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Abstract

As the computing power of supercomputers continues to increase exponentially

the mean time between failures (mtbf) is decreasing. Checkpoint-restart has

historically been the method of choice for recovering from failures. However,

such methods become increasingly inefficient as the time required to complete

a checkpoint-restart cycle approaches the mtbf. There is therefore a need to

explore different ways of making computations fault tolerant. This thesis studies

generalisations of the sparse grid combination technique with the goal of develop-

ing and analysing a holistic approach to the fault tolerant computation of partial

differential equations (pdes).

Sparse grids allow one to reduce the computational complexity of high di-

mensional problems with only small loss of accuracy. A drawback is the need to

perform computations with a hierarchical basis rather than a traditional nodal

basis. We survey classical error estimates for sparse grid interpolation and ex-

tend results to functions which are non-zero on the boundary. The combination

technique approximates sparse grid solutions via a sum of many coarse approx-

imations which need not be computed with a hierarchical basis. Study of the

combination technique often assumes that approximations satisfy an error split-

ting formula. We adapt classical error splitting results to our slightly different

convention of combination level.

Literature on the application of the combination technique to hyperbolic pdes

is scarce, particularly when solved with explicit finite difference methods. We

show a particular family of finite difference discretisations for the advection equa-

tion solved via the method of lines has solutions which satisfy an error splitting

formula. As a consequence, classical error splitting based estimates are read-

ily applied to finite difference solutions of many hyperbolic pdes. Our analysis

also reveals how repeated combinations throughout the computation leads to a

reduction in approximation error.

Generalisations of the combination technique are studied and developed at
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depth. The truncated combination technique is a modification of the classical

method used in practical applications and we provide analogues of classical error

estimates. Adaptive sparse grids are then studied via a lattice framework. A

detailed examination reveals many results regarding combination coefficients and

extensions of classical error estimates. The framework is also applied to the study

of extrapolation formula. These extensions of the combination technique provide

the foundations for the development of the general coefficient problem. Solutions

to this problem allow one to combine any collection of coarse approximations on

nested grids.

Lastly, we show how the combination technique is made fault tolerant via

application of the general coefficient problem. Rather than recompute coarse so-

lutions which fail we instead find new coefficients to combine remaining solutions.

This significantly reduces computational overheads in the presence of faults with

only small loss of accuracy. The latter is established with a careful study of

the expected error for some select cases. We perform numerical experiments by

computing combination solutions of the scalar advection equation in a parallel

environment with simulated faults. The results support the preceding analysis

and show that the overheads are indeed small and a significant improvement over

traditional checkpoint-restart methods.
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Chapter 1

Faults in High Performance

Computing

In this thesis we are concerned with the development of fault tolerant algorithms

for solving pdes. In order to motivate this we discuss the occurrence of faults

in current and future computer systems. Questions of importance are why do

faults occur, how often do faults occur, what types of faults occur, and how

do faults affect computations? After surveying several articles which attempt

to answer these questions in Section 1.1 we start to develop several different

models of faults. As faults are random in nature these models are necessarily

stochastic. In Section 1.2 fault models for a single processor are discussed. As

a high performance computer is essentially collection of electrical components

working in parallel this will be a fundamental building block of system models

which are considered in Section 1.3. Lastly, in Section 1.4 we apply fault models

to some simple calculations in a parallel environment, we review the estimation

of the optimal checkpoint frequency for checkpoint-restart based routines and we

study the problem of simulating faults.

1.1 Motivation and background

1.1.1 Faults in HPCs

In the 1940s and 1950s the first all-electric computers were constructed using

vacuum tubes as the electric switches that performed bitwise operations. The

most notable computers of the time consisted of several thousand vacuum tubes,

the ENIAC (Electronic Numerical Integrator And Computer) had over 17 000.

1



2 CHAPTER 1. FAULTS IN HIGH PERFORMANCE COMPUTING

There were several issues with vacuum tubes at the time including size, cost, and

a relatively short mean time to failure. Now it is important to clarify what we

mean by relatively short life span. A long-life vacuum tube at the time had a

life expectancy in the order of O(5 000) hours [97] (some specially designed tubes

in the 1950s had much more) which was reasonable given the manufacturing

processes of the time. However, having several thousand such vacuum tubes

operating at once it was observed that tubes would fail and need to be replaced

at a frequency in the order of days. A notable example is the ENIAC for which

it was stated that a tube failed roughly every 2 days [2].

Since the advent of transistors and their incorporation into integrated circuits

it has been possible to have large numbers of electric switches on a single com-

ponent. This soon lead to components in the early 1970s whose life expectancy

was of a similar magnitude as the vacuum tube but could do the same amount of

work as computers containing thousands of such tubes. This lead to a significant

improvement in the reliability of computers vs computing power. With improved

photolithography techniques allowing for ever smaller transistors to be etched

into semiconductors the trend continued allowing what is now in the order of bil-

lions of transistors on a single electrical component whose lifetime exceeds that of

the average vacuum tubes in the first all-electric computers. Modern CPUs are

so reliable that failures in a modern computer are more likely to have root cause

in other components like the power supply, hard drives, cooling systems, etc.

One would therefore expect that reliability is not a big issue for modern day

computers. To a large extent this is correct and there have been several decades

for which reliability has not been a significant issue for high performance comput-

ing, certainly not to the extent of the early vacuum tube computers. However,

in recent years it has become increasingly difficult to put more transistors on a

single chip. This has caused a slowing of Moore’s law (the prediction that the

number of transistors on a single chip doubles every two years [100]). Despite

this supercomputers have continued to grow at roughly the same rate (although

this is starting to slow now it is clearly delayed from the slowing of transistors

in CPUs). This has been achieved by increasing parallelism, that is by adding

more CPUs to each system. As a result, new systems have significantly more

components and now that we have exceeded petascale computing and approach

exascale computing there are several computers with cores in the order of mil-

lions. This typically means in the order of O(100 000) compute nodes each built

with components whose life expectancy is in the order of O(100 000) hours. It is

clear that this is similar to the situation faced by the vacuum tube computers,
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Figure 1.1: System mean time to interrupt (SMTTI) versus the number of sockets N

for different one-hour socket reliabilities R = 0.999 99 and R = 0.999 999 [26]. The plot

is of the estimate SMTTI = 1/(1−RN ) which is flawed in that the limit is 1 hour as

N →∞ with 0 < R < 1.

that is where the number of components is similar in magnitude to the expected

life time of these components (in hours). Thus we would expect that reliability

will again become an issue for high performance computing. Whilst this discus-

sion so far has been somewhat anecdotal, several recent studies and surveys have

observed this trend.

In recent years there have been several survey articles predicting a decreasing

mean time between failure in high performance computers, see for example [26,

117, 27, 105]. The major contributing factor for this trend is typically identified

to be increasing system sizes. As the clock rate of individual cores is no longer

increasing in significant amounts, higher performance is achieved primarily by

increasing the number of cores. Although this is partially offset by increasing

numbers of cores per socket, the largest systems contain an increasing numbers

of components. As one would reasonably expect twice as many components

to fail twice as often, the increases in number of components is the primary

driver of decreasing mtbf (mean time between failures). More precisely, if a

single component has a (constant) failure rate F , that is in any given hour it has

probability F of failing, then it has probability 1 − F of not failing in a given

hour. It follows that for N identical components with the same (constant) failure

rate the probability that none fail within any given hour is (1 − F )N , thus at

least one fails with probability 1− (1− F )N . For small F (and N << 1/F ) this

may be approximated as 1 − (1 − NF + O(F 2)) = NF + O(F 2). Figure 1.1
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demonstrates the decrease in system mean time to interrupt (SMTTI) for some

different levels of reliability R = 1 − F based on this simple model. This trend

was observed by Schroeder and Gibson in their study of computers at LANL (Los

Alamos National Laboratory) which found that the rate of failure was roughly

proportional to the number of nodes in each system [116].

A second contributing factor is that the reliability of individual components is

likely to decrease as feature size becomes smaller [33, 28] and chips become more

heterogeneous due to increased integration. The reliability of components is also

closely linked with energy consumption. For example, typically noise in the cpu is

addressed by error detection and correction mechanisms built into the hardware.

However this consumes a significant portion of the total energy. As improving

energy efficiency is also one of the big challenges for exascale computing [37], it

seems unlikely that increased cpu noise caused by decreasing feature size can

be entirely addressed by changes in hardware if the energy target of 100 MW

for an exascale computer is to be achieved. Compute nodes are also becoming

increasingly complex particularly as general purpose graphics processing units

and other accelerators become integrated into more systems. Similarly to the

entire hpc system, the reliability of individual nodes will likely decrease as more

components are added to them.

These arguments would indicate that hardware is the primary source of faults

in hpc’s, that is that failures in the system occur when a physical component

breaks down. Faults are typically classified into one of three categories [101]:

• permanent fault: a component may completely break down such that it no

longer functions or produces incorrect results,

• transient fault: a component may temporarily have reduced performance

or produce incorrect results,

• intermittent faults: a component oscillates between correct and incorrect

operation.

One may also have subcategories where a component produces incorrect results, if

these are not detected by the system they are often referred to as silent errors. The

frequency at which faults from each category occurs is not well studied, rather

studies typically look at the root cause of a faults. Typical causes tabulated

include hardware, software, environment and unknown. Such studies reveal that

hardware is not the only source of faults in a system and that software faults

are also a significant cause. Just how common software faults are compared
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Figure 1.2: Schematic of a simple checkpoint restart implementation. Block ‘s’ is for

program startup, ‘r’ is main program execution, ‘c’ is for writing checkpoints, ‘e’ is the

restart of the application and loading of the previous checkpoint.

to hardware faults is not so clear as different studies in the literature give very

different results. The recent study of Schroeder and Gibson showed that hardware

is the most common cause followed by software. However a other studies [102, 93,

55] have indicated that software was the largest cause of failures. In this thesis

we are not particularly concerned with the root cause but it is clear that more

systems need to be studied if we are to better understand the causes and effects

of faults in a system.

In most current systems, regardless of the type and origin of a fault, an appli-

cation using resources which are affected by a fault is interrupted [27]. As such,

the affected application must be restarted, either from the beginning or from a

previously saved state. The approach of periodically saving the state of the ap-

plication such that it may be restarted from a relatively recent state is known

as checkpoint restart and a simple example is depicted in Figure 1.2. There are

a couple of reasons for its success. First, its simplicity means that it typically

requires little effort by application developers and system managers to implement

and support. Second, the mpi standard specifies that the default error handler

for MPI COMM WORLD is MPI ERRORS ARE FATAL and as a result mpi

implementations typically do not support continued use of mpi after a failure has

occurred (http://www.mpi-forum.org). As a result of its success, checkpoint

restart is the primary solution to fault tolerance implemented on most, if not all,

current hpc systems. This presents a problem, as not only is the frequency of

faults increasing with system size, the time required to take a global checkpoint

also increases with system size. There are two main reasons for this, first some

level of synchronisation across the application if the checkpoint is to be consis-

tent, and second increased data size takes longer to write to stable storage due to

limitations in bandwidth. In particular, if the mtbf is less then the time required

to complete a checkpoint restart cycle (i.e. time to restart from a checkpoint and
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then immediately save a checkpoint) then machine utilisation will be extremely

low [117, 26, 117, 40]. Significant work has been put into improving the check-

point restart approach including the use of uncoordinated checkpoints [6, 41],

non-blocking checkpoints [29, 96], diskless checkpointing [106, 107, 108, 42] and

message logging [87, 14, 15]. However, it is imperative that alternative approaches

to fault tolerance are also developed and evaluated.

Several other categories of approaches to fault tolerance are discussed in the

literature, see for example the surveys [26, 27]. We have already discussed check-

point restart based approaches, sometimes also referred to as rollback recovery.

Replication is often discussed as a viable option if the utilisation of other ap-

proached drops below 50%. At this threshold the cost of duplicating computa-

tions is competitive and can tolerate faults affecting one of the two duplicates.

Failure prediction is another approach where by continuous analysis of the system

is used to predict when particular components may be about to fail [49]. Compu-

tations can then be moved onto other resources in order to avoid failures. Another

concept that has been recently proposed is selective reliability where parts of an

algorithm which are naturally fault tolerant can be run on less reliable hardware

at a lower energy cost whilst critical parts are run on highly reliable (and more

expensive) hardware [16]. The implication is that the use of naturally fault tol-

erant algorithms may also provide solutions to the energy problem. Algorithm

based fault tolerance (abft) is typically based on a fail-continue model in which a

process fails but continues operation possibly providing incorrect results. In some

cases such errors are detected by the system and corrected, in others they go un-

detected and are thus referred to as silent. Most abft deals with the detection

and correction of these silent errors which we review in the next subsection.

1.1.2 Algorithm based fault tolerance

abft is typically referenced as beginning with the work of Huang and Abraham

on detecting and correcting silent errors in matrix-matrix multiplication [74].

However, naturally fault tolerant algorithms, a subset of abft of algorithms

which are self correcting such as those based on optimisation [118], can be traced

back much further. Gauss made the comment that iterative methods were error

tolerant [51]1, of course he was not referring to computer errors but rather human

errors. If an arithmetic error is made on one iteration it did not matter as

subsequent iterations would still converge. Nonetheless, Huang and Abraham

1See Gauss’ letter to his student Gerling on pp.278–281.
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opened up an entire area of research devoted to error detection and correction in

a large range of matrix based calculations.

Let A,B ∈ Rn×n be real matrices and e = (1, 1, . . . , 1) ∈ Rn a vector and

consider the computation of C = AB. Huang and Abraham observed that adding

a checksum row to A and a checksum column to B led to the computation[
A

eTA

]
[B Be] =

[
AB A(Be)

(eTA)B (eTA)(Be)

]
=

[
C Ce

eTC eTCe

]
.

Assuming that (eTA)B and A(Be) are correctly computed then errors in C can

be detected by comparing the vectors (eTA)B, eTC and A(Be), Ce. If a single

silent error occurred for a given Cij then one would find (eTAB)j 6= (eTC)j and

(ABe)i 6= (Ce)i thus giving the location of the error and further one can correct

the value via

Cij = (eTAB)j −
∑
k 6=i

Ck,j = (ABe)i −
∑
k 6=j

Ci,k .

Multiple errors can be detected and corrected in a similar way as long as the

location of errors in the matrix allowed the locations to be uniquely identified by

the errors in the checksums. They demonstrate empirically that the proportion

of these exceptional occurrences decreases as n increases when location of errors

are randomised.

The computation C = AB consisted of n2 dot products of length n vectors

whilst the computation with checksums consists of (n + 1)2 + 2n dot products

of length n vectors, where the additional 2n is for the computation of eTA and

Be. Thus the relative overhead is 4n+1
n2 = O(1/n). For parallel computation they

developed several partitioned checksums which could be used for detection and re-

covery in a similar fashion. In summary their recovery algorithm exhibits greater

coverage (i.e. can recover from a larger proportion of errors) and less overhead

as the problem size increases. As a result one would expect the approach to scale

extremely well to large problems on large machines. This is a staggering result

contrasting the decreasing performance of checkpoint restart based approaches

with increasing system and problem sizes.

