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Abstract

The thesis is concerned with the formulation and estimation of the 
autoregressive-moving average (ARMA) model, and its application to econometrics. 

Chapter 1 considers the origin of ARMA models and provides a discussion on the 
loss of optimal properties by a number of estimators under such a specification. 
Having established an a fortiori case for the ARMA model in economics, Chapter 2 
derives the likelihood function in both the frequency and time domains, and 

outlines computational algorithms for its maximization - these being variants of 
the well known Gauss-Newton and Newton-Raphson techniques for the solution of 
systems of non-linear equations.

Chapters 3 and 4 contain Monte Carlo experiments on the estimators proposed 
in Chapter 2. These were primarily constructed to assess the likely impact of 
small samples upon the distribution of the estimators, but, as well, some indication 

of the sample size at which asymptotic theorems will hold is gained. As the first 

four chapters were concerned with single-equation problems Chapter 5 provides a 

generalization of the methodology to systems of equations, and reports 
on some experiments conducted with the systems estimator.

Finally Chapters 6 and 7 deal with applications of the ARMA model in 
economics. Chapter 6 demonstrates that a number of concepts appearing in 

economic theory e.g. permanent income, may be formulated as ARMA models, thereby 
enabling some estimates of these quantities to be made, while Chapter 7 compares 
the optimal ARMA estimator to ordinary least squares for a number of published 
studies, in order to demonstrate the extent of bias in conclusions based upon a 

use of the latter estimator. The final section of Chapter 7 outlines directions

for future research.
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CHAPTER 1 The O rig in  o f  ARMAX Models

1 .1  In tro d u c t io n

An o u ts ta n d in g  f e a tu r e  o f  eco n o m etric  re s e a rc h  has been th e  

r e l i a n c e  upon th e  a n a ly s is  o f  econom ic tim e s e r i e s  to  y i e ld  v a lu a b le  

in fo rm a tio n  abou t th e  p a ra m e te rs  o f  econom ic m odels: a r e l i a n c e

o cc a s io n e d  by th e  i n a b i l i t y  o f  econom ists  to  p erfo rm  e x p e rim e n ts .

The c e n t r a l  f e a tu r e  o f  th e  tim e s e r i e s  u t i l i z e d  was th e  in te rd e p e n d e n c e  

o f  o b se rv a tio n s  in  th e  a v a i la b le  sam ple -  an in te rd e p e n d e n c e  th a t  q u e r ie s

th e  v a l i d i t y  o f  a p p ly in g  many s t a t i s t i c a l  theorem s p r e d ic a te d  upon 

th e  independence o f  o b s e rv a t io n s .  In  o rd e r  to  ta k e  cogn izance o f  t h i s  

dependence (and  in  some in s ta n c e s  to  s tu d y  th e  s t r u c t u r e  o f  th e  

dependence i t s e l f )  i t  was n e c e s s a ry  to  c o n s tru c t  new theorem s and to o ls  

o f  a n a ly s i s .  As th e y  ev o lv ed  th e y  form ed th e  n u c leu s  o f  what i s  now 

r e f e r r e d  to  as tim e s e r i e s  a n a l y s i s .

The in f lu e n c e  o f  t h i s  corpus o f  te c h n iq u e s  upon eco n o m etric  

s p e c i f i c a t io n  and e s t im a t io n  ap p ea rs  to  have waxed and waned re p e a te d ly  

in  th e  l a s t  h a l f  c e n tu ry . Some o f  th e  e a r l i e s t  s tu d ie s  o f  econom ic 

phenomena e .g .  B everidge [ 8 ] w ere a p p l ic a t io n s  o f  th e  to o l s  o f  tim e 

s e r i e s  a n a ly s is  and know ledge o f  t h i s  f i e l d  seemed to  be e s s e n t i a l  f o r  

e c o n o m e tr ic ia n s . In  th e  q u a r te r  c e n tu ry  fo llo w in g  W orld War I I  

how ever, th e  i n t e r e s t  o f  e c o n o m e tr ic ia n s  in  t h i s  f i e l d  seems to  have 

d ie d  awav (w ith  th e  e x c e p tio n  o f  th e  use o f  s p e c t r a l  a n a ly s i s  f o r  th e  

. in v e s t ig a t io n  o f  lo n g  sw ings and s e a so n a l ad ju s tm en t te c h n iq u e s )  to  th e  

e x te n t  t h a t  u n t i l  v e ry  r e c e n t ly  few eco n o m etric  te x tb o o k s  m entioned



2 .

co ncep ts  such as c o rre lo g ra m , s ta t io n a r y  p ro c e s s  e t c .

What i s  th e  e x p la n a tio n  o f  t h i s  cu r io u s  s t a t e  o f  a f f a i r s ?  F i r s t l y

i t  m ight he argued  t h a t  th e  r e s t r i c t i v e  assum ptions p la c e d  upon th e  

e v o lu t io n a ry  n a tu re  o f  th e  s e r i e s  d id  n o t seem to  acco rd  w e ll  w ith  v is u a l

ev id en ce  on th e  b e h a v io u r  o f  econom ic tim e s e r i e s .  Thus th e  n o tio n  o f

s t a t i o n a r i t y  c o n ta in e d  in  ( f o r  exam ple) Wold [119] d id  n o t seem a p t fo r

tim e s e r i e s  dom inated  by t r e n d  and s e a so n a l movements. Secondly  much

o f  tim e s e r i e s  a n a ly s is  was concerned  w ith  th e  a n a ly s is  o f  a s in g le

tim e s e r i e s  and a p p ro p r ia te  p a ra m e tr ic  d e s c r ip t io n s  o f  i t  w hereas

(perhaps s t im u la te d  by th e  K eynesian  R ev o lu tio n ) econom ists  w ished  to

in v e s t ig a t e  th e  r e l a t io n s h ip  betw een s e r i e s .  L a s t ly  th e r e  w ere th e

d i f f i c u l t i e s  r a i s e d  in  th e  e s t im a t io n  o f  th e  p a ra m e te rs  o f  th e

s p e c i f i c a t io n  c o n s id e re d  a p p o s ite  by tim e s e r i e s  t h e o r i s t s .

I t  w i l l  be th e  aim o f  t h i s  t h e s i s  to  show t h a t  a knowledge o f  th e  

concep ts  and to o l s  o f  tim e  s e r i e s  a n a ly s is  i s  o f  im portance  to  an 

e co n o m e tric ian  and t h a t  w ith  th e  a id  o f  a d i g i t a l  com puter th e se  

te c h n iq u e s  may be e a s i l y  in t e g r a te d  in to  a t r a d i t i o n a l  eco n o m etric  

fram ew ork. To do t h i s  a t t e n t i o n  w i l l  be fo c u sse d  upon th e  r e p r e s e n t a t ­

ion  o f  tim e  s e r i e s  as mixed a u to re g re s s iv e -m o v in g  average (ARMA) schem es.

The c o n s t i tu e n t s  o f  t h i s  m odel- th e  a u to re g re s s io n  and moving average  

p a r t s  -  have a lo n g  h i s to r y  in  tim e s e r i e s  a n a ly s is  and Wold [119] i s  a

1 A g la n ce  a t  th e  e a r ly  eco n o m etric s  te x tb o o k s  e .g .  T in tn e r  [106] and 
th e  s ta n d a rd  r e fe re n c e  books o f  th e  ’ s i x t i e s  G o ldberger [30] and 
J o h n s to n r56] em phasizes t h i s  p o in t .  One h a l f  o f  T in tner i s  concerned  
w ith  une methods o f  tim e s e r i e s  a n a ly s is  w h i ls t  th e  "m oderns" have 
none . Of co u rse  th e  r e c e n t  p u b l ic a t io n  o f  Dhrymes [21] may r e c t i f y  
th e  im b a lan ce .
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co n v en ien t  summary o f  many o f  th e  im p o r ta n t  a p p l i c a t i o n s .  The sym bolic 

form employed f o r  an ARMA model w i l l  be

y ( t ) -  ß1y ( t - l ) - . . . - ß ^ y ( t - p )  = e ( t ) + a1£ ( t - l ) + . . .+ a ^ e ( t - q )

t = l , . . . , N  (1 .1 )

■where E ( e ( t ) )  = 0 , E ( e ( t ) e ( t - s )) = s=0

= 0 s^O,

2and E i s  th e  e x p e c ta t io n  o p e r a t o r .

E quation  ( l . l )  w i l l  be g iven  th e  sh o r th a n d  n o ta t i o n  ARMA ( p ,q )  

where p i s  th e  le n g th  o f  th e  a u to r e g r e s s io n  (A .R .) and q th e  l e n g th  

o f  th e  moving average (M .A .), and i t  d e s c r ib e s  th e  u n i v a r i a t e ,  s i n g l e  

e q u a t io n  fo rm u la t io n  o f  an ARMA model.

Two f u r t h e r  e x te n s io n s  o f  ( l . l )  a re  to  be c o n s id e re d .

(a) M u l t i v a r i a t e ,  s i n g l e  e q u a t io n  models o f  th e  type

y ( t )  -  ß y ( t - l ) - . . . -ß  y ( t - p )  = y x ( t )  + ynx ( t - l ) + . . ,+y x ( t - r ) + e ( t )  l  p o 1 r

+a_ e ( t - l ) ^ .  .+a e ( t - q )  (1 .2 )
1 q.

which i s  d e s ig n a te d  ARMAX ( p , r , q )  and th e  x ( t )  p ro c e s s  has  th e  p r o p e r ty  

t h a t

E ( x ( t ) e ( t ) )  = 0
3

and may be re g a rd e d  as an "exogenous" v a r i a b l e .

H encefo r th  any s e r i e s  d e s ig n a te d  as e ( t )  o r  e ( t )  w i l l  be assumed to  
p o s se s s  th e s e  two p r o p e r t i e s  i . e .  zero  e x p e c ta t io n  and f i n i t e  v a r i a n c e .  
Sometimes th e  assum ption  w i l l  be made t h a t  th e  o b s e rv a t io n s  a re  
i d e n t i c a l l y  and in d e p e n d e n t ly  d i s t r i b u t e d  ( i . i .c L )  o th e rw ise  i t  shou ld  
be u n d e rs to o d  t h a t  any e ( t )  o r  e ( t )  i s  a no rm ally  and in d e p e n d e n tly  
d i s t r i b u t e d  ( n . i . d . )  random v a r i a b l e .  A d d i t io n a l  assum ptions  w i l l  
be t h a t  y ( t )  i s  mean c o r r e c t e d  i . e .  E ( y ( t ) )  = 0,  and t h a t  t h e r e  i s  
o n ly  one exogenous v a r i a b l e  x ( t ) .  Both o f  th e s e  may be e a s i l y  
r e l a x e d .

The X in  ARMAX r e f e r s  to  t h i s  p o i n t .
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I f  th e re  a re  a number o f  exogenous v a r ia b le s  r  w i l l  be a v e c to r  and th e  

f i r s t  and l a s t  s u b s c r ip ts  in  th e  b ra c k e ts  w i l l  be ta k en  to  r e f e r  to  th e  

o rd e r  o f  th e  A.R. and M.A. r e s p e c t iv e ly .  An economic example o f  (1 .2 )  

m ight be to  s e t  (p = l ,  r = l ,  q=0) and to  l e t  y ( t )  be t o t a l  consumer 

e x p e n d itu re  and x ( t )  t o t a l  p e rs o n a l d isp o sa b le  incom e, th e re b y  

d e s c r ib in g  a consum ption fu n c tio n  f r e q u e n t ly  u sed  in  eco n o m etric  m odels.

( b ) M u l t iv a r ia t e ,  M u ltip le  E quation  Systems

T his w i l l  be r e s t r i c t e d  to  a llo w  in t e r a c t io n  betw een th e  d is tu rb a n c e s  

o f  each  e q u a tio n  o n ly , so t h a t  i t  r e p re s e n ts  a tim e s e r i e s  g e n e r a l iz a t io n  

o f  Z e l ln e r 's  ’’seem ingly  u n r e la te d  e q u a tio n s "  e s t im a to r  P-21].

I t  w i l l  be argued  in  t h i s  and su b seq u en t c h a p te rs  t h a t  e q u a tio n s  

( l . l )  and (1 .2 )  (and  th e  e x te n s io n  to  m u lt ip le  e q u a tio n  system s 

m entioned  in  (b ) above) a re  a p p ro p r ia te  to  a w ide v a r ie ty  o f  themes in  

modern eco n o m etric  r e s e a r c h .

A sk e tc h  o f  th e  c h a p te r  may now be g iv e n . Having e s ta b l i s h e d  th e  

ty p e  o f  model to  be c o n s id e re d  i t  i s  n e c e ssa ry  to  in v e s t ig a t e

( i )  The o r ig in  o f  th e s e  m odels i . e .  a re  th e re  any t h e o r e t i c a l  o r  

e m p ir ic a l  rea so n s  f o r  b e l ie v in g  t h a t  e q u a tio n s  ( l . l )  and (1 .2 )  a re  

l i k e l y  to  a r i s e  in  th e  a n a ly s is  o f  economic tim e s e r i e s .  S e c tio n  

1 .2  o u t l in e s  v a r io u s  theorem s th a t  may be found in  th e  tim e 

s e r i e s  l i t e r a t u r e  w hich e s t a b l i s h  a p r e s u p p o s i t io n  in  fa v o u r o f  

ARMA m odels, and g iv e s  some i l l u s t r a t i o n s  o f  t h i s  from e m p ir ic a l 

r e s e a r c h .

( i i )  The c o n d itio n s  t h a t  must be p la c e d  upon th e  p a ram e te rs  o f  ( l . l )  

and (1 .2 )  and th e  e v o lu tio n a ry  n a tu re  o f  th e  s e r i e s  y ( t ) .  I t  

w i l l  be seen  t h a t  th e  p a ra m e te r  r e s t r i c t i o n s  a re  u n u su a l and may
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be q u i te  s t r i c t .  S e c tio n  1 .3  th e n  p ro ceed s to  examine th e  

s ig n i f ic a n c e  o f  th e  assum ptions fo r  th e  o b serv ed  b e h a v io u r  o f  

a tim e s e r i e s  and asks i f  econom ic s e r i e s  a re  l i k e l y  to  be 

com patib le  w ith  them?

( i i i ) A lthough th e r e  a re  a p r i o r i  grounds f o r  s u p p o r tin g  th e  use o f  

( l . l )  and (1 .2 )  we a re  le d  to  e n q u ire  in to  th e  b e n e f i t s  t h a t  

d e r iv e  from an e s t im a t io n  o f  th e s e  e q u a t io n s .  As econom ists  a re  

p r im a r i ly  i n t e r e s t e d  in  th e  m agnitude o f  c e r t a in  p a ra m e te rs ,  and 

th e  a b i l i t y  to  p r e d ic t  c e r t a in  v a r i a b le s ,  t h i s  s e c t io n  n a t u r a l l y  

c o n c e n tra te s  upon th e  r e l a t io n s h ip  o f  ( l . l )  and (1 .2 )  to  th e s e  

p ro b lem s.

( iv )  L a s t ly  we tu rn  to  th e  e s t im a t io n  o f  ( l . l )  and ( 1 .2 ) .  In  S e c tio n  

1 .5  th e  t r a d i t i o n a l  to o l s  o f  eco n o m etric  a n a ly s is  -  O rd inary  

L ea s t Squares and G e n e ra liz e d  L ea s t Squares -  a re  a n a ly se d  fo r  

t h e i r  s u i t a b i l i t y  fo r  th e  e s t im a t io n  o f  th e  p a ram e te rs  o f  th e s e  

e q u a t io n s .  I t  w i l l  be seen  (from  n u m e rica l exam ples) t h a t  in  a 

number o f  r e a l i s t i c  models th e  lo s s e s  ( in  term s o f  in c o r r e c t  

h y p o th e s is  t e s t i n g )  a re  very  la rg e  from a use o f  O rd inary  L e a s t 

S quares and t h i s  f a c t  prom pts th e  developm ent o f  e s t im a to rs  to  

av o id  such lo s s e s .

1 .2  The O rig in  o f  ARMA/ARMAX Models 

1 .2 .1  Dynamic B eh av io u ra l Models

S t a t i c  econom ics d e a ls  w ith  in s ta n ta n e o u s  r e la t io n s h ip s  betw een  

v a r ia b le s  and summarizes such fu n c tio n s  in  tim e in v a r i a n t  m easures such 

as e l a s t i c i t i e s  and p r o p e n s i t i e s .  For a lo n g  w h ile  i t  was u n d e rs to o d  

t h a t  th e re  was n o t an in s ta n ta n e o u s  ad ju stm en t o f  one v a r ia b le  to
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p e r tu r b a t io n s  in  a n o th e r ,  b u t i t  was co n v in c in g ly  argued  t h a t  

m easurem ents o f  p a ram e te rs  o b ta in e d  under such assum ptions w ould be 

ap p ro x im ate ly  c o r r e c t  i f  th e  p e r io d  o f  ad ju stm en t was s h o r te r  th a n  

th e  p e r io d  a t  w hich th e  v a lu e s  o f  econom ic v a r ia b le s  m ight be 

o b se rv ed . Thus i t  was u n l ik e ly  t h a t  many la g s  w ould be lo n g e r  th a n  a 

s in g le  y e a r ,  w hich in  g e n e ra l was th e  tim e p e r io d  f o r  w hich d a ta  was 

c o l le c te d .

Even u nder t h i s  regim e however th e r e  were some econom ic v a r ia b le s  

e .g .In v e s tm e n t in  w hich th e  re sp o n se  w ould be d i s t r i b u t e d  ov er a number 

o f  tim e p e r io d s ,  and i t  was to  m eet t h i s  o b je c t io n  th a t  th e  concep t o f  

a d i s t r i b u t e d  la g  a ro s e .  With th e  ready  a v a i l a b i l i t y  o f  q u a r te r ly  

(and som etim es m onthly) d a ta  t h i s  concep t has become o f  c r u c ia l  

im portance  to  a p p l ie d  e c o n o m e tr ic ia n s  as i t  i s  now e v id e n t t h a t  la g s  

o f  th e  o rd e r  o f  10 q u a r te r s  e .g .  In v es tm en t may be re q u ire d  to  

a d e q u a te ly  account f o r  dynamic econom ic b e h a v io u r .

The g e n e ra l d i s t r i b u t e d  la g  s p e c i f i c a t i o n  i s

y ( t )  = E w( j )  x ( t - j )  + e ( t )  ( 1 .3 ) .
j=0

A cu rso ry  in s p e c t io n  o f  (1 .3 )  shows t h a t  th e  i n f i n i t e  number o f  

p a ra m e te rs  w( j )  p r o h ib i t s  th e  d i r e c t  a p p l ic a t io n  o f  r e g re s s io n  a n a ly s i s .  

To escap e  from t h i s  quandry some w r i t e r s  recommended t h a t  w( j )  be s e t  

a t  ze ro  f o r  j  > K (where K i s  a f i n i t e  in t e g e r  s e t  on a p r i o r i  g rounds) 

th e re b y  c o n s tru c t in g  a f i n i t e  d i s t r i b u t e d  la g  model w hich may be 

e s t im a te d  by O rd inary  L ea s t Squares ( O . L . S . ) .  U n fo r tu n a te ly  i f  K i s  

a t  a l l  la rg e  th e  p re se n c e  o f  c o r r e l a t i o n  in  th e  x ( t )  s e r i e s  w i l l  a lm ost 

c e r t a in l y  le a d  to  th e  c ro s s  p ro d u c t m a tr ix  b e in g  c lo se  to  s i n g u l a r i t y .
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Koyck [6 3 ] and N erlove [80] had su g g e s te d  t h a t  i t  was p o s s i b le  to  

t r a n s fo rm  an i n f i n i t e  s e r i e s  i n  w ( j)  i n t o  a f i n i t e  A.R. and t h i s  

prompted J o rg e n s o n ’s r a t i o n a l  l a g  f u n c t io n  [5 7 ] .  D efin ing  th e  l a g  

o p e r a to r  L w ith  th e  p ro p e r ty  Lm x ( t )  -* x ( t-m )  (1 .3 )  may be r e w r i t t e n  as

y ( t ) = W (L)x(t) + e ( t ) ( l . * 0 .

Then J o rg e n s o n 's  theorem s on r a t i o n a l  la g s  s t a t e  t h a t  i f  W(l ) i s  

an i n f i n i t e  ( f i n i t e )  po lynom ial i n  L an e x a c t  ( a r b i t r a r i l y  c lo se )  

r e p r e s e n t a t i o n  o f  W(L) i s  g iven  by

W ( L ) = f g  ( 1 . 5 ) ,

where C(L) = y + y nL + . . . + y L r  o '1  ' r

B(L) = 1 + ß_L + . . .  + 3 LP 
1 P

and r  and p a re  sm a l l  i n t e g e r s .

Using ( 1 . 5 ) ,  ( l . U)  may be g iven  th e  ARMAX ( p , r , p )  form

B (L )y ( t )  = C (L )x ( t)  + B (L )e ( t )  ( 1 . 6 ) .

Prom (1 .6 )  i t  i s  ap p a re n t  t h a t  ARMAX models a r i s e  n a t u r a l l y  from 

c e r t a i n  methods o f  e s t i m a t in g  d i s t r i b u t e d  l a g  phenomena. Some p o p u la r  

v e r s io n s  o f  th e  po lynom ia ls  C(L) and B(l ) have been

(a )  Koyck-Nerlove C(l ) = y^ B(l ) = 1 -  ß^L

(b) S o low (P asca l)  C(l ) = yQ B(l ) = ( l  -  ß L) r

where r  i s  an i n t e g e r  in  th e  range 1 < r  << 00.

Both o f  th e s e  v a r i a n t s  a re  w e l l  e s t a b l i s h e d  in  th e  l i t e r a t u r e  

b u t  l i t t l e  a t te m p t has  been made to  impose th e  ARMAX form: th e  most

common e x p la n a t io n  b e in g  t h a t  B( L) e ( t )  i s  w h ite  n o is e  i . e .  th e  i n i t i a l
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r e l a t io n s h ip  c o n ta in s  c o r r e la te d  n o is e .  Of cou rse  t h i s  assum ption
_1

may be t r u e  b u t th e  form o f  th e  moving average r e q u ire d  i . e .  B ( L ) s ( t )

ki s  so r e s t r i c t i v e  as to  make i t  u n r e a l i s t i c .

A nother b e h a v io u ra l r e l a t i o n  t h a t  g e n e ra te s  an ARMAX model i s  to  

be found in  th e  l i t e r a t u r e  c e n te re d  on m arkets in  w hich e x p e c ta t io n s  

(o r  a n t i c ip a t io n s )  a re  im p o r ta n t . The d e a r th  o f  o b s e rv a tio n s  on such 

v a r ia b le s  has made i t  custom ary to  assume t h a t  e x p e c ta t io n s  a r i s e  from 

p a s t  b e h a v io u r  and may be re p la c e d  by a l i n e a r  combination o f  p a s t  

o b se rv a b le  v a lu e s .

To g iv e  an exam ple, assume t h a t  th e r e  i s  a l i n e a r  fu n c t io n a l  

r e l a t i o n  betw een a v a r ia b le  y ( t )  and th e  a n t ic ip a te d  v a lu e  o f  a second 

v a r ia b le  x ( t ) .  D enoting t h i s  a n t ic ip a te d  v a lu e  by x * ( t )  th e  fu n c tio n  

i s

y ( t ) = y x * ( t )  + e ( t )  ( 1 . 7 ) .

To accoun t f o r  th e  fo rm atio n  o f  e x p e c ta t io n s  co n ce rn in g  x ( t )  from p a s t  

v a lu es  o f  x ( t )  t r a d i t i o n a l l y  one o f  th e  fo llo w in g  h y p o th eses  has been 

a d o p te d : -

(a ) A daptive E x p e c ta t io n s : x * ( t )  -  x * ( t - l )  = A(x*( t )  -  x ( t - l ) ) .

(b) E x tra p o la t iv e  E x p e c ta t io n s : x * ( t )  = W(L)x( t ) .

The f i r s t  o f  th e s e  was fo rm u la te d  i n i t i a l l y  by Cagan [ l 6 ]  in  h is

s tu d y  o f  h y p e r in f l a t io n  and N erlove in  h is  s tu d y  o f  su p p ly  resp o n se  in

th e  a g r i c u l tu r a l  s e c to r  [8 0 ] s w h ile  th e  second has been in te g r a te d

in to  grow th models by N erlove and Arrow [ 8U] and adop ted  by Turnovsky

[l08] in  h i s  in v e s t ig a t io n  in to  th e  fo rm u la tio n  o f  p r ic e  e x p e c ta t io n s .

1+ T his does n o t r u le  o u t th e  p o s s i b i l i t y  o f  a l e s s  r e s t r i c t i v e  M.A. 
in  ( l . U)  so t h a t  th e  M.A. and A.R. p a ram e te rs  need  n o t be eq u a l in  
(1 . 6) .



From th e  d is c u s s io n  o f  r a t i o n a l  la g s  i t  i s  e a s i l y  seen  t h a t  (a ) i s  a 

s p e c ia l  case  o f  (b) and t h a t  when s u b s t i t u t e d  in to  (1 .7 )  w i l l  g ive  an 

ARMAX ( 1 ,1 ,1 )  m odel.

1 ,2 ,2  Dynamic E x p lan a to ry  Models

The p re v io u s  s e c t io n  has c o n c e n tra te d  upon th e  o r ig in  o f  ARMAX 

models from b e h a v io u ra l r e l a t i o n s .  As w e ll as t h i s  th e re  i s  an 

argum ent from time s e r i e s  th e o ry  f o r  th e s e  fo rm s.

A b e g in n in g  may be made by ad o p tin g  Wold’s decom position  theorem  

'Summing up we have th e  fo llo w in g  theorem  in  w hich one o f  

th e  v a r ia b le s  {4>( t ) }• and ( c ( t ) }  may be v a n ish in g :

Theorem 7« D enoting by £ ( t )  an a r b i t r a r y  d i s c r e t e  s ta t io n a r y  

p ro c e ss  w ith  f i n i t e  d is p e r s io n ,  th e r e  e x i s t s  a th re e -d im e n s io n a l 

s ta t io n a r y  p ro c e ss  { ^ ( t ) ,  c ( t ) ,  r i ( t )}  w ith  th e  fo llo w in g  p r o p e r t i e s

9 .

(A) U ( t )} = l i M t ) } + U ( t ) }.

(B) (ip(t )} and {c ( t )} a re  n o n - c o r r e la te d .

(c) {ip( t )} i s  s in g u la r ."^

(D) {n (t ) } i s  n o n -a u to c o r r e la te d ,  and E [ n ( t ) ]  = E [ c ( t ) ]  = 0 .

(E) ( c ( t ) }  = ( n ( t ) }  + b 1 { n ( t - l ) }  + b 2 ( n ( t - 2 ) }  +

where 2b r e p re s e n ts  r e a l  numbers such t h a t  Eb i s  n n c o n v e rg e n t."  [ l l 9 ,p .8 9 l

For th e  p r e s e n t  i t  i s  im p o rta n t to  c o n s id e r  w h eth er th e  d e te rm in ­

i s t i c  component 'K t.- v a n ish e s  f o r  econom ic tim e s e r i e s .  One in s ta n c e  

in  w hich i t  w ould n o t i s  th e  p re se n c e  o f  s t r i c t  p e r i o d i c i t i e s  in  th e  

s e r i e s .  N erlove has r e c e n t ly  commented upon t h i s  in  th e  fo llo w in g

 ̂ i . e .  d e t e r m in i s t ic .  A p ro o f  o f  th e  Wold theorem  may be found in  
H. Cramer and M.R. L e a d b e tte r .  [1 9 ] .
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f a s h io n

"For a  lo n g  tim e s e a s o n a l i t y  was b e l i e v e d  to  be r e p r e s e n t a b l e  

by a s t r i c t l y  p e r i o d i c  f u n c t i o n , . . . .However, . . . . ,  such s t r i c t  

p e r i o d i c i t y  canno t p l a u s i b l y  be assumed to  c h a r a c t e r i z e  

economic tim e s e r i e s "  [82 p .1 2 ] .

A d d i t i o n a l ly  he argues  i n  th e  fo l lo w in g  q u o ta t io n  t h a t  i t  i s  th e  

l i n e a r l y  n o n -d e te  m i n i s  t i c  p a r t  which i s  o f  im portance  f o r  th e  a n a ly s i s  

o f  economic tim e s e r i e s .

" We have found t h a t  most economic tim e s e r i e s ,  p o s s ib ly  a f t e r  

some t r a n s f o r m a t io n  t o  r e n d e r  them s t a t i o n a r y ,  can be r e p r e s e n te d  

in  th e  form ( 3 .2 ) "  (o f  th e  form (1 .8 )  b e lo w ) .

A ccep ting  th e  p r o p o s i t i o n  t h a t  on ly  th e  n o n - d e t e r m in i s t i c  p a r t  

i s  r e l e v a n t ,  th e  s e r i e s  may be r e p r e s e n t e d  in  th e  p re v io u s  te rm in o lo g y  

as

y ( t ) = E w ( j ) e ( t - J ) ( 1 . 8 ) .
J=0

As w ith  th e  i n f i n i t e  d i s t r i b u t e d  la g  i t  i s  n o t  p o s s i b l e  to  e s t im a te

(1 .8 )  d i r e c t l y ,  b u t  i t  i s  p o s s i b l e  to  p ro c e e d  by a d o p t in g  th e  r a t i o n a l  

form o f  W(l ) i . e .  W(L) = so t h a t  ( 1 .8 )  becomes th e  ARMA model^

B(L)

B (L )y ( t )  = A (L )e ( t )  ( 1 .9 ) .

I t  i s  w orthw h ile  to  n o te  a s p e c i a l  case  o f  ( 1 .9 )  i . e .  A(L) = 1 ,

= 1 -  ß^L -  . . . - 3  c o rre sp o n d s  to  th e  p ' t h  o r d e r  A.R. p r o c e s s .

In  t h i s  c o n te x t  th e  r a t i o n a l  l a g  assum ption  i s  e q u iv a le n t  to  th e  
assum ption  t h a t  y ( t )  has a r a t i o n a l  s p e c t r a l  d e n s i ty  f u n c t io n  -  a 
n o t  uncommon assum ption  in  th e  f i e l d s  o f  e l e c t r i c a l  e n g in e e r in g  and 

a c o u s t i c s  e . g .  see  Yaglom [121].
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This fo rm u la t io n  has a lo n g  h i s t o r y  in  th e  a n a ly s i s  o f  s t a t i o n a r y  tim e

s e r i e s  e 0g 6 K endall  [6o 1, K endall  and S t u a r t  [6l ] and i t  i s  o f  some

i n t e r e s t  to  e n q u i re  i n t o  th e  f a c t o r s  t h a t  might in f lu e n c e  th e  cho ice  o f

an ARMA r a t h e r  than  an AoRo model i n  p a r a m e te r i z in g  economic tim e s e r i e s „

An obvious answer r e s id e s  i n  th e  g e n e r a l i t y  o f  th e  r a t i o n a l

fu n c t io n  employed in  c o n t r a d i s t i n c t i o n  to  th e  f i x e d  s p e c i f i c a t i o n  o f

ACL) = 1 r e q u i r e d  by AuRo p r o c e s s e s ,  and t h i s  g e n e r a l i t y  sh o u ld  enab le

a w id e r  c l a s s  o f  s e r i e s  t o  be s u c c e s s f u l ly  m o d e l led a A more p ragm a tic

reaso n  (and perhaps  more a p p e a l in g  in  view o f  th e  c o l l i n e a r i t y  p r e s e n t

between v a r i a b l e s  in  many econom etr ic  models) i s  t h a t  an ARMA model may

be th e  most pa rs im onious  p a r a m e te r i z a t io n  o f  the  s e r i e s 0 Box and

Jen k in s  [ 9 ]  have been the  main p roponen ts  o f  t h i s  p r o p o s i t i o n  and have

j u s t i f i e d  such a c la im  by o b s e rv in g  t h a t  th e re  i s  an in v e r s e  r e l a t i o n

between th e  o rd e r  o f  th e  M0A0 and A0Ro r e q u i r e d  t o  y i e l d  th e  same

r e p r e s e n t a t i o n  o f  a s e r i e s  e 0g 0 an i n f i n i t e  AoRo o f  th e  form

y ( t )  + ß y ( t - l )  + ß2y ( t - 2 ) +  s „ 0+ fr^yC t-k)». 0= e ( t)  may be c o n v e r te d  to  a

f i r s t  o rd e r  M0A0 y ( t )  = ( l - ß L ) e ( t ) 0 T h e re fo re  low o rd e r  ARMA models

may be u sed  in  l i e u  o f  th e  h ig h  o rd e r  A0R0 p ro c e s s e s  t h a t  a re  g e n e r a l ly
7

r e q u i r e d  to  c h a r a c t e r i z e  economic time s e r i e s »

From th e  p re v io u s  d i s c u s s io n  i t  i s  e a s i l y  concluded  t h a t  ARMA 

models a re  a n a t u r a l  f u n c t io n a l  form to  reproduce a s t a t i o n a r y  time

7
An example o f  t h i s  may be th e  fo u r th  o rd e r  A0Ro used  by Jo rg en so n ,  
H unter  and N a d ir i  as a benchmark f o r  th e  comparison o f  a l t e r n a t i v e  
econom etr ic  models o f  q u a r t e r l y  Inves tm en t b e h a v io u r  [5 9 ] ,  As th e  
d a t a  u sed  was s e a s o n a l ly  a d ju s t e d  th e  fo u r th  o rd e r  AoR0 te rm  cannot 
be accoun ted  f o r  by th e  p re se n c e  o f  a s t a b l e  s e a s o n a l  p a t t e r n 0
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series0 However as most economists are aware few economic time series 

are stationary and most exhibit a trending mean and heteroskedasticity 

in the variance, To what extent then is the previous theory applicable? 

A partial answer comes from the widespread adoption of the "variate 

difference method" in the 1930's as a device for removing polynomial 

trends in the mean and variance of a series0 Fishman [26 p 059] shows 

that for a series y(t) exhibiting a q'th order polynomial in the mean 

and variance an application of the filter (l-L)^ will yield a 

stationary series with a constant mean and variance0 The filtered 

series will be representable by an ARMA model0 Although the "variate 

difference method" rests on assumptions that are untenable about 

economic series it is sufficient to note that differencing will reduce 

a non-stationary process to stationarity if repeated a sufficient number 

of times. Therefore by allowing HCL) to have roots on the unit circle 

(1.9) will be applicable to non-stationary series as well. More ofg
this in Chapter 6 when we come to consider some actual time series,

A second explanation of the source of ARMA models lies in what we 

will designate as time transform effects, Quenouille [9^] was the 

first to isolate these by demonstrating that a continuous variable, 

when observed at intervals of p time units apart, would exhibit a 

correlogram identical to that of an ARMA (p,p-l) equation, Quenouille's

Authors who have used differencing to induce stationarity are Yaglom 
[121], Whittle [117], Box and Tiao [12], Nerlove, Grether and Couts 
[18], Nerlove and Wage [83], Theil and Wage [10*+] and Box and Jenkins 
[9]. Of these Yaglom seems to have been the first. Box and 
Jenkins have the most discussion on the philosophy underlying it.
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theorem i s  o f  some impor tance  to  econom etr ics  as i t  dem ons t ra te s  t h a t  

ARMA models a re  t h e  d i s c r e t e  ana logues  o f  r e l a t i o n s h i p s  b e l i e v e d  t o  

h o ld  in  con t inuous  t ime and s u gges t  t h a t  th e y  a re  a n a t u r a l  model t o  

f i t  when only  d i s c r e t e  o b s e r v a t i o n s  a re  a v a i l a b l e .

Another view o f  t h i s  e f f e c t  i s  ga ined  by c o n s i d e r i n g  th e  form o f  

AöR» p r o c e s s e s  under  v a r io u s  t ime re g im e s « To give a s imple example 

assume t h a t  y ( t )  fo l lows  a second o rd e r  A.R.

y ( t ) + b ^ y ( t - l )  + b 2y ( t - 2 )  = e ( t )  t  = l , . . o , N  ( l . l O ) .

Cons ider  the  change i n  ( l . l O )  when in fo rm a t io n  can be o b t a i n e d  f o r  

only  every  second t ime p o i n t  i c e .  we observe  r  = 2 , ^ , 00>N ( i f  N i s  ev en ) .  

Even though y ( t - l )  i s  no l o n g e r  o b s e rv a b le  i t  i s  p o s s i b l e  t o  r e f o r m u l a t e  

(1 .10 )  as an A.R. i n  o b s e rv a b le  v a lu e s  only  by th e  fo l l o w in g  method.

Lag (1 .1 0 )  once t o  g e t  ( L i l a )  and l a g  (1 .11a )  once t o  a r r i v e  a t  

( 1 .1 1 b ) .

y ( t - l )  + b ^ y ( t - 2 )  + b 2y ( t - 3 )  = e ( t - l )  ( l . l l a )

y ( t - 2 ) + b 1y ( t - 3 )  + bgy ( t -U )  = e ( t - 2 )  ( l . l l b )

So lv ing  ( 1 . 1 0 ) ,  ( l . l l a )  and ( l . l l b )  th e  reduced  form i s

y ( t )  + (2b2- b ^ ) y ( t - 2 )  + b | y ( t - 4 ) =  e ( t )  -  b ^ e U - l )  + b 2e ( t - 2 ) ( 1 . 1 2 ) .

R e- index ing  e q u a t io n  ( l„1 2 )  i n  th e  r-domain we have

y ( r )  + (2b2- b ^ ) y ( r - l )  + b 2y ( r - 2 )  = u ( r )  ( 1 . 1 3 ) .

What i s  th e  a u t o c o r r e l a t i o n  p a t t e r n  o f  u ( r )  in  (1 .1 3 )?  The e x p r e s s io n s  

f o r  u ( r ) ,  u ( r - l )  and u ( r - 2 )  a re

u ( r )  = e ( t )  -  b ^ e ( t - l )  + b 2e ( t - 2 )

u ( r - l )  = e ( t - 2 )  -  b ^ e ( t - 3 )  + b 2e ( t - U )  ( l . l U ) .

u ( r - 2 )  = e ( t - U )  -  b ^ e ( t - 5 )  + b 2e ( t - 6 )
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From (l.lU) the covariance function of u(r), F is given hyuu

Yu u (°) = a'U+b^+b^)

YuuU) = b2°2 (1-15),

Yuu0) = 0 J = 2,ooc, -

so that since u(r) has the correlation function of a first order M.A. 

process (l013) becomes ^

y(r) + (2b2-b^)y(r-l) + b2y(r-2) = e(r) + o^etr-l) (1.16)

This simple example illustrates the transition between A.R. and 

ARMA forms as the period of observation changes0 In general (see

Appendix l) it may be shown that for an A.R. of order p indexed on 

t = 1,..0,N, the appropriate process indexed on r = k, 2k,o.0,N (if N 

is a multiple of k) is ARMA (p , I ( 11 )) where I is the operator 

truncating the expression in brackets to the integer immediately below 

this value.

A number of interesting cases emerge. Firstly if p = 2, k = 2 

(the example given above) we obtain ARMA (2,1) as was found. Secondly 

as k-*30 we obtain the "balanced" ARMA (p,p) model. Lastly as k-*l i.e„ 

the r and t domains coincide, the ARMA (p,o) model emerges i.e. the 

original A.R.

In future chapters the covariance function of a series x(t) will be
denoted by r and the individual covariances by 7 (j). The cross
covariance between x(t) and y(t) will be F with dements y (j).xy xy

^  See Box and Jenkins [9 p.68] for a discussion on the theoretical
autocorrelation function of a M.A. process. A number of properties 
of autocorrelation functions will be assumed in the thesis as a good 
account is contained in Chapters 2 and 3 of that book.
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Brewer [ 15 ] has extended the above analysis to a large number of 

different models0 He shows that an initial ARMA (p,q) equation will 

become ARMA (p ,I( ) )  if the variable observed is a stock and

ARMA [p ,I( ̂ )] if it is a flow. The reader is referred to 

his paper for an extensive discussion of the possible variations 

The importance of his contribution lies in the limits as k~*» i0eo 

ARMA (p,p) (for stock models) and ARMA (p,p+l) (for flow models) 

signifying that if ARMA models are to be justified by time transform 

effects alone the order of the MoA, can never be greater than the order 

of the AoRo for stock variables and only one greater for flow variables. 

Such a principle may help to explain the heavy emphasis upon "balanced" 

models in the work of Box and Jenkins,

A source of high order autocorrelation that may require a complex 

disturbance assumption is that originating from the seasonal patterns 

present in many monthly and quarterly data series. If the error term 

is to reflect unobservable (or omitted) variables then it is likely 

that these patterns will be retained in the disturbances. Additionally 

the practice of incorporating dummy variables into regression equations 

will only serve to remove a stable seasonal pattern so that any 

evolutionary behaviour in this component will be reflected in the error 

term.

Sane mention should be made of the studies of Zellner [125], Zellner 
ana Montmarquette [127 ], and Telser [103] who also arrive at ARMA 
or ARMAX forms by time aggregation. However in the case of the 
first two papers there is no need to estimate M.A, parameters 
because k is assumed known and there are no lagged dependent 
variables, so that the Aitken estimator based on the known covariance 
matrix will be fully efficient.



Thomas and Wallis [105 1 have considered this aspect and have 

concluded that for a quarterly model it is advantageous to test for the

presence of fourth order serial correlation„ To this end they

hypothesize the disturbance specification

u(t) (l-p L ) = e(t) (1.17)

which yields p = Yu (^)/y u u (0)o Their test statistic is basically a 

test that the estimated value of p(=p) is statistically insignificant 

from zero and is a generalization of the Durbin-Watson d statistic to 

a higher order disturbance formate Of course the test will lack power 

as even the traditional specification

has ^ u u ^ ^ V a ^ ^  = (p ) * so that it is possible to obtain a high

fourth serial correlation coefficient from a model with a disturbance

format not generated by (ldT)o
These criticisms should not detract from Thomas and Wallis*

contribution as it is becoming clear that as the data is observed at

shorter intervals the autocorrelation patterns in the disturbances are
12potentially more complex» However there must be some doubt about the 

adequacy of (ldT) as an appropriate description (say) of an omitted 

variable with a quarterly seasonal pattern» Allowance for the presence 

of trend factors in such series leads to the contention that a more 

plausible version would be

An even more fundamental criticism lies in the use of the autoregressive

u(t) (l-p L) = e(t) (1.18)

(1.19).

12 An example is provided by Trivedi’s report on inventory equations [10T] 
in which a McA» of third order was normally required»
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format of (l.lT)^(l.l8) and (l019) to account for autocorrelation.

For example, assuming a regression model

y(t)(l-BL) = y x(t) + u(t) (1.20)

where u(t) has the form (1.19), it is possible to rewrite (lo20) as

y(t) (1-I3L) (l-p^L-p^L^ ) = yd-PjL-p^Sxtt) + e(t) (1.21).

OoLoSo may be applied to (l02l) to yield consistent estimates of

ß,y,p^,p^ as the disturbance term is no longer correlated with any of

the regressors. Of course this has been achieved by adding y(t-2),

y(t-U), y(t-5), x(t-l) and x(t-4) to the regression thereby reducing

the disturbance term to white noise. In contrast to this it is

impossible to remove a M 0A. in this way, so that if consistent estimates

are desired it would always be necessary to check that this type of
13autocorrelation was not present.

1 o 3_____ Some Theorems on Time Series

Throughout this thesis attention will be focussed upon the 

estimation of the time series models discussed in the preceding two 

sections. The estimators devised for this purpose must possess certain 

properties if they are to be of use in econometric investigation and it 

is assumed that minimal requirements would be consistency and asymptotic 

normality. However as will become apparent later it is not easy to 

provide such proofs, and existing theorems are subject to a number of 

conditions pertaining to the evolutionary nature of time series and

One suspects that in many econometric studies lagged dependent 
variables are being added because of this "autocorrelation reducing" 
feature rather than as a result of some postulated behavioural 
phenomenon.

13
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the magnitude of the parameters of ARMA/ARMAX models0 With reference 

to the former the most general conditions under which the properties of 

time series estimators seem to hold are Grenanderfs conditions (see Hannan 

[1+7 pol22]) o
2 N 2CONDITION 1 Lim d^ (N) = Lim I x^(t) = « J = 1,.0.,k 

N-*» J Nx» t=0 ^

CONDITION 2 Lim x^ (N) / d^ (N) = 0
N-Voo J J

CONDITION 3 Lim 
N-*»

l x.(t) x.(t+h) 
t=l J 1 

d (N) d ^ N )

j =  1 , 0 0 0 , k

pj,(h) exists i,j = 1, ,k -

and p _ ( h )  is the h'th population cross correlation coefficient 

hetween x.(t) and x^(t+h)0

A wide variety of evolutionary types are encompassed in Conditions 

1-3o It is asserted that most economic time series are either 

described by polynomial functions, or may be when suitably transformed0 

To support the first part of the assertion we refer to Tintner’s 

demonstration that the variate difference method (which eliminates 

functions only up to and involving a polynomial) reduced many series to 

white noise, and the satisfactory performance of polynomials in 

regression models to account for trend and seasonal components (Henshaw 

[50])0 For the second part it is sufficient to note that the only other 

evolutionary pattern of general interest for economic time series - the 

exponential - may be reduced to a polynomial by a logarithmic trans­

formation of the data0

Nevertheless the assertion is not meant to be universale 

Undoubtedly there are a number of economic series which cannot be trans­

formed in a simple manner e og 0 the demand for a new product frequently



fo llo w s a p a th  in v o lv in g  e x p o n e n tia l  grow th d u rin g  on ly  p a r t  o f  th e

1 9 .

p ro d u c t c y c le ,  and i t  w ould he unw ise to  model th e se  w ith  th e  te c h n iq u e s  

o f  t h i s  th e s i s  o C e r ta in ly  a v isua l, in s p e c t io n  o f  th e  g raphed  d a ta  i s  

always recommended b e fo re  any models a re  f i t t e d 0

Having d ec id ed  on p o lynom ial fu n c tio n s  as s u i ta b le  d e s c r ip t io n s  o f  

economic s e r i e s  i t  i s  n e c e ssa ry  to  adopt a p a r t i c u l a r  form fo r  th e  ARMA/ 

ARMAX model in  o rd e r  to  a s s e s s  c o m p a tib i l i ty  w ith  G renander’s c o n d i t io n s .

For t h i s  pu rpose  u n i t  ro o ts  in  B(L) w i l l  be ad v o ca ted . Choosing th e  

s im p le s t  ARMA form y ( t )  ( l -L )  = e ( t ) ,  th e  c o v a ria n c e s  may be d e r iv e d  as

Y (o) = N<T
yy

y ( J)  = (n - j ) o2 o
%/ J

C o n d itio n s  1 and 2 r e q u ire  th e  a b so lu te  m agnitude o f  th e  o b s e rv a t­

io n s  to  become l a r g e r  w ith  tim e (C o n d itio n  l )  and th a t  th e  l a t e s t  

o b s e rv a tio n  must n o t dom inate th e  s e r i e s  (C o n d itio n  2) and a re  c l e a r ly  

s a t i s f i e d  fo r  any fu n c tio n  up to  an e x p o n e n t ia l .  However C ond ition  3 

r e q u ire s  an exam in a tio n  o f  th e  above c o r r e l a t i o n s .  In  th e  example

p (h ) = 1 -  - -  , Lim p (h) = 1 and t h i s  l i m i t  w i l l  be approached  from belowyy N  N +oo yy
th e re b y  s a t i s f y i n g  th e  t h i r d  c o n d i t io n .

From th e se  argum ents we conclude t h a t  s e r i e s  w hich may be m odelled  

ad eq u a te ly  by in c lu d in g  u n i t  ro o ts  in  B(L) w i l l  obey G renander’ s 

c o n d itio n s  and most theorem s o f  tim e s e r i e s  a n a ly s is  w i l l  be a p p l ic a b le .

As a t e s t  o f  w h eth er p o lynom ials  a re  s u f f i c i e n t  one may form th e  

d if f e r e n c e d  s e r i e s  and in v e s t ig a t e  i t s  b eh a v io u r : i f  th e re  i s  an 

e x p o n e n tia l te rm  in  th e  o r ig i n a l  s e r i e s  th e  f i l t e r e d  s e r i e s  sh o u ld  be 

n o n - s ta t io n a r y . For fu tu r e  r e fe re n c e  i t  sh o u ld  be remembered th a t  th e
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co rre lo g ram  o f  a s e r i e s  capab le  o f  b e in g  r e p r e s e n te d  by u n i t  r o o ts  in  

B(L) w i l l  d ie  o u t  on ly  very slow ly  (as  seen  from PXXÜ ) = 1 -  J / T ) 0

The above d i s c u s s io n  in t im a te s  t h a t  th e  number o f  e v o lv in g  s e r i e s  

which do n o t  s a t i s f y  G ren an d e r 's  c o n d i t io n s  i s  l i k e l y  to  be sm all  and 

c e r t a i n l y  th e  s e r i e s  to  be s tu d ie d  in  t h i s  t h e s i s  ( p r im a r i ly  consumption) 

do not» A f u r t h e r  d is c o u r s e  on t h i s  w i l l  be g iven in  th e  c h a p te r s  

concerned  w ith  e m p i r ic a l  m odelling,,

As w e l l  as th e  c o n d i t io n s  imposed upon th e  n a tu re  o f  th e  tim e 

s e r i e s  th e  range o f  th e  p a ram ete rs  o f  ARMA/ARMAX models must be 

r e s t r i c t e d ,  p a r t l y  to  ach ieve  i d e n t i f i c a t i o n  -  a l o g i c a l  p re lu d e  to  

e s t i m a t io n .  In  th e  form given  h e re  th e  c o n d i t io n s  a re  to  be found in  

Hannan [U6 ] e

Let th e  ARMAX ( p , r , q )  model be

B(L)y = C(L)x + A(L)e

w ith  ACL) o f  o rd e r  p ,  C(L) o f  o rd e r  r  and ACL) o f  o rd e r  q 0 Then fo u r  

c o n d i t io n s  must be imposed upon th e  po lynom ials  BCR), C(l ) and ACL),, 

CONDITION U0 There must be no r o o ts  common to  B (L), C(L) and A (L )o 

Some examples o f  the  f l a t  l i k e l i h o o d s  ( i n d i c a t i v e  o f  a la c k  o f  

i d e n t i f i c a t i o n )  a s s o c i a t e d  w ith  a v i o l a t i o n  o f  t h i s  assum ption  a re  t o  

be found in  Box and Je n k in s  [ 9  ] ,  and th e s e  au th o rs  warn t h a t  i n  p r a c t i c e  

th e  e x i s t e n c e  o f  r o o ts  which a re  ap p rox im ate ly  eq u a l  w i l l  r e s u l t  in  the  

same e f f e c to  An im p o rtan t  model i n  which t h i s  occurs  w i l l  be 

en co u n te red  in  C hapter 6 .

CONDITION 9 ° I f  th e  po lynom ials  B(l ) ,  C(L) and A(L) a re  o f  o r d e r  p , r  and 

q r e s p e c t i v e l y  th en  3 , y ^  and cannot a l l  be z e ro .  This  can be

deduced from Hannan's g e n e ra l  theorem  ] which when fo rm u la te d  f o r
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no n -s im u ltan eo u s  system s o f  e q u a t io n s  r e q u i r e s  t h a t  i f  th e  maximum 

o rd e r s  in  th e  system  o f  G e q u a t io n s  a re  p sr  and q and we d e f in e  G 

d im ensiona l square  m a tr ic e s  B (p ) ,  C ( r ) ,  A(q) as th o s e  c o n ta in in g  th e  

ß , p a ram ete rs  o f  each e q u a t io n ,  th e n  t h e r e  e x i s t s  no v e c to r  4>

(n o t  eq u a l  to  a v e c to r  o f  z e ro e s )  t h a t  has  th e  p ro p e r ty

c|>T B(p) = <J>T C(r) = <J>T A(q) = 0»

S p e c i a l i z in g  to  a s in g l e  e q u a t io n  i t  i s  c l e a r  t h a t  <f> i s  s c a l a r  and 

<J> = 1 w i l l  s a t i s f y  th e s e  r e l a t i o n s  s im u l ta n e o u s ly  whenever 3p = Yr  =

= Oo Furtherm ore  a l i t t l e  th o u g h t  w i l l  confirm  t h a t  i f  one o f  th e s e  

i s  non -zero  on ly  <J> = 0 w i l l  s u f f ic e »  In  p r a c t i c e  though th e  e x i s t e n c e  

o f  approxim ate  ze roes  i s  a lm ost c e r t a i n  t o  r e s u l t  in  a l a c k  o f  

i d e n t i f i c a t i o n „

CONDITION 6 o The po lynom ial C(L) must have a t  l e a s t  one n o n -ze ro  

e lem ent (N ic h o l l s  [ 85 ] ) 0 C onsider  a r a t i o n a l  l a g  model» I f  C(L) = 0 

th e r e  w i l l  be common ro o ts  in  th e  M»A» and A»Ro t r a n s f e r  fu n c t io n s  and 

t h i s  w i l l  cause a la c k  o f  i d e n t i f i c a t i o n »  The o r i g i n  o f  such a 

d i f f i c u l t y  cou ld  w e l l  be th e  e rroneous  in c lu s io n  o f  a p a r t i c u l a r  x ( t )  

i n t o  th e  model to  be e s t im a ted »

CONDITION 7° The r o o ts  o f  th e  po lynom ia l e q u a t io n s  BCD) = 0 , C(L) = 0 

and ACL) = 0 must l i e  on o r  o u ts id e  o f  th e  u n i t  c i r c l e »  E s p e c i a l l y  we 

s h a l l  r e q u i r e  th e  r o o t s  o f  BCD) = 0 to  l i e  e i t h e r  on o r  o u t s id e  o f  th e  

u n i t  c i r c l e  and o f  C(L) = 0 and ACL) = 0 to  l i e  s t r i c t l y  o u t s id e  th e  

u n i t  c i r c l e »

C ond it ion  7 i s  n o t  r e q u i r e d  f o r  i d e n t i f i c a t i o n »  To j u s t i f y  th e  

r e s t r i c t i o n  on B(l ) we n o te  t h a t  G renander’s c o n d i t io n s  2 and 3 s t i p u l a t e
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the admissible class of functions as being bounded from above by the 

exponential and that polynomial functions were associated with unit 

roots in B(L)0 If roots inside the unit circle were allowed it would 

be possible for Condition 2 (and almost certainly Condition 3) to be 

violated. Again we note that the presence of unit roots in B(L) seems 

to genetrate evolutionary moments that are in accord with those observed 

for economic time series, A strict condition has been imposed upon 

C(l ) as the likely presence of non-stationarity (in the polynomial sense) 

in x(t) variables will then be preserved rather than accentuated.

Lastly the restriction on A(L) must be justified. The symmetric 

nature of covariance functions makes it impossible to distinguish 

betwep i the correlogram of a M,A, with roots a and another with roots 

a  ̂ so that to achieve identification it is necessary to choose one of 

the two sets, A number of reasons may be given for the selection of 

the set that lies outside the unit circle,

(a) Box and Jenkins argue that it is necessary for the process to be 

invertible i,e, that a M,A, have an infinite A,R, representation, 

and the Laurent series expansion to achieve this will not exist 

unless all roots of A(l ) = 0 are outside the unit circle,

(b) As will be seen later (section 2,6) the properties of estimators 

of AJRMA equations have only been proven under the assumption that 

the equation can be written as a linear process whose frequency 

response function possesses an inverse. This is not the case 

for unit roots in A(l ), It is also true that a unit root in B(L) 

will contradict this assumption but we may always remove these by 

differencing whereas this is not so for A(l ),
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(c )  There i s  a d i f f i c u l t y  in  i n t e r p r e t i n g  th e  s ig n i f i c a n c e  o f  a u n i t  

r o o t  i n  ACL) f o r  th e  b e h a v io u r  o f  th e  s e r i e s  whereas f o r  B(l ) 

an i d e n t i f i c a t i o n  w ith  polynom ial t r e n d s  i s  a v a i la b le «  Furtherm ore  

i f  B(l ) has  a u n i t  ro o t  an a t te m p t to  e s t im a te  a u n i t  r o o t  in  b o th  

t r a n s f e r  f u n c t io n s  would l e a d  to  a la c k  o f  i d e n t i f i c a t i o n  in  ARM 

m o d e ls«

C ond it ions  1 -3  w i l l  be assumed to  h o ld  f o r  a l l  t im e s e r i e s  

c o n s id e re d  in  t h i s  t h e s i s  and a l l  p a ram e te rs  o f  ARMAX models w i l l  be 

c o n s t r a in e d  to  s a t i s f y  C ond it ions  *+-?<>

l o k  Reasons f o r  th e  E s t im a t io n  o f  ARMX Models

S e c t io n  1 02 has d is c u s s e d  th e  o r i g i n  o f  ARM/ARMAX models w h i l s t  

S e c t io n  1 03 has  o u t l i n e d  c e r t a i n  f e a t u r e s  t h a t  th e  tim e s e r i e s  and 

ARM/ARMX model s e l e c t e d  must p o s s e s s .  In  t h i s  s e c t io n  we c o n c e n t ra te  

upon th e  b e n e f i t s  to  be g a in ed  from th e  e s t im a t io n  o f  th e  p a ram ete rs  

o f  such models -  a p re lu d e  to  a more in t e n s iv e  exam ina t ion  o f  c e r t a i n  

e s t im a t io n  p rocedures«
lUTwo b e n e f i t s  w i l l  be c la im ed f o r  ARMAX models

( i )  "Optim al" e s t i m a t io n .

( i i )  "Optim al" p r e d ic t io n «  

l . U . l ,  "O p t im a l"E s tim a tio n

A com prehensive account o f  t h i s  i s  g iven in  N erlove [8 l ] „ I t  i s  

a rgued  th e r e  t h a t  th e  g e n e r a l i z e d  l e a s t  sq u a re s  (G0L 0S 0) and maximum

I k
We mean by t h i s  t h a t  a l l  p a ram ete rs  o f  B(l ) ,  ACL) and C(L) a re  
e s t im a te d  in  c o n t r a s t  to  methods (such  as 0oLoS .)  which would o b ta in  
on ly  th o se  o f  B(l ) and C(L)„ As th e  l a t t e r  w i l l  f r e q u e n t ly  be 
c o m p u ta t io n a l ly  s im p le r  we seek th e  b e n e f i t s  o f  e s t i m a t in g  ACL),
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l i k e l i h o o d  (M0L 0) e s t im a to r s  a re  i d e n t i c a l  i f  e ( t )  in  ( i d )  and ( l . 2 )

are  n . i c d .  As such th e  G0L0S 0 e s t i m a t o r  o f  th e  c o e f f i c i e n t  v e c to r

9 = ( 3 , y ) (where 3 and y a re  v e c to r s  o f  AoR0 and exogenous v a r i a b l e

p a ra m e te rs )  i s  c o n s i s t e n t  and / n( 0 -6 ) i s  a s y m p to t ic a l ly  norm ally
2o L —1d i s t r i b u t e d  w ith  mean zero  and c o v a r ian ce  m a tr ix  -  [E( 3q'^Qip ) 1 where

L i n d i c a t e s  th e  l i k e l i h o o d  and T s i g n i f i e s  t r a n s p o s i t i o n „

D enoting th e  co v a r ian ce  m a tr ix  o f  u ( t ) ( = A ( L ) e ( t ) ) by ft th e  GoL.S.

T - 1e s t i m a t o r  maximizes th e  q u a d r a t i c  form L =~u ft u Q As ft i s  a f u n c t io n  

o f  th e  M.Ao p a ram e te rs  an e s t im a te  o f  th e s e  i s  im p o r ta n t  i f  e s t im a te s  

o f  ( 3^ , 000, 3  ) ,  (Yĵ ooojY^) a re  to  be acq u ire d  ( th e  type  o f  e s t im a te  o f  

a r e q u i r e d  i 0e B c o n s i s t e n t  c r  e f f i c i e n t  w i l l  be c o n s id e re d  l a t e r ) „

A f u r t h e r  advantage o f  an e f f i c i e n t  e s t i m a t o r  i s  th e  d e r iv a t io n  o f  

th e  c o r r e c t  co v a r ian ce  m atrix»  This  i s  o f  c r u c i a l  im portance f o r  

h y p o th e s i s  t e s t i n g  as th e  p r i n c i p a l  s t a t i s t i c s  e 0g. th e  t - t e s t  in v o lv e  

th e  s ta n d a rd  d e v ia t io n s  o f  th e  e s t im a te d  p a ra m e te r s ,  and ec o n o m e tr ic ia n s  

have re c o g n iz e d  f o r  a c o n s id e ra b le  number o f  y e a rs  (see  Jo h n s to n  [ 56]) 

t h a t  th e  p re sen ce  o f  a u t o c o r r e l a t i o n  in  th e  e r r o r  te rm  r e s u l t s  i n  an 

e s t im a te  o f  th e  co v a r ian ce  m a tr ix  t h a t  may d iv e rg e  s u b s t a n t i a l l y  from 

the  c o r r e c t  v a l u e „

l o ^ , 2 0 MOptim al" P r e d ic t io n

The th e o ry  o f  o p t im a l  s ig n a l  e x t r a c t i o n  and p r e d i c t i o n  i s  p r e s e n te d  

in  W h i t t l e  [117 ] and a  summary f o r  econom ists  i s  c o n ta in e d  in  th e  

a r t i c l e  by G re th e r  and Nerlove [ 36 ] 0 A s ta te m e n t  o f  th e  p r i n c i p a l

theorem  from t h i s  l i t e r a t u r e  fo l lo w s .
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Let y ( t )  be a s t a t i o n a r y  n o n - d e t e r m in i s t i c  p ro c e ss  w ith  th e  M.Ae 

r e p r e s e n t a t i o n

y ( t )  = l  w e ( t - k )  = W (L )e(t)  ( l 02 2 ) 0
k=0

Then th e  minimum m ean-square e r r o r  l i n e a r  p r e d i c t i o n  o f  y a t  time 

t  has th e  a n a l y t i c a l  e x p re s s io n :

= *w(l)y(t)

* (L)
wTl )

W( l )
V

where connotes  an o p e r a to r  which r e t a i n s  on ly  th e  n o n -n e g a t iv e

A(L)powers o f  L in  th e  b r a c k e te d  exp ress ion ,.  For an ARMA model W(L) =

so t h a t  th e  p r e d i c t i o n  fo rm ula  becomes

A(L)V L' = He}
b (l )l

( 1 .2 3 ) .
-J  +

E quation  ( l s2“3) em phasizes th e  dependence o f  th e  o p t im a l  p r e d i c t o r  upon 

th e  MoA, p a ra m e te rs  i . e ,  s e r i a l  c o r r e l a t i o n  o f  th e  e r r o r s ,  th e  im p l i c a t io n  

b e in g  t h a t  such knowledge w i l l  l e a d  to  improved f o r e c a s t s 0 An 

a l t e r n a t i v e  (and more f a m i l i a r )  e x p re s s io n  o f  t h i s  would be:

"For th e  sample g iv e s  in fo rm a t io n ,  a l though  im -n e r fec t ly , about 

the  v a lu e s  o f  th e  e r r o r s  d u r in g  th e  p e r io d  o f  observation  0 Because 

o f  th e  s e r i a l  c o r r e l a t i o n ,  i t  a l s o  p ro v id e s  some i n d i c a t i o n  on 

su b seq u en t v a lu es  o f  th e  e r r o r s "  [71 p«535] .

1»5______G eneral C o n s id e ra t io n s  R e la t in g  to  th e  E s t im a t io n  o f  ARMAX Models

In  p re c e d in g  s e c t io n s  a n a ly se s  o f  th e  o r i g i n  o f  th e  ARMAX model, 

the  c o n d i t io n s  to  be p la c e d  upon i t ,  and th e  e f i t s  t h a t  would accrue  

from th e  e s t im a t io n  o f  th e  p a ram e te rs  a s s o c i a t e d  w ith  i t  have been
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p re s e n te d ,  and i t  i s  now a p p ro p r ia te  to  in v e s t ig a t e  a number o f  

a l t e r n a t iv e  methods o f  d e r iv in g  such e s t im a te s .  These m ethods, 

r e p re s e n t in g  th e  s im p le s t  s o lu t io n s  to  th e  p rob lem , a re  s tu d ie d  below , 

1 ,5 ,1  O rd inary  L e a s t Squares

Ig n o rin g  th e  f a c t  t h a t  th e  M,A, p a ram e te rs  m ight be r e q u ire d  f o r

o p tim a l p r e d ic t io n ,  e s t im a te s  o f  th e  p a ram ete rs  ( 3 , , , , , , 8  ) ,  (y , , , , , y  )1 p o r

o f  e q u a tio n  ( l , 2 )  may be o b ta in e d  by 0 oL, S ,  The p r o p e r t i e s  o f  such 

e s t im a te s  d i f f e r  acc o rd in g  to  w h eth er B(l ) = 0 o r  n o t ,  so t h a t  we w i l l  

c o n s id e r  b o th  cases  in  tu r n ,

(a) B(L) = 0

When th e re  a re  no A,R, p a ram e te rs  i t  i s  known th a t  th e  0 oL , S o

e s t im a to r  o f  ( 1 , 2 )  i s  c o n s is te n t  b u t n o t e f f i c i e n t  ( e , g ,  see  M alinvaud

[ 71 ]) b u t w hat i s  o f  im portance i s  th e  e x te n t  o f  th e  lo s s  o f  e f f ic ie n c y

s u s ta in e d  by th e  use o f  th e  e s t im a to r ,  A n u m erica l e v a lu a tio n  o f  t h i s

f o r  p a r t i c u l a r  models w i l l  be th e  concern  o f  t h i s  s e c t i o n , ^

R ecen tly  R, H a ll has a p p l ie d  F o u r ie r  te c h n iq u e s  to  th e  e s t im a t io n

o f  th e  l i n e a r  r e g re s s io n  model w ith  a u to c o r r e la te d  d is tu rb a n c e s

i . e .  y ( t )  = C(L) x ( t )  + u ( t )  (1 ,2*0

where E ( u ( t ) )  = 0 and th e  c o v a rian ce  m a tr ix  o f  u ( t )  i s  ft, T aking  th e

F o u r ie r  T ransform  o f  (1 ,2*0  and m in im izing  th e  sum o f  sq u a re s  in  th e

freq u en cy  domain w ith  r e s p e c t  to  th e  e lem en t o f  C(L) H a ll f in d s  t h a t ,

" In  a  model w ith  a s ta t io n a r y  ( t im e - in v a r ia n t )  d is tu rb a n c e  

p ro c e s s ,  th e  minimum v a r ia n c e  u n b ia sse d  e s t im a te s  o f  th e

d i s t r i b u t e d  la g  p a ram e te rs  (assum ing th e y  e n te r  l i n e a r l y )

a re  g iven  by w e ig h ted  l e a s t  sq u a re s  in  th e  freq u en cy  domain;

15 At th e  same tim e t h i s  w i l l  en ab le  an enum eration  o f  th e  b e n e f i t s  o f  
em ploying an e f f i c i e n t  e s t im a to r .
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th e  w e ig h ts  a re  th e  in v e r s e s  o f  th e  spec trum  o f  th e  

d i s tu r b a n c e s 1' [38 p 03 l]o

U t i l i z i n g  t h i s  r e s u l t  (and assuming C(l ) = y i „ e s t h e r e  a re  no 

la g g ed  x ( t )  v a r i a b l e s ) ,  H a ll  shows t h a t  th e  v a r ia n c e s  o f  th e  0 0L oS o 

e s t i m a t o r  V(ya t c ) and th e  e f f i c i e n t l y  w eig h ted  l e a s t  sq u ares  (E 0W0L 0S 0)
Uljb

e s t i m a t o r  v C y - ^ - )  are  'EWLS

— I f  U )  f  ( X)dX2 tt I xx uu

V^OLS^
-TT

(1 .2 5 )
_ L
2 7T f  ( A)dXxx

-  TT

v( Y  ) v yEWLS’
( 1 . 2 6 ) ,

_1
2 tt

f  (x)xx
f  (x)

-T T  U U

where f  (X), f  (X) r e p r e s e n t  th e  o r d in a t e s  o f  th e  s p e c t r a l  d e n s i ty  

fu n c t io n s  a s s o c i a t e d  w ith  x ( t )  and u ( t )  r e s p e c t i v e l y ,  and th e  i n t e g r a t i o n  

i s  perfo rm ed  o v e r  th e  range - tt < A <_ t t 0

The Joss in  e f f i c i e n c y  i s  g iven  by th e  r a t i o  o f  V(yTTnTTC,) to  V (y .TO)
£jWLb ULb

and t h i s  r a t i o  ($) w i l l  be c a l l e d  th e  e f f i c i e n c y  in d e x c 

V(^EWLŜi 0e 0 $ = -------------- \

V^OLS^

Although th e  e f f i c i e n c y  index  i s  a fu n c t io n  o f  th e  s p e c t r a l  shape

a t t r i b u t a b l e  to  the  x ( t )  and u ( t )  v a r i a b l e s  a low er  bound to  $ toay be
16 ^ '

e s t a b l i s h e d  by an a p p l i c a t io n  o f  th e  fo l lo w in g  theorem :

A p ro o f  o f  which may be found in  Hannan [1+7 P o l l l ] .
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Let <{)̂ 0 eo4>̂  be th e  N e ig e n v a lu e s  o f  P rov ided  th a t  N i s  la r g e ,

f  (X) i s  n o t to o  ir r e g u la r  and th e  e ig e n v a lu e s  may be p a r t i t io n e d  in to  

two d i s t i n c t  s e t s  w ith  th e  p rop erty  th a t  <f> - 4>0 - 0 0 0 -  < J > , ;
X cL K.

k+1 k+2 ~ 0 °  ‘  ŵ ere   ̂ -̂s smabb r e la t iv e  t o  N, th e  e f f i c i e n c y

in d ex  i s  g iv en  by

4» > 1+

2 +!i + ^
*1

( 1 .2 7 ) .

