an Intent object to this component. We can intercept the phone call request in this
component. Figure 2.2 shows a snippet of the code where the permission checked is
done. We place the hook just before the Android permission checks take place.
The socket hook This hook is used to detect an attempt to connect to a network (or
internet) by opening a socket. Intercepting the attempts to connect to the internet
or a local network proves to be quite tricky. Although there are components in the
Android framework that provide internet related services, such as HTTP protocol,
an app can bypass these components entirely and simply make a system call to open
sockets directly. Thus to intercept this connection, we need to place the hook in the
Linux kernel. In Android, any app that wants to connect to a network needs to have
the INTERNET permission. This permission is checked in the kernel when an app
tries to open a socket, and the permission checking is enforced through Linux access
control, i.e., the network socket connection is associated with a particular group
called INTERNET. Only applications (users) belonging to this group will be able to
open a socket. Practically, when an application asks for the INTERNET permission
during installation, it will be added as a member of the “INTERNET” group. The
hook for the socket is placed in the socket.c file (from the Linux kernel source). The
extra security checking done by LogicDroid is the same in this case, i.e., it will consult
our custom monitor before returning to the normal execution flow. The snippet of
code and where to place the hook is shown in Figure 2.3

This is obviously not enough to detect all possible communications between apps,
e.g., those that are done through the file systems, or side channels, such as vibration

§2.6 Implementation 29

Fi
gu

re
2.

2:
A

ho
ok

in
th

e
A

nd
ro

id
fr

am
ew

or
k

to
in

te
rc

ep
t

ph
on

e
ca

lls

30 Efficient Runtime Monitoring with Metric Temporal Logic

Figure 2.3: A hook placed in the Linux kernel to intercept calls to network sockets

setting (e.g., as implemented in SoundComber by Schlegel et al. [2011]), so our im-
plementation is currently more of a proof of concept. In the case of SoundComber,
our monitor can actually intercept the calls between colluding apps, due to the fact
that the sender app broadcasts an intent to signal receiver app to start listening for
messages from the covert channels.

2.6.3 Performance

We have implemented some apps to test the policies we mentioned in Section 2.5.
There are two apps with a different subset of privileges, one app has the privilege to
access the sensitive information such as GPS location but does not have the privilege
to access the sink, and the other app does not have the privilege to access sensitive
information but has the privilege to access the sink. The apps will then collude to ex-
filtrate the sensitive information to the sink. We decided to implement some test apps
as opposed to using real applications from Google play store because there are not
many known applications that exhibit the behavior we are interested in testing. Most
malicious applications already have sufficient privileges and abuse them as opposed
to collude or using a confused deputy attack. As a side note, there is final year re-
port by Dnyaneshwar [2017], and undergraduate student at Nanyang Technological
University, which tests LogicDroid on some actual malware applications.

In Table 2.1 and Figure 2.4, we provide some measurement of the timing of the
calls between applications. The policy numbers in Table 2.1 refer to the policies in

§2.6 Implementation 31

Table 2.1: Performance Table (ms)

Policy Uncached Cached
1 76.64 14.36
2 93.65 42.36
3 94.68 41.83
4 92.43 42.75

No Monitor 75.8 16.9

Table 2.2: Memory Overhead Table

Policy Size(kB) Overhead(%)
1 372 0.05
2 916 0.11
3 916 0.11
4 916 0.11

Note: on emulator with 49 apps and
overall memory of around 800 mB

Section 2.5. To measure the average time for each ICC call, we construct a chain of
ten apps, making successive calls between them, and measure the time needed for
one end to reach the other. We measure two different average timings in millisec-
onds (ms) for different scenarios, based on whether the apps are in the background
cache (i.e., suspended) or not. We can see this effect in the case where there is no
monitoring involved, in that there is a big difference between the cached or not. This
discrepancy in time is due to the fact that there is an overhead involved in starting
up the 10 apps.

We also measure the time spent on the monitor actually processing the event,
which is around 1 ms for policy 1, and around 10 ms for the other three policies.
This shows that the time spent in processing the event is quite low, but more over-
head comes from the space required to process the event (there is a big jump in
overall timing from simple rules of policy 1 with at most 2 free variables to policy 2
and 3 with 3 free variables). Figure 2.4 shows that the timing of calls over time for
each policy is roughly the same. This backs our claim that even though our mon-
itor implements history-based access control, its performance does not depend on
the size of the history. Table 2.2 shows the memory footprints of the security moni-
tors. The first column in the table shows the actual size of the memory required by
each monitor, and the second column shows the percentage of the memory of each
monitor relative to the overall available memory. As can be seen from the table, the
memory overhead of the monitors is negligible.

32 Efficient Runtime Monitoring with Metric Temporal Logic

2.6.4 Vulnerabilities in com.android.phone component

We now discuss how the added security mechanism of LogicDroid allows us to pre-
vent apps from exploiting recently discovered vulnerabilities in the com.android.phone
component in the Android framework. We would like to emphasize that the Logic-
Droid security mechanism was designed before the discovery of the vulnerabilities,
and it was not designed specifically to counter those vulnerabilities. The fact that it
works shows the benefit of runtime verification in general and our security extension
in particular.

The vulnerabilities in question were first made public by CureSec.com on 4th July
2014, although the vulnerabilities themselves were known to them in late 2013. The
fragment of code that contains these vulnerabilities is shown in Figure 2.5. These vul-
nerabilities are also known as “CVE-2013-6272 com.android.phone” in the database
of vulnerabilities maintained by the MITRE Corporation.

The bugs in the codes in Figure 2.5 are essentially a privilege escalation bug
in Android official component that enables a user to do three privileged actions
without having the privilege to do so, namely, sending SMS, making unrestricted
phone calls, and terminating on-going calls. The second bug allows a user to es-
sentially gains the CALL_PRIVILEGED permission through the system component
com.android.phone. Android documentation states that the CALL_PRIVILEGED
permission “allows an application to call any phone number, including emergency
numbers, without going through the Dialer user interface for the user to confirm the
call being placed.” Thus the bug would allow a malicious app to call any number
in a stealth mode without notifying the user nor requiring the user’s actions. This
is the more interesting bug of the three mentioned above, so we used this as a case
study to test the effectiveness of LogicDroid.

The bug is caused by a broadcast receiver component in PhoneApp.java in the
Android framework (different versions of Android may have this in a different file).
To be precise, the name of the component is NotificationBroadcastReceiver. The
component listens to the intents broadcast by apps, and upon receiving an intent,
if the action of the intent is ACTION_CALL_BACK_FROM_NOTIFICATION, then
this component will start the activity that can handle CALL_PRIVILEGED. See the
highlighted parts in Figure 2.5. Privilege escalation occurs in this setting because the
component that broadcast the intent in the first place does not necessarily have the
permission to do CALL_PRIVILEGED, and the receiving component in Phone.java
does not enforce that the caller must have the right permission. This is a typical
confused deputy attack we mentioned earlier. An interesting fact about this bug is
that the component was not meant to be exported, and the developer already noted
so in the comment in the class definition. Nevertheless, as opposed to writing “an-
droid:exported=false” in the manifest, they wrote “exported=false”, which rendered
the property to be ineffective hence the bug surfaces.

Thus a general security policy that prevents privilege escalation would stop the

§2.6 Implementation 33

exploit. We specify such a policy in LogicDroid as the following RMTL formula:

∃x. (trans(x, CALL_PRIVILEGED) ∧ ¬system(x) ∧ hasCallPrivilegedPermission(x))

where the trans predicate is as defined earlier in Section 2.3. In general, LogicDroid
supports such policies for detecting indirect access to a sink, i.e., a particular permis-
sion we would like to protect, such as INTERNET, READ_CONTACT, SEND_SMS,
etc. Note that policy in LogicDroid specifies the patterns that are not allowed in
the system calls. In this case, the policy indicates that a forbidden access pattern
is one in which there is an indirect call from a non-system application x with no
CALL_PRIVILEGED permission to the sink that handles the CALL_PRIVILEGED.

We have tested our runtime monitor against this particular exploit. CureSec pro-
vides a prove-of-concept app (called “Kolme”) that demonstrates this exploit We ran
this app on our modified Android, which is still at version 4.1.1, and so still contains
the vulnerable code. LogicDroid successfully detected the attempt by Kolme app to
gain CALL_PRIVILEGED permission and stops the attempt.

34 Efficient Runtime Monitoring with Metric Temporal Logic

Algorithm 3 Iter(ρ, i, φ, prev, cur, mprev, mcur)
Require: i > 1.

prev ∶= cur; mprev ∶= mcur;
for k = 1 to m do mcur[k] ∶= 0; end for
for k = 1 to m do

switch (φk)
case (�): cur[k] ∶= f alse;
case (p(c⃗)): cur[k] ∶= p(c⃗) ∈ πi;
case (¬ψ): cur[k] ∶= ¬cur[idx(ψ)];
case (P(c⃗)): cur[k] ∶= cur[idx(φP(c⃗))]; {Suppose P(x⃗) ∶= φP(x⃗).}
case (ψ1 ∨ψ2): cur[k] ∶= cur[idx(ψ1)] ∨ cur[idx(ψ2)];
case (●ψ): cur[k] ∶= prev[idx(ψ)];
case (⟐ψ): curr[k] ∶= prev[idx(ψ)] ∨ prev[⟐ψ];
case (ψ1 S ψ2): cur[k] ∶= cur[idx(ψ2)] ∨ (cur[idx(ψ1)] ∧ prev[k]);
case (●nψ): cur[k] ∶= prev[ψ] ∧ (τi − τi−1 < n);
case (⟐nψ):

l ∶= prev[idx(ψ)] ∧ (τi − τi−1 < n);
r ∶= prev[idx(⟐nψ)] ∧ (n − (τi − τi−1) ≥ mprev[k]));
cur[k] ∶= l ∨ r;
if l then mcur[k] ∶= τi − τi−1 + 1;
else if r then mcur[k] ∶= mprev[k] + τi − τi−1;
else mcur[k] ∶= 0;
end if

case (ψ1 Sn ψ2):
l ∶= cur[idx(ψ2)];
r ∶= cur[idx(ψ1)] ∧ prev[k] ∧ (n − (τi − τi−1) ≥ mprev[k]);
cur[k] ∶= l ∨ r;
if l then mcur[k] ∶= 1;
else if r then mcur[k] ∶= mprev[k] + τi − τi−1;
else mcur[k] ∶= 0;
end if

end switch
return cur[idx(φ)];

§2.6 Implementation 35

Figure 2.4: Timing of Calls

36 Efficient Runtime Monitoring with Metric Temporal Logic

Figure 2.5: Vulnerabilities in the android.com.phone component.

Chapter 3

Design of Android Bytecode
Certification

Android applications are downloaded in the form of an APK. Contained in each of
these APKs is a DEX file containing specific instructions (see DEX [2016]) to be exe-
cuted by the Dalvik VM, so from here on we will refer to these bytecode instructions
as DEX instructions. The Dalvik VM is a register-based VM, unlike the Java Virtual
Machine (JVM) which is a stack-based VM. Dalvik is now superseded by A new
runtime framework called ART, which compiles a DEX bytecode into device specific
executable, now supersede Dalvik. This move does not affect our analysis since both
Dalvik and ART use the same DEX instructions.

We aim at providing a framework for constructing trustworthy apps, where de-
velopers of apps can provide guarantees that the apps will not leak the (sensitive)
information the apps used outside the device without the user’s consent. The frame-
work should also provide a means for the end-user to verify that apps constructed
using the framework adhere to their advertised security policies. This is, of course,
not a new concept, and it is essentially a rehash of the (foundational) proof-carrying
code (PCC) (Necula [1997]; Appel [2001]), applied to the Android setting. We follow
a type-based approach for restricting information flow by Sabelfeld and Myers [2003]
in Android apps. Semantically, information flow properties of apps are specified via
a notion of non-interference coined by Goguen and Meseguer [1982]. In this set-
ting, typeable programs are guaranteed to be non-interferent, with respect to a given
policy, and typing derivations serve as certificates of non-interference. Our eventual
goal is to produce a compiler toolchain that can help developers to develop Android
applications that comply with a given policy, and automate the process of generating
the final non-interference certificates for DEX bytecode.

An Android application is typically written in Java and compiled to Java classes
(JVM bytecode). Then using tools provided in the Android Software Development
Kit (SDK), these Java classes are further compiled into an Android application in the
form of an APK. One important tool in this compilation chain is the dx tool, which
aggregates the Java classes and produces a DEX file to be bundled together with
other resource files in the APK. Non-interference type systems exist for Java source
code (Banerjee and Naumann [2005]), JVM (Barthe et al. [2013]) and (abstracted)

37

38 Design of Android Bytecode Certification

DEX bytecode without exception handling mechanism (Lortz et al. [2014a]). To build
a framework that allows end-to-end certificate production, one needs to study certifi-
cate translation between these different type systems. The connection between Java
and JVM type systems for non-interference has been studied by Barthe et al. [2006a].
In this work, we fill the gap by showing that the connection between JVM and DEX
type systems. Our contributions are the following:

• We provide proof that our type system for DEX is non-interferent. On the
surface, it may look like that the proof of our type system soundness is taken
directly from Barthe et al. [2006b] and Lortz et al. [2014b] but it is not the case.
The proof of our type system soundness is substantially different from their
proof. Section 4.2 details the soundness proof of our type system, and also
outline how our proof is different from Barthe et al. [2006b] and Lortz et al.
[2014b]. We also provided a Coq formalization of the non-interference proof for
a subset of DEX that concerns arithmetic, control flow, and object manipulation
operations.

• We give a formal account of the compilation process from JVM bytecode to DEX
bytecode as implemented in the official dx tool in Android SDK. Section 6.1
details some of the translation processes.

• We provide proof that the translation from JVM to DEX preserves typability.
That is, JVM programs typable in the non-interference type system for JVM
translates into typable programs in the non-interference type system for DEX.

3.1 Related Work

Our work is heavily influenced by the work of Barthe et al. [2006b, 2013] on enforcing
non-interference via type systems. We discuss other related work in the following.

The closest to our work is the Cassandra project Lortz et al. [2014a,b], that aims
at developing certified app stores, where apps can be certified, using an information-
flow type system similar to ours, for the absence of specific information flow. Specifi-
cally, the authors of Lortz et al. [2014a,b] have developed an abstract Dalvik language
(ADL), similar to Dalvik bytecode, and a type system for enforcing non-interference
properties for ADL. In Cassandra, they use a client / server infrastructure where the
client can submit an app to check whether it satisfies the client’s requirements. Our
type system for Dalvik has many similarities with that of Cassandra, but one main
difference is that we consider a larger fragment of Dalvik, which includes exception
handling, something that is not present in Cassandra. We choose to deal directly with
Dalvik rather than an abstracted language since we aim to eventually integrate our
certificate compilation into existing compiler toolchains for Android apps, without
having to modify those toolchains. Our proposed infrastructure is also substantially
different from client / server model of Cassandra, where we design a framework for
developers to provide non-interference guarantee for their application in the form of
a certificate which user can check in their own phone. See Section 6.3 for more detail.

§3.1 Related Work 39

Bian et al. [2007] target the JVM bytecode to check whether a program has the
non-interference property. Differently from Barthe et al. their approach uses the idea
of the compilation technique where they analyze a variable in the bytecode for its
definition and usage. Using this dependence analysis, their tool can detect whether
a program leaks confidential information. This is an interesting technique in itself,
and it is possible to adopt their approach to analyze DEX bytecode. Nevertheless,
we are more interested in the transferability of properties instead of the technique
in itself. In particular, if we were to use their approach instead of a type system,
the question we are trying to answer would become “if the JVM bytecode is non-
interferent according to their approach, is the compiled DEX bytecode also non-
interferent?”.

In the case of preservation of properties itself, the idea that a non-optimizing com-
piler preserves a property is not something new. The work by Barthe et al. [2006b]
shows that with a non-optimizing compiler, the proof obligation from a source lan-
guage to a simple stack-based language will be the same, thus allowing the reuse of
the proof for the proof obligation in the source language. In showing the preservation
of a property, they introduce the source imperative language and target language for
a stack-based abstract machine. This is the main difference with our work where
we are analyzing the actual dx tool from Android which compiles the bytecode lan-
guage for the stack-based virtual machine (JVM bytecode) to the actual language for
the register-based machine (DEX bytecode). There are also works that address this
non-interference preservation from Java source code to JVM bytecode (Barthe et al.
[2006a]). Our work can then be seen as a complement to their work in that we are
extending the type preservation to include the compilation from JVM bytecode to
DEX bytecode.

To deal with information flow properties in Android, there are several works ad-
dressing the problem (see Fuchs et al. [2009]; Bugliesi et al. [2013]; Enck et al. [2014];
Zhao and Osono [2012]; Kim et al. [2012]; Fragkaki et al. [2012]; Jia et al. [2013];
Felt et al. [2011]; Enck et al. [2009a,b]) although some of them are geared towards
the privilege escalation problem. These works base their context of Android secu-
rity studied by Enck et al. [2009b]. The tool in the study, which is called Kirin, is
also of great interest for us since they deal with the certification of Android appli-
cations. Kirin is a lightweight tool which certifies an Android application at install
time based on permissions requested. Some of these works are similar to ours in
a sense working on the static analysis for Android. The closest one to mention is
ScanDroid by Fuchs et al. [2009], with the underlying type system and static analysis
tool for security specification in Android by Chaudhuri [2009]. Then along the line of
type systems, there is also work by Bugliesi et al. called Lintent that tries to address
non-interference on the source code level (Bugliesi et al. [2013]). The main difference
with what we do lies in that the analysis itself relies on the existence of the source
(the JVM bytecode for ScanDroid and Java source code for Lintent) from which the
DEX program is translated.

There are some other static analysis tools for Android which do not stem from
the idea of type system, e.g. FlowDroid by Arzt et al. [2014], TrustDroid by Zhao

40 Design of Android Bytecode Certification

and Osono [2012] and ScanDal by Kim et al. [2012]. FlowDroid and TrustDroid
are another static analysis tool on Android bytecode, trying to prevent information
leaking, based on taint analysis on the program. Different from TaintDroid (Enck
et al. [2014]) in that they are doing taint analysis statically from decompiled DEX
bytecode whereas TaintDroid is enforcing run time taint analysis. ScanDal is also
a static analysis for Android applications targetting the DEX instructions directly,
aggregating the instructions in a language they call Dalvik Core. They enumerate all
possible states and note when any value from any predefined information source is
flowing through a predefined information sink. Their work assumed that predefined
sources and sinks are given, whereas we are more interested in a flexible policy to
define them. For more comprehensive studies on static analysis tools, the interested
reader can refer to Reaves et al. [2016]

A work by Backes et al. [2016] called ARTist and a work by Octeau et al. [2012]
called Dare are also of great interest. ARTist is a compiler-based app instrumenta-
tion. Our current work analyzes the translation from JVM bytecode into DEX byte-
code, while ARTist extends dex2oat, which produces bytecode for ART from DEX
bytecode, with static analysis applicable to the intermediate representation. Their
current implementation shows that it is possible to leverage existing approach for
information flow (in particular Enck et al. [2014]) by instrumenting this compiler.

Heading to another direction, Dare retarget Android bytecode to Java bytecode
via an intermediate representation called Tyde with a high success rate of 99.99%.
Although it has the similar motivation of leveraging program analysis tools in Java,
essentially what they are doing is different to ours. They are more interested in
the semantic preservation of the program as opposed to maintaining the structure
of the program. In the case where program analysis of Java bytecode complains
about the retargeted Android bytecode, developers have no way to know how the
problem comes about in the first place, i.e., the link between the original source
code and retargeted Android bytecode is lost. As a side note, there is another static
analysis tool called EPICC (Octeau et al. [2013]) which complements Dare nicely.
EPICC analyzes application’s entry points and exit points and then analyzes possible
interactions (thus forming flows of ICC).

Since the property that we are interested in is non-interference, it is also worth
mentioning Sorbet, a runtime enforcement of the property by modifying the Android
operating system (Fragkaki et al. [2012]; Jia et al. [2013]). Their approach is differ-
ent from our ultimate goal which motivates this work in that we are aiming for no
modification in the Android operating system.

3.2 Proof-Carrying Code

Before we proceed to the design of our proposed solution, it is good to step back
and have a look at the underlying infrastructure, namely Proof-Carrying Code (PCC)
(Necula [1997]). In essence, PCC bundles along proof / certificate about a property
which can be easily checked by code consumer, thus moving the burden of proof to

§3.3 Non-Interferent Type System for JVM 41

the code producer side. This infrastructure works because it is much easier to check
a proof rather than generating one.

With this infrastructure, the trusted computing base becomes really small. In
the PCC setting, we do not even need to trust the compiler to produce a correct
certificate; we only need to be able to trust the type checker. In the case where the
compiler produces an invalid certificate, the type checker will reject the code. Thus,
compiler correctness is an independent issue from the perspective of PCC. Quoting
from Necula himself “The code receiver does not need to trust the code producer or
the proof producer. In other words, the receiver does not have to know the identity
of the producer, nor does it have to know anything about the process by which the
agent code was produced. All of the information needed for determining the safety
of the code is included in the annotated agent code and its proof.”

The way the PCC framework is designed is to take the viewpoint of the developer:
how can the developer write an app that does the job and convince the client (i.e., the
type checker) that the program is safe? If the client insists that programs only use safe
features, then the developer will have to comply or risk getting his / her program
rejected. So the developer has control to modify the bytecode. This is different from
a verification scenario where the code is usually given and can not be changed, i.e.,
the kind of usage scenarios for anti-virus or malware scanner products.

As a side note, Barthe et al.’s type system is devised in the spirit of PCC. Essen-
tially, the proof is the typing annotations for a particular JVM bytecode. Coupled
with the result that their type system is sound, this certificate essentially becomes
the proof that the JVM bytecode is safe. In the client side, then, we only need to
check whether it is a proper annotation of the program and whether it satisfies the
typability relation.

3.3 Non-Interferent Type System for JVM

In this section, we give an overview of Barthe et al’s type system for JVM. The reader
is referred to Barthe et al. [2013] for a more detailed explanation and intuitions behind
the design of the type system. Readers who are already familiar with the work of
Barthe et al may skip this section.

3.3.1 Overview of JVM Bytecode

A program P is given by its list of instructions given in Figure 3.2. The set X is the set
of local variables, V = Z⋃L⋃{null} is the set of values, where L is an (infinite) set
of locations, and null denotes the null pointer, and PP is the set of program points.
For any set X, the notation X∗ stands for a stack of elements of X. Programs are also
implicitly parameterized by a set C of class names, a set F of field identifiers, a set
M of method names, and a set TJ of Java types. The instructions listing can be seen
in Figure 3.2.

42 Design of Android Bytecode Certification

Figure 3.1: PCC structure

3.3.2 Operational Semantics

The operational semantics is given as a relation ↝m,τ⊆ State × (State + (V , heap))
where m indicates the method under which the relation is considered, and τ indi-
cates whether the instruction is executing normally (indicated by Norm) or throwing
an exception. (sometimes we omit m whenever it is clear which m we are referring to,
we may also remove τ when it is clear from the context whether or not the instruc-
tion is executing normally). State here represents a set of JVM states, which is a tuple
⟨i, ρ, os, h⟩ where i ∈ PP is the program counter that points to the next instruction to
be executed; ρ ∈ X ⇀ V is a partial function from local variables to values; os ∈ V∗
is an operand stack; and h ∈ heap is the heap for that particular state. Heaps are
modeled as partial functions h ∶ L ⇀ O +A, where the set O of objects is modeled as
C × (F ⇀ V), i.e., each object o ∈ O possess a class class(o) ∈ C and a partial function
o. f ∈ F → V to access the value of field f of object o. A is the set of arrays modeled as
N× (N⇀ V)×PP , i.e., each array has a length, partial function from index to value,
and a creation point. The creation point will be used to define the notion of array
indistinguishability. Heap is the set of heaps.

For method invocation, each program comes equipped with a set M of method
names, and for each method m, there is associated list Pm of instructions. Each
method is identified by method identifier mID. Therefore we also need to know the
class from which this method is invoked; it can be identified by auxiliary function

§3.3 Non-Interferent Type System for JVM 43

binop op ∶ do binary operation op on the top two of the stack item
and put the resulting value on top of the stack

push c ∶ push a constant value c on top of the stack
pop ∶ pop value from the top of the stack
swap ∶ swap the top two operand stack values
load x ∶ load value of xand put it on top of the stack
store x ∶ store the value of the top of the stack in variable x
ifeq j ∶ conditional jump to j if the top of the stack is 0
goto j ∶ unconditional jump to program point j
return ∶ return from the method with the top value of the stack
new C ∶ create a new object of class c in the heap
getfield f ∶ load value of field f and put it on top of the stack
putfield f ∶ store the value of the top of stack in field f
newarray t ∶ create a new array of type t in the heap
arraylength ∶ get the length of an array
arrayload ∶ load value from an array
arraystore ∶ store value in array
invoke mID ∶ Invoke method indicated by its method identifier mID

using the values from the top of the stack as the arguments
throw ∶ Throw an exception object stored at the top of a stack

where op ∈ {+,−,×, /}, c ∈ Z, x ∈ X , j ∈ PP , C ∈ C, f ∈ F , t ∈ TJ , and mID ∈ M.

Figure 3.2: JVM Instruction List

44 Design of Android Bytecode Certification

lookupP which returns the precise method to be executed based on the method
identifier and class.

The program also comes equipped with a partial function Handlerm ∶ PP × C ⇀
PP . We write Handlerm(i, C) = t for an exception of class C ∈ C thrown at program
point i, which will be caught by a handler with its starting program point t. In the
case where the exception is uncaught, we write Handlerm(i, C) ↑ instead. The final
states will be (V + L) × Heap to differentiate between normal termination (v, h) ∈
V ×Heap, and an uncaught exception (⟨l⟩, h) ∈ L+Heap which contains the location
l for the uncaught exception thrown in the heap h. The symbol ⟨⟩ is used to identify
that the return value is the result of an uncaught exception as opposed to the normal
return value.

The notation op denotes here the standard interpretation of arithmetic opera-
tion of op in the domain V of values (although there is no arithmetic operation on
locations). The operator ⊕ denotes the function where ρ ⊕ {r ↦ v} means a new
function ρ′ such that ∀i ∈ dom(ρ)/{r}.ρ′(i) = ρ(i) and ρ′(r) = v. The operator ⊕
is overloaded to also mean the update of a field on an object or update on a heap.
nbArguments ∶ M → Z is a function from a method id to its required number of
arguments.

The function fresh ∶ Heap → L is an allocator function that given a heap returns
the location for that object. The function default ∶ C → O returns for each class a
default object of that class. For every field of that default object, the value will be 0
if the field is of numeric type, and null if the field is of an object type. Similarly for
defaultArray ∶ N× TJ → (N ⇀ V). The ↝ relation which defines transitions between
state is ↝⊆ State × (State +V ×Heap).

To handle exception, a program will also come equipped with two parameters
classAnalysis and excAnalysis. classAnalysis contains information on possible
classes of exception of a program point, and excAnalysis contains possible escaping
exception of a method.

The instructions that may throw an exception primarily are method invocation
and the object / array manipulation instructions. The transitions are also parameter-
ized by a tag τ ∈ {Norm} + C to describe whether the transition occurs normally or
some exception is thrown. The notation np is used as the class for null pointer ex-
ceptions, with the associated exception handler being RuntimeExceptionHandling.
RuntimeExceptionHandling models the runtime exception handling mechanism in
the JVM, where it will continue the execution from the exception handler if such han-
dler is defined, or break the execution and throw an uncaught exception in the case
where no handler for its particular exception is defined. There are other possible
runtime exceptions for example array index out of bound exception, out of memory
exception, etc., but we only focus on null pointer exception instead as it is easy to
extend the class and the operational semantics with the other exceptions. As a side
note, some readers may realize that in the case of object / array instructions it looks
like it is possible to have an instruction where the object pointer is not valid (or the
object is not in the heap). Fortunately for us, this case is already handled by the JVM
bytecode verifier, which we assume is already set in place.

§3.3 Non-Interferent Type System for JVM 45

Pm[i] = push n
⟨i, ρ, os, h⟩ ↝m,Norm ⟨i + 1, ρ, n ∶∶ os, h⟩

Pm[i] = load x
⟨i, ρ, os, h⟩ ↝m,Norm ⟨i + 1, ρ, ρ(x) ∶∶ os, h⟩

Pm[i] = ifeq j n ≠ 0
⟨i, ρ, n ∶∶ os, h⟩ ↝m,Norm ⟨i + 1, ρ, os, h⟩

Pm[i] = ifeq j n = 0
⟨i, ρ, n ∶∶ os, h⟩ ↝m,Norm ⟨j, ρ, os, h⟩

Pm[i] = binop op n2 op n1 = n

⟨i, ρ, n1 ∶∶ n2 ∶∶ os, h⟩ ↝m,Norm ⟨i + 1, ρ, n ∶∶ os, h⟩
Pm[i] = return

⟨i, ρ, v ∶∶ os, h⟩ ↝m,Norm v, h

Pm[i] = swap
⟨i, ρ, v1 ∶∶ v2 ∶∶ os, h⟩ ↝m,Norm ⟨i + 1, ρ, v2 ∶∶ v1 ∶∶ os, h⟩

Pm[i] = goto j
⟨i, ρ, os, h⟩ ↝m,Norm ⟨j, ρ, os, h⟩

Pm[i] = store x x ∈ dom(ρ)
⟨i, ρ, v ∶∶ os, h⟩ ↝m,Norm ⟨i + 1, ρ⊕{x ↦ v}, os, h⟩

Pm[i] = pop
⟨i, ρ, v ∶∶ os, h⟩ ↝m,Norm ⟨i + 1, ρ, os, h⟩

Pm[i] = getfield f l ∈ dom(h) f ∈ dom(h(l))
⟨i, ρ, l ∶∶ os, h⟩ ↝m,Norm ⟨i + 1, ρ, h(l). f ∶∶ os, h⟩

Pm[i] = new C l = fresh(h)
⟨i, ρ, os, h⟩ ↝ ⟨i + 1, ρ, l ∶∶ os, h⊕{l ↦ default(C)}⟩

Pm[i] = getfield f l′ = fresh(h)
⟨i, ρ, null ∶∶ os, h⟩ ↝m,np RuntimeExcHandling(h, l′, np, i, ρ)

Pm[i] = putfield f l ∈ dom(h) f ∈ dom(h(l))
⟨i, ρ, v ∶∶ l ∶∶ os, h⟩ ↝m,Norm ⟨i + 1, ρ, os, h⊕{l ↦ h(l) ⊕ { f ↦ v}}⟩

Pm[i] = putfield f l′ = fresh(h)
⟨i, ρ, v ∶∶ null ∶∶ os, h⟩ ↝m,np RuntimeExcHandling(h, l′, np, i, ρ)

Pm[i] = newarray t l = fresh(h) n ≥ 0
⟨i, ρ, n ∶∶ os, h⟩ ↝m,Norm ⟨i + 1, ρ, l ∶∶ os, h⊕{l ↦ (n, defaultArray(n, t), i)}⟩

Pm[i] = arraylength l ∈ dom(h)
⟨i, ρ, l ∶∶ os, h⟩ ↝m,Norm ⟨i + 1, ρ, h(l).length ∶∶ os, h⟩

Pm[i] = arraylength l′ = fresh(h)
⟨i, ρ, null ∶∶ os, h⟩ ↝m,np RuntimeExcHandling(h, l′, np, i, ρ)

Pm[i] = arrayload l ∈ dom(h) 0 ≤ j < h(l).length
⟨i, ρ, j ∶∶ l ∶∶ os, h⟩ ↝m,Norm ⟨i + 1, ρ, h(l)[j] ∶∶ os, h⟩

Pm[i] = arrayload l′ = fresh(h)
⟨i, ρ, j ∶∶ null ∶∶ os, h⟩ ↝m,np RuntimeExcHandling(h, l′, np, i, ρ)

46 Design of Android Bytecode Certification

Pm[i] = arraystore l ∈ dom(h) 0 ≤ j < h(l).length
⟨i, ρ, v ∶∶ j ∶∶ l ∶∶ os, h⟩ ↝m,Norm ⟨i + 1, ρ, os, h⊕{l ↦ h(l) ⊕ {j ↦ v}}⟩

Pm[i] = arraystore l′ = fresh(h)
⟨i, ρ, v ∶∶ j ∶∶ null ∶∶ os, h⟩ ↝m,np RuntimeExcHandling(h, l′, np, i, ρ)

Pm[i] = invoke mID m′ = lookupP(mID, class(h(l))) l ∈ dom(h)
length(os1) = nbArguments(mID) ⟨1,{this ↦ l, x⃗ ↦ os1}, ε, h⟩ ↝+

m′ v, h′

⟨i, ρ, os1 ∶∶ l ∶∶ os2, h⟩ ↝m,Norm ⟨i + 1, ρ, v ∶∶ os2, h′⟩

Pm[i] = invoke mID m′ = lookupP(mID, class(h(l)))
⟨1,{this ↦ l, x⃗ ↦ os1}, ε, h⟩ ↝+

m′ ⟨l′⟩, h′ l ∈ dom(h)
Handlerm(i, e) = t e = class(h′(l′)) e ∈ excAnalysis(mID)

⟨i, ρ, os1 ∶∶ l ∶∶ os2, h⟩ ↝m,e ⟨t, ρ, l′ ∶∶ ε, h′⟩

Pm[i] = invoke mID l′ = fresh(h)
⟨i, ρ, os1 ∶∶ null ∶∶ os2, h⟩ ↝m,np RuntimeExcHandling(h, l′, np, i, ρ)

Pm[i] = invoke mID m′ = lookupP(mID, class(h(l)))
⟨1,{this ↦ l, x⃗ ↦ os1}, ε, h⟩ ↝+

m′ ⟨l′⟩, h′ l ∈ dom(h)
e = class(h′(l′)) Handlerm(i, e) ↑ e ∈ excAnalysis(mID)

⟨i, ρ, os1 ∶∶ l ∶∶ os2, h⟩ ↝m,e ⟨l′⟩, h′

Pm[i] = throw l′ = fresh(h)
⟨i, ρ, null ∶∶ os, h⟩ ↝m,np RuntimeExcHandling(h, l′, np, i, ρ)

Pm[i] = throw l ∈ dom(h) e = class(h(l))
Handlerm(i, e) = t e ∈ classAnalysis(m, i)

⟨i, ρ, l ∶∶ os, h⟩ ↝m,e ⟨t, ρ, l ∶∶ ε, h⟩

Pm[i] = throw l ∈ dom(h) e = class(h(l))
Handlerm(i, e) ↑ e ∈ classAnalysis(m, i)

⟨i, ρ, l ∶∶ os, h⟩ ↝m,e ⟨l⟩, h

RuntimeExcHandling ∶ Heap ×L× C ×PP × (X ⇀ V) → State + (L×Heap)
defined as

RuntimeExcHandling(h, l′, C, i, ρ) =

{ ⟨t, ρ, l′ ∶∶ ε, h⊕{l′ ↦ default(C)}⟩ if Handlerm(i, C) = t
⟨l′⟩, h⊕{l′ ↦ default(C)} if Handlerm(i, C) ↑

Figure 3.3: Full JVM Operational Semantic

§3.3 Non-Interferent Type System for JVM 47

Some last remarks: firstly, because of method invocation, the operational seman-
tics will also be mixed with a big step semantics style ↝+

m from method invocations
of method m and its associated result. To be more precise, ↝+

m is the transitive clo-
sure of ↝m. Then, for instructions that may not throw an exception, we remove the
subscript {m, Norm} from ↝ because it is clear that they have no exception throw-
ing operational semantic counterpart. A list of operational semantics is contained in
Figure 3.3.

Successor Relation The successor relations ↦⊆ PP × PP of a program P are
tagged with whether the execution is normal or throwing an exception. Whenever
it is clear from the context, we will drop the tag to reduce clutter. According to the
types of instructions at program point i, there are several possibilities:

Pm[i] = goto t: The successor relation is i ↦Norm t

Pm[i] = ifeq t: In this case, there are 2 successor relations i ↦Norm i+1 and i ↦Norm t.

Pm[i] = return: In this case, it is a return point denoted by i ↦Norm

Pm[i] is an instruction throwing a null pointer exception, and there is a handler for
it (Handler(i, np) = t). In this case, the successor of i is t, denoted by i ↦np t.

Pm[i] is an instruction throwing a null pointer exception, and there is no handler for
it (Handler(i, np) ↑). In this case, it is a return point denoted by i ↦np.

Pm[i] = throw, throwing an exception C ∈ classAnalysis(m, i), and the handler is
Handler(i, C) = t. The successor relation is i ↦C t.

Pm[i] = throw, throwing an exception C ∈ classAnalysis(m, i), and the handler is
Handler(i, C) =↑. It is a return point, and the successor relation is i ↦C.

Pm[i] = invoke mID, throwing an exception C ∈ excAnalysis(mID), and the handler
is Handler(i, C) = t. The successor relation is i ↦C t.

Pm[i] = invoke mID, throwing an exception C ∈ excAnalysis(mID), and the handler
is Handler(i, C) ↑. It is a return point, and the successor relation is i ↦C.

Pm[i] is any other case. The successor is the next instruction in the program, denoted
by i ↦norm i + 1

3.3.3 Type System

Security levels are given by a lattice (S,≤) where ⊔ denotes the lub of two security
levels, and for every k ∈ S, liftk is a point-wise extension to stack types of λl.k ⊔ l.
The policy of a method is also defined relative to a security level kobs which denotes
the capability of an observer to observe values from local variables, fields, and return
values whose security levels are below kobs.The typing rules are defined in terms of
stack types; that is a stack that associates a value in the operand stack to the set S
of security levels. The stack type itself takes the form of a stack with corresponding
indices from the operand stack, as shown below.

48 Design of Android Bytecode Certification

We assume that a method comes with its security policy of the form k⃗a
kh→ k⃗r where

k⃗a represents a list {x1 ∶ k1, y2 ∶ k2, . . . , xm ∶ km} with ki ∈ S being the security level of
local variables xi ∈ X and kh is the effect of the method on the heap and k⃗r is the return
signature, i.e., the security level of the return value. The return signature is in the
form of a list to cater for the possibility of an uncaught exception on top of the normal
return value. The k⃗r is a list of the form {Norm ∶ kNorm, e1 ∶ ke1 , . . . , en ∶ ken} where kn

is the security level for the normal return value and ei is the class of the uncaught
exception thrown by the method and kei is the associated security level. In the sequel,
we write k⃗r(Norm) to stand for kNorm and k⃗r(ei) to stand for kei . An example of this

policy can be {1 ∶ L, 2 ∶ H} H→ {Norm ∶ L} where L, H ∈ S, L ≤ kobs, H ≰ kobs indicating
that the method will return a low value and that throughout the execution of the
method, the security level of local variable 1 will be low while the security level of
local variable 2 will be high.

Compared to the usual object or value, arrays have an extended security level to
cater for the security level of the contents. The security level of an array is of the form
k[kc] where k represents the security level of the array, and kc represents the security
level of its content (this implies that all array elements have the same security level
kc). Let Sext be the extension of security levels S to define the array’s security level.
The partial order on S will also be extended with ≤ext :

k ≤ k′ k, k′ ∈ S
k ≤ext k′

k ≤ k′ k, k′ ∈ S kc ∈ Sext

k[kc] ≤ext k′[kc]

Generally, in the case of a comparison between extended level k[kc] ∈ Sext and a
standard level k′ ∈ S , we only compare k and k′ w.r.t. the partial order on S. In the
case of comparison with kobs, since kobs ∈ S, an extended security k[kc] is considered
low (written k[kc] ≤ kobs) if k ≤ kobs.

The transfer rules come equipped with a security policy for fields ft ∶ F → Sext

and at ∶ PP → Sext that maps the creation point of an array with the security level of
its content. at(a) will also be used to denote the security level of the content of array
a at its creation point.

The notation Γ is used to define the table of method signatures which will as-
sociate a method identifier mID and a security level k ∈ S (of the object invoked) to
a security signature ΓmID[k]. The collection of security signatures of a method m is
defined as PoliciesΓ(mID) = {ΓmID[k] ∣ k ∈ S}.

A method is also parameterized by a control dependence region (CDR) which
is defined in terms of two functions: region and jun. The function region ∶ PP ×
{Norm ∪ C} → ℘(PP) can be seen as all the program points executing under the

§3.3 Non-Interferent Type System for JVM 49

guard of the instruction at the specified program point, i.e., in the case of region(i, τ)
the guard will be the program point i. The function jun(i, τ) itself can be seen as the
nearest program point which all instructions in region(i, τ) have to execute (junction
point). A CDR is safe if it satisfies the following SOAP (Safe Over APproximation)
properties.

Definition 3.3.1. A CDR structure (region, jun) satisfies the SOAP properties if the follow-
ing properties hold :

SOAP1. ∀i, j, k ∈ PP and tag τ if i ↦ j and i ↦τ k and j ≠ k (i is hence a branching point)
then k ∈ region(i, τ) or k = jun(i, τ).

SOAP2. ∀i, j, k ∈ PP and tag τ, if j ∈ region(i, τ) and j ↦ k, then either k ∈ region(i, τ)
or k = jun(i, τ).

SOAP3. ∀i, j ∈ PP and tag τ, if j ∈ region(i, τ) and j is a return point then jun(i, τ) is
undefined.

SOAP4. ∀i ∈ PP and tags τ1, τ2 if jun(i, τ1) and jun(i, τ2) are defined and jun(i, τ1) ≠
jun(i, τ2) then jun(i, τ1) ∈ region(i, τ2) or jun(i, τ2) ∈ region(i, τ1).

SOAP5. ∀i, j ∈ PP and tag τ, if j ∈ region(i, τ) and j is a return point then for all tags τ′

if jun(i, τ′) is defined then jun(i, τ′) ∈ region(i, τ).

SOAP6. ∀i ∈ PP and tag τ1, if i ↦τ1 then for all tags τ2, region(i, τ2) ⊆ region(i, τ1) and
if jun(i, τ2) is defined then jun(i, τ2) ∈ region(i, τ1).

The security environment function se ∶ PP → S is a map from a program point to
a security level. The notation ⇒ represents a relation between the stack type before
execution and the stack type after execution of an instruction.

The typing system is formally parameterized by :

Γ: a table of method signatures, needed to define the transfer rules for method invo-
cation;

ft: a map from fields to their global policy level;

CDR: a structure consisting of (region, jun).

se: a security environment

sgn: the method signature of the current method

Si: stack type annotation at program point i

st: stack typing after the instruction is executed

thus the complete form of a judgment parameterized by a tag τ ∈ {Norm+ C} is

Γ, ft, region, se, sgn, i ⊢τ Si ⇒ st.

50 Design of Android Bytecode Certification

Pm[i] = load x
se, i ⊢ st⇒ (k⃗a(x) ⊔ se(i)) ∶∶ st

Pm[i] = store x se(i) ⊔ k ≤ k⃗a(x)
se, i ⊢ k ∶∶ st⇒ st

Pm[i] = swap
i ⊢ k1 ∶∶ k2 ∶∶ st⇒ k2 ∶∶ k1 ∶∶ st

Pm[i] = push n
se, i ⊢ st⇒ se(i) ∶∶ st

Pm[i] = pop
i ⊢ k ∶∶ st⇒ st

Pm[i] = ifeq j ∀j′ ∈ region(i, Norm), k ≤ se(j′)
region, se, i ⊢ k ∶∶ st⇒ liftk(st)

Pm[i] = goto j
i ⊢ st⇒ st

Pm[i] = binop op
se, i ⊢ k1 ∶∶ k2 ∶∶ st⇒ (k1 ⊔ k2 ⊔ se(i)) ∶∶ st

Pm[i] = return se(i) ⊔ k ≤ k⃗r(n)

k⃗a
kh→ k⃗r, se, i ⊢ k ∶∶ st⇒

Pm[i] = new C

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢ st⇒ se(i) ∶∶ st

Pm[i] = newarray t k ∈ S

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢Norm k ∶∶ st⇒ k[at(i)] ∶∶ st

Pm[i] = getfield f k ∈ S ∀j ∈ region(i, Norm), k ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢Norm k ∶∶ st⇒ liftk(((k ⊔ se(i)) ⊔ext ft(f)) ∶∶ st)

Pm[i] = getfield f k ∈ S ∀j ∈ region(i, np), k ≤ se(j) Handler(i, np) = t

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np k ∶∶ st⇒ (k ⊔ se(i)) ∶∶ ε

Pm[i] = getfield f k ∈ S ∀j ∈ region(i, np), k ≤ se(j)
Handler(i, np) ↑ k ≤ k⃗r(np)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np k ∶∶ st⇒

Pm[i] = putfield f (se(i) ⊔ k2) ⊔ext k1 ≤ ft(f) k1 ∈ Sext k2 ∈ S
kh ≤ ft(f) ∀j ∈ region(i, Norm), k2 ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢Norm k1 ∶∶ k2 ∶∶ st⇒ liftk2(st)

Pm[i] = putfield f (se(i) ⊔ k2) ⊔ext k1 ≤ ft(f) k1 ∈ Sext k2 ∈ S
∀j ∈ region(i, np), k2 ≤ se(j) Handler(i, np) = t

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np k1 ∶∶ k2 ∶∶ st⇒ (k2 ⊔ se(i)) ∶∶ ε

§3.3 Non-Interferent Type System for JVM 51

Pm[i] = putfield f (se(i) ⊔ k2) ⊔ext k1 ≤ ft(f) k1 ∈ Sext k2 ∈ S
∀j ∈ region(i, np), k ≤ se(j) Handler(i, np) ↑ k2 ≤ k⃗r(np)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np k1 ∶∶ k2 ∶∶ st⇒

Pm[i] = arraylength k ∈ S kc ∈ Sext ∀j ∈ region(i, Norm), k ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢Norm k[kc] ∶∶ st⇒ liftk(k ∶∶ st)

Pm[i] = arraylength k ∈ S kc ∈ Sext ∀j ∈ region(i, np), k ≤ se(j)
Handler(i, np) = t

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np k[kc] ∶∶ st⇒ (k ⊔ se(i)) ∶∶ ε

Pm[i] = arraylength k ∈ S kc ∈ Sext ∀j ∈ region(i, np), k ≤ se(j)
Handler(i, np) ↑ k ≤ k⃗r(np)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np k[kc] ∶∶ st⇒

Pm[i] = arrayload k1, k2 ∈ S kc ∈ Sext ∀j ∈ region(i, Norm), k2 ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢Norm k1 ∶∶ k2[kc] ∶∶ st⇒ liftk2(((k1 ⊔ k2) ⊔ext kc) ∶∶ st)

Pm[i] = arrayload k1, k2 ∈ S kc ∈ Sext ∀j ∈ region(i, np), k2 ≤ se(j)
Handler(i, np) = t

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np k1 ∶∶ k2[kc] ∶∶ st⇒ (k2 ⊔ se(i)) ∶∶ ε

Pm[i] = arrayload k1, k2 ∈ S kc ∈ Sext ∀j ∈ region(i, np), k2 ≤ se(j)
Handler(i, np) ↑ k2 ≤ k⃗r(np)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np k1 ∶∶ k2[kc] ∶∶ st⇒

Pm[i] = arraystore ((k2 ⊔ k3) ⊔ext k1) ≤ext kc k2, k3 ∈ S k1, kc ∈ Sext

∀j ∈ region(i, Norm), k2 ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢Norm k1 ∶∶ k2 ∶∶ k3[kc] ∶∶ st⇒ liftk2(st)

Pm[i] = arraystore ((k2 ⊔ k3) ⊔ext k1) ≤ext kc k2, k3 ∈ S k1, kc ∈ Sext

∀j ∈ region(i, np), k2 ≤ se(j) Handler(i, np) = t

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np k1 ∶∶ k2 ∶∶ k3[kc] ∶∶ st⇒ (k2 ⊔ se(i)) ∶∶ ε

52 Design of Android Bytecode Certification

Pm[i] = arraystore ((k2 ⊔ k3) ⊔ext k1) ≤ext kc k2, k3 ∈ S k1, kc ∈ Sext

∀j ∈ region(i, np), k2 ≤ se(j) Handler(i, np) ↑ k2 ≤ k⃗r(np)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np k1 ∶∶ k2 ∶∶ k3[kc] ∶∶ st⇒

Pm[i] = invoke mID length(st1) = nbArguments(mID) ΓmID[k] = k⃗′a
k′h→ k⃗′r

∀i ∈ [0, length(st1) − 1].st1[i] ≤ k⃗′a[i + 1] k ≤ k⃗′a[0] k ⊔ kh ⊔ se(i) ≤ k′h
ke = ⊔{k⃗′r(e) ∣ e ∈ excAnalysis(mID)} ∀j ∈ region(i, Norm), k ⊔ ke ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢Norm st1 ∶∶ k ∶∶ st2 ⇒ liftk⊔ke((k⃗′r(n) ⊔ se(i)) ∶∶ st2))

Pm[i] = invoke mID length(st1) = nbArguments(mID) ΓmID[k] = k⃗′a
k′h→ k⃗′r

∀i ∈ [0, length(st1) − 1].st1[i] ≤ k⃗′a[i + 1] k ≤ k⃗′a[0] k ⊔ kh ⊔ se(i) ≤ k′h
e ∈ excAnalysis(mID) ∪ {np} Handler(i, e) = t ∀j ∈ region(i, e), k ⊔ k′r(e) ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢e st1 ∶∶ k ∶∶ st2 ⇒ (k ⊔ k⃗′r(e)) ∶∶ ε

Pm[i] = invoke mID length(st1) = nbArguments(mID)

ΓmID[k] = k⃗′a
k′h→ k⃗′r ∀i ∈ [0, length(st1) − 1].st1[i] ≤ k⃗′a[i + 1]

k ≤ k⃗′a[0] k ⊔ kh ⊔ se(i) ≤ k′h k ⊔ se(i) ⊔ k⃗′r(e) ≤ k⃗r(e)
e ∈ excAnalysis(mID) ∪ {np} Handler(i, e) ↑ ∀j ∈ region(i, e), k ⊔ k′r(e) ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢e st1 ∶∶ k ∶∶ st2 ⇒

Pm[i] = throw e ∈ classAnalysis(i) ∪ {np} ∀j ∈ region(i, e), k ≤ se(j)
Handler(i, e) = t

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢e k ∶∶ st⇒ (k ⊔ se(i)) ∶∶ ε

Pm[i] = throw e ∈ classAnalysis(i) ∪ {np} k ≤ k⃗r(e)
∀j ∈ region(i, e), k ≤ se(j) Handler(i, e) ↑

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢e k ∶∶ st⇒

Figure 3.4: JVM Transfer Rule

§3.3 Non-Interferent Type System for JVM 53

In the case where some elements are unnecessary, we may omit some of the param-
eters, e.g., i ⊢ Si ⇒ st.

As in the operational semantics, wherever it is clear that the instructions may not
throw an exception, we remove the tag Norm to reduce clutter. The transfer rules are
contained in Figure 3.4. Using these transfer rules, we can then define the notion of
typability:

Definition 3.3.2 (Typable method). A method m is typable w.r.t. a method signature table
Γ, a global field policy ft, a policy sgn, and a CDR regionm ∶ PP → ℘(PP) if there exists
a security environment se ∶ PP → S and a function S ∶ PP → S∗ s.t. S1 = ε and for all
i, j ∈ PP , and exception tags e ∈ {Norm+ C}:

(a) i ↦e j implies there exists st ∈ S∗ such that Γ, ft, region, se, sgn, i ⊢e Si ⇒ st and
st ⊑ Sj;

(b) i ↦e implies Γ, ft, region, se, sgn, i ⊢e Si ⇒,

where ⊑ denotes the point-wise partial order on type stack w.r.t. the partial order taken on
security levels.

The Non-interference definition relies on the notion of indistinguishability. Loosely
speaking, a method is non-interferent if, given indistinguishable inputs, it yields in-
distinguishable outputs. Obviously, we have to define what it means to be indistin-
guishable.

To define the notions of location, object, and array indistinguishability, Barthe et
al. define the notion of a β mapping. β is a bijection on (a partial set of) locations in
the heap. The bijection maps low objects (objects whose references might be stored
in low fields or variables) allocated in the heap of a state to low objects allocated in
the heap of subsequent state. Two objects might be indistinguishable, even if their
locations are different during execution. The β function is a bijection in the sense that
it is a one to one correspondence on all low objects in the heap, but it is also partial
in a sense that high objects are not mapped.

Definition 3.3.3 (Value indistinguishability). Letting v, v1, v2 ∈ V , and given a partial
function β ∈ L ⇀ L, the relation ∼β⊆ V ×V is defined by the clauses :

null ∼β null
v ∈ N
v ∼β v

v1, v2 ∈ L β(v1) = v2

v1 ∼β v2

Definition 3.3.4 (Local variables indistinguishability). For ρ, ρ′ ∶ X ⇀ V , we have
ρ ∼kobs,k⃗a,β ρ′ if ρ and ρ′ have the same domain and if k⃗a(x) ≤ kobs then ρ(x) ∼β ρ′(x)
for all x ∈ dom(ρ).

Definition 3.3.5 (Object indistinguishability). Two objects o1, o2 ∈ O are indistinguishable
with respect to a partial function β ∈ L ⇀ L (written as o1 ∼kobs,β o2) if and only if o1 and o2

are objects of the same class and o1. f ∼β o2. f for all fields f ∈ dom(o1) s.t. ft(f) ≤ kobs.

54 Design of Android Bytecode Certification

Definition 3.3.6 (Array indistinguishability). Two arrays a1, a2 ∈ A are indistinguishable
w.r.t. an attacker level kobs and a partial function β ∈ L ⇀ L (written as a1 ∼kobs,β a2) if and
only if a1.length = a2.length and, moreover, if at(a1) ≤ kobs, then a1[i] ∼β a2[i] for all i
such that 0 ≤ i < a1.length.

Definition 3.3.7 (Heap indistinguishability). Two heaps h1 and h2 are indistinguishable,
written h1 ∼kobs,β h2, with respect to an attacker level kobsand a partial function β ∈ L ⇀ L
iff:

• β is a bijection between dom(β) and rng(β);

• dom(β) ⊆ dom(h1) and rng(β) ⊆ dom(h2);

• ∀l ∈ dom(β), h1(l) ∼kobs,β h2(β(l)) where h1(l) and h2(β(l)) are either two objects
or two arrays.