Since the original paper was published there has been a significant amount of

work on the analysis and extension abft [8, 94, 114]. More recently there has

been significant work on matrix factorisations (including Gaussian elimination)

and implementation within scientific software [31, 13, 38, 128, 124]. Most of this

work continues to focus on the use checksums or other matrix encoding/decoding
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schemes which can be checked throughout a computation. Algorithm based fault

tolerance has also been considered in other problems like Newton’s method [90],

heat transfer [92], iterative methods [30], stochastic pdes [103] and many others.

Naturally fault tolerant algorithms have also received some attention in the liter-

ature [52, 118]. Whilst work on fault tolerance is slowly broadening, the majority

of the literature surrounds the detection and correction of silent errors within

linear algebra computations. A significant difficulty in the research of fault tol-

erant algorithms is a lack of support in the mpi standard for detecting process

errors and reconstructing communicators so that an application can continue.

There have been a few efforts in implementing such support within mpi most

notably ft-mpi [43, 44, 46, 45, 47] and more recently User Level Fault Mitigation

(ulfm) [11, 10]. The former was able to survive the failure of n − 1 processes

in a n process job and respawn them. Unfortunately it was built on the mpi 1.2

specification which is now outdated. The latter shows some promise and some

effort has been made to get their work accepted into the mpi 3 standard. However

at this time it is not a part of the standard and the implementation is in a beta

phase.

There seem to be two knowledge gaps in the literature. Although some work

has been done on heat transfer and iterative methods it is not clear how these

methods will apply more generally to time evolving pdes, particularly those based

on explicit methods. Second, the abft in the literature is typically not designed

to cope with fail-stop faults, that is where a fail results in loss of all data on one

or more processors. Thus in practice it may be necessary to use checkpointing

alongside abft if all bases are to be covered. Another observation to be made is

that much of the effort has been focused on exact recovery of errors and/or lost

data in both checkpointing and abft research. (An exception is the work done in

the context of stochastic pdes [103], but we refer mainly to algorithms which are

not stochastic in nature). Whilst this is a sensible goal in terms of repeatability

of computations it contrasts the approach used in many other systems, telecom-

munication for example, where a temporary performance degradation is typically

tolerated and even preferred over complete loss of functionality. Given the energy

challenges facing exascale computing and the expense of requiring exact recovery

in all circumstances it may be sensible to consider algorithms which allow com-

putations to continue through faults but producing (slightly) degraded results.

One might call upon the hpc community to be more tolerant of faults whilst

conducting research on fault tolerance.

In this thesis we aim to address these gaps by the development and analysis of
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a new form of algorithm based fault tolerance based on the sparse grid combina-

tion technique (introduced in Chapter 2). At the same time we hope to suggest

a new paradigm for fault tolerant computing in which one is able to trade off

recovery times for slightly degraded solutions. To reiterate, our approach differs

from existing work in several ways. First, it is a much more holistic approach

with respect to making the computation fault tolerant. The approach can be used

to survive a wide variety of faults from fail-stop faults to silent errors (coupled

with a suitable detection algorithm). Additionally, rather than focus on one as-

pect of the computation like the linear algebra, the majority of the computation

is made fault tolerant by this approach. Second, the approach is applicable to

a wide variety of pdes for which many of the previously developed abft algo-

rithms are not applicable. Third, the ability to trade off increased recovery time

for slightly degraded solution (in algorithms which are not stochastic in nature)

is something new to the hpc fault tolerance literature and is something we feel

is worth investigating.

This thesis is organised as follows. The remainder of this chapter is devoted to

the development of fault models which we use later in the analysis of the proposed

fault tolerant combination technique (ftct). In Chapter 2 we introduce sparse

grids and the combination technique. We review the classical error analysis as

the techniques used here will be extended to the study of the ftct. In Chap-

ter 3 we review some simple hyperbolic pdes. We describe the problems that are

used for numerical results throughout the thesis and discuss how the combination

technique is applied to such problems. In Chapter 4 some extensions and gener-

alisations of the combination technique are developed. The main contribution is

a detailed analysis of adaptive sparse grids and extension of some of this work to

extrapolation techniques. A generalised combination technique for the combina-

tion of arbitrary collections of approximations on regular grids is also developed

from this work. This leads naturally to a fault tolerant algorithm. In Chapter 5

we perform numerical analysis on the ftct. We compute the expected error of

some specific applications of the ftct using simplified fault models. An analysis

of the computation overhead is also given.
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1.2 Component fault models

In this section we look at two stochastic models of the state of individual compo-

nents of a machine, specifically a central processing unit (CPU). We first consider

sampling the state of a processor at regular intervals which will be modelled as

a sequence of Bernoulli trials. Following this, renewal processes are reviewed as

a model for the number of failures that occur over time for a processor which

is replaced upon failure. These simple models will form the building blocks for

modelling failures in machines consisting of many processors which operate in

parallel in Section 1.3. Note that the models discussed in this section are not

specific to computer processors and could be equally applied to any component

(electrical or mechanical) which has finite expected lifetime.

1.2.1 Bernoulli trials

In the simplest of circumstances we can consider a processor as being in one of

two states at any given time. Either it is ‘operating as intended’ or it is ‘not

operating as intended’. In the state ‘not operating as intended’ we include the

possibilities that the processor produces no output at all or produces incorrect

output. To simplify the discussion we refer to these two states of operation as

‘on’ and ‘failed’ respectively. The state of a processor is then observed at regular

intervals of length t. It is assumed that data computed in the previous interval

is collected during each observation. If the processor if found to be in the failed

state then all computations from the preceding interval are lost and we may

therefore consider the process as being in the failed state throughout the entire

interval. When a processor is observed in the failed state it is instantly replaced

with another processor which is statistically identicals with respect to operating

characteristics. A reasonable first failure model is to simply keep track of the

proportion of times the processor was found to be in the failed state versus the

total number of observations. After a sufficiently large number of observations the

proportion of observations in the failed state can be used as an approximation

of the probability of subsequent observations being in the failed state. This

experimental setup can be modelled as a sequence of Bernoulli trials.

More formally, let B1, B2, B3, . . . be a sequence of independent and identically

distributed random variables for which each Bi denotes the state of the proces-

sor throughout the ith interval. Let Bi = 0 denote the state ’on’ and Bi = 1

denote the state ’failed’ in the ith interval occurring probability 1 − p and p
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time
B1 = 0
N1 = 0

B2 = 0
N2 = 0

B3 = 1

N3 = 1
S1 = 3

B4 = 0

N4 = 1

B5 = 1

N5 = 2
S2 = 5

B6 = 0

N6 = 2

B7 = 0

N7 = 2

B8 = 0

N8 = 2

B9 = 1

N9 = 3
S3 = 9

Figure 1.3: The Bernoulli trial model of process failure. Bi is the status of the ith

interval with 1 being a failure. The Ni are the cumulative sum of the Bi. Sj denotes

the first i for which Ni ≥ j.

for some p ∈ (0, 1) respectively, that is Bi ∼ B(1, p) (where B(m, q) denotes

the binomial distribution having probability mass function
(
m
k

)
qk(1− q)m−k with

k ∈ {0, 1, . . . ,m}). It is implicit in this model that failure rate is constant over

time. Checking the processor at the end of the ith interval is then synonymous

with sampling the Bernoulli random variable Bi, also known as a Bernoulli trial.

We note that E[Bi] = (1 − p) · 0 + p · 1 = p which is the proportion of intervals

for which the processor can be expected to be in the failed state. Additionally

the variance is E[B2
i ]−E[Bi]

2 = p− p2 = p(1− p). Given this simple model there

are many questions one might ask:

• How many replacement processes are required over n intervals?

• What is the downtime and availability over n intervals?

• What is the time to the first failure?

• What is the expected lifetime of each processor?

The number of replacement processors required over n intervals is given by

the random variable Nn =
∑n

i=1 Bi (which also counts the number of failures). It

follows that the number of replacements has expectation E[Nn] = np and variance

Var(Nn) = np(1 − p). The proportion of failures in n checks is given by Nn/n.

By the strong law of large numbers

Nn

n

a.s.−−−→
n→∞

E[B1] = p ,

(with Xn
a.s.−−→ x meaning Pr(Xn → x) = 1). Additionally

E

[
Nn

n

]
=

E[B1 + · · ·+ E[Bn]]

n
=
np

n
= p .
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The total downtime over n intervals is given by tNn with expectation E[tNn] = tnp

and variance Var(tNn) = t2np(1−p). The availability is given by t(n−Nn) which

has expectation tn(1 − p) and variance t2np(1 − p). The time to first failure is

tS1 where Sj := mini {Ni ≥ j} for j = 1, 2, 3, . . . which denotes the number of

intervals before the jth failure. Figure 1.3 depicts the Bernoulli trial model with

the random variables Bi, Ni and Sj. As S1 = k iff Bi = 0 for i = 1, 2, . . . , k − 1

and Bk = 1 it follows that

E[S1] =
∞∑
k=1

kp(1− p)k−1 =
p

1− p

∞∑
k=1

∞∑
i=k

(1− p)i =
p

1− p

∞∑
k=1

(1− p)k

1− (1− p)
=

1

p
.

Therefore the expected time to the first failure is E[tS1] = t
p
. The time between

failures is given by Sj+1−Sj but since the rate of failure is constant the expected

time between failures is equal to the expected time to the first failure. It follows

that the expected lifetime of each processor is tE[Sj+1 − Sj] = t
p
.

Whilst this is a very simple model there are a variety of cases where limited

information about failure rates is available and this model has practical use.

Suppose you have bought a processor and switch it on. The only information you

may have available regarding how long that component will operate successfully

may be the manufacturers rated lifetime. Suppose the processor is rated for M

continuous operating hours, then if we take M to be the expected lifetime then

our Bernoulli model says E[tS1] = t
p

= M and thus p = t
M

is the probability of

failure for each observation (with t the time between observations in hours). As a

systems administrator you may be expected to ensure a processor is available for

use for 4 years (35 064 hours). The number of observations over these 4 years is
35064
t

. It follows that the number of replacements has expectation E[Nn] = np =
35064
t

t
M

= 35064
M

.

In Section 1.2.2 we will consider a renewal process model of faults. To motivate

this we will consider the failure distribution the Bernoulli trial model where the

length of the interval t between observations vanishes. We are interested in a total

time s for which there are n = ds/te intervals. In the infinitesimal limit t→ 0 we

assume the probability of failure in each interval is proportional to t. Specifically,

let pt be the probability of failure within an interval of length t and limt→0
pt
t

= r <

∞. We now claim that as we increase the frequency of observation, that is t→ 0,

then the probability of observing k failures in a fixed interval, that is Pr(Nn = k),

converges to a Poisson distribution. The probability of observing k failures out

of the n observations is given by the binomial distribution Nn ∼ B(n, pt) having
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probability mass function

Pr(Nn = k) =

(
n

k

)
pkt (1− pt)n−k .

We may rewrite this as

Pr(Nn = k) =
1

k!
(npt)((n− 1)pt) · · · ((n− k + 1)pt)

(
1− npt

n

)n−k
.

Now as n→∞ (and t = s/n→ 0) one has

npt =
s

t
pt → sr .

Similarly (n − 1)pt → sr, . . . , (n − k + 1)pt → sr for fixed k. This leads to the

limit (
1− npt

n

)n−k
=
(

1− npt
n

)−k (
1− npt

n

)n t→0−−→
(

1− sr

n

)−k (
1− sr

n

)n
n→∞−−−→ 1× e−sr .

Putting the pieces together one obtains the limit(
n

k

)
pkt (1− pt)n−k −−→

t→0

(sr)k

k!
e−sr ,

which is the Poisson distribution. Thus Nn converges to a Poisson process which

is a special example of a renewal process which is introduced in the following

section.

1.2.2 Renewal processes

Definition 1.1. Let X1, X2, X3, . . . be a sequence of independent and identically

distributed random variables with support [0,∞) and (strictly) positive and finite

expectation (i.e. 0 < E[Xi] <∞). Now for i = 1, 2, 3, . . . we define the sequence

of random variables Si :=
∑i

j=1Xj. Associated with the Si we have for t ≥ 0 the

counting process

N(t) := sup{i : Si ≤ t} =
∞∑
i=1

χ[0,t](Si) .

which is called a renewal process.

Renewal processes are well known in the study of failures/reliability, queues,

arrival of messages (e.g. email or phone calls), survival and numerous other
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t

0

0
1
2
3
4
5

X1 X2 X3 X4 X5S1 S2 S3 S4 S5

N(t)

Figure 1.4: The renewal model of process failure. The Xi are the times between

failures and the Si are the cumulative sum of the time between failures. N(t) is the

renewal process and is the number of failures that have occurred up to time t.

examples. In the context of processor faults we think of the Xi as denoting the

time between the i − 1 and ith failures of a processor (which is immediately

replaced with an identical processor after each such failure). Then Si is the time

at which the ith processor fails and N(t) is the number of failures that have

occurred up to (and including) a given time t. An example of a renewal process

is depicted in Figure 1.4.

Example 1.2. Suppose we have Xi for which the probability of failing at any in-

stant of time is 0 and the probability of failure within any interval is independent

of when the interval begins. We claim that the Xi must be exponentially dis-

tributed and the corresponding renewal process N(t) is a Poisson process. More

formally let X1, X2, . . . be continuous and Pr(Xi ≤ t+ s | Xi > t) = Pr(Xi < s)

for t, s ≥ 0. We will denote the cumulative distribution of the Xi by F (t) =

Pr(Xi ≤ t). For all t, s ≥ 0 we have

F (s) =
F (t+ s)− F (t)

1− F (t)
=⇒ 1− F (s) = 1− F (t+ s)− F (t)

1− F (t)
=

1− F (t+ s)

1− F (t)

=⇒ (1− F (s))(1− F (t)) = 1− F (t+ s) .

It follows that 1−F (
∑n

i=1 ti) =
∏n

i=1(1−F (ti)) for t1, . . . tn ≥ 0. Let r = 1−F (1),

then for all n = 1, 2, . . . one has 1− F (n) = 1− F (
∑n

i=1 1) = (1− F (1))n = rn.

Similarly r1/n = (1− F (1))1/n = (1− F (
∑n

i=1 1/n))
1/n

= 1 − F (1/n). Thus for

any convergent sequence of (positive) rationals mi
ni

one has limi→∞ 1−F (mi/ni) =

limi→∞ r
mi/ni and since F is continuous it follows that 1 − F (t) = rt for all

t ∈ [0,∞). Thus F (t) = 1 − et log(r), that is Xi is exponentially distributed with

mean 1
log(r)

(note that r = 1 − F (1) ∈ (0, 1) and so log(r) < 0). Now consider

the corresponding renewal process N(t) for a fixed time t. With Si =
∑i

j=1Xj
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and FSi the cumulative distribution function of Si note that via the law of total

probability

Pr(N(t) = k) = Pr(Sk ≤ t < Sk+1) =

∫ t

0

Pr(Xk+1 ≥ t− Sk | Sk = s) dFSk(s)

=

∫ t

0

Pr(Xk+1 ≥ t− s)fSk(s) ds .