As th e  q u o ta t io n  from H all ( c i t e d  above) s t r e s s e s  th e  co v a r ia n ce  

m atrix  o f  th e  F o u r ie r -tra n sfo rm ed  d is tu r b a n ce s  i s  a s y m p to t ic a lly  

d ia g o n a l w ith  the s p e c tr a l  d e n s ity  o r d in a te s  as th e  n o n -zero  e le m e n ts .

I t  may a ls o  be shown th a t  th e  e ig e n v a lu e s  o f  th e  co v a r ia n ce  m atr ix

l i e  on t h i s  d ia g o n a l so th a t  th e r e  i s  an e q u a l i t y  betw een the  

two s e t s  a llo w in g  th e  rep lacem ent o f  <j>̂ and <J>̂ by f Ull( ^

f  (A) , ,™ -  r e s p e c t iv e ly  the maximum and minimum v a lu e s  o f  th e  spectrum , uu MIN

H a ll goes on t o  e v a lu a te  some e f f i c i e n c y  l o s s e s  (and th e  low er  

bound) under th e  assum ption th a t  x ( t )  and u ( t )  are g en era ted  by

x ( t ) ( l - 6 L )  = e ( t )  ^

u ( t )  (1-pL ) = e ( t )

Table 1 01 reproduces H a l l ’ s r e s u l t s  fo r  v a r io u s  v a lu e s  o f  6 and p

when th e  number o f  o b se r v a tio n s  i s  taken  to  be 75°



T able 1 .1

E f f ic ie n c y Index  fo r V arying  V alues o f  th e P aram eters

Pi=0 P=0 e 3

E quation  ( l .2 k )

p=0.5 P=0.7 P=0.9

Lower bound 1 0 .6 9 8 0 .3 6 1 0 .116 0 .0 1 1

6=0 1 0 .8 3 5 0 .600 0.3k2 0 .105

6=0.5 1 0 .8 5 1  * 0 .6 0 0 0 .3 1 1 0 .0 7 9

6=0.8 1 0 .91k 0 .71k 0 .389 0 .0 8 3

6=0.9 1 0 .9 5 1 0o 8 l3 0 .5 0 3 0.10k

6=0.95 1 0 .97k 0 .89k 0 .6k9 0 . l k 9

6=0.99 1 0 .9 9 8 0 .991 0 .9 5 6 0 .625

Source : H a ll [38 p . 3 7 ] .

A n o ta b le  f e a tu r e  o f  Table 1 .1  i s  th e  se v e re  o v e re s tim a te  o f  th e  

lo s s  in  e f f ic ie n c y  from 0 oLoSo p ro v id e d  by th e  l e a s t  bound im ply ing  

t h a t  use o f  t h i s  fo rm ula  may be q u i te  m is le a d in g  i f  some knowledge 

o f  th e  s p e c t r a l  shapes o f  x ( t )  and u ( t )  i s  a v a i la b le .  As th e r e  i s  

now a c o n s id e ra b le  body o f  l i t e r a t u r e  concerned  w ith  th e  s p e c t r a l  

shapes o f  econom ic v a r ia b le s  i t  i s  im p o rta n t t o  use t h i s  in fo rm a tio n  

in  g a in in g  an a p p re c ia t io n  o f  th e  l i k e l y  e f f ic ie n c y  lo s s e s  in  th e  

e s t im a tio n  o f  r e a l i s t i c  econom ic m odels. Such c r i t e r i a  u n d e r l ie  th e  

r a t i o n a le  fo r  th e  f i l t e r s  summarized in  ( 1 . 2 8 )  as b o th  v a r ia b le s  have 

G ra n g e r 's  " ty p ic a l  s p e c t r a l  shape" [ 33 ] which i s  commonly found by 

in v e s t ig a to r s  w orking  w ith  y e a r ly  tim e s e r i e s .

T ab le  I d  le a d s  H a ll to  th e  c o n c lu s io n " . . . . t h a t  th e  p r a c t i c a l  

im portance o f  a u to c o r r e la t io n  in  d i s t r i b u t e d  la g  models has been 

somewhat e x a g g e ra te d . In  th e  le a d in g  case p = 0 .5  and 6 = 0 .9 5 , th e
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p o t e n t i a l  ga in  in  e f f i c i e n c y  from an a u to r e g r e s s iv e  t r a n s f o r m a t io n  o f  th e  

v a r i a b l e s . 0. „ is  about 10/S" [38 p .3 8 ] ,  He re c o g n iz e s  t h a t  t h i s  i s  a 

p ro d u c t  o f  th e  s p e c t r a l  shapes employed -  p a r t i c u l a r l y  th e  l a r g e  con­

c e n t r a t i o n  o f  power a t  th e  o r i g i n  f o r  th e  x ( t )  v a r i a b l e  in  c o n t r a s t  to  

th e  u ( t )  v a r i a b l e  -  b u t  i s  c o r r e c t  in  a rg u in g  t h a t  such s p e c t r a  a re  

t y p i c a l  o f  e q u a t io n s  e s t im a te d  from y e a r ly  d a ta .

Three o b je c t io n s  may be l e v e l l e d  a g a i n s t  H a l l ' s  methodology.

( i )  A lthough th e  e x p re s s io n  f o r  $ i s  o s t e n s i b l y  f o r  th e  g e n e ra l

d i s t r i b u t e d  l a g ,  in  H a l l ' s  examples no such l a g  d i s t r i b u t i o n  e x i s t s .  

D enoting z ( t )  = C(L) x ( t )  th e  v a r ia n c e s  sh o u ld  be c o n s t r u c t e d  from 

th e  spec trum  o f  z ( t )  ( i . e .  f  ^X ) r e p la c e s  f  ( X „) in  (1 .2 5 )  and
ZZ J XX ,]

( l „ 2 6 )) and as t h i s  i s  a p ro d u c t  o f  th e  sq u a re d  ga in  o f  th e  re sp o n se

fu n c t io n  C(X.)  and th e  spec trum  o f  x ( t )  i t  i s  t e n a b le  t h a t  even 
d

though f  (X ) has th e  " t y p i c a l  s p e c t r a l  s h a p e " ,  f  (X ) may n o t .
XX J ZZ J

IT

( i i )  As m entioned  e a r l i e r  th e  d e s i r e  (and n e c e s s i t y )  to  in c o rp o r a te

d i s t r i b u t e d  l a g  phenomena in t o  econom etr ic  models i n t e n s i f i e d  w ith  

th e  e x te n s iv e  use o f  q u a r t e r l y  d a t a .  Even though i t  i s  p o s s i b l e  

to  reduce  th e  s p e c t r a  o f  x ( t )  t o  th e  f i r s t  o rd e r  shape g iven  above 

by th e  use o f  d e s e a s o n a l iz e d  s e r i e s ,  i t  rem ains t r u e  t h a t  i f  u ( t )  

i n c o rp o r a te s  o m i t te d  f a c t o r s  th e r e  i s  l o g i c  i n  r e q u i r i n g  f u u ( X d  

to  have peaks co r re sp o n d in g  t o  th e  harm onics o f  a s e a s o n a l  p a t t e r n .

17 See Fishman [ 26 ] f o r  a d e f i n i t i o n  o f  th e  concep ts  o f  " freq u en cy  
re sp o n se  fu n c t io n "  and " sq u a re d  g a in " .  The co nven tion  i s  ad o p ted  
t h a t  th e  re sp o n se  fu n c t io n  a s s o c i a t e d  w ith  C(L) w i l l  be w r i t t e n  as
C(X.)  and th e  sq u a re d  ga in  | c ( X . ) p .  T h e re fo re  | c ( 0 ) | ^  i s  th e  

J J

g a in  a t  X . = 0. 
d
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Confirmation of this may be found in the article by Thomas and 

Wallis which demonstrates the existence of serial correlation in the 

residuals (at the seasonal frequencies), even though the data had 

been adjusted for a constant seasonal pattern (dumny variables) and 

a first order polynomial trend.

(iii)The efficiency index measures the efficiency of the O.L.S.

estimator, but not the efficacy of the 0 oL.S. formula when serial

correlation is present. It is easily shown that the variance of

y given by the O.L.S. formula is ULb

A distinction between (1.25) and (1.29) is essential for any 

judgement concerning the robustness of O.L.S. Most computer programs

variance. This enables us to see the dilemma facing the O.L0S.

proponent. On the one hand it appears that O.L.S. is not greatly

inefficient but the well known O.L.S. formula for the variance is not 

exact, and on the other in order to calculate the exact variance

E.W.L.S. estimator might just as well have been used.

The three objections enumerated above suggest a further inquiry 

into the performance of O.L.S. but with the following items given 

particular attention.

(i) The extent to which the O.L.S. formula is incorrect.

1 (1.29).

calculate the variance of y _t„ from (1.29) which is not the trueULb ----

(ii) The efficiency losses under a seasonal specification of the 

disturbances and/or exogenous variables.
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( i i i )  The im pact o f  a more r e a l i s t i c  d i s t r i b u t e d  l a g  upon th e  e f f i c i e n c y  

o f  th e  e s t i m a t o r .

Table 1 .2  p r e s e n t s  th e  t r a n s f e r  fu n c t io n s  t h a t  were used  fo r  

r e s e a r c h  i n t o  th e  t h r e e  f a c t o r s  d e s c r ib e d  above.

Table 1 .2

A l t e r n a t iv e  Schemes to  G enerate  x ( t ) ,  C(L) and u ( t )

C(L) x ( t )  u ( t )

C(L) = c x ( t ) ( l - 0 . 9 L ) = e ( t )  u ( t ) = ( l + a  L ) e ( t )

C(L) = c(l+2L+3L2+4L3

+5L1++6l 5+6l6+5LT

+UL8+3L9+2L10+L1:L) x (t ) (1-0.91) ( l - o . 8L11) = e (t ) u ( t  )= (1+c^L) ( 1 + a ^  )e ( t )

A s h o r t  commentary on th e  p a ram e te rs  g iven  in  Table 1 .2  i s  in  

o r d e r .  F i r s t l y ,  th e  t h r e e  s e t s  o f  v a lu e s  f o r  a and were ta k e n  as

= 0 .4 ,  0 . 6 ,  0 .8

( a 1 , a 1+) = ( 0 .4 ,  0 . 2 ) ,  ( 0 .6 ,  0 . 3 ) ,  ( 0 .8 ,  0 .3 )

w ith  th e  e x p e c ta t io n  t h a t  th e s e  w i l l  rep roduce  th e  e f f e c t s  a s s o c ia t e d  

w ith  low, medium, and h ig h  a u t o c o r r e l a t i o n  in  th e  d i s tu r b a n c e s .  Secondly , 

th e  s e a s o n a l  p a t t e r n  g iven  f o r  x ( t )  was adap ted  from N erlove and 

G re th e r  [ 3 6 ] .  L a s t l y ,  th e  second  form o f  C(L) i s  th e  " in v e r t e d  V" 

la g  d i s t r i b u t i o n  f i r s t  p roposed  by F. de Leeuw [ 6 7 ] .  This  l a g  

d i s t r i b u t i o n ,  w ith  i t s  peak a t  s i x  tim e p e r io d s  and zero  im pact a f t e r  

tw e lv e ,  has a shape c h a r a c t e r i s t i c  o f  t h a t  found in  a number o f  

e m p i r ic a l  s t u d i e s ,  and p ro v id e d  a good f i t  t o  in v e s tm en t e x p e n d i tu re

d a ta .
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S c h e m a t i c a l l y  T a b le  1 „2  may b e  v ie w e d  a s  t h e  d e c i s i o n  t r e e  o f  

F i g u r e  1 .1 »  E ach  n ode  c o r r e s p o n d s  t o  a  new colum n so  t h a t  t h e r e  a r e  

t h r e e  n o d e s  i n  t h e  t r e e .  As e a c h  colum n i s  com posed  o f  tw o  a l t e r n a t i v e  

s p e c i f i c a t i o n s  t h e r e  w i l l  b e  e i g h t  d i s t i n c t  m o d e ls  and  t h e s e  a r e  

l a b e l l e d  A -  H.

F i g u r e  1 . 1

S c h e m a t i c  R e p r e s e n t a t i o n  o f  t h e  M odels  I m p l i c i t  i n  T a b le  1 . 2

[ODEL A

-MODEL B

10 DEL C

[ODEL E

MODEL G

As a  g u id e  t o  t h e  i n t e r p r e t a t i o n  o f  F i g u r e  I d  we r e c o r d  t h a t  

M odel B h a s  t h e  f o l l o w i n g  g e n e r a t i n g  f u n c t i o n s  : C(L) = c ;  

x ( t ) ( l - 0 . 9 L )  = e ( t ) ;  u ( t )  = ( l + a  L ) ( l + a ^ L * ) e ( t ) .

T a b le  1 . 3  s e t s  o u t  t h e  e f f i c i e n c y  i n d e x e s  $ a n d ^  ( t h e  l a t t e r  b e i n g  

t h e  r a t i o  o f  ( 1 . 2 6 )  t o  ( l „ 2 9 ) )  f o r  M odels  A-H c l a s s i f i e d  b y  t h e  e x t e n t

o f  a u t o c o r r e l a t i o n  i n  t h e  r e s i d u a l s .
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T able 1 ,3

E f f ic ie n c y Indexes o f O .L .S . f o r  Mqdels A-H

Model <i>

Low Med. High Low Med. High

A 0.9^9 0 .8 7 8 0 .7 1 8 1 .T85 2.11+3 2 .2 1 1

B 0 .8 8 0 0.745 0.615 2.171+ 2.73^ 2 .8 5 0

C 0 .9 8 2 O .9 I+I+ 0.790 1.930 2 .387 2 . 52*+

D 0 .977 0 .933 0 .7 8 0 2 .69^ 3.928 U.152

E 0.999 0.999 0.999 1 .953 2 .5 4 9 3.225

F 0 .993 0 .9 8 8 0 .9 8 8 2 .6 9 5 U .065 5 .1^3

G 0.999 0.999 0.999 1 .9 5 8 2 .5 5 8 3.237

H 0.999 0.999 0.999 2.795 U.273 5 .U08

Some u s e fu l  norms may be e x t r a c te d  from Table 1 .3 .

1. The lo s s  in  e f f i c i e n c y  o f  O .L .S . (as  m easured by $) i s  on ly  once 

g r e a te r  th a n  15% in  th e  medium a u to c o r r e la t io n  range b u t can 

become s u b s t a n t i a l  i f  th e r e  i s  a good d e a l o f  a u to c o r r e la t io n .  

O v e ra ll how ever th e  r e s u l t s  su p p o rt H a l l ’s san g u in e  a t t i t u d e  

tow ards th e  ro b u s tn e s s  o f  O .L .S .

2 . D icho tom izing  T able 1 .3  ac c o rd in g  to  th e  com plex ity  o f  th e  la g  

d i s t r i b u t i o n  ( i . e .  Models (A-D) and (E-H)) i t  i s  s t r i k i n g  t h a t  

O .L .S . i s  f a r  more e f f i c i e n t  w ith  th e  de Leeuw la g  form . An 

e x p la n a tio n  l i e s  in  th e  m agnitude o f  th e  sq u ared  g a in  o f  C(L).
2 tt 3  77

There a re  two m ajor peaks ( a t  rough ly  /5  and /5 )  w ith

| c ( 0 ) | ^ f | c ( ~ - ) | ^ ? | c ( -^y) | ^  b e in g  in  th e  (ap p ro x im ate ) r a t i o s

2Ö00 : 7 : 1 so t h a t  th e  p ro d u c t o f  th e  sp ec trum  o f  x ( t )  and
2

th e  sq u a red  g a in  fu n c tio n  | c ( x ) |  w i l l  cause f  (x) to  have az z

c o n c e n tra t io n  o f  power a t  th e  o r ig in  -  p r e c i s e ly  th e  same
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c ircu m stan ce  in  w hich H a ll found th a t  O .L .S . was e f f i c i e n t .

From t h i s  example we conclude th a t  i n t r i c a t e  la g  p a t te r n s  may-

18a c tu a l ly  in c re a s e  th e  e ff ic ie n c y -  o f  O .L .S .

3 . The e f f e c t s  o f  peaks in  f  ( x )  when f  ( x )  has none may he 

e v a lu a te d  by a com parison o f  Models (B,D) and (F ,H ). As 

ex p ec ted  e f f ic ie n c y  lo s s e s  a re  g r e a t e s t  when th e  s p e c t r a  a re  

d i s s im i la r  b u t in  c o n t r a s t  th e  fo rm u la  v a r ia n c e  u n d e r s ta te s  th e  

t r u e  v a r ia n c e  by a l a r g e r  amount when peaks a re  p r e s e n t  in  b o th  

f u u ( x )  and f  ( x )  (compare e s p e c i a l l y  Models B and D), and t h i s  

tendency  becomes more em phatic  as th e  degree  o f  a u to c o r r e la t io n  

in  th e  d is tu rb a n c e s  r i s e s .

4 . What m ight be te rm ed  th e  e f f ic a c y  index  (ijj) i l l u s t r a t e s  q u i te  

d ra m a tic a lly  th e  e x te n t  to  w hich th e  t r a d i t i o n a l  O .L .S . v a r ia n c e  

fo rm ula  can be m is le a d in g  and makes one aware o f  th e  f a i l u r e  o f  

t h i s  s t a t i s t i c  to  p ro v id e  a r e l i a b l e  gu ide  to  th e  accep tan ce

and r e je c t i o n  o f  h y p o th e se s . No so la c e  i s  to  be g a in ed  by O .L .S . 

u se rs  from T able 1 .3  as even in  th o se  cases  where O .L .S . i s  

e f f i c i e n t  th e  fo rm u la  v a r ia n c e  i s  a t  b e s t  f iv e  e ig h ts  o f  th e  t r u e  

v a lu e .

(b) C(L) = 0

Having e s ta b l i s h e d  some id e a  o f  th e  lo s s  o f  e f f ic ie n c y  in  em ploying 

O .L .S . when th e re  a re  la g g ed  exogenous v a r ia b le s  among th e  r e g re s s o r s  

and a u to c o r r e la t io n  in  th e  d is tu rb a n c e s ,  th e r e  i s  a n o th e r  c o n te x t in  

w hich a u to c o r r e la t io n  in d u ces  n o n -o p tim a l p r o p e r t i e s  in to  t h i s  e s t im a to r

18 Only o n e -p a ram e te r  models were exam ined in  o rd e r  to  avo id  th e  
d i f f i c u l t i e s  a s s o c ia te d  w ith  a s u i t a b le  d e f in i t i o n  o f  e f f ic ie n c y  in  
m u lti-p a ra m e te r  c a s e s .



36 .

i . e .  when a la g g ed  dependent v a r i a b l e  i s  among th e  r e g r e s s o r s .  Under

such c o n d i t io n s  i t  i s  known t h a t  th e  O .L .S . e s t im a to r  i s  n o t  c o n s i s t e n t .

In  what i s  to  fo l lo w  c lo se d  form e x p re s s io n s  a re  g iven  f o r  th e

in c o n s i s t e n c y  o f  O.L„S. and th e  a sy m p to tic  v a r ia n c e  o f  E.W.L.S. under

th e  assum ption  t h a t  th e  a u to r e g r e s s io n  i s  o f  f i r s t  o rd e r  i . e .  o f  th e  

19Koyck ty p e .

The ARMA(l,q) model was s e l e c t e d .

i . e .  ( l -3 L )  y ( t )  = A(l ) e ( t )  ( 1 .3 0 ) .

L e t t i n g  B(a ) ,  A ( \)  s ta n d  f o r  th e  frequency  response  f u n c t io n s

a s s o c i a t e d  w ith  ( l -ß L )  and A(l ) ,  Appendix 2 shows t h a t  th e

in c o n s i s t e n c y  o f  ß .TO( lC ) ,  th e  v a r ia n c e  o f  (V( fL,TTT0) ) ,  and th e
ULb LWLb hWlib

fo rm ula  v a r ia n c e  f o r  ß (V*(ß )) a re
ULb ULb

IC  ̂ßOLŜ

V^EWLS^

1
2 tt

-T T

I A ( X ) I 

IB(X ) [

-T - l _1
2 tt

* [A(X)lge 1X
B (X)

-T T

_1_
2 tt | b ( x ) |

( 1 . 3 1 )  .

(1 .3 2 )

v * ( ß  )VPOLS;

2 tt
f  ( A)dA
yy

( 1 .3 3 ) .

-T T

The e x p re s s io n s  o f  e q u a t io n s  ( l . 3 l )  -  (1 .3 3 )  were e v a lu a te d  f o r  

a number o f  d i f f e r e n t  v a lu e s  o f  ß and th e  two s p e c i f i c a t i o n s  o f  A(l )

19 U n fo r tu n a te ly  i t  i s  n o t  p o s s i b l e  to  d e r iv e  th e  a sy m p to tic  v a r ia n c e
o f  th e  O .L .S . e s t i m a t o r  f o r  t h i s  case  b u t  in  p r a c t i c e  th e  n e c e s s i t y
o f  knowing f  (A) makes t h i s  r a t h e r  academ ic. As i t  i s  th e  fo rm ula  uu
v a r ia n c e  t h a t  w i l l  be q uo ted  in  most s tu d i e s  we wish to  e v a lu a te  th e  
e x t e n t  t o  which t h i s  may be m is le a d in g  as an i n d i c a t o r  o f  th e  
E.W .L.S. s o l u t i o n .
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used  p r e v io u s ly  _ th e  p a ram e te r  com binations  to  r e p r e s e n t  degrees  

o f  a u t o c o r r e l a t i o n  b e in g  = ( 0 .4 ,  0 . 6 , 0 . 8 ) ,  ( a ^ ,  a^) = ( 0 . 4 , 0 . 2 ) ,  

( 0 .6 ,  0 . 2 ) ,  ( 0 .8 ,  0 . 2 ) .  T ab les  1 .4  and 1 .5  s e t  ou t th e  e f f i c a c y  index  

^ and th e  a b s o lu te  v a lue  o f  th e  in c o n s i s t e n c y  c l a s s i f i e d  by th e  e x t e n t  

o f  a u t o c o r r e l a t i o n  in  th e  r e s i d u a l s .

Table 1 .4

E f f ic a c y  Index  f o r  and I n c o n s is te n c y  o f  O .L .S .

A(L) = ( l + a i L ) t

iß ip I n c o n s is te n c y

Low Med. High Low Med. High

0 .1 1 .24 1 .4 8 1.80 0.319 o . 4 o i 0.440

0 .2 1 .32 1 .60 1 .96 0.291 0.360 0.392

0 .3 1 .40 1.72 2.12 0.260 0.317 0.343

0 .4 1 .4 8 1.84 2 .2 8 0.227 0.274 0.295

0 .5 1 .56 1 .96 2.44 0.192 0.230 0.246

0 .6 1 .64 2 .0 8 2.60 0.156 0.185 0.197

0 .7 1 .72 2 .20 2.76 0.119 0.139 0 .148

0 .8 1 .80 2 .32 2 .92 0.080 0 .093 0.099

0 .9 1 .88 2.56 3.08 0.040 0 .047 0.049

* The i n t e g r a l s were approx im ated  by summation o v e r  100 p o in t s
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T tb ic  1 ,5

E f f ic a c y  Index  f o r  and In c o n s is te n c y  o f  O .L .S . 

A(L) = ( 1+a^L)( 1+a^L^)

ß_ \p I n c o n s is te n c y

Low Med. High Low Med. High

0 .1 1 .29 1 .54 1 .87 0.320 0.402 0.441

0 .2 1 .37 1 .6 7 2.04 0.294 0.364 0.395

0 .3 1 .46 1 .8 0 2 .20 0.267 0.325 0.351

0.1+ 1.56 1.95 2 .41 0.240 0.287 0 .307

0 .5 1 .68 2 .11 2 .63 0.210 0.247 0 .263

0 .6 1 . 8 l 2 .30 2 .8 8 0 .178 0 .2 0 6 0 .2 1 8

0 .7 1 .9 8 2.54 3.19 0 .143 0 .1 6 2 0.170

0 .8 2 .20 2.84 3.57 0.101 0 .113 0 .1 1 8

0 .9 2 .4 7 3.21 4.06 0 .054 0.059 0 .0 6 2

Once aga in  we n o t i c e  t h a t  even i f  O .L .S . were f u l l y  e f f i c i e n t  th e  

fo rm ula  v a r ia n c e  would be m is le a d in g .  However what i s  more d i s tu r b i n g  

(and em phasizes t h a t  p re o c c u p a t io n  w ith  e f f i c i e n c y  may d i s t r a c t  

a t t e n t i o n  from o th e r  p r o p e r t i e s )  i s  th e  s i z e  o f  th e  i n c o n s i s t e n c y  d i s ­

p la y e d .  Even f o r  sm a ll  amounts o f  a u t o c o r r e l a t i o n  t h i s  may be q u i t e  

s u b s t a n t i a l  and m i t ig a t e s  a g a in s t  th e  use o f  O .L .S . i f  a c o n s i s t e n t  

e s t i m a t o r  i s  a v a i l a b l e .  At f i r s t  g lance  th e  v a lu e s  f o r  in c o n s i s t e n c y  

fo llow  what seems to  be an unusua l  p a t t e r n  i . e .  as th e  a u to r e g r e s s iv e  

p a ra m e te r  r i s e s  th e  in c o n s i s t e n c y  f a l l s . The e x p la n a t io n  r e s i d e s  in

th e  f a c t  t h a t  th e  g r e a t e r  th e  c o n c e n t r a t io n  o f  s p e c t r a l  mass a t  th e  

o r i g i n  th e  c l o s e r  w i l l  O .L .S . be to  th e  M.L. e s t im a te  (see  S e c t io n  4 .4  

f o r  more on t h i s ) ,  b u t  a n o th e r  j u s t i f i c a t i o n  i s  o b ta in e d  from c o n s id e r in g  

th e  in c o n s i s t e n c y  o f  ß^ when th e  d is tu rb a n c e s  fo llow  a f i r s t  o r d e r



3 9 .

p ( i - ß ^ )
a u to re g re s s io n  w ith  p a ra m e te r  p v iz „  p lim (ß  -ß  ) = ----------

1+f^P

(M alinvaud [71 p .U 60]), By d i f f e r e n t i a t i n g  t h i s  w ith  r e s p e c t  to  ß^ i t  i s  

e a s i l y  seen  t h a t  th e  co n c lu s io n  h o ld s  in  t h i s  model as w e ll .  F in a l ly  th e

TT /t a b le s  show t h a t  th e  peak in  th e  d is tu rb a n c e  spectrum  a t  2 causes 

h ig h e r  in c o n s is te n c y  e t c . ,  and b ecau se  th e  peak i s  n o t very  la rg e  su g g e s ts  

t h a t  O .L .S . sh o u ld  be re g a rd e d  w ith  g r e a t e s t  c a u tio n  when m onthly and 

q u a r te r ly  d a ta  a re  b e in g  m o d e lled , as th e  p o s s i b i l i t y  o f  peaked  d is tu rb a n c e  

s p e c t r a  i s  much g r e a te r  in  such c a s e s .

1 .5 .2 .  G e n e ra liz e d  L ea st S q u a re s ( G ,L .S .)

R e ly in g  on th e  w e ll  e s ta b l i s h e d  theorem  t h a t  th e  G .L .S . e s t im a to r  

o f  th e  p a ram e te rs  o f  th e  g e n e ra l l i n e a r  model i s  maximum l ik e l ih o o d  

(M .L.) under th e  r e s t r i c t i o n  th a t  th e  d is tu rb a n c e s  a re  n . i . d .  w ith  

co v a rian ce  m a tr ix  ft, one i s  tem p ted  to  argue f o r  th e  use o f  G .L .S . in  

p la c e  o f  O .L .S . when fa c e d  w ith  th e  need to  e s t im a te  an ARMA/ARMAX 

m odel.

A t h e o r e t i c a l  o b je c t io n  to  G .L .S . i s  t h a t  knowledge o f  th e  t r u e

co v a rian ce  m a tr ix  (w hich i s  r e q u ire d )  i s  r a r e ly  a v a i la b l e .  An e a r ly

su g g e s tio n  was to  re p la c e  ft by a c o n s is te n t  e s t im a to r  ft b u t i t  i s  now

known t h a t  th e  e s t im a to r  o b ta in e d  w ith  ft i s  a s y m p to tic a lly  e q u iv a le n t  to

Tt h a t  r e s u l t i n g  from th e  use o f  ft i f f  p lim  Z u = 0 where Z i s  a (N x K)

m a tr ix  o f  K r e g re s s o r s  and u i s  th e  (N x  l )  v e c to r  o f  d is tu rb a n c e s

20( u ( t )  = A ( L ) e ( t ) ) .  I f  th e  r e g re s s o r s  a re  t r u l y  exogenous th e n  t h i s

c o n d itio n  h o ld s  and G .L .S . i s  a p p ro p r ia te .  U n fo r tu n a te ly  ARMA/ARMAX 

m odels a re  c h a r a c te r iz e d  by th e  p re se n c e  o f  la g g e d  dependent v a r ia b le s  in  

th e  Z m a tr ix  and th e  n e c e ssa ry  c o n d itio n  w i l l  n o t be m et.

20 Z e l ln e r  [123] appea rs  to  have been  th e  f i r s t  to  s t a t e  th e  g e n e ra l theorem .
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There are further objections to this form of G.L.S. i.e. based on 
ft. One is that incorporation of information concerning the order of the 

M.A. into the estimator will generate estimates that are asymptotically 
more efficient than G.L.S. If no preconceptions concerning the error 
process exist G.L.S. will be optimal, but the computational difficulties 
raised by the necessity to invert an (N x N) matrix are formidable and 
- more to the point - with a finite sample the autocorrelations computed 

from the residuals for use in ft would be very unreliable at high lags of 
the correlogram.

1.5.3. Correlogram Estimates
For completeness some consideration must be given to estimates of 

M.A. parameters derivable from the autocovariance function of the 
residuals (which in practice would be replaced by consistent estimates).
For an ARMA (p,l) model this would be accomplished in two steps
(a) Estimate by some consistent estimator e.g. Liviatan's

[69 ] with y(t-q-l),...,y(t-q-p) as instruments for y(t-l),...,y(t-p).

The resulting estimates are consistent.
(b) The first two covariances of the M.A. are

y (0) = o2(l+a2)

y (1) = o2^

so that by forming estimates y(0), y(l) (from ß ) we may

obtain an estimate from these two equations. Walker [110] 
has shown that these estimates are consistent but Whittle [115] 
calculated that if = 0.5 the asymptotic variance was 3.8 times 

that of the M.L. estimate. Efficiency losses of this magnitude
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make such estimates of little value for hypothesis testing but they 
will be used in later analysis when only a consistent estimator is 
required.

1,6 Conclusion

Three topics have been highlighted in this chapter.

(i) ARMA/ARMAX models are likely to arise when modelling single time 
series or explaining dynamic relations betwesn multiple time series

(ii) It is worthwhile to obtain estimates of the parameters of these 
models for the dual purpose of validating hypotheses and best 
prediction.

(iii) Traditional estimation procedures such as O.L.S. are unlikely to 
realize the potential gains from (ii) in the sample sizes commonly 
available with quarterly data.

If one accepts the above contentions it is natural to develop 
estimators to realize any large sample benefits, and then to determine 
the comparative rankings of all estimators in small samples. It is 
to the first of these tasks that we turn in Chapter 2 and the second in 
Chapters 3 and H.
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k2.

Time Aggregation and ARMA Models

Only the case when y(t) is a stock variable will be considered but

this is illustrative of the general approach. Let B(L)y(t) = e(t) be

a p ’th order A.R. indexed on t = 1,...,N. Assume that a new series is

formed from every k ’th observation i.e. r = k, 2k,... and that in the

translation from the t domain the order of the A.R. is preserved i.e.

B(L)y(r) = e(r). This means that written in the t domain this will be

W(L)y(t) = e(t) where W(L) will have non-zero coefficients at L ,L ,
2kL ,... only e.g. W(L) will be (1.12) of the text. It is easily 

seen that W(.l ) must be of order pk and it is necessary to seek the 

polynomial T(l ) that transforms BCR) into W(L).

Lemma: The polynomial TIL) in the product T(L)B(L) = W(L) has order

p(k-l).

Proof: Since W(L) is of order pk and Bei) of order p, T(L) must be of

order p(k-l).

Theorem: The polynomial TCI) in the product T(L)B(L) = W(L) is unique.

Proof: There are Z = p(k-l)+l elements in T(l ) i.e. including the

parameter attached to L° and the elements of all polynomials may be 

arranged in matrix form as

1 1 1

ß, 1 t . w.1 1 1
3r l • •

ß 1 t.P Z

O ß  ß_ 1 0 w ,L P 1  J L pk -1

i.e. B t = w



so that a non-trivial and unique solution for t will exist if B is non 

singular. The form of B guarantees that det (B) = 1 s o  that a 

solution for t exists and it is unique.

Now consider the original equation

B(L)y(t) = e(t)

.\ T(L)B(L)y(t) = T(L)e(t) = u(t).

Assume that there is q fth order autocorrelation in the r domain. 

Then this implies q k order autocorrelation in the t-domain. As the 

maximum order of T(l ) in the t domain is p(k-l) the order of the auto­

correlation in the r domain can be derived from 

q k = p(k-l), 

and is
_ p(k-l)

4 k

A difficulty with this expression arises in that it may be 

fractional whereas q must be an integer, but this is resolved by noting 

that fractional lags will always be truncated to the integer immediately 

below their exact value when only discrete data is available e.g. a 3 

period lag must become a 3 period lag in discrete time. Therefore 

time transforms will change an ARMA (p,o) model to ARMA (p,l(^~-^-))

which is the formula contained in the text.

r-)|CVJ



Appendix 2

Derivation of Equations (l.3l)-(l.33) of the Text 
Consider the first order A.R.

UU.

y(t) = ß y(t-l) + u(t) (A2.1).
The O.L.S. estimate is

N
£ y(t)y(t-l)

ß = -----------OLS N
1 y1 2(t-l)

t = l
N
E y(t-l)[ßy(t-l)+u(t)] 

t=l
N 2 
I y2(t-l)

t = l

1 N— Z y(t-l)u(t)

1 N 2F s y (t-D 
t=l

N j w  plim
N-k» ßOLS ß +

1 Nplim— Z y(t-l)u(t) 
N-ko t=l
plim
N-*»

1
N

N
Z

t=l
y2(t-i)

so that the extra term measures the inconsistency of 0,L.S. It is veil 
known that

plim i  l y(t-l)u(t) = V (0)= ±_ J* f (X) eiX dX
N-x» t=l * J

-7T

plim Z y2( t-l) = Y =
N-x» t=i yy

_i
2 tt

-TT
f (X) dXyy



. The inconsistency may be written as

Plim (§OLS - ß) N-x»
1_
2tt

rir
f (X)dXyy

-1 1_
2tt

rv . ,
f (X)e dX yu

-7T -7T

(A2.2).

Now equation (A2.l) may be written in the frequency domain as

f (X)B(X) = f (X) yu uu

where B(x) = 1 - ße^ ,

Two cases are distinguished

(a) u(t) = e(t)
2

The error term is white noise and f (X) = —  so that (A2.2) becomesuu 2tt

I.C. 1_
2tt f (X)dXyy

-7T

-1 1_
2tt

r 7T 2 iXa e
27TB (X)

From the theory of residues ~

I.C. = 0 as is expected.

(b) u(t) = A(L)e(t)

Equation (A2.2) will become

. I.C.

-7T
7T 2 iX a e

] (A2.3).

2ttB( X) dX = 0 so that
-7T

r  r  1p" -p ( \ \ ̂  \

-i
i fTT 2 1 / N 12 iXa IA(X)1 e

27 t I tt y y 2tt 2 tt B( X ) aA
-TT -1

or using f (X)yy

I.C.

q
2tt

IA(X)I IB(X)I
1 [ "  U(x) I2 1 -1 1 r  o2 |a (x )I2 elX
2 tr O aA|b (x ) 1 2 2 tt J 2 tt B(X) aA

— 7T

(A2.U).



The formula variance for O.L.S. will obviously be

V*(W

and for E.W.L.S.

V(W

1_
2 tt -IT

f (X)dXyy

-l
(A2.5)

1 •7T f (X) -|y y  _
2 tt

-IT f (x)u u

1 ’7T
1  d '  12 tt

-IT
r\ CL A

|b (x ) |2

-1

-1

(A2.6)

Equations (2.4), (2.5) and (2.6) are (l.3l) - (1.33) of the text.



CHAPTER 2. The Estimation of ARMAX Models

2.1 Introduction

Chapter 1 has established a potential need for econometricians to

consider ARMAX models when presented with the task of inferring economic 
relationships from time series data and some mention has been made of 
possible estimators of the parameters of these equations. For a variety 
of reasons the estimators mentioned were rejected as unsuitable thereby 
emphasizing the importance of designing new estimators which have the 
desirable properties (mentioned in Chapter l) of consistency and 
efficiency. Because of the association of such characteristics with 
maximum likelihood estimators it is natural to propose the maximization of 
the likelihood stemming from ARMAX equations.

As a prelude to the derivation of these estimators it is requisite 
to summarize some concepts from the numerical methods literature and 
S3ction 2.2 is devoted to such a resume. Following this three estimators 
that maximize the likelihood - two in the time domain and one in the 
frequency domain - are outlined and a framework is developed that will 
enable an evaluation (in Section 2.5) of other estimators suggested in the 
literature. A distinction is drawn throughout between the time and 
frequency domain aspects of the problem.

In attempting to translate the theoretical constructs of Sections 2.3 
and 2,b into computable algorithms a number of difficulties arose and these 
are outlined (along with the solutions adopted) in S iction 2.6. Lastly 
a survey of the existing statistical theory that may be invoked to justify 
usage of these estimators is given, and this identifies those areas in 
which such theory is deficient. These deficiencies become the subject of 
the research presented in Chapter 3.

2.2 Non-Linear Algorithms
As the estimators to be proposed will involve functional minimization, 

reference must be made to various techniques available for optimizing

functions. There are a proliferation of these (see Powell [92] for a



recent surveV) but this thesis will be concerned exclusively with the 

class known as "gradient” methods - for the dual reasons of simplicity 
and a long and successful history of use.^ Three members of this 
family assume particular importance for the thesis.

(i) Steepest-Descent
(ii) Gauss-Newton
(iii) Newton-Raphson

As a good discussion of the derivation of each is now readily available 
to econometricians in Malinvaud [71] only the general algorithmic form 
will be mentioned.

Denote the function to be optimized by S which may be regarded as
a scalar formed from the premultiplication of an (N*l) column vector by

Tits transpose (i.e. S = e e where T denotes transposition), and assume that 
e is a function of a (K*l) parameter vector 0. Then the following 
iterative formulae are prescribed for (i), (ii) and (iii) respectively:

(i) e (n) - e (n- 1) = -

(ii)

(iii) 0 ^

e ' 11" 1 ’ =

0( n - 1 )  --
32S

T3630
3S
30

e (2.1)

(n)where 0V represents the estimate of the parameter vector at the n'th 
iteration and all derivatives are evaluated with estimates from the 
preceeding ((n-1)'th)iteration.

A number of points must be emphasized in connection with (2.1).

Actually some experimentation with alternative algorithms was conducted 
at an early stage in the research but this was discontinued when there 
was substantial evidence that gradient methods would be satisfactory.



(a) The Gauss-Newton formula is only applicable if the row-column 

vector factorization exists but neither (i) nor (iii) are 

restricted to this functional form.

(b) If e is a linear function of 0 then S is a quadratic in 0 and 

convergence will be achieved in one step from any initial value 

0 ^ \  Furthermore if S is the sum of squares function corresponding 

to a linear regression, setting 0^°^ = 0 reduces (ii) to the O.L.S. 

formula.
T3 0  3 3(c) If S has the row-column vector factorization then 2 —  e = -rr

0 0 0 0
so that (i) - (iii) become members of a family of algorithms with 

the general structure:

e(n) _ Q(n-1) __ _B-1 || (2.2)
9 0

where we may by making appropriate substitutions for B (referred 

to as the weighting matrix) generate (i) - (iii) e.g. B = I yields 

Steepest Descent.

2.3 Time Domain Estimation of ARMAX Models

The ARMAX equation to be estimated is given by (l.2) and is 

reproduced below as (2.3)

B(L) y(t) = C(L) x(t ) + u (t ) (2.3).

u(t) = A(l ) e(t)

From Chapter 1 the model to be estimated has lags of (p,r,q) making it 

necessary to delete m observations (m = maximum of p and r) from the 

series. These omissions are termed pre-period values and will be 

distinguished by negative indexes e.g. y(-l), y(-2) etc. Under this
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convention, if there were initially G observations, N = G-m will remain 

and these are arranged in (l*N) vectors (y(0)...y(N-l)}, (x(0)...x(N-l)} 
etc. Such an enumeration, albeit somewhat unusual, is convenient in 
that it reserves negative indexes for pre-period values.

Following Phillips [ 90], the model may be arranged in matrix 
notation as

y = Y ß + X y + u

u = Q e

(2.1*)

(2.5)
where

y(o) '|
•
0
•
•

Y =

ry(-i)..e
•
•
9
9

...y(-p) 1
•
•
0
•
9

X =

r  x(o)....... x(-r)
9 9
• •
9 e
e 9
9 9

•

y(N-i)_
6

_ y(N-2).
9

.'. .y(N-p-l)
9 9

_ x(N-l).....x(N-r-l)_

u(0) ' ’ T o "

u =
9

ß =
9

Y = a =
u(N-l)_ ßL P - - Yr- aL q J

a ......!l<i > .
‘ • ! 0

e(-q)

. 1 « •
. 1 1 e = e (0)

0 r.
4 a * . * 1
1 1

e(N-l)

The matrices and vectors are of the following orders:

y - Nxl

Y - Nxp 
e - (N+q)xl

Y - (r+l)xl X - Nx(r+1)
Q - Nx(N+q) 
a - qxlj

3 - pxl 
u - Nxl
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so t h a t  a l l  p r o d u c t s  a re  conformable .

P a r t i t i o n i n g  ( 2 .5 )  as i n d i c a t e d  by t h e  broken  l i n e s  u may be 

r e w r i t t e n  as

u = Me + M*e* ( 2 . 6 ) .

A d i r e c t  comparison o f  ( 2 .5 )  and ( 2 .6 )  r e v e a l s  t h a t  

Q = [M* : M]

e =

and M* i s  (Nxq),  e* i s  ( q x l ) ,  M i s  (NxN), and e i s  (Nxl) .

Under t h e  assumpt ion t h a t  a l l  p r e - p e r i o d  v a lu es  a re  c o n s t a n t s  and

t h a t  e ( t )  i s  n . i . d .  P h i l l i p s  d e r i v e s  th e  l i k e l i h o o d  o f  ( y ( 0 ) ..........y ( N - l ) }

from t h e  j o i n t  d e n s i t y  f u n c t i o n  o f  { e ( 0 ) . . . . e ( N - l ) } as

L = F ( y / x , y * , x * ;  0 , a 2 ) = (27r)"N^2 (a“ 2 )N^2 exp{- | - a ” 2eTe} ( 2 . T ) .

Here y* ,x*  and e* (when t r a n s p o s e d )  a re  th e  v e c t o r s  { y ( - l ) . . . , y ( - p ) }, 

{ x ( - l ) . . . , x ( - r )} ,  ( e ( - l ) . . . . e ( - q ) } and th e  n o t a t i o n  s i g n i f i e s  t h a t  th e  

l i k e l i h o o d  i s  c o n d i t i o n a l  upon t h e s e  as c o n s t a n t s .

A l t e r n a t i v e l y  t h e  l i k e l i h o o d  o f  ( y ( 0 ) . . . . y ( N - l ) } might  be d e r iv e d  

from th e  j o i n t  d e n s i t y  o f  ( u ( 0 ) . . . . u ( N - l ) }. To do t h i s  we r eco g n ize  

t h a t  t h e  cov a r i an ce  m a t r i x  o f  u ( o b t a i n e d  from ( 2 . 5 ) )  i s

E(uuT) = n = E(Q e eT QT )

p T ( 2 . 8 ) ,
= s Q Qx

and u s in g  t h i s  and t h e  knowledge t h a t  u ( t )  i s  a l i n e a r  combination  o f  

n . i . d .  v a r i a b l e s  e ( t ) . . . . e ( t - q )  t h e  l i k e l i h o o d  may be w r i t t e n



L = (2tt)“N/2 det 2 exp {- uV^u) (2„9)o

Equation (209) is of special interest in that maximization of the 

exponent will yield generalized least squares estimates (see Section

(1.5)).

2.3d The Phillips Estimator

Employing the logarithmic form of L, discarding terms of lower 

order than the exponent, and forming S = -L, reduces (2„7) to

S = eTe (2.10).

The necessary first order conditions for a minimum to (2o10) are

£S _ 0
36 ~ ° (2.11).

In order to express e as a function of the parameters, (2.U) and (2.6) 

may be combined to yield

e = M“1 (y — Y3 — Xy - M*e*) (2.12).

Identifying the parameters of the likelihood 6 as [ß,y,a,e*] and adopting 

the convention that

6 =
’ ß "
0 0 o Z =

r
X

1____

Y

(2.12) may be rewritten as

e = M_1 (y - ZS - M*e*) (2.13).
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The objective function (2»10) will be minimized, by use of a Gauss-Newton 

algorithm which will require the following derivatives:

j = l,oo o,(p+r+1)3e
36 = - m “1 Z
j

ae --

3e*J

= - M*”1 E

- M 1 M* 
J

j = 1, o o o,q

j = 1-

(2elk)

where the subscript j refers to the j'th column of a matrix e 0g» Z, would
J

be the j'th column of Z and the (Nxq) matrix E has the form 

e(—1)o o»o o o e(-q)

E =
o o

e(N-2)ooo.o e(N-q-l) j 0

The set of derivatives in (2»lU) are used as inputs into the Gauss-Newton

algorithm presented in Section 2 02 and this provides the sequence of
2iterations stated by Phillips in his paper»

Actual-ly Phillips' version is slightly different because he estimates
the linear combinations of {e(-l)„»ce(-q)} and {a^0.0a } formed from1 q
the matrix product M*e*e The present estimator may be more efficient» 
It is important to note that the estimating equations given by 
Phillips merely reflect the choice of the Gauss-Newton method to 
minimize (2»10) and a different choice would have lead to different 
equations» To some extent Phillips' derivation obscures this»
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If the sequence of iterations converges then at the final

iteration an estimate of the residual variance is given by
„2 T 
o - e e/N

and an estimate of the covariance matrix of ^(0-0) by

AT 2 f 3e 3e a-1
00 v 36 30 '

(2.15a),

(2.15b).

2.3.2 An Aitken Estimator

Equation (2.9) gave an alternative likelihood for AJRMAX processes
that corresponds to the Aitken estimator when only the exponent is
considered. Taking logs of this and omitting terms of lower order than

3the exponent the function to be minimized is
S = uT ft"1 u (2.16).

Owing to the difficulty of obtaining a vector factorization of S it is 
easiest to minimize S with a Newton-Raphson algorithm, the required first 
and second derivatives being

3S
”  =

T -1- 2 Z: 0 U
J

3S . T „-1 30
o - 1

“
” U  0 _3a

J

32S T -1 = 2 Z  0
J36,36 . 

i J
1

32S T -1— 0  *7 O 30
3a.36 . i j

— cl  Zi , \L 
J 3a.l

j = I,..,(r+p+l) (2.17) 

j = l,..,q (2.18) 

i,j = 1,..,(r+p+l) (2.19)

i = I,..,q (2.20) 
j = 1,..,(r+p+l)

Walker [llU] has shown that Lim det 0 = 1. It is feasible that one
N - * 50 2

might express 0 as a function of a and o and include it in the function 
to be minimized, but the equations corresponding to (2.17)-(2.20) would 
be analytically intractable. Numerically it would be simpler but the 
size of sample considered in this thesis should be large enough for the 
limit to be operative.
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82S
3a„3a .1 J

t n-i a^ -i âU fi -r  -r—da. 3al
n-i A T -i an n-i an n-in u + u n ——  n -—  n u3a. 3a.J j 1

t -i a n  -u n 8a0 8a.i J
n“1 u i* J = i..->q (2.21)

Equations (2017) - (2.21) are used as inputs into the Newton-Raphson 

algorithm. If the sequence is convergent estimates of the residual 
variai ze and the covariance matrix of (0-0) is given at the final 
iteration hy

a = u n u/N (2.22)

Kijj) = §  36 i, j = l,..,(p+r+d+l) (2.23).
i j

Any preference for this estimator - referred to as the Aitken 
Estimator in the Time Domain (A.T.D.) - is conditional on the reduction 
in the number of parameters to be estimated (owing to the deletion of e*) 
and the increased computational cost incurred by the inversion of ft.

2„H Frequency Domain Estimation of ARMAX Models

Recently there has been a revival of interest in the application 
of Fourier Analysis to econometric problems. This interest - centered 
on the spectral representation of a time series - has been stimulated 
by the demonstration that the extraction of information concerning 

(approximate) periodicities etc. from economic series is performed more 
easily with the spectral density function than its time domain ^^unter- 

part, the autocorrelation function. As the two are Fourier Transform pairs 
they contain equivalent amounts of information but the ability to access
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such  i n f o r m a t i o n  d i f f e r s .

Owing t o  t h e  s im p le  form o f  t h e  c o v a r i a n c e  m a t r i x  o f  a u t o c o r r e l a t e d  

d i s t u r b a n c e s  i n  t h e  f r e q u e n c y  domain (and  c o n v e r s e l y  i t s  complex form i n  

t h e  t im e  domain)  most r e s e a r c h  c o n c e r n e d  w i t h  t h e  p r o p e r t i e s  o f  

e s t i m a t o r s  i n  t h e  p r e s e n c e  o f  a u t o c o r r e l a t i o n  has  been  c o n d u c te d  w i t h  t h e  

f r e q u e n c y  domain r e p r e s e n t a t i o n .  Fo r  t h i s  r e a s o n  a  d e c i s i o n  was made t o  

i n v e s t i g a t e  t h e  p o s s i b i l i t y  o f  e s t i m a t i n g  ARM/ /ARMAX models  i n  t h e  

f r e q u e n c y  domain ,  and t h e  r e s u l t  was t h e  deve lopment  o f  an A i t k e n  

E s t i m a t o r  i n  t h e  F requency  Domain ( A . F . D . ) .

The model  t o  be e s t i m a t e d  w i l l  be  ARMA ( p , q )

y ( t ) + ß y ( t - l )  + . . . . +  ß y ( t - p )  = e ( t )  + a e ( t - l ) + . . . +  a e ( t - q )  ( 2 .2 * 0 .-L p J- q

2 kI t  i s  assumed t h a t  s ( t )  i s  n . i . d .  ( 0 , a  ) .
5

Tak ing  t h e  f i n i t e  F o u r i e r  T r a n s f o r m  o f  (2 .2*0  we o b t a i n
N- l  i X . t  N - l  iX t

E ( y ( t )  + ß y ( t - l )  + . . , + ß y ( t - p ) )  e 3 = 1 ( e ( t  )+a e ( t - 1 )+.  . .+a e ( t - q ) ) e  3
t=0  P t=0  1 q

J = 0 , . . . ,N-1 ( 2 . 2 5 ) .

A compact  form o f  ( 2 . 2 5 )  i s

B(X )Y(X ) = A(X )e(X ) j  = 0 , . . . , ( N - l )  ( 2 . 2 6 )

iX . iX .p
where B(X.)  = l+ ß _ e  t5 + . . . + 3  e 3 

j  1 P

a c ( t )  i s  a d o p t e d  i n  p r e f e r e n c e  t o  e ( t )  b e c a u s e  o f  t h e  s p e c i a l  meaning  
o f  t h e  l a t t e r  symbol i n  F o u r i e r  T r a n s f o r m  t h e o r y .

>3
The f i n i t e  F o u r i e r  T r a n s f o r m  o f  a  s e r i e s  Z ( t )  ( t = 0 , . . . , N - l )  i s  
N - l  iX t

Z Z ( t ) e   ̂ where  X. = 1 ( j = 0 , . . . , N- 1 ) .  Fo r  f r e q u e n c y  X 
t= 0  3 N J
t h i s  w i l l  be  d e s i g n a t e d  as Z( X. )  b u t  i n  most  o f  what  f o l l o w s  t h e

J
s u b s c r i p t  j  w i l l  be  o m i t t e d .  The c o n v e n t i o n  o f  d e n o t i n g  t h e  p e r io d o g r a m
o f  Z ( t )  as  I  w i l l  a l s o  be  f o l l o w e d  and t h e  j ' t h  p e r i o d o g r a m  o r d i n a t e

o L
i s  g iv e n  by I  (X )= --~ r  Z( X. ) Z( X ) where t h e  b a r  d e n o te s  complex con-  

LL  j  2 ttR j  j

j u g a t i o n .  The symbol  i s  a l s o  u s e d  i n  S e c t i o n  2 . 5 . 1  t o  d i s t i n g u i s h  
p a r a m e t e r  s e t s  b u t  i t  i s  u n l i k e l y  t h a t  t h e r e  w i l l  be  any c o n f u s i o n .
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N-l iX.t

Y (X ) = Z Y(t)e J 
J t =0

iX. iX.q
A(X.) = 1 + a_e J+.,»+a e ^j i q.

N-l iX t
e( X .) = Z e(t )e J .

J t=0

We take as the starting point the function minimized in (2.16) i.e.
T —1S=u ft u. Grenander and Szebö [3^]have shown that

N-l I (X)
plim S = S = Z UU
N-x» . n TUTj =0 uu

(2.27)

where I^{ A), f (x) are respectively the periodogram and spectral
£

density functions of the u(t) process.

It is convenient at this stage to list a number of relations that 

will be manipulated in later analysis. The first two are definitional.

zuuU) " 55- u(x)3(x)
|A(X)I = A(X) sex)

From linear filtering theory we also have 

u(X) = Y(X)B(X) = A( X)e(X) 

e(X) = Y(X)B(X)/A(X)

fuu(A) = 2 2 7  lA ( X ) |:

(2.28a)

(2.28b)

(2.28c)
(2.28d)

(2 .28e).

Substituting for I (X) from (2.28a) (and using (2.28c)) (2.27) is reduced

q - 1 Nyi e(X)e(X)1A(X)1̂
" 2ttn * T T x Tj=0 uu

A further substitution of (2.28e) into this expression leaves 
i N-1 ow

§ = m  £ ~  £(X)S(X)J=0 a

(2.29).

(2.30).

6 A proof may be found in Fishman [26],
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D ef in ing  the  (p+q) * N m a t r i x  Z and th e  (N * l )  v e c t o r  W w i th  

elements

3e(X )
Z ( k , j + l )  =  — g g j -

w ( j+ l )  = e(A )

3 = 0 , . . . , ( N - 1 )

k  = 1 • . ( p + q . )
J = 0 , . . . , ( N - 1 )

th e  Gauss-Newton i t e r a t i v e  sequence f o r  the  m in im iza t io n  o f  (2 .30 )  w i l l  

he

e (n) _ 0 ( n - 1 ) = _ ( Z2T)“1 gw (2 .3 1 ) -

The component d e r i v a t i v e s  needed to  c o n s t r u c t  Z are  (u s in g  th e  form 

f o r  e ( x )  i n  ( 2 .2 0 d ) )

iXk3e(X) _ B(X)Y(X)e‘

a2 ( \ )

iXk
M X) _  Y ( x ) e

36, A(X)

P a r t i t i o n i n g  ZZ i n t o

k = 1,

k = 1 , . .  . , p

( 2 . 3 2 ).

R QT -I
w i th  t y p i c a l  el ements  o f  each b lock

N - 1
R ( k , £ )  = E

j = o

Q C

I  ( X ) | B ( X ) | 2 e l ( k - Z ) A
y y  _

( | A ( A ) | 2 ) 2
k ,  £ l , o o . » q

N - 1
Q ( k , £ )  = •  E

j = o

I  ( A ) B ( x ) e i ( k _ £ ) X
y y  ....................  . . . . k  = 1 , . . .  , p

| a ( a ) | 2 7! ( x ) U
*©

i—1II

N - 1
C ( k , £ )  = E

j = o

I  ( X ) e i ( k _ l l ) X
y y

1A ( X ) | 2
k  * £ X j . a o j P

(2 .33 )

S i m i l a r l y  p a r t i t i o n i n g  ZW i n t o we a l s o  have
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N-l  I  ( X k _ l ' k |B(X) | ‘
D(k) = -  I  -22--------------------------k =

J=0 | a ( x) | 2 Ä(x)
<v (2 .3U) .

N-l  I  ( x ) e  k B(X)
F(k) = Z -22------------ --------  a =

j =0  1A(X) 12

As ari example o f  th e  d e r iv a t io n  ta k e  Q (k ,£ )„  This  was deduced by

f i r s t  m u l t ip ly in g  ~ 4 ~"'' by and th e n  by m u l t ip ly in g  th e  r e s u l t a n t
3ek dai

e x p re s s io n  by th e re b y  t r a n s fo rm in g  Y(A)Y(A) to  I  (X )0 (This
yy

s c a l i n g  f a c t o r  would n o t  be r e q u i r e d  f o r  e s t im a t io n  as i t  i s  common to

-Tb o th  ZZ and ZW and th e r e f o r e  c a n c e l s ,  b u t  i t  i s  o f  im portance in  

e v a lu a t in g  S and th e  co v a r ian ce  m a tr ix , ,)

To d e r iv e  e s t im a te s  o f  th e  r e s i d u a l  v a r ia n c e  and th e  co v a r ian ce

m a tr ix  we c o n s id e r  th e  lo g  l i k e l i h o o d  o f  ( 2 „9)

[
yyN  2 tt N_1 I VV( ») IB(*) Ilo g  L = K -  2  lo g  a -  ~ (2 .3 5 )

a J=0 |A(X)I

At th e  maximum an e s t im a te  o f  th e  r e s i d u a l  v a r ia n c e  i s  o b ta in e d  from 

9 lo g  L 0 which s o lv e s  to  y i e l d

o„ N- l  I  (X) |B(A) 12 
n2 -  Z]L y yy 1
° N * I . / ,  \ 12j =0  IA(A)I 

and an e s t im a te  o f  th e  co v a r ian ce  m a tr ix  w i l l  be 

Vg0 = ( 2 h)_1 o2 (ZZT )_1

(2 . 36 ) ,

( 2 .3 7 ) .

When engaged in  e m p i r ic a l  r e s e a r c h  e v a lu a t io n  o f  (2 .3 7 )  w i l l  be th e  

e a s i e s t  way o f  a c q u i r in g  an e s t im a te  o f  th e  co v a r ian ce  m a tr ix  b u t  under 

some c irc u m stan c es  th e  a sy m p to tic  co v a r ian ce  m a tr ix  may be o f  i n t e r e s t . 

An a n a l y t i c  form f o r  t h i s  w i l l  be g iven  in  th e  fo l lo w in g  p a ra g ra p h s .
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The classical asymptotic theory of maximum likelihood estimators 

states that /N(0-ö) has a limiting multinormal distribution with zero

mean and covariance matrix I where

'ij
Lim E 
N -  N

92L
90.96 . 

1 0
(2.38)

how the expression in brackets is proportional to the weighting 

matrix of the Newton-Raphson algorithm and it is shown in Appendix 3 

that as N-x» the expected value of the Gauss-Newton weighting matrix 

converges to that of the Newton-Raphson matrix enabling (2.38) to be 

written as

1 = Lim §7 ( |r e(zZt ) )_1
N-k» 2 TT (2.39)

i ~T •Consider Lim —  E(ZZ ) element by element. To illustrate the
N - k »  N

general argument we will concentrate on the sub-matrix R.

N-l I ( A ) I B( A ) 12 
R(k,£) = E ---------------------

J=0 ( |a (a )|2 )2
k, l = 1, (2.40

Exploiting the property Lim E(l (A)) = f (A) and the equality
N-x=°

f (A) IA(A)1

Lim 
N-*50 a

2 tt I B (  A ) 

2 TT

, (2„4o) simplifies to

2 *(£*(*,*)) = 17
TT i(k-£)Aj ter (2.41)

By repeating the above operations I may be reduced to the following

asymptotic expression:-
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I =

T -I  I1 2

u  I 2 '3 -1

h ^ l) =  27
r  7 T  i(k -£ )A

- T T
IA(X)I

t fit i (k-£, )A
I , ( k . D  = g i  2-------------

2 J_n ä ( a)b ( x)

= 27
/•TT i(k-fc)A

- T T
| b ( x)I

k ,£  -  1 , . . „ ,q

k = 1 , . . . ,p 

£ = 1 , . .  . #q
( 2 . 1+2 ).

k , £ =

E quation  (2.1+2), by showing t h a t  th e  asym pto tic  c o v a r ia n c e  m a tr ix  i s  

a fu n c t io n  o f  th e  ARMA p aram ete rs  i l l u s t r a t e s  th e  use o f  th e  F o u r ie r  

Transform  as an e x p o s i to ry  and a n a l y t i c a l  dev ice  in  e c o n o m e tr ic s .  Although 

th e  r e s u l t  might a l s o  be o b ta in e d  by th e  a p p l i c a t io n  o f  Z t r a n s fo rm  th e o ry  

to  ARMAX m odels , t h e r e  a re  " s p i n - o f f ” b e n e f i t s  to  be had from w orking in
7

th e  frequency  domain v i z .  th e  t h e o r e t i c a l  s p e c t r a  and re sp o n se  f u n c t io n s .

An obvious a p p l i c a t io n  o f  (2.1+2) a r i s e s  in  t e s t i n g  th e  e f f i c i e n c y  

o f  th e  a l t e r n a t i v e  e s t im a to r s  g iven e a r l i e r  as one may compare th e  

e m p ir ic a l  (Monte C arlo )  v a r ia n c e s  w ith  th o se  c a l c u l a t e d  from (2.1+2) by a 

s u b s t i t u t i o n  o f  th e  known ( 0 , a )  p a ram e te rs  ( o r  th e  means 0 ,a  from a l l  

r e p l i c a t i o n s ) .  This comparison e n ab le s  an a ssessm en t o f  th e  e f f i c i e n c y  

o f  any e s t im a to r  r e l a t i v e  to  th e  maximum l i k e l i h o o d  e s t i m a t o r  and p ro v id es  

a t e s t  on th e  sample s i z e  a t  which asy m p to tic  theorem s h o ld  and in  t h i s  

r o l e  w i l l  appear in  l a t e r  c h a p te r s  in  th e  c o n te x t  o f  th e  Monte Carlo  

s t u d i e s .

T The analogue o f  (2.1+2) f o r  an ARMAX e q u a t io n  i s  d e r iv e d  in  Appendix U.
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A number of other estimators were available in the literature 

either preceding or during the writing of this thesis and some 

justification for avoiding these methods is essential. The current 

section provides this for the estimators that are to be found in the 

"econometric" literature while Appendix 5 analyses those that appear 

in the "time series"literature, Also included in Chapter 5 is a 

detailed critique of a number of estimators that have been proposed for 

use in the frequency domain. As the estimators of Appendix 5 would be 

difficult to implement and were not specifically intended for use by 

economists such a division is appropriate,

2.^,1, e* and the S function

The three alternative estimators considered in the following 

sections differ according to the assumptions made concerning e* so that 

some order to the discussion will be achieved by presenting an account 

of the influence of e* upon the estimation of the parameters [6,a] and 

by establishing criteria which will enable a judgement of the magnitude 

of this effect. As the influence of e* is transmitted via the e series 

(equation (2,13)) to the sum of squares function (equation (2,10)) 

which discriminates between alternative sets of parameters, assessing 

the influence of e* upon e is equivalent to determining its impact upon S, 

Consider two trial parameter sets 6_ = (6_, a_, e_*) and 0 = (6, ot, e*) 

with the corresponding e vectors being e_ and e and the S functions S_ and 

S. The fundamental relation for the analysis is

e(t) = u(t) - P(L)e(t) (2.1+3)
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where P(L) = a^L+00„+a L^ i . e .  th e  M0Ao polynomia l  w i th  th e  no rm al ized  

element deleted , ,  Corresponding to  t h e  two p a ram e te r  s e t s  we have

e ( t ) = u ( t )  -  P ( L ) e ( t )  (2,1+4)

e ( t )  = i i ( t )  -  P ( L ) e ( t ) (2 ,45 )

Imposing th e  r e s t r i c t i o n  t h a t  0_ and 0 d i f f e r  on ly  i n  th e  v a lues  assumed 

f o r  e_* and e* ( i  , e , 6_ = 6, a_ = a) means t h a t  u ( t ) = u ( t )  and P(L) = 

P(L) so t h a t  s u b s t r a c t i n g  (2 ,45 )  from (2 ,44 )  we o b ta in

e ( t )  -  e ( t )  = - P ( L ) ( e ( t ) - e ( t )) (2 ,46)

o r

d ( t ) ( l + P ( L ) )  = 0 (2 ,47)

where

d ( t )  = e ( t )  -  e ( t ) .

Now A(L) = l+p(L)  (where A[L)  i s  th e  M,A, po lynom ia l )  so t h a t  (2 .47)  

becomes

d( t)Ä(L)  = 0 (2 .48 )

To i l l u s t r a t e  t h e  use  o f  (2 .48 )  l e t  e_* be t h e  M.L, e s t i m a t e  o f  e* ,

and l e t  e* = 0 .  Then e q u a t io n  (2 ,48 )  al lows th e  e v a l u a t i o n  o f  t h e

d isc repa ncy  between the  M.L. e s t i m a t e  o f  e ( t )  and the  e s t i m a t e  o b t a i n e d

under the  assumption t h a t  e* = 0.  In  g e n e r a l  th e  s o l u t i o n  t o  (2 .4 8 )  i s

a f u n c t i o n  o f  t h e  r o o t s  o f  t h e  c h a r a c t e r i s t i c  e q u a t io n  and t h e  i n i t i a l

c o n d i t i o n s  d ( - l ) , „ . „, d ( - q ) : th e  r o o t s  be ing  t h e  i n v e r s e  o f  th o se

a s s o c i a t e d  w i th  Ä(l ) = 0 and t h e r e f o r e  l y i n g  w i t h i n  t h e  u n i t  c i r c l e  i f

C cnd i t ion  7 o f  Chapter  1 i s  imposed upon A(L).  The re fo re  Lim d ( t )  = 0
N-*»

i . e .  t h e  d i s c re p a n c y  w i l l  v a n i sh  as t h e  sample s i z e  i n c r e a s e s ,  so  t h a t  

r e g a r d l e s s  o f  t h e  i n i t i a l  c o n d i t i o n s  o r  t h e  s i z e  o f  th e  r o o t s  ( s u b j e c t  

to  th e  s a t i s f a c t i o n  o f  Condit ion  7) t h e  d i s c re p a n c y  between t h e  M.L. and
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any other estimate of e(t) will approach zero as the sample size tends 

to infinity - it is the rapidity of convergence which is determined by 

the size of roots and initial conditions.

In general, for any e* (not necessarily zero) Lim S = S_ meaning

that the extent to which the use of S in place of S_ will bias parameter 

estimates away from their M,L0 magnitude will be a function of three 

factors,, The bias will be larger

(i) The greater the magnitude of d(-l),.0«,d(-q).

(ii) The closer to unity is the modulus of the greatest root of the 
M.A. polynomial«

(iii) The smaller the sample size«

2.5.2« Estimates of e* by Concentration of the Likelihood

Further progress in investigating the effects of various assumptions 

about e* may be made by employing a technique frequently employed in the 

Full Information - Maximum Likelihood approach to the estimation of 

parameters in simultaneous equations - that of concentrating the 

likelihood with respect to a set of "nuisance” parameters« Adopting this 

course of action S will be concentrated with respect to e*„

Equation (2„lU) presents the first derivative of e with respect to the

N-*50

(2.1*9).

Using (2.10) and (2.1*9) we have

9S — 1 „ , T— * = - 2(M M») e (2.50).

Substituting for e from (2.13), (2.50) is reduced to
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= -  2(M*"1M*)T M” 1 ( u -  M*e*) ( 2 . 5 1 ) .

The M.L. e s t i m a t e  o f  e* i s  o b t a i n e d  by e q u a t i n g  ( 2 „ 5 l )  t o  z e r o .  D e n o t in g  

( nF m) by V t h i s  w i l l  be

e* = (M*T V"1 M*)“ 1 M*T V"*1 u ( 2 . 5 2 ) .

The S f u n c t i o n  i s  now c o n c e n t r a t e d  by r e p l a c i n g  e*  i n  ( 2 „13) by  e* 

from ( 2 .5 2 )

. e = M“ 1 (u  -  m*(M*T V” 1 M*)“ 1 M*T V” 1 u ) ( 2 . 5 3 ) ,

o r  i f

e = M_1u ,  K = M“ 1M*
%

e = [ I  -  K(KTK)“ 1 KT ]e ( 2 . 5 ^ ) .