Definition 3.3.8 (Output indistinguishability). Given an attacker level kobs, a partial
function β ∈ L ⇀ L, an output level k⃗r, the indistinguishability of two final states in method
m is defined by the clauses below where → indicates logical implication :

h1 ∼kobs,β h2 k⃗r(Norm) ≤ kobs → v1 ∼β v2

(v1, h1) ∼kobs,β,k⃗r
(v2, h2)

h1 ∼kobs,β h2 (class(h1(l1)) ∶ k) ∈ k⃗r k ≤ kobs l1 ∼β l2
(⟨l1⟩, h1) ∼kobs,β,k⃗r

(⟨l2⟩, h2)

h1 ∼kobs,β h2 (class(h1(l1)) ∶ k) ∈ k⃗r k ≰ kobs

(⟨l1⟩, h1) ∼kobs,β,k⃗r
(v2, h2)

h1 ∼kobs,β h2 (class(h2(l2)) ∶ k) ∈ k⃗r k ≰ kobs

(v1, h1) ∼kobs,β,k⃗r
(⟨l2⟩, h2)

h1 ∼kobs,β h2 (class(h1(l1)) ∶ k1) ∈ k⃗r k1 ≰ kobs (class(h2(l2)) ∶ k2) ∈ k⃗r k2 ≰ kobs

(⟨l1⟩, h1) ∼kobs,β,k⃗r
(⟨l2⟩, h2)

At this point, it is worth mentioning that whenever it is clear from the usage, we
may drop some subscript from the indistinguishability relation, e.g., for two indistin-
guishable objects o1 and o2 w.r.t. a partial function β ∈ L ⇀ L and observer level kobs,
instead of writing o1 ∼kobs,β o2 we may drop kobs and write o1 ∼β o2 if kobsis obvious.

We may also drop kh from a policy k⃗a
kh→ k⃗r and write k⃗a → k⃗r if kh is irrelevant to the

discussion.

Definition 3.3.9 (Non-interferent JVM method). A method m is non-interferent w.r.t. a
policy k⃗a → k⃗r, if for every attacker level kobs, every partial function β ∈ L ⇀ L and every

§3.4 Infrastructure for Android Bytecode Certification 55

ρ1, ρ2 ∈ X ⇀ V , h1, h2, h′1, h′2 ∈ Heap, r1, r2 ∈ V +L s.t.

⟨1, ρ1, ε, h1⟩ ↝+
m r1, h′1 h1 ∼kobs,β h2

⟨1, ρ2, ε, h2⟩ ↝+
m r2, h′2 ρ1 ∼kobs,k⃗a,β ρ2

there exists a partial function β′ ∈ L ⇀ L s.t. β ⊆ β′ and

(r1, h′1) ∼kobs,β′,k⃗a
(r2, h′2).

Because of method invocation, there will be a notion of a side effect preorder for
the notion of safety.

Definition 3.3.10 (Side effect preorder). Two heaps h1, h2 ∈ Heap are side effect pre-
ordered (written as h1 ⪯k h2) with respect to a security level k ∈ S if and only if dom(h1) ⊆
dom(h2) and h1(l). f = h2(l). f for all location l ∈ dom(h1) and all fields f ∈ F such that
k ≰ ft(f).

From which we can define a side-effect-safe method.

Definition 3.3.11 (Side effect safe). A method m is side-effect-safe with respect to a
security level kh if for all local variables ρ ∈ X ⇀ V , all heaps h, h′ ∈ Heap and value
v ∈ V , ⟨1, ρ, ε, h⟩ ↝+

m v, h′ implies h ⪯kh h′.

Definition 3.3.12 (Safe JVM method). A method m is safe w.r.t. a policy k⃗a
kh→ k⃗r if m is

side-effect safe w.r.t. kh and m is non-interferent w.r.t. k⃗a → k⃗r.

Definition 3.3.13 (Safe JVM program). A program is safe w.r.t. a table Γ of method
signature if every method m is safe w.r.t. all policies in PoliciesΓ(m).

Theorem 3.3.1. Let P be a JVM typable program w.r.t. safe CDRs (regionm, junm) and a
table Γ of method signatures. Then P is safe w.r.t. Γ.

3.4 Infrastructure for Android Bytecode Certification

We extend Barthe et al. [2007, 2013] to be applicable to Android bytecode. Our
proposed infrastructure still retains the structure of PCC, but with the extension
of certificate translation from JVM type system. In particular, we develop a type
system to enforce non-interference property on Android bytecode and show that the
certificate from JVM bytecode can be translated as the certificate of the resulting
Android bytecode.

Figure 3.5 shows how our structure still retains this PCC infrastructure. The
security policy in our scenario is that of non-interference. The code producer can
translate a certificate from JVM bytecode and inject the certificate into resulting An-
droid app as a proof that the app is non-interferent. The end users then can type
check this certificate on their own phone using our type checker app. This corre-
sponds to the PCC infrastructure in that the developer provided the proof and the

56 Design of Android Bytecode Certification

Figure 3.5: PCC structure for Android Bytecode

client just need to check whether the proof validates the bytecode’s property. This
means that the trusted computing base for our infrastructure is just the type checker
application which can run on the user’s phone. Section 6.3 gives more detail of our
infrastructure.

Since our framework is essentially of PCC infrastructure, we also inherit benefits
from PCC. One of the most obvious ones is that we do not have to assume that the
compiler is correct. As long as there is a certificate that is produced and can be
checked, it is okay even if the compiler is actually unsound in some cases. It is, of
course, better if we can prove the compiler correct down to the smallest details but
that is only to ensure usability, i.e., that we know a certificate for DEX bytecode can be
produced from a certificate for JVM bytecode that complies with how the compiler
translates the JVM bytecode to DEX bytecode. Even if the compiler occasionally
produces a wrong certificate, there is no harm to security since the certificate will fail
type checking.

Although the proposed type system used in our infrastructure is only applicable
to certain features, the client could allow more features to be used, provided that
there is a guarantee that those features are safe. That is another question about
extending the type system to allow more features, which is independent of whether
the existing type system is safe or not. It does mean, for example, that this framework
cannot be used to certify apps that use low-level hardware acceleration for games that
require native libraries. But it is perfectly useable and practical to use it to certify,
e.g., password managers, contact managers, etc., that does not require complicated

§3.4 Infrastructure for Android Bytecode Certification 57

language features to write.
One of the limitations of PCC is that we have to express the security policy in

a very precise and concise manner. This means that due to the design of our type
system, our framework is only meant to provide a guarantee against privilege misuse
(apps ask for permission to access sensitive information and granted, and PCC is
there to ensure it does not leak the information that it obtains). It does not prevent
exploits that leverage on system vulnerabilities that violate our assumptions, in that
the underlying Android system is trustworthy.

58 Design of Android Bytecode Certification

Chapter 4

Non-Interferent Type System for
Android Bytecode

The development of the operational semantics and the type systems for DEX byte-
code follows closely the framework set up in Barthe et al. [2013]. Although Dalvik is
a register-based machine and JVM is a stack-based machine, the translation from one
instruction set to the other is the for the most part quite straightforward. The adapta-
tion of the type system for JVM to its DEX counterpart is complicated slightly by the
need to simulate JVM stacks in DEX registered-based instructions. The non-trivial
parts are when we want to capture both direct (via operand stacks) and indirect in-
formation flow (e.g., those resulting from branching on high value). In Barthe et al.
[2013], to deal with both direct and indirect flow, several techniques are used, among
others, the introduction of operand stack types (each stack element carries a type
which is a security label), a notion of safe control dependence region (CDR), which
keeps track of the regions of the bytecode executing under a ’high’ security level, and
the notion of security environment, which attaches security levels to points in pro-
grams. Since Dalvik is a register-based machine, when translating a JVM bytecode to
DEX bytecode, the dx tool simulates the operand stack using DEX registers. As the
type system for JVM is parameterized by a safe CDR and a security environment, we
also need to define how these are affected by the translation, e.g., whether one can
construct a safe CDR for DEX given a safe CDR for JVM. This was complicated by
the fact that the translation by dx, in general, is organized along blocks of sequen-
tial (non-branching) code, so one needs to relate blocks of code in the image of the
translation back to the original code (see Section 6.1) .

In a sense, DEX is simpler than JVM due to the difference where JVM uses local
variables and operand stack, and DEX only uses registers. For starters, the repre-
sentation of a state is simpler in DEX as we collapse local variables and operand
stack into registers. We also do not need the lift mechanism for DEX. In JVM, the
presence of instruction swap means that there is a possibility of implicit information
flow through stack operations hence the need for a lift mechanism. Unlike JVM, DEX
does not have an instruction where the content of registers can be swapped around,
so DEX does not need this mechanism. Unfortunately, since we do not have a lift
mechanism anymore, the way we prove the type system soundness is also different

59

60 Non-Interferent Type System for Android Bytecode

(see Section 4.2).

4.1 Syntax, Semantics, and Type System for Android Byte-
code

We first propose the design of our non-interferent type system for Android bytecode.
In Section 4.2 we prove that our type system is sound.

4.1.1 Overview of DEX Bytecode

A program P is given by its list of instructions in Figure 4.1. The set R is the set of
DEX virtual registers, V is the set of values, PP is the set of program points, and ρ is
the mapping from registers to values.

As in the case for JVM, we assume that the program comes equipped with the
set of class names C and the set of fields F . The program will also be extended
with array manipulation instructions and the program will come parameterized by
the set of available DEX types TD analogous to Java type TJ . The DEX language also
deals with method invocation. As for JVM, DEX programs will also come with a set
m of method names. The method name and signatures themselves are represented
explicitly in the DEX file, as such the lookup function required will be different from
the JVM counterpart in that we do not need the class argument. Thus in the sequel,
we will remove this lookup function and overload that method ID to refer to the
code as well. DEX uses two special registers. We will use ret for the first one which
can hold the return value of a method invocation. In the case of a moveresult, the
instruction behaves like a move instruction with the special register ret as the source
register. The second special register is ex which stores an exception thrown for the
next instruction. Figure 4.1 contains the list of DEX instructions.

4.1.2 Operational Semantics

A state in DEX is just ⟨i, ρ, h⟩ where the ρ here is a mapping from registers to values
and h is the heap. It is similar to that of the JVM, with several differences, e.g., the
state in DEX does not have an operand stack, but its functionality is covered by the
registers (local variables) ρ. The function fresh ∶ Heap → L is an allocator function
that given a heap returns the location for that object. The function default ∶ C → O
returns for each class a default object of that class. For every field of that default
object, the value will be 0 if the field is of numeric type, and null if the field is of
object type. Similarly for defaultArray ∶ N × TD → (N ⇀ V). The ↝ relation which
defines transitions between state is ↝⊆ State × (State + (V ×Heap)).

The notation op denotes here the standard interpretation of arithmetic operation
of op in the domain V of values (although there is no arithmetic operation on loca-
tions). The operator ⊕ denotes the function where ρ⊕{r ↦ v} means a new function
ρ′ such that ∀i ∈ dom(ρ)/{r}.ρ′(i) = ρ(i) and ρ′(r) = v. The operator ⊕ is overloaded
to also mean the update of a field on an object or update on a heap.

§4.1 Syntax, Semantics, and Type System for Android Bytecode 61

binop op r, ra, rb Do the binary operation op on the values contained in
ra and rb, then store the result in r.

const r, v Fill register r with the constant value v.

move r, rs Copy the value stored in rs to r.

ifeq r, t Conditional jump if r has the value of 0.

ifneq r, t Conditional jump if r has the value of anything but 0.

goto t Unconditional jump to the program point t.

return rs Return the value stored in rs.

new r, c Create a new object of class c and put the reference in r

iget r, ro, f Get the value contained in the field f of object
referenced by ρ(ro) and store it in register r.

iput rs, ro, f Read the value contained in register rs and store it
in the field f of object referenced by ρ(ro).

newarray r, rl , t Create a new array of type t which has rl number of
elements and put the reference to the array in r.

arraylength r, ra Store the length of array referenced by ra in register r.

aget r, ra, ri Get the value stored in array referenced by ρ(ra) at
index ρ(ri) and put it in register r.

aput rs, ra, ri Put the value stored in register rs to array referenced
by ρ(ra) at index ρ(ri).

invoke n, m, p⃗ Invoke ρ(p⃗[0]).m with n arguments stored in p⃗

moveresult r Store invoke’s result to r. This instruction has to be
placed directly after invoke, otherwise the result is lost.

throw r Throw the exception object stored in r

moveexception r Store exception in r. This instruction has to be the first
instruction in the handler region.

where op ∈ {+,−,×, /}, v ∈ Z,{r, ra, rb, rs} ∈ R, t ∈ PP , c ∈ C, f ∈ F and ρ ∶ R →Z.

Figure 4.1: DEX Instruction List

62 Non-Interferent Type System for Android Bytecode

Pm[i] = const(r, v)
⟨i, ρ, h⟩ ↝m,Norm ⟨i + 1, ρ⊕{r ↦ v}, h⟩

Pm[i] = move(r, rs) rs ∈ dom(ρ)
⟨i, ρ, h⟩ ↝m,Norm ⟨i + 1, ρ⊕{r ↦ ρ(rs)}, h⟩

Pm[i] = binop(op, r, ra, rb) ra, rb ∈ dom(ρ) n = ρ(ra) op ρ(rb)
⟨i, ρ, h⟩ ↝m,Norm ⟨i + 1, ρ⊕{r ↦ n}, h⟩

Pm[i] = goto(t)
⟨i, ρ, h⟩ ↝ ⟨t, ρ, h⟩

P[i]m = ifeq(r, t) ρ(r) = 0
⟨i, ρ, h⟩ ↝m,Norm ⟨t, ρ, h⟩

Pm[i] = ifeq(r, t) ρ(r) ≠ 0
⟨i, ρ, h⟩ ↝m,Norm ⟨i + 1, ρ, h⟩

P[i]m = return(rs) rs ∈ dom(ρ)
⟨i, ρ, h⟩ ↝m,Norm ρ(rs), h

Pm[i] = new(r, c) l = fresh(h)
⟨i, ρ, h⟩ ↝ ⟨i + 1, ρ⊕{r ↦ l}, h⊕{l ↦ default(c)}⟩

Pm[i] = iget(r, ro, f) ρ(ro) ∈ dom(h) f ∈ dom(h(ρ(ro)))
⟨i, ρ, h⟩ ↝m,Norm ⟨i + 1, ρ⊕{r ↦ h(ρ(ro)). f}, h⟩

Pm[i] = iget(r, ro, f) ρ(ro) = null l′ = fresh(h)
⟨i, ρ, h⟩ ↝m,np RuntimeExcHandling(h, l′, np, i, ρ)

Pm[i] = iput(rs, ro, f) ρ(ro) = null l′ = fresh(h)
⟨i, ρ, h⟩ ↝n,np RuntimeExcHandling(h, l′, np, i, ρ)

Pm[i] = iput(rs, ro, f) ρ(ro) ∈ dom(h) f ∈ dom(h(ρ(ro)))
⟨i, ρ, h⟩ ↝n,Norm ⟨i + 1, ρ, os, h⊕{ρ(ro) ↦ h(ρ(ro)) ⊕ { f ↦ ρ(rs)}}⟩

Pm[i] = newarray(r, rl , t) l = fresh(h) ρ(rl) ≥ 0
⟨i, ρ, h⟩ ↝ ⟨i + 1, ρ⊕{r ↦ l}, h⊕{l ↦ (ρ(rl), defaultArray(ρ(rl), t), i)}⟩

Pm[i] = arraylength(r, ra) ρ(ra) ∈ dom(h)
⟨i, ρ, h⟩ ↝m,Norm ⟨i + 1, ρ⊕{r ↦ h(ρ(ra)).length, h}⟩

Pm[i] = arraylength(r, ra) ρ(ra) = null l′ = fresh(h)
⟨i, ρ, h⟩ ↝m,np RuntimeExcHandling(h, l′, np, i, ρ)

Pm[i] = aget(r, ra, ri) ρ(ra) ∈ dom(h) 0 ≤ ρ(ri) < h(ρ(ra)).length
⟨i, ρ, h⟩ ↝m,Norm ⟨i + 1, ρ⊕{r ↦ h(ρ(ra))[ρ(ri)]}, h⟩

Pm[i] = aget(r, ra, ri) ρ(ra) = null l′ = fresh(h)
⟨i, ρ, h⟩ ↝m,np RuntimeExcHandling(h, l′, np, i, ρ)

Pm[i] = aput(rs, ra, ri) ρ(ra) ∈ dom(h) 0 ≤ ρ(ri) < h(ρ(ra)).length
⟨i, ρ, h⟩ ↝m,Norm ⟨i + 1, ρ, h⊕{ρ(ra) ↦ h(ρ(ra)) ⊕ {ρ(ri) ↦ ρ(rs)}}⟩

§4.1 Syntax, Semantics, and Type System for Android Bytecode 63

Pm[i] = aput(rs, ra, ri) ρ(ra) = null l′ = fresh(h)
⟨i, ρ, h⟩ ↝m,np RuntimeExcHandling(h, l′, np, i, ρ)

Pm[i] = moveresult(r) r ∈ dom(ρ)
⟨i, ρ, h⟩ ↝m,Norm ⟨i + 1, ρ⊕{r ↦ ρ(ret)}, h⟩

Pm[i] = invoke(n, m′, p⃗) p⃗ ∈ dom(ρ) ⟨1,{x⃗ ↦ p⃗}, h⟩ ↝+
m′ v, h′

⟨i, ρ, h⟩ ↝m,Norm ⟨i + 1, ρ⊕{ret ↦ v}, h′⟩

Pm[i] = invoke(n, m′, p⃗) p⃗ ∈ dom(ρ) ⟨1,{x⃗ ↦ p⃗}, h⟩ ↝+
m′ ⟨l′⟩, h′

e = class(h′(l′)) Handlerm(i, e) = t e ∈ excAnalysis(m′)
⟨i, ρ, h⟩ ↝m,e ⟨t, ρ⊕{ex ↦ l′}, h′⟩

Pm[i] = invoke(n, m′, p⃗) l′ = fresh(h) ρ(p⃗[0]) = null
⟨i, ρ, h⟩ ↝m,np RuntimeExcHandling(h, l′, np, i, ρ)

Pm[i] = invoke(n, m′, p⃗) p⃗ ∈ dom(ρ) ⟨1,{x⃗ ↦ p⃗}, h⟩ ↝+
m′ ⟨l′⟩, h′

e = class(h′(l′)) Handlerm(i, e) ↑ e ∈ excAnalysis(m′)
⟨i, ρ, h⟩ ↝m,e ⟨l′⟩, h′

Pm[i] = throw(r) ρ(r) ∈ dom(h) e = class(h(ρ(r)))
Handlerm(i, e) = t e ∈ classAnalysis(m, i)

⟨i, ρ, h⟩ ↝m,e ⟨t, ρ⊕{ex ↦ ρ(r)}, h⟩

Pm[i] = throw(r) ρ(r) ∈ dom(h) e = class(h(ρ(r)))
Handlerm(i, e) ↑ e ∈ classAnalysis(m, i)

⟨i, ρ, h⟩ ↝m,e ⟨ρ(r)⟩, h

Pm[i] = throw(r) l′ = fresh(h) ρ(r) = null
⟨i, ρ, h⟩ ↝m,np RuntimeExcHandling(h, l′, np, i, ρ)

Pm[i] = moveexception(r) r ∈ dom(ρ)
⟨i, ρ, h⟩ ↝m,Norm ⟨i + 1, ρ⊕{r ↦ ρ(ex)}, h⟩

RuntimeExcHandling ∶ Heap ×L× C ×PP × (R ⇀ V) → State + (L×Heap)
defined as

RuntimeExcHandling(h, l′, C, i, ρ) =

{ ⟨t, ρ⊕{ex ↦ l′}, h⊕{l′ ↦ default(C)}⟩ if Handlerm(i, C) = t
⟨l′⟩, h⊕{l′ ↦ default(C)} if Handlerm(i, C) ↑

Figure 4.2: DEX Operational Semantic

64 Non-Interferent Type System for Android Bytecode

There is also an additional partial function Handlerm ∶ PP × C ⇀ PP for method
m which gives the handler address for a given program point and type of exception.
Given a program point i and a thrown exception c, if Handlerm(i, c) = t then the
control will be transferred to program point t, if the handler is undefined (denoted
by Handlerm(i, c) ↑) then the exception is uncaught in method m.

Figure 4.2 shows the operational semantics for DEX instructions. Here we give
the intuitions for each of the instruction:

const(r, v): updates the mapping for register r with the value v. This instruction
is the equivalent of JVM instruction push v. Whereas push always put the
constant value v at the top of the stack; the const specifies where the value will
be stored.

move(r, rs): takes the value contained in rs and then update the mapping for register
r with this value. This instruction simulates the instruction store x and load x
in the JVM. The only difference between them is that the JVM relates the top of
the stack and a particular local variable x (store puts the value at the top of the
stack to the local variable x, and load puts the value of the local variable x to
the top of the stack) while there is no restrictions for move.

binop(op, r, ra, rb): takes the value contained in ra and rb, and apply the binary op-
eration to these values. The mapping for register r is then updated with the
resulting value. This instruction is the equivalent of JVM instruction binop op,
but with a difference in that the operands and the place to put the result in
JVM are fixed (always pop the top two values from the stack, and then place
the result on top of the stack) but in DEX we have to specify the registers (ra

and rb for the operands and r as the target register).

goto(t): transfer the next program point to execute to j. This instruction behaves
exactly like its JVM counterpart.

ifeq(r, t): transfer the next program point to execute to t if the value contained in
register r is 0. Otherwise, the next program point to execute is the next program
point. This instruction behaves really similar to its JVM counterpart. The only
difference is that in JVM, the conditional jump depends on the top of the stack
whereas in DEX it depends on the register specified.

return(rs): ends the execution with the value contained in register rs. Just like ifeq,
it is really similar to JVM’s return except that JVM always return a value from
the top of the stack and DEX can specify from which register it will return a
value.

new(r, c): updates the mapping for register r with the created new object of class c
initialized with the default value. JVM also has new with the difference that
in JVM, the newly instantiated object reference will be put on top of the stack
while in DEX we have to specify where we will store the reference.

§4.1 Syntax, Semantics, and Type System for Android Bytecode 65

iget(r, ro, f): get the value contained in the field f of the object whose reference is
contained in ro, and then update the mapping for register r with this value.
If there is no exception, the instruction succeeds, and the program continues
with the next program point. In the case where there is an exception, the
behavior of the program is modeled by the function RuntimeExcHandling,
which will creates an exception object and then either transfer the program
point to the handler of such exception if it exists, or terminates the exception
with the exception object. Such behavior is exhibited by all of the exception
throwing instructions, so we will not mention this behavior for the rest of the
exception throwing instructions. It is the DEX version of getfield f , with more
flexibility to specify where we the reference of the object is (ro) and where we
will put the value (r). In JVM, it will pop the object reference that is at the top
of the stack and then put back the value to the top of the stack.

iput(rs, ro, f): get the value contained in register rs and then copy the value to the
field f of the object whose reference is contained in ro. iput is an exception
throwing instruction, so the behavior mentioned in iget is also applicable here.
In JVM, putfield f will pop top two values from the stack for the source value
and the object reference, whereas in DEX we have to specify the register con-
taining the source value (rs) and the register containing the object reference
(ro).

newarray(r, rl , t): create a new array of type t with the length of ρ(rl) initialized
with the default value, and then update the mapping for register r with the
reference to this newly created array. It is really similar to newarray t in that
it is creating a new array of type t with a certain length. The difference lies
in where do we get the length of the array from, and where will we put the
reference for the newly created array. In JVM, the length of the array is the
value at the top of the stack, and the reference will be put at the top of the
stack, while in DEX the length of the array is contained in register ri and the
reference will be put in r.

arraylength(r, ra): update the mapping for register r with the length of the array
whose reference is contained in register ra. arraylength is an exception throw-
ing instruction, so the behavior mentioned in iget is also applicable here. As
usual, it behaves similarly to its JVM counterpart except that in JVM, the array
reference is always located at the top of the stack, and the length of the array
will be put on top of the stack. DEX arraylength will take the array reference
that is stored in ra and then put the length in register r.

aget(r, ra, ri): get the value of the array whose reference is contained in ra at index
ρ(ri) and then update the mapping for register r with this value. aget is an
exception throwing instruction, so the behavior mentioned in iget is also ap-
plicable here. arrayload in JVM uses the top two values from the stack for the
array reference and its index, and then put the content of the array on top of

66 Non-Interferent Type System for Android Bytecode

the stack. It is different compared to DEX where the array location, array index,
and the register to store the value are flexible.

aput(rs, ra, ri): get the value contained in register rs and then update the value con-
tained in the array (whose reference is contained in register ra) at index ρ(ri)
with this value. aput is an exception throwing instruction, so the behavior
mentioned in iget is also applicable here. arraystore in JVM uses the three
two values from the stack for source value, the array reference, and its index.
It is different compared to DEX where the array location, array index, and the
register which contain the source value are flexible.

moveresult(r): get the value contained in the pseudo register ret and update the
mapping for register r with this value. There is no JVM equivalent of this
instruction.

invoke(n, m, p⃗): execute the method m with the parameters contained in registers p⃗.
The resulting value of executing the method will be contained in the pseudo
register ret. invoke is an exception throwing instruction, so the behavior men-
tioned in iget is also applicable here. There are several differences with JVM’s
invoke. Firstly, in JVM the number of parameters n is implicit in the method
definition. Secondly, the parameters for the method invoked in JVM are lo-
cated on top of the stack, whereas in DEX we can specify which registers are
the parameters for the method.

throw(r): throw the exception contained in the register r. If the handler for such ex-
ception exists, the program point is then transferred to the handler. Otherwise,
the program will ends abruptly with the exception as the result. The difference
with its JVM counterpart is the location of the exception. In JVM, the exception
is always obtained from the top of the stack, whereas in DEX it is obtained from
the register r.

moveexception(r): move the value contained in the pseudo register ex and then
update the mapping for register r with this value. This instruction only ever
appears as the first instruction in an exception handler. There is no equivalent
of this instruction in JVM.

Successor Relation The successor relation closely resembles that of the JVM; in-
structions will have its next instruction as the successor, except jump instructions,
return instructions, and instructions that throw an exception. As with JVM, when-
ever it is clear from the context, we will drop the tag to reduce clutter.

• Pm[i] = goto t. The successor relation is i ↦Norm t

• Pm[i] = ifeq t or Pm[i] = ifneq t. In this case, there are 2 successor relations
denoted by i ↦Norm i + 1 and i ↦Norm t.

• Pm[i] = return. In this case, it is a return point denoted by i ↦Norm

§4.1 Syntax, Semantics, and Type System for Android Bytecode 67

• Pm[i] is an instruction throwing a null pointer exception, and there is a handler
for it (Handler(i, np) = t). In this case, the successor is t denoted by i ↦np t.

• Pm[i] is an instruction throwing a null pointer exception, and there is no handler
for it (Handler(i, np) ↑). In this case it is a return point denoted by i ↦np.

• Pm[i] = throw, throwing an exception C ∈ classAnalysis(m, i), and the handler
is Handler(i, C) = t. The successor relation is i ↦C t.

• Pm[i] = throw, throwing an exception C ∈ classAnalysis(m, i), and the handler
is Handler(i, C) =↑. It is a return point, and the successor relation is i ↦C.

• Pm[i] = invoke mID, throwing an exception C ∈ excAnalysis(mID), and the
handler is Handler(i, C) = t. The successor relation is i ↦C t.

• Pm[i] = invoke mID, throwing an exception C ∈ excAnalysis(mID), and the
handler is Handler(i, C) ↑. It is a return point, and the successor relation is
i ↦C.

• Pm[i] is any other cases. The successor is its immediate instruction denoted by
i ↦norm i + 1

4.1.3 Type System

The transfer rules of DEX are defined in terms of register typing rt ∶ (R → S) instead
of stack typing. Note that this registers typing is total and is restricted to the number
of registers used in a method, which is statically determined, so we know in advance
how many registers there are. To be more concrete, if a method only uses 16 registers,
then rt is a map for these 16 registers to security levels, as opposed to the whole
number of possible 65535 registers according to And [2017].

The typing system is formally parameterized by :

Γ: a table of method signatures, needed to define the transfer rules for method invo-
cation;

ft: a map from fields to their global policy level;

CDR: a structure consisting of (region, jun).

se: a security environment

sgn: the method signature of the current method

rt: register typing after the instruction is executed

Thus the complete form of a judgment parameterized by a tag τ ∈ {Norm+ C} is

Γ, ft, region, se, sgn, i ⊢τ RTi ⇒ rt

68 Non-Interferent Type System for Android Bytecode

although in the case where some elements are unnecessary, we may not write the full
notation whenever it is clear from the context. In the table of operational semantics,
we may drop the subscript m, Norm from ↝, e.g., we may write ↝ instead of ↝m,Norm

to mean the same thing. In the table of transfer rules, we may drop the superscript
tag from ⊢τ and write ⊢ instead. The same case applies to the typing judgment, we

may write i ⊢τ rt⇒ rt′ instead of Γ, ft, region, k⃗a
kh→ k⃗r, se, i ⊢τ rt⇒ rt′.

The transfer rules also come equipped with a security policy for fields ft ∶ F →
Sext and security policy for array at the point of declaration at ∶ PP → Sext. As in
the type system for JVM, we overload the function at(a) to denote the security level
of the content of array a at its creation point. Some of the transfer rules for DEX
instructions are contained in Figure 4.3.

The typability of the DEX closely follows that of the JVM, except that the relation
between program points is defined in terms of register typing as opposed to stack
typing (i ⊢ RTi ⇒ rt, rt ⊑ RTj). The definition of ⊑ is also defined in terms of point-
wise registers. For now, we assume the existence of a safe CDR with the same
definition as that of the JVM side. We shall see later how we can construct a safe
CDR for DEX from a safe CDR in JVM.

Definition 4.1.1 (Typable method). A method m is typable w.r.t. a method signature table
Γ, a global field policy ft, a policy sgn, and a CDR regionm ∶ PP → ℘(PP) if there exists a
security environment se ∶ PP → S and a function RT ∶ PP → (R → S) s.t. RT1 = k⃗a and
for all i, j ∈ PP , e ∈ {Norm+ C}:

• i ↦e j implies there exists rt ∈ (R → S) such that Γ, ft, region, se, sgn, i ⊢e RTi ⇒ rt
and rt ⊑ RTj;

• i ↦e implies Γ, ft, region, se, sgn, i ⊢e RTi ⇒

Following that of the JVM side, what we want to establish here is not just the
typability, but also that typability means non-interference. As in the JVM, the notion
of non-interference relies on the definition of indistinguishability, while the notion of
value indistinguishability is the same as that of JVM.

Definition 4.1.2 (Register indistinguishability). For ρ, ρ′ ∶ (R → V), rt, rt′ ∶ (R → S),
and a register r ∈ R, two registers mapping are indistinguishable w.r.t. to a single register
(denoted by ρ ∼kobs,rt,rt′,r,β ρ′) if either:

• rt(r) = rt′(r) = k and k ≰ kobs where k, k′ ∈ Sext; or

• ρ(r) ∼β ρ′(r).

Definition 4.1.3 (Registers indistinguishability). For ρ, ρ′ ∶ (R → V) and rt, rt′ ∶ (R →
S), we have ρ ∼kobs,rt,rt′,β ρ′ iff ∀r ∈ R, ρ ∼kobs,rt,rt′,r ρ′

Definition 4.1.4 (Object indistinguishability). Two objects o1, o2 ∈ O are indistinguishable
with respect to a partial function β ∈ L ⇀ L (denoted by o1 ∼kobs,β o2) if and only if o1 and o2

are objects of the same class and o1. f ∼β o2. f for all fields f ∈ dom(o1) s.t. ft(f) ≤ kobs.

§4.1 Syntax, Semantics, and Type System for Android Bytecode 69

Pm[i] = const(r, v)
se, i ⊢ rt⇒ rt⊕{r ↦ se(i)}

Pm[i] = move(r, rs)
se, i ⊢ rt⇒ rt⊕{r ↦ (rt(rs) ⊔ se(i))}

Pm[i] = ifeq(r, t) ∀j′ ∈ region(i, Norm), se(i) ⊔ rt(r) ≤ se(j′)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢ rt⇒ rt

Pm[i] = ifneq(r, t) ∀j′ ∈ region(i, Norm), se(i) ⊔ rt(r) ≤ se(j′)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢ rt⇒ rt

Pm[i] = binop(op, r, ra, rb)
se, i ⊢ rt⇒ rt⊕{r ↦ (rt(ra) ⊔ rt(rb) ⊔ se(i))}

Pm[i] = return(rs) se(i) ⊔ rt(rs) ≤ k⃗r(Norm)

k⃗a
kh→ k⃗r, se, i ⊢ rt⇒

Pm[i] = new(r, c)
se, i ⊢Norm rt⇒ rt⊕{r ↦ se(i)}

Pm[i] = iget(r, ro, f) rt(ro) ∈ S ∀j ∈ region(i, Norm), rt(ro) ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢Norm rt⇒ rt⊕{r ↦ ((rt(ro) ⊔ se(i)) ⊔ext ft(f))}

Pm[i] = iget(r, ro, f) rt(ro) ∈ S ∀j ∈ region(i, np), rt(ro) ≤ se(j) Handler(i, np) = t

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np rt⇒ rt⊕{ex ↦ (rt(ro) ⊔ se(i))}

Pm[i] = iget(r, ro, f) rt(ro) ∈ S ∀j ∈ region(i, np), rt(ro) ≤ se(j)
Handler(i, np) ↑ se(i) ⊔ rt(ro) ≤ k⃗r(np)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np rt⇒

Pm[i] = iput(r, ro, f) rt(r) ∈ Sext rt(ro) ∈ S (rt(ro) ⊔ se(i)) ⊔ext rt(rs) ≤ ft(f)
kh ≤ ft(f) ∀j ∈ region(i, Norm), rt(ro) ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢Norm rt⇒ rt

Pm[i] = iput(rs, ro, f) rt(rs) ∈ Sext rt(ro) ∈ S (rt(ro) ⊔ se(i)) ⊔ext rt(rs) ≤ ft(f)
∀j ∈ region(i, np), rt(ro) ≤ se(j) Handler(i, np) = t

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np rt⇒ rt⊕{ex ↦ rt(ro) ⊔ se(i)}

Pm[i] = iput(rs, ro, f) rt(rs) ∈ Sext rt(ro) ∈ S (rt(ro) ⊔ se(i)) ⊔ext rt(rs) ≤ ft(f)
∀j ∈ region(i, np), rt(ro) ≤ se(j) Handler(i, np) ↑ se(i) ⊔ rt(ro) ≤ k⃗r(np)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np rt⇒

70 Non-Interferent Type System for Android Bytecode

Pm[i] = newarray(r, rl , t) rt(rl) ∈ S rt(rl)[at(i)] ≤ k⃗a(r)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢Norm rt⇒ rt⊕{r ↦ rt(rl)[at(i)]}

Pm[i] = arraylength(r, ra) k[kc] = rt(ra) k ∈ S kc ∈ Sext

∀j ∈ region(i, Norm), k ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢Norm rt⇒ rt⊕{r ↦ k}

Pm[i] = arraylength(r, ra) k[kc] = rt(ra) k ∈ S kc ∈ Sext k ≤ k⃗a(r)
∀j ∈ region(i, np), k ≤ se(j) Handler(i, np) = t

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np rt⇒ rt⊕{ex ↦ (k ⊔ se(i))}

Pm[i] = arraylength(r, ra) k[kc] = rt(ra) k ∈ S kc ∈ Sext k ≤ k⃗a(r)
∀j ∈ region(i, np), k ≤ se(j) Handler(i, np) ↑ se(i) ⊔ k ≤ k⃗a[np]

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np rt⇒

Pm[i] = aget(r, ra, ri) k[kc] = rt(ra) k, rt(ri) ∈ S kc ∈ Sext

∀j ∈ region(i, Norm), k ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢Norm rt⇒ rt⊕{r ↦ ((se(i) ⊔ k ⊔ rt(ri)) ⊔ext kc)}

Pm[i] = aget(r, ra, ri) k[kc] = rt(ra) k, rt(ri) ∈ S kc ∈ Sext

∀j ∈ region(i, np), k ≤ se(j) Handler(i, np) = t

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np rt⇒ rt⊕{ex ↦ (k ⊔ se(i))}

Pm[i] = aget(r, ra, ri) k[kc] = rt(ra) k, rt(ri) ∈ S kc ∈ Sext

∀j ∈ region(i, np), k ≤ se(j) Handler(i, np) ↑ se(i) ⊔ k ≤ k⃗r(np)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np rt⇒

Pm[i] = aput(rs, ra, ri) k[kc] = rt(ra) k, rt(ri) ∈ S kc, rt(rs) ∈ Sext

((k ⊔ rt(ri)) ⊔ext rt(rs)) ≤ext kc ∀j ∈ region(i, Norm), k ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢Norm rt⇒ rt

Pm[i] = aput(rs, ra, ri) k[kc] = rt(ra) k, rt(ri) ∈ S kc, rt(rs) ∈ Sext

((k ⊔ rt(ri)) ⊔ext rt(rs)) ≤ext kc ∀j ∈ region(i, np), k ≤ se(j) Handler(i, np) = t

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np rt⇒ rt⊕{ex ↦ (k ⊔ se(i))}

§4.1 Syntax, Semantics, and Type System for Android Bytecode 71

Pm[i] = aput(rs, ra, ri) k[kc] = rt(ra) k, rt(ri) ∈ S kc, rt(rs) ∈ Sext

se(i) ⊔ k ≤ k⃗r(np) ((k ⊔ rt(ri)) ⊔ext rt(rs)) ≤ext kc

∀j ∈ region(i, np), k ≤ se(j) Handler(i, np) ↑

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢np rt⇒

Pm[i] = moveresult(r)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢Norm rt⇒ rt⊕{r ↦ se(i) ⊔ rt(ret)}

Pm[i] = invoke(n, m′, p⃗) Γm′[rt(p⃗[0])] = k⃗′a
k′h→ k⃗′r rt(p⃗[0]) ⊔ kh ⊔ se(i) ≤ k′h

∀0 ≤ i < n.rt(p⃗[i]) ≤ k⃗′a[i] ke = ⊔{k⃗′r(e) ∣ e ∈ excAnalysis(m′)}
∀j ∈ region(i, Norm), rt(p⃗[0]) ⊔ ke ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢Norm rt⇒ (rt⊕{ret ↦ k⃗′r(Norm) ⊔ se(i)}))

Pm[i] = invoke(n, m′, p⃗) Γm′[rt(p⃗[0])] = k⃗′a
k′h→ k⃗′r rt(p⃗[0]) ⊔ kh ⊔ se(i) ≤ k′h

∀0 ≤ i < n.rt(p⃗[i]) ≤ k⃗′a[i] Handler(i, e) = t
e ∈ excAnalysis(m′) ∪ {np} ∀j ∈ region(i, e), rt(p⃗[0]) ⊔ k′r[e] ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢e rt⇒ rt⊕{ex ↦ (rt(p⃗[0]) ⊔ k⃗′r(e))}

Pm[i] = invoke(n, m′, p⃗) Γm′[rt(p⃗[0])] = k⃗′a
k′h→ k⃗′r rt(p⃗[0]) ⊔ kh ⊔ se(i) ≤ k′h

∀0 ≤ i < n.rt(p⃗[i]) ≤ k⃗′a[i] rt(p⃗[0]) ⊔ se(i) ⊔ k⃗′r(e) ≤ k⃗r(e) Handler(i, e) ↑
e ∈ excAnalysis(m′) ∪ {np} ∀j ∈ region(i, e), rt(p⃗[0]) ⊔ k′r[e] ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢e rt⇒

Pm[i] = throw(r) e ∈ classAnalysis(i) ∪ {np} Handler(i, e) = t
∀j ∈ region(i, e), rt(r) ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢e rt⇒ rt⊕{ex ↦ (rt(r) ⊔ se(i))}

Pm[i] = throw(r) e ∈ classAnalysis(i) ∪ {np} se(i) ⊔ rt(r) ≤ k⃗r(e)
Handler(i, e) ↑ ∀j ∈ region(i, e), rt(r) ≤ se(j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢e rt⇒

Pm[i] = moveexception(r)

Γ, ft, k⃗a
kh→ k⃗r, region, se, i ⊢Norm rt⇒ rt⊕{r ↦ (rt(ex) ⊔ se(i))}

Figure 4.3: DEX Transfer Rule

72 Non-Interferent Type System for Android Bytecode

Definition 4.1.5 (Array indistinguishability). Two arrays a1, a2 ∈ A are indistinguishable
w.r.t. an attacker level kobs and a partial function β ∈ L ⇀ L (denoted by a1 ∼kobs,β o2) if and
only if a1.length = a2.length and, moreover, if at(a1) ≤ kobs, then a1[i] ∼β a2[i] for all i
such that 0 ≤ i < a1.length.

Definition 4.1.6 (Heap indistinguishability). Two heaps h1 and h2 are indistinguishable
with respect to an attacker level kobsand a partial function β ∈ L ⇀ L, written h1 ∼kobs,β h2, if
and only if :

• β is a bijection between dom(β) and rng(β);

• dom(β) ⊆ dom(h1) and rng(β) ⊆ dom(h2);

• ∀l ∈ dom(β), h1(l) ∼kobs,β h2(β(l)) where h1(l) and h2(β(l)) are either two objects
or two arrays.

Definition 4.1.7 (Output indistinguishability). Given an attacker level kobs, a partial
function β ∈ L ⇀ L, an output level k⃗r, the indistinguishability of two final states in method
m is defined by the clauses below where → indicates logical implication :

h1 ∼kobs,β h2 k⃗r(Norm) ≤ kobs ⇒ v1 ∼β v2

(v1, h1) ∼kobs,k⃗r ,β (v2, h2)

h1 ∼kobs,β h2 (class(h1(l1)) ∶ k) ∈ k⃗r k ≤ kobs l1 ∼β l2
(⟨l1⟩, h1) ∼kobs,k⃗r ,β (⟨l2⟩, h2)

h1 ∼kobs,β h2 (class(h1(l1)) ∶ k) ∈ k⃗r k ≰ kobs

(⟨l1⟩, h1) ∼kobs,β,k⃗r
(v2, h2)

h1 ∼kobs,β h2 (class(h2(l2)) ∶ k) ∈ k⃗r k ≰ kobs

(v1, h1) ∼kobs,k⃗r ,β (⟨l2⟩, h2)

h1 ∼kobs,β h2 (class(h1(l1)) ∶ k1) ∈ k⃗r k1 ≰ kobs (class(h2(l2)) ∶ k2) ∈ k⃗r k2 ≰ kobs

(⟨l1⟩, h1) ∼kobs,k⃗r ,β (⟨l2⟩, h2)

For two outputs to be deemed indistinguishable, they have to be either:

• both are normal return values, and the policy for the normal return value is
high;

• both are normal return values, the policy for the normal return value is low,
and the values are indistinguishable;

• both are exceptions, and the policy for that particular exception is low, and the
locations are indistinguishable;

§4.1 Syntax, Semantics, and Type System for Android Bytecode 73

• one is an exception, and the other one is a normal return value, where the
policy for that particular exception is high;

• both are exceptions, and the policy for the exceptions are high;

Definition 4.1.8 (Non-interferent DEX method). A method m is non-interferent w.r.t.
a policy k⃗a → k⃗r, if for every attacker level kobs, every partial function β ∈ L ⇀ L and every
ρ1, ρ2 ∈ R ⇀ V , rt1, rt2 ∈ PP → (R → S), h1, h2, h′1, h′2 ∈ Heap, v1, v2 ∈ V +L s.t.

⟨1, ρ1, h1⟩ ↝+
m v1, h′1 h1 ∼kobs,β h2

⟨1, ρ2, h2⟩ ↝+
m v2, h′2 ρ1 ∼kobs,rt1,rt2,β ρ2

there exists a partial function β′ ∈ L ⇀ L s.t. β ⊆ β′ and

(v1, h′1) ∼kobs,k⃗r ,β′ (v2, h′2).

Definition 4.1.9 (Side effect preorder). Two heaps h1, h2 ∈ Heap are side effect preordered
with respect to a security level k ∈ S (written as h1 ⪯k h2) if and only if dom(h1) ⊆ dom(h2)
and h1(l). f = h2(l). f for all location l ∈ dom(h1) and all fields f ∈ F such that k ≰ ft(f).

Side effect preorder h ⪯k h′ states that a method is only allowed to modify a field
or array whose security value is higher than k. We need this definition to ensure that
there is no information flow to a field that has security lower than k while executing
a method. With this definition, then we can define the property in the scope of a
method. The proof of the theorem will be given in Section 4.2.

Definition 4.1.10 (Side effect safe). A method m is side-effect-safe with respect to a security
level kh if for all local variables ρ ∈ R ⇀ V , for all heaps h, h′ ∈ Heap and value v ∈
V , ⟨1, ρ, h⟩ ↝+

m v, h′ implies h ⪯kh h′.

Definition 4.1.11 (Safe DEX method). A method m is safe w.r.t. a policy k⃗a
kh→ k⃗r if m is

side-effect safe w.r.t. kh and m is non-interferent w.r.t. k⃗a → k⃗r.

Definition 4.1.12 (Safe DEX program). A program is safe w.r.t. a table Γ of method
signatures if every method m is safe w.r.t. all policies in PoliciesΓ(m).

Theorem 4.1.1. Let P be a DEX typable program w.r.t. safe CDRs (regionm, junm) and a
table Γ of method signatures. Then P is safe w.r.t. Γ.

4.1.4 Examples

Throughout our examples, we will use two security levels L and H to indicate low
and high security level respectively. As a note, we use an abstracted line number as
opposed to the actual program pointer because it does not have an impact other than
the different value. We start with a simple example where a high guard is used to
determine the value of a low variable.

74 Non-Interferent Type System for Android Bytecode

Example 4.1.1. Assume that local variable 1 is of level H and local variable 2 is of level
L. Assume that k⃗r(Norm) is low. Assume that the security environment is initially
L. For now also assume that r3 is the start of the registers used to simulate the stack
in the DEX instructions. Consider the following JVM bytecode and its translation.

Line Ins SE Line Ins SE
1 ∶ push 0 L 1 ∶ const(r3, 0) L
2 ∶ store 2 L 2 ∶ move(r2, r3) L
3 ∶ load 1 L 3 ∶ move(r3, r1) L
4 ∶ ifeq 7 L 4 ∶ ifeq(r3, 7) L
5 ∶ push 1 H 5 ∶ const(r3, 1) H
6 ∶ store 2 H 6 ∶ move(r2, r3) H
7 ∶ load 2 L 7 ∶ move(r3, r2) L
8 ∶ return L 8 ∶ move(r0, r3) L

9 ∶ return(r0) L

In this case, the type system for the JVM bytecode will reject this example because
there is a violation in the constraint of line 6. The reasoning is that se(i) for push 1
will be H. Thus the constraint will be H ⊔ H ≤ L which cannot be satisfied. A similar
thing goes for the DEX instructions. Since r3 gets its value from r1 which is H (line
3), the typing rule for ifeq(r3, l1) states that se in the region will be H. Even though
for DEX line 6 is still typable, it already carries with it the information flow which
will be captured in line 9, hence the program is also rejected.

There is a lift mechanism in JVM, but there is no such mechanism in DEX. The
following example shows how such program in JVM can lead to an interference while
in DEX we do not have such problem.

Example 4.1.2. Assume that local variable 1 is of level H, k⃗r(Norm) is low and se-
curity environment is initially low. For now, also assume that r2 is the start of the
registers used to simulate the stack in the DEX instructions. Consider the following
JVM bytecode and its translation.

Line Ins SE Line Ins SE
1 ∶ push 0 L 1 ∶ const(r2, 0) L
2 ∶ push 1 L 2 ∶ const(r3, 1) L
3 ∶ load 1 L 3 ∶ move(r4, r1) L
4 ∶ ifeq 8 L 4 ∶ ifeq(r4, 9) L
5 ∶ swap H 5 ∶ move(r4, r2) H
6 ∶ pop H 6 ∶ move(r5, r3) H
7 ∶ goto 9 H 7 ∶ move(r2, r5) H
8 ∶ pop H 8 ∶ move(r3, r4) H
9 ∶ return L 9 ∶ move(r0, r2) L

10 ∶ return(r0) L

In JVM, if there is no lift mechanism attached to the branching instruction (line

§4.1 Syntax, Semantics, and Type System for Android Bytecode 75

4) then observer will be able to deduce the value of local variable 1 which should
be a secret, hence an information flow. With the addition of the lift mechanism,
all of the values in the stack will be high. Therefore it will be rejected at line 9
since it cannot satisfy the constraint L ⊔ H ≤ L (se(i)k ≤ k⃗r(Norm) where k is the
security level of the value). In DEX, even though we do not have lift mechanism, the
type checker will reject the program. This is because in the high region, the move
instruction to r2 (line 7) will result in the security environment of r2 becomes high.
Then it will follow that r0 will also be high, and it will violate the constraint L⊔H ≤ L
(se(i) ⊔ rt(r) ≤ k⃗r(Norm)).

The following example illustrates one of the types of the interference caused by
modification of low fields of a high object aliased to a low object.

Example 4.1.3. Assume that k⃗a = {r1 ↦ H, r2 ↦ H, r3 ↦ L} (which means local variable
1 has security level high, local variable 2 has security level high and local variable 3
has security level low), and that the security environment is initially low. Assume
that r4 is the start of the registers used to simulate the stack in the DEX instructions.
Also the field f is low (ft(f) = L).

Line Ins SE Line Ins SE
1 ∶ new C L 1 ∶ new(r4, C) L
2 ∶ store 3 L 2 ∶ move(r3, r4) L
3 ∶ load 2 L 3 ∶ move(r4, r2) L
4 ∶ ifeq 7 L 4 ∶ ifeq(r4, 7) L
5 ∶ new C H 5 ∶ new(r4, C) L
6 ∶ goto 8 H 6 ∶ goto(8) L
7 ∶ load 3 H 7 ∶ move(r4, r3) L
8 ∶ store 1 L 8 ∶ move(r1, r4) L
9 ∶ load 1 L 9 ∶ move(r4, r1) L

10 ∶ push 1 L 10 ∶ const(r5, 1) L
11 ∶ putfield f L 11 ∶ iput(r5, r4, f) L

The above JVM bytecode and its translation will be rejected by the type system for
the JVM bytecode because there is a constraint with the security level of the object for
putfield f at line 11. In this case, the load 1 instruction (line 9) will push a reference
of the object with high security level. Therefore, the constraint that L ⊔ H ⊔ L ≤ L
(k1 ⊔ k2 ⊔ se(i) ≤ ft(f) where k1 is the security level of the value and k2 is the security
level of the object) cannot be satisfied. The same goes for the DEX type system; it will
also reject the translated program. The reasoning is that the move(r4, r1) instruction
(line 9) will copy a reference to the object stored in r1 which has a high security
level, therefore rt(r4) = H. Then, at the iput(r5, r4, f) we won’t be able to satisfy
L ⊔ H ⊔ L ≤ L (rt(rs) ⊔ rt(ro) ⊔ se(i) ≤ ft(f)).

This next example shows that the type system also handles information flow
through exceptions.

76 Non-Interferent Type System for Android Bytecode

Example 4.1.4. Assume that k⃗a = {r1 ↦ H, r2 ↦ L, r3 ↦ H}, security environment is
initially low, and k⃗r = {Norm ↦ L}. Handler(l2, np) = 9, and for any e other than
np,Handler(l2, e) ↑. The following JVM bytecode and its translation will be rejected
by the typing system for the JVM bytecode.

Line Ins SE Line Ins SE
1 ∶ load 1 L 1 ∶ move(r4, r1) L
2 ∶ ifeq 6 L 2 ∶ ifeq(r4, l2) L
3 ∶ new C H 3 ∶ new(r4, C) H
4 ∶ store 3 H 4 ∶ move(r3, r4) H
5 ∶ load 3 H 5 ∶ move(r4, r3) H
6 ∶∶ invokevirtual m L 6 ∶ invoke(1, m, r4) L
7 ∶ push 0 L 7 ∶ const(r4, 0) L
8 ∶ return L 8 ∶ return(r4) L
9 ∶ push 1 H 9 ∶ const(r4, r1) H

10 ∶ return H 10 ∶ return(r4) H

The reason is that the typing constraint for the invokevirtual will be separated into
several tags, and on each tag of execution we will have se as high (because the local
variable 3 is high). Therefore, when the program reaches return (line 8 and 10) the
constraint H ≤ L is violated since we have k⃗r(n) = L, thus the program is rejected.
Similar reasoning holds for the DEX type system as well, in that the invoke will have
se high because the object on which the method is invoked upon is high, therefore
the typing rule will reject the program because it can not satisfy the constraint when
the program is about to return value from r4 (constraint H ≤ L is violated, where H
comes from lub with se).

Example 4.1.5. Let local variable 1 be of high security level, the security environment
initially is low, and register r2 is the first register used to simulate the stack.

Line Ins SE Line Ins SE
1 ∶ new C L 1 ∶ new(r2, C) L
2 ∶ push 0 L 2 ∶ const(r3, 0) L
3 ∶ load 1 L 3 ∶ move(r4, r1) L
4 ∶ binop add L 4 ∶ binop(add, r3, r3, r4) L
5 ∶ ifeq 8 L 5 ∶ ifeq(r3, 8) L
6 ∶ new C H 6 ∶ new(r3, C) H
7 ∶ getfield f H 7 ∶ iget(r3, r3, f) H
8 ∶ putfield f L 8 ∶ iput(r3, r2, f) L
9 ∶ push 5 L 9 ∶ const(r2, 5) L

10 ∶ newarray t L 10 ∶ newarray(r2, r2, t) L
11 ∶ arraylength L 11 ∶ arraylength(r2, r2) L
12 ∶ return L 12 ∶ move(r0, r2) L

13 ∶ return(r0) L

§4.2 Typable DEX Program Implies Non-Interference 77

Figure 4.4: Base Case for Type System Soundness

Figure 4.5: Induction Case for Type System Soundness

On the other hand, if the program does not have any information flow problem, it
will pass the type checker easily. This last example type checks because even though
it uses a variety of instructions, there is no interference.

