
NON-HERMITIAN QUANTUM AND

CLASSICAL INTEGRATED NONLINEAR

PHOTONICS

A thesis submitted for the degree

of Doctor of Philosophy of

the Australian National University

Diana A. Antonosyan

29 November 2016







This thesis contains no material which has been accepted for the award of any

other degree or diploma in any university. To the best of the author’s knowledge

and belief, it contains no material previously published or written by another

person, except where due reference is made in the text.

Diana Antonosyan

29 November 2016







Acknowledgements

I would like to thank my supervisory panel A/Prof. Andrey A. Sukhorukov, Dr.

Alexander S. Solntsev, A/Prof. Ilya V. Shadrivov and Prof. Yuri S. Kivshar

for their support and guidance, interesting research and everything new I have

learnt. I am grateful in particular to Prof. Ilya Shadrivov who helped me a lot

both at work and in everyday life. Many thanks to Alexander S. Solntsev who

was not only a mentor but also a friend all this years. I want to thank all my

colleagues and friends at the Nonlinear Physics Centre for an opportunity to work

in a unique research environment, for all their support and and making my PhD

journey pleasant and enjoyable. Next, I want to thank Prof. Alexander Szameit
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Abstract

Integrated optical quantum circuits based on photonic waveguiding structures are

increasingly gaining attention as a possible solution for scalable quantum tech-

nologies with important applications to quantum simulations. Quantum commu-

nication provides secure information transmission, but the distance over which

quantum states of light can be distributed without significant disturbance is lim-

ited due to inescapable losses and noise in optical elements. Loss is the greatest

challenge facing the implementation of integrated photonic technologies, and it

is inescapable in experimental reality. In recent years there is a rise of interest

in structures with spatially inhomogeneous losses. Light propagation in waveg-

uiding structures with spatially distributed sections of loss can be used for im-

plementation of quantum plasmonic circuits, which are able to strongly confine

light to sub-wavelength dimensions, as well as for parity-time (PT) symmetric

structures, with phase transition associated with PT-symmetry breaking, which

opens new possibilities for light manipulation. The PhD thesis contains research

on the controllable classical and quantum dynamics of optical frequency con-

version processes in quadratically nonlinear photonic integrated circuites in the

presence of losses. Namely, I discuss spontaneous parametric down-conversion

(SPDC), sum-frequency generation (SFG) and optical parametric amplification

(OPA) in nonlinear structures governed by non-Hermition Hamiltonians. I ex-

plore the fundamental features of multi-photon generation in integrated nonlin-

ear waveguides. I have been shown that arrays of coupled nonlinear waveguides

can serve as a robust integrated platform for the generation of entangled pho-

ton states with nonclassical spatial correlations through spontaneous parametric

down-conversion (SPDC), and that the operation of such quantum circuit is tol-

erant even to relatively high losses. Furthermore, I have studied the bi-photon

multimode quantum emission tomography in waveguide structures with spatially

inhomegeneous losses. The PhD thesis also covers the research on the effect of

these losses in waveguide couplers possessing parity-time (PT) symmetry. I have

identified an anti-PT spectral symmetry of a parametric amplifier based on those
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couplers. Finally, I describe the single-photon conversion to a photon pair, and

identify opportunities for the efficient enhancement of this process.
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Chapter 1
Introduction

Optics and photonics technologies are ubiquitous; they are responsible for the

displays on smart-phones and computing devices, optical fiber that carries the

information in the internet, advanced precision manufacturing, enhanced defense

capabilities, and a variety of medical diagnostics tools. All of these were devel-

oped and improved through research. Science and technology are separate, but

forever interweaved, subjects.

Several areas of research, such as spectroscopy, semiconductor analysis, pho-

tochemistry, and remote sensing, need a tunable coherent source of high-power

or high-energy radiation. This thesis is devoted to the research of the control-

lable optical frequency conversion processes in quadratically nonlinear photonic

integrated circuites in presence of losses.

( )2χ
pω sω

iω

pω

isp ωωω +=

Quantum process
 Spontaneous Parametric Down-conversion (SPDC)

Figure 1.1: Schematic analysis of spontaneous parametric down-conversion
(SPDC) in χ(2) nonlinear media. Explicitly involved fields in the χ(2) process
are shown in black, residual fields are dashed.

The theoretical and experimental advances of 1960s helped to show that any

frequency manipulation that could be performed at radio frequencies, could, in

principle, be performed at optical frequencies. In the last few years both strong
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up and down conversion sources have been developed. The advent of novel higher-

damage-threshold nonlinear-optical materials and improved pump lasers has re-

newed interest in parametric devices and has permitted these devices to make

the transition from being a research curiosity to being an actual tool used in a

wide variety of applications. In this thesis we examine the classical and quantum

dynamics of optical frequency conversion in nonlinear media.

Nonlinear optics is feasible only when powerful laser beams, containing a large

number of photons, interact in nonlinear materials. Under the interaction of an

applied optical electric field, the atoms or molecules of the dielectric material

may respond as follows. Optical field-induced electric dipole moment acts as a

new source to emit a secondary electromagnetic wave. This is the fundamental

process describing the optical field-induced dipole moment of a molecular system

and the re-emission of a secondary wave radiation. It was realized that the

electric polarization induced in the medium is the key for studying the physics

of nonlinear optics and so in general the polarization of the medium should be

expressed as a power series of applied electric field [1, 2]:

P = χ(1)E + χ(2)EE + χ(3)EEE + ..., (1.1)

where P is the polarization, χ(i) is the ith order susceptibility tensor (material

coefficient) of a given medium and E is applied electric field. Electric polariza-

tion of a medium is determined by two factors: one is the field induced dipole

moment of each individual molecule of the medium, and the other is the statis-

tically averaged property of a great number of molecules. That is the molecular

dipole moment is determined by the microscopic structure and depends on the

microscopic symmetry.

In this thesis we consider optical χ(2) processes. Second order processes are

useful non destructive techniques for the study of surfaces and deep interfaces,

with a resolution better than the inherent penetration depth of the probe.

Optical processes in χ(2) media are always three photon processes. Figs. 1.1, 1.2

(optical fields are shown for lossless χ(2) material) illustrates a schematic analysis

of the χ(2) processes discussed throughout the thesis. Three wave interaction

Hamiltonian is written in the following form,

H(t) = S
∑
α,β,γ

∫ L

0

dzχ
(2)
α,β,γ(z)Eα(z, t)Eβ(z, t)Eγ(z, t) =

H(−)(t) +H(+)(t), (1.2)

where χ
(2)
α,β,γ(z) is the second order nonlinear susceptibility tensor of the one

dimensional media with the length L, and interaction area S. Eα(z, t) is the elec-
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trical field operator, which is a superposition of three components, corresponding

to the pump field EL,α(z, t) and two sub-harmonics marked by (j = 1, 2) in-

dexes. These sub-harmonic fields consist of electrical field operators with positive

E
(+)
j,α (z, t) and negative E

(−)
j,α (z, t) frequencies, α, β, γ are the polarization states

of the electromagnetic fields. Further we will consider that each field is linearly

polarized and has its own polarization, thus we’ll skip the polarization indexes

of the electric fields and the nonlinear susceptibility tensor. The negative part of

the Hamiltonian has the following form,

H−(t) =

∫ L

0

dzχ(2)(z)E+
p (z, t)E

(−)
1 (z, t)E

(−)
2 (z, t), (1.3)

where Ep, E
(−)
1 and E

(−)
2 are interacting fields, and the positive frequency part

of each of them has the following form [3]

E
(+)
j (z, t) = i

∫
dω

2π
Nj(ω)aj(ω)ei(kj(ω,z)z−ωt), (1.4)

where aj(ω) (j = 1, 2) is the sub-harmonic mode operator, a†j and aj are the

creation and annihilation operators for sub-harmonic modes with the commuta-

tors [aj(ω), a†j(ω
′)] = δ(ω − ω′) and [a1(ω), a2(ω)] = [a†1(ω), a†2(ω)] = 0, while the

pump field has classical form,

E(+)
p (z, t) = i

∫
dω

2π
EL(ω)ei(kL(ω,z)z−ωt). (1.5)

Here Nj(ω) =
√

π~ω
cε0n2

j (ω)S
is the normalization term, nj(ω) - refractive index of

the media for certain frequency, S - cross-section area of two beams, βj(z, ω) =
ωj
c
nj(z, ω). The quantum state in the low order perturbation theory is presented

as follows:

|ψ(t)〉 =
−i
~

∫ t

−∞
dt′H(t′)|0〉, (1.6)

Down-conversion is a nonlinear processes where a photon with high energy

at ωp frequency splits into two photons with lower energies at frequencies ωs, ωi.

The daughter photons are called signal (ωs) and idler (ωi) [see Fig. 1.1]. Sponta-

neous parametric down-conversion can be presented as a process stimulated by

random vacuum fluctuations. The conversion efficiency is very low, on the order

of 1 pair per every 10−8 − 10−6 incoming photons [4]. The signal and idler fields

are perfectly correlated to each other, as each pair of low frequency photons is

produced by the one high frequency photon. This type of correlation is called

entanglement. Entanglement was observed for the first time by Schrödinger, is a

phenomena where the wave function of a quantum system consisting of two sub-
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systems cannot be factorized into a product of wavefunctions of the subsystem.

This phenomena is widely used in quantum technologies for quantum commu-

nication and computation. Quantum optics started its intensive development

at the end of the twentieth century, when so called non-classical states of light,

such as superposition states, squeezed states of light, entangled states and the

Einstein-Padolski-Rosen states, were observed theoretically and further investi-

gated experimentally. Nowadays the non-classical states of light have interesting

applications in very precise measurements, metrology and spectroscopy, as well as

in quantum communication [5–8]. Starting with the pioneering work of Mandel

and co-authors [9] many different schemes and the structures were used for gen-

eration of photon pairs in nonlinear media. Quantum entanglement plays a key

role in all schemes of quantum computation, quantum cryptography and quan-

tum teleportation [10–21]. Spontaneous parametric down-conversion has already

become a working horse for generation of high quality entangled states [20, 21].

Sum Frequency Generation (SFG) is a nonlinear process, where two fields at

ωs, ωi frequencies generate a beam with sum frequency ωSFG [see, Fig. 1.2(a)].

SFG is implemented in frequency chains, and in detection of weak signals at low

optical frequencies. One application of sum-frequency generation is to produce

tunable radiation in the ultraviolet region by choosing one of the input waves to

be a fixed-frequency visible laser and the other to be a frequency-tunable visible

laser [2]. In many ways the process of sum-frequency generation is analogous

to that of second-harmonic generation, except that in sum-frequency generation

the two input waves are at different frequencies. Sum-frequency generation in

the range of infrared − visible light is very functional tool for studies of surfaces

and interfaces. They can be used to study surface dynamics and reactions with

sub-picosecond time resolution, thus SFG is able to provide rich surface-specific

vibrational information on bonding and orientation of molecules and ions at in-

terfaces [22, 23]. SFG is used for improvement of upconversion spectrometers for

the measurement of time-resolved luminescence spectra with subpicosecond time

resolution [24].

Difference frequency generation (DFG) can occur, where two pump beams at

frequencies ωp and ωs generate another beam, called the idler, with frequency ωi
such that ωp − ωs = ωi [see, Fig. 1.2(b)]. Such a process requires phase match-

ing to be efficient, and usually there is no simultaneous phase matching for sum

and difference frequency generation. DFG is often referred to as Optical Para-

metric Amplification (OPA). Parametric amplification is a phenomenon where a

signal can be amplified using a parametric nonlinearity and a pump wave. More

precisely, the signal beam propagates through the crystal together with a pump

beam of higher energy. Photons of the pump wave are then converted into signal

photons and the same number of idler photons; the photon energy of the idler

wave is the difference between the photon energies of pump and signal wave.
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DFG most often finds application in frequency chains. A tunable mid-IR source

has been implemented based on difference frequency generation, which is perfect

for spectroscopic applications as it is mechanically robust and stable during tem-

perature fluctuations [25]. The high-sensitivity detection that can be achieved

using a DFG spectrometer, which can be used for sensing gases [26], high sensi-

tivity molecular detection as well as sub-Doppler saturated spectroscopy [27]. It

is possible to obtain tunable, room-temperature, electrically pumped c.w. semi-

conductor tunable terahertz (THz) source based on DFG [28]. THz light can

be used to simultaneously image the structure of samples while identifying their

chemical composition. THz imaging can measure multiple layers.

( )2χ

pω

sω

iω
sω

pω

isp ωωω =−

( )2χ
sω

iω

sω

SFGω

iω

SFGis ωωω =+

Classical processes
(a) Sum Frequency Generation (SFG) (b) Optical Parametric Ampli�cation (OPA) or

      Di�erence Frequency Generation (DFG)

Figure 1.2: Schematic of the χ(2) processes discussed throughout the thesis.
Explicitly involved fields in the χ(2) process are shown in black, residual fields
are dashed. (a) sum frequency generation (SFG) and (b) difference frequency
generation DFG, which is often referred to as optical parametric amplification
(OPA).

Various kinds of optical components, in addition to light sources, optical fibres

and detectors, are required in constructing optical fibre communication systems

with higher transmission efficiency and network flexibility [29–31]. These com-

ponents include optical beam splitters, optical switches, wavelength multiplexers

for introducing multiple optical channels into a single optical fibre. Most of

these optical components have been realized in bulk-optic configurations using

microlenses and prisms. These bulk-optic approaches appear to have some lim-

itations in terms of production, device stability and suitability for integration.

A possible way to overcoming this problem is to introduce channel waveguide

technologies to form integrated-optic components. One of the most practical and

promising approaches in the integrated-optic area seems to be the designing of

optical circuits based on low-loss glass waveguides.

Electronic integrated circuits are the most significant technology of the 20th

century. They have changed the way we work enabling the computer industry.

The photonic equivalents of these devices have been equally challenging to de-

velop and are widely used to manipulate and control the signals in optical fibres.
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A Photonic Integrated Circuit (PIC) is conceptually very similar to an electronic

integrated circuit (IC). While IC integrates many transistors, capacitors and re-

sistors, a PIC integrates multiple optical components such as lasers, modulators,

detectors, attenuators, multiplexers/demultiplexers and optical amplifiers. By

integrating many optical devices into a single device, PICs enable improvements

in system size, power consumption, reliability and cost. On-chip integrated pho-

tonic circuits are crucial to further progress towards quantum technologies and

in the science of quantum optics [20, 32, 33].

Overall, integrated optical quantum circuits utilizing coupled waveguides are

increasingly gaining attention as a possible solution for scalable quantum tech-

nologies with important applications to quantum simulations. Integrated optical

circuits enable a stable and scalable realization of quantum logic devices, which

can form a basis for the mass production of photonic chips for quantum commu-

nication and computation [34–39]. Quantum gates were implemented using pairs

of waveguides acting as integrated beam splitters [35], and lattices of coupled

waveguides were used for the study of Bloch oscillations [40] and propagation

of squeezed light [41]. Recently, there has been growing interest in the study

of the propagation of nonclassical light in coupled waveguides. An important

challenge is the integration of single-photon sources, which should enable on-chip

generation and preparation of quantum states [42–44]. Spontaneous parametric

down-conversion (SPDC) in nonlinear waveguides provides an attractive solution

for the on-chip generation of correlated and entangled photon pairs [45–49]. A key

mechanism for quantum simulations can be provided by the process of quantum

walks in an optical waveguide array (WGA) [50, 51], with applications to boson

sampling [52–55]. It was recently suggested [56–59] that a nonlinear waveguide

array can be used for both photon-pair generation through spontaneous paramet-

ric down-conversion and quantum walks of the generated biphotons with strong

spatial entanglement between the waveguides. Importantly, such an integrated

scheme avoids input losses since in an integrated nonlinear waveguide array pho-

ton pairs can be generated inside the quantum-walk circuit.

Conventional photonic chips are based on dielectric platforms, but there is

an increasing interest in the development of quantum plasmonic circuits. Such

metal-dielectric structures are able to strongly confine light to sub-wavelength

dimensions, which can enhance the light-matter interactions. Although met-

als introduce loss at optical wavelengths, the robust operation of plasmonic cir-

cuits with quantum states was recently demonstrated through the observation of

quantum interference between single plasmons [60, 61]. The realization of spon-

taneous frequency conversion in plasmonic structures would provide a route for

integrated entangled state generation. However, the nontrivial effect of losses

needs to be carefully considered since they can nontrivially affect the emerging

photon state [62–66].
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Quantum communication provides secure information transmission [67], but

the distance over which quantum states of light can be distributed without signifi-

cant disturbance is limited due to inescapable losses and noise in optical elements.

In contrast to classical communication, losses in quantum communication cannot

be compensated by amplifying the signal because the laws of quantum mechanics

imply that any deterministic phase-insensitive signal amplification is unavoidably

accompanied by the addition of noise [68, 69].

Loss is the greatest challenge facing the implementation of integrated photonic

technologies, and it is inescapable in experimental reality. Transport phenomena

are at the heart of many fundamental problems in physics, chemistry, and biology

[70–72]. Of special interest is the realization of novel classes of integrated pho-

tonic devices such as isolators [73], optical diodes based on asymmetric nonlinear

absorption [74], second harmonic generation in asymmetric waveguides [75] and

nonlinear photonic crystals [76].

The motivation for derivation of non-Hermitian quantum mechanics is twofold.

Firstly, there are problems which can be answered only in this formalism, for in-

stance, in optics in case of use of complex refractive indexes. Secondly, there

are problems that can be, in principle, solved within the conventional Hermitian

framework, but only with extreme difficulty, while non-Hermitan formalism en-

ables a much simpler and straightforward solution [77]. Namely, one of the most

useful problems is exploration of the resonance phenomena, where particles are

trapped by the potential. The systems described in classical statistic mechanics,

diffusion in biological systems, or propagation of light in waveguides can be de-

scribed by quantum language. In such cases the Hamiltonians are not Hermitian

since the system is open to interaction with its environment, which interpreted

as losses.

In recent years the interest has arisen in structures with spatially inhomoge-

neous losses. One of the fundamental axioms of quantum mechanics is associated

with the Hermiticity of physical observables. In the case of the Hamiltonian op-

erator, this requirement guaranties real spectrum [5–7]. There is a wide class of

non-Hermitian Hamiltonians can still show entirely real spectra. Among these

are Hamiltonians respecting paritytime (PT) symmetry [78, 79]. The parity op-

erator P̂ , responsible for spatial reflections, is defined through the operations

p̂ → −p̂, x̂ → −x̂, while the time reversal operator T̂ leads to p̂ → −p̂, x̂ → x̂

and to complex conjugation i→ −i . PT symmetry requires that the real part of

the potential V is an even function of position x, whereas the imaginary part is

odd; V (x̂) = V ∗(−x̂) [80–82]. Quite recently, the prospect of realizing complex

PT-symmetric potentials within the framework of optics has been suggested theo-

retically [80, 83–85] and realized experimentally [80–82]. This is possible because

of the formal equivalence between the quantum mechanical Schrödinger equation

and the coupled mode equations. We are interested in study of optical beam
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propagation in PT-symmetric complex potentials, which can be realized through

a composition of gain/loss regions. Given that the complex refractive-index dis-

tribution n(x) = nR(x)+inI(x) plays the role of an optical potential, we can then

design a PT-symmetric system by satisfying the conditions nR(x) = nR(−x) and

nI(x) = −nI(−x) [77, 82].