By i n i t i a l i z i n g  e* a t  z e ro  i n  ( 2 „13) i t  i s  found  t h a t  e i s  t h e  e s t i m a t e
* ' X j

o f  e r e s u l t i n g  from t h e  a s su m p t io n  t h a t  a l l  p r e - p e r i o d  v a lu e s  o f  e a r e

z e r o ,  so  t h a t  t h e  M.L. e s t i m a t e  o f  e i s  c o n s t r u c t e d  by a p p ly in g  a

c o r r e c t i o n  m a t r ix  t o  t h e  e v e c t o r „a.
At f i r s t  g la n c e  c o n c e n t r a t i o n  i s  a t t r a c t i v e  ( c o m p u t a t io n a l ly )  as i n  

many a p p l i c a t i o n s  q may be q u i t e  h ig h  ( e „ g .  i n  a  sy s te m  o f  e q u a t i o n s  o r  

when d e a l i n g  w i th  w eekly  o r  m on th ly  d a ta )  and t h i s  schem e, by s e p a r a t i n g  

" n u is a n c e "  from " fu n d a m e n ta l"  c o e f f i c i e n t s ,  c o n s id e r a b l y  re d u c e s  t h e  s i z e  

o f  a l l  i n v e r s i o n s  t o  be  p e r fo rm e d ,  t h e r e b y  l e s s e n i n g  th e  chance  o f  

ro u n d in g  e r r o r s  a c c u m u la t in g  t o  d an g e ro u s  l e v e l s .  However th e  r i s e  i n  

t h e  f r e q u e n c y  o f  i n v e r s i o n s  (K K p r i n c i p a l l y )  o c c a s io n e d  by th e  u se  o f  a 

s e a r c h  r o u t i n e  t o  f i n d  t h e  " o p t im a l"  s t e p  l e n g t h  a lo n g  t h e  Gauss-Newton 

(Newton-Raphson) d i r e c t i o n  a n d /o r  r e l i a n c e  on n u m e r ic a l  e v a l u a t i o n  o f
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d e r iv a t iv e s  may r e s u l t  in  g r e a t e r  com pu ta tio n a l  tim e b e in g  expended» To

overcome t h i s  t h r e e  methods were experim en ted  w i t h : -

( i )  A S te e p e s t -D e s c e n t  a lg o r i th m  (which i s  b a se d  on on ly  th e  f i r s t  

d e r i v a t i v e s )  was adop ted  f o r  a few i t e r a t i o n s  in  th e  hope t h a t  th e

a lg o r i th m  would th e n  be n e a r  th e  maximum and only  a few i t e r a t i o n s

u s in g  th e  c o n c e n t ra te d  l i k e l i h o o d  would be r e q u i r e d .

U n fo r tu n a te ly ,  as most u s e rs  o f  S te e p e s t -D e sc e n t  would know, t h i s

s o lu t i o n  was u n r e l i a b l e  owing to  slow convergence»

( i i )  The assum ption t h a t  e* = 0 was made f o r  t h r e e  i t e r a t i o n s  and then  

c o n c e n t r a t io n  was app lied»  As th e  e s t im a te s  were by th e n  in  th e  

v i c i n i t y  o f  th e  maximum i t  was im p o r ta n t  t o  e v a lu a te  S a c c u ra te ly »  

This s u g g e s t io n  was s a t i s f a c t o r y  f o r  th e  Monte C arlo  e x p e r im e n ts ,  

i n  which f iv e  i t e r a t i o n s  was th e  average number r e q u i r e d  f o r  con­

v e rg en c e ,  b u t  n o t  f o r  th e  e m p i r ic a l  examples which averaged  around 

te n  so t h a t  s e t t i n g  th e  sw itch  p o in t  a t  th r e e  was l i k e l y  t o  r e s u l t  

in  an e x c e s s iv e  usage o f  computer time» One p o s s i b i l i t y  (no t  

ex p lo re d )  would be to  make th e  sw itch  on the  b a s i s  o f  changes i n  

th e  S func tion»

( i i i )  A ll  d e r iv a t iv e s  were computed under th e  assum ption  t h a t  e* = 0 b u t  

th e  S fu n c t io n  was e v a lu a te d  by c o n c e n tra t io n »  This  y i e l d e d  M.L» 

e s t im a te s  w ith  l a r g e  co m p u ta tio n a l  sav ings»  Two rea so n s  may be 

advanced f o r  t h i s »  F i r s t l y ,  d i f f e r e n t i a t i n g  ( 2 »48) w i th  r e s p e c t

g
For th e  Newton-Raphson v e r s io n  f iv e  fu n c t io n  e v a lu a t io n s  were r e q u i r e d  
to  compute one c ro s s  d e r iv a t iv e  so t h a t  i n  a f iv e  p a ra m e te r  model 75 
fu n c t io n  e v a lu a t io n s  were r e q u i r e d  to  c o n s t r u c t  a l l  c ro s s  d e r i v a t i v e s .  
This was a m ajor f a c t o r  in  e x p la in in g  th e  i n o r d i n a t e  amount o f  computer 
tim e u sed  by a v e r s io n  o f  th e  system  o f  e q u a t io n s  e s t i m a t o r  d is c u s s e d  
in  C hapter 5»
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to  3, (say )  i n d i c a t e s  t h a t  th e  d e r iv a t iv e s  formed under th e  assum ption
K

e* = 0 converge to  t h e i r  t r u e  va lues»  Second ly , a h e u r i s t i c  

j u s t i f i c a t i o n  l i e s  in  th e  se a rc h  ro u t in e  which d i s c r im in a t e s  between 

p a ram e te r  s e t s  on th e  b a s i s  o f  th e  c o r r e c t  d i r e c t i o n  and on ly  a rough 

i n d i c a t i o n  o f  th e  o rd e r  o f  magnitude o f  th e  s te p  l e n g th ,  and b o th  

q u a n t i t i e s  a re  no t g r e a t l y  a f f e c t e d  by th e  i n s e r t i o n  o f  ze roes  f o r  e*„ 

2 .5 .3  The B ox-Jenk ins-W atts-B acon  S o lu t io n

Box, Je n k in s  and Bacon [10] and Jen k in s  and Watts [55] seem to  have 

been th e  f i r s t  t o  s u g g e s t  e s t im a t io n  under th e  assum ption  t h a t  e* = 0.

The dual j u s t i f i c a t i o n  advanced b e in g  t h a t  t h i s  i s  an unbiaFsed. e s t im a te  

and t h a t  as th e  sample s i z e  in c r e a s e s  th e  i n i t i a l  v a lu es  cease  to  be 

im p o r ta n t .  S e c t io n  2 . 5 . 1 .  has shown t h a t  th e  sample s i z e  r e q u i r e d  f o r  

the  t r a n s i e n t  to  d ie  ou t i s  a f u n c t io n  o f  th e  M.A. ro o ts  and a 

r e c o g n i t io n  o f  t h i s  p o in t s  t o  th e  c o n c lu s io n  t h a t  t h i s  s o l u t i o n  cannot 

have u n i v e r s a l  a p p l i c a b i l i t y .  However as a f i r s t  app rox im ation  i t  i s  

u s e f u l .

2.5.*+. The Box and J e n k in s  S o lu t io n

Box and J e n k in s  have p ro v id e d  a scheme to  g e n e ra te  M.L. e s t im a te s  o f

e*. E s s e n t i a l l y  t h i s  in v o lv e s  c o n c e n t r a t io n  b u t  d i f f e r s  from th e

a n a ly s i s  o f  2 . 5 .2 .  in  th e  f u n c t io n  c o n c e n t r a te d .  These a u th o rs

Td i s t i n g u i s h  between S = e e ( r e f e r r e d  to  as th e  sum o f  sq u a re s  c o n d i t io n a l

~ T Tupon e s t im a te s  o f  e * ) and S = e e + e* e* ( r e f e r r e d  to  as th e  

u n c o n d i t io n a l  sum o f  s q u a r e s ) .  P re v io u s ly  S has been c o n c e n t r a te d  and 

Box and J e n k in s '  c o n t r i b u t i o n  i s  to  c o n c e n t r a te  S.

By rew orking  2 . 5 . 2 .  i t  may be shown (see  Appendix 6) t h a t  (2 .52 )  

becomes

e* = ( I  + M*TV-1  M*)_1 M*T V"1 u (2 .5 5 )
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so that

e = [I - K(I + A )’1 KT ] <1 (2.56).

Therefore the inclusion of e* into the function to be minimized 

will influence the estimates of e and e*„ For the special case q=l 

Appendix 6 proves that the two estimates of e* (denoted as e* when 

obtained from a concentration of S and e* from S) are as N -* 00 

u(0) - a^uCl) + u(2) - u(3)0..
e* =

e* = ” a^u(l) + a^u(2) - a^u(3)

or defining u* = u(0) - a^u(l)+

u* / a.

= a,u*

(2.57)

(2.58) 9

From (2.57) and (2.50) we see that concentration of the two functions

will yield radically different estimates of e* if is close to zero.

Clearly however Lim e* = e* with the consequence that large differences 
a^-*l

appear between the two estimates only for low - the situation in 

which the transient effect dies out rapidly. Although analytical proof 

is not possible for all orders it is likely that unless the sample is 

very small there will be only a limited margin of choice between the

9 In Chapter 6 it is shown that u* corresponds to the adaptive backward 
forecast of u(-l) at time 0 as it is formed by an exponential 
smoothing of all past u(t) values. As this is the minimum mean 
square error forecast for a first order M.A. there is some ground 
for adopting a forecasting approach in the determination of e* (see 
Appendix 6).



69.
estimators, but on balance one suspects that minimization of S is preferable* 

This modification may be incorporated easily into the Phillips 

estimator by merely redefining S or by including the unit matrix in the 

equation defining concentrated estimates of e*. Chapter 4 will be con­

cerned with differences between the two estimators when applied to 

simulated data so that some decision on the relative merits of S and S 

may be made then,

2.5.5. The Klein-Dhrymes-Steiglitz Solution

Dhrymes, Klein and Steiglitz [22] have proposed an estimator rooted 

in previous papers by Steiglitz and McBride [ICO] and Steiglitz and Rogers 

[101], The estimator differs from Phillips1 in that the derivatives used 

in the Gauss-Newton algorithm are constructed by prefiltering the data.

The model to be estimated is (2.3) for which an equivalent form is

It is possible to give (2.59) a matrix representation as follows, 

(i) An alternative expression of (2.59) is

Obviously this implies that w(t)A(L) = y(t)B(L), z(t)A(L) = x(t)C(L). 

(ii) Section 2.3.1 contains the derivation of the matrix form of the 

Phillips estimator. For the special case of an ARMA model this is 

(from (2.12))

Now (2.60b) involves the construction of e(t)A(L) = y(t)B(L) and a 

comparison of this with w(t)A(L) = y(t)B(L) etc. clearly indicates that 

(2.60a) may be rewritten as

(2.59).

w(t) = z(t) + e(t) (2.60a).

e = M~1(y - Yß - M*e*) (2.60b).

M*"1 (y - Y3 - M*w*) = M-1(Xy - M*z*) + e (2.61)
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where, analogously to e*,w* and z* are pre-period values.

Using (2.13) (2.6l) reduces to

M"1 M* w* = M"1 M* z* + M“1 M*e* (2.62).

The Dhrymes Klein-Steiglitz estimator attempts to minimize the 

sum of squares associated with (2.6l) by a Gauss-Newton algorithm. To 

generate initial estimates of w*, z* these authors comment that a 

"convenient initial condition ...... is w* = z* = 0". From (2,62)

and the form of M* it is apparent that this is equivalent to initializing 

e* at zero i.e, this estimator is identical to that of Section (2,5»3) 

and as such shares the disadvantages sketched there for that estimttor.

In passing we acknowledge the contribution of Maddala and Rao [TO] 

who (in the context of a rational distributed lag model wherein the 

equality (2.62) would become M*z* + M*e* = 0) suggest the inclusion of 

z* in the parameter set to be estimated. As this is interchangeable 

with estimating e* it will possess the same sampling distribution as 

the Phillips estimator given earlier.

2.6 Computational Considerations

2.6.1 Starting Values

The selection of starting values is controversial. Phillips 

(and many other authors) favour consistent estimates and he provides 

algorithms to calculate these for 5 and a. He also suggests that the 

unbiassed estimate of e* (zero) be used as an initial value for that 

parameter. At an early stage of research it was found (in Monte Carlo 

simulations) that the following scheme yielded the same parameters (to 

three decimal places) and the same likelihood (to about six decimal 

places) as that given by Phillips.



(i) Estimate 6 by O.L.S.

(ii) Assume a, e* = 0.

(iii) Iterate with (i) and (ii) as starting values.

71.

Owing to the simplicity of (i) - (iii) it was adopted in the 

simulation studies with the proviso that if significant biases were 

found the experiment was re-run with the true parameters as the new 

starting values. Such checks, although unprofitable with the final 

algorithm used, were necessary with earlier versions. The general 

indication given by the Monte Carlo experiments was that the Gauss-Newton 

algorithm would converge from a wide variety of initial estimates: a

feature that may justify the selection of quite arbitrary starting values 

(subject of course to the root restrictions being satisfied).

• When fitting models to actual time series the above scheme was used 

unless there was some desire to reduce the computer time required for 

convergence. Then it was always better to obtain initial estimates 

that were likely to be close to the true values."*"0 A strategy frequently 

availed of when there was no a priori information available concerning a 

was to generate initial estimates as follows:

Let y(j) be the j’th covariance of the estimated residual vector u.

Let f.(a,o ) be the j'th theoretical covariance of u(t).J
Then there are a system of (q+l) equations to be solved (exploiting

In this connection it is worth noting the warning given by Freudenstein 
and Roth [27] that "The size of the domain of convergence depends upon 
the system of equations. For real algebraic equations, generally the 
size of the domain of convergence is inversely related to the degree 
and number of equations." There was a lack of convergence in one of 
the applications of Chapter 5 which seemed a consequence of the very 
large number of parameters present.
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j = 0 »• • • »Q. (2.63).

(2.63) constitutes a set of (q+l) equations that must be solved for the
2q parameters of a and a . As f ( ) will be a non-linear function of

2 ä  ̂2a, a a Gauss-Newton algorithm was employed to produce estimates a, a

- the objective function to be minimized being

S = Y (y(j) - f.(a,a2))‘' (2.6U)11.
j-0 J

Heuristically the algorithm attempts to match theoretical and empirical 

covariances as closely as possible. A perfect fit would be indicated 

by S = 0 but this is unlikely and in practice S varied from values of the 

order of 10 ^  to 10 so that the method proved capable of providing 

reasonable starting values with minimal computing expense (l second of 

C.P.U. time) and because of its flexibility found frequent use.

2.6.2. Constrained Estimation

A problem that may arise during the iterative sequence which may 

have unpredictable consequences is for the roots of B(l ) = A(L) = C(L) = 0 

to violate Condition 7 of Chapter 1 and to guard against this it was

11 2To give an example consider the second order M.A. (l+a^L+a^L )e(t) .

The covariances y(0), y(l), y(2) are calculated from the residuals, and

fn(a,o2 ) /, 2 2, 2 (1 + 0̂  + a

which yields 3 equations to be solved in the three unknowns 
2

^19 a25 ^  *
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n e c e ssa ry  to  e n fo rc e  t h i s  r e s t r i c t i o n  d u rin g  th e  i t e r a t i o n s .

Enforcem ent was ach iev ed  hy th e  u se  o f  a ’’p e n a l ty  fu n c tio n "  concep t in

t h a t  i f  th e  modulus o f  any o f  th e  r o o t s ,  when t e s t e d ,  was l e s s  th a n  u n i ty ,

35S was s e t  a t  1 .0  x 10 so t h a t  th e s e  p a ram e te rs  w ere r e j e c te d  and th e

12se a rc h  w ould he c o n tin u e d  e lsew h ere . For low o rd e r  p o lynom ials  i t  i s

p o s s ib le  to  so lv e  f o r  th e  ro o ts  d i r e c t l y  b u t w ith  h ig h e r  o rd e r  c a se s  e .g , 

( l  + <XjL + a^L + a^L ) m ost p o lynom ial ro u t in e s  a v a i la b le  to  th e  a u th o r  

perfo rm ed  b ad ly  so t h a t  a s im p le r  method o f  t e s t i n g  was r e q u ir e d .

The Routh-H urw icz theo rem  (Baumöl [7  p .2 5 7 ] ) can be used  f o r  t h i s

p u rp o se .

Theorem: The zero es  o f  th e  p o lynom ial e q u a tio n

a Q + a ^ x  + + a x = 0 n

w i l l  a l l  l i e  o u ts id e  th e  u n i t  c i r c l e  i f  and on ly  i f  th e  fo llo w in g  n 

d e te rm in a n ts  a re  p o s i t i v e .

a_ . a 0 n ao 0

a 0 n

a a n n -1

8/ 9/ a 8, 8«1 0 0 n

a a 0 1
a .. a 0 n -1  n

ao 0

a 0 —  0

a a . . a n -1  n -2  0

a 0, n

a . a . . .  .0 n -1  n

St- • • a ° ^1 2 n

a a _, n n -1

n-1

n-2

As th e  c o n d itio n  s ta n d s  i t  i s  unw ie ldy . However i t  may be shown

th a t  th e r e  i s  an e q u iv a le n t  form w hich i s  a good d e a l s im p le r  to  im plem ent. 
_____ D efine th e  po lynom ial as above and s e t  up th e  e lem en ts  o f  th e  m a tr ix  A

12 P e n a l iz in g  S was found to  be more s a t i s f a c t o r y  th a n  th e  a l t e r n a t i v e  o f  
re d u c in g  th e  s te p  le n g th  u n t i l  th e  ro o t  r e s t r i c t i o n  was s a t i s f i e d .

13 See Gantm acher [2 9 ] .
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A(0,j ) = a. j = 0,...,n
\and with all other elements defined by the following sequence of operations,

A(i,j) = A(i-l,0)A(i-l,j) - A(i-l,n-i+l)A(i-l,n-J-i+l)
i=l,... ,n
j=0,...,(n-i)

(2.65).
The determinantal conditions are then replaced by the condition that 

the roots of the polynomial equation will all be less than unity if and 

only if A(i,0) > 0 V  i = 0,...,n.
2.6.3 Improved Convergence

There are two aspects of convergence dealt with under this heading.

(i) Techniques to guard against a possible lack of convergence.
(ii) Techniques to accelerate convergence.

(i) Lack of Convergence
It is well known (Crockett and Chernoff [20]) that the weighting 

matrix must be positive definite if the sequence of iterations is to 
converge to a minimum of the function. With statistical problems this 
is assured at the minimum of the sum of squares function because of the 
equivalence of the weighting matrix and the covariance matrix of the 
estimates. However the region in which this weighting matrix remains 
positive definite may be quite restricted, so that if starting points 
are far from the minimum there may well be a lack of convergence.

In most applications dealt with in this thesis the matrix remained 
positive definite even for very poor starting values e.g. one equation 

fitted reduced the sum of squares from 8l0 to 0.02 in fifteen iterations, 
so that a lack of convergence was rare. Nevertheless a safeguard was
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in c o rp o ra te d  in to  a l l  program s in v o lv in g  th e  a d d i t io n  o f  a p o s i t i v e  s c a la r  

X to  th e  d ia g o n a l e lem en ts  o f  th e  w e ig h tin g  m a tr ix  i f  any e ig e n v a lu e  o f  

t h i s  m a tr ix  was n e g a t iv e .  As Shanno has shown [9 9 ] i f  X i s  s e le c te d  as 

g r e a te r  th a n  o r  eq u a l to  th e  n e g a tiv e  o f  th e  s m a l le s t  e ig e n v a lu e  o f  t h i s  

m a tr ix  th e  sequence o f  i t e r a t i o n s  c o n s tru c te d  from th e  augm ented m a tr ix  

w i l l  converge to  a minimum. In  th e  s c a l a r  case  i t  i s  easy  to  

comprehend th e  lo g ic  o f  t h i s  s te p  as th e  w e ig h tin g  m a tr ix  w i l l  c o l la p s e  

to  a s c a la r  and by e n su r in g  th a t  t h i s  i s  p o s i t iv e  th e  S te e p e s t-D e sc e n t 

d i r e c t io n  i s  p re s e rv e d ,  and as Akaike [3  ] has shown fo llo w in g  t h i s  w i l l  

e v e n tu a lly  le a d  to  th e  fu n c tio n  minimum. A lthough Shanno fu rn is h e s  

a convergence p ro o f  th e r e  i s  no g u a ra n te e  t h a t  th e  m o d ified  a lg o ri th m  

w i l l  n o t e x h ib i t  th e  slow ness o f  S te e p e s t-D e sc e n t.  N e v e rth e le s s  i t  i s  

t r u e  t h a t  th e r e  w i l l  be a sw itch  to  a b e t t e r  a lg o rith m  once p o s i t i v e  

d e f in i te n e s s  i s  e s ta b l i s h e d  so t h a t  program s in c o rp o ra t in g  t h i s  f e a tu r e  

a re  l i k e l y  to  be more e f f i c i e n t  th a n  pu re  S te e p e s t-D e sc e n t v e r s io n s .

An example w i l l  i l l u s t r a t e  th e  te c h n iq u e . In  C hap ter h A .F.D . 

i s  a p p l ie d  to  a s e r i e s  New Money and to  t e s t  f o r  th e  p o s s i b i l i t y  o f  a 

lo c a l  minimum m u ltip le  s t a r t i n g  v a lu e s  were em ployed. For one o f  th e se  

p a ram e te r  s e t s  th e  w e ig h tin g  m a tr ix  was n e g a tiv e  d e f in i t e  and T able 2 .1  

s e t s  ou t th e  sequence o f  i t e r a t i o n s  f o r  th e  Shanno schem e.

Table 2 .1  Convergence o f  th e  Shanno Scheme 

I t e r a t i o n  S m a lle s t E igenvalue  S

0 -0 .1 0 3 * 1 0 5 0 .6 0 0 .3 0 0 .l l* 6 x io 5

1 0 .761x10^ - 0 .1 7 -O .5 6 0.520x10**

2 0 .773*10 - 0 .1 9 - 0 .5 9 0 .5 0 2 x 1 0

3 0 .808x10^ - 0 .1 9 - 0 .5 9 0 .5 0 1 x 1 0 ^
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At a number o f  p o in ts  in  th e  t h e s i s  t h i s  m o d if ic a tio n  e n ab led  

convergence so t h a t  i t  i s  w orthw h ile  in c o rp o ra t in g  in to  n o n - l in e a r  

a lg o r i th m s .

( i i )  A c c e le ra te d  C onvergence.

As w e ll as th e  p o s s i b i l i t y  o f  a la c k  o f  convergence th e r e  i s  th e

w e ll known tend en cy  o f  th e  Gauss-Newton a lgo rithm  to  e x h ib i t  slow

convergence i f  th e  q u a d ra t ic  app ro x im atio n  i s  a poor one , and to  overcome

lbt h i s  some r e s t r i c t i o n  must be p la c e d  upon th e  s te p  s i z e .  T h is may be 

done by r e s t r i c t i n g  each s te p  to  l i e  w ith in  a h y p e rsp h e re  o f  ra d iu s  r  

to  form th e  L agrang ian

i t e r a t i o n .

A dopting th e  co n v en tio n  th a t  a l l  a r ra y s  n o t e x p l i c i t l y  in d ex ed  a re  

e v a lu a te d  a t  th e  ( n - l ) ' t h  i t e r a t i o n  th e  fo llo w in g  norm al e q u a tio n s  a re

The c o n s tr a in e d  s te p  o f  (2 .6 8 )  i s  s im i la r  to  t h a t  o f  th e  p re v io u s  

s e c t io n  and w ould be i d e n t i c a l l y  eq u a l i f  X was th e  minimum e ig e n v a lu e  o f

3eo b ta in e d  by m in im iz ing  H(D = 7 7  )

(2 .6 7 )

(2 .68 ) .

lb Slow convergence comes from o v e rsh o o tin g  th e  minimum n e c e s s i t a t i n g  a 
r e v e r s a l  o f  th e  s te p  a t  th e  n e x t i t e r a t i o n .  An example w ould be 
R osenbrock’s fu n c t io n .
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An alternative expression for X was put forward by Levenberg [ 68]. 

From the first order condition ~  = 0 we obtain ( 0 ^  - 0^n '*'̂ )2 = r2o X 2which when substituted into (2.68) gives an expression for r .

r2 = eTDT(DTD - XI)“2 DTe (2.69)

TNow Lim (D D - XI) ■> XI so that (2.68) becomes (with some re-arrangement) 
X-*»

P m m P
X^ = e D D e/r (2.TO),

and

X (2.T1).

Therefore by specifying the maximum allowable step length r it is 

possible to compute X and thereby define a feasible parameter space at 

any iteration. As Marquardt has noted [T3], the Levenberg parameter X 

in ranging from zero to infinity causes the step length to shift from
15that of Gauss-Newton to Steepest-Descent. Furthermore Marquardt*s

algorithm, which is based on this approach, has a long history of success 

and provides some justification for loading the diagonals of the 

weighting matrix in the above manner. In all applications r was set at 

unity and the negative value of X from (2.T1) was selected in order to 

preserve the Steepest-Descent direction.

2.T Asymptotic Theory

Previous sections have concentrated upon the solution of the normal 

equations to yield estimates 0 = (0^,...,0 ). These estimates would be 

consistent, asymptotically normal and efficient if the disturbances u(t) 

were n.i.d. For ARMA/ARMAX models this independence condition is 

not present and it is natural to ask which properties still hold for

Away from the minimum|D|> > 0 so that X will be large whereas as the 
minimum is approached! D|-* 0» and therefore X -+ 0 i.e. the Gauss-Newton 
step becomes operative.

15
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the estimates given in earlier sections.

Walker [llU] and Whittle [n6] have examined this in some detail for 

ARMA models and the following statements concerning the distribution of 

0 (and the assumptions necessary for the proof) are taken directly from

Walker.

ASSUMPTIONS

(i) x(t) (t=l,...,N) is any linear process with finite fourth moment

of the form

x (t ) = E a e(t-j) 
j=0 J

2 4 oo 2where e(t) is i.i.d. (0,a ), 0 < E (e (t)) < 00 and E a < 00.
j=0 J

 ̂ 2̂ 2(ii) The estimates 0^, are such that L*(0,g ) (the log likelihood) is an
Ä 2 *2.absolute maximum when 0 = 0„, a = a„.----------------- N N

(iii) The true values of the parameters lie in a region defined by 
20 < o < °°, 0 e R where IlNis a bounded closed set contained in an open 

set S in k-dimensional Euclidean space. In particular the set H 

restricts all roots of B(l ) = A(L) =• 0 to lie absolutely outside the 

unit circle. This is not a severe restriction however as unit roots 

in the A.R. (the most likely case) will be prescribed rather than 

estimated.

(iv) Conditions U and 5 of Chapter 1 hold to assure identification.

(v) The frequency response function of the linear process A(X) and 

its inverse A ^(A) are continuous functions of A for - tt <  A <  ir.
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ASYMPTOTIC THEOREMS

U nder t h e  f i v e  a s s u m p tio n s  ab o v e  W a lk e r  p ro v e s  t h e  f o l l o w in g  

th e o re m s  ( p . 365)

(A) 0^ i s  a  c o n s i s t e n t  e s t i m a t e  o f  0 i . e .  p l im  0 ^ = 0
N-x»

(B) v7 F (  0^ -  0) h a s ,  a s  N-*» , a  l i m i t i n g  d i s t r i b u t i o n  w h ich  i s  m u l t in o r m a l  

w i th  z e ro  mean a n d  c o v a r ia n c e  m a t r i x  e q u a l  t o  t h e  i n v e r s e  o f  t h e

a r e  in d e p e n d e n t ly  d i s t r i b u t e d .

A few  com m ents upon  t h e  a s s u m p t io n s  an d  t h e  th e o re m s  a r e  i n  o r d e r .

( i )  A lth o u g h  t h e  c o n s t r a i n t s  im p o se d  up o n  t h e  p a r a m e te r  s e t  a n d  t h e  x ( t )  

s e r i e s  a p p e a r  r e s t r i c t i v e ,  i n  p r a c t i c e  v a r io u s  t r a n s f o r m a t i o n s  a r e  

a v a i l a b l e  t o  c o n s t r u c t  s e r i e s  w i th  t h e s e  p r o p e r t i e s  e . g .  d i f f e r e n c i n g  

an d  l o g a r i t h m s .

( i i )  No p r o o f  i s  a v a i l a b l e  i f  on e  o f  t h e  p a r a m e te r s  o f  0 i s  a s s o c i a t e d  

w i th  an  e x o g e n o u s  v a r i a b l e  i . e .  t h e  m o d e l i s  ARMAX an d  n o t  ARMA. T h is  

e x t e n s i o n  h a s  p ro v e n  t o  b e  d i f f i c u l t .  P i e r c e  h a s  p r e s e n t e d  a  s o l u t i o n  

[9 1 ]  b u t  t h e r e  i s  some d o u b t  c o n c e r n in g  h i s  p r o o f  o f  c o n s i s t e n c y  an d

as  h e  r e c o g n iz e s  i n  t h e  f o l l o w in g  q u o te  t h e r e  i s  an u n reso lv ed  i s s u e  i n

*2 2
(D) v̂ T ( o^  -  a ) h a s ,  a s  N-*=° , a  l i m i t i n g  n o rm a l d i s t r i b u t i o n  w i t h  mean

z e ro  an d  v a r i a n c e  2 o \  an d  i n  t h e  l i m i t  -  a ^ )  an d  ^ ( 0 ^  -  0)
N N

t h e  u n iq u e n e s s  o f  any  e s t i m a t e .
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"One would expect that this solution would also be the unique 

consistent estimate of y> but no proof of this is given here"

[91 p.306].

As many of the properties invoked for his estimator rely on 

uniqueness this is a major stumbling block to an acceptance of his claim. 

Clearly this is one of the unsettled questions that must be the subject of 

future investigation.

(iii) The disturbances need only be i.i.d. and not n.i.d.

(iv) The estimates 0,a2must be such as to globally maximize the likelihood. 

It is (iv) that is of greatest interest to this section as any

invocation of the asymptotic theorems certainly requires that this be 

satisfied. Further progress may be made in considering (iv) by turning 

it into a query: does the non-linear algorithm converge to a global 

maximum? This question has two distinct components:

(A) Do the estimates define a maximum to L*?

(B) Is this maximum global or local?

Essentially A is concerned with convergence to a turning point.

The safeguards outlined earlier in the Chapter (see 2.6), by ensuring that 

no step is taken unless L* increases, result in a termination of the 

algorithm only when L* has reached a maximum e.g. see Hartley [*+8] for a

1 There is a related question of whether the necessary conditions ttt = 0do
are sufficient. From elementary calculus it is clear that this is not 
so but there is protection against finding a maximum (if we seek a 
minimum) by the program searching only for the latter. Although a 
saddle point is possible the fact that if the global minimum has been 
reached the weighting matrix is positive definite allows discriminat­
ion between the two cases.



proof of this conjecture. Even if the safeguards were not effective 
a suitable combination of an always-convergent Steepest-Descent

method and a Gauss-Newton (or Newton-Raphson) algorithm - the switching

point being defined by negative definiteness of the weighting matrix -
ITwould always ensure that a maximum was attained.

To answer (B) there is no non-linear algorithm currently available 

that would select a global rather than a local minimum. Although there 

are some search procedures which allow a certain level of (prespecified) 

probability to be assigned to the event these require such a large 

number of function evaluations that the cost is prohibitive except for 

the simplest of functions. That such multiple maxima may exist with 

ARMA/ARMAX models has been demonstrated by Struik [102] (in connection with 

Box and Jenkins airline data) and Steiglitz and Rogers [id] (with 

simulated data). In both reports the sample size was at least 100.

Given the cost of searching the parameter space multiple maxima may best 

be isolated by adopting different starting values, but even then there 

is no certainty that all will be found.

2.8 Conclusion

Chapter 2 (and Appendix 6) have surveyed a number of estimators 

that have been proposed in the literature for the estimation of 

ARMA/ARMAX models and has opted for techniques that obtain estimates by 

iterative solution of the non-linear likelihood equations. However as 

has been emphasized in 2.7 little is known of the sampling properties

81.

IT As mentioned in an earlier section a proof of convergence does not 
provide any evidence on the rapidity of convergence, so that 
Steepest-Descent - despite a sound theoretical basis - would not 
be applied unless very large amounts of computer time were 
available.
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o f  such e s t im a to rs  (even in  la rg e  sam ples) and i t  w i l l  be th e  ta s k  o f  

C hapters 3 and 4 to  p ro v id e  some in s ig h t  in to  th e s e  q u e s t io n s .



Appendix 3

A sym p to tic  E qu iva le nce  o f  th e  Gauss-Newton and Newton-Raphson

83 .

W e ig h tin g  M a tr ic e s

To in v e s t ig a te  the  a s y m p to tic  e q u iva le n ce  we p roceed as 

fo llo w s o  Assuming th a t  0 is  a (M * l)  v e c to r  th e  re q u ire d  f i r s t  and 

second d e r iv a t iv e s  a re :

s = Te e (A 3 . 1)

3S
90,

T
2 * 2 -  e 

36, k = 1 , . . . , M (A 3 .2 )
k k

92S o f  32e 1
T

>| T f ̂  ®  ̂ v n —  "| lyr (A 3 .3 )
3V e* ' “ l  J - f  38k  ) ( qq J k  $ X» -L , . o«jM

The Gauss-Newton and Newton-Raphson w e ig h t in g  m a tr ic e s  w i l l  be 

equa l (up to  a c o n s ta n t o f  p r o p o r t io n a l i t y  2) i f  

T
( e = 0 k ,£  = 1 , . . . ,M (A 3 .U ).

92e
90 „ 30. 

I  k

F o r th e  c o va ria n ce  m a tr ix  o f  A .F .D . t h i s  c o n d it io n  is

/N - l
Li”  i E z 
N-K» n Vj=o

2
9 e( X)

90.90, 
l  k

=  0 ( A3 . 5 ) .

S p e c ia l iz in g  to  an ARMA (p ,q )  model ( i . e .  0 = ] )  from  (2 .3 2 )  o f  

the  t e x t  th e  f i r s t  and second d e r iv a t iv e s  o f  e(x) w ith  re s p e c t t o  a and 

ß are

9e(x) B ( \ ) Y ( \ ) e LAK

3ak a2(x)

3e(X) Y (X )e U k

3Sk A( X)

AJ . B (X )Y (X )e 1 ^k+ £ ^A

a 3( x )

k = l , o o o,q (A 3 .6 )

k = l , . . .  »p (A 3 .7 )

k , £ = l , . . . , q  (A 3 .8 )9a. 3a. 
I  k



92e(A)3V ßk
92e (A )
3V ßk

Y ( A ) <i (k+£)

a2(a )

k,£ = 1,. ..,p

k = 1, .. .,p 
£ = 1,.. . ,q

Consider the limit of (A3.5) element by element.

8U.
(A3.9), 

(A3.10)

1 (N-l
Lim | E E
N-*=° N .J=o

1 (N-l
Lim i i E
N-K” N oii

1 /■N-l
Lim jr E E
H—  N Ij=o

92s(A)3V ßk
92s(A)
3V ßk

e( A)

e(A)

= 0

_ _i | _2Z2tt
7i f (X)e"i(k+*')XB(X)

-IT ä2(a ) a (a )

(A3.11)

dA (A3.12)

9a. 9( e(X)
, f7t |B(X)|2f (X)e"1(k+l)X1 w

2 tt
-TT IA(X)12 A2(X)

dX (A3.13)

|A(X)IWith the substitution f (A) =
77 2tt I B( A) I 2

ft -i(k+£)A e
(2tt)‘

( 2 tt) ‘

- tt B(A)Ä(A)

7T -i(k+£)A e

-TT 52(x )

(A3.12) and (A3.13) become

(A3.1U)

(A3.15).

From the theory of residues the integrals in (A3.1*0 and (A3.15) 

converge to zero so that

N-*30

Furthermore

1 E f 3 e (A )T 3 e (A) 1 . . 1 - 
= 2 kim N E

92S
N E 90, 90„ 90.90,k £  J N-*°° £ k J

9ZL 9ZS
90 9 0.£ k 90.90.£ k

so that the expected value of the

Gauss-Newton weighting matrix is asymptotically the covariance matrix 

of /N(0-0).
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Appendix 4

D e r iv a t io n  o f  t h e  Asymptotic  Covariance M atr ix  f o r  ARMAX E s t im a to r s

The ARMAX model i s

B (L )y ( t )  + C (L )x ( t )  = ACL)e( t) (A 4 . l )

where B(l ) i s  o f  o r d e r  p,C(L)  o f  o r d e r  r  and A(L) o f  o r d e r  q.

In  F o u r i e r  Trans form n o t a t i o n  (aU„1) i s

B(X) Y(A) + C(A) X(A) = A(A) e(A) (AU. 2 ) .

The cov a r i a n c e s  w i l l  he formed from th e  fo l l o w in g  t h r e e  s e t s  o f  

d e r i v a t i v e s :

3e(A) _ Y(A)eikX 
8Bk A(A)

3e( A) X(A)e^k A 
3Yr “ A(A)

3e(A) = £ ( A)elkX
3ak ~ a ( a)

k = 1 , . . . ,p (AU.3)

k = 0 , . . . ,  r  [ A k . h )

k = 1 , „. o,q  (aU . 5 ) .

Denoting H as th e  Gauss-Newton w e ig h t in g  matrix^" t h e  b loc ks o f  H

are (where h a t s  
N-l

U — V

are  o m i t t e d  from th e  p a r a m e t e r s )
I  (A)t i(k-fc)A
yy_____________ v o - ( A l l . 6 )

ß ß

I
C_

i. II O | a U ) | 2
A J — 1  J o i

N-l 
= E

j=o

I (A)ei ( k - l)X 
l x k = l , . . . , p ( A 4 . 7 )V I A(  X) [2

l  -  0 , . 0. , r

U
N-l  

= -  E 
j=o

N-l  
= E

j=o

I  (A)el ( k “ £)A
y^

k = l , . . .  ,p ( A U . 8 )

ßa

K
YY

I A( X) 12

X X

1 A( X) 1 2

1 =  1 , . . . ,q  

k , £  = 0 , . . . , r ( A U . 9 )

1 The argument o f  Appendix 3 ex tends  t o  t h e  ARMAX c a s e .



85a.

N-l I (X)ei(k-*)X
H = - l
ya j=0

xe
|a (x )|2

k = 0,. .. ,r 
£ = 1,...,q (AU.10)

N-l I ( x )  ei(k-,l)^iiw' E C k , £ = 1,...,q (a U.11)
J=0 |A(X)|2

As in the text the asymptotic covariance matrix of v/N~( 0—0) is
I Q _

V“ = Lim —  E(~ H) and by taking the limit we obtain the (k £ )'th 
N-** a N

element of each block as

rir f ( x ) i(k-£)X

86 2 a
JOL

- T T

V  = —By a2

^ 6 a  2 tt

YY a2

IA(X)I

7T f ( X ) e
■X*--

i(k-£)X

— TT

- T T

ia(x)r
i(k-£)X

--------  dX
A(X)B(X)

i(l-£)XTT f (X) e xx

- T T IA(X) I

k,£ = 1, .. . ,p

k = 1, . .. ,p 
£ = 0,. .. ,r

k = 1,.. . ,p 
£ = 1, . . . ,q

k ,£ = 0,. .. ,r

(a H.12)

(AU.13)

(AU.lU)

(AU.15)

V = 0ya

- T T

i(k-£)X e______
I A( A ) I 2

dX

k = 0,...,r
£ = 1,. . . ,q (AU.16)

k ,£ = 1,.„.,q (AU.17).

Equations (a U.12) - (aU 817) were used to evaluate the asymptotic 

covariances given in the Tables of Chapters 3 and U.



Appendix 5

A Survey of Some Time Series Contributions to the 

Estimation of ARMAX Models

1, Methodology

This appendix provides a critique of a number of time series 

contributions to the estimation of ARMAX models. It is not meant to be 

an original discussion but to indicate the reasons for rejecting these 

estimators when faced with the need to apply such models to economic 

series. As such the three criteria to be applied in any judgement 

could not be regarded as having any theoretical basis but explain why 

these estimators play a very minor role in the thesis.

(i) Generalization

Under this designation we will explore the possibilities of 

generalizing algorithms presented by various authors for the 

estimation of a specific functional form to other forms. Such a 

generalization is imperative inasmuch as the range of model 

employed by econometricians is quite extensive,so that unless an 

estimator is applicable to all (or even most) of these it is cf 

greatly diminished value. Two aspects of this are of particular 

importance:-

(a) Generalization of the same model to higher order lags than 

that considered by the original author e.g. an ARMA model 

estimator which has been tested upon ARMA (l,l) and ARMA (2,2) 
forms must be capable of estimating ARMA (5,5) equations as the 

latter may be essential for a parameterization of quarterly time

series.
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(b) Generalization to a different model but one of the same order 

i,e„ there is a concern with the estimation of both ARMA and 

ARMAX formso As econometrics has traditionally dealt with 

interrelationships between series such an extension is highly 

desirable„

(ii) Computational Simplicity and Relation to Numerical Methods

No objection is likely to be raised to the postulate of computational 

simplicity as a goal but a different (although no less important) 

aspect of computation is the relation of proposed techniques to the 

numerical methods field. A close relationship will make progress 

in the design of efficient computational algorithms a function of 

advances in numerical methods. As an example we cite the ever 

present danger of a lack of convergence to any final solution 

involved in the iterative schemes of Chapter 2 and this Appendix.

By relating estimators to a field that is constantly attempting to 

overcome this problem the number of potentially successful applicat­

ions will become larger. In any case both simple and efficient 

computational designs are more easily achieved if a number of 

alternatives can be explored.

(iii) Asymptotic Distributional Theory

Owing to the stochastic nature of the problem a knowledge of the 

distributional properties of the estimators becomes important. A 

minimal requirement might be the derivation of asymptotic sampling 

distributions. As a guiding principle we acknowledge that an 

estimator with known limiting properties has established a clear

claim for adoption.
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With th e  e x c e p t io n  o f  ( i i i )  th e  d i s c u s s io n  o f  C hapter 2 has shown 

t h a t  th e  P h i l l i p s  , A.T.D. and A.F.D. e s t im a to r s  s a t i s f y  th e s e  c r i t e r i a  

so t h a t  th e r e  i s  a p r e s u p p o s i t i o n  in  fav o u r  o f  t h e i r  g e n e ra l  u se .

2 .  D u rb in 's  E s t im a to r

Durbin [2 3 ] ,  i n  one o f  th e  e a r l i e s t  c o n t r i b u t i o n s  to  th e  f i e l d ,  

p roposed  an e s t i m a t o r  a long  th e  fo l lo w in g  l i n e s .  Assume ( f o r  e x p o s i to ry  

p u rp o ses)  t h a t  th e  p ro c e s s  to  be m ode lled  i s  a f i r s t  o rd e r  M.A. i . e .  

y ( t )  = ( l + a L ) e ( t ) .  I f  th e  i n v e r t i b i l i t y  c o n d i t io n  i s  s a t i s f i e d  t h i s  

may be co n v e r ted  to  an i n f i n i t e  A.R.

y ( t ) (l+aLW^I?+a^L^+..........) = e ( t ) (A 5 .1 ) .

T ru n c a t in g  a t  L , th e  p a ram e te rs  o f  th e  f i n i t e  A0R„ 3^,) may

be e s t im a te d  by O .L .S , and by th e  theorem s o f  Mann and Wald [72]

v^(§ -  3) i s  a s y m p to t ic a l ly  m u lt in o rm al w i th  zero  mean and co v ar ian ce
ULb

m a t r ix  V. By e x p l o i t i n g  th e  f u n c t i o n a l  r e l a t i o n s h i p  between V and th e  

M.A. p a ram e te r  i t  i s  p o s s i b l e  to  d e r iv e  a s e t  o f  e q u a t io n s  l i n e a r  i n  a 

w hich, when s o lv e d ,  y i e l d  an e s t im a te  a .

How w e l l  does D u rb in 's  e s t i m a t o r  f a r e  when judged  by th e  c r i t e r i a  

o f  S e c t io n  1?

( i ) G e n e ra l iz a t io n

Durbin in  a l a t e r  p ap e r  [2^] has g e n e r a l i z e d  th e  above methodology 

to  ARMA b u t  n o t  ARMAX m o d e ls .

( i i ) Com putational Ease

I t  i s  e a s i l y  proven t h a t  th e  cho ice  o f  k sh o u ld  be a fu n c t io n  o f  

th e  modulus o f  th e  l a r g e s t  r o o t  o f  th e  M„A0 p ro c e s s  so t h a t  i f  th e  

Mann and Wald theorem  i s  t o  h o ld  ( im p ly ing  t h a t  th e  rem ainder
oo

E 3 . y ( t - j )  i s  sm a l l)  k must be s e t  acc o rd in g  t o  th e  t r u e  
J-k+1 J
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(unknown) roots of the M.A. polynomial. For an ARMA (0,l) model 
with a = 0.96, =0.3 and this dictates the choice of at least

a 60’th order A.R. before any of the Mann and Wald theorems will 
hold. Of course to estimate such high order A.R.'s is an 
impossibility given the collinearity characteristic of most 
economic data. Even if this obstacle were overcome inclusion of 

exogenous variables (each of which must be lagged an equal number 
of times as y(t)) may lead to the predicament of having to estimate 
very large numbers of parameters e.g. the above M.A. would yield 
2k0 parameters if four exogenous variables are present. 
Computationally this is just not tenable.

(iii)Theoretical Properties
Hannan [̂ 1+3 has noted that it is difficult to prove efficiency of
the estimator unless some assumption about Lim k/̂ j is made. A

N-x»
proof might be constructed by relating k to the roots , so that
given a parameter set k is a constant with the implication that
Lim k/jy = 0, but this was not attempted. Another doubt concerning 
N-x»

the efficiency of the estimator stems from the observation that the
O.L.S. estimates are not fully efficient owing to the restrictions
existing between the A.R. parameters e.g. for a first order M.A.
3 = aß .k k-1

3. Walker’s Estimator
Walker [112] [113] has derived a M.L. estimator based upon the 

asynptotic distribution of the sample serial correlations. Briefly,
the distribution of k of these is considered, the likelihood is constructed,
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and maximization of this is attempted. An iterative algorithm 

(corresponding to Gauss-Newton) is suggested as a suitable means of 
effecting this. Comments may be grouped under the previous criteria 

as follows:
(i) Generalization

Walker’s articles apply to ARMA but not to ARMAX models. However 
there does not seem to be any objection to an extension to models 

linear in ß and y as the serial covariances will be functions of 
all parameters but it would be troublesome in generalizing the 
procedure to models non-linear in ß and y e.g. in Investment demand 
equations the rate of depreciation enters in a non-linear fashion.

(ii) Computational ease

A workable program may be distilled from Walker's article along
the following lines. Let r (j = l,...,k) be the sample serialJ
correlation coefficients and p the corresponding population

J

quantities and arrange p . in a (k x l) vector P. Define the (kxl)
J

vector S with elements

S n = r n Z Z

,E ßi V i1=0

S* = i j=o ^  V i -J

Z l,o.0,q

Z = (q + 1 q + p ) 

Z = (q+p+l),.c.,k.

(A5.2),

Then Hannan has shown [UT p.^O-^l] that the joint distribution of 
r ,r , r is asymptotically multinormal so that as N -*» v^S-P)-L d Kl
will be multinormal with mean 0 and covariance matrix W and this

enables us to write the associated likelihood as



91

Lk = j  k log 2tt - j  log I W| - |n (S-p )TW"1(S-P) (A5.3),

Basically Walker solves the normal equations derived from

maximizing the quadratic form in (A5o3) by an iterative method,,

The major modification employed is to obtain expressions for the

elements of W-1 Iterations are continued until convergence is

achieved to estimates 3 and p whereupon the M.A„ parameters are

found from 
QL

A(L) = n (1-A.L) 
i=l 1

(A5.U)

where A. are the roots of the equal oni1 P
£ Z ß.ß.

ß,=-q i,j=0 1 J
(A5.5).

Therefore the sequence of operations leading to a solution is: s^lve

are then entered in (A5o5), the roots of the polynomial calculated,

There are two obvious disadvantages associated with Walker’s method. 

The first is the indirect determination of a and the covariance 

matrix of the estimated parameters„ The second is the choice of k c 

As with Durbin's estimator^it may be shown that the number of 

covariances required to adequately represent the correlogram of y(t) 

is a function of the size of the M 0A 0 roots,leading to the conclusion 

that,although Walker's solution does not require one to fit large 

A 0Ro's,it has a similar deficiency to Durbin's.

(iii)Distributional Properties

Walker presents theorems to the effect that if k is selected so as 

to include most of the information contained in the correlogram (or

(A5o3) by any non-linear algorithm to yield estimates p,3 which

and (A5oU) is solved for a by equating powers of L 0
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alternatively that Lim —  = O) then the estimator is consistent,

N-x» N
multinormally distributed and efficient0 Although a numerical 

experiment is constructed which affirms this assertion the selected 

M„Ac parameter was a = 0o5 and because autocovariances after the 

sixth yielded little information about the correlation structure of 

y(t), k could reasonably be set at 5« In summary, Walker’s 

estimator may be a useful tool for ARMA models but the determination 

of k and the extraction of all estimates is troublesome and 

militated against its employment in this thesis,,

3o Durbin’s Frequency Domain Estimator

Durbin [25]has proposed an estimator in the frequency domain which 

is an analogue to the earlier time domain solution»^ It derives from
i„(x)

the minimization of S = 7 where I (a ) is the smoothed spectral .U) yy

density function and f (X) has been defined previously. Maximum 

likelihood estimates of 0 = (a,3) may be found from the first order 

conditions:

I (A) f 1 (A) --  = 0yy uu 33,

-2

k
3f (A)

I (A) f” " (A) — ELyy yy 3a,

k = l,

k = l,coo,q

(A5.6) 

(A5.7).

For given a (A5=6) is a set of equations linear in 3, but for given 3 

(A5oT) is non-linear in a 0 To overcome this non-linearity Durbin shows

that

plim f
N->oo ^

(A) f ^ ( A )
3f
-JÜL

(A) 3fyy (A)
(A5.8),

1 This account is based on Nicholls [85]o The reader is referred to 
the more extensive discussion given there»
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R ep lac ing  (A 5.7) by (A 5.8) le a v e s  a s e t  o f  e q u a tio n s  w ith  th e

p ro p e r ty  t h a t  an e s t im a te  o f  e i t h e r  p a ram e te r  v e c to r  may be o b ta in e d

as th e  s o lu t io n  o f  a system  o f  l i n e a r  e q u a tio n s  once th e  o th e r  v e c to r  i s

fix ed o  This f e a tu r e  su g g e s ts  th e  c o n se c u tiv e  s o lu t io n  o f  (A5«,6) and

(A5o8) (term ed  th e  "p ing-pong" te c h n iq u e  by A igner [ l ] )  and th e  sequence
-  2

o f  s o lu t io n s  sh o u ld  converge to  a l i m i t  m in im izing  S .

There i s  l i t t l e  doubt th a t  th e  method w i l l  g e n e ra l iz e  to  ARMAX 

m odels apid t h a t  c o m p u ta tio n a lly  i t  may be reduced  to  a v e ry  s im ple 

a lg o rith m ,, However, as N ic h o lls  has em phasized , J (X) i s  n o t un ique
J

and , in  p a r t i c u l a r ,  v a r i a t io n  in  th e  number o f  bands over w hich th e  

periodogram  o rd in a te s  a re  av eraged  ( to  o b ta in  th e  sm oothed spectrum ) 

w i l l  a f f e c t  th e  d i s t r i b u t i o n a l  p r o p e r t i e s  o f  th e  e s t im a to r .  In  g e n e ra l 

th e re  i s  no way o f  choosing  an o p tim a l bandw idth  i f  th e  p a ram e te rs  a re  

unknown, One su sp e c ts  t h a t  t h i s  d i f f i c u l t y  has as i t s  du a l th e  le n g th  

o f  th e  ap p ro x im atin g  A,R, in  th e  tim e domain and , i f  so , th e  o p tim a l

bandw id th  w ould be a fu n c tio n  o f  th e  ro o ts  o f th e  M0A. For t h i s  rea so n
\

i t  i s  u n l ik e ly  t h a t  D u rb in ’s e s t im a to r  w i l l  be o f  use in  m o d e llin g  

ARMA/ARMAX p ro c e s s e s .

Up H annan-N icholls  E s tim a to r

Hannan has d e r iv e d  an e s t im a to r  o f  ARMA models [kb] and Hannan and 

N ic h o lls  have ex ten d ed  t h i s  to  ARMAX m odels [1+5]» The d e r iv a t io n  i s  

b a sed  upon th e  m in im iz a tio n  o f  ( 2 027) by a Newton-Raphson a lg o rith m

2
D urbin a ls o  p ro p o ses  t h a t  ( A 5 . 6 ) ,  ( A 5 o7)  be so lv e d  d i r e c t l y  by 
i n s e r t i n g  c o n s is te n t  e s t im a te s  o f  f  (X) in to  th e s e  e q u a tio n s  in  p la c e

o f  f  (A) .  N ic h o lls  has shown th a t  th e  v a r ia n c e  o f  th e  r e s u l t i n g  uu __
e s tim a te s  d iv e rg e s  as i t e r a t i o n  c o n tin u e s .



m o d ified  in  th a t  i t M 0 „ . 0«« re p la c e s  th e s e  second d e r iv a t iv e s  by- 

c o rre sp o n d in g  ex p ress io n s  to  which th e y  converge a lm ost s u r e ly ,  e v a lu a te d  

a t  th e  e s t im a te s  o f  th e  t r u e  p a ram e te r  p o i n t 0 In  th e  case  (p) = 0 

th e  method becomes e s p e c ia l ly  s im ple  and th e s e  e x p re s s io n s  a re  a b so lu te  

c o n s ta n ts  in d ep en d en t o f  th e  p a ram e te r p o i n t 0„ » .»However i f  an i n i t i a l  

e s tim a te  i s  a long  way from th e  t r u e  p a ram ete r p o in t  th e  rep lacem en t o f  

th e  second d e r iv a t iv e s  by th e se  e x p re s s io n s  may slow  th e  convergence o r  

m ight le a d  to  d iv e rg e n c e »” [^5 p» 3 l]»

Three f a c to r s  c o n s t i tu te  th e  case  a g a in s t  ad o p tio n  o f  th e  Hannan- 

N icho lls*  e s tim a to r»

( i )  The d e r iv a t io n  o f  th e  a sy m p to tic  e x p re s s io n  fo r  th e  second 

d e r iv a t iv e s  r e q u ir e s  a good d e a l o f  m a th em a tica l s k i l l  and as th e se  

a u th o rs  have no t co n s id e re d  g e n e ra l models in  w hich n o n - l i n e a r i t i e s  

app ea r betw een ß and y t h i s  would have to  be done in  each in s ta n c e »

( i i )  I t  i s  no t easy  to  w r i te  a program  t h a t  w i l l  in c o rp o ra te  t h e i r  

i t e r a t i v e  p ro c e d u re , and any such program  i s  l i k e ly  to  be i n f l e x i b l e ,

( i i i )  As m entioned above th e re  i s  some doubt about th e  ro b u s tn e s s  o f  th e  

e s t im a to r  under poor s t a r t i n g  v a lu e s  (see  N ic h o lls  [ 85 ] f o r  a 

f u r th e r  d is c u s s io n  o f  t h i s  f o r  a f i r s t  o rd e r  moving average m odel), 

which coup led  w ith  th e  o b s e rv a tio n  t h a t  i t  i s  n o t cap ab le  o f  

a b so rb in g  advances in  n u m erica l methods e a s i l y ,  must mean th a t  

convergence w i l l  always rem ain a p rob lem . The in c id e n c e  o f  poor 

s t a r t i n g  v a lu e s  i s  l i k e l y  to  be h ig h  in  many econom etric  a p p l ic a t io n s  

and i t  i s  f e l t  t h a t  t h i s  i's a p o te n t  rea so n  fo r  se e k in g  modes o f  

a t ta c k  th a t  a re  f l e x i b l e  enough to  b e n e f i t  from re s e a rc h  designed

to  p ro v id e  s o lu t io n s  to  t h i s  dilemma. I t  i s  on ly  f a i r  to  p o iftt
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o u t  t h a t  th e  H an n a n -N ic h o l ls ’ e s t i m a t o r  has a number o f  a t t r a c t i v e  

f e a t u r e s ,  th e  o u ts ta n d in g  one b e in g  th e  p r o v is io n  o f  c e n t r a l  

l i m i t  theorems g u a ra n te e in g  M0L 0 p r o p e r t i e s  f o r  th e  e s t im a te s  

even i f  th e  d is tu rb a n c e s  a re  i 0i o d 0 and no t n 0i o d Q F in a l ly  some 

experim en ts  a re  c o n ta in e d  in  th e  j o i n t  p ap e r  which show t h a t  f o r  

N=100 th e  sam pling  d i s t r i b u t i o n s  acco rd  w e l l  w ith  a sy m p to tic  th e o ry ,  

b u t  t h a t  f o r  N=UO t h i s  was no t s o 0 To some e x t e n t  t h e s e  r e s u l t s  

have on ly  a l i m i t e d  s i g n i f i c a n c e  f o r  econom ists  as th e  ty p e  o f  

f i l t e r  chosen to g e n e ra te  th e  exogenous v a r i a b l e s  r e s u l t s  in  s p e c t r a  

t h a t  arc a t y p i c a l  o f  economic tim e s e r i e s 0



Appendix 6„

Relationship between the Box-Jenkins and Phillips* Estimators 

We begin from Box and Jenkins' Appendix A T [9 p.269-271]» The 

model set out there is assumed to be generated by a stationary moving 

average model of order q

w(t) = a(t) - 61 a(t-l) - 02a(t-2)-.... - 0 a(t-q) (a 6.1).

In the terminology of Chapter 2 the following equivalences exist

w(t) = u(t) 

a(t) = e(t)

0, = a. k = 1,.o.,q,

Box and Jenkins define the (N+q) dimensional vector a = (a. ,a^ ,1-q 2-q’
Tand the q dimensional vector of preliminary values a^ = (a^ ^»a2 q ,0,0,ao 

which correspond to the vectors of Chapter 2 as follows

a =

They then define the relationship of (a 6 02)(where the definitions of 

L and X may be found in their Appendix),

a = L w^ + X j (a 6„2)

and obtain the M 0L 0 estimates a#from a minimization of S(0,a#) where 

S(0,a*) is their equation (ATo^03)

ioeo S(0,a#) = ( L w  + X a#) (L w  + X a#) (A6.3).

i.-Using (a6 02) we see that S(0,a#) = a a and from the equivalence above

S(0,a„) = e e + e* e* (A6.4)

which establishes the assertion that this is the sum of squares function
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that Box and Jenkins minimize0
The first order conditions for a minimum to S with respect to e* are
3S_
3e* =  2 e + 2 (A6 o 5)

By using the relations = - M- M*4 -r—* = I (a6 c5)3e* 3e* q
reduces to

= - 2 (M~1M*)T e - 2 I e* (A6.6),3e* q
whence by equating (A606) to zero and substituting e = (u - M*e*) we
obtain

= (M*T V 1 M* + I ) M*T V"1 u (A6.7)

as in the text«
The difference between the Box Jenkins and Phillips estimate e* is 

most easily seen in a first order M.A» case0 Consider the ARMA (p,l) 
model which may be written as

u(t) = (l + aL) e(t)0

From the concentration formulae we must compute

£ = (m *t v”1 m *)"1 m *t v'1 u
* / T -1 % _l T _1e = M* V M* +1 ) M* V u BJ q'

or defining Z = M  ̂M*, w = M~“*" u

lp = (ZTZ)_1 ZTW

I = (ZTZ + X )_1 ZT w BJ q

Now for a first order M 0A 0 (A609) has the simple form

(A6.8),

(A6o9).
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Sp(-l)
E z(j)w(j)
,1=0______

N PE z‘(j) j=0
N
E z(j)w(j)

Jz2_______
N 21 + E z (j) 
J=0

(a 6.i o )

To simplify the derivation we assume that N °°0 Now from the
Tdefinition of M* given in Chapter 2 M* = [a,0, <,.<,] and exploiting the 

structure of M we obtain a difference equation for z(t)

z(t) + a z(t-l) = 0 

z(0) = a

The solution to (a 6 011) is

T r 2 3 Uz = La, -a , a , -a 0 0 0 o 0„o«J

00 2 2 Uso that Z z (j) = a + a + 0000oo 
J=0

oo 0 2
or Z z (j ) = — —— -0 

j=0

t = 1 , 0 0 0 ,

(a 6 0i i ).

1 - a

Similarly 1 + Z z^(j) = — —

(A6 012).

(A6013)o
j=0 1 - a

Equations (a 6 012) and (a 6 c13) provide the denominators of the two 

values of e(-l) in (a6 o10)o
TTurning to the computation of Z w we commence from the difference 

equation

w(t) + w(t-l) = u(t) t = l,ooo,00

w(0) = u(0)
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w(0) = u(0)

w(l) = -a w(0) + u(l) (a601U)„

o

w(k) = -a w(k-l) + u(k)

By successive substitutions we may reduce (a6 ciU) to a set of 

equations in u(t) alone0 

w(0) = u(0)

w(l) = -a u(0) + u(l) 

w(2) = a2 u(0) - a u(l) + u(2)

w(3) = -a^ u(0) + a2 u(l) - a u(2) + u(3)

w(k) = -a^ u(0) +  ̂u(l) - 2 u(2) + 000 + u(k) if k is odd„

Then it is easily shown that Z z(j) w(j) is
j=0

Z z(j)w(j) = u(0)(a + a3 + 00o) - u(l)(a2 + + 00.)
j=0

+ u(2)(a^ + a? + o00) - u(3)(a^ + + „„<>)«

2 3Taking a from the first bracket, a from the second, a from the third 

and so on yields

Z z(j)v(j) = a u(0)(l+a2+oos)- a2 u(l)(l+a2+.„) + a^u(2)(l+a2+.0.)
j=o _ ...... . •

= [u(0) -a u(l) + a2 u(2) - u(3)....«>.]1-a
a u*(0) (A6.15)
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Nov by combining (a 6 012), (a 6 013) and (a 6 015) we obtain

e (-1) = u*(0>P a (A6.16)

eßJ(-l) = a u*(0) (A6.17)

as is given in the text»

Readers may verify that an application of (a 6 017) to the numerical 

example given on p 02ll+ of [9] with a = -0o5 will yield e (-1) = 106JdJ

thereby indicating the coincidence of concentration and their forecasting 

method which they prove must yield e (-l)0.DO
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CHAPTER 3o Monte Carlo Studies of the Phillips Estimator

3ol Introduction

Most research into the properties of ARMA/ARMAX model estimators 
has been concerned with the derivation of the moments of the asymptotic 

distributionso As surveyed in the previous chapter important 
contributions to this area have been those of Walker [llU] and Whittle 
[ll6] who considered the properties of estimators that maximised the 

ARMA likelihood and Pierce [91] and Hannan-Nicholls [U5] who concentrated 
upon the Box-Jenkins and Hannan-Nicholls estimators respectively»

The conclusion to be drawn from the above articles is that the 
familiar properties of the M 0L 0 estimator of models with non-correlated 
residuals extend to models in which the residuals are time dependent 
(see Aitchison and Silvey [2] for a statement of these)» However this 
body of theory is predicated on large samples of data and as 
econometricians are typically forced to extract information from short 
time series, asymptotic theorems may not necessarily be relied upon as 
a guide to suitable estimation procedures » Therefore it is of importance 

to discover the modification of large sample distributional properties 
in the translation to small samples and it is this topic that the 
current chapter is involved with»

Recently there has been a concerted attack upon the derivation of 
exact finite sampling distributions for a number of estimators» 
Unfortunately while the models examined have been simple the mathematical 

skills employed have not and one is led to believe that the Monte Carlo
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(or distributional sampling) technique provides the easiest method of 
assessing finite sampling properties« Owing to the extensive use of 
this technique in the thesis it is worthwhile noting some of the benefits 

to be served by conducting such studies.
(1) Information is yielded concerning the small sample distribution of 
estimators of a model with a given set of parameters.
(2) Insight is provided for the experimenter into the complexities 

that may be encountered in translating theoretical constructs into 
practical tools. These insights may be into either the computational 
sphere or the behaviour of an estimator when the assumption underlying 
its theoretical derivation is broken e.g. violation of the root 

restrictions of Chapter One
(3) Finally it is possible to consider the influence of a wider range
of alternative assumptions about the generation of series. An outstanding 
example of this is non-stationarity. It may be very difficult to 

establish mathematically the sampling properties of an estimator unless 
severe restrictions are placed upon the evolutionary nature of the series 
being analysed, but a Monte Carlo investigation can easily duplicate such 

a series and extract the distribution. Obviously knowledge that this 
property holds for a parameter set is very important and certainly better 
than having no theoretical proof for any parameter set. Two examples 
in this chapter are non-stationarity in the exogenous variable and the 

distribution of ARMAX model estimators (which as we have noted in the 

previous chapter have still not been derived asymptotically).
It will become apparent in this and subsequent chapters that 

many more Monte Carlo studies were constructed than could be justified
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on the basis of (l) alone but it is felt that the primitive state of 

knowledge on the role of non-linear estimators in time series models 

made this necessary0 Certainly empirical estimation could never have

been contemplated without the insights that came from the analysis of 

simulated data.

3o2 The Design of the Sampling Experiments^

An account must be given of the methodology of data generation before 

any examination of the Monte Carlo experiments„ Four criteria guided 

the construction of synthetic time series« These embody important 

features of applied econometric models and (hopefully) adherence to these 

principles will mean that synthetic series resemble actual series.

A._____ Spectral Characteristics: There is now a considerable oody of

literature in existence relating the likely spectral shapes of economic 

variables observed at varying intervals, and the synthetic series should 

have spectra resembling those that appear in this literature. In 

particular we will require a concentration of power at the origin to 

represent annual and/or deseasonalized data and peaks at the various 

harmonics of a seasonal frequency for series subject to seasonal 

variation.

Bo_____Lag Distributions; Much econometric research in recent years has

centred upon the estimation of distributed lag models and it has become 

apparent that smoothly declining lag distributions (a la Koyck) are too 

rigid a specification for some economic relationships e.g0 the accelerator, 

and that this tendency is strengthened the shorter the period of

The principles stated in this chapter are adhered to throughout the 
remainder of the thesis and are pertinent to the following chapter and 
parts of Chapter 6.

1
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observationo For this reason it is necessary to select transfer

functions that reflect these studies and this will be done either by a

selection from the literature or by ensuring that the theoretical lag

distributions have a single mode away from the origin»

C._____ Correlation between Series; Most econometric models are
2characterized by an R in the range 0o85-0<,95« Although the properties

of the statistic are different in a time series situation than in a 

classical regression it serves as a useful guide to the "unreasonableness" 

of the assumed relation.

Do_____ Polynomial Roots: Experience indicates that she roots of B(L)=0

are likely to have modulus close to unity in many instances so that 

experiments should be conducted with such a restriction in mind0 There 

is little evidence available concerning the probable magnitude of the 

roots of ACL) = 0 and that which does exist is contradictory e„g0 Trivedi’s 

study [107] yields roots close to unity and Williams’ [ll8] first order 

M 0A 0 parameter never exceeds 0o4o Again resort will be had to the 

literature for solutions to BCE) = 0 and we will generally select roots 

around 2 for ACL) = 0 o

Taking the model to be estimated as 

B L)y(t) = C(L)x(t) + A(L)e(t)

(where C(l ) = 0 reduces this to an ARMA model) the previous tabulation may 

be continued with details concerning the generation of data.

E 0_____ Properties of the Error Term: The variance of e(t) was set at 3

for all ARMA models and I 0B CM 0 supplied routines (GAUSS and RANDU) were 

used to generate n.i.d. and i.i.d. variables respectively. A description 

of these routines may be found in (54].
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Fo_____ Starting Values: All series were computed recursively by

initializing them at zeroD This meant that a constant term is not included 

in any model and the tabulated biases will be smaller than would be the 

case if a constant term was estimated from the data.

Go Generation of x(t): Two schemes were adopted for the construction

of x(t)o

A. (l-61L)(l-62Lk )x(t) = (1+63L)(1+61+Lm )e(t)

Bo (l-6xL)x(t) = e(t)o

By varying k,m,6^,62,63 and 6^ a considerable change in the nature of 

x(t) could be induced. We will identify the four parameter combinations 

that were used most frequently with the understanding that specific mention 

will be made whenever a filter differing from these is used«

Scheme A „

Ao(i) 61 = O095, 62 = Oo75, k = 1; = 0o8, 6̂  = 0o0, m = 0.
Ao(ii) = 1.0, 62 = loO, k = U; 63 = -0o082, 6̂  = -0.372, m = h.