4.2 Typable DEX Program Implies Non-Interference

In this section, we present the soundness of our type system for DEX programs, i.e.,
typable DEX program implies that the program is safe. Following Barthe et al., we
structure the presentation of the proof based on the fragments of DEX in increas-
ing complexity. In the paper, we present the type system for the aggregate of the
submachines. In the proof construction, we will have four submachines: standard in-
struction without modifying the heap (DEXI), object and array instructions (DEXO),
method invocation (DEXC), and exception mechanism (DEXG).

Even though we base our proof based on the work of Barthe et al., our proof is
substantially different. We first outline how the type soundness proof in their work,

78 Non-Interferent Type System for Android Bytecode

and then detail how it is different from ours. The type system soundness proof for
JVM relies on two main lemmas:

Locally respect: a lemma which states that executing an instruction on two indis-
tinguishable stack types with the same program point will yield two indistin-
guishable stack types.

Step Consistent: a lemma which states that executing an instruction with a high
stack type in a high region will yield a high stack type which will be indistin-
guishable from the stack type of the source instruction.

And two other additional lemmas:

High Branching: a lemma which states that the security environment in the region
of branching instruction with a high guard will be high.

High Step: a lemma which states executing an instruction in a high region on a high
stack type will yield a high stack type (a stack type where all elements of the
stack are high).

They prove non-interference by induction on the length of two executions starting
from the same program point and two indistinguishable states. In the base case (See
Figure 4.4) where both are return points or one of the execution trace is a return
point, the non-interference is proven by locally respect lemma. In the induction case
(See Figure 4.5), if the successors are of the same program point, then we can just use
locally respect to prove indistinguishability and then use the induction hypothesis
as the length of the execution is shorter. If the successors are of different program
points, then there are two cases:

• there is a junction point for both: in this case, we use high branching, step
consistent, symmetry, and transitivity of the stack type to show that the stack
type is indistinguishable on the junction point. We can then use the induction
hypothesis to conclude the proof;

• no junction point exists: in which case we can show that the stack type will
always be high in the region (using high step) and the return value will have
high security level, hence are indistinguishable.

At first glance, it looks like that we can adopt the proof directly to the DEX type
system. We also prove the soundness of the DEX type system using induction on the
execution trace. However, in the JVM type system, we have a lift mechanism (See
Section 3.3) to maintain the high stack type and its indistinguishability, whereas the
DEX type system does not have such mechanism. Without such a mechanism, even in
the high region, the modified register might cause the indistinguishability to break.
In particular, if initially the register has low security level and then it is updated with
high security level. Clearly in the DEX we see that they are not indistinguishable
since at that particular register we are comparing a low security level and a high
security level. This means that to be indistinguishable, the register necessarily has

§4.2 Typable DEX Program Implies Non-Interference 79

to hold the same value, which obviously we can not guarantee. In the JVM, we can
claim indistinguishability since both of the stack types are high; therefore they are
by definition indistinguishable. In the DEX, with a possibility of such modification,
we do not have step consistent to claim the indistinguishability on the junction point
anymore.

To be more explicit about this, we present a naive formulation of the step con-
sistent lemma (Lemma 4.2.1) following the one in the JVM. We omit the part where
the registers typing is high because we do not have lift mechanism. If we put this
restriction on, practically the lemma becomes unusable. Now in this formulation,
assume that all the conditions of the lemma are fulfilled, the instruction at pc(s1) is
const(r, v) for arbitrary v and any r where rt1(r) is low and s1 ∼kobs,rt1,rt2,β s2, which
implies that that ρ1(r) = ρ2(r) = v′ for arbitrary v’ which may not be the same as
v. Now the moment we execute this instruction, we have that rt′1(r) is high and
ρ′1(r) = v which may give us ρ′1(r) ≠ ρ2(r), hence we have s1 ≁kobs,rt1,rt2,β s2.

Lemma 4.2.1 (Naive Step Consistent in DEX). if we have s1 ∼kobs,rt1,rt2,β s2 and s1 ↝ s′1
and pc(s1) ⊢ rt1 ⇒ rt′1, and security environment at program point pc(s1) is high, then
s′1 ∼kobs,rt′1,rt2,β s2.

The locally respect lemma is also broken for exception throwing instruction, so we
only have a specialized version of locally respect where the successors also have the
same program point. If the instruction is non-throwing instruction, we can prove the
step consistent lemma based on the transfer rules (see Lemma 4.2.11, Lemma 4.2.14,
and Lemma 4.2.20). However, when we deal with exception throwing instruction, we
hit the same problem of not having a lift mechanism. In the JVM, the case where the
two execution traces branch to a normal execution and a caught exception we still
have indistinguishability since both of the stack types are high due to lift mechanism.
In the DEX, caught exception will update the ex register, and normal execution may
update a particular register. Clearly, these updates may cause the register typing to
be distinguishable.

Here we give again the naive formulation of the locally respect lemma in JVM
(Lemma 4.2.2) and show an example of how it breaks without the lift mechanism.
Let us assume that the conditions for the lemma are fulfilled. The instruction at i
is iget(r, ro, f), and rt1(r) = rt2(r) = low, ρ1(ro) is null and ρ2(ro) is not null. The
difference in the value of ro implies that rt1(ro) = rt2(ro) = high. Based on the transfer
rules, s1 will continue to the next execution where rt′1(r) = high, but s2 will be trans-
ferred to the null pointer exception handler with rt′2(r) = low, hence we already have
s′1 ∼kobs,rt′1,rt′2,β s′2.

Lemma 4.2.2 (Naive Locally Respect in DEX). If s1 ∼kobs,rt1,rt2,β s2 and pc(s1) = pc(s2) =
i, and s1 ↝ s′1, s2 ↝ s′2, i ⊢ rt1 ⇒ rt′1, and i ⊢ rt2 ⇒ rt′2, then s′1 ∼kobs,rt′1,rt′2,β s′2.

To prove the indistinguishability of register type on junction point, we appeal (as
opposed to locally respect and step consistent) to the following observations on the
branching instruction which has indistinguishable register type:

80 Non-Interferent Type System for Android Bytecode

Figure 4.6: Junction Point Indistinguishability in JVM

• any change to the register in the high region can only upgrade the register’s
security level;

• it is also the case that if the register is not changed, then they will not affect in-
distinguishability. If the security level is high, then it trivially holds. Otherwise,
if the security level is low, then both of ρ will have the same value.

In the case of there is a change to the register in the high region, we know that they
will have a high security level. But, in order to claim the indistinguishability, we have
to know the other register typing (or to which program point we are comparing it).
Fortunately since what we need is indistinguishability of the junction point we can
claim the indistinguishability. This is because we know that there can only be one
junction point defined, so we are two register type on a junction point, which will
be the same. Since for all registers it does not matter whether they are changed or
not, we know that at the junction point they will have indistinguishable register type;
thus the proof can proceed as Barthe et al.’s proof.

In short, the difference in our proofs lies in how we prove junction point indis-
tinguishability. In JVM, they prove the junction point indistinguishability by the step
consistent lemma, symmetry, and transitivity of the indistinguishability relationship
(See Figure 4.6). In DEX, we rely on the properties of both changed and unchanged
registers throughout the execution to the junction point.

The type soundness for Cassandra also uses very similar proof to Barthe et al.
(hence their proof is essentially different compared to ours), with the locally respect
and step consistent. Interestingly they also do not have lift mechanism in their type
system. However, they have a different definition of register indistinguishability com-
pared to our definition, therefore they can claim those two lemmas. In particular, for
a program point i and j where i ↦ j, their indistinguishability is defined as si ∼RTj sj
(only depending on the register type of j) whereas we define our indistinguishability
as si ∼RTi ,RTj sj (depending on the register types of both i and j).

We now proceed detail the proof of our type system soundness.

4.2.1 Auxilliary Lemmas

These lemmas are useful to prove the soundness of the DEX type system.

Lemma 4.2.3. Let k ∈ S be a security level. Then for all heap h ∈ Heap and object / array
o ∈ O (or o ∈ A), h ⪯k h⊕{fresh(h) ↦ o}.

§4.2 Typable DEX Program Implies Non-Interference 81

Lemma 4.2.4. For all heaps h, h0 ∈ Heap, object o ∈ O and l = fresh(h), h ∼kobs,β h0 implies
h⊕{l ↦ o} ∼kobs,β h0.

Lemma 4.2.5. For all heaps h, h0 ∈ Heap and ft(f) ≰ kobs, h ∼β h0 implies h ⊕ {l ↦
h(l) ⊕ { f ↦ v}} ∼kobs,β h0.

Lemma 4.2.6. For all heaps h, h0 ∈ Heap, r ∈ R, ρ ∈ (R ⇀ V), rt ∈ (R → S), ρ(r) ∈
dom(h), ρ(r) is an array, integer 0 ≤ i < h(ρ(r)).length, rt(ρ(r)) = k[kc] and kc ≰ext kobs,
h ∼kobs,β h0 implies h⊕{ρ(r) ↦ h(ρ(r)) ⊕ {i ↦ v}} ∼kobs,β h0.

Lemma 4.2.7. For all heaps h, h′, h0 ∈ Heap, k ≰ kobs, and h ⪯k h′, h ∼kobs,β h0 implies
h′ ∼kobs,β h0.

Lemma 4.2.8. If h1 ∼β h2, if l1 = fresh(h1) and l2 = fresh(h2) then the following properties
hold

• ∀C, h1 ⊕{l1 ↦ defaultC} ∼kobs,β h2

• ∀C, h1 ∼kobs,β h2 ⊕{l2 ↦ defaultC}

• ∀C, h1 ⊕{l1 ↦ defaultC} ∼kobs,β h2 ⊕{l2 ↦ defaultC}

• ∀l, t, i, h1 ⊕{l1 ↦ (l, defaultArray(l, t), i)} ∼kobs,β h2

• ∀l, t, i, h1 ∼kobs,β h2 ⊕{l2 ↦ (l, defaultArray(l, t), i)}

• ∀l, t, i, l′, t′, i′ h1 ⊕{l1 ↦ (l, defaultArray(l, t), i)} ∼kobs,β h2 ⊕{l2 ↦ (l′,
defaultArray(l′, t′), i′)}.

Lemma 4.2.9. ρ1 ∼kobs,rt1,rt2,β ρ2 implies for any register r ∈ ρ1 :

• either rt1(r) = rt2(r), rt1(r) ≤ kobs and ρ1(r) ∼kobs,rt1,rt2,β ρ2(r)

• or rt1(r) ≰ kobs and rt2(r) ≰ kobs.

Lemma 4.2.10. Let β be a partial function β ∈ L ⇀ L, s1, s2 ∈ State be two states at the same
program point i and let rt1, rt2 ∈ (R → S) be two registers types such that s1 ∼kobs,rt1,rt2,β s2.
Let s′1, s′2 ∈ State and rt′1, rt′2 ∈ (R → S) such that s1 ↝ s′1, s2 ↝ s′2, i ⊢ rt1 ⇒ rt′1, and
i ⊢ rt2 ⇒ rt′2, then there exists β′ ∈ L ⇀ L such that ∀r ∉ U, ρ′1 ∼kobs,rt′1,rt′2,r,β ρ′2 where U is
the set of registers updated by the instruction in i.

Lemma 4.2.3 states that creating new objects or arrays does not affect side-effect
preorder. Lemma 4.2.4 states that creating new objects or arrays does not affect heap
indistinguishability. Lemma 4.2.5 states that if any two heaps are indistinguishable
and the policy for the field is high, then any update to the field will preserve heap
indistinguishability. Lemma 4.2.6 is Lemma 4.2.5 equivalent for the update on ar-
rays. Lemma 4.2.7 states that if any two heaps h, h′ after executions are side effect
preordered w.r.t. a high security level, the executions also preserve heap indistin-
guishability. Lemma 4.2.8 states that adding new default objects or arrays preserve

82 Non-Interferent Type System for Android Bytecode

heap indistinguishability. Lemma 4.2.9 is the inversion of registers indistinguishabil-
ity. It states that if any two registers mappings are indistinguishable, then for each
register pair they are either have high security level, or they have indistinguishable
values. Lemma 4.2.10 states that if two registers at the same program point are indis-
tinguishable, then for any registers which are not updated by the operation, it will
maintain indistinguishability.

4.2.2 Typable DEXI Implies Non-interference

There are actually more definitions on indistinguishability that would be required
to establish that typability implies non-interference. We have to make several notes
here in this fragment of DEX. The execution is always expected to return normally.
Therefore, the form of the policy for return value only takes the form of kr instead
of k⃗r. There is also no need to involve the heap and β mapping. Hence we will drop
them from the proofs.

Definition 4.2.1 (State indistinguishability). Two states ⟨i, ρ⟩ and ⟨i′, ρ′⟩ are indistin-
guishable w.r.t. rt, rt′ ∈ (R → S), denoted ⟨i, ρ⟩ ∼kobs,rt,rt′ ⟨i′, ρ′⟩, iff ρ ∼kobs,rt,rt′ ρ′

Lemma 4.2.11 (Locally Respects). Let (i, ρ1), (i, ρ2) ∈ StateI be two DEXI states at the
same program point i and let rt1, rt2 ∈ (R → S) be two register types such that s1 ∼kobs,rt1,rt2

s2.

• Let s′1, s′2 ∈ StateI and rt′1, rt′2 ∈ (R → S) such that s1 ↝ s′1, s2 ↝ s′2, i ⊢ rt1 ⇒ rt′1, and
i ⊢ rt′2 ⇒ rt′2, then s′1 ∼kobs,rt′1,rt′2

s′2.

• Let v1, v2 ∈ V such that s1 ↝ v1, s2 ↝ v2, i ⊢ rt1 ⇒, and i ⊢ rt′2 ⇒, then kr ≤ kobs
implies v1 ∼ v2.

Proof. We prove the lemma by structural induction on the instruction:

move(r, rs): this case will fall into the first case of the lemma as a program point
with this instruction will not be a return point. We then need to prove that for
all registers in the registers mapping, they are indistinguishable. If the register
is any register r′ ≠ r, we can use Lemma 4.2.10, and we have ρ′1 ∼kobs,rt′1,rt′2,r′ ρ′2.
If the register is r, we then do a case analysis on the security level on rs. If
the security level is high, we know that rt′1(r) = rt′2(r) = high hence they are
indistinguishable. If the security level is low, then we know by Lemma 4.2.9
that ρ1(rs) = ρ2(rs) hence we will have ρ′1(r) = ρ′2(r), which means that we still
have s′1 ∼kobs,rt′1,rt′2

s′2.

binop(r, ra, rb): this case will also fall into the first case of the lemma. We also prove
the indistinguishability of the registers. If the register is not r, we can use
Lemma 4.2.10. If the register is r, we then do a case analysis on the security
level of ra and rb. If either the security level of ra or rb is high (or both are high),
then we know that rt′1(r) = rt′2(r) = high hence they are indistinguishable. If
the security level is low, then we know by Lemma 4.2.9 that ρ1(ra) = ρ2(ra) and

§4.2 Typable DEX Program Implies Non-Interference 83

ρ1(rb) = ρ2(rb) hence we will have ρ′1(r) = ρ′2(r) (because a binary operation on
the same operands will always result in the same value), which means that we
still have s′1 ∼kobs,rt′1,rt′2

s′2.

const(r, v): this case will also fall into the first case of the lemma. We again prove
the lemma by proving the indistinguishability on the registers. If the register is
not r, we can use Lemma 4.2.10. If the register is r, we know that we still have
ρ′1(r) = ρ′2(r), which means that we still have s′1 ∼kobs,rt′1,rt′2

s′2.

goto(t): this case will fall into the first case of the lemma, and it trivially holds since
this instruction does not modify any of the registers. Hence the indistinguisha-
bility is preserved.

ifeq(r, t): this case will fall into the first case of the lemma, and it trivially holds
since this instruction does not modify any of the registers. Hence the indistin-
guishability is preserved.

return(r): this is the only case in DEXI which falls into the second case. If kr ≰ kobs
there is nothing to prove as the assumption is not satisfied. If kr ≤ kobs, then
we know by definition that rt1(r) = rt2(r) = low, hence we know that ρ1(r) =
ρ2(r) = v for arbitrary value v. This will further give us v ∼ v by the definition
of value indistinguishability.

Since for all of the possible instructions the lemma is satisfied, we have proven that
the lemma holds.

Lemma 4.2.12 (High Branching). Let s1, s2 ∈ StateI be two DEXI states at the same
program point i and let rt1, rt2 ∈ (R → S) be two register types such that s1 ∼kobs,rt1,rt2 s2. If
two states ⟨i1, ρ′1⟩, ⟨i2, ρ′2⟩ ∈ StateI and two register type rt′1, rt′2 ∈ (R → S) s.t. i1 ≠ i2 (hence
the instruction at program point i is a branching instruction), s1 ↝ ⟨i1, ρ′1⟩, s2 ↝ ⟨i2, ρ′2⟩,
i ⊢ rt1 ⇒ rt′1, i ⊢ rt2 ⇒ rt′2 then ∀j ∈ region(i), se(j) ≰ kobs.

Proof. This holds by definition of the branching instruction (ifeq and ifneq). se(i)
will be high because register r (the register which is involved in the branching in-
struction) will by definition be high. This level cannot be low, because if the level is
low, then the register r is low and by the definition of indistinguishability will have
to have the same values, and therefore will take the same program counter. Since
se is high in scope of the region, we have ∀j ∈ region(i), se(j) ≰ kobs and the lemma
holds.

Lemma 4.2.13 (indistinguishablility single monotony). if s ∼kobs,S,T t, S ⊑ S′ and S is
high then s ∼kobs,S′,T t.

4.2.3 Typable DEXO Implies Non-interference

Indistinguishability between states can be defined with the additional definition of
heap indistinguishability, so we do not need additional indistinguishability defini-

84 Non-Interferent Type System for Android Bytecode

tions. In the DEXO part, we only need to appropriate the lemmas used to establish
the proof.

Definition 4.2.2 (State indistinguishability). Two states ⟨i, ρ, h⟩ and ⟨i′, ρ′, h′⟩ are indis-
tinguishable w.r.t. a partial function β ∈ L ⇀ L, and two register typing rt, rt′ ∈ (R → S),
denoted ⟨i, ρ, h⟩ ∼kobs,rt,rt′,β ⟨i′, ρ′, h′⟩, iff ρ ∼kobs,rt,rt′,β ρ′ and h ∼kobs,β h′ hold.

Lemma 4.2.14 (Locally Respects). Let β be a partial function β ∈ L ⇀ L, s1, s2 ∈ StateO
be two DEXO states at the same program point i and let rt1, rt2 ∈ (R → S) be two registers
types such that s1 ∼kobs,rt1,rt2,β s2.

• Let s′1, s′2 ∈ StateO and rt′1, rt′2 ∈ (R → S) such that s1 ↝ s′1, s2 ↝ s′2, i ⊢ rt1 ⇒ rt′1, and
i ⊢ rt2 ⇒ rt′2, then there exists β′ ∈ L ⇀ L such that s′1 ∼kobs,rt′1,rt′2,β′ s′2 and β ⊆ β′.

• Let v1, v2 ∈ V such that s1 ↝ v1, s2 ↝ v2, i ⊢ rt1 ⇒, and i ⊢ rt′2 ⇒, then kr ≤ kobs
implies v1 ∼β v2.

Proof. Just like in DEXI , we do a structural induction on the possible instruction. If
the instruction is a DEXI instruction, then we know that registers wise they preserve
indistinguishability. Since DEXI instruction does not modify the heap, then this
lemma is proved trivially. If the instruction is not in DEXI :

new(r, c): the proof for the registers indistinguishability follows that of const. This
is one of the instructions that may add a mapping to β, therefore we know that
β ⊆ β′ is also satisfied. Now we also know from Lemma 4.2.8 that we have
h′1 ∼kobs,β′ h′2. Combined with the fact that we have ρ′1 ∼kobs,rt′1,rt′2,β′ ρ′2, we have
s′1 ∼kobs,rt′1,rt′2,β′ s′2 (Case 1 of the lemma).

iget(r, ro, f): there is no change to the heaps, and there is no change to the β mapping
either, therefore we have β ⊆ β′ and h′1 ∼kobs,β′ h′2. We just need to prove the
registers indistinguishability to prove state indistinguishability. If the register
is not r, then we can use Lemma 4.2.10. If the register is r, we first make
the distinction whether ro is of high security level. If ro is of high security
levels, r will also be updated with high security level. Hence the registers
indistinguishability is preserved. In the case where ro has low security level,
we make further cases on whether ft(f) is of high security level. If ft(f) is
of high security level, then r will be updated with high security level, which
also means that the registers indistinguishability is preserved. If ft(f) is of low
security level, we know that the field contains the same value, hence we will
have ρ′1 ∼kobs,rt′1,rt′2,r,β ρ′2. With this registers indistinguishability, we will have
s′1 ∼kobs,rt′1,rt′2,β′ s′2 (Case 1 of the lemma)

iput(rs, ro, f): there is no change to the registers, hence registers indistinguishability
still holds (ρ′1 ∼kobs,rt′1,rt′2,β′ ρ′2). Even though this instruction modifies the heap,
it does not affect the β mapping. Therefore we have β ⊆ β′. Now for the
heaps indistinguishability, we distinguish between the reference to the object
that is pointed by ro. If it is not the object pointed by ro, we know that they are

§4.2 Typable DEX Program Implies Non-Interference 85

indistinguishable, since initially, the heaps are indistinguishable. If the object
is actually the object pointed by ro, we have two possibilities, either both ro

contains the same object (ρ1(ro) = ρ2(ro)), or they point to different objects.

• In the case where they point to the same objects, we also have further two
possibilities depending on the value of se(i) ⊔ rt(ro) ⊔ rt(rs) (rt is either
rt1 or rt2). If they are of high security level, we know that to be typable
ft(f) is necessarily of high security level. Therefore it does not affect
indistinguishability. If they are of low security level, we know that ρ1(rs) =
ρ2(rs) and β(ρ1(ro)) = ρ2(ro). Since the operation will update the field with
the same value, it will preserve the heap indistinguishability.

• In the case where they point to different objects, we know that rt1(ro) and
rt2(ro) will be of high security levels. Since the program is typable, it im-
plies that ft(f) is of high security level. Therefore we can conclude that the
update is applied to a high field which does not affect indistinguishability.

We have h′1 ∼kobs,β′ h′2 and we have ρ′1 ∼kobs,rt′1,rt′2,β′ ρ′2i, therefore, we can conclude
that we have s′1 ∼kobs,rt′1,rt′2,β′ s′2 (Case 1 of the lemma).

newarray(r, rl , t): This instruction possibly adds a mapping to β, so we know that
we have β ⊆ β′. Using Lemma 4.2.8, we get h′1 ∼kobs,β′ h′2. For the registers
indistinguishability, if the register is not r, then we can use Lemma 4.2.10. If
the register is r, depending on the security level of rl , we have two possibilities.
If the security level of rl is high, then based on the typing rule we have the
security level of r also to be high, thus completing the proof for ρ′1 ∼kobs,rt′1,rt′2,β ρ′2.
If rl is low, we will have ρ′1(r) ∼β ρ′2(r) since the type and the length of the
array are the same. With the registers and heap indistinguishability, we have
s′1 ∼kobs,rt′1,rt′2,β′ s′2 (Case 1 of the lemma).

arraylength(r, ra): This instruction does not modify the β mapping and the heap,
therefore we have β ⊆ β′ and h′1 ∼kobs,β′ h′2 for granted. As usual, for the registers
indistinguishability, we distinguish the case whether the register is r. If the
register is not r, then we can use Lemma 4.2.10. If the register is r, we will
distinguish the case further depending on whether ra has high security level
or not. If ra is of high security level, we know that r will also be of high
security level, thus we have ρ′1(r) ∼kobs,rt′1,rt′2,r,β ρ′2 thus completing the proof for
ρ′1 ∼kobs,rt′1,rt′2,β ρ′2. If ra is of low security level, then we know that the array
is the same thus we will have ρ′1(r) ∼β ρ′2(r). With the registers and heap
indistinguishability, we have s′1 ∼kobs,rt′1,rt′2,β′ s′2 (Case 1 of the lemma).

aget(r, ra, ri): The argument for this instruction is pretty much the same as the ar-
gument for iget. We already have β ⊆ β′ and h′1 ∼kobs,β′ h′2 since the instruction
does not modify β mapping and the heap. For registers indistinguishability, we
first distinguish the case whether the register we are interested in is r or not.
If the register is not r, then we can use Lemma 4.2.10. If the register is r, then
we distinguish the case further based on the lub of the security level of ra and

86 Non-Interferent Type System for Android Bytecode

ri. If the least upper bound is of high security level, then we know that r will
also be updated with high security level (ρ′1 ∼kobs,rt′1,rt′2,r,β ρ′2). If the least upper
bound is low, then we know that the index and the array are indistinguishable,
hence the value will also be indistinguishable (ρ′1(r) ∼β ρ′2(r)). This concludes
the proof of s′1 ∼kobs,rt′1,rt′2,β′ s′2 (Case 1 of the lemma).

aput(rs, ra, ri): The argument for this instruction is pretty much the same as the ar-
gument for iput. This instruction does not modify β mapping and the registers,
therefore we have β ⊆ β′ and ρ′1 ∼kobs,rt′1,rt′2,β ρ′2 for granted. Now for the heaps
indistinguishability, we distinguish between the reference to the array that is
pointed by ra. If it is not the object pointed by ra, we know that they are in-
distinguishable, since initially, the heaps are indistinguishable. If the array is
actually the array pointed by ra, we have two possibilities, either both ra con-
tains the same arrays (ρ1(ra) = ρ2(ra)), or they point to different arrays.

• In the case where they point to the same arrays, we also have further two
possibilities depending on the value of (se(i)⊔ rt(ra))⊔ext rt(rs) (rt is either
rt1 or rt2). If they are of high security level, we know that to be typable
the security level of the array content is necessarily of high security level,
therefore it does not affect indistinguishability. If they are of low security
level, we know that ρ1(rs) = ρ2(rs) and ρ1(ra) ∼β ρ2(ra). Since the operation
will update the array content with the same value, it will preserve the heap
indistinguishability.

• In the case where they point to different arrays, we know that rt1(ra) and
rt2(ra) will be of high security levels. Since the program is typable, it
implies that the security level of the content is also high which does not
affect indistinguishability.

We have h′1 ∼kobs,β′ h′2 and we have ρ′1 ∼kobs,rt′1,rt′2,β′ ρ′2, therefore, we can conclude
that we have s′1 ∼kobs,rt′1,rt′2,β′ s′2 (Case 1 of the lemma).

All of the possible instructions maintain state indistinguishability, therefore the lemma
holds.

Lemma 4.2.15 (High Branching). Let β ∈ L ⇀ L be a partial function, s1, s2 ∈ StateO be two
DEXO states at the same program point i and let two registers types rt1, rt2 ∈ (R → S) such
that s1 ∼kobs,rt1,rt2,β s2. Let two states ⟨i1, ρ′1, h′1⟩, ⟨i2, ρ′2, h′2⟩ ∈ StateO and two register type
rt′1, rt′2 ∈ (R → S) s.t. i1 ≠ i2, s1 ↝ ⟨i1, ρ′1, h′1⟩, s2 ↝ ⟨i2, ρ′2, h′2⟩. If i ⊢ rt1 ⇒ rt′1, i ⊢ rt2 ⇒ rt′2
then ∀j ∈ region(i), se(j) ≰ kobs.

Proof. This lemma is trivially true since there is no branching instruction in DEXO.

4.2.4 Typable DEXC Implies Security

The notion of a secure program is now also defined with side-effect-safety due to a
method invocation. Therefore we also need to establish that typable program im-

§4.2 Typable DEX Program Implies Non-Interference 87

plies it is side-effect-safe. We show this by showing the property that all instruction
transforms a heap h into a heap h′ s.t. h ⪯kh h′.

Lemma 4.2.16. Let ⟨i, ρ, h⟩, ⟨i′, ρ′, h′⟩ ∈ StateC be two states s.t. ⟨i, ρ, h⟩⟩ ↝m ⟨i′, ρ′, h′⟩.
Let two register types rt, rt′ ∈ (R → S) s.t. region, se, k⃗a

kh→ kr, i ⊢Norm rt ⇒ rt′ and
P[i] ≠ invoke, then h ⪯kh h′

Proof. The only instruction that can cause this difference is newarray, new, iput, and
aput. For creating new objects or arrays, Lemma 4.2.3 shows that they still preserve
the side-effect-safety. For iput, the transfer rule implies kh ≤ ft(f). Since there will
be no update such that kh ≰ ft(f), h ⪯kh h′ holds.

Lemma 4.2.17. Let ⟨i, ρ, h⟩ ∈ StateC be a state, h′ ∈ Heap, and v ∈ V s.t. ⟨i, ρ, h⟩ ↝ v, h′.

Let rt ∈ (R → S) s.t. region, se, k⃗a
kh→ kr, i ⊢Norm rt⇒, then h ⪯kh h′.

Proof. This only concerns the return instruction at the moment. And it’s clear that
the return instruction will not modify the heap, therefore h ⪯kh h′ holds.

Lemma 4.2.18. For all methods m in P, let (regionm, junm) be a safe CDR for m. Suppose
all methods m in P are typable with respect to regionm and all signatures in PoliciesΓ(m).
Let ⟨i, ρ, h⟩, ⟨i′, ρ′, h′⟩ ∈ StateC be two states s.t. ⟨i, ρ, h⟩ ↝m ⟨i′, ρ′, h′⟩. Let two register types

rt, rt′ ∈ (R → S) s.t. region, se, k⃗a
kh→ kr, i ⊢Norm rt⇒ rt′ and P[i] = invoke, then h ⪯kh h′

Proof. Assume that the method called by invoke is m0. The instructions contained
in m′ can be any of the instructions in DEX, including another invoke to another
method. Since we are not dealing with termination / non-termination, we can as-
sume that for any instruction invoke called, it will either return normally or throw
an exception. Therefore, for any method m0 called by invoke, there can be a chain
of one or more calls

m0 ↝ m1 ↝ ...↝ mn

where m ↝ m′ signifies that an instruction in method m calls m′. Since the existence
of such a call chain is assumed, we can use induction on the length of the longest
call chain. The base case would be the length of the chain is 0, which means we can
just invoke Lemma 4.2.16 and Lemma 4.2.17 because all the instructions contained in
this method m0 will fall to either one of the two above case.

The induction step is when we have a chain with length 1 or more and we want
to establish that assuming the property holds when the length of call chain is n,
then the property also holds when the length of call chain is n + 1. In this case, we
just examine possible instructions in m0, and proceed like the base case except that
there is also a possibility that the instruction is invoke on m1. Since the call chain
is necessarily shorter now m0 ↝ m1 is dropped from the call chain, we know that
invoke on m1 will fulfill side-effect-safety. Since all possible instructions maintain
side-effect-safety, we know that this lemma holds.

Since all instructions in a typable program maintain side-effect-safety, then we can
state the lemma saying that typable program will be side-effect-safe.

88 Non-Interferent Type System for Android Bytecode

Lemma 4.2.19. For all methods m in P, let (regionm, junm) be a safe CDR for m. Sup-
pose all methods m in P are typable with respect to regionm and to all signatures in
PoliciesΓ(m). Then all methods m are side-effect-safe w.r.t. the heap effect level of all
the policies in PoliciesΓ(m).

Then, like the previous machine, we need to appropriate the unwinding lem-
mas. The unwinding lemmas for DEXO stay the same, and the one for instruction
moveresult is straightforward. Fortunately, Invoke is not a branching source, so we
don’t need to appropriate the high branching lemma for this instruction (it will be
needed for exception throwing one in the subsequent machine).

Lemma 4.2.20 (Locally Respect Lemma). Let P be a program and Γ be a table of signature
s.t. all of its methods m′ are non-interferent w.r.t. all the policies in PoliciesΓ(m′) and
side-effect-safe w.r.t. the heap effect level of all the policies in PoliciesΓ(m′). Let m be
a method in P, β ∈ L ⇀ L a partial function, s1, s2 ∈ StateC two DEXC states at the same
program point i and two registers types rt1, rt2 ∈ (R → S) s.t. s1 ∼kobs,rt1,rt2,β s2. If there
exist two states s′1.s′2 ∈ StateC and two registers types rt′1, rt′2 ∈ (R → S) s.t.

s1 ↝m s′1 and Γ, region, se, k⃗a
kh→ kr, i ⊢ rt1 ⇒ rt′1

and
s2 ↝m′ s′2 and Γ, region, se, k⃗a

kh→ kr, i ⊢ rt2 ⇒ rt′2

then there exists β′ ∈ L ⇀ L s.t. s′1 ∼kobs,rt′1,rt′2,β′ s′2 and β ⊆ β′.

Proof. We are only interested in invoke and moveresult. We first start by proving
that invoke maintain state indistinguishability. This instruction may modify the reg-
isters and the heap, therefore we have to prove each indistinguishability to claim
state indistinguishability. invoke only modifies the pseudo-register ret with the val-
ues that will be dependent on the security of the return value. Because we know
that the method invoked is non-interferent and the arguments are indistinguishable,
therefore we can conclude that the result will be indistinguishable as well. This will
give us ρ′1 ∼kobs,rt′1,rt′2,ret,β ρ′2, which we can combine with Lemma 4.2.10 for the rest
of the registers to obtain ρ′1 ∼kobs,rt′1,rt′2,β ρ2 (invoke only updates register ret). Out-
put indistinguishability also implies that we have h′1 ∼kobs,β h′2. Since we have both
h′1 ∼kobs,β h′2 and ρ′1 ∼kobs,rt′1,rt′2,β ρ′2, we have s′1 ∼kobs,rt′1,rt′2,β s′2.

Moveresult(r) only updates register r, therefore we already have β ⊆ β′ and
h′1 ∼kobs,β h′2 by definition. Now if the register is not r, we can use Lemma 4.2.10 to
show indistinguishability. If the register is r, then we distinguish the case based on
whether the security level of ret. If it is high, then we know that the security level of r
will be updated to high as well, hence we have ρ′1 ∼kobs,rt′1,rt′2,r,β ρ′2. If the security level
of r is low, we know that ρ′1(ret) ∼β ρ′2(ret), therefore we will also have ρ′1(r) ∼β ρ′2(r),
which in turn will give us ρ′1 ∼kobs,rt′1,rt′2,r,β ρ′2. Since we have both h′1 ∼kobs,β h′2 and
ρ′1 ∼kobs,rt′1,rt′2,β ρ′2, we have s′1 ∼kobs,rt′1,rt′2,β s′2

§4.2 Typable DEX Program Implies Non-Interference 89

4.2.5 Typable DEXG Implies Security

Like the one in DEXC , we also need to firstly prove the side-effect-safety of a program
if it’s typable. Fortunately, this proof extends almost directly from the one in DEXC .
The only difference is that there is a possibility of invoking a function which throws
an exception and the addition of throw instruction. The proof for invoking a function
which throws an exception is the same as the usual invoke because we are not
concerned about whether the returned value r is in L or in V. The one case for
throws we use the same Lemma 4.2.3 as it differs only in the allocation of exception
in the heap. The complete definition :

Lemma 4.2.21. Let ⟨i, ρ, h⟩, ⟨i′, ρ′, h′⟩ ∈ StateG be two states s.t. ⟨i, ρ, h⟩ ↝m ⟨i′, ρ′, h′⟩. Let

two registers types rt, rt′ ∈ (R → S) s.t. region, se, k⃗a
kh→ kr, i ⊢ rt⇒ rt′ and P[i] ≠ invoke,

then h ⪯kh h′.

Proof. The only instructions that can cause this difference are array / object manip-
ulation instructions that throw a null pointer exception. For creating new objects or
arrays and allocating the space for an exception, Lemma 4.2.3 shows that they still
preserve the side-effect-safety. throw instruction itself does not allocate space for an
exception, so there is no modification to the heap.

Lemma 4.2.22. Let ⟨i, ρ, h⟩ ∈ StateG be a state, h′ ∈ Heap, and v ∈ V s.t. ⟨i, ρ, h⟩ ↝ v, h′.

Let rt ∈ (R → S) s.t. region, se, k⃗a
kh→ kr, i ⊢ rt⇒, then h ⪯kh h′.

Proof. This can only be one of two cases, either it is return instruction or an uncaught
exception. For return instruction, it’s clear that it will not modify the heap, therefore,
h ⪯kh h′ holds. For uncaught exception, the only difference is that we first need to
allocate the space on the heap for the exception, and again we use Lemma 4.2.3 to
conclude that it will still make h ⪯kh h′ hold

Lemma 4.2.23. For all method m ∈ P, let (regionm, junm) be a safe CDR for m. Suppose
all methods m ∈ P are typable w.r.t. regionm and all signatures in PoliciesΓ(m). Let
⟨i, ρ, h⟩, ⟨i′, ρ′, h′⟩ ∈ StateG be two states s.t. ⟨i, ρ, h⟩ ↝m ⟨i′, ρ′, h′⟩. Let two register types

rt, rt′ ∈ (R → S) s.t. region, se, k⃗a
kh→ kr, i ⊢ rt⇒ rt′ and P[i] = invoke, then h ⪯kh h′.

Proof. In the case of invoke instruction executing normally, we can refer to the proof
in Lemma 4.2.18. In the case of an exception, if it is caught, then we can follow the
same reasoning in Lemma 4.2.21. In the case of an uncaught exception, it will fall to
Lemma 4.2.22.

Lemma 4.2.24. For all method m ∈ P, let (regionm, junm) be a safe CDR for m. Suppose
all methods m ∈ P are typable w.r.t. regionm and all signatures in PoliciesΓ(m). Then all
methods m are side-effect-safe w.r.t. the heap effect level of all the policies in PoliciesΓ(m).

Proof. We use the definition of typable method and Lemma 4.2.21, Lemma 4.2.22,
and Lemma 4.2.23. Given a typable method, for a derivation

⟨i0, ρ0, h0⟩ ↝m,τ0 ⟨i1, ρ1, h1⟩ . . . ↝m,τn (r, h)

90 Non-Interferent Type System for Android Bytecode

there exists RT ∈ PP → (R → S) and rt1, . . . rtn ∈ (R → S) s.t.

i0 ⊢τ0 RTi0 ⇒ rt1 i1 ⊢τ1 RTi1 ⇒ rt2, . . . in ⊢τn RTin ⇒

Using the lemmas, then we will get

h0 ⪯kh h1 ⪯kh ⋅ ⋅ ⋅ ⪯ hn ⪯ h

Now we can use the transitivity of ⪯kh to conclude that h0 ⪯kh h (the definition of
side-effect-safety).

Definition 4.2.3 (High Result). Given (r, h) ∈ (V + L) ×Heap and an output level k⃗r, the
predicate highResultkr(r, h) is defined as :

k⃗r(n) ≰ kobs v ∈ V
highResultkr(v, h)

k⃗r(class(h(l))) ≰ kobs l ∈ dom(h)
highResultkr(⟨l⟩, h)

Definition 4.2.4 (Typable Execution).

• An execution step ⟨i, ρ, h⟩ ↝m,τ ⟨i′, ρ′, h′⟩ is typable w.r.t. RT ∈ PP → (R → S) if
there exists rt′ s.t. i ⊢τ RTi ⇒ rt′ and rt′ ⊑ RTi′

• An execution step ⟨i, ρ, h⟩ ↝m,τ (r, h′) is typable w.r.t. RT ∈ PP → (R → S) if
i ⊢τ RTi ⇒

• An execution sequence s0 ↝m,τ0 s1 ↝m,τ1 ...sk ↝m,τk (r, h′) is typable w.r.t. RT ∈ PP →
(R → S) if :

– ∀i, 0 ≤ i < k, si ↝m,τi si+1 is typable w.r.t. RT;
– sn ↝m,τn (r, h′) is typable w.r.t. RT.

Lemma 4.2.25 (High Security Environment High Result). Let ⟨i, ρ, h⟩, ⟨i′, ρ′, h′⟩ ∈ StateG,
se(i) is high, ⟨i, ρ, h⟩ ∼kobs,rt,rt′,β ⟨i′, ρ′, h′⟩ i ↦ and ⟨i, ρ, h⟩ ↝ (r, hr), then highResult(r, hr)
and hr ∼kobs,β h′.

Proof. We do a structural induction on the instruction in i. This lemma is only ap-
plicable if the instruction at i is either a return instruction or a possibly throwing
instruction with uncaught exception.

• Return: the transfer rule has a constraint that k⃗r(Norm) will be at least as high
as se which is high. So by definition, we have highResult(r, hr). Since return
does not modify heaps, we know that hr ∼kobs,β h′.

• Invoke: the transfer rule where the instruction is throwing an uncaught ex-
ception e has constraint saying that k⃗r(e) will be at least as high as se, the
level of exception thrown by the method invoked, and the object level on
which the method is invoked. We know se is high, so by definition, we have
highResult(r, hr). Heap wise, we know that the exception is newly generated
so we can use Lemma 4.2.8 to say that hr ∼kobs,β h′.

§4.2 Typable DEX Program Implies Non-Interference 91

• Iget: the transfer rule where the instruction is throwing an uncaught excep-
tion np has constraint saying that k⃗r(np) will be at least as high as se and
the security level of the object. We know se is high, so by definition, we have
highResult(r, hr). Heap wise, we know that the exception is newly generated
so we can use Lemma 4.2.8 to say that hr ∼kobs,β h′.

• Iput: Same as Iget.

• Aget: the transfer rule where the instruction is throwing an uncaught excep-
tion np has constraint saying that k⃗r(np) will be at least as high as se and
the security level of the array. We know se is high, so by definition, we have
highResult(r, hr). Heap wise, we know that the exception is newly generated
so we can use Lemma 4.2.8 to say that hr ∼kobs,β h′.

• Aput: Same as Aget.

• Arraylength: Same as Aget.

• Throw: the transfer rule has a constraint that for any uncaught exception e,
k⃗r(e) will be at least as high as se which is high. So by definition, we have
highResult(r, hr). Throw does not modify heap as well, so we have hr ∼kobs,β h′.

All of the instructions that may be a return point have highResult(r, hr) and hr ∼kobs,β
h′, therefore the lemma holds.

Lemma 4.2.26 (High Region High Result). Let se be high in region(s, τ), jun(s, τ) is
never defined, ⟨i0, ρ0, h0⟩, ⟨i′, ρ′, h′⟩ ∈ StateG, ⟨i0, ρ0, h0⟩ ∼kobs,rt0,rt′,β ⟨i′, ρ′, h′⟩ and there is an
execution trace

⟨i0, ρ0, h0⟩ ↝m,τ0 . . . ⟨ik, ρk, hk⟩ ↝m,τk (r, hr)

where ⟨i0, ρ0, h0⟩ ∈ region(s, τ). Then highResult(r, hr) and hr ∼kobs,β h′.

Proof. We do induction on the length of the execution. For the base case where k
is 0, we can use Lemma 4.2.25. In the induction step, we know that ⟨ik, ρk, hk⟩ is in
region(s, τ) using SOAP2 and eliminating the case where it is a junction point by
the assumption that jun(s, τ) is never defined. Since we now have shorter execution
length, we can apply induction hypothesis. Heap wise, we know from the transfer
rules that field / array update will be bounded by se. Thus we have hr ∼kobs,β h′ by
Lemma 4.2.5 and Lemma 4.2.6.

Lemma 4.2.27 (High Register Stays). Let ⟨i0, ρ0, h0⟩ ∈ StateG and there is an execution
step such that

⟨i0, ρ0, h0⟩ ↝m,τ0 . . . ⟨ik, ρk, hk⟩ ↝m,τk (r, hr)

where ⟨i0, ρ0, h0⟩ ∈ region(s, τ), and se is high in region(s, τ), if RT0(r) is high then
RTk(r) is high.

Proof. We do induction on the length of execution, and we do case analysis on possi-
ble instructions. If the length of execution is 0 we have ⟨i0, ρ0, h0⟩ ↝m,τ0 ⟨ik, ρk, hk⟩. The

92 Non-Interferent Type System for Android Bytecode

instruction is not a return point since it contradicts the assumption. If the instruction
is an instruction that modifies r, we know that these instructions will update the reg-
ister r with security level at least as high as se, so the base case holds. In the induction
step, we show using the same argument as the base case that RT1(r) is high, therefore
now we can invoke induction hypothesis on the trace ⟨i1, ρ1, h1⟩ ↝m,τ1 . . . ⟨ik, ρk, hk⟩

Lemma 4.2.28 (Changed Register High). Let ⟨i0, ρ0, h0⟩ ∈ StateG and there is an execution
step such that

⟨i0, ρ0, h0⟩ ↝m,τ0 . . . ⟨ik, ρk, hk⟩ ↝m,τk (r, hr)

where ⟨i0, ρ0, h0⟩ ∈ region(s, τ), and se is high in region(s, τ) , k = jun(s, τ), and the
value of r is changed by one or more instruction in the execution trace, then RTk(r) is high.

Proof. We do case analysis on where the first change might happen [1] then we do
case analysis on all of the register-modifying instructions change register r to high
[2] and invoke Lemma 4.2.27 to claim that they stay high until it reaches ⟨ik, ρk, hk⟩.
All these instructions which modify register r will update the register r with security
level at least as high as se, so we already have [2]. Since we assume that there is a
change, [1] trivially holds.

Lemma 4.2.29 (Unchanged Register Stays). Let ⟨i0, ρ0, h0⟩ ∈ StateG and there is an exe-
cution step such that

⟨i0, ρ0, h0⟩ ↝m,τ0 . . . ⟨ik, ρk, hk⟩

and the value of r is not changed during the execution trace, then RT0(r) = RTk(r) and
ρ0(r) = ρk(r).

Proof. We do induction on the length of execution, and we do case analysis on possi-
ble instructions. If the length of execution is 0, we have ⟨i0, ρ0, h0⟩ ↝m,τ0 ⟨ik, ρk, hk⟩. The
instruction is not a return point, since it contradicts the assumption. If the instruction
is an instruction that modifies r, we know that it contradicts our assumption. If the
instruction does not modify r, then the base case holds by definition. In the induc-
tion step, we show using the same argument as the base case that RT0(r) = RT1(r)
and ρ0(r) = ρ1(r), therefore now we can invoke induction hypothesis on the trace
⟨i1, ρ1, h1⟩ ↝m,τ1 . . . ⟨ik, ρk, hk⟩.

Lemma 4.2.30 (Junction Point Indistinguishable). Let β a partial function β ∈ L ⇀ L and
⟨i0, ρ0, h0⟩, ⟨i′0, ρ′0, h′0⟩ ∈ StateG two DEXG states such that

⟨i0, ρ0, h0⟩ ∼kobs,RTi0 ,RTi′0
,β ⟨i′0, ρ′0, h′0⟩

and i0 = i′0.
Suppose that se is high in region regionm(i0, τ0) and also in region regionm(i′0, τ′0).

Suppose we have a derivation

⟨i0, ρ0, h0⟩ ↝m,τ0 . . . ⟨ik, ρk, hk⟩ ↝m,τk (r, h)

§4.2 Typable DEX Program Implies Non-Interference 93

and suppose this derivation is typable w.r.t. RT. Suppose we have a derivation

⟨i′0, ρ′0, h′0⟩ ↝m,τ′0
. . . ⟨i′k, ρ′k, h′k⟩ ↝m,τ′k

(r′, h′)

and suppose this derivation is typable w.r.t. RT. Then one of the following case holds:

1. there exists j, j′ with 0 ≤ j ≤ k and 0 ≤ j′ ≤ k′ s.t.

ij = i′j and ⟨ij, ρj, hj⟩ ∼kobs,RTij
,RTi′

j′
,β ⟨i′j′ , ρ′j′ , h′j′⟩

2. (r, h) ∼kobs,k⃗r ,β (r′, h′)

Proof. We do a case analysis on whether a junction point is defined for both of the
execution traces. There are three possible cases :

1. junction point is defined for both of the execution. We trace any changed reg-
isters during the execution. If the register is changed, then we can invoke
Lemma 4.2.28 to claim that the register is high and we know that high reg-
ister does not affect indistinguishability. If the register is not changed, then
we can invoke Lemma 4.2.29 to obtain RTij(r) = RT0(r) and ρij(r) = ρ0(r) and
ρi′j′

(r) = ρ′0(r). If RT0(r) is low, then we know that ρ0(r) = ρ′0(r), thus we
can obtain that ρij(r) = ρi′j′

(r). Otherwise, we know that RTij(r) = RTi′j′
(r) is

high. Whatever the case it does not affect indistinguishability. Since for all
register in RTij (RTi′j′

), they are either changed or unchanged, we can obtain

⟨ij, ρj, hj⟩ ∼kobs,RTij
,RTi′

j′
,β ⟨i′j′ , ρ′j′ , h′j′⟩, and we are in Case 1.

2. only one execution has junction point. For the part where junction point is not
defined (assume it is the execution ending in (r, h)), we can invoke lemma 4.2.26
to obtain highResult(r, h). On the other execution path, we know from SOAP5
that the junction point is in the region (junm(i′0, τ′0) ∈ region(i0, τ0)). Hence we
can invoke lemma 4.2.26 again to obtain highResult(r′, h′) since se is high in
region(i0, τ0), and prove that we are in Case 2.

3. both of the execution traces have no junction point. In this case, since we know
that se is high in the region, we can just invoke lemma 4.2.26 on both executions
to obtain highResult(r, h) and highResult(r′, h′), hence we are in Case 2.

All possible case leads to one of the cases. Therefore the lemma holds.

Lemma 4.2.31 (High Branching). Let all methods m′ in P be non-interferent w.r.t. all
the policies in PoliciesΓ(m′). Let m be a method in P, β ∈ L ⇀ L a partial function,
s1, s2 ∈ StateG and two registers type rt1, rt2 ∈ (R → S) s.t.

s1 ∼kobs,rt1,rt2,β s2

94 Non-Interferent Type System for Android Bytecode

1. If there exist two states ⟨i′1, ρ′1, h′1⟩, ⟨i′2, ρ′2, h′2⟩ ∈ StateG and two register types rt′1, rt′2 ∈
(R → S) s.t. i′1 ≠ i′2 and

s1 ↝m,τ1 ⟨i′1, ρ′1, h′1⟩ s2 ↝m,τ2 ⟨i′2, ρ′2, h′2⟩
i ⊢τ1 rt1 ⇒ rt′1 i ⊢τ2 rt2 ⇒ rt′2

then
se is high in region(i, τ1)
se is high in region(i, τ2)

2. If there exists a state ⟨i′1, ρ′1, h′1⟩ ∈ StateG, a final result (v2, h′2) ∈ (V + L) ×Heap and
a register types rt′1 ∈ (R → S) s.t.

s1 ↝m,τ1 ⟨i′1, ρ′1, h′1⟩ s2 ↝m,τ2 (r2, h′2)
i ⊢τ1 rt1 ⇒ rt′1 i ⊢τ2 rt2 ⇒

then
se is high in region(i, τ1)

Proof. By case analysis on the instruction executed.

• ifeq and ifneq: the proof’s outline follows from before as there is no possibility
for an exception here.

• invoke: there are several cases to consider for this instruction to be a branching
instruction:

1) both are executing normally. Since the method we are invoking is non-
interferent, and we have that ρ1 ∼kobs,rt1,rt2,β ρ2, we will also have indistinguish-
able results. Since they throw no exceptions there is no branching there.

2) one of them is normal, the other throws an exception e′. Assume that the pol-

icy for the method called is k⃗′a
k′h→ k⃗′r. This will imply that k⃗′r(e′) ≰ kobs otherwise

the output will be distinguishable. By the transfer rules we have that for all the
regions se is to be at least as high as k⃗′r(e′) (normal execution one is lub-ed with
ke = ⊔{k⃗′r(e) ∣ e ∈ excAnalysis(m′)} where e′ ∈ excAnalysis(m′), and k⃗′r(e′) by
itself for the exception throwing one), thus we will have se ≰ kobs throughout
the regions. For the exception throwing one, if the exception is caught, then we
know we will be in the first case. If the exception is uncaught, then we are in
the second case.

3) the method throws different exceptions (let’s say e1 and e2). Assume that the

policy for the method called is k⃗′a
k′h→ k⃗′r. Again, since the outputs are indistin-

guishable, this means that k⃗′r(e1) ≰ kobs and k⃗′r(e2) ≰ kobs. By the transfer rules,
as before we will have se high in all the regions required. If the exceptions are
both uncaught, then this lemma does not apply. Assume that e1 is caught. We
follow the argument from before that we will have se is high in region(i, τ1). If
e2 is caught, using the same argument we will have se is high in region(i, τ2)

§4.2 Typable DEX Program Implies Non-Interference 95

and we are in the first case. If e2 is uncaught, then we know that we are in the
second case. The rest of the cases will be dealt with by first assuming that e2 is
caught.

• object / array manipulation instructions that may throw a null pointer excep-
tion. This can only be a problem if one is null and the other is non-null. From
this, we can infer that register pointing to object / array reference will have
high security level (otherwise they have to have the same value). If this is the
case, then from the transfer rules for handling null pointer we have that se is
high in region region(i1, np).

Now, regarding the part which is not null, we also can deduce that it is from
the transfer rules that we have se will be high in that region, which implies that
se will be high in region(i2, Norm).

• throw: Actually the reasoning for this instruction is closely similar to the case
of object / array manipulation instruction that may throw a null pointer excep-
tion, except with additional possibility of the instruction throwing a different
exception. Fortunately for us, this can only be the case if the security level to
the register pointing to the object to throw is high. Therefore, the previous
reasoning follows.

Lemma 4.2.32 (Locally Respect (Specialized)). Let all methods m′ in P be non-interferent
w.r.t. all the policies in PoliciesΓ(m′). Let m be a method in P, β ∈ L ⇀ L a partial
function, s1, s2 ∈ StateG two DEXG states at the same program point i and two registers
types rt1, rt2 ∈ (R → S) s.t. s1 ∼kobs,rt1,rt2,β s2.