Light propagation in waveguiding structures with spatially distributed sec-

tions of loss and gain can be analogous to quantum wavepacket dynamics gov-

erned by a parity-time (PT) symmetric Hamiltonian [81]. Below a certain gain/loss

level, such systems support PT-symmetric optical modes, which then exhibit the

same average loss or gain [80, 86]. However when gain or loss is increased, the

PT-symmetry of modes breaks, and a mode with the strongest gain (or small-

est loss) dominates, as demonstrated experimentally [80–82]. The phase tran-

sition associated with such PT-symmetry breaking opens new possibilities for

light manipulation, such as PT-symmetric lasers [87, 88]. Such lasers can achieve

single-mode operation, where small difference in medium gain leads to a dramatic

difference in mode amplification below and above the PT breaking threshold. We

loss

C

pump
Figure 1.3: Scheme of PT-symmetric coupler with linear absorption in one
waveguide.

consider a directional coupler composed of two waveguides, where modes exhibit

different loss in each waveguide. The loss can be introduced, for example, by

depositing a thin layer of metal [81]. An illustration of such a structure with

loss in one waveguide is presented in Fig. 1.3. To analyze the behavior of this

structure we employ a coupled-mode formalism where the exact profiles of the

isolated modes are obtained [82, 89]
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i
da1(z)

dz
= βa1 − Ca2,

i
da2(z)

dz
= (β∗ − iγ) a2 − C∗a1. (1.7)

where β and β∗ represent the two propagation constants, C are the com-

plex coupling coefficients, and γ is a scaled loss coefficient. The Hamiltonian

corresponding to the linear problem of Eq. (1.7), is written as:

H =

(
β −C
−C∗ β∗ − iγ

)
. (1.8)

The Hamiltonian possesses PT symmetry when applied together with Gauge

transformation [81, 90],

PT (H− ρ̄I) = (H− ρ̄I)PT , (1.9)

where I is an identity matrix, and ρ̄ = γ/2 defines the average gain or loss

between the two waveguides. PT-symmetry breaking occurs whenever |γ| ≥ 2|C|.
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Figure 1.4: Complex bifurcation of the supermode propagation constants. (a)
Real part defining propagation constant. (b) Imaginary part propagation con-
stant

This marks the onset of a phase transition beyond which the oscillatory coupling

between the two modes disappears and is replaced by a hyperbolic behavior [82].

We present characteristic dependencies of the eigenvalues on the loss in Fig. 1.4.

The complex bifurcation of the supermode propagation constants around the

transition point is shown in Fig. 1.4(a) and (b). After this point, the spectrum

ceases being entirely real and becomes complex, which marks the onset of a phase

transition.

There can be input [33, 49] and propagation losses [60, 61] in integrated pho-

tonic circuits. The losses can be Markovian and non-Markovian. A Markov
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process can be thought of as a memoryless stochastic process, where the con-

ditional probability distribution of future states depends only upon the present

state, not on the sequence of events that forerun it. The developed waveguide

platform can be further applied to optically simulate the effects of non-Markovian

decay and quantum decoherence phenomena [91].

Non-Markovian process has dynamics, which is governed by memory effects.

Many quantum systems exhibit non-Markovian behaviour with a flow of infor-

mation from the environment back to the system [92–94]. Recently important

steps towards the development of a general consistent theory of non-Markovian

quantum dynamics have been made which try to rigorously define the border be-

tween Markovian and non-Markovian quantum evolution and to quantify memory

effects in the open system dynamics [95, 96].

The research presented in the thesis is twofold: firstly, I have investigated

the effect of losses on the generation and the propagation of the quantum para-

metric processes in the nonlinear waveguides. Secondly, I have researched the

correspondences and the links between quantum and classical dynamics of op-

tical frequency conversion in the glass nonlinear lossy waveguides. The estab-

lishment of quantum-classical analogies is an active research topic due to the

cross-fertilization of ideas [97], with recent examples including simulated quan-

tum walks of entangled photons [58] and development of classical characterization

methods to predict quantum device performance [98, 99].

We anticipate that the proposed concept and achieved results will spark a

broad interest. Our results may open a door to not only next-generation opti-

cal devices, offering unique advantages in ultrafast selective signal amplification

and switching, but also they suggest possibilities for light control in plasmonic

waveguides.

Chapter 2 is devoted to theoretical research on the process of spontaneous

parametric down-conversion in quadratic nonlinear waveguide arrays in the pres-

ence of linear loss. We derive a set of discrete Schrödinger-type equations for

the biphoton wavefunction and the wavefunction of one photon when the other

photon in a pair is lost. We demonstrate effects arising from loss-affected inter-

ference between the generated photon pairs and show that nonlinear waveguide

arrays can serve as a robust loss-tolerant integrated platform for the generation

of entangled photon states with nonclassical spatial correlations.

Chapter 3 is devoted to the theoretical and experimental analysis of clas-

sical emulation of spontaneous parametric down conversion (SPDC) in a single

nonlinear lossy waveguide. It is shown theoretically and proved experimentally

the possibility to realize photon pair generation in semi-infinite array of weakly

coupled single-mode optical waveguides similar to the photon pairs generated

through SPDC in the single nonlinear waveguide.

Chapter 4 discuss the spatially inhomogeneous losses in waveguide arrays.
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We show useful connection between spontaneous parametric down-conversion and

sum frequency generation in the multimode system with arbitrary scattering

loss. This result enables the characterization of the quantum performance of a

nonlinear optical device based on classical measurements only. We analyse the

behaviour of the SPDC and SFG on the base of the passive PT-symmetric coupler

and compare the results. The chapter contain results which show the identical

behavior of the SPDC and SFG in the low conversion regime.

Chapter 5 focuses on research of the process of parametric amplification in

a directional coupler of quadratically nonlinear and lossy waveguides, which be-

longs to a class of optical systems with spatial parity-time (PT) symmetry. We

identify a distinct spectral PT anti-symmetry associated with optical paramet-

ric interaction and establish a connection between the breaking of spectral and

spatial mode symmetries, revealing the potential to implement unconventional

regimes of spatial light switching through ultrafast control of PT breaking by

pump pulses.

Chapter 6 is the last chapter where the conservative system is discussed

in contrast to all cases researched before. We describe spontaneous parametric

down-conversion of a single-photon pump in quadratic nonlinear waveguides and

waveguide arrays, taking into account spectral broadening of the signal and idler

photons. We perform a detailed analysis of the photon-pair intensities, spec-

tral and spatial correlations for different types of phase-matching conditions and

identify suppression of Rabi-like oscillations due to spectral dispersion. We also

discuss distinct features of signal and idler photon correlations related to the

single-photon nature of the pump.
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Chapter 2
Photon pair generation in quadratic

waveguide arrays with loss

Optical quantum communications and computation schemes rely on controlled

preparation of well-defined photonic states [100, 101]. Spontaneous parametric

down-conversion (SPDC) in nonlinear crystals [7, 63, 102] has become a source for

experimental generation of correlated and entangled photon pairs with demon-

strations of such effects as quantum teleportation [10, 13, 103, 104], quantum

cryptography [105], Bell-inequality violations [106] and quantum imaging [107].

The mode confinement in a waveguide enables a significant increase of the

SPDC source brightness in comparison to bulk crystal setups [108]. Even more

importantly, waveguide integration provides interferometric stability, which is

essential for quantum simulations and cryptography. SPDC in nonlinear waveg-

uides can be implemented to produce photon pairs in distinct spatial modes [45,

109–112]. Overall, nonlinear waveguides can serve as photon-pair sources ideally

suited for applications in quantum communications [113].

Overall integrated optical quantum circuits utilising coupled waveguides are

increasingly gaining attention as a possible solution for scalable quantum tech-

nologies with important applications to quantum simulations. A key mechanism

for quantum simulations can be provided by the process of quantum walks in an

optical waveguide array (WGA) [51], with applications to boson sampling [52–

55]. Furthermore, it was recently suggested [56–59] that a nonlinear waveguide

array can be used for both photon-pair generation through spontaneous paramet-

ric down-conversion and quantum walks of the generated biphotons with strong

spatial entanglement between the waveguides. Importantly, such an integrated

scheme avoids input losses, since in an integrated nonlinear waveguide array pho-

ton pairs are generated inside the quantum walk circuit. Internal losses in the

waveguides however may still be present. In this chapter, we research an impor-

tant question of the tolerance of the biphoton generation to possible losses in the


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waveguides.

This Chapter is devoted to the theoretical analysis of the process of spon-

taneous parametric down-conversion in quadratic nonlinear waveguide arrays in

the presence of linear loss. We derive a set of discrete Schrodinger-type equations

for the biphoton wave function and the wave function of one photon when the

other photon in a pair is lost. It is demonstrated the effects arising from loss-

affected interference between the generated photon pairs and show that nonlinear

waveguide arrays can serve as a robust loss-tolerant integrated platform for the

generation of entangled photon states with nonclassical spatial correlations.

2.1 Spontaneous parametric down con-

version in a single waveguide
The process of SPDC can occur in a χ(2) nonlinear waveguide pumped by a

pump laser, where a pump photon at frequency ωp can be spontaneously split

into signal and idler photons with corresponding frequencies ωs and ωi, such that

ωp = ωs + ωi. The effect of linear losses on SPDC was previously considered in

various contexts [62–64]. Here, we perform a detailed analysis of the emerging

photon intensities and correlations, in the regime of photon-pair generation. We

analyze the photon-pair generation while neglecting multi-photon-pair processes

for the appropriately attenuated pump power. Due to losses, one or both photons

from a pair can be lost. Nevertheless, the two-photon state can be distinguished

from the single-photon or vacuum state by performing correlation measurements

with two single-photon detectors, as schematically illustrated in Fig. 2.1.

(a)

(b)

C1
C2

C3

. . 
.

Figure 2.1: Scheme of photon-pair generation through SPDC in a nonlinear
waveguide with loss; the photon states are defined by frequency-dependent phase
mismatch and losses.

To describe waveguide losses, it is possible to introduce them through series of

virtual asymmetric beam-splitters in an otherwise conservative medium [62, 114],

see Fig. 2.2. At each step during propagation from z to z + ∆z the photon pairs

can be generated through SPDC. On the other hand there is a probability for sig-

nal and idler photons to be reflected by beam-splitters, corresponding to the loss
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of photons from the waveguide. Then, according to the general principles [115],

the photon dynamics is governed by a sum of Hamiltonians which individually

describe SPDC in lossless nonlinear medium (Ĥnl) and linear losses due to virtual

beam-splitters (Ĥbs),

Ĥ = Ĥnl + Ĥbs. (2.1)

Figure 2.2: Scheme of the Hamiltonian describing the photon-pair propagation
involving SPDC and losses in a single waveguide. Losses are represented by beam
splitters [62, 114].

The SPDC process in the absence of losses, in the undepleted classical pump

approximation, is governed by a Hamiltonian [7]:

Ĥnl(z) =

∫
dωsβ

(0)
s (ωs)a

†
s(ωs)as(ωs) (2.2)

+

∫
dωiβ

(0)
i (ωi)a

†
i (ωi)ai(ωi)

+

∫
dωs

∫
dωi

[
Ep(z, ωs + ωi)a

†
s(ωs)a

†
i (ωi)

+ E∗p(z, ωs + ωi)as(ωs)ai(ωi)
]
,

where a†s,i and as,i are the creation and annihilation operators for the sig-

nal and idler photons with the commutators [as(ω1), a†s(ω2)] = δ(ω1 − ω2) and

[ai(ω1), a†i (ω2)] = δ(ω1 − ω2), δ(z) is a Dirac delta-function, β
(0)
s,i are the signal

and idler propagation constants relative to the pump. Ep(z, ωp) is proportional

to the pump amplitude A at frequency ωp and to the quadratic nonlinearity χ;

we also account for a possible pump absorption with the loss coefficient γp:

Ep(z, ωp) = χ(z)A exp(−γpz). (2.3)

Throughout the paper we assume weak pump regime, which means that we focus
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on the generation of a single photon pair and consider multi-photon-pair processes

to be negligible for the appropriately attenuated pump power. For simplicity and

to avoid working with very small numbers we renormalize A� 1 to A = 1, and

also consider constant nonlinear coefficient renormalized to unity, χ(z) = 1. Such

renormalization rescales all results accordingly and does not affect photon-pair

dynamics or any considered relations.

We now analyze the effect of Markovian losses under the conditions of neg-

ligible thermal fluctuations. Then, the losses can be described by introducing a

series of beam-splitters [62, 114, 116], and the corresponding Hamiltonian can be

written as follows:

Ĥbs(z) =

∫
dωs
√

2γs(ωs)
[
as(ωs)b

†
s(z, ωs) + a†s(ωs)bs(z, ωs)

]
(2.4)

+

∫
dωi
√

2γi(ωi)
[
ai(ωi)b

†
i (z, ωi) + a†i (ωi)bi(z, ωi)

]
,

where the operators b†s,i(z, ω) describe creation of photons which are lost

from a waveguide after a beam-splitter at coordinate z, with the commuta-

tors [bs(z1, ω1), b†s(z2, ω2)] = δ(z1 − z2)δ(ω1 − ω2) and [bi(z1, ω1), b†i (z2, ω2)] =

δ(z1 − z2)δ(ω1 − ω2), and γs,i are the linear loss coefficients.

Such interpretation of losses as an interaction with a reservoir is a standard

approach and has been used for example to describe losses in plasmonic waveg-

uides [117]. This rigorous formalism provides a clear interpretation of results for

our analysis, with separation of two-photon and one-photon states. As we discuss

below, the results obtained using this method are consistent with the asymptotic

analysis of the case of strong idler absorption in Ref. [63], and can also be used

to calculate the corresponding density matrices.

Since we consider a weak pump regime, the generation of photon pairs with

different frequencies occurs independently, due to the absence of cascading pro-

cesses. We will therefore omit ωs,i,p in the following to simplify the notations.

We will also analyze the properties of the generated photons in a narrow fre-

quency band, assuming corresponding filtering around particular signal and idler

frequencies, such that the model coefficients can be considered constant in the

vicinity of the chosen frequencies.

We seek the solution for a two-photon state at distance z as:

|Ψ(z)〉 = Φ(z)a†sa
†
i |0〉+

∫ z

0

dzlΦ̃
(s)(z, zl)a

†
sb
†
i (zl)|0〉

+

∫ z

0

dzlΦ̃
(i)(z, zl)b

†
s(zl)a

†
i |0〉 (2.5)

+

∫ z

0

dzls

∫ z

0

dzliΦ̃
(si)(zls , zli)b

†
s(zls)b

†
i (zli)|0〉,
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where |0〉 denotes a vacuum state with zero number of signal and idler photons.

First term corresponds to biphoton state without losses, while the next two terms

correspond to the states with the lost signal or idler photons, respectively. The

loss happens at an arbitrary position zl. The last term is the term with both

signal and idler photons being lost. We trace the terms with losses over the

propagation distance to take into account the probabilistic nature of the process.

The equation for the evolution of the state vector is dΨ(z)/dz ' −iĤ(z)[|0〉+
|Ψ(z)〉], where we neglect vacuum state perturbation due to the generation of a

single photon pair, in which we substitute Eq. (2.5) for the Hamiltonian pro-

vided by the Eqs. (2.2),(2.4). After performing the calculations (see Appendix A

for details), we obtain the following equations for the non-unitary evolution of

biphoton wave functions:

Φ(0) = 0,

∂Φ(z)

∂z
= −(i∆β(0) + γs + γi)Φ(z) + Ae−γpz, (2.6)

∂Φ̃(s)(z, zl)

∂z
= −(iβ(0)

s + γs)Φ̃
(s)(z, zl), z ≥ zl, (2.7)

∂Φ̃(i)(z, zl)

∂z
= −(iβ

(0)
i + γi)Φ̃

(i)(z, zl), z ≥ zl, (2.8)

Φ̃(s)(zl, zl) = −i
√

2γiΦ(zl), Φ̃(i)(zl, zl) = −i
√

2γsΦ(zl), (2.9)

where ∆β(0) = β
(0)
s + β

(0)
i , and we consider the pump in the form of Eq. (2.3).

We disregard the evolution of Φ̃(si) wavefunction, since it corresponds to the case

when both photons are lost. We also neglect the generation of more than two

photons, as discussed above.

Equation (2.6) can be solved analytically:

Φ(z) = zAsinc

{
z

2

[
∆β(0) − i(γs + γi − γp)

]}
×

exp

{
− iz

2

[
∆β(0) − i(γs + γi + γp)

]}
. (2.10)

We now calculate the normalized intensity of photons generated through

SPDC, which is proportional to an average number of photons per unit time.

The expressions for the signal and idler photons are analogous, and to be specific

we consider the signal mode. We now calculate the total signal intensity Is(z) by
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tracing over all possible idler photon states, and find that:

Is(z) = I(0)
s (z) + Ĩs(z), I(0)

s (z) = |Φ(z)|2, Ĩs(z) =

∫ z

0

dzl

∣∣∣∣∣Φ̃(s)(z, zl)

∣∣∣∣∣
2

, (2.11)

where I
(0)
s (z) is the contribution when both photons are not absorbed and Ĩs(z)

is a contribution from the states with lost idler photons. Note that the sum of

modules appears in the in the expression for Ĩs(z), since one signal photon remains

in a mixed state when idler is lost [64, 118]. By performing differentiation d/dz

and using Eq. (2.7), we derive a balance equation for the intensity of the states

with lost idler photons:

dĨs(z)

dz
= 2γiI

(0)
s (z)− 2γsĨs(z). (2.12)

Here the first term corresponds to the creation of the state with the lost idler

photon while the second one shows the loss probability of the remaining unpaired

signal photon. The intensity contributions can be calculated analytically:

I(0)
s =

2A2e−(γs+γi+γp)z
{

cosh [(γs + γi − γp)z]− cos
(
∆β(0)z

)}
(∆β(0))

2
+ (γs + γi − γp)2

, (2.13)

Ĩs =
4A2γie

−2γsz

(∆β(0))2 + (γs + γi − γp)2

{
G [z, i(γs + γi − γp)]−G(z,∆β(0))

}
, (2.14)

where

G(z, p) =

∫ L

0

cos(ξp)e−ξ(γi+γp−γs)dξ

=

γi + γp − γs + e−z(γi+γp−γs)

[
p sin(zp)− cos(zp)(γi + γp − γs)

]
p2 + (γi + γp − γs)2

.(2.15)

The total intensity can be measured by a sensitive camera, which will provide

an overall number of detected photons per unit time. The intensity contributions

can be separated using a scheme with single-photon detectors: I
(0)
s will be pro-

portional to the number of coincidence counts of signal and idler photons, and Ĩs
will be proportional to the signal counts without the corresponding idler photon.

It is instructive to consider a number of limiting cases. In particular, zero

pump loss (γp = 0) can be achieved in various conventional waveguides, where

losses at pump frequency can be significantly smaller than losses at signal and

idler frequencies due to the difference in the fundamental mode cross-section sizes

for different wavelengths. In this case both components of signal intensity I
(0)
s (z)
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and Ĩs(z) approach stationary values for large distances:

lim
z→∞

[I(0)
s (z)] = lim

z→∞
[Ĩs(z)]γsγ

−1
i (2.16)

=
A2

(∆β(0))
2

+ (γs + γi)2
,

We see that if there is no idler loss (γi = 0), then Ĩs(z) → 0, which means that

all signal photons are paired with an idler photon, as expected. If the signal and

idler exhibit the same loss (γs = γi), then half of signal photons remains paired.

This result is in the agreement with the Eq. (2.12).
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Figure 2.3: Normalized number of photon pairs, I
(0)
s , generated through SPDC

in a single waveguide vs. the phase mismatch ∆β(0) for z = 5, A = 1 and
different losses: (a) γp = γs = γi = 0, (b) γp = 0, γs = γi = 0.5, (c) γs = γi = 0.5,
γp = γs + γi = 1.

For degenerate SPDC regime with indistinguishable signal and idler photons

(γs = γi = γ) and no pump losses (γp = 0), we have:

I(0)
s (z) =

2A2e−2zγ
[
cosh(2zγ)− cos(z∆β(0))

]
(∆β(0))2 + 4γ2

, (2.17)

Ĩs(z) =
2A2e−2zγ

[
sinh(2zγ)− 2zγsinc(z∆β(0))

]
(∆β(0))2 + 4γ2

. (2.18)

In the case of strongly non-degenerate SPDC, when signal and idler photons

are generated with significantly different frequencies, pump and signal losses may

become negligible γp = γs = 0, while idler absorption may be substantial [63]. In

this case the biphoton-related component of the signal intensity for long propa-

gation distances is:

lim
z→∞

[I(0)
s (z)] =

2As,iγi
(∆β(0))2 + γ2

i

. (2.19)



 Photon pair generation in quadratic waveguide arrays with loss

We check that Eq. (2.19) agrees with the result derived in Ref. [63] through the

application of fluctuation-dissipation theorem.
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Figure 2.4: (a,c,e) Total signal intensity Is(z) and (b,d,f) ratio of intensity con-

tribution when both photons are not absorbed and the full intensity I
(0)
s (z)/Is(z)

vs. the signal and idler losses in a single waveguide for different values of phase
mismatch (a,b) ∆β(0) = 0, (c,d) ∆β(0) = 3, (e,f) ∆β(0) = 6. Parameters are
γp = 0, z = 5, A = 1.