Now Pr(Xk+1 ≥ t − s) = e(t−s) log(r) and fSk(t) =
dFSk (t)

dt
is given by the k-fold

convolution of the probability distribution f(t) = dF (t)
dt

= − log(r)et log(r) of each

of the Xi. Assume that fSk(s) = sk−1(− log(r))k

(k−1)!
es log(r) (which is clearly true for

fS1 = fX1 = f) then

fSk+1
(s) =

∫ s

0

fSk(s− t) dF (t)

=

∫ s

0

(
(s− t)k−1(− log(r))k

(k − 1)!
e(s−t) log(r)

)(
− log(r)et log(r)

)
dt

= (− log(r))k+1es log(r)

∫ s

0

(s− t)k−1

(k − 1)!
dt

= (− log(r))k+1es log(r)

[
−(s− t)k

k!

]s
t=0

=
sk(− log(r))k+1

k!
es log(r) .

Thus by induction fSk(s) = sk−1(− log(r))k

(k−1)!
es log(r) for all k = 1, 2, . . . and therefore

Pr(N(t) = k) =

∫ t

0

sk−1(− log(r))k

(k − 1)!
et log(r) ds =

tk(− log(r))k

k!
et log(r) .

Hence N(t) is Poisson distributed. This completes the example.

One may wish to know the average rate at which N(t) grows. As N(t) is

constant except at the points S1, S2, . . . where it is discontinuous it follows that
dN(t)
dt

= 0 almost everywhere. This is not a particularly useful result so we instead

study N(t)
t

for large t.

Lemma 1.3 ([99, 76]). Given a renewal process N(t) with inter-arrival times

X1, X2, . . . which are independent and identically distributed ( iid) one has

lim
t→∞

N(t)

t
=

1

E[X1]

almost surely (that is Pr(limt→∞
N(t)
t

= 1
E[X1]

) = 1).
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Proof. With Si =
∑i

j=1Xj note that SN(t) ≤ t < SN(t)+1 and therefore

SN(t)

N(t)
≤ t

N(t)
<
SN(t)+1

N(t)

By the strong law of large numbers we have that

lim
i→∞

1

i
Si = lim

i→∞

1

i

i∑
j=1

Xj
a.s.−−→ E[X1] .

Similarly

lim
i→∞

1

i
Si+1 = lim

i→∞

i+ 1

i

Si+1

i+ 1

a.s.−−→ E[X1] .

Therefore given any sequence of times ti such that ti →∞ and N(ti) = i one has

ti
N(ti)

<
SN(ti)+1

N(ti)
=
Si+1

i

a.s.−−−→
i→∞

E[X1] ,

and
ti

N(ti)
≥
SN(ti)

N(ti)
=
Si
i

a.s.−−−→
i→∞

E[X1] .

It follows that ti
N(ti)

a.s.−−−→
i→∞

E[X1], or equivalently N(ti)/ti
a.s.−−−→
i→∞

1/E[X1]. (Note

that the existence of the sequence ti → ∞ with N(ti) = i for all i is guaranteed

by the condition 0 < E[Xi] <∞).

Therefore for sufficiently large t one has N(t) ≈ t
E[X1]

. One might conjecture

that E[N(t)]/t → 1/E[X1] is an immediate consequence. Whilst the conjecture

is true the proof requires some care and the result is referred to as the elementary

renewal theorem.

Theorem 1.4 (Elementary renewal theorem [99]). Let {N(t); t ≥ 0} be a renewal

process with mean inter-arrival time E[X1], then

lim
t→∞

E[N(t)]

t
=

1

E[X1]
.

Several different proofs of this may be found in elementary texts on stochastic

processes, see for example [76, 121, 113] or Cox’s monograph [35]. We include a

proof here that uses the notion of stopping times similar to that in [99].

Definition 1.5. A stopping time T for a sequence of random variables X1, X2, . . .

is a positive integer valued random variable with E[T ] < ∞ for which the event

{T ≥ n} is statistically independent of Xn, Xn+1, . . . (i.e. it may only depend on

X1, . . . , Xn−1).
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Notice that N(t) + 1 is a stopping time since the event {N(t) + 1 ≥ n} =

{Sn−1 ≤ t} depends only upon X1, . . . , Xn−1. Clearly N(t) is not a stopping

time because {N(t) ≥ n} = {Sn ≤ t} depends on Xn. The following theorem

regarding stopping times is extremely useful.

Theorem 1.6 (Wald’s equation [99]). Let X1, X2, . . . be a sequence of iid ran-

dom variables each with mean E[X1]. If T is a stopping time for X1, X2, . . . , and

E[T ] <∞, and ST =
∑T

i=1Xi, then

E[ST ] = E[X1]E[T ] .

Proof. We can write

ST =
∞∑
i=1

Xiχ[i,∞)(T ) .

As the event T ≥ i is independent of Xi

E[ST ] = E

[
∞∑
i=1

Xiχ[i,∞)(T )

]
=
∞∑
i=1

E[Xiχ[i,∞)(T )]

=
∞∑
i=1

E[X1]E[χ[i,∞)(T )]

= E[X1]
∞∑
i=1

Pr(T ≥ i) = E[X1]E[T ]

where the interchanging of the expectation of infinite sum is valid because E[T ]

is finite and the last equality uses the identity

E[T ] =
∞∑
j=1

j Pr(T = j) =
∞∑
j=1

j∑
i=1

Pr(T = j) =
∞∑
i=1

∞∑
j=i

Pr(T = j)

=
∞∑
i=1

Pr(T ≥ i) .

We now prove the elementary renewal theorem.

Proof of Theorem 1.4. Fix s > 0, then for i = 1, 2, . . . we define the truncated

random variables X̃i = Xi for Xi ≤ s and X̃i = s for Xi > s. As the Xi are iid

then the X̃i are also iid and by considering S̃i =
∑i

j=1 X̃j we form the renewal

process Ñ(t) = sup{i : S̃i ≤ t} for t ≥ 0. Clearly S̃i ≤ Si implies Ñ(t) ≥ N(t)

and therefore E[Ñ(t)] ≥ E[N(t)]. By Wald’s equality

E[SN(t)+1] = E[X1]E[N(t) + 1] = E[X1](E[N(t)] + 1)
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and therefore since SN(t)+1 ≥ t one has

E[N(t)]

t
=

E[SN(t)+1]/E[X1]− 1

t
≥ 1

E[X1]
− 1

t
. (1.1)

Similarly for the S̃i we consider the stopping time Ñ(t) + 1 for which one has

S̃Ñ(t) ≤ t and as X̃N(t)+1 ≤ s it follows that S̃Ñ(t)+1 ≤ t + s. Again by applying

Wald’s equality one obtains

E[X̃1](E[N(t)] + 1) ≤ E[X̃1](E[Ñ(t)] + 1) = E[S̃Ñ(t)+1] ≤ t+ s .

Re-arranging and dividing by t we have

E[N(t)]

t
≤ (t+ s)/E[X̃1]− 1

t
=

1

E[X̃1]
+

s

tE[X̃1]
− 1

t
. (1.2)

Now by setting s =
√
t and combining equations (1.1) and (1.2) one has

1

E[X1]
− 1

t
≤ E[N(t)]

t
≤ 1

E[X̃1]
+

1√
tE[X̃1]

− 1

t

then as s → ∞ we observe that E[X̃1] → E[X1] and now letting t → ∞ clearly

E[N(t)]/t→ 1/E[X1].

A related theorem by Blackwell gives the asymptotic rate of the expected

number of renewals occurring in an interval of fixed length. We give the non-

arithmetic case here (a probability distribution is arithmetic if the distribution is

concentrated on a set of equally spaced points).

Theorem 1.7 (Blackwell’s theorem [99]). Let X1, X2, . . . be positive iid random

variables which are non-arithmetic with mean E[X1] <∞ and let {N(t) : t ≥ 0}
be the associated renewal process. Then for any s > 0

lim
t→∞

(E[N(t+ s)]− E[N(t)]) =
s

E[X1]
.

We note that for large t the elementary renewal theorem gives E[N(t+ s)]−
E[N(t)] ≈ (t + s)/E[X1] − t/E[X1] = s/E[X1]. For a rigorous proof we refer the

reader to [99].

Example 1.8. Let N(t) be the Poisson process as in Example 1.2. One has

E[N(t)] =
∞∑
k=0

k · (−t log(r))k

k!
et log(r) = (−t log(r))et log(r)

∞∑
k=1

(−t log(r))k−1

(k − 1)!

= −t log(r)et log(r)e−t log(r) = −t log(r) ,

and thus E[N(t)]
t

= − log(r) = 1
E[X1]

. Notice that this is for any t ∈ [0,∞) as

opposed to the result of Theorem 1.4. This completes the example.
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The following theorem tells us about the convolution of functions with the

expectation of N(t) in the limit t→∞ and will be used later.

Theorem 1.9 (Key renewal theorem [99, 48]). Let H(t) be directly Riemann

integrable and H(t) = 0 for t < 0, X1, X2, . . . be positive iid random variables

which are non-arithmetic with mean E[X1] < ∞ and let {N(t) : t ≥ 0} be the

associated renewal process with M(t) = E[N(t)], then∫ t

0

H(t− s) dM(s)
t→∞−−−→ 1

E[X1]

∫ ∞
0

H(s) ds .

A full proof can be found in [48].

So far we have studied the mean of N(t)/t, of course it would also be useful

to know something about the variance. The following central limit theorem holds

for renewal processes.

Theorem 1.10 (Central limit theorem for renewal processes [99]). Let {N(t) :

t ≥ 0} be a renewal process where inter-arrival times have finite standard devia-

tion σ > 0, then

lim
t→∞

Pr

{
N(t)− t/E[X1]

σE[X1]−3/2
√
t
< x

}
=

1√
2π

∫ x

−∞
e−y

2/2 dy .

For a proof we refer the reader to [99]. We merely comment here that the

result implies that N(t) tends to a normal distribution with mean t/E[X1] and

variance σ2E[X1]−3t.

The above asymptotic results are very useful when one wishes to estimate the

long term consequences of failures in a system. For example, system administra-

tors can estimate the expected cost of replacing components over a long service

period t by multiplying the individual cost of a component by N(t) ≈ t
E[X1]

as a result of Theorem 1.4. Similarly, a user running a job in late produc-

tion (large t) for time s can estimate the expected number of failures to be

E[N(t + s)] − E[N(t)] ≈ s
E[X1]

as a result of Theorem 1.7. However, as the pre-

vious results are asymptotic (t → ∞) it is not clear if they may be used as

estimates for relatively small t. In Example 1.8 we saw that E[N(t)] = t
E[X1]

for

all t ∈ [0,∞) when the inter-arrival times are exponentially distributed. Thus one

might expect that for distributions similar to that of the exponential distribution

(for example, the Weibull distribution with shape parameter close to 1) then the

asymptotic estimates may still be applied to small t with reasonable accuracy.

To study times t which are not large one has the renewal equation.
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Theorem 1.11 (Renewal equation [99]). Let {N(t); t ≥ 0} be a renewal process

with mean inter-arrival times 0 < E[X1] <∞, then

E[N(t)] = F (t) +

∫ t

0

E[N(t− s)] dF (s) , (1.3)

where F (t) is the cumulative distribution of the Xi.

Proof. From the law of total expectation E[N(t)] = EX1 [E[N(t) | X1]]. Further,

note that for X1 > t one has E[N(t) | X1] = 0 and for X1 ≤ t the renewal process

N(t) − 1 from the time X1 is statistically identical to the renewal process N(t)

starting from 0, in particular E[N(t) | X1 ≤ t] = 1+E[N(t−X1)]. It follows that

E[N(t)] =

∫ t

0

E[N(t) | X1 = s] dF (s) =

∫ t

0

(1 + E[N(t− s)]) dF (s)

= F (t) +

∫ t

0

E[N(t− s)] dF (s) ,

as required.

The result shows that E[N(t)] is the solution to a Volterra integral equation

of the second kind. It is also related to a more convenient expression for E[N(t)].

If X1 has a probability distribution f then the renewal equation can be written

as the convolution M = F + M ∗ f where M(t) := E[N(t)]. Remember that for

two independent random variables X and Y which have probability distributions

fX and fY respectively then the probability distribution of X + Y is given by

the convolution fX+Y (t) = (fX ∗ fY )(t) :=
∫∞
∞ fX(t − s)fY (s)ds. Similarly if

FX , FY , FX+Y are the cumulative distributions of X, Y,X + Y respectively then

FX+Y = FX ∗ fY = fX ∗ FY . Thus if we define Fn := Fn−1 ∗ f with F1 = F being

the cumulative density function (cdf) of the Xi then FSn = FX1+X2+···+Xn = Fn.

Since N(t) =
∑∞

n=1 χ[0,t](Si) then

M(t) = E[N(t)] =
∞∑
n=1

Pr(Sn ≤ t) =
∞∑
n=1

Fn(t) .

As a consistency check we note that if the probability density function (pdf)

f(t) = dF (t)
dt

is well-defined then

∞∑
n=1

Fn = F +
∞∑
n=2

Fn = F +

(
∞∑
n=1

Fn

)
∗ f = F +M ∗ f = M .

The renewal equation generalises to the following result.
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N(t)− 1
N(t)

N(t) + 1

SN(t) t SN(t)+1

t− SN(t) SN(t)+1 − t

Figure 1.5: Forward and backward recurrence times SN(t)+1 − t and t− SN(t) respec-

tively.

Theorem 1.12 ([99]). Given F and M defined above and

h(t) = g(t) +

∫ t

0

h(t− s) dF (s)

for t ≥ 0 then

h(t) = g(t) +

∫ t

0

g(t− s) dM(s) .

This can be proved by taking the Laplace transform, re-arranging to get an

expression for h and taking the inverse Laplace transform, see for example [99].

For a user logging into a compute node at a random time the most relevant

question may be: what is the expected time from now until the next failure?

Equivalently, given a time t at which the user logs in, he/she would like to know

E[SN(t)+1 − t]. This is referred to as the forward recurrence time, or sometimes

as the residual lifetime or random incidence and is depicted in Figure 1.5. The

following theorem gives us an integral for calculating E[SN(t)+1 − t] for a given t

as well as the asymptotic behaviour for large t.