1. If there exists two states s′1, s′2 ∈ StateG and the program point of s′1 is the same as s′2
and two register types rt′1, rt′2 ∈ (R → S) s.t.

s1 ↝m,τ1 s′1 s2 ↝m,τ2 s′2
i ⊢τ1 rt1 ⇒ rt′1 i ⊢τ2 rt2 ⇒ rt′2

then there exists β′ ∈ L ⇀ L s.t.

s′1 ∼kobs,rt′1,rt′2,β′ s′2 β ⊆ β′

2. If there exists a state ⟨i′1, ρ′1, h′1⟩ ∈ StateG, a final result (r2, h′2) ∈ (V + L) ×Heap and
a registers types rt′1 ∈ (R → S) s.t.

s1 ↝m,τ1 ⟨i′1, ρ′1, h′1⟩ s2 ↝m,τ2 (r2, h′2)
i ⊢τ1 rt1 ⇒ rt′1 i ⊢τ2 rt2 ⇒

then there exists β′ ∈ L ⇀ L s.t.

h′1 ∼kobs,β′ h′2, highResultkr(r2, h′2) β ⊆ β′

96 Non-Interferent Type System for Android Bytecode

3. If there exists two final results (r1, h′1), (r2, h′2) ∈ (V + L) ×Heap s.t.

s1 ↝m,τ1 (r1, h′1) s2 ↝m,τ2 (r2, h′2)
i ⊢τ1 rt1 ⇒ i ⊢τ2 rt2 ⇒

then there exists β′ ∈ L ⇀ L s.t.

(r1, h′1) ∼kobs,k⃗r ,β′ (r2, h′2) β ⊆ β′

Proof. Since we have already proved this lemma for all the instructions apart from
the exception cases, we only deal with the exception here. Moreover, we already
proved for the heap that instructions without exception are indistinguishable. There-
fore, only instructions which may cause an exception are considered here, and only
consider the case where the registers may actually be distinguishable. Note that
for exception case, the lemma is specialized only to affect those that have the same
successor’s program point.

• invoke: There are six possible successors here, but we only consider the four
exception related ones (since one of them can be subsumed by the other) :

1) One normal and one has a caught exception. In this case, we know that the
lemma is not applicable since the successors have different program points.

2) One normal and one has an uncaught exception (the case where one throws
a caught exception and one throws an uncaught exception is proved using
similar arguments). In this case, we have one successor state while the other
will return a value or a location (case 2). So, in this case, we only need to
prove that highResultkr(r2, h′2) (the part about heap indistinguishability is al-
ready proved). We can easily again appeal to output distinguishability since
we already assumed that the method m′ is non-interferent. Since we have the
exception e returned by the method m′ as high (k⃗′r(e)), we can now use the
transfer rule which states that k⃗′r(e) ≤ k⃗r(e) and establish that k⃗r(e) ≰ kobs which
in turn implies that highResultkr(r2, h′2), thus we are in Case 2.

3) Both have caught exceptions. If they have the same exception, then we that
the content of ex register will be the same thus the register will be indistinguish-
able. If they have different exception yet it is handled by the same program
point, since we know that the method is non-interferent, we can use output
indistinguishability which implies that the value of ex registers will be indis-
tinguishable (ρ′1 ∼kobs,rt′1,rt′2,ex,β ρ′2). Since we have heap indistinguishability and
registers indistinguishability, we have s′1 ∼kobs,rt′1,rt′2,β s′2 (Case 1).

4) Both have uncaught exceptions (and different exceptions on top of that).
Let’s say the two exceptions are e1 and e2. For the beginning, we use the
output indistinguishability of the method to establish that k⃗′r(e1) ≰ kobs and
k⃗′r(e2) ≰ kobs. Then, using the transfer rules for uncaught exceptions which
states k⃗′r(e1) ≤ k⃗r(e1) and k⃗′r ≤ k⃗r(e2) to establish that k⃗r(e1) and k⃗r(e2) are high

§4.2 Typable DEX Program Implies Non-Interference 97

as well. Now, since they are both high, we can claim that they are indistin-
guishable (output-wise), therefore concluding the proof that we are in Case
3.

• iget: There are four cases to consider here:

1) One is a normal execution and one has a caught null exception. In this case,
we know that the lemma is not applicable since the successors have different
program points.

2) One is a normal execution and one has an uncaught null exception. The only
difference with the previous case is that there will be one execution returning
a location for exception instead. In this case, we only need to prove that this
return of value is high (highResultkr(r2, h′2)). We know that ro (the register
containing the object) is high (rt(ro) ≰ kobs), otherwise s1 ≁kobs,rt1,rt2β s2. The
transfer rule for iget with uncaught exception states that rt(ro) ≤ k⃗r(np), which
will give us k⃗r(np) ≰ kobs, which will imply that highResultkr(r2, h′2), thus we
are in Case 2.

3) Both have caught null exceptions. In this case, there are two things that
need consideration: the new objects in the heap, and the pseudo-register ex
containing the new null exception. Since we have h1 ∼kobs,β h2 and the exception
is created fresh (l1 = fresh(h1), l1 ↦ defaultnp, l2 = fresh(h2), l2 ↦ defaultnp),
by Lemma 4.2.8 we have that h′1 ∼kobs,β h′2 as well. Now for the pseudo-register
ex, we take the mapping β′ to be β⊕ {l1 ↦ l2}, where l1 = fresh(h1) and l2 =
fresh(h2), both are used to store the new exception. Under this mapping, we
know that l1 ∼kobs,β′ l2 and this will give us ρ′1 ∼kobs,rt′1,rt′2,β′ ρ′2 since ρ′1 = {ex ↦ l1}
and ρ′2 = {ex ↦ l2}. Thus we are in Case 1.

4) Both have uncaught null exceptions. Following the previous arguments, we
have h′1 ∼kobs,β′ h′2, and l1 ∼kobs,β′ l2, which will give us (⟨l1⟩, h′1) ∼kobs,k⃗r ,β′ (⟨l2⟩, h′2),
thus we are in Case 3.

• iput, aget, and aput: The arguments closely follow that of iget

• throw: There are four cases to consider here :

1) Two identical exceptions. In this case, we know that the exception will be
the same. Therefore the value for ex will be the same (ex = ρ1(re) = ρ2(re)),
thus giving us ρ′1 ∼kobs,rt′1,rt′2,β′ ρ′2 if the exception is caught (Case 1). In the case
where the exception is uncaught, we know that the value will be the same, that
is ρ1(re). Therefore the output will be indistinguishable as well (Case 3).

2) Two different exceptions, both are caught. In this case, we know that the
lemma is not applicable since the successors have different handlers (thus pro-
gram points).

3) Two different exceptions, both are uncaught. The transfer rules state that
rt′1(re) ≤ k⃗r(e1) and rt′2(re) ≤ k⃗r(e2) (where re is the register containing the ex-
ception). Since re must be high for the exceptions to be different values, we can

98 Non-Interferent Type System for Android Bytecode

infer that k⃗r(e1) and k⃗r(e2) must be high as well. With this, we will have that
(r1, h′1) ∼kobs,k⃗r ,β′ (r2, h′2) since both are high outputs (Case 3).

4) Two different exceptions, one is caught one is uncaught. Similar to the pre-
vious argument: we know that k⃗r(e) will be high. Therefore we will have
highResultkr(r2, h′2), h′1 ∼kobs,β′ h′2 (throw instruction does not modify the heap),
and β ⊆ β′ (Case 2).

Including the previously proven locally respect lemma (Lemma 4.2.11, Lemma 4.2.14,
Lemma 4.2.20), all of the possible scenarios will land on one of the cases. Therefore
the lemma holds.

Lemma 4.2.33 (Typable DEX Program is Non-Interferent). Suppose we have β a partial
function β ∈ L ⇀ L and ⟨i0, ρ0, h0⟩, ⟨i′0, ρ′0, h′0⟩ ∈ StateG two DEXG states s.t. i0 = i′0 and
⟨i0, ρ0, h0⟩ ∼kobs,RTi0 ,RTi′0

,β ⟨i′0, ρ′0, h′0⟩. Suppose we have a derivation

⟨i0, ρ0, h0⟩ ↝m,τ0 . . . ⟨ik, ρk, hk⟩ ↝ m, τk(r, h)

and suppose this derivation is typable w.r.t. RT. Suppose we also have another derivation

⟨i′0, ρ′0, h′0⟩ ↝m,τ′0
. . . ⟨i′k, ρ′k, h′k⟩ ↝ m, τ′k(r′, h′)

and suppose this derivation is typable w.r.t. RT. Then what we want to prove is that there
exsts β′ ∈ L ⇀ L s.t.

(r, h) ∼kobs,k⃗v,β′ (r′, h′) and β ⊆ β′

Proof. Following the proof of the side effect safety, we use induction on the length of
method call chain. For the base case, there is no invoke instruction involved (method
call chain with length 0). A note about this setting is that we can use lemmas which
assume that all the methods are non-interferent since we are not going to call another
method. To start the proof in the base case of induction on method call chain length,
we use induction on the length of k and k′. The base case is when k = k′ = 0. In
this case, we can use case 3 of Lemma 4.2.32. There are several possible cases of the
induction step:

1. k > 0 and k′ = 0: then we can use case 2 of Lemma 4.2.32 to get the existence of
β′ ∈ L ⇀ L s.t.

h1 ∼kobs,β′ h′, highResultkr(r′, h′) and β ⊆ β′ [1]

Using case 2 of Lemma 4.2.31 we get

se is high in region(i0, τ1)

where τ1 is the tag s.t. i0 ↦τ1 i1. SOAP2 gives us that either i1 ∈ region(i0, τ1)
or i1 = jun(i0, τ1) but the latter case is rendered impossible due to SOAP3.
Applying Lemma 4.2.26 we get

highResultkr(r, h′1) and h1 ∼kobs,β h′1 [2]

§4.2 Typable DEX Program Implies Non-Interference 99

Combining [1] and [2] we get

h1 ∼kobs,β′ h′1, h1 ∼kobs,β′ h′, (r, h) ∼kobs,k⃗r ,β (r′, h′)

to conclude.

2. k = 0 and k′ > 0 is symmetric to the previous case.

3. k > 0 and k′ > 0. If the next instruction is at the same program point (i1 = i′1),
we can conclude using Case 1 of Lemma 4.2.32 and the induction hypothesis.
Otherwise we will have register typing rt1 and rt′1 s.t.

i0 ⊢τ0 RTi0 ⇒ rt1, rt1 ⊑ RTi1
i′0 ⊢τ′0 RTi′0

⇒ rt′1, rt′1 ⊑ RTi′1

Then using Case 1 of Lemma 4.2.31 we have

se is high in region(i0, τ)
se is high in region(i′0, τ′)

where τ, τ′ are tags s.t. i0 ↦τ i1 and i′0 ↦τ′ i′1. Using Case 1 of Lemma 4.2.32
there exists β′, β ⊆ β′ s.t. (with the help of Lemma 4.2.13)

⟨i1, ρ1, h1⟩ ∼kobs,RTi1 ,RTi′1
,β′ ⟨i′1, ρ′1, h′1⟩

Invoking Lemma 4.2.30 will give us two cases:

• There exists j, j′ with 1 ≤ j ≤ k and 1 ≤ j′ ≤ k′ s.t. ij = i′j, and ⟨ij, ρj, hj⟩ ∼kobs,RTij
,RTi′j

,β

⟨i′j, ρ′j, h′j⟩. We can then use the induction hypothesis on the rest of the exe-
cutions to conclude.

• (r, h) ∼kobs,k⃗v,β′ (r′, h′) and we can directly conclude.

After we established the base case, we can then continue to prove by induction
on method call chain. In the case where an instruction calls another method, we will
have a non-interferent method since they necessarily have shorter call chain length
(induction hypothesis).

Proof of Theorem 4.1.1 is direct application of Lemma 4.2.33 and Lemma 4.2.24.

100 Non-Interferent Type System for Android Bytecode

Chapter 5

Formalization of DEXI and DEXO

We mechanize the pen and paper proof so that we can provide a higher confidence
in the type system soundness. We already have the pen and paper proofs that the
DEX type system is indeed sound (Section 4.2). Currently, we managed to formalize
the DEXI and DEXO with about 14500 lines of definitions and proofs. We would like
to be able to formalize also DEXC and DEXG , but the size of the formalization is too
big to fit into the scope of a Ph.D.

The structure for our formalization has much resemblance with the formalization
of JVM done in Barthe et al. [2007]. We started with the definition of DEX which is
based upon their definition of JVM, except that we replace the definition of operand
stack to a mapping from registers to values. We also remove the exception handling
mechanism to remove clutter. The formalization in Coq is available at

http://users.cecs.anu.edu.au/~hengunadi/TranslationProof.html

Inspired by the structure of the original proof, we start by formalizing the seman-
tics of DEX instructions, the operational semantics of DEXI and DEXO instructions,
and the notion of CDR. We then formalize the transfer rules based on the transfer
rules defined in Chapter 4. The formalization then continues by providing the defi-
nition for indistinguishability relations which serve as the basis for non-interference
definition. Finally, we formalize the proof that DEXI and DEXO are indeed non-
interferent.

As highlighted in Section 4.2, there is a substantial difference between the proof
for JVM type system and ours. Even though the structure of the definitions and the
proofs are similar, the difference in the definition of indistinguishability and the fact
that we do not have lift operation to the register typing means we have to modify
and redesign the formalization in many places (resulting in about 6000 lines out of
14500 lines differences).

We assume several lemmas throughout the development of this formalization.
Firstly, we used the axiom of excluded middle (which is also assumed in Barthe et
al.’s formalization), then throughout the proof, we also assumed a lemma regarding
the domain of mapping for register typing. In particular, the domain of rt never
changes, i.e., the domain is always the same as valid registers. We need this assump-
tion because we define that the function rt is total w.r.t the registers. We also assume

101

102 Formalization of DEXI and DEXO

that the registers within a method never duplicates. Although this trivially holds, we
have to specify this explicitly as a property of a method.

The formalization of DEXI and DEXO have many benefits for this work. Obvi-
ously, they give us more confidence in the correctness of our theoretical work. With
the introduction of this machine-checked proof, we have increased confidence in the
pen and paper proof. The development of this formalization also helps us to notice
that we can not claim the step consistent lemma which exists for JVM, thus prompted
us to redesign the way we prove non-interference.

5.1 The Semantics of DVM

In this section we will describe the components of the DVM:

• infrastructure

– registers mapping

– class

– method and bytecode method

– heap

• instructions

5.1.1 Infrastructure

We just focus on several main parts of the infrastructure, namely the registers map-
ping, class definition, method definition and heap definition.
Registers Mapping The main difference between DVM and JVM is the registers,
which is implemented as a mapping from a register to a value. It is implemented
as a mapping module which has three main functions: get is a function which takes
a mapping and a variable and return a value, update is a function which takes a
mapping, a variable x, and a value v, and return a new mapping where the content
of variable x is v, such that:

1. if we update a variable x in the mapping with value v, then the content of x in
the new mapping will be v (get_update_new); and

2. if a variable x is not modified, then the content of x in the new mapping will
be the constant (get_update_old).

These two properties will be useful when we prove soundness.

Module Type DEX_REGISTERS.
Parameter t : Type.
Parameter get : t-> DEX_Reg -> option DEX_value.
Parameter update : t -> DEX_Reg -> DEX_value -> t.
Parameter dom : t -> list DEX_Reg.

§5.1 The Semantics of DVM 103

Parameter get_update_new :
forall l x v, get (update l x v) x = Some v.

Parameter get_update_old :
forall l x y v, x<>y -> get (update l x v) y = get l y.

End DEX_REGISTERS.

Class Each class is distinguished by its name. A class may have a direct superclass,
and class names form a hierarchy based on the superclass relation. Each class is also
distinguished by the list of interfaces it implemented, and list of fields and methods
which it has. Since DEXI and DEXO do not use any of those features, we just use
the class itself as the container of the program without having to worry about class
hierarchy and interface implemented. But it is useful to retain this structure for a
complete formalization of DEX.

Module Type DEX_CLASS_TYPE.

Parameter name : DEX_Class -> DEX_ClassName.
(** direct superclass *)
Parameter superClass : DEX_Class -> option DEX_ClassName.
(** list of implemented interfaces *)
Parameter superInterfaces : DEX_Class -> list DEX_InterfaceName.

Parameter field : DEX_Class -> DEX_ShortFieldName ->
option DEX_Field.

Parameter definedFields : DEX_Class -> list DEX_Field.
Parameter in_definedFields_field_some : forall c f,

In f (definedFields c) ->
field c (DEX_FIELDSIGNATURE.name (DEX_FIELD.signature f))

= Some f.
Parameter field_some_in_definedFields : forall c f sfn,
field c sfn = Some f -> In f (definedFields c).

Parameter method : DEX_Class -> DEX_ShortMethodSignature ->
option DEX_Method.

Parameter method_signature_prop : forall cl mid m,
method cl mid = Some m -> mid = DEX_METHOD.signature m.

Definition defined_Method (cl:DEX_Class) (m:DEX_Method) :=
method cl (DEX_METHOD.signature m) = Some m.

(* modifiers *)
Parameter isFinal : DEX_Class -> bool.
Parameter isPublic : DEX_Class -> bool.
Parameter isAbstract : DEX_Class -> bool.

104 Formalization of DEXI and DEXO

End DEX_CLASS_TYPE.

Method The method container is separated from its body because it is possible for a
method to be abstract, that is its body needs to be fleshed out in the method of the
class that implements the abstract method. The body of the method itself specifies
the first address, the relationship between program points, and a mapping from
program points to instructions. We also require that there are no duplicate registers
(which is true by definition).

Module Type DEX_METHOD_TYPE.

Parameter signature : DEX_Method -> DEX_ShortMethodSignature.
(** A method that is not abstract has an empty method body *)
Parameter body : DEX_Method -> option DEX_BytecodeMethod.

(* modifiers *)
Parameter isFinal : DEX_Method -> bool.
Parameter isStatic : DEX_Method -> bool.
Parameter isNative : DEX_Method -> bool.
Definition isAbstract (m : DEX_Method) : bool :=
match body m with
None => true

| Some _ => false
end.

Parameter visibility : DEX_Method -> DEX_Visibility.

Definition valid_reg (m:DEX_Method) (x:DEX_Reg) : Prop :=
forall bm, body m = Some bm ->

(Reg_toN x) <= (DEX_BYTECODEMETHOD.max_locals bm).

(* DEX additional for locR *)
Definition within_locR (m:DEX_Method) (x:DEX_Reg) : Prop :=

forall bm, body m = Some bm -> In x (DEX_BYTECODEMETHOD.locR bm).
End DEX_METHOD_TYPE.

Module Type DEX_BYTECODEMETHOD_TYPE.
Parameter firstAddress : DEX_BytecodeMethod -> DEX_PC.
Parameter nextAddress : DEX_BytecodeMethod -> DEX_PC ->
option DEX_PC.

Parameter instructionAt : DEX_BytecodeMethod -> DEX_PC ->
option DEX_Instruction.

(** max number of local variables *)

§5.1 The Semantics of DVM 105

Parameter max_locals : DEX_BytecodeMethod -> nat.
(** max number of elements on the operand stack *)
Parameter max_operand_stack_size : DEX_BytecodeMethod -> nat.
(* DEX for type system *)
Parameter locR : DEX_BytecodeMethod -> list DEX_Reg.
Parameter regs : DEX_BytecodeMethod -> list DEX_Reg.
Parameter noDup_regs : forall bm, NoDup (regs (bm)).

Definition DefinedInstruction (bm:DEX_BytecodeMethod) (pc:DEX_PC)
: Prop := exists i, instructionAt bm pc = Some i.

End DEX_BYTECODEMETHOD_TYPE.

Heap The implementation of heap in DEX is the same as the one in JVM except that
we only implement the dynamic field for objects (we do not implement array and
static field). Heap is implemented as a mapping from an address to the reference
of the object. There are three main interfaces to the heap, namely get, update, and
new. Get is a function which returns the reference of the object, update is a function
which updates the reference of the object contained in the mentioned address, and
new is a function to allocate a new object in the heap.

Module Type DEX_HEAP.
Parameter t : Type.

Inductive DEX_AdressingMode : Set :=
| DEX_DynamicField : DEX_Location -> DEX_FieldSignature

-> DEX_AdressingMode.

Inductive DEX_LocationType : Type :=
| DEX_LocationObject : DEX_ClassName -> DEX_LocationType.

Parameter get : t -> DEX_AdressingMode -> option DEX_value.
Parameter update : t -> DEX_AdressingMode -> DEX_value -> t.
Parameter typeof : t -> DEX_Location -> option DEX_LocationType.
Parameter new : t -> DEX_Program -> DEX_LocationType ->

option (DEX_Location * t).

Inductive Compat (h:t) : DEX_AdressingMode -> Prop :=
| CompatObject : forall cn loc f,

typeof h loc = Some (DEX_LocationObject cn) ->
Compat h (DEX_DynamicField loc f).

Parameter get_update_same : forall h am v, Compat h am ->
get (update h am v) am = Some v.

Parameter get_update_old : forall h am1 am2 v, am1<>am2 ->

106 Formalization of DEXI and DEXO

get (update h am1 v) am2 = get h am2.
Parameter get_uncompat : forall h am, ~ Compat h am ->
get h am = None.

Parameter typeof_update_same : forall h loc am v,
typeof (update h am v) loc = typeof h loc.

Parameter new_fresh_location : forall (h:t) (p:DEX_Program)
(lt:DEX_LocationType) (loc:DEX_Location) (h’:t),

new h p lt = Some (loc,h’) ->
typeof h loc = None.

Parameter new_typeof : forall (h:t) (p:DEX_Program)
(lt:DEX_LocationType) (loc:DEX_Location) (h’:t),

new h p lt = Some (loc,h’) ->
typeof h’ loc = Some lt.

Parameter new_typeof_old : forall (h:t) (p:DEX_Program)
(lt:DEX_LocationType) (loc loc’:DEX_Location) (h’:t),

new h p lt = Some (loc,h’) ->
loc <> loc’ ->
typeof h’ loc’ = typeof h loc’.

Parameter new_defined_object_field : forall (h:t) (p:DEX_Program)
(cn:DEX_ClassName) (fs:DEX_FieldSignature) (f:DEX_Field)
(loc:DEX_Location) (h’:t),

new h p (DEX_LocationObject cn) = Some (loc,h’) ->
is_defined_field p cn fs f ->
get h’ (DEX_DynamicField loc fs) = Some (init_field_value f).

Parameter new_undefined_object_field : forall (h:t) (p:DEX_Program)
(cn:DEX_ClassName) (fs:DEX_FieldSignature) (loc:DEX_Location) (h’:t),

new h p (DEX_LocationObject cn) = Some (loc,h’) ->
~ defined_field p cn fs ->
get h’ (DEX_DynamicField loc fs) = None.

Parameter new_object_no_change :
forall (h:t) (p:DEX_Program) (cn:DEX_ClassName) (loc:DEX_Location)

(h’:t) (am:DEX_AdressingMode),
new h p (DEX_LocationObject cn) = Some (loc,h’) ->
(forall (fs:DEX_FieldSignature), am <>
(DEX_DynamicField loc fs)) -> get h’ am = get h am.

End DEX_HEAP.

§5.1 The Semantics of DVM 107

5.1.2 Instructions

There are 19 different instructions following the instruction outlined in Chapter 4:

• | DEX_Nop

is the equivalent of Nop

• | DEX_Move (k:DEX_ValKind) (rt:DEX_Reg) (rs:DEX_Reg)

is the equivalent of Move(rt, rs). It is a dependent type which takes as ar-
guments the type of the value and two registers, target register and source
register.

• | DEX_Return
| DEX_VReturn (k:DEX_ValKind) (rt:DEX_Reg)

are the equivalent of return(r). In practice, there is a possibility that the
method is not returning any value, hence the two separate instructions. In
the case where the method is returning a value, the instruction takes two ar-
guments which indicate the return value type and the register from which the
value is returned.

• | DEX_Const (k:DEX_ValKind) (rt:DEX_Reg) (v:Z)

is the equivalent of Const(r, v). It takes as argument the type of constant value,
the target register, and the value of the constant.

• | DEX_Goto (o:DEX_OFFSET.t)

is the equivalent of Goto(t). The DEX_OFFSET is a type that captures the jump
offset between the current program point ant the target program point.

• | DEX_PackedSwitch (rt:DEX_Reg) (firstKey:Z)
(size:nat) (l:list DEX_OFFSET.t)

is not contained in the list of instructions, but is part of the actual DEX bytecode
instructions. The instruction takes as arguments the register from which the
value is compared, the value of the first key, the size of the jump table, and the
list of offset corresponding to each key.

• | DEX_SparseSwitch (rt:DEX_Reg) (size:nat)
(l:list (Z * DEX_OFFSET.t))

is not contained in the list of instructions, but is part of the actual DEX bytecode
instructions. The instruction takes as arguments the register from which the
value is compared, the size of the jump table, and a list of pairs consisting a
key and its corresponding jump offset.

• | DEX_Ifcmp (cmp:DEX_CompInt) (ra:DEX_Reg)
(rb:DEX_Reg) (o:DEX_OFFSET.t)

| DEX_Ifz (cmp:DEX_CompInt) (r:DEX_Reg) (o:DEX_OFFSET.t)

108 Formalization of DEXI and DEXO

are the equivalent of ifeq(r, t). The two are basically a conditional branch
instruction where Ifcmp compares the value of the two registers, and Ifz com-
pares the value of the register with 0.

• | DEX_Ineg (rt:DEX_Reg) (rs:DEX_Reg)
| DEX_Inot (rt:DEX_Reg) (rs:DEX_Reg)
| DEX_I2b (rt:DEX_Reg) (rs:DEX_Reg)
| DEX_I2s (rt:DEX_Reg) (rs:DEX_Reg)

are not contained in the list of instructions, but are part of the actual DEX
bytecode instructions. They are unary instructions which do an operation on
the source register and store the result in the target register.

• | DEX_Ibinop (op:DEX_BinopInt) (rt:DEX_Reg)
(ra:DEX_Reg) (rb:DEX_Reg)

| DEX_IbinopConst (op:DEX_BinopInt) (rt:DEX_Reg)
(r:DEX_Reg) (v:Z)

are the equivalent of binop(op, r, ra, rb). The difference between the two is that
the second operand of IbinopConst is a constant value v. They both take as
arguments the type of binary operation, the target register, and the register
which contains the first operand.

• | DEX_Iget (t:DEX_type) (rt:DEX_Reg) (ro:DEX_Reg)
(f:DEX_FieldSignature)

is the equivalent of iget(r, ro, f). It takes as argument the type of the value, the
target register, the register which contains the reference to the object, and the
field.

• | DEX_Iput (t:DEX_type) (rs:DEX_Reg) (ro:DEX_Reg)
(f:DEX_FieldSignature)

is the equivalent of iput(rs, ro, f). It takes as argument the type of the value,
the source register, the register which contains the reference to the object, and
the field.

• | DEX_New (rt:DEX_Reg) (c:DEX_ClassName)

is the equivalent of new(r, c). It takes as argument the target register and the
class reference.

5.1.3 The Operational Semantic of DEXI and DEXO Instructions

As mentioned in Chapter 4, the state of the operational semantics is a tuple of pro-
gram point, heap, and registers mapping. In the case where a method is returning
a value, the return state is a pair of heap and a single value. In this section, we will
walk through each of the formalized operational semantics and how it matched the
definition that we have outlined in Chapter 4, or what it means if the instruction
is not in the list. There is explicit mentioning of the register domain even though

§5.1 The Semantics of DVM 109

in theory this is not crucial. The reason we put them here is to ease the burden of
having to prove that the registers involved are in the domain even though we already
assumed that the registers involved in a method are total, meaning that every register
involved in an operation will always be in the domain.

| nop : forall h m pc pc’ regs,

instructionAt m pc = Some DEX_Nop ->
next m pc = Some pc’ ->

DEX_NormalStep p m (pc, (h, regs)) (pc’, (h, regs))

Nop is not mentioned in the list, and basically, it stands for no operation. Upon
reaching the program point with Nop, the state just transitions into its successor
(next program point) without making any changes to the register nor the heap.

| const : forall h m pc pc’ regs regs’ k rt v,

instructionAt m pc = Some (DEX_Const k rt v) ->
In rt (DEX_Registers.dom regs) ->
next m pc = Some pc’ ->
(-2^31 <= v < 2^31)%Z ->
DEX_METHOD.valid_reg m rt ->
regs’ = DEX_Registers.update regs rt (Num (I (Int.const v))) ->

DEX_NormalStep p m (pc, (h, regs)) (pc’, (h, regs’))

Const updates the mapping register with a constant value v. It matched with the

operational semantics rule of Const:
Pm[i] = const(r, v)

⟨i, ρ, h⟩ ↝m,Norm ⟨i + 1, ρ⊕{r ↦ v}, h⟩ . The up-

date of ρ⊕ {r ↦ v} corresponds to the update of regs′, the next program points pc′

corresponds to i + 1, and there are no changes to the heap.

| move_step_ok : forall h m pc pc’ regs regs’ k rt rs v,

instructionAt m pc = Some (DEX_Move k rt rs) ->
In rt (DEX_Registers.dom regs) ->
In rs (DEX_Registers.dom regs) ->
next m pc = Some pc’ ->
Some v = DEX_Registers.get regs rs ->
DEX_METHOD.valid_reg m rt ->
DEX_METHOD.valid_reg m rs ->
regs’ = DEX_Registers.update regs rt v ->

DEX_NormalStep p m (pc, (h, regs)) (pc’, (h, regs’))

110 Formalization of DEXI and DEXO

Move copy a value stored in the source register to the target register. This cor-

responds to the operational semantic rule
Pm[i] = move(r, rs) rs ∈ dom(ρ)

⟨i, ρ, h⟩ ↝m,Norm ⟨i + 1, ρ⊕{r ↦ ρ(rs)}, h⟩
where the update of ρ ⊕ {r ↦ ρ(rs)} corresponds to the update of regs′ and v cor-
responds to the value of ρ(rs). There are no changes to the heap, so the next step
also has the same heap h.

| goto_step_ok : forall h m pc regs o,

instructionAt m pc = Some (DEX_Goto o) ->
DEX_NormalStep p m (pc, (h, regs))

((DEX_OFFSET.jump pc o), (h, regs))

Just like Nop, Goto just modifies a program point and does not change any registers

nor the heap. It corresponds to
Pm[i] = goto(t)

⟨i, ρ, h⟩ ↝ ⟨t, ρ, h⟩ where t corresponds to the offset

jump.

| packedswitch_step_ok1 : forall h m pc l v r firstKey size
list_offset n o,

instructionAt m pc =
Some (DEX_PackedSwitch r firstKey size list_offset) ->

Some (Num (I v)) = DEX_Registers.get l r ->
(firstKey <= Int.toZ v < firstKey + (Z_of_nat size))%Z ->
length list_offset = size ->
Z_of_nat n = ((Int.toZ v) - firstKey)%Z ->
nth_error list_offset n = Some o ->
DEX_METHOD.valid_reg m r ->

DEX_NormalStep p m (pc, (h, l)) ((DEX_OFFSET.jump pc o), (h, l))

| packedswitch_step_ok2 : forall h m pc pc’ l v r firstKey size
list_offset,

instructionAt m pc =
Some (DEX_PackedSwitch r firstKey size list_offset) ->

Some (Num (I v)) = DEX_Registers.get l r ->
length list_offset = size ->
(Int.toZ v < firstKey \/ firstKey + (Z_of_nat size) <= Int.toZ v)%Z ->
next m pc = Some pc’ ->
DEX_METHOD.valid_reg m r ->

DEX_NormalStep p m (pc, (h, l)) (pc’, (h, l))

§5.1 The Semantics of DVM 111

In the case where the content of the register is within (f irstKey + size), then the
program point will be transferred to the corresponding offset from the list. In the
case where the value falls out of range, then the program point will be transferred to
the next program point. There are no changes to the registers mapping nor the heap.
The two rules correspond to these two scenarios.

| sparseswitch_step_ok1 : forall h m pc l v v’ o r size listkey,

instructionAt m pc = Some (DEX_SparseSwitch r size listkey) ->
length listkey = size ->
Some (Num (I v)) = DEX_Registers.get l r ->
List.In (pair v’ o) listkey ->
v’ = Int.toZ v ->
DEX_METHOD.valid_reg m r ->

DEX_NormalStep p m (pc, (h, l)) ((DEX_OFFSET.jump pc o), (h, l))

| sparseswitch_step_ok2 : forall h m pc pc’ l v r size listkey,

instructionAt m pc = Some (DEX_SparseSwitch r size listkey) ->
length listkey = size ->
Some (Num (I v)) = DEX_Registers.get l r ->
(forall v’ o, List.In (pair v’ o) listkey -> v’ <> Int.toZ v) ->
next m pc = Some pc’ ->
DEX_METHOD.valid_reg m r ->

DEX_NormalStep p m (pc, (h, l)) (pc’, (h, l))

In the case where the content of the register is in one of the key offset pairs, then
the program point will be transferred to the corresponding offset. If the value does
not match any of the keys in the list, then the program point will be transferred to
the next program point instead. Just like Packedswitch, there are no changes to the
registers mapping nor the heap, and the two rules correspond to the two scenarios.

| ifcmp_step_jump : forall h m pc regs va vb cmp ra rb o,

instructionAt m pc = Some (DEX_Ifcmp cmp ra rb o) ->
In ra (DEX_Registers.dom regs) ->
In rb (DEX_Registers.dom regs) ->
Some (Num (I va)) = DEX_Registers.get regs ra ->
Some (Num (I vb)) = DEX_Registers.get regs rb ->
SemCompInt cmp (Int.toZ va) (Int.toZ vb) ->
DEX_METHOD.valid_reg m ra ->
DEX_METHOD.valid_reg m rb ->

112 Formalization of DEXI and DEXO

DEX_NormalStep p m (pc, (h, regs))
((DEX_OFFSET.jump pc o), (h, regs))

| ifcmp_step_continue : forall h m pc pc’ regs va vb cmp ra rb o,

instructionAt m pc = Some (DEX_Ifcmp cmp ra rb o) ->
In ra (DEX_Registers.dom regs) ->
In rb (DEX_Registers.dom regs) ->
Some (Num (I va)) = DEX_Registers.get regs ra ->
Some (Num (I vb)) = DEX_Registers.get regs rb ->
~SemCompInt cmp (Int.toZ va) (Int.toZ vb) ->
next m pc = Some pc’ ->
DEX_METHOD.valid_reg m ra ->
DEX_METHOD.valid_reg m rb ->

DEX_NormalStep p m (pc, (h, regs)) (pc’, (h, regs))

| ifz_step_jump : forall h m pc regs v cmp r o,

instructionAt m pc = Some (DEX_Ifz cmp r o) ->
In r (DEX_Registers.dom regs) ->
Some (Num (I v)) = DEX_Registers.get regs r ->
SemCompInt cmp (Int.toZ v) (0) ->
DEX_METHOD.valid_reg m r ->

DEX_NormalStep p m (pc, (h, regs))
((DEX_OFFSET.jump pc o), (h, regs))

| ifz_step_continue : forall h m pc pc’ regs v cmp r o,

instructionAt m pc = Some (DEX_Ifz cmp r o) ->
In r (DEX_Registers.dom regs) ->
Some (Num (I v)) = DEX_Registers.get regs r ->
~SemCompInt cmp (Int.toZ v) (0) ->
next m pc = Some pc’ ->

DEX_NormalStep p m (pc, (h, regs)) (pc’, (h, regs))

These rules correspond to the two operational semantics rules for ifz. If the test is
true, then the program point will be transferred to the offset pointed by the instruc-
tion. Otherwise, the instruction will fall through to the next instruction. There are
no modifications to the registers mapping and the heap. These rules correspond to

the operational semantics rule
P[i]m = ifeq(r, j) ρ(r) = 0
⟨i, ρ, h⟩ ↝m,Norm ⟨t, ρ, h⟩ where the test is true and

§5.1 The Semantics of DVM 113

Pm[i] = ifeq(r, t) ρ(r) ≠ 0
⟨i, ρ, h⟩ ↝m,Norm ⟨i + 1, ρ, h⟩ where the test is not true.

| ineg_step : forall h m pc regs regs’ pc’ rt rs v,

instructionAt m pc = Some (DEX_Ineg rt rs) ->
In rt (DEX_Registers.dom regs) ->
In rs (DEX_Registers.dom regs) ->
next m pc = Some pc’ ->
Some (Num (I v)) = DEX_Registers.get regs rs ->
DEX_METHOD.valid_reg m rt ->
DEX_METHOD.valid_reg m rs ->
regs’ = DEX_Registers.update regs rt (Num (I (Int.neg v))) ->

DEX_NormalStep p m (pc, (h, regs)) (pc’, (h, regs’))

| inot_step : forall h m pc regs regs’ pc’ rt rs v,

instructionAt m pc = Some (DEX_Inot rt rs) ->
In rt (DEX_Registers.dom regs) ->
In rs (DEX_Registers.dom regs) ->
next m pc = Some pc’ ->
Some (Num (I v)) = DEX_Registers.get regs rs ->
DEX_METHOD.valid_reg m rt ->
DEX_METHOD.valid_reg m rs ->
regs’ = DEX_Registers.update regs rt (Num (I (Int.not v))) ->

DEX_NormalStep p m (pc, (h, regs)) (pc’, (h, regs’))

| i2b_step_ok : forall h m pc pc’ regs regs’ rt rs v,

instructionAt m pc = Some (DEX_I2b rt rs) ->
In rt (DEX_Registers.dom regs) ->
In rs (DEX_Registers.dom regs) ->
next m pc = Some pc’ ->
Some (Num (I v)) = DEX_Registers.get regs rs ->
DEX_METHOD.valid_reg m rt ->
DEX_METHOD.valid_reg m rs ->
regs’ = DEX_Registers.update regs rt (Num (I (b2i (i2b v)))) ->

DEX_NormalStep p m (pc, (h, regs)) (pc’, (h, regs’))

| i2s_step_ok : forall h m pc pc’ regs regs’ rt rs v,

instructionAt m pc = Some (DEX_I2s rt rs) ->

114 Formalization of DEXI and DEXO

In rt (DEX_Registers.dom regs) ->
In rs (DEX_Registers.dom regs) ->
next m pc = Some pc’ ->
Some (Num (I v)) = DEX_Registers.get regs rs ->
DEX_METHOD.valid_reg m rt ->
DEX_METHOD.valid_reg m rs ->
regs’ = DEX_Registers.update regs rt (Num (I (s2i (i2s v)))) ->

DEX_NormalStep p m (pc, (h, regs)) (pc’, (h, regs’))

The four instructions here are unary operators, and they have similar operational
semantics except that each instruction has a different effect. i2s convert integer to
short, i2b convert integer to byte, ineg gives the two’s complement of the value
contained in the register and inot gives the one’s complement of the value contained
in the register. The program point will then be transferred into the next instruction.

| ibinop_step_ok : forall h m pc pc’ regs regs’ op rt ra rb va vb,

instructionAt m pc = Some (DEX_Ibinop op rt ra rb) ->
In rt (DEX_Registers.dom regs) ->
In ra (DEX_Registers.dom regs) ->
In rb (DEX_Registers.dom regs) ->
next m pc = Some pc’ ->
Some (Num (I va)) = DEX_Registers.get regs ra ->
Some (Num (I vb)) = DEX_Registers.get regs rb ->
DEX_METHOD.valid_reg m rt ->
DEX_METHOD.valid_reg m ra ->
DEX_METHOD.valid_reg m rb ->
regs’ = DEX_Registers.update regs rt
(Num (I (SemBinopInt op va vb))) ->

DEX_NormalStep p m (pc, (h, regs)) (pc’, (h, regs’))

| ibinopconst_step_ok : forall h m pc pc’ regs regs’ op rt r va v,

instructionAt m pc = Some (DEX_IbinopConst op rt r v) ->
In r (DEX_Registers.dom regs) ->
In rt (DEX_Registers.dom regs) ->
next m pc = Some pc’ ->
Some (Num (I va)) = DEX_Registers.get regs r ->
DEX_METHOD.valid_reg m rt ->
DEX_METHOD.valid_reg m r ->
regs’ = DEX_Registers.update regs rt
(Num (I (SemBinopInt op va (Int.const v)))) ->

§5.1 The Semantics of DVM 115

DEX_NormalStep p m (pc, (h, regs)) (pc’, (h, regs’))

These two instructions have very similar operational semantics corresponding to

binop:
Pm[i] = binop(op, r, ra, rb) ra, rb ∈ dom(ρ) n = ρ(ra) op ρ(rb)

⟨i, ρ, h⟩ ↝m,Norm ⟨i + 1, ρ⊕{r ↦ n}, h⟩ . The regis-

ters mapping will update the value with the result of applying the binary operation
to the values. The program point will then be transferred to the next instruction.

| new : forall h m pc pc’ regs regs’ c rt loc h’,

instructionAt m pc = Some (DEX_New rt c) ->
In rt (DEX_Registers.dom regs) ->
next m pc = Some pc’ ->
DEX_Heap.new h p (DEX_Heap.DEX_LocationObject c) = Some (pair loc h’) ->
regs’ = DEX_Registers.update regs rt (Ref loc) ->

DEX_NormalStep p m (pc,(h,regs)) (pc’,(h’,regs’))

The operational semantics of new:
Pm[i] = new(r, c) l = fresh(h)

⟨i, ρ, h⟩ ↝ ⟨i + 1, ρ⊕{r ↦ l}, h⊕{l ↦ default(c)}⟩
matches this instruction. The heap is updated with a mapping to the new object, and
the register mapping is updated with the corresponding fresh location. The program
point is then transferred to the next instruction.

| iput : forall h m pc pc’ regs f rs ro loc cn k v,

instructionAt m pc = Some (DEX_Iput k rs ro f) ->
In rs (DEX_Registers.dom regs) ->
In ro (DEX_Registers.dom regs) ->
next m pc = Some pc’ ->
Some (Ref loc) = DEX_Registers.get regs ro ->
Some v = DEX_Registers.get regs rs ->
DEX_Heap.typeof h loc = Some (DEX_Heap.DEX_LocationObject cn) ->
defined_field p cn f ->
assign_compatible p h v (DEX_FIELDSIGNATURE.type (snd f)) ->

DEX_NormalStep p m (pc,(h,regs))
(pc’,(DEX_Heap.update h (DEX_Heap.DEX_DynamicField loc f) v, regs))

The semantics
Pm[i] = iput(rs, ro, f) ρ(ro) ∈ dom(h) f ∈ dom(h(ρ(ro)))

⟨i, ρ, h⟩ ↝n,Norm ⟨i + 1, ρ, os, h⊕{ρ(ro) ↦ h(ρ(ro)) ⊕ { f ↦ ρ(rs)}}⟩
matches

this instruction. The field f of the object in the heap which corresponds to the object
referenced by ro is updated with the value that is contained in rs. There are no up-
dates to the registers mapping, and then the program will continue execution with
the next instruction. Although in Figure 4.2 there are more semantics for iput, but
only one is applicable in this case. This is because DEXO does not have exception
handling mechanism hence the other possible semantics do not apply.

116 Formalization of DEXI and DEXO

| getfield : forall h m pc pc’ regs regs’ rt ro loc f k v cn,

instructionAt m pc = Some (DEX_Iget k rt ro f) ->
In rt (DEX_Registers.dom regs) ->
In ro (DEX_Registers.dom regs) ->
next m pc = Some pc’ ->
Some (Ref loc) = DEX_Registers.get regs ro ->
DEX_Heap.typeof h loc = Some (DEX_Heap.DEX_LocationObject cn) ->
defined_field p cn f ->
DEX_Heap.get h (DEX_Heap.DEX_DynamicField loc f) = Some v ->
regs’ = DEX_Registers.update regs rt v ->

DEX_NormalStep p m (pc,(h, regs)) (pc’,(h, regs’))

The operational semantics
Pm[i] = iget(r, ro, f) ρ(ro) ∈ dom(h) f ∈ dom(h(ρ(ro)))

⟨i, ρ, h⟩ ↝m,Norm ⟨i + 1, ρ⊕{r ↦ h(ρ(ro)). f}, h⟩
matches with this instruction. The registers mapping will be updated with the value
from the field f of the object in the heap which is referred by ro. There are no
changes to the heap, and the execution will continue with the next execution. Like
iput, there is only one semantics applicable since DEXO does not have exception
handling mechanism.

| void_return : forall h m pc regs,

instructionAt m pc = Some DEX_Return ->
DEX_METHODSIGNATURE.result (DEX_METHOD.signature m) = None ->

DEX_ReturnStep p m (pc, (h, regs)) (h, Normal None)

| vreturn : forall h m pc regs val t k rs,
instructionAt m pc = Some (DEX_VReturn k rs) ->
In rs (DEX_Registers.dom regs) ->
DEX_METHODSIGNATURE.result (DEX_METHOD.signature m) = Some t ->
assign_compatible p h val t ->
compat_ValKind_value k val ->
Some val = DEX_Registers.get regs rs ->

DEX_ReturnStep p m (pc, (h, regs)) (h, Normal (Some val))

In the case where the method is not returning a value, the method execution will stop
there. When a method is method is returning a value, the content of the register will

become the return value. It corresponds to the rule
P[i]m = return(rs) rs ∈ dom(ρ)

⟨i, ρ, h⟩ ↝m,Norm ρ(rs), h
.

§5.1 The Semantics of DVM 117

5.1.4 Successor Relation and CDR

Successor Relation The successor relation for DEX is governed by simple rules: a
goto will have target program point as its successor, a branching instruction will
have two successors, i.e., its next instruction and the target branch, a return point
will have no successor, and other instructions will have its next instruction as the
successor. Except the PackedSwitch and SparseSwitch, everything else follows the
rule (as can be seen by the formalization).

| DEX_goto : forall i (o:DEX_OFFSET.t),
DEX_step i (DEX_Goto o) (Some (DEX_OFFSET.jump i o))

corresponds to the rule of goto which has its target program point as its successor,

| DEX_ifcmp : forall i j (cmp:DEX_CompInt) (ra:DEX_Reg) (rb:DEX_Reg)
(o:DEX_OFFSET.t),

next m i = Some j \/ j = DEX_OFFSET.jump i o ->
DEX_step i (DEX_Ifcmp cmp ra rb o) (Some j)

| DEX_ifz : forall i j (cmp:DEX_CompInt) (r:DEX_Reg) (o:DEX_OFFSET.t),
next m i = Some j \/ j = DEX_OFFSET.jump i o ->
DEX_step i (DEX_Ifz cmp r o) (Some j)

corresponds to the rule where branching instructions will have two successors; its
next instruction and its target program point,

| DEX_return_s : forall i,
DEX_step i DEX_Return None

| DEX_vReturn : forall i (k:DEX_ValKind) (rt:DEX_Reg),
DEX_step i (DEX_VReturn k rt) None

corresponds to the rule where return instructions does not have a successor,

| DEX_nop : forall i j,
next m i = Some j ->
DEX_step i DEX_Nop (Some j)

| DEX_move : forall i j (k:DEX_ValKind) (rt:DEX_Reg) (rs:DEX_Reg),
next m i = Some j ->
DEX_step i (DEX_Move k rt rs) (Some j)

| DEX_const : forall i j (k:DEX_ValKind) (rt:DEX_Reg) (v:Z),
next m i = Some j ->
DEX_step i (DEX_Const k rt v) (Some j)

| DEX_ineg : forall i j (rt:DEX_Reg) (rs:DEX_Reg),

118 Formalization of DEXI and DEXO

next m i = Some j ->
DEX_step i (DEX_Ineg rt rs) (Some j)

| DEX_inot : forall i j (rt:DEX_Reg) (rs:DEX_Reg),
next m i = Some j ->
DEX_step i (DEX_Inot rt rs) (Some j)

| DEX_i2b : forall i j (rt:DEX_Reg) (rs:DEX_Reg),
next m i = Some j ->
DEX_step i (DEX_I2b rt rs) (Some j)

| DEX_i2s : forall i j (rt:DEX_Reg) (rs:DEX_Reg),
next m i = Some j ->
DEX_step i (DEX_I2s rt rs) (Some j)

| DEX_ibinop : forall i j (op:DEX_BinopInt) (rt:DEX_Reg) (ra:DEX_Reg)
(rb:DEX_Reg),

next m i = Some j ->
DEX_step i (DEX_Ibinop op rt ra rb) (Some j)

| DEX_ibinopConst : forall i j (op:DEX_BinopInt) (rt:DEX_Reg)
(r:DEX_Reg) (v:Z),

next m i = Some j ->
DEX_step i (DEX_IbinopConst op rt r v) (Some j)

| DEX_iput : forall i j k rs ro f,
next m i = Some j ->
DEX_step i (DEX_Iput k rs ro f) (Some j)

| DEX_iget : forall i j k r ro f,
next m i = Some j ->
DEX_step i (DEX_Iget k r ro f) (Some j)

| DEX_new : forall i j r c,
next m i = Some j ->
DEX_step i (DEX_New r c) (Some j)

corresponds to the rule for other instructions they have their immediate instruction
as their successor,

| DEX_packedSwitch : forall i j (reg:DEX_Reg) (firstKey:Z) (size:nat)
(l:list DEX_OFFSET.t),

next m i = Some j ->
DEX_step i (DEX_PackedSwitch reg firstKey size l) (Some j)

§5.1 The Semantics of DVM 119

| DEX_packedSwitch_jump : forall i j (reg:DEX_Reg) (firstKey:Z)
(size:nat) (l:list DEX_OFFSET.t),

In j l ->
DEX_step i (DEX_PackedSwitch reg firstKey size l)
(Some (DEX_OFFSET.jump i j))

| DEX_sparseSwitch_default : forall i j (reg:DEX_Reg) (size:nat)
(l:list (Z * DEX_OFFSET.t)),

next m i = Some j ->
DEX_step i (DEX_SparseSwitch reg size l) (Some j)

| DEX_sparseSwitch_jump : forall i (j:DEX_OFFSET.t) (reg:DEX_Reg)
(size:nat) (l:list (Z * DEX_OFFSET.t)),

In j (@map _ _ (@snd _ _) l) ->
DEX_step i (DEX_SparseSwitch reg size l)
(Some (DEX_OFFSET.jump i j))

except for PackedSwitch and SparseSwitch which have multiple successors. Apart
from their immediate instruction which is always included as one of their successor,
the target program points in contained in their list are also their successors.

CDR

Record CDR : Type := make_CDR {
region : PC -> PC -> Prop;
junc : PC -> PC -> Prop;
junc_func: forall i j1 j2,
junc i j1 -> junc i j2 -> j1=j2;

soap1: forall i j k,
step i (Some j) ->
step i (Some k) ->
j <> k ->
region i k \/ junc i k;

soap2:forall i j k,
region i j->
step j (Some k) ->
region i k \/ junc i k;

soap3 : forall i j k,
region i j ->
result j ->
~ junc i k

}

junc_ f unc specifies the uniqueness of a junction point. There are three SOAP prop-
erties here because we do not deal with exception cases. We can also ignore the
exception tag τ from each of SOAP statement.

120 Formalization of DEXI and DEXO

• SOAP1 states that ∀i, j, k ∈ PP and tag τ if i ↦ j and i ↦τ k and j ≠ k (i is hence
a branching point) then k ∈ region(i, τ) or k = jun(i, τ). We can see that the
statement translates component by component. “i ↦ j” corresponds to “step i
(Some j)”, i ↦ k corresponds to “step i (Some k)”, “k ∈ region(i, τ)” corresponds
to “region i k”, and “k = jun(i, τ)” corresponds to “junc i k”.

• SOAP2 states that ∀i, j, k ∈ PP and tag τ, if j ∈ region(i, τ) and j ↦ k, then
either k ∈ region(i, τ) or k = jun(i, τ). This statement also translates directly.
“j ∈ region(i, τ)” corresponds to “region i j”, “j ↦ k” corresponds to “step j
(Some k)”, “k ∈ region(i, τ)” corresponds to “region i k”, and “k = jun(i, τ)”
corresponds to “junc i k”.

• SOAP3 states that ∀i, j ∈ PP and tag τ, if j ∈ region(i, τ) and j is a return point
then jun(i, τ) is undefined. “j ∈ region(i, τ)” corresponds to “region i j”, j is a
return point corresponds to “result j”, and undefined “jun(i, τ)” corresponds
to “ junc i k” because whatever program point is k, it will never be the junction
point of i.

5.2 Formalization of DEXI

Having defined the semantics for DVM, we are now going for the non-interference
proof for DEXI . We separate the formalization for DEXI and DEXO because there
are some complications when we introduce object definitions which complicate the
definitions, e.g., the definition of indistinguishability for locations and the treatment
of β mapping. Firstly we will start with the definition of the transfer rules.