Scheme B„

B 0(i) 6^ = 0o6o

B 0 (ii ) = 0o9o

A(i) was suggested by Grether and Nerlove [36] as an appropriate 

description of a time series containing only a trend-cycle component 

and A(ii) is a parametric representation of the quarterly series 

Household Appliances and Equipment (see Chapter 5)o Both filters 

produce spectral shapes with a strong concentration of power at the 

origin and additionally A(ii) has minor peaks at tt/2 and tt0 Such spectra 

are typical of annual or deseasonalized data (A(i)) and non-deseasonalized
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quarterly series (A(ii)) so that the variation in spectral shape conforms 

to that expected in the data manipulated by economists0

As well as the shape however it is imperative to inspect the level 

of the spectra» A rough guide may be had from a calculation of the 

ratios of the spectrum of x(t) at the zero frequency to the ordinates 

at tt/2 and tt„ Table 3 d  presents the order of magnitude of these 

ratios 0

Table 3 d

Ratio of f (0) to f (tt/2) and f (0) to f (tt) for __________ xx________ xx___________ xx _____ xx ____
*the various schemes for generating x(t)

Scheme f (0) xx
f (tt/2)XX

fXX
fXX

(0)ivy
A(i) l o V l 106/1

A(ii) 10 V i > io6/i

B(i) 10/1 10/1

B(ii) 21 0 / 1 102 /1

*In the case of Alii) the ratio involves zero terms in the denominator 
so that the first frequencies before tt/2 and tt weie used instead»

Most empirical spectra of untransformed economic data are likely to
4 6be distinguished by ratios in the range 10 /I to 10 /I indicating that 

the smaller ratios would be only characteristic of series that had 

undergone transformations such as differencing» As such transformations 

are no uncommon in the econometric literature (e»g0 the wages equation 

of the Wharton School model involves first and fourth differencing; see 

Howrey [53]) it is important to adopt a wide variety of possible schemes
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for x(t)0 However the above note concerning the relevance of each scheme 

should be borne in mind when assessing the applicability of later 

conclusions

As there are now two series of random numbers (e(t) and e(t)) a

decision must be made on their relative variance0 The quantity employed
2 2in selecting this ratio (defined as a /a ) was the mean value of thee e2correlation coefficient (R ) over 50 replications» As mentioned

2previously most time series models possess an R in the range 0.85-0.95 
and the variance ratios needed to duplicate this are:-

A(i) : 500/1

A(ii) : 500/1

B(i) : U/1

B(ii) : 10/1,

These are the values normally adopted and R ranged from 0.9 to as 

high as 0.99 with a concentration around 0.96.
H,_____ Sample Size; Two factors were influential in the selection of

the sample sizes to be examined.

At this stage one might as well lay to rest a myth that is prevalent 
in the literature pertaining to the simulation of time series-namely 
that filters of type B(i) reproduce Granger’s "typical spectral shape" 
and therefore are realistic. As shown in the text, although the 
shape of the spectrum is correct, the level is not so that the use of 
such a filter restricts the generality of any results presented. For 
examples of its use in this field see Hendry and Trivedi [U9], Hannan 
and Nicholls [^5].

To avoid the possibility of a pseudo-infinite variance for was
set at 0.01 so that a variance ratio of 500/1 could be achieved by 
letting = 5.
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(i) The asymptotic behaviour of an estimator0 This concern is

occasioned by the paucity of asymptotic theory for estimators of ARMAX 

models, but as well an awareness of the sample size needed for reliance 

upon existing asymptotic theory will be created. Such insight is 

important as most statistics used for hypothesis testing when a lagged 

dependent variable is present are powerful only in very large samples.

To this end samples of one hundred observations were constructed. It is 

worthwhile mentioning that for some economic time series such sample sizes 

are the rule rather than the exception e.g. Monthly Bank Advances.

(ii) The small sample behaviour of the estimator. To investigate this

two sizes were chosen - 1+0 and J O - the justification being that most

quarterly (or monthly) time series are likely to be at least of this

length and it is in the modelling of these series that the ARMA form is

likely to be most effectively employed. The only other known Monte

Carlo study of the Phillips estimator - that of Hendry and Trivedi (H-T)

[U91 - uses samples of size 25, 1+0 and 5C thereby overlapping our own 
1+work. A critique of this study is contained in Appendix J a

I c_____ Equation Type: Both ARMA and ARMAX equations are simulated in the

following sections. Two arguments may be advanced to justify the dual 

approach.

(i) A number of authors have contended that ARMA models are good fore­

casting tools and the present writer believes that they are the natural 

"naive" model against which various econometric specifications may be

h Actually very few of the results presented in the H-T report duplicate 
my own because of my interest in the difficulties raised in the 
application of such models which led to a different perspective to that 
found in H-T. Where there is a clash H-T's work is given precedence.
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tested» This latter theme is developed in the concluding chapter and 

will not be pursued in any more detail here» Nevertheless if the two

utilities mentioned above are ascribed to ARMA models it is of consider­

able interest to assess the possibility of accurate estimation of the 

parameters»

(ii) Embodying as they do the twin features of an autocorrelated 

disturbance term and lagged endogenous variables, ARMA models exhibit 

those characteristics that invalidate traditional estimators such as 

OoLoS», and therefore may be regarded as simplified econometric models»

A further defence - emphasizing the polar nature of this form - lies in 

an analogy with an example quoted by Malinvaud [71] in which the absolute 

magnitude of the inconsistency of the 0„L»S» estimator of in a first 

order A.R» with autocorrelated disturbances is smaller the greater the 

(positive) autocorrelation present in the exogenous variable. Note that 

the inconsistency is merely reduced by the presence of an exogenous 

variable but never eliminated» Therefore the ARMA model is a polar one. 

Having established this it is obligatory to recognize that ARMAX models 

are of greatest importance to an econometrician so that whilst a polar 

case yields valuable information it must be supplemented by a thorough 

investigation of the transition to more realistic forms»

J »_____ Data Summary; The processing of all numerical results will be

performed with the aid of seven statistics - a set of six which summarize 

the data and a seventh that acts as a guide to the accuracy of the former 

set 0
_1 m ä

(a) The mean over m replications L»e»0 = m E 0(j) where B (j) is the
1
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value of 0 obtained from the j'th replication„

(b) The standard deviation over m replications i»e»
1

1 ^ o odg = [ (m-l)""1 s ( e (j )-e) r .

(c) The bias (0 - 0) where 0 is the population parameter»
2
0̂ 2(d) The ratio of the empirical to asymptotic variance i.e. / a

where a is computed from the asymptotic formulae of Chapter 2 or Appendix 0
2 2 2 2U» This ratio is distributed as F . if o * >aA , or if o- < a A them-l 5 °° 0 0 * 0 0

inverse ratio is distributed as F ’,m-l°

(e) Where comparisons between two estimators 0^ and 0^ are important the 

difference between the mean values 0^ and 0^ is tested by forming the ratio

+

and testing this as a t statistic with 9 8  degrees of

freedom» The statistic is formed from Mood and Graybill [75 p.306] by
A A

setting m = n = 50 and its validity hinges on the normality of 0^ and 0^ 

- a feature that is suspect in the smaller samples but which might be 

expected to hold in samples of 1 0 0 e Additionally it must be assumed 

that there is a common population variance»

(f) Under the same conditions as (e) a test on the equality of the
2 2variances is available by forming the ratio 0 ^ / 0 ^ and regarding it as an 

^ 9 ^ 9  variable.

(g) Because the Monte Carlo technique is itself subject to statistical 

fluctuation (i»e. the statistics calculated from (a) - (f) above are 

from empirical distributions which converge to the true sampling
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distributions only as the number of replications tends to infinity) 

statistical tests should be performed on these measures to assess their

reliability. The principal device exploited for this purpose was the_12standard error of the bias o^- ^  = m eg and the statistic

(b-0)/a^ gj is distributed as Student's t with (m-l) degrees of 
freedom.

Concern over the size of m is a feature of many Monte Carlo studies 
and (g) illustrates why this is so. Clearly the sampling error of the 
statistics will vary inversely with m and at least for the bias the 
inverse relationship is with the square root of m signifying that a 
large number of replications is mandatory before there can be satisfaction 
concerning the accuracy of the measures computed from (a) - (f). As a 
policy of increasing m may be very expensive in terms of computer time a 
number of techniques such as antithetic variables (see [39] for a 
discussion) have evolved, which are designed to "effectively" increase m 
without involving a proportionate amount of computing. Ideally such 
methods should be applied in all Monte Carlo work but it is felt that 
setting m = 50 was sufficient to yield reliable conclusions. In those 
instances when m could not be raised above 20 the resulting conclusions 
must be viewed with some scepticism.

3.3. An Overview of the Remaining Sections
Here we present a grouping of the remaining sections. As the 

objective of this chapter is to isolate sampling properties under 

varying conditions, it was decided to group the studies into six 
separate sections encompassing some of the problems arising in the

application of these estimators. The six are:-
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1, _____Spectral Shape: It is proposed to examine the sensitivity of the

estimator to a wide variety of spectral shapes for the A.R. and M.A.

in order to gain an appreciation of the degree of success in the application 

of an estimator to any economic problem.

2. ____ Misspecification and Lack of Identification: Misspecification is

a universal problem in econometric modelling but has added perplexities 
in ARMAX models because of a possible lack of identification. The 
sensitivity of the estimator to misspecification and the forces leading 

to a lack of identification will be examined.

3o_____Rational Lags and Expectations: Chapter 1 has noted that the
genesis of ARMAX models may be the assumption of rational spectral 
density functions. The hallmark of such models is the restrictions 
that exist between the A.R. and M.A. parameters and it is profitable to 
enquire into the statistical properties of estimators that exploit or 
fail to exploit these restrictions.

______ Seasonal Models: As the sample sizes were selected to reflect
the availability of quarterly observations it is important to conduct 
some experiments which reflect the special characteristics of this data.
In particular we are concerned with the seasonal patterns observed in 
most economic time series collected at this time interval. Such 

’’periodic" behaviour impinges upon our models in either of two ways.
Firstly the exogenous variable may reflect a seasonal influence.
Secondly even if this is not so (or all data has been seasonally 
adjusted) the disturbance term, by absorbing the influence of omitted

variables, may have peaks in its spectrum at the seasonal frequencies.
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Both possibilities will be studied in this section.

5j._____Departures from Stationarity: As no vestiges of a proof are
available concerning the asymptotic properties of ARMAX estimators when 
the assumption of covariance stationarity of x(t) is broken it is 

elemental that some investigation should be made of this, especially in 
view of the suspicion that many economic time series fall into this 
category.

6,_____Departures from Normality: A central feature of the maximum

likelihood estimator in the classical regression situation is that it is 
consistent and asymptotically normally distributed even when the 

disturbances are i.i.d. rather than n.x.d. thereby widening the class of 
disturbance processes that may be allowed. Hannan and Nicholls have 
provided a Central Limit Theorem showing that their estimator has this 
property and Walker has sketched a similar proof for ARMA model 
estimators. Faced with these general results it was decided to test the 
sensitivity of some of the conclusions reached in the previous sections 
by using white rather than Gaussian noise in the simulations.

3.^ Effects of Spectral Shape 
(1) ARMA Models

Five ARMA models, representing a wide range in the spectral shape of 
each component process, and thereby the overall spectral density, were 

selected. These are labelled Models (A) - (E) and are as follows.
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MODEL A

(l-O.ÖL)y(t) = (1+0.5L) e(t)

MODEL B

(1-1.3L + 0.6L2 ) y(t) = (1+0.6L + 0.3L2 ) e(t)

MODEL C

(1-1.57L + 1.23L2 - 0.1+2L3) y(t) = (1+1.2L + 0.62L2 + 0.27L3) e(t)

MODEL D

(1-1.031L + 0.630L2 - 0.52i+L3) y(t) = (1+0.8L + 0.3L2 ) e(t)

MODEL E

(1-1.55L + 0.6L2 ) y(t) = (1+0.8L + 0.3L2) y(t)

Appendix 8 provides a listing of the roots of B(L) = 0, A(l ) = 0 

of Models (A) - (E) (and also for all other transfer functions used in 

this chapter) and from this it is clear that Models D and E possess the 

most likely roots for untransformed economic series. Figures 3.1 - 3.5 

present a plot of the squared gains of the frequency response functions 

and the spectral density function of y(t) associated with each of the

five models.



FIGURE 3.1

SPECTRAL CHARACTERISTICS OF MODEL A



FIGURE 3.2

SPECTRAL CHARACTERISTICS OF MODEL B
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FIGURE 3.3

SPECTRAL CHARACTERISTICS OF MODEL C
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FIGURE 3.]4
SPECTRAL CHARACTERISTICS OF MODEL D
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The plotted functions provide a convenient summary of the salient 

features of each model and suggest that Models A and E may be regarded 
as representative of unfiltered yearly data or deseasonalized quarterly 
data while Model D with its peak at tt/ 2  in the squared gain of the A.R. 
response function will yield a series with spectral density similar to 

a non-deseasonalized quarterly time series. The remaining two models 

are characterized by squared gain functions with peaks at tt/ 5  (Model B) 

and tt/ 3  (Model C) respectively. In the case of Model C this is not
transmitted to f ^ (A) but y(t) of Model B exhibits cycles around tt/ 5 .

Is it possible to observe actual economic time series that behave in 
this fashion? The answer to this is dependent upon the extent of prior 
filtering of the data and/or the form in which the dependent variables 
appear (except that Model B is close to the spectrum of the sunspots 
data; see Anderson [U]).

Examples of prior filtering are contained in:

(a) The Macroeconometric literature e.g. the attenuation of frequencies 
induced by differencing and the use of ratios and rates of growth 
as dependent variables.

(b) The time series literature e.g. Nerlove's spectral study of first 
differenced price data [82] and Howrey’s report of the spectra of 

variables included in the Wharton School Model [53]. There seems 
no reason to suppose that the M.A. transfer functions would be an 
unrealistic description of the error process if seasonal variation 
has been adequately removed and the specification is accurate.



116.

T a b le s  3 . 2 ,  3 .3  and 3.H p r e s e n t  t h e  summary s t a t i s t i c s  f o r  Models 

(A) -  (E) f o r  t h e  t h r e e  sam ple  s i z e s  N = 1+0, TO and 1 0 0 .  The column

h e a d in g s ( a d h e re d  t o  t h r o u g h o u t  t h e  t h e s i s )  a re

N sam ple s i z e

P True P a r a m e te r  V alues

M Mean ( S t a t i s t i c  ( a )  o f  S e c t i o n  3 .2 )

B B ias  ( S t a t i s t i c  ( c ) )

S .E .  - S t a n d a r d  E r r o r  o f  t h e  B ia s
s t a t i s t i c  (g)

B/SE - The a b s o lu t e  v a lu e  o f  t h e  r a t i o  o f  B t o  S .E .

S .D . - S t a n d a r d  D e v ia t i o n  ( s t a t i s t i c  ( b ) )

A .S , D. — A sy m p to t ic  S t a n d a r d  D e v ia t i o n

SD/ASD-
s t a t i s t i c  (d)

r a t i o  o f  SD t o  ASD
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Table 3 .2

Summary S t a t i s t i c s  f o r  Models (A) -  (E) 

Sample S ize  N = 4P

Model P M B SE B/SE SD ASP SD/ASD

A 0 .8 0.741 -0 .0 5 9 0.0180 3.28 0.1264 0.1048 1 .21
0.5 0.550 0.050 0.0241 2 .07 0.1692 0.1513 1.12

B 1 .3 1.2665 -0 .0335 0.0311 1 .08 0.2198 0.1901 l . l 6
- 0 .6 -0 .5980 0.0020 0.0296 0.07 0.2092 0.1759 1.19

0 .6 0.6256 0.0256 0.0443 O.58 0.3129 0.2183 1 .43
0 .3 0.3579 0.0579 0.0428 1.35 0.3026 0.1991 1.52

C 1 .57 1.3483 -0 .2217 0.0564 3.93 0.3989 0.3494 1.14
-1 .2 3 -0 .9435 0.2865 0.0775 3.70 0.5**79 0.4705 1 .16

0.42 0.2523 -O .I677 0.0460 3.65 0.3252 0.2636 1 .23
1 .20 1.4709 -O.2709 0.0632 4.29 0.4474 0.3578 1.25
0.62 0.9746 0.3546 0.0933 3.80 0.6598 0.5118 1 .29
0.27 0.4199 0.1499 0.0488 3.07 0.3452 0.2504 1 .3 8

D 1.031 0.9388 -0 .0922 0.0468 1 .97 0.3312 0.2816 1 .1 8
-0 .6 3 0 -0 .6037 0.0263 0.0526 0.50 0.3722 0.3373 1 .10

0.524 0.5217 -0 .0 0 2 3 0.0249 0.09 0.1763 0.1619 1 .09
0 .8 0.9046 0.1046 0.0579 1 . 8 l 0.4091 0.3137 1 .30
0 .3 0.4524 0.1524 0.0473 3.22 0.3344 0.2726 1.23

E 1.55 1.4250 -0 .1250 0.0361 3.46 0.2553 0.1772 1.44
- 0 .6 -0 .4976 0.1024 0.0351 2 .92 0.2485 0.1754 1.42

0 .8 0.9320 0.1320 0.0468 2.82 0.3310 0.2057 1 . 6 l
0 .3 0.4514 0.1514 0.0455 3.33 0.3218 0.1953 1.65
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T able 3o3

Summary S t a t i s t i c s  f o r  Models (A) -  (E)

Sample S ize  N = 70

Model P M B SE B/SE SD ASP SD/ASD

A 0 .8 0.759 -o .o i+ i 0.0129 3 .18 0.0905 0.0781+ 1.15
0 .5 O.5M* 0.01+1+ 0.0169 2 .60 0.1182 0.1131 1 .05

B 1 .3 1 .2978 -0 .0 0 2 2 0.0221+ 0.10 0.1582 0.11+37 1 .10
-0 .6 -0 .6 0 7 8 -O.OO78 0.0201+ 0 .3 8 0.11+1+1+ 0.1329 1 .09

0 .6 0.611+7 0.011+7 0 .0298 0.1+9 0.2105 0.1650 1 .2 8
0 .3 0.3135 0.0135 0.0273 0.1+9 0.1931 0.1505 1 .2 8

C 1 .57 1.1+311+ -0 .1 3 8 6 0.01+73 2 .9 3 0.331+3 0.261+2 1 .2 7
-1 .2 3 -I.0I+21 0.1879 0.0601+ 3.11 0.1+271+ 0.3558 1 .20

0.U2 0.3061 -0 .1 1 3 9 0.0329 3.1+6 0.2327 0.1993 1 .17
1 .2 0 1.3839 0.1839 0.01+78 3.85 0.3377 0.2707 1 .25
0 .62 0.8502 0.2302 0.0692 3 .33 0.1+891 0.3871 1 .26
0 .27 0.3711* 0.1011+ 0.031+2 2 .96 0.21+19 0.1893 1 .2 8

D 1.031 0.9590 -O.O720 0.0335 2 .15 0.2371 0.2139 1 .11
-0 .6 3 0 -0 .5 6 1 0 0.0690 0.0391 1 .76 0.2766 O.25I+9 1 .09

0.521+ 0.1+737 -O .0503 0.021+1 2 .09 0.1512 0.1231 1 .2 3
0 .8 0.8937 0.0937 0.01+37 2.11+ 0.3090 0.2370 1 .30
0 .3 0.3701+ O.070U 0.0389 1 .8 l 0 .2751 O.206O 1.31+

E 1 .55 1.5255 -O.02I+5 0.0199 1 .23 O.ll+lO 0.1339 1 .05
-0 .6 -0 .5 9 0 0 0.0100 0.0202 0 .50 0.11+28 0.1325 1 .0 8

0 .8 0.8380 0.0380 0.0257 1.1+8 O.1816 0.1555 1 .17
0 .3 0.3211 0.0211 0.0250 0.81+ 0.1765 0.11+76 1 .2 0
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Table 3o4

Summary S t a t i s t i c s  fo r  M odels (A) -  (E) 

Sample S iz e  N = 100

Model P M B SE_ B/SE SD ASD SD/ASD

A 0 .8 0.762 -0 .0 3 8 0.0109 3.49 0.0763 0 .0653 1 .1 7
0 .5 0.541 o .o 4 i 0.0134 3.06 0.0942 0.0942 1 .00

B 1 .3 1 .3268 0 .0268 0.0166 1 .6 l 0.1172 0.1202 0 .98
-0 .6 -0 .6034 -0 .0034 0.0147 0 .23 0.1037 0.1112 0 .93

0 .6 0.5752 -0 .0 2 4 8 0.0229 1 .0 8 0.1620 0.1380 1 .17
0 .3 0.2651 -0 .0 3 4 9 0.0220 1 .59 0.1558 0.1259 1 .24

C 1 .5 7 1.U935 -0 .0 7 6 5 0.0405 1 .89 0.2864 0.2211 1 .30
-1 .2 3 -1 .1 2 0 1 0.1099 0.0544 2 .0 2 0.3849 0.2978 1 .29

0.1+2 0.3443 -0 .0 7 5 7 0.0295 2 .5 7 0.2089 0.1668 1 .25
1 .20 1.292 7 0.0927 0.0426 2 .1 8 0.3015 0.2265 1 .33
0 .62 0.7195 0.0995 0.0592 1 .6 8 0 .4 i 87 0.3239 1 .29
0 .27 0.3142 0.0442 0.0272 1 .6 3 0.1923 0.1583 1 .21

D 1 .031 0.9563 -0 .0 7 4 7 0.0266 2 .81 0.1880 0.1792 1 .05
-0 .6 3 0 —0 . 55U1 0.0759 0.0316 2 .40 0.2232 0.2133 1 .05

0.524 0.4799 -0 .0 4 4 l 0.0149 2 .96 0.1053 0.1030 1 .02
0 .8 0.8842 0.0842 0.0336 2 .51 0.2376 0.1983 1 .20
0 .3 0.3480 0.0480 0.0324 1 .4 8 0.2288 0.1723 1 .3 3

E 1 .55 1.5369 -0 .0131 0.0162 0 .8 l 0.1144 0.1120 1 .02
-0 .6 -0 .6 0 0 7 -0 .0 0 0 7 0.0155 0 .05 0.1095 0.1109 0 .99

0 .8 0 .8178 0.0178 0.0199 0 .89 0 Oi4o6 0.1301 1 .0 8
0 .3 0.2914 -O.OO86 0.0202 0 .43 0.1428 0.1235 l . l 6
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A close examination of Tables 3.2, 3.3, and 3.*+ reveals some 

interesting features.

1. Models A and D exhibit significant biases in samples of size TO and

100 (except for a^(N = JO, 100) and $^(N = TO) of Model D)„ Walker has

derived the theoretical bias of 3^ in Model A as 0.0^22 (under the 

assumption of mean corrected data) and comparing this with the empirical 

bias it seems that the development of formulae for bias corrections may 

be of value in these models.

2. There is a strange pattern to the statistics of Model D - which is 

likely to recur - and it should be commented upon now. The biases at

sample size 40 are insignificant but become significant as the sample size 
increases. In part this may be attributed to a skewed sampling distribut­

ion in small samples making the mean a poor exclusive measure of central 

tendency as it lies a considerable distance from the mode and median.

As well as this however it will be difficult for the estimator to be 

normally distributed around the true values of the parameters because 

of the high roots of B(L) = 0: sampling fluctuation and the enforcement

of the root restriction will yield a truncated distribution. To 

judge this, Table 3.5 presents the number of replications at which the 

restriction was operative for various models and sample sizes.

Clearly the statistics of Model D will suffer most from the 

imposition of the root restriction and Models B and E the least. This 

accords with the tables in that for N > TO both of the latter models are 

well estimated. Because of the presence of the root restrictions there 

will certainly be some induced bias in the smaller samples so that we may 

hypothesize that the larger samples are a better reflection of the 

significance of biases eic.
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Table 3.3

Frequency of Use of Root Restriction 

Models B,D and E; All Sample Sizes

Sample Sizv. B D E

1+0 1+ 15 3
70 0 5 0

100 0 2 0

3. Model E which has a similar A„R„ response function to Model A and 

the M.A. response function of Model D displays significant biases only 

in the small sample of 1+0, and the improvement in the properties of the 

estimator in the transition from N = 1+0 to N = TO is quite remarkable. 

Certainly there is no evidence of the biases associated with Model A.
p-2 -2 Ee (t) 5To resolve this we note that the average R (defined as R =1- — ---—)

£y (t)

was 0.77 for Model A and 0.96 for Model E and taking this to be a crude 

signal/noise ratio the former process incorporates more "noise" than the 

latter and the extraction of the signal may require a very much greater 

number of observations. To derive some relationships we use the 

asymptotic equalities.
»V

2 1 f v i Z77f (X )dXyy l
2 tt

-7T —  TT

q
2tt

|A(X)I 
|b (x)t

so that

To be distinguished from R£ Eu^(t) 
£y2(t)

5
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R2 1 -
1 _
2 TT

1A ( X ) 1 

I B ( X ) I

In  e a r l y  e x p e r im e n ts  [88]  (by s w i t c h i n g  t r a n s f e r  f u n c t i o n  i . e .  t h e  A.R. 

became th e  M.A. and  v i c e  v e r s a )  i t  emerged t h a t  t h e  P h i l l i p s  e s t i m a t o r  was 

s e n s i t i v e  t o  t h e  r a t i o

1_
2 tt

r¥ | a ( a ) I 2

L iB(x)i2
dA.

S p e c i f i c a l l y ,  t h e  b i a s e s  were l a r g e r  t h e  s m a l l e r  t h e  r a t i o .  R e fo rm u la te d

_2 -2as an e f f e c t  upon R i t  i s  c l e a r  t h a t  t h e  t h e o r e t i c a l  v a lu e  o f  R w i l l

v a ry  w i th  t h i s  r a t i o  and i n  such  a way t h a t  a  r i s e  i n  t h e  r a t i o  w i l l
_2

i n c r e a s e  R . T h e r e f o r e  i t  i s  p r o b a b le  t h a t  t h e  s m a l l  sam ple b i a s  i s  a
_2

f u n c t i o n  o f  R i . e .  a  s i g n a l / n o i s e  r a t i o .

3o I t  i s  p o s s i b l e  t o  c o n te n d  on th e  b a s i s  o f  T a b le s  3 .2  -  3.5 t h a t  th e  

s p e c t r a l  p r o p e r t i e s  o f  each  model were a d e te r m in a n t  o f  t h e  p e rfo rm a n c e  

o f  t h e  e s t i m a t o r .  More e x a c t l y  a d i s t i n c t i o n  i s  drawn b e tw een  r e s p o n s e  

f u n c t i o n s  t h a t  a r e  complex and t h o s e  t h a t  a r e  d i f f e r e n t i a t e d  e . g .  Model 

C e x h i b i t s  an A.R» r e s p o n s e  f u n c t i o n  t h a t  i s  b o th  complex and  s h a r p l y  

d i f f e r e n t i a t e d  from  t h e  M.A. r e s p o n s e  f u n c t i o n  w h i l e  Model B i s  a l s o  

d i f f e r e n t i a t e d  b u t  s i m p l e r .  T h e r e f o r e  t h e  h y p o t h e s i s  i s  advanced  

t h a t  t h e r e  i s  a  t r a d e - o f f  b e tw e en  th e  two f a c t o r s . To b e g in  t h e  t e s t  

we n o te  t h a t  Model B i s  b e t t e r  e s t i m a t e d  i n  a l l  sam ple  s i z e s  t h a n  Model 

E and t h e  p r im a ry  d i f f e r e n c e  i n  th e  models i s  u n d i f f e r e n t i a t e d  r e s p o n s e  

f u n c t i o n s  f o r  t h e  l a t t e r .  Model C on th e  o t h e r  han d  p o s s e s s e s  complex 

d i f f e r e n t i a t i o n  and b i a s e s  o n ly  t e n d  t o  i n s i g n i f i c a n c e  in  v e ry  l a r g e  

s a m p le s .  F o r  t h e  sam ple s i z e  N = 100 t h r e e  p a r a m e te r s  h a d  s i g n i f i c a n t  

b i a s  and f o u r  h a d  a s i g n i f i c a n t l y  i n f l a t e d  v a r i a n c e  b u t  t h e  d i f f e r e n c e s
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w ere n o t g re a t  when compared to  th e  s i t u a t i o n  r u l in g  fo r  N = Uo. Model 

D p ro v id e s  a d i f f i c u l t  case  to  ju d g e . With th e  e x c e p tio n  o f  th e  sm all 

peak a t  tt/2  th e  re sp o n se  fu n c tio n s  a re  very  s im i la r  so t h a t  i t  may be 

c lo s e r  to  Model E th a n  B. A d d it io n a l ly  th e  sm a lln e ss  o f  th e  peak m ight 

le a d  to  th e  need f o r a ^ a r g e r  number o f  o b s e rv a tio n s  to  ach iev e  an adequa te  

r e s o lu t io n  s in c e  -  h e u r i s t i c a l l y  anyway -  th e  p ro p o r t io n a l  r e l a t io n s h ip  

betw een th e  number o f  periodogram  o rd in a te s  and sample s iz e  w ould h in t  

t h a t  th e  g r e a te r  th e  number and w id th  o f  p e a k s , and th e  l e s s  sh a rp  t h e i r  

d e l in e a t io n ,  th e  g r e a t e r  th e  in fo rm a tio n  lo s s  a t  any sam ple s i z e .  The 

m oral o f  th e  s e c t io n  i s  t h a t  c a u tio n  sh o u ld  be e x e rc is e d  when f i l t e r i n g  

s e r i e s  in  o rd e r  to  avo id  th e  c r e a t io n  o f  s p e c t r a  w ith  marked modes.

k.  Model D sh o u ld  be g iven  a t t e n t i o n  f o r  two re a s o n s . F i r s t l y  th e  

A.R. and M.A. t r a n s f e r  fu n c tio n s  a re  u sed  r e p e a te d ly  th ro u g h o u t th e  

rem a in d er o f  th e  c h a p te r  as c o n s t i tu e n t s  o f  ARMAX models so t h a t  we 

w ould ex p ec t to  see  some change in  th e  s t a t i s t i c s  above in  th e  t r a n s i t i o n  

to  a d i f f e r e n t  form . Secondly  th e  A.R. t r a n s f e r  fu n c tio n  was tak en  

from S a rg a n 's  s tu d y  o f  wages and p r ic e s  in  th e  U n ited  Kingdom [ 96 ] and 

m ight th e r e f o r e  be re g a rd e d  as r e p r e s e n ta t iv e  o f  th e  ty p e  o f  t r a n s f e r  

f u n c t io n  e n co u n te red  in  m o d e llin g  econom ic tim e s e r i e s .

5 . A ll o f  th e  above d is c u s s io n  has c o n c e n tra te d  upon a com parison o f  

a sy m p to tic  and sam ple moments b u t th e  e s t im a to r  sh o u ld  n o t o n ly .p o s se s s  

th e  c o r r e c t  mean and v a r ia n c e  b u t  sh o u ld  a ls o  be a s y m p to tic a lly  no rm ally  

d i s t r i b u t e d .  To t e s t  t h i s  h y p o th e s is  th e  Kolmogorov -  Smirnov D 

s t a t i s t i c  was c a lc u la te d  f o r  M cdels B and E above w ith  th e  t r u e  v a lu e s  o f  

th e  p a ram e te rs  and th e  a sy m p to tic  v a r ia n c e s  as th e  f i r s t  two moments. 

T a b le  3 .6  c o n ta in s  th e  s t a t i s t i c  f o r  th e s e  m odels.



T able 3 .6

K olm ogorov-Sm irnov D S t a t i s t i c  f o r  M odels B and E 

Model Sam ple D

L im its

1 % 0.2305 0 .2305 0.2305 0.2305
5% 0.1923 0 .1 9 2 3 0.1923 0.1923
1 0 % 0.1T25 0.1T25 0.1T25 0.1T25

B 1+0 0.0932 0.1291+ 0.1921+ 0.1555
TO 0.0685 O.O885 O.Hl+2 0.1031

100 0 . 1U66 0 .0 8 0 2 0.1T51 0.11+92

E 1+0 0 . 21+60 0.1961+ 0.23T8 0.21+99
TO 0 .1161 0 . 08l 8 0.139^ 0.1005

100 0 .1030 0.0T93 0.0915 0 .1111

Taking a s ig n i f i c a n c e  l e v e l  o f  5% th e  h y p o th e s is  o f  n o rm a lity  i s  

on ly  r e je c te d  f o r  Model E in  sam ple s iz e  1+0. T h is i s  in  agreem ent 

w ith  th e  summary s t a t i s t i c s  o f  T ab les 3 .2  -  3 .5  in  t h a t  th e  moments o f  

th e  e s t im a to r  o f  Model B p a ra m e te rs  were c lo se  to  t h e i r  a sy m p to tic  

v a lu es  in  a l l  sam ples w hereas f o r  Model E there was c o n s id e ra b le  

d iv e rg en ce  in  th e  s m a lle r  sam p les . In  g e n e ra l i t  was found t h a t  i f  th e  

f i r s t  two moments w ere n o t s i g n i f i c a n t l y  d i f f e r e n t  from t h e i r  a sy m p to tic  

v a lu e s  th e n  n o rm a lity  h e ld .  However an a p p l ic a t io n  o f  th e  D s t a t i s t i c  

to  a l l  models i s  f o i l e d  by th e  ro o t r e s t r i c t i o n s .  Almost c e r t a in ly  

th e s e  reduce  th e  numbers in  th e  t a i l s  o f  th e  e m p ir ic a l  d i s t r i b u t io n s  

and as th e  D s t a t i s t i c  depends upon th e  maximum a b s o lu te  d e v ia tio n  

betw een th e  t h e o r e t i c a l  and e m p ir ic a l  d i s t r i b u t i o n s  th e  s t a t i s t i c  i s  

b ia s s e d  tow ard an accep tan ce  o f  th e  n u l l  h y p o th e s is .  T h e re fo re  i t  i s  

e x p ec ted  th a t  th e r e  w ould be a tendency  to  a cc ep t n o rm a lity  in  sm all 

sam ples as ro o t  r e s t r i c t i o n s  a re  used  most f r e q u e n t ly  th e n  and t h i s  may
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be the explanation of the acceptance of normality when N = Ho for Model B.

6. Of the five models the asymptotic variance formulae were applicable 

for four at sample size TO and for one at the very small sample of Ho. 

However it would be unwise to extend this conclusion to all models - as 

Model C shows - and the most general principle to be extracted from this 

sub-section might be that the application of ARMA estimators to series 

with less than TO observations should be discouraged if one wishes to 

appeal to asymptotic theorems.

(ii) ARMAX Models

Models F and G are selected to illustrate the performance of the 

Phillips estimator in the context of ARMAX Models.

Model F

(1-1.031L + 0.630L2 - 0.521L3) y(t) = -0.3T5 x(t) + (1+0.8L + 0.3L2) e(t) 

Model G

(1-1.295L + 0.U28L2 ) y(t) = 1.0 x(t ) + (l + 0.5L) e(t)

The response functions associated with Model F have been discussed 

before and both of Model G have a smooth monotonically declining shape. 

The A.R. transfer function of Model G is to be found in Jorgenson’s 

study of investment demand for the Brookings Model [58]. There are 

peaks in the lag distributions implied by F 1 -t not by G (see Appendix 8 

for these and the roots).

Tables 3.T and 3.8 give the summary statistics for each of the 

models for the three sample sizes.
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T ab le  3 .7

Summary S t a t i s t i c s  f o r  Model F

N p M

A ll  Sample 

B SE

S iz e s

B/SE SD ASD~ mmmrn ' " "" ""

1+0 1 .0 3 1 1 .0 0 8 2 -0 .0 2 2 8 0.01+98 0.1+6 0 .3525 0 .2 7 9 7

-0 .6 3 0 -O .6969 -O.O669 0 .0 5 1 8 1 .2 9 0.3661+ 0 .3 3 6 0

0 . 52b 0 .5 3 7 9 0 .0 1 3 9 0.0221+ 0 ,6 2 0 .1 5 8 2 0 .1 6 0 1

-0 .3 7 5 -0.61+05 -O .2655 0 .1 1 0 7 2.1+0 0 .7 8 2 8 0.1+102

0 .8 0 .7 3 8 9 -O .0611 0 .0716 0 .8 5 O.506O 0 .3 1 2 1

0 .3 0.351+8 O.O5I+8 0 .0 5 6 8 0 .9  6 0.1+016 0 .2 7 1 6

70 1 .0 3 1 1 .0 0 5 6 -O.O25I+ 0.01+39 0 .5 8 0 .3 1 0 5 0 .2115

-0 .6 3 0 -0 .6 2 2 5 0 .0 0 7 5 0.01+1+9 0 .1 7 0 .3 1 7 3 0 .2 5 3 5

0.521+ O.I+97I+ -0 .0 2 6 6 0 .0 1 8 3 1.1+5 0.1291+ 0 .1 2 0 9

-0 .3 7 5 -0 .5 6 9 1 -0.191+1 0 .0 7 5 3 2 .5 8 0 .5 3 2 2 0 .3 1 2 0

0 .8 0 .8 2 5 3 0 .0 2 5 3 0 .0 5 3 8 0.1+7 0 .3 8 0 3 0 .2 3 5 2

0 .3 0 .3 2 5 6 0 .0 2 5 6 0.01+60 0 .5 6 0 .3 2 5 0 0.201+9

100 1 .0 3 1 O.98I+5 -O.OI+65 0.0261+ 1 .7 6 0 .1 8 6 9 0 .1 7 7 0

-0 .6 3 0 -0.581+6 O.0I+5I+ 0 .0 3 0 7 1.1+8 0 .2 1 7 3 0 .2 1 2 0

0.521+ 0 .5 0 6 1 -0 .0 1 7 9 O.Oll+O 1 .2 8 0 .0 9 9 1 0 .1 0 1 2

-0 .3 7 5 -0 .5 1 5 7 -O.1I+07 0.01+85 2 .9 0 0.31+33 0 .2 5 7 8

0 .8 0.81+83 0.01+83 0 .0 3 3 5 1.1+1+ 0 .2 3 6 7 0 .1 9 6 7

0 .3 0 .3 1 8 5 O.OI85 0 .0 3 2 7 0 .5 7 0 .2312 0 .1 7 1 3

SD/ASD

1 .2 6

1 .0 9

0 .9 9

1 .9 1

1 .6 2

1 . 1+8

1.1+7

1 .2 5

1 .0 7

1 .7 1

1 .6 2

1 .5 9

1 .0 6

1 .0 3

0 .9 8

1 .3 3

1 .2 0

1 .3 5
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Table 3.8

Summary Statistics for Model G
*All Sample Sizes

N p M B SE B/SE SD ASD SD/ASD

Ho 1.295 1.2377 -0.0573 0.0239 2.40 0.1691 0.1719 0.98
-0.428 -0.4012 0.0268 0.0209 1.2P 0.1475 0.1515 0.97
1.0 1.1690 0.1690 0.0468 3.6] 0.3310 0.3062 1.08
0.5 0.5228 0.0228 0.0320 0.71 0.2262 0.1728 1.31

70 1.295 1.2674 -O.O276 0.0199 1.39 0.l4o6 0.1300 1.08
-0.428 -0.4213 0.0067 0.0169 0.40 0.1199 0.1l4l 1.05
1.0 1.1183 0.1183 0.0366 3.23 0.2585 0.2296 1.13
0.5 >.5189 0.0189 0.0239 0.79 0.1687 0.1306 1.29

100 1.295 1.2697 -0.0253 0.0163 1.55 0.1154 0.1088 1.06
-0.428 -0.4219 0.0061 0.0140 0.44 0.0993 0.0954 1.04
1.0 1.1090 0.1090 0.0304 3.59 0.2149 0.1920 1.12
0.5 0.5220 0.0220 0.0178 1.24 0.1260 0.1093 1.15

*Although Filter A(i) was used the variance ratio was set at 100/1 
owing to the smaller roots in the A.R.

Tables 3.7 and 3.8 highlight the impact of an exogenous variable 
in that the biases evident in Model D are no longer present with Model 
F although the transfer functions are identical. Therefore it is 
likely that the results of Tables 3.2 - 3.4 set upper limits to the 
bias of an estimator and that the introduction of (positively) auto- 
correlated exogenous variables will improve the performance of the 
estimator.^ However, whilst the A.R. and M.A„ parameters are better 
estimated, that attached to the exogenous variable has high and 

significant biases in

As will become apparent later the root restrictions frequently have 
an effect that suggests superior sampling performance in samples of 
40 than 70. This is particularly noticeable for the ratio SD/ASD 
so that the reader should concentrate on the behaviour of SD in 
isolation as well as its relation to the asymptotic value.
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b o th  models and in  a l l  sam ple s i z e s .  In  c o n t r a s t  to  th e  b ia s  th e  

s ta n d a rd  d e v ia t io n  o f  t h i s  p a ram e te r  was n o t s i g n i f i c a n t l y  d i f f e r e n t  

from i t s  a sy m p to tic  v a lu e  f o r  th e  l a r g e s t  sam ple s iz e  in  e i t h e r  m odel. 

Again an a n a ly s is  o f  th e  t r i a l s  y ie ld s  th e  in fo rm a tio n  t h a t  th e  ro o t 

r e s t r i c t i o n  was e n fo rc e d  ll+, b and 1 tim es fo r  N = 1+0 , 70 and 100 f o r  

Model F and 2 ,0  and 0 f o r  Model G. The Kolmogorov -  Smirnov D 

s t a t i s t i c  i s  t a b u la te d  f o r  a l l  sam ple s iz e s  f o r  Model G in  T ab le 3 . 9 .

T able 3.9

Kolmogorov -  Smirnov D S t a t i s t i c  f o r  Model G

Model Sample

A ll

f i

Sample S ize s

D

l o
a

G 1+0 0.1863 0.1167 0 . 21+81+ 0.1210

TO 0 .l6 ll+ 0.1078 0.1882 0.1638

100 0.1562 0.0896 0.2001+ 0.1380

R e fe r r in g  to  th e  co n fid en ce  l i m i t s  o f  T able 3.6  we see  t h a t  ß^, ß^ 

and have D s t a t i s t i c s  t h a t  a re  com p atib le  w ith  n o rm a lity  when N = 100 

b u t t h a t  f o r  low er sam ples t h i s  i s  no t th e  c a s e . In  a l l  sam ples 

seems to  be non-norm al and t h i s  i s  p ro b ab ly  a consequence o f  th e  la rg e  

b ia s  n o te d  in  T ab le 3 . 8 .

3.3  M is s p e c if ic a t io n  and Lack o f  I d e n t i f i c a t i o n

M is s p e c if ic a t io n  i s  a u n iv e r s a l  problem  in  eco n o m etric  a n a ly s is  

b u t  i t  i s  a c c e n tu a te d  in  ARMA/ARMAX m odels owing to  th e  e v e r  p re s e n t  

th r e a l  o f  a la c k  o f  i d e n t i f i c a t i o n .  The two a re  r e l a t e d  in  th e  

fo llo w in g  m anner. Assume th a t  th e  model to  be e s t im a te d  i s  t r u l y
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ARMAX (p,r,q) but that an attempt is made to estimate it as ARMAX 

(p+1, r+1, q+l). Then by condition 5 of Section 1,3 the resulting 

parameters are not identified. Several models were used to explore the 

problems arising from misspecification and/or lack of identification and 

five of these are reported on below.

MODEL H

(1-1.1L + 0.3^L2 + 0.12L3) y(t) = (l+O.TTL + 0.1*L2 + 0.05L3) e(t)

MODEL I

(1-1.1L + 0.3^L2 + 0.12L3) y(t) = (1+0.8L + 0.3L2) e(t)

MODEL J

(1-1.031L+ 0.630L2 - 0.52^+L3 + O.OL1*) y(t) = -0.375 x(t) + (1+0.8L + 0.6L2) e(t) 

MODEL K

(1-1.55L + 0.6L2 + 0.0L3) y(t) = (1+0.ÖL + 0.3L2 ) e(t)

Appendix 8 contains the spectra associated with Models H and I and 

shows that the A.R. response function is quite complex. Table 3.10 

reproduces the sampling statistics for Models H and I when the sample

size is 100o



130 0

T able 3 .10

Sam pling S t a t i s t i c s  fo r  Models H and I

Sample S ize  N = 100

Model P M B SE B/SE SD ASP SD/ASD

H 1 .1 1.31+82 0 . 21+82 0.0990 2 .51 0.7001 18.52 0.04
-0 .3 4 -O .661I+ -O .321I+ 0.1321+ 2.1+3 0.9361 23.94 0 .04
-0 .1 2 0.0196 0.1396 0.061+6 2 .1 6 0.4569 11.02 0.04

0 .77 0 .5207 -0.21+93 0 .1 0 0 8 2.1+7 0.7126 18.53 0 .04
0.1+0 0.2395 -O .1605 0.0629 2 .55 0.4448 10.73 0 .04
0 .05 -O .03I+5 -0.081+5 0.0386 2 .19 0.2729 5 . 4 9 0 .0 5

I  1 .1 1 . 21+60 0 . 11+60 0.0716 2.01+ 0.5062 0.5637 0 .9 0
-0 .3 4 -0 .5 3 9 3 -0 .1 9 9 3 0.0997 2 .00 0.7051 0 .8100 0 .8 7
-0 .1 2 - o . o i + o o 0 .0800 0.0509 1 .5 7 0.3596 0.4127 0 .8 7

0 .8 0.6667 -0 .1 3 3 3 0.071+8 1 .7 8 0.5266 0.5507 0 .9 6
0 .3 0 .2097 -O .0903 O.Ql+29 2.10 0.3036 0 .2969 1 .02

T able 3 .10  i s  im p o rta n t f o r  p r e s e n t in g  a Model (Model H) t h a t  f u l f i l s  

th e  i d e n t i f i c a t i o n  c o n d itio n s  o f  C hap ter 1 i f  th e s e  a re  i n t e r p r e te d  very  

s t r i n g e n t ly  i . e .  i d e n t i c a l  common ro o ts  e t c . ,  b u t which m ight n o t be 

i d e n t i f i e d  i f  on ly  approx im ate  c o n d itio n s  a re  r e q u ir e d .  A judgem ent on 

th e  so u rce  o f  any i d e n t i f i c a t i o n  problem  i s  co m p lica ted  by th e  p o s s i b i l i t y  

t h a t  two c o n d itio n s  may have been p a r t i a l l y  v io la te d  -  th o se  r e l a t i n g  to  

th e  lo c a t io n  o f  ze ro  e lem en ts  in  th e  t r a n s f e r  fu n c tio n  and th e  p re sen ce  

o f common ro o ts  -  as th e  two f i n a l  c o e f f i c i e n t s  0 .12  and 0 .05  do no t

d i f f e r  g r e a t ly  from zero  b u t a t  th e  same tim e th e  ro o ts  o f  0 .2  in

—1 —1
b (L ) = 0 and 0 ,1  in  A(L ) = 0 a re  c lo s e .  There does n o t seem to  be 

any t e s t  f o r  d e c id in g  w hich o f  th e s e  i s  a cause o f  a la c k  o f  i d e n t i f i c a t i o n .  

Of co u rse  i f  th e re  was a com plete la c k  o f  i d e n t i f i c a t i o n  th e  l ik e l ih o o d  

w ould be f l a t  and th e  e x is te n c e  o f  some c u rv a tu re  in d ic a te d  t h a t  t h i s  was 

n o t th e  c a s e . N o tw ith s ta n d in g  t h i s  i t  was n o t ic e a b le  t h a t  s u b s t a n t i a l  

p e r tu r b a t io n s  in  th e  p a ra m e te rs  caused  on ly  a sm a ll v a r i a t io n  in  th e

l ik e l ih o o d .
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Actually Model H was responsible for a good deal of trouble as it

was one of the first, models examined and the poor performance shown in

Table 3ol0 (apparent even in samples of 200) was inexplicable until the
7notion of a mild form of non-identification was adopted0 An earlier 

report on this experiment (Pagan [88]) claimed that if the true values 

were used as starting values all biases were insignificant but the 

development of improved search routines and the construction of superior 

non-linear algorithms have invalidated this assertion« Nevertheless 

the earlier assertion is of interest as an example of the difficulties 

that may arise in the application of non-linear estimators to models 

with flat likelihoods and illustrates a danger of Monte Carlo 

experimentation with non-linear algorithms i«e« by chance initial values 

may be selected far from the true values and a flat likelihood may then 

result in a premature termination of the iterations« In such cases the 

summary statistics are adversely affected and experiments must be re-run 

with new starting values and/or new algorithms must be developed« Each 

experiment was run thrice - once with 0«L«S« estimates, m c e  with the 

true values, and once with arbitrary values as starting points« Such 

effort was generally wasteful in as much that many of these difficulties 

do not arise in empirical application or, if they do, because there is a 

need for only one trial, alternative methods of circumvention may be 

used e«g« multiple starting values«

Is it certain that the biases of Model H stem from mild non- 

identification rather than the nature of the model? Nc unequivocal reply

Asymptotically it is possible for such models to be perfectly identified 
as the range of possible values will become smaller«

7
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can be given to this query but any verdict must consider the following 

facts o

(a) The response functions of Model H are similar to those of Model B 

(in that the squared gains of the \.R0 response function are unimodal 

with the peak at roughly it/5) and us Table 3o5 shows no such biases were 
evident for the latter model*

(b) Model I, which has the same AoR. response function as Model H, also 

displays biases that are either marginally significant or insignificant 

but the asymptotic and empirical variances do not differ significantly0 

Model I has roots in both transfer functions that are quite distinct and 

non-zero final coefficients»

(c) The asymptotic covariances of Model H are quite large» If the model 

was not identified the likelihood would be flat, the second derivatives 

would be zero, and the Hessian would be singular so that one would expect 

that a mild lack of identification would lead to large entries in the 

covariance matrix»

Assuming that the above features are characteristic of an 

"unidentified” model little solace is to be gained from this example as 

the highest order coefficients do not seem unreasonable and there is no 

priori belief that such parameters (and roots) are unlikely in modelling 

economic time series» Therefore it is desirable to seek practical means 

for recognizing any lack of identification» The two most frequently 

adopted centred on special characteristics of the likelihood function in 

such a situation»

(i) At .least two sets of starting values were chosen. If the 

likelihood is flat radically different parameter sets will be associated
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with a similar likelihood and if this was found there was ar ä fortiori 

case for lack of identifieation0

(ii) An index might be constructed by exploiting the relationship 

between the covariance matrix and identification i ce 0 large entries if 

the model is not identified,, A more exact test lies in the magnitude 

of the ratio of the maximum to minimum eigenvalue of the weighting 

matrix - the most commonly used test of an ill-conditioned symmetric 

matrix (see Golub [32] ),

Fortunately (ii) seems reliable0 Two examples may be cited,
7 3Firstly Model H had an eigenvalue ratio of 10 versus 10 for all other 

asymptotic covariance matrices0 Secondly a model of the form 

(l-B^L) (l-B^L ) y(t) = (1 + a^L) (l + a^L ) e(t) was fitted to the series 

"Imputed Rent on Dwellings" (one of the five components of Australian 

personal consumption expenditure modelled in Chapter 5) and the variances 

were so much higher than found by substituting the estimated parameters 

into asymptotic formulae as to suggest a possible lack of identification0 

Subsequently it was founr1 -*;hat the series is constructed by interpolating 

annual data so that B. = = 0 presenting a classic case of non-

i dentification arising from misspecification, A spectral analysis 

confirmed this by disclosing the absence of seasonal peaks. The model was 

re-estimated successfully with the L terms deleted.

Although (i) and (ii) are suitable tests, in another context they 

may be misleading viz, when there is multicollinear!ty between the 

regressors. If this is present it is well known that (ii) holds 

(Goldberger [30]) and in Monte Carlo experiments with such data H-T have



found that (i) occurs as well, To some extent multicollinear!ty may be 

regarded as an identification problem in that it implies an inability to 

statistically distinguish different estimates and in many cases the only 

solution would be to omit lagged y's - the solution given above for the 

imputed rent example„ Incidentally this also invalidates a too hasty 

use of at least one important inferential method“ that of "overfitting” 

the model (recommended by Box and Jenkins [9]) as one might be comparing

identified and non-identified models thereby casting doubt upon the
9 8validity of any F of x statistics that would normally be formed.

Finally a simple way of distinguishing between multicollinearity and 

identification exists in ARMAX models as the addition of exogenous 

variables will aid identification but is unlikely to reduce multi­

collinearity o

Models J and K satisfy the identification requirements and thereby 

allow an exploration of the properties of the estimator under a 

misspecificationo Only the A 0R 0 is misspecified as H-T have dealt with 

misspecification of the order of the M 0A 0 at length and earlier studies 

indicated that the results were similar for both situations„ Tables 

3d l  and 3»12 contain the sampling statistics for the two models0

O

"Overfitting" is equivalent to a likelihood ratio test if performed 
properly. Obviously extending the order of all polynomials 
simultaneously will almost certainly eventually lead to a lack of 
identification and therefore this must be avoided.
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N

i+o

TO

100

T ab le  3 o l l

S am pling  S t a t i s t i c s  f o r  Model J  

A l l  Sample S i z e s

p M B SE B/SE SD ASD SD/ASD

lo031 I0O80U O0OI9U 0,0729 0 ,68 0,5515 0,31+11 1,62

0o630 -0,791+6 -O0I6U6 0,1057 1,56 0,7l+7l+ 0,5221 1,1+3

0o52l 0,6167 0o0927 0,081+7 1 ,09 0.5987 0,1+561 1,31

O o O -0  e06lU -o„o6iU 0,0U6l 1 ,33 0,3260 0,2623 1,24

0,375 -0.732U -0,357*+ 0 ,12U3 2,65 0,9531 0,1+31+5 2,19

0 o8 0,7981 -0 ,0019 0,0593 0,03 0,1+192 0,3017 1,39

0 o6 0,6532 0,0532 0,0513 loOU 0,3621+ 0,18X3 2.00

1 ,031 1 o0630 0,0320 0,0536 0.60 0,3790 0,2575 1,1+7

n 6^n -0 ,6855 -0 ,0555 0,0793 0,70 0,5610 0,391+2 1,1+2

C o 5 2 4 C .5564 0,0321* 0,061+9 0,50 0,1+596 0 c 3I+1+2 1,34

0 ,0 -0 ,0527 -0 ,0 5 2 7 0,0329 1,60 0,2325 0,1975 1 ,1 8

0o 375 -0 ,5762 -0 ,2012 0,0757 2,66 0,5352 0,3386 1 ,58

0 ,8 0,7762 -0 ,0 2 3 8 0,0627 0 ,38 0,1+392 0,2280 1 ,93

o ,6 0,6290 0,0290 0,01+38 0,66 0,3101 0,1370 2,26

1,031 1,0367 0,0057 0 , 01+21 o ,iH 0,2978 0,215U 1,38

■0,630 -0 ,6576 -0 ,0276 0,0625 0,1+1+ 0,1+1+17 0,3298 1,31+

0 0 521+ 0,5576 0,0336 0,01+79 0,70 0,3381+ 0,2879 I , l 8

O o O -0 ,0515 -0 ,0515 0,0279 1,85 0„197l+ 0,1652 l o l 9

■0,375 -0 ,5315 -0 ,1565 0,0535 2 ,93 0,3783 0,2822 lo3l+

0 ,8 0,7899 -0 ,0101 0,01+73 0,21 0,331+5 0,1908 1,75

0 ,6 0,6159 0,0159 0,0296 0,5l+ 0,2091 o,nU6 1,82
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Sam pling  S t a t i s t i c s  f o r  Model K

A l l  Sample S i z e s

N p M B SE B/SE SD ASD S D /A S D

i+o 1 .5 5 1.1+61+3 -O.O857 0 .0 6 7 3 1 .2 7 0.1+759 0 .6872 0 .6 9
- 0 .6 - 0 .5 5 6 6 0.01+31+ 0 .1085 o.i+o 0.7675 1 .1859 0 .6 5

0 . 0 0 .0 2 0 3 0 .0 2 0 3 0 . 01+81 0 . 1+2 0.31+05 0.51+07 1 .6 3
0 . 8 0 .9055 0 .1055 0 .0719 1.1+7 0 .5 0 8 3 0 .6 6 7 8 0 .7 6
0 o 3 0.1+21+5 0.121+5 0.01+95 2 . 5 2 0 .3501 0 .3926 0 .8 9

TO lo 55 1 .6209 0 .0709 0 .0650 1 .0 9 0.1+593 0 .5 1 3 8 0 .8 9
- 0„6 -0 .7 3 1 9 - 0 .1 3 1 9 0 .1089 1 .2 1 0 .7 6 0 8 0 08866 0 .8 6

0 o  0 0 .0692 0 .0692 0.01+79 1 . 1+1+ 0 .3385 0 . 1+01+2 0.81+
0 . 8 0 . 71*78 -O.O522 0 .0706 0.71* 0.1+99i+ 0.1+992 1 .0 0
0 o 3 O.27 I+5 -0 .0 2 5 5 0 .0 5 0 8 0 .5 0 0 .3 5 9 8 0.29.35 1 .2 3

100 lo55 1 .6030 0 .0530 0 .0569 0 .9 3 0 . 1+021+ 0 . 1+280 0.91+
- 0 . 6 - 0 .7122 - 0 .1122 0 .0951 1 .1 8 0 .6726 0 .7385 0 .9 1

0 .0 0 . 01+90 0.01+90 0 . 01+26 1 .1 5 0 .3011 0 .3 3 6 7 0 .8 9
0 . 8 0 .7 5 ^ 5 - O .0I+55 0 .0579 0 .7 9 0.1+099 0.1+159 0 .9 9
0 .3 0 .2 5 1 8 - 0 . 01+82 0.01+15 I .16 0 .2935 0 . 21+1+6 1 .2 0

T a b le s 3.11  and ;3.12  show t h a t  a l l b i a s e s have  r i s e n from th e

c o r r e c t l y  s p e c i f i e d  c a se  (com pare t o  T a b le s  3 . 2 ,  3o3 and 3.1+ on PP 117-119

f o r  Model K) b u t  t h i s  i s  o b s c u re d  by t h e  com plem entary  r i s e  i n  s t a n d a r d

d e v i a t i o n s  w hich  h as  g e n e r a l l y  made b i a s e s  i n s i g n i f i c a n t :  t h e  m ost

i n t e r e s t i n g  example o f  t h i s  b e in g  t h a t  o f  t h e  m i s s p e c i f i e d  p a ra m e te r

9
and t h e  s o l e  e x c e p t io n  b e in g  t h e  exogenous v a r i a b l e 0 I n  a d d i t i o n  a 

com parison  o f  t h e  a s y m p to t i c  s t a n d a r d  d e v i a t i o n s  f o r  Model K w i th  t h o s e  

f o r  Model E r e v e a l  t h a t  a l th o u g h  t h e  e x t r a  p a r a m e te r  i s  z e ro  t h e r e  has 

been  a c o n s i d e r a b l e  i n f l a t i o n  i n  t h e s e  v a r i a n c e s 0 The r i s e  i n  s t a n d a r d  

d e v i a t i o n s  h a s  b e e n  o b s e rv e d  by o t h e r  w r i t e r s 0 Hendry and T r iv e d i  

a rg u e  t h a t  t h i s  i s  t h e  p r i n c i p a l  e f f e c t  w h i l e  Hannan and N i c h o l l s ,

9 One may v a l i d l y  a rg u e  t h a t  t h e  c o r r e c t  s t a n d a r d  d e v i a t i o n s  to  ju d g e  
th e  s i g n i f i c a n c e  o f  b i a s  a r e  t h o s e  o f  t h e  c o r r e c t l y  s p e c i f i e d  m odels 
and i f  t h i s  i s  done t h e  c o n c lu s io n  w i l l  change f o r  m ost p a r a m e t e r s .
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considering it from a theoretical viewpoint, have demonstrated that 

asymptotically the standard deviations of the estimated parameters will 

be larger than those for a correctly specified model (with an exception 

being the pure M 0A o case when they are invariant)0 Another aspect of 

the variances is the slow decline in the empirical values tabulated 

aboveo This may be due to an inadequate number of replications but it is 

more likely that the root restrictions, which were applied in many more 

cases when the model was misspecified, are acting to reduce the variances 

of the parameters» By analogy with the theory of linear restrictions 

one would expect that a restricted estimator would have smaller variance 

than an unrestricted estimator and in the experiments on Models J and K 

restrictions are encountered more frequently in the smaller sample sizes0 

These considerations emphasize the need for statistics to enable 

judgements of specification both prior and posterior to estimation0 Box 

and Jenkins have propounded a number of these and in later chapters we 

will consider their use (and to some extent their usefulness)»

3„6 Rational Lags and Expectations

Two experiments serve to illustrate the impact of rational lags»

MODUL L

(1-1.295L + 0 o1+28l 2 ) y(t) = l o0 x(t) + (l-l»295L + 0 o1+28L2) e(t)

MODEL M

(l-lo55L + 0»6l2 ) y(t) = loO x(t) + (1-1.55L + 0 o6l 2) e(t)

x(t) was generated by scheme B(ii) for both Models» Tables 3»13 

and 3»1*+ list the summary statistics for the Phillips estimator applied 

to the above models when the linear restrictions between the AoR» and M 0A 0

parameters are employed and when they are ignored»
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Table 3.13
Summary Statistics for Model L

*All Sample Sizes

N_ P M B SE B/SE
R U R U R U R U

40 1.295 1.2975 1.3006 0.0025 0.0056 0.0081 0.0073 0.31 t—t—00

-0.428 -0.1+293 -0.1+318 -0.0013 -0.0038 0.0069 0.0063 0.19 o.6o
1.0 1.0005 O.993I+ 0.0005 -O.OO66 0.0125 0.0114 0.04 0.58
-1.295 -1.2975 -I.5129 -0.0025 -0.2179 0.0081 0.0256 0.31 8.51
0.428 0.1+293 0.5617 0.0013 0.1337 0.0069 0.0313 0.19 1+.27

TO 1.295 1.2961 1.2982 0.0011 0.0032 0.001+3 0.0045 0.26 0.71
-0.1+28 -0.1+286 -0.1+303 -O.OOO6 -0.0023 0.0037 0.0038 0.l6 0.6l
1.0 0.9988 0.9953 -0.0012 -O.OOI+7 0.0065 0.0068 0.l8 O.69
-lo295 -1.2961 -1.1+502 -0.0011 -0.1552 0.0043 0.0265 0.26 5.86
0.1+28 0.1+286 0.5236 0.0006 0.0956 0.0037 0.0256 0.l6 3)73

100 1.295 1.2952 1.2951+ 0.0002 0.0001+ 0.0032 0.0035 0.06 0.11
-0.1+28 -0.1+279 -0.1+281 0.0001 -0.0001 0.0027 0.0030 0.04 0.03
1.0 0.9973 0.9971+ -O.OO27 -0.0026 0.0046 0.0048 0.59 0.5U

-1.295 -I.2952 -1.3809 -0.0002 -O.O859 0.0032 0.0158 0.06 5.44
0.1+28 0.1+279 0.1+781 -0.0001 0.0501 0.0027 0.0149 0.04 3.36

*The column headed R refers to the restricted estimator and that head U
the unrestricted estimator



139

Table 3.lU
Summary Statistics for Model M 

All Sample Sizes
il p M B SI3 B/SE

R U R U R U R U

40 1 «55 I05U7I+ 1„5505 -0 »0026 0 »0085 0»0088 0 »0068 0 »30 lo25
-0»6 -0„5975 -0»6075 0»0025 -0»0075 0»008l 0 o0062 0 »31 1 „21
1.0 1»0182 0„9905 0»0182 -0»0095 0 „0203 0»0l60 0„90 0„59
-1.55 -l„5VrU -1.7176 o»oo26 -o »i676 0»0088 0.0151 0»30 11 »10
0 »6 0„5975 0»7241+ -0 »0025 0»12id 0»008l 0 »0170 0 »31 7o32

70 lo55 lo 5521 1 »5557 0 »0021 0 »0057 0»0044 o.ooUi 0»U8 lo39
-0»6 -006019 -0»605^ -0»0019 -0o005H OoOOUO 0 »0037 0»^8 1.U6
1»0 I»00l8 0»9977 0„00l8 -0»0023 0 »0095 0 »0098 0»19 0 „23
-1.55 -1.5521 -1»6903 -0»0021 -0»l403 0 o00hh 0 »0200 0.1*8 7o02
o»6 0„6019 0»7051 0»0019 0 »1051 0 a00h0 0 »0208 0.U8 5 o05

100 lo55 1.55^5 1.5531 0»00U5 0»0031 0 »0038 0»0036 l.l8 0„86
-0.6 -o„6oUi -0»6028 -0 .00U1 -0»0028 0»003U 0 »0033 1.21 0„85
1»0 0»9915 0»9938 -0»0085 -0»0062 0 »0085 0.0076 1.00 0 „82
-1.55 -1.55U5 -1„650U -0»0045 -0»100l+ 0 »0038 0»015j4 1 »18 6„52
0»6 O 060I1 O06805 O.OOUl 0»0805 0»0031+ 0»0150 1.21 5 o37

Received theory would suggest that asymptotically the principal 
difference between the estimators will be one of efficiency0 It is 
therefore of some consequence that a perusal of Tables 3 »13 and 3d^ 
identifies three differences in small samples»

(i) No clear pattern emerges regarding the biases of each estimator from 
a consideration of the A„R„ parameters but the restricted estimates of 

the MoAo parameters exhibit smaller bias in all samples»

(ii) The bias in the M»A» parameters of the unrestricted estimator is 

likely to be a function of the size of the roots of the M»A» polynomial 

and this bias is quite large even in samples of 100»
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(iii) The expected efficiency ranking has eventuated only for the M»A» 

parameters in all samples and the A»R» parameters in Model L for the 

two larger samples0 There can be no certain explanation of this but 

two factors must be considered%

(a) The theorem on efficiency rankings pertains to two unbiassed 

estimators and it is not possible to prove that this is the case for the 

above estimators0 Certainly some of the parameters are seveieLy biassedo

(b) There may be a second restriction operative in the case of the 

’’unrestricted" estimator in the form of the root restriction» Table 

3 »15 shows the number of trials for which the root restrictions were 

applied»

Table 3«,15

Frequency of Usage of Root Restrictions

Models L and M: All Sample Sizes

Model Estimator 40 TO 100

L R 0 0 0
U 42 21 8

M R 0 0 0
U 45 34 IT

We note that the restrictions are heavily used for the second 

estimator in both models with the number of applications being close 

for each model in the smallest sample» From this one might argue 

that,if the imposition of the restraints is acting to reduce the 

variances, ine most likely sample size for Model L at which there will 

be perverse behaviour is N = 40» Table 3 d 3  supports the hypothesis»
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A n o th e r  v iew  o f  t h e  p ro b le m  may be g a in e d  by a  c o m p a r iso n  o f  t h e  

a s y m p to t i c  and sam ple  v a r i a n c e s „ T a b le  3 o l6  c o n ta i n s  t h e  u s u a l  t e s t  

s t a t i s t i c  r e l a t i n g  t o  t h i s 0

Table 3 d 6

Com parison o f  A sy m p to tic  and Sample S t a n d a r d  D e v ia t i o n s

Models L and M; A l l  Sample S i z e s

Model N P R U

SD ASP sd / asd SD ASP SD/ASD

L 1+0 AR 0 o 05T l 0o0329 l.T*+ 0 o051T 0.0381 1 o36
AR 0 o0l+91 0  o03ll+ i o 5 6 0 , 0 l + * + l 0 o0321 1 o3T
EV 0 6088T 0 e052T 1 0 6 8 0 o0806 0o0538 1 , 5 0

MA 0 o05T1 0  0 O 3 2 9 1,T*+ 0 ,l8 o 8 0,1515 l o l 9
MA 0.0U91 0 o03ll+ 1 o56 0,2215 0,1509 1.1+7

T O AR 0 o030T 0,0256 1 o20 0,0315 0 00290 I 0 O 9

AR 0 „0262 0  o 0 2 l + 0 l o 09 0,0266 0,02*+*+ 1 ,0 9
EV 0 o01+5T 0 0 0U05 1 .1 3 o,o*+8o 0,0*+10 l . l T
MA 0 c 030T 0,0256 1  o 2 0 0ol8TT 0 ,1131+ I 0 6 6

MA 0 ,0262 0,021+0 l o 09 0ol809 0  o l l 23 1 . 6 l

1 0 0 AR 0  o 0 2 2 U 0  0 O 2 3 9 0 .9 ^ 0,02*+T 0 , 0 2 * + 2 l o 0 2

AR 0,0191 0 „0201 0 ,95 0 00211 0 , 0 2 0 * + l o 03
EV 0,0315 0,0339 0 ,93 0 o0338 0 ,03*+3 0 ,99
MA 0 ,022U 0,0239 0 ,9*+ 0.1115 0009!+!+ 1 . 1 8
MA 0 „0191 0 o0201 0 ,95 0 ,105*+ 0 o0935 1 .1 3

M kO AR 0 o0623 0,030*+ 2,05 0o0U78 0,0310 1.5*+
AR 0 ,05T5 0 o02T6 2  0 O 8 0,0*+93 0  0 O 2 8 2 1 °T5
EV 0 cll+35 0 o0653 2 o20 0 o ll2 9 O0O665 loTO
MA 0  0 O 6 2 3 0,030*+ 2 ,05 0„1066 0,1335 0 080
MA 0 o05T5 0 o02T6 2 ,0 8 0,1199 0  0 I 3 2 9 0 ,90

TO AR 0o0312 0,02*+*+ 1 028 0  0 O 2 9 0 0,02*+T lo lT
AR 0,0285 0 o0222 lo28 0,0262 0 o0225 l . l 6
EV 0 o06T3 0,053*+ 1 ,26 0 o0693 0,05*+0 lo28
MA 0  0 O 3 1 2 0 0 02UU 1 ,2 8 o , i *+i 6 0,1001 1.1+1
MA 0 „0285 0,0222 lo28 O olU fl 0o0996 1.1*8

100 AR 0 o0268 0 o0206 1 ,30 0 o0253 0o020T 1 ,2 2
AR 0,021+1+ 0 , 01 8 t 1 ,3 0 0 O0232 0o0188 1 ,23
EV 0,0602 0 0UU9 1.3U 0,0536 0 ,0*+53 1 ,1 8
MA 0 o0268 0,020b 1 o 30 0 o1092 0,083!+ 1,31
MA 0,021+1+ 0 o0l8T 1 o 30 0,1058 0o0830 1,2T

Table 3 „ l6  shovs th a t  th e  a sym p to tic  v a r ia n c e s  o f  th e  r e s t r ic t e d



estimator (of the A»R» parameters) are always smaller than the unrestricted 
but by a very small amount» It is not surprising then that the 

empirical variances may have a ranking that is the reverse of the 

asymptotic one if an additional assumption is imposed upon the estimators» 

These experiments lead to the conclusion that the discrepancies 

between the restricted and unrestricted estimators of the A»R» parameters 

will not be large in any sample size but that for the M»A» parameters 

considerable differences exist in both means and variances» Moreover 

the biases are such that estimation without restrictions will provide 

some idea of the approximate magnitude of the parameters and, if it is 

easiest to do this, should be done first» Subsequently substantial 

efficiency gains for the M»A» parameters are possible if the 

restrictions are appropriate»

3»7 Seasonal Models

As mentioned earlier in the chapter some experiments would be 

conducted to assess the impact of a seasonal pattern in x(t) and/or 

the disturbances. Three models were selected to reflect the type of 

equation that might arise with quarterly data»

MODEL N

p k(1-1.295L + 0»U28L ) y(t) = 1.0 x(t) + (1+0»6l )(l+0»3L ) e(t)

MODEL G/S

(1-1.295L + 0„1i28L2) y(t) = 1.0 x(t) + (1 + 0»5L) e(t)

MODEL 0

(1-0»6l )3 y(t) - (l-0»6)3 x(t) + (1 + 0»3L)(l-0»7Li|) e(t)



The second of these models should be familiar as Model G of

lh30

section 3ô + and "/S" distinguishes it as one with a seasonal pattern in 

the generated data. This pattern was achieved in the three models by- 

usage of the following filters and variance ratios„

(i) Scheme A(i) with variance ratios of 500/1 and 100/1 for Models N 

and 0 respectively«

(ii) Scheme A with 6^ = 0„99, 6^ - 0 o8, 6^ = 0 o8, 6^ = 0 and variance 

ratio of 500/1 for Model G/S«

From Appendix 8 the spectra of y(t) in Models N and 0 and x(t) in 
G/S have a peak at tt/2 and the lag distribution associated with Model 0 

is unimodal with the peak response at four quarters «

Table 3«17 embodies the summary statistics for Models N and G/S 

at all sample sizes and Table 3«18 presents these for Model 0 when

N  ̂100 0



T ab le  3 ,1 7

Summary S t a t i s t i c s  f o r  M odels N and G/S

A ll Sam ple S iz e s

Model N P M B SE_ B/SE SD ASP

N i+o 1 ,2 9 5 1.21+11+ -0 .0 5 3 6 0 .0 2 5 8 2 .0 8 0 .1825 0 .1 7 1 9
-0.1+28 -0,1+1+10 -0 .0 1 3 0 0 .0 2 9 7 0.1+1+ 0 .2 1 0 3 0.161+1+

1 .0 1 .2 6 9 7 0 .2 6 9 7 0.0961+ 2 .8 0 0 .6819 0.1+910
0 .6 O.6IO8 0 .0 1 0 8 0 .0 3 1 9 0,3!+ 0 .2 2 5 9 0 .1 5 3 9
0 .3 0.1+516 0 .1 5 1 6 0.01+32 3 .5 1 0 .3 0 5 6 0 .1 3 2 2

70 1 ,2 9 5 1 .2 7 2 0 -0 .0 2 3 0 0 .0 1 8 6 1.21+ 0 .1 3 1 8 0 .1 2 9 9
-0.1+28 -0.1+399 -0 .0 1 1 9 0.0181+ 0 .6 5 0 .1 2 9 9 0 „121+0

1 ,0 1 .1 0 6 l 0 „1061 0 .0 6 0 7 1 .7 5 0.1+290 0 .3 7 9 3
0 .6 0 .6 2 7 6 0 .0 2 7 6 0 .0 2 0 1 1 .3 7 0.11+25 0 .1 1 6 3
0 .3 0.3131+ 0.0131+ 0.0201+ 0 .6 6 o.ii+i+o 0 .0 9 9 9

100 1 ,2 9 5 1.271+2 -O .0208 0.011+7 1.1+1 0.101+2 0 .1 0 8 7
-0.1+28 -O.I+362 -O.OO82 0 .0 1 3 6 0 .6 0 0 .0 9 6 1 0 .1 0 3 7

1 .0 1 .0 8 7 2 0 .0 8 7 2 0.01+79 1 .8 2 0 .3 3 9 1 0 .3 1 9 2
0 .6 0 6209 0 .0 2 0 9 0.011+8 l . l+ l 0.101+1+ 0 .0 9 7 3
0 .3 0 .2 9 9 9 -0 .0 0 0 1 0.011+8 0 .0 1 0.101+3 0 .0 8 3 6

G/S 1+0 1 ,2 9 5 1.21+11+ -0 .0 5 3 6 0 .0 2 5 7 2 .0 9 O .I819 0 .1 7 1 9
-0.1+28 -0.1+338 -O.OO58 0 .0 2 3 5 0 .2 5 0 .1 6 6 3 0 .1515

1 .0 1.1+1+39 0.1+1+39 0 .0 8 2 9 5 .35 0 .5 8 6 1 c .3062
0 .5 0 .5 0 5 1 0 .0 0 5 1 0 .0 3 0 6 0 .1 7 0 .2 1 6 1 0 .1 7 2 8

70 1 .2 9 5 1 .2 6 1 1 -0 .0 3 3 9 0.0211+ 1 .5 8 0 .1 5 1 3 0 .1 3 0 0
-0.1+28 -O.I+258 0 .0 0 2 2 0 ,0 2 0 6 0 .1 1 0.11+53 O .lll+ l

1 .0 1 .1 9 9 3 0 .1 9 9 3 0.01+99 3 .9 9 0 .3 5 2 8 0 .2 2 9 6
0 .5 0 .5 2 5 0 0 .0 2 5 0 0 .0 2 2 0 1.11+ 0 .1 5 5 6 0 .1 3 0 6

100 1 .2 9 5 1 .2 6 3 5 -0 ,0 3 1 5 0 .0 1 8 2 1 .7 3 0 .1 2 9 0 0 .1 0 8 8
-0.1+28 -0.1+220 0 nr>60 0 .0 1 6 5 0 .3 6 0 .1 1 6 6 0.0951+

1 .0 1 .1 5 0 9 0 .1 5 0 9 0 .0 3 9 2 3 ,85 0 .2775 0 .1 9 2 0
0 .5 0 .5 2 8 6 0 .0 2 8 6 0 .0 1 8 7 1 .5 3 0.1331+ 0 .1 0 9 3

T a b le  3 .1 8

S am pling  S t a t i s t i c s  f o r  Model 0

Sam ple S iz e  N = 100

P M B SE B/SE

0 .6 0 .5 9 2 3 -0 .0 0 7 7 0 .0 0 5 9 1 .3 1
0 .3 0 .3 2 5 7 0 .0 2 5 7 0 .0 2 0 3 1 .2 7

- 0 .7 -O .7886 -0 .0 8 8 6 0 .0 1 5 3 5 .7 9

ll+l+„

SD/ASD

1 ,0 6
1 .2 8
1 .3 9
1.1+7
2 .3 1

1.01
1 .0 5  
1 .1 3  
1 .2 3  
i M
0 .9 6
0 .9 3
1 .0 6  
l o O T
1 .2 5

1 .0 6
1.10
1 .9 1
1 .2 5

l . l 6
1 ,2 7
1.5*+
1 .1 9

1 .1 9  
1 .2 2  
1.1+5 
1 .2 2

SD

0„0U l7
0.11+35
0 .1082



The results for both models N and G/S are reassuring,. There is a 

hint of substantial biases in the small sample of 1+0 but with the 

exception of y^ in Model G/S a sample of size TO should be adequate for 

the application of asymptotic theorems„ Of greatest interest in the 

Table is the smaller bias in y^ (and a variance closer to the asymptotic 

value) in Model N than in G/S: Model N being the only case encountered

where the bias of y^ was insignificant when using the Nerlove filter,, 

Model G/NS (po 1^+8) has the same transfer functions as G/S but differs 

in that Scheme A(ii) was used to produce non-stationarity in x(t)^ G/NS 

exhibits a substantial bias for yQO All in all however the transition 

to time series that have seasonal patterns does not seem to have 

affected the sampling performance of the estimator to any great extent^ 

and the conclusions reached in the preceding sections should be 

applicable to a variety of time series.