Theorem 1.13 (Forward recurrence time [99]). Let X1, X2, . . . be positive iid

random variables with mean 0 < E[X1] < ∞ and cumulative density function

F = FX1. Let Si =
∑i

j=1Xj and N(t) be the associated renewal process with

M(t) := E[N(t)]. Then, for s, t ∈ [0,∞), the cumulative distribution of the

random variable SN(t)+1 − t is given by

Pr(SN(t)+1 − t ≤ s) = F (t+ s)−
∫ t

0

1− F (t+ s− r) dM(r) . (1.4)

Further, if the Xi are non-arithmetic then

lim
t→∞

Pr(SN(t)+1 − t ≤ s) =
1

E[X1]

∫ s

0

1− F (r) dr . (1.5)
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Proof. One has

Pr(SN(t)+1 − t ≤ s) = 1− Pr(SN(t)+1 − t > s)

= 1−
∫ ∞

0

Pr(SN(t)+1 − t > s | X1 = r) dF (r) .

If r > t+s then X1 > t and so N(t) = 0. Therefore SN(t)+1 = S1 = X1 = r > t+s

and so Pr(SN(t)+1 − t > s) = 1. Similarly if t < r ≤ t + s then again N(t) = 0

and therefore SN(t)+1 − t = X1 − t ≤ s and so Pr(SN(t)+1 − t > s) = 0. Lastly if

r ≤ t then the process is restarted from t = r and we have Pr(SN(t)+1 − t > s |
X1 = r) = Pr(SN(t−r)+1 − (t− r) > s) (i.e. shifting so that X1 is the origin gives

an equivalent renewal process). Putting the pieces together one obtains

Pr(SN(t)+1 − t ≤ s) = 1−
∫ t

0

Pr(SN(t−r)+1 − (t− r) > s) dF (r)−
∫ ∞
t+s

1 dF (r)

= F (t+ s)−
∫ t

0

1− Pr(SN(t−r)+1 − (t− r) ≤ s) dF (r)

= F (t+ s)− F (t) +

∫ t

0

Pr(SN(t−r)+1 − (t− r) ≤ s) dF (r) .

We can apply Theorem 1.12 to this last line to obtain

Pr(SN(t)+1− t ≤ s) = F (t+ s)−F (t) +

∫ t

0

F (t+ s− r)−F (t− r) dM(r) . (1.6)

Now notice that
∫ t

0
F (t− r) dM(r) =

∫ t
0
M(t− r) dF (r) = M(t)− F (t) by The-

orem 1.11. Substituting this into (1.6) leads to (1.4). To obtain (1.5) we apply

Theorem 1.9 to (1.4) to obtain

F (t+ s)−
∫ t

0

1− F (t+ s− r) dM(r) −−−→
t→∞

1− 1

E[X1]

∫ ∞
0

1− F (r + s) dr

=1− 1

E[X1]

∫ ∞
s

1− F (r) dr

=1−
(

1− 1

E[X1]

∫ s

0

1− F (r) dr

)
=

1

E[X1]

∫ s

0

1− F (r) dr ,

as required.

It follows that the pdf of the asymptotic forward recurrence time is given by
1−F (s)
E[X1]

and hence the expectation is

lim
t→∞

E[SN(t)+1 − t] =
1

E[X1]

∫ ∞
0

s(1− F (s)) ds .
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If the Xi are exponentially distributed with mean µ then one obtains

lim
t→∞

E[SN(t)+1 − t] = µ−1

∫ ∞
0

s
(
1− (1− e−s/µ)

)
ds

=
[
−se−s/µ

]∞
s=0

+

∫ ∞
0

e−s/µ ds = µ .

This is consistent with the memory-less property previously described. If the Xi

are Weibull distributed with scale λ and shape κ then

lim
t→∞

E[SN(t)+1 − t] =
1

λΓ(1 + 1
κ
)

∫ ∞
0

s
(
1− (1− e−(s/µ)κ)

)
ds ,

and making the substitution s 7→ λz1/κ results in

lim
t→∞

E[SN(t)+1 − t] =
1

λΓ(1 + 1
κ
)

∫ ∞
0

λz1/κe−z
λ

κ
z1/κ−1 dz ,=

λΓ( 2
κ
)

κΓ(1 + 1
κ
)
.

If the user is able to access system logs and determine the time of last failure,

that is SN(t), and knows something about the distribution of time between failures

(i.e. the Xi and hence XN(t)+1) then one could attempt to compute the forward

recurrence time via

E[SN(t)+1 − t] = E[SN(t) +XN(t)+1 − t] = E[XN(t)+1]− E[t− SN(t)] .

The trick here however is that typically E[XN(t)+1] 6= E[X1]. This is known as

the inspection paradox. For example, it can be shown (similar to the proof of

Theorem 1.13) that

lim
t→∞

Pr(t− SN(t) ≤ s) =
1

E[X1]

∫ s

0

1− F (r) dr ,

and as a consequence

E[XN(t)+1] = E[t− SN(t)] + E[SN(t)+1 − t] =
2

E[X1]

∫ ∞
0

s(1− F (r)) ds .

For exponentially distributed Xi this evaluates to 2E[X1] and thus E[XN(t)+1] is

twice the expected interval length for a Poisson process. The simplest explanation

of this phenomenon is that one is more likely to intercept a long interval than

a short one. This result has important consequences for estimates based on

observations at random times. For example, estimating the mean time between

failures by taking the average over intervals which were observed at randomly

chosen times will result in an overestimate.
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Figure 1.6: The renewal reward model with R(t) =
∑∞

i=1Riχ[0,t](Si).

A useful extension of the renewal process is the renewal reward process. The

renewal process N(t) is obtained by incrementing by 1 whenever a renewal occurs,

i.e. at each Si. Suppose instead we have a process R(t) which changes according

to a random variable Ri at each Si. More formally we let Ri be iid random

variables and define

R(t) :=

N(t)∑
i=1

Ri =
∞∑
i=1

Riχ[0,t](Si) (1.7)

with R(t) := 0 for N(t) = 0. An example of R(t) is depicted in Figure 1.6. Note

that the Ri need not be independent of Xi, in fact many interesting examples arise

when Ri is a function of Xi. In the context of faults a renewal reward process

may be serve as a model for silent errors. Whilst the Xi determine the time

between errors the magnitude of the error can be modelled by the Ri. R(t) then

gives the sum of the errors which have occurred up to some time t thus measuring

the cumulative effect. Many of the results for ordinary renewal processes can be

extended to renewal-reward processes. We state a few here without proof.

Theorem 1.14 (Elementary renewal reward theorem [76, 99]). Let X1, X2, . . .

be a sequence of positive iid random variables with finite expectation and N(t)

be the associated renewal process. Further, let R1, R2, . . . be a second sequence

of iid random variables with which we define the renewal reward-process R(t) =∑N(t)
i=1 Ri. Then with probability 1

lim
t→∞

E[R(t)]

t
=

E[R1]

E[X1]
.

Similarly we have a result analogous to Blackwell’s theorem.

Theorem 1.15 ([95]). Let X1, X2, . . . be positive iid random variables which are

non-arithmetic with finite expectation and N(t) be the associated renewal process.
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Further let R1, R2, . . . be iid random variables associated with the renewal-reward

process R(t) =
∑N(t)

i=1 Ri. Then for any 0 < s <∞

lim
t→∞

(E[R(t+ s)]− E[R(t)]) =
sE[R1]

E[X1]
.

There is also a central limit theorem for renewal-reward processes.

Theorem 1.16 ([126]). Let X1, X2, . . . be a sequence of positive iid random vari-

ables with finite expectation and N(t) be the associated renewal process. Further,

let R1, R2, . . . be a second sequence of non-negative iid random variables asso-

ciated with the renewal reward-process R(t) =
∑N(t)

i=1 Ri. If E[X2
1 ],E[R2

1] < ∞
then

lim
t→∞

Pr

(
R(t)− tE[R1]/E[X1]

E[(R1 −X1E[R1]/E[X1])2]
√
t/E[X1]

≤ x

)
=

1√
2π

∫ x

−∞
e−

1
2
y2

dy .

There are many other extensions of renewal processes worth mentioning. The

first is the delayed or modified renewal process where the first arrival time has

different distribution then the rest. That is X2, X3, . . . are iid with finite expecta-

tion but X1 may have different distribution (but finite expectation). An example

of this is where one starts observing a process with iid inter-arrival times at some

random time. The first observed arrival is given by the forward recurrence time

whilst subsequent arrivals are identically distributed. Most of the results for ordi-

nary renewal processes are easily adapted to delayed renewal processes as the first

arrival does not affect the asymptotic behaviour. Alternating renewal processes

occur when one has two iid sequences X1, X2, . . . and Y1, Y2, . . . such that the

inter-arrival time Xi is followed by Yi which is then followed by Xi+1 and so on.

An example of this would be where the Xi are times between component failures

and the Yi are the repair times. If N(t) is incremented at the end of each Xi +Yi

cycle then the theory for ordinary renewal processes is again easily adapted. An

example relating to faults which combine both alternating and renewal reward

processes is in the estimation of cumulative downtime of a system. Given iid

uptimes Xi and iid downtimes Yi then we can consider the rewards Ri = Yi oc-

curring at the end of each Xi + Yi cycle. R(t)/t then measures the proportion of

time the system was down up to time t and by applying the previous results it is

straightforward to show that E[R(t)]
t
−−−→
t→∞

E[Yi]
E[Xi]+E[Yi]

.
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1.3 Models of many processor systems

We apply the models used for a single processor to the modelling of many pro-

cessors, e.g. as in a HPC system.

1.3.1 Bernoulli processes

Consider again the simple models of Section 1.2.1 where the event of having a

single processor either available or failed within a fixed interval of time is modelled

as a Bernoulli trial Bi ∼ B(1, p). Now suppose we request m such identical

processors to run independently in parallel for the same fixed interval of time.

Let B1,i, B2,i, . . . , Bm,i be the random variables for the state of each of the m

processors in the ith interval. We define Di :=
∑m

k=1 Bk,i which is equal to the

number of processors which fail in the ith interval. Clearly Di ∼ B(m, p) and the

probability of k processors fail in the ith interval is given by

Pr(Di = k) =

(
m

k

)
pk(1− p)m−k .

The analysis of Di is similar to that of the Bi in Section 1.2.1. Via the bino-

mial formula it is straightforward to show that the expected number of failures

throughout the ith interval is E[Di] = mp. It follows that the expected num-

ber of processors alive throughout the ith interval is m(1 − p). Similarly it is

straightforward to show the variance is Var(Di) = mp(1− p). As in the case of a

single process model we may ask what is the time to first failure. This is given by

S1 := min
{
j :
∑j

i=1 Di ≥ 1
}

. We note that Pr(Di = 0) = (1 − p)m from which

it follows that Pr(Di ≥ 1) = 1− (1− p)m, therefore

E[S1] =
∞∑
k=1

k(1− p)m(k−1) (1− (1− p)m)

=
1− (1− p)m

(1− p)m
∞∑
k=1

k∑
j=1

(1− p)mk

=
1− (1− p)m

(1− p)m
∞∑
j=1

∞∑
k=j

(1− p)mk =
∞∑
j=1

(1− p)mj

(1− p)m
=

1

1− (1− p)m
.

As m increases the denominator approaches 1 from below and hence E[S1] gets

smaller. As in the single processor model, the fact that the failure rate is constant

means that the mtbf is equal to the time to first failure.

For a typical checkpoint restart approach to recovery, the failure of a single

process triggers the restart of the entire system. This means that all processors
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are to be considered down in an interval when at least one processor fails in that

interval. Thus, the expected availability of a system in these circumstances over n

intervals is n(1−p)m. In contrast, if the system is able to replace a failed processor

without restarting all other processors then one may consider the availability to be

the proportion of processors which are up over the n intervals. As the expected

availability in one interval is m(1 − p) it follows that the availability over the

n intervals is nm(1 − p) which is significantly larger than the availability if all

processors must be restarted whenever a failure occurs, particularly for large m.

Whilst this may seem like a rather crude model it can be effective in cir-

cumstances where one repeatedly runs a computation on several processes that

takes roughly the same amount of time for each iteration. One can estimate the

value of p by keeping track of how often processor failures occur. For example,

in weather forecasting the same computation is run several times each day, every

day of the year, but with different initial conditions. It is reasonable to assume

that the run times do not vary significantly for each computation and therefore

this model may give a reasonable estimate once the p has been estimated.

1.3.2 Superposition of renewal processes

Suppose a high performance computer consists of m (fixed integer) processors

operating in parallel (independently). We assume that each of these proces-

sors and their replacements have identical distributions of failure times. Let

N1(t), . . . , Nm(t) be the renewal processes associated with the life cycle of each of

the m processors. As each is processor is identical and independent each of the

Ni(t) can be assumed to be independent and identically distributed.

The total number of failures occurring across all m processors is given by the

superposition process

Z(t) =
m∑
i=1

Ni(t) .

An example is depicted in Figure 1.7. In general Z(t) is not a renewal process as

it is typically not the case that inter-arrival times for Z(t) are independent and

identically distributed. However, given the identical and independent nature of

the Ni(t) one has E[Z(t)] = mE[N1(t)] and thus results relating to the expectation

of ordinary renewal processes can be trivially applied to Z(t). For example, it

follows from the elementary renewal theorem 1.4 that

lim
t→∞

E[Z(t)]

t
=

m

E[X]
,
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Figure 1.7: Here we depict a stochastic process Z(t) which is a superposition of the 3

renewal processes N1(t), N2(t) and N3(t).

where E[X] is the mean inter-arrival time for all processors in the machine. Sim-

ilarly Blackwell’s theorem 1.7 gives

lim
t→∞

(E[Z(t+ s)]− E[Z(t)]) =
sm

E[X]
.

Thus we immediately see that the number of processors is proportional to the

asymptotic rate at which faults occur when measure over the entire timeline and

within intervals of fixed length.

Example 1.17. Suppose that the time between failures for each processor are

exponentially distributed and independent with mean E[X]. We know from Ex-

ample 1.8 that the Ni(t) are Poisson with Pr(Ni(t) = k) = (t/E[X])k

k!
e−t/E[X]. For

m = 2 one has Z(t) = N1(t) +N2(t) and it follows from independence that

Pr(Z(t) = k) =
k∑
i=0

Pr(N1(t) = i) Pr(N2(t) = k − i)

=
k∑
i=0

(
(t/E[X])i

i!
e−t/E[X]

)(
(t/E[X])k−i

(k − i)!
e−t/E[X]

)

= (t/E[X])ke−2t/E[X]

k∑
i=0

1

i!(k − i)!
=

(2t/E[X])k

k!
e−2t/E[X] ,

where the last equality holds since
∑k

i=0

(
k
i

)
= 2k. Now consider Z(t) for m ≥ 2
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and assume Pr(
∑m−1

i=1 Ni(t) = k) = ((m−1)t/E[X])k

k!
e−(m−1)t/E[X], then

Pr(Z(t) = k) =
k∑
i=0

Pr(Nm(t) = i) Pr(N1(t) + · · ·+Nm−1(t) = k − i)

=
k∑
i=0

(
(t/E[X])i

i!
e−t/E[X]

)(
((m− 1)t/E[X])k−i

(k − i)!
e−(m−1)t/E[X]

)

= (t/E[X])ke−mt/E[X]

k∑
i=0

(m− 1)i

i!(k − i)!
=

(mt/E[X])k

k!
e−mt/E[X] ,

where the last equality holds since
∑k

i=0(m − 1)i
(
k
i

)
= mk. Thus by induction

Pr(Z(t) = k) = (mt/E[X])k

k!
e−mt/E[X], that is Z(t) is Poisson distributed with mean

m times that of N1(t). Further, this implies that Z(t) is a renewal process in this

particular case with inter-arrival times which are exponentially distributed with

mean E[X]/m. This concludes the example.