5.2.1 Transfer Rules

In this section, we show the correspondence between the transfer rules and its for-
malization in Coq.

| DEX_nop : forall i rt,
texec i DEX_Nop rt (Some rt)

| DEX_goto : forall i (rt:TypeRegisters) (o:DEX_OFFSET.t),
texec i (DEX_Goto o) rt (Some rt)

Nop and Goto do not have any particular constraints. They just have a rule that
their successor has to have a registers typing which is at least as restricted as the
instruction’s registers typing.

| DEX_move : forall i (rt:TypeRegisters) k_rs (k:DEX_ValKind)
(r:DEX_Reg) (rs:DEX_Reg),

In r (MapList.dom rt) ->
In rs (MapList.dom rt) ->
MapList.get rt rs = Some k_rs ->

§5.2 Formalization of DEXI 121

texec i (DEX_Move k r rs) rt
(Some (MapList.update rt r ((se i) U k_rs)))

| DEX_ineg : forall i ks (rt:TypeRegisters) (r:DEX_Reg) (rs:DEX_Reg),
In r (MapList.dom rt) ->
In rs (MapList.dom rt) ->
MapList.get rt rs = Some ks ->
texec i (DEX_Ineg r rs) rt
(Some (MapList.update rt r (L.Simple ((se i) U ks))))

| DEX_inot : forall i ks (rt:TypeRegisters) (r:DEX_Reg) (rs:DEX_Reg),
In r (MapList.dom rt) ->
In rs (MapList.dom rt) ->
MapList.get rt rs = Some ks ->
texec i (DEX_Inot r rs) rt
(Some (MapList.update rt r (L.Simple ((se i) U ks))))

| DEX_i2b : forall i ks (rt:TypeRegisters) (r:DEX_Reg) (rs:DEX_Reg),
In r (MapList.dom rt) ->
In rs (MapList.dom rt) ->
MapList.get rt rs = Some ks ->
texec i (DEX_I2b r rs) rt
(Some (MapList.update rt r (L.Simple ((se i) U ks))))

| DEX_i2s : forall i ks (rt:TypeRegisters) (r:DEX_Reg) (rs:DEX_Reg),
In r (MapList.dom rt) ->
In rs (MapList.dom rt) ->
MapList.get rt rs = Some ks ->
texec i (DEX_I2s r rs) rt
(Some (MapList.update rt r (L.Simple ((se i) U ks))))

Move also does not have any constraints, just the constraint that the next registers
typing have to be at least as restricted as the current registers typing with register r
updated with the least upper bound of the security level of register rs and the current
security environment. This corresponds to the “texec i (DEX_Move k r rs) rt (Some
(MapList.update rt r ((se i) U k_rs)))”. Similarly, unary operators also have the same
rule where we need the subsequent registers typing to be at least as restricted as the
current registers typing modulo the updated register, represented by the statement
“texec i (DEX_I2b r rs) rt (Some (MapList.update rt r (L.Simple ((se i) U ks))))‘”

| DEX_return_ : forall i (rt:TypeRegisters),
sgn.(DEX_resType) = None ->
texec i (DEX_Return) rt None

| DEX_vReturn : forall i (rt:TypeRegisters) k_r kv (k:DEX_ValKind)

122 Formalization of DEXI and DEXO

(r:DEX_Reg),
In r (MapList.dom rt) ->
MapList.get rt r = Some k_r ->
sgn.(DEX_resType) = Some kv ->
((se i) U k_r) <= kv ->
texec i (DEX_VReturn k r) rt None

If the return instruction does not return a value, then there is no constraint involved.
When it is returning a value, we have to make sure that the security value of the
returned value is less than the one specified in the policy. This corresponds to the
statement “ ((se i) U k_r) <= kv” where “kv” is the policy for return value.

| DEX_const : forall i (rt:TypeRegisters) (k:DEX_ValKind)
(r:DEX_Reg) (v:Z),

In r (MapList.dom rt) ->
texec i (DEX_Const k r v) rt

(Some (MapList.update rt r (L.Simple (se i))))

Similar to Move, Const also does not have a constraint except that the successor’s
register typing have to be at least as restricted as the current registers typing with
the register r updated with the current security environment. This correspond to
the statement “texec i (DEX_Const k r v) rt (Some (MapList.update rt r (L.Simple (se
i))))”.

| DEX_packedSwitch : forall i k (rt:TypeRegisters) (r:DEX_Reg)
(firstKey:Z) (size:nat) (l:list DEX_OFFSET.t),

MapList.get rt r = Some k ->
(forall j, region i j -> k <= se j) ->
texec i (DEX_PackedSwitch r firstKey size l) rt (Some rt)

| DEX_sparseSwitch : forall i k (rt:TypeRegisters) (reg:DEX_Reg)
(size:nat) (l:list (Z * DEX_OFFSET.t)),

MapList.get rt reg = Some k ->
(forall j, region i j -> k <= se j) ->
texec i (DEX_SparseSwitch reg size l) rt (Some rt)

| DEX_ifcmp : forall i ka kb (rt:TypeRegisters) (cmp:DEX_CompInt)
(ra:DEX_Reg) (rb:DEX_Reg) (o:DEX_OFFSET.t),

In ra (MapList.dom rt) ->
In rb (MapList.dom rt) ->
MapList.get rt ra = Some ka ->
MapList.get rt rb = Some kb ->
(forall j, region i j -> (ka U kb) <= se j) ->
texec i (DEX_Ifcmp cmp ra rb o) rt (Some rt)

| DEX_ifz : forall i k (rt:TypeRegisters) (cmp:DEX_CompInt)

§5.2 Formalization of DEXI 123

(r:DEX_Reg) (o:DEX_OFFSET.t),
In r (MapList.dom rt) ->
MapList.get rt r = Some k ->
(forall j, region i j -> k <= se j) ->
texec i (DEX_Ifz cmp r o) rt (Some rt)

For all the branching instructions, the registers typing of the successors have to be at
least as restricted as the current registers typing. There is an additional constraint in
that the instructions executing under the guard of the current instruction (executing
under the region) will have their security environment lifted to the least upper bound
of the security level of the registers involved. This statement, e.g., “(forall j, region
i j -> k <= se j)” corresponds to the typing constraint “∀j′ ∈ region(i, Norm), se(i) ⊔
rt(r) ≤ se(j′)”.

| DEX_ibinop : forall i ka kb (rt:TypeRegisters) (op:DEX_BinopInt)
(r:DEX_Reg) (ra:DEX_Reg) (rb:DEX_Reg),

In r (MapList.dom rt) ->
In ra (MapList.dom rt) ->
In rb (MapList.dom rt) ->
MapList.get rt ra = Some ka ->
MapList.get rt rb = Some kb ->
texec i (DEX_Ibinop op r ra rb) rt
(Some (MapList.update rt r (L.Simple ((ka U kb) U (se i)))))

| DEX_ibinopConst : forall i ks (rt:TypeRegisters) (op:DEX_BinopInt)
(r:DEX_Reg) (rs:DEX_Reg) (v:Z),

In r (MapList.dom rt) ->
In rs (MapList.dom rt) ->
MapList.get rt rs = Some ks ->
texec i (DEX_IbinopConst op r rs v) rt

(Some (MapList.update rt r (L.Simple (ks U (se i)))))

Binary operators behave similarly to Move and other unary instructions except that
the security level involved in the update is the least upper bound of the registers
involved. To be more explicit, the update “ texec i (DEX_Ibinop op r ra rb) rt (Some
(MapList.update rt r (L.Simple ((ka U kb) U (se i)))))” corresponds to the statement
rt⊕{r ↦ (rt(ra) ⊔ rt(rb) ⊔ se(i))}.

5.2.2 Indistinguishability Relations

The indistinguishability itself is simple in nature; it revolves around being able to de-
fine what it means for a state to be indistinguishable. We define what it means for any
two values to be indistinguishable, what it means for any two registers to be indistin-
guishable, what it means for any two registers mappings to be indistinguishable, and
finally what it means for any two states to be indistinguishable. Subsequently, we

124 Formalization of DEXI and DEXO

also define some properties of these indistinguishability relations which are useful
in proving the soundness theorem.
Definitions

Inductive Value_in : DEX_value -> DEX_value -> Prop :=
| Value_in_num: forall n,

Value_in (Num n) (Num n).

Inductive Value_in_opt :
option DEX_value -> option DEX_value -> Prop :=

| Value_in_opt_some:
forall v v’,
Value_in v v’ ->
Value_in_opt (Some v) (Some v’)

| Value_in_opt_none: Value_in_opt None None.

These two definitions above are the simple definitions of what it means for a value
to be indistinguishable. Simply put, the value is indistinguishable if the value is the
same, or in the case of optional value, two values are indistinguishable also when
both of them are none. This corresponds to Definition 3.3.3.

Inductive Reg_in (observable:L.t) (r r’: DEX_Registers.t)
(rt rt’: TypeRegisters) (rn:DEX_Reg) : Prop :=

| Reg_high_in : forall k k’, MapList.get rt rn = Some k ->
MapList.get rt’ rn = Some k’ -> ~(L.leql k observable) ->
~(L.leql k’ observable) -> Reg_in observable r r’ rt rt’ rn

| Reg_nhigh_in : Value_in_opt (DEX_Registers.get r rn)
(DEX_Registers.get r’ rn) -> Reg_in observable r r’ rt rt’ rn.

For two registers to be indistinguishable from each other, they must satisfy:

• the security level for both of them are higher than the capability of the observer,
which is captured by the first clause (Reg_high_in); or

• they have to have the same value, which is captured by the second clause
(Reg_nhigh_in).

This corresponds to Definition 4.1.2.

Inductive Regs_in (observable:L.t) (r r’: DEX_Registers.t)
(rt rt’: TypeRegisters) : Prop :=

| Build_Regs_in : eq_set (MapList.dom rt) (MapList.dom rt’) ->
(forall (rn:DEX_Reg), Reg_in observable r r’ rt rt’ rn) ->
Regs_in observable r r’ rt rt’.

Two registers mapping are indistinguishable w.r.t. their respective registers typing
if every register in the mapping is indistinguishable. This is captured by the only
clause in the inductive definition “(forall (rn:DEX_Reg), Reg_in observable r r’ rt rt’
rn)”, and corresponds to Definition 4.1.3.

§5.2 Formalization of DEXI 125

Inductive st_in (observable:L.t) (rt rt’:TypeRegisters) :
DEX_PC * DEX_Registers.t ->
DEX_PC * DEX_Registers.t -> Prop :=

| Build_st_in: forall pc pc’ r r’,
Regs_in observable r r’ rt rt’ ->
st_in observable rt rt’ (pc,r) (pc’,r’).

Two states are indistinguishable if the registers mappings are indistinguishable. This
definition corresponds to Definition 4.2.1.

Inductive indist_return_value (observable:L.t) (s:DEX_sign) :
DEX_ReturnVal -> DEX_ReturnVal -> Prop :=

| indist_return_val : forall v1 v2 k,
s.(DEX_resType) = Some k ->
(L.leql k observable -> Value_in v1 v2) ->
indist_return_value observable s
(Normal (Some v1)) (Normal (Some v2))

| indist_return_void :
s.(DEX_resType) = None ->
indist_return_value observable s (Normal None) (Normal None).

Since there are two return instructions, there are also two cases where the return
value is deemed to be indistinguishable:

• If the instruction is returning a value, then if the security level is lower than
the capability of the observer, the returned values have to be the same. This
statement “ (L.leql k observable -> Value_in v1 v2)” corresponds to the first

clause of Definition 4.1.7 (
h1 ∼kobs,β h2 k⃗r[n] ≤ kobs ⇒ v1 ∼β v2

(v1, h1) ∼kobs,k⃗r ,β (v2, h2)
).

• If the instruction is not returning any value, then it is indistinguishable if both
of the return values are indeed nothing (indist_return_void).

Inductive state : Type :=
intra : DEX_IntraNormalState -> TypeRegisters -> state

| ret : DEX_ReturnVal -> state.

Inductive indist (observable:L.t) (p:DEX_ExtendedProgram)
(m:DEX_Method) (sgn:DEX_sign) : state -> state -> Prop :=

| indist_intra : forall pc pc’ r r’ rt rt’,
st_in observable rt rt’ (pc,r) (pc’,r’) ->
indist observable p m sgn (intra (pc,r) rt) (intra (pc’,r’) rt’)

| indist_return : forall v v’,
indist_return_value observable sgn v v’->
indist observable p m sgn (ret v) (ret v’).

126 Formalization of DEXI and DEXO

Finally indistinguishable itself is defined between two return values or two states of
execution.
Properties In particular, we are interested in the symmetry and transitivity of the
indistinguishability relations defined above.

Lemma Value_in_sym : forall v1 v2, Value_in v1 v2 -> Value_in v2 v1.

Lemma Value_in_opt_sym : forall v1 v2,
Value_in_opt v1 v2 -> Value_in_opt v2 v1.

Lemma Value_in_trans : forall v1 v2 v3,
Value_in v1 v2 -> Value_in v2 v3 -> Value_in v1 v3.

Lemma Value_in_opt_trans : forall v1 v2 v3,
Value_in_opt v1 v2-> Value_in_opt v2 v3 -> Value_in_opt v1 v3.

Lemma Reg_in_sym : forall obs r r’ rt rt’ rn,
Reg_in obs r r’ rt rt’ rn -> Reg_in obs r’ r rt’ rt rn.

Lemma Regs_in_sym : forall r1 r2 rt1 rt2,
Regs_in kobs r1 r2 rt1 rt2 -> Regs_in kobs r2 r1 rt2 rt1.

Lemma st_in_sym : forall rt rt’ r r’,
st_in kobs rt rt’ r r’ -> st_in kobs rt’ rt r’ r.

There are also some useful lemmas.

Lemma Reg_in_upd_low:
forall k (v v’ : DEX_value) (r r’ : DEX_Registers.t)

(rt rt’ : TypeRegisters) (reg : DEX_Reg) (b b’: FFun.t DEX_Location),
Reg_in kobs b b’ r r’ rt rt’ reg ->
Value_in b b’ v v’ ->
L.leql k kobs ->
Reg_in kobs b b’ (DEX_Registers.update r reg v)

(DEX_Registers.update r’ reg v’) (MapList.update rt reg k)
(MapList.update rt’ reg k) reg.

This lemma specifies that update in low security environment with the same value
will preserve register indistinguishability.

Lemma Reg_in_upd_high:
forall k k’ (v v’ : DEX_value) (r r’ : DEX_Registers.t)

(rt rt’ : TypeRegisters) (reg : DEX_Reg) (b b’: FFun.t DEX_Location),
Reg_in kobs b b’ r r’ rt rt’ reg ->
~L.leql k kobs ->
~L.leql k’ kobs ->

§5.2 Formalization of DEXI 127

Reg_in kobs b b’ (DEX_Registers.update r reg v)
(DEX_Registers.update r’ reg v’) (MapList.update rt reg k)
(MapList.update rt’ reg k’) reg.

This lemma specifies that update in high security environment will always preserve
register indistinguishability.

5.2.3 Non-Interference Proof for DEXI

High Result For a return value to be a high result, then the security level of the return
value must be higher than the observer capability. The second clause corresponds to
Definition 4.2.3.

Inductive high_result (observable:L.t) (s:DEX_sign) :
DEX_ReturnVal -> Prop :=

| high_result_void :
s.(DEX_resType) = None ->
high_result observable s (Normal None)

| high_result_value : forall v k,
s.(DEX_resType) = Some k ->
~ L.leql k observable ->
high_result observable s (Normal (Some v)).

High Branching The high branching lemma states that in the case where two execu-
tions from the same program point branched to different program points, then all the
program points executing in the region will have high security environment. This
corresponds to Lemma 4.2.12

Lemma soap2_intra_normal :
forall sgn pc pc2 pc2’ i r1 rt1 r1’ rt1’ r2 r2’ rt2 rt2’ ,

instructionAt m pc = Some i ->
NormalStep se reg m sgn i (pc,r1) rt1 (pc2,r2) rt2 ->
NormalStep se reg m sgn i (pc,r1’) rt1’ (pc2’,r2’) rt2’ ->
pc2 <> pc2’ ->
st_in kobs rt1 rt1’ (pc,r1) (pc,r1’) ->

forall j, reg pc j -> ~ L.leql (se j) kobs.

“st_in kobs rt1 rt’ (pc,r1) pc,r1’)” corresponds to “s1 ∼kobs,rt1,rt2 s2”. “NormalStep se
reg m sgn i (pc,r1) rt1 (pc2,r2) rt2” corresponds to “s1 ↝ ⟨i1, ρ′1⟩” and “i ⊢ rt1 ⇒ rt′1”,
“NormalStep se reg m sgn i (pc, r1’) rt1’ (pc2’, r2’) rt2’ ” corresponds to “ s2 ↝ ⟨i2, ρ′2⟩”
and “i ⊢ rt2 ⇒ rt′2”, “pc2 <> pc2’ ” corresponds to “i1 ≠ i2”, “ forall j, reg pc j -> L.leql
(se j) kobs” corresponds to “∀j ∈ region(i), se(j) ≰ kobs”.
Locally Respect The locally respect lemma states that at the same program point, an
instruction will execute into two indistinguishable states or return value. Although
this is different from the specialized case where the successors have to be the same

128 Formalization of DEXI and DEXO

program point, this lemma still holds for the case where there is no exception in-
volved.

Lemma indist2_intra : forall m sgn se rt ut ut’ s s’ u u’,
forall H0:P (SM _ _ m sgn),

indist sgn rt rt s s’ ->
pc s = pc s’ ->
exec m s (inl _ u) ->
exec m s’ (inl _ u’) ->
texec m (PM_P _ H0) sgn se (pc s) rt (Some ut) ->
texec m (PM_P _ H0) sgn se (pc s) rt (Some ut’) ->

indist sgn ut ut’ u u’.

Lemma indist2_return : forall (m : Method) (sgn : Sign) (se : PC -> L.t)
(rt : registertypes) (s s’ : istate) (u u’ : rstate) ,
forall H:P (SM Method Sign m sgn),
indist sgn rt rt s s’ ->
pc s = pc s’ ->
exec m s (inr istate u) ->
exec m s’ (inr istate u’) ->
texec m (PM_P _ H) sgn se (pc s) rt None ->
texec m (PM_P _ H) sgn se (pc s) rt None ->

rindist sgn u u’.

In the formalization, we split the lemma into two lemmas, one case is where the
successors are still within the program, and the other case is when the successors are
return points. We first show the correspondence for the case where the successors are
still within the program. “indist sgn rt rt s s’ ” corresponds to “s1 ∼kobs,rt1,rt2 s2”, “exec
m s (inl _ u)” corresponds to “s1 ↝ s′1”, “texec m (PM_P _ H0) sgn se (pc s) rt (Some
ut)” corresponds to “i ⊢ rt1 ⇒ rt′1”, “exec m s’ (inl _ u’)” corresponds to “s2 ↝ s′2”,
“texec m (PM_P _ H0) sgn se (pc s) rt (Some ut’)” corresponds to “i ⊢ rt′2 ⇒ rt′2”,
“indist sgn ut ut’ u u’ ” corresponds to “s′1 ∼kobs,rt′1,rt′2

s′2”.
For the case where it involves return points, “exec m s (inr istate u)” corresponds

to “s1 ↝ v1”, “texec m (PM_P _ H) sgn se (pc s) rt None” corresponds to “i ⊢ rt1 ⇒”,
“exec m s’ (inr istate u’)” corresponds to “s2 ↝ v2”, “texec m (PM_P _ H) sgn se (pc
s) rt None” corresponds to “i ⊢ rt′2 ⇒”, “rindist sgn u u’ ” corresponds to “kr ≤ kobs
implies v1 ∼ v2”.
Indistinguishability at Junction Point Ultimately, the main part of our proof which
is different from that of Barthe et al. is in proving the indistinguishability of program
point at the junction point after a branch, after which we can use the induction
hypothesis to conclude the proof. It relies on several definitions below, namely the
execution path, that the path is in the region, and the notion of change.

Inductive path (m:Method) (i:istate) : istate -> Type :=
| path_base : forall j, exec m i (inl j) -> path m i j

§5.2 Formalization of DEXI 129

| path_step : forall j k, path m k j -> exec m i (inl k)
-> path m i j.

Inductive path_in_region (m:Method) (cdr: CDR (step m)) (s:PC)
(i j:istate) : (path m i j) -> Prop :=
| path_in_reg_base : forall (Hexec:exec m i (inl j)),

region cdr s (pc i) ->
path_in_region m cdr s i j (path_base m i j Hexec)

| path_in_reg_ind : forall k (Hexec:exec m i (inl k)) (p:path m k j),
region cdr s (pc i) -> path_in_region m cdr s k j p ->
path_in_region m cdr s i j (path_step m i j k p Hexec).

The path is defined as the transitive closure of the execution step between any two
states in the execution path. The base of this induction is taking just one execution
step, and we can construct the path by adding one more step to the existing path. We
decided not to use a path of length 0 as the base because it is possible for an execution
path to be a loop, thus creating ambiguity. The inductive definition path_in_region
corresponds to the statement “an execution trace ⟨i0, ρ0, h0⟩ ↝m,τ0 . . . ⟨ik, ρk, hk⟩ ↝m,τk

(r, hr) where ⟨i0, ρ0, h0⟩ ∈ region(s, τ)” in Lemma 4.2.26, Lemma 4.2.27 and Lemma 4.2.28.

Inductive changed_at (m:Method) (i:istate) (r:Reg) : Prop :=
| const_change : forall k v, instructionAt m (pc i) =

Some (DEX_Const k r v) -> changed_at m i r
| move_change : forall k rs, instructionAt m (pc i) =

Some (DEX_Move k r rs) -> changed_at m i r
| ineg_change : forall rs, instructionAt m (pc i) =

Some (DEX_Ineg r rs) -> changed_at m i r
| inot_change : forall rs, instructionAt m (pc i) =

Some (DEX_Inot r rs) -> changed_at m i r
| i2b_change : forall rs, instructionAt m (pc i) =

Some (DEX_I2b r rs) -> changed_at m i r
| i2s_change : forall rs, instructionAt m (pc i) =

Some (DEX_I2s r rs) -> changed_at m i r
| ibinop_change : forall op ra rb, instructionAt m (pc i) =

Some (DEX_Ibinop op r ra rb) -> changed_at m i r
| ibinopConst_change : forall op rs v, instructionAt m (pc i) =

Some (DEX_IbinopConst op r rs v) -> changed_at m i r.

Inductive changed (m:Method) (i j: istate) :
(path m i j) -> Reg -> Prop :=
| changed_onestep : forall r (p:path m i j), changed_at m i r

-> changed m i j p r
| changed_path : forall k r (p:path m k j) (H:exec m i (inl k)),

changed m k j p r -> changed m i j
(path_step Method istate rstate exec m i j k p H) r.

130 Formalization of DEXI and DEXO

The definition of changed refers to any modifications that happen to a register. The
change can happen anywhere within a path, but at least change must exist for this
predicate to be true. The change itself is defined as the target register of any in-
structions that modify its value, regardless whether the instruction itself is actually
modifying the value. It is possible to change the register’s value to the same value,
and it is still counted as a change.

Lemma not_changed_same :
forall m sgn i j (Hpath: path m i j) r (H: P (SM _ _ m sgn)) ,
~changed m i j Hpath r -> (same_reg_val i j r) /\

(high_reg (RT m sgn (pc i)) r -> high_reg (RT m sgn (pc j)) r).

This lemma states that in an execution trace, any register that is not changed will
have the same value and security level. This lemma corresponds to Lemma 4.2.29
where “(indist_reg_val i j r)” corresponds to “ρ0(r) = ρk(r)” and “(high_reg (RT m
sgn (pc i)) r -> high_reg (RT m sgn (pc j)) r)” corresponds to “RT0(r) = RTk(r)”.

Lemma changed_high : forall m sgn s i j r (H:P (SM _ _ m sgn))
(Hpath: path m (* sgn (PM_P _ H) *) i j),

(forall k:PC, region (cdr m (PM_P _ H)) s k ->
~ L.leql (se m sgn k) kobs) ->

path_in_region m (cdr m (PM_P _ H)) s i j Hpath ->
region (cdr m (PM_P _ H)) s (pc i) ->
junc (cdr m (PM_P _ H)) s (pc j) ->
changed m i j Hpath r -> high_reg (RT m sgn (pc j)) r.

This lemma states that any changes in the high region will render the security level
of the affected register to be lifted to high as well. This corresponds to Lemma 4.2.28,
where “path_in_region m (cdr m (PM_P _ H)) s k” corresponds to “⟨i0, ρ0, h0⟩ ↝m,τ0

. . . ⟨ik, ρk, hk⟩ where ⟨i0, ρ0, h0⟩ ∈ region(s, τ)”. “ (forall k:PC, region (cdr m (PM_P _
H)) s k -> L.leql (se m sgn k) kobs)” corresponds to “se is high in region(s, τ)”,
“junc (cdr m (PM_P _ H)) s (pc j)” corresponds to “k = jun(s, τ)”, “changed m i j
Hpath r” corresponds to “the value of r is changed by one or more instruction in the
execution trace”, “high_reg (RT m sgn (pc j)) r” corresponds to “RTk(r) is high”.

Lemma junction_indist :
forall m sgn ns ns’ s s’ u u’ res res’ i (H: P (SM m sgn)),
indist sgn (RT m sgn (pc s)) (RT m sgn (pc s’)) s s’ ->
exec m s (inl u) -> exec m s’ (inl u’) ->
region (cdr m (PM_P _ H)) i (pc u) ->
region (cdr m (PM_P _ H)) i (pc u’) ->
high_region m (PM_P _ H) sgn i ->
evalsto m ns u res -> evalsto m ns’ u’ res’ ->
indist sgn (RT m sgn (pc u)) (RT m sgn (pc u’)) u u’ ->
(exists v, exists v’, exists ps, exists ps’,

§5.2 Formalization of DEXI 131

evalsto m ps v res /\ ps <= ns /\
evalsto m ps’ v’ res’ /\ ps’ <= ns’ /\
junc (cdr m (PM_P _ H)) i (pc v) /\
junc (cdr m (PM_P _ H)) i (pc v’) /\
indist sgn (RT m sgn (pc v)) (RT m sgn (pc v’)) v v’)

\/ (high_result sgn res /\ high_result sgn res’).

Lemma junction_indist_2 :
forall m sgn ns ns’ s s’ u u’ res res’ i (H: P (SM m sgn)),
indist sgn (RT m sgn (pc s)) (RT m sgn (pc s’)) s s’ ->
exec m s (inl u) -> exec m s’ (inl u’) ->
region (cdr m (PM_P _ H)) i (pc u) ->
junc (cdr m (PM_P _ H)) i (pc u’) ->
high_region m (PM_P _ H) sgn i ->
evalsto m ns u res -> evalsto m ns’ u’ res’ ->
indist sgn (RT m sgn (pc u)) (RT m sgn (pc u’)) u u’ ->
(exists v, exists ps,
evalsto m ps v res /\ ps <= ns /\
junc (cdr m (PM_P _ H)) i (pc v) /\
indist sgn (RT m sgn (pc v)) (RT m sgn (pc u’)) v u’).

Essentially, these two lemmas are the same except that the second lemma deals
with the case where one of the successors is a junction point. This corresponds
to Lemma 4.2.30, although it is not a precise implementation in that there is no men-
tioning of the indistinguishability of the successors. The reason for the difference is
that since locally respect lemma is still not specialized without the exception mecha-
nism, we decided to use it directly. This implementation serves as the basis to extend
even to include exception mechanism, as we use this additional assumption to enable
us to use Lemma 4.2.28. In the exception submachine where there is no additional as-
sumption, we need to show that executing one step instruction indeed still resulting
in the change of the register to high security level.
Type Check Definition

Definition check : bool := for_all_P p
(fun m sgn =>
(check_rt0 m sgn) &&
for_all_steps_m m
(fun i ins oj =>
DEX_tcheck m sgn (se m sgn) (selift m sgn) (RT m sgn) i ins)

).

Definition check_ni (p:DEX_ExtendedProgram) reg jun se RT : bool :=
check_well_formed_lookupswitch p &&
check_all_cdr p reg jun &&
check p se RT reg.

132 Formalization of DEXI and DEXO

The definition of the type check corresponds to Definition 4.1.1. “(check_rt0 m sgn)”
corresponds to “RT1 = k⃗a”, i.e., the initial configuration of the registers typing, and
the other clause corresponds to the two conditions of type check for instructions
that executes within a method and return points. In particular, it corresponds to the
following conditions: ∀i, j ∈ PP , e ∈ {Norm+ C}:

• i ↦e j implies there exists rt ∈ (R → S) such that Γ, ft, region, se, sgn, i ⊢e RTi ⇒
rt and rt ⊑ RTj;

• i ↦e implies Γ, ft, region, se, sgn, i ⊢e RTi ⇒.

Type System Soundness

Definition NI (p:DEX_ExtendedProgram) : Prop :=
forall kobs m sgn i r1 r2 res1 res2,
P p (SM _ _ m sgn) ->
init_pc m i ->
indist kobs sgn (rt0 m sgn) (rt0 m sgn) (i,r1) (i,r2) ->
DEX_BigStepAnnot.DEX_BigStep p.(DEX_prog) m (i,r1) (res1) ->
DEX_BigStepAnnot.DEX_BigStep p.(DEX_prog) m (i,r2) (res2) ->

indist_return_value kobs sgn res1 res2.

Theorem check_ni_correct : forall p reg jun se RT,
check_ni p reg jun se RT = true ->
NI p.

The definition of non-interference match Definition 4.1.8. In particular,

• “indist kobs sgn (rt0 m sgn) (rt0 m sgn) (i,r1) (i,r2)” matches “ρ1 ∼kobs,RT0,RT0,β
ρ2”,

• “DEX_BigStepAnnot.DEX_BigStep p.(DEX_prog) m (i,r1) (res1)” corresponds
to “⟨1, ρ1, h1⟩ ↝+

m v1, h′1”,

• “DEX_BigStepAnnot.DEX_BigStep p.(DEX_prog) m (i,r1) (res1)” corresponds
to “⟨1, ρ2, h2⟩ ↝+

m v2, h′2”,

• “indist_return_value kobs sgn res1 res2” corresponds to “(v1, h′1) ∼kobs,k⃗r ,β′ (v2, h′2)”.

The final theorem states that if a program is typable then it is non-interferent.

5.3 Formalization of DEXO

In this section, we provide the formalization for DEXO. There are many similarities
with the proof for DEXI . So, we will focus only on the differences here. Proving
DEXO serves to show that there is no problem in extending the proof a la Barthe et
al. to include the method calling, exceptions, and arrays.

§5.3 Formalization of DEXO 133

5.3.1 Transfer Rules

In this section, we show the correspondence between the transfer rules and its for-
malization in Coq.

| DEX_iget : forall i f k ko r ro rt,
In r (MapList.dom rt) ->
In ro (MapList.dom rt) ->
MapList.get rt ro = Some ko ->
texec i (DEX_Iget k r ro f) rt (Some
(MapList.update rt r (L.Simple ((se i) U (ko U (DEX_ft p f))))))

Iget does not have any constraints, just the constraint that the next registers typing
have to be at least as restricted as the current registers typing with register r updated
with the lower bound of the current security environment, the security level of ro,
and the field security level (ft(f)).

| DEX_iput : forall i f k ko ks ro rs rt,
In rs (MapList.dom rt) ->
In ro (MapList.dom rt) ->
MapList.get rt ro = Some ko ->
MapList.get rt rs = Some ks ->
ks <= DEX_ft p f ->
ko <= DEX_ft p f ->
se i <= DEX_ft p f ->
texec i (DEX_Iput k rs ro f) rt (Some rt)

In the context of DEXO, Iput only has one constraint, i.e., (rt(ro) ⊔ se(i)) ⊔ext rt(rs) ≤
ft(f). This constraint is captured by the three constraint in the formalization: “ks <=
DEX_ft p f”, “ko <= DEX_ft p f”, and “se i <= DEX_ft p f”, where “ks” is “rt(rs)”,
and “ko” is “rt(ro)”.

| DEX_new : forall i r rt c,
In r (MapList.dom rt) ->
texec i (DEX_New r c) rt

(Some (MapList.update rt r (L.Simple (se i))))

New also does not have any constraints, just the constraint that the next registers
typing have to be at least as restricted as the current registers typing with register
r updated with the current security environment. This corresponds to the “texec i
(DEX_New r c) rt (Some (MapList.update rt r (L.Simple (se i))))”. Implicit in this
typing rule is that the β mapping needs to be updated when the current security
environment is low. This is best captured by the combination of the operational
semantics and typing rule.

Inductive NormalStep_new (reg:DEX_Reg) (c:DEX_ClassName)

134 Formalization of DEXI and DEXO

(m:DEX_Method) (sgn:DEX_sign) :
DEX_IntraNormalState -> TypeRegisters ->
FFun.t DEX_Location -> DEX_IntraNormalState ->
TypeRegisters -> FFun.t DEX_Location -> Prop :=

| new : forall pc pc’ h h’ r r’ loc rt rt’ b,

In reg (DEX_Registers.dom r) ->
In reg (MapList.dom rt) ->
next m pc = Some pc’ ->
DEX_Heap.new h p (DEX_Heap.DEX_LocationObject c) =

Some (pair loc h’) ->
r’ = DEX_Registers.update r reg (Ref loc) ->
rt’ = MapList.update rt reg (se pc) ->

NormalStep_new reg c m sgn (pc,(h,r)) rt b (pc’,(h’,r’)) rt’
(newb (se pc) b loc).

where “newb” is a function which either returns the previous β mapping if the
current security environment is high or updates the β mapping if the current security
environment is low.

Definition newb (k:L.t) (b:FFun.t DEX_Location)
(loc:DEX_Location) : FFun.t DEX_Location :=

if L.leql_dec k kobs then (FFun.extends b loc) else b.

5.3.2 Indistinguishability Relations

The indistinguishability relations are really similar to that of DEXI , with the dif-
ference that the value indistinguishability to also include indistinguishable object
reference. We also have indistinguishability between objects and indistinguishability
between heaps. The state indistinguishability also depends on heap indistinguisha-
bility now. The indistinguishability itself is simple in nature; it revolves around being
able to define what it means for a state to be indistinguishable. We define what it
means for any two values to be indistinguishable, what it means for any two registers
to be indistinguishable, what it means for any two registers mappings to be indis-
tinguishable, and finally what it means for any two states to be indistinguishable.
Subsequently, we also define some properties of these indistinguishability relations
which are useful in proving the soundness theorem.
Definitions

Inductive Value_in (b b’:FFun.t DEX_Location) :
DEX_value -> DEX_value -> Prop :=

| Value_in_null: Value_in b b’ Null Null
| Value_in_num: forall n,

Value_in b b’ (Num n) (Num n)
| Value_in_ref: forall loc loc’ n,

§5.3 Formalization of DEXO 135

FFun.lookup b n = Some loc ->
FFun.lookup b’ n = Some loc’ ->
Value_in b b’ (Ref loc) (Ref loc’).

Inductive Value_in_opt (b b’:FFun.t DEX_Location) :
option DEX_value -> option DEX_value -> Prop :=

| Value_in_opt_some:
forall v v’,
Value_in b b’ v v’ ->
Value_in_opt b b’ (Some v) (Some v’)

| Value_in_opt_none: Value_in_opt b b’ None None.

These value indistinguishability definitions are similar to before except the additional
clause when they are dealing with reference type value. Two reference type value
are indistinguishable if both of them are null, or they have the same index in the β

mapping. This is slightly different from Definition 3.3.3, but they behave in the same
manner.

Record hp_in (observable:L.t) (ft:DEX_FieldSignature -> L.t)
(b b’: FFun.t DEX_Location) (h h’: DEX_Heap.t) : Prop :=

make_hp_in {
object_in : forall n loc loc’ f cn cn’,
FFun.lookup b n = Some loc ->
FFun.lookup b’ n = Some loc’ ->
DEX_Heap.typeof h loc = Some (DEX_Heap.DEX_LocationObject cn) ->
DEX_Heap.typeof h’ loc’ = Some (DEX_Heap.DEX_LocationObject cn’) ->
L.leql (ft f) observable->
Value_in_opt b b’
(DEX_Heap.get h (DEX_Heap.DEX_DynamicField loc f))
(DEX_Heap.get h’ (DEX_Heap.DEX_DynamicField loc’ f));

class_object_in : forall n loc loc’,
FFun.lookup b n = Some loc ->
FFun.lookup b’ n = Some loc’ ->
DEX_Heap.typeof h loc = DEX_Heap.typeof h’ loc’;

compat_ffun : FFun.compat b b’;
left_inj : FFun.is_inj b;
right_inj : FFun.is_inj b’;
left_heap_compat : ffun_heap_compat b h;
right_heap_compat : ffun_heap_compat b’ h’

}.

For two heaps to be indistinguishable from each other, they must satisfy:

• for any two objects with indistinguishable location, if ft(f) is low, then the field
must contain the same value;

136 Formalization of DEXI and DEXO

• β and β′ is a bijection; and

• for every location in β, there is a corresponding mapping in the heap.

This corresponds to Definition 4.1.4 with the minor difference in the β mapping.

Inductive st_in (observable:L.t) (ft:DEX_FieldSignature -> L.t)
(b b’:FFun.t DEX_Location) (rt rt’:TypeRegisters) :

DEX_PC * DEX_Heap.t * DEX_Registers.t ->
DEX_PC * DEX_Heap.t * DEX_Registers.t -> Prop :=

| Build_st_in: forall pc pc’ h h’ r r’,
Regs_in observable b b’ r r’ rt rt’ ->
hp_in observable ft b b’ h h’ ->
st_in observable ft b b’ rt rt’ (pc,h,r) (pc’,h’,r’).

Two states are indistinguishable if the registers mappings are indistinguishable and
the heaps are indistinguishable. This definition corresponds to Definition 4.2.1.

The definition of indistinguishability between return values is really similar with
DEXI with the addition that now it also involves heap. The final indistinguishability
relation itself is the same as DEXI , i.e., it is defined between two return values or
two states of execution.
Properties The properties of indistinguishability relations defined in DEXI carry over
to DEXO with a minor adjustment of heap and β mapping. Additionally, there are
also some useful properties of the heap and also the auxiliary lemmas.

Lemma hp_in_sym : forall h1 h2 b1 b2,
hp_in kobs ft b1 b2 h1 h2 -> hp_in kobs ft b2 b1 h2 h1.

Lemma hp_in_trans : forall h1 h2 h3 b1 b2 b3,
hp_in kobs ft b1 b2 h1 h2 ->
hp_in kobs ft b2 b3 h2 h3 ->
hp_in kobs ft b1 b3 h1 h3.

Lemma hp_in_putfield_high_update_left : forall loc b b’ h h’ f v cn,
hp_in kobs ft b b’ h h’ ->
~ (L.leql (ft f) kobs) ->
DEX_Heap.typeof h loc = Some (DEX_Heap.DEX_LocationObject cn) ->
hp_in kobs ft b b’
(DEX_Heap.update h (DEX_Heap.DEX_DynamicField loc f) v) h’.

This lemma corresponds to Lemma 4.2.5, i.e., an update in high security environment
preserves heap indistinguishability.

Lemma ffun_extends_hp_in_new_left: forall c b b’ h h’ hn loc,
hp_in kobs ft b b’ h h’ ->
DEX_Heap.new h p (DEX_Heap.DEX_LocationObject c) =

§5.3 Formalization of DEXO 137

Some (pair loc hn) ->
hp_in kobs ft b b’ hn h’.

Lemma ffun_extends_hp_in_new_right: forall c b b’ h h’ hn’ loc,
hp_in kobs ft b b’ h h’ ->
DEX_Heap.new h’ p (DEX_Heap.DEX_LocationObject c) =

Some (pair loc hn’) ->
hp_in kobs ft b b’ h hn’.

Lemma ffun_extends_hp_in_simpl: forall c c’ b b’ h h’ hn hn’ loc loc’,
hp_in kobs ft b b’ h h’ ->
DEX_Heap.new h p (DEX_Heap.DEX_LocationObject c) =
Some (pair loc hn) ->

DEX_Heap.new h’ p (DEX_Heap.DEX_LocationObject c’) =
Some (pair loc’ hn’) ->

hp_in kobs ft b b’ hn hn’.

These three lemmas constitute Lemma 4.2.8.

5.3.3 Non-Interference Proof for DEXO

The definition of high result is still the same as DEXI with the addition of the heap.
The definition of high branching lemma locally respect lemma are also the same with
the addition of the heap and β mapping.

Lemma indist2_intra : forall m sgn se rt ut ut’ s s’ u u’ b b’,
forall H0:P (SM _ _ m sgn),
indist sgn rt rt b b’ s s’ ->
pc s = pc s’ ->
exec m s (inl _ u) ->
exec m s’ (inl _ u’) ->
texec m (PM_P _ H0) sgn se (pc s) rt (Some ut) ->
texec m (PM_P _ H0) sgn se (pc s) rt (Some ut’) ->
exists bu, exists bu’,
border b bu /\ border b’ bu’ /\
indist sgn ut ut’ bu bu’ u u’.

Lemma indist2_return : forall (m : Method) (sgn : Sign) (se : PC -> L.t)
(rt : registertypes) (s s’ : istate) (u u’ : rstate) (b b’ : pbij),
forall H:P (SM Method Sign m sgn),
indist sgn rt rt b b’ s s’ ->
pc s = pc s’ ->
exec m s (inr istate u) ->
exec m s’ (inr istate u’) ->
texec m (PM_P _ H) sgn se (pc s) rt None ->

138 Formalization of DEXI and DEXO

texec m (PM_P _ H) sgn se (pc s) rt None ->
exists bu, exists bu’,

border b bu /\ border b’ bu’ /\
rindist sgn bu bu’ u u’.

The requirement “border b bu // border b’ bu’ ” corresponds to β ⊆ β′ in Lemma 4.2.14.
Indistinguishability at Junction Point The definition of path and change are the
same as that of DEXI with the addition of the three new instructions iget, iput, and
new.

Inductive changed_at (m:Method) (i:istate) (r:Reg) : Prop :=
| const_change : forall k v, instructionAt m (pc i) =

Some (DEX_Const k r v) -> changed_at m i r
| move_change : forall k rs, instructionAt m (pc i) =

Some (DEX_Move k r rs) -> changed_at m i r
| ineg_change : forall rs, instructionAt m (pc i) =

Some (DEX_Ineg r rs) -> changed_at m i r
| inot_change : forall rs, instructionAt m (pc i) =

Some (DEX_Inot r rs) -> changed_at m i r
| i2b_change : forall rs, instructionAt m (pc i) =

Some (DEX_I2b r rs) -> changed_at m i r
| i2s_change : forall rs, instructionAt m (pc i) =

Some (DEX_I2s r rs) -> changed_at m i r
| ibinop_change : forall op ra rb, instructionAt m (pc i) =

Some (DEX_Ibinop op r ra rb) -> changed_at m i r
| ibinopConst_change : forall op rs v, instructionAt m (pc i) =

Some (DEX_IbinopConst op r rs v) -> changed_at m i r
| iget_change : forall t ro f, instructionAt m (pc i) =

Some (DEX_Iget t r ro f) -> changed_at m i r
| new_change : forall c, instructionAt m (pc i) =

Some (DEX_New r c) -> changed_at m i r..

Since now we also need to make sure that during the execution the heap indis-
tinguishability is maintained, we have proven the following lemmas.

Lemma high_path_heap_indist_onestep_left : forall m sgn s i i’ b b’ j
(H: P (SM _ _ m sgn)),

(forall k:PC, region (cdr m (PM_P _ H)) s k ->
~ L.leql (se m sgn k) kobs) ->

region (cdr m (PM_P _ H)) s (pc i) ->
indist_heap i i’ b b’ ->
exec m i (inl j) ->
indist_heap j i’ b b’.

Lemma high_path_heap_indist_onestep_right : forall m sgn s i i’ b b’ j
(H: P (SM _ _ m sgn)),

§5.3 Formalization of DEXO 139

(forall k:PC, region (cdr m (PM_P _ H)) s k ->
~ L.leql (se m sgn k) kobs) ->

region (cdr m (PM_P _ H)) s (pc i’) ->
exec m i’ (inl j) ->
indist_heap i i’ b b’ ->
indist_heap i j b b’.

Lemma high_path_heap_indist : forall m sgn s i i’ b b’ j
(H:P (SM _ _ m sgn)) (Hpath: path m i j),

(forall k:PC, region (cdr m (PM_P _ H)) s k ->
~ L.leql (se m sgn k) kobs) ->

path_in_region m (cdr m (PM_P _ H)) s i j Hpath ->
region (cdr m (PM_P _ H)) s (pc i) ->
junc (cdr m (PM_P _ H)) s (pc j) ->
indist_heap i i’ b b’ ->

indist_heap j i’ b b’.

Lemma high_step_indist_heap_result : forall m sgn u u’ b b’ res res’ i
(H: P (SM _ _ m sgn)),

(forall k:PC, region (cdr m (PM_P _ H)) i k ->
~ L.leql (se m sgn k) kobs) ->

(forall jun : PC, ~ junc
(cdr m (PM_P {| unSign := m; sign := sgn |} H)) i jun) ->

region (cdr m (PM_P {| unSign := m; sign := sgn |} H)) i (pc u) ->
region (cdr m (PM_P {| unSign := m; sign := sgn |} H)) i (pc u’) ->
indist_heap u u’ b b’ ->
exec m u (inr res) -> exec m u’ (inr res’) ->
indist_heap_result res res’ b b’.

These lemmas are saying that in a high region, the heap indistinguishability is pre-
served throughout the execution.

Lemma junction_indist : forall m sgn ns ns’ s s’ u u’ b b’ bu bu’
res res’ i (H: P (SM m sgn)),

indist sgn (RT m sgn (pc s)) (RT m sgn (pc s’)) b b’ s s’ ->
exec m s (inl u) -> exec m s’ (inl u’) ->
region (cdr m (PM_P _ H)) i (pc u) ->
region (cdr m (PM_P _ H)) i (pc u’) ->
high_region m (PM_P _ H) sgn i ->
evalsto m ns u res ->
evalsto m ns’ u’ res’ ->
indist sgn (RT m sgn (pc u)) (RT m sgn (pc u’)) bu bu’ u u’ ->
border b bu -> border b’ bu’ ->
(exists v, exists v’, exists ps, exists ps’, exists bv, exists bv’,
evalsto m ps v res /\ ps <= ns /\

140 Formalization of DEXI and DEXO

evalsto m ps’ v’ res’ /\ ps’ <= ns’ /\
junc (cdr m (PM_P _ H)) i (pc v) /\
junc (cdr m (PM_P _ H)) i (pc v’) /\
border bu bv /\ border bu’ bv’ /\
indist sgn (RT m sgn (pc v)) (RT m sgn (pc v’)) bv bv’ v v’)

\/ (exists br, exists br’, border bu br /\ border bu’ br’ /\
indist_heap_result res res’ br br’ /\
high_result sgn res /\ high_result sgn res’).

Lemma junction_indist_2 : forall m sgn ns ns’ s s’ u u’ b b’ bu bu’
res res’ i (H: P (SM m sgn)),

indist sgn (RT m sgn (pc s)) (RT m sgn (pc s’)) b b’ s s’ ->
exec m s (inl u) -> exec m s’ (inl u’) ->
region (cdr m (PM_P _ H)) i (pc u) ->
junc (cdr m (PM_P _ H)) i (pc u’) ->
high_region m (PM_P _ H) sgn i ->
evalsto m ns u res ->
evalsto m ns’ u’ res’ ->
indist sgn (RT m sgn (pc u)) (RT m sgn (pc u’)) bu bu’ u u’ ->
border b bu -> border b’ bu’ ->
(exists v, exists ps, exists bv,
evalsto m ps v res /\ ps <= ns /\
junc (cdr m (PM_P _ H)) i (pc v) /\
border bu bv /\
indist sgn (RT m sgn (pc v)) (RT m sgn (pc u’)) bv bu’ v u’).

These two lemmas are similar to the one in DEXI with the additional requirement
that the β mapping must be in order (β ⊆ β′).

The definition of type check is still the same as that of DEXI . The definition
of non-interference and type system soundness are also similar to DEXI with the
addition of β mapping and heap.
Type System Soundness

Definition NI (p:DEX_ExtendedProgram) : Prop :=
forall kobs m sgn i h1 h2 r1 r2 hr1 hr2 res1 res2 b1 b2,
P p (SM _ _ m sgn) ->
init_pc m i ->
indist kobs p sgn (rt0 m sgn) (rt0 m sgn) b1 b2
(i,(h1,r1)) (i,(h2,r2)) ->

DEX_BigStepAnnot.DEX_BigStep p.(DEX_prog) m (i,(h1,r1)) (hr1,res1) ->
DEX_BigStepAnnot.DEX_BigStep p.(DEX_prog) m (i,(h2,r2)) (hr2,res2) ->
exists br1, exists br2,
border b1 br1 /\ border b2 br2 /\
hp_in kobs (DEX_ft p) br1 br2 hr1 hr2 /\
indist_return_value kobs hr1 hr2 sgn res1 res2 br1 br2.

Chapter 6

Type-Preserving Compilation of
Android Bytecode

We have proposed a type system design to ensure non-interference on Android byte-
code, and we also have shown that this type system is sound, i.e., a typable DEX
bytecode is non-interferent. Now we prove type-preserving compilation for Android
bytecode. We first analyze the translation process that is done in the actual dx tool
and then show that the translation process preserves typing, i.e., typable JVM byte-
code will yield typable DEX bytecode.

We decided to take this approach to leverage existing security approach to JVM
bytecode due to the close relationship between JVM bytecode and DEX bytecode. It
is also closer to our bigger goal where we provide a framework for the developer
to provide a formal guarantee. We could target DEX bytecode directly, but then a
failure to type DEX bytecode will not give any information whatsoever about what
could cause the issue to the developer. With this approach, the typability of DEX
bytecode depends on the typability of JVM bytecode, whose relationship has been
studied (see Section 3.1 for the discussion).

6.1 Translation Phase

We now describe the translation process from JVM to DVM. This is an abstracted
version of what is implemented in the dx tool of Android.

The dx tool translates JVM in blocks of code. To formalize this, it is useful to first
define what we call a Basic Block. The Basic block is a construct containing a group of
code that has one entry point and one exit point (not necessarily one successor/one
parent), has a parent list, a successor list, a primary successor, and its order. The
basic block also contains translated DEX instruction for the contained group of code.
Formally, a basic block is a tuple

{parents; succs; pSucc; order; JVM_insn; DEX_insn; handlers}

where

• parents ⊆ Z is a set of the block’s parents,

141

142 Type-Preserving Compilation of Android Bytecode

• succs ⊆ Z is a set of the block’s successors,

• pSucc ∈ Z is the primary successor of the block (if the block does not have a
primary successor it will have −1 as the value),

• order ∈ Z is the order of the block in the output phase, and

• JVM_insn ⊆ JVMins is the JVM instructions contained in the block

• DEX_insn ⊆ DEXins is the DEX instructions contained in the block (as a result
of translating JVM_insn).

• handlers is the associated exception handlers for the block.

The set of BasicBlock is denoted as BasicBlocks. When instantiating a basic block, we
define a default object NewBlock, which will be a basic block with

{parents = ∅; succs = ∅; pSucc = −1; order = −1;
JVM_insn = ∅; DEX_insn = ∅; handler = ∅}

We also need some auxiliary functions to define the translation:

BMap: PP → BasicBlock is a function from program pointers in JVM bytecode to a
DEX basic block. Initially, the mapping is empty.

PMap: PP → PP is a function from program points in JVM to its starting point of
the block that contains the program point (refer to Section 6.1.1). Initially, the
mapping contains all of the program points mapped to itself (∀pp ∈ PP , PMap(pp) =
pp).

SBMap: PP → boolean Similar to BMap, this function takes a program pointer in
JVM bytecode and returns whether that instruction is the start of a basic block.
Initially, the mapping contains all of the program points mapped to false (∀pp ∈
PP , SBMap(pp) = f alse).

TSMap: PP → Z A function that maps a program pointer in JVM bytecode to an
integer denoting the index to the top of the stack. This mapping is initialized
with the number of local variables as that number is the index which will be
used by DEX to simulate the stack (∀pp ∈ PP , TSMap(pp) = locN where locN
is the number of local variables).

NewBlock: BasickBlock A function which returns a NewBlock.

Since DEX is register-based whereas JVM is stack-based, to bridge this gap, the
translation uses registers to simulate JVM stacks. This is done as follows:

• We set aside l number of registers to hold local variables (registers 1, . . . , l). We
denote these registers with locR;

• A stack of size s is simulated by registers l + 1, . . . , l + s.

§6.1 Translation Phase 143

Note that although in principle, the stack can grow indefinitely, it is impossible to
write a program that does so in Java, due to the strict stack discipline in Java. We
assume the JVM bytecode has passed the Java bytecode verifier (see Lindholm et al.
[2013] for the verifier’s specifications), which ensures, among others, that the max-
imum height of the operand stack in a method is fixed. Similarly, bytecode verifier
guarantees that the (Java) types of the operand stack (and by implication, also its
height) at each program point is fixed. This makes it possible to statically map each
operand stack location to a register in DEX. (cf. TSMap above and); see Davis et al.
[2003] for a discussion on how this can be done.

There are several phases involved to translate JVM bytecode into DEX bytecode.
To help illustrate each phase, we use the following idealized JVM bytecode with its
abstracted labels:

0 ∶ Load 1 5 ∶ Push 1
1 ∶ Goto 7 6 ∶ Ireturn
2 ∶ Ifeq 5 7 ∶ Load 2
3 ∶ Push 0 8 ∶ Sub
4 ∶ Ireturn 9 ∶ Goto 2

For this particular example, we also assume that the number of local variables is 2.
After each phase, we will show the result of the transformation applied to above
code. In general, we apply the transformations to P, the source JVM program that
we want to translate. For this particular case, the program containing the piece of
code is P.

6.1.1 Starting Instruction of a Block (StartBlock)

A program point is a start of a block (subsequently it will be called the starting point of
a block) if it fulfills one of the following:

• It is the first instruction in a method;

• It is an instruction after a branching instruction (ifeq);

• it is the target of a branching instruction (goto and ifeq);

This step mainly indicates the program point at which the instruction starts a block,
then creates a new block for each of these program points and associates it with a
new empty block. Applying this step to our piece of code will result in program
point {0, 2, 3, 5, 7} (those displayed with checkmarks next to them below) indicated
as the start of a block

0 ∶ Load 1 ✓ 5 ∶ Push 1 ✓
1 ∶ Goto 7 6 ∶ Ireturn
2 ∶ Ifeq 5 ✓ 7 ∶ Load 2 ✓
3 ∶ Push 0 ✓ 8 ∶ Sub
4 ∶ Ireturn 9 ∶ Goto 2

144 Type-Preserving Compilation of Android Bytecode

and the resulting SBMap is:

SBMap = { 0 ↦ true, 1 ↦ f alse, 2 ↦ true, 3 ↦ true,
4 ↦ f alse, 5 ↦ true, 6 ↦ f alse, 7 ↦ true,
8 ↦ f alse, 9 ↦ f alse}

Technically speaking, this phase will update the mapping SBMap and BMap for those
program points. We update these program points in SBMap to be true and associate
empty blocks to those program points in BMap.