It is interesting to analyze the dependence of the biphoton-related compo-

nent of the signal intensity I
(0)
s on the phase mismatch ∆β(0). The losses are

distributed inside the nonlinear region, that is why they affect SPDC [119, 120].

When losses are absent (γp = γs = γi = 0), it has a well-known [63] shape of
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sinc-function [Fig. 2.3(a)]:

I(0)
s (z) = A2L2sinc2

(
∆β(0)z

2

)
. (2.20)

For negligible pump losses (γp = 0) and large signal or idler losses

{exp [−(γs + γi)z] � 1} the dependence is transformed into a Lorenzian shape

[Fig. 2.3(b)] according to Eq. (2.16).

Interestingly, when pump losses are increased to match the combined idler

and signal losses (γp = γs +γi) the spectrum returns to a sinc shape [Fig. 2.3(c)]:

I(0)
s (z) = A2z2e−2(γs+γi)zsinc2

(
∆β(0)z

2

)
. (2.21)
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Figure 2.5: Ratio of intensity contribution when both photons are not absorbed
and the full intensity I

(0)
s (z)/Is(z) vs. the signal and idler loss γ (γs = γi = γ,

γp = 0) in a single waveguide. Parameters are A = 1, z = 5, and ∆β(0) = {0, 3, 6}
as indicated by labels.

Next we present a detailed investigation of the signal mode intensity depend-

ing on the loss (Figs. 2.4 and 2.5) and propagation distance (Fig. 2.6) in the

absence of pump loss γp = 0. We normalized all our graphs to the maximum

value of the displayed variable to make sure that everything is normalized to 1.

Figures 2.4 (a,c,e) show that the signal intensity Is is decreasing with the increase

of signal loss, however the dependence on the idler loss in relation to the phase

mismatch ∆β(0) is nontrivial due to additional signal intensity component Ĩs re-

lated to the disruption of interference when the idler photon is lost. The ratio

between the pure biphoton and the full signal intensity, I
(0)
s /Is, depends weakly

on the phase mismatch, see Figs. 2.4 (b,d,f). Indeed, Fig. 2.5 demonstrates that

regardless of the phase mismatch ∆β(0) the proportion of signal photons paired

with idler to all signal photons, I
(0)
s /Is, becomes independent on the loss above
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certain loss threshold. Moreover, for the long distances I
(0)
s /Is ratio became

constant as the independent of the losses the number of the lost photons became

equal to the number of the paired photons according to the Eq. (2.16) and (2.12).
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Figure 2.6: Total signal mode intensity Is vs. the propagation distance in a
single waveguide for different signal and idler losses γs = γi = γ = {0, 0.3, 0.6}.
Parameters are A = 1, ∆β(0) = 0, γp = 0.

Figure 2.6 shows the behavior of the total signal intensity vs. the propagation

distance for different losses in the regime of phase-matching. Total signal intensity

exhibits fast growth in the absence of losses. However when moderate of high

losses are present, the total signal intensity Is approaches a fixed value at large

distances, see Eq. (2.16).

2.2 Spatial entanglement in waveguide

array
It was shown that nonlinear WGAs can serve as a reconfigurable on-chip

source of spatially entangled photon pairs [56–59]. Since internal generation of

photon pairs in nonlinear waveguide arrays solves the problem of input losses, it is

important to understand the effect of internal losses on photon-pair propagation

and resulting entanglement and correlations.

For the theoretical analysis, we combine the one-waveguide Hamiltonians in-

troduced in the previous section, and the linear coupling between the waveguides

through the Hamiltonian Ĥc. If the waveguide parameters are identical across
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the whole array, then the Hamiltonian is:

Ĥ(z) = Ĥnl(z) + Ĥbs(z) + Ĥc(z), (2.22)

Ĥnl(z) =
∑
ns

β(0)
s a†s(ns)as(ns) +

∑
ni

β
(0)
i a†i (ni)ai(ni) (2.23)

+
∑
np

[
Ep(z, np)a

†
s(np)a

†
i (np) + E∗p(z, np)as(np)ai(np)

]
,

Ĥbs(z) =
∑
ns

√
2γs
[
as(ns)b

†
s(z, ns) + a†s(ns)bs(z, ns)

]
(2.24)

+
∑
ni

√
2γi

[
ai(ni)b

†
i (z, ni) + a†i (ni)bi(z, ni)

]
,

Ĥc(z) =
∑
ns

Cs
[
as(ns)a

†
s(ns + 1) + a†s(ns)as(ns + 1)

]
(2.25)

+
∑
ni

Ci

[
ai(ns)a

†
i (ni + 1) + a†i (ni)ai(ni + 1)

]
. (2.26)

Here ns and ni are the waveguide numbers for the signal and idler photons, a†s,i(n)

and as,i(n) are the creation and annihilation operators for the signal and idler

photons in a waveguide number n, b†s,i(z, n) describe creation of photons which are

lost from a waveguide number n at a coordinate z, Cs,i are the coupling constants

between the neighboring waveguides, Ep(z, np) is proportional to pump amplitude

in waveguide np. Then, we seek a solution for a biphoton state as:

|Ψ(z)〉 =
∑
ns

∑
ni

Φns,ni(z)a†s(ns)a
†
i (ni)|0〉

+
∑
ns

∑
ni

∫ z

0

dzlΦ̃
(s)
ns,ni

(z, zl)a
†
s(ns)b

†
i (zl, ni)|0〉

+
∑
ns

∑
ni

∫ z

0

dzlΦ̃
(i)
ns,ni

(z, zl)b
†
s(zl, ns)a

†
i (ni)|0〉 (2.27)

+
∑
ns

∑
ni

∫ z

0

dzls

∫ z

0

dzliΦ̃
(si)
ns,ni

(zls , zli)b
†
s(zls , ns)b

†
i (zli , ni)|0〉.

The resulting set of equations for the evolution of the biphoton wave functions
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is:

Φns,ni(z = 0) = 0,

∂Φns,ni(z)

∂z
= −i∆β(0)Φns,ni − (γs + γi)Φns,ni + Ansδns,nie

−γpz

−iCs(Φns−1,ni + Φns+1,ni)− iCi(Φns,ni−1 + Φns,ni+1), (2.28)

∂Φ̃
(s)
ns,ni(z, zl)

∂z
= −(iβ(0)

s + γs)Φ̃
(s)
ns,ni
− iCs(Φ̃(s)

ns−1,ni
+ Φ̃

(s)
ns+1,ni

), z ≥ zl, (2.29)

∂Φ̃
(i)
ns,ni(z, zl)

∂z
= −(iβ

(0)
i + γi)Φ̃

(i)
ns,ni
− iCi(Φ̃(i)

ns,ni−1 + Φ̃
(i)
ns,ni+1), z ≥ zl, (2.30)

Φ̃(s)
ns,ni

(zl, zl) = −i
√

2γiΦns,ni(zl), Φ̃(i)
ns,ni

(zl, zl) = −i
√

2γsΦns,ni(zl), (2.31)

where we do not consider the evolution of Φ̃(si) wavefunction corresponding to

both lost photons. The real-space representation can be Fourier-transformed into

spatial k-space [58]:

Φks,ki =
∑
ns,ni

Φns,nie
inskseiniki . (2.32)

Then the biphoton propagation equations in k-space can be written as follows:

Φks,ki(z = 0) = 0,

∂Φks,ki(z)

∂z
= −(i∆β + γs + γi)Φks,ki + Aksδks,kie

−γpz, (2.33)

∂Φ̃
(s)
ns,ni(z, zl)

∂z
= −(iβs + γs)Φ̃

(s)
ns,ni

,
∂Φ̃

(i)
ns,ni(z, zl)

∂z
= −(iβi + γi)Φ̃

(s)
ns,ni

, (2.34)

Φ̃
(s)
ks,ki

(zl, zl) = −i
√

2γiΦks,ki(zl), Φ̃
(i)
ks,ki

(zl, zl) = −i
√

2γsΦks,ki(zl), (2.35)

where βs = β
(0)
s + 2Cs cos(ks), βi = β

(0)
i + 2Ci cos(ki), and ∆β = βs + βi. These

equations have the same form as Eqs. (2.6)-(2.9) for a single waveguide. Ac-

cordingly, a solution for the wave function Φks,ki can be formulated analogous to

Eq. (2.10).

Finally, the real-space wave functions can be calculated by applying the in-

verse Fourier transform:

Φns,ni =
1

(2π)2

∫ π

−π

∫ π

−π
dksdkiΦks,kie

−iksnse−ikini , (2.36)
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(a) (b)
filter

filter

coincidence

Figure 2.7: Scheme of the experimental setup designed to measure spectral and
spatial distribution of the nonlinear WGA output photon-pair intensity. The
pump beam generates photon pairs that suffer losses and couple to the neigh-
boring waveguides. (a) The output intensity distribution can be characterised
using a prism and a camera. Spectral filtering can be used to choose only a sig-
nal channel to measure the signal intensity Is. (b) The photon-pair correlations
can be characterised by measuring the coincidences from the two single photon
detectors.

The dependence of the intensity for the signal mode on the propagation dis-

tance can be written in the following form for k-space:

Is(ks, z) = I(0)
s (ks, z) + Ĩs(ks, z), (2.37)

I(0)
s (ks, z) =

∫ π

−π
dki|Φks,ki(z)|2, (2.38)

Ĩs(ks, z) =

∫ z

0

dzl

∫ π

−π
dki

∣∣∣∣∣Φ̃(s)
ks,ki

(z, zl)

∣∣∣∣∣
2

, (2.39)

and analogously for real space:

Ins(z) = I(0)
s (ns, z) + Ĩs(ns, z), (2.40)

I(0)
s (ns, z) =

∑
ni

|Φns,ni(z)|2, (2.41)

Ĩs(ns, z) =

∫ z

0

dzl
∑
ni

∣∣∣∣∣Φ̃(s)
ns,ni

(z, zl)

∣∣∣∣∣
2

.

Here I
(0)
s (ns, z) is the contribution when both photons are not absorbed, and

Ĩs(ns, z) is a contribution from the states with lost idler photons.

We analysed the properties of the generated photons in a narrow frequency
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band while in experiment a broad band of frequencies is generated. Thus, in

experiments one could use spectral filters or spatially resolving spectrometer

[Fig. 2.7(a)], which allows one to measure the signal and idler intensity out-

puts from different waveguides at various frequencies. Additionally, a coincidence

scheme at the WGA output [Fig. 2.7(b)] can be used to measure biphoton spatial

correlations [51, 56], which normalized value is:

Γns,ni(z) = |Φns,ni(z)|2. (2.42)
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Figure 2.8: Photon-pair correlations in (a,e,i) k-space; (b,f,j) phase of photon-
pair correlations in k-space; (c,g,k) real space correlations and (d,h,l) Schmidt
decomposition depending on the mode number for different signal and idler loss,
γs = γi = γ/2: (a,b,c,d) γ = 0, (e,f,g,h) γ = 0.2, (i,j,k,l) γ = 0.6. The pump is
coupled to the central waveguide, A(0) = 0. Parameters are z = 5, Cs = Ci = 1,
γp = 0, ∆β(0) = 0.

We present the plots of photon-pair correlations in k-space and real space for

different values of losses in Fig. 2.8, considering the pump beam coupled to a

single waveguide. In k-space [Fig. 2.8(a,e,i)] at different loss values the corre-

lation profiles have a square shape corresponding to angular phase-matching in

waveguide arrays [56, 59], however the square edges become broader for higher

losses. The pase of photon-pair correlations in k-space [Fig. 2.8(b,f,j)] shows

the less pronounced fringes with the increase of the losses, which contributes to
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the change of spatial entanglement.. The real-space correlations in the absence of

loss have a characteristic cross shape corresponding to the simultaneous bunching

and anti-bunching [Fig. 2.8(c)], which is a signature of non-classicality [51, 56].

Importantly, these non-classical features are preserved even in presence of mod-

erate loss [Fig. 2.8(g)]. Under strong loss, photons are only present in the central

waveguide [Fig. 2.8(k)], as photons are absorbed before they can couple to the

neighboring waveguides, and accordingly the non-classical spatial correlations are

absent.

To exploit two photons as quantum resources it is necessary to know if they

are entangled. This question can be answered by studying the Schmidt decom-

position [121] of a biphoton wave function as follows:

Φks,ki =
∑
q

√
λqφq(ks)ϕq(ki), (2.43)

where λq are Schmidt coefficients (
∑

q λq = 1), and φq(ks) and ϕq(ki) are Schmidt

functions.

As mentioned previously, the generated photon pairs couple to a smaller num-

ber of neighboring waveguides with the increase of losses [Fig. 2.8(c,g,k)]. The

same dynamics is also seen from the plots of Schmidt decomposition, where a

single mode becomes dominating and the spatial entanglement decreases while

losses increase [Fig. 2.8(d,h,l)]. The output photon statistics can be tailored

by changing the pump profile and phase. When the pump beam is coupled

with equal amplitudes and phases to two neighboring waveguides, A(n) = 1 for

n = 0, 1, then the correlations are strongly modified (Fig. 2.9) compared to the

single-waveguide pump excitation (Fig. 2.8). As losses increase, the photon-pair

correlations are broadened in k-space [Fig. 2.9(a,d,g)] and gradually fade in real

space [Fig. 2.9(b,e,h)]. An interesting point here is that with the increase of losses

the real-space correlations transform from predominantly antibunching pattern

(with the largest correlations on the anti-diagonal, ns = −ni) at low and moder-

ate loss [Fig. 2.9(b,e)] to bunching pattern (with the largest correlations on the

diagonal, ns = ni) at high loss [Fig. 2.9(h)]. The Schmidt decomposition in the

case of pump in two neighbouring waveguides [Fig. 2.9(c,f,i)] shows the dynamics,

which is similar to that in the case of pump in a single waveguide [Fig. 2.8(d,h,l)],

although the Schmidt modes are distributed in pairs .

The amount of entanglement can be conveniently quantified by the cooper-

ativity parameter – Schmidt number Q [122, 123], which is defined in terms of

Schmidt eigenvalues as follows:

Q =
1∑
q λ

2
q

. (2.44)
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Figure 2.9: Photon-pair correlations in (a,d,g) k-space; (b,e,h) real space
correlations and (c,f,i) Schmidt decomposition depending on the mode number
(see, Eq. (2.43)) for different signal and idler loss, γs = γi = γ/2: (a,b,c) γ = 0,
(d,e,f) γ = 0.2, (g,h,i) γ = 0.6. The pump is coupled in-phase to two neighboring
waveguides in the centre, A(0) = A(1) = 1. Parameters are z = 5, Cs = Ci = 1,
γp = 0, ∆β(0) = 0.
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The lowest value of Q = 1 corresponds to a system with no quantum entangle-

ment.
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Figure 2.10: (a,d) Schmidt number, (b,e) the signal mode full intensity in
real space and (c,f) fraction of signal photons coupled with idler photons to all
signal photons in real space vs. the signal and idler loss γ (γi = γs = γ/2) for
different pump profiles: (a-c) pump coupled to the central waveguide, A(0) = 1,
(d-f) pump coupled in-phase to two neighboring waveguides, A(0) = A(1) = 1.
Parameters are z = 5, Cs = Ci = 1, γp = 0, ∆β(0) = 0.

We show the dynamics of the Schmidt number [Fig. 2.10(a,d)] as well as

full signal intensity in real space [Fig. 2.10(b,e)] and the ratio I
(0)
s /Is defining

the fraction of signal photons coupled with the idler photon to all signal photons

[Fig. 2.10(c,f)] for different values of loss γ (γs = γi = γ/2) and two different pump

excitations. We see that both in the case when pump is coupled to the central

waveguide and in the case when pump is coupled to two neighboring waveguides,

the total signal intensity Is first increases and then starts to decrease with the

increase of losses, while the Schmidt number and the ratio I
(0)
s /Is always decrease

with the increase of losses. Signal photons with lost idlers do not interfere, thus

their counts always add up. This is in contrast with signal photons paired with

idler, which can interfere destructively. It is this loss-induced suppression of

destructive interference which can lead to an increase in the total photon counts.
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Figure 2.11: (a,d) Schmidt number, (b,e) the signal mode full intensity in real
space and (c,f) fraction of signal photons coupled with idler photons to all signal
photons in real space vs. the idler loss γi for different pump profiles: (a-c) pump
coupled to the central waveguide, A(0) = 1, (d-f) pump coupled in-phase to two
neighboring waveguides, A(0) = A(1) = 1. Parameters are z = 5, Cs = Ci = 1,
γp = γs = 0, ∆β(0) = 0.

It is also interesting to consider the case of non-degenerate SPDC, when

there is no signal loss (γs = 0), and only the idler loss is present (γi > 0).

We show the corresponding Schmidt number, the total signal intensity Is and

signal intensity ratio I
(0)
s /Is in Fig. 2.11. In this case while the Schmidt num-

ber [Fig. 2.11(a,d)] and the ratio I
(0)
s /Is [Fig. 2.10(c,f)] decrease, total signal in-

tensity Is [Fig. 2.11(b,e)] always increases with the increase of idler losses. These

trends are in agreement with the single waveguide case [c.f. Fig. 2.4], however

in a waveguide array we additionally observe loss-influenced reshaping of spatial

intensity profiles.

In this work we have performed analytical and numerical analysis of the effect

of linear losses on spontaneous parametric down-conversion in quadratic nonlinear

waveguide and waveguide arrays, considering in detail biphoton and single-photon

outputs under a variety of conditions. We have shown that idler losses can lead

to increase of signal intensity and stabilisation of signal output in relation to the

waveguide length. We have also demonstrated that signal and idler losses lead to

the transformation of common sinc-shaped photon-pair correlation spectrum into

a Lorenzian shape, and that this transformation can be fully reversed by specific

increase in pump losses. Finally we have shown that nonlinear waveguide arrays

can serve as a robust integrated platform for the generation of entangled pho-
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ton states with non-classical spatial correlations, and that the operation of such

quantum circuit is tolerant even to relatively high losses. Specifically, we show

that if the loss is not strong enough to prevent the coupling between the waveg-

uides, then the spatial non-classical behavior is at least qualitatively preserved.

We expect that this work will open new opportunities in developing loss-tolerant

quantum integrated circuits.



 Photon pair generation in quadratic waveguide arrays with loss



Chapter 3
Linear optical emulation of photon-pair

generation in nonlinear lossy waveguides

In this chapter we establish theoretically and demonstrate experimentally that

photon-pair generation through spontaneous parametric down-conversion in a

nonlinear waveguide with scattering or material losses can be effectively emulated

by classical laser light propagation through a specially designed linear waveguide

circuit. This platform can represent arbitrary photon and pump losses, with po-

tential for the emulation of non-Markovian decay. We characterize the photon-

pair correlation spectrum and observe its characteristic transformation from the

well known sinc-shape in lossless waveguides towards a Lorentzian shape in the

presence of photon loss. The research on the establishment of quantum-classical

analogies is a hot topic, because the same quantum electromagnetic field is re-

sponsible for both processes [97]. Recent examples including simulated quantum

walks of entangled photons [58] and development of classical characterization

methods to predict quantum device performance [98, 99]. In this chapter, we sug-

gest and experimentally demonstrate that photon-pair generation through SPDC

in a nonlinear lossy waveguide can be emulated in a specially designed linear loss-

less waveguide lattice. One of the most practical and promising approaches in

the integrated-optic area seems to be to construct optical circuits based on low-

loss glass waveguides. Coupled waveguide structures can be implemented using

the femtosecond (fs) laser direct writing approach with high accuracy, which al-

low fabricate complex and elongated devices. Whereas we focus on a common

case of Markovian losses, the developed waveguide platform can be further ap-

plied to optically emulate the effects of non-Markovian (non-exponential) decay

and quantum decoherence phenomena [91], which can occur in nano-plasmonic

circuits [124].