The central limit theorem for N1(t) says that Var(N1(t))→ σ2tE[X]−3 as t→
∞ (where σ2 = Var(X) is the variance of the inter-arrival time for all processors

in the machine). As with the expected value, this result can be extended to Z(t)

with

Pr

(
Z(t)−mt/E[X]

σ
√
mtE[X]−3/2

≤ x

)
t→∞−−−→ 1√

2π

∫ x

−∞
e−y

2/2 dy .

and thus Var(Z(t))→ mσ2tE[X]−3.

As with an ordinary renewal process, a random variable of interest may be

the forward recurrence time. However as Z(t) is generally not a renewal process

it is not immediately clear what the forward recurrence time means. However,

we may take the forward recurrence Y for Z(t) to be the minimum of the forward

recurrence times Yi for Ni(t), that is

Pr(Y (t) ≤ s) = 1−
m∏
i=1

Pr(Yi > s) = 1− (1− Pr(Yi ≤ s))m .

For large t one may apply Theorem 1.13 to the Yi to obtain

Pr(Yi ≤ s)
t→∞−−−→1−

(
1− 1

E[X]

∫ s

0

1− FX(r) dr

)m
= 1− E[X]−m

(∫ ∞
s

1− FX(r) dr

)m
.

An important question is again how large t should be for the asymptotic results

to be a suitable approximation to reality. For large m one would hope that even
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for relatively small t that the behaviour of the m renewal processes ’averages

out’ such that the convergence toward asymptotic behaviour is accelerated. Thus

for large HPC systems the asymptotic results may be quite accurate even for

relatively small t. Whilst Z(t) may not be a renewal equation in general we may

consider approximating it by a renewal equation. One approach for doing this is

to fit Z(t) with a renewal process such that the first few moments are the same,

see for example [125]. As we already know the limiting behaviour of the mean

and variance of Z(t) a rough approximation may already be obtained using these.

Consider processors where the time between failures is Weibull distributed.

Schroeder and Gibson [116] and others have shown that the Weibull distribution

is typically the best fit of time between failures from real fault data. The Weibull

distribution with shape parameter κ and scale λ has the probability distribution

function
κ

λ

(x
λ

)κ−1

e−(x/λ)κ for x ≥ 0 . (1.8)

(and 0 for x < 0) which has mean λΓ(1+1/κ) and variance λ2(Γ(1+2/κ)−Γ(1+

1/κ)2). The resulting Z(t) asymptotically has mean E[Z(t)]→ mt/(λΓ(1+1/κ))

and variance

Var(Z(t))→ mt(Γ(1 + 2/κ)− Γ(1 + 1/κ)2)

λΓ(1 + 1/κ)3
.

Supposing we were to approximate Z(t) with a renewal process whose inter-arrival

times are also Weibull distributed with parameters κ′, λ′ we observe that κ′ = κ

and λ′ = λ/m will give the same expectation and variance in the limit t → ∞.

This is consistent with the analysis of fault data by Schroeder and Gibson [116]

which found that late in production the best fit of failures in a single node to be

Weibull with shape 0.7 and the best fit for the entire system was also Weibull but

having shape 0.78 which is close to that of a single node. Whilst the asymptotic

behaviour of this approximating renewal process is the same in the first two

moments, determining the how close it is to Z(t) for small t requires further

investigation. This is emphasised by Schroeder and Gibson fit of faults early in

production which is very different from the behaviour late in production.

1.3.3 Summary

The fault models discussed here are relatively simple in nature and could be

extended in many ways. For example, in practice it is unlikely that all processors

operate completely independently with identical distributions for failure times.

An example of dependence is that typically a fatal hardware error for a processor



1.3. MODELS OF MANY PROCESSOR SYSTEMS 31

will affect many/all processors on the same socket and/or node. However, the

models considered may be analogously applied to a socket and/or node handle

this type of dependence. In practice, the fault rate may also be sensitive to the

workload and therefore if workload is not evenly distributed then the fault rates

are likely to differ slightly. For example Schroeder and Gibson’s study [116] shows

less faults occurred on weekends (when workloads are lower). Unfortunately it

is not clear from their study exactly how the distribution of failure times vary

with respect to workloads. It is clear that more studies need to be done into

the correlation between workload and fault rate. Small variations in operating

conditions could also effect the fault rate, for example the operating temperature

of a node may vary slightly depending on its position in the machine room and

the workload of neighbouring processors.

In this thesis we assume that during a computation workloads are relatively

uniform across the processors/nodes in use and that they therefore have very sim-

ilar distributions for failure times during the computation. Further, for computa-

tions on a large machine, the law of large numbers means that small perturbations

in fault rates should average out and thus models based on the typical fault rate

should closely approximate reality. We model the occurrence of faults on each

socket/node as an ordinary renewal process with a fault on the socket/node re-

sulting in the death of all physical processors and software processes on it. For

simplicity it is assumed that t is large enough such that the asymptotic results of

the renewal theory are a close approximation to reality. Future work may involve

investigation into smaller t using the more general results. When a computation

begins the distribution to the first failure on each node is given by the forward

recurrence time. This would suggest that a delayed (or stationary) renewal pro-

cess may be an appropriate model as subsequent failures will have the usual

distribution. However, we argue that in practice the physical node/processors

that fail will not be replaced upon failure with a new processor but rather the

replacement will consist of a different node/processors in the machine which is

available. Thus this replacement also has failure distribution given by the forward

recurrence time. Therefore we often use the ordinary renewal process model but

with inter-arrival times which are given by the forward recurrence times of an-

other ordinary renewal process whose inter-arrival times model the time between

failures.
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1.4 Application of fault models

Here we show how the fault models developed can be applied to different prob-

lems affecting high performance computing. In Section 1.4.1 we look at the effect

of faults on computations involving sums and averages in a parallel environment

using the Bernoulli process model of faults. The results here are standard cal-

culations of expectations and variances. In Section 1.4.2 we review the classical

checkpoint restart problem of determining the times at which one should perform

checkpoints to maximise utilisation. This utilises the renewal process model of

failures. Whilst the result itself is relatively well-known the calculation presented

here is perhaps a little more precise and detailed than that found in most refer-

ences. Lastly, in Section 1.4.3 we look at the problem of fault simulation using

the renewal process model of faults. To test new algorithms developed in this

thesis we need to make sure they perform well when faults occur. As our compu-

tations will be done on a relatively small scale it is impractical to wait for faults

to naturally occur. As such we will need to simulate faults, or at the very least

their effects. We describe our approach to fault simulation for the computations

performed in this thesis. It is shown that for shape parameters κ ∈ (0, 1] one can

replace Weibull distributed times to failure with exponenitally distributed times

to failure in simulations without giving our results an advantage. I have not come

across the two results from this section in the literature although it is possible

they are known within the probability modelling community.

1.4.1 Computation of sums and averages

Consider the computation of a sum or average of real numbers computed on

different processors. Let m be the number of processors and v1, . . . , vm ∈ R be

the m numbers with each vi corresponding to the number computed on the ith

processor. Let u =
∑m

i=1 vi denote the sum and thus u/m denotes the average.

We assume that each of the vi are strictly positive and therefore u > 0.

Suppose that some of the processors may fail and that failed processors do not

contribute to the sum. Let B1, . . . , Bm be Bernoulli random variables denoting

the state of each processor at the moment u is computed. Let 1 denote the

‘on’ state and 0 denote the ‘failed’ state. For each i let pi := Pr(Bi = 1) and

hence 1 − pi = Pr(Bi = 0). It follows that E[Bi] = pi and Var(Bi) = pi(1 − pi).
The total number of processors in the ‘on’ state is given by the random variable

M :=
∑m

i=1 Bi and thus the number of failed processors is m−M . The expected
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number of processors contributing to the sum is E[M ] =
∑m

i=1 pi and the expected

number of failed processors is m− E[M ]. In the case that all of the pi are equal

to some p ∈ (0, 1) then E[M ] = pm (> 0) and m− E[M ] = m(1− p).
The sum of vi on the processors in the presence of faults is given by

U =
m∑
i=1

Bivi

for which one has

E[U ] =
m∑
i=1

E[Bi]vi =
m∑
i=1

pivi .

If all of the pi are equal one has E[U ] = p
∑m

i=1 vi = pu. Thus the expected value

of the sum differs from the actual sum u by (1−p)u and therefore the expectation

of the relative error is 1− p.
There are two ways that one may attempt to correct the sum depending on

whether all surviving processors are aware of how many processors have failed.

If they are aware then one may compute m
M
U (which we define as 0 if M = 0).

If they are not aware but E[M ] is known one may compute m
E[M ]

U . We first look

at the expectation of these two approaches.

Proposition 1.18. Fix m ∈ N. Let (v1, . . . , vm) ∈ R and B1, . . . , Bm ∼ B(1, p)

be independent Bernoulli random variables with p ∈ (0, 1). Let U =
∑m

i=1 Bivi

and M =
∑m

i=1 Bi, then

E

[
mU

E[M ]

]
= u

E

[
mU

M

]
= u (1− (1− p)m) ,

where u =
∑m

i=1 vi.

Proof. For mU
E[M ]

we have

E

[
m

E[M ]
U

]
=

m

E[M ]
E[U ] = m

∑m
i=1 pvi∑m
i=1 p

= m
pu

pm
= u .
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For mU
M

via the law of total expectation

E

[
m
U

M

]
= m

m∑
k=0

E

[
U

M

∣∣∣∣M = k

]
Pr(M = k)

= m
m∑
k=1

E

[∑m
i=1 Bivi
M

∣∣∣∣M = k

]
Pr(M = k)

=
m∑
k=1

mPr(M = k)

k
E

[
m∑
i=1

Bivi

∣∣∣∣∣M = k

]

=
m∑
k=1

mPr(M = k)

k

m∑
i=1

E [Bi|M = k] vi .

Now as the Bi are 1 with equal probability then given M = k the probability

any one Bi is 1 is k
m

, that is Pr(Bi = 1|M = k) = k
m

, thus E[Bi|M = k] = k
m

.

(Alternatively, note that Pr(Bi = 1, M = k) = p
(
m−1
k−1

)
pk−1(1 − p)m−k and thus

Pr(Bi=1,M=k)
Pr(M=k)

= m
k

). Substituting this into the previous equality one obtains

E

[
m
U

M

]
=

m∑
k=1

Pr(M = k)u = u(1− Pr(M = 0)) = u (1− (1− p)m) ,

as required.

It may at first seem that mU
E[M ]

is the better option as the expectation of
mU
M

differs from the true sum. Note, however, that the factor (1− (1− p)m)

relates to the fact that the result is 0 if every processor fails and that this cannot

be corrected in any way. In such circumstances one would typically start the

computation again until a non-zero result is obtained. Thus one might instead

consider E
[
m U

M

∣∣M > 0
]

which is indeed equal to u.

The formula mU
E[M ]

and mU
M

for a corrected sum in the event of faults may also

be applied to estimate the average in the event of faults. Notice that in the case of

computing an average as U
m

one has E
[
U
m

]
= E[U ]

m
= pu

m
(when all the pi are equal

to p). However, if one replaces U with the sum m
E[M ]

U , one instead computes the

average as mU
E[M ]

1
m

= U
E[M ]

which has mean E
[

U
E[M ]

]
= E[U ]

E[M ]
= pu

pm
= u

m
which is the

same as the average in the absence of faults. Similarly, if one uses the corrected

sum m
M
U then one has the average U

M
which for which E

[
U
M

]
= (1−(1−p)m)u

m
. Again,

if we restrict ourselves to the case M > 0 one has E
[
U
M

∣∣M > 0
]

= u
m

.

From the expectation alone it is not clear which of m
E[M ]

U or m
M
U is the better

computation for a sum on a faulty machine. To get a better understanding of

how far results are spread from the mean we will look at the variance of each

random variable.



1.4. APPLICATION OF FAULT MODELS 35

Proposition 1.19. Fix m ∈ N. Let (v1, . . . , vm) ∈ R and B1, . . . , Bm ∼ B(1, p)

be independent Bernoulli random variables with p ∈ (0, 1). Let U =
∑m

i=1 Bivi

and M =
∑m

i=1 Bi, then

Var

(
mU

E[M ]

)
=

1− p
p

m∑
i=1

v2
i

Var

(
mU

M

)
≤ m (1− (1− p)m)

(
m∑
i=1

v2
i

)
− (1− (1− p)m)2 u2 ,

where u =
∑m

i=1 vi.

Proof. First note that

Var(U) = Var

(
m∑
i=1

Bivi

)
=

m∑
i=1

v2
i Var(Bi) = p(1− p)

m∑
i=1

v2
i .

It follows that

Var

(
m

E[M ]
U

)
=

m2

E[M ]2
Var(U) =

m2

E[M ]2
p(1− p)

m∑
i=1

v2
i

=
1− p
p

m∑
i=1

v2
i .

For the variance of mU
M

we have

Var

(
mU

M

)
= m2E

[(
U

M

)2
]
− E

[
mU

M

]2

= m2E

[(
U

M

)2
]
− (1− (1− p)m)2 u2 .

For the E
[(

U
M

)2
]

term we have via the law of total expectation

E

[(
U

M

)2
]

=
m∑
k=0

E

[(
U

M

)2
∣∣∣∣∣M = k

]
Pr(M = k)

=
m∑
k=1

1

k2
E
[
U2
∣∣M = k

]
Pr(M = k)

=
m∑
k=1

1

k2
E

( m∑
i=1

Bivi

)2
∣∣∣∣∣∣M = k

Pr(M = k) .
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Now expanding the sum within the expectation one has

E

( m∑
i=1

Bivi

)2
∣∣∣∣∣∣M = k

 =

(
m∑
i=1

v2
i E[B2

i |M = k]

)

+

(
2
m−1∑
i=1

m∑
j=i+1

vivjE[BiBj|M = k]

)
.

Note that E[B2
i |M = k] = E[Bi|M = k] = k

m
and since BiBj = 1 iff Bi = Bj = 1

one has Pr(BiBj = 1, M = k) = p2
(
m−2
k−2

)
pk−2(1 − p)m−k and thus E[BiBj|M =

k] = k(k−1)
m(m−1)

. It follows that

E

( m∑
i=1

Bivi

)2
∣∣∣∣∣∣M = k

 =

(
k

m

m∑
i=1

v2
i

)
+

(
2
k(k − 1)

m(m− 1)

m−1∑
i=1

m∑
j=i+1

vivj

)
.