This phase is done by sweeping through the JVM instructions in the program
(still in the form of a list). In the implementation, this phase will update the map-
ping SBMap. Apart from the first instruction, which will be the starting block re-
gardless of the instruction, the instructions that become the start of a block have the
characteristics that either they are a target of a branching instruction, or the previous
instruction ends a block.

More concretely, case by case translation behavior is the following:

• P[i] is Unconditional jump (goto t): the target instruction will be the starting
point of a block. It is implicit in this instruction that the next instruction should
also be the start of a block, but another jump will handle this. We do not take
care of the case where no jump instruction addresses this next instruction (the
next instruction is unreachable), i.e.

– BMap⊕{t ↦ NewBlock}; and

– PMap⊕{t ↦ t}

• P[i] is Conditional jump (ifeq t): both the target instruction and the next in-
struction will be the starting point of a block, i.e.

– BMap⊕{t ↦ NewBlock, (i + 1) ↦ NewBlock}; and

– PMap⊕{t ↦ t, (i + 1) ↦ (i + 1)}.

• P[i] is Return: the next instruction will be the starting point of a block. This
instruction will update the mapping of the next instruction for BMap and
SBMap if this instruction is not at the end of the instruction list. The rea-
son is that we already assumed that there is no dead code (no unreachable
code), so the next instruction must be part of some execution path. To be more
explicit, if there is a next instruction i + 1 then

– BMap⊕{(i + 1) ↦ NewBlock}; and

– PMap⊕{(i + 1) ↦ (i + 1)}

• P[i] is an instruction which may throw an exception: just like return instruction,
the next instruction will be the starting point a new block.

– BMap⊕{(i + 1) ↦ NewBlock};

– PMap⊕{(i + 1) ↦ (i + 1)};

§6.1 Translation Phase 145

During this phase, there is also the setup for the additional block containing the
sole instruction of moveexception which serves as an intermediary between
the block with throwing instruction and its exception handler. Then for each
associated exception handler, the following are indicated as starting of a block:

startPC program counter (pc) which serves as the starting point (inclusive) of
which the exception handler is active;

* BMap⊕{sPC ↦ NewBlock};

* PMap⊕{sPC ↦ sPC};

endPC program counter which serves as the ending point (exclusive) of which
the exception handler is active; and

* BMap⊕{ePC ↦ NewBlock};

* PMap⊕{ePC ↦ ePC};

handlerPC program counter which points to the start of the exception handler

* BMap⊕{hPC ↦ NewBlock};

* PMap⊕{hPC ↦ hPC};

Additionally, the intermediary block is also indicated as the starting of a block.
For handler h, the intermediary block will have label intPC = maxLabel +
h.handlerPC.

– BMap⊕{intPC ↦ NewBlock};

– PMap⊕{intPC ↦ intPC};

To reduce clutter, we write sPC to stand for h.startPC, ePC to stand for h.endPC,
and hPC to stand for h.handlerPC.

• P[i] is any other instruction : no changes to BMap and PMap.

6.1.2 Resolving Parents-Successors Relationship (TraceParentChild)

In this step, we trace the relationship between blocks. For each block, resolve the
parent blocks, successors blocks and its primary successor (if it exists). Implicit in
this phase is a step creating a temporary return block used to hold successors of the
block containing return instruction. At this point, we assume there is a special label
called ret to address this temporary return block.

The creation of a temporary return block depends on whether the function re-
turns a value. If it is return void, then this block contains only the instruction return-
void. Otherwise depending on the type returned (integer, wide, object, etc.), the
instruction is translated into the corresponding move and return. The move in-
struction moves the value from the register simulating the top of the stack to register
0 (r0). Then return will just return r0.

Mainly the mapping updated in this step is the BMap, although during this step
we also update the TSMap. Intuitively, the mapped value will depend on the type

146 Type-Preserving Compilation of Android Bytecode

of instruction and the value for the current program point, e.g., if the value at the
current program point is n, then the successor of the push instruction will have the
value of n + 1. Applying this step to the output of our previous phase will result in
the following blocks and relations.

0 ∶ Load 1
1 ∶ Goto 7

2 ∶ Ifeq 5

3 ∶ Push 0
4 ∶ Ireturn

5 ∶ Push 1
6 ∶ Ireturn

7 ∶ Load 2
8 ∶ Sub
9 ∶ Goto 2

ret

and the resulting TSMap is:

TSMap = { 0 ↦ 3, 5 ↦ 3, 1 ↦ 4, 6 ↦ 4,
2 ↦ 4, 7 ↦ 4, 3 ↦ 3, 8 ↦ 5,
4 ↦ 4, 9 ↦ 4}

Before we mention the procedure to establish the parents-successors relationship,
we need to introduce an additional function getAvailableLabel. Although defined
clearly in the dx compiler itself, we will abstract away from the detail and assume the
function produces a fresh label everytime it is called and labels for the additional in-
termediate block before exception handler blocks. These additional blocks before ex-
ception handler blocks are basically a block with a single instruction moveexception
with the primary successor of the handler. Suppose the handler is at program point
i, then this block will have a label of maxLabel + i with the primary successor i.
Furthermore, when a block has this particular handler as one of its successors, the
successor index is pointed to maxLabel + i (the block containing moveexception in-
stead of i). In the sequel, whenever we say to add a handler to a block b, it means
that adding this additional block as a successor of b, e.g. in the JVM bytecode, block
i has exception handlers at j and k, so during translation block i will have successors
of {maxLabel + j, maxLabel + k}, block j and k will have additional parent of block
maxLabel + j and maxLabel + k, and they each will have block i as their sole parent.

This phase is also done by sweeping through the JVM instructions but with the
additional help of BMap and PMap mapping. More concretely, case by case transla-
tion behavior is the following:

§6.1 Translation Phase 147

• P[i] is Unconditional jump (goto t): update the successors of the current block
with the target branching, and the target block to have its parent list include
the current block, i.e.

– BMap(PMap(i)).succs ∪ {t};

– BMap(PMap(i)).pSucc = t; and

– BMap(t).parents ∪ {PMap(i)}

• P[i] is Conditional jump (ifeq t): since there will be two successors from this
instruction, the current block will have two additional successor blocks, and
both of the blocks will also update their list of parents to include the current
block, i.e.,

– BMap(PMap(i)).succs ∪ {i + 1, t};

– BMap(PMap(i)).pSucc = i + 1;

– BMap(i + 1).parents ∪ {PMap(i)}; and

– BMap(t).parents ∪ {PMap(i)}

• P[i] is Return: just add the return block as the current block’s successors, and
also update the parent of return block to include the current block, i.e.,

– BMap(PMap(i)).succs ∪ {ret};

– BMap(PMap(i)).pSucc = ret; and

– BMap(ret).parents ∪ {PMap(i)}

• P[i] is one of the object manipulation instructions. The idea is that the next
instruction will be the primary successor of this block, and should there be ex-
ception handler(s) associated with this block, they will be added as successors
as well. We are making a little bit of a simplification here where we add the
next instruction as the block’s successor directly, i.e.,

– BMap(PMap(i)).succs ∪ {i + 1};

– BMap(PMap(i)).pSucc = i + 1;

– BMap(i + 1).parents ∪ {PMap(i)}; and

– for each exception handler j associated with i, let intPC = maxLabel +
j.handlerPC and hPC = j.handlerPC:

* BMap(PMap(i)).succs ∪ {intPC};

* BMap(PMap(i)).handlers ∪ {j};

* BMap(intPC).parents ∪ {PMap(i)}
* BMap(intPC).succs ∪ {hPC}
* BMap(intPC).insn = {moveexception}
* BMap(hPC).parents ∪ {intPC}

148 Type-Preserving Compilation of Android Bytecode

where j.handlerPC is the program point to the beginning of the exception
handler block.

In the original dx tool, they add a new block to contain a pseudo instruction in
between the current instruction and the next instruction, which will be removed
during translation

• P[i] is method invocation instruction. The treatment here is similar to that
of object manipulation, where the next instruction is the primary successor,
and the exception handler for this instruction is added as successors as well.
The difference lies in that where the additional block is bypassed in object
manipulation instruction, this time we really add a block with an instruc-
tion moveresult (if the method is returning a value) with a fresh label l =
getAvailableLabel and the sole successor of i + 1. The current block will then
have l as its primary successor, and the next instruction (i+ 1) will have l added
to its list of parents, i.e.,

– l = getAvailableLabel;

– BMap(PMap(i)).succs ∪ {l};

– BMap(PMap(i)).pSucc = l;

– BMap(PMap(i)).parents = {i};

– BMap⊕{l ↦ NewBlock};

– BMap(l).succs = {i + 1};

– BMap(l).pSucc = (i + 1);

– BMap(l).insn = {moveresult}
– BMap(i + 1).parents ∪ {l}; and

– for each exception handler j associated with i, let intPC = maxLabel +
j.handlerPC and hPC = j.handlerPC:

* BMap(PMap(i)).succs ∪ {intPC};

* BMap(PMap(i)).handlers ∪ {j};

* BMap(intPC).parents ∪ {PMap(i)}
* BMap(intPC).succs ∪ {hPC}
* BMap(intPC).insn = {moveexception}
* BMap(hPC).parents ∪ {intPC}

• P[i] is throw instruction. This instruction only adds the exception handlers to
the block without updating other block’s relationship, i.e., if the current block
is i, then for each exception handler j associated with i, let intPC = maxLabel +
j.handlerPC and hPC = j.handlerPC:

– BMap(PMap(i)).succs ∪ {intPC};

– BMap(PMap(i)).handlers ∪ {j};

§6.1 Translation Phase 149

– BMap(intPC).parents ∪ {PMap(i)}

– BMap(intPC).succs ∪ {hPC}

– BMap(intPC).insn = {moveexception}

– BMap(hPC).parents ∪ {intPC}

• P[i] is any other instruction: depending on whether the next instruction is a
start of a block or not.

– If the next instruction is a start of a block, then update the successor of the
current block to include the block of the next instruction and the parent of
the block of the next instruction to include the current block i.e.

* BMap(PMap(i)).succs ∪ {i + 1}; and

* BMap(i + 1).parents ∪ {PMap(i)}

– If the next instruction is not a start of a block, then just point the next
instruction to have the same pointer as the current block, i.e., PMap(i +
1) = PMap(i)

6.1.3 Reading Java Bytecodes (Translate)

Table 6.1 list the resulting DEX translation for each of the JVM bytecode instruction
listed in Section 3.3. The full translation scheme with their typing rules can be seen
in Table 6.2. A note about these instructions is that during this parsing of JVM byte-
codes, the dx translation will also modify the top of the stack for the next instruction.
Since the dx translation only happens for verified JVM bytecode, we can safely as-
sume that these top of the stacks will be consistent (even though an instruction may
have many parents, the resulting top of the stack from the parent instruction will be
consistent with each other). To improve readability, we abuse the notation r(x) to
also mean rx.

There is a note about the translation scheme, in particular, the goto instruction.
Although we do have goto instruction in DEX, it is not a direct translation from goto
in JVM bytecode, but will be added in the last step of compiling. The goto from
JVM bytecode is only useful to mark the relationship between blocks, and then it is
removed from the further compilation process.

Applying the translation scheme to the output of the previous step, we will get:

150 Type-Preserving Compilation of Android Bytecode

Translation Side effect
JpushK = const(r(TSi), n) TS(i + 1) = TS(i) + 1
JpopK = ∅ TS(i + 1) = TS(i) − 1
Jload xK = move(r(TSi), rx) TS(i + 1) = TS(i) + 1
Jstore xK = move(rx, r(TSi − 1)) TS(i + 1) = TS(i) − 1
Jbinop opK = binop(op, r(TSi − 2), r(TSi − 2), TS(i + 1) = TS(i) − 1

r(TSi − 1))
JswapK = move(r(TSi), r(TSi − 2)) TS(i + 1) = TS(i)

move(r(TSi + 1), r(TSi − 2))
move(r(TSi − 1), r(TSi + 1))
move(r(TSi − 2), r(TSi))

Jgoto tK = ∅ TS(t) = TS(i)
Jifeq tK = ifeq(r(TSi − 1), t) TS(i + 1) = TS(i) − 1

TS(t) = TS(i) − 1
JreturnK = move(r0, r(TSi − 1))

return(r0)
or
goto(ret)

Jnew CK = new(r(TSi − 1), C) TS(i + 1) = TS(i) + 1
Jgetfield f K = iget(r(TSi − 1), r(TSi − 1), f) TS(i + 1) = TS(i) + 1
Jputfield f K = iput(r(TSi − 1), r(TSi − 2), f) TS(i + 1) = TS(i) − 2
Jnewarray tK = newarray(r(TSi − 1), r(TSi − 1), t) TS(i + 1) = TS(i)
JarraylengthK = arraylength(r(TSi − 1), r(TSi − 1)) TS(i + 1) = TS(i)
JarrayloadK = aget(r(TSi − 2), r(TSi − 2), r(TSi − 1)) TS(i + 1) = TS(i) − 1
JarraystoreK = aput(r(TSi − 1), r(TSi − 3), r(TSi − 2)) TS(i + 1) = TS(i) − 3
Jinvoke mK = invoke(n, m, p⃗) l = getAvailableLabel

moveresult(r(TSi − n)) at block l TS(i + 1) = TS(i) − n
JthrowK = throw(r(TSi − 1))

Table 6.1: Instruction Translation Table

§6.1 Translation Phase 151

Move (v3, v1)

Ifeq (v3, #5)

Const (v3, #0)
Move (v0, v3)

Const (v3, #1)
Move (v0, v3)

Move (v4, v2)
Binop(sub, v3, v3, v4)

Return(v0)

6.1.4 Ordering Blocks (PickOrder)

The next phase in the translation scheme is order blocks according to “trace analysis”.
The “trace analysis” itself is quite simple in essence, that is for each block we assign
an integer denoting the order of appearance of that particular block in the analysis.
Starting from the initial block, we first assign an order to the selected block. Then we
pick the first unordered successor, giving priority to its primary successor (if any).
The tracing continues until there is no more successor. The selected successor will
not form a loop, i.e., the analysis will not pick a block that has already been given an
order.

After we reached one end, we pick an unordered block and do the trace analysis
again. However, this time we trace its source ancestor first, by tracing an unordered
parent block and stop when there is no more unordered parent block or already
forming a loop. Algorithm 4 describes how we implement this trace analysis.

1 Move (v3, v1)

3 Ifeq (v3, #5)

4 Const (v3, #0)
Move (v0, v3)

6 Const (v3, #1)
Move (v0, v3)

2 Move (v4, v2)
Binop(sub, v3, v3, v4)

5 Return(v0)

and an integer denoting the current order o starting from 1.

152 Type-Preserving Compilation of Android Bytecode

Algorithm 4 PickOrder(blocks)
order ∶= 0;
while there is still block x ∈ blocks without order; do

var ∶= PickStartingPoint(x,{x});
order = TraceSuccessors(source, order);

return order;

• Pick Starting Point (Algorithm 5)
This function is a recursive function with an auxiliary data structure to prevent
ancestor loop from the viewpoint of block x. On each recursion, we pick a
parent p from x which primary successor is x, not yet ordered, and not yet in
the loop. The function then return PickStartingPoint(p).

Algorithm 5 PickStartingPoint(x, loop)
for all p ∈ BMap(x).parents do

if p ∈ loop then return x;
bp = BMap(p);
if bp.pSucc = x and bp.order = −1 then

loop = loop ∪ {p};
return PickStartingPoint(p, loop)

return order;

• Trace Successors (Algorithm 6)
This function is also a recursive function with an argument of block x. It starts
by assigning the current order o to x then increment o by 1. Then it does
recursive call to TraceSuccessors giving one successor of x which is not yet
ordered as the argument (giving priority to the primary successor of x if there
is one).

Algorithm 6 TraceSuccessors(x, order)
BMap(x).order = order;
if BMap(x).psucc ≠ −1 then

pSucc = BMap(x).pSucc;
if BMap(pSucc).order = −1 then return TraceSuccessors(pSucc, order + 1);
for all s ∈ BMap(x).succs do

if BMap(pSucc).order = −1 then return TraceSuccessors(s, order + 1);
return order;

6.1.5 Output DEX Instructions (Output)

Since the translation phase already translated the JVM instruction and ordered the
block, this phase basically just outputs the instructions in order of the block. Never-
theless, there is some housekeeping to do alongside producing output of instructions.

§6.1 Translation Phase 153

• Remember the program counter for the first instruction in the block within DEX
program. This is mainly useful for fixing up the branching target later on.

• Add gotos to the successor when needed for each block that is not ending in
branch instruction like goto or if. The main reason to do this is to maintain the
successor relation in the case where the next block in order is not the expected
block. More specifically, this is step here is in order to satisfy the property 6.2.8.
There is a special case for branching instruction (ifeq). If the next block to
output is, in fact, the target of branching instead of its primary successor, then
the branching instruction will be replaced by its opposite (ifneq).

• Instantiate the return block.

• Reading the list of DEX instructions and fix up the target of jump instructions.

• Collecting information about exception handlers. It is done by sweeping through
the block in ordered fashion, inspecting the exception handlers associated with
each block. We assume that the variable DEXHandler is a global variable that
stores the information about exception handler in the DEX bytecode. The func-
tion newHandler(cS, cE, hPC, t) will create a new handler (for DEX) with cS
as the start PC, cE as the end PC, hPC as the handler PC, and t as the type of
exception caught by this new handler.

Algorithm 7 makeHandlerEntry(cH, cS, cE)
for all handler h ∈ cH do

hPC = h.handlerPC;
t = h.catchType;
DEXHandler = DEXHandler + newHandler(cS, cE, hPC, t);

The only information that is needed to produce the information about excep-
tion handlers in DEX is the basic blocks contained in BMap. The procedure
translateExceptionHandlers (Algorithm 8) take these basic blocks blocks and
make use the procedure makeHandlerEntry to create the exception handlers
in DEX.

A note about the last make entry is that the algorithm will leave one set of
handlers hanging at the end of loop. Therefore, we need to make that set of
handlers into entry in the DEX exception handlers.

154 Type-Preserving Compilation of Android Bytecode

Algorithm 8 translateExceptionHandlers(blocks)
cH = ∅; // current handler
cS // current start PC
cE // current start PC
for all block x in order do

if x.handlers is not empty then
if cH = x.handlers; then

cE = x.endPC;
else if cH ≠ x.handlers then

makeHandlerEntry(cH, cS, cE);
cS = x.startPC;
cE = x.endPC;
cH = x.handlers;

makeHandlerEntry(cH, cS, cE);

Algorithm 9 output
blocks = ordered blocks ∈ BMap;
lbl = ∅; // label mapping
out = ∅; // list of DEX output
pc = 0; // DEX program counter
for all block x in order do

next = next block in order;
lbl[x] = pc;
pc = pc + x.insn.length;
out = out + x.insn;
if p.pSucc ≠ next then

if x.insn.last is i f eq then
t = x.insn.last.target;
if t = next then

out.last = oppositeCondition(x.insn.last);
else

out = out + goto(next);
else

out = out + goto(next);
for all index i in out do

if out[i] is a jump instruction then
out[i].target = lbl[out[i].target];

translateExceptionHandlers(blocks);

For simplicity, we overload the length of instructions list to also mean the total
length of instructions contained in the list. The operator + here is also taken to
mean list append operation. The function oppositeCondition takes an ifeq(r, t) and
returns its opposite ifneq(r, t). Finally, we assume that the target of jump instruction
can be accessed using the field target, e.g., ifeq(r, t).target = t. The detail of the steps

§6.2 Proof that Translation Preserves Typability 155

in this phase is contained in Algorithm 9.
The final result of applying all the steps to our example piece of code:

0 ∶ Load 1
1 ∶ Goto 7
2 ∶ Ifeq 5
3 ∶ Push 0
4 ∶ Ireturn
5 ∶ Push 1
6 ∶ Ireturn
7 ∶ Load 2
8 ∶ Sub
9 ∶ Goto 2

0 ∶ Move (v3, v1)
1 ∶ Move (v4, v2)
2 ∶ Sub (v3, v3, v4)
3 ∶ Ifeqz (v3, #4)
4 ∶ Const (v3, #0)
5 ∶ Move (v0, v3)
6 ∶ Return (v0)
7 ∶ Const (v3, #1)
8 ∶ Goto 5

Definition 6.1.1 (Translated JVM Program). The translation of a JVM program P into
blocks and have their JVM instructions translated into DEX instructions is denoted by TPU,
where

TPU = Translate(TraceParentChild(StartBlock(P))).

Definition 6.1.2 (Output Translated Program). The output of the translated JVM program
TPU in which the blocks are ordered and then output into DEX program is denoted by VTPUW,
where

VTPUW = Output(PickOrder(TPU)).

Definition 6.1.3 (Compiled JVM Program). The compilation of a JVM program P is
denoted by JPK, where JPK = VTPUW.

The full translation scheme from JVM to DEX can be seen in table 6.2.

6.2 Proof that Translation Preserves Typability

6.2.1 Compilation of CDR and Security Environments

Since now we will be working on blocks, we need to know how the CDRs of the JVM
and that of the translated DEX are related. First, we need to define the definition of
the successor relation between blocks.

Definition 6.2.1 (Block Successor). Suppose a ↦ b and a and b are on different blocks. Let
Ba be the block containing a and Bb be the block containing b. Then Bb will be the successor
of Ba denoted by abusing the notation Ba ↦ Bb.

Before we continue on with the properties of CDR and SOAP, we first need to
define the properties of the translation of region and jun since we assume that the
JVM bytecode comes equipped with region and jun.

156 Type-Preserving Compilation of Android Bytecode

Original Transfer Rule Related DEX Transfer Rule

P[i] = Pushv
se, i ⊢Norm st⇒ se(i) ∶∶ st

P[i] = Const(r, n)
se, i ⊢Norm rt⇒ rt⊕{r ↦ se(i)}

P[i] = Pop
i ⊢ st⇒ st

None

P[i] = Load x

se, i ⊢Norm st⇒ (se(i) ⊔ k⃗a(x)) ∶∶ st

P[i] = Move(r, rs)
se, i ⊢Norm rt⇒ rt⊕{r ↦ (se(i) ⊔ rt(rs))}

*) x is related to rs, e.g. x = 5 becomes rs = r5s

P[i] = Store x k ⊔ se(i) ≤ k⃗a(x)

k⃗a
kh→ k⃗r , se, i ⊢Norm k ∶∶ st⇒ st

P[i] = Move(r, rs)
se, i ⊢Norm rt⇒ rt⊕{r ↦ se(i) ⊔ rt(rs)}

*) x is related to r, e.g. x = 5 becomes r = r5s

P[i] = Binop
se, i ⊢Norm a ∶∶ b ∶∶ st⇒ (se(i) ⊔ a ⊔ b) ∶∶ st

P[i] = Binop(r, ra, rb)
se, i ⊢Norm rt⇒ rt⊕{r ↦ (se(i) ⊔ rt(ra) ⊔ rt(rb))}

P[i] = Swap
i ⊢Norm k1 ∶∶ k2 ∶∶ st⇒ k2 ∶∶ k1 ∶∶ st

P[i] = Move(r, rs)
se, i ⊢Norm rt⇒ rt⊕{r ↦ (se(i) ⊔ rt(rs))}

P[i] = Goto t
i ⊢ st⇒ st

P[i] = Goto t
i ⊢ rt⇒ rt

*) Not directly translated

P[i] = ifeqt ∀j′ ∈ region(i), k ≤ se(j′)
reigon, se, i ⊢Norm k ∶∶ st⇒ liftk(st)

P[i] = ifeq(r, t) ∀j′ ∈ region(i), se(i) ⊔ rt(r) ≤ se(j′)
region, se, i ⊢Norm rt⇒ rt

Ifeq may be translated
into Ifneq on certain condition

P[i] = ifneq(r, t) ∀j′ ∈ region(i), se(i) ⊔ rt(r) ≤ se(j′)
region, se, i ⊢Norm rt⇒ rt

P[i] = return se(i) ⊔ k ≤ kr

k⃗a
kh→ k⃗r , se, i ⊢ k ∶∶ st⇒

P[i] = Move(r0, rs)
se, i ⊢ rt⇒ rt⊕{r ↦ (se(i) ⊔ rt(rs))}

and

P[i] = goto(t)
i ⊢ rt⇒ rt

or
P[i] = return(rs) se(i) ⊔ rt(rs) ≤ kr

k⃗a
kh→ k⃗r , se, i ⊢ rt⇒

P[i] = newC
se, i ⊢Norm st⇒ se(i) ∶∶ st

P[i] = new(r, c)
se, i ⊢Norm rt⇒ rt⊕{r ↦ se(i)}

§6.2 Proof that Translation Preserves Typability 157

Original Typing Rule Related DEX Typing Rule

P[i] = getfield f k ∈ S
∀j ∈ region(i, Norm), k ≤ se(j)
ft, region, se, i ⊢Norm k ∶∶ st⇒
liftk((k ⊔ ft(f) ⊔ se(i)) ∶∶ st)

P[i] = iget(r, ro , f) rt(ro) ∈ S
∀j ∈ region(i, Norm), rt(ro) ≤ se(j)

ft, se, i ⊢Norm rt⇒ rt⊕{r ↦ rt(ro) ⊔ ft(f) ⊔ se(i)}

P[i] = getfield f k ∈ S Handler(i, np) = t

∀j ∈ region(i, np), k ≤ se(j)
ft, region, se, i ⊢np k ∶∶ st⇒ (k ⊔ se(i)) ∶∶ ε

P[i] = iget(r, ro , f) rt(ro) ∈ S
∀j ∈ region(i, np), rt(ro) ≤ se(j) Handler(i, np) = t

ft, se, i ⊢np rt⇒ k⃗a ⊕{ex ↦ rt(ro) ⊔ se(i)}

P[i] = getfield f k ∈ S Handler(i, np) ↑
∀j ∈ region(i, np), k ≤ se(j) k ≤ k⃗r(np)

ft, region, se, i ⊢np k ∶∶ st⇒

P[i] = iget(r, ro , f) rt(ro) ∈ S se(i) ⊔ rt(ro) ≤ k⃗r(np)
∀j ∈ region(i, np), rt(ro) ≤ se(j) Handler(i, np) = t

ft, k⃗a
kh→ k⃗r , se, i ⊢np rt⇒

P[i] = putfield f kh ≤ ft(f) k1 ⊔ se(i) ⊔ k2 ≤ ft(f)
k1 ∈ Sext k2 ∈ S ∀j ∈ region(i, Norm), k2 ≤ se(j)

ft, k⃗a
kh→ k⃗r , region, se, i ⊢Norm k1 ∶∶ k2 ∶∶ st⇒ liftk2(st)

P[i] = iput(rs, ro , f) kh ≤ ft(f) rt(ro) ∈ S
rt(ro) ⊔ se(i) ⊔ rt(rs) ≤ ft(f) rt(rs) ∈ Sext

∀j ∈ region(i, Norm), rt(ro) ≤ se(j)

ft, k⃗a
kh→ k⃗r , se, i ⊢Norm rt⇒ rt

P[i] = putfield f k1 ⊔ se(i) ⊔ k2 ≤ ft(f)
k1 ∈ Sext Handler(i, np) = t

k2 ∈ S ∀j ∈ region(i, np), k2 ≤ se(j)
ft, region, se, i ⊢np k1 ∶∶ k2 ∶∶ st⇒ (k2 ⊔ se(i)) ∶∶ ε

P[i] = iput(rs, ro , f) rt(ro) ∈ S rt(rs) ∈ Sext

rt(ro) ⊔ se(i) ⊔ rt(rs) ≤ ft(f) Handler(i, np) = t

∀j ∈ region(i, np), rt(ro) ≤ se(j)
ft, se, i ⊢np rt⇒ k⃗a ⊕{ex ↦ rt(ro) ⊔ se(i)}

P[i] = putfield f k1 ⊔ se(i) ⊔ k2 ≤ ft(f)
k1 ∈ Sext ∀j ∈ region(i, np), k2 ≤ se(j)
k2 ∈ S k2 ≤ k⃗r(np) Handler(i, np) ↑

ft, k⃗a
kh→ k⃗r , region, se, i ⊢np k1 ∶∶ k2 ∶∶ st⇒

P[i] = iput(rs, ro , f) rt(ro) ∈ S rt(rs) ∈ Sext

rt(ro) ⊔ se(i) ⊔ rt(rs) ≤ ft(f) Handler(i, np) ↑
∀j ∈ region(i, np), rt(ro) ≤ se(j) se(i) ⊔ rt(ro) ≤ k⃗r(np)

ft, k⃗a
kh→ k⃗r , se, i ⊢np rt⇒

P[i] = newarrayt k ∈ S
i ⊢Norm k ∶∶ st⇒ k[at(i)] ∶∶ st

P[i] = newarray(r, rl , t) rt(rl) ∈ S
i ⊢Norm rt⇒ rt⊕{r ↦ rt(rl)[at(i)]}

P[i] = arraylength ∀j ∈ region(i, Norm), k ≤ se(j)
k ∈ S kc ∈ Sext

region, se, i ⊢Norm k[kc] ∶∶ st⇒ liftk(k ∶∶ st)

P[i] = arraylength(r, ra) k[kc] = rt(ra) k ∈ S
kc ∈ Sext ∀j ∈ region(i, Norm), k ≤ se(j)

region, se, i ⊢norm rt⇒ rt⊕{r ↦ k}

P[i] = arraylength ∀j ∈ region(i, np), k ≤ se(j)
k ∈ S kc ∈ Sext Handler(i, np) = t

region, se, i ⊢np k[kc] ∶∶ st⇒ (k ⊔ se(i)) ∶∶ ε

P[i] = arraylength(r, ra) k[kc] = rt(ra) k ∈ S
kc ∈ Sext ∀j ∈ region(i, np), k ≤ se(j)

Handler(i, np) = t

region, se, i ⊢np rt⇒ k⃗a ⊕{ex ↦ k ⊔ se(i)}

P[i] = arraylength ∀j ∈ region(i, np), k ≤ se(j)
k ∈ S kc ∈ Sext Handler(i, np) ↑ k ≤ k⃗r(np)

k⃗a → kr , region, se, i ⊢np k[kc] ∶∶ st⇒

P[i] = arraylength(r, ra) k[kc] = rt(ra) k ∈ S
kc ∈ Sext ∀j ∈ region(i, np), k ≤ se(j)
Handler(i, np) ↑ se(i) ⊔ k ≤ k⃗a[np]

k⃗a → k⃗r , region, se, i ⊢np rt⇒

158 Type-Preserving Compilation of Android Bytecode

Original Typing Rule Related DEX Typing Rule

P[i] = arrayload k1, k2 ∈ S kc ∈ Sext

∀j ∈ region(i, Norm)k2 ≤ se(j)
k⃗a → kr , region, se, i ⊢Norm k1 ∶∶ k2[kc] ∶∶ st⇒

liftk2(((k1 ⊔ k2) ⊔ext kc) ∶∶ st)

P[i] = aget(r, ra, ri) k[kc] = rt(ra) kc ∈ Sext

k, rt(ri) ∈ S ∀j ∈ region(i, Norm), k ≤ se(j)
k⃗a → kr , region, se, i ⊢norm rt⇒
rt⊕{r ↦ ((k ⊔ rt(ri)) ⊔ext kc)}

P[i] = arrayload k1, k2 ∈ S kc ∈ Sext

∀j ∈ region(i, np)k2 ≤ se(j) Handler(i, np) = t

k⃗a → kr , region, se, i ⊢np k1 ∶∶ k2[kc] ∶∶ st

⇒ (k2 ⊔ se(i)) ∶∶ ε

P[i] = aget(r, ra, ri) k[kc] = rt(ra) kc ∈ Sext

k, rt(ri) ∈ S ∀j ∈ region(i, np), k ≤ se(j)
Handler(i, np) = t

region, se, i ⊢np rt⇒ k⃗a ⊕{ex ↦ k ⊔ se(i)}

P[i] = arrayload k1, k2 ∈ S kc ∈ Sext k2 ≤ k⃗r(np)
∀j ∈ region(i, np)k2 ≤ se(j) Handler(i, np) ↑

k⃗a → kr , region, se, i ⊢np k1 ∶∶ k2[kc] ∶∶ st⇒

P[i] = aget(r, ra, ri) k[kc] = rt(ra) kc ∈ Sext

k, rt(ri) ∈ S ∀j ∈ region(i, np), k ≤ se(j)
Handler(i, np) ↑ se(i) ⊔ k ≤ k⃗r(np)

k⃗a → kr , region, se, i ⊢np rt⇒

P[i] = arraystore k1, kc ∈ Sext k2, k3 ∈ S
((k2 ⊔ k3) ⊔ext k1) ≤ext kc ∀j ∈ region(i, Norm), k2 ≤ se(j)
k⃗a → kr , region, se, i ⊢Norm k1 ∶∶ k2 ∶∶ k3[kc] ∶∶ st⇒ liftk2(st)

P[i] = aput(rs, ra, ri) k[kc] = rt(ra) k, rt(ri) ∈ S
((k ⊔ rt(ri)) ⊔ext rt(rs)) ≤ext kc kc, rt(rs) ∈ Sext

∀j ∈ region(i, Norm), k ≤ se(i)
k⃗a → kr , region, se, i ⊢Norm rt⇒ rt

P[i] = arraystore k1, kc ∈ Sext

((k2 ⊔ k3) ⊔ext k1) ≤ext kc k2, k3 ∈ S
Handler(i, np) = t ∀j ∈ region(i, np), k2 ≤ se(j)

k⃗a → kr , region, se, i ⊢np k1 ∶∶ k2 ∶∶ k3[kc] ∶∶ st⇒ (k2 ⊔ se(i)) ∶∶ ε

P[i] = aput(rs, ra, ri) k[kc] = rt(ra) k, rt(ri) ∈ S
((k ⊔ rt(ri)) ⊔ext rt(rs)) ≤ext kc kc, rt(rs) ∈ Sext

∀j ∈ region(i, np), k ≤ se(i) Handler(i, np) = t

region, se, i ⊢np rt⇒ k⃗a ⊕{ex ↦ k ⊔ se(i)}

P[i] = arraystore k1, kc ∈ Sext k2, k3 ∈ S
((k2 ⊔ k3) ⊔ext k1) ≤ext kc ∀j ∈ region(i, np), k2 ≤ se(j)

Handler(i, np) ↑ k2 ≤ k⃗r(np)
k⃗a → kr , region, se, i ⊢np k1 ∶∶ k2 ∶∶ k3[kc] ∶∶ st⇒

P[i] = aput(rs, ra, ri) k[kc] = rt(ra) k, rt(ri) ∈ S
((k ⊔ rt(ri)) ⊔ext rt(rs)) ≤ext kc kc, rt(rs) ∈ Sext

∀j ∈ region(i, np), k ≤ se(i) Handler(i, np) = t

se(i) ⊔ k ≤ k⃗r(np)
k⃗a → k⃗rregion, se, i ⊢np rt⇒

Pm[i] = invoke mID length(st1) = nbArguments(mI D)
k ≤ k⃗′a[0] ∀i ∈ [0, length(st1) − 1]st1[i] ≤ k⃗′a[i + 1]

k ⊔ kh ⊔ se(i) ≤ k′h ke = ⊔{k⃗′r(e) ∣ e ∈ excAnalysis(mID)}

ΓmID [k] = k⃗′a
k′h→ k′r ∀j ∈ region(i, Norm), k ⊔ ke ≤ se(j)

Γ, region, se, k⃗a
kh→ k⃗r , i ⊢Norm st1 ∶∶ k ∶∶ st2 ⇒

liftk⊔ke((k′r ⊔ k ⊔ se(i)) ∶∶ st2)

Pm[i] = invoke(n, m, p⃗) Γm′ [rt(p⃗[0])] = k⃗′a
k′h→ k′r

rt(p⃗[0]) ⊔ kh ⊔ se(i) ≤ k′h ∀0≤j<nrt(p⃗[j]) ≤ k⃗′a[j]
ke = ⊔{k⃗′r(e) ∣ e ∈ excAnalysis(m′)}

∀j ∈ region(i, Norm), rt(p⃗[0]) ⊔ ke ≤ se(j)

Γ, region, se, k⃗a
kh→ kr , i ⊢Norm rt⇒

rt⊕{ret ↦ k′r[n] ⊔ rt(p⃗[0]) ⊔ se(i)}

Pm[i] = moveresult(r)
i ⊢Norm rt⇒ rt⊕{r ↦ rt(ret)}

§6.2 Proof that Translation Preserves Typability 159

Original Typing Rule Related DEX Typing Rule

Pm[i] = invoke mID k ≤ k⃗′a[0]
length(st1) = nbArguments(mI D)

∀i ∈ [0, length(st1) − 1]st1[i] ≤ k⃗′a[i + 1]
k ⊔ kh ⊔ se(i) ≤ k′h e ∈ excAnalysis(mID) ∪ {np}

ΓmID [k] = k⃗′a
k′h→ k′r ∀j ∈ region(i, e), k ⊔ ke ≤ se(j)

Handler(i, e) = t

Γ, region, se, k⃗a
kh→ k⃗r , i ⊢e st1 ∶∶ k ∶∶ st2 ⇒ (k ⊔ k⃗′r(e)) ∶∶ ε

Pm[i] = invoke(n, m, p⃗) Γm′ [rt(p⃗[0])] = k⃗′a
k′h→ k′r

rt(p⃗[0]) ⊔ kh ⊔ se(i) ≤ k′h ∀0≤j<nrt(p⃗[j]) ≤ k⃗′a[j]
e ∈ excAnalysis(m′) ∪ {np}} Handler(i, e) = t

∀j ∈ region(i, e), rt(p⃗[0]) ⊔ k⃗′r(e) ≤ se(j)

Γ, region, se, k⃗a
kh→ kr , i ⊢e rt⇒ k⃗a ⊕{ex ↦ k′r[e] ⊔ rt(p⃗[0])}

Pm[i] = invoke mID length(st1) = nbArguments(mI D)
k ≤ k⃗′a[0] ∀i ∈ [0, length(st1) − 1]st1[i] ≤ k⃗′a[i + 1]
k ⊔ kh ⊔ se(i) ≤ k′h e ∈ excAnalysis(mID) ∪ {np}

ΓmID [k] = k⃗′a
k′h→ k′r ∀j ∈ region(i, e), k ⊔ ke ≤ se(j)

Handler(i, e) ↑ k ⊔ se(i) ⊔ k⃗′r(e) ≤ k⃗r(e)

Γ, region, se, k⃗a
kh→ k⃗r , i ⊢e st1 ∶∶ k ∶∶ st2 ⇒

Pm[i] = invoke(n, m, p⃗) Γm′ [rt(p⃗[0])] = k⃗′a
k′h→ k′r

rt(p⃗[0]) ⊔ kh ⊔ se(i) ≤ k′h ∀0≤j<nrt(p⃗[j]) ≤ k⃗′a[j]
e ∈ excAnalysis(m′) ∪ {np}} Handler(i, e) ↑

∀j ∈ region(i, e), rt(p⃗[0]) ⊔ k′r[e] ≤ se(j)
rt(p⃗[0]) ⊔ se(i) ⊔ k⃗′r(e) ≤ k⃗r(e)

Γ, region, se, k⃗a
kh→ kr , i ⊢e rt⇒

Table 6.2: Translation Table

Property 6.2.1 (Region Translation and Compilation). Given a JVM region(i) and
P[i] is a branching instruction, let ib be the program point in TiU such that PDEX[ib]
is a branching instruction, then

Tregion(i)U = region(ib) = ⋃j∈region(i)TjU and Jregion(i)K = region(ib) = ⋃j∈region(i)JjK

Property 6.2.2 (Region for appended goto instruction).

∀b ∈ TPU. PDEX[Vb.lastAddressW+ 1] = goto
→ (∀.i ∈ PPDEX.b.lastAddress ∈ region(i)
→ (Vb.lastAddressW+ 1) ∈ region(i))

where → indicates logical implication.

Property 6.2.3 (Junction Translation and Compilation). ∀i, j.j = jun(i, τ), and P[i] is
a branching instruction, let ib be the program point in TiU such that PDEX[ib] is a
branching instruction, then

TjU[0] = jun(TiU[ib]) in TPU and JTjU[0]K = jun(JTiU[ib]K) in JPK.

Property 6.2.4 (Security Environment Translation and Compilation). ∀i ∈ PP , j ∈
TiU.se(j) = se(i) in TPU and ∀i ∈ PP , j ∈ TiU.se(VjW) = se(i) in JPK.

Then we need these subsequent lemmas which state that the successor relation is
preserved through compilation process.

160 Type-Preserving Compilation of Android Bytecode

Lemma 6.2.1. Let P be a JVM program and P[a] = Insa and P[b] = Insb be two of its
instructions at program points a and b (both are non-invoke instructions). Let na > 0 be the
number of instructions translated from Insa. If a ↦Norm b, then either

VTaU[n − 1]W↦Norm VTbU[0]W
or

⎛
⎜
⎝

VTaU[n − 1]W↦Norm (VTaU[n − 1]W+ 1)
and

(VTaU[n − 1]W+ 1) ↦Norm VTbU[0]W

⎞
⎟
⎠

in JPK.

Proof. To prove this lemma, we first unfold the definition of compilation. Using the
information that a ↦ b, there are several possible cases to output the block depending
on whether what instruction is Insa and where a and b are located. Either:

• the instructions in TbU are placed directly after TaU and TaU[n− 1] is sequential
instruction;
In this case, appealing to the definition of successor relation the lemma holds
trivially as the first case.

• TInsaU ends in a sequential instruction and will have a goto instruction ap-
pended that points to VTbU[0]W;
Again appealing to the definition of successor relation this trivially holds as the
second case, where
PDEX[(VTaU[n − 1]W+ 1)] = goto(VTbU[0]W).

• TInsaU[n − 1] is a branching instruction and b is one of its children, and TbU is
placed directly after TaU or is pointed to by the branching instruction;
Either case, using the definition of successor relation to establish that we are in
the first case.

• TInsaU[n−1] is a branching instruction and b is one of its children, nevertheless
TbU is not placed directly after TaU nor is pointed to by the branching instruc-
tion;
In this case, according to the Output phase, a goto instruction will be appended
in (VTaU[n − 1]W+ 1), and thus we are in the second case. Use the definition of
successor relation to conclude the proof.

Lemma 6.2.2. Let P be a JVM program and P[a] = Insa and P[b] = Insb be two of its
instructions at program points a and b where b is the address of the first instruction in the
exception handler h for a throwing exception τ. Let e be the index to the instructions within
TaU that throws exception. If a ↦τ b, then VTaU[e]W↦τ VThUW and VThUW↦Norm VTbU[0]W

Proof. Trivial based on the unfolding definition of the compiler, where there is a block
containing sole instruction moveexception, which will be pointed by the exception

§6.2 Proof that Translation Preserves Typability 161

handler in DEX, between possibly throwing instruction and its handler for particular
exception class τ. The proof is then concluded by successor relation in DEX.

Lemma 6.2.3. Let P be a JVM program and P[a] = invoke and P[b] = Insb be two of its
instructions at program points a and b. If a ↦Norm b, then VTaU[0]W ↦Norm VTaU[1]W and
VTaU[1]W↦Norm VTbU[0]W

Proof. This is trivial based on the unfolding definition of the compiler since the pri-
mary successor of VTaU[0]W is VTaU[1]W, where VPW[VTaU[1]W] = moveresult, and
the primary successor of VTaU[1]W is VTbU[0]W. The proof is then concluded by the
definition of successor relation in DEX.

Lemma 6.2.4. Let P be a JVM program and P[a] = Insa and P[b] = Insb be two of its
instructions at program points a and b. Suppose Insb is translated to an empty sequence
(e.g. Insb is pop or goto). Let s be the first in the successor chain of b such that TP[s]U is
non-empty (we can justify this successor chain as an instruction that causes branching will
never be translated into empty sequence). If a ↦ b, then either

VTaU[n − 1]W↦Norm VTsU[0]W
or

⎛
⎜
⎝

VTaU[n − 1]W↦Norm (VTaU[n − 1]W+ 1)
and

(VTaU[n − 1]W+ 1) ↦Norm VTsU[0]W

⎞
⎟
⎠

Proof. We use induction on the length of successor’s chain. In the base case where
the length is 0, we can use Lemma 6.2.1 to establish that this lemma holds. For the
case where the length is n+ 1, there are two possibilities for the last instruction in the
chain :

• the successor is the next instruction
In this case, using the definition of successor relation, we know that it will be
in the first case.

• the successor is not the next instruction Since there will be a goto appended,
it will fall to the second case. Using the successor relation, we know that the
latter property holds.

then use IH to conclude.

Property 6.2.5 (Region Translation and Compilation for invoke). ∀i.PDEX[i] = invoke,
i + 1 ∈ region(i,) (i + 1 will be the program point for moveresult).

Property 6.2.6 (Region Translation and Compilation for handler). ∀i, j.j ∈ region(i),
let ie be the instruction in TP[i]U that possibly throws, then

handler(ie, τ) ∈ region(ie, τ) in TPU
and

handler(VieW, τ) ∈ region(VieW, τ) in JPK

162 Type-Preserving Compilation of Android Bytecode

(note that the handler will point to moveexception).

Lemma 6.2.5 (SOAP Preservation). The SOAP properties are preserved in the transla-
tion from JVM to DEX, i.e. if the JVM program satisfies the SOAP properties, so does the
translated DEX program.

Proof. We proceed by exhaustion, that is if the original JVM bytecode satisfies SOAP,
then the resulting translation to DEX instructions will also satisfy each of the prop-
erty.

SOAP1. Since the JVM bytecode satisfies SOAP, that means i is a branching point
which will also be translated into a sequence of instructions. Denote ib as the
program point in the sequence and suppose it is a branching point. Let TP[k]U
be the translation of instruction P[k] and k1 be the address of its first instruction
(TP[k]U[0]). Using the first case in the Lemma 6.2.1, Lemma 6.2.2, Lemma 6.2.3
and Lemma 6.2.4, we know that ib ↦ k1. In the case that k ∈ region(i, τ), we
know that k1 ∈ region(ib, τ) using Property 6.2.1. In the case that k = jun(ib, τ),
we then will have k1 = jun(ib, τ) using Property 6.2.3.

Special cases for the second case of Lemma 6.2.1, Lemma 6.2.2 and Lemma 6.2.3
in that they contain additional instructions in the lemma. We argue that the
property still holds using Property 6.2.5 Property 6.2.6, and Property 6.2.2. Sup-
pose k′ is the program point that points to the extra instruction, then we have
k′ ∈ region(ib, τ) from the three definitions we have mentioned. Following the
argument from before, we can conclude that k1 ∈ region(i, τ) or k1 = jun(ib, τ).

SOAP2. Let jn be the last instruction in JP[j]K. Denote ib as the program point in the
sequence JiK and suppose it is a branching point. Let TP[k]U be the translation
of instruction P[k] and k1 be the address of its first instruction (TP[k]U[0]).
Using Property 6.2.1, we obtain jn ∈ region(ib, τ). Using the first case of
Lemma 6.2.1, Lemma 6.2.2, Lemma 6.2.3 and Lemma 6.2.4 we will get that
jn ↦ k1. Now since the JVM bytecode satisfies SOAP, we know that there are
two cases we need to take care of and k will fall to one case or the other. Assume
k ∈ region(i, τ). This means using Property 6.2.1 we will have k1 ∈ region(in, τ).
Assume k = jun(i, τ), we use Property 6.2.3 and obtain that k1 = jun(in, τ). Ei-
ther way, the SOAP property is preserved for SOAP2. Similar argument as
SOAP1 to establish the second case of Lemma 6.2.1, and that the property is
still preserved in the presence of moveresult and moveexception.

SOAP3. Trivial

SOAP4. Let k1 = jun(i, τ1) and k2 = jun(i, τ2) (this may be a bit confusing, this
program point here refers to the program point in JVM bytecode). Let ib be
the instruction in JiK that branch and k11 and k21 be the first instruction in
JP[k1]K and JP[k2]K respectively. We proceed by using Property 6.2.1 and the
knowledge that the JVM bytecode satisfies SOAP4 to establish that when k11 ≠
k21, then k11 ∈ region(ib, τ2) or k21 ∈ region(ib, τ1) thus the DEX program will
also satisfy SOAP4.

§6.2 Proof that Translation Preserves Typability 163

SOAP5. For any jun(i, τ′) such that it is defined, let program point k = jun(i, τ′).
Using Property 6.2.3 we have k1 = jun(in, τ′). Using Property 6.2.1, we know
that k1 ∈ region (in, τ). If we then set k1 to be such a point, where jun(in, τ′) and
jun(in, τ′) ∈ region (in, τ) for any τ′ with junction point defined, the property
then holds.

SOAP6. Is similar to the way of proving SOAP5, with the addition of simple prop-
erty where the size of a code and its translation is covariant in a sense that if a
program a has more code than b, then JaK also has more code than JbK.

6.2.2 Compilation Preserves Typability

There are several assumptions we make for this compilation. Firstly, the JVM pro-
gram will not modify its self-reference for an object. Secondly, since now we are
going to work in blocks, the notion of se, S, and RT will also be defined in term of
this addressing. A new scheme for addressing blockAddress is defined from sets of
pairs (bi, j), bi ∈ blockIndex, a set of all block indices (label of the first instruction
in the block), where ∀i ∈ PP .∃bi, j. s.t.bi + j = i. We also add additional relation ⇒∗

to denote the reflexive and transitive closure of ⇒ to simplify the typing relation
between blocks.

We overload T.U and J.K to also apply to stack types to denote the translation
from stack type into typing for registers. This translation basically just maps each
element of the stack to registers at the end of registers containing the local variables
(with the top of the stack with larger index, i.e., stack expanding to the right). More
formally, if there are n local variables denoted by v1, . . . , vn and stack type with the
height of m (0 denotes the top of the stack), then JstK = {r0 ↦ k⃗a(v1), . . . , rn−1 ↦
k⃗a(vn), rn ↦ st[m − 1], . . . , rn+m−1 ↦ st[0]}. Lastly, the function V.W is also overloaded
for addressing (bi, i) to denote abstract address in the DEX side which will actually
be instantiated when producing the output DEX program from the blocks.

Property 6.2.7 (Stack Type Translation). ∀i ∈ PP , RTTiU[0] = TSiU.

To prove the typability preservation of the compilation processes, we define an
intermediate type system that closely resembles that of DEX, except that the address-
ing uses block addressing. The purpose of this intermediate addressing is to know
the existence of register typing to satisfy typability and the constraint satisfaction for
each instruction. We defer the details to Appendix A to avoid more clutter.

The following monotony lemma is useful in proving the relation ⊑ between reg-
isters typing obtained from compiling stack types.

Lemma 6.2.6 (Monotonicity of Translation). Let rt be a register types and S1 and S2 stack
types. If we have rt ⊑ TS1U and S1 ⊑ S2, then rt ⊑ TS2U as well.

Proof. Trivial based on the definition of T.U and the ⊑ for register types.

164 Type-Preserving Compilation of Android Bytecode

The idea of the proof that compilation from JVM bytecode to DEX bytecode pre-
serves typability is that any instruction that does not modify the block structure can
be proved using Lemma 6.2.7 and Lemma 6.2.9 to prove the typability of register
typing.

Initially, we state lemmas saying that typable JVM instructions will yield typable
DEX instructions. Paired with each normal execution is the lemma for the excep-
tion throwing one. These lemmas are needed to handle the additional block of
moveexception attached to each exception handler.

Lemma 6.2.7 (Typeable Sequence). For any JVM program P with instruction Ins at ad-
dress i , let the length of TInsU be n. Let RTTiU[0] = TSiU. If according to the transfer rule for
P[i] = Ins there exists st s.t. i ⊢ Si ⇒ st then

(∀0 ≤ j < (n − 1).∃rt′.TiU[j] ⊢ RTTiU[j] ⇒ rt′, rt′ ⊑ RTTiU[j+1])
and

∃rt.TiU[n − 1] ⊢ RTTiU[n−1] ⇒ rt, rt ⊑ TstU

according to the typing rule(s) of TInsU.

Proof. It is a case by case instruction, although for most of the instructions they are
straightforward as they only translate into one instruction. For the rest of the proof,
using Property 6.2.4 to say that the translated se(TiU) have the same security level as
se(i).

• Push
We appeal directly to both of the transfer rules of Push and Const. In Push
case, it only appends top of the stack with se(i). Let such rt be

rt = RTTiU[0] ⊕{r(TSi) ↦ se(TiU[0])}

referring to Const transfer rule. Since Push is translated into Const(r(TSi)),
where TSi corresponds to the top of the stack, we know that TstU = rt because
RTTiU[0] = TSiU and the rt we have is the same as Tse(i) ∶∶ SiU thus rt ⊑ TstU

• Pop
In this case, since the instruction does not get translated, this instruction does
not affect the lemma.

• Load x
Similar to Push except that the security value pushed on top of the stack is
se(TiU[0])⊔ k⃗a(x). And although there are several transfer rules for move, there
is only one applicable because the source register comes from a local variable
register, and the target register is one of the stack space. Using this transfer
rule, we can trivially show that rt = TstU where st = (se(i) ⊔ k⃗a(x)) ∶∶ Si and
rt = RTTiU[0] ⊕{r(TSi) ↦ se(TiU[0]) ⊔ k⃗a(x)}, thus rt ⊔ TstU.

• Store x
This instruction is also translated as move except that the source register is the

§6.2 Proof that Translation Preserves Typability 165

top of the stack and the target register is one of the local variable registers. The
rt, in this case, will be

rt = RTTiU[0] ⊕{ rx ↦ se(TiU[0]) ⊔ RTTiU[0](r(TSi − 1))}

This rt coincides with the transfer rule for move where the target register is a
register used to contain local variable. Since we know that the x is in the range
of local variable, we will have that rt ⊑ TstU based on the definition of ⊑, T.U of
flattening a stack.

• Goto
This instruction does not get translated just like Pop, so this instruction also
does not affect the lemma.

• Ifeq t
This instruction is translated to conditional branching in the DEX instruction.
There are two changes applied to the stack types; one is that the removal of the
top value of the stack which is justified by the definition of ⊑, and then lifting
the value of the rest of the stack. Since there is no lift involved in DEX, we
know that this assignment will preserve typability as the registers are assigned
higher security levels.