 Emulation of photon-pair generation in linear waveguides

3.1 Theory of classical emulation
This section presents theoretical results on the possibility to emulate quantum

nonlinear, lossy system by classical lossless circuit [Fig. 3.1]. Lattices of weakly

coupled optical waveguides have provided to be a useful tool for simulating various

coherent quantum phenomena (see [91] and references therein). In the optical

emulator, a classical complex optical mode amplitude evolution along a waveguide

directly matches the complex biphoton wavefunction dynamics. The full theory

on the process of SPDC in a lossy χ(2) nonlinear waveguide pumped by a quasi-

CW laser is presented in Sec. 2.1. It has been obtained the analytical solution

for the nonunitary evolution of biphoton wave functions (see, Eq. (2.10)). There

are analytical results for the normalized intensity of photons generated through

SPDC (see, Eqs. (2.11) and (2.13)).

The emulating circuit should represent the biphoton wavefuction evolution ac-

cording to the Hamiltonian that contains nonlinear and loss terms as in Eq. (2.1).

Interestingly, the nonlinear part describing the biphoton generation in a loss-

less waveguide can be emulated by directionally coupled waveguides [58]. Fur-

thermore, Markovian losses can be emulated through the coupling between one

waveguide and a semi-infinite waveguide array [91].

(a)

(b)

C1
C2

C3

. . 
.

Figure 3.1: Sketch of the experimental setup with the classical optical emulator
circuit based on coupled linear waveguides. Laser light is launched into the the
first waveguide and the output intensities are imaged on a CCD camera.

We initially consider the case of a lossless pump propagation with γp = 0,

and accordingly, in Eq. (2.3) E(z) = A(0). Laser light is launched into the first
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waveguide representing the pump. Weak coupling of the first to the second waveg-

uide (C1) emulates the generation of biphotons. Accordingly, the light amplitude

in the second waveguide emulates the biphoton wavefunction. Additionally, the

propagation constant in the first waveguide is detuned with respect to the other

one’s in order to account for the phase mismatch ∆β. The photon losses are em-

ulated by light coupling out of the second to the third waveguide (C2), followed

by the propagation through an array of waveguides (waveguide number n ≥ 3)

with high coupling rate C3 > C2 > C1. We consider the array to be semi-infinite,

or in practice, sufficiently wide to avoid reflections from the edge.

We now establish the mathematical correspondence between the biphoton

wavefunction evolution and the light propagation in the linear waveguide cir-

cuit. The laser light propagation in the circuit is described by the coupled mode

equations

i
∂ψn
∂z
− βnψn + Cn−1ψn−1 + Cnψn+1 = 0, (3.1)

where n ≥ 1 are the waveguide numbers, ψn are the complex classical mode

amplitudes, Cn are the coupling coefficients proportional to the mode overlaps

in the neighboring waveguides, and βn are the waveguide propagation constants.

We set C0 ≡ 0, and in the loss-emulating section Cn≥4 = C3 as well as βn≥3 = β2.

We introduce the Fourier representation,

ψn(z) =

∫ ∞
−∞

eiβzfn(β)dβ. (3.2)

For the analysis, the structure can be considered infinite, extending over all z.

We apply inverse transform to Eq. (3.1) to obtain the corresponding coupled

algebraic equations for the Fourier coefficients,

−βfn + Cn−1fn−1 + Cnfn+1 − βnfn = 0. (3.3)

The solution of Eq. (3.3) in the semi-infinite section with the homogeneous cou-

pling C3 for n ≥ 3 has the form of a discrete Bloch wave [125],

fn = f3 exp[ık (n− 3)] (3.4)

The wavenumber k satisfies the spatial dispersion relation −β+2C3 cos(k)−β2 =

0, following from Eq. (3.3). Next we assume that for n > 3 the coupling between

the loss emulating waveguides is much larger than the propagation constant,

C3 � |β,∆β(0)|, which means that cos(k) � 1, and thus, k = κ + π/2, with
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|κ| � 1. Therefore, we can rewrite the dispersion relation as

β = −∆β(0) − 2C3 sin(κ) ≈ −∆β(0) − 2C3κ, (3.5)

where ∆β(0) = β
(0)
s + β

(0)
i , β

(0)
s,i are the signal and idler propagation constants

relative to the pump. Employing this dispersion, we find from Eq. (3.3) a relation

between the modes in the second and the third waveguides

f3 = (C2/C3) exp(ik)f2 ≈ (C2/C3)if2, (3.6)

and accordingly in real space the Fourier transform of Eq. (3.6) will give us the

following result

ψ3(z) ≈ (C2/C3)iψ2(z). (3.7)

Now we can express the modes at n ≥ 3 through the mode propagating in the

second waveguide

fn =
C2

C3

f2i
n−2eκ(n−2), n ≥ 3. (3.8)

We substitute Eq. (3.7)in the expression Eq. (3.1) for n = 2 and obtain

i
∂ψ2

∂z
−
(
β2 − i

C2
2

C3

)
ψ2 + C1ψ1 = 0. (3.9)

Further, we consider the undepleted pump regime with C1z � 1, and in particu-

lar, ψ1(z) ≈ ψ1(0) exp(iβ1z). We next determine wrote the mode profiles in real

space by substituting Eq. (3.8) in Eq. (3.2)

ψn(z) =
C2

C3

∫
eiβzf2(β)i(n−2)eκ(n−2)dβ =

C2

C3

i(n−2)e
− i(n−2)

2C3
∆β(0)

∫
dβf2(β)e

iβ
(
z− (n−2)

2C3

)
=

C2

C3

i(n−2)e
− i(n−2)

2C3
∆β(0)

ψ2

(
z − n− 2

2C3

)
, n ≥ 3. (3.10)

Finally, comparison of Eq. (2.6) for the biphoton state and Eq. (3.9) for classical

light evolution in the second waveguide unambiguously shows their equivalence

(for γs,i,p ≡ 0). We require that ψ2(z) ≡ Φ(z), and obtain the following relations:

γ =
C2

2

C3

, ψ1(0) = −Aχ
C1

, β1 = 0, β2 = ∆β(0). (3.11)

The last step is to find relation between the biphoton state Φ̃(s), which corre-
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sponds to a mixed state with the lost idler photon, and the modes propagating

in the loss simulating waveguides ψn, (n ≥ 3). Since |ψ2(z)|2 = |Φ(z)|2 we can

rewrite Eq. (2.9) as follows:

|Φ̃(s)(zl, zl)|2 = 2γ |ψ2(zl)|2 = 2γ

(
C3

C2

)2
∣∣∣∣∣ψn

(
zl +

n− 2

2C3

) ∣∣∣∣∣
2

=

2C3

∣∣∣∣∣ψn
(
zl +

n− 2

2C3

) ∣∣∣∣∣
2

, (3.12)

where we used the relation between the loss and the coupling coefficients from

(3.11).

In this vein, the considered waveguide lattice shown in Fig. 3.1 effectively

emulates the SPDC in a nonlinear lossy waveguide. Specifically, the intensity in

waveguide n = 2 represents the probability of the signal-idler biphoton generation

at the output.

3.2 Experimental results and analysis
In order to perform an experimental analysis of the emulation of the SPDC

in single nonlinear waveguide with losses through the linear waveguide array

our collaborators form Friedrich-Schiller-University, Jena, Germany fabricated

waveguide structures using the femtosecond laser direct writing technique [34,

126].

Modern communication technology is based on integrated optical devices

which control the properties of light in all-optical networks. Key elements within

these networks are active and passive waveguides, splitters, connectors, and fil-

ters. The optical function of these elements is based on a spatial refractive-index

modification [127]. The effects of radiation damage in high-silica glasses have

been performed with the objective of producing optical devices. Use of ultra-short

laser pulses for the direct writing of photonic structures has been demonstrated

[126, 127]. When intense ultra-short laser pulses are focused inside transparent

materials nonlinear absorption will occur in the focal volume leading to optical

breakdown and the formation of a microplasma. This localized energy deposition

induces permanent structural and refractive index changes [126, 128]. By moving

the sample with respect to the focus of the laser beam waveguides can be writ-

ten along arbitrary paths. Since the material is transparent for the processing

laser beam this technology is applicable like no other for the fabrication of three-

dimensional integrated optical devices [127]. The direct laser writing approach

has been used to fabricate a variety of photonic devices like waveguides [129],

3D-couplers [130], and evanescently coupled waveguide arrays [131, 132].
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Figure 3.2: Schematic of the writing process in transparent bulk material
using fs-laser pulses [128, 132] with measured near-field profile at λ = 800nm for
a waveguide written at 500µm/s and. Translating the substrate with respect to
the laser focus permits the fabrication of 3D waveguide circuits.

It has been shown that specific pulse energy, repetition rate and writing speed

should be taken into account in order to fabricate low loss positive index guiding

waveguide devices in a specific type of glass. The high extraction efficiency of

photons from glass waveguide circuits has made them the most practical method

for exploring a range of quantum photonic devices and concepts. The waveg-

uides formed through femtosecond laser direct write (FLDW) can be fabricated

the minimal insertion losses [34]. Unlike planar lightwave circuit (PLC) fabrica-

tion the FLDW technique is a one step process, which doesn’t require masking

procedure or clean room environment. This means that prototypes can be pro-

duced rapidly and iterative fabrication methods can be engaged. Furthermore

the laser is easily focused at multiple depths inside the material enabling three

dimensional waveguide circuits which are extremely challenging to produce using

lithographic methods. This allows the production of vertically coupled waveguide

arrays for the study of photon correlations and novel 3D integrated waveguide

circuits [34]. A visionary image of the fabrication process is shown in Fig. 3.2

where three dimensional waveguides are drown inside a block of glass at the point

of laser focus. The use of fs laser written waveguide structures provides a flexible

technique to fabricate permanent structures for linear and nonlinear applications.

It has been demonstrated the possibility of fabrication of large three dimensional

waveguide structures with high accuracy.



§. Experimental realisation 

In the experiment carried at Friedrich-Schiller-University, Jena the propa-

gation constant detuning of the pump guide was controlled via the inscription

velocity. A set of samples were fabricated corresponding to different propagation

constants ∆β(0). The waveguides’ length is 7.6 cm, and their transverse sepa-

ration determines the coupling coefficient between them. While the structures

emulate different mismatch and loss regimes, the coupling between the first and

the second waveguide stays constant at C1 = 0.0575 cm−1. Thus, the effective

pump amplitude A is kept constant for all experiments at the same laser power

(|ψ1|2) according to Eq. (3.11). For the classical-optical emulation laser light

of 633 nm was injected into the first waveguide and the output intensity of the

complete structure was observed via a CCD camera, as illustrated in Fig. 3.1.
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Figure 3.3: Emulation of photon-pair generation in a lossless waveguide (γ = 0).
(a) Quantum solution for biphoton intensity evolution in a nonlinear waveguide
according to Eq. (3.13). (b) Output intensity vs the phase mismatch: experimen-
tal measurements (blue circles), quantum solution by Eq. (3.13) (solid red line),
and numerical solution of the emulating linear system Eqs. (3.1) (dashed green
line). The length of the waveguides is L = 7.6 cm, the coupling coefficient be-
tween first and second waveguides is C1 = 0.0575 cm−1, and C2 = 0. Fabrication
deviations of the laser written waveguides result in an uncertainty of the phase
mismatch (difference in propagation constants) but is within the marker size.

As a first step we analyze the simplest case without loss (γ = 0). Then the

intensity for the signal-idler biphoton provided by Eq. (2.11) exhibits a charac-

teristic sinc-shape,

I(0)
s (z) = A2z2sinc2

(
∆β(0)z

2

)
. (3.13)

Fig. 3.3(a) shows this biphoton intensity evolution along a nonlinear waveguide

for different phase mismatches. The emulation of SPDC in a nonlinear lossless
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waveguide is realized by just two linear coupled waveguides (n = 1, 2). In accor-

dance with Eq. (3.11) C2 = 0 represents the lossless case, such that there is no

coupling to the loss emulating array with n ≥ 3. The corresponding experimental

results are presented in Fig. 3.3(b) as blue circles, when we insert losses the figure

shows transformation from sinc form to Lorentz form.

For comparison we plot the quantum solution with a solid red line and the nu-

merical solution of the coupled-mode equations representing the emulating circuit

with a dashed green line. In the theoretical simulations the pump amplitude is

normalized according to the experimental results and is constant for the lossless

and the loss-emulating case at Aχ = 0.6238. The data shows excellent agree-

ment between both theoretical curves and the experimental measurements across

a wide range of phase mismatches.
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Figure 3.4: Emulation of photon-pair generation in a waveguide with loss (γ =
0.397 cm−1). The corresponding experimental couplings are C2 = 0.63 cm−1 and
C3 = 1.0 cm−1. Other parameters and notations are the same as in Fig. 3.3.

Next, we investigate the SPDC in a nonlinear lossy waveguide and its classical

emulation. In the presence of loss the biphoton intensity dependence on the

phase mismatch transforms from a sinc-shape to a Lorentzian shape [63, 65], as

described by Eq. (2.11), which is imaged in Fig. 3.4(a). The emulating system now

includes the loss-emulating array with waveguide couplings that determine the

loss coefficient, see Eq. (3.11). The array consists of 20 waveguides (n = 3 . . . 22),

which is sufficient to avoid reflections from the boundary. Both the experimental

and theoretical (quantum calculation and coupled mode analysis) results are

shown in Fig. 3.4(b). Again, a nice agreement of the data can by noted and the

Lorentzian shape is clearly verified by our experiments.
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Figure 3.5: Theoretical simulation of the intensities at the output of the coupled
waveguide array and the nonlinear lossy waveguide (∆β(0) = 0). (a,c) Distribu-
tion of the output intensity in the waveguide array depending on the number of
waveguides and the propagation distance; (b,d) Intensities: total (Is), biphoton

related (I
(0)
s ) and contribution from the states with lost idler photons (Ĩs). (a,b)

C1 = 0.0575 cm−1, C2 = C3 = 0 (corresponding loss γ = 0), (c,d) we neglect
losses on the sum frequency (γp = 0) and C1 = 0.0575 cm−1, C2 = 0.63 cm−1,
C3 = 1.0 cm−1 (corresponding loss is γ = 0.397 cm−1).

We discuss behavior of the intensities at the output of the coupled waveguide

array and the nonlinear lossy waveguide depending on the propagation distance

for different loss values. It is easy to notice form Fig. 3.5(b) that in case of

lossless system the total intensity coincide with biphoton related intensity (I
(0)
s ),

we have the same picture in the waveguide array all intensity is concentrated in

the second waveguide and the intensity in the loss simulating waveguides (n > 2)

is equal to zero [see Fig. 3.5(a)]. Fig. 3.5(d) shows that if we introduce losses in

the system the contribution from the states with lost idler photons (Ĩs) increases

and the total intensity decreases. Similarly the intensities at the output of loss

emulating waveguides differ from zero [see, Fig. 3.5(c)].
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Figure 3.6: Emulation of photon-pair generation in a waveguide with photon
and pump losses. (a) Design of the corresponding linear circuit with an additional
array at n ≤ 0 emulating the pump-loss. (b) Output intensity vs the phase
mismatch: quantum solution by Eq. (3.13) (solid red line) and numerical solution
of the emulating linear system by Eq. (3.1) (dashed green line). The pump and
photon losses are matched, γp = γ = 0.1 cm−1, C0 = C2 = 0.3162 cm−1, and
C−1 = C3 = 1 cm−1. Other parameters are the same as in Fig. 3.4.

Unfortunately the experimental results for the intensity which corresponds to

a contribution from the states with lost idler photons Ĩs(z) didn’t match perfectly

with the theoretical results. The issue is that the intensity at the output of the

waveguides emulating the losses is very low and is impossible to completely detect

by the available camera.

This chapter presents results on the possibility to emulate quantum nonlinear,

lossy system by classical lossless lattices of weakly coupled optical waveguides.

We discussed only the scenario when signal and idler photons are generated and

localised in the same waveguide, meaning have approximately the same frequency

and the propagation constants. The case when we have photons in different

waveguides is a very interesting and open problem. It is not that trivial to

predict the outcome because of large diminutions of Hilbert space.

Additionally, we point out that the circuit can be designed to emulate the

effect of pump losses as well. This can be achieved by placing a second loss-

emulating array on the left of the pump waveguide, as illustrated in Fig. 3.6(a).

The corresponding coupling coefficients are found analogous to Eq. (3.11) as

γp = C2
0/C−1. We also set Cn≤−2 = C−1 and βn≤0 = 0. A particularly interesting

situation arises when the pump loss is equal to the combined signal and idler

losses, such that γp = γ. Then, the biphoton dependence of mismatch recovers a

sinc-shape, just like in the lossless case, which is depicted in Fig. 3.6(b). Finally,

we note that by altering the arrangement of loss-emulating guides, the developed
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waveguide platform can be tailored to emulate the effects of non-Markovian (non-

exponential) decay and quantum decoherence phenomena [91].

In conclusion, we present the theoretical concept and the experimental realiza-

tion of a classical optical emulator of quantum photon-pair generation in a lossy

quadratic nonlinear waveguide. The transformation of a common sinc-shaped

photon-pair correlation spectrum into a Lorenzian shape in the presence of sig-

nal and idler photon losses was demonstrated. Furthermore, the pump losses can

be emulated as well, in particular when the pump and photon losses are matched

a restoration of the sinc-shaped dependence of the output on the phase mismatch

is observed. Our approach based on a linear waveguide lattice is very flexible, and

can further enable emulations of non-Markovian processes, which are a common

feature in photonic nanostructures including plasmonic circuits.
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Chapter 4
Spatially inhomogeneous losses and

parity time symmetry

Integrated photon sources based on nonlinear waveguide arrays have applica-

tions in the development of on-chip quantum communication and computation

devices [20, 32, 33, 36, 37]. These chips are perfect for the generation and shaping

of spatial modes [45, 109–112]. The classical characterization of quantum device

performance [97] is an active research topic. We present theoretical results on

possibilities to characterize spontaneous parametric down conversion (SPDC)

through classical sum frequency generation in nonlinear lossy waveguide array.

We call this technique stimulated multimode tomography.

Nowadays, the development of new generation of devices for efficient gener-

ation of nonlinear processes for use in emerging quantum technologies is under

intense investigation [133–135]. Waveguide SPDC sources are becoming more

widely used [48, 136, 137] for improvements in the fabrication of quantum tech-

nologies and lead to the disposition of more and more devices on the same chip.

The relationship between quantum processes and optical classical processes has

recently become of practical importance for characterizing photon sources based

on spontaneous quantum nonlinear optical processes [98, 99]. This relation could

allow direct but slow coincidence detection measurements of a spontaneous pro-

cess to be replaced by faster and more convenient optical power measurements of

the corresponding classical process. Recent examples include simulated quantum

walks of entangled photons [58] and development of classical characterization

methods to predict quantum device performance [98, 99].

One application of such an analogy between quantum and classical emissions

is the light propagation in parity-time- (PT-) symmetric optical systems with

balanced gain and loss. Photonic structures consisting of coupled waveguides

with regions of gain and loss offer many novel possibilities for shaping optical

beams. The beam dynamics in this case may demonstrate properties qualitatively


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different from those usually observed in conservative systems. Among them are

power oscillations, nonmonotonous dependence of the transmission on absorption,

unidirectional invisibility [89, 138], conical diffraction, and unusual switching

regimes [90, 138, 139] and formation of spatial and temporal solitons [140] in

nonlinear structures.

In optics, such complex PT-symmetric structures can be realized in nonlin-

ear couplers within the context of the paraxial theory of diffraction by involving

symmetric index guiding and an antisymmetric gain/loss profile [80, 84, 85]. This

structure is PT-symmetric around its central axis. Below the critical gain/loss

value, the modal intensity is equally divided between the two sites and illustrate

oscillatory coupling between the two modes. As the non-Hermitian PT potential

strength is increased beyond the PT-symmetry breaking point, the two modes

become isolated in each site, oscillatory coupling between the two modes disap-

pears and is replaced by a hyperbolic behaviour (one mode decays and the other

grows). It is important to note that PT-symmetry breaking can also occur in

entirely passive dual systems where one channel exhibits loss [81]. In this new

configuration the PT phase transition point is now shifted.