Notice that as 2vivj ≤ v2
i + v2

j one has

E

( m∑
i=1

Bivi

)2
∣∣∣∣∣∣M = k

 ≤ ( k

m

m∑
i=1

v2
i

)
+

(
k(k − 1)

m(m− 1)
(m− 1)

m∑
i=1

v2
i

)

=
k2

m

m∑
i=1

v2
i ,

(with equality if all of the vi are equal). Therefore

E

[(
U

M

)2
]
≤ 1

m

(
m∑
i=1

v2
i

)
m∑
k=1

Pr(M = k)

=
1

m

(
m∑
i=1

v2
i

)
(1− (1− p)m) .

Substituting this into the variance one has

Var

(
mU

M

)
≤ m (1− (1− p)m)

(
m∑
i=1

v2
i

)
− (1− (1− p)m)2 u2 ,

as required.

Notice that if all of the vi are equal then u2 = m
∑m

i=1 v
2
i such that one has

Var
(
mU
M

)
= m(1 − p)m (1− (1− p)m)

∑m
i=1 v

2
i which is small for large m as a

result of the (1−p)m term. One might expect the variance in this case to be zero,
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but the contribution here is from the case M = 0. One could instead consider

Var

(
mU

M

∣∣∣∣M > 0

)
= m2E

[(
U

M

)2
∣∣∣∣∣M > 0

]
− E

[
mU

M

∣∣∣∣M > 0

]2

= m2E

[(
U

M

∣∣∣∣M > 0

)2
]
− u2 ,

for which E
[(

U
M

∣∣M > 0
)2
]
≤ 1

m

∑m
i=1 v

2
i follows from the proof of the Lemma.

When all of the vi are equal then Var
(
mU
M

∣∣M > 0
)

= 0. For vi which are close

together we therefore expect the variance to be small and, in particular, signifi-

cantly smaller than Var(U) and Var
(
mU

E[M ]

)
.

This rather simple model already gives us a nice analysis of different ways to

compute the sum or average of values on a machine which may experience faults.
mU
M

is typically the better estimate of the sum with U
M

being the corresponding

estimate of the average. This model could easily be extended to Bi which are not

iid although the calculation of mean and variance becomes increasingly complex

and may have to be estimated computationally via Monte Carlo methods. One

could also consider the case that the vi themselves are random variables, e.g. they

may be samples of a stochastic process or stochastic differential equation.

1.4.2 Optimal checkpoint restart algorithms

In Section 1.1.1 the checkpoint restart approach to fault tolerance was discussed.

Checkpoint-restart involves periodically saving the state of the computation such

that when a failure has occurred the computation can be started from the last

saved state rather than from the beginning, see Figure 1.2. A classical problem in

the development and analysis of checkpoint restart algorithms is the determina-

tion of the optimal checkpoint interval, that is the frequency at which checkpoints

should be saved to maximise utilisation.

As in Figure 1.2 we denote s to be the initial start up time and e to be the

restart time after a failure. For simplicity we will assume that e = s. We use c to

denote the time it takes to save a checkpoint and it is assumed this is constant

(i.e. does not change during the computation). The computation time before

each checkpoint is denoted by r. It is r that we want to optimise with respect to

the utilisation.

Let the number of faults which have occurred on a processor up to time t be

modelled by a renewal process N(t) with inter-arrival times given by X1, X2, . . .
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which are iid. If we start computing at some time t then the interval up until

the next fault occurs, that is [t, SN(t)+1) with Sn :=
∑n

i=1Xi, consists of

• an initial startup (or restart) of length s

• a number of full compute-checkpoint cycles (each of length r + c)

• a last compute compute-checkpoint cycle in which a failure occurs.

An exception to this is if a fault occurs during the initial startup interval in

which case we must restart without having computed anything. The number of

complete compute-checkpoint cycles is given by
⌊

max{Xi−s,0}
c+r

⌋
. It follows that the

utilised time in the ith interval is r
⌊

max{Xi−s,0}
c+r

⌋
. Rather than maximising the

utilisation we can consider the equivalent problem of minimising the waste time

where the waste in each interval is given by

Ri = Xi − r
⌊

max{Xi − s, 0}
c+ r

⌋
.

Notice that as the Xi are iid the Ri are also iid so we may therefore consider

a renewal reward process R(t) =
∑N(t)

i=1 Ri which adds up the waste time from

all intervals X1 up to XN(t) − 1. Note that it does not take into account any

waste accumulating in the current interval XN(t). The elementary renewal reward

theorem 1.14 tells us

lim
t→∞

E[R(t)]

t
→ E[R1]

E[X1]
.

That is, the average rate at which the expected waste time accumulates is equal

(asymptotically) to the expected rate in the first interval. As a consequence, we

need only consider minimising E[R1] to maximise the expected utilisation.

Proposition 1.20. Let s, c, r > 0, X1 be an exponentially distributed random

variable with mean λ = E[X1] > 0, and R1 = X1 − r
⌊

max{X1−s,0}
c+r

⌋
, then

E[R1] = λ− re−s/λ

e(c+r)/λ − 1
.

Proof. Via the law of total expectation

E[R1] = E[R1|X1 ≤ s] Pr(X1 ≤ s) + E[R1|X1 > s] Pr(X1 > s) .

It is straightforward to show that

E[R1|X1 ≤ s] Pr(X1 ≤ s) =

∫ s

0

x

λ
e−x/λ ds = λ− (λ+ s)e−s/λ .



1.4. APPLICATION OF FAULT MODELS 39

For the second term we have

E[R1|X1 > s] = E

[
X1 − r

⌊
X1 − s
c+ r

⌋∣∣∣∣X1 > s

]
= E

[
X1 + s− r

⌊
X1

c+ r

⌋∣∣∣∣X1 > 0

]
= E

[
cX1

c+ r
+ s+ r

(
X1

c+ r
−
⌊
X1

c+ r

⌋)]
=
cE[X1]

c+ r
+ s+ rE

[
X1

c+ r
−
⌊
X1

c+ r

⌋]
.

Using the fact that X1 is exponentially distributed one has

E

[
X1

c+ r
−
⌊
X1

c+ r

⌋]
=

∫ ∞
0

(
x

c+ r
−
⌊

x

c+ r

⌋)
1

λ
e−x/λ dx

=

∫ ∞
0

(x− bxc)c+ r

λ
e−x(c+r)/λ dx .

Now for each k = 0, 1, 2, . . . and x ∈ [k, k + 1) we have bxc = k and so

E

[
X1

c+ r
−
⌊
X1

c+ r

⌋]
=
∞∑
k=0

(∫ 1

0

x
c+ r

λ
e−(x+k)(c+r)/λ dx

)
=
∞∑
k=0

(
e−k(c+r)/λ

∫ 1

0

x
c+ r

λ
e−x(c+r)/λ dx

)

=
λ

c+ r

(∫ (c+r)/λ

0

xe−x dx

)
∞∑
k=0

e−k(c+r)/λ .

Now as
∑∞

k=0 e
−k(c+r)/λ = (1− e−(c+r)/λ)−1 and∫ (c+r)/λ

0

xe−x dx =
[
−xe−x

](c+r)/λ
x=0

+

∫ (c+r)/λ

0

e−x dx

= −c+ r

λ
e−(c+r)/λ +

[
−e−x

](c+r)/λ
x=0

= 1−
(

1 +
c+ r

λ

)
e−(c+r)/λ ,

one has

E

[
X1

c+ r
−
⌊
X1

c+ r

⌋]
=

λ

c+ r

(
1−

(
1 +

c+ r

λ

)
e−(c+r)/λ

)
1

1− e−(c+r)/λ

=
λ

c+ r
− 1

e(c+r)/λ − 1
.

Therefore

E[R1|X1 > s] =
cλ

c+ r
+ s+ rE

[
X1

c+ r
−
⌊
X1

c+ r

⌋]
= λ+ s− r

e(c+r)/λ − 1
.

Substituting this into the expression for E[R1] along with Pr(X1 > s) = e−s/λ

gives the desired result.
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Notice that E[R1|X1 > s] is the only term which depends on r. Thus to

minimise E[R1] with respect to r we need only minimise E[R1|X1 > s] with

respect to r. Further, the term E
[
X1

c+r
−
⌊
X1

c+r

⌋]
tells us how far into the last

compute-checkpoint cycle we are expected to get before a failure occurs. If the

fault rate is constant one might conjecture that this term is equal to 1
2
. In fact

this is note quite true, although close if E[X1] � c + r. Using Laurent series

expansion

1

ex − 1
=

1

x
− 1

2
+

x

12
− x3

720
+O(x5)

we have

E

[
X1

c+ r
−
⌊
X1

c+ r

⌋]
=

1

2
− c+ r

12λ
+

(c+ r)3

720λ3
+O((c+ r)5λ−5) ,

which is approximately 1/2 for (c+ r)� λ. Thus

E[R1|X1 > s] =
cE[X1]

c+ r
+ s+ rE

[
X1

c+ r
−
⌊
X1

c+ r

⌋]
≈ cE[X1]

c+ r
+ s+

r

2
.

Minimising the right hand size with respect to r we note that

∂

∂r

(
cE[X1]

c+ r
+ s+

r

2

)
= − cE[X1]

(c+ r)2
+

1

2

and therefore the minimum is achieved for

r = −c+
√

2cE[X1] .

As r+ c ∝
√

E[X1] we indeed have c+ r � E[X1] for large E[X1]. Thus for large

E[X1] the optimal compute-checkpoint interval is approximately r+c =
√

2cE[X1]

which is similar to approximation of the optimal checkpoint interval derived by

Young [130]. The exact solution is given by r = λ(W (−e−1−c/λ) + 1) where W is

the Lambert W function (which satisfies W (z)eW (z) = z).

In this calculation we made two assumptions, that checkpoints occur at regular

intervals, and that the Xi are exponentially distributed. More detailed calcula-

tions of optimal checkpoint intervals in the literature deal with both non-regular

checkpoint times and arbitrary failure distributions, see for example [91]. Our

derivation is easily applied to arbitrary failure distributions although the term

E
[
X1

c+r
−
⌊
X1

c+r

⌋]
may need to be estimated computationally. For example, if the
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Xi are Weibull distributed with scale µ and shape parameter κ one has∫ ∞
0

(
x

c+ r
−
⌊

x

c+ r

⌋)
κ

µ

(
x

µ

)κ−1

e−(x/µ)κ dx

=

∫ ∞
0

(x− bxc) κ(c+ r)

µ

(
x(c+ r)

µ

)κ−1

e−(x(c+r)/µ)κ dx

=
µ

c+ r
Γ

(
1 +

1

κ

)
−
∞∑
i=1

i

∫ i+1

i

κ(c+ r)

µ

(
x(c+ r)

µ

)κ−1

e−(x(c+r)/µ)κ dx

=
µ

c+ r
Γ

(
1 +

1

κ

)
−
∞∑
i=1

i
(
e−(i(c+r)/µ)κ − e−((i+1)(c+r)/µ)κ

)
=

E[X1]

c+ r
−
∞∑
i=1

e−(i(c+r)/µ)κ ,

where E[X1] = µΓ
(
1 + 1

κ

)
. Thus in this case

E[R1|X1 > s] =
cE[X1]

c+ r
+ s+ r

(
E[X1]

c+ r
−
∞∑
i=1

e−(i(c+r)/µ)κ

)

= E[X1] + s− r
∞∑
i=1

e−(i(c+r)/µ)κ .

One then would need to find the minimum with respect to r for a given µ,κ and

c which could be done computationally (using Newton’s method for example).

1.4.3 Fault simulation

In Section 1.3.3 some assumptions that are made regarding faults and fault models

in this thesis were discussed. Here we make some additional comments regarding

our approach to the simulation of hard faults (i.e. where a processor or node

stops working permanently). As previously mentioned, at the current time there

is limited software available which notifies applications of a fault so that the

application itself can decide what action to take. User Level Fault Mitigation

(ulfm) is an extension of mpi which allows an application to detect the loss of

an mpi processor and then shrink the global communicator or even replace the lost

processor. Although ulfm is still in beta some use cases are emerging [103, 4].

Because software like ulfm is still in early development it is difficult to test

software recovering from real faults. Further, limited resources mean we cannot

test our algorithms at the peta- to exa- scale waiting for real faults. The difficulty

in testing faults at a smaller scale is that faults are less frequent. As our main
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interest is algorithm development testing is essential. Thus, our approach will be

to artificially raise the fault rate on smaller problems via fault simulation with

small mtbf such that the rate at which faults occur on the smaller problems is

similar, or even more frequent, than that for larger problems. Also note that

the loss of data on one node for a problem running on O(10) nodes is more

significant than a loss of one node for a problem running on O(10 000) or more

nodes. Therefore, with good results in these circumstances we can be confident

that the algorithm will perform well at a larger scale.

We will make the following assumptions regarding simulated hard faults.

• affected processors fail permanently, all data on the affected processors is

lost,

• a software mechanism is in place to replace the failed processors (by other

processors on standby) and this is transparent to the application,

• the application is notified that a fault has occurred and which processors

were affected,

• other processors are not aware of the failure until they attempt to commu-

nicate with other processors (failed or otherwise).

This is simulated by deleting all data on the mpi processors for which a simulated

failure was flagged, from that point on we assume the affected mpi processors

have been transparently replaced by a supporting software mechanism. Only at

a communication block of code does the application become aware of the failure.

In a real computer system most permanent failures will result in the loss of an

entire socket or node. With a modular system design one could argue that sockets

should be able to operate independently and therefore only a socket should be

typically affected by hardware failure. Thus, assuming that future hardware is

implemented in such a way to reduce the impact of hard faults, we model the

life cycle of each socket as a renewal process. This is simulated by having one

thread on each socket sample an appropriate distribution for the time to the next

failure. A flag is then raised so that at the next communication block of code the

application becomes aware of the failure. All threads on that socket are notified

that the data is void. The thread responsible for fault simulation on that socket

then enters a new interval in the renewal process and thus samples another time

to next failure. The application then enters into some recovery scheme to replace

or recompute the lost data which may or may not involve processors from other
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sockets (which also become aware of the fault at the next communication block).

From here computations continue as usual until completion or the occurrence of

another fault.

For the distribution of time between failures we focus on the Weibull distri-

bution (1.8) with shape parameter 0 < κ ≤ 1. The reason for this is that the two

studies [116] and [91] of faults in high performance computers found the Weibull

distribution to be the best fit and the former study found both individual nodes

and entire systems exhibited shape parameters of approximately 0.7 and 0.8 re-

spectively in late production. There are a few important observations to be made

for the Weibull distribution with shape 0 < κ ≤ 1. First, for κ = 1 it reduces to

the exponential distribution. Second, for κ < 1, unlike the exponential distribu-

tion which is memory-less, the failure rate (or hazard rate) decreases over time.

In particular one has the following lemma.