• Binop
Translated as a DEX instruction for specified binary operator with the source
taken from the top two values from the stack, and then put the resulting value
in the then would be top of the stack. Let rt, in this case, comes from

rt =RTTiU[0] ⊕{r(TSi − 1) ↦ se(TiU[0])⊔
RTTiU[0](r(TSi − 1)) ⊔ (RTTiU[0](r(TSi − 2)))}

This rt corresponds to the scheme of DEX transfer rule for binary operation.
Then we will have that rt ⊑ TstU where st = se(i)⊔ ka ⊔ kb ∶∶ st′ and Si = ka ∶∶ kb ∶∶ st′

• Swap
In dx tool, this instruction is translated into four move instructions. In this
case, the rt is

rt = RTTiU[0] ⊕{
r(TSi) ↦ se(TiU[0]) ⊔ RTTiU[0](r(TSi − 2)),

r(TSi + 1)↦ se(TiU[1]) ⊔ RTTiU[1](r(TSi − 1)),
r(TSi − 2)↦ se(TiU[2]) ⊔ RTTiU[2](r(TSi − 1)),
r(TSi − 1)↦ se(TiU[3]) ⊔ RTTiU[3](r(TSi − 2))}

justified by applying transfer rule for move four times. As before, appealing
to the definition of ⊑ to establish that this rt ⊑ TstU where st = kb ∶∶ ka ∶∶ st′ and
Si = ka ∶∶ kb ∶∶ st′.

166 Type-Preserving Compilation of Android Bytecode

There’s a slight subtlety here in that the relation might not hold due to the
presence of se in rt even though there is no such occurrence in st. But on closer
inspection, we know that in the case of swap instruction, the effect of se will be
nothing. There are two cases to consider:

– If the value in the operand stacks is already there before se is modified. We
know that this can be the case only when there was a conditional branch
before, which also means that the operand stacks will be lifted to the level
of the guard and the level of se is determined by this level of the guard as
well. So practically, they are the same thing

– If the value in the operand stacks is put after se is modified. Based on the
transfer rules of the instructions that put a value on top of the stack, they
will lub se with the values. Therefore, another lub with se will have no
effect.

For the first property, we have the register typing below

RTTiU[1] = RTTiU[0] ⊕{r(TSi) ↦ se(TiU[0]) ⊔ RTTiU[0](r(TSi − 2))}
RTTiU[2] = RTTiU[1] ⊕{r(TSi + 1) ↦ se(TiU[1]) ⊔ RTTiU[1](r(TSi − 1))}
RTTiU[3] = RTTiU[2] ⊕{r(TSi − 2) ↦ se(TiU[2]) ⊔ RTTiU[3](r(TSi − 1))}

which satisfy the property.

• New
The argument that goes for this instruction is exactly the same as that of Push,
where the rt, in this case, is TSiU⊕{r(TSi) ↦ se(TiU[0])}.

• Getfield
In this case, the transfer rule for the translated instruction coincides with the
transfer rule for Getfield. Let

rt = RTTiU[0] ⊕{r(TSi − 1) ↦ se(TiU[0]) ⊔ ft(f)}

Then we have rt = TstU which can be trivially shown with st = se(i) ⊔ ft(f) ∶∶ Si
thus giving us rt ⊑ TstU.

• Putfield
Since the JVM transfer rule for the operation itself only removes the top 2
of the stack items, and the transfer rule for DEX keeps the register typing,
when we have rt = TSiU, then by the definition of ⊑ we’ll have rt ⊑ TstU since
Si = ko ∶∶ kv ∶∶ st.

• Newarray
Similar to the argument of load, we have

rt = RTTiU[0] ⊕{r(TSi − 1) ↦ RTTiU[0](r(TSi − 1))[at(TiU[0])]}

, rt = TstU, where st = k[at(i)] ∶∶ st′, Si = k ∶∶ st′, which will give us rt ⊑ TstU.

§6.2 Proof that Translation Preserves Typability 167

• Arraylength
Let k[kc] = RTTiU[0](r(TSi − 1)) = Si[0]. In this case rt = RTTiU[0] ⊕ {r(TSi − 1) ↦
k} = TstU then we will have rt = TstU where st = k ∶∶ st′ and Si = k[kc] ∶∶ st′ which
will give us rt ⊑ TstU.

• Arrayload
Let k[kc] = RTTiU[0](r(TSi − 2)) = Si[1]. In this case

rt =RTTiU[0] ⊕{r(TSi − 2) ↦ (se(i) ⊔ k ⊔ RTTiU[0](r(TSi − 1))) ⊔ext kc}

which coincides with TstU where st = (k ⊔ ki) ⊔ext kc ∶∶ st′ and Si = ki ∶∶ k[kc] ∶∶ st′

except for lub with se(i). The similar reasoning with Swap where lub with
se(i) in this case will have no effect.

• Arraystore
Similar argument as putfield where the JVM instruction removes the top of
the stack and the DEX instruction preserves the register typing for rt. Thus
appealing to the definition of ⊑ we have that rt ⊑ TstU.

• Invoke
This instruction itself yields 1 or 2 instructions depending on whether the func-
tion returns a value or not. Since the assumption for JVM type system is
that functions always return a value, the translation will be that invoke and
moveresult except that moveresult will always be in the region Norm. Let

k⃗′a
k′h→ k⃗′r be the policy for method invoked. Type system wise, there will be

three different cases for this instruction, normal execution, caught, and un-
caught exception. For this lemma, the only one applicable is normal execu-
tion since it is the one tagged with Norm. There will be two resulting in-
structions since it will also contain the instruction moveresult. Let st1 be
the stack containing the function’s arguments, t be the top of the stack af-
ter popping the function arguments from the stack and the object reference
t = locN + (length(Si) − length(st1) − 1), where locN is the number of local
variables. Let k be the security level of object referenced and ke = ⊔{k⃗′r(e) ∣ e ∈
excAnalysis(mID). Since the method can also throw an exception, we must
also include the lub of security level for possible exceptions, denoted by ke. In
this case, such rt will be

RTTiU[0] ⊕{ ret ↦ (k⃗′r(Norm) ⊔ se(TiU[0])), rt ↦ (k⃗′r(Norm) ⊔ se(TiU[1]))}

and by definition of ⊑ we will have that rt ⊑ TstU, where st = liftk⊔ke((k⃗′r[n] ⊔
se(i)) ∶∶ st2) and Si = st1 ∶∶ k ∶∶ st2. With that form of rt in mind, then the registers
typing for TiU[1] can be

RTTiU[0] ⊕{ret ↦ (k⃗′r(Norm) ⊔ se(TiU[0]))

coming from the transfer rule of invoke in DEX.

168 Type-Preserving Compilation of Android Bytecode

• Throw
This lemma will never apply to Throw since if the exception is caught, then
the successor will be in the tag τ ≠ Norm, but if the exception is uncaught, then
the instruction is a return point.

Lemma 6.2.8. For any JVM program P with instruction Ins at address i and tag τ ≠ Norm
with exception handler at address ie, let the length of TInsU until the instruction that throws
an exception τ be denoted by n. Let (be, 0) = TieU be the address of the handler for that
particular exception. If according to the transfer rule for Ins i ⊢τ Si ⇒ st, then

(∀0 ≤ j < (n − 1).∃rt′.TiU[j] ⊢Norm RTTiU[j] ⇒ rt′, rt′ ⊑ RTTiU[j+1])
and

∃rt.TiU[n − 1] ⊢τ RTTiU[n−1] ⇒ rt, rt ⊑ RT(be,0)
and

∃rt.(be, 0) ⊢Norm RT(be,0) ⇒ rt, rt ⊑ TstU

according to the transfer rule(s) of first n instruction in TInsU and moveexception.

Proof. Case by case of possibly throwing instructions:

• Invoke
We only need to take care of the case where the exception is caught, as an
uncaught exception is a return point (there is no successor). In this case, n = 1 as
the instruction that may throw is the invoke itself. Therefore, the first property
trivially holds (moveexception can’t possibly throw an exception). Let locN,
in this case, be the number of local variables, and e be the exception thrown.
Let k be the security level of the object referenced. In this case, the last rt will
take the form

rt = {k⃗a, ex ↦ (k ⊔ k⃗′r(e)), r(locN) ↦ (k ⊔ k⃗′r(e))}

Again with this rt, we will have rt ⊑ TstU, where st = (k ⊔ k⃗′r[e]) ∶∶ ε. Such an
rt is obtained from the transfer rule for invoke where an exception of tag τ is
thrown, and the transfer rule for moveexception. Then we have the register
typing for (be, 0) as

RT(be,0) = {k⃗a, ex ↦ (k ⊔ k⃗′r(e))}

which fulfills the second property (transfer rule from invoke) and the last prop-
erty, which when joined with the transfer rule for moveexception will give us
the rt that we want.

• Throw
The argument follows that of Invoke for the caught and uncaught exception.
For an uncaught exception, there is nothing to prove here as there is no result-
ing st. For a caught exception, let k be the security level of the exception and

§6.2 Proof that Translation Preserves Typability 169

locN be the number of local variables. Such rt can be

rt = {k⃗a, ex ↦ (k ⊔ se(TiU[0])), r(locN) ↦ (k ⊔ se(TiU[0]))}

and it will make the relation rt ⊑ TstU holds, where st = (k ⊔ se(i)) ∶∶ ε . This rt
comes from the transfer rules for throw and moveexception combined. Reg-
isters typing for (be, 0) takes the form of

RT(be,0){k⃗a, ex ↦ (k ⊔ se(TiU[0])}

which will give us the final rt we want after the transfer rule for moveexception

• Other possibly throwing instruction
Essentially they are the same as that of throw where the security level that
we are concerned with is the security level of the object lub-ed with its secu-
rity environment. The will also come from the transfer rule of each respec-
tive instruction throwing a null pointer exception combined with the rule for
moveexception.

Lemma 6.2.9 (Typeable Translation). Let Ins be an instruction at address i, i ↦ j, st, Si
and Sj are stack types such that i ⊢ Si ⇒ st, st ⊑ Sj. Let n be the length of TInsU. Let
RTTiU[0] = TSiU, let RTTjU[0] = TSjU and rt be registers typing obtained from the transfer
rules involved in TInsU. Then rt ⊑ RTTjU[0].

Proof. Using Lemma 6.2.7 and Lemma 6.2.8 to establish that we have rt ⊑ JstK. Then
we conclude by using Lemma 6.2.6 to establish that rt ⊑ RTTjU[0] because st ⊑ Sj.

We need an additional lemma to establish that the constraints in the JVM transfer
rules are satisfied after the translation. This is because the definition of typability
also relies on the constraint which can affect the existence of register typing.

Lemma 6.2.10 (Constraint Satisfaction). Let Ins be an instruction at program point i, Si
its corresponding stack types, and let RTTiU[0] = TSiU. If P[i] satisfy the typing constraint
for Ins with the stack type Si, then ∀(bj, j) ∈ TiU.PDEX[bj, j] will also satisfy the typing
constraints for all instructions in TInsU with the initial registers typing RTTiU[0].

Proof. We do a case by case examination of the instructions:

• Push
This instruction is translated into Const which does not have a constraint.

• Pop: does not get translated.

• Load x
This instruction will be translated to Move which does not have a constraint.

• Store x
This instruction will be translated to Move which does not have a constraint.

170 Type-Preserving Compilation of Android Bytecode

• Goto: does not get translated

• Ifeq t
This instruction will get translated to an ifeq instruction where the condition
is based on top of the stack (TSi − 1). There is only one constraint of the form
∀j′ ∈ region(i, Norm), rt(r(TSi − 1)) ≤ se(j′), and we know that in the JVM
bytecode the constraint ∀j′ ∈ region(i, Norm), k ≤ se(j′) is fulfilled. Based on
the definition of T.U, we will have k = rt(r(TSi − 1)). Thus we only need to
prove that the difference in the region will still preserve the constraint. We do
this by proof by contradiction. Suppose there exists an instruction at address
(bj, j) ∈ region(TiU[n]) such that k ≰ se(bj, j). But according to Property 6.2.1,
such an instruction will come from an instruction at address i′ s.t. i′ ∈ region(i)
thus it will satisfy k ≤ se(i′). By Property 6.2.4, se(bj, j) = se(i′), thus we will
have k ≤ se(bj, j). A plain contradiction.

• Binop
This instruction will be translated to Binop or BinopConst, both of which do
not have a constraint.

• Swap
Trivially holds as well because all the four move instructions translated from
swap do not have a constraint.

• New
Trivially holds as the target instruction New does not have a constraint.

• Getfield
There are different sets of constraints depending on whether the instruction ex-
ecutes normally, throws a caught exception, or throws an uncaught exception.

In the case of Getfield executing normally, there are only two constraints that
we need to track; one is that rt(ro) ∈ S and the second is ∀j ∈ region(i, Norm),
rt(ro) ≤ se(j). The first constraint is trivial since we already have that in JVM
the constraint k ∈ S is satisfied, where Si = k ∶∶ st for some stack type st. We
know that based on the definition of TSiU we have rt(ro) = k. Therefore we
can conclude that rt(ro) ∈ S. The second constraint follows, using a similar
argument to the satisfaction of region constraint in Ifeq.

In the case of Getfield throwing an exception, we then know that based on
the compilation scheme, depending on whether the exception is caught or not,
the same thing will apply to the translated instruction iget, i.e., if Getfield
has a handler for np, so does iget and if Getfield does not have a handler
for np, iget does not either. Thus we only need to take care of one more
constraint in that if this instruction does throw an uncaught exception, then
it will satisfy se(i) ⊔ rt(ro) ≤ k⃗r(np). This constraint also trivially holds as the
policy is translated directly, i.e. k⃗r(np) is the same both in the JVM type system
and the DEX type system, and that rt(ro) = k. Since the JVM typing satisfy
k ≤ k⃗r(np), then so does the DEX typing.

§6.2 Proof that Translation Preserves Typability 171

• Putfield
To prove the constraint satisfaction for this instruction we appeal to the trans-
lation scheme and the definition of T.U. We know from the translation scheme
that the resulting instruction is iput(r(TSi − 1), r(TSi − 2), f), so the top of the
stack (TSi − 1) corresponds to rs and the second to top of the stack (TSi − 2)
corresponds to ro. From the JVM transfer rule, we know that the security level
of Si[0] (denoted by k1) is in the set of Sext and the security level of Si[1] is in
the set of S. Thus we then know that the constraints rt(ro) ∈ S and rt(rs) ∈ Sext

are fulfilled since we have rt(TSi − 1) = Si[0] and rt(TSi − 2) = Si[1].
Now for constraints kh ≤ ft(f) and, (rt(ro) ⊔ se(i)) ⊔ext rt(rs) ≤ ft(f) we know
that the policies are translated directly. Thus the constraint kh ≤ ft(f) trivially
holds. For the other constraint, we know that k1 = rt(rs), k2 = rt(ro), and se
stays the same, therefore the constraint (rt(ro) ⊔ se(i)) ⊔ext rt(rs) ≤ ft(f) is also
satisfied because (k2 ⊔ se(i)) ⊔ext k1 ≤ ft(f) is assumed to be satisfied. Lastly, for
the rest of the constraints refer to the proof in Getfield as they are essentially
the same (the constraint for the region, handler’s existence / non-existence, and
constraint against k⃗r on uncaught exception).

• Newarray
Trivially holds as the translated instruction does not have a constraint.

• Arraylength
We first deal with the constraints k ∈ S and kc ∈ Sext. From the definition of
T.U, we know that rt(ra) = k[kc]. Since JVM typing satisfies these constraints,
it follows that DEX typing also satisfies this constraint. For the rest of the
constraints refer to the proof in Getfield as they are essentially the same (the
constraint for the region, handler’s existence / non-existence, and constraint
against k⃗r on uncaught exception).

• Arrayload
We first deal with the constraints k, rt(ri) ∈ S and kc ∈ Sext. From the definition
of T.U, we know that rt(ra) = k2[kc] and rt(ri) = k1. Since we know that JVM
typing satisfies all the constraint, we know that rt(ri) ∈ S since k1 ∈ S , k ∈ S
since k2 ∈ S, and kc ∈ Sext since in JVM typing kc ∈ Sext. For the rest of the
constraints refer to the proof in Getfield as they are essentially the same (the
constraint for the region, handler’s existence / non-existence, and constraint
against k⃗r on uncaught exception).

• Arraystore
Similar to that of Putfield, where rt(rs) = k1, rt(ri) = k2, and k3[kc] = rt(ra) =
k′[k′c]. k2, k3 ∈ S gives us k′, rt(ri) ∈ S and k1, kc ∈ Sext gives us k′c, rt(rs) ∈ Sext. In
this setting as well, it is easy to show that DEX typing satisfies ((k′ ⊔ rt(ri)) ⊔ext

rt(rs)) ≤ext k′c because JVM typing satisfies ((k2 ⊔ k3) ⊔ext k1) ≤ext kc. For the
rest of the constraints refer to the proof in Getfield as they are essentially the
same (the constraint for the region, handler’s existence / non-existence, and
constraint against k⃗r on uncaught exception).

172 Type-Preserving Compilation of Android Bytecode

• Invokevirtual
There will be three different cases for this instruction; the first case is when
method invocation executes normally. According to the translation scheme, the
object reference will be put in p⃗[0] and the rest of the parameters are arranged
to match the arguments to the method call. This way, we will have the corre-
spondence that rt(p⃗[0]) = k, and ∀i ∈ [0, length(st1) − 1].p⃗[i + 1] = st1[i]. Since
the policies and se are translated directly, we will have rt(p⃗[0]) ⊔ kh ⊔ se(i) ≤ k′h
since we know that the original JVM instruction satisfies k ⊔ kh ⊔ se(i) ≤ k′h. We
also know that rt(p⃗[0]) ≤ k⃗′a[0] since k ≤ k⃗′a[0]. A similar argument applies to
the rest of parameters to the method call to establish that ∀i ∈ [1, length(st1) −
1].p⃗[i] ≤ k⃗′a[i] that in turn will give us ∀0 ≤ i ≤ n.rt(p⃗[i]) ≤ k⃗′a[i]. For the last
constraint, we know that excAnalysis also gets translated directly, thus yield-
ing the same ke for both JVM and DEX. Following the argument of Getfield
for the region constraint, we only need to make sure that rt(p⃗[0]) ⊔ ke = k ⊔ ke

which is the case in our setting. Therefore, we will have that constraint ∀j ∈
region(i, Norm).rt(p⃗[0]) ⊔ ke ≤ se(j) is satisfied.

The second case is when method invocation throws a caught exception. Basi-
cally, the same arguments as that of normal execution, except that the region
condition is based upon particular exception ∀j ∈ region(i, e). rt(p⃗[0]) ⊔ k′r[e] ≤
se(j). Since the policy stays the same, JVM instruction satisfies this constraint
will imply that the DEX instruction will also satisfy the constraint. Since
now the method is throwing an exception, we also need to make sure that
it is within the possible thrown exception defined in excAnalysis. Again as
the class stays the same and that excAnalysis is the same, the satisfaction
of e ∈ excAnalysis(mID) ⊔ {np} in the JVM side implies the satisfaction of
e ∈ excAnalysis(m′) ⊔ {np} in the DEX side.

The last case is when method invocation threw an uncaught exception. Same
argument as the caught exception with the addition that escaping exception is
contained within the method’s policy. Since we have k ⊔ se(i) ⊔ k⃗′r(e) ≤ k⃗r(e) in
the JVM side, it will also imply that rt(p⃗[0]) ⊔ se(i) ⊔ k⃗′r(e) ≤ k⃗r(e) in the DEX
side since rt(p⃗[0]) = k and everything else is the same.

Actually, there is a possibility that there is an addition of moveresult and/or
moveexception, except that the target of this instruction will be in the stack
space. Therefore there will be no constraint involved to satisfy.

• Throw
We use similar arguments to that of Invokevirtual addressing the similar
form of the constraints. In the case of caught exception case, the constraint
e ∈ classAnalysis(i) ∪ {np} is satisfied because, as before, classAnalysis and
classes (e) are the same. So, if the JVM program satisfies the constraint, the
translated DEX program will also satisfy it. The same with ∀j ∈ region(i, e)rt(r) ≤
se(j) since rt(r) = k.

The case where an exception is uncaught is the same as the caught case, with

§6.2 Proof that Translation Preserves Typability 173

an addition that the security level of the thrown exception must be contained
within method’s policy. In this case, we already have rt(r) ≤ k⃗r(e) since rt(r) = k
and policies stay the same.

Using the above lemmas, we can prove the lemma that all the resulting blocks
will also be typable in DEX.

Lemma 6.2.11 (Translation Soundness). Let P be a JVM program s.t.

∀i, j.i ↦ j.∃st.i ⊢ Si ⇒ st and st ⊑ Sj

Then TPU will satisfy

1. for all blocks bi, bj s.t. bi ↦ bj, ∃rtb. s.t. RTsbi ⇒∗ rtb, rtb ⊑ RTsbj; and

2. ∀bi, i, j ∈ bi. s.t. (bi, i) ↦ (bi, j).∃rt. s.t. (bi, i) ⊢ RT(bi,i) ⇒ rt, rt ⊑ RT(bi,j)

where

RTsbi = TSiU with TiU = (bi, 0) , RTsbj = TSjU with TjU = (bj, 0),
RT(bi,i) = TSi′U with Ti′U = (bi, i) , RT(bi,j) = TSj′U with Tj′U = (bj, j).

Proof. For the first property, they are mainly proved using Lemma 6.2.9 because we
know that if a DEX instruction is at the end of a block, it is the last instruction in its
translated JVM instruction, except for invoke and throwing instructions. Based on
Lemma 6.2.9, we have that rt ⊑ RT(bj,0), where RT(bj,0) = TSjU. Since by definition rtb
is such rt and RTsbj = RT(bj,0), the property holds. For invoke we use the first case of
Lemma 6.2.7, and for throwing instructions, we use the first case of Lemma 6.2.8.

For the second property, it is only possible if the DEX instruction at address
i is non-invoke and non-throwing instruction. There are two possible cases here,
whether i and j come from the same JVM instruction or not. If i and j come from the
same JVM instruction, then we use the first case of Lemma 6.2.7. Otherwise, we use
Lemma 6.2.9.

After we established that the translation into DEX instructions in the form of
blocks preserves typability, we also need to ensure that the next phases in the trans-
lation process also preserves typability. The next phases are ordering the blocks,
output the DEX code, then fix the branching targets. Before we proceed to the proof
of Lemma 6.2.12, we define a property which is satisfied after the ordering and out-
put phase.

Property 6.2.8. For any block whose next order is not its primary successor, there are
two possible cases. If the ending instruction is not ifeq, then there will be a goto
instruction appended after the output of that particular block during the output
phase. If the ending instruction is ifeq, check whether the next order is, in fact, the
second branch. If it is the second branch, then we need to “swap” the ifeq instruction
into ifneq instruction. Otherwise appends goto to the primary successor block.

174 Type-Preserving Compilation of Android Bytecode

Lemma 6.2.12 (Order and Output Soundness). Let TPU be the typable basic blocks re-
sulting from translation of JVM instructions still in the block form, i.e.

TPU = Translate(TraceParentChild(StartBlock(P))).

Given the ordering scheme to output the block contained in PickOrder then the output JPK
is also typable.

Proof. The proof of this lemma is straightforward based on the definition of the prop-
erty and typability. Assuming that initially, we have the blocks already typable, then
what is left is to ensure that the successor relationship of the DEX instructions is
preserved in the output as well. Since the output is based on the ordering, and the
property ensures that for any ordering, all the block will have a correct successor,
then the typability of the program is preserved.

To flesh out the proof, we go for each possible ending of a block and its output
after the output phase.

• Sequential instruction
There are two possible cases; the first case is that the successor block is the next
block in order. Let bi indicate the current block and bj the successor block in
question. Let in be the last instruction in bi, then we know that ∃rt.RT(bi,in) ⇒
rt, rt ⊑ RTsbj where RTsbj will be the register typing for the next instruction (in
other words RT(bj,0)). Therefore, the typability property trivially holds.

The second case is that the successor block is not the next block in order. Ac-
cording to the step performed in the Output phase, the property 6.2.8 will be
satisfied. Thus there will be a goto appended after instructions in the block
output targetting the successor block. Let such block be bi and the successor
block bj. Let in be the last instruction in bi. From the definition of typability,
we know that if bj is the next block to output, then ∃rt.RT(bi,in) ⇒ rt, rt ⊑ RTsbj.
Now with additional goto in the horizon, we appeal to the transfer rule to
establish that this instruction does not need to modify the register typing, i.e.
∃rt.(bi, in) ⊢ RT(bi,in) ⇒ RT(bi,in+1), (bi, in + 1) ⊢ RT(bi,in+1) ⇒ rt, rt ⊑ RTsbj where
RT(bi,in+1) = rt.

• ifeq
There are three possible cases here; the first case is that the next block to output
is its primary successor. It is trivial as the relationship is preserved in that the
next block to output is the primary successor.

The next case is that the next block to output is its secondary successor. We
switch the instruction to its complement, i.e., ifneq. Let bi be the current block,
bj be the primary successor (which is directly placed after this block), and bk
the other successor. Let in be the index to the last instruction in bi. If bi ends
with ifneq, then we know that it is originally from the instruction ifeq since it
is impossible to explicitly code ifneq in the JVM. We also know that the blocks
are typable, therefore we have that for the two successors of bi the following

§6.3 Implementation for Type-Preserving Compilation 175

relation holds: ∃rt1.in ⇒ rt1, rt1 ⊑ RTsbj and ∃rt2.in ⇒ rt2, rt2 ⊑ RTsbk, which
defines the typability for the output instructions.

The last case is when the next block to output is not its successor. The argument
is the same as the sequential instruction one, where we know that adding goto
can maintain the register typing thus preserving the typability by fixing the
successor relationship.

For the secondary successor (target of branching), we know that there is a step
in the output that handles the branch addressing to maintain the successor
relations.

• invoke, yet the next block to output is not moveresult
Although superficially this seems like a possibility, the fact that moveresult is
added corresponding to a unique invoke renders the case impossible. If the
block containing sole moveresult is not yet ordered, we know that it will be the
next block to output based on the ordering scheme. This is the only way that
a moveresult can be given an order, so it is impossible to order a moveresult
before ordering its unique invoke.

Finally, the main result of this paper in that the compilation of typable JVM
bytecode will yield typable DEX bytecode which can be proved from Lemma 6.2.11
and Lemma 6.2.12. Typable DEX bytecode will also have the non-interferent property
because it is based on a safe CDR (Lemma 6.2.5) according to DEX.

Theorem 6.2.1 (Compilation Soundness). If P is a typable JVM bytecode w.r.t. its safe
CDR (region, jun), and method policies Γ, then according to the translation scheme JPK has
the property that

• ∀i, j ∈ PPDEX. if i ↦ j. then ∃rt.i ⊢ RTi ⇒ rt, rt ⊑ RTj

• ∀i, j ∈ PPDEX. if i ↦ . then i ⊢ RTi ⇒

w.r.t. a safe CDR (JregionK, JjunK).

6.3 Implementation for Type-Preserving Compilation

Figure 6.1 shows the overall architecture of our work. There are a lot of compo-
nents already fixed in place when we are talking about the compilation from Java
source to Android program. The connection between Java and JVM type systems
for non-interference has been studied by Barthe et al. [2006a]. Nevertheless we did
not include Java source code itself as one of the components as we are more con-
cerned about the Java classes compiled from Java source code (JVM Bytecode). In
this setting, our contributions are highlighted and set in a bolded frame.

The whole Android compilation setting starts from a developer writing the ap-
plication in Java. The components of the application will then get compiled to Java

176 Type-Preserving Compilation of Android Bytecode

Figure 6.1: Overall architecture

classes. dx tool which is bundled with the Android SDK will then aggregate these
classes into one (possibly many) DEX file, usually named “classes.dex”. The rest of
the toolchain will also bundle the manifest file, other resources, and assets into an
APK. This APK is what we call an Android application, which can be installed on a
mobile phone running Android OS.

The work by Barthe et al. comes into the picture in providing a type system to
guarantee that a JVM bytecode is non-interferent. Crucial to the work are the compo-
nents that check whether a given JVM bytecode is typable, and produce a certificate
if it is (type inference). We have implemented our own JVM type inference since we
do not have a type inference that suits our need. There is then another component
which type checks whether a JVM bytecode matches its certificate. Since our aim is
the translation of a certificate, we do not include the type inference component in the
figure. Nevertheless, this component is crucial in providing us with the certificate for
JVM bytecode which is necessary for the whole system to even start. We will detail
this component in the next section.

Our contributions are mainly contained in two components. The first component,
certificate translation, basically takes the certificates for the source Java classes and
translates it into a certificate for the corresponding DEX file, independently of the
non-optimizing compilation done by the dx tool. The other components parse the
DEX file, take the certificate, and check whether they match. We will detail this
component in the next section as well.

The prototype for our implementation is tested functionally, i.e., we write some
apps without some of the capabilities that are not included in the discussion (e.g.,
monitor and filled-new-array) which are then compiled with the dx tool with the
no-optimize flag. We then take the intermediate Java classes and feed them into our

§6.3 Implementation for Type-Preserving Compilation 177

Figure 6.2: Certificate Structure

178 Type-Preserving Compilation of Android Bytecode

Figure 6.3: Content of the Methods for the Sample Application

§6.3 Implementation for Type-Preserving Compilation 179

180 Type-Preserving Compilation of Android Bytecode

Figure 6.4: Certificate for the Sample Application

§6.3 Implementation for Type-Preserving Compilation 181

JVM type inference tool, which then provides the certificates for the Java classes. The
output certificates are further processed by the certificate translation tool to produce
the certificate for DEX, which then inserted into the APK. Since this is only a proof
of concept, we did not make an effort to do a thorough testing.

6.3.1 Component Details

In this section, we will go into more depth about each of the components that provide
us with the setting of this experimentation.

6.3.1.1 Certificate Structure

Here we will describe how we structure our certificate, both for JVM and DEX. They
mainly differ in that JVM uses a stack type while DEX uses a register type. Figure 6.2
shows the high-level structure of the certificate.

For the proof of concept, we implement a simple Android application with two
text input and one button, which will concatenate the strings in the two boxes. The
application itself has three main methods, a method for initialization, the method
to handle button click, and a method to handle application creation. The rest are
methods added by default. We will focus on this three methods and its certificate.
Figure 6.3 shows the excerpt from the DEX file. For this particular application, its
certificate is shown in Figure 6.4. Note that in this sample certificate we do not show
the entirety of the register typing and only show those that may be of interest. The
rest of the register is filled with a default level.

Below, we describe how we represent the certificate as a file. Since we will infer
the type for JVM, we do not provide the instruction typing for JVM certificate, just
instruction typing for DEX. We used the notation un to denote n bytes of data for
each type. We first describe how we represent a string and extended security level;
then we describe the certificate and its details.

string {
u1 string_size;
u1 char[string_size];

}

string_size: the value of this item is equal to the number of characters in the string.
The index to char is valid if it is greater than zero and less than string_size. The
string does not have to be ended by ‘\0’.

char: this item contains a list of characters in the order of their appearance in the
string. Each character is represented by its ASCII which is in the range of
0-255.

A sample of string in this format is “03 4C 6F 77” to represent “Low”, where the first
byte is the length of the string, “4C 6F 77” is the 3 byte ASCII value for “Low”.

182 Type-Preserving Compilation of Android Bytecode

security_level {
u1 level_depth;
u1 security_level_ID[level_depth];

}

level_depth: the value of this item is equal to the depth of the extended security
level. The depth is valid if it is greater than zero because zero is reserved for
a security level of � which should never exist in a valid certificate except for
pseudo-register ret.

security_level_ID: this item constitutes a representation of an extended level, in the
form of bytes in the order they appear in the security level. A security level
with depth 1 denotes a simple security level (is an element of S) whereas depth
more than 1 represents extended security level (Sext). A depth of more than
one will have the following form: depth of 2 will be b1[b2], depth of 3 will be
b1[b2[b3]], and so on, where bn indicates the n-th byte.

A sample security level for this (referring to the sample certificate) is “01 00” to rep-
resent a simple low security level. A value of “02 00 01” will represent an extended
security level “Low[High]”.

Certificate {
u1 level_pool_size;
string level_pool[level_pool_size];
u1 default_level;
u1 levels_relationship_size;
u1*u1 levels_relationship[levels_relationship_size];
u2 field_size;
field_info fields[field_size];
u2 methods_size;
method_info methods[method_size];

}

The structure of the certificate is the following :

level_pool_size: the value of this item is equal to the number of entries in the
level_pool. The index to level_pool is valid if it is greater or equal than zero
and less than level_pool_size

level_pool: this item contains a list of the name of the security levels. The security
level itself will be represented as a pair of ID and its name. The list of names
here is expected to follow the order of the ID of security level, i.e., the first item
in the list will have ID 0, the second item will have ID 1, and so on.

default_level: the value of this item will denote the lowest level in the level_pool.

§6.3 Implementation for Type-Preserving Compilation 183

levels_relationship_size: the value of this item is equal to the number of entries in
the levels_relationship.

levels_relationship: this item contains a list of a pair of ID x, y to denote that x ≤ y.
The value in this item does not have to be sorted because they are represented
as a relation map.

field_size: the value of this item is equal to the number of entries in the fields.

fields: this item contains the global security policy for the field (f t). Each field
is represented as a string of class name, a string of field name, and a secu-
rity_level_info of security level. The list of this fields does not have to be sorted
according to some order because we represent the policy as a map from a pair
of strings to its security level.

methods_size: the value of this item is equal to the number of entries in the methods.

methods: this item contains methods (the structure of each method is described in
method_info), where each item is a string of class name, a string of method
name, a string of method description, and the content of the method. The
entries in this item do not have to be sorted as they will be represented as a
map from a triple of string to a method_info structure

For our particular example, the level pool size will have the value of “02” because
there are only two security level (“Low” and “High”). The level pool itself will
contain the two strings represented with the byte value “03 4C 6F 77 04 48 69 67
68”, where “03 4C 6F 77” represents “Low” and “04 48 69 67 68” represents “High”.
The default level has a byte value of “01”, the levels relationship size is “03”, and
the content itself will be “00 00 00 01 01 01” representing the three elements “(0,0),
(0,1), (1,1)”. The field size will be “00 00” because we do not have any fields in our
program, and the method size will be “00 03” because there are three methods we are
concerned about. For each of the fields and methods, the structure will be detailed
further.

field_info {
string class_name;
string field_name;
security_level field_policy;

}

This entry basically says that the global policy (f t) for this particular field iden-
tified with class_name and field_name has the security level of field_policy. The
structure of the field is the following:

class_name: the value of this item identifies the field with the class name. There are
no rules regarding what should be put here. What we need to be concerned
with is that if the class name does not match with the one in the original pro-
gram, then the program and its certificate will not type check.

184 Type-Preserving Compilation of Android Bytecode

field_name: the value of this item identifies the field with its particular name. There
are no rules regarding what should be put here. What we need to be con-
cerned with is that if the field name does not match with the one in the original
program, then the program and its certificate will not type check.

field_policy: this item will have the structure of security_level and will indicate the
extended security level assigned to this particular field.

We do not refer to the sample certificate for this field item since the sample applica-
tion does not have a field. For an example of this field, assume that we have a field
“objectField” defined for a class “objectClass”. Assume also that the field policy for
“objectClass.objectField” is high. Then the entry in the certificate will be “0B 6F 62
6A 65 63 74 43 6C 61 73 73 0B 6F 62 6A 65 63 74 46 69 65 6C 64 01 01” where “0B 6F
62 6A 65 63 74 43 6C 61 73 73” represents the string “objectClass”, “0B 6F 62 6A 65
63 74 46 69 65 6C 64” represents the string “objectField” and “01 01” represent the
high security level.

method_info {
string class_name;
string method_name;
string method_description;
u2 instruction_size;
CDR_info CDR[instruction_size];
bytecodeMethod_info bytecodeMethod[level_pool_size];

}

For this particular method identified with the class_name, method_name, and
method_description, this entry basically describes its CDR structure and policy and
types of bytecodeMethod for each level in the level_pool. The structure of the method
is the following:

class_name: the value of this item identifies the field with the class name. There are
no rules regarding what should be put here. What we need to be concerned
with is that if the class name does not match with the one in the original pro-
gram, then the program and its certificate will not type check.

method_name: the value of this item identifies the method with its particular name.
There are no rules regarding what should be put here. What we need to be
concerned with is that if the method name does not match with the one in the
original program, then the program and its certificate will not type check.

method_description: the value of this item identifies the method with its particular
name. There are no rules regarding what should be put here. What we need
to be concerned with is that if the method description does not match with the
one in the original program, then the program and its certificate will not type
check.

§6.3 Implementation for Type-Preserving Compilation 185

instruction_size: the value of this item identifies how many instructions are there
in the method, mainly to identify how many CDRs we are expecting. A note
need to be made that this instruction_size can be different from the one in
the bytecodeMethod to cater for default methods that do not need a detailed
instructions typing.

CDR: Each element this item will have the structure of CDR_info, which will indi-
cate the labels, regions, and junctions for this method. The elements of this
CDR does not have to be ordered according to the labels because we represent
the CDR information as a mapping from program points to regions or junction.

bytecodeMethod: this item will contain some policies and typings according to the
number of security levels there are in the level pool. The main purpose of this
different bytecodeMethod is to cater for the Γ policy which can be different
according to the security level of the object that the method is invoked from.
For the program to type check, all the methods (and all security level of the
object) need to be type-checked.

An example for this entry is “09 53 69 6D 70 6C 65 41 70 70 06 3C 69 6E 69 74 3E 01 56
00 04 ...” where “09 53 69 6D 70 6C 65 41 70 70” represents the string “SimpleApp”
“06 3C 69 6E 69 74 3E” represents the string “<init>”, “01 56” represents the string
“V”, and “00 04” is the instruction size. The CDR structure and the content of the
bytecode method will be detailed further.

CDR_info {
u2 program_label
u2 region_size;
u2 region[region_size];
u2 junction;

}

The structure of the CDR is the following:

program_label: the value of this item indicates the label of the program for which
has the region information and junction.

region_size: the value of this item is equal the number of entries in region. A valid
value for this region is greater or equal to zero and less than instruction_size.

region: the value of this item shows which program labels are under the region of
program_label, it may be empty.

junction: the value of this item shows which program point serves as the junction of
program_label. This item has the value of zero if there is no such junction for
program_label.

For each of the program point in the method, we attach an entry for the CDR. An
example of a CDR entry for program point 1 where region(1) = {2, 4, 5} and jun(1) =

186 Type-Preserving Compilation of Android Bytecode

7 is “00 01 00 03 00 02 00 04 00 05 00 07” where “00 01” is the program point, “00 03”
represents the number of program points in the region, “00 02 00 04 00 05” represents
the 3 program points in the region of 1, and “00 07” represents the junction point of
1 which is 7. If the program point does not have any region, then the region size will
simply have the value of zero.

bytecodeMethod_info {
u1 object_level;
u1 ka_size;
security_level ka[ka_size];
u1 kh;
u1 kr_size;
security_level kr[kr_size];
u2 bm_instruction_size;
bm_instruction_info instructions[bm_instruction_size];

}

The structure of the bytecodeMethod_info is the following:

object_level: the value of this item indicates the security of the object level that
invokes this particular method.

ka_size: the value of this item denotes how many locals variable are there. Even
though there is no such thing as local variable in the DEX itself, this value is
carried over from the JVM certificate where there is a concept of local variable.

ka: this item will denote the security level for each of the local variables. The order
in this item matters, i.e., the first security_level denotes the security level of
k⃗a[0], the second security_level denotes the security level of k⃗a[1], and so on.

kh: the value of this item refers to the level_pool, which will denote the method
policy for heap.

kr_size: the value of this item denotes how many return types are there. On a normal
method without exception returning a value, the value will be 1. The value of
kr_size is the 1 + the number of exceptions possibly thrown by the method. At
the current implementation, we have not implemented exception handling yet,
so the value will either be 0 or 1.

kr: this item will denote the security level for each of the return type. We reserve
kr(0) to be the security level of the normal return value.

bm_instruction_size: the value of this item indicates the number of instructions in
the method. This value will be either 0 or the same as instruction_size in the
method structure.

instructions: this item describes the registers type and security environment for each
instruction in the method.

§6.3 Implementation for Type-Preserving Compilation 187

A sample of this entry from the sample program for method “<init>” and has low
object security level is “00 01 00 00 01 00 01 00 00 04 ...” where “00” signify the
low object security level, “01” represents the size of k⃗a, “00 00 01 00” represents
a low security level (“01 00”) for register 0 (“00 00”). “00 04” represents the size
of the instruction, and then for each of the instruction, the structure is detailed in
bm_instruction_info.

bm_instruction_info {
u2 program_label;
u1 security_environment;
u2 register_type_size;
u2*security_level register_level[register_type_size];
security_level ret;

}

The structure of the instruction_info is the following:

program_label: the value of this item indicates the program label which will be
typed by the register type and the security environment.

security_environment: the value of this item will refer to a basic security level con-
tained in the level_pool. The valid value will be greater or equal than 0 and
less than level_pool_size.

register_type_size: the value of this item indicates how many registers are there in
the register type for the current program label.

register_level: this item describes the security level of the value held by a particular
register. This item is represented as a pair of register number and its security
level, and we represent them directly as a map.

ret: the value of this item will indicate what is the security level of the pseudo-
register ret. In the case where it is a �, we can say that ret does not hold any
value

An example for this entry is “00 02 00 00 03 00 02 01 01 00 01 01 01 00 00 01 01 00”
where “00 02” is the program point 2, “00” is the low security level for se, “00 03”
represents the size of the register typing, “00 02 01 01” means register 2 has high
security level, “00 01 01 01” means register 1 has high security level, “00 00 01 01”
means register 0 has high security level, and the last byte “00” means the pseudo
register ret is not used.

To collect everything together, a certificate for the sample DEX program is given
in Figure 6.5.

6.3.1.2 Naive JVM Type Inference

This component takes an input file which contains the certificate without the typ-
ing for each instruction (stacktype and security environment) and reconstructs the

188 Type-Preserving Compilation of Android Bytecode

02 03 4C 6F 77 04 48 69 67 68 }Level pool
01 }default level
03 00 00 00 01 01 01 } levels relationship
00 00 }Field
00 03 }Method size
09 53 69 6D 70 6C 65 41 70 70
06 3C 69 6E 69 74 3E 01 56

}Method 1

00 04
00 00 00 00 00 00
00 01 00 00 00 00
00 02 00 00 00 00
00 04 00 00 00 00

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

CDR for Method 1

00 01 00 00 01 00 01 00 }Policy for Low object level
00 04
00 00 00

00 03
00 02 01 00
00 01 01 01
00 00 01 00
00

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

register type for program point 0

00 01 00
00 03
00 02 01 01
00 01 01 01
00 00 01 00
00

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

register type for program point 1

00 02 00
00 03
00 02 01 01
00 01 01 01
00 00 01 00
00

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

register type for program point 2

00 04 00
00 03
00 02 01 01
00 01 01 01
00 00 01 00
00

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

register type for program point 4

⎫⎪⎪⎬⎪⎪⎭

bytecode method typing

...
the rest of the certificate is omitted

Figure 6.5: Sample Certificate

§6.3 Implementation for Type-Preserving Compilation 189

Algorithm 10 Flow_Tracer(bm)
order ∶= [1]; // always start with the first instruction
workingSet ∶= [1];
while workingSet is not empty do

(i ∶∶ workingSet′) ∶= workingSet;
if bm.instructionAt(i) ∈ {Nop, Push c, Load x, Store x, Binop, New, Getfield,
Putfield, Invoke m′} then

order.append(i + 1);
if (i + 1) ∉ order then workingSet′.append(i + 1);

else if bm.instructionAt(i) = Goto t then
order.append(t);
if t ∉ order then workingSet′.append(t);

else if bm.instructionAt(i) ∈ {If t, Ifz t} then
order.append(i + 1); order.append(t)
if (i + 1) ∉ order then workingSet′.append(i + 1);
if t ∉ order then workingSet′.append(t);

workingSet ∶= workingSet′;
return order;

certificate for the JVM bytecode. The inference itself (described in Algorithm 12 is
simple in nature, we just repeatedly infer the stack type and security environment
for the successor instruction, starting from label 0, until they reach a fixpoint (no
more change either in stack type or security environment). Algorithm 11, describes
how we implement the naive type inference. A little note to be made is that we
abstract from actual program counter and use the index to the list instead. We also
overload the symbol ⊑ to be operable between stack types as well to mean pairwise
lub between the stacktype elements. Before we invoke the Algorithm 11, we first do a
simple program flow tracing described in Algorithm 10. The purpose of this program
flow tracing is to ease the burden of type inference so that it just needs to traverse
the order produced by the flow tracer without having to deal with the case where an
instruction still has not been assigned a stack type and security environment yet.

We implemented this component in OCaml, in conjunction with the component
to do a certificate translation. Our main consideration for doing so is because it is
much easier to transfer the resulting JVM certificate directly to the next component
within the program itself, rather than having a temporary output file.

6.3.1.3 Non-Optimizing Certificate Translation

The translation component basically implements what we have highlighted before in
the translation section. We implemented the five steps in translating the JVM byte-
code into DEX bytecode while carrying over the type from JVM for each instruction.
The translation of the stack type also follows in that we just flatten the stack type
and assign an index (starting from the number of local variables) from the bottom
of the stack. The details for the implementation itself is straightforward if it just

190 Type-Preserving Compilation of Android Bytecode

concerns the translation of the bytecode. When we translate the type, however, some
complications arise.

Firstly, since the translation steps only concern a specific bytecode under a spe-
cific policy, we have to extend that to include each security level for the object that
contains this method. We then have to incorporate all the methods in the class. Since
dx aggregates all the files together, we also have to extend the scope to include all the
classes to be compiled to DEX bytecode. This peripheral information is not necessar-
ily difficult in itself because it is mostly straightforward. For example, the policy for
the field and methods can be directly transferred from JVM to DEX.

That said, the convention for the class identifier is different between JVM and
DEX, so we need a bit of adjustment here. In particular, for JVM the class identifier
is a “/” delimited string where the last string is the particular class name, and the
string before that is the package name. For DEX, however, the class identifier takes
the form of “L” + class identifier + “;”, e.g., if a class in JVM is identified with
“java/lang/Object” then in DEX it is identified as “Ljava/lang/Object;”. For the
current implementation, we also use the short method descriptor in DEX as opposed
to the full method descriptor.

Secondly, there are some instructions that do not fit nicely with the framework of
just bringing the types from the JVM. The instruction pair of Invoke and MoveResult
in DEX use the pseudo-register ret, which obviously is not captured in JVM. For
MoveResult, firstly we just take the stack type of the successor of the Invoke in-
struction and translate it into the register type. Then we need to check whether the
Invoke instruction immediately before is returning a value or not, and if so, we re-
move one value from the top of the stack and put it into ret. The Goto instruction is
also a tricky bit that we have to handle, in that it only ever appears in the translation
phase if the next block to output is not a successor. To handle this, we maintain the
register type for the start of each block and assign them to any Goto instruction that
points to that block.

Thirdly, the translation of regions and junction are not really straightforward
either. We need to know the relation between the source program points and their
translation. In particular, a program point in the JVM may be related to 0 or more
program points in the DEX, but each program point in the DEX will only have one
relation to the JVM program points (one to many) with the exception of a Goto
instruction. The simplest part of the region translation is that for a program point i,
all the program points in the DEX that are related to any program points in region(i)
will also be in region(j) where j is a DEX program point that is related to i. Again,
MoveResult and Goto complicate this process. For MoveResult, because it does
not have its corresponding instruction in the JVM we have to fix it so that it relates
to its associated Invoke instruction in the JVM. A similar case can be made with the
Goto instruction in that we tag the source instruction for Goto to be the same as the
start of the block which becomes the target of this Goto instruction. This decision
of relating the Goto instruction with the target instead of the previous instruction is
mainly to handle the case where the Goto instruction is generated by a branching
instruction, in which case we need to include Goto in the region as well.

§6.3 Implementation for Type-Preserving Compilation 191

Finally, there are also some instructions that do not directly follow the translation
outlined above. In the JVM, all Binop instructions use the values on the stack as the
operands, regardless of whether or not they are constants. In the DEX, BinopConst
is dedicated to deal with a binary operation with constant. The modifications to the
values themselves will not change, but it has impact on the size of the instructions,
i.e., the size of Binop instruction can be one short or two shorts, but the size of
BinopConst is always two shorts. The DEX translation of Dup is also not straight-
forward. Instead of copying the value from the top of the stack and push it on top, it
copies the value on top of the stack, creates a register containing the copy, and then
copies the value from this register to both the top of the stack and the new top of the
stack.

6.3.1.4 DEX Type Checker

This last component primarily just does a simple type checking on the Android
phone. It takes the DEX file, parses the DEX file, and checks it against the certificate
generated by the certificate translator whether all the instructions in the bytecode
satisfy the typability definition. This means that our system works independently of
the Android OS, and as such, there is no modification at all to the overall Android
structure.

We implemented the DEX type checker as an Android application which takes
an input string from the user which is the package name for the application that the
user wants to type check. Several notes need to be made for this component:

• The DEX file in the package is contained in the predefined file name “classes.dex”.
We are aware of the possibility that there are multiple DEX files for a single ap-
plication (e.g., when there are so many methods that it can not be contained
within one DEX file), but we decided to ignore this because it is not the main
focus of our work.

• We also take the certificate from a predefined file name “Certificate.cert” con-
tained in the “assets” directory. The type checker will just check for this partic-
ular file for the certificate, will skip the type checking should a valid certificate
not be found.

• There are a lot of generated additional methods and classes for Android appli-
cation, e.g., “Build.config” and “R” (and its subclasses). Obviously, we could
analyze each of those additional things and provide a proper certificate for each
of them, but we decided to ignore them instead because they are not the focus
of this work.

• A similar thing can be said about the methods and classes contained in the An-
droid library. Although for this particular case, since programs will inevitably
reference them, we decided to inject the certificate with these methods except
that they are stripped off their bytecode instructions. This decision is mainly

192 Type-Preserving Compilation of Android Bytecode

due to the transfer rule of method invocation which requires the policy of the
target method.

• Since we need to parse the whole DEX file, the process takes a significant
amount of time

Algorithmically, Algorithm 13 describe how we implement the DEX type checker for
a particular bytecode instructions under a particular policy. Since we need to type
check all the methods for all the policy, we just apply this algorithm repeatedly for
different methods and policy.

6.3.2 Compact Certificate

The certificate structure that we have given above is still within reasonable size. In the
worst case, it is within polynomial size of the bytecode (O(n2)). Although practically
the size of this certificate is much smaller than the actual DEX bytecode because
we skip default methods, the question of whether we can make the certificate much
more compact is still an interesting question.

In order to make the certificate size smaller, we modify the representation of the
instruction’s typing because it is the bottleneck. As opposed to representing all the
registers typing explicitly, we follow the idea from JVM representation of stack, in
that we represent the current typing based on the previous typing and any changing
values. We introduce two functions with the following symbols to represent our
registers typing: ⊔cert and ⊕cert. ⊔cert is a function that takes two registers typing, and
produce a register typing which every register holds the least upper bound of the
security level of the input registers typing. More formally,

∀rt1, rt2 ∈ (R → S).rt1 ⊔cert rt2 = rt, where ∀r ∈ rt.rt(r) = rt1(r) ⊔ rt2(r).

⊕cert is a function that takes a registers typing and a pair of index and security level,
and produce a registers typing with the security level of the register at index is
modified to be the input security level. More formally,

∀rt ∈ (R → S), r ∈ rt, k ∈ Sext.rt⊕cert (r, k) = rt′,

where ∀r′ ∈ rt′.rt′(r′) = { rt(r′) if r′ ≠ r
k if r′ = r

.

Using these two functions, as opposed to representing the whole registers typing as
a register and security level pair, we represent them using the operations between
parent instructions’ typing and their modifications. For example, if an instruction
i has two parent j and k, where rti = {0 ↦ H, 1 ↦ H}, rtj = {0 ↦ L, 1 ↦ L}, and
rtk = {0 ↦ L, 1 ↦ H}, then as opposed to represent the typing as explicit mapping,
we represent the typing as rti = (rtj ⊔cert rtk) ⊕cert (0, H).

To obtain the certificate, we first take the naive certificate that has been produced
and the DEX bytecode corresponding to the certificate. We scan the DEX bytecode
and gather the list of parent instructions for each of the instruction. After we have

§6.3 Implementation for Type-Preserving Compilation 193

the parents list, we combine all the registers typing of the parents using the ⊔cert

operation. If any of the parents does not modify the result, then that particular
parent is removed from the list. After we aggregated the registers typing from the
parent, then we compare the aggregate with its actual registers typing. For each of
the register contained in the actual registers typing that is different than the one in
the aggregate, we fix the value by using ⊕cert operation. We argue that both the naive
representation and the compact form of the representation is the same.

Lemma 6.3.1. The compact form of register typing represents the same register typing as the
naive representation.

Proof. We first note that there are two steps in making the compact register typing;
first is aggregating the parents’ register typing, and then we add +cert for each regis-
ter that is different from the actual register typing. The crux of the lemma is that the
second step enforces the compact representation to be the same as the actual repre-
sentation. Therefore no matter what register typing the first step give us it will be
irrelevant to the proof of the lemma. We also know that the naive representation is
a plain representation of the actual register typing. Therefore since both of them are
representing the actual register typing, the lemma holds.

Intuitively, what we have done so far is just shifting the burden from the size
of the certificate to the type checker, i.e., the type checker has to do extra work
to check the certificate. This is obvious in that before the type checker can check
whether the program is typable given the certificate, the type checker now need to
process both ⊔cert and ⊕cert operations to obtain the actual registers typing before
proceeding. After we get the actual registers typing, the type checker proceeds as
before. So practically the only difference for the type checker itself is the additional
functionality to unravel the compact certificate.