Table 3„l8 furnishes a bleaker picture„ Only the statistics for 

N = 100 are reported owing to the large bias in „ As this was 

associated with a tendency to seek a minimum to the sum of squares 

outside the boundary (in this case = l), and later it will be seen 

that the frequency of such behaviour is inversely related’ to sample size, 

there did not seem to be any benefits arising from an examination of 

a smaller sample„ The replications for which the restriction was 

enforced were Q ,10,lU,22,25,26 and 38„ To further explore this the 

median was computed to be -0„7707, the range -0„5809 to -0 o999» and 
the frequency distribution as in Table 3„19»



Table 3,19

Frequency Distribution for of Model 0.

Class Frequency

-oo < x < 0.6 0 o 02
O.OU
0oll+

0.6 < x <_ 0.65
0.65 < x <_ 0 oT
0.7 < x <_ 0.75
0.75 < x 0.8
0.8 < x <_ O .85
0.85 < x <_ 0.9
0.9 < x 0.95
0.95 < x < 1

0.20
0.l8
0.l6
0.12
0.0
O.lU

Table 3.19 epitomizes the skewed distributions found in experiments 

in which the root restrictions were enforced a large number of times.

In fact the skewness is even more accentuated than Table 3.19 

suggests if one realizes that the 7 observations in the last class all 

lie between 0.99 and 1 so that the distribution is certainly non-normal.

F irther discussion on this point is deferred until similar experiments 

in the following chapter but it is important to note that:-

(i) Neither nor 6^ are significantly biassed in this sample and the 

distributions for these are more akin to the parameters of Models N and 

G/S.

(ii) The introduction of an exogenous variable may reduce the probability 

of such an occurrence e.g. the roots in the M.A. of Model N do not differ 

greatly in modulus from those of Model T in the next chapter, yet when

N - Uo the boundary is encountered in a large number of replications 

for the latter (see Table k »6 on pl7l).



3 q8 S t a t i o n a r i t y

S t a t i o n a r i t y  h as  two a s p e c t s : -

( i )  x ( t )  may be s t a t i o n a r y  b u t  y ( t )  n o n - s t a t i o n a r y  owing t o  t h e  

p r e s e n c e  o f  u n i t  r o o t s  i n  B( l ) ,  I f  t h e s e  r o o t s  a re  known t o  be u n i t y ,  

th e n  by a p p r o p r i a t e  d i f f e r e n c i n g  o f  y ( t )  t h e  r e s u l t i n g  s e r i e s  w i l l  be  

s t a t i o n a r y  and t h e  c o n c lu s io n s  c i t e d  e a r l i e r  w i l l  a p p l y „ H-T have 

e x p lo r e d  t h e  c a se  when (unknown) u n i t  r o o t s  a r e  p r e s e n t  i n  B(L) and have  

r e a c h e d  s u b s t a n t i a l l y  t h e  same c o n c lu s io n s  as i n  s i t u a t i o n s  w here t h e  

r o o t s  l i e  s t r i c t l y  o u t s i d e  t h e  u n i t  c i r c l e  ( a l t h o u g h  as one would  e x p e c t  

t h e  b i a s e s  m ust be  l a r g e r  i f  t h e  r e s t r i c t i o n s  a r e  e n f o r c e d ) „

( i i )  x ( t )  may be n o n - s t a t i o n a r y .  As e x p la i n e d  i n  2 . 8  t h e  t h e o r e t i c a l  

d i s t r i b u t i o n s  o f  ARMAX e s t i m a t o r s  a r e  unknown b u t ,  r e l y i n g  on t h e  

a n a lo g y  w i th  c l a s s i c a l  r e g r e s s i o n ,  one i s  i n c l i n e d  t o  a l lo w  x ( t )  t o  

f o l l o w  any p a t t e r n  t h a t  conform s t o  G r e n a n d e r 's  c o n d i t i o n s  and an 

i n v e s t i g a t i o n  w i l l  be  made i n t o  t h e  s i t u a t i o n  when x ( t )  has  a  p o ly n o m ia l  

t re n d o

To e x p lo r e  t h i s  e f f e c t  t h r e e  m odels  a r e  s e l e c t e d .

MODEL P

(1 -O o6l ) 3 y ( t ) = ( 1 - 0 . 6 ) 3 x ( t ) + ( l + 0 oUL) e ( t )

MODEL G/NS

(1 -1 .2 9 5 L  + 0.1i28L2 ) y ( t ) = 1 . 0  x ( t )  + ( l  + 0 .5L )  e ( t )

MODEL F/NS

(1 -1 .0 3 1 L  + 0 .630L 2 -  0 o52Ul 3 ) y ( t ) = - 0 .3 7 5  x ( t )  + ( l + 0 o8L+0.3L) 2 e ( t ) .

The exogenous v a r i a b l e s  a r e  c o n s t r u c t e d  i n  th e  f o l l o w i n g  m anner:
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( i )  Scheme A ( i i )  w i t h  v a r i a n c e  r a t i o s  o f  100 /1  and 500 /1  f o r  Models 

P and G/NS.

( i i )  Scheme A w i th  <5̂  = 1 . 0 ,  60 = 1 . 0 ,  6  ̂ = 0 . 3 ,  6^ = -0„T  and v a r i a n c e  

r a t i o  o f  500 /1  f o r  F /N S0

T a b le  3 .2 0  s e t s  o u t  t h e  s t a t i s t i c s  f o r  P and G/NS and  T a b le  3 .2 2  

p r e s e n t s  t h e s e  f o r  F/NS.

T ab le  3 .2 0

Summary S t a t i s t i c s  f o r  Models P and G/NS

A l l  Sample S iz e s

Model

P

G/NS

N

1+0

TO

100

l + o

TO

p M B SE B/SE SD

0.6 0.5821 -0 .0 1 T 9 0 .0065 2.T5 0.01+63
0 . 1+ 0 . 1+1+1+2 0 . 01+1+2 0.0262 1 .6 9 0 .1859

0.6 0.5892 -O.OIO8 0.005*+ 2.00 0 .0 3 8 3
0 . 1+ 0 . 1+1+00 o.o i+oo 0.0191+ 2.06 0.13T5

0.6 0 .5891 -O.OIO9 0.0050 2.18 0.035T
0 . 1+ 0.1+350 0 .0350 0 .0163 2 .1 5 O.Hl+9

1 .2 9 5 1 . 2681+ - 0.0266 0.0228 1 .1T 0.1613
- 0 . 1+28 -0.1+535 -0 .0 2 5 5 0.0231+ 1 .0 9 0.1658

1„0 1 .3635 0 .3635 0.0892 1+.08 0 .6305
0 .5 0.1+990 - 0.0010 0 .0 3 5 8 0 .0 3 0.2531+

1 .2 9 5 I .2698 -O.O252 0 .0209 1.21 0.11+T6
- 0 . 1+28 -O.I+31I+ -O.OO3I+ 0 .0215 0 . l 6 0.1520
1.0 1.1T21 0.1T21 0.01+99 3.1+5 0 .3526
0 .5 0.5221 0.0221 0 . 0211+ 1 .0 3 0 .1 5 1 3

1 .295 1 .2T28 - 0.0222 0 . 0181+ 1.21 0.1301
- 0 . 1+28 -O.I+29O - 0.0010 0.0180 0.06 0.12T6
1.0 1.11+1+9 0.11+1+9 0 . 01+11+ 3 .5 0 0 .2929
0 .5 0.5260 0.0260 0.0206 1.26 0.11+5T

100



T able 3 ,21

Summary S t a t i s t i c s  f o r  Model F/NS 

A ll Sample S iz e s

N P M B SE B/SE SD

1+0 1 ,031 0,8956 -0,1351+ 0,0339 3.99 0.2398
-0 ,6 3 0 - 0 , 601+2 0 ,0 2 5 8 0,0383 0 .67 0 .2708

0»52l+ 0,1+813 -0  »01+27 0,0297 1.1+1+ 0.2101
-0 ,3 7 5 -1 ,0 7 1 9 - 0 ,6 9 6 9 0,1272 5,1+8 0.8997

0 ,8 0»89l+3 0»09l+3 0 . 01+28 2 .20 0.3028
0 ,3 0,1+583 0,1583 0.01+1+2 3 ,58 0.3129

TO 1,031 0,9337 -0 ,0 9 7 3 0 .0338 2 .8 8 0.2387
-0 ,6 3 0 -0 ,5 7 2 7 0,0573 0.0378 1 .52 0.2672

0»52l+ 0 , 1+611 -0 ,0 6 2 9 O.OT 88 3,35 0.1333
-0 ,3 7 5 -0 ,8 5 6 6 - 0 , 1+ 816 O.G677 7 .11 0.1+786

0 ,8 0„87l+0 O0O7I+O 0,0399 1 .8 5 0.2821
0 ,3 0,3756 0,0756 0,0350 2 , l6 0.21+73

100 1,031 0,91+50 -0»0860 0 .0 2 2 6 3 .8 l 0 ,1598
- 0 ,6 3 0 -0 ,5 6 2 2 0 ,0 6 7 8 0,0281 2.1+1 0.1990

0,52l+ 0,1+717 -0 ,0 5 2 3 O.Oll+l 3 .71 0 .0998
-0 ,3 7 5 -0 ,7 0 3 8 -0 .3 2 8 8 0.01+39 7.1*9 0.3106

0 ,8 0,8795 0,0795 0,0281+ 2 .8 0 0.1989
0 ,3 0 . 31*55 0,01+55 0.0275 1 .65 0.191+6

T ab les 3 ,20 and 3 ,21  p ro v id e c o n f l i c t i n g  ev id en ce on th e im pact o f

non- s t a t i o n a r i t y in  x ( t )  upon th e d i s t r i b u t i o n  o f  th e e s t i m a t o r s .

Both Models P and F/NS have s u b s t a n t i a l  b ia s e s  in  p a ram e te rs in  most

sam ple s iz e s  w hereas Model G/NS does so on ly f ° r  Y0 . Because o f  t h i s

th e re  must be some doubt about th e  perform ance o f  th e  e s t im a to r  under

what may be re g a rd e d  as r e a l i s t i c  c o n d itio n s»  C e r ta in ly  when con­

t r a s t e d  w ith  Model F (p 126),th e  s t a t i s t i c s  f o r  F/NS in d ic a te  t h a t  non- 

s t a t i o n a r i t y  in  th e  exogenous v a r ia b le  may have a very  marked e f f e c t  

upon th e  e s tim a to r»

3 o 9 D ep artu res  from N orm ality

In  t h i s  f i n a l  s e c t io n  we a re  concerned  w ith  th e  sam pling  p r o p e r t ie s  

o f  th e  P h i l l i p s  e s t im a to r  under th e  assum ption  th a t  th e  d is tu rb a n c e s
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a r e  i . i . d .  r a t h e r  th a n  n 0i „ d 0 To a c h ie v e  t h i s  o b j e c t i v e  s e r i e s  o f  

u n i fo r m ly  d i s t r i b u t e d  random numbers w ere  s u b s t i t u t e d  f o r  n o rm a l ly

d i s t r i b u t e d  numbers and t h e  p a r a m e te r s  o f  t h e  u n i fo rm  d i s t r i b u t i o n  were 

s e t  to  y i e l d  t h e  same means and v a r i a n c e s  as i n  t h e  G a u ss ia n  e x p e r im e n ts»

The m odels  s e l e c t e d  f o r  s tu d y  a r e  Models B and F and t h e  summary 

s t a t i s t i c s  a re  c o n ta i n e d  i n  T a b le  3 .22»  The r e l e v a n t  com parison  i s  

w i th  T a b le s  3 . 2 ,  3 . 3 ,  3 .4  and 3 . 6 ( p .117—199 and 1 2 6 ) „

T ab le  3 „22

Summary S t a t i s t i c s  f o r  Models B and F .
\

A l l  Sam ples S i z e s :  D i s tu r b a n c e s  i . i . d .

Model

B

F

N P M B SE B/SE SD ASD SD/ASD

h o 1 .3 1.2982 -0 .0 0 1 8 0.0302 0 .06 0.213T 0.1901 1 .12
- 0 .6 -0 .5 9 1 3 0.008T 0.0283 0 .31 0.2002 0.1T59 1 .14

0 .6 0.6563 0.0563 0.0426 1 .32 0.3016 0.2183 1 .3 8
0 »3 0 .3 1 8 t 0 .0 1 8 t 0.04T9 0 .39 0.3392 0.1991 1 .TO

TO 1 .3 1.3120 0.0120 0.0198 0 .6 l o .i4 o o 0.143T 0.9T
-0 .6 -0 .6o45 -0 .0045 0.0164 0.2T 0.1165 0.1329 0 .8 8

0 o6 0.5991 -O.OOO9 0.020T 0.04 0.1985 0.1650 1 .20
0 o3 0.28T6 -0 .0124 0.02T3 0 .45 0.1929 0.1505 1 .2 8

100 1 .3 1.2920 -O.OO8O 0.0165 0 .4 8 0.11T2 0.1202 0 .9 8
-0 .6 -O .5893 0.010T 0.0153 0 .TO 0.10T8 0.1112 0.9T

0 .6 0 »6266 0.0266 0.0250 1 .0 6 0.1T69 0.1380 1 .2 8
0 o3 0.308*1 0.0084 0.0210 0 .40 0.1485 0.1259 I .1 8

h O 1.031 0.9664 -0 .0 6 4 6 0.0585 1 .1 0 0.4134 0.2T9T 1 .4 8
-O0630 -0 .5 6 4 6 0.0654 0.0536 1 .22 0.3T92 0.3360 1 .1 3

0.524 0 .4 l l4 -0 .1 1 2 6 0.0296 3.80 n.2090 0.1601 1 .3 1
-0  o3T5 -O .4581 -0 .0 8 3 1 0.1839 0 .45 1.3002 0.4102 3 . IT

0 08 0.8T36 0.0T36 0.0T00 1 .05 o:4953 0.3121 1 .5 9
0 o3 0.3231 0.0231 0,0690 0 .33 0.48TT 0.2T16 I .8 0

TO 1.031 0.9510 -0 .0 8 0 0 0.0421 1 .90 0.29T6 0.2115 1 .4 i
- 0 o630 -0 .546T 0.0833 0.04T8 1  oT 4 0.3381 0.2535 1 .33

0.524 0.4T05 -0 .0 5 3 5 0.0210 2.55 0.1485 0.1209 1 .23
-0 .3T 5 -0 .43T 3 -0 .0 6 2 3 0.0883 0.T1 0.6241 0.3120 2 .00

0 o8 0.89T4 0.09T4 0.0469 2 .0 8 0.331T 0.2352 1 .4 l
0 .3 0.3556 0.0556 0.04T2 I .1 8 0.333T 0.2049 1 .6 3

100 1 .031 0.99T3 -0 .033T 0.0292 1 .15 0.2064 0.1TT0 1 .IT
-0 .6 3 0 -0 .6 1 0 0 0.0200 0.03T8 0 .53 0.26T4 0.2120 1 .26

0.524 0.5082 -O .O I58 0.0194 0 .8 l 0.13T4 0.1012 1 .36
-0 .3T 5 -0.40TT -0 .032T 0.0459 0.T1 0.324T 0.25TÖ 1 .2 6

0 .8 0.8504 0.0504 0.0329 1 .53 0.232T O.I96T I .1 8
0 .3 0 .3 2 6 t O.O26T 0.0312 0 .86 0.220T 0.1T13 1 .29
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A comparison of the various tables reveals that the estimator performs 

in a similar fashion when the disturbances are i.i.d. rather than n.i.d. 

Perhaps the most obvious differences are the smaller (and insignificant) 
bias of Yq and the tendency towards larger variances in the AEMAX model 
when disturbances are i.i.d. Ranged against this must be the larger 

biases of ß^, ß^, and ß^ in this model under the more general disturbance 
format suggesting the speculative conclusion that the estimator may 
perform differently for individual parameters but similarly if a 
macroscopic view is taken of the experiments. When the hypothesis that 
the means and variances of both estimators were not significantly 

different was tested it was accepted at the 5% level for all parameters 
when N = 100.

3.10 Conclusion
Chapter 3 has highlighted the distributional properties of the 

Phillips estimator in small to large samples. Most of the investigation 
has been concerned with a comparison of the sampling and asymptotic means 
and variances but some attention has been paid to the other moments.

It has been concluded that the Phillips estimator is fairly robust 
against a wide variety of model specification and data characteristics - 
although some reservation has been expressed concerning the sample size 

required for asymptotic theorems to hold when there is non-stationarity 
in the exogenous variable. If this case is disregarded it seemed that 

samples of 70-100 would be sufficient for these theorems to be used.

For smaller samples normality is unlikely and the test could be 
misleading.

10
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Appendix 7

A Critique of the Hendry and Trivedi Study 

To date the main source of information on the small sample properties 

of the Phillips estimator is the lengthy report issued by D.F. Hendry 

and P.K, Trivedi (H-T) [1+9], This report is a condensation of e number 

of earlier papers by the authors. It features a wide range of parameter 

sets for the A.R, and M.A. transfer functions and-investigates a number 

of factors such as the presence of (unknown) unit roots in B(l ) and 

multicollinearity between regressors in a model resembling a neo­

classical investment function. As such it is of great value to 

economists who are involved in the estimation of ARMAX models, but its 

utility is to some extent marred by a number of unsatisfactory aspects 

that deserve comment.

The first of these arises from statements by the authors about the 

relationship between the number of trials performed and the number 

retained for use. They say

"Individual runs which yielded ridiculous parameter estimates 

were rejected" [1+9, p,10]o

This admission highlights a crucial pioblem that is common to all 

Monte Carlo work i,e, under what circumstances is the deletion of results 

from any replication justified*. If the argument is advanced that these 

estimates violate the restrictions imposed by Conditions 1+-7 of Chapter 1 

th sn it is only proper that such beliefs should be incorporated into the 

estimation procedure rather than to impose them by mechanistic rejection, 

as adherence to the latter method will inevitably bias the estimates

computed from the retained set of numbers. In the simple case when the
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offending polynomial is only of first order the rejected values would lie 

in the tails of the distribution so that there would be a bias towards 

zero but in other casesj, although the direction of bias of the roots may 

be established, it is difficult to relate this to the parameters0 

As H-T do not state their criteria for such judgements it is 

impossible to evaluate exactly the extent and direction of bias (if any) 

that is contained in their report„ For the moment it is sufficient to 

record the attitude that the dangers inherent in a subjective evaluation 

of the worth of any individual estimate outweigh any gain from discarding 

it and for this reason all trials were utilized in the calculation of 

the statistics reported in Chapter 3»

H-T propose a regression model as a convenient mode for the analysis 

of the sampling output„ To give an example, in Part I of their paper 

the estimated biases of the parameters (0-0) are explained by a linear 

combination of a constant, the true value of the M 0A 0 parameters 

(an,a^)j and two dummy variables Z, and which are employed to account 

for sample size and the nature of the exogenous variable respectively» 

This equation is

0 - 0 = C0 + + Coa2 4 C^ZX 4 Ĉ Z2 4 V (AT.l)
T 2where E(v) = 0 E(vv ) = oy

Z1 = 0 if N = 25 Z2 = 0 if x(t) was fixed

= 1 if N = 50 = 1  if x(t) is stochastic»

For each experiment values of o. a.. , Ẑ  and Z2 are available and a 

regression on this data is designed to isolate the effects of these 

influences upon the bias vector (0-0) „



Such an approach is suggestive as the mass of data produced in 

Monte Carlo experiments is frequently difficult to digest and this allows 

the salient features of any group of experiments to be grasped within a 

familiar framework0 However although the method has great potential 

it is also true that care must be taken in the specification of (AT.l) 

if one is to interpret the regression parameters in a useful way, and 

it is at this stage that H-T appear to have erred0 Briefly the error 

originates in the unweighted measure of bias adopted0 This is 

obviously inappropriate in a stochastic context in which the absolute 

size of a variable should always be related to its standard deviation0 

Therefore in (AT.l) it is not (0-0) that should be the dependent 

variable but rather (0-0)/o^- Q ̂ i 0e0 the ratio of the bias to the 

standard error of the bias0 Recognizing this we note that even though 

the magnitude of the bias may vary with the experiment this variation 

may not be significant» The asymptotic covariance matrix derived in 

Appendix H shows that the standard error of the bias will be a function 

of the true values of all parameters in the model as well as the 

signal/noise ratio so that it is to be expected that the coefficients 

attached to these explanators in any regression would be significant» 

However the chain of causation is such as to make the result of little 

interest»

The above discussion provides a partial answer to H-T’s puzzlement 

over the significance of and in their regressions of type (AT.l).

There are other regressions in the paper which may also be criticized

1
In an early draft of Part II of their paper they stated "One would like 
to explain why the coefficients and c^ are significantly different
from zero even when the maximLm likelihood estimators are used»"
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for the type of variable included» An example lies in the variable

representing the signal/noise ratio which is a curious amalgam of variances
2 2and M»A„ parameters produced by the use of öu/°e where u(t) = ACL) e(t). 

This specification introduces a correlation between the variables of the 
regression which is entirely unnecessary and thereby reduces the extent 

to which (c q , »„ o ,ĉ ) may be ielied upon as isolating the separate 
influences of each force i.e, as far as possible good experimental design 

will require orthogonality of the regressors„
Finally it is conceivable that some of the explanation of bias may 

reside in the starting values employed by H-T» If one begins by 
setting the M»A» parameters to zero (and H-T appear to have adopted this 
strategy for some of their work) it is possible that the presence of 
local minima and/or extreme flatness of the likelihood will result in a 
convergence to estimates that are biassed toward zero, and furthermore 
it is likely that the higher the absolute value of the M»A0 parameters 
the more pronounced will this tendency be» If this is the case then 
the dependence of the bias upon the level of and might be explained 
by a failure to converge to M»L» estimates» For at least one 
experiment with collinear data the authors report multiple maxima and 

flat likelihoods»
To recapitulate the above arguments there seems some d~>ubt 

concerning the mode chosen to explain bias» Certainly the inclusion of 
a^, a2 and possibly the signal/noise ratio must be regarded with 

scepticism as the old adage "correlation does not imply causation" is 

highly relevant in this context» As the above discussion suggests 
there may be a number of causes which operate through the variables of
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the regression and unless one identifies the primary causes little of

2value will be gleaned from the exercise0 On the other hand the 

individual regression results are very useful, and apart from the 

caveat concerning the number of retained trials cannot be criticized.

2
This conclusion would be too strong if variables such as sample size 
and the nature of the regressors explained a large proportion of the 

variation in the bias. A cursory examination of the t-statistics 
for the regressions reveals that from 30-90% of the variation is 
accounted for by and a0 and the signal/noise ratio (the upper
limit being reached for the experiments of Part 3). Of course as 
we have mentioned above the possibility of non-orthogonality 
between the regressors must make such a claim inexact.
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Appendix  8

C h a r a c t e r i s t i c s  o f  Models A-U

T h is  a p p e n d ix  s e r v e s  as a  g u id e  t c  th e  models u s e d  i n  t h e

s im u l a t i o n s  o f  C h a p te rs  3 and 4 0 T a b le s  AÖ d and A8„2 c o n ta i n  th e

r o o t s  and t r a n s f e r  f u n c t i o n s  o f  a l l  models«, F o l lo w in g  t h i s  a re  g raphs  

o f

( i )  The i n v e r s e  o f  t h e  s q u a re d  g a in  o f  t h e  A.R. i , e s 1 / | b ( x) |  .

( i i )  The s q u a re d  g a in  o f  t h e  M.A«, i 3e„ j A( A) | ^ 0

( i i i )  The s p e c t ru m  o f  x ( t )  ( i f  th e  model i s  ARMAX) i . e .

( i v )  The sp e c t ru m  o f  y ( t )  i 0e 0 f  ( X ) 0
yy

I f  t h e  model i s  a p u re  M0A0 ( e „ g .  Models T and U) o n ly  f  (X) i s  

l i s t e d ,  and i f  ARMA, h u t  n o t  ARMAX, ( i ) ,  ( i i )  and ( i v )  a r e  p r e s e n t e d .  

When th e  model i s  ARMAX i t  was cus tom ary  t o  p l o t  th e  l o g a r i t h m  ( t c  b a s e  

10) o f  ( i ) ,  ( i i i )  and( i v )  so t h a t  t h e  s c a l e s  v a ry  be tw een  g r a p h s .  

A d d i t i o n a l l y ,  i n  o r d e r  t o  a v o id  c o m p u ta t io n a l  d i f f i c u l t i e s ,  f i l t e r s  

such  as ( l - L ) ( l - L ^ )  were r e p l a c e d  by ( 1 - 0 , 9 9 L ) ( l - 0 „991^) i n  th e  

c o n s t r u c t i o n  o f  f  (X)„ A lthough  an a p p ro x im a t io n ,  t h e  p ro c e d u r e
XX

s h o u ld  p r o v id e  a c o r r e c t  v i s u a l  i m p r e s s i o n „ F i n a l l y  t h e  w e ig h t in g  

f u n c t i o n s  d e s c r i b i n g  th e  l a g  d i s t r i b u t i o n  o f  s e l e c t e d  ARMAX models a re  

p r e s e n t e d .

The p a r a m e te r s  o f  T ab le  A80l  a p p ly  t o  t h e  ARMAX model 

B(L)  y ( t )  = C(L) x ( t )  + A(L) e ( t ) ,  

w i th  t h e  exogenous v a r i a b l e s  g e n e r a t e d  by 

D(L) x ( t ) = F(L)  c ( t ) a

2 2The column h ea d ed  V r e f e r s  t o  th e  v a r i a n c e  r a t i o  o / a  „e £
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Roots o f  A(L) -  B(L)=- 0 fo r Models A-U

Model B(L) A(L)

A 1.2500 -2 .0 0 0 0

B 1.0833  + 0.70221
1.0833  -  0.70221

- 1 .0  ♦ 1.52751 
- 1 .0  -  1.52751

C 1.1*930
2.2108  + 2.33351
2.2108  -  2.33351

-3.U08I+
-0 .5 5 6 0  + 1.67881 
-O.556O -  1.67881

D 1.0538
1.1280 + 1.75281
1.1280 -  1.75281

-1 .3 3 3 3  + 1.21*721 
-1 .3 3 3 3  -  1.21*721

E 1.2500
3.8333

-1 .3 3 3 3  + 1.21*721 
-1 .3 3 3 3  -  1.21*721

F 1.0538
1.1280 + 1.75281 
1.1280 -  1.75281

-1 .3 3 3 3  + 1.21*721 
-1 .3 3 3 3  -  1.21*721

0 1.5129 + 0.21851
1.5129 -  0.21851

-2 .0 0 0 0

H -5 .0 0 0 0
1.0833 + 0.70221
1.0833 -  0.70221

-10.011*7
-1 .0 0 7 3  + 0.15251 
-1 .0 0 7 3  -  0.15251

I -5 .0000
1.0833 + 0.70221
1.0833 -  0.70221

-1 .3 3 3 3  + 1.21*721 
-1 .3 3 3 3  -  1.21*721

J 1.0538
1.1280 + 1.75281 
1 .1280 -  1.75281

-0 .6 6 6 7  + 1.10551 
-0 .6 6 6 7  -  1.10551

K 1.2500
3.8333

-1 .3 3 3 3  + 1.21*721 
-1 .3 3 3 3  -  1.21*721

L 1.5129 + 0.21851
1.5129 -  0.21851

1.5129 + 0.21851
1.5129 -  0.21851

M 1.2500
3.8333

1.2500
3.8333

N 1.5129 + 0.21851
1.5129 -  0.21851

1.3512
1.3512
1.3512
1.3512

G/S 1.5129 + 0.21851
1.5129 -  0.21851

-2 .0 0 0 0

0 1.6667
1.6667
1.6667

-3 .3 3 3 3
1.0933
1.0933
1.0933
1.0933

P 1.6667
1.6667
1.6667

-2 .5 0 0 0

G/NS 1.5129 + 0.21851
1.5129 -  0.21851

-2 .0 0 0 0

F/NS 1.0538
1.1280 + 1.75281 
1.1280 -  1.75281

-1 .3 3 3 3  + 1.21*721 
-1 .3 3 3 3  -  1.21*721

Q 1.2500 -2 .0 0 0 0

R 1.0538
1.1280 + 1.75281 
1.1280 -  1.75281

-2 .0 0 0 0

3 1.5129 + 0.21851
1.5129 -  0.21851

1.1*286

T -5 .0 0 0 0
1.2571*
1.2571*
1.2571*
1.2571*

U -2 .0 0 0 0
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LAG DISTRIBUTIONS FOR VARIOUS MODELS
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CHAPTER 4

A Comparison of Some Alternative Estimators of ARMAX Models 
4,1 Introduction

Chapter 2 has described a number of estimators that are proposed 
in the econometric literature for the estimation of ARMAX models. One 

of these - the Phillips estimator - was subjected to a Monte Carlo 
investigation in Chapter 3 in an attempt to gain some appreciation of 
its small sample performance and the conditions under which it might be 
expected to perform poorly. With some reservations it seemed that if 

the estimator was applied in samples of around TO asymptotic theorems 
would hold.

This chapter will evaluate alternative estimators by the same 
technique in order to achieve a ranking to indicate which should be 
used in empirical analysis. That this ranking may be a function of 
sample size can be seen by comparing the degrees of freedom remaining 
with each estimator so that small sample biases may vary between 
estimators. The six estimators uo e examined are:-

(i) Phillips' with e* estimated (PH).
(ii) Phillips' with e* set at zero (PH/o)*.
(iii) Aitken Estimator in the Time Domain (A.T.D.).
(iv) Box-Jenkins' Estimator (B-j).

(v) Ordinary Least Squares (O.L.S.).
(vi) Aitken Estimator in the Frequency Domain (A.F.D.).

All comparisons in Sections 4.2 - 4.6 will be pairwise with the 

Phillips estimator (PH) as the Monte Carlo studies of Chapter 3 have 
highlighted its strengths and weaknesses and it can therefore serve in
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the nature of a benchmark. Furthermore, any comparison will be not only 
of distributional properties but also computational time as the latter 
will be of considerable importance to econometric exercises in which a 

wide variety of specifications must be tested. Finally Section 4.7 
analyses two economic time series and attempts to parameterize these by 
an application of the five estimators. One of the series considered 
exhibits some peculiarities that will be discussed in Chapter 6.

The development of programs for the six estimators was not a 
trivial task and it was quickly found that Monte Carlo experimentation tith 

a variety of estimators is a very time consuming occupation (particulally 
with the multiple starting -valaes used for each algorithm), so that the 
range and number of such experiments is quite limited. Nevertheless 
some attempt was made to select '’realistic” models and in general it is 
felt that the comparative results would extend to other simulations.
Where there is some doubt specific mention will be made of possible 
methods for testing this conclusion.

4.2 A comparison of A.T.D. and PH
Three ARMAX models were selected to compare A.T.D. and PH, the main 

source of variation being the shape of the squared gain of the A.R. 
response function. The models are designated as Q,R and S.

MODEL Q

(1-0.8L) y(t) = -0.3 x(t) + (1+0.5L) e(t)

MODEL R

(1-1.031L + 0.630L2 - 0.524L3) y(t) = -0.375 x(t) + (1+0.5L) e(t)



162

MODEL S

(1-1.295L + 0.1+28L2 ) y(t) = 1.0 x(t ) + (l+O.TL) e(t)

Models R and S will be familiar from Chapter 3 and as Model Q 

corresponds to a Koyck lag all are fairly typical of econometric models. 

The exogenous variable was generated by Scheme A(i) for Models Q and R 

with variance ratios of 100/1 while Model S has Scheme B(i) with 

variance ratio 1/1.

The summary statistics will be presented in a similar fashion to 

the previous chapter except that there will now be two parts: Part A 

will present the means, biases and standard errors of bias and Part B 

will give the sample and asymptotic standard deviations and the root 

mean square error (RMSE). Tables l+.l, 1+.2, and U.3 contain these 

statistics for both estimators for the above three models.
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T a b le  4 .1

Summary S t a t i s t i c s  f o r  A .T .D . and PH 

Model Q; A ll  Sam ple S iz e s

PART

N

A.

p A .T .D . PH

M B B/SE M B B/SE

4o 0 .8 0.T18 -O.O82 5.22 0.T15 -O.O85 5.12
- 0 .3 -0 .4 8 6 -O .I86 4.29 -0 .4 8 8 -O .I8 8 4.23

0.5 0 .548 0 .048 1.T5 0.546 0.046 1.T1
TO 0 .8 0.T60 -0 .0 4 0 3.96 0.T5T -0 .0 4 3 4.26

- 0 .3 -0 .3 8 5 -O.O85 4.34 -0 .3 9 2 -0 .0 9 2 4.60
0.5 0.534 0.034 1.82 0.53T 0.03T 2.14

100 0 .8 0.767 -0 .0 3 3 3.T9 O.T68 -0 .0 3 2 3.68
- 0 .3 -O.36T -O.O6T 4.01 -0 .36T -O.06T 3.94

0 .5 0.53T 0.03T 2 . TO 0.533 0.033 2.46

PART B.

N P SD SD/ASD RMSE SD SD/ASD RMSE

Uo AR 0.110 1 .15 0.13T 0.116 1 .21 0.144
EV 0.304 1 .83 0.356 0.311 1 .8 8 0.363
MA 0.192 1 .2 8 0 .198 0 .188 1 .26 0.194

TO AR 0.0T1 1 .01 0.081 0.0T1 1 .01 0.083
EV 0.13T 1 .09 0 . l 6 l 0.140 1 .11 0 .168
MA 0.131 1 .13 0.135 0.121 1.04 0.126

100 AR 0 .0 6 l 1 .03 O.O69 0 .0 6 l 1 .03 0.069
EV 0.11T 1.11 0.135 0.119 1 .13 0.13T
MA 0.096 1 .03 0.103 0.094 1 .01 0.099
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T a b le  4 .2

Summary S t a t i s t i c s  f o r  A .T .D . and PH

Model R: A ll  Sam ple S iz e s

PART A

N P A .T 0 D0 PH
M B B/SE M B B/SE

40 1.031 1.011 -0 .0 2 0 0 .58 0.995 -0 .0 3 6 1 .00
-0 .630 -0 .6T 3 -0 .0 4 3 1.00 -0 .6 5 4 -0 .0 2 4 0.65

0.52*1 0 .523 -0 .0 0 1 0.05 0.512 -0 .0 1 2 0.55
-0.3T5 -0 .602 -0 .22T 3.4T -0 .642 -O.26T 3.5T

0 .5 0.480 -0 .0 2 0 0.46 0.499 -0 .0 0 1 0 .03

TO 1.031 1.001 -0 .0 3 0 I .1 6 0.995 -0 .0 3 6 1.34
-0 .6 3 0 -0 .6 1 1 0.019 0 .58 -0 .6 1 0 0.020 0.65

0.524 0.500 -0 .024 1 .4 8 0.504 -0 .0 2 0 1 .29
-0.3T5 -0 .513 -0 .1 3 8 3.49 -0 .5 2 0 -0 .1 4 5 3.61

0 .5 0 .523 0.023 0.T5 0.52T 0.02T 0 .9 3

100 1.031 1.005 -0 .0 2 6 1.T2 1.008 -0 .0 2 3 lo59
-0 .6 3 0 - 0 .5 9 1* 0.036 1.64 -0 .59T 0.033 1 .5 8

0.52*+ 0.505 -0 .0 1 9 1.52 0.510 -0 .0 1 4 l . l 4
-0 .3T5 -0 .475 -0 .1 0 0 3.19 -0 .480 -0 .1 0 5 3.34

0 .5 0 .548 0 .048 2.42 0.538 0 .038 2 .02

PART B

SD SD/ASD RMSE SD SD/ASD RMSE

4o AR 0 .2*124 1 .32 0.2432 0.2213 1 .20 0.2242
AR 0.3005 1.14 0.3036 0.2592 0.99 0.2603
AR 0.1521 1.00 0.1521 0.1535 1.01 0.1540
EV O.U5T6 1.36 0.5108 0.5228 1.55 O.58TO
MA 0 .3 0 4 l 1 .53 0.3048 0.2404 1 .21 0.2404

TO AR 0.1803 1.31 0.1828 0.18T5 1.36 0.1909
AR 0.2288 1.1T 0.2296 0.2163 1.10 0.21T2
AR 0.113T 1.01 0.1162 0.1082 0 .96 0.1100
EV 0.2T62 l . l 4 0.3088 0.281T l . l 6 0.3168
MA 0.2153 1.45 0.2165 0.2022 1 .36 0.2040

100 AR 0.1056 0.92 0.1088 0.1015 0 .88 0.1041
AR 0.1535 0.94 0.15TT 0.1462 0 .90 0.1499
AR 0.08TT 0.93 0.089T 0.0859 0.91 0.08T0
EV 0.2192 1.11 0.2409 0.2201 1 .12 0.2439
MA 0.1388 1.12 0.1469 0.1313 1 .06 0 .1 3 6 t
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PART A 

N

40

TO

100

PART B 

40

TO

100

T ab le  4 . 3

Summary Statistics for A.T.D. and PH 
Model S; All Sample Sizes

p A.T.D. PH
M B B/SE M B B/SE

1 .2 9 5 1 .2 8 1 -O.OII+ 1 .0 6 1 .2 6 t - 0 .0 2 8 1.6T
■0.1+28 -0.1+21+ 0.001+ 0 .2 9 -O.I+1I+ 0.011+ 0 .T9
1 .0 0 .9 5 0 -O.O5O 2 .0 9 0 .9 5 2 -0.01+8 1 .9 9
0.T 0.T53 0 .0 5 3 2 .1 5 0.TT3 0 .0T3 2.TT

1 .2 9 5 1 .2 9 5 0 .0 0 0 0 .0 0 1.2T5 - 0 .0 2 0 1.1+8
■0.1+28 -0.1+16 0 .0 1 2 0 .8 6 -0.1+14 0 .0 1 4 1 .0 0
1 .0 0.9T1 -O.O29 1 .9 2 0.9T0 - 0 .0 3 0 2 .0 3
0 .T 0 .7 6 7 0 .06T 3.T6 O.T61 0 . 0 6 l 3.1+1

1 .2 9 5 1 .2 8 9 - 0 .0 0 6 0 .5 1 1 .2 8 9 - 0 .0 0 6 0 .5 3
■0.1+28 -0.1+25 0 .0 0 3 0 .2 5 -0.1+26 0 .0 0 2 0 .IT
1 .0 0.981+ - 0 .0 1 6 1 .5 5 O.98T - 0 .0 1 3 1 .2 4
0 .T 0.T3T 0.03T 2 . TO 0.T33 0 .0 3 3 2 .5 2

SD SD/ASD RMSE SD SD/ASD RMSE

AR 0 .0934 0 .8T 0 .0944 O .H 8 9 1 .1 1 0 .1222
AR 0.09T4 0 .9 1 0.09T5 O.1252 l . l 6 0 .1260
EV 0 .1692 I . l 6 0.1T64 0.1T04 I . l 6 0.1TT0
MA 0 .1T 48 1 . 4 i 0 .182T 0 .1865 1 .5 1 0 .2003

AR 0 .0 9 6 3 1 .2 0 0 .0 9 6 3 0 .0 9 5 3 1 .1 9 0.09T4
AR 0 .09T 3 1 .2 1 0 .0980 0.098T 1 .2 3 0.099T
EV 0 .1054 0 .9 6 0 .1 0 9 3 0 .1 0 4 t 0 .9 6 O.IO89
MA 0 .1246 1 o35 O ol4 l5 0 .1266 1 .3T 0 .1405

AR 0 .0 8 1 6 1 .2 2 O.0818 0 .0 8 0 9 1 .2 1 0 .0811
AR 0 .0844 1 .2 6 0 .0844 0 .0834 1 .2 5 0.0834
EV 0.0T20 0 .T9 O.OT38 0.0T40 0 . 8 l 0.0T51
MA 0 .0959 1 .2 5 0 .1 0 2 8 0 .0925 1 .2 0 0 .0982



Tables H.l, U.2 and U.3 reveal a close agreement between the two 

estimators in all samples indicating that it matters little whether e* is 

treated as a constant or a stochastic variable. For samples of size Uo 

there are some differences and a formal test for equality of means and 

variances yielded the following t and F values

(a) The highest t value was 0.65 for 3̂  of Model S.
(b) The highest F values were 1.59 of Model R), 1.6l and 1.66 
(81 and $2 of Model S) .

Only the F values are significant, and then only marginally, so that there 

is some support for the supposition that A.T.D. may be a slightly more 

efficient estimator in small samples.

Apart from the relative performance of the estimators it is 

interesting to observe the behaviour of each of the estimators individually. 

In particular the large bias on the exogenous variable noted in connection 

with the Nerlove filter in Chapter 3 is carried through here to A.T.D., 

thereby establishing that it is not peculiar to PH. Throughout the 

thesis there was an accumulation of evidence that the nature of the 

exogenous regressors was a determinant of the small sample performance 

of ARMAX estimators. However it is very difficult to design a controlled 

experiment to measure this influence as changing filter level and shape 

both affect the ’'signal/noise" ratio (R ). Nevertheless it is interest­

ing to note the behaviour of PH in the estimation of Models Q and F when 

the variance ratios are not 100/1 and 500/1 as in Tables U.l and 3.7 
(p. 126 ) and accordingly reference is made to Table ktk.



Table 4 0 4

Summary Statistics for Models Q and F
Sample Size N = 100 : Various Variance Ratios

Model Variance Ratio P M B SE B/SE

Q 1/5 0.8 0.8003 0.0003 0.0008 0.38
-0.3 -0.3001 -0.0001 0.0012 0.08
0.5 0.5119 0.0119 0.0131 0.91

F 5/1 1.031 1.0821 0.0511 0.0239 2.14
-0.630 -0.6888 -O.O588 0.0257 2.29
0.524 0.5350 0.0110 0.010H 1.06

-0.3T5 -0.3657 0.0093 0.0068 1.37
0.8 0.7607 -0.0393 0.0369 1.07
0.3 0.2782 -O.O218 0.0342 0.64

With smaller mriance ratios the bias on the exogenous variable has
all but disappeared, although there appears to have been an associated
rise in the biases of the A.R. parameters for Model F. However the
degree of emphasis to be given to the results of Table 4.4 is uncertain
as can be seen from viewing the O.L.S. estimates of 0.8001, -0.2990 i.e.

2the signal is so powerful as to swamp any noise and the computed R is
boosted to around 0.999. Therefore the relative roles of filter shape
and level are not distinct and a proper evaluation would require a great
many more experiments with differing variance ratios. In performing such

2experiments it would be necessary to decide if R should be kept in a 

"realistic" range or allowed to become very high - as in the experiments 
of Table 4.4 - bearing in mind that any decision to limit it would 
restrict the permissible variance ratios quite severely. No attempt was 
made to persue this line of enquiry owing to the demands of computer 

time but it is apparent that the nature of exogenous regressors is a
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factor that should be analysed in much greater detail,'*’

As the sample size changes the M„A, parameters vary in an odd way. 
In every instance the bias is significant in sample size 100 but not 
for the two smaller samples. To explain such behaviour for Models R 

and S we note the heavy enforcement of the root restrictions in the 
smaller samples : operating on the M.A. for Model S and the A.R. 
for Model R. No such explanation is a\ailable for Model Q, but as it 
possesses identical A.R, and M.A. transfer functions to Model A, and 

it will be recalled that PH performed poorly on the latter model (see 

p. 119), the sampling results of Table U.3 are scarcely surprising.
All sampling variances are not significantly different from their 

asymptotic values in samples of JO, so that as the sampling performance 
of A.T.D. and PH was close for all models the choice of estimator must 
be a function of other factors, the principal one being computational 
cost. Table U.5, in presenting the C.P.U. time taken for 50 
replications of Model R, provides some information on this.

Table U. 5
Computation Time for A 0ToD, and PH for Model R 

All Sample Sizes
N Estimator C.P.U. time (mins.)
Uo A.T.D. 7.1b

PH 6.82

TO A.T.D. T.TT
PH 8.92

100 A.T.D. 10.05
PH 9.98

1 Some support for the level hypothesis might be gleaned from the H-T
study in the form of the significant coefficient attached to the
"signal/noise” ratio in the bias regressions. Unfortunately, as
argued in Appendix 7, any interpretation of the parameters of these
regressions is not unique.



169.

Computationally, also, there appears to be little to choose between 

the estimators« Although this conclusion is true for Models Q,R and S 

(Table ^.5 is a fair representation of the rankings for the others) it 

was found to be misleading as the order of the M.A. increased - a result 

of the differing methods of inversion possible with each estimator.

This is best illustrated by inspecting the form of the first derivatives 

of the sum of squares function S with respect to the j'th parameter in 

the vectoV of A.R. and E.V. parameters (see equations (2.lU) and (2.17)):

= - 2ZT (MTM)_1 e (PH)
36 J j

= - 2ZT ft“1 u (A.T.D.).. j u

As M is a triangular matrix it is possible to form 35
36 for PH

J
purely by one application of recursion relations - a very fast procedure

for a computer - but such is not the case for A.T.D. as ft must be inverted

and it is NxN. Although there is some computational gain from the band

structure of ft, for an ARMA (p,q) model the number of multiplications
2performed in the inversion is of the order of q for PH and q for A.T.D. 

Clearly for the high order M.A. processes found in some monthly models, 

unless some efficient method of inverting band matrices can be found, 

A.T.D. would not be feasible.

b .3 A Comparison of PH/O and PH

Section 2.5.1 has demonstrated that asymptotically PH/O and PH

should be equivalent but there is a possibility that in small samples

the saving of q degrees of freedom will be sufficient to give a slight
12 2advantage to PH/O. For high order n^odels e.g. (l + a ^ L   ̂ ^  seems
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doubtful that the reduction in the sum of squares from fitting all e* 

would ever justify such a step, but for the case of most interest to 

this thesis i.e. quarterly data there are unlikely to be more than 

fifth order M.A. terms„

Three models are used for the comparison - Models E and F of 

Chapter 3 and Model T below,

MODEL T

y(t) = (1+0.2L) (1+0.hi}) e(t)o

Appendix 8 contains the spectral shape of Model T and this is 

reminiscent of a quarterly time series (with moderate trend) or the error 

structure arising from a quarterly series that has undergone differencing 

transformations. Tables h.6, U.7 and H.8 present the summary statistics 

for the two estimators for all three sample sizes.
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T able 1+.6

Summary S t a t i s t i c s  fo r  PH/O and PH

Model E,F and T ; Sample S iz e  N = 1+0

PART A

Model. P PH/0 PH

M B B/SE M B B/SE

T 0 .2 0 .2 0 0 1 OoOOOl OoOl 0 .1 8 6 9 -0 .0 1 3 1 0 .5 3
0.1+ 0.1+058 O.OO58 0 .2 5 0 .5 2 6 1 0 .1 2 6 1 3.1+5

E 1 .5 5 1 „1+91+7 -0 .0 5 5 3 2.01+ 1.1+250 -O.125O 3.1+6
-0  .6 -O .5629 0 ,0 3 7 1 1 .3 9 -0.1+976 0.1021+ 2 .9 2

0 .8 0.81+99 0.01+99 1.1+2 0 .9 3 2 0 0 .1 3 2 0 2 .8 2
0o3 0.31+63 0.01+63 lo 2 9 0.1+511+ 0ol5ll+ 3 .3 3

F 1 o031 1 o1351 O.lOl+l I081 1 .0 0 8 2 -0 .0 2 2 8 0.1+6
-0 .6 3 0 -0 .7 7 8 5 -O.1I+85 2 .9 0 -0 .6 9 6 9 -0 .0 6 6 9 1 .2 9

0.521+ 0 05097 -O0OIU3 Oo56 0 .5 3 7 9 0 .0 1 3 9 0 .6 2
-0 .3 7 5 -006218 -0.21+68 2.1+1+ -0.61+05 -O .2655 2.1+0

0 o8 0 o6298 -O 0I 7 0 2 2 o20 0 .7 3 8 9 -0 .0 6 1 1 0 .8 5
0 o3 0 .1895 -0  „1105 1 .5 8 0.351+8 0.051+8 0 .9 6

PART B

SD SD/ASD RMSE SD SD/ASD RMSE

T MA 0„l68U lo lO O0I68I+ 0 .1 7 5 0 1 .1 5 0 .1 7 5 5
MA 0 o l6 6 l l o l6 0 „ l6 6 2 0 .2 5 8 2 1 .8 0 0 .2 8 7 3

E AR 0 .1 9 5 6 1„10 0 .2 0 3 3 0 .2 5 5 3 1.1+1+ 0 .2 8 2 5
AR O0I888 lo 0 8 0.192*+ 0.21+85 1.1+2 0 .2 6 8 8
MA 0.21+88 1 .2 1 0 .2 5 3 8 0 .3 3 1 0 l o 6 l 0 .3 5 6 3
MA 0 .2 5 3 9 1 0 30 0 .2 5 8 1 0 .3 2 1 8 1 .6 5 0 .3 5 5 6

F AR 0 0Uo6U 1.1+5 0.1+195 0 .3525 1 .2 6 0 .3 5 3 2
AR 0 o3622 l o08 0 .3915 0.3661+ 1 .0 9 0 .3725
AR 0 .1 7 9 9 1 .1 2 0 .1805 0 .1582 0 .9 9 0 .1 5 8 8
EV 0o7 l63 lo 7 5 0 .7 5 7 6 0 .7 8 2 8 1 .9 1 0 .8 2 6 6
MA 0.51+61 1 .7 5 0 .5 7 2 0 0 .5 0 6 0 1 .6 2 0 .5 0 9 7
MA 0.1+953 1 .8 2 0 .5075 0.1+016 1.1+8 0.1+053
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T a b le  l+,7

Summary S t a t i s t i c s  f o r  PH/O and PH

PART A 

Model P

M odels E ,F and T : Sam ple S iz e  N if —
■3 O

PH/0 PH

M B B/SE M B B/SE

T 0 ,2 0 ,2 2 0 6 0 ,0 2 0 6 1 ,2 3 0 ,2 l8 0 0 ,0 1 8 0 1 ,0 6
0,1+ 0 ,3 8 1 0 -0 ,0 1 9 0 1 ,2 8 0,1+178 0 ,0 1 7 8 0 ,9 0

E 1 ,5 5 1.5U5U -0,001+6 0 ,2 7 lo5255 -0,021+5 1 ,2 3
- o „ 6 -0 ,6 1 0 1 -0 ,0 1 0 1 0 ,5 9 -0 ,5 9 0 0 0 ,0 1 0 0 0 ,5 0

0 ,8 0 ,8 0 1 0 0 ,0 0 1 0 0,01+ 0 ,8 3 8 0 0 ,0 3 8 0 1,1+8
0 ,3 0,2901+ -0 ,0 0 9 6 0,1+2 0 ,3 2 1 1 0 ,0 2 1 1 O08I+

F 1 ,0 3 1 1 ,0 7 7 0 0,0l+60 1 ,1 3 1 ,0 0 5 6 -0,0251+ 0 ,5 8
-0 ,6 3 0 -0 ,6 9 0 2 -0 ,0 6 0 2 1 ,5 6 -0 ,6 2 2 5 0 ,0075 0 ,1 7

0,52*+ 0 ,5 0 3 8 -0 ,0 2 0 2 1 ,2 1 0,1+971+ -0 ,0 2 6 6 1,1+5
-0 ,3 7 5 -0 ,5 0 8 2 -0 ,1 3 3 2 2 ,2 1 -0„5691 -0,191+1 2 ,5 8

0 ,8 0 ,7 3 0 5 -0 ,0 6 9 5 1 ,3 8 0 ,8 2 5 3 0 ,0 2 5 3 0,1+7
0 ,3 0,21+02 -0 ,0 5 9 8 1 ,3 7 0 ,3 2 5 6 0 ,0 2 5 6 0 ,5 6

PART B

SD SD/ASD RMSE SD SD/ASD RMSE

T MA 0,1181+ 1 ,0 3 0 ,1 2 0 2 0,1201+ 1,01+ 0 ,1 2 1 7
MA 0 ,1 0 5 7 0 ,9 8 0,1071+ 0 ,1 3 9 9 1 ,2 9 0,11+10

E AR 0,1221+ 0 ,9 1 0 ,1225 0,11+10 1 ,0 5 0,11+31
AR 0,1211+ 0 ,9 2 0 ,1 2 1 8 0,11+28 1 ,0 8 0,11+31
MA 0,1701+ 1 ,1 0 0,1701+ 0 , l 8 l 6 1 ,1 7 0 ,1 8 5 5
MA 0 , l 6 l 5 1 ,0 9 0 , l 6 l 8 0 ,1 7 6 5 1 ,2 0 0 ,1 7 7 8

F AR 0 ,2 8 7 1 1 ,3 6 0 ,2 9 0 8 0 ,3105 1,1+7 0 ,3115
AR 0 ,2 7 2 1 1 ,0 7 0 ,2 7 8 7 0 ,3 1 7 3 1 ,2 5 0,3171+
AR 0 ,1 1 7 9 0 ,9 8 0 ,1 1 9 6 0,1291+ 1 ,0 7 0 ,1 3 2 1
EV 0,1+257 1 ,3 6  . 0,1+1+61 0 ,5 3 2 2 1 ,7 1 0 ,5665
MA 0 ,3 5 5 0 1 .5 1 0 ,3 6 1 7 0 ,3 8 0 3 1 ,6 2 0 ,3 8 1 1
MA 0 ,3 0 9 0 1 ,5 1 0,311+7 0 ,3 2 5 0 1 ,5 9 0 ,3 2 6 0
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Table U08

Summary S t a t i s t i c s  fo r  PH/O and PH 

Models E,F and T: Sample S iz e  N = 100

PART A

Model P PH/O PH

M B B/SE M B B/SE

T 0 o2 0 o2089 O0OO89 O065 0 O2106 0 o0106 0 a75
0 oU 0 o3 6 6? -O0O333 2 o71 0 03919 - 0 „ 0 0 8 l 0 o60

E l o 55 1 . 55>H OoOOUl 0 o27 1 c5369 - 0 .0 1 3 1 0 o 8 l
-0  c6 - 0 c6172 -000172 1 021 - 0 o6007 -O0OOO7 0 o05

0 o8 0 o7877 - 0  O0123 0 o67 008178 O0OI78 0 o89
0 o3 0 o2703 -O0O297 l o 59 0 o2 9 li+ - o 0oo86 0 0i+3

F l o 031 l o 05 lU 0 0 020k O085 Oo9 8 i+5 -O0OU65 1 . 7 6
- 0 o630 - o 06635 -O0O335 1 o31 -0  o58^6 O0OU5U 1.U8

0 c52 l+ Oo5155 -O0OO85 0 o6k 0 o506 i -O0O179 1 028
- 0  o375 -O0U855 -0  0 II05 2 o55 - 0  o5157 - 0 olU 07 2o90

0c8 0 o7 6 U 2 -000358 l o 32 008^83 0 o0 U83 1 M
0 o3 0o25Ul -OoOi+59 I063 0 03185 O0OI85 0 o57

PART B

SD SD/ASD RMSE SD SD/ASD RMSE

T MA 0 o0961 l o00 O0O965 0 ol002 loOU 0 o1007
MA 0o0872 0 o96 0 o0933 O0O963 I0O6 0 o0966

E AR 0 o1067 0 o95 O0IO68 OollUU lo 0 2 0 o l l 51
AR OolOOl 0 o90 o ei o i 6 0 o l095 0 o99 0 o1095
MA 0 o l 30U lo00 0 o i3 io Ooluo6 I0O8 0 ol 4 l 7
MA 0 o l325 l o 07 O oi358 0 ol 428 1 .1 6 0 oll+31

F AR 0 0I702 O o9 6 0 o1 7 1 ^ O0I869 I0O6 0o l926
AR 0 „1813 0 b86 O o i s u u 0 o2173 l o03 0 O2220
AR 0 o0932 0„92 0 o0936 0 o0991 0„98 0 o1007
EV 0 O3069 1 .1 9 0 „3262 0 o3^33 1 o33 0 o3710
MA 0 0I923 0 o98 0 o l956 0 o2367 l o20 0 o2i+l6
MA 0 »1989 I . 1 6 0o20Ul 0 o2312 l o 35 0 o2319



Tables 4 „6, 4,7 and 4 08 illustrate the following features of the 

estimators:

(i) PH/O is a more efficient estimator than PH as a consequence of 

the restriction e* = 0 imposed by the former» There is an exception 

to the conclusion in Model F when N = 40, probably because the root 

restrictions were enforced at 16 replications for PH and at only 4 for 

PH/0„ That enforcement is a necessary, but certainly not a sufficient 

condition for a lower variance, may be seen in the example of Model T 

(Table 4,9 p»175).

(ii) Generally biases are similar for both estimators with the only 

exception being Model T (N = 100) and all models when N = 40„ The large 

bias associated with in Model T for PH/O when N = 100 is peculiar and 

it was not possible to advance any explanation of this» In contrast 

there is the large bias for the PH estimator of this parameter in the 

smallest sample and a lack of it for PH/0» Just over one half of the 

discrepancy is due to eight replications which yielded coefficient 

estimates on the unit circle for PH and these are presented in Table 4»9»

Wiiy should PH give unit roots while PH/O does not? A number of 

answers were canvassed» The first was that the behaviour is unique to 

PH, but this is easily refuted as both B-J and A 0T„D» gave the same 

results (for B-J see Table 4 0l6)0 A second explanation recognizes that 

although the distribution of the estimator must lie between -1 and 1 the 

assumption of normality gives a range of (-00,00), so there is a finite

2
Strangely A.F„D0 does not give unit roots and corresponds more closely
to PH/O than the other estimators. This will be mentioned later.
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Table ^„9

Replications for which the Root Restrictions are Enforced

Model T • N = 1+0

Replication N o 0 PH/O PH

34
18
27
32
1+3
1+5
1+7

0.77 
0 „90 
0 . 1+ 1+ 
0.56 
0.61+ 
0.51 
0.51 
0.1+9

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

probability of any estimate being outside the unit circle at a given 

replication. A measure of the magnitude of this probability comes from

where the true value of is inserted. Then (asymptotically) there is

a 95% chance that the estimate will lie in the range ± 1.9& a- „
al+

Evidence to support the hypothesis that the unit roots come from the 

tail of a continuous distribution may be deduced by observing that because 

o- is a function of N, as N-**> the probability of *5̂  coinciding with the

boundary becomes smaller, and when N equalled 70 only replication 1+ 

displayed any perverse behaviour. For N = 100 no instances were recorded. 

Contrary to this is the fact that, even if the extreme viewpoint of the 

asymptotic variances understating the small sample variances by a factor 

of two (not impossible) is adopted, it would not be sufficient to 

explain 8 out 50 estimates being greater than unity. At best it might

the (approximate) asymptotic standard deviation =
ait

explain o n e „
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Therefore there doesn't appear to be anything in the nature of the 

estimators that would provide a simple explanation of the phenomenon.

As a next step it is natural to scrutinize the data for any clues and 

this is done most conveniently by inspecting the correlogram of y(t) for 

the offending replications. As a help in analysing the correlogram we 

note two characteristics that are potentially associated with unit 

roots in the M.A.

(i) As with the variance of the estimator it is possible that the

simulated data has thrown up empirical covariances consistent with unit 

roots. An example of this occurs in Wold's analysis of Beveridge's 

wheat yield data [119 p.15^1 in which the first serial correlation 

coefficient (p ) was greater than 0.5, so that fitting a first order M.A. 

by solving the covariance equations leads to no < 1.0. In the same
A

way there is a finite probability that might be greater than 0.5

(its theoretical value when = 0.2, = 1.0). Asymptotically the

mean of the distribution of p̂  is 0.3^8 and its variance is

approximately —  so that there is a 35% chance at any replication that

p^ will be er^ater than 0.5° In fact only three of the replications

had p^ greater than 0.5 and the mean and standard deviation over fifty
v

replications were 0.286U and 0.1268, which differ substantially from
3the asymptotic values.

(ii) As •+ 1 the series y(t) should possess a correlogram reminiscent 

3
In part the discrepency between 35% (expected) and l6% (observed) is 
due to the critical size selected for p̂., This value is conditional 
on = 0.2 so that, if at any replication 0.2, it is possible

A

for the critical value of p^ to exceed 0.5» No conclusions in the 
text were altered by adjusting for this.
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of a non-stationary series i 0e0 slowly declining„ Table 4.11 presents

the correlogram of the first six lags for the replications of interest.

Table 4 „11

Correlogram of y(t) for Replications 3,4 ,l8,2T,32,43,45 and 4T

Model Ti N = 40

Replication No„ Lag

1 2 3 4 5 6

3 0.018 -0.319 -0.140 0.402 0.033 -0.151
4 0.212 -0.105 0.111 0.4l6 -O.O86 0.060

18 0.126 -0.395 -0.051 0.215 -0.121 -0.219
2T -0.043 0.053 0.112 0.415 0.083 0.044
32 -0.125 0.04T -0.110 0.252 -O.I6O -0.009
43 0.056 -0.0T4 -0.001 0.402 0.116 -0.19T
45 0.080 -0.015 0.068 0.351 -0 .I8I -0.133
4t 0.056 -0.412 -0.526 0.560 0.066 -0.228

There is no evidence in any of the correlograms to support the

hypothesis of a non-stationary series. In addition the estimated

residual variance of the errors was always close to 3.0 (the

population value) for these replications leading to the conclusion that 

the estimates of e* are dominating the series i,e, the transient 

introduced by their inclusion is more important than the other contribut­

ions. This concurs with the improved behaviour as the sample grows in 

that the transient will have a progressively smaller impact upon the 

solution to the difference equation.