Proposition 1.21. If X is Weibull distributed with κ ∈ (0, 1] and s, t ≥ 0 then

Pr(X ≤ s+ t | X > s) ≤ Pr(X ≤ t) . (1.9)

Proof. One has

Pr(X ≤ s+ t | X > s) =
Pr(s < X ≤ s+ t)

Pr(X > s)
.

Noting that a Weibull random variable has cumulative distribution

Pr(X ≤ t) = 1− e−(t/λ)κ for t ≥ 0 , (1.10)

(and Pr(X ≤ t) = 0 for t < 0) one has

Pr(X ≤ s+ t | X > s) =
e−(s/λ)κ − e−((s+t)/λ)κ

e−(s/λ)κ
= 1− e(s/λ)κ−((s+t)/λ)κ .

As κ ∈ (0, 1] and s, t ≥ 0 one has sκ − (s+ t)κ ≥ −tκ and hence

Pr(X ≤ s+ t | X > s) ≤ 1− e−(t/λ)κ ,

as required.

One can easily extend this property to the fact that for s2 ≥ s1 ≥ 0 one has

Pr(X ≤ s2 + t | X > s2) ≤ Pr(X ≤ s1 + t | X > s1) .

This has important implications on the order in which we compute successive

solutions on a single node. Solutions one is least concerned about not completing
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due to a fault should be computed first and solutions for which we would like to

minimise the chance of failure should be computed last. For κ > 1 we note that

these inequalities are reversed, that is failure becomes more likely as time moves

forward.

Remember, the forward recurrence time is the time to next failure given a

starting time t, that is Y = SN(t)+1 − t. The cumulative distribution of the

forward recurrence time for an ordinary renewal process is given by (1.4). We

assume that t is sufficiently large that the limiting distribution (1.5) for t → ∞
is a good approximation to the forward recurrence time. If the inter-arrival times

are Weibull one has the limiting distribution

Pr(Y ≤ s) =
1

λΓ(1 + 1
κ
)

∫ s

0

e−(x/λ)κ dx (t ≥ 0) . (1.11)

Thus, given a computation starting at a random time in a processors life cycle,

we can sample this distribution to obtain a time until the next failure for our

simulation.

Recall that for κ = 1 one has Pr(Y ≤ s) = Pr(X ≤ s) = 1 − e−s/λ. The

following lemma shows that Pr(X ≤ s) is an upper bound for Pr(Y ≤ s) if

κ ∈ (0, 1].

Proposition 1.22. Let Y be the forward recurrence time for the ordinary renewal

process with inter-arrival times given by the Weibull distributed random variable

X having shape parameter κ ∈ (0, 1]. Then

Pr(Y ≤ t) ≤ Pr(X ≤ t) , (1.12)

for all t.

Proof. We note that via a change of variables followed by integration by parts

that

Γ

(
1 +

1

κ

)
=

∫ ∞
0

y
1
κ e−y dy =

∫ ∞
0

κ

λ

(x
λ

)κ
e−(x/λ)κ dx

=

∫ ∞
0

(x
λ

)(κ
λ

(x
λ

)κ−1

e−(x/λ)κ
)
dx

=
[
−x
λ
e−(x/λ)κ

]∞
0
−
∫ ∞

0

−1

λ
e−(x/λ)κ dx .

Note that for x = 0 one has x
λ
e−(x/λ)κ = 0. Further, note that ez ≥ zm

m!
for any

m ∈ N and z ≥ 0, and thus by fixing m > 1/κ and z = x/λ we have

lim
x→∞

x/λ

e(x/λ)κ
≤ lim

x→∞

zm!

zmκ
= m! lim

x→∞
z1−mκ = 0 ,
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as 1−mκ < 0. As limx→∞
x/λ

e(x/λ)κ is also clearly bounded below by zero the limit

itself must be equal to zero. Therefore one has
[
−x
λ
e−(x/λ)κ

]∞
0

= 0 and thus

Γ

(
1 +

1

κ

)
e−(t/λ)κ =

∫ ∞
0

1

λ
e−(x/λ)κ−(t/λ)κdx .

Since 0 < κ ≤ 1 and t, x ≥ 0 one has xκ + tκ ≥ (x+ t)κ and hence

Γ

(
1 +

1

κ

)
e−(t/λ)κ ≤

∫ ∞
0

1

λ
e−((x+t)/λ)κdx

=

∫ ∞
t

1

λ
e−(x/λ)κdx

=

∫ ∞
0

1

λ
e−(x/λ)κdx−

∫ t

0

1

λ
e−(x/λ)κdx

= Γ

(
1 +

1

κ

)
− 1

λ

∫ t

0

e−(x/λ)κdx .

Rearranging gives

1

λΓ(1 + 1
κ
)

∫ t

0

e−(x/λ)κdx ≤ 1− e−(t/λ)κ

which is the desired inequality.

This last property is extremely useful as it says that for 0 < κ ≤ 1, if we

perform our fault simulations sampling the Weibull distribution instead of the

corresponding forward recurrence time the simulated faults will occur more fre-

quently. Thus, if we simplify our simulation by sampling X instead of Y we will

not be giving ourselves an advantage when 0 < κ ≤ 1 and the simulation is in fact

signalling faults occurring more often than in reality. If a fault tolerant algorithm

performs well under these circumstances then we can be confident that it will

work well in practice.

The remaining question is how might we sample the variables X and Y in a

simulation. The Weibull distributed random variableX is straightforward to sam-

ple via the inverse transform sampling method. Note that the cdf of X has the

simple form FX(x) = 1− e−(x/λ)κ which has inverse F−1
X (y) = λ (− log(1− y))1/κ.

We may therefore compute a sample t of X by computing a sample y from

U([0, 1)) (the uniform distribution on [0, 1)) and then setting t = F−1
X (y). The

forward recurrence time Y is somewhat more difficult to sample. As the cumu-

lative distribution of Y is defined by an integral it is difficult to invert. Here we

will outline how samples may be drawn for 1
2
≤ κ ≤ 1 using acceptance-rejection



46 CHAPTER 1. FAULTS IN HIGH PERFORMANCE COMPUTING

sampling. Notice that we may obtain the pdf fY of Y by differentiating the cdf

fY (s) =
d

ds
FY (s) =

d

ds

∫ s

0

e−(x/λ)κ

λΓ(1 + 1
κ
)
ds =

e−(s/λ)κ

λΓ(1 + 1
κ
)
.

Now we need to find a function g(s) such that fY (s) ≤ g(s) for all s ∈ [0,∞)

and such that samples from Z having probability distribution g(s)/
∫∞

0
g(x) dx

are easy to calculate. We consider the function

g(s) =
1

λΓ(1 + 1
κ
)

(
e−s/λ + e−

√
s/λ
)
.

Notice that for 0 ≤ s ≤ λ one has e−s/λ ≥ e−(s/λ)κ and for s ≥ λ one has

e−
√
s/λ ≥ e−(s/λ)κ . It follows that g(s) ≥ f(s) for all s ∈ [0,∞). Further, the

normalising factor for g is given by∫ ∞
0

g(s) ds =
1

λΓ(1 + 1
κ
)

∫ ∞
0

e−s/λ + e−
√
s/λ ds

=
1

λΓ(1 + 1
κ
)

(
λ+

∫ ∞
0

e−
√
s/λ ds

)
.

For the remaining integral we substitute s 7→ z2λ to obtain∫ ∞
0

e−
√
s/λ ds =

∫ ∞
0

e−z2zλ dz

=
[
−2λze−z

]∞
z=0

+

∫ ∞
0

2λe−z dz = 0 +
[
−2λe−z

]∞
z=0

= 2λ ,

and therefore
Γ(1+ 1

κ
)

3
g(s) has the necessary properties of a probability density

function on [0,∞). Further, one has

Γ(1 + 1
κ
)

3
g(s) =

1

3

(
1

λ
e−s/λ

)
+

2

3

(
1

2λ
e−
√
s/λ

)

and thus
Γ(1+ 1

κ
)

3
g(s) is a mixture distribution with 1

λ
e−s/λ corresponding to the

pdf of an exponentially distributed random variable Z1 with mean λ and e−
√
s/λ

2λ

corresponding to the pdf of a random variable Z2 (note that Z2 has identical

distribution to Y when κ = 1
2
). One can sample Z as follows:

1. Sample u from U([0, 1)),

2. If u < 1/3 then sample Z1, otherwise sample from Z2.
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Sampling from Z1 is straightforward using the inverse transform approach (in

fact it is identical to sampling the Weibull distribution described above with

κ = 1). Sampling from Z2 can also be done with the inverse transform method

but requires a root finding algorithm to find the inverse. Notice that the cdf of

Z2 is given by

Pr(Z2 ≤ s) =
1

2λ

∫ s

0

e−
√
x/λ dx

=
1

2λ

∫ √s/λ

0

e−z2λz dz

=
[
−ze−z

]√s/λ

z=0
+

∫ √s/λ

0

e−z dz

= −
√
s

λ
e−
√
s/λ + 1− e−

√
s/λ = 1− e−

√
s/λ
(

1 +
√
s/λ
)
.

Thus we may sample from Z2 as follows:

1. Sample u from U([0, 1)),

2. Solve 1− u = e−z(1 + z) for z, for example, using Newton’s method zn+1 =

zn + 1 + 1
zn
− 1−u

zne−zn
(a good initial guess is z0 = 1− log(1− u)),

3. Return the sample λz2.

Now that we have the function g(s) ≥ fY (s) and a straightforward way of sam-

pling the random variable Z which has pdf
Γ(1+ 1

κ
)

3
g(s) we can use acception-

rejection sampling to sample Y as follows:

1. Take a random sample z from Z,

2. Take a random sample u from U((0, 1))

3. If ug(z) ≤ f(z) then accept z as a sample of Y , otherwise return to step 1.

The performance of this approach depends upon how often samples are rejected.

The unconditional acceptance probability is given by

Pr

(
u <

f(z)

g(z)

)
= E

[
f(z)

g(z)

]
=

∫ ∞
0

f(z)

g(z)

Γ(1 + 1
κ
)

3
g(z) dz

=
Γ(1 + 1

κ
)

3

∫ ∞
0

f(z) dz =
Γ(1 + 1

κ
)

3
.
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Figure 1.8: Here we plot a histogram of 106 samples using 103 bins of the random

variables X and Y corresponding to the Weibull distribution and forward recurrence

times respectively with λ = 1000 and κ = 0.7. The plot on the right is of the same data

but with a log scale on the y axis.

As κ ∈ [1/2, 1] one has 1 ≤ Γ(1 + 1
κ
) ≤ 2 and therefore the unconditional

acceptance probability is in the interval
[

1
3
, 2

3

]
. With an acceptance probabil-

ity of 1
3

the expected number of iterations before a sample is accepted is 3

(
∑∞

k=1
k
3

(
2
3

)k−1
= 3). Suppose the computation time is proportional to the num-

ber of times the uniform distribution on the interval is sampled, then, as sampling

Z requires 2 samples (one to determine which of Z1 or Z2 is to be sampled and

the second for the actual sampling), we see that the expected number of samples

of U([0, 1)) to obtain a sample of Y is 3(2 + 1) = 9.

Note that this sampling method is easily extended to κ in each sub-interval[
1
n
, 1
n−1

]
for integers n ≥ 2 by considering g(s) = 1

λΓ(1+ 1
κ

)

(
e−s/λ + e−(s/λ)1/n

)
.

Here one finds that
∫∞

0
g(s) ds = 1+n!

Γ(1+ 1
κ

)
which leads to the acceptance probability

Γ(1+ 1
κ

)

1+n!
which lies in the interval

[
(n−1)!
1+n!

, n!
1+n!

]
. However, as the study by Schroeder

and Gibson [116] did not fit any shape parameters outside the interval κ ∈ [1
2
, 1]

to the distribution of time between failures for computers at LANL, we restrict

our simulations to shape parameters within this interval.

We conclude with an experiment comparing the distributions X and Y . In

Figure 1.8 we plot the histograms obtained by taking 106 samples of X and Y

for κ = 0.7 and λ = 1000. On the left we plot the raw histogram data and on

the right we plot the log of the histogram data to make the difference between

the two clearer. The random variable X has significantly more samples in the



1.4. APPLICATION OF FAULT MODELS 49

first few bins and then quickly drops below the number of samples of Y for

the majority of the remaining bins. The mean and standard deviation of the

samples of X are λΓ(1 + 1
κ
) ≈ 1268.35 and λ

√
Γ(1 + 2

κ
)− Γ(1 + 1

κ
)2 ≈ 1852.83

respectively (compared to the true expectation and standard deviation ≈ 1265.82

and ≈ 1851.17 respectively). The mean and standard deviation of the samples

of Y are 1988.65 and 2426.15 respectively (compared to the true expectation and

std. dev.
λΓ( 2

κ
)

κΓ(1+ 1
κ

)
≈ 1986.51 and λ

κΓ(1+ 1
κ

)

√
κΓ(1 + 1

κ
)Γ( 3

κ
)− Γ( 2

κ
)2 ≈ 2420.48

respectively). The observation that the mean of the samples of Y is larger than

that of X is consistent with the result of Proposition 1.22.
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Chapter 2

Sparse Grids and the

Combination Technique

In order to develop fault tolerant algorithms based upon the sparse grid combi-

nation technique it is essential to give a thorough description of both sparse grids

and the (sparse grid) combination technique. Many important results from the

existing literature which are presented as the techniques used to derive these re-

sults will be useful in the analysis of generalisations of the combination technique

and, in particular, fault-tolerant adaptations of it. We review many of the classi-

cal results from the literature in the context of a slightly different convention for

combination level. The techniques used in the proofs are also of interest as these

will be useful in the analysis of generalisations of the combination technique and,

in particular, fault-tolerant adaptations of it. We start by introducing sparse

grids in Section 2.1. In particular we will motivate their development with a

discussion of high dimensional problems and the hierarchical basis representation

of functions. By studying the contributions of different hierarchies in relation to

the number of unknowns in each we develop sparse grids in a manner similar to

the original literature on the subject. However, unlike existing literature where

sparse grids are typically developed for functions which are zero on the boundary

of the domain, we develop a more general case in which the boundary values are

not necessarily zero. We follow this with Section 2.2 which introduces the com-

bination technique as a way to approximate sparse grid solutions without having

to work directly with a hierarchical basis. An important observation will be the

combination technique’s equivalence to an inclusion-exclusion principle applied to

tensor products of function spaces which motivates the study of adaptive sparse

grids in Section 4.2. We also point out some attractive computational features

51
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and inherent redundancies in the combination technique which make the combi-

nation technique a good starting point for developing fault-tolerant algorithms.

2.1 Sparse Grids

It is first useful to introduce some notation from the theory of partially ordered

sets, or posets, which is used throughout this section and the remainder of the

thesis.