In terms of the overall certificate representation, there is not much difference with
the naive representation of the certificate. The difference only lies in the structure of
each instruction, in particular, the representation of the registers typing which now
consists of the list of parents involved in the ⊔cert operations and list of register and
security level pairs involved in the ⊕cert operations.

bm_instruction_info {
u2 program_label;
u1 security_environment;
u2 parents_size;
u2 parent_label[parents_size];
u2 changes_size;
u2*security_level modifications[changes_size];
security_level ret;

}

The structure of the instruction_info is the following:

194 Type-Preserving Compilation of Android Bytecode

program_label: the value of this item indicates the program label which will be
typed by the register type and the security environment.

security_environment: the value of this item will refer to a basic security level con-
tained in the level_pool. The valid value will be greater or equal than 0 and
less than level_pool_size.

parents_size: the value of this item indicates how many parents are there for the
current program label. The only instruction whose parents_size is 0 is the first
instruction in the method (instruction 0).

parent_label: the value of this item are the labels of the parent instruction. This is
used to indicate which parents are involved in the ⊔cert operations.

changes_size: the value of this item indicate how many pairs of register and security
level there are which modify the registers typing. Value 0 indicates that there is
no need for any modification from the aggregation of parents registers typing.

modifications: this item describes pairs of register and security level involved in the
⊕cert operations.

ret: the value of this item will indicate what is the security level of the pseudo-
register ret. In the case where it is a �, we can say that ret does not hold any
value

An example of this entry is “00 05 00 00 01 00 02 00 01 00 00 01 01 00”, where “00
05” is the program point 5, “00” represents the low security environment, “00 01 00
02” represents the list of parent of the current program point involved in ⊔cert, which
is only program point 2, “00 01 00 00 01 01” means there is one ⊕cert to modify the
security level of register 0 to be high.

We have implemented this scheme by extending the OCaml program to produce
the certificate and the type checker app. Referring to the sample application, we note
that the size of the certificate is reduced to less than half, while there is a negligible
additional overhead time to check the certificate. This is due to the fact that the main
bulk of the process is not in type checking itself, but rather parsing the DEX file.
In the sample certificate, for a particular representation of the bytecode typing for
method 1, a naive representation will require 72 bytes to represent the typing while
the compact representation only requires 54 bytes to represent the typing. Even in
this small example it already exhibits a 25% reduction in the space. The reduction
will be even more for more instructions and more registers in the typing.

The more compact certificate for the sample DEX program is given in Figure 6.6.

§6.3 Implementation for Type-Preserving Compilation 195

02 03 4C 6F 77 04 48 69 67 68 }Level pool
01 }default level
03 00 00 00 01 01 01 } levels relationship
00 00 }Field
00 03 }Method size
09 53 69 6D 70 6C 65 41 70 70
06 3C 69 6E 69 74 3E 01 56

}Method 1

00 04
00 00 00 00 00 00
00 01 00 00 00 00
00 02 00 00 00 00
00 04 00 00 00 00

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

CDR for Method 1

00 01 00 00 01 00 01 00 }Policy for Low object level
00 04
00 00 00

00 00
00 03
00 02 01 00
00 01 01 01
00 00 01 00
00

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

compact typing for program point 0

00 01 00
00 01 00 00
00 01
00 02 01 01
00

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

compact typing for program point 1

00 02 00
00 01 00 01
00 00
00

⎫⎪⎪⎪⎬⎪⎪⎪⎭
compact typing for program point 2

00 04 00
00 01 00 02
00 00
00

⎫⎪⎪⎪⎬⎪⎪⎪⎭
compact typing for program point 4

⎫⎪⎪⎬⎪⎪⎭

bytecode method typing

...
the rest of the certificate is omitted

Figure 6.6: Sample Compact Certificate

196 Type-Preserving Compilation of Android Bytecode

Algorithm 11 Type_Inference (bm, bmc, mc, lvt, f t, order)
bmc.ST(1) = []; // Initial stack type is always empty
bmc.ST(1) = mc.de f aultlevel; // Initial se is always Low
for i = 1 to bm.length do

idx ∶= order(i);
switch (bm.instructionAt(idx))
case (Nop):

bmc.ST(idx + 1) ∶= bmc.ST(idx + 1) ⊔ bmc.ST(i);
bmc.se(idx + 1) ∶= bmc.se(idx + 1) ⊔ bmc.se(i);

case (Push c):
bmc.ST(idx + 1) ∶= bmc.ST(idx + 1) ⊔ (bmc.se(i) ∶∶ bmc.ST(i));
bmc.se(idx + 1) ∶= bmc.se(idx + 1) ⊔ bmc.se(i);

case (Load x):
bmc.ST(idx + 1) ∶= bmc.ST(idx + 1) ⊔ ((bmc.se(i) ⊔ lvt.ka(x)) ∶∶ bmc.ST(i));
bmc.se(idx + 1) ∶= bmc.se(idx + 1) ⊔ bmc.se(i);

case (Store x):
(k ∶∶ st) ∶= bmc.ST(i);
bmc.ST(idx + 1) ∶= bmc.ST(idx + 1) ⊔ st;
bmc.se(idx + 1) ∶= bmc.se(idx + 1) ⊔ bmc.se(i);
if bmc.se(i) ⊔ k ≰ lvt.ka(x) then return false;

case (Binop):
(k1 ∶∶ k2 ∶∶ st) ∶= bmc.ST(i);
bmc.ST(idx + 1) ∶= bmc.ST(idx + 1) ⊔ ((k1 ⊔ k2 ⊔ bmc.se(i)) ∶∶ st);
bmc.se(idx + 1) ∶= bmc.se(idx + 1) ⊔ bmc.se(i);

case (Goto t):
bmc.ST(t) ∶= bmc.ST(t) ⊔ bmc.ST(i);
bmc.se(t) ∶= bmc.se(t) ⊔ bmc.se(i);

case (If t):
(ka ∶∶ kb ∶∶ st) = bmc.ST(i);
bmc.ST(idx + 1) ∶= bmc.ST(idx + 1) ⊔ li f t(st, ka ⊔ kb);
bmc.ST(t) ∶= bmc.ST(t) ⊔ li f t(st, ka ⊔ kb);
for j in bmc.region(i) do

bmc.se(j) = bmc.se(j) ⊔ ka ⊔ kb;
case (Ifz t):

(k ∶∶ st) = bmc.ST(i);
bmc.ST(idx + 1) ∶= bmc.ST(idx + 1) ⊔ li f t(st, k);
bmc.ST(t) ∶= bmc.ST(t) ⊔ li f t(st, k);
for j in bmc.region(i) do

bmc.se(j) = bmc.se(j) ⊔ k;
case (Return): continue;
case (IReturn):

(k ∶∶ st) ∶= bmc.ST(i);
if bmc.se(i) ⊔ k ≰ lvt.kr(0) then return false;

§6.3 Implementation for Type-Preserving Compilation 197

case (New c):
bmc.ST(idx + 1) ∶= bmc.ST(idx + 1) ⊔ (bmc.se(i) ∶∶ bmc.ST(i));
bmc.se(idx + 1) ∶= bmc.se(idx + 1) ⊔ bmc.se(i);

case (Getfield f):
(ko ∶∶ st) = bmc.ST(i);
bmc.ST(idx + 1) ∶= bmc.ST(idx + 1) ⊔ ((bmc.se(i) ⊔ ko ⊔ f t(f)) ∶∶ bmc.ST(i));
bmc.se(idx + 1) ∶= bmc.se(idx + 1) ⊔ bmc.se(i);

case (Putfield (r, ro, f)):
(ks ∶∶ ko ∶∶ st) = bmc.ST(i);
bmc.ST(idx + 1) ∶= bmc.ST(idx + 1) ⊔ st;
bmc.se(idx + 1) ∶= bmc.se(idx + 1) ⊔ bmc.se(i);
if bmc.se(i) ⊔ ks ⊔ ko ≰ f t(f) then return false;
if kh ≰ f t(f) then return false;

case (Invoke m′):
length(st1) ∶= nbArguments(m′);
(st1 ∶∶ k ∶∶ st2) ∶= bmc.ST(i);
lvt′ ∶= mc. f ind(m′, k).policy;
bmc.ST(idx + 1) ∶= bmc.ST(idx + 1) ⊔ ((lvt′.kr(0) ⊔ bmc.se(i) ⊔ k) ∶∶ st2);
bmc.se(idx + 1) ∶= bmc.se(idx + 1) ⊔ bmc.se(i);
if k ⊔ lvt.kh ⊔ bmc.se(i) ≰ lvt′.kh then return false
if k ≰ lvt′.ka(0) then return false
for j ∶= 1 to length(st1) do

if st1[j] ≰ lvt′.ka[j]) then return false
end for
return bmc;

Algorithm 12 Infer_Type(bm, bmc, mc, lvt, f t)
order ∶= Flow_Tracer(bm);
new_bmc ∶= Type_Inference(bm, bmc, mc, lvt, f t);
while bmc <> new_bmc do

bmc ∶= new_bmc;
new_bmc ∶= Type_Inference(bm, bmc, mc, lvt, f t);

return new_bmc;

198 Type-Preserving Compilation of Android Bytecode

Algorithm 13 Type_check(bm, bmc, mc, lvt, f t)
for i = 1 to bm.length do

rt ∶= bmc.RT(i);
switch (bm.instructionAt(i))
case (Nop):

if bmc.RT(i) ⋢ bmc.RT(i + 1) then return false;
case (Const (r, c)):

if rt⊕{r ↦ bmc.se(i)} ⋢ bmc.RT(i + 1) then return false;
case (Move (r, rs)):

if rt⊕{r ↦ bmc.se(i) ⊔ rt(rs)} ⋢ bmc.RT(i + 1) then return false;
case (Binop (r, ra, rb)):

if rt⊕{r ↦ bmc.se(i) ⊔ rt(ra) ⊔ rt(rb)} ⋢ bmc.RT(i + 1) then return false;
case (Binop2Addr (ra, rb)):

if rt⊕{ra ↦ bmc.se(i) ⊔ rt(ra) ⊔ rt(rb)} ⋢ bmc.RT(i + 1) then return false;
case (BinopConst (r, ra, c)):

if rt⊕{r ↦ bmc.se(i) ⊔ rt(ra)} ⋢ bmc.RT(i + 1) then return false;
case (MoveResult (r)):

if rt⊕{r ↦ bmc.se(i) ⊔ rt(ret)} ⋢ bmc.RT(i + 1) then return false;
case (Goto (t)):

if rt ⋢ bmc.RT(t) then return false;
case (If (ra, rb, t)):

k ∶= bmc.se(i) ⊔ rt(ra) ⊔ rt(rb)
if li f t(rt, k)} ⋢ bmc.RT(i + 1) then return false;
if li f t(rt, k)} ⋢ bmc.RT(t) then return false;
for j in bmc.region(i) do

if k ≰ bmc.se(j) then return false;
case (Ifz (r, t)):

k = bmc.se(i) ⊔ rt(r)
if li f t(rt, k)} ⋢ bmc.RT(i + 1) then return false;
if li f t(rt, k)} ⋢ bmc.RT(t) then return false;
for j in bmc.region(i) do

if k ≰ bmc.se(j) then return false;
case (Return): continue;
case (Return (r)):

if bmc.se(i) ⊔ rt(r) ≰ lvt.kr(0) then return false;
case (NewInstance (r, c)):

if rt⊕{r ↦ bmc.se(i)} ⋢ bmc.RT(i + 1) then return false;
case (Iget (r, ro, f)):

if rt⊕{r ↦ bmc.se(i) ⊔ rt(ro) ⊔ f t(f)} ⋢ bmc.RT(i + 1) then return false;
case (Iput (r, ro, f)):

k ∶= bmc.se(i) ⊔ rt(ro) ⊔ rt(r)
if rt ⋢ bmc.RT(i + 1) then return false;
if k ≰ f t(f) then return false;
if kh ≰ f t(f) then return false;

case (Invoke (n, m′, p⃗)):
lvt′ ∶= mc. f ind(m′, p⃗[0]).policy;
if rt⊕{ret ↦ lvt′.kr(0) ⊔ bmc.se(i)} ⋢ bmc.RT(i + 1) then return false;
if rt(p⃗[0]) ⊔ lvt.kh ⊔ bmc.se(i) ≰ lvt′.kh then return false
for j ∶= 1 to n do

if p⃗[j] = 0 then
if rt(p⃗[j]) ≰ lvt′.ka[j] then return false

return true;

Chapter 7

Conclusion

Chapter 2 shows a policy language design based on MTL that can effectively de-
scribe various scenarios of privilege escalation in Android. Moreover, we can effec-
tively enforce any policy written in this language. The key to the latter is the fact
that this enforcement procedure is trace-length independent. We have also given a
proof-of-concept implementation on actual Android devices and show that our im-
plementation can effectively enforce RMTL policies. To demonstrate the effectiveness
of our framework, we demonstrate how it prevents a previously unknown exploit in
the system component com.android.phone to gain privileges.

In Chapter 3 we presented the design of a type system for DEX programs and
showed that in Chapter 6 that the non-optimizing compilation done by the official dx
tool preserves the typability of JVM bytecode. Furthermore, Section 4.2 shows that
the typability of the DEX program also implies its non-interference. This soundness
proof is further reinforced by the formalization in Coq for a subset of DEX (Chap-
ter 6). This opens up the possibility of reusing analysis techniques applicable to Java
bytecode for Android. We also provided a proof-of-concept framework from the cer-
tificate (non-optimized) translation to the type checker in the form of Android app
which can be used to type check actual apps with the corresponding certificate.

7.1 Future Work

There are several future directions that we can take from this project. To start with,
we already hinted that we are also interested to formalize DEX C and DEX G. It
will be good if we also have confidence in the soundness of the type system in the
presence of exception since most of the applications make use of this feature.

As an immediate next step for this research of type-preserving compilation, we
plan to also take into account the optimization done by the dx tool to see whether the
translation preserves typability. This is crucial as real-world apps are compiled full
feature of the dx tool, which includes optimization. For this we first need to analyze
step by step optimization done by the compiler, then formalize the notion.

We currently do not deal with quantifiers directly in our algorithm for central-
ized monitoring. Such quantifiers are expanded into purely propositional connec-
tives (when the domain is finite), which is exponential in the number of variables

199

200 Conclusion

in the policy. As an immediate future work, we plan to investigate whether tech-
niques using spawning automata a la Bauer et al. [2013] can be adapted to our set-
ting to allow a “lazy” expansion of quantifiers as needed. It is not possible to de-
sign trace-length-independent monitoring algorithms in unrestricted first-order LTL
(Bauer et al. [2013]), so the challenge here is to find a suitable restriction that we can
enforce efficiently.

Our work could also complement existing work (Lortz et al. [2014a,b]) on certify-
ing non-interference properties of Android bytecode, by using its language construct
(ADL) as a target language for the certificate translation. We plan to investigate how
this could be done. Following the spirit of ARTist by Backes et al. [2016], it is also
interesting to analyze dex2oat translation and optimization to see whether the com-
pilation process preserves typability. Since newer versions of Android is using ART,
it is important to be able to leverage current work to be useful for the end users.

Our result is quite orthogonal to the Bitblaze project (Song et al. [2008]), where
they aim to unify different bytecodes into a common intermediate language, and then
analyze this intermediate language instead. At this moment, we still do not see yet
how we can unify DEX bytecode with this intermediate language as there is a quite
different approach in programming Android’s applications, namely the use of the
message passing paradigm which has to be built into the Bitblaze infrastructure. This
problem with message passing paradigm is essentially a limitation of our current
work as well in that we still have not identified special object and method invocation
for this message passing mechanism in the bytecode.

Following the Compcert project (Leroy [2006]; Blazy et al. [2006]), we would ul-
timately like to have a fully certified end to end compiler. For that reason, in this
study, we have not worked directly with the dx tool; rather, we have written our own
DEX compiler in OCaml based on our understanding of how the actual dx tool works
since it is much easier to reason about OCaml program compared to Java program in
which the dx tool is written. Nevertheless, we just use our custom compiler to instru-
ment the bytecode with a certificate, so the actual Android app itself is not affected.
Since the final DEX bytecode has a certificate, it does not matter if the compiler is
not guaranteed to be correct, as long as the certificate is correct. Furthermore, with
the PCC infrastructure, we do not have to trust the certificate generator or even the
certificate itself, we just need to trust that the type checker is correct. The good thing
about this infrastructure is that the trusted computing base becomes really small.

Appendix A

Intermediate Type System

In Chapter 6, we have mentioned that there is an intermediate type system which
is used to prove the typability. In essence, it really is the same as DEX type system
except it has different addressing, i.e., it is indexed by the label of the block and the
position of the instruction in the block as opposed to program point. As such, there
is no need for us to prove its correctness as we are only interested in the typability
(the typability of the target DEX type system is proven separately in Section 4.2).
Even though we do not have to prove the correctness, we still have to define several
things separately since the mode of addressing is different. We have to define the
successor relations, the CDR, and the transfer rule itself.

Throughout the appendix, we will assume that bi, bj, ... is the addressing for block
and i, j, ... is the addressing for the instruction’s position in the block. All of the
functions that take program point will now use the new addressing mode (a pair of
block and position).

A.1 Successor Relations

In the block addressing mode, we have to take care of the last instruction in a block.
Apart from that, the rest is the same as the successor relations in DEX.

• Pm[bi, i] = goto (bj, 0). The successor relation is (bi, i) ↦Norm (bj, 1)

• Pm[bi, i] = ifeq (bj, 0) or Pm[bi, i] = ifneq t. In this case, there are 2 successor
relations denoted by (bi, i) ↦Norm (bj, 0) and (bi, i) ↦Norm (bi, i + 1) and if i
is not the last instruction in the block. Otherwise (bi, i) ↦norm (bj, 0) where
b(bi, i) ↦norm bj.

• Pm[bi, i] = return. In this case it is a return point denoted by (bi, i) ↦Norm

• Pm[bi, i] is an instruction throwing a null pointer exception, and there is a han-
dler for it (Handler((bi, i), np) = t). In this case, the successor is t denoted by
(bi, i) ↦np t.

• Pm[bi, i] is an instruction throwing a null pointer exception, and there is no
handler for it (Handler((bi, i), np) ↑). In this case it is a return point denoted
by (bi, i) ↦np.

201

202 Intermediate Type System

• Pm[bi, i] = throw, throwing an exception C ∈ classAnalysis(m, (bi, i)), and the
handler is Handler((bi, i), C) = t. The successor relation is (bi, i) ↦C t.

• Pm[bi, i] = throw, throwing an exception C ∈ classAnalysis(m, (bi, i)), and the
handler is Handler((bi, i), C) = t. It is a return point and the successor relation
is (bi, i) ↦C.

• Pm[bi, i] = invoke mID, throwing an exception C ∈ excAnalysis(mID), and the
handler is Handler((bi, i), C) = t. The successor relation is (bi, i) ↦C t.

• Pm[bi, i] = invoke mID, throwing an exception C ∈ excAnalysis(mID), and the
handler is Handler((bi, i), C) ↑. It is a return point and the successor relation
is (bi, i) ↦C.

• Pm[bi, i] is any other cases. The successor is its immediate instruction denoted
by (bi, i) ↦norm (bi, i + 1) if i is not the last instruction in the block. Otherwise
(bi, i) ↦norm (bj, 0) where b(bi, i) ↦norm bj.

A.2 Control Dependence Region

Even though the successor relation requires special handling for the last instruction
in a block, we do not have to do the same for CDR since it is inherent in the successor
relation used in CDR.

SOAP1. ∀(bi, i), (bj, j), (bk, k) ∈ PP and tag τ if (bi, i) ↦ (bj, j) and (bi, i) ↦τ (bk, k)
and (bj, j) ≠ (bk, k) ((bi, i) is hence a branching point) then (bk, k) ∈ region((bi, i), τ)
or (bk, k) = jun((bi, i), τ).

SOAP2. ∀(bi, i), (bj, j), (bk, k) ∈ PP and tag τ, if (bj, j) ∈ region((bi, i), τ) and (bj, j) ↦
(bk, k), then either (bk, k) ∈ region((bi, i), τ) or (bk, k) = jun((bi, i), τ).

SOAP3. ∀(bi, i), (bj, j) ∈ PP and tag τ, if (bj, j) ∈ region((bi, i), τ) and (bj, j) is a
return point then jun((bi, i), τ) is undefined.

SOAP4. ∀(bi, i) ∈ PP and tags τ1, τ2 if jun((bi, i), τ1) and jun((bi, i), τ2) are defined
and jun((bi, i), τ1) ≠ jun((bi, i), τ2) then jun((bi, i), τ1) ∈ region((bi, i), τ2) or
jun((bi, i), τ2) ∈ region((bi, i), τ1).

SOAP5. ∀(bi, i), (bj, j) ∈ PP and tag τ, if (bj, j) ∈ region((bi, i), τ) and (bj, j) is a
return point then for all tags τ′ if jun((bi, i), τ′) is defined then jun((bi, i), τ′) ∈
region((bi, i), τ).

SOAP6. Let ∀(bi, i) ∈ PP and tag τ1, if (bi, i) ↦τ1 then for all tags τ2, region((bi, i), τ2)
⊆ region((bi, i), τ1). If we have jun((bi, i), τ2) is defined then jun((bi, i), τ2) ∈
region((bi, i), τ1).

A.3 Transfer Rules

§A.3 Transfer Rules 203

Pm[(bi, i)] = const(r, v)
se, (bi, i) ⊢ rt⇒ rt⊕{r ↦ se(bi, i)}

Pm[(bi, i)] = move(r, rs)
se, (bi, i) ⊢ rt⇒ rt⊕{r ↦ (rt(rs) ⊔ se(bi, i))}

Pm[bi, i] = ifeq(r, t) ∀(bj, j′) ∈ region((bi, i), Norm), se(bi, i) ⊔ rt(r) ≤ se(bj, j′)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢ rt⇒ rt

Pm[bi, i] = ifneq(r, t) ∀(bj, j′) ∈ region((bi, i), Norm), se(bi, i) ⊔ rt(r) ≤ se(bj, j′)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢ rt⇒ rt

Pm[bi, i] = binop(op, r, ra, rb)
se, (bi, i) ⊢ rt⇒ rt⊕{r ↦ (rt(ra) ⊔ rt(rb) ⊔ se(bi, i))}

Pm[bi, i] = return(rs) se(bi, i) ⊔ rt(rs) ≤ k⃗r(Norm)

k⃗a
kh→ k⃗r, se, (bi, i) ⊢ rt⇒

Pm[bi, i] = new(r, c)
se, (bi, i) ⊢Norm rt⇒ rt⊕{r ↦ se(bi, i)}

Pm[bi, i] = iget(r, ro, f) rt(ro) ∈ S ∀(bj, j) ∈ region((bi, i), Norm), rt(ro) ≤ se(bj, j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢Norm rt⇒ rt⊕{r ↦ ((rt(ro) ⊔ se(bi, i)) ⊔ext ft(f))}

Pm[bi, i] = iget(r, ro, f) rt(ro) ∈ S ∀(bj, j) ∈ region((bi, i), np), rt(ro) ≤ se(bj, j)
Handler((bi, i), np) = t

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢np rt⇒ rt⊕{ex ↦ (rt(ro) ⊔ se(bi, i))}

Pm[bi, i] = iget(r, ro, f) rt(ro) ∈ S ∀(bj, j) ∈ region((bi, i), np), rt(ro) ≤ se(bj, j)
Handler((bi, i), np) ↑ se(bi, i) ⊔ rt(ro) ≤ k⃗r(np)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢np rt⇒

Pm[bi, i] = iput(r, ro, f) rt(r) ∈ Sext rt(ro) ∈ S (rt(ro) ⊔ se(bi, i)) ⊔ext rt(rs) ≤ ft(f)
kh ≤ ft(f) ∀(bj, j) ∈ region((bi, i), Norm), rt(ro) ≤ se(bj, j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢Norm rt⇒ rt

Pm[bi, i] = iput(rs, ro, f) rt(rs) ∈ Sext rt(ro) ∈ S (rt(ro) ⊔ se(bi, i)) ⊔ext rt(rs) ≤ ft(f)
∀(bj, j) ∈ region((bi, i), np), rt(ro) ≤ se(bj, j) Handler((bi, i), np) = t

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢np rt⇒ rt⊕{ex ↦ rt(ro) ⊔ se(bi, i)}

204 Intermediate Type System

Pm[bi, i] = iput(rs, ro, f) rt(rs) ∈ Sext rt(ro) ∈ S (rt(ro) ⊔ se(bi, i)) ⊔ext rt(rs) ≤ ft(f)
∀(bj, j) ∈ region((bi, i), np), rt(ro) ≤ se(bj, j) Handler((bi, i), np) ↑

se(bi, i) ⊔ rt(ro) ≤ k⃗r(np)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢np rt⇒

Pm[bi, i] = newarray(r, rl , t) rt(rl) ∈ S rt(rl)[at((bi, i))] ≤ k⃗a(r)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢Norm rt⇒ rt⊕{r ↦ rt(rl)[at((bi, i))]}

Pm[bi, i] = arraylength(r, ra) k[kc] = rt(ra) k ∈ S kc ∈ Sext

∀(bj, j) ∈ region((bi, i), Norm), k ≤ se(bj, j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢Norm rt⇒ rt⊕{r ↦ k}

Pm[bi, i] = arraylength(r, ra) k[kc] = rt(ra) k ∈ S kc ∈ Sext k ≤ k⃗a(r)
∀(bj, j) ∈ region((bi, i), np), k ≤ se(bj, j) Handler((bi, i), np) = t

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢np rt⇒ rt⊕{ex ↦ (k ⊔ se(bi, i))}

Pm[bi, i] = arraylength(r, ra) k[kc] = rt(ra) k ∈ S kc ∈ Sext k ≤ k⃗a(r)
∀(bj, j) ∈ region((bi, i), np), k ≤ se(bj, j) Handler((bi, i), np) ↑ se(bi, i) ⊔ k ≤ k⃗a[np]

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢np rt⇒

Pm[bi, i] = aget(r, ra, ri) k[kc] = rt(ra) k, rt(ri) ∈ S kc ∈ Sext

∀(bj, j) ∈ region((bi, i), Norm), k ≤ se(bj, j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢Norm rt⇒ rt⊕{r ↦ ((se(bi, i) ⊔ k ⊔ rt(ri)) ⊔ext kc)}

Pm[bi, i] = aget(r, ra, ri) k[kc] = rt(ra) k, rt(ri) ∈ S kc ∈ Sext

∀(bj, j) ∈ region((bi, i), np), k ≤ se(bj, j) Handler((bi, i), np) = t

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢np rt⇒ rt⊕{ex ↦ (k ⊔ se(bi, i))}

Pm[bi, i] = aget(r, ra, ri) k[kc] = rt(ra) k, rt(ri) ∈ S kc ∈ Sext

∀(bj, j) ∈ region((bi, i), np), k ≤ se(bj, j) Handler((bi, i), np) ↑ se(bi, i) ⊔ k ≤ k⃗r(np)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢np rt⇒

§A.3 Transfer Rules 205

Pm[bi, i] = aput(rs, ra, ri) k[kc] = rt(ra) k, rt(ri) ∈ S kc, rt(rs) ∈ Sext

((k ⊔ rt(ri)) ⊔ext rt(rs)) ≤ext kc ∀(bj, j) ∈ region((bi, i), Norm), k ≤ se(bj, j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢Norm rt⇒ rt

Pm[bi, i] = aput(rs, ra, ri) k[kc] = rt(ra) k, rt(ri) ∈ S kc, rt(rs) ∈ Sext

((k ⊔ rt(ri)) ⊔ext rt(rs)) ≤ext kc ∀(bj, j) ∈ region((bi, i), np), k ≤ se(bj, j)
Handler((bi, i), np) = t

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢np rt⇒ rt⊕{ex ↦ (k ⊔ se(bi, i))}

Pm[bi, i] = aput(rs, ra, ri) k[kc] = rt(ra) k, rt(ri) ∈ S kc, rt(rs) ∈ Sext

se(bi, i) ⊔ k ≤ k⃗r(np) ((k ⊔ rt(ri)) ⊔ext rt(rs)) ≤ext kc

∀(bj, j) ∈ region((bi, i), np), k ≤ se(bj, j) Handler((bi, i), np) ↑

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢np rt⇒

Pm[bi, i] = moveresult(r)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢Norm rt⇒ rt⊕{r ↦ se(bi, i) ⊔ rt(ret)}

Pm[bi, i] = invoke(n, m′, p⃗) Γm′[rt(p⃗[0])] = k⃗′a
k′h→ k⃗′r rt(p⃗[0]) ⊔ kh ⊔ se(bi, i) ≤ k′h

∀0 ≤ i < n.rt(p⃗[i]) ≤ k⃗′a[i] ke = ⊔{k⃗′r(e) ∣ e ∈ excAnalysis(m′)}
∀(bj, j) ∈ region((bi, i), Norm), rt(p⃗[0]) ⊔ ke ≤ se(bj, j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢Norm rt⇒ (rt⊕{ret ↦ k⃗′r(Norm) ⊔ se(bi, i)}))

Pm[bi, i] = invoke(n, m′, p⃗) Γm′[rt(p⃗[0])] = k⃗′a
k′h→ k⃗′r rt(p⃗[0]) ⊔ kh ⊔ se(bi, i) ≤ k′h

∀0 ≤ i < n.rt(p⃗[i]) ≤ k⃗′a[i] Handler((bi, i), e) = t
e ∈ excAnalysis(m′) ∪ {np} ∀(bj, j) ∈ region((bi, i), e), rt(p⃗[0]) ⊔ k′r[e] ≤ se(bj, j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢e rt⇒ rt⊕{ex ↦ (rt(p⃗[0]) ⊔ k⃗′r(e))}

Pm[bi, i] = invoke(n, m′, p⃗) Γm′[rt(p⃗[0])] = k⃗′a
k′h→ k⃗′r rt(p⃗[0]) ⊔ kh ⊔ se(bi, i) ≤ k′h

∀0 ≤ i < n.rt(p⃗[i]) ≤ k⃗′a[i] rt(p⃗[0]) ⊔ se(bi, i) ⊔ k⃗′r(e) ≤ k⃗r(e) Handler((bi, i), e) ↑
e ∈ excAnalysis(m′) ∪ {np} ∀(bj, j) ∈ region((bi, i), e), rt(p⃗[0]) ⊔ k′r[e] ≤ se(bj, j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢e rt⇒

206 Intermediate Type System

Pm[bi, i] = throw(r) e ∈ classAnalysis((bi, i)) ∪ {np} Handler((bi, i), e) = t
∀(bj, j) ∈ region((bi, i), e), rt(r) ≤ se(bj, j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢e rt⇒ rt⊕{ex ↦ (rt(r) ⊔ se(bi, i))}

Pm[bi, i] = throw(r) e ∈ classAnalysis((bi, i)) ∪ {np} se(bi, i) ⊔ rt(r) ≤ k⃗r(e)
Handler((bi, i), e) ↑ ∀(bj, j) ∈ region((bi, i), e), rt(r) ≤ se(bj, j)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢e rt⇒

Pm[bi, i] = moveexception(r)

Γ, ft, k⃗a
kh→ k⃗r, region, se, (bi, i) ⊢Norm rt⇒ rt⊕{r ↦ (rt(ex) ⊔ se(bi, i))}

Figure A.1: DEX Intermediate Transfer Rule

Bibliography

2016. DEX Bytecode instructions. http://source.android.com/devices/tech/dalvik/
dalvik-bytecode.html. Accessed: 2016-11-8. (cited on page 37)

2017. Source Android. https://source.android.com/devices/tech/dalvik/dalvik-
bytecode.html. Accessed: 2017-3-25. (cited on page 67)

2017. Stat Counter Global Stats. http://gs.statcounter.com/os-market-share/
mobile/chart.php?device=Mobile&device_hidden=mobile&statType_hidden=
os_combined®ion_hidden=ww&granularity=monthly&statType=Operating%
20System®ion=Worldwide&fromInt=201608&toInt=201708&fromMonthYear=
2016-08&toMonthYear=2017-08&csv=1. Accessed: 2017-9-23. (cited on page 1)

Alur, R. and Henzinger, T. A., 1990. Real-time Logics: Complexity and Expressive-
ness. In LICS, 390–401. IEEE Computer Society. (cited on page 8)

Appel, A. W., 2001. Foundational Proof-Carrying Code. In 16th Annual IEEE
Symposium on Logic in Computer Science, Boston, Massachusetts, USA, June 16-19,
2001, Proceedings, 247–256. IEEE Computer Society. doi:10.1109/LICS.2001.932501.
http://dx.doi.org/10.1109/LICS.2001.932501. (cited on page 37)

Arzt, S.; Rasthofer, S.; Fritz, C.; Bodden, E.; Bartel, A.; Klein, J.; Le Traon,
Y.; Octeau, D.; and McDaniel, P., 2014. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps. Acm Sigplan
Notices, 49, 6 (2014), 259–269. (cited on page 39)

Backes, M.; Bugiel, S.; and Gerling, S., 2014. Scippa: System-centric ipc prove-
nance on android. In Proceedings of the 30th Annual Computer Security Applications
Conference, ACSAC ’14 (New Orleans, Louisiana, USA, 2014), 36–45. ACM, New
York, NY, USA. doi:10.1145/2664243.2664264. http://doi.acm.org/10.1145/2664243.
2664264. (cited on pages 10 and 11)

Backes, M.; Bugiel, S.; Schranz, O.; von Styp-Rekowsky, P.; and Weisgerber, S.,
2016. ARTist: The Android Runtime Instrumentation and Security Toolkit. arXiv
preprint arXiv:1607.06619, (2016). (cited on pages 40 and 200)

Banerjee, A. and Naumann, D. A., 2005. Stack-based Access Control and Se-
cure Information Flow. J. Funct. Program., 15, 2 (Mar. 2005), 131–177. doi:
10.1017/S0956796804005453. http://dx.doi.org/10.1017/S0956796804005453. (cited
on page 37)

207

http://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
http://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
http://gs.statcounter.com/os-market-share/mobile/chart.php?device=Mobile&device_hidden=mobile&statType_hidden=os_combined®ion_hidden=ww&granularity=monthly&statType=Operating%20System®ion=Worldwide&fromInt=201608&toInt=201708&fromMonthYear=2016-08&toMonthYear=2017-08&csv=1
http://gs.statcounter.com/os-market-share/mobile/chart.php?device=Mobile&device_hidden=mobile&statType_hidden=os_combined®ion_hidden=ww&granularity=monthly&statType=Operating%20System®ion=Worldwide&fromInt=201608&toInt=201708&fromMonthYear=2016-08&toMonthYear=2017-08&csv=1
http://gs.statcounter.com/os-market-share/mobile/chart.php?device=Mobile&device_hidden=mobile&statType_hidden=os_combined®ion_hidden=ww&granularity=monthly&statType=Operating%20System®ion=Worldwide&fromInt=201608&toInt=201708&fromMonthYear=2016-08&toMonthYear=2017-08&csv=1
http://gs.statcounter.com/os-market-share/mobile/chart.php?device=Mobile&device_hidden=mobile&statType_hidden=os_combined®ion_hidden=ww&granularity=monthly&statType=Operating%20System®ion=Worldwide&fromInt=201608&toInt=201708&fromMonthYear=2016-08&toMonthYear=2017-08&csv=1
http://gs.statcounter.com/os-market-share/mobile/chart.php?device=Mobile&device_hidden=mobile&statType_hidden=os_combined®ion_hidden=ww&granularity=monthly&statType=Operating%20System®ion=Worldwide&fromInt=201608&toInt=201708&fromMonthYear=2016-08&toMonthYear=2017-08&csv=1
http://dx.doi.org/10.1109/LICS.2001.932501
http://dx.doi.org/10.1109/LICS.2001.932501
http://dx.doi.org/10.1145/2664243.2664264
http://doi.acm.org/10.1145/2664243.2664264
http://doi.acm.org/10.1145/2664243.2664264
http://dx.doi.org/10.1017/S0956796804005453
http://dx.doi.org/10.1017/S0956796804005453
http://dx.doi.org/10.1017/S0956796804005453

208 BIBLIOGRAPHY

Barthe, G.; Naumann, D.; and Rezk, T., 2006a. Deriving an information flow
checker and certifying compiler for Java. In Security and Privacy, 2006 IEEE Sympo-
sium on, 13–pp. IEEE. (cited on pages 38, 39, and 175)

Barthe, G.; Pichardie, D.; and Rezk, T., 2007. A Certified Lightweight Non-
Interference Java Bytecode Verifier. http://hal.inria.fr/inria-00106182. Submitted
to TOPLAS in September 2007 Work partially supported by IST Project MOBIUS,
by the RNTL Castles and by the ACI Sécurité SPOPS. (cited on pages 55 and 101)

Barthe, G.; Pichardie, D.; and Rezk, T., 2013. A certified lightweight non-
interference Java bytecode verifier. Mathematical Structures in Computer Science, 23
(10 2013), 1032–1081. doi:10.1017/S0960129512000850. http://journals.cambridge.
org/article_S0960129512000850. (cited on pages 37, 38, 41, 55, and 59)

Barthe, G.; Rezk, T.; and Saabas, A., 2006b. Proof obligations preserving compila-
tion. In Formal Aspects in Security and Trust, 112–126. Springer. (cited on pages 38
and 39)

Basin, D. A.; Klaedtke, F.; and Muller, S., 2010. Policy Monitoring in First-order
Temporal Logic. In Proceedings of the 22nd International Conference on Computer Aided
Verification (CAV), 1–18. (cited on page 12)

Basin, D. A.; Klaedtke, F.; Müller, S.; and Pfitzmann, B., 2008. Runtime Monitor-
ing of Metric First-order Temporal Properties. In FSTTCS, vol. 2 of LIPIcs, 49–60.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. (cited on pages 8, 9, and 11)

Basin, D. A.; Klaedtke, F.; and Zalinescu, E., 2012. Algorithms for Monitoring
Real-Time Properties. In RV, vol. 7186 of LNCS, 260–275. Springer. (cited on pages
9, 11, and 24)

Bauer, A.; Gore, R.; and Tiu, A., 2009. A first-order policy language for history-
based transaction monitoring. In Proc. 6th Intl. Colloq. Theoretical Aspects of Comput-
ing (ICTAC), vol. 5684 of LNCS, 96–111. Springer. (cited on pages 12 and 19)

Bauer, A.; Küster, J.-C.; and Vegliach, G., 2013. From Propositional to First-order
Monitoring. In RV, vol. 8174 of LNCS, 59–75. (cited on pages 9, 10, 19, and 200)

Bian, G.; Nakayama, K.; Kobayashi, Y.; and Maekawa, M., 2007. Java Bytecode
Dependence Analysis for Secure Information Flow. IJ Network Security, 4, 1 (2007),
59–68. (cited on page 38)

Blackburn, P.; van Benthem, J. F.; and Wolter, F., 2007. Handbook of Modal Logic.
Elsevier. (cited on page 11)

Blazy, S.; Dargaye, Z.; and Leroy, X., 2006. Formal verification of a C compiler
front-end. In FM 2006: Formal Methods, 460–475. Springer. (cited on page 200)

Bradfield, J. and Stirling, C., 2007. Modal mu-calculi. In HANDBOOK OF MODAL
LOGIC, 721–756. Elsevier. (cited on page 9)

http://hal.inria.fr/inria-00106182
http://dx.doi.org/10.1017/S0960129512000850
http://journals.cambridge.org/article_S0960129512000850
http://journals.cambridge.org/article_S0960129512000850

BIBLIOGRAPHY 209

Brewer, D. F. C. and Nash, M. J., 1989. The Chinese Wall Security Policy. In IEEE
Symposium on Security and Privacy. IEEE. (cited on page 25)

Bugiel, S.; Davi, L.; Dmitrienko, A.; Fischer, T.; Sadeghi, A.-R.; and Shastry, B.,
2012. Towards Taming Privilege-Escalation Attacks on Android. In NDSSâĂŹ12.
(cited on pages 7, 8, and 10)

Bugliesi, M.; Calzavara, S.; and Spanò, A., 2013. Lintent: towards security type-
checking of Android applications. In Formal Techniques for Distributed Systems, 289–
304. Springer. (cited on page 39)

Chan, P. P. F.; Hui, L. C. K.; and Yiu, S.-M., 2012. Droidchecker: analyzing Android
applications for capability leak. In WISEC, 125–136. ACM. (cited on page 7)

Chaudhuri, A., 2009. Language-based security on Android. In Proceedings of the
ACM SIGPLAN fourth workshop on programming languages and analysis for security,
1–7. ACM. (cited on page 39)

Chowdhury, O.; Jia, L.; Garg, D.; and Datta, A., 2014. Temporal mode-checking
for runtime monitoring of privacy policies. In International Conference on Computer
Aided Verification, 131–149. Springer. (cited on page 11)

Davi, L.; Dmitrienko, A.; Sadeghi, A.-R.; and Winandy, M., 2011. Privilege Escala-
tion Attacks on Android. In ISC 2010, vol. 6531 of LNCS, 346–360. (cited on page
7)

Davis, B.; Beatty, A.; Casey, K.; Gregg, D.; and Waldron, J., 2003. The Case for
Virtual Register Machines. In Proceedings of the 2003 Workshop on Interpreters, Virtual
Machines and Emulators, IVME ’03 (San Diego, California, 2003), 41–49. ACM, New
York, NY, USA. doi:10.1145/858570.858575. http://doi.acm.org/10.1145/858570.
858575. (cited on page 143)

Denning, D. E. and Denning, P. J., 1977. Certification of programs for secure infor-
mation flow. Commun. ACM, 20, 7 (Jul. 1977), 504–513. doi:10.1145/359636.359712.
http://doi.acm.org.ezlibproxy1.ntu.edu.sg/10.1145/359636.359712. (cited on page
8)

Dietz, M.; Shekhar, S.; Pisetsky, Y.; Shu, A.; and Wallach, D. S., 2011. QUIRE:
Lightweight provenance for smartphone operating systems. In 20th USENIX Secu-
rity Symposium. (cited on pages 8 and 10)

Dnyaneshwar, R. A., 2017. Custom privacy guards in android. (cited on page 30)

Enck, W., 2011. A study of android application security. (cited on page 4)

Enck, W.; Gilbert, P.; Chun, B.-G.; Cox, L. P.; Jung, J.; McDaniel, P.; and Sheth,
A. N., 2014. Taintdroid: an information flow tracking system for real-time privacy
monitoring on smartphones. Communications of the ACM, 57, 3 (2014), 99–106.
(cited on pages 5, 39, and 40)

http://dx.doi.org/10.1145/858570.858575
http://doi.acm.org/10.1145/858570.858575
http://doi.acm.org/10.1145/858570.858575
http://dx.doi.org/10.1145/359636.359712
http://doi.acm.org.ezlibproxy1.ntu.edu.sg/10.1145/359636.359712

210 BIBLIOGRAPHY

Enck, W.; Gillbert, P.; Chun, B.-G.; Cox, L. P.; Jung, J.; McDaniel, P.; and Sheth,
A. N., 2010. Taintdroid: An information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI. (cited on pages 8 and 11)

Enck, W.; Ongtang, M.; and McDaniel, P., 2009a. On lightweight mobile phone
application certification. In Proceedings of the 16th ACM conference on Computer and
communications security, 235–245. ACM. (cited on page 39)

Enck, W.; Ongtang, M.; and McDaniel, P. D., 2009b. Understanding Android
Security. IEEE Security & Privacy, 7, 1 (2009), 50–57. (cited on pages 2 and 39)

Felt, A. P.; Wang, H.; Moschuk, A.; Hanna, S.; and Chin, E., 2011. Permission
Re-delegation: Attacks and Defenses. In 20th USENIX Security Symposium. (cited
on pages 8, 10, and 39)

Fitting, M., 1996. First-Order Logic and Automated Theorem Proving. Springer. (cited
on page 14)

Fragkaki, E.; Bauer, L.; Jia, L.; and Swasey, D., 2012. Modeling and enhancing
Android’s permission system. In Computer Security—ESORICS 2012: 17th European
Symposium on Research in Computer Security, vol. 7459 of Lecture Notes in Computer
Science, 1–18. doi:10.1007/978-3-642-33167-1_1. http://www.ece.cmu.edu/~lbauer/
papers/2012/esorics2012-android.pdf. (cited on pages 39 and 40)

Fuchs, A. P.; Chaudhuri, A.; and Foster, J. S., 2009. Scandroid: Automated security
certification of Android applications. Manuscript, Univ. of Maryland, http://www. cs.
umd. edu/˜ avik/projects/scandroidascaa, (2009). (cited on page 39)

Goguen, J. A. and Meseguer, J., 1982. Security policies and security models. In IEEE
Symposium on Security and Privacy, 11–11. IEEE Computer Society. (cited on page
37)

Grace, M.; Zhou, Y.; Wang, Z.; and Jiang, X., 2012. Systematic Detection of Ca-
pability Leaks in Stock Android Smartphones. In NDSSâĂŹ12. (cited on page
7)

Havelund, K. and Rosu, G., 2002. Synthesizing Monitors for Safety Properties. In
Tools and Algorithms for Construction and Analysis of Systems (TACAS’02), vol. 2280
of LNCS, 342–356. Springer. (cited on pages 20 and 22)

Jia, L.; Aljuraidan, J.; Fragkaki, E.; Bauer, L.; Stroucken, M.; Fukushima, K.;
Kiyomoto, S.; and Miyake, Y., 2013. Run-Time Enforcement of Information-
Flow Properties on Android (extended abstract). In Computer Security—ESORICS
2013: 18th European Symposium on Research in Computer Security, 775–792. Springer.
doi:10.1007/978-3-642-40203-6_43. http://www.ece.cmu.edu/~lbauer/papers/2013/
esorics2013-android.pdf. (cited on pages 39 and 40)

http://dx.doi.org/10.1007/978-3-642-33167-1_1
http://www.ece.cmu.edu/~lbauer/papers/2012/esorics2012-android.pdf
http://www.ece.cmu.edu/~lbauer/papers/2012/esorics2012-android.pdf
http://dx.doi.org/10.1007/978-3-642-40203-6_43
http://www.ece.cmu.edu/~lbauer/papers/2013/esorics2013-android.pdf
http://www.ece.cmu.edu/~lbauer/papers/2013/esorics2013-android.pdf

BIBLIOGRAPHY 211

Kim, J.; Yoon, Y.; Yi, K.; Shin, J.; and Center, S., 2012. Scandal: Static analyzer for
detecting privacy leaks in Android applications. MoST, (2012). (cited on pages 39
and 40)

Leroy, X., 2006. Formal certification of a compiler back-end or: programming a
compiler with a proof assistant. ACM SIGPLAN Notices, 41, 1 (2006), 42–54. (cited
on page 200)

Lichtenstein, O.; Pnueli, A.; and Zuck, L. D., 1985. The Glory of the Past. In Logic
of Programs, vol. 193 of LNCS, 196–218. Springer. (cited on page 8)

Lindholm, T.; Yellin, F.; Bracha, G.; and Buckley, A., 2013. Jvm bytecode verifier.
https://docs.oracle.com/javase/specs/jvms/se7/html/. (cited on page 143)

Lineberry, A.; Richardson, D. L.; and Wyatt, T., 2010. These aren’t the permissions
you’re looking for. In DefCon 18. (cited on pages 7 and 8)

Lortz, S.; Mantel, H.; Starostin, A.; Bähr, T.; Schneider, D.; and Weber, A.,
2014a. Cassandra: Towards a Certifying App Store for Android. In Proceedings
of the 4th ACM Workshop on Security and Privacy in Smartphones & Mobile Devices,
SPSM@CCS 2014, Scottsdale, AZ, USA, November 03 - 07, 2014, 93–104. ACM. doi:
10.1145/2666620.2666631. http://doi.acm.org/10.1145/2666620.2666631. (cited on
pages 38 and 200)

Lortz, S.; Mantel, H.; Starostin, A.; and Weber, A., 2014b. A Sound Information-
Flow Analysis for Cassandra. Technical report, TU Darmstadt. Technical Report
TUD-CS-2014-0064. (cited on pages 38 and 200)

McCarty, B., 2004. Selinux: Nsa’s open source security enhanced linux. O’Reilly Media,
Inc. (cited on page 1)

Necula, G. C., 1997. Proof-Carrying Code. In Conference Record of POPL’97: The 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Papers
Presented at the Symposium, Paris, France, 15-17 January 1997, 106–119. ACM Press.
doi:10.1145/263699.263712. http://doi.acm.org/10.1145/263699.263712. (cited on
pages 37 and 40)

Octeau, D.; Jha, S.; and McDaniel, P., 2012. Retargeting android applications to
java bytecode. In Proceedings of the ACM SIGSOFT 20th international symposium on
the foundations of software engineering, 6. ACM. (cited on page 40)

Octeau, D.; McDaniel, P.; Jha, S.; Bartel, A.; Bodden, E.; Klein, J.; and Le Traon,
Y., 2013. Effective inter-component communication mapping in android with epicc:
An essential step towards holistic security analysis. Effective Inter-Component Com-
munication Mapping in Android with Epicc: An Essential Step Towards Holistic Security
Analysis, (2013). (cited on page 40)

Pnueli, A., 1977. The Temporal Logic of Programs. In FOCS, 46–57. IEEE Computer
Society. (cited on page 14)

http://dx.doi.org/10.1145/2666620.2666631
http://dx.doi.org/10.1145/2666620.2666631
http://doi.acm.org/10.1145/2666620.2666631
http://dx.doi.org/10.1145/263699.263712
http://doi.acm.org/10.1145/263699.263712

212 BIBLIOGRAPHY

Reaves, B.; Bowers, J.; Gorski III, S. A.; Anise, O.; Bobhate, R.; Cho, R.; Das, H.;
Hussain, S.; Karachiwala, H.; Scaife, N.; et al., 2016. * droid: Assessment and
evaluation of android application analysis tools. ACM Computing Surveys (CSUR),
49, 3 (2016), 55. (cited on page 40)

Reinbacher, T.; Függer, M.; and Brauer, J., 2013. Real-Time Runtime Verification
on Chip. In RV, vol. 7687 of LNCS, 110–125. Springer. (cited on pages 9 and 11)

Sabelfeld, A. and Myers, A. C., 2003. Language-based information-flow security.
Selected Areas in Communications, IEEE Journal on, 21, 1 (2003), 5–19. (cited on page
37)

Schlegel, R.; Zhang, K.; Zhou, X.; Intwala, M.; Kapadia, A.; and Wang, X., 2011.
Soundcomber: A Stealthy and Context-Aware Sound Trojan for Smartphones. In
18th Annual Network and Distributed System Security Symposium (NDSS). (cited on
pages 7, 8, and 30)

Song, D.; Brumley, D.; Yin, H.; Caballero, J.; Jager, I.; Kang, M. G.; Liang, Z.;
Newsome, J.; Poosankam, P.; and Saxena, P., 2008. Bitblaze: A new approach
to computer security via binary analysis. In Information systems security, 1–25.
Springer. (cited on page 200)

Thati, P. and Rosu, G., 2004. Monitoring Algorithms for Metric Temporal Logic
Specifications. In Proc. of RVâĂŹ04. (cited on pages 13 and 15)

Thati, P. and Rosu, G., 2005. Monitoring Algorithms for Metric Temporal Logic
Specifications. Electr. Notes Theor. Comput. Sci., 113 (2005), 145–162. (cited on pages
8, 9, 11, and 17)

Yagemann, C. and Du, W., 2016. Intentio ex machina: Android intent access control
via an extensible application hook. In European Symposium on Research in Computer
Security, 383–400. Springer. (cited on page 11)

Zhang, D.; Wang, R.; Lin, Z.; Guo, D.; and Cao, X., 2016. Iacdroid: Preventing inter-
app communication capability leaks in android. In Computers and Communication
(ISCC), 2016 IEEE Symposium on, 443–449. IEEE. (cited on page 11)

Zhao, Z. and Osono, F. C. C., 2012. Trustdroid: Preventing the use of Smartphones
for information leaking in corporate networks through the used of static analysis
taint tracking. In Malicious and Unwanted Software (MALWARE), 2012 7th Interna-
tional Conference on, 135–143. IEEE. (cited on page 39)

	Acknowledgments
	Abstract
	Contents
	Introduction
	Introduction
	Research Motivation and Direction
	Thesis Outline

	Efficient Runtime Monitoring with Metric Temporal Logic
	Related Work
	Background
	The policy specification language RMTL
	Trace-length independent monitoring
	Examples
	Implementation
	Monitor Generator
	LogicDroid Architecture
	Performance
	Vulnerabilities in com.android.phone component

	Design of Android Bytecode Certification
	Related Work
	Proof-Carrying Code
	Non-Interferent Type System for JVM
	Overview of JVM Bytecode
	Operational Semantics
	Type System

	Infrastructure for Android Bytecode Certification

	Non-Interferent Type System for Android Bytecode
	Syntax, Semantics, and Type System for Android Bytecode
	Overview of DEX Bytecode
	Operational Semantics
	Type System
	Examples

	Typable DEX Program Implies Non-Interference
	Auxilliary Lemmas
	Typable DEXI Implies Non-interference
	Typable DEXO Implies Non-interference
	Typable DEXC Implies Security
	Typable DEXG Implies Security

	Formalization of DEXI and DEXO
	The Semantics of DVM
	Infrastructure
	Instructions
	The Operational Semantic of DEXI and DEXO Instructions
	Successor Relation and CDR

	Formalization of DEXI
	Transfer Rules
	Indistinguishability Relations
	Non-Interference Proof for DEXI

	Formalization of DEXO
	Transfer Rules
	Indistinguishability Relations
	Non-Interference Proof for DEXO

	Type-Preserving Compilation of Android Bytecode
	Translation Phase
	Starting Instruction of a Block (StartBlock)
	Resolving Parents-Successors Relationship (TraceParentChild)
	Reading Java Bytecodes (Translate)
	Ordering Blocks (PickOrder)
	Output DEX Instructions (Output)

	Proof that Translation Preserves Typability
	Compilation of CDR and Security Environments
	Compilation Preserves Typability

	Implementation for Type-Preserving Compilation
	Component Details
	Certificate Structure
	Naive JVM Type Inference
	Non-Optimizing Certificate Translation
	DEX Type Checker

	Compact Certificate

	Conclusion
	Future Work

	Intermediate Type System
	Successor Relations
	Control Dependence Region
	Transfer Rules