A final view of the problem is contained in the sum of squares 

function for replication 26. In Fig. 4.1 the sum of squares function 

is plotted against for the 10 replications taken for convergence from

the starting value of 0.4 to the boundary of unity. The pattern that 

emerges is typical of those replications in which the root restrictions 

were enforced, in that a plateau seems to be defined around 0.T5 and
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it appears that this will be the final value, but then there is a sharp 

change in the parameters and (toward the end) the sum of squares,^

Again this supports the contention that the estimated e* are unduly 

influencing the sum of squares but it should be remembered that A.T.D. 

followed the same pattern.

Although a recitation of the features of the data from each of the 

replications has been given no solutions have emerged, making it 

necessary to consider whether the root restrictions should be incorporated 

into the estimation procedure in a more rigorous manner. Corresponding 

to the dichotomy in the theory of statistical inference there could be 

two approaches to this,

(a) In a Bayesian framework the restrictions would be imposed through 

the prior distribution of the M 0A„ parameters. This seems to have been 

done successfully by Zellner and Geisel [125] in the context of a first 

order A,R, in the disturbances but obviously the numerical integration 

required will become exceedingly complex as the number of parameters 

grow, and it is dubious whether the technique can become of practical 

use in the face of the large number of parameters found in many 

econometric models. Additionally there is the complication that the

k Struik has found this for the Box and Jenkins' airline data as well 
(when only 9 years of data were used) and he comments that the ",,,, 
minimum of the sum of squares occurred in the vicinity of the 
boundary,,,,but that there was some suggestion of an inflection of 
the surface in the neighbourhood of a = 0,U, a, = 0,6,"
[102 p,l4], 1
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analytical relationship between root and parameter restrictions is not 

easy to determine once the order of polynomials becomes greater than 

tWOo

(b) The classical approach would center around Barnard's mean 

likelihood estimator [6]„ Jenkins and Watts [55 pd9^-195] apply this 

to first and second order AoR„'s, and for the first order case give a 

numerical example in which the M 0L 0 estimate of 0o9 is changed to 0 o86o 

Unfortunately, when there are n parameters, two n-fold integrations 

must be performed with the limits of integration being determined by the 

boundary condition so that this solution has the same disadvantages as 

(a) aboveo

Our conclusion must be pessimistic„ There seems no good reason 

for the odd behaviour of PH, AoT^Do and B-J and there are no simple 

modifications to guard against it„ The strange behaviour of the 

estimators must make them suspect until future research can provide some 

rationale for the observed patterns0

Having strayed from the PH/O, PH comparison it is now time to 

return in order to discuss the computational advantages of the former 

estimatoro Table ^ 012 contains the C 0P 0Uo time for 50 replications

of Models E and T 0
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Table 4,12

Computation Time for PH/0 and PH 

Models E and T : All Sample Sizes

Model Sample CoP,Uo Time (Mins,)

PH/0 PH
E b O 2,T2 5 o03

TO 2,85 5 o01
100 3,4t 6,00

T 4o 1,06 5.9*i
TO 1,69 6, it

100 1.8 6 8,05

From Table 4,12 is is apparent that PH/0 is a faster algorithm

than PH, Most of the speed is gained from the smaller number of

iterations necessary to reach the minimum, and as a general principle 

the number of iterations was related to the number of parameters to 

be estimated. Allied with Tables 4,6 - 4,8, Table 4,12 provides a 

powerful incentive for the use of PH/0 in almost all sample sizes 

that are found with quarterly time series and certainly justifies its 

adoption for model specification. Although the roots in the M,A, of 

the models were not high - and therefore PH/0 should perform well - the 

strange results obtained with PH when the roots are large,leaves it 

open to doubt as well.

4,1+ A Comparison of 0,L,S, and PH

As shown in Chapter 1 0,L,S, has a number of non-optimal properties 

in large samples when a M,A, is present in the disturbance process viz, 

loss of efficiency when the equation was ARMAX (o,r,q) and 

inconsistency when ARMAX (p,r,q), and an evaluation of the size of each 

indicated that these could be quite substantial, For small samples the



p o s i t io n  i s  n o t so c l e a r ,  in  t h a t  th e  com bination  o f  a c o n s id e ra b le  

g a in  in  deg rees o f  freedom  and th e  pow erfu l minimum v a r ia n c e  tendency  o f  

O .L .S . found by o th e r  r e s e a rc h e r s  , may r e a c t  to  p roduce a s m a lle r  RMSE 
th an  th e  M0L 0 e s t im a to r .

To a s se s s  th e  sm a ll sample e f f e c t s  th r e e  models were chosen -  

Models A, D and Gc The b a s is  f o r  s e le c t io n  o f  th e  f i r s t  two was th e  

r e l a t i v e l y  poor perform ance o f  PH in  t h e i r  e s t im a t io n  so th a t  th e  

com parison w i l l  be fa v o u ra b le  to  O .L .S . , w h ile  th e  l a s t  model re p re s e n ts  

a more r e a l i s t i c  c a s e 0 T ab les 4 „13, 4„ l4  and 4 .15  c o n ta in  th e  summary 

s t a t i s t i c s .

T able 4 .13

181.

PART A
Model

A
D

G

PART B

A

D

Summary S t a t i s t i c s  f o r  O0 L 0 S» and PH

p

Models A, D and G : Sample S ize  N = 40

O.L.S. PH

M B B/SE M B B/SE

0 .8 0.8550 0.0550 5 .9 8 0.741 -0 .0 5 9 3 .28

1.031 1.4941 0.4631 25 .87 0.9388 -O.O922 1 .9 7
-0 .6 3 0 -1 .1 3 5 2 -0 .5 0 5 2 30.07 -O06037 0.0263 0 .50

0,524 0.5882 0.0642 4 .69 0.5217 -0 .0 0 2 3 0 .09

1,295 1.4522 0.1572 11.39 1.2377 -0 .0 5 7 3 2 .40
-0 ,4 2 8 -0 .5825 -0 .1545 12 .98 -0 ,4 0 1 2 0.0268 1 .2 8

1 .0 0.9077 -O .0923 2 .82 1.1690 O.169O 3.6i

SD SD/ASD RMSE SD SD/ASD RMSE

AR 0.0648 0 .60 0.0850 0.1264 1 .21 0.1395

AR 0.1262 0 .45 o.48oo 0.3312 1 .1 8 0.3438
AR 0.1188 0 .35 0.5190 0.3722 1 .10 0.3731
AR 0.0970 0 .60 0.1163 0.1763 1 .09 0.1763

AR 0.0977 0 .57 0.1850 0.1691 0 .9 8 0.1785
AR 0.0841 0 .56 0.1759 0.1475 0 .97 0.1499
EV 0.2315 0 .76 0.2492 0.3310 1 .0 8 0.3716

G
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Table U 014

PART A 

Model P

Summary Statistics for O.L .So and PH

Models A, D and G : Sample Size N = 70

O.L.S. PH

M B B/SE M B B/SE

A 0.8 0.8662 0.0662 10ol8 0.759 -0.04l 3.18
D 1.031 1.5263 0.1+953 33.24 0.9590 -O.O72O 2.15

-0.630 -1.1510 -0.5210 36.43 -0.5610 0.0690 1.76
0.524 0.57*+8 0.0508 4.66 0.4737 -O.O503 2.09

G 1.295 1.4849 0.1899 17.26 1.267*+ -O0O276 1.39
-0.428 -0.605*+ -0.177*+ 18.87 -0.4213 0.0067 0.40
1.0 0 085*18 -0.1452 5.69 I.II83 0.1183 3.23

PART B
SD SD/ASD RMSE SD SD/ASD RMSE

A AR 0.046l 0.59 0.0807 0.0905 1.15 0.0993
D AR 0.1051 0.49 0.5063 0.2371 loll 0.2478

AR 0.1011 0.40 0.5307 0.2766 1.09 0.2851
AR 0.0773 0.63 0.0925 0.1512 1.23 0.1593

G AR 0.0775 0,60 0.2051 0.l4o6 1.08 0.1433
AR 0.0666 0.58 0.1895 0.1199 1.05 0.1200
EV 0ol806 0.79 0.2317 0.2585 1.13 0.2843
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T able 1+.15

Summary S t a t i s t i c s  f o r  0 oLoSo and PH 

Models A, D and G : Sample S ize  N = 100

PART A 

Model P 0 oil oS 0 PH

M B B/SE M B B/SE

A 0 .8 O0868o o 0o68o 1 1 .5 3 0.762 - 0 .038 3.1+9

D 1 .0 3 1 lo 5 2 5 3 0.1+91+3 1+2 025 0 .9 5 6 3 -O.O7I+7 2 . 8l
- 0.630 - I0 IH 72 -0 .5 1 7 2 I+60I8 -0.551+1 0 .0759 2 . 1+0

0 . 52*+ 0.5762 0 o0522 6 .21 0.1+799 - 0 . 01+1+1 2 .9 6

G 1 .2 9 5 1 . 1+900 0 ol950 2 0 .9 7 1 .2 6 9 7 - 0 .0 2 5 3 1 .5 5
- 0 . 1+28 -0  .6088 -O .1808 22.32 -0.1+219 0 .0 0 6 l 0 . 1+1+

1„0 0.81+31 -0  0I569 7 .3 0 1.1090 0 .1090 3 .5 9

PART B

SD SD/ASD RMSE SD SD/ASD RMSE

A AR 0 oOUlU 0 063 0 .0796 0 .0 7 6 3 1 .1 7 0.0852

D AR 0 .0 8 2 8 0 . 1+6 0.5012 0.1880 1 .0 5 0 .2 0 2 3
AR 0 o0792 0 o37 0 .5232 0.2232 1 .0 5 0 .2 3 5 7
AR 0 .0592 0 o57 0 .0789 0 .1 0 5 3 1 .0 2 O.Hl+2

G AR o 0o66o 0 o6 l 0 .2059 0.II5I+ 1 .0 6 O .H 8 I
AR 0 .0575 o 06o 0 .1 8 9 7 0 .0 9 9 3 1 . 01+ 0 .0995
EV 0 0I521 0 o79 0 .2185 0.211+9 1 .12 0 . 21+10

I t  i s  a r e l a t i v e l y  sim ple  ta s k  to  draw co n c lu s io n s  from T ab les 

1+.13-1+.15 as th e  summary s t a t i s t i c s  r e t a i n  th e  same ran k in g s  f o r  a l l

sample s i z e s 0 The p r in c ip a l  item s o f  i n t e r e s t  a re :

(a) The pow erfu l minimum v a r ia n c e  p ro p e r ty  o f  0oLoS o i s  in  ev idence  

fo r  a l l  sam ples and models and u n d e r s ta te s  th e  v a r ia n c e  o f  th e  M.L. 

e s t im a to r  by a f a c to r  in  th e  v i c i n i t y  o f  tw o 0 T his le a d s  to  a sm a lle r  

RMSE fo r  O .L .S , th a n  PH fo r  a number o f  p a ram e te rs  -  3^ o f  Model A,

3^ o f  Model D, and o f  Model G b u t in  th e  l i g h t  o f  th e  f a c t  t h a t  th e



f i r s t  two models (and y^ o f  Model G) were no t e s t im a te d  very  a c c u r a te ly  

t>y PH t h i s  i s  h a rd ly  s u r p r i s i n g 0 In  S e c t io n  1„5 Model A was f e a t u r e d  

in  d e r iv in g  th e  a sym pto tic  in c o n s i s t e n c y  and form ula  v a r ia n c e  o f  0 oLoS o 

When N = 100 th e  t h e o r e t i c a l  in c o n s i s t e n c y  i s  O0O85 and th e  e f f i c a c y  

r a t i o  i s  2 015o Both o f  th e s e  v a lu es  a re  b ro a d ly  in  agreement w i th  

Table H015 im ply ing  t h a t  th e  fo rm ula  and a c t u a l  v a r ia n c e  o f  0 oL BS o may 

be much c l o s e r  in  ARMA models th an  was th e  case  when exogenous v a r i a b l e s  

were p r e s e n t 0

(b) The b ia s e s  in  0 eL oS o a re  very  s i g n i f i c a n t  and show l i t t l e  v a r i a t i o n  

w ith  sample s i z e 0 Moreover th e  b i a s e s  te n d  to  c a n c e l ,  th e re b y  hav ing  

th e  e f f e c t  t h a t  a l th o u g h  th e  in d i v id u a l  pa ram ete rs  a re  p o o r ly  e s t im a te d  

t h e i r  sum i s  n o t , and t h i s  may mean t h a t  s t a t i s t i c s  such as th e  average 

la g  a re  r o b u s t  a g a in s t  a u t o c o r r e l a t i o n P

(c )  To some e x te n t  th e  models s e l e c t e d  are  fav o u ra b le  to  0 oL oS o 

can be e x p la in e d  by o b se rv in g  t h a t  th e  M0L 0 e s t im a to r  m inim izes

S = I
J

I v, ( x . i ) ' B (x .i)'2

| A(Xj ) | 2

This

w h ile  OoLoSo minimizes

s= \ V xj)|B(xj)|2°
The r e l a t i o n s h i p  o f  th e  0 oL oSo e s t im a te  to  th e  M.L. e s t im a te  w i l l  

th en  be a fu n c t io n  o f

2
( i )  The f l a t n e s s  o f  th e  d is tu rb a n c e  spectrum  i 0e 0 i A( A) | 0 I f  th e  

d is tu rb a n c e  i s  w h ite  n o is e  th e  spectrum  i s  f l a t  and 0 oL oSc i s  f u l l y

5 The co n c lu s io n  co nce rn ing  th e  sum h e ld  f o r  a l l  models f i t t e d  by 0 0L«So
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e f f i c i e n t  as eq u a l w e ig h tin g  i s  th e n  g iven  to  each o f  th e  d is tu rb a n c e  

periodogram  o r d in a t e s . I f  th e  spectrum  i s  n o t f l a t  an eq u a l w e ig h tin g  

w i l l  be i n c o r r e c t .  For th e  s im u la te d  models o f  t h i s  s e c t io n  th e  r a t i o
Q

o f  I A( X) !  ̂ a t  f re q u e n c ie s  0 and tt a re  9 /1  (Models A and G) and 17 /1  (Model 

D ), w hich i s  n o t a g r e a t  d e p a r tu re  from a un ifo rm  spectrum .

o f  i t s  power c o n c e n tra te d  n e a r  th e  o r ig in  so t h a t  i t  i s  o n ly  n e c e ssa ry  

to  d is c o v e r  w hether | a ( x) |  i s  f l a t  ov er a r e l a t i v e l y  sm all band  n e a r  th e  

o r ig in  and , t h i s  b e in g  th e  c a s e , O .L .S .  w i l l  be c lo se  to  th e  M.L. e s t im a te .  

When th e re  a re  peaks in  th e  d is tu rb a n c e  spectrum  (say  a t tt/2 )  O .L .S .  w i l l  

be c o n s id e ra b ly  w orse th a n  th e  M.L. e s t im a to r  (see  S e c tio n  1 . 5 )»  

prom pting  th e  co n c lu s io n  t h a t  th e  smooth m o n o to n ica lly  d e c l in in g  

d is tu rb a n c e  s p e c t r a  u sed  in  th e  experim en ts  above w i l l  r e s u l t  in  a b ia s  

in  fav o u r o f  O .L .S .

4 .5  A Comparison o f  B -J and PH

These e s t im a to rs  were d is c u s se d  in  S e c tio n  2 . 5 . 4  and an e v a lu a t io n  

o f  each in  th e  c o n te x t o f  a f i r s t  o rd e r  M.A. was g iv e n . In  t h i s  s e c t io n  

a number o f  m odels o f  g r e a te r  com plex ity  w i l l  be s im u la te d  v iz .  Models 

E ,F  and T. The cho ice  was c o n d itio n e d  by th e  f a m i l i a r  s p e c t r a l  p r o p e r t ie s  

o f  E and F and th e  need  to  s tu d y  th e  p e rv e rs e  b eh av io u r o f  B -J in  

e s t im a t in g  Model T f o r  N = 40 . I n i t i a l l y  one su p p o s i tio n  was t h a t  i f  i t  

was th e  e s t im a t io n  o f  e* t h a t  was a cc o u n tab le  f o r  th e  t r a i t  i t  m ight be 

avo ided  by an in c lu s io n  o f  e* in  th e  o b je c t iv e  fu n c tio n  m inim ized  i . e .  i t  

was p o s tu la te d  t h a t  becau se  ( f o r  PH) S was on ly  an i n d i r e c t  fu n c tio n  o f  

e* th e se  e s t im a te s  m ight be th e  cause o f  th e  sum o f  sq u a re s  fu n c tio n  

h av in g  a minimum a t  th e  boundary . T ab les 4 . l 6 ,  4 .1 7  and 4 .1 8  c o n ta in

th e  r e s u l t s  f o r  a l l  th r e e  m o d e ls„
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T able 4 0l6

Summary S t a t i s t i c s  f o r  B-J and PH

Models E, F and T : Sample: S ize  N

0

1 
»

PART A

Model P B-J PH

M B B/SE M B B/SE

E lc 55 1.4346 -0.1154 3.82 1.4250 -O.I25O 3.46
-Oo 6 -0 5 0 6 5 0.0935 3.20 -•0.4976 0.1024 2.92

0 o8 0.9339 0.1339 3.38 0.9320 0.1320 2.82
0.3 0.4549 0.1549 3.74 0.4514 0.1514 3.33

F 1 o031 0.9800 -O0O510 0.94 1.0082 -0 .0228 0.46
-0 0630 -0.6507 -0.0207 0.38 -■0 06969 -O.O669 1.29

0.524 0.5119 -0.0121 0.46 0.5379 0.0139 0.62
-0.375 -0.6962 -0.3212 2.85 -•0.6405 -O.2655 2.4o

0 08 0.8160 0 .0 l6 0 0.22 0.7389 -O.O61I 0.85
0.3 0.3786 0.0786 1.19 0.3548 0.0548 0.96

T 0 „2 0.2103 0.0103 0.42 0.1869 -0.0131 0.53
C.4

\
0.5013 0.1013 2.98 0.5261 0.1261 3.45

PART B

SD SD/ASD RMSE SD SD/ASD RMSE

E AR 0.2136 1.21 0.2428 0.2533 1.44 0.2825
AR 0.2063 1 .18 0.2265 0.2485 1.42 0.2688
MA 0.2801 1.36 0.3104 0.3310 1 .6 l 0.3563
MA 0.2929 1.50 0.3313 0.3218 1.65 0.3556

F AR 0.3832 1.37 0.3866 0.3525 1.26 0.3532
AR 0.3905 I . l 6 0.3910 0.3664 1.09 0.3725
AR 0.1862 l . l 6 0.1866 0.1582 0.99 0.1588
EV 0.7980 1.95 0.8602 0.7828 1.91 0.8266
MA 0.5174 1.66 0.5176 0.5060 1.62 0.5097
MA 0.4662 1.72 0.4728 0 .40 l6 1.48 0.4053

T MA 0.1737 l„ l4 0.1740 0.1750 1.15 0.1755
MA 0.2403 1 .68 0.2608 0.2582 I .8 0 0.2873
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PART A 

Model

E

F

T

PART B

T ab le  4 .1 7

Summary S t a t i s t i c s  f o r  B -J and PH 

M odels E , F and T ; Sam ple S iz e  N -  70

P B -J PH

M B B/SE M B B/SE

lo55
- 0 o6

0 . 8
0 .3

lo5252 -0 .0 2 4 8 lo 3 2 lo5255 -0.021+5 lo 2 3
-0 .5 8 9 7 0 .0 1 0 3 0.5*+ -0 .5 9 0 0 OoOlOO 0 .5 0

0 .8 3 5 5 0 .0355 lo39 008380 0 0O380 I0U8
O.3185 0 .0185 0 .7 5 0o 3211 0o0211 0.81+

1 .0 3 1 1 .0 1 7 1* -0 .0 1 3 6 0 .3 3
-0 .6 3 0 -O .6325 -O0OO25 0 .0 6

O.52I+ 0.4981+ -0 .0 2 5 6 1 .5 0
-0 .3 7 5 -0.51+33 -0 .1 6 8 3 2 .5 6

0 .8 0.8081+ 0.0081* 0 ,1 7
0 .3 0 .3 0 6 0 0 .0 0 6 0 O.ll*

1 .0 0 5 6 -0.0251* 0 .5 8
-0 .6 2 2 5 0 .0075 0 .1 7

0.1*971* -O0O266 1.1*5
-O .5 6 5 I -0 .1 9 4 1 2 .5 8

0 .8 2 5 3 0 .0 2 5 3 0.1*7
0 .3 2 5 6 0 .0 2 5 6 0 .5 6

0 02 
0 .4

0 .2 2 0 2 0 .0 2 0 2
0.1*119 0 .0119

SD SD/ASD

0 .1 3 3 3 1 .0 0
0 .1 3 5 2 1 .0 2
0 .1 8 0 1 1 .1 6
0.171*2 1 .1 8

0 .2 8 8 8 1 .3 7
0 .3 0 5 7 1 .2 1
0 .1 2 0 7 1 .0 0
0.1*652 1.1*9
0 .3 5 6 6 1 .5 2
0.3071* 1 .5 0

0 .1 2 0 2 I.OU
O.H9I* 1 .1 0

1019 0 .2 1 8 0
0 .7 0 0.1*178

RMSE SD

0 .1355 0 „11*10
0 .1355 0.1.1*28
0 .1835 O0I816
0 .1 7 5 2 0 .1765

0 .2 8 9 1 0 .3 1 0 5
0 .3 0 5 7 0 .3 1 7 3
0 .1 2 3 3 0.1291*
0.1*91*7 0 .5 3 2 2
0 .3 5 6 7 0 .3 8 0 3
0.3071+ 0 .3 2 5 0

0 .1 2 1 8 0.1201*
0 .1 2 0 0 0 .1 3 9 9

0o0 l80  1 »06
O0OI78 0o90

SD/ASD RMSE

1 .0 5 0.11*31
1 .0 8 0 dl* 31
1 -1 7 0 .1 8 5 5
1 .2 0 0 .1 7 7 8

1.1*7 0 .3115
1 .2 5 0.3171*
1 .0 7 0 .1 3 2 1
1 .7 1 O.5665
1 .6 2 0 .3 8 1 1
lo 5 9 0 .3 2 6 0

loOU 0 .1 2 1 7
1 .2 9 0 .1 4 1 0
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T ab le  4 .l8

Summary S t a t i s t i c s  f o r  B -J and PH 

M odels E a F and T ; Sam ple S iz e  N = 100

PART A

Model P B-J PH

M B B/SE M B B/SE

E lo55 1.5^08 -0.0092 0.58 1.5369 -0.0131 O08I
-0 .6 -0.6042 -O.OOi+2 0.28 -0.6007 -0.0007 0.05

o e8 0.8096 0.0096 0.1+9 0.8178 0.0178 0.89
0.3 0.2856 -0.011+1+ 0.73 0.2911+ -0.0086 0.43

F 1„031 0.9837 -O.Oi+73 1.71+ 0.981+5 -0.0465 1.76
-0 .630 -0.5879 0.01+21 1.31 -0.5846 0.01+54 l„i*8

0.5?*+ 0.5008 -0.0232 1.58 0.5061 -0.0179 1.28
-0.375 -0.5155 -0.11+05 3.00 -0.5157 -0 .l4 0 7 2.90

0 .8 0 .846 l 0.01+61 1.37 0.8483 0.0483 1.44
0 .3 0.3211+ 0.0211+ 0.65 0.3185 0.0185 0.57

T 0.2 0.2112 0.0112 0.83 0.2106 0.0106 0.75
0.4 0.3867 -0.0133 1.01+ 0.3919 -O.OO81 0.60

PART B

SD SD/ASD RMSE SD SD/ASD RMSE

E AR 0.1116 1.00 0.1119 0.1144 1.02 0.1151
AR 0.1060 0.96 0.1060 0.1095 0.99 0.1095
MA 0.1372 1.05 0.1375 0 .l4 o 6 1.08 O0IU17
MA 0.1395 lo l3 0.11+02 0.1428 l . l 6 0.1431

F AR 0.1925 1.09 0.1982 0.1869 1.06 0.1926
AR 0.2276 1.07 0.2315 0.2173 1.03 0.2220
AR 0.1039 1.03 0.1061+ 0.0991 0.98 0.1007
EV 0.3310 1.28 0.3596 0.3433 1.33 0.3710
MA 0.2383 1.21 0.21+27 0.2367 1.20 0„24l6
MA 0.2320 1.35 0.2330 0.2312 1.35 0.2319

T MA 0.0954 0.99 0.0960 0.1002 1.04 0.1007
MA 0.0907 1.00 0.0916 0.0963 I0O6 0.0966
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The tables reveal that the differences between the estimators are 

not very great in any sample0 Conclusions on the significance of biases 

are similar for both estimators and a t-test performed on the equality 

of means reveals no case in which the null hypothesis is rejected at a 

10% levelo For variances and RMSE the ranking is not clear0 B-J has 

a smaller variance and RMSE for Models E and T in all sample sizes but 

the ranking based on Model F fluctuates, with PH having smaller variance 

for all parameters when N = i+0 and all except Yq when N = 1000 For 

N = TO B-J dominateso A test for equality of variances reveals that the 

F value is not significant at the 3% level for any experiment but that 

values around l ĉ 6 were obtained for Model E when N = 40o The evidence 

from the tables leads to the conclusion that the inclusion of e* in the 

objective function will not affect the distributions greatly, and what 

is more important, will not provide an escape from the quandry raised 

by Model T 0

U06 A Comparison of AcF0Do and PH

Three models are selected for the comparison of this section - 

Models A, T and U below.

MODEL U

y(t) = (1 + 0,5L) e(t).

The basis ol choice resides in the trade-off between the number of 

replications and parameters if a fixed computational burden is assumedo 

As the number of function evaluations required to form the Hessian was

— (where k is the number of parameters) and each evaluation 

computed ^/2 cosine terms the computational cost of A 0F 0D 0 could become
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heavy for quite small k. It was felt that the better alternative was 
to perform 50 replications rather than adopt more realistic models 
although Model T was selected mainly to investigate whether A.F.D. would 
display the peculiar behaviour of the time domain estimators0 The 
results of all experiments are reported in Tables 1.19* 1.20 and 1.21.

Table 4„19
Summary Statistics for AoFoD, and PH

PART A 

Model P

Models A, T and U : Sample Size N = lo

A.FoD. PH

M B B/SE M B B/SE

A 0 o8 0.7223 -0.0777 5o01 O.7II -0.059 3.28
0o 5 0oUU3T -0.0563 2.18 0.550 0.050 2.07

T 0,2 0ol908 -O.OO92 0.38 0.1869 -0.0131 0.53
0.1 0.3750 -O.O25O loll 0.5261 0.1261 3.15

U 0o5 0.1857 -0.0113 0.61 0.5208 -0.0208 0.85
PART B

SD SD/ASD RMSE SD SD/ASD RMSE

A AR 0.1091 1.0I 0ol3ll 0.1261 1.21 0.1395
MA 0.1602 I.06 O0I698 0.1692 1.12 0.1761

T MA 0.1691 loll 0.1693 0.1750 1.15 0.1755
MA 0.1518 1.08 0.1568 0.2582 1.80 0.2873

U MA O.1651 1.21 0.1657 0.1725 1.26 0.1736
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T able *+.20

Summary S t a t i s t i c s  f o r  A .F .D . and PH

PART A 

Model P

Models A, T and U % Sample S ize  N = 70

A .F.D . PH

M B B/SE M B B/SE

A 0o8 0 . 73*+8 -O.O652 1+.76 0 .759 - o .o i+ i 3 .18
0 .5 0 .5291 0 .0291 1 . 1+3 0 . 51+1+ 0.01+1+ 2 .60

T 0 .2 0 . 217*+ 0 . 017*+ 1 .0 7 0.2180 0o0l80 1 .06
0.1+ 0 . 3*+96 - 0 . 050*4 2 .30 O.I+178 0.0178 0 .9 0

U 0 .5 0.5018 0.0018 0 .1 2 0.5280 -O.O28O 1 . 81+

PART B

SD SD/'ASD RMSE SD SD/ASD RMSE

A AR 0.0969 1.21+ 0.1176 0 .0905 1 .1 5 0 .0 9 9 3
MA 0 . 11+33 1 .2 7 Ooli+62 0.1182 1 .0 5 0.1261

T MA 0 .1159 1.01 0.1170 0.1201+ 1.01+ 0 .1217
MA O0IO3I+ 0 .9 6 0.1150 0 .1399 1 .2 9 0.11+10

U MA 0.1172 1 .1 3 0.1172 0.1076 1.01+ 0.1112
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T able 4 021

Summary S t a t i s t i c s  f o r  AoFoD, and PH

PART

Model

A

P

Models A, T and U ; Sample S ize  N = 100

A0F 0D. PH

M B B/SE M B B/SE

A 0 o8 o .7476 -0 .0524 4 0 56 0.762 -0 .0 3 8 3 .49
0 .5 0.4945 -0 .0 0 5 5 0 .35 0.541 0.041 3o06

T 0 .2 0.2069 0.0069 0 .51 0 .2106 0 .0106 0 .75
o.U 0.3557 -0 .0 4 4 3 3 .85 0 .3919 -O.OO8I 0 .6 0

U 0 .5 0.5114 0.0114 0 .95 0.5240 -0 .0 2 4 0 1 .8 8

PART B

SD SD/ASD RMSE SD SD/ASD RMSE

A AR 0 .0817 1 .25 0.0970 0.0763 1 .1 7 0 .0 8 5 2
MA 0.1100 1 .1 7 0.1101 0.0942 1 .0 0 0.1027

T MA 0.0962 1 .00 0.0964 0.1002 1.Ö4 0.1007
MA 0 .0810 0 .90 0.0923 0.0963 1 .0 6 O0O966

U MA 0.0854 0 .99 0 .0861 0.0907 1 .0 5 0.0938

A .F .D . has v a r ia b le sam pling  perfo rm an ce . For Models A and U

A.F.D.  compares fa v o u ra b ly  w ith  PH in  a E-M.S.E« sense  b u t ,  somewhat 

s u r p r i s in g ly ,  th e  b ia s  on ot̂  in  Model T seems to  r i s e  w ith  sample s i z e ,  

becom ing very  s ig n i f i c a n t  when N = 1000 T his i s  r a th e r  i n t e r e s t i n g  

as th e  same in e x p l ic a b le  f e a tu r e  was n o te d  f o r  PH/0 and , when l in k e d  

w ith  th e  knowledge t h a t  th e re  was no ev id en ce  o f  th e  boundary c o n d itio n  

b e in g  met fo r  in  any t r i a l  w ith  A .F .D ., c r e a te s  a s u sp ic io n  t h a t  th e  

two e s t im a to rs  may be v ery  s im i la r  in  t h e i r  sam pling  p e rfo rm a n ce . 

C e r ta in ly  bo th  converged to  th e  answ ers summarized in  t h e i r  r e s p e c t iv e  

ta b le s  from  s t a r t i n g  v a lu e s  in  th e  v i c i n i t y  o f  0 o9 -  0.95»
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Computationally A 0F 0Do is very inferior to PH0 Table U022
illustrates this with the C 0PcUo time for 50 replications of Models T

Uo

Table U022
Computation Time for AoFoDo and PH (Mins J
Models T and U : All Sample Sizes

Model Sample AoFoDo PH
T Uo 7.58 5 .9b

70 13o96 7 c 05
100 2 2 0U7 8o05

U UO 2 085 O 086
70 6 ol6 1 o30

100 lie 08 lo79

For small and moderate sized samples the computational advantage

of PH is substantial, but as the sample sizes grows A oF 0D o begins to

narrow the gapc The reason for this is twofold0 Firstly the

periodogram may be constructed by Fast Fourier Transform techniques so
2that the order of computation is N log N rather than N , and secondly 

it becomes possible to replace the periodogram by the spectrum so that 

the number of ordinates over which summation occurs may be very much 

less than N. For monthly series in which the number of observations 

may be 200-300 there are likely to be less objections to the use of AoFc.D„ 

on computational grounds, but the restriction to quarterly data imposed 

on the thesis precluded any testing of this0

U„7 Some Parametric Models of Economic Time Series

This section is devoted to a comparative analysis of the parameter 

estimates from each estimator when applied to models of two economic time 

serieso The experiment was designed with two objectives in mind0



(a) To illustrate the application of the algorithms discussed in 

earlier sections to actual time series rather than to synthetic data«

(b) To examine the performance of the estimators in the light of the 

Monte Carlo studies„
The two series chosen were:

(1) Quarterly Personal Consumption Expenditure on Food ($m) from
3September 1950 to June 1970 inclusive0 There are eighty observations 

in the series which will be referred to hereafter as Food0

(2) Quarterly New Money Raisings by Listed Companies from June 195^ 
to June 1969 inclusiveo There are sixty observations in the series 
which will be designated as New Money0

The first of the two series was chosen to reflect the consumption 
bias of the thesis and it is re-estimated as part of a system of 
equations in the following chapter, while the second series provides a 
striking example of the difficulties arising from the presence of unit 
roots in the M 0Ao A number of reasons for expecting such a root in this 
model will be advanced in Chapter 60

Some attention was paid to the specification of a suitable 
parametric model for Food and the stages leading to a final choice are 
outlined in Section 5.5» Suffice it to say that the model selected was

(l-L) (1-1) y(t) = (1+0^1) e(t) (U„l).

Table b 023 incorporates the estimates of a^» the sample standard

3 Supplied by the Commonwealth Statistician, Bureau of Census and 
Statistics, Canberra, Australia and listed in Appendix 110
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deviations and the residual variances from employing each estimator.

Also included is the asymptotic standard deviation of the M.L. estimator 

evaluated by substituting into the formula for this.

Table 1+.23

Equation (l+.l) fitted to Food 

All Estimators

Estimator % 6-
al+

ASD .2a
' ' "

PH/O -0.261+7 0,1198 0.1080 9^.18
PH -0,1+363 0.1216 0.1039 87.60
B-J -0,1+239 0.1215 0.101+6 07 # 7~

A, F  oD o -0 1+702 0 1053 0 1019 87.78
AoToDo -0,1+279 0.1283 0,101+1+ 92.42

An assessment of Table 1+.23 reveals only slight differences 

between the estimators as evidenced both by the magnitude of the 

parameters and the 95% confidence intervals which, when constructed 

around each estimate, encompass all other estimates. The most 

unexpected feature of the table is the considerable variability in a , 

with the discrepency between the B-J and PH values being most surprising 

but the general impression is that all estimators behave in a similar 

fashion to the Monte Carlo experiments. Finally it is encouraging to 

note the excellent agreement between sample and asymptotic standard 

deviations for all estimators.

New Money was not prespecified in any rigorous manner but the 

equation fitted was that given in Brewer et al [ll+].
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(1-L) (l-l/4) y(t) = (1 + c^L) (1 + o.hLk ) e(t) (U.2)

These authors fitted (*4,2) to the logarithm of the New Money series 

in the context of a seasonal adjustment of this data. Table *4,2*4 

presents the estimates of a and a^, their standard deviations and the 

residual variances obtained from each estimator.

Table b 02b

Equation (*4,2) fitted to New Money 

All Estimators

Estimator 0 -
al %

0 *■
a*4

*2a

PH/O -0,1*436 0,1*417 -0,5967 0,1186 635 ol
PH -0,2195 0,lU8l -0,9998 0,1187 >*35.9
B-J -0,1585 0,1*491 -£,999*+ 0,1392 528.7
AoFoDo -0,2213 0,15*43 -0,612*4 0,0998 583oO
A„T ,D, -0,l805 * -0.9999 * *480,8

What is of greatest import in Table *4,2*4 is that the time domain
estimators (excluding PH/O)act as if there were a unit root in the M,A
and in seeking to break the boundary condition duplicate the behaviour 

observed with Model T when N = *40, Also familiar from the Model T 

experiments are the absence of a unit root in the M.A, transfer function 

when estimated by A,F,D, and PH/O and convergence to the values of 

Table *4,2*4 from a wide range of initial points for all estimators. 

However there is a conceptual difference between the models. For Model 

T it was known that the true transfer function did not have unit roots, 

whereas (as Chapter 6 will argue) there are some grounds for believing 

that (*4,2) is a misspecification and it is this that is inducing the 

unit root. If so, the failure of A„F»D, and PH/O to indicate it must
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create some doubts about their utility (or at least robustness against 

misspecification)0

Finally a comment on the standard deviations associated with

AoToDoo As •> 1 it was not possible to invert 9 owing to the presence

of a singular matrix, and the asterisks signify this failure„ To

understand the causes of the singularity reference should be made to the

theorem of Section lo5ol that identifies the maximum and minimum

eigenvalues of tt with the spectral ordinates f (a )„a„. and f (A „
* uu MAX uu MIN

For a MoA0 process of the form u(t) = (l+a L)(l+a^L^) e(t) it is easily
seen that L»ini (f (A)WAV/f (A),,T11T) = w so that the condition number uu MAX/ uu MINv1

of the matrix ft becomes extremely large<>

U08 Conclusion

Chapter 1+ has compared a number of estimators to that proposed by 

Phillipso Generally the impression has been that this estimator is at 

least no worse than others proposed in the literature and its 

computational efficiency leads to its acceptance for use in empirical 

investigation,, Perhaps the major qualification to such a statement is 

that PH/O is likely to be valuable in situations when it is desirable 

to limit the number of parameters that must be estimated from the data, 

and, as a partial check on the validity of applying PH/O is available 

from an inspection of the estimated M0A0 root, will frequently be used 
in later chapters0 Certainly in attempting to decide on a reasonable 

specification PH/O is the fastest and cheapest algorithm to useQ
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CHAPTER 9 The Estimation of Non-Simultaneous Systems of ARMAX Equations 
5»1 Introduction

Previous chapters have focussed on the development of various single­
equation estimators and the evaluation of their sampling distributions 

under a variety of conditions0 However there are obvious deficiencies 
in the construction and use of single equation estimators» Two that 

have assumed some importance in the econometric literature are:-

(i) The possibility of a feedback relationship between variables in 

a system of equations causing a member (or members) of the regressor 
set to be correlated with the disturbances» Haavelmo [37] studied the 

properties of 0»L»S» in this situation and, in showing that it was not 
consistent, established a "simultaneous equation bias",

(ii) If substantial intercorrelation exists between time series, and it 
is believed to be "constant", efficient predictors and estimators must 
incorporate this feature» Zellner [123] was the first to analyse this 
and under the heading of "seemingly unrelated equations" furnished an 
efficient estimator»

This chapter is concerned with (ii)» Although the solution of (ii) 

may be regarded as a necessary prelude to the solution of (i) the 
presence of simultaneous relationships raises a number of issues that 
are beyond the scope of the thesis»

Having defined the area of study a short outline of the chapter will 
now be presented» The following section deals with a generalization of 
the Phillips estimator of single equations to a system of equations and 

there will be some discussion concerning the program written to 
computerize this» Section 5»3 follows the dichotomy of previous
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chapters in deriving an analogous estimator in the frequency domain, 

and obtaining as an extension of this the asymptotic covariance matrix 

of the efficient estimator which will be used, as in Chapters 3 and U, 

to assess the Monte Carlo experiment of Section 5o^0 Lastly, owing to 

the considerable computational cost incurred in Monte Carlo experiment­

ation, both estimators are applied to a system of consumption equations 

thereby enabling a comparison of the sampling and asymptotic variances»

5.2 A Generalized Phillips Estimator

5»2»1 Derivation

As mentioned the estimator to be proposed belongs to the class of 

"seemingly unrelated estimators" introduced by Zellner. Zellner 

himself has generalized the methodology to take account of autocorrelation 

in the disturbances [12U 1, and recently Kmenta and Gilbert [62] have 

conducted a number of Monte Carlo experiments upon the estimator with 

models in which the disturbance process follows a first order autoregress­

ion» This study revealed that the gains in efficiency to be derived from 

a recognition of the autocorrelation structure in the residuals was 

substantial, and that even in small samples (ten) these gains were such 

that imposition of the non-linear restrictions implied by the disturbance 

formet would always be wise» In the same spirit the extension to be 

suggested in this section prescribes the disturbance term as a moving 

average, and an iterative algorithm is described that will yield M.L» 

estimates of all parameters»

Some notation is required» All arrays etc. will bear the same 

meaning as they possessed in the section on the Phillips estimator in 

Chapter 2 except that if subscripted, reference is to the expression
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appropriate to a single equation, and if not, to the corresponding 

system matrix. As an example let the j’th equation of a G equation

system be ARMAX (p,r,q) and this will be written in lag operator form
1as

B (L)y (t) = C (L)x (t) + Aj(L)ej(t) (5.1),

corresponding to equation (2.3).

The system of G ARMAX equation will be
B1(L)y1(t) = C1(L)x1(t) + A1(L)e1(t) (5.2),

o o o

0 0 0

BG(L)yQ(t) = Cg (L)xg(£) = AG(L)eQ(t)

or using the rule relating to subscripts we have the system form

B(L) y(t) = C(L) x(t ) + A(L) e(t) (5.3),

where y(t) is a (Gxl) vector (y^t)... yG(t)}
x(t) is a (Gxl) vector {x^(t).0. x^(t )}^

e(t) is a (Gxl) vector (e (t).„ e (t)}.-L G
Three restrictions will be imposed on (5.3).

(i) It is assumed that B(L) and A(l ) are diagonal matrices. This is 

primarily designed to enable the application of the identification 

conditions of Chapter 1 to each equation in turn, but at the same time 

it is the most likely form to be encountered.

(ii) e(t) will be assumed normally distributed with

E(e (t)) = 0.

As before the derivation will be for a single exogenous variable but 
this assumption is for convenience only.
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E(ei(t) e (t-s)) o. . ij

0

s = 0 = 1,. oo ,G
s =f 0

(iii) Finally there are P,R and Q - respectively the number of A.R0, 
E 0Vo and M 0A0 - parameters in the system with N observations remaining 

after the lags in all variables are accounted forc

Equation (5.1) resembles (2e3) and by following the transformation 

to the matrix form set out in (2„12) (p 52) (5.2) may be rewritten as

v = Y ß + X Y + M e + M*e* yl 1 1  1Y1 1 1  1 1

= V g + V g + MGeG + MGeS

(5.it)

As a guide to the interpretation of (5.^0 suppose that the first 

equation is ARMAX (p,r,q), Then ß^ will be (pxl) vector, ŷ  a (rxl) 

vector and e* a (qxl) vector. The elements of each will be distinguished 

by a second subscript e 0g, ß ^  is the second A,R0 parameter in the first 

equation. However this fine division will only be required at the 

termination of Section 5.3 and in Appendix 9.

The system of equations may be arranged as

yn

I0

" ß, 1 Xn 0 Y, " M, 0 " enJ1 1 1 1 T1 1 1

• = • • + 0 • + • 0

v 0 ß_ 1X0

Y _ 0 M„ e^
_ G  _ G _ _ G _ G _ G _ G _ G _

r  m *  0 1 ~ e* '11 1
0 0

0 "m * e*G G_

(5.5),
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or y = Y 3 + Xy + Me + M*e* (5.6).

Under the previous assumption that e is normally distributed with 

covariance matrix

E(eeT) = Ü 8 I

where & is the Kronecker product, the likelihood function is
1
“2

log L (y/x, e*, y*, x*; ft,0) = const. + log det (ft & I)

- I eT(n_1 I)e (5.T),

where x*, e* and y* are the pre-period values of x,e and y.
1

“2Because log det (ft S I) is of lower order than the exponent, 

asymptotically it is permissible to concentrate upon

S = eT(ft_1 & I)e (5.8).

Grouping the parameter vectors 3, y, a and e* into the vector 9 and

denoting the matrix of first derivatives ~  by Z, the Gauss-Newton90
algorithm yields the following sequence of iterations for minimizing 

(5o8) with respect to 0.

Q(n) _ 0(n-l) = _(zT(fi“1 a l)z)-1 ZT (ft_1 & I)e (5.9).

The derivative matrix Z has the following elements

-1
33, " V  Y! k = I,..., G

k „-1 v
aTT “ \ k = 1,..., G (5.10)

--K1 \ k = 1,..., G

df ■ -“k1 Kk
k = I,..., G
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where E =

d e s c r ib e d  on page 53 o f  S e c tio n  2 . 3 . I .

T —1The Gauss-Newton a lg o rith m  i s  i t e r a t e d  u n t i l  e (ft & l ) e  changes by 

le s s  th a n  a p r e s p e c i f ie d  amount (n o rm ally  10  ̂ o f  i t s  p re v io u s  v a lu e ) .

At th e  minimum an e s tim a te  o f  th e  c o v a rian ce  m a tr ix  o f  th e  M.L. e s t im a to r

Ye ts
Vgg = (zT(n_1 a i)z)_1 (5.ii).

5o202 Com putation

There a re  a number o f  to p ic s  to  be d is c u s s e d  under t h i s  h e a d in g .

( i )  The C ovariance M atrix  (ft)

Exam ining ( 5 . 9 )  i t  i s  c l e a r  t h a t  th e  a lg o rith m  i s  n o t o p e ra t io n a l  

u n le s s  an e s tim a te  o f  ft i s  a v a i la b l e .  I t  m ight be p o s s ib le  to  in c lu d e  

th e  e lem en ts  o f  ft in  th e  p a ram e te r  s e t  and i t e r a t e  upon th e s e  as w e l l ,  

b u t th e  p r o p e r t i e s  o f  th e  r e s u l t i n g  e s t im a te s  a re  n o t w e ll d e f in e d . In  

l i e u  o f  t h i s  we s h a l l  adopt a v e rs io n  o f  th e  s o lu t io n  g iven  o r ig i n a l l y  

by Z e l ln e r .

C onsider th e  two s t r a t e g i e s :

(a) C a lc u la te  6* from ( 5 . 9 )  w ith  a c o n s is te n t  e s t im a te  (ft*) o f  ft i n s e r t e d .

(b) C a lc u la te  0 from ( 5 . 9 )  w ith  th e  t r u e  v a lu e  o f  ft i n s e r t e d .

Then Z e l ln e r  has shown [123 p 353] t h a t  0* i s  a s y m p to tic a lly  e f f i c i e n t  

r e l a t i v e  to  0 i f  th e  r e g re s s o r s  a re  u n c o r r e la te d  w ith  e . As th e  

r e g re s s o r s  c o n ta in  on ly  p re d e te rm in e d  v a r ia b le s  t h i s  c o n d itio n  w i l l  be 

s a t i s f i e d ,  a llo w in g  th e  r e s id u a l s  from ap p ly in g  th e  s in g le  e q u a tio n  ARMAX

E 0

and E. ( j  = 1 , . . . , G )  i s  th e  m a tr ix  w ith  elem en ts
tJ

0 E,
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estimator to each equation in turn to be used in constructing an estimate

2of Estimates of were then obtained by the following formula.

öij
N-l
E e .(t ) e,(t)/N 

t=0
i,j = 1.....G,

(ii) Estimates of e*

One of the disconcerting features of the Phillips estimator is the 

need to maJke some estimate of the lagged disturbance vector e*. If 

this is done by the generalized Phillips method, an inversion of order 

at least (P + 2Q + P) is required at each iteration. In practice 

however the order of the inversion may be much larger than this because 

the number of M.A. parameters may be less than the order of the M.A. 

process i.e. some of the intermediate M.A. parameters are zero e.g.

(l + a^L) (l + a^L*1). As the determinant of the order of e* is the 

order of the M.A. polynomials, a very large number of e* parameters may 

be present even though the number of other parameters is small.

Two aspect of this must be mentioned. Firstly the computational 

cost may be very high when the number of parameters becomes large.

Secondly rounding errors in the inversion routine will rise as the order 

of the inversion rises and may lead to incorrect estimates. Because 

the parameters e* are not of fundamental interest it was argued that they 

should not be allowed to prohibit the extraction of others leading to 

the following three solutions.

(a) Assume e* = 0. As suggested in Chapter 2 this may be a near 

optimal strategy if the roots of the M.A. are not close to unity and/or 

the sample size is large. Certainly when faced with the need to consider 

systems estimators any preliminary analyses should be carried out under

Note that this is a consistent estimate and differs from the unbiassed 
estimate normally adopted. The choice reflects the conditions of 
Zellner’s theorem.
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t h i s  assum ptiono

(b) A nother s o lu t io n  i s  to  be had by a s s ig n in g  th e  c o n s is te n t  e s t im a te s  

o f  e r e s u l t i n g  from an a p p l ic a t io n  o f  th e  s in g le  e q u a tio n  e s t im a to r  to  

each e q u a tio n  in  t u r n 0 The im pact o f  t h i s  p ro p o sa l i s  d i f f i c u l t  to  

a sse sso  I f  th e r e  was on ly  s l i g h t  v a r i a t io n  in  th e  p a ram e te r  e s t im a te s  

in  th e  t r a n s i t i o n  from a s in g le  e q u a tio n  to  a system s o f  e q u a tio n s  

c o n te x t ,  th e n  i t  i s  l i k e l y  t h a t  th e  s in g le  e q u a tio n  e s t im a te s  o f  e* w i l l  

be c lo s e r  to  th e  M.L» v a lu e s  th a n  zero  would b e , In  such a case  (b) 

would be (a lm o s t)  c o m p u ta tio n a lly  e q u iv a le n t  to  (a )  and i t  would be 

p re fe r re d ,,  G en e ra lly  b o th  (a )  and (b ) were t r i e d  in  l a t e r  s e c t io n s  and 

(a )  was n o rm ally  s e le c te d  b u t o b v io u s ly  in v e s t ig a t io n s  sh o u ld  be made o f  

th e  cho ice  by Monte C arlo  methods»

(c ) C o n c e n tra tio n  o f  th e  l ik e l ih o o d  w ith  r e s p e c t  to  e* m ight be u sed  

p r o f i t a b ly  in  a system  c o n te x t ,  b u t as was found in  th e  s in g le  e q u a tio n  

case  i t  i s  im p o rtan t t h a t  th e re  be low o rd e r  M»A. p ro c e s se s  in  o rd e r

to  avo id  th e  sh a rp  r i s e  in  com putation  tim e which i s  a concom itan t o f  

th e  in v e rs io n s  a s s o c ia te d  w ith  an e v a lu a tio n  o f  th e  S fu n c t io n .  I t  i s  

i n t e r e s t i n g  to  n o te  t h a t  in  a r e c e n t  a r t i c l e  Lawton and S y lv e s tr e  [6U ]

have ad v o ca ted  th e  c o n c e n tra t io n  o f  S w ith  r e s p e c t  to  a l l  p a ram e te rs  t h a t  

e n te r  e l i n e a r l y .  From (5 .1 0 ) i t  can be seen  th a t  on ly  a e n te r s  in  a 

n o n - l in e a r  fa sh io n  so t h a t  th e re  i s  a good case  f o r  c o n c e n tra t io n  w ith  

r e s p e c t  to  ß, y and e* . The a u th o rs  r e f e r  to  n o n - l in e a r  fu n c tio n s  in  

which c o n c e n tra t io n  has im proved convergence and a ls o  c la im  a reduced  

co m p u ta tio n a l b u rd en , b u t as was seen  in  C hapter 2 t h i s  does n o t

n e c e s s a r i ly  fo llo w .
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(iii) Numerical Derivations and Another Algorithm

For the Monte Carlo study described below the Gauss-Newton formula 

with derivatives given by (5»10) was employed0 However when applying 
it to actual data it was easier to obtain flexibility by using 
numerical derivatives. Provided the Gauss-Newton algorithm was adopted, 

the computational cost was not excessive for any of the formulations 
examined in 5,5,

5,3 A Frequency Domain Estimator
The purpose of this section is twofold. Primarily we will be 

concerned with the provision of a generalized version of A,F,D„, but a 
secondary purpose will be to derive the asymptotic covariance matrix of 

the M,L, estimator. Such a division closely parallels that of Section 
20h, but possession of the asymptotic covariance matrix is of 

heightened interest in this chapter in that it is efficiency gains that 
are of paramount importance. Only a system of ARMA equations will be 
considered in detail, but the generalization to ARMAX equations would 
proceed along the same lines.

To begin we adopt the principle espoused in the preceding section 
that all non-subscripted variables are of the system and all subscripted 
of one equation. Extending the nomenclature of Section 2ak in this way 
the system of ARMA equations may be written as 

B1(A) Y1(X) = û ( A) = A1(A) g1(A)

BQ (x) Y q (X) = uG (X) = A Q (X) eG (X) (5-12),

where Y . ( x ) ,  e.Cx) are (Nxl), B (X) and A (X) are (NxN) matrices (j=l,.<.,G)
J J J J

where N is the number of frequency bands in the range 0 < A <_ 2tt and



2 0 7 .

a l l  symbols a re  d e f in e d  in  ( 2 02U) -  ( 2 02 6 ) 0 We n o te  t h a t  A, (A) and
J

B „ ( x )  have th e  form 
J

A.(A) 
J

Aj ( Af )

Aj(An )

Bj ( A)

" j 1! ’

W

meaning t h a t  A ( A,) i s  in  row k ,  column k o f  th e  m a tr ix  A (A)„ ByJ h j

w r i t in g  ( 5 d 2 )  in  f u l l  i t  may be v e r i f i e d  t h a t  i t  i s  a system  o f  NG 

e q u a tio n s  w ith  each  e q u a tio n  composed o f  s c a la r s  a lo n e  e 0g„ th e  f i r s t  

would be

W  W  = W  ei(V ”
The system  can be a rra n g e d  as

B1 (A)

V x)
o r B( a) Y(A) = u ( a) = A(A) c( a)

"  Y 1 ( A )  '

s

u x (  A )

r*

~  A x ( A )

0

J _VX)_ _ U G ( X )  _
0

V x).

ei (V

eG(X)

( 5 .1 3 ) ,

( 5 .11*)

w ith  B( x) ,  A( a) as (NGxNG) m a tr ic e s  and Y( x) ,  e ( A) as (NGxl) v e c to rs

B efore p ro cee d in g  f u r th e r  some d e f in i t i o n s  a re  req u ire d ,, 

11 (A. )= 7rrtr 'u^ ( ^ j )  u^(A^) i s  th e  c ro ss  periodogram  betw een

u^ and u^ a t  freq u en cy  A ( j  = 1 , . 0. , N ) 0

I  (A) = an (NxN) d ia g o n a l m a tr ix  w ith  I  ( A ) ( j  = 1 , . . . ,N)
\ U£ \ U£ J

as d ia g o n a l e lem ents,,

I  (A) = th e  system  m a tr ix  (NGxNG) composed o f  a l l  I  ( a) m a tr ic e s  
UU ^k £



f (A) = t le spectral density matrix (NG x NG) which is of the

s&me form as I (A) but is constructed from the cross spectral uu
densities between disturbance terms»

Taking the properties of e(t) as those of Section 5.2 Fishman [26 
p 17*+ eq» (*+«33a)] proves that the M»L» estimator minimizes (up to a

constant of proportionality — )

N
I

J - l
G
Z I 

k, £,=1
(A.)

Y t  J UU 'V (5.15).

Equation (5.15) may be written in system notation as

S = tr(I (X) f-1 (X)) (5.16).U U  uu

A number of standard relations may be used to simplify (5-16). One 

((5.17a)) is definitional, and two ((5ol7b) and (5°17c)) are to be found 
in texts on linear filtering theory»

|a (x )|2 = amä(x ) (5.17a)

f (x) = Tr- a (x ) (n a i) Ä ( x )  (5.17b)uu 2tt

!u u (x) = A T (X) eT (X) e(X) Ä(X )  (5.17c)

Inverting (5.17b), and substituting the resulting expression along 

with (5.17c) into (5.16), we obtain

S = 2tt t r [ A T (X)eT (x)e(x) Ä(X )  Ä " 1 (X)(fi"1 & l)A~±{\)] (5.18).

As the order of matrices in the trace may be rearranged (5.18)

reduces to
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S = 2-ntr [ e T ( x )  e(X) (n“ 1 & I ) ]  ( 5 .1 9 ) ,

o r

S = 27reT(X) (ft"1 & l )  e(X) ( 5 .2 0 ) .

An in s p e c t io n  o f  th e  s t r u c t u r e  o f  ( 5 «20) and C2 08 ) r e v e a l s  a s i m i l a r  

form and le a d s  to  th e  c o n c lu s io n  t h a t  m in im iza tio n  o f  (5 .2 0 )  w ith  r e s p e c t  

to  a l l  p a ram e te rs  w i l l  le a d  to  an A itken  e s t i m a t o r ,  and j u s t i f i e s  th e  

c la im  t h a t  i t  i s  an e x te n s io n  o f  A .F.D. to  systems o f  e q u a t io n s .

The Gauss-Newton a lg o r i th m  was s e l e c t e d  to  minimize ( 5 .2 0 ) .  By 

th e  d e f i n i t i o n  o f  e(X) i t  i s  e a s i l y  seen  (from 5 .12) t h a t  f o r  th e  r ' t h

V X1>Br ( Ve q u a t io n s  (X. )  = — r— —?— “— , and from t h i s  th e  r e q u i r e d  d e r i v a t i v e s  r  j  Ar IX. )

w ith  r e s p e c t  to  th e  d ' t h  A.R. and M.A. p a ram e te rs  o f  th e  r ' t h  e q u a t io n
3

may be c o n s t r u c t e d .

idX .
3e ( X j  Y (X. )  e J

r  L  -  r  .1
A. ( X7)36 .

3er ( \ l }

r '  j

idX

W W *  J

Ar  ( V

r  = 1 ,  o o»,G 

j = 1 . . . . . N  

d = l , . . . , p

r  = 1 , . . . , G  

j = 1» o . .  ,N 

d = 1 , . .  o ,q

(5 .21 )

( 5 . 2 2 )

fS g]
Appendix 9 shows t h a t  a s y m p to t ic a l ly  /N - j has co v a r ian ce  m a tr ix

otj

V B where V has e lem ents

V =

For e x p o s i to ry  purposes  i t  i s  assumed t h a t  each e q u a t io n  i s  ARMA ( p , q ) ,  
b u t  i t  shou ld  be u n d e rs to o d  t h a t  th e  v a lu es  o f  p and q may vary  between 
e q u a t io n s .

3
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For any parameter type the covariance between the d*th parameter in 

equation r and the g*th parameter in equation s will yield the following 

expressions for V 0

V11(k,d) ei(d"g)Xa ars rs
B (X) B M  r s

=  1 , 0 0  o , P  

d,g = 1,0 0 0 ,p 
r,s = 1,o o o ,G

V12(k,l)
i(d-g)A rs e a a_________ rs
B (A) Ä (A) r s

k = 1, 0 0 0 , P
l  =  1 , 0 0  o , Q  

r,s = 1, o o o ,G 
d = 1,o o o,p (5o23)
g = 1,0oo,q

V22(k,0
i(d-g)A rs e a a__________rs
A (A) Ä (A) r s

k,£ = 1,o o o,Q
r,s = l,ooo,G
d,g = 1,000,q

Equation (5o23) states the elements of the matrix to be inverted

in order to obtain the covariance matrix of the efficient estimator0

The corresponding elements for the single equation estimator are to be

found from (5o23) by setting a = 0 if r ^ s so that ft will ber*s
diagonal, oSS = l/o , and all cross terms vanish from (5»23) reducings s
it to (2042)0

Knowledge of the population values of the A 0R 0 and M 0A„ parameters 

and the correlation matrix ft, enables the determination of the asymptotic 

efficiency gains from an application of a systems estimator in 

preference to its single equation counterpart0 As well as this it is 

interesting to note that a rough guide to the anticipated efficiency 

gains can be extracted from (5«23) by a substitution of the single 

equation estimates of 3, a and ft0 Later it will be seen that the 

computation time for any systems estimator is high, so that it is of 

importance to assess the magnitude of efficiency gains in order to
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balance the benefits against the expenses of usage.

5.U A Monte Carlo Study of the Estimator

Following the methodology of previous chapters, information on

the small sample distributional properties of the generalized Phillips

estimator was sought via Monte Carlo experiments based on a six-parameter
ktwo-equation model.

y1(t) = 0.8 y1(t-l) + e1(t) + 0.5 e1(t-l)

y2(t) = 1.3 y2(t-l) - 0.6 y2(t-2) + e2(t) + 0.6 e2(t-l) + 0.3 e2(t-2)

(5.2*0
A multivariate normal distribution for the disturbances e (t) and 

e2(t) was constructed following the principles outlined in Naylor, 

Balintfy, Burdick and Chu [77 p 9Ö], This procedure requires two 

series of zero mean and unit variance Gaussian numbers, and as usual 

these were generated by GAUSS. The covariance matrix ft was set at

ft =
9
1

1
1 .

As has been emphasized in an earlier chapter the second of the 

equations is unlikely to be familiar to economists working with unfiltered 

data, and to this extent it may not be a good model to extract 

conclusions about economic phenomena. However referring to the results 

of Chapter 3 we might expect that the estimator would perform slightly 

better with this model than with a more realistic one.

Two sample sizes - *+0 and 70-were selected and 50 replications 

were performed for each experiment. As the C.P.U. time claimed by each

1+ If the lagged epsilon terms are counted there were nine parameters.
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r e p l i c a t io n  was ap p ro x im ate ly  1 m in .,  and each  t r i a l  was re p e a te d  tw ic e -  

once to  g e n e ra te  i n i t i a l  e s t im a te s  w ith  th e  s in g le  e q u a tio n  e s t im a to r  

(SINGLE) and once w ith  th e  system  e s t im a to r  (SYSTEM) -  t o t a l  com putation  

tim e fo r  each experim en t was around 100 m in .^  Because o f  t h i s ,  and 

th e  a l l i e d  d i f f i c u l t y  o f  c o n s tru c t in g  r e a l i s t i c  system s th a t  had a sm all 

number o f  p a ra m e te rs , on ly  two exp erim en ts  were perfo rm ed  so t h a t  th e  

e s t im a to rs  a re  exam ined under very  l im i te d  c o n d i t io n s .  The exp erim en ts  

a re  summarized in  T able 5.1»

T able 5 .1

Summary S t a t i s t i c s  o f  SYSTEM fo r  th e  Model o f  Eq. (5.2*0

Sample S iz e s  N = 40, TO

N P M B SE IB/SE| SD ASD SD/ASD

0 .8 0.760 o.o4o 0.0141
1 .3 1 .277 -0 .0 2 3 0.0308

- 0 .6 -0 .5 8 7 0.013 0.0306
0.5 0.546 o.o46 0.0341
0 .6 0.650 0.050 0.0477
0 .3 0.397 0 .097 0.0482

0 .8 0 .768 -0 .0 3 2 0.0139
1 .3 1.285 -0 .015 0.0202

- 0 .6 -0 .5 9 8 0.002 0.0193
0.5 0.524 0.024 0.0230
0 .6 0.629 0.029 0.0296
0 .3 0 .328 0 .028 0.0262

2.84 0.0994 0.0967 1 .0 3
0.75 0.2175 0.1792 1.21
0.43 0.2163 0.1658 1 .30
1.35 0.2412 0.1398 1 .73
1.05 0.3376 0.2060 1.64
2.01 0.3408 0.1878 1 .81

2.30 0.0883 0.0731 1.21
0.74 0.1280 0.1355 0.94
0.10 0.1219 0.1253 0 .97
1.04 0.1455 0.1056 1 .38
0 .98 0.1871 0.1557 1 .20
1 .07 O.1656 0.1420 1 .17

T able 5 .1  re v e a ls  t h a t  th e  system s e s t im a to r  behaves in  a s im i la r  

fa sh io n  to  SINGLE; as ev id en ced  by th e  good r e s u l t s  o b ta in e d  f o r  th e  

second e q u a tio n  and th e  r a th e r  p o o re r  r e s u l t s  fo r  th e  f i r s t .  C hapter 

3 concluded  th a t  th e  f i r s t  e q u a tio n  always had la rg e  b ia s e s  when 

e s t im a te d  by a tim e domain m ethod, and i t  i s  o f  some i n t e r e s t  to

The d e s ig n a t io n  SINGLE and SYSTEM d e r iv e s  from th e  c a l l in g  r o u t in e s .
5
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observe that the biases of SYSTEM are smaller (particularly for the M.A. 

parameter).^ As the starting values for the A.R. parameters were 

0.7, 1.5, -0.75 (approximately the O.L.S. estimates for the first 

replication), a number of trials were repeated with different starting 

values. In all cases the algorithm converged to the same sum of squares 

but the parameters differed in the third decimal place. Another 

feature of Table 5.1 is the suggestion that asymptotic covariance 

formulae may not be reliable guides to the small sample covariances in 

samples of size ho - at least for the M.A. parameters. Although it is 

noticeable that the ratio falls sharply as the sample size increases and, 

with the exception of in the first equation, are not statistically 

different from the asymptotic values in the larger sample, the experience 

of Chapter 3 would imply that in the transition to more realistic models 

the sample size needed for asymptotic theorems to hold is likely to be 

larger than 70. Nevertheless such results are hardly disheartening.

In view of the paucity of simulations attempted the only alternative 

source of information on the small sample distribution of SYSTEM is 

contained in other studies. Reference has already been made to the 

Kmenta and Gilbert article but the absence of lagged dependent variables 

in their system reduces the utility of their experiment for our 

purposes. Perhaps the success of the non-linear estimator in being 

ranked as superior to all others considered gives some support for the 

use of a non-linear algorithm in maximizing the system likelihood.

6
For the comparison see Tables 3.2, 3.3 and 3.1+ (p 117-119).
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A more recent study by Nelson [78] throws some light on the 
efficiency of SYSTEM when there are no M.A. parameters. This author 

attempted to deal with models possessing a M.A. term but seems to have 
been unable to develop a workable algorithm and therefore was forced 

to choose a two equation system of first order A.R. processes. He 

found that the expected gain in efficiency from an application of 
SYSTEM was never totally, but always at least 90% realized (for samples 
of size 30), and tabulations of the empirical, distribution of the test 

statistic (0 - 0)/a* indicates that
U

Mt - tests may be carried out on second stage estimates in 

reasonably good conscience” [78 p 28],
Finally, although the experiments are net reported in full, it appears 

that with samples of size 100 efficiency gains could be predicted 
accurately by asymptotic formulae and that the above test statistic 
is likely to be normally distributed.

All in all the evidence presented in Table 5.1 and that available 
in Nelson's report is favourable to the proposition that SYSTEM might 
be applied in quite small samples. A more confident assertion must 
await further sampling experimentation, but in the meantime it is 
possible to gain some insight into the properties of the estimator by 
modelling some actual time series. At the same time this will allow 
a comparison with the generalized version of A.F.D. as the computer 
time required for any examination of the sampling properties of the
latter estimator would be enormous.
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5.5 An Experiment with Some Economic Time Series 

5.5.1 Specification

This section considers the employment of systems estimators in the 

modelling of intercorrelated economic time series. A system of demand 

equations was chosen for this purpose, and the thirteen categories of 

consumption distinguished in the Australian National Accounts were 

collapsed to form five new series. The relationship between the two 

sets is given in Table 5.2.

Table 5.2

Construction of the Consumption Series from National Accounts Data

Series No. National Account Designation New Designation

1 Food Food

2 Clothing and Drapery Clothing

3 Electrical Goods, Other Household Household Appliances
Durables, Electricity, Gas

U Cigarettes and Tobacco, Alcoholic Miscellaneous
Drinks, Postal and Telephone 
Fares, Purchase of Motor Vehicles,
Other Goods and Services

5 Rent Rent

One might quibble with some of the groupings employed e.g. 

Cigarettes and Alcohol could be categorized with Food, but as the 

exercise is to illustrate the use of the systems estimator there would 

not seem to be much to gain from putting effort into developing a new 

classification. Certainly for forecasting purposes it would be 

desirable to utilize all thirteen categories. Only four of the five 

aggregated series were adopted owing to the difficulties that arise
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with rent (alluded to in Section 3.5) and some appreciation of their 

time behaviour is available from the correlograms presented in Table

5.3.

Series

Table 5.3

Correlograms (8 lags) of all Consumption Series 

Lag

1 2 3 1+ 5 6 7 8

1 0.9^ 0.89 0.81+ 0.8l 0.76 0.73 0.68 0.66
2 0.61+ 0.86 0.57 0.81+ 0.51 0.71 0.1+5 0.70
3 0.89 0.83 0.80 0.82 0.73 0.68 0.65 0.67
1+ 0 .9!+ 0.90 0.85 0.8l 0.76 0.73 0.68 0.65

Of the four series in Table 5.3 only the second exhibits any

peculiarities in the correlogram. The explanation of the cyclical

pattern observed there resides in the six monthly cycle in Clothing

caused by the summer-winter dichotomy of the Australian climate. All

other series possess correlograms that by their slowly - declining

nature suggest some form of non-stationarity in the data, and for Series

1,3 and 1+ at least a first differencing filter was required to produce

stationarity. As a first step it is logical to try both first and

fourth differencing for these series. Such a filter is obviously

inappropriate for series 2, but although a large number of others were

applied (involving L terms mainly) there was little improvement over

that resulting from first and fourth differencing. Table 5.*+ presents

the correlograms of the first and fourth differenced series with the 
Pk

statistic —  (where p is the estimate of the k'th sample correlation 
v¥ k

coefficient) enclosed in brackets underneath. This statistic is
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7approximately distributed as Student's t with (N-k) degrees of freedom.