In Sec. 4.1 we describe photon-pair generation through spontaneous para-

metric down-conversion (SPDC) in quadratic nonlinear waveguide array with

different linear absorption in all waveguides. Direct coincidence detection mea-

surements of a spontaneous process are very slow. A new measurement technique

has enabled previously unobtainable resolution in the spectral characterization

of two-photon states from various waveguides which enable faster and more con-

venient optical power measurements of the corresponding classical process. A

useful connection between SPDC and SFG has been shown in nonlinear one

mode optical waveguides with arbitrary scattering loss [99], as well quantum and

classical processes analogy in multimode system without losses [141]. Section

4.2 is devoted to sum frequency generation (SFG) in nonlinear lossy, multimode

waveguide array and the analysis of the correspondence of the results with ones

for the SPDC. Sections 4.3 and 4.4 discuss the results due to the PT-symmetry

breaking threshold in nonlinear PT-symmetric coupler, which consists of one

lossy and one conservative waveguide.

4.1 SPDC in a lossy waveguide array:

eigenmode solution
The process of SPDC can occur in a χ(2) nonlinear waveguide pumped by a

laser, where a pump photon at frequency ω3 can be spontaneously split into signal

and idler photons with corresponding frequencies ω1 and ω2, where ω3 = ω1 +ω2

(see, Fig. 4.1). The effect of linear losses on SPDC was previously considered

in various contexts [62–64] and was analysed in detail in Chapter 2 [65] and
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Appendix A. We take the main concept for description of the biphoton func-

tion evolution from Chapter 2 but now generalize if for the case of spatially

inhomogeneous losses. We consider that losses are different in each waveguide.

According to the general principles the photon dynamics is governed by a Hamil-

tonian Eq. (2.1) and the solution for a two-photon state at distance z is given by

Eq. (2.5).

Nonlinear chip 1  2  ....
    n

  ....

Single photon 

    d
etector

pump

Figure 4.1: Scheme of spontaneous parametric down-conversion in nonlinear
waveguide array with spatial inhomogeneous losses.

Taking into account the detailed derivation of biphoton wave function evo-

lution Eq. (2.28) and considering spatially inhomogeneous losses, we derive

Schrödinger-type equations for the photon pair amplitudes Φn1,n2 (n1, n2, are

waveguide numbers for signal and idler photons) as follows,

∂Φn1,n2(z)

∂z
= −i∆βΦn1,n2 − (γs(n1) + γi(n2))Φn1,n2 −

iCs(Φn1−1,n2 + Φn1+1,n2)− iCi(Φn1,n2−1 + Φn1,n2+1) + An1δn1,n2 . (4.1)

We also write the propagation equation for the undepleted pump amplitude.

We consider the low conversion efficiency regime which means we neglect the

probability of recombination of photon pairs into pump photon and write the

propagation of the pump field in the following form,

∂An3(z)

∂z
= (−iβp − γp(n3))An3 − iCp(An3−1 + An3+1). (4.2)

where ∆β = βs + βi is the pump and photon-pair phase velocity mismatch in a

single waveguide, Cs,i are frequency-independent coupling constants between the

neighboring waveguides for signal and idler photons, Cp is a coupling coefficient

for the pump field, γs,i,p(n) are loss coefficients of signal, idler photons and the

pump in the njth waveguide (j = 1, 2, 3), correspondingly. An is proportional to
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the normalized pump amplitude at frequency ωp and to the quadratic nonlinearity

χ.

We search for the solution of the inhomogeneous equations as

Φn1,n2(z) =
∑
m1m2

un1,m1vn2,m2Bm1,m2(z) (4.3)

where un1,m1vn2,m2 are eigenmode solutions of homogeneous Schrödinger equation

and Bm1,m2(z) is the z dependent coefficient of the expansion. The solution of

the eigenmode problem for the signal un1,m1 and the idler vn2,m2 which could be

written in the matrix form as follows

∂

∂z


u1

u2

...

um

 = H̃


u1

u2

...

um

 , (4.4)

where

H̃ =


− i∆β

2
− γs(n1) −iCs 0 ... 0

−iCs − i∆β
2
− γs(n1) −iCs ... 0

.. .. .. .. ..

0 0 ... −iCs − i∆β
2
− γs(n1)

 (4.5)

is the homogeneous transformation Hamiltonian of the signal mode. We have

the similar formula for the idler photon. un1,m1 and the vn2,m2 can be repre-

sented through U1 (n1,m1) and U2 (n2,m2), respectively, where U1 (n1,m1) is the

eigenvector for the signal photon with eigenvalues λs1(2) and U2 (n2,m2) is the

eigenvector for the idler photon with eigenvalues λi1(2). In general Uj (n,m),

where j = 1 corresponds to the frequency ωs ≡ ω1, j = 2 for ωi ≡ ω2, and j = 3

corresponds to the pump frequency ωp ≡ ω3, nj are indexes over the waveguide

numbers and mj are indexes for the modes.

The detailed mathematical analysis of SPDC in the waveguide array with

spatially inhomogeneous losses and the eigenmode solutions of Eqs. (4.1) and

(4.2) are presented in Appendix B.1. Homogeneous Schrödinger equation for

the signal and idler modes is presented in Hamiltonian form in Eq. (4.4). It

is seen from Eq. (4.5) that Hamiltonian describing evolution of signal (idler)

eigenmodes has a form of symmetric matrix: H̃ = H̃T with complex elements. It

has been shown [142] that the eigenmodes of the transpose matrices satisfy the

following orthogonality relation:
∑

n Uj(n,mj)Uj(n,mk) = 0 if mj 6= mk. This

orthogonality relation leads to following expression; UT
j Uj = Πj, where Πj =

diagm
(∑

n U
2
j (n,m)

)
. We can write inverse matrix as U−1j = U−1j UjU

T
j Π−1j =
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UT
j Π−1j , which means we can write the relation more explicitly as,

U−1
1 (m2, n1) =

U1 (n1,m2)∑
q U

2
1 (q,m2)

. (4.6)

The detailed derivation of the results for the z dependent coefficient of the expan-

sion and the two-photon function is presented in Appendix B. Here we present

only the final results for the z dependent coefficient and the two photon ampli-

tude,

Bm1,m2(z) =
iz

det(U1)det(U2)det(U3)

∑
m3,n3

e
(λpm3

−λsm1
−λim2)z

2 ×

sinc

((
λpm3
− λsm1

− λim2

)
z

2

)
×{

U1 (n3,m1)∑
q U

2
1 (q,m1)

U3 (n3,m3)
U3 (n3,m3)∑
l U

2
3 (l,m3)

An3,n3(0)
U2 (n3,m2)∑
p U

2
2 (p,m2)

}
, (4.7)

Now we consider that we have pump in the n3th waveguide Φn1,n2 =∑
n3
An3Φn3

n1,n2
and write results for the two photon amplitude as follows,

Φn3
n1,n2

=
iz

det(U1)det(U2)det(U3)
×

∑
m3,m2,m1

e
(λpm3

+λsm1
+λim2)z

2 sinc

((
λpm3
− λsm1

− λim2

)
z

2

)
×{

U1 (n1,m1)
U1 (n3,m1)∑
q U

2
1 (q,m1)

U3 (n3,m3)
U3 (n3,m3)∑
k U

2
3 (k,m3)

×

An3,n3(0)
U2 (n3,m2)∑
l U

2
2 (l,m2)

U2 (n2,m2)

}
. (4.8)

4.2 Sum Frequency Generation: Eigen-

mode solution
Nowadays there are many structures that could potentially be used for the

generation of quantum nonlinear optical processes, but to check the efficiency

of these sources is still time consuming process. Thus the relationship between

quantum processes and optical classical processes has recently become of practical

importance for characterizing photon sources. The technique will only become
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more valuable as improvements in fabrication technology lead to more and more

devices on the same chip.

a(ω1)

a(ω2)

Nonlinear chip 1  2  ....
    n 0

Power meter

a(ω3)

Figure 4.2: Scheme of sum frequency generation in nonlinear waveguide array
with spatially inhomogeneous losses.

Here we present the theory of the SFG which occur in χ(2) nonlinear lossy

waveguide array pumped by two pulses on the ω1 and ω2 frequencies, which sum

into a mode with the frequency ω3: ω1 +ω2 = ω3 (see Fig. 4.2). The full coupled

mode equations for SFG are written in the following form [2, 131, 143]

∂an1(ω1)

∂z
= (−iβs − γs(n1)) an1(ω1)− iCs

(
an1−1(ω1) + an1+1(ω1)

)
+

an3(ω3)a∗n2
(ω2), (4.9)

∂an2(ω2)

∂z
= (−iβi − γi(n2)) an2(ω2)− iCi

(
an2−1(ω2) + an2+1(ω2)

)
+

an3(ω3)a∗n1
(ω1), (4.10)

∂an3(ω3)

∂z
= (−iβp − γp(n3)) an3(ω3)− iCp

(
an3−1(ω3) + an3+1(ω3)

)
+

an3(ω1)an3(ω2). (4.11)

We consider low conversion efficiency a1(ω3)� 1 and a2(ω3)� 1 to compare the

results with the photon pair amplitude of the SPDC process. The coupled mode

equations for SFG are rewritten in the following form
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∂an1(ω1)

∂z
= (−iβs − γs(n1)) an1(ω1)− iCs

(
an1−1(ω1) + an1+1(ω1)

)
, (4.12)

∂an2(ω2)

∂z
= (−iβi − γi(n2)) an2(ω2)− iCi

(
an2−1(ω2) + an2+1(ω2)

)
, (4.13)

∂an3(ω3)

∂z
= (−iβp − γp(n3)) an3(ω3)− iCp

(
an3−1(ω3) + an3+1(ω3)

)
+

an3(ω1)an3(ω2). (4.14)

where ani(ωi) is a mode amplitude in the nith waveguide with the ωith frequency

(i = 1, 2, 3).

It is easy to notice from the Eqs. (4.12), (4.13) that we can solve the eigenvalue-

eigenmode problem for each mode i (i = 1, 2) separately. We found the eigen-

mode problem for the signal/idler modes very similar to the one for the quantum

process in Eq. (4.4). The full derivation of the eigenmode solution for the sum

frequency generation in waveguide array with inhomogeneous losses is presented

in Appendix B.2.

We search for the solution of the inhomogeneous array of equations for the

output mode as

an3(z) =
∑
m3

U3 (n3,m3) eλ
p
Cm3

zΥm3(z). (4.15)

Here we present the final results for the Υm3(z) which is the z dependent

expansion function

Υm3
n1,n2

=
iz

det(U1)det(U2)det(U3)
×

∑
m1,m2

∑
n3

e
(λpCm3

−λsCm1
−λiCm2

)z
2 sinc

((
λpCm3

− λsCm1
− λiCm2

)
z

2

)
×

U3 (n3,m3)∑
q U

2
3 (q,m3)

U1 (n3,m1)
U1 (n1,m1)∑
l U

2
1 (l,m1)

U2 (n3,m2)
U2 (n2,m2)∑
p U

2
2 (p,m2)

×

Es
n1
Ei
n2
, (4.16)

Φ̃n3
n1,n2

(ω3, z) = an3(ω3, z;n1, n2) is the mode at the sum frequency at the

output of the waveguide n3, when we have input signal mode in the n1 and idler

mode in the n2 waveguides, correspondingly. We receive the final results for the
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mode propagating on the sum frequency as,

Φ̃n3
n1,n2

(ω3, z) =
iz

det(U1)det(U2)det(U3)
×

∑
m3,m2,m1

e
(λpCm3

+λsCm1
+λiCm2

)z
2 sinc

((
λpCm3

− λsCm1
− λiCm2

)
z

2

)
×

U3 (n3,m3)
U3 (n3,m3)∑
k

U2
3 (k,m3)

U1 (n3,m1)
U1 (n1,m1)∑
q

U2
1 (q,m1)

U2 (n3,m2)
U2 (n2,m2)∑
l

U2
2 (l,m2)

×Es
n1
Ei
n2
. (4.17)

It is easy to see that Eq. (4.17) and Eq. (4.8) express the three mode interac-

tion which have very similar forms in terms of eigenmodes. Both quantum wave

function Φn3
n1,n2

and the classical amplitude Φ̃n3
n1,n2

depend on the number of the

waveguides of the input and output modes and expressed through the same eigen-

modes. The only difference is, that in case of SPDC the input is pump amplitude

and outputs are signal and idler modes, while in the case of SFG the inputs are

signal and idler modes and the output is the mode with the sum frequency, for

better understanding the correspondence see Fig. 4.3.

pump

A     (0)  n3,n3

signal

idler pump

E n1
s

signal

idler

E n2
i

Correspondence 
SPDC
ωp = ωs +ωi

Quantum 
wavefunction Φ  n1,n2

  n3

Pump input 
wg number

Signal output 
wg number

Idler output 
wg number

SFG
ωs +ωi = ωp

Classical 
amplitudeΦ  n1,n2

  n3~
Pump output 
wg number

Signal intput 
wg number

Idler intput 
wg number

Figure 4.3: Scheme of correspondence between quantum wave function gener-
ated through spontaneous parametric down-conversion and classical amplitude
from sum frequency generation.
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4.3 SPDC in PT-coupler
Photonic structures consisting of coupled waveguides with regions of gain and

loss offer many novel possibilities for shaping optical beams. PT-symmetry effect

predictions are confirmed in experiments with light propagation in couplers with

gains and losses [144]. One of the most interesting effects associated with this

class of Hamiltonians is the emergence of a phase transition behavior arising from

a spontaneous breakdown of PT-symmetry, after which the spectrum becomes

complex [145, 146]. In this section we describe photon-pair generation through

spontaneous parametric down-conversion (SPDC) in quadratic nonlinear couplers

with linear absorption in one waveguide (see, Fig. 4.4(a)).
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Figure 4.4: (a) Scheme of generation of photon pairs through the spontaneous
parametric down-conversion in passive PT-symmetric nonlinear coupler with lin-
ear absorption in one waveguide. (b) Scheme of biphoton correlation function.
Upper index n3 of |Φn3

n1,n2
|2 stands for the input field waveguide number, while

the bottom indices n1 and n2 show the waveguide number of signal and idler
modes, respectively. We consider case where losses for signal and idler modes are
equal γs = γi which lead to the symmetry where anti-diagonal elements are equal
|Φ1,2|2 = Φ2,1|2.

We discuss Schrödinger-type equations for the photon pair amplitudes Φn1,n2

in the coupler (special case of Eq. (4.1) ). Firstly we solve the homogenised array

of equations and write Schrödinger-type equations for the for signal and idler

modes in the coupler, which are the simplified forms of Eqs. (4.4)

∂

∂z

(
u1

u2

)
=

(
− i∆β

2
−iCs

−iCs − i∆β
2
− γs

)(
u1

u2

)
. (4.18)

∂

∂z

(
v1

v2

)
=

(
− i∆β

2
−iCi

−iCi − i∆β
2
− γi

)(
v1

v2

)
. (4.19)

We find eigenvalues and eigenmodes as it was done in Sec. 4.1 and find ana-

lytical expressions for the eigenvalues and eigenfunctions (Eq. (B.5)). The eigen-
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values, for instance, of signal modes are found as

λs1 =
1

2
(−γs − ξ1)− i

2
∆β;

λs2 =
1

2
(−γs + ξ1)− i

2
∆β (4.20)

where ξ1 =
√
−4C2

s + γ2
s and ξ2 =

√
−4C2

i + γ2
i . It is easy to notice that the

phase shift will happen if −4C2
s + γ2

s < 0, which means the symmetry breaking

condition for the SPDC in the passive coupler is γ > 2C.

Eigenmodes of signal and idler modes are found as:

U1 =

(
2iCs γs + ξ1

γs + ξ1 −2iCs

)
×

1√
4C2

s + γ2
s + ξ1ξ∗1 + γs(ξ1 + ξ∗1)

, (4.21)

U2 =

(
2iCi γi + ξ2

γi + ξ2 −2iCi

)
×

1√
4C2

i + γ2
i + ξ2ξ∗2 + γ2(ξ2 + ξ∗2)

. (4.22)

Here are presented the analytical results for the forms of the z dependent biphoton

coefficients of the expansion in the mode space Bm1,m2(z) at z = L(m1,m2 = 1, 2

are mode numbers) substituting Eq. (4.21) in Eq. (4.7)

B1,1(L) = −L
4

[
−4A1CiCs

ξsξi (ξs + γs) (ξi + γi)
+
A2

ξsξi

]
e

(
iL(4∆β−i(γi+γs+ξi+ξs))

4

)
×

sinc

(
L(4∆β − i(γi + γs + ξi + ξs))

4

)
,

B1,2(L) =
iL

2

[
A1Cs

ξiξs (ξs + γs)
− A2Ci
ξsξi (ξi + γi)

]
e

(
iL(4∆β−i(γi+γs−ξi+ξs))

4

)
×

sinc

(
L(4∆β − i(γi + γs − ξi + ξs))

4

)
,

B2,1(L) = −iL
2

[
A2Cs

ξiξs (ξs + γs)
− A1Ci
ξsξi (ξi + γi)

]
e

(
iL(4∆β−i(γi+γs+ξi−ξs))

4

)
×

sinc

(
L(4∆β − i(γi + γs + ξi − ξs))

4

)
,

B2,2(L) =
L

4

[
−4A2CiCs

ξsξi (ξs + γs) (ξi + γi)
+
A1

ξsξi

]
e

(
iL(4∆β−i(γi+γs−ξi−ξs))

4

)
×

sinc

(
L(4∆β − i(γi + γs − ξi − ξs))

4

)
. (4.23)
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We look at the dynamics of the biphoton functions along the waveguides

below and above the PT-symmetric breaking threshold Fig. (4.5).
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Figure 4.5: Behavior of the module square of biphoton function depending
on the propagation direction and phase-mismatch. The coupling coefficients for
signal and idler modes are Cs = Ci = 1. The pump is only in the first waveguide.
A1 = 1, A2 = 0 and L = 10. (a,b,c) γs = γi = 0.5 losses are below the symmetry
breaking threshold. (d,e,f) The PT-symmetry is broken as γs = γi = 3 over the
symmetry breaking threshold. (a,d) Biphoton function when both photons are in
the first waveguide. (b,e) Biphoton function with one photon in first waveguide
and the another one in the second and (c,f) both photons are in the second lossy
waveguide.

We assume that losses of signal (γs) and idler photons (γi) are equal to

each other and equal γ and the corresponding coupling constants are equal, too

(Cs = Ci = C). It is easy to notice that for the losses below PT-Symmetry

breaking threshold (γ < 2C) there are efficient quantum walks in the system

[see Fig. 4.5(a,b,c)]. Situation changes for losses over the threshold and quantum

walks are suppressed [Fig. 4.5(d,e,f)].
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Figure 4.6: Biphoton function depending on losses and phase-mismatch in sta-
tionary regime (z → ∞). (a,b,c) Pump is coupled to the waveguide without
losses (A1 = 1, A2 = 0). (b,d,e) Pump is only in the waveguide with losses
(A1 = 0, A2 = 1).

γ = 2C appears to be a PT-symmetry breaking threshold for efficient quan-

tum walks even in stationary regime. The photon pair correlations of biphotons

in the waveguide without losses Γ(1, 1) = |Φ1,1|2 exhibits no dependence on losses

when the pump is coupled to the same waveguide [Fig. 4.6(a)], but we see a drop in

the amplitude for the other photon pair correlations |Φ1,2|2 = |Φ2,1|2 [Fig. 4.6(b)]

and |Φ2,2|2 [Fig. 4.6(c)]. Similar dynamics are observed in the system where the

pump is coupled to the waveguide with losses [Fig. 4.6(d,e,f)].