Notation 2.1. We consider multi-indices i, j ∈ Nd with the partial ordering i ≤ j

iff ik ≤ jk for all k = 1, . . . , d (where i = (i1, . . . , id)). Then,

• the strict inequality i < j is equivalent to i ≤ j and i 6= j,

• the meet (or greatest lower bound) l = i∧ j is the largest element satisfying

l ≤ i and l ≤ j. In Nd it is simply the component-wise minimum of the two

indices, that is lk = min{ik, jk} for k = 1, . . . , d,

• Similarly the join (or least upper bound) i∨ j is the smallest element satis-

fying l ≥ i and l ≥ j. In Nd it is also the component-wise maximum of the

two indices, that is lk = max{ik, jk} for k = 1, . . . , d,

• For a ∈ N we write a as shorthand for (a, . . . , a) ∈ Nd, for example 0 =

(0, . . . , 0), 1 = (1, . . . , 1) and 2 = (2, . . . , 2) is frequently used.

• |i| denotes the sum
∑d

k=1 |ik|.1

2.1.1 Preliminaries and motivation

Sparse grids were introduced by Zenger in 1990 [131] and subsequently developed

by him and Griebel [56, 62]. They were born from the realisation that for suf-

ficiently smooth problems a full grid resolves many high frequencies which have

a relatively small contribution to the solution. Zenger demonstrated that by not

resolving these frequencies one could drastically reduce the cost of computing a

solution whilst having a relatively small impact on the solution error. Some of the

underlying ideas can be traced back to Smolyak [119] in the study of quadrature

for tensor products of functions spaces.

1Note that as i ∈ Nd the | · | is redundant. However, as we consider multi-indices with

negative components later in the thesis this definition is preferred.
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Bungartz also made several contributions [17, 20, 21] particularly in extending

the ideas to higher order methods in the early 2000s. In 2004 Bungartz and

Griebel published a survey of sparse grids [22] which is the canonical reference for

the subject. More recently Garcke has published a much condensed introduction

to sparse grids [50]. Of course many others also made significant contributions,

particularly looking at extensions and generalisations of the initial concept, but

we defer discussion of these contributions to Chapter 4. In this section we focus

on the development of classical sparse grids.

We start by introducing the function space H2
mix.

Definition 2.2. Given Ω ⊂ Rd, a real valued function u ∈ L2(Ω) and s ∈ N,

then u ∈ Hs
mix(Ω) if for each 0 ≤ i ≤ s the weak derivative Diu exists and has

finite L2 norm. This function space may be equipped with the norm

‖u‖2
Hs

mix(Ω) :=
∑

0≤i≤s

∥∥∥∥ ∂|i|∂xi
u

∥∥∥∥2

L2(Ω)

=
∑

0≤i≤s

∥∥Diu
∥∥2

L2(Ω)
.

Additionally, for i ∈ Nd we define the semi-norm

|u|
H
i
mix(Ω)

=

∥∥∥∥ ∂|i|∂xi
u

∥∥∥∥
L2(Ω)

=
∥∥Diu

∥∥
L2(Ω)

.

Where the domain is clear we drop the Ω. The subset of Hs
mix consisting of

functions which are 0 on the boundary is denoted by Hs
0,mix. Of particular interest

is the function space H2
mix for which we note that H2

mix(Ω) ⊂ H2(Ω) ⊂ L2(Ω).

Consider the approximation of functions defined on closed intervals of the real

line. Without loss of generality we will always assume our interval to be [0, 1] as

any other interval can be easily transformed to this via a dilation and translation

operation. Let u : [0, 1] 7→ R be a real valued function which is continuous and

bounded. Note that we could just as easily consider complex valued functions

but for simplicity we consider real valued functions in this thesis.

In order to approximate a continuous function u on a computer one typically

begins by discretising the domain. In particular, it is common to break the

interval up into evenly spaced/sized elements. For example, in finite volume

methods an interval is typically broken into sub-intervals of equal length called

cells in which one considers the function average within each cell, and in finite

difference methods one typically considers the value of the function at evenly

spaced points along the entire interval (and interpolates between these points).

In this thesis we are interested in finite difference methods for hyperbolic pdes
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and therefore consider evenly spaced points within the interval but we note that

the development is much the same for finite volume methods. Furthermore, it is

also commonplace to consider nested coarsening and refinements for which the

distance between points (or cell widths) for different discretisations differs by a

power of 2. In light of this we introduce some notation.

Notation 2.3. Given the domain Ω = [0, 1] and i ∈ N we denote Ωi to be the

discretisation of Ω into 2i + 1 evenly spaced points (including endpoints). That

is

Ωi := {xi,j | j = 0, 1, . . . , 2i}

where xi,j := j2−i. Ωi is referred to as a level i discretisation of the interval.

A function u : Ω 7→ R may be approximated by a piecewise linear function

ui : Ω 7→ R whose function values at x ∈ Ωi approximate those of u. In this section

we specifically consider ui satisfying ui(x) = u(x) for all x ∈ Ωi. There are many

ways in which one might construct such functions. We are particularly interested

in those which are linear2 on the sub-intervals [xi,j, xi,j+1] for j = 0, . . . , 2i − 1.

These may be described as a linear combination of nodal basis functions.

Definition 2.4. The nodal basis function φi,j is defined as

φi,j(x) :=

{
1− 2i|x− xi,j| x ∈ [xi,j − 2−i, xi,j + 2−i] ∩ [0, 1]

0 otherwise
.

We see that for each xi,j the corresponding nodal basis function φi,j satisfies

φi,j(xi,j) = 1 and φi,j(xi,k) = 0 for all k 6= j. Further, each nodal basis function

is clearly linear on the sub-intervals [xi,j, xi,j+1] for all j = 0, . . . , 2i − 1. As such

we may define piecewise linear interpolants as follows.

Definition 2.5. The piecewise linear interpolant of samples of u : Ω 7→ R on the

set of points x ∈ Ωi is denoted by

Iiu :=
2i∑
j=0

u(xi,j)φi,j(x) . (2.1)

We refer to Iiu as the piecewise linear interpolant of u on Ωi.

The function space of all such approximations is given by the span of the

nodal basis functions.

2By ‘linear’ here we really mean ‘affine’. As it is generally well understood what this means

we use the term linear for consistency with the existing literature.
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Definition 2.6. The space of piecewise linear functions which is linear on the

sub-intervals [xi,j, xi,j+1] for all j = 0, . . . , 2i − 1 is defined as

Vi := span{φi,j : j = 0, . . . , 2i} .

The nodal basis functions have the following properties (adapted from [22, 50]

to include the boundary nodes).

Lemma 2.7. Let i ∈ N, if i > 0 and j ∈ {0, . . . , 2i}, then

‖φi,j‖1 = 2−i , ‖φi,j‖2 =

(
2

3

)1/2

2−i/2 , and ‖φi,j‖∞ = 1 .

Additionally, if i = 0 and j ∈ {0, 1} then

‖φi,j‖1 =
1

2
, ‖φi,j‖2 =

(
1

3

)1/2

, and ‖φi,j‖∞ = 1 .

Proof. Straightforward evaluation of integrals for the first two and the last follows

from the fact that the maximum of each φi,j is 1.

Of course, nodal basis functions are well known and are the cornerstone of

approximation theory being commonly used for numerical approximation of func-

tions. For example, nodal basis functions are widely used in the finite element

method to solve the Galerkin formulation of a variety of partial differential equa-

tion. Whilst for sufficiently large i the ui described by (2.1) are typically a

reasonable approximation of u ∈ L2(Ω) it is worth pointing out that it is typi-

cally not the best approximation of u in Vi. For example, the best approximation

in Vi for u ∈ L2(Ω) is given by

min
v∈Vi
‖u− v‖2 ,

and the study of such projections from L2 to Vi is fundamental to finite element

methods. The representation of elements of Vi via the nodal basis is attractive

computationally as it typically leads to sparse linear systems of equations that

may be solved quickly and efficiently. For example, given the nodal basis functions

φi,j and φi,k for j, k ∈ {0, . . . , 2i} the supports overlap iff |j − k| ≤ 1. This

leads to tri-diagonal stiffness matrices for a large class of problems in one spatial

dimension.

We now consider an alternative description of our approximations ui.
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Definition 2.8. Given the index sets

Bl =

{
1, 3, 5, . . . , 2l − 3, 2l − 1 l > 0

0, 1 l = 0

}
.

then the level i hierarchical basis functions are the φi,j with j ∈ Bi. Further, the

space of functions spanned by these basis functions

Wi := span{φi,j : j ∈ Bi}

is referred to as the space of level i hierarchical surpluses (or ith hierarchical space

for short).

We claim now that ui = Iiu can be written as the sum

ui =
i∑
l=0

∑
j∈Bl

cl,jφl,j

for some appropriate choice of cl,j ∈ R.

We first note that each of the φl,j with l < i has wider support than the typical

nodal basis functions. However, like the nodal basis functions for each xi,k (∈ Ωi)

there is a φl,j (0 ≤ l ≤ i and j ∈ Bl) such that φl,j(xi,k) = 1, in particular

φl,j(xi,2i−lj) = 1. Note that given the definition of xi,j one can write xi,2i−lj = xl,j

in which case one has φl,j(xl,j) = 1. We also notice that φl′,j′(xl,j) = 0 for all

l′ > l and j′ ∈ Bl′ . This suggests a so-called ’bottom-up’ approach. We note

that φ0,0(a) = φ0,1(b) = 1 and φ0,0(b) = φ0,1(a) = 0 whilst all of the other

φl,j (l > 0) are 0 at both a and b. It follows that c0,0 = u(x0,0) = u(xi,0) and

c0,1 = u(x0,1) = u(xi,2i). For l = 1 we have only the one hierarchical basis function

φ1,1. Since c0,0φ0,0 + c0,1φ0,1 gives us a linear interpolant between a and b then we

must have

u(x1,1) =
u(x0,0) + u(x0,1)

2
+ c1,1φ1,1(x1,1)

from which it follows that

c1,1 = u(x1,1)− u(x0,0) + u(x0,1)

2
= u(xi,2i−1)−

u(xi,0) + u(xi,2i)

2
.

With induction on l it is similarly shown that

cl,j = u(xl,j)−
u(xl,j−1) + u(xl,j+1)

2
= u(xi,2i−lj)−

u(xi,2i−l(j−1)) + u(xi,2i−l(j+1))

2
,

for j ∈ Bl and l = 0, . . . , i. This is typically expressed as an operator for which

we write

cl,j = [ −1
2

1 −1
2

]xl,j ,lu := u(xl,j)− 0.5(u(xl,j − 2−l) + u(xl,j + 2−l))
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Figure 2.1: Here we depict the linear nodal and hierarchical basis functions in one

dimension for increasing levels of discretisation. The top row shows the nodal basis

functions from level 0 on the left up to level 3 on the right. The bottom row shows the

hierarchical basis functions for the same levels.

By construction the resulting function is clearly equal to ui. Further, we can

write

Vi =
i⊕
l=0

Wi = span{φl,j : l = 0, . . . , i and j ∈ Bl} ,

from which it follows that

Vi = Vi−1 ⊕Wi .

Figure 2.1 shows the hierarchical basis functions for level 0,1,2 and 3 discreti-

sation of an interval. The large support of many of the hierarchical basis functions

is evident in the figure. As a result one typically obtains relatively dense linear

systems to solve compared to the sparse systems obtained from the nodal basis

function representation.

The following result provides an integral formula for the hierarchical coeffi-

cients.

Lemma 2.9 ([22, 50]). Let u ∈ H2(Ω) and cl,j be hierarchical coefficients such

that ui = Iiu =
∑i

l=0

∑
j∈Bl cl,jφl,j, then for l > 0 one has

cl,j = −2−l

2

∫
Ω

φl,j
∂2u

∂x2
dx

Proof. Using integration by parts one obtains∫
Ω

φl,j
∂2u

∂x2
dx =

[
φl,j

∂u

∂x

]xl,j+1

xl,j−1

−
∫ xl,j+1

xl,j−1

∂φl,j
∂x

∂u

∂x
dx

= 0− 1

2−l

∫ xl,j

xl,j−1

∂u

∂x
dx+

1

2−l

∫ xl,j+1

xl,j

∂u

∂x
dx

=
1

2−l
(−(u(xl,j)− u(xl,j−1)) + (u(xl,j+1)− u(xl,j)))

= − 2

2−l

(
u(xl,j)−

1

2
(u(xl,j−1) + (u(xl,j+1))

)
= − 2

2−l
cl,j .
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Multiplying both sides by −2−l

2
gives the required result. Observe that the above

calculation holds as H2(Ω) ⊂ C1(Ω) (in particular the Sobolev embedding the-

orem [1] gives H2(Ω) ⊂ C1, 1
2 (Ω) with Ck,α(Ω) being the Hölder space for which

the kth partial derivative exists and is Hölder continuous with exponent α).

Lemma 2.9 shows that as l increases the hierarchical coefficients decrease like

O(2−l), in fact as the support of the integral term is also O(2−l) the hierarchical

coefficients decay even faster. This decay in hierarchical coefficients is similar to

the decay of Fourier coefficients in smooth functions. This suggests that just as

the tail of a Fourier series may be truncated to approximate functions with a small

amount of data a similar approach may be taken with hierarchical coefficients.

Note that since the support of the corresponding φl,j also decreases we see that

the contribution to ui from each Wl decreases exponentially as l increases (see

Lemma 2.7). At the same time however the number of φl,j which span a given

Wl increases, in particular it is equal to the size of Bl for which |Bl| = 2l−1 for

l > 0 and |B0| = 2. It follows that as we refine an approximation to u the cost

increases exponentially whilst the benefit decreases exponentially. It is with this

observation that we build up sparse grids for functions in two or more dimensions.

Consider Ω ⊂ Rd for a fixed integer d. In particular we consider domains which

are topologically equivalent to tensor products of closed intervals (possibly with

identification of opposite edges/faces), that is after an appropriate transformation

we may write

Ω = I1 × · · · × Id

for some closed intervals I1, . . . ,Id ⊂ R. Without loss of generality it is enough

to consider Ω = [0, 1]d (e.g. by applying an affine transformation to I1×· · ·×Id).

The fact that Ω = [0, 1]d is simply a tensor product of unit intervals I = [0, 1]

means that much of what we developed in one dimension may be extended to Ω

via tensor products.

Again we consider functions u : Ω 7→ R which are continuous and bounded.

To approximate the function u we start by discretising our domain. Let i ∈ Nd,

then

Ωi := Ωi1 × · · · × Ωid

where each Ωik is a discretisation of the unit interval I = [0, 1] as in Notation 2.3.

In particular

Ωi = {x = (x1, . . . , xd) ∈ Rd : xk = jk · 2−ik for jk = 0, . . . , 2ik and k = 1, . . . , d} .



2.1. SPARSE GRIDS 59

Similarly we use the notation xi,j for elements of Ωi where

xi,j = (xi1,j1 , . . . , xid,jd) = (j12−i1 , . . . , jd2
−id)

where jk ∈ {0, . . . , 2ik} for each k = 1, . . . , d.

Consider piecewise (multi-)linear approximations of u : Ω → R which are

(multi-)linear on each [xi1,j1 , xi1,j1+1] × · · · × [xid,jd , xid,