Table 5 ,h

Correlogram (8 lags) of the Differenced Consumption Series 

Series Lag

1 2 3 k 5 6 7 8
1 -0.09 0.15 0.01 -0.23 -0.05 -o.o8 0.11 -0.07

(0.81) (1.28) (0.08) (2.0) (0.1+3) (0.71) (0.92) (0.6l)
2 -0.23 0.20 -0.15 0.01+ -0.31 0.11 -0.28 0.26

(2.02) (1.73) (1.34) (0.31) (2.66) (0.97) (2.39) (2.28)
3 0.15 0.05 -o.iU -0.11+ -0.32 -0.26 0.00 0.18

(1.34) (o.Ui) (1.23) (1.23) (2.74) (2.23) (0.02) (1.57)
1+ -0.10 -0.09 0.08 -0.39 -0.19 0.26 -0.08 -0.11+

(o.86) (0.75) (0.72) (3.37) (1.63) (2.28) (0.72) (1.18)

From Table 5.^ none of the individual t values are low enough to 

suggest that any of the differenced series is white noise with the 

possible exception of the first. A "portmanteau” test for white noise 

over k lags of the correlogram is available from forming

Q = N I p2 
j=l J

has values 8

and testing Q as a x2(k) variable. For the four series Q 

.21, 27.84, 19.99 and 22.97 which, when compared to the 1%,

7
This test statistic is deficient in a number of ways. Box and 
Jenkins [9 p 35] state that the correct test statistic that all p
are zero after p is given by forming 

Q. ip H p
N p (l + 2 E p.) and testing this as t(N-k). 

k j=l J
As p . is unknown this cannot be formed, but extrapolating from the J
small p in Table 5.^, the discrepancy between the correct test and that 

K.

in the text will probably not be great, 
q = 0 and the two statistics coincide.

When testing for white noise



.
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5$ and 10% levels of x2 (8) (20.1, 15.5 and 13. U respectively), leads to 
the conclusion that white noise would he only likely for the first.

Owing to the correlation existing between neighbouring auto­

correlation coefficients it is of some interest to examine the spectra 

of the differenced series. Figs 5.1, 5.2, 5.3 and 5.^ contain these 

for the four series. Parzen weights and twelve lags were used to 

construct all spectra and the resolution was not greatly improved by the 

employment of more lags than 12.

Theoretically the spectrum of a fourth order M.A. with being 

negative would have equal peaks at tt/ U  and 3 tt/ H  and a trough at tt/ 2 .  

Figure 5.1 is quite close to this pattern indicating that there may well 

be a fourth order M.A. present in the data (and thereby corroborating the 

significant value of found), although the construction of confidence 

bands around the spectrum might invalidate this conclusion. None of the 

other spectra are compatible with such a simple hypothesis and this 

attests to the significant correlations at lags such as 5 and 6 in 

Series 3. In particular differencing has accentuated the peak at tt 

that would be present in the original series as a concomitant of a 

six monthly cycle. This peak was even greater in the periodogram 

of the differenced series and created difficulties for A.F.D.,so thatg
it was decided to eliminate Clothing as well. There is little doubt 

that an adequate specification would require a great deal of analysis.

Actually the obstacles were two in number. Firstly the peak at tt in 
the periodogram, and secondly the near unit roots in the M.A. trans­
fer function when various models were fitted. Inevitably the con­
tribution to the sum of squares from tt was in the vicinity of 10-^ 
while near unit roots in |A(A)|2 accentuated rounding error to such 
an extent that, even when summed from - tt to t t , the complex part was 
non-zero.
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FIGURE 3.2
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FIGURE 3.3
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A v a r ie ty  o f  models m ight be f i t t e d .  From a c o n s id e ra tio n  o f  

T able 5.*+ i t  was d ec id ed  to  f i t  th e  fo llo w in g  to  a l l  s e r i e s .

( 1 -L ) (1-L ) y ( t ) = u + (1+o^L + + c^L5 + c^L6 ) e ( t )  (5 .2 5 )

One w ould ex p ec t t h a t  any inadequacy  may be m easured in  th e

d ia g n o s t ic s .  T able 5 .5  g iv e s  th e  p a ra m e te rs , th e  t  s t a t i s t i c s ,  th e
2

r e s id u a l  v a r ia n c e  and R fo r  S e r ie s  1 ,3  and H when e s t im a te d  by SINGLE.

T able 5 .5

E s tim a ted P aram e te rs  o f  E quation  (5 .2 5 )

S e r ie s
/V

y 5i

S e r ie s
A

r t l*

1 ,3  and k

S “6
*2a R2

Food 0 .0 7 0 1  
( 0 . 2 2 )

-0 .1755
(1.1+3)

- 0 . 1*062
(3.3I+)

- 0 . 1U60
(1 .1 5 )

- 0 .2709
(2 .1 7 )

8 9 .9 7 0.996

D urables 0.1121
(0.1*9)

o 091*5 
*0.73)

-0 .2 7 4 8
( 2 . 1 8 )

-0.1* 1*1*9 
(1*. 05)

-0 .3 1 7 6
(2 .6 5 )

b h . i  6 0 .992

M is c e l l­
aneous

1.2645
(1 .9 5 )

-0.321*5
(2 .7 5 )

- 0 .5 1 9 2
(5 .0 3 )

-O .3825
(3 .2 3 )

0.1*125
(3 .5 5 )

1+93.78 0.996

T able 5 .5  shows th a t  th e  mean i s  i n s i g n i f i c a n t  f o r  b o th  Food and 

C lo th in g  b u t p ro b ab ly  sh o u ld  be r e ta in e d  fo r  M isc e lla n e o u s . Computing 

th e  ro o ts  o f  th e  M.A. po lynom ial i t  i s  s t r i k i n g  th a t  a t  l e a s t  one o f  

th e  ro o ts  i s  c lo se  to  th e  boundary in  a l l  c a s e s .  To some e x te n t  t h i s  

may be a consequence o f  a m is s p e c i f ic a t io n  o f  th e  M.A. and th e r e f o r e  

would be removed by a r e - e s t im a t io n  o f  each e q u a t io n . To dec id e  which 

p a ram e te rs  sh o u ld  be r e ta in e d  th e  Wald t e s t  f o r  rem oving s e t s  o f  

p a ram e te rs  was perfo rm ed  i . e .  0 V~ 0 (where V i s  th e  c o v a rian ce  

m a tr ix  o f  0) i s  d i s t r i b u t e d  as x2 (k) under th e  n u l l  h y p o th e s is  t h a t  k 

o f  th e  e lem en ts  o f  0 a re  z e ro . This p ro c e ss  y ie ld e d  th e  fo llo w in g

e q u a t io n s :
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1. (1 -L )(1 -L U) y ( t ) = (l+c^L*) e ( t ) ( 5 . 26a)

3. (1 -L )(1 -L U) y ( t )  = (l+ c^L 5 + c^L6 ) e ( t ) ( 5 . 26b )

u. ( l -L )  ( l - L 1) y (t ) = y + (l+o^L + + a ^ + c ^ L 6 ) e ( t ) ( 5 . 26c ) .

E qua tions  (5 .2 6 )  and Table 5 .5  d ese rve  f u r t h e r  comment. F i r s t l y

th e  e x c lu s io n  o f  in  Food seems odd b u t  i s  e x p la in e d  by remembering 

t h a t  a r e d u c t io n  in  th e  o rd e r  o f  th e  M.A. in v o lv e s  th e  removal o f  two 

p a ra m e te r s : in  t h i s  case  and e ( - 6 ) .  Because o f  th e  low t - v a l u e

a s s o c i a t e d  w ith  e ( - 6 )  ( 0 . 2 6 ) i t  i s  n o t  s u r p r i s i n g  t h a t  an o v e r a l l  t e s t  

r e v e a l s  t h a t  th e  o rd e r  sh o u ld  be red u ce d .  Secondly i t  was found t h a t  

on s t a t i s t i c a l  c r i t e r i a  (5 .2 6 c )  sho u ld  be r e t a i n e d  f o r  M is c e l la n e o u s . 

This  c o n c lu s io n  i s  t r o u b l in g  as i t  would be b e t t e r  i f  t h e r e  were no 

u n i t  r o o ts  in  th e  M.A. so t h a t  some o th e r  a l t e r n a t i v e s  t o  (5 .2 6 c )  were 

e x p lo re d .  These c e n te re d  around th e  cho ice  o f  d i f f e r e n c in g  f i l t e r ,  

and a f t e r  i n i t i a l  f a i l u r e s  w ith  ( l -L )  e t c .  i t  was d ec id ed  t o  a l low  a 

n o n -u n i t  r o o t  in  th e  second p a r t  o f  th e  t r a n s f e r  f u n c t io n  

i . e .  ( l -L )  ( l-3 L ^ )  y ( t ) = ( l + ^ L + a ^ + o t ^ + c ^ L 6 ) e ( t )  ( 5 .2 7 ) .

E qua tions  ( 5 .2 6 a ) ,  (5 .26b )  and (5 .2 7 )  were th e n  e s t im a te d  and 

th e  r e s u l t i n g  p a ram e te r  e s t im a te s  a re  s e t  ou t i n  Table 5 .6 .
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Table 5 .6

E s tim a ted  P a ram ete rs  o f  E qua tions  (5 ,26a) , (5 .2 6 b ) and ( 5 . 2 7 ) (PH)

S e r ie s “i “ I* “ 5 a6 3 a 2 s

Food - 0 . 1+363 87.60 6132
(3 .59 )

A ppliances -0 .3135 -0 .3933 1+4.66 2992
( 2 . 7 3 ) (3.1+0)

M is c e l la - - 0.1688 -O .8975 0.1429 0.1058 0.9229 352.92 22595
neous (1 .2 1 ) ( 7 . 0 8 ) ( 1 . 0 1 ) (1 .01 ) (6 9 . 59 )

G en e ra l ly  th e  pars im onious  models o f  ( 5 .2 6 a ) ,  (5 .2 6 b )  and (5 .2 7 )

a re  b e t t e r  th a n  t h e i r  c o u n te r p a r t s  in  ( 5 .2 5 ) .  Even now however th e

problem o f  n e a r - u n i t  r o o ts  in  th e  M.A. rem ains f o r  th e  M isce l lan eo u s

s e r i e s  b u t  i t  was d ec id ed  to  f i t  t h e s e  e q u a t io n s  by th e  system s

e s t i m a t o r ;  i t  may no t m a t te r  t h a t  th e  M.A. ro o ts  a re  h ig h  in  th e  l i g h t

2 9o f  th e  e x p o s i to ry  n a tu re  o f  th e  e x e r c i s e  and th e  h igh  R a c h iev ed .

A f i n a l  check on th e  adequacy o f  th e  m a in ta in e d  models i s  a v a i l a b l e  

from th e  co rre log ram s o f  th e  r e s i d u a l s  in  Table 5 .7 .

9
E quation  (5 .2 7 )  e x h i b i t e d  convergence d i f f i c u l t i e s  and i t  might have 
been b e t t e r  to  e s t im a te  i t  as ARMA (1 ,4 )  r a t h e r  th a n  ARMA(l,6).
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T ab le  5 .7

C o rre lo g ram  o f  t h e  R e s id u a l s  (8 l a g s )  

E q u a t io n s  ( 5 . 2 6 a ) ,  ( 5 .2 6 b )  and  ( 5 .2 7 )

S e r i e s  Lag

1 2 3 4 5 6 7 8 Q

1 _n n . 13 0 .n4 0 .0 1  - 0 .0 7 - 0 .0 9 0 .1 0 - 0 .0 6 5 .0 8
(1 .3 1 ( 1 .1 9 ) ( 0 . 4 2 ) ( 0 . 1 0 ) ( 0 .6 4 ) ( 0 . 7 8 ) ( 0 . 8 3 ) ( 0 . 5 6 )

3 0 .1 6 - 0 .0 6 - 0 .1 6  - 0 .1 9  - 0 . 0 8 - 0 .0 4 - 0 .0 7 0 .0 4 7 .9 1
( 1 .4 0 ) ( 0 .5 1 ) ( 1 .3 9 ) ( 1 . 6 5 )  ( 0 .6 8 ) ( 0 . 3 5 ) ( 0 . 6 1 ) ( 0 . 3 9 )

4 - 0 .0 2 0 .0 0 - 0 .0 3  - 0 .1 2  - 0 .1 7 0 .0 7 - 0 .0 2 - 0 .1 6 5.66
( 0 . 1 6 ) ( 0 .0 1 ) ( 0 . 2 5 M 1 . 0 5 ) ( 1 . 5 0 ) ( 0 . 6 l ) ( 0 . 1 9 ) (1 . 3 9 )

T here  i s  s t r o n g  e v id e n c e  i n  T a b le  5 .7  t h a t  t h e  r e s i d u a l s  a r e  c lo s e  

t o  w h i te  n o i s e  and c o n s e q u e n t ly  ( 5 . 2 6 a ) ,  ( 5 . 26b )  and ( 5 .2 7 )  may be 

r e g a r d e d  as an a d e q u a te  s p e c i f i c a t i o n  f o r  Food, H ouseho ld  A p p l ia n c e s  and 

M is c e l l a n e o u s  r e s p e c t i v e l y .  In  t h i s  form  how ever t h e r e  a r e  a  l a r g e  

number o f  p a r a m e te r s  ( 2 4 ) -  owing t o  t h e  n eed  t o  e s t i m a t e  e* -  and t o  

a v o id  c o m p u ta t io n a l  d i f f i c u l t i e s  w i th  SYSTEM i t  was d e c id e d  t o  impose 

t h e  r e s t r i c t i o n  e* = 0 .  The r e - e s t i m a t e d  e q u a t i o n s  a r e  i n  T a b le  5 . 8 .
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T able 5 .8

E stim a te d  P aram e ters  o f  E q u a tio n s  (5 .2 6 a ) ,  (5 .2 6 b ) and

( 5 . 2 7 ) (PH/O)

S e r ie s % a 5 a 6 ß S2 s

Food -O .3687 94 .19 6970

A ppliances -0 .3 1 3 8 -0 .3222 1+9 . 91+ 361+9

M iscel 1 a -
eous -0 .1 7 6 3 -O .8929 0.1533 0 .1106 0 .9280 351 .47 21+603

A com parison o f  T ab les  5 .7  and 5 .8  r e v e a l s : -

( i )  The p a ra m e te r  m agnitudes do n o t vary  g r e a t ly  i f  e s t im a t io n  

i s  perfo rm ed  w ith  PH/O r a th e r  th a n  PH.

( i i )  L e t t in g  S^ be th e  sum o f  sq u a re s  a s s o c ia te d  w ith  PH/O and

t h a t  a s s o c ia te d  w ith  PH, under th e  n u l l  h y p o th e s is  t h a t

e * ( j )  ( j = l , . . . , K )  i s  zero  th e  s t a t i s t i c  K S ^-S ^) / (N-M) * 1S^

(where M i s  th e  t o t a l  number o f  p a ram e te rs  f i t t e d  by PH) i s

d i s t r i b u t e d  as FT. „  ...  The computed s t a t i s t i c s  w ere 2 .3 9 ,  K,N-M

2.1+5 and 0 .95  fo r  Food, A pp liances and M isce llan eo u s  r e s p e c t ­

iv e ly  so th a t  on ly  fo r  Food i s  i t  l i k e l y  t h a t  e* i s  

s i g n i f i c a n t l y  d i f f e r e n t  from  z e ro .

F in a l ly  th e  s e t  o f  e q u a tio n s  was e s tim a te d  by SYSTEM, a lth o u g h  i t  

was f a i r l y  obvious t h a t  th e  example was no t a p a r t i c u l a r l y  good one in  

so f a r  as th e re  was l i t t l e  to  be e x p la in e d  a f t e r  d i f f e r e n c in g  and th e  

c o r r e l a t i o n  betw een th e  r e s id u a l s  o f  d i f f e r e n t  e q u a tio n s  was weak. To 

a p p re c ia te  th e  l a t t e r  p o in t ,  th e  co v a rian ce  and c o r r e l a t i o n  m a tr ic e s

were
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~ 92.93 16.78 2h.9 2 ~ " 1.00 0.25 O.lh ~

16.78 U8.65 50.95 0.25 1.00 0.40
_ 24.92 50.95 328.04 _ _ 0.1k o . k o 1.00 _

5.5.2 Estimation
Both SYSTEM and the systems version of A.F.D. (called A.F.D./S) 

were applied to the selected equations and efficiency gains were 
tabulated for each estimator. Each table will contain:-

(i) The parameter estimates for SINGLE(A.F,D.) and SYSTEM(A.F.D./S).
(ii) The ratio of SINGLE(A.F.D.) to SYSTEM(A.F.D./S) variances (4> ) .
(iii) The ratio of asymptotic SINGLE(A.F.D.) to asymptotic SYSTEM(A.F.D./S) 
variances (<j>2). These were computed by inserting the relevant parameter 

estimates into (5.23).
Table 5.9

Efficiency Comparison of SYSTEM and SINGLE 
Equations (5.26a), (5.26b) and (5.27)

Parameter SINGLE SYSTEM 4> $2

-4" 
1—
1 

< Ö -0.3687 -0.4342 1.22 0.72

a25 -0.3138 -0.3006 1.25 1.06

“26 -0.3222 -O.3I+75 1.24 1.09

C—
1

00
<CQ 0.9280 0.9281+ 1.14 1.10

a31 -0.1763 -O.I8I+O 1.21 O.9I+

a3h -0.8929 -0.8928 I.18 1.00

a35 0.1533 0.1635 1.20 1.06

a36 0.1106 0.1101 1.17 1.03
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There are a number of points emerging from Table 5.9 that demand

attention. Firstly there are only minor changes in the parameter

magnitudes in the transition from one estimator to the other. To

test whether there has been a significant change denote SYFTEM estimates

by 0 and SINGLE estimates by 0 : then the statistic (§ -6 V: g (0 -0 )-L c. 4. 2 0 * 0 * 1 2A A 1 1
is distributed as x2(k) (k is the dimension of 6^ and P ) under the null 

h ypothesis, and for the comparison the calculated statistic was 7.2 which 

would only be significant at a level greater than 0.5. Secondly the 

efficiency gains are, as was to be expected, only moderate. Two 

measures of this were adopted:

(i) tr (VÄ A )/tr(Vg * ) 
* ■ 9isi0 20 2

(ii) det(Vs s )/det(Vs a ) 
02®2 ei0l

The first of these was 1.22 and the second U.99. Thirdly the 

empirical and asymptotic variances are close for all parameters but 0 ,

and in this case the discrepency is so great as to cast some doubt upon 

the estimate of the covariance matrix obtained from (5.1l) in a 

situation of small samples and high roots.

A comparison between A.F.D. and A.F.D./S was performed on the 

above lines and Table 5.10 corresponds to Table 5.9.
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Table 5 .10

E f f i c i e n c y  Comparison o f  A.F .D.  and A .F .D . /S

P aram eter

E q u a tio n s  (5 .2 6 a ) , ( 5 . 26b) and (5 .2 7 )

♦1 ♦2A .F.D . A .F .D ./S

alb
-0.1+702 -O .5259 1 .2 6 0.86

a25 -0 .3025 - O .I 860 1.31+ 1 .11

a26 -0 .3 2 1 1 - 0 . 1+602 1 .3 2 1 .0 8

^31 0.9187 0.91*17 1.31+ 1.11+

a 31 -O.I+O63 -0.1+097 1 .20 1 .17

a3l+ -O .2978 -O .3156 1 .3 3 1 .12

a 35 -o.ooi+i -0 .0 3 7 7 1 .2 3 1 .1 8

a 36 0.171+0 0.1902 1 .2 3 1 .10

The c o n c lu s io n s  co n ce rn in g  A .F .D ./S  v is  a v is  A .F .D . a re  s im i la r  

to  th o se  fo r  SINGLE and SYSTEM ex ce p t t h a t  th e  e f f ic ie n c y  g a in s  would 

seem to  be l a r g e r  in  th e  freq u en cy  domain -  th e  most p rom inen t in d ic a to r  

b e in g  th e  v ery  h ig h  d e te rm in a n ta l r a t i o .  O therw ise th e  main item  o f  

i n t e r e s t  in  T able 5 .10  i s  th e  w ide d isc re p e n c y  in  e s t im a te s  o f  th e  

M.A. p a ram ete rs  f o r  M isce llan eo u s  betw een A .F .D . and SYSTEM (PH): 

no doubt caused  by th e  u n i t  r o o t s .  C o m p u ta tio n a lly  A .F .D ./S  i s  

i n f e r i o r  to  SYSTEM w ith  1 m inute b e in g  r e q u ire d  fo r  convergence o f  

SYSTEM (from  a r b i t r ^ 'y  s t a r t i n g  v a lu e s )  and 5 m inu tes fo r  A .F .D ./S  (from  

th e  s in g le  equatio r. e s t im a te s ) .  However, a lth o u g h  h ig h , i t  does seem 

as i f  th e  com putatic a l  c o s t w ould n o t be e x c e ss iv e  f o r  sm all sy s te m s .“̂

10
A Newton-Raphson v e rs io n  was w r i t t e n  fo r  b o th  e s t im a to rs  and fo r  th e  
system  o f  th e  t e x t  i t  r e q u ire d  5 m inu tes (SYSTEM) and (p ro b ab ly )  1+0 
m inu tes (A .F .D ./S ) f o r  convergence : th e  l a t t e r  f ig u r e  b e in g  on ly  an 
e s tim a te  b a sed  on th e  com putation  tim e fo r  one i t e r a t i o n .  As 
rem arked e a r l i e r  th e  in o r d in a te  amount o f  com puter tim e was a con­
co m itan t o f  th e  fu n c tio n  e v a lu a tio n s  r e q u ire d  fo r  second d e r iv a t iv e s .
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5 . 6  C onclusion

C hap ter 5 has shown t h a t  i t  i s  b o th  p o s s ib le  and b e n e f i c i a l  to  

develop  e s t im a to rs  f o r  system s o f  e q u a tio n s  in  w hich th e re  a re  M.A. 

d is tu rb a n c e  te rm s . A lthough l im i t e d ,  th e  Monte C arlo  and e m p ir ic a l 

ex p erim en ts  were s u f f i c i e n t l y  en co u rag in g  in  t h e i r  co n c lu s io n s  to  

j u s t i f y  th e  a p p l ic a t io n  o f  system s e s t im a to rs  when th e  s i t u a t i o n  so 

demands. As th e re  a re  now a number o f  f i e l d s  o f  eco n o m etric  r e s e a rc h  

e .g .  i n t e r - r e l a t e d  f a c to r  demands and system s o f  demand e q u a t io n s ,  in  

w hich a n o n -s im u ltan eo u s  s e t  o f  e q u a tio n s  a r i s e ,  and in  w hich th e r e  has 

r e c e n t ly  been a s u b s t a n t i a l  u se  o f  q u a r te r ly  d a ta  [7 6 ] , th e  l ik e l ih o o d  

t h a t  th e  e s t im a to rs  d is c u s s e d  in  t h i s  c h a p te r  w i l l  be re q u ire d  i s  

becom ing g r e a t e r .



Appendix 9

Derivation of the Asymptotic Covariance Matrix for the 

M.L, Estimator of Systems of Equations 

By an application of the methodology of Appendix 3 the asymptotic 

covariance matrix of vft (0-0)(0= [  ̂ ]) is

228.

V aa = Lim [E(00 „ L v N 90N-x»
2tt 9e (a ) 9e ( A ) \ -i-l(n ft I) 90 )]' (A9.1).

Consider the cross derivative between the d'th A.R. parameter in 

the r'th equation and the g'th A.R. parameter in the s'th equation i.e

8 , and 8 rd sg From (A9.1) we seek

1 9eT(a ) 1 (A)Llm - E  [2n sP-la- an
N-*» rd sg

(A9.2).

If neither 8 , nor 8 are common to other equations the cross

term may be replaced by

N 3e (X )
Lim - E ( 2 tt Z ---
N+» N j-l 3ßrd

9e (A.) rs s ,i x (A9.3)

Now £r(V w_wW so that

idA .W  W  6 J
.(A.98. A (A.) 
r J

(A9.U)

^ s (X,j)
98__

igA .

w (A9.5)

Substituting (A9.5) and (A9.^) into (A9.3) we obtain
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i(d-g)A 

I (Aj - J1 N 6 t • -L rs „ rs ,]Lim —  E(2tt c £ -----“--------
N-*» j=l Ar(X ) Äg(X )

(A9.6)

Asymptotically the expectation of the cross periodogram is the 

cross spectrum ([^0 p.213]) so that

Lim E(I (»,)) 
N-*=° rS J

and (A9.6) simplifies to 
i(d-g)A

o A (A.) Ä (A ) rs r y  s j
2tt B (A.) B (A.) r j s j

1__
2 tt

7t e a a rs (A9.7)
„ B (X) B (X)-TT r s

which agrees with (5.23) of the text. By a similar treatment of the 
other cross terms it may be shown that the remaining expressions in 

(5.23) hold as well.
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CHAPTER 6

P a ra m e tr ic  E s tim a tio n  o f  Some Time S e ri e s Models

6 .1  In tro d u c t io n

E a r l i e r  c h a p te rs  have c e n tre d  on th e  d e r iv a t io n  and e s t im a t io n  o f

ARMAX e q u a tio n s  w ith  p a r t i c u l a r  a t t e n t i o n  b e in g  g iven  to  th e  sam pling

d i s t r i b u t io n s  o f  th e  p roposed  e s t im a to r s .  In  th e  f i n a l  two c h a p te rs

some a p p l ic a t io n s  o f  th e  te c h n iq u e s  g iven  in  C hapter 2 w i l l  be o u t l in e d

and an assessm en t w i l l  be made o f  t h e i r  u s e fu ln e s s  to  e c o n o m e tr ic ia n s .

The p re s e n t  c h a p te r  w i l l  be concerned  w ith  a c la s s  o f  m odels,

in v o lv in g  th e  decom position  o f  a tim e s e r i e s  in to  m u tu a lly  o r th o g o n a l

e le m e n ts , t h a t  has appeared  in  v a r io u s  g u ise s  in  th e  econom etric

l i t e r a t u r e ,  and i t  w i l l  be seen  th a t  w ith  some m o d if ic a tio n  th e se

models may be e s t im a te d  by th e  a lg o rith m s  o f  C hap ter 2 .

A b r i e f  rev iew  o f  th e  c h a p te r  fo llo w s . S e c tio n  6 .2  o u t l in e s

th e  model to  be employed and r e fe re n c e  w i l l  be made to  fo u r  a re a s  o f

a p p lie d  re s e a rc h  in  w hich i t  a r i s e s  The fo llo w in g  s e c t io n  s e l e c t s

some o f  th e  s im p le s t  forms o f  th e  model fo r  s tu d y , v a r io u s  e s t im a to rs

a re  p re s e n te d ,  and a d i s t i n c t i o n  b ased  on in c re a s in g  e f f ic ie n c y  i s  
2

made. T his le a d s  in to  some Monte C arlo  s tu d ie s  i l l u s t r a t i n g  (and 

e v a lu a tin g )  th e  e f f ic ie n c y  o f  th e  v a r io u s  a lg o rith m s  o f  S e c tio n  6.U. 

F in a l ly  6 .5  a p p l ie s  th e  methods to a number o f  economic tim e s e r i e s  in  

o rd e r  to  in d ic a te  a re a s  in  w hich th e  approach has p o t e n t i a l .

6 .2  A Time S e r ie s  Model

A m ajor p ro p o s i t io n  o f  t h i s  c h a p te r  i s  t h a t  a number o f  

(seem ing ly  u n re la te d )  problem s a r i s in g  in  th e  a n a ly s is  o f  tim e s e r i e s

^ A f i f t h  i s  re c o u n te d  in  C hap ter 7 .

2 E ff ic ie n c y  in  th e  sen se  o f  minimum v a r ia n c e .
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may be regarded as having come from a set of equations

y(t) = T(t) + I(t) (6.1a)

T(t) B(L) = e ^ t )

I(t) = e2(t)
(6.1b)

(60lc),
.p ^

where B(L) = l-ß.L- 0, -ßpt, satisfies the usual root requirements and"5

E(ek (t)) = 0  k = 1,2 

E(ek (t) et(t-j)) = akk k = l = 1,2; j = 0
= 0 k,£ = 1,2; j + o.

The reduced form of (6.1a) - (6.1c) is

B(L) y(t) = e±(t) + B(l ) e2 (t) (6.2).

With the aid of equations (6„la) - (602) it will be possible to 

demonstrate that four problems arising in econometrics and statistics 

have a common structure. The four are:-

(i) A.R. with superimposed noise.

(ii) Permanent and Transitory Components of a series.

(iii) Seasonal Components of a series.

(iv) Adaptive Forecasting.

The assumption of uncorrelated disturbances will be retained 
throughout the chapter. Therefore whenever a disturbance is sub­
scripted it should be understood that it is uncorrelated with all 
other subscripted disturbances. One might also interpret the model 
in (6„la)-(6olc) as a more general one of "signal embedded in noise" 
where a specific form viz an A.R. is assumed for the signal T(t)„
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(i) AoRo with Superimposed Noise

Let us assume that a variable T(t) follows a p ’th order A 0R 0 

but that it is observed with an error» Under the assumption that the 

observation error is i gi 0d0 and uncorrelated with the error arising 

from the A»Ro, a model compatible with (6»la)-(60lc) is generated»

In this .̂ uise statisticians have researched the estimation of the 

parameters of B(L) for a number of years, with Walker [ill], Parzen 

[89] and Bailey [5] being notable contributors» Their interest has 

been stimulated by the belief that a famous historical series - 

Wolfer's sunspot observations - follows a second order A»R» with errors 

of observation e„g, Yule [122], but as well Walker acknowledges that 

"00000 further investigations „„ooo should be of practical importance"» 

[111 p»33]c

(ii) Permanent and Transitory Components of a Series

Friedman [28], in the course of explaining the constancy of the 

long run marginal propensity to consume in the United States, proposed 

that income and consumption could be viewed as the summation of two 

orthogonal components: one of which (termed transitory) was to be 

white noise, whereas the other (permanent) was to be autocorrelated» 

Obviously the system of equations (60la)-(6Dlc) will represent such a 

scheme if, when y(t) is income, T(t) is designated permanent income 

What form should B(L) take? A tempting answer is

B(L) = 1 - 0L (6„3)»

h Some discussion has arisen around the nature of the transitory 
component under the heading of windfall gains and it appears that 
the specification of the transitory component as white noise may be 
inaccurate»
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With sch) as in (6„3) (602) becomes

y(t)(l-BL) = e^t) + e2(t)(l-BL) (6.U),

or by noting that the right hand side of (6,U) has the correlogram of 

a first order M.A.

y(t)(l-BL) - (1+aL) e(t) (6.5).

As Friedman realised the conceptual distinction employed in 

decomposing income is of little value unless it may be translated into 

empirical constructs i.e. an estimate of T(t) must be formed. To 

construct such an estimate we may draw upon the well developed body of 

theory concerned with the optimal extraction of a signal (T(t)) from 

a series (y(t)) that is contaminated with noise (l(t)). The 

fundamental theorem to carry out the extraction (Whittle [117])is:

If a series y(t) (t==l,,.. ,N) is a linear combination of a signal 

T(t) and noise l(t) and can be expressed as y(t) « $(L)e(t) where 

e(t) is iciodc (O.o2) then the best linear extraction of T(t) is 

given by

T(t) = ------
0? 1(h)

\  (L> “I y(t)

where + indicates that only positive powers of L are retained. For 

the special case when B(L) = 1-BL, $ (L) = Nerlove [8l] has shown1 — pL

that the optimal estimate is

(6.6).

Rearranging (6.6) and setting A = a(—  -l), B - ( ~ —  ) yields
o P

T(t) = (l-B+A) fl(t-l) + By(t) (6.7).



(6 cT) shows that the optimal estimate of permanent income would 

be derived from a recursive calculation and by comparing it to Wright 

[120 eq« 3 P 08U5] it is plain that (6 «7) is the form used by Friedman 

in constructing his estimate of permanent income0 Therefore under 

the assumption that permanent income follows a first order A 0R C it has 

been shown that an optimal estimate may be formed by an exponential 

smoothing of all past values of the current income series (see (6 „6))« 

It is of some interest to dwell on (6 0T) and. the last statement« 

Firstly Holmes [5l] has recently claimed that an exponential 

weighting contradicts the assumption of uncorrelated components; yet 

this condition was an essential step in the derivation of (6 06)«^ The 

paradox is resolved by noting that Holmes derives his "impossibility 

theorem" from the assumption that y(t) is an i 0icd0 variable, and an 

examination of the theoretical covariance function of y(t) shows that 

this is invalid«^ Secondly a comparison of Friedman's parameters 

(A=0o02, B=0«4) with those of (6 06 ) yielc 3=1«3, a=-0«62, so that, 

although the weighting function derived from the simple model is 

identical to Friedman’s, the magnitude of 3 is at variance with the 

restrictions of Chapter 1 0 Therefore if permanent income is to be 

generated by a system such as (6 cla)-(6 0lc) it will be mandatory to

 ̂ Only if E(T(t)I(t))= 0 is it permissible to write - a
basic relationship required in the proof«

c
An intuitive explanation comes from recognizing that the very notion 
of a permanent component in a series carries with it the necessity 
of some autocorrelation in that series 0 If the series really were 
ioiodo then the most reasonable assumption to be made would be that 
there is only a transitory component«
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determine the extent to which the restricted parameter space will 

generate "realistic"series, This point is touched on later in the 
chaptero Lastly, ignoring for the moment questions arising from 

the root restrictions, the fact that the generated model is ARMA 
insinuates that estimates of permanent components might be constructed

* Afrom the parameter estimates 3, a obtainable from fitting ARMA models 
to the data»

(iii) Seasonal Components of a Series
Some authors have posited that time series might be regarded as 

the summation of various orthogonal elements viz. trend-cycle, 
seasonal and irregular0 Indeed, as Grether has remarked [35], this 
subjective decomposition has a long and honourable tradition in 
economic methodology and still forms the basis of present-day methods 
of seasonal adjustmentc In practice most controversy has arisen 
from the fact that it is usually not very clear or explicitly indicated 
just what is assumed about the nature of these components, with the 
result that any description of the components is inevitably a function 
of the observer, and the best one might hope for would be a clear 
definition in each case»

Nerlove, Couts and Grether [l8] have been the major proponents of 

(6 o l )  as a description of time series. Their analysis would identify 
T(t) as the trend and l(t) as the irregular0 With the addition of a 
third factor (the seasonal S(t)) they found that it was possible to 

obtain good forecasts for the series Unemployed Males, aged lU-19 
from January 19̂ +8 to December 1961; the model employed for this

purpose being



y(t) = T(t) + I(t) + S(t)
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T(t) (1-ßL)2 = e^t)

S(t) (l-L12)2 = e2 (t) 

l(t) = e^(t)

Again it is clear that an ARMA model is the reduced form and 

defining z(t) = (l-L'*'̂ )2 y(t) it will be ARMA (2,26) in z(t).

(iv) Adaptive Forecasting

As well as designing an optimal filter to extract T(t), 

economists may wish to forecast y(t), and provided the series y(t) has 

a moving average representation the weighting function to be applied 

to y(t) to generate optimal forecasts is equation (1.23) (:>.25). 
Specializing this formula to the simple model with reduced form (6.5), 

one-period ahead forecasts of y(t+l) at time t (designated y*(t)) may 

be made from

y*(t) = f ~ L y(t) (6 .9),

or

y*(t) (l+aL) = (ß+a) y(t) (6o10).
*7Now consider the case ß=l« (6o10) then reduces to

y*(t) = -ay*(t-l) + (1-a) y(t) (6.11)

which (with A=-a) is easily recognizable as the exponentially weighted 

or adaptive forecast of Holt [52] (see [llT Po9Tl for a proof) in that

T Hannan [42] presents a rigorous proof that Whittle's optimal 
prediction and extraction formulae are applicable in this case even 
though the series is no longer stationary.
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Holt’s formula provides a one-period ahead forecast of (say) sales 

by a linear combination of the actual sales in the current period and 

the forecast of sales made for the current period in the previous period. 

Wagle, in a recent survey of short-term forecasting techniques, has 

asserted that (60ll) is ’’appropriate for products with stable sales 

rates and little seasonal influences"[±U9 d2H:5 Jthereby justifying 

the trend plus irregular interpretation given here. A similar con­

clusion exists for higher order differences in the trend e.g. Theil 

and Wage [lOU] have derived the adaptive forecasting formula for a 

series with trend and irregular factors when the trend follows 

T(t)(l-L) = e^(t)0 As with the previous three sub-sections it is

obvious that the parameters of adaptive forecasting formulae may be 

identified with the coefficients of an ARMA model.

6 o3 Parametric Estimation of Some Simple Models

What algorithms are available for the estimation of the parameters 

of (6o1)? An answer from management science is that selection

of the unknown parameters ...o are usually obtained by trial and error’’ 

[109] but a more optimistic one is to be found in the literature con­

cerned with the design of optimal filters for signal extraction. Most 

of this appears in engineering journals, and although general solutions 

have been proposed (Yaglom [l2l]),the analytical difficulties have beenQ
so great as to restrict their use to very simple models.

Scadding [97J reviews the significance of this work for economists 
and outlines the optimal filter when B(L) = 1-$L. A quick perusal 
of his paper reveals that extending the analytic approach would 
require great mathematical skill so that a numeric alternative would 
be valuable „

8



To d a te  fo u r  s im ple  methods have been p roposed  -  th o se  o f  Walker 

[1 1 0 ] ,  B a i le y  [5 ] ,L e e n d e rs  [ 65 ] and G re th e r  [35]» As a l l  a re  founded 

on th e  co rre lo g ram  o f  th e  s e r i e s  i t  i s  i n s t r u c t i v e  to  c o n s id e r  some
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spec ia l ,  cases» L e t t i n g  u ( t )  = B (L )ep ( t )

c o n ta in s  th e  n on -ze ro  c o v a r ia n c e s  o f  u ( t )  

B (L).

Table 6 01

Non-zero C ovariances  o f  u ( t )  f o r  some

+ e ^ ( t )  in  ( 6 . 2 ) ,  Tab le  6„1 

f o r  a number o f  d i f f e r e n t

s p e c i a l  forms o f  ECB)*

Model B(L) V
I 1-ßL Yu u ( ° )  = o 2 ( l+ ( l+ g 2 )x)

Yu u (1) =- ° iAS

I I 1-L Yu u (° )  = o2(1+2X)

yuu(1) =-  ° i x

I I I ( l - L ) 2 YUu ( ° )  = a f ( 1+6x)

Yu u (1) ■ - 14

V 2) =

X  i s  th e v a r ia n c e  r a t i o  o ^ /o ^ „

With th e  a id  o f  th e  co v a r ian ce  fu n c t io n s  in  Table 6„1 th e  fo u r  

methods m entioned  above w i l l  be e x p la in e d  a long  w ith  two new 

a lg o r i th m s  0

( i )  Walker/Leenderr E s t im a to r s

Both e s t im a to r s  r e l y  on an e q u a t io n  o f  t h e o r e t i c a l  and e m p i r ic a l
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covariances of u(t)0  ̂ Take Model II as an example„ It is possible

to form estimates of y (O) and y (l) from the differenced data, and'uu 'uu *
then obtain estimates of oj anc A by equating the theoretical values
of y (0) and y (l) (given in Table 6 0l) to the empirical values, uu uu
A similar procedure applies to Model III0 For Model I there is an

added complexity in the presence of ß in both the A . R 0 and M.A.,

Walker trgues that instrumental variables be applied to the first order

A,R„ to yield a consistent estimate of ß, and then the consistent

estimates of y (0) and y (l) are utilized to find a? and X„ uu ' uu 1

Walker provides a general proof that the estimator is consistent

and that N (X - X ! - o£) will have, as N -► 00, a multinormal

distribution with zero mean» Furthermore he derives the efficiency

of the estimator vis a vis the M 0L„ estimator and finds that efficiency

declines dramatically for (6„5) as ß and |a| rise«, This result is

sensible in that as |a| becomes smaller the sources of inefficiency will

be progressively removed» From this it emerges that Walker's method

is not robust against many of the models that may arise, and Leenders

attempted to improve upon it by making corrections to the estimates

obtained»^ Although he seems to have been successful for the special

case of Model III the analytical difficulties inherent in his derivation

9
Leenders' paper was not available to the author and the source of 
information regarding it was Wagle0 The skimpy account there 
precludes any detailed discussion of it in this thesis.

^  It is not really Walker's method as he was only assessing the 
efficiency of it without advocating its use.
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must reduce its utility for higher order models (particularly if there 

are unknown roots in B(L))0

There are further deficiencies in the "correlogram estimator" of 

Walker’s article. One of the more important is that in small samples 

there is no guarantee of the root restrictions being satisfied by the 

instrumental variable estimator of B(L)0 In some Monte Carlo studies 

constructed to assess the efficiency of this estimator there were 

numerous instances of the roots of B(L) = 0 lying inside the unit circle0 

Similarly it was possible to obtain estimates of X that were negative, 

and this behaviour was found in a number of empirical examples.

Finally Walker’s paper is of wider interest than the examination 

of a particular estimator in as much as it contains the asymptotic 

covariance matrix of the efficient estimator of $ and X in Model I 

i .e o

N var (S) = (6.12)
(ß-a)2

a N var(X) * X(l-a) {(3ß-1+ß3)a:; + c^+2ßa3 + (2-Uß2)a2-aß-»l)
(6.13)

where a is the M.A. parameter in (6.5) and is a root of the equation

Xß(L2+l) - L(l+X(l+ß2)) = 0 (6,lU).

(6o12) and (6013) may be used to evaluate the sampling performance of 
any proposed estimator and will be referred to in some Monte Carlo 

studies in the following section.

(ii) Grether

Couts, Grether and Nerlove [18] (and later Grether in his 

doctoral thesis [35]) have advocated".„.the provisional procedure of 

generating theoretical spectra for the process ... using various



values of the parameters. By comparing these with the spectrum 

estimated from the corresponding series derived from the series to be 

predicted we were able to select values.oe that provided a close match 

between the empirical and theoretical spectra” [l8 p.19]. There is 

little that can be said about the statistical properties of such an 

ad hoc approach, but as it is known that the estimated spectrum may 

diverge quite substantially from its true shape the degree of confidence 

to be placed in any estimates must be low. On the other hand some 

check is available in that the forecast and actual series may be 

compared for a number of parameter sets and the coefficients minimizing 

the sum of squared deviations selected: in this way the technique

resembles a grid search0 An attempt was made to formalize the method 

ty devising an algorithm that would minimize the squared deviations 

between the theoretical and empirical spectra by generating corrections 

to parameter guesses, but this was not very successful.

Nevertheless matching of spectra has some applicability. Taking 

Model II as an example, Table 6.1 shows that the first autocorrelation 

coefficient of u(t) must be negative implying that < 0 and thereby 

circumscribing the spectral shape that the differenced series may 

possess. Therefore a visual matching of the estimated and theoretical 

spectra provides important evidence of the potential adequacy of any 

Model e 0g 0 if after differencing f (X) had greater power at the zero 

frequency than at tt it is doubtful if Model II would be appropriate, 
because a first order M 0A 0 with < 0 has greatest power at tt .

(iii) An ARMA Model Estimator

A solution hinted at already is to apply ARMA estimators to Models 

I-IIIo Probably this will be more efficient than a correlogram
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estimator as it has been mentioned (Section 1 05»3) that estimates of 

the M.A. parameters from solving the covariance equations are very 

inefficient, whereas the estimate of a obtained by the M.L» methods of 

Chapter 2 was not0 To ensure fully efficient estimates all 

restrictions must be incorporated into the estimation process» For 

the models of Table 6 01 they are analytically derivable from the co- 

variance functions as

(a)

(b)

(c)

ing

are

Model I y (1) > 0 if ßuu

Y (1) < 0 if 3 uu

Model II y (1) < 0 uu

Model III y (1) s -^Y (2)uu ' uu

Y (1) < 0 'uu

Y (2) > 0 uu
Translated into restrictions on 

ARMA equations (and adopting the

< 0 

> 0

the parameters of the correspond- 

general ARMA nomenclature) these

(a) <*1 > 0 if 3 < 0

a < 0 if 3 > 0

(b) < 0

(c) a1(l+a2) =
-ka2

< 0

<*2 > 0 o



Despite the fact that a restricted ARMA estimator is fully efficient 
the determination of restrictions becomes increasingly cumbersome as 
the order of B(L) grows, and there is the allied difficulty that the 
sign and equality restrictions call for a programming approach. A 

possible solution would be to ignore the restrictions. Although this 

may be reasonable for Models I-III, as the order of Bib) grows the 

number of parameters to be estimated rises at double the rate, result­
ing in a loss of valuable degrees of freedom. Nevertheless, as a 
first stage estimator it has much to recommend it and was found to be 
useful in a number of applications. In later discussion the estimator 
is designated as PH/U i.e. the unrestricted Phillips estimator.

(iv) Covariance Factorization and an ARMA Estimator
This algorithm builds on (iii) but incorporates all constraints 

numerically. To illustrate the nature of the solution the general 
model in (6.1a)-(6.1c) is adopted and the reduced form, (6.2), will 
be re-written as

B(L) y(t) = u(t) = B(L)e2(t) + e^t) (6.15).

Four self evident propositions are required in the subsequent *
analysis.
A. The series u(t) has a M.A. form (=A(L)e(t)) of order p and this 

establishes the equivalence
r (L) = o2[XB(L)B(L_1)+1] = o2[A(L)A(L-1)].UU 1 £

B. The roots of the covariance function T (L) obtained from bothuu
sides of the equivalence relation are equal.

C. As F (L) is a covariance function there will be p roots inside 
and p roots outside the unit circle.
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Do The set of all roots outside the unit circle may be identified as 
the roots of A(l ) - 0 (Condition 7 of Chapter l) .

Propositions A-D indicate that the parameters of A(l ) may be found 
by factoring the FUU(L) polynomial into its roots and extracting those 

that lie outside the unit circle This then becomes the basis for
the following algorithm: -

(a) Assume initial estimates X ^ \  3^^ of the unknown parameters. 

Later we will discuss the origin of these.

(b) Construct an estimate of the covariance function F (L) from
*(0\

i.e. ruu^(L) = a2[l+\^°V°^(L)B^(L_1)].

(c) Solve for the roots of ^^(L). Selecting those that lie out­
side the unit circle (  ̂° ̂ )we may construct an estimate of 
A^°^(L) from

A(0)(L) = n (1-4) L).
J*1 0

(d) Using the relation u^°\t) - A ^  ( L)e^ (t), E ^ ( t )  is generated 
recursively (assuming e(-1)=0).

(e) Once e ^ ( t )  is determined it is possible to construct estimates

of the derivatives ^  ^ (at X ^ ,  3 ^ )  by perturbatingo A d p

3 and X and then using difference formulae. A vector of corrections 
to (X^°\ ß ^ )  may be found from the Gauss-Newton algorithm i.e.

11
The article by Nerlove [8l] is a good reference to this procedure 
(particularly the Appendix).



l e t t i n g  0

9e
30

8e ' 3£ (where a l l  p a r t i a l  d e r iv a t io n s  a re  e v a lu a te d  a t
BX 1 3ß

6 ^  ) t h i s  i s

(n) _ 0 ( n - l )  _ _ f aeT 3e ^ Tl“1 i£ lae ae (6.16).

C le a r ly  t h e r e  a re  s i m i l a r i t i e s  between t h i s  a lg o r i th m  ( c a l l e d  

PH/R i . e .  th e  r e s t r i c t e d  P h i l l i p s  e s t im a to r )  and PH/O in  t h a t  t h e r e  i s  

an i d e n t i c a l  s e t  o f  e s t im a t in g  e q u a t io n s  once A(L) i s  d e te rm in e d .  I t  

sh o u ld  be n o te d  t h a t  a l l  r e s t r i c t i o n s  from th e  co v a r ian ce  fu n c t io n s  

have been u t i l i z e d  in  th e  c o n s t r u c t io n  o f  e ( t )  so t h a t  u n l ik e  th e  ARMA 

e s t im a to r  o f  th e  p re c e d in g  s u b - s e c t io n  i t  sh o u ld  be f u l l y  e f f i c i e n t .  

Furtherm ore  i t  has th e  advantage t h a t  i t  i s  e a s i l y  ex tended  to  t h r e e -  

components models -  a l th o u g h  no form al ( t h e o r e t i c a l )  d e m o n s tra t io n  i s  

p r e s e n te d .  F i n a l l y  in  p r a c t i c e  e* would be t r e a t e d  as a p a ra m e te r  

to  be e s t im a te d  a long  w ith  th e  o th e r s  and i n i t i a l  v a lu e s  o f  X and ß 

would be s e l e c t e d  a long  th e  l i n e s  o f  2 . 6 . l ( p .  TO ) .

The fo l lo w in g  example i l l u s t r a t e s  th e  perform ance o f  th e  a lg o r i th m  

on s im u la te d  d a t a .  For Model I  w ith  ß = 0 .8 ,  X = 1 .3  and a sample 

s i z e  o f  75, th e  i t e r a t i o n s  p roceed  as in  Table 6 .2 .  A r b i t r a r y  s t a r t ­

in g  v a lu e s  were s e l e c t e d  and th e s e  a re  i t e r a t i o n  0 .



T a b le  6 . 2

2U6.

An Example o f  th e Covergence o f  PH/R

I t e r a t io n  No. X 0
A.

“l S = Zz

0 U. 00 0 . 5 0 - 0 . 0 9 6 3 0 1 .3

1 1 .9 1 0 . 5  6 - O .I 8O 2 9 6 . 7

2 1 . 0 2 0 .7 3 - 0 . 3 1 6 2 7 4 . 5

3 I 065 0 . 8 1 -O .263 2 6 5 .1

1+ 1 o6 5 0 . 8 1 -O . 263 2 6 5 .1

Convergence was a ch iev ed  in  9 se es»  on th e  I .B.M.  3 6 0 /5 0 .

During th e  c o n s tr u c t io n  o f  th e  a lg o r ith m  a number o f  com p u tation a l 

d i f f i c u l t i e s  arose  and a f u l l  d e s c r ip t io n  o f  th e s e  (and th e  s o lu t io n s )  

i s  in  Appendix 1 0 . Most o f  th e  problem s r e v o lv e d  around th e  f a i lu r e

o f  stan d ard  programs such as B a ir s to w ’s to  f in d  th e  r o o ts  o f  F (L) 

and e v e n tu a l ly ,  e ch o in g  a d isc o v e r y  by [ 3 6 ] ,  M u ller’ s method was 

s e l e c t e d .  As w i l l  become e v id e n t  in  th e  fo llo w in g  s e c t io n s  however 

even t h i s  was n ot e n t i r e ly  s a t i s f a c t o r y .

(v ) B a i l e y ’ s E stim a to r

B a ile y  i s  in t e r e s t e d  in  op tim a l p r e d ic t io n  r a th e r  than e s t im a t io n

but h is  mode o f  a t ta c k  has some s i m i l a r i t i e s  to  ( i i )  and ( i v ) .

Appendix 11 shows th a t  th e  w e ig h ts  to  be a p p lie d  to  y ( t )  to  g en e r a te

op tim a l f o r e c a s t s  ( go , . . . , c o  ) may be d eterm in ed  fromo K

go =  W ^ w  ( 6 . 1 7 ) ,

where | h ( A ) | 2 = (27t) ”1 ( a | | B ( x ) | 2 + a£)

and W(k,Jl) = | h( a) | 2 c o s ( k - O A  k,A = 0 , . . . , t c  

w(k) = IH( X) I 2 cos  kX k = 0 , .  „ . , k .



2Now i t  i s  e a s i l y  seen  th a t  |H( X) |^ i s  th e  spectrum  o f 

u ( t )  = B(L)e0 ( t )  + e ^ ( t )  ( i n  ( 6 02 ) )  so  th a t  i t  may be re p re s e n te d  by 

a p ’th  o rd e r  M0A0 i 0e„ u ( t )  = A ( L) e ( t ) „  By g u e ss in g  th e  ro o ts  o f  A(l ) 

(m ain ly  by gu idance from th e  l i k e l y  ro o ts  o f  B(L)) i t  i s  p o s s ib le  to  

c o n s tru c t  o p tim a l p r e d ic t io n s  o f  y ( t )  and th e re b y  m inim ize th e  

f o r e c a s t  v a r ia n c e 0 T here i s  no s y s te m a tic  u p d a tin g  o f  e s t im a te s  

however and th e  a lg o ri th m  m erely  d e g e n e ra te s  in to  a g r id  s e a rc h  f o r  

i s o l a t i n g  th e  ro o ts  o f  A(L) y ie ld in g  minimum mean sq u are  e r r o r  f o r e c a s t s .  

A lthough t h i s  i s  a m ajor d isa d v a n ta g e  o f  th e  p ro ced u re  th e re  i s  an 

o f f s e t t i n g  g a in  in  t h a t  i t  i s  n o t n e c e ssa ry  to  impose th e  r e s t r i c t i o n  

E ( T ( t ) l ( t ) )  = 0 (a lth o u g h  t h i s  was done in  ( 6 . 17 ) ) »

6 ah Monte C arlo  S tu d ie s

Three models were s e le c te d  f o r  sam pling  e x p e rim e n ta tio n  v i z .

Models I ,  II  and IV.

Model IV

y ( t )  = T ( t )  + S ( t ) + l ( t )

T ( t ) ( l - L )  = e , ( t )
1 (6 .1 8 ) .

sU H l-O .S IL 1*) = e 2 ( t )

l ( t )  = e ^ ( t )

Model IV may be re g a rd e d  as r e p r e s e n ta t iv e  o f  a q u a r te r ly  s e r i e s  

w ith  a tr e n d in g  mean, a s ta t io n a r y  se a so n a l p a t t e r n ,  and random 

i r r e g u l a r  movements. The reduced  form o f  ( 6 . l 8 )  i s

( l-L )  ( l - 0 . 9 L ^ ) y ( t )  = ( l+ a 1L+a2L2+ a3L3+a1+L1V a 5L5 ) c ( t )  ( 6 . 1 9 ) .

T able 6 .3  in c lu d e s  th e  v a lu e s  o f  A chosen (o r  Â  and A  ̂ in  th e  

case  o f Model IV) and th e  im p lie d  M.A. p a ram e te rs  f o r  Models I , I I  and IV.



Table 6.3

Variance Ratios and the Implied M.A. Parameters of Models

I, II anC IV

Model CM!-1
>< B(L) A(L)

I 10 (1-0.9L) (1-0.T062L)

II k 1 - L (1-0.6096L)

EV 1 1 (1-L)(1-0„9L4) (1-0.5688L-0.0l+57L2-0 .o6Htl3-o .1+6661^
+0.1919L5)

The rationale for picking these Models was as follows. Firstly 

efficiency comparisons may be performed on Models I and II, as Walker 
has provided the asymptotic variances for the former and there is only 

a sign restriction preventing PH/U from being fully efficient in the 

case of the latter. For the particular M.A. parameter of Model II 
it is unlikely that this condition will be violated so that PH/U 

provides something in the nature of a control solution. Both Models 

I and II are suitable for yearly data (and will be so used later) 
whilst Mode] IV is explicitly adopted to simulate quarterly time 

series. Tables 6.̂ 4, 6.5 and 6.6 contain the summary statistics with 
only the M.A. and A.R. parameters presented (for reasons to be 

discussed later).



T a b le  6.1+

2k9.

Summary S t a t i s t i c s  f o r  PH/U and  PH/R 

Models I ,  I I ,  and  IV; Sample S iz e  N = 1+0

PART A

Model P PH/U PH/R

M B B/SE M B B/SE

I 0 o9 0.T81U - O . I I 8 6 2 .71 0.7852 -O .III+8 3 .1 6
-0  .7062 -006361 0.0701 1.21+ O.6083 0.0979 2 .21

I I - 0 O6096 -0 .6 3 0 7 -0 .0 2 1 7 0 .79 -O .6265 -O .O I69 0.61+

IV 0 o9 0.7310 -O .I69O 0.7685 -0 .1315 8.09
-O .5688 -0 .5 0 2 2 0 .0666 2 . l6 -0.1+951 0.0737 2 .90
-0.01+57 -O.OO29 0.01+28 I . 0 6 -O.O685 - 0 .0 2 2 8 0 .9 0
-O.06I+7 -0 .0 0 0 2 0.061+5 1.1*8 -0.061+6 0.0001 0 .02
-0  .1+666 -O.I+OO6 O.0660 1 .3 1 -O.3I+56 0.1210 5.1+2

0 .1 9 1 9 0.1138 -O .O 78I 2 . l6 0.0932 -O.O987 5.39

PART B

SD SD/ASD RMSE SD SD/ASD RMSE

I AR 0.3097 2 .3 9 0.3316 0.2565 1 .9 8 0.2810
MA 0.3985 0.1+01+6 0.3138 0.3287

I I MA 0.1953 1 .5 6 0.1965 0.1876 lc5 0 0.1881+

IV AR 0.2185 0.2196 0.111+9 0.171+6
MA 0 .2181 0 .2280 0.179** 0.1939
MA 0.281+1+ 0.2876 0.0667 0.0705
MA 0.3077 0.311+1+ 0.0358 0 .0358
MA 0.3571 0.3631 0 .1 5 8 0 0.1990
MA' 0.2552 0.2669 0.1291+ 0.1627



T a b le  6 0 5
2 5 0 .

Summary S t a t i s t i c s  f o r  PH/U and PH/R 

M odels I , I I ,  and IV * Sample S i z e  N = 70

PART A

Model P PH/U PH/R

M B B/SE M B B/SE

I 0o9 O08OI8 -0.0982 2 o38 0.8267 -0.0733 2.83
-0 oT062 -0.63*+*+ 0 o0718 1 o38 -0.65*+*+ 0.0518 1.*+*+

II -o 06096 -0.6270 -0 „017*+ 0 .95 -0.6271 -0.0175 0.97

IV 0 o9 0 o7873 -0 0I127 5.6*+ 0.7917 -O.IO83 7.96
-0.5688 -0.533*+ 0„035*+ 1 o53 -0.510*+ 0.058*+ 3.00
-0.0*+57 -0.0393 0.006*+ 0 o25 -0.052*+ -O.OO67 1.33
-0.06*+7 -o „0783 -0.0136 O067 -0 „08*+5 0.0198 4.95
-0 oU666 - 0 „3289 0 ol377 3o90 -0.3150 0.1516 8.13
0 o1919 0ol239 -O0O68O 2 o68 0.0709 -0.1210 8.78

PART B

SD SD/ASD RMSE SD SD/ASD RMSE

I AR 0.291*+ 2 o98 0 o3075 0.1832 1.87 0.1973
MA Oo3675 0.37*+*+ 0.25*+7 0.2599

II MA 0.130*+ 1 o38 0ol3l6 0.1276 1.35 0.1288

IV AR 0.1*+12 0 ol807 0.0962 0.1*+*+9
MA 0 0I639 Ool677 0.1375 0.1*+9*+
MA 0ol803 0„l80*+ 0.0357 0.0363
MA 0.1*+1+1 0.1*+*+7 0.0283 0.03*+5
MA 0 „21+97 0.2852 0.1319 0.2009
MA 0.1795 0.1919 0.097*+ 0.1553



Table 6.6
251 o

Summary Statistics for PH/U and PH/R 

Models I, II, and IV * Sample Size N = 100

PART A

Model P PH/U PH/R

M B B/SE M B B/SE

I 0 .9 0.8339 -O.O66I 1 »95 0.8551 -O.OI+I+9 2.05
-0,7062 -O.6613 0.01+1+9 1.01+ -0.6662 o.oi+oo 1.22

II -0.6092 -O.6167 -O.OO7I 0.56 -O.6159 -O.OO63 0.50

IV 0.9 O.8185 -O.O815 5.^5 O.8I+19 -O.O58I 5.92
-0.5688 -0.5^59 0.0229 1.1+5 _o .5UU3 0.021+5 2.26
-0.01+57 -0.0785 -O.O328 1.91 -0.051+6 -O.OO89 2.1+5
-0.06U7 -0.0557 0,0090 0.57 -0.0728 -O.OO8I 2.50
-0.1+666 -0.3800 0 0O866 3.55 -0.38m O.O856 6.12
0.1919 0.11+51 -O.OI+68 2.7I+ 0.1296 -O.O623 !+ .99

PART B
SD SD/ASD RMSE SD SD/ASD RMSE

I AR 0.2399 2.93 0.21+88 0.1531 1.87 0.1595
MA 0.3060 0.3093 0.2316 0.2350

II MA 0.0897 1.13 0.0900 0.0889 1.12 0.0891

IV AR 0.1058 0.1336 O.O69I+ 0.0905
MA O.IIII+ 0.1137 0.0768 O.O806
MA 0.1217 0.1260 0.0257 0.0272
MA 0,1125 0.1129 0.0229 0.021+3
MA 0.1727 0.1932 0.0989 0.1308
MA 0.1206 0.1291+ 0.0882 0.1080
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Tables 6.U-6.6 bear witness to the gieater efficiency of PH/R 
in both the sense of smaller variance and mean square error, although 

some of the efficiency gains (particularly for and of Model IV) 
must be regarded as too high0 An explanation of these exists in that, 
for a number of replications with Model IV when Muller’s method was 

not able to find the roots accurately, the parameters were set at the 
values attained before the routine broke down rather than delete the 

replicationo Therefore the bias may be reduced from what it would 
be if the replications were deleted, and this unsatisfactory feature 
relegates Model IV to the status of a mere indicator of the feasiblity 
of applying the estimators.

It is apparent that both PH/R and PH/U have variances substantially 
above the M.L. estimator for Model I even in the largest sample, and 
this could be accounted for by two replications - k3 and - which 
yielded a > 0 (i.e. violated the sign constraint) for PH/U. With 
these values deleted the mean and standard deviations of PH/U and 
PH/R were (0„8t62, 0.1089) and (0.8835, 0.0831) respectively, which 
agree closely with the M.L. moments. An alternative explanation for 
the large biases of this model might rely on its similarity to Model A 

of Chapter 3.
No summary statistics are given for X as the mean was generally

Q
around 10 , and only when the sample size was 100 for Model II was the 

answer (5»915) sensible. An explanation of this behaviour for Model 
II follows and it extends (by analogy) to the other models. Consider 

the covariance generating function for u(t) in Model II.
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i . e .  T (L) = 1 + X (1 -L )(1 -L  1 ) = ( l + a nL ) ( l + a ,L - 1 ) ( 6 .20)uu 1 1

( 6 o2 0 ) i s  a  se c o n d  d e g re e  p o ly n o m ia l  w i th  r o o t s

- ( l + 2 X ) - / ( l + 2 X ) 2-l*X2 , _ - ( l + 2 X ) + m + 2 X ) 2-4X2
* 1 ------------------2X------------------  *2 = ---------------- 2X----------------- •

B ecause  X > 0 and th e  M.A„ p a r a m e te r  must be n e g a t i v e

I I > 1 » I <$>2 I < 1 so  "that = <p̂  .

■ / ]- ( l + 2 \ ) + / ( l + 2 \ ) 2- b \ 2 
2X

o r 1
X ( 6 . 2 1 ) .

F or t h e  p r e s e n t  we se ek  Lim a and Lim a . From ( 6 .2 1 )
X-K» 1 X-K) 1

Lim a = -1  (6 .2 2 )
X-x» 1

Lim (1  + |x >  -  g l  
X-K) dk dX

Lim ( - — ■ + \  ) -► - ^ 3- 
X-K) UX  ̂ A b \

. * .  Lim a = 0 ( 6 . 2 3 ) .
X-K)

E q u a t io n s  { 6 .2 2 )  and ( 6 .2 3 )  show t h a t  ( 6 .2 0 )  maps t h e  i n t e r v a l  

[0,°°] c o n t a i n i n g  X i n t o  t h e  i n t e r v a l  [ - 1 , 0 ]  c o n t a i n i n g  a , so  t h a t ,  i f
/ \  A

a t  any r e p l i c a t i o n  a v a lu e  o f  c lo s e  t o  - 1  i s  e n c o u n te r e d ,  X m ust be  

v e ry  l a r g e ,  and t h i s  w i l l  a c c o u n t  f o r  a h ig h  mean v a lu e  o v e r  a l l  

r e p l i c a t i o n s  ( a l t e r n a t i v e l y  one m ig h t  t a k e  t h e  l i m i t  o f  ( 6 . 2 0 ) as 

X -► 0 and X -* 00) „ Some i d e a  o f  t h e  p r o b a b i l i t y  o f  t h i s  o c c u r r e n c e  i s  

g a in e d  from c o n s t r u c t i n g  c o n f id e n c e  i n t e r v a l s  a ro u n d  t h e  t r u e  v a lu e  o f  

w i th  t h e  a s y m p to t i c  v a r i a n c e  N~ ( l - a  ) .  When N = Uo th e  r a n g e  f o r



X will be 0.87-44, but if we adopt the empirical standard deviations

of this range becomes 0.4-4281. All in all the above argument

establishes an a fortiori case for there being a reasonable probability

of very high estimates of A in small samples, with this tendency

diminishing as the sample size rises. As mentioned previously, when

N = 100, the mean of A was 5.915 which is quite close to the true 
12value of 4.0.

There is one other computational feature that deserves comment. 

This relates to the difficulty of inversions etc. associated with 

PH/R and PH/U and Table 6.7 contains a traditional quantity for 

assessing this, where replication 1 of Model I (N = 100) was selected.

Table 6.7

254.

Condition Number and Other Features of PH/R and PH/U

Iteration
Number Estimator

PH/U PH/R
3 “i Cond.No. 3 A Cond.No.

1 0.9 -0.7 40.2x10 0.9 10 0.2x105
2 0.84 -0.86 0.4x10^ 0.84 123 0.9x10^
3 0.80 -0.83 0.4x10^ 0.84 480 0.2x10
4 0.83 3120 0.5X10113
5 0.82 83864 130.7x10

The final estimate of the M.A. parameter for PH/R was -0.82 so

that both the estimates of 3 and were close for each estimator.

12
It was this behaviour which caused the breakdown of Muller’s 
method for a number of replications of Model IV. For Models I 
and II however the roots were accurate even for very high A.
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Note however the condition number of the matrix» There must be some 

doubt about the parameters of PH/R as the condition number is so large 

as to render any cross product matrix and its inverse highly suspect.

On the other hand PH/U does not exhibit an overly large condition 

number. Certainly this seems to establish a good case for imposing 

the restrictions directly when it is possible to do so, but 

unfortunately it is likely to be feasible only for Models with unit 

roots in B(l ).

Although the Monte Carlo studies have suggested that PH/R might

be ised in moderate sized samples it appears that the distribution of

X will be non-normal unless the sample size is large. Rather than

conduct an exhaustive set of experiments it was decided to press ahead

to empirical work in order to determine the success or failure of the
13algorithm in some of the areas mentioned in 6.2.

6.5 Seasonal/Trend Components

Signal extraction has been performed by economists and others for 

many years. Electrical engineers and acoustics experts have developed 

filters to extract signals from noise contaminated series, and in the 

same way economists and economic statisticians have dealt with the 

extraction of seasonal signals from the background noise of the trend 

and irregular components. The methods for performing such tasks have 

been many and varied, encompassing the classical technique of complex 

demodulation and the non-linear ad-hocery of the X-ll, X-13 programs 

developed by the U.S» Census Department for the seasonal adjustment of

A further factor influencing this decision was that for 20 
replications of Model IV PH/R required 30 mins, of C.P.U, time.

13
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tim e s e r i e s .  In  r e c e n t  y e a rs  th e re  have been re p e a te d  su g g e s tio n s  

t h a t  models o f  th e  v a r io u s  components sh o u ld  be b u i l t  and e s t im a te d  

and a tte m p ts  a t  t h i s  may be found in  th e  work o f  Hannan [U l] and [3 6 ] . 

The l a t t e r  a r t i c l e  i s  th e  s tim u lu s  to  th e  approach o f  t h i s  s e c t io n .

To b e g in  th e  a n a ly s is  i t  i s  n e c e ssa ry  to  dec id e  on re a so n a b le  

forms f o r  each o f  th e  th r e e  components T rend , S easo n a l and I r r e g u l a r .

( i ) T rend

In  th e  s e r i e s  to  be m odelled  l a t e r  th e re  i s  no c y c l i c a l  

e lem en t ( a p a r t  from th e  s e a s o n a l)  so t h a t  th e  spectrum  o f  t h i s  

component w i l l  n o t be peaked  away from th e  o r ig i n .  Such a 

shape may be ach iev ed  by th e  use o f  an A.R. w ith  r e a l  r o o t s ,  

b u t when th e  s e r i e s  i s  n o n - s ta t io n a ry  th e  two most im p o rtan t 

r e p r e s e n ta t io n s  a re  l i k e l y  to  be

( l - L ) T ( t )  = (1+a L ) e ( t )  (6 .2 U ).

( l - L ) 2T ( t )  = ( l+a^L+a^L2 )e ( t )

As Box and T iao [12] have shown th e  f i r s t  o f  th e s e  y ie ld s  a 

s e r i e s  w ith  a c o n tin u o u s ly  changing  l e v e l ,  w h ile  th e  second v a r ie s  

in  b o th  l e v e l  and s lo p e  (se e  Box, J e n k in s ,  and Bacon [lO ] f o r  a 

f u r th e r  a n a l y s i s ) .