4.4 SFG in PT-coupler
Here we discuss a specific case of the process presented in Sec. 4.2, namely,

SFG in the PT-coupler consisting of one conservative and one lossy waveguide

(see, Fig. 4.7(a)). We rewrite the coupled mode equations Eqs. (B.13) explicitly

for the coupler in the matrix form for each mode as follows

∂

∂z

(
a1(ω1)

a2(ω1)

)
=

(
−iβs −iCs
−iCs −iβs − γs

)(
a1(ω1)

a2(ω1)

)
. (4.24)
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Figure 4.7: (a) Scheme of sum frequency generation in passive PT-symmetric
nonlinear coupler with linear absorption in one waveguide. (b) Schematic corre-
spondence between biphoton function and the mode at sum frequency generated
through SFG (Φ̃n3

n1,n2
(ω3, z) = an3(ω3, z;n1, n2) see Appendix B.2 for details). (c)

Fidelity of the SPDC and SFG correlation depending on the input power. Both
Fidelity and the power are on a logarithmic scale with base 10.

We solve an eigenmode problem as in the previous section and find corre-
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sponding eigenvalues as,

λsC1 =
1

2
(−2iβs − γs − ξ1) ,

λsC2 =
1

2
(−2iβs − γs + ξ1) . (4.25)

The form of the eigenvectors for the SFG is coinside with the ones for SPDC

in Eq. (4.21).

Fig. 4.7(b) illustrates correspondence between the mode generated through

SFG at the output of first waveguide and the biphoton function generated in

SPDC pumped in the first waveguide (see Fig. 4.4(b)), with precision up to the

input pump field amplitudes. We looked at the normalized fidelity of the SPDC

conversion predicted by SFG depending on the input power [see Fig. 4.7(c)].

We define the power of the SFG as P n1,n2 = |Es
n1
|2 + |Ei

n2
|2 where Es,i are

the input pump amplitudes for the signal and idler modes and the fidelity is∑
n1,n2,n3

|Φ̃n3
n1,n2

− Φn3
n1,n2
|2, where Φ̃n3

n1,n2
is a solution of the full coupled mode

equations (4.9-4.11).

In Sec. 4.2 we have shown the exact matching of the bi-photon function

generated SPDC and the modes at the sum frequency generated in SFG in the low

conversion approximation Eqs. (4.17) and (4.8). Fig. 4.7(c) shows the possibility

to predict the conversion efficiency of SPDC through the SFG with very good

precision if the pump amplitudes are not very strong.

In this chapter we have performed analytical and numerical analysis of the

quantum spontaneous parametric down-conversion and sum frequency generation

in nonlinear lossy waveguide arrays. We have analysed the behaviour of the

SPDC and SFG in the passive PT-symmetric coupler and compared the results.

We have shown that the PT-symmetry breaking threshold significantly affects

the quantum walks of the signal and idler photon pairs generated trough SPDC.

Our results can be used for the further research of phenomena in PT-

symmetric plasmonic [147, 148] and metamaterial [147] structures, which have

attracted interest in recent years. Metamaterials allow considerable control over

the electric and magnetic fields of light, so that permittivities, permeabilities, and

refractive indices can be tuned to have positive, negative, and near-zero values.

Metamaterials have enabled negative refraction perfect optical lensing [149, 150]

and invisibility cloaking [151, 152]. Complementarily, PT -symmetric media allow

control over electromagnetic field distributions in loss and gain media, so that

light propagation can be asymmetric and even unidirectional. Metamaterials,

whose optical properties are determined both by their subwavelength building

blocks and a reasonable choice of their loss/gain profile would enable unprece-

dented control over electric and magnetic optical fields across wavelength and

subwavelength scales, and may enable an entirely new class of bulk synthetic
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photonic media [147].
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Chapter 5
Optical parametric amplification in

parity-time symmetric couplers

Parametric amplifiers are commonly used as an integral part of optical setups

enabling flexible wavelength conversion and tunable signal gain, extending the

range of lasers where gain media are limited to particular wavelengths. Wave

amplification is efficiently realized in the regime of difference-frequency generation

in media with quadratic optical nonlinearity [2]. Importantly, the amplification

rate is determined by the pump, enabling ultrafast all-optical tunability. In this

work, we reveal the potential of PT-symmetric systems for optical parametric

amplification, and identify a new regime of spectral PT anti-symmetry in such

devices. Such devices can, on one hand, realize ultrafast spatial signal switching

through pump-controlled breaking of PT symmetry, and on the other hand enable

spectrally-selective mode amplification in analogy with PT lasers.

In the linear regime, at low light intensities, such coupler realizes PT-

symmetric optical system [81]. However at higher intensities the effect of

quadratic nonlinear interactions becomes important. It was predicted that in

the regime of second-harmonic generation, when the signal and idler waves have

identical spectra at half of the pump frequency, parametric interactions in PT

couplers can support a rich variety of nonlinear modes [153]. Furthermore, for-

mation of quadratic solitons in spatially extended PT-symmetric structures was

analyzed in detail [154, 155]. However, the fundamentally important regime of

parametric amplification in PT systems remained unexplored.

This chapter is devoted to detailed analysis of parametric amplification in

PT systems. It has been identified a distinct spectral parity time anti-symmetry

associated with optical parametric interaction, and has been shown that pump-

controlled symmetry breaking can facilitate spectrally selective mode amplifica-

tion in analogy with PT lasers. It has been also establish a connection between

breaking of spectral and spatial mode symmetries, revealing the potential to





 Optical parametric amplification in PT nonlinear coupler

implement unconventional regimes of spatial light switching through ultrafast

control of PT breaking by pump pulses.

5.1 Spectral anti-PT symmetry
We analyze the process of optical parametric amplification based on nonlinear

mixing between a strong pump, and signal and idler waves, as illustrated in

Fig. 5.1. We model the wave propagation using coupled-mode equations [2] in

the regime of narrowband and undepleted pump,

i
∂Es1
∂z

= −βs1Es1 − iγs1Es1 − CsEs2 + iχ1Ep1E
∗
i1,

i
∂Es2
∂z

= −βs2Es2 − iγs2Es2 − CsEs1 + iχ2Ep2E
∗
i2,

i
∂Ei1
∂z

= −βi1Ei1 − iγi1Ei1 − CiEi2 + iχ1Ep1E
∗
s1,

i
∂Ei2
∂z

= −βi2Ei2 − iγi2Ei2 − CiEi1 + iχ2Ep2E
∗
s2,

i
∂Ep1
∂z

= −βp1Ep1 − iγp1Ep1 − CpEp2,

i
∂Ep2
∂z

= −βp2Ep2 − iγp2Ep2 − CpEp1.

(5.1)

Here the subscripts stand for signal (‘s’), idler (‘i’), and pump (‘p’) waves in the

two waveguides (‘1’ and ‘2’), E are the mode amplitudes, z is the propagation

distance along the waveguides, β are the propagation constants (for the pump

mode, the propagation constant is adjusted to account for quasi-phase-matching

through periodic waveguide poling [2]), γ are the linear loss coefficients, C are the

mode coupling coefficients between the waveguides, and χ are effective quadratic

nonlinear coefficients. Here we also assume that fundamental pump mode does

not couple between the waveguides [48].

signal idler
signal

signal idler
signal

Figure 5.1: Scheme of PT-symmetric nonlinear coupler with linear absorption
in one waveguide.

We find that PT-symmetry in the regime of parametric amplification can be

achieved in a near-degenerate case when the waveguide parameters are practically
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the same at signal and idler frequencies, i.e. γi1 = γs1 = γ1, γi2 = γs2 = γ2, and

Cs = Ci = C. We assume that the waveguides are engineered such that βs1 =

βs2 = βs and βi1 = βi2 = βi, which is the regime required for linear PT-symmetry

as demonstrated experimentally [81, 82]. Under usual experimental conditions

the mode at higher pump frequency is much stronger localized compared to signal

an idler [48], leading to suppressed coupling between the waveguides and also

very small sensitivity to metal deposited on top of waveguides, meaning that

Cp ≡ 0 and γp1 = γp2 = 0. We further consider a case of equal QPM-adjusted

pump propagation constants in two waveguides, βp1 = βp2 = βp, which can be

achieved by designed the waveguide parameters or poling the waveguides with

different periods. The latter condition does not need to be satisfied if pump is

coupled to one waveguide, which already enables full range of mode switching

and amplification control as we demonstrate in the following.

To reveal the PT-symmetry properties of Eqs. (5.1), we represent the equa-

tions for signal and idler waves in the Schredinger type equation,

i
da

dz
= Ha, (5.2)

where

a(z) =


as1(z)

as2(z)

a∗i1(z)

a∗i2(z)

 =


Es1(z)e−i(β+βs)z

Es2(z)e−i(β+βs)z

E∗i1(z)ei(β+βi)z

E∗i2(z)ei(β+βi)z

 , (5.3)

and

H =


β − iγ1 −C iA1 0

−C β − iγ2 0 iA2

iA∗1 0 −β − iγ1 C

0 iA∗2 C −β − iγ2

 , (5.4)

where β = (βp − βs − βi)/2 defines the phase mismatch of parametric wave

mixing, and A1,2 are the normalized input pump amplitudes, A1 = χ1Ep1(z = 0)

and A2 = χ1Ep2(z = 0).

A key result of our analysis is that the Hamiltonian H possesses a spectral

anti-PT symmetry, corresponding to a negative sign on the right-hand side of the

following equality,

P1,+P2,+T H = −HP1,+P2,+T . (5.5)

The term anti-PT symmetry was used to underline the sign difference between

the general commutation relation for PT symmetric Hamiltonian presented in

Eq. (1.9) and Eq. (5.5). Here T is a time-reversal operator which changes z → −z
and performs a complex conjugation. The parity operators operate in spectral
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domain, interchanging the signal and idler waves,

P1,± = {as1 ↔ ±a∗i1} , P2,± = {as2 ↔ ±a∗i2} . (5.6)

We define the parity operators with both symmetric (‘+’) and antisymmetric

(‘-’) transformations, since the latter will be useful in the following analysis. We

note that such unusual symmetry is fundamentally different from the previously

studied antisymmetric PT-metamaterials with modulated dielectric and magnetic

properties [156].

Since the Hamiltonian is linear in the undepleted pump regime, the dynamics

of signal and idler waves is defined by the eigenmode solutions,

a(z) = ã(σ) exp(iσz), (5.7)

where σ is an eigenvalue. The real part, Re (σ), defines the phase velocity, whereas

the imaginary part determines the modal gain, Γ = −Im(σ).

We now determine the effect of spectral anti-PT symmetry on the eigenmode

properties by substituting Eq. (5.7) into Eq. (5.2) and applying PT operator.

We obtain that if ã(σ) is an eigenmode, then ã(−σ∗) = P1,+P2,+T ã(σ) is also

an eigenmode. There are two possibilities how these relations can be satisfied.

First, the mode can be PT-symmetric, when PT transformation maps the mode

profile to itself (up to an overall phase), which happens if −σ∗ = σ, and accord-

ingly Re(σ) = 0. Such spectrally PT-symmetric modes would generally experience

gain/loss different from other modes, since there are no specific relations for the

value of Im(σ). Second, if the mode profile has broken PT-symmetry, the PT

transformation relates two different modes with eigenvalues σ2 = −σ∗1. It fol-

lows that a pair of spectrally PT-broken modes experience the same loss or gain,

Im(σ1) = Im(σ2), but they have different phase velocities, Re(σ1) = −Re(σ2).

Remarkably, the established relations of mode symmetry and gain/loss are re-

versed in comparison to previously studied spatial PT-symmetry in directional

couplers [81, 82], due to the spectral anti-PT symmetry of parametric wave mix-

ing.

We now demonstrate that the modal PT-breaking can be controlled by the

pump beam. Due to the electronic nature of quadratic nonlinearity, such tuning

can be ultrafast, directly following the pump profile in real time [2]. Overall, there

are four eigenmodes of the Hamiltonian. Accordingly, there can be three possi-

ble symmetry regimes: (i) there are two mode pairs with broken PT-symmetry,

(ii) one pair of PT-broken modes and a pair of PT-symmetric modes, or (iii) two

pairs of PT-symmetric modes. The eigenvalues which are solutions of quartic

equations from Hamiltonian (5.4) are cumbersome to analyze. That is why as

an example, we present numerical analysis of the mode properties in a coupler

with loss in the second waveguide, and pump coupled to the first waveguide. We
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show the largest mode gain Γ = Max[−Im(σ)] in Figs. 5.2(a,b) and the number

of PT-symmetric mode pairs in Figs. 5.2(c,d), depending on the pump amplitude

A1 and the phase-mismatch, for different values of linear loss.
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Figure 5.2: a,b) The largest mode gain (white line marks a zero gain level) and
(c,d) number of PT-symmetric mode pairs vs. the input pump and the phase-
mismatch. The linear losses are (a,c) γ2s = γ2i = 1, (b,d) γ2s = γ2i = 3. For all
the plots γ1s = γ1i = 0, C = 1 and A2 = 0.

We observe that in the regime when all modes have broken spectral PT sym-

metry [blue shaded regions in Figs. 5.2(c,d)], the modes experience negative gain

[c.f. Figs. 5.2(a,b)]. This happens because pairs of eigenmodes exhibit the same

amount of gain/loss, and effectively the amounts of gain and loss are averaged

out between the eigenmodes. However upon transition to the region with spec-

trally PT-symmetric modes [green and red shaded regions in Figs. 5.2(c,d)], there

appears an unequal redistribution of gain and loss between the modes. One PT-

symmetric eigenmode exhibits gain much larger then all other modes, while the

latter experience stronger loss. Such sensitivity of amplification to PT-breaking

threshold could be used to discriminate between multiple spectral modes, analo-

gous to the concept of PT-lasers [87, 88].

5.2 Spatial symmetries and switching
We now establish a connection between the spectral PT-symmetry identified

above, and the spatial wave dynamics due to waveguide coupling. We first con-
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sider a special case which can be treated analytically, corresponding to perfect

phase-matching, β = 0, and additionally Im(A∗1A2) = 0. The latter condition

can be transformed to Im(A1) = Im(A2) = 0 under a substitution
as1(z)

as2(z)

ai1(z)

ai2(z)

 = exp(iϕ)


as1(z)

as2(z)

ai1(z)

ai2(z)

 , (5.8)

with appropriately chosen constant phase ϕ Then, we find that

P1,+P2,−H = HP1,+P2,−, (5.9)

P1,−P2,+H = HP1,−P2,+. (5.10)

Accordingly, there appear two pairs of eigenmodes which profiles satisfy the first

or second symmetry, respectively. Remarkably, the signal dynamics is governed

by equations resembles those for a linear PT-symmetric coupler [81, 82]:

i
das
dz

= Hras, Hr =

(
i(ηA1 − γ1) −C
−C i(−ηA2 − γ2)

)
, (5.11)

where as = (as1; as2), η = +1 or η = −1 for the modes with symmetries accord-

ing to Eq. (5.9) or (5.10), respectively. If H is exactly PT symmetric, then its

eigenmodes a are simultaneously the eigenstates of the corresponding P1(2),+(−)

symmetry operators. Therefore we require a∗i1 = ηas1 and a∗i2 = −ηas2, which

reduces Hamiltonian (5.4). We see that the linear loss is modified due to the

parametric gain determined by the pump amplitudes. The coupler Eqs. ((5.11))

are symmetric with respect to spatial PT-symmetry, up to a gauge transforma-

tion [81] expressed through the identity matrix (I) in the following relation,

P12T (Hr − ρ̄ I) = (Hr − ρ̄ I)P12T , (5.12)

where the spatial parity operator P12 swaps the mode amplitudes between the

waveguides, as1 ↔ as2 and ai1 ↔ ai2. The coefficient ρ̄ = (ηA1−γ1)/2+(−ηA2−
γ2)/2 defines the average gain or loss between the two waveguides, which depends

on the pump amplitudes and signal/idler mode symmetries corresponding to the

different sign ‘η’. The mode eigenvalues are

σ = −iρ̄± (1/2)
√

4C2 − [γ1 − γ2 − η(A1 + A2)]2. (5.13)

We present characteristic dependencies of the eigenvalues on the pump amplitude

in the first waveguide in Fig. 5.3. Both spatial and spectral PT-symmetry breaking

occurs simultaneously at the threshold |γ1 − γ2 − η(A1 + A2)| = 2C. For the
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parameter values in Figs. 5.4(a,b), the threshold amplitude is A1 = 1 for η =

+1 and A1 = 3 for η = −1. However, the spatial and spectral symmetries

are opposite: a mode pair is spatially PT-symmetric and has spectrally broken

symmetry below threshold, whereas the situation is reversed above the threshold.
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Figure 5.3: Mode eigenvalues vs. the pump amplitude in the first waveguide
(A2 = 0): a) Negative imaginary part defining mode amplification, Γ = −Im(σ),
and (b) Real part defining propagation constant, Re(σ). Parameters are γ1s =
γ1i = 0, γ2s = γ2i = 1, C = 1, and β = 0.
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Figure 5.4: Evolution of the signal mode intensity along the waveguides: solid
(green) lines — the first waveguide without loss, dashed (blue) line — the second
waveguide with loss. The pump amplitude is (a) below PT-symmetry breaking
threshold (A1 = 0.5) and (b) above threshold (A1 = 1.5). Parameters are γ1s =
γ1i = 0, γ2s = γ2i = 1, C = 1, and β = 0.
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We show the evolution of the signal and idler intensities along the waveguides

in Fig. 5.4. At lower pump powers [Figs. 5.4(a)] signal and idler periodically

switch between the waveguides due to a beating between two modes exhibiting

the same (negative) gain. However for stronger pump above the PT threshold

[Figs. 5.4(b)], only one supermode with the strongest gain dominates and accord-

ingly oscillations are suppressed.
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Figure 5.5: Fraction of signal intensity in the first waveguide, |as1|2/(|as1|2 +
|as2|2), vs. the pump amplitude in the first waveguide and the phase-mismatch.
Propagation distances are (a,b) L = 5C and (c,d) L = 10C. Parameters corre-
spond to (a,c) Figs. 5.2(a,c) and (b,d) Figs. 5.2(b,d).

Finally, we investigate numerically a connection between spectral PT-breaking

and spatial mode dynamics in a general case of non-zero phase mismatch. We

present in Fig. 5.5 the fraction of signal intensity in the first waveguide depend-

ing on the phase-mismatch and the pump amplitude for different propagation

distances. We find that spatial dynamics strongly depends on the spatial PT-

symmetry of modes in the linear regime (at low pump amplitudes Aj → 0). The

linear modes are PT-symmetric if |γ1 − γ2| < 2C, and then the pump ampli-

tude can control the period of mode coupling between the waveguides, while the

oscillations get suppressed close to the spectral PT threshold, see Figs. 5.5(a,c)

and Fig. 5.2(c). However if the linear modes are PT-broken for |γ1 − γ2| > 2C,

then mode beating between the waveguides still occurs below the spectral PT
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threshold, but with very small modulation amplitude, see Figs. 5.5(b,d) and

Fig. 5.2(d). In all cases, the mode beating changes faster with pump amplitude

at longer distances.

In conclusion, we have identified an anti-PT spectral symmetry of a para-

metric amplifier based on a quadratically nonlinear coupler with different losses

in two waveguides. For pump powers below a threshold the modes form pairs

with broken PT symmetry and same gain/loss, whereas above the threshold one

PT-symmetric mode experiences the largest gain. This can facilitate spectrally-

selective mode amplification, and we expect that this effect will become even more

pronounced in resonator structures in analogy with single-mode operation of PT

microring lasers [87, 88]. We have established an underlying connection between

spectral anti-PT and conventional spatial PT mode symmetries, which reveals the

possibility to control spatial light switching and amplification through parametric

gain. Accordingly, the suggested platform can implement various unconventional

regimes of light control previously suggested for PT-symmetric structures, such

as unidirectional [79] and nonreciprocal [157] operation, but with the advantage

of ultrafast all-optical control of PT-symmetry regimes by pump pulses. We an-

ticipate that, due to the universality of parametric amplification processes, these

concepts will be extended to different physical mechanisms including Kerr-type

optical nonlinearity.
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Chapter 6
Single-photon down-conversion in

nonlinear waveguide arrays

All the previous chapters analyse behaviour of the quantum and classical pro-

cesses described by the non-Hermitian Hamiltonian. In this chapter, we describe

SPDC in a nonlinear WGA for a single-photon pump, applying quantum pump

description and taking into account possible pump depletion. It was suggested

that on-chip generation of entangled photons is possible with nonlinear waveguide

arrays (WGAs), which can efficiently produce entangled photon pairs and simul-

taneously shape their spatial correlations through quantum walks [56]. So far,

only the regime of a strong classical pump coupled to a nonlinear WGA was stud-

ied [47, 56, 57, 158]. However, investigation of nonlinear effects in a few-photon

regime can lead to fundamental and ultimately technological advances. All pro-

cesses described in the current chapter are characterized by the Hermitian Hamil-

tonian, we didn’t include any losses in the system but important experimental

results include two-photon sum-frequency generation [159, 160] and SPDC with a

single-photon pump [161]. Generation of photon triplets using cascaded sponta-

neous parametric down-conversion detected rate of triplets as 4.7±0.6 counts per

hour. Recently, coherent single-photon conversion has been demonstrated based

on a four-wave-mixing interaction which mimicked SPDC process in a quadratic

crystals [162], which can lead to optically switchable quantum circuits with a

complete control over individual photons. The coherent photon conversion cor-

responds to a pair detection rate (for 4.8µW of effective power in the 710-nm

input) of 1.45±0.02 pairs per second per milliwatt of 532-nm pump power.

In this chapter we discuss the dynamics of pump and generated photons and

find very interesting behavior of compression of Rabi-like oscillations. The Rabi

cycle is defined initially for the two-level quantum system. When light interacts

with a two-level system this can lead to a periodic exchange of energy between the

light field and the two-level system. Rabi oscillation is a cyclic process of emitting


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and re-absorbing of light photon, which an atom exhibits with the application of

a coherent beam at resonant frequency. Then the atom undergoes Rabi flipping

between upper and lower states and consequently the population in each state will

oscillate in time with the Rabi frequency which is independent of the frequency

of the applied electromagnetic field, rather depends linearly on the strength of

the field and the dipole matrix element of transition. These are oscillations

of the quantum mechanical expectation values of level populations and photon

numbers. Coupled waveguides/arrays mimic and visualize dynamical features

of discrete quantum systems with similar structures in their physical behaviour

and mathematical formalism. The possibility of Rabi oscillations is exhibited

theoretically in the waveguide array on the basis of intra-band Flocuet - Bloch

modes oscillation [163], by considering adiabatic transitions between confined

modes in properly modulated waveguide structure [164], and on the basis of

specially modulated and alternately coupled linear waveguide array [165].

6.1 Rabi-like oscillations compression

and spectral dispersion
First we study the properties of the SPDC process in a single nonlinear waveg-

uide [Fig. 6.1(a)]. The Hamiltonian of the system can then be written as fol-

lows [7, 62]:

Ĥ =

∫
dωp

∫
dωs

∫
dωi

[
χap(ωp)a

†
s(ωs)a

†
i (ωi) + χ∗a†p(ωp)as(ωs)ai(ωi)

]
+

∫
dωpβp(ωp)a

†(ωp)ap(ωp) +

∫
dωsβs(ωs)a

†
s(ωs)as(ωs)

+

∫
dωiβi(ωi)a

†
i (ωi)ai(ωi),

(6.1)

where aj (a†j) are annihilation (creation) operators for pump, signal and idler

modes (j = p, s, i), ωj and βj are the corresponding frequencies and mode prop-

agation constants in a waveguide, and χ is the effective nonlinear susceptibility

coefficient.
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Figure 6.1: (a) Scheme of SPDC for single-photon pump in a quadratic nonlin-
ear waveguide. At the input we have singe ”pump” photon represented by circle
titled as pump and the arrow shows its propagation direction. The circles titled
s and i are signal and idler photons generated through SPDC and arrows again
show their propagation direction. (b) Three kinds of possible phase-matching
conditions : (1) ∆β0 = −6, non-degenerate SPDC favoring ωs 6= ωi, (2) ∆β0 = 0,
degenerate SPDC favoring ωs ' ωi, and (3) ∆β0 = 6, phase-mismatched SPDC.

We analyze the process when a single pump photon is converted into a signal

photon and an idler photons. We consider the case of a pump photon with long

temporal duration, and accordingly narrow spectrum. However, the spectra of

signal and idler photons can be much broader. Then, we seek the wave function

describing the evolution of photon states in a form similar to Refs. [162, 166],

but accounting for spectra of photons:

|ψ〉 =eiβUz
∫ ∞
−∞

dωp

[
U(z)S(ωp)a

†
p(ωp) +

∫ ∞
−∞

dΩV (Ω, z)

× S(ωp)a
†
s(ωp/2 + Ω)a†i (ωp/2− Ω)

]
|0〉,

(6.2)

Here U is the pump amplitude, V is the biphoton amplitude, S(ωp) is the pump

spectral distribution that is normalized as
∫
dωp|S(ωp)|2 = 1, Ω is the detuning

of signal and idler photons as ωs = ωp/2 + Ω and ωi = ωp/2 − Ω, βU = βp at

the central pump frequency, and |0〉 is the vacuum state. Note that U and V

are considered to be independent on ωp for a narrowband single-photon pump.

According to the field quantization [9], the integration should be performed over

positive frequencies. Then, the integration limits in Eq. (6.2) are from 0 to ∞
for ωp. We assume that V (Ω, z) is non-zero only for |Ω� ωp|, and formally con-

sider integration over Ω for the whole interval (−∞,∞) to simplify mathematical

notations.
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Figure 6.2: (a,b,c) Biphoton intensity IV depending on propagation distance
and frequency for different phase-matching conditions; (d,e,f) Pump intensity Ip
(dashed line) and signal (or idler) intensity ĨV (solid line); (g,h,i) Biphoton inten-
sities depending on propagation distance and frequency for classical undepleted
pump U(z) ≡ const. The phase-matching parameters are (a,d,g) ∆β0 = −6;
(b,e,h) ∆β0 = 0 and (c,f,i) ∆β0 = 6.

The wavefunction |ψ〉 for the SPDC obeys the Schrödinger equation for a

traveling wave [7]:

i
d|ψ〉
dz

= Ĥ|ψ〉. (6.3)

We substitute Eq. (6.2) into Eq. (6.3), and obtain the coupled-mode equations

while neglecting the dependence of mismatches βj on ωp for a narrowband pump

photon:

dU(z)

dz
= −χ

∫ ∞
−∞

dΩV (Ω, z),

dV (Ω, z)

dz
= χ∗U(z) + i∆β(Ω)V (Ω, z),

(6.4)

where ∆β = βs(ωp, ωp/2+Ω)+βi(ωp, ωp/2−Ω)−βU we take Taylor expansion of

it. As the first order differentiation will have opposite signs and, as it is mentioned



§. Rabi-like oscillations compression and spectral dispersion 

in the text, we consider the signal and idler photons corresponding to the same

waveguide mode the first order terms cancel each other, thus the mismatch can

be approximated by a quadratic dependence,

pump

Z

n-2     -1      0       1       2

C

s i

Figure 6.3: Scheme of SPDC and quantum walks for single-photon pump in
the waveguide array with the coupling C between the waveguides. Singe pump
photon represented by circle titled as ”pump” is the input, two circles represent
signal and idler photons. The arrows show that they can move in both directions:
forward or backwards

∆β ≈ ∆β0 +K0Ω2. (6.5)

The absolute values of parameters χ and K0 can be rescaled to arbitrary

values by appropriate normalization of the propagation distance (z) and the

frequency detuning (Ω). To be specific, we present numerical simulations for

χ = 1, K0 = 0.1, and analyze three generic cases of positive, zero, or negative

mismatches ∆β0. For different values of ∆β0, the SPDC process can be phase-

matched in either degenerate (if ∆β0 = 0, ∆β(Ω = 0) = 0) or non-degenerate (if

∆β0 < 0, ∆β(Ω 6= 0) = 0) regime, or have no phase-matching for any signal and

idler frequencies within the considered frequency band if ∆β0 > 0, see Fig. 6.1(b).

It is interesting to mention that even in case of degenerate regime we have ωs ' ωi
because the process is spontaneous thus there is always some distribution around

each frequency.

We calculate the signal (or idler) intensity spectra IV = |V (Ω, z)|2 depend-

ing on propagation distance and frequency for different phase mismatches [Figs.

6.2(a,b,c)], using the initial conditions corresponding to a single-photon pump:

U(0) = 1 and V (Ω, z = 0) = 0. In Figs. 6.2(b,c) the intensity is mostly

concentrated in the degenerate spectral region, while in Fig. 6.2(a) the signal

(idler) intensity is shifted towards the frequency side bands, in agreement with

Fig. 6.1(b). This behavior leads to interesting interplay between the overall pump

intensity Ip = |U |2 and the overall signal (idler) intensity ĨV =
∫
dΩ|V (Ω, z)|2
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[Figs. 6.2(d,e,f)]. In the case of non-degenerate phase mismatch most of pump

energy is converted to signal and idler energy [Fig. 6.2(d)], while in the case of

degenerate phase-matching we see partial transformation [Fig. 6.2(e)]. In case of

positive phase mismatch there is no efficient generation of signal and idler photon

pairs [Fig. 6.2(f)]. Remarkably in all three cases there is almost no overall back-

conversion from biphotons to pump, since the Rabi-like oscillations of different

signal (idler) frequency components are not synchronized due to a frequency-

dependent phase mismatch. For comparison, we show in Figs. 6.2(g,h,i) the

spectral intensities of signal (idler) photons in the case of a strong classical pump.

We see that compared to the classical pump regime, the biphoton spectra in a

single-photon-pumped regime [Figs. 6.2(a,b,c)] have more complex structure with

extra periodical modulation along the propagation direction. This modulation is

attributed to partial back-conversion from a biphoton back to a pump photon.

6.2 Biphoton generation efficiency and

dispersion
In this section we extend the analysis from a single waveguide to a periodic

array of coupled waveguides. We study the behavior of the SPDC when a single

pump photon is coupled to a waveguide in the center of the array [Fig. 6.3]. We

assume zero coupling between waveguides at the pump frequency and constant

coupling between the neighboring waveguides at the signal and idler frequencies,

which is typical for LiNbO3 waveguide arrays [56]. The Hamiltonian of such

system has the following form:

Ĥ =
∑
np

∫
dωp

∫
dωs

∫
dωi

[
χap(np, ωp)a

†
s(np, ωs)a

†
i (np, ωi)

+χ∗a†p(np, ωp)as(np, ωs)ai(np, ωi)

]
+

∫
dωp

∑
np

βp(ωp)a
†
p(np, ωp)ap(np, ωp) +

∫
dωs

∑
ns

βs(ωs)a
†
s(ns, ωs)as(ns, ωs)

+

∫
dωi
∑
ni

βi(ωi)a
†
i (ni, ωi)ai(ni, ωi)

+C

∫
dωs

∑
ns

[
as(ns, ωs)a

†
s(ns + 1, ωs) + a†s(ns, ωs)as(ns + 1, ωs)

]

+C

∫
dωi
∑
ni

[
ai(ni, ωi)a

†
i (ni + 1, ωi) + a†i (ni, ωi)ai(ni + 1, ωi)

]
. (6.6)
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Here C is a coupling coefficient in a homogenous waveguide array, and nj
(j = p, s, i) are the numbers of the waveguides for the corresponding pump,

signal and idler photons. We now assume that the pump photon spectrum is

narrow, similar to the preceding analysis for a single waveguide, and then the

wavefunction describing the photon dynamics in the system can be formulated

in the following form:

|ψ〉 = eiβUz
∫
dωp

[∑
np

Unp(z)S(ωp)a
†
p(np, ωp) +

∑
ns,ni

∫
dωp

∫
dΩVns,ni(Ω, z)S(ωp)a

†
s(ns, ωp/2 + Ω)a†i (ni, ωp/2− Ω)

]
|0〉. (6.7)

The coupled-mode equations can be derived by substituting the wavefunction

from Eq. (6.7) into Eq. (6.3) for the Hamiltonian from Eq. (6.6):

dUnp(z)

dz
= −χ

∫ ∞
−∞

dΩVnp,np(Ω, z),

dVns,ni(Ω, z)

dz
= χ∗δns,niUns(z) + i∆β(Ω)Vns,ni(Ω, z)

+iC

[
Vns−1,ni(Ω, z) + Vns+1,ni(Ω, z) + Vns,ni−1(Ω, z) + Vns,ni+1(Ω, z)

]
. (6.8)

We seek a solution of Eq. (6.8) for initial conditions Unp=0(z = 0) = 1,

Unp 6=0(z = 0) = 0 and Vns,ni(Ω, z = 0) = 0 and parameters C = 1, χ = 1 and

K0 = 0.1.

We analyze the evolution of the pump and signal photon intensities along

the propagation distance for three different phase-matching conditions. Fig-

ures 6.4(a,b,c) show the pump intensities Wp(np) = |Unp(z)|2 across the array,

Figs. 6.4(d,e,f) show the signal intensities WV (ns) =
∫
dΩ
∑

ni
|Vns,ni(Ω, z)|2,

and Figs. 6.4(g,h,i) show the total signal and idler intensities integrated over all

waveguides vs. the frequency WΩ =
∑

ns

∑
ni
|Vns,ni(Ω, z)|2 . We notice that for

the non-degenerate phase-matching condition (∆β0 = −6) the pump mode in-

serted in the central waveguide [Fig. 6.4(a)] transforms into two biphoton modes,

which propagate in different waveguides [Fig. 6.4(d)] with different frequencies

[Fig. 6.4(g)] and don’t recombine during the propagation. The degenerate phase-

matching condition corresponds to efficient SPDC and continuous conversion

between pump and biphoton modes during the propagation [Figs. 6.4(b,e,h)].

We observe non-efficient biphoton generation in case of the positive phase mis-

match (∆β0 = 6) as the pump mode remains approximately unchanged during

its propagation [Fig. 6.4(c)] and the intensity of the generated biphotons remains

comparatively small [Figs. 6.4(f,i)].
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Figure 6.4: (a,b,c) Pump intensity Wp(n) and (d,e,f) biphoton intensity WV (n)
vs. the propagation distance and waveguide number; (g,h,i) Biphoton intensities
depending on propagation distance and frequency Ω for different phase-matching
conditions (a,d,g) ∆β0 = −6; (b,e,h) ∆β0 = 0, and (c,f,i) ∆β0 = 6.

Next we analyze spatial biphoton correlations Γns,ni(L) =
∫
dΩ|Vns,ni(Ω, L)|2

with single-photon pump for three phase-matching regimes [Figs. 6.5(a,b,c)]. For

a strong classical pump and degenerate phase-matching, the correlations feature

a cross shape, corresponding to the simultaneous bunching and anti-bunching

of photon pairs [56]. However, the biphoton spatial correlations arising from a

single-photon pump with degenerate phase-matching [Fig. 6.5(b)] have a more

complex structures, where the bunching branch is preserved only close to the

central waveguide, while additional areas of bunching and antibunching appear

further away from the center.
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Figure 6.5: Spatial biphoton correlations Γns,ni at the propagation distance
z = 2 for different phase-matching conditions (a) ∆β0 = −6; (b) ∆β0 = 0 and
(c) ∆β0 = 6.

The spatial biphoton correlations in a WGA are less pronounced in the case of

positive phase mismatch [Fig. 6.5(c)] and more pronounced in the case of negative

phase mismatch [Fig. 6.5(c)]. The non-trivial shape of the spatial correlations

arises due to a complex interplay of photon conversion and frequency dispersion.

To conclude, this chapter has described spontaneous parametric down-

conversion of a single-photon pump in nonlinear waveguide array. A number

of non-trivial phenomena related to generation of a broad spectrum of signal and

idler photons by a narrow-band pump have been demonstrated. These include

the absence of back-conversion in a single waveguide due to effective suppres-

sion of Rabi-like oscillations and unusual photon-pair correlations in waveguide

arrays. These results suggest new possibilities for photon path control and engi-

neering of multi-photon states, which could be beneficial for further development

of integrated quantum photonics.
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Chapter 7
Conclusion and outlook

Quantum and classical properties of light propagating in the nonlinear opti-

cal waveguides spark significant of research driven by fundamental interest and

applications. Nonlinear waveguide arrays can be used to efficiently generate en-

tangled photon pairs and simultaneously shape their spatial correlations through

quantum walks. Such integrated photon sources can find applications in the

development of on-chip quantum communication and computation devices. In

recent years the quantum optics of attenuating media was developed. Firstly, be-

cause quantum information protocols are inevitably affected by noise, secondly

photonic structures composed of coupled waveguides with lossy regions offer new

possibilities for shaping optical beams and pulses. Finally, there has been in-

creased interest in nonlinear hybrid plasmonic waveguide as surface plasmon po-

laritons offer increased field confirmation and minituisation.

In this thesis we address an important problem of the effect of losses on

the generation and propagation of both quantum and classical light in nonlinear

waveguide structure.

We describe photon-pair generation through spontaneous parametric down-

conversion in quadratic nonlinear waveguide arrays, and determine the tolerance

to loss when quantum features in spatial correlations are preserved. We demon-

strate that photon-pair generation through SPDC in a nonlinear lossy waveguide

can be simulated by classical linear light propagation in a semi-infinite array

of weakly coupled single-mode optical waveguides with the different coupling

coefficients controlled by waveguide spacing. The demonstrated waveguide plat-

form can be further applied to optically simulate the effects of non-Markovian

losses and quantum decoherence phenomena. In the thesis we perform analytical

and numerical analysis of the quantum spontaneous parametric down-conversion

and sum frequency generation and presented theoretical results on possibilities

to characterize SPDC through classical sum frequency generation in nonlinear

lossy waveguide array. This technique is called stimulated multimode tomogra-


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phy. In the last chapter in contrast to whole thesis we discuss the system which

is described by a Hermitian Hamiltonian. We describe spontaneous paramet-

ric down-conversion of a single-photon pump, which can be presented as pump

depletion, in nonlinear waveguide arrays. The results suggest new possibilities

for photon path control and engineering of multi-photon states, which could be

beneficial for further development of integrated quantum photonics.

Some of the effects predicted in this thesis were observed in experiment, with

good agreement to my theory. However, we believe that more can be done in

the research of generation and propagation of quantum and classical light in non-

Hermitian integrated photonics both from theoretical and experimental points of

view.

In Chapter 3 we discuss SPDC in a single lossy waveguide, where we take

into account only losses of the signal and idler photons. We present not only

theoretical but also experimental emulation of SPDC in the system which includes

the loss-emulating array with waveguide couplings. We point out theoretically

that the circuit can be designed to emulate the effect of pump losses as well, and

it will be very interesting to conduct experiment and see the correlations with

the theory.

Our preliminary studies suggest that finite number of loss emulating waveg-

uides can be a perfect platform for description of non-Markovian losses. Non-

Markovian behavior is detected in radiation modes of subwavelength plasmonic

nanostructures and in analysis of spontaneous emission of excited two-level atoms.

It will be interesting to discuss the theoretical model of a quantum system which

displays non-Markovian behavior and show the possibility to simulate it in linear

coupled waveguide arrays.

Most recently there has been a growing excitement among researchers about

the prospects for building plasmonic devices, which enable strong, coherent in-

teractions between quantum emitter system and photons which is essential for

quantum communication and quantum information science. Unlike in classical

optics, the possible benefits of metamaterials and plasmonic structures in quan-

tum optics have not been widely explored so far. It is an important and still open

question whether the similar effective-medium parameters describe the propaga-

tion of quantum states of light in metamaterials and plasmonic structures. From

this perspective the research direction to follow would be to study photon gen-

eration and control in structures with loss, such as hybrid plasmonic waveguides

and metamaterials.