( i i ) S easo n a l

A p a ra m e tr ic  form  f o r  th e  se a so n a l component has n o t been 

d is c u s s e d  in  d e t a i l  by any a u th o r ,  a lth o u g h  [1 8 ] have p a id  some 

a t t e n t io n  to  i t .  In  t h i s  a r t i c l e  th e  a u th o rs  o p t f o r  a non­

s ta t io n a r y  se a so n a l and , an a lo g o u sly  to  th e  t r e n d ,  f i l t e r s  such

as (1-L ) a re  chosen to  rep ro d u ce  a changing  l e v e l  in  th e
, 1+  . 2

se a so n a l p a t t e r n  o f  a q u a r te r ly  s e r i e s  w h ile  (1-L  ) would 

d e s c r ib e  b o th  a tr e n d in g  l e v e l  and s lo p e .  T h e re fo re  i f  a non-
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s t a t i o n a r y  s e a s o n a l  seems a p p ro p r ia te  th e  two most l i k e l y  forms 

would be

( l -L * )  S ( t )  = O+o^L*) e 2 ( t )  

(1-LU)2 S ( t )  = ( l + a ^ + a g L 8 ) e 2 ( t )

( 6 .2 5 ) .

In  o rd e r  to  f u l l y  encompass th e  ty p e s  o f  s e a s o n a l  p a t t e r n s  

t h a t  may occu r  in  d a ta  i t  i s  im p o r ta n t  t o  examine r e p r e s e n t a t i o n s  

f o r  a s t a t i o n a r y  s e a s o n a l  e le m e n t . Two ty p e s  w i l l  be 

d i s t i n g u i s h e d .

(A) A s t a b l e  s e a s o n a l  p a t t e r n .  This may be e f f i c i e n t l y  

removed by dummy v a r i a b l e s .

(B) A n o n -c o n s ta n t  s t a t i o n a r y  s e a s o n a l .  F i l t e r s  such as (6 .2 5 )

would g e n e ra te  t h i s  i f  t h e r e  were n o n -u n i t  r o o ts  in  th e  A.R.

/ U % , 4 \t r a n s f e r  f u n c t io n s  i . e .  (1-ß^L ) in  p la c e  o f  (1-L )„

A c o n s id e r a t io n  o f  th e  spectrum  o f  S ( t )  b r in g s  each o f  th e s e

i n t o  p e r s p e c t iv e  and a llow s th e  d e f ic ie n c y  o f  forms such as (6 .2 5 )

to  be a p p r e c ia t e d .  F i r s t l y  a s t a b l e  s e a s o n a l  w i l l  produce a

spec trum  f o r  S ( t )  w ith  s p ik e s  o f  i n f i n i t e  h e ig h t  a t  th e  s e a s o n a l

f r e q u e n c ie s  and ze roes  e lse w h e re ,  whereas a l l  o th e r  f i l t e r s  te n d

to  "sp read  o u t"  about th e s e  f re q u e n c ie s  w ith  th e  degree o f  s p re a d

b e in g  de te rm ined  by th e  t r a n s f e r  f u n c t io n s .  Secondly (6 .2 5 )

must a l s o  r e s u l t  in  a peak a t  th e  zero  f requency  and in  g e n e ra l

t h i s  peak w i l l  be eq u a l  to  th o s e  a t  th e  s e a s o n a ls  ( i f  = 0 ) ,

th e re b y  caus ing  th e  e f f e c t s  o f  t r e n d  and s e a s o n a l  to  become mixed.

I d e a l l y  one would l i k e  t o  have on ly  peaks a t  th e  s e a s o n a ls  (as

i s  th e  case  w i th  H annan 's  models) in  th e  spectrum  o f  S ( t ) .
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(iii) Irregular

A convenient assumption is that the irregular is white noise 

but this may be misleading in that the effects of strikes and 

working day variations may induce some correlation. For most of 

these special factors dummy variables would be appropriate and in 

what follows only the simplest assumption is adopted

I(t) = e3(t) (6.26).
The first series to be examined will be the wheat yields data 

analysed by Schmitz and Watts [98]. These authors fitted a number of 

ARMA models and concluded that a first order M.A. fitted to first- 

differenced data would yield a satisfactory explanation. As the data

was annual - and there were no peaks in the spectra at any frequency - 

only two components will be considered, and to reflect the Schmitz-Watts 

conclusion regarding the type of model to be employed these will be

T(t)(1-L) = e±(t) 

l(t) = e2(t) (6.27).

Schmitz and Watts fitted the reduced form of(6.27) by PH/O and 

Table 6.8 presents the parameter estimates for Model II when PH/R is 

used. Only two countries - Canada and the United States - will be

dealt with.
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Model I I

T able 6 ,8

f i t t e d  to  Canadian and U n ited  S ta te s Wheat Y ie ld s

Country a

1900-1960

A ~ 2 a

Canada -0 .7 6 1 6 13.41 21.24
(1 .3 5 )

U n ited  S ta te s -0 .4501 1 .49 3.56
(1 .0 4 )

The main item  o f  i n t e r e s t  in  T able 6 ,8  i s  th e  in s ig n i f ic a n c e
A.

o f  A fo r  b o th  c o u n t r i e s .  T his was u su a l f o r  a l l  models f i t t e d  and 

seems to  in d ic a te  t h a t  th e  n u m e rica l co v a rian ce  m a tr ix  may be m is­

le a d in g

We now tu r n  to  th e  e x t r a c t io n  o f  th e  t r e n d  from th e  w heat y i e ld  

d a ta .  T his i s  accom plished  w ith  th e  a id  o f  (6 .6 )  and T able 6 .9  g iv e s  

th e  t r e n d  e x t r a c t io n  and th e  o r ig i n a l  s e r i e s  fo r  Canada and th e  U n ited  

S ta te s  fo r  th e  p e r io d  1940-1960

14
A lte rn a t iv e ly  one m ight f i t  th e  models w ith  PH/U. When t h i s  was 
done th e  e s t im a te s  fo r  b o th  w ere very  c lo se  and a t - t e s t  perform ed  
on re v e a le d  th a t  i t  was s i g n i f i c a n t l y  d i f f e r e n t  from z e ro . As

shown p re v io u s ly  Lim a = 0 so t h a t  th e r e  i s  a d isc re p a n c y  in  th e  
A-HD 1

two c o n c lu s io n s ,

15
There i s  a " s t a r t  up" problem  in  u s in g  (6 „6) i . e ,  what i s  th e  v a lu e  
o f  ' f ( - l ) ?  Two s o lu t io n s  were p ro p o sed . F i r s t l y  s e t  D ( - l)  = 0 . 
T his may no t be s a t i s f a c t o r y  fo r  th e  Canadian case  in  w hich th e  ro o t 
o f  th e  M.A. i s  q u i te  h ig h , b u t sh o u ld  be re a so n a b le  fo r  th e  U .S .. 
Secondly  s e t  T ( - l )  = y ( 0 ) .  The d isc re p a n c y  sho u ld  be much sm a lle r  
u nder t h i s  a l t e r n a t iv e  and th e r e f o r e  th e  e s tim a te d  s e r i e s  T( t )  would 
be more r e l i a b l e .  In  p r a c t i c e ,  fo r  th e  p e r io d  1940-1960, b o th  
su g g e s tio n s  gave a lm ost th e  same answ ers.
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T able 6.9

E stim a te s  o f  th e  T rend Component in  th e  Wheat Y ie ld s  D ata

Canada and th e  U n ited  S ta te s  : I9I+O-I96O

Year Canada U n ited S ta te s

y ( t ) T ( t ) y ( t ) T ( t )

191+0 I8 .8O 1U.8U 15.30 II+.58

19hl ll+.l+O lU .73 l6 .8 0 15.80

19b2 25.80 17.37 19.50 17 . 81+
191+3 16 .90 17.26 16.1+0 17.05
19I+I+ 17.90 17. 1+1 17.70 17 . 1+1
1945 13 .60 16.50 17.00 17.18

19 1+6 16 .90 16.60 17 .20 17.19
19^7 ll+.10 16.00 18.20 17.75
19I+8 16 .00 16.00 17.90 17.83
1949 13.50 15.1+1 11+.1+0 15.94

1950 17 .10 15.81 16 .60 16.30

1951 21 .90 17.26 16.00 l6 .ll+

1952 26.50 19 . 1+6 18.30 17.33
1953 21+.10 20.57 17.30 17.31
1954 13.70 18.93 20.1+0 19.01
1955 2U.10 20.16 20.90 20.05
1956 25 .20 21.36 20.80 20.1+6

1957 17 .60 20. 1+7 22 .50 21 .58

1958 17.80 19.83 28.60 25 . 1+1+
1959 17.90 19.37 23 .20 21+.21

i960 21 .20 19.81 27.80 26 .18

Once a s e r i e s  T ( t ) has been c o n s tru c te d  ( 6 . 6 )  a llow s th e

decom position  o f  any new o b s e rv a tio n  in to t r e n d and i r r e g u l a r f a c t o r s .

As an example ta k e  th e 1961 o b s e rv a tio n  fo r  Canada i . e .  y ( l9 6 l )  = 11 .20

A pplying ( 6 . 6 )  w ith  T (1960) = 19.81 ( f rom Table 6 . 9 ) , $ (1961) = 17 .76

so t h a t  th e  i r r e g u l a r  was 6 . 5 6 .
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Two q u a r t e r l y  t im e  s e r i e s  w i l l  now "be d i s s e c t e d .  One o f  t h e s e  w i l l  

he  New Money w hich  e x h i b i t e d  u n i t  r o o t s  i n  t h e  M.A. when th e  v a r i o u s  

e s t i m a t o r s  o f  C h a p te r  4 were a p p l i e d  and some r e a s o n s  w i l l  now be 

advanced  f o r  t h a t  b e h a v io u r .  F i g .  6 .1  g ra p h s  t h i s  s e r i e s  and l e a v e s  

t h e  s u s p i c i o n  t h a t  t h e r e  may w e l l  be  a  s t a t i o n a r y  s e a s o n a l  p a t t e r n .  To 

t e s t  v a r i o u s  h y p o th e s e s  c o n c e r n in g  th e  t r e n d  and s e a s o n a l  t h e  f o l l o w in g  

m odels-em body ing  t h e s e  p o s s i b i l i t i e s  -  were f i t t e d ,  and th e  r e s u l t i n g  

e q u a t i o n s  were

y ( t ) = 3 5 .TT + 1.3Ut + 2 2 .5 6  S1 + 3 0 .92  S2 -  7 .6 8  S 3 a 2 = 1 1 9 3 .7

( 2 . 9 b) (5.21) (1.78) (2.U5) (0 .6 l )  R2 = o . i a
( 6 . 28 )

( l - 0 . 8 L ) y ( t )  = - 1 3 .5 6  + 2 4 .2 3  S± + 6 b . 08 S2 + 1 9 .4 8  S 3 + ( l - O . l U L ) e ( t )  

(1 2 .3 9 )  ( 1 . 6 2 ) ( 3 .1 0 )  ( 8 . 3 8 ) ( 2 .4 6 )  ( 0 . 8 8 )

( 6 .2 9 )

a 2 = 392 .1

( l - L ) ( l - 0 . 7 0 L 1| ) y ( t )  = 0 .5 7  + ( 1 - 0 . 29L-0.1+5L2- 0 .1 0 L 3- 0 . 3 6 ^ + 0 . 003L5 ) e ( t )  

( 7 . 2 1 ) ( 0 . 6 l )  ( 6 . 3 0 )

a 2 = 5 8 8 .3

In  ( 6 .2 8 )  and  ( 6 .2 9 )  ( i = l , 2 , 3 )  a re  dummy v a r i a b l e s  w i th  v a lu e s

1 .0  i n  f i n a n c i a l  q u a r t e r  i  and z e ro  o t h e r w i s e ,  w h i l e  t  i s  a  t im e  t r e n d .  

( 6 .3 0 )  i s  d e r i v e d  from  a t h r e e  components model and X̂  was 1 2 4 .9 6  w h i le  

X2 was 5 6 . 1 8 . Of t h e  t h r e e  m odels  t h e r e  was e x t e n s i v e  a u t o c o r r e l a t i o n  

i n  t h e  r e s i d u a l s  c o r r e lo g r a m  f o r  ( 6 . 2 8 ) w i t h  t h e  o r d i n a t e s  d e c l i n i n g  as 

an A .R . ,  w h i l e  f o r  ( 6 .2 9 )  t h e  h i g h e s t  t  s t a t i s t i c  was 0 . 8 l  a t  l a g  6 . 

Comparing th e  r e s i d u a l  v a r i a n c e s  t o  T ab le  4 .2 4  t h e r e  i s  no doub t  t h a t  

t h e  se co n d  o f  t h e s e  m odels  p r o v id e s  by  f a r  t h e  b e s t  f i t  o f  any 

s u g g e s t e d ,  and t h i s  i e a d s  t o  t h e  c o n c lu s io n  t h a t  t h e  s e r i e s  may w e l l
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have a stationary trend component and (probably) a stable seasonal as 

well (although a combination of a stationary but non-constant seasonal 
and a stationary trend might also fit well). The precise parametric 
form is not important at this juncture and it will serve merely to notice 

that at most only one of the components will be non-stationary. What 
will be the impact of differencing? The answer is obviously the 

introduction of unit roots into the M.A., and this is what was found in 
Chapter This example should serve as a warning against a too hasty
use of differencing. When the data has only two components a visual 
inspection will usually serve to indicate if non-stationarity is 
present, but when there is a seasonal pattern it may be difficult to tell, 
and this highlights the need for some non-parametric tests for the

ITpresence of certain types of evolving behaviour in time series.
Finally some experiments were carried out on the Miscellaneous 

consumption series of Chapter 5. It is assumed that the three components 
may be modelled by

This is very easily seen in a two components model. Assume that the 
trend is described by T(t) = a + bt and the irregular by l(t) = e^t).
Then differencing y(t) will yield

(l-L)y(t) = a + bt - a - b(t-l) + (l-L)e2(t)
.*.(l-L)y(t) = b + (l-L)e2(t).
Similarly fourth differencing of a set of dummy variables would produce 
the same effect for the seasonal..

IT
One that springs to mind is the classical technique of complex 
demodulation. To test for a non-stationary seasonal^ demodulation 
would be performed at the seasonal frequencies, the series re­
modulated, and tests constructed for the presence of evolutionary 
behaviour. An attempt was made along these lines for New Money but 
the filter required to effectively extract the demodulate resulted 
in a severe loss of observations, and for this reason the technique 
may not be applicable to quarterly time series. Nevertheless it is 
worth reporting that the hypothesis of a stationary seasonal pattern 
was supported.
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( l - L ) T ( t )  = e ( t )

JL v

( l - B i(L1,) S ( t )  = e 2 ( t )

l ( t ) = e ^ ( t ) .

The reduced  form ( f i t t e d  by PH/R) was

( l - L ) ( l - 0 .9 3 L U) y ( t )  = ( l-O .19L -0 ,93L ^  + 0.1ÖL5 ) e ( t )  a 2 = 3 5 2 .7 '6 .3 1 ) ,

_3
where and were b o th  l e s s  th a n  10 . The f i t  o f  t h i s  i s  s l i g h t l y

s u p e r io r  to  any examined in  S e c t io n  5 .5 ,  and, as i t  does no t s u f f e r  from 

th e  u n i t  r o o t  problem  e n c o u n te re d  t h e r e ,  shows t h a t  components models 

a re  d e s i r a b l e  f o r  t h e i r  a b i l i t y  to  produce a good f i t  t o  th e  d a ta  q u i t e  

a p a r t  from any s ig n a l  e x t r a c t i o n  o b j e c t i v e .  Although i t  was n o t  done, 

b o th  th e  t r e n d  and s e a s o n a l  e lem en ts  in  M isce l laneous  cou ld  be e x t r a c t e d  

in  a s i m i l a r  f a s h io n  to  th e  e a r l i e r  e x e r c i s e  w ith  wheat y i e l d s .  The 

p rocedu re  i s  much more complex though in  t h a t  th e r e  must now be a 

p a r t i a l  f r a c t i o n s  expansion  o f  an e l e v e n th  o rd e r  p o ly n o m ia l .

6 .6  A.R. w i t h  superim posed n o is e

The lu r e  o f  a p o s s i b l e  A.R. w i th  superim posed  n o is e  (A .R .S .N .)  in  

th e  su n sp o ts  d a ta  was im p o ss ib le  t o  r e s i s t .  A ccord ing ly  th e  s e r i e s  in  

p .660 ]  was s e l e c t e d  and t h i s  p ro v id e d  176 o b s e rv a t io n s  co v e r in g  th e  

p e r io d  17^9-192^ ( i n c l u s i v e ) .  I n i t i a l l y  i t  was assumed t h a t  th e  A.R. 

was o f  second o rd e r  and th e  r e s u l t i n g  p a ram e te r  e s t im a te s  a re  co n ta in e d  

in  Table 6 .1 0 .



264
Table 6.10

Parameter Estimates for the Sunspots Data
*A.R. (2) with superimposed noise

Estimator y gl si ol2 X a2
O.L.S. 13.9 1.34 -0.65 241.6

(7.0) (23.0) (11.2)

PH/U 13.T 1.40 -0.71 -0.11 0.03 240.0
(5.7) (13.5) (8.8) (0.8) (0.3)

PH/R 13.8 1.4o -0.71 -0.11 0.03 0.06 238.8
(7.5) (20.3) (10.6) (1.0)

y refers to the estimated mean; all other symbols should be familiar.
Table 6.10 supports the rejection of a second order A.R.S.N^ model 

as the mechanism generating the sunspots data. Neither the M.A. 
parameters of PH/U nor X of PH/R are significantly different from 
zero-implying the absence of a second component. A comparison of the 
sum of squares (remembering that PH/U estimates 4, and PH/R 3 more para­
meters than O.L.S.) also sustains the null hypothesis. Finally the 
correlogram of residuals from the O.L.S. regression-presented in Table 
6.11 - reveals that the disturbance is close to white noise.
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Table 6.11

Correlogram of the Residuals from O.L.S.
Untransformed Sunspots Data

Lag P t

1
2
3
k
56 
T 
8 
9
10
11
12
13
Ik
15
16 
IT

-0.07 
0.07 

-0.05 
0.10 

- 0.02 o.oU 
-0.08 
0.08 
0.13 
0.09 o.i6 
0.11 
0.01 

-0.03 
0.00 

-0.08 
0.09

0.91
0.9T
0.69
1.3T
0. 31 
0.50 
1.01 
1.07
1.69
1.13
2.111. U6 
0.08 
0.37 
0.02 
1.12 
l.lU

The apparent absence of an A.R.S.N. model in the untransformed 

data lec to the decision to follow Bailey and smooth the data by 

taking the logarithm of each observation after 6.0 had been added. 

Having done this he argued that a fifth order A.R. was necessary to 

describe the new data set i.e. in the context of equation (6.1) p would 

be 5. Table 6.12 lists the parameter estimates associated with the 

three estimators (where e* was set at zero).
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P a r a m e te r  E s t im a te s f o r  t h e  T ra n sfo rm e d  S u n sp o ts  D a ta

A.R. (5 ) w i th  su p e r im p o se d  n o i s e

P a ra m e te r E s t im a t o r

O .L .S . P H /U P H / R

U 1.1*3 0.1+1 0.1+2
( 6 . 6 2 ) (**.72) ( 3 . 5 5 )

6-, 1 .2 3 0 .7 7 2 .6 0
-L

(1 5 .7 1 ) ( 5 .1 6 ) ( 1 6 . 1 0 )

So -0.1+8 0 .7 8 -3.1+3
d.

( 3 .8 7 ) (1+.1+2) (8.1+9)

h - 0 .1 0 - 0 .8 9 2 .8 93 ( 0 .7 7 ) ( 5 .7 1 ) ( 6 . 0 7 )

K 0 .0 5 -0.1+0 - 1 .6 2
( 0 .3 6 ) ( 2 .1 3 ) ( 5 . 2 5 )

L - 0 .0 8 0 .3 7 0.1+5p ( 0 .9 9 ) ( 2 .8 8 ) (U .3 6 )

a n 1 .3 6 -1.1+3l
( 3 .1 5 )

0.1+6 1.1+6
c.

( 3 .1 7 )

«o - 0 .7 7 - 1 .0 0.3 ( 5 .3 0 )

\ - 0 .3 6 0.1+3
(2.1+8)

a 0 .5 0 - 0 .0 9P
(U.59)

A

X 1.1+8
( 2 .2 0 )

0 .1 3 0 2 0 .1189 0 .1279

There  i s wide v a r i a t i o n i n  t h e  p a r a m e te r  e s t i m a t e s b u t  n o t  a  g r e a t

d i f f e r e n c e i n  t h e  r e s i d u a l v a r i a n c e s .  A l i k e l i h o o d r a t i o  t e s t  p e r fo rm e d

on each  e s t i m a t o r  f o r  e q u a l i t y  o f  v a r i a n c e s  y i e l d e d  th e  f o l l o w i n g  r e s u l t s
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( i )  O .L .S , and PH/R were n o t  s i g n i f i c a n t l y  d i f f e r e n t  ( a t  t h e

5 % l e v e l ) „

( i i )  O .L .S . and PH/U were s i g n i f i c a n t l y  d i f f e r e n t .

( i i i )  PH/R and PH/U were a l s o  s i g n i f i c a n t l y  d i f f e r e n t .

From th e s e  com parisons i t  appears  t h a t  th e  d a ta  w i l l  no t s u p p o r t  

th e  r e s t r i c t i o n s  im p l ie d  by an A .R.S.N. model (as  embodied in  PH/R) and 

t h a t  th e  b e s t  f i t  would come from a g e n e ra l  ARMA model. An 

a p p r e c ia t i o n  o f  th e  rea so n s  f o r  th e  f a i l u r e  o f  PH/R may be g a in ed  by 

r e f e r r i n g  to  th e  co rre lo g ram  o f  O .L .S . r e s i d u a l s  p r e s e n te d  in  Table 

6 .1 3 .

Table 6 .1 3

C orrelogram  o f  R es id u a ls  from O .L .S ,

Transform ed Sunspo ts  D ata

Lag P t Lag p t

1 0 .0 1 0 .0 9 11 0 .1 5 1 . 9 7
2 0 .0 2 0 .2 1 12 0 .2 2 2 .9 0
3 o.oi+ 0 . 1+9 13 - 0 .0 1 0 .0 9
U 0 .0 9 1 .2 3 lU - 0 .0 3 0 . 1+2
5 0 .0 9 1 .2 0 15 0 . 01+ 0 .5 1
6 0 .0 3 0 . 1+5 16 0 .0 1 0 .1 3
7 0 .1 2 1 .5 1 IT o.oi+ 0 .52
8 - 0 .08 0 . 9 8 18 - 0 .08 1 .0 1
9 0 .1 9 2 . 5 3 19 0 .0 1 0 .1 0

10 0 .1 1 1 . 1+3 20 - 0 .08 1 .0 1

Table 6 .1 3  in d ic a t e s  th a t  th e  poor perform ance o f  PH/R may be

e x p la in e d  by th e  absence o f  a f i f t h  o rd e r  M.A. in  th e  r e s i d u a l s  which

19shou ld  be found i f  an A .R.S.N. model were a p p r o p r i a t e .  T h e re fo re  

th e  p a r t i c u l a r  v e r s io n  o f  A .R.S.N . employed i s  p ro b ab ly  i n c o r r e c t .

One shou ld  be wary o f  t h i s  i n t e r p r e t a t i o n  because  O .L .S . w i l l  n o t  be 
c o n s i s t e n t  i f  a f i f t h  o r d e r  M.A. were p r e s e n t  i n  th e  d a ta  and th e  
e s t im a te d  co r re lo g ram  e s t im a te s  would a l s o  be i n c o n s i s t e n t .  I t  i s  
i n t e r e s t i n g  to  n o te  t h a t  [9 p . l 8 6 ]  i d e n t i f y  th e  a p p r o p r ia te  model f o r  
th e  su n sp o ts  d a t a  as a second o rd e r  A.R.

19
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Finally Table 6.1*+ compares the roots of A(L from PH/R, PH/U and 

Bailey's article.

Table 6.1*+

Roots of A(L_1) for the Transformed Sunspots Data

Bailey

0.22
0.1+0 ± 0.32i 

0.1+6 ± 0.04i

PH/R

0.1+9

0.1+1 ± 0.1+0i 
0.06 ± 0.75i

PH/U

-1.01+
-O.56 ± 0.67i 
1.1+2 ± 0.76i

It is interesting to note that only two of Bailey's estimated 

roots are close to the M.L. values, and this leads to the conclusion 

that the lack of an iterative refinement in his estimator does not 

enable an ordered approach to the M.L. estimates. Such an admission 

must severely circumscribe the practical uses of his estimator.

6.7 Permanent Income

This was one of the examples of Section 6.2 wherein a signal had

to be extracted from a noisy background and the mode of analysis will

be similar to that for the wheat yields data. As mentioned earlier the

A.R. parameter selected by Friedman implies a non-stationary series for
v

income so that the first step was to examine the correlogram of
20Personal Disposable Income 1905-19^9 (1929 prices). Table 6.15

presents the first ten lags.

20 Taken from Goldsmith [31 Vol.IIl]. Friedman excluded the war years 
1917, 1918, 19*+2 through 19*+5 in his analysis, but the conclusions 
were not qualitatively altered by working with the complete series.
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Table 6.13
Corielogram of Personal Disposable Income 1905-1949 (1929 Prices)

Lag p_ t
1 0.91 6.11
2 0.82 5.1+9
3 0.T3 4.89
1+ 0.63 4.20
5 0.55 3.68
6 0.1+6 3.11
7 0.38 2.56
8 0.30 2.00
9 0.22 1.48
10 0.17 1.13

Table 6.15 shows that the correlogram is reminiscent of a first

order A.R. with ß - 0.9 and it seems certain that the series is
stationary. Why then did Friedman select a value for ßcharacteristic
of a non-stationary series? Regarding this choice Friedman argues
that unless ß > 1 there is no allowance for secular growth i.e. "Being
an average of earlier observations the estimated y* is necessarily

1?

between the lowest and the highest, so that this method of estimation 

applied to a steadily growing series yields estimated values 
systematically below the observed values" [28 p.l44], This argument 
is not convincing as surely the essence of permanent income is that it 

lag behind changes in actual income. Nevertheless ß = 1 might be 
realistic.

Although it is obvious that the signal extraction approach to the 

construction of a permanent income series cannot be identical to 
Friedman's (unless ß = 1.3 and there must be serious doubts about the 
properties of any ARMA estimator under such conditions) we will attempt 
to apply the methodology given earlier. Owing to the pattern exhibited
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by the correlogram the assumed components model took the form 

(1-3L) (T(t)-y) = ex(t)

I(t) = e2(t)
(6.32),

where T(t) stands for permanent, and I(t) for transitory income. The 
estimated reduced form was

y(t)(l-0.9379L) = 72683 + (1-0.00002L) e(t)
(26.86) o2 = 277.9

(6.33).

r 1In (6.33) X = 625281 with a t value of 0.47,^ meaning that the
'Xj

variance of the transitory component is very small when compared to the 
variance of the disturbance entering the permanent element. By 

substituting 8,a into (6.6) it is seen that T(t) - y(t) i.e. there is 
no transitory income in the series. Although such a conclusion offends 
intuition it is an inescapable concomitant of the close fit achieved by 
a pure A.R.. Therefore this foray cannot be counted a great success. 
However it may be that the level of aggregation implicit in the income 
series makes nonsense of concepts based upon the rationalization of an 
individual entity and the difficulty might be overcome with disaggregated 
data.

6.8 Conclusion
The sections of this chapter have ranged over a wide area in which 

signal/noise models are to be found. There was a very cursory 

discussion on the sampling properties of the M.L. estimator PH/R, but 
even from this there was established an awareness that very large samples 
might be needed for its successful employment. Rather than pursue 

this line of enquiry an attempt was made to assess the utility of the 

estimator (and underlying model) by analysing some of the applications

k =
21 1

X i.e. ^ is the ratio o2/o2-
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ascribed to it in Section 6„20 Generally the conclusion must be 
negative, but whether this was a fault of insufficient experimentation 

or the basic model is unclear0 Certainly the evidence presented con­
cerning the presence of superimposed noise in the sunspots data is at 
variance with the ideas of many statisticians in past years, and it may 
be that the technique derives value from such unexpected results.
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Appendix 10

C om putational D i f f i c u l t i e s  w ith  th e  E s tim a to r  PH/R

As m entioned  in  th e  t e x t ,  f in d in g  th e  ro o ts  o f  T (L) p roved  to  be

troub lesom eo At f i r s t  th e r e  was th e  com plete breakdown o f  many

s ta n d a rd  program s f o r  s o lv in g  po lynom ials  and l a t e r ,  even when M u lle r ’s

method was in  o p e r a t io n ,  cases  were d is c o v e re d  where th e  ro o ts  w ere n o t

d e te rm in ed  to  th e  d e s ir e d  deg ree  o f  accuracy ,, T h is a ro se  from th e

round ing  e r r o r s  a s s o c ia te d  w ith  th e  s y n th e t ic  d iv i s io n  o f  th e  p o ly n o m ia l

re d u c t io n  p ro c e s s  (se e  R alston  [95 Po37l ] )c  A fte r  a l l  d iv is io n s  a re

com plete th e  rem ain d er sho u ld  be l o0 ( i f  th e r e  i s  no round ing  e r r o r )  b u t

w ith  s in g le  p r e c i s io n  a r i th m e t ic  i „ e 0 accu racy  to  around 6 decim al p la c e s ,
7

th e  rem ain d er was g e n e ra l ly  o f  th e  o rd e r  o f  L + 10 0 Im plem enting a

double p r e c i s io n  v e rs io n  reduced  th e  rem a in d er to  L + 0 o5 th e re b y

a m e lio ra tin g  th e  problem  w ith o u t s o lv in g  i t  0

A f te r  some e x p e rim e n ta tio n  i t  em erged t h a t  t h i s  f e a tu r e  was due to

th e  in v e rs e  r e l a t i o n  betw een th e  ro o ts  e .g o  i f  0 o02 was a ro o t  th e n  so

was 5 0 e As a r e s u l t  o f  th e  la rg e  d i f f e r e n c e s  betw een th e  c o e f f i c i e n t s

a t ta c h e d  to  each power o f  th e  q u a d ra t ic  form ed from th e s e  ro o ts  e .g .
2L + 50.02L + 1 s y n th e t ic  d iv i s io n  p roduced  a reduced  po lynom ial w ith  

in c o r r e c t  p a ra m e te r s 0 T h e re fo re  i t  seemed d e s i r a b le  to  f in d  ro o ts  

c lo se  to  u n ity  f i r s t  and th e n  to  work down tow ard  z e r o 0 In  M u lle r ’s 

method (a s  p re s e n te d  in  [171) th e  f i r s t  th r e e  ro o t  app ro x im atio n s a re  

( - 1 ,1 , 0 ) ,  cau s in g  a tendency  to  i n i t i a l l y  seek  a ro o t  c lo se  to  z e ro .

By th e  sim ple  manoeuvre o f  s e t t i n g  th e  maiden g u esses  a t  (0 ,2 ,1 )  th e  

p o s i t iv e  ro o t c lo s e s t  to  u n i ty  was alw ays e x t r a c te d  b e fo re  any o t h e r s .

No t h e o r e t i c a l  j u s t i f i c a t i o n  can be g iven  f o r  t h i s  b u t th e  ev id en ce  o f  

i t s  e f f e c t iv e n e s s  car be seen  from th e  f a c t  t h a t  in  m ost in s ta n c e s  th e  

rem ain d er was 1 + 10**^- th e  g r e a t e s t  accu racy  o b ta in a b le  w ith  th e
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360 /50 . However even a f t e r  th e s e  m o d if ic a t io n s  th e r e  were s t i l l  cases 

when th e  ro o ts  o f  FUU(L) w ere in c o r r e c t ly  de term ined  e .g» i f  th e  v a r ia n c e  

r a t i o  became very  l a r g e ,  and fu tu r e  in v e s t ig a to r s  m ight experim en t w ith  

such methods as Lehm er-Schur [95] a n d /o r  a r i th m e t ic  o f  g r e a t e r  p r e c i s io n  

th a n  t h a t  a v a i la b le  as a s ta n d a rd  o p tio n  on most co m p u ters .

A nother f in d in g  was t h a t  la rg e  v a lu e s  o f  X w ere han d led  more e a s i l y  

th a n  sm a ll b ecause  o f  th e  boundary r e s t r i c t i o n  X > 0 . By choosing  a 

s u i t a b le  n o rm a liz a tio n  r u le  com puter tim e was n o t w asted  in  slow 

convergence n e a r  to  a boundary»
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Derivation of Bailey’s Estimating Equation 

The model to be investigated is

y(t) = B-1(L) e,(t ) + e^(t) (Allol),

which becomes (in Fourier notation)

Y(X) = B-7(X) e x(\) ' efc(\) (All.2).

Our aim will be to find an optimal predictor of the form

y*(t) = W(L) y(t) (All.3),

or Y*(x) = W (X) Y(X) (All.U).

To do this we minimize the prediction error variance

V = E [ Iif  (Y(X) -Y*(X))2 ] (All.5)

with respect to the elements of W(L)0

Substituting (All02) and (A110U) into (All„5) and re-arranging the 

result leaves

V = {B-1 ( X ) e^X) + e2( X ) Kl-W X ) ) f (All.6).

Expanding (All,6) we obtain

V = E[(|B(X)r2I11(X)+B"1(X)l21(X)+E"1(x)l12(X)+I22(X)}

(l-W(X)-W X) + |W(X)|2 }] (All.7),

where I (x) is the cross periodogram between e (t I and e (t).KX, K. jC

Taking the expectation of the expression in (AlloT) and 

simplifying, V becomes

V=[ (27t)“1 o2|B(x)r2+(2TT)'*1 02][1-W(\)JRT(\)+ W( X) |2 ] (All .8) .

Differentiating (a1108) with respect to the k'th element of W(L )
3 V(K=0,ooc,K) and setting -— = 0 yields

OO),
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[ ( 27t) ” 1 o 2 | B ( X ) r i'+ (2 i f )"1 o | ] [ - e : : - e “ ‘ S w (A ie "  + W ( \ ) e ‘ *]  = 0

k = 0 Sooo*K (Allo9)

o r  m u l t i p l y i n g  through by | B( X) j 2

[ ( 27T)“ 1 0 ^ ( 2 tt) " 1 a 2 |B ( X ) | 2 ][-.elAk- e " iAk4¥ (A )e ’  ' +W(X)elXk] -  0

k =s 0 t o o o ,K (A LlolO) o

(a LIoIO) i s  a  system o f  e q u a t io n s  l i n e a r  i n  to t h a t  may be p u t  in  th e  

iorm o f  (6o l7)  i n  the  t e x t »

B a i l e y ' s  approach d i f f e r s  from th e  above i n  two minor wayss

( i )  I t  i s  fo rm u la te d  i n  th e  t ime domain w i th  t h e  a i d  o f  l a g  o p e ra to r s »

The t r a n s i t i o n  t o  t h i s  form i s  e a s i l y  made by th e  s u b s t i t u t i o n  L^e^*1»

( i i )  B a i l e y  does n o t  assume t h a t  E(e ( t )  e 0 ( t ) J  * 0 i „ e 0 E( l  (X)) 4 0,

b u t  t o  p r e s e r v e  the  s t a n d a r d  model t h i s  r e s t r .  c t i o n  was employed 

i n  d e r i v i n g  ( A l l „ 8 ) 0
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CHAPTER 7

The Utility of ARMA/ARMAX Models

7c1 Introduetion

In this final chapter some of the threads of previous chapters are 

gathered and woven together as a guide to future research0 This will 

be facilitated by a study of the utility of the ARMA/ARMAX forms in 

econometrics, both as it is expressed in published papers to date and 

may emerge in the future„ Ey such an investigation it is to be hoped 

that, as well as a demonstration of the range of application of the 

techniques discussed in earlier chapters, abetter appreciation of the 

ways in which these models are of importance to econometricians will emerge«,
i

>

7 ,2. rxie Utility of ARMA Models
Four main uses may be distinguished for ARMA models0

(i) Forecasting tools

This was the original justification proposed by Box and Jenkins 

who demonstrated the power of ARMA models in forecasting time series 

such as IoBoMo share prices and monthly airline passenger totals0 

Since their pioneering work there have been a number of other studies 

relying on the ARMA form e tg0 Struik [102] and Leuthold et al [66]0 

Struik reports on the success of ARMA models in forecasting a number of 

Australian economic time series, while Leuthold et al0 compare forecasts 

of pig prices and quantities from this time series formulation with 

those originating from estimated demand and supply equations of the 

cobweb varietyo Although the ’’full” econometric model gave superior

forecasts the differences were not great (the Theil inequality co­

efficients being 0o70 and O 065) so that, bearing in mind the smaller 

information requirements for ARMA equations, this alternative may provide
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forecasts at smaller expense both in terms of time spent on the 

exercise and the computer0 Obviously this is one of the areas of 

applied research that should be studied in greater detail and many 

econometric formulations that have tended to become conventional 

wisdom e0g 0 Jorgenson’s neo-classical investment equation, should have 

their forecasts compared with those from an appropriate ARMA model0

(ii) Optimal Extractions

Chapter 6 has shown how ARMA equations may be exploited to con­

struct estimates of trend components, permanent income etc0« There is 

one other possibility that was not given attention there and this 

relates to the formulation of expectations„ In Chapter 1 two commonly 

used hypotheses concerning the formation of these were shown to result 

in ARMA models, and this leads one to conjecture that the parameters of 

such "expectation-generating mechanisms" might be identified with the 

parameters of ARMA equations0 The methodology of Chapter 6 may be 

applied here„ If there is an internal structure to the price series 

- in the sense that it may be viewed as being composed of a normal 

level with superimposed random variations - .then we once again have a 

"signal plus noise" model0 Restricting the evolutionary behaviour of 

the normal price to a first order A 0R 0 enables the optimal predictor of 

the next period price to be derived as an exponential weighting of all 

past prices i 0e 0 it coincides with the adaptive expectations hypothesise 

Varying hypotheses will imply different types of ARMA equations for the 

price series so that it is possible to test these by seeing if the under­

lying model is appropriate 0‘L

It is worthwhile noting that the random walk model found for stock 
(and pig [66])prices would be compatible with adaptive expectations 
only if < 0
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( i i i ) Naive Models

One o f  th e  t e s t s  o f  s p e c i f i c a t i o n  o f  an econom etr ic  model usually-

r e s o r t e d  to  i s  th e  e x t e n t  o f  i t s  p r e d i c t i v e  s u p e r i o r i t y  -  w i th in  and

subsequen t to  th e  sample p e r io d  -  over  so c a l l e d  " n a iv e ” m o d e ls0

U n fo r tu n a te ly  t h e r e  i s  no th e o ry  a v a i l a b l e  f o r  g u id in g  th e  s e l e c t i o n  o f

th e  l a t t e r  and in  many cases  th e  ad-hoc fc rm n a t i o n s  adop ted  p ro v id e  no

2
r e a l  t e s t  o f  th e  a l t e r n a t iv e , ;  In  many ca se s  AcRo’s have been p roposed

as s u i t a b l e  c a n d id a te s  f o r  th e  r o l e  b u t  from b o th  a t h e o r e t i c a l  and

e m p ir ic a l  v iew p o in t  i t  i s  obvious t h a t  ARMA models must be a b e t t e r

choiceo Once t h i s  i s  re c o g n iz e d  i t  m ere ly  rem ains to  s e l e c t  th e  b e s t

f i t t i n g  model o f  t h i s  c l a s s  by th e  p ro c e ss  o f  s p e c i f i c a t i o n ,  e s t i m a t io n ,

and d ia g n o s t i c s  p roposed  in  [9l® Nelson [T9] has made a p rom ising

b eg in n in g  a long  th e s e  l i n e s  in  comparing th e  F»R»B» -  MoI 0T» -  Penn0

model f o r e c a s t s  to  th o se  g e n e ra te d  by v a r io u s  ARMA m odels: a lthough  th e

com parison may have been b i a s s e d  a g a in s t  th e  n a iv e  models in  t h a t  no

accoun t was ta k e n  o f  th e  c o n s id e ra b le  c o r r e l a t i o n  between th e  r e s id u a l s

o f  some e q u a t io n so  N e v e r th e le s s  h i s  f in d in g s  were r e v e a l in g  in  t h a t ,

a l th o u g h  the  econom etr ic  model f o r e c a s t s  were p r e f e r a b l e  t o  th e  ARMA

p r e d ic t io n s  w i th in  th e  sample p e r io d ,  th e  ran k in g s  were r e v e r s e d  when
3

o u ts id e  the  p er iod»  C o n s id e r in g  th e  expense in v o lv e d  in  b u i ld in g  a 

f u l l - s c a l e  econom etr ic  model th e r e  a re  l i k e l y  to  be m ajor b e n e f i t s  

stemming from f u r t h e r  i n q u i r i e s  o f  t h i s  type»

P
An o f  t h i s  i s  th e  use  in  [98] o f  an e x p o n e n t ia l  smoothing
form ula  ( f i t t e d  by d is c o u n te d  l e a s t  s q u a re s )  as a c o n t r o l  s o lu t i o n  
a g a in s t  which ARMA f o r e c a s t s  might be judged» U nless one i s  p re p a re d  
to  g ive  th e  "n a iv e"  v e r s io n  a chance th e  e x e r c i s e  i s  p o in t l e s s »

The exogenous v a r i a b l e s  used  by Nelson were th e  t r u e  v a lu e  so t h a t  a 
sou rce  o f  e r r o r  in  th e  F»R»B0-M »I»T»-Penn» model has been om itted»

3
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( iv )  E s tim a ted  Exogenous V a ria b le s

One o f  th e  d i f f i c u l t i e s  sometimes en co u n te red  in  f o r e c a s t in g  w ith  

s m a l l- s c a le  eco n o m etric  models i s  th e  c o n s tru c t io n  o f  s e r i e s  o f  fu tu re  

v a lu e s  o f  th e  exogenous v a r i a b l e s 0 Because ARMA models on ly  re q u ire  

knowledge o f  th e  h i s to r y  o f  th e  exogenous v a r ia b le  i t s e l f  th e y  may be 

i d e a l ly  s u i te d  to  t h i s  t a s k D C e r ta in ly  i t  w ould be a v a lu a b le  e x e rc is e  

to  combine th e s e  f o r e c a s t s  w ith  an eco n o m etric  model and compare th e  

r e s u l t i n g  endogenous v a r ia b le  p r e d ic t io n s  w ith  th o s e  p red ic a ted  on th e  

t r u e  v a lu es  0

7o3 The U t i l i t y  o f  ARMAX Models

7 o 3 o1 The S tru c tu r e  o f  th e  E rro r

C hap ter 1 has o u t l in e d  th e  Thomas and W allis  c h a lle n g e  to  th e  

assum ption  o f  f i r s t  o rd e r  a u to c o r r e la t io n  in  th e  r e s id u a ls  when q u a r te r ly  

d a ta  a re  to  be m a n ip u la te d , b u t ,  even i f  th e  p re se n c e  o f  h ig h  o rd e r  

a u to c o r r e la t io n  i s  conceded , th e re  i s  l i k e l y  to  be some d is p u te  over a 

s u i t a b le  p a ra m e tr ic  form f o r  i t « For many y e a rs  econom ists  have dw elt 

upon th e  f i r s t  o rd e r  A0Ro, and th e  in f lu e n c e  o f  t h i s  t r a d i t i o n  may be 

seen  in  th e  Thomas and W a llis  s p e c i f i c a t io n  o f  an A0R0 -  a l b e i t  fo u r th  

o rd ero  Yet th e se  schemes e x h ib i t  d i s t i n c t i v e  co rre lo g ram s e 0g 0 w ith  

a fo u r th  o rd e r  A0Ro one sh o u ld  o b serv e  s t e a d i ly  d e c l in in g  peaks in  th e  

co rre lo g ram  a t  th e  f o u r th ,  e ig h th ,  e t c 0 l a g s ,  so t h a t  an in s p e c t io n  o f  

th e  r e s id u a l  a u to c o r r e la t io n  fu n c tio n  may be u s e f u l  in  d e c id in g  on a 

model to  ad e q u a te ly  d e s c r ib e  th e  d i s tu r b a n c e s 0 I t  i s  t h i s  a sp e c t 

t h a t  w i l l  be exam ined in  th e  c u r re n t  s e c t i o n 0

Two e q u a tio n s  w i l l  p ro v id e  th e  b a s ic  b u i ld in g  b lo c k s „ These 

come from th e  R eserve Bank o f  A u s t r a l i a ’s (RoBoAo) monographs [ 86] [ 87]
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and refer to Personal Consumption Expenditure on Other Durables and 

Employment respectively,, For the former a stock adjustment model of 

the Stone-Rowe type was found to provide a good fit to the data, the 

reduced form being

= b,+b_ D +b„D + b» YPD, + bc KOD. . + b^ POD^+b^ NC.+u. (7,1)t I d  1 J d 4 t 0 t — ±  O t I t t

t
YPD1

KOD

POD1
NC,

t-1

where Real Consumption Expenditure on Other Durables

Real Personal Disposable Income 

Stock of Other Durables lagged one quarter 

Price of Other Durables deflated by a general price index 

A variable representing either New Instalment Credit for 

Retail Sales or New Instalment Credit plus changes in Bank 

Advances to persons0

D^(i=3,^) Seasonal dummies with value 1 in calendar quarter i and 

zero otherwise

The available data constituted a sample of 36 observations and (7«l) 

was fittedc With the two alternative definitions of NC the fittedX*

equations correspond to (C„7) and (C08) of [86] and will be referred to 

as (7da) and(7olb) in future 0

It will be necessary to present a formal derivation of the 

employment equation with a view to later modifications, Underlying the 

RcB0A t formulation is a neo-classical theory of factor demand and a 

stock adjustment model. To give operational meaning to the general 

theory it is necessary to specify a form for the production function and

Thd other seasonal dummy was insignificant and was therefore omitted 
by RoB.A.
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it will be assumed that the Constant Elasticity of Substitution (C.E.S.) 
version links Output (Y ), Capital (K ) and Labour (L )X X  X

Y = a[ K”Y + (1-6) L"y ] yX (7.2),

Under the assumptions of

(a) Perfect competition in both factor and commodity markets.

(b) Profit maximizing behaviour by all production units, the marginal

revenue product of labour will be equated to its price (w )X
*

i.e. Lt = A

*
where LX is

pt is

3 =:

A —

3

t is the desired stock of labour 

is the price of output Ŷ_ 

l/l+Y

(7.3)

(1-6)6 cT yS

(1.3) corresponds to (2) in [87] if the non-linear restrictions between 
A and $ are ignored (and there would seem to be little lost by so doing) 

The stock adjust.mpnt. pntors os a consequence of the immobility of 

labour in the short-run : changes in desired employment demand are only 

manifest in actual labour flows with a time laf

i.e. L, = W(L) L* (7.Mt t

Substituting (7o3) into (l.h) the simplified expression is

Lt = H(L) l(^fY ]W  X (7.5)

This differs from the RoB.A.'s use of the Cobb Douglas production 
function but as will be seen the C.E.S. underlies their regression 
equation. Although not recognizing this explicitly they concede 
that adoption of their final equation amounts to rejecting
the Cobb Douglas production function" [87 p.6].



or under a rational lag specification HCL) U(L)voT
V(L)Lt = U(L ) K ^ ) 8 Y]t (7.6).

(7o6) is (6) of [87] and it forms the basis for the actual 
estimating equations (where DE is a dummy variable to take account of

Tj

the introduction of a new employment series in 1966)0

V  V c2 V C3D2+CUD3+C5t(v )ßY]t +c6t(w )ß Y]t-l+cTDEt
+ Cg Lt_1 + ut (7o7a)

V  V c2DX+c3D2+CUD3+°5[(v )B Y]t + c6[(v)ß Y]t-1 +cTDEt

+c8Lt-l+c9Lt-2+ut (7,7b)

Owing to the multicollinearity in the data the order of V(L) could 

not be raised above 2 so that (7.7a) and (7.7b) cover the only two 

possibilities tested« Additionally, to avoid non-linear estimation 

problems, the R 0B 0A0 performed a search over the grid 0 <_ 3 <_ 1 for 

(7.1a) and found that $ = 0.45. To preserve compatibility with their 

results this restriction will be retained, although the non-linear 

restriction could easily have been imposed by the program« Finally 

(7.7a) and (7.7b) correspond to (9) and (10) of [87] and there were 
h2 observations„

Equations (7.1a), (7.1h), (7.7a) and (7.7b) were estimated by 

0«L«So and the correlograms of the residuals from the regressions are

in Table 7.1.
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Table 7 d

OoLoSo Residuals Correlogram (8 lags)
Equations (7.1a),(7.1b) ,(7.7a) and (7.7b)

Eg. 1 2 3 k 5 6 7 8

(7.1a) 0.06
(0.38)

-0.17
(1.01)

-0.20
(1.23)

0.42
(2.49)

-o.o8
(0.50)

-0.06
(0.33)

-0.02
(0.09)

-0.02
(1.42)

(7.1b) 0.06
(0.35)

-0.22
(1.34)

-0.19
(l.16)

0.40
(2.41)

-0.08
(0.U8)

-0.09
(0.56)

-0.02
(0.10)

0.23
(1.38)

(7.7a) 0.19
(1.19)

-0.30
(1.90)

-0.33
(2.12)

-0.01
(0.03)

-0olb
(0.89)

0.01
(0.07)

0.23
(1.48)

0.10
(o.6i)

(7.7b) 0 d 3  
(0.81)

-0.26
(1.67)

-0.35
(2.2k)

0.01
(0.03)

-o.iU
(0.88)

0.04
(0.22)

0.23
(lok3)

0.06
(0.37)

Table T d  suggests that there is autocorrelation present in the 

residuals. Although the standard errors utilized in constructing the 

t-tests refer to the asymptotic distribution of the serial correlation 

coefficients constructed from data that is not residuals from an A.R., 

it seems as if the test will err on the side of high Type II errors 

[11]. This is almost certain to be so for (7°7a) and (7.7b) as the 

asymptotic variance of p(l) would be N ß‘(where ß is the A.R. 

parameter) rather than N ^ . There are further difficulties in 

deciding on a plausible representation for the autocorrelation but there 

are two important contenders for (7da) and (Tolb) viz.

u(t) = (1 + a ^ M t )  (7.8)

(l-a^L^)u(t) = e(t) (7.9'

i0e0 a fourth order M 0A 0 or A 0R<» in the disturbances . If (7.8) was 
satisfactory there should be a peak only at the fourth lag in the 

correlogram while (7.9) would have peaks at If, 8 etc. Bearing in mind 

the comments concerning Type II errors it is fairly obvious that Table
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Tol does no t a llow  d i s c r im in a t io n  "between the  two h ypo theses  so t h a t  

"both a l t e r n a t i v e s  (a lo n g  w ith  0 , L oS o) were f i t t e d  and the  p a ra m e te r  

e s t im a te s  a re  in  Table 7 . 2 „

The id e a  t h a t  t h e r e  was f o u r th  o rd e r  r e s i d u a l  a u t o c o r r e l a t i o n  i s  

f u l l y  s u p p o r te d  by Table 7 .2 ,  and from a comparison o f  th e  r e s i d u a l  

v a r ia n c e s  i t  appears  to  be o f  th e  A c R o  v a r ie ty »  As b o th  s p e c i f i c a t i o n s  

r e s u l t e d  in  th e  boundary r e s t r i c t i o n  < 1 b e in g  a p p l ie d  th e r e  may be 

some n o n - s t a t i o n a r i t y  in  th e  s e a s o n a l  p a t t e r n  o f  th e  r e s i d u a l s ,  which 

dummy v a r i a b l e s  were n o t  ab le  to  account for»  There a re  some 

i n t e r e s t i n g  changes in  th e  p a ram e te r  e s t i m a t e s ,  i n c lu d in g  an in c r e a s in g ly  

s i g n i f i c a n t  in f lu e n c e  f o r  th e  c r e d i t  v a r i a b l e  and a r e d u c t io n  in  the  

im pact o f  th e  c a p i t a l  s to c k ,  and th e r e  now i s  a p r e fe re n c e  f o r  ( 7 d a )  

over  ( 7 .1 b ) 0

Turning  to  th e  employment example, on th e  b a s i s  o f  Table 7 d  i t  was 

dec ided  to  append a t h i r d  o rd e r  M.A.

u ( t ) = ( l + a 2I 2+a3L3 ) e ( t )  ( 7 . 1 0 )

to  each equa tion»  Table 7o3 c o n ta in s  th e  p a ram e te r  e s t im a te s  f o r  0 cL .S o 

and th e  ARMAX e s t im a to r»

I t  was im p o ss ib le  to  e x a c t ly  reproduce  the  RoB.A .'s  e s t im a te s  f o r  any 
equation«, A number o f  r e g r e s s io n  r o u t in e s  were a p p l ie d  w ith  a l l  
r e s u l t s  b e in g  s i m i l a r  to  Table 7 »2 e . g .  u s in g  the  s im ple p r e c i s i o n  
IoBoMo m u l t ip le  r e g r e s s io n  package (com pris ing  CORRE,ORDER,MINV and 
MULTR o f  [ 5 4 ] ) th e  p a ra m e te r  e s t im a te s  were

(532, - 5 ,  - 5 ,  0 »0732 , - 0 o030 , -4 7 6 ,  O02353) f o r  (7 .1 b )

and ( 332 , 4 9 .1 ,  26»3, 1 3 .5 ,  0 . 1658 , 0 . 0656 , 3 9 .5 ,  0*5953) f o r  ( 7 . 7a ) ,  
which d i f f e r  on ly  i n  very  minor ways from T ab les  7 .2  and 7 .3  (p 2 8 6 ) .  
The d a t a  u t i l i z e d  in  th e  r e g r e s s io n s  i s  l i s t e d  in  Appendix 12. For 
th e  moment i t  i s  on ly  n e c e s s a ry  to  n o te  t h a t  in  as much as th e  R*B0A0 
s e a s o n a l  dummy e s t im a te s  were th e  same as th o s e  in  Table  7 .2 ,  th e  
p re sen ce  o f  f o u r th  o rd e r  s e r i a l  c o r r e l a t i o n  i s  u n l i k e ly  to  be 
e x p la in e d  by th e  d i s c r e p e n c i e s 0
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Table 7 ,2

P aram eter  E s t im a te s  o f  (Tola)  and (7 ,1b)

P aram e te r  Equa t ion

7 d a 7 «lb

0 0L sS o M0 A 0 A oR 0 0 0 L 0 S . M.A. A ,R,

b l
454

(2 ,1 )
289

u . i )
-13

(0 .5 )
532

(2 .5 )
444

( 1 .7 )
- 1 2 .4  
( 0 .5 )

b2 -2
(0 .5 )

-9
(1 .1 )

-3
(0 .9 )

-5
(1 .0 )

-9
(1 .3 )

-3
(1 .0 )

b 3 -5
( lcO)

-7
( lcO)

-3
(0 .9 )

-5
(1 .1 )

-11
(1 .1 )

-3
(1 .0 )

b 4 0.0693
(6 .0 )

0.0510
(3.1*)

0.0127
(0 .8 )

0.0732
(6 .9 )

0.0601
(4 .1 )

0.0247
(1 .5 )

b 5
-0 .0 2 3 8

( 1 .7 )
-0 .0072

(0 .4 )
0.0536

(1 .0 )
-0 .0300

(2 .3 )
-0 .0205

(1 .2 )
0.0313

(0 ,5 )

b6 - 4 i  6 
(2.1*)

-275
(1 .3 )

-228
(1 .7 )

-475
(2 .8 )

-397
(1 .9 )

-390
(2 .8 )

b T 0o26T9
(2 .8 )

0.3610
(4 .8 )

0.4162
(7 .7 )

0,2353
(2 .8 )

0,3015
(4 .7 )

0.3478
(7 .0 )

“4 0.9996
(3 .7 )

0.9890
(23 .9 )

0,9999
(4 .3 )

0.9999
(23 ,8 )

a 2 85.97 64 .9  2 45.25 85.89 67.31 48.51



Table 7°3

P aram eter E s tim a te s  fo r  (ToTa)  and (7°7b)

(ToTa) (ToTb)

O.L.S. ARMAX O.L.S.

C,- 331 337 3041 (13.5) (8 .2) (4 .9)
A

CP 49.2 39 0 7 46.3
(4.2) (3 .9) (3 .8)

A 26.2 25 o9 19 o0
3 (3 .2) (3 .8) (1.7)

C). 13.5 12.4 12.54
(2 .5) (2 .6) (2 .2)

C*. 0.1659 0.1447 0.1589
5 (6 .8) (7 .4) (6 .2)

A

0.0653 0.0879 0.0509
O (1 .9 ) (3 .0) (1.3)

c7 39 o5 43o4 36.2
7 4 . 7 ) (6 .4) (4 .0)

A

c8 0.5957 0.5931 0.7417
(10.5) (13.9) (4 .4)

-0.1097y
(0 .9)

®2 0.4546
(1 .9)

A

a 3 -0.54.14
(2 .1)

CT? 79c0 48.0 79»5

2 8 6 0

ARMAX

324
(6.4)

38„9
(3 .5)

2108
( 2 . 1 )

11 oT
( 2 . 2 )

0.1425
( 6 . 6 )

0.0768
( 2 . 1 )

43.4
(5 .4 )

0.6710
(4 .1)

-0.0565
(0 .5)

- 0 .3 8 2 0
(1 .5 )

-0.6173
(2 .3)

52.8



There i s  n o t  as l a r g e  a v a r i a t i o n  between th e  0 oL oS o and ARMAX

e s t im a te s  f o r  (7 d a )  and (TcTb) as f o r  (Tola)  and ( Y d b ) ,  b u t  i t  i s

n o t i c e a b l e  t h a t  (^  Y) + becomes s i g n i f i c a n t  i f  a u t o c o r r e l a t i o n  i s

accoun ted  f o r  : as w e l l  t h e r e  i s  a c l e a r  p r e f e r e n c e  fo r  (7 d a )  over

(ToTb) a f t e r  ARMAX e s t i m a t i o n 0 The i n s i g n i f i c a n c e  o f  a p ag ree s  w ith  th e

magnitude o f  th e  t  s t a t i s t i c  f o r  th e  second l a g  o f  th e  co rre log ram s in

Table  7 d  and again  t h e r e  i s  ev idence  o f  a u n i t  r o o t  i n  th e  M0A0 0 When

one r e c a l l s  th e  frequency  o f  t h i s  o ccu rren c e  th roughou t th e  l i t e r a t u r e

[107] [ l ^ l  i t  i s  c l e a r  t h a t  u n le s s  some e x p la n a t io n  may be found in  th e

f u tu r e  th e  a t t r a c t i v e n e s s  o f  ARMAX e s t im a to r s  w i l l  be l im ite d «

R e tu rn in g  to  Table 7o3 why i s  i t  t h a t  th e  d i f f e r e n c e s  a re  l e s s  pronounced

f o r  (7o7a) and (7o7b) than  f o r  ( 7 . 1a )  and ( 7 d b ) ?  This  q u e s t io n  becomes

im p o r tan t  in  t h a t  th e r e  i s  an A0R0 in  th e  form er b u t  no t th e  l a t t e r ,  and

a u t o c o r r e l a t i o n  has g e n e r a l ly  been reg a rd ed  as a s e r io u s  problem only

2in  t h i s  in s ta n c e «  The answer must l i e  in  th e  d i f f e r e n c e  between R 

(0o999 and 0 „ 9 5 6 h  f o r  th e  two e q u a t io n  ty p e s  (7<da) and (7-Yb) th e r e  

i s  such a h igh  s ig n a l / n o i s e  r a t i o  t h a t  th e  0 oL 0S o e s t im a te s  w i l l  be c lo se  

tc  t4 e  McLo e s t im a te s  (see  S e c t io n  4 0U) and l i t t l e  i s  ga ined  by ta k in g  

account o f  a u t o c o r r e l a t i o n  ( in  term s o f  pa ram e te r  e s t i m a t e s ) ,  b u t  to  th e  

e x te n t  t h a t  th e  r e s i d u a l  v a r ia n c e  i s  a measure o f  p r e d i c t i v e  accuracy  

s u p e r io r  f o r e c a s t s  shou ld  be fo rthcom ing  from th e  ARMAX v e r s io n s  o f  a l l  

e q u a t io n s  „

P a t t e r n s  o f  a u t o c o r r e l a t i o n  in  q u a r t e r l y  (and monthly) econom etric

models a re  u n l i k e ly  t o  be o f  th e  s im ple f i r s t  o rd e r  ty p e  so b e lo v ed  o f
7

many e m p ir ic a l  r e s e a r c h e r s  , and t h i s  e s t a b l i s h e s  th e  major advantage

7 In  t h i s  co n n ec tio n  i t  i s  im p o r ta n t  t o  n o te  t h a t  th e  Durbin-Watson 
s t a t i s t i c  was s a t i s f a c t o r y  f o r  th e  consumption equ a t io n s«
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stemming from the possession of an ARMAX estimator i,e, the added 

flexibility gained by the ability to contemplate a wider variety of 

specifications - perhaps even an A,R,-MoA, in the disturbance term. 

Until more is known about the likely form that disturbances take once 

attention is shifted from yearly models, this flexibility is crucial to 

good estimation and prediction»

7,3,2 Stochastic Behavioural Models

under the heading of ’’stochastic behavioural relations”. These 

derive from the assumptions embodied in (7=2) and (7.1+) and are con­

cerned with the origin of the disturbance term in (7°7a) and (7,?b), 

Frequently the relations (7c2) and (7.1+) are estimated as equations in 

their own right and disturbance terms are then appended, suggesting 

that it is natural to include these from the beginning of the exercise 

and to derive the reduced form under these assumptions. If this is

variables : a specification which cannot be dealt with in a satisfactory 

manner by any existing estimator. Therefore a slightly different set 

of conditions concerning the introduction of disturbance terms will be 

adopted viz, (7.3) and (7,1+) will become

Our second application of ARMAX estimators will be discussed

(7.11)

(7.12).

The equations state that the potential demand for labour may

fluctuate as a result of stimuli from factors other than prices and 

output, and that actual labour flows adjust to potential demand in a 

stochastic fashion. This type of model arises in a number of



econometric applications e 0go see Williams [ll8] for an example from 

the consumer durables field, so that a solution to this type of model 

has applications in othei areas0 Following the R.B.A, W(L) is taken 

as a rational function and the reduced form of (7=11) and (7=12) is

V(L)Lt = U(L)j^A(-t- f Yt j +  U(L) e^t) + V(L) eg (t) (7.13)

Now Chapter 6 was concerned with estimation when the enor term 

was of the composite variety in (7ol3) and an estimator (PH/R) was 

presented to provide an efficient solution0 Equations (7°7a) and 

(707b) are now re-estimated with PH/R and PH/U (under the restriction 

that e* * o) in order to discover if there are stochastic elements in 
the behavioural relations. Table 7°^ contains the statistics for a 

judgement (with X = o^/a^), where the order of the polynomials V(L) and 

U(L) are the same as in the preceding section in order to enable a 

direct comparison with the results of that section. In practice the 

structure of V(h) and U(L) should be determined again for the new 

spec!fication.

A comparison of the residual variances in Tables 7.3 and 7.U 

evinces the conclusion that allowance for stochastic elements in (7.3) 

and (7«*0 would not seem to be of great benefit, but that the implied 

restrictions are compatible with the data. The former conclusion is 

scarcely surprising in view of the low value for p(l) in Table 7.1» and 

it is certain that a more complex set of assumptions is required e.g, 

U(L) might be of second order with u q = 0. Nevertheless it has been 

demonstrated that the techi iques of Chapter 6 may be applied in the 

context of an econometric model, and that instances may arise when a 

derived equation has the distinctive disturbance format that PH/R was

designed to accommodate.



Q
 > 

>-
» 

P
» 

p
 >
 

O
» 

O
» 

O
 > 

0
>
 

O
» 

Q
> 

O
 > 

O
» 

O
»

290 0

Table T.4

Parameter Estim ates for  ( 7 . Ta) and (TcTb)

S to c h a st ic  Behavioural R elatione  

Estimate (T.Ta) ( 7 . Tb)

PH/R PH/U PH/R PH/U

360 360 358 332
(5 .5 ) (5 .5 ) (5 .3 ) ( 7 .2 )

41,1* 4 i . 4 4l .O 1*3.3
(4 ,3 ) (4 .3 ) (4 .1 ) (4 .1 )

2 8 . 6 28 .6 2T.5 23 ,0
(2 ,4 ) (2 .4 ) (2 .4 ) ( 2 .7 )

13c8 13 ,8 14 ,0 12 ,9
(3 .0 ) (3 .0 ) (2 .7 ) ( 2 .5 )

0.1531* 0.1531* 0.1536 0.1554
(6 ,8 ) (6 .8 ) (6 .6 ) ( 7 . 6 )

0.091*3 0,0943 0.0924 0.0T33
(2 .9 ) (2 .9 ) (2 .8 ) ( 2 .3 )

4 2 , T 1*2.7 41.5 39.2
(4 ,2 )  . (4 ,3 ) (3 .9 ) ( 5 .3 )

O.5658 0,5658 0.5924 0.6503
(8 ,3 ) (8 .3 ) ( 5 . 8 ) ( 7 .7 )

-0 .023T 0.0019
(0 .4 ) (0 .0 1 )

0.3665 0,3668 0.3529 -0 .0510
(2 .0 ) ( 0 .8 )

0 .0028 -O.3509
( 1 . 7 )

0.1T 0.1T
(0 .9 ) (0 .9 )

TU . 1 7 Tl* .17 76.29 T4.88
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7»3.3 Rational Lags

Rational lags give rise to ARMAX models in two ways.
Firstly, as demonstrated in Chapter 1, the M.A0 and A 0R. transfer 
functions will be identical. Secondly, as outlined in the preceding 

section, if one wishes to allow the behavioural relations to possess a 

stochastic element the implementation of rational lags will result in 
a model that calls for the use of PH/R. Although little attention has 
been paiu to the latter theme the former is a central feature in a 
number of articles e„g. [13] [91]•

7.1+ Final Summary and Conclusion
Having explored some of the general areas of research likely to 

become important in the future it is now time to summarize the findings 
of the thesis. As these have been presented in the conclusions to 
each chapter only a brief summary is contained here.
1. Of all the estimators considered the Phillips/Box Jenkins type 
emerged as the most useful, although it appeared that samples of around 
70 would be required if the familiar properties of M.L. estimators were 
to become operative. However, although limited, Monte Carlo studies 
indicated that this conclusion should be qualified if there was non- 
stationarity in the exogenous variables, leading to the conclusion that 
more investigation of the impact of the exogenous regressors is called 
for.

2. Of the alternatives proposed to 1 only the frequency domain versions 

are likely to be worth pursuing as these estimators require quantities 

e.g. the periodogram, that are of interest in themselves, and offer the 
possibility of computational savings if the sample is large. To decide 
the full extent of their applicability it will be necessary to assess
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their performance in the estimation of more complex models e.g. Model 

F of Chapter 3, than were adopted in Chapter k „ As indicated there the 

computational load will be heavy.

3. Extensions to systems of equations may be performed relatively 

easily in both domains. The next step in this direction must be toward 

simultaneous relations, and this will pose serious algorithmic obstacles 

in that the Phillips approach is not well suited to F.I.M.L. estimation. 

As a first step one may adapt the framework of Chapter 5 to derive an 

analogue to 3SLS. Perhaps this will be where the frequency domain 

emerges victorious as the development of a F.I.M.L. version should be 

relatively straightforward once all data has been Fourier-transformed.

h. Estimators may be designed within an ARMA framework to solve a 

signal extraction problem in which the signal follows an ARMA process.

It was found that such a model arose in a number of areas in economics 

and statistics alt-hough the quoted examples were limited in their scope 

e.g. in their darivation of an optimal seasonal filter Hannan et al.

[U3 eq. (25) p. 38] demonstrate the need to estimate an ARMA model thatQ
is similar in structure to one generated by a components model. It 

will be necessary to tidy the approach up if the method comes into vogue, 

particularly in the root finding routines.

5. As Chapter 7 attempted to show the availability of ARMAX estimators 

endows an investigator with a good deal of flexibility and allows a wider 

range of model to be entertained for the data. This has obvious

8 The algorithms of Chapter 6 could well be applied as the authors 
sought estimates by trial and error.
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importance in relation to complex autocorrelation patterns but also for

incorporating various non-linearities that may arise in econometric

model building. Nevertheless, in order to exploit the full potential

of ARMAX estimators, there must be a wider investigation into suitable

test statistics for specification decisions - especially in view of the

suspicion that the correlogram may be a fairly blunt instrument in small

samples. To date there are only two sets of Monte Carlo studies

available [11] [7^] with the former being conducted on samples of 200 -

far beyond what is typically available to econometricians - while the

other, performed twenty years ago in the era of desk calculators, found
k

that the distribution of the Q statistic (= N £ P2(j)) departed
j=l

substantially from x2 in samples of size 15 and 35.

In the present chapter a number of examples have been communicated 

in order to illustrate that time series techniques can enrich econometrics. 

The thesis has touched on only a small array of these methods, and most 

attention has been lavished on a demonstration that it is relatively easy 

to integrate them into a traditional econometric framework. Yet, to an 

appreciable extent, the number and degree of sophistication of 

estimators currently available exceeds the tools proposed for 

discriminating between alternative models, so that in the future the most 

fruitful research will be in the realms of specification and diagnostics

rather than estimation.
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