Appendix A
Derivation of two-photon state in lossy

waveguide arrays

In this Appendix, we detail the derivation procedure of Eqs. (2.6)-(2.9). As dis-

cussed in Sec. 2.1, the photon state evolution is governed by a sum of Hamiltonian

operators provided by the Eqs. (2.2),(2.4):

Ĥ(z) = Ĥnl(z) + Ĥbs(z). (A.1)

Accordingly, the evolution of a photon state (|	(z)〉) is governed by the

Schrödinger equation in the undepleted classical pump approximation [40, 48,

167]:
∂|	(z)〉
∂z

= −iĤ(z)|	(z)〉. (A.2)

It is pretty common in optics to write Schreodinger equation in terms of propaga-

tion coordinate z. The transition from conventional formulation in time (t) to the

propagation coordinate (z) works in a quasi-monochromatic and one-directional

propagation regime. Then one can assume z = vt, where v is a fixed phase

velocity [50, 51, 58, 168].

We consider the case of sufficiently weak pump, such that multiple photon

pairs are not generated simultaneously, i.e. we neglect cascading processes. Then,

the photon state can be approximately represented as a sum of the unperturbed

vacuum state (|0〉) and the biphoton state (|Ψ(z)〉) (see Eq. (2.5) and in Ref. [59]).

Under such assumptions, the approximate Schrödinger equation for the biphoton

wavefunction is:
∂|Ψ(z)〉
∂z

' −iĤ(z) (|Ψ(z)〉+ |0〉) . (A.3)

We now seek the solution for the two-photon state in the form of Eq. (2.5),

which we specially choose to obtain a solution of Eq. (A.3), taking into account


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all possible two-photon states. We consider a vacuum input state, with zero

photon pairs:

Φ(z = 0) = 0,

Φ̃(s)(z = 0, zl) = Φ̃(i)(z = 0, zl) = 0, (A.4)

Φ̃(si)(zs = 0, zl = 0) = 0.

First, we calculate the action of Ĥnl on the biphoton state |Ψ(z)〉, which

describes the photon evolution inside a quadratically nonlinear waveguide:

Ĥnl|Ψ(z)〉 =

[
βsΦ(z)a†sa

†
i |0〉+ βs

∫ z

0

dzlΦ̃
(s)(z, zl)a

†
sb
†
i (zl)|0〉

+ βiΦ(z)a†sa
†
i |0〉+ βi

∫ z

0

dzlΦ̃
(i)(z, zl)b

†
s(zl)a

†
i |0〉

]
+ E∗pΦ(z)|0〉

+ Ep

[
Φ(z)a†2s a

†2
i |0〉+

∫ z

0

dzlΦ̃
(s)(z, zl)a

†2
s a
†
ib
†
i (zl)|0〉

+

∫ z

0

dzlΦ̃
(i)(z, zl)a

†
sa
†2
i b
†
s(zl)|0〉

+

∫ z

0

dzls

∫ z

0

dzliΦ̃
(si)(zls , zli)a

†
sb
†
s(zls)a

†
ib
†
i (zli)|0〉

]
. (A.5)

In the following we assume that higher order terms in Eq. (A.5) that correspond

to cascaded processes are negligible in comparison to the first order ones. Specifi-

cally, we neglect the zero-photon state (E∗pΦ(z)|0〉), originating through cascading

from vacuum to two-photons and back to vacuum; and four-photon state (the

last square bracket term). Then, we calculate the action of the Hamiltonian Ĥbs,

which describes beam-splitters representing losses:

Ĥbs|Ψ(z)〉 =
√

2γsΦ(z)b†s(z)a†i |0〉+
√

2γs

∫ z

0

dzlΦ̃
(s)(z, zl)b

†
s(z)b†i (zl)|0〉

+ H(0)
√

2γsΦ̃
(i)(z, z)a†sa

†
i |0〉

+ H(0)
√

2γs

∫ z

0

dzliΦ̃
(si)(z, zli)a

†
sb
†
i (zli)|0〉

+
√

2γiΦ(z)a†sb
†
i (z)|0〉+

√
2γi

∫ z

0

dzlΦ̃
(i)(z, zl)b

†
s(zl)b

†
i (z)|0〉

+ H(0)
√

2γiΦ̃
(s)(z, z)a†sa

†
i |0〉

+ H(0)
√

2γi

∫ z

0

dzlsΦ̃
(si)(zls , z)a

†
ib
†
s(zls)|0〉. (A.6)





In these calculations, we use the standard properties of the creation and annihi-

lation operators [114] and a Heaviside step function:

H(z) =

∫ z

−∞
δ(t)dt =


0, z < 0,
1
2
, z = 0,

1, z > 0,

(A.7)

Finally, the action of the Hamiltonian operators on vacuum |0〉 is:

Ĥnl|0〉 = Epa
†
sa
†
i |0〉, Ĥbs|0〉 = 0. (A.8)

As expected, the SPDC process described by Ĥnl leads to a generation of a photon

pair from vacuum.

We now calculate the temporal derivative of the biphoton wavefunction Ψ(z),

which has the form of Eq. (2.5):

∂|Ψ(z)〉
∂z

=
∂Φ(z)

∂z
a†sa
†
i |0〉+ Φ̃(s)(z, z)a†sb

†
i (z)|0〉

+

∫ z

0

dzl
∂Φ̃(s)(z, zl)

∂z
a†sb
†
i (zl)|0〉+ Φ̃(i)(z, z)b†s(z)a†i |0〉

+

∫ z

0

dzl
∂Φ̃(i)(z, zl)

∂z
b†s(zl)a

†
i |0〉+

∫ z

0

dzlΦ̃
(si)(z, zl)b

†
s(z)b†i (zl)|0〉

+

∫ z

0

dzlΦ̃
(si)(zls , z)b

†
s(zl)b

†
i (z)|0〉. (A.9)

We substitute Eqs. (A.5)-(A.9) into Eq. (A.3), and collect terms representing

different photon states. The state of both photons in the waveguide (i.e. the

photons that are not lost through the beamsplitters) is a†sa
†
i |0〉. Multiplying both

sides of Eq. (A.3) by Hermitian conjugate of the state expression, i.e. 〈0|asai,
and taking into account Eqs. (A.5)-(A.9), we obtain:

∂Φ(z)

∂z
= −i

[
(βs + βi) Φ(z) + Ep + 1

2

√
2γsΦ̃

(i)(z, z) + 1
2

√
2γiΦ̃

(s)(z, z)

]
. (A.10)

Then we determine the evolution of states where either idler or signal photon is

lost at a propagation distance zl by multiplying both sides of Eq. (A.3) by the

Hermitian conjugates of a†sb
†
i (zl)|0〉 and b†s(zl)a

†
i |0〉, respectively:

∂Φ̃(s)(z, zl)

∂z
H(z − zl) = −i

[
βsΦ̃

(s)(z, zl) +
1

2

√
2γsΦ̃

(si)(z, zl)

]
H(z − zl)

−i
√

2γiΦ(z)δ(z − zl)− Φ̃(s)(z, z)δ(z − zl), (A.11)
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∂Φ̃(i)(z, zl)

∂z
H(z − zl) = −i

[
βiΦ̃

(i)(z, zl) +
1

2

√
2γiΦ̃

(si)(zl, z)

]
H(z − zl)

−i
√

2γsΦ(z)δ(z − zl)− Φ̃(i)(z, z)δ(z − zl). (A.12)

To find the state where both photons are lost, i.e. signal photon is lost at a

coordinate zls and idler photon is lost at a coordinate zli , we multiply Eq. (A.3)

by the Hermitian conjugate of b†s(zls)b
†
i (zli)|0〉:

Φ̃(si)(z, zli)δ(z − zls)H(z − zli) + Φ̃(si)(zls , z)δ(z − zli)H(z − zls) =

−i1
2

√
2γsΦ̃

(s)(z, zli)δ(z − zls)H(z − zli)

−i1
2

√
2γiΦ̃

(i)(z, zls)δ(z − zli)H(z − zls). (A.13)

Afterwards we solve Eqs. (A.13) taking into account the initial conditions in

Eq. (A.4):

Φ̃(si)(zls , zli) = −i1
2

√
2γsΦ̃

(s)(zls , zli), zls ≥ zli ,

Φ̃(si)(zls , zli) = −i1
2

√
2γiΦ̃

(i)(zli , zls), zls ≤ zli . (A.14)

Then we calculate Φ̃(s)(zl, zl) and Φ̃(i)(zl, zl) by integrating the Eqs. (A.11) and

A.12 for zl − ε < z < zl + ε in the limit ε→ 0:

Φ̃(s)(zl, zl) = −i
√

2γiΦ(zl), Φ̃(s)(z < zl, zl) = 0,

Φ̃(i)(zl, zl) = −i
√

2γsΦ(zl), Φ̃(i)(z < zl, zl) = 0. (A.15)

Finally we substitute Eqs. (A.14) and (A.15) into Eqs. (A.10)-(A.12) and ob-

tain the relations for the evolution of the biphoton wave function, as written in

Eqs. (2.6)-(2.8):

∂Φ(z)

∂z
= −(i∆β(0) + γs + γi)Φ(z) + Ae−γpz, (A.16)

∂Φ̃(s)(z, zl)

∂z
= −(iβ(0)

s + γs)Φ̃
(s)(z, zl), z ≥ zl, (A.17)

∂Φ̃(i)(z, zl)

∂z
= −(iβ

(0)
i + γi)Φ̃

(i)(z, zl), z ≥ zl. (A.18)



Appendix B
Eigenmode solution of SPDC and SFG

B.1 Eigenmode solution of SPDC in a

lossy waveguide array
In this Appendix, we detail the eigenmode solution of Eqs. (4.1) and (4.2).

We have found results for the SPDC in the waveguide array with spatially inho-

mogeneous losses Eqs. (4.7) and (4.8) as discussed in Sec. 4.1.

Firstly we find eigenmode solution for the pump field from Eq. (4.2). The

solution is given through the fundamental matrix solution M as follows

A(z) =M(z)

(
M(0)

)−1
A(0), (B.1)

where

Mn3(z) =
∑
m3

U3 (n3,m3) eλ
p
m3

z. (B.2)

where U3 (n3,m3) is the eigenvector for the pump amplitude with eigenvalues λpm3

and A(0) is the input field at z = 0, we assume that the pump is only in one of

the waveguides and rewrite the input field in diagonal form as follows,

A(0) =

 A1 0 ... 0

... ... ... ...

0 ... ... An3

 (B.3)

Substituting Eqs. (B.2) and (B.3) in the Eq. (B.1) we find the final result for the


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pump field as

An3,n3(z) =
1

detU3

∑
m3

U3 (n3,m3) eλ
p
m3

z

(
U3 (m3, n3)

)−1

An3,n3(0). (B.4)

The solution of the inhomogeneous differential equations is the sum of the

solution of the homogeneous equation and the particular solution of the inhomo-

geneous one, thus we present the solution of Eq. (4.1) as Φ(z) = Φ0(z) + Φ′(z).

Φ0(z) = 0 as there are no input two photon states at z = 0, which means for

SPDC Φ(z) = Φ′(z). The solution of the homogeneous part of the Schrödinger-

type equations for the photon pair amplitudes is presented as the product of so-

lutions for the signal and idler modes. un1,m1 and vn2,m2 are eigenmode solutions

of homogeneous Schrödinger equation, which could be written in the matrix form

as in Eq. (4.4)and Eq. (4.5). We present the solution of the eigenmode problem

for the signal and the idler photons as follows:

un1,m1 = U1 (n1,m1) eλ
s
m1

z,

vn2,m2 = U2 (n2,m2) eλ
i
m2

z. (B.5)

where U1 (n1,m1) is the eigenvector for the signal photon with eigenvalues λs1(2)

and U2 (n2,m2) is the eigenvector for the idler photon with eigenvalues λi1(2).

Taking into account the seeking solution Eq. (4.3) Φn1,n2(z) =∑
m1m2

un1,m1vn2,m2Bm1,m2(z) for the inhomogeneous array of equations and sub-

stituting it in the Schrödinger Eq. (4.1) we find the equation for the z dependant

expansion coefficient as follows,∑
m1m2

un1,m1vm2,n2

∂Bm1,m2

∂z
= An3,n3(z). (B.6)

Here we again assume that we have pump only in one of the waveguides with

number n3

Bm1,m2 =

∫ L

0

dz

(∑
n2

(∑
n1

u−1
m1,n1

An3,n3(z)

)
v−1
n2,m2

)
, (B.7)

We find the final result for two-photon amplitude as follows

Φn1,n2 =
∑
m2

(∑
m1

un1,m1Bm1,m2

)
vn2,m2 . (B.8)

Substituting Eqs. (B.5) and (B.4) in the Eq. (B.7) we can re-write the solution
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for the z dependant expansion coefficient as

Bm1,m2 =
iz

det(U1)det(U2)det(U3)

∑
m3,n3

e
(λpm3

−λsm1
−λim2)z

2 ×

sinc

((
λpm3
− λsm1

− λim2

)
z

2

)
×{

U1 (n3,m1, )∑
q U

2
1 (q,m1)

U3 (n3,m3)
U3 (n3,m3, )∑
z U

2
3 (l,m3)

An3,n3(0)
U2 (n3,m2, )∑
p U

2
2 (p,m2)

}
, (B.9)

Now we substitute Eq. (4.7) and (B.5) in the result for two-photon amplitude

and taking into account the matrix symmetry relations (4.6) we get the following

result

Φn3
n1,n2

=
iz

det(U1)det(U2)det(U3)
×

∑
m3,m2,m1

e
(λpm3

+λsm1
+λim2)z

2 sinc

((
λpm3
− λsm1

− λim2

)
z

2

)
×{

U1 (n1,m1)
U1 (n3,m1)∑
q U

2
1 (q,m1)

U3 (n3,m3)
U3 (n3,m3)∑
k U

2
3 (k,m3)

×

An3,n3(0)
U2 (n3,m2)∑
l U

2
2 (l,m2)

U2 (n2,m2)

}
. (B.10)

Now let us assume that we can adjust our system to have single mode input,

which means that we can write the input state as An3 = Am3U3 (n3,m3) eλ
p
m3

z

and substituting this in Eq. (4.7) we will have

Bm3
m1,m2

= ize
(λpm3

−λsm1
−λim2)z

2 sinc

((
λpm3
− λsm1

− λim2

)
z

2

)
×

∑
n3

U1 (n3,m1, )∑
q U

2
1 (q,m1)

Am3,m3(0)U3 (n3,m3)
U2 (n3,m2, )∑
p U

2
2 (p,m2)

. (B.11)

Here for the simplicity of the registration we assume that our modes are

normalized as follows
∑

p U
2
j (p,mi) = 1.
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Bm3
m1,m2

= ize
(λpm3

−λsm1
−λim2)z

2 sinc

((
λpm3
− λsm1

− λim2

)
z

2

)
×∑

n3

U1 (n3,m1, )U3 (n3,m3)U2 (n3,m2, )Am3,m3(0). (B.12)

B.2 Eigenmode solution of SFG in a

lossy waveguide array
In this section, we show the detailed derivation of the eigenmode solution of

Eqs. (4.12-4.14) for sum frequency generation as discussed in Sec. 4.1.

∂

∂z


a1(ω1)

a2(ω1)

...

an1(ω1)

 =


−iβs − γs(n1) −iCs 0 ... 0

−iCs −iβs − γs(n1) −iCs ... 0

.. .. .. .. ..

0 0 ... −iCs −iβs − γs(n1)



×


a1(ω1)

a2(ω1)

...

an1(ω1)

 . (B.13)

We solve the eigenvalue-eigenmode problem for the SFG process. We find

U1 (n1,m1) is the eigenvector for the modes with frequency ω1 with eigenvalues

λsCm1
and U2 (n2,m2) is the eigenvector for the mode with frequency ω2 and

eigenvalues λiCm2
. The solution of the propagating mode amplitudes as, ai on

each frequency ω1, ω2 is given through the fundamental matrix solution M as

follows

as(z, ω1) =


a1(ω1)

a2(ω1)

...

an1(ω1)

 = Ms(z)

(
Ms(0)

)−1

Es (B.14)

where Es,i
n1,2

are the input fields for the modes on the frequency ω1,2 in the mth
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waveguide and

M s
n1,m1

=
∑
m1

U1 (n1,m1) eλ
s
Cm1

z,

M i
n2,m2

=
∑
m2

U1 (n2,m2) eλ
i
Cm2

z. (B.15)

Taking into account Eqs. (B.14,B.15) we find the following results for the mode

amplitude on the frequencies ω1 and ω2 as follows:

an3(z, ω1) =
1

det(U1)

(∑
n1,m1

U1 (n3,m1) eλ
s
Cm1

z U1 (n1,m1)∑
q U

2
1 (q,m1)

Es
n1

)
.(B.16)

and

an3(z, ω2) =
1

det(U2)

(∑
n2,m2

U2 (n3,m2) eλ
i
Cm2

z U2 (n2,m2)∑
l U

2
2 (l,m2)

Ei
n2

)
.(B.17)

Here we took into account the symmetry of the eigenmode matrixes defined in

Eq. 4.6.

To find the eigenmode solution of the Eqs. (4.14) we firstly have to solve the

homogenise equations without terms F(z, ω1, ω2) = an3(z, ω1)an3(z, ω2), F(z) is

a product of signal (ω1) and idler (ω2) modes propagating in the waveguide where

the pump mode is (in future some indexes or arguments could be skipped to keep

the formulas).

We search solution of the inhomogeneous array of equations as

an3(z) =
∑
m3

U3 (n3,m3) eλ
p
Cm3

zΥm3(z), (B.18)

where U3 - is the eigne mode for the mod on the sum frequency (ω3) and Υm3(z)

- is the z dependant expansion function and λpC - is the corresponding eigenvalue.

We substitute the equation for the z dependant expansion function from the

Eq. (4.14) as follows∑
m3

U3 (n3,m3) eλ
p
Cm3

z ∂Υm3

∂z
= Fn3(z). (B.19)

Taking into account the results for the mode amplitudes for the frequencies

ω1 and ω2 we will have the following equation for the z dependant expansion



 Eigenmode solution of SPDC and SFG

function

Υm3 =
iz

det(U1)det(U2)det(U3)
×

∑
m1,m2

∑
n3

e
(λpCm3

−λsCm1
−λiCm2

)z
2 sinc

((
λpCm3

− λsCm1
− λiCm2

)
z

2

)
×

U3 (n3,m3)∑
q U

2
3 (q,m3)

U1 (n3,m1)
U1 (n1,m1)∑
l U

2
1 (l,m1)

U2 (n3,m2)
U2 (n2,m2)∑
p U

2
2 (p,m2)

Es
n1
Ei
n2
.(B.20)

We redefined the amplitude at the sum frequency an3(ω3, z;n1, n2) as new

variable Φ̃n3
n1,n2

(ω3) for the comparison of the results with the ones obtained for

biphoton function Eq. (B.10),

Φ̃n3
n1,n2

(ω3, z) = an3(ω3, z;n1, n2). (B.21)

Φ̃n3
n1,n2

(ω3) is the mode at the sum frequency at the output of the waveguide n3,

when we have input signal mode in the n1 and idler mode in the n2 waveguides,

correspondingly.

Finally, substituting the results for the z dependant coefficient from Eq. (B.20)

in Eq. (B.18) we will get the final results for the mode propagating on the sum

frequency as,

Φ̃n3
n1,n2

(ω3, z) =
iz

det(U1)det(U2)det(U3)
×

∑
m3,m2,m1

e
(λpCm3

+λsCm1
+λiCm2

)z
2 sinc

((
λpCm3

− λsCm1
− λiCm2

)
z

2

)
×

U3 (n3,m3)
U3 (n3,m3)∑
k

U2
3 (k,m3)

U1 (n3,m1)
U1 (n1,m1)∑
q

U2
1 (q,m1)

U2 (n3,m2)
U2 (n2,m2)∑
l

U2
2 (l,m2)

×Es
n1
Ei
n2
. (B.22)

We can imagine that we configure our system to have single mode signal

and idler pumps in the mode space: Es
n1

= Es
m1
U1 (n1,m1) eλ

s
Cm1

z and Ei
n2

=

Ei
m2
U2 (n2,m2) eλ

i
Cm2

z and substituting it in Eq. (B.20)

Υm3
m1,m2

= iLe
(λpm3

−λsm1
−λim2)z

2 sinc

((
λpm3
− λsm1

− λim2

)
z

2

)
×∑

n3

U3 (n3,m3)U1 (n3,m1)U2 (n3,m2)Es
m1
Ei
m2
. (2.23)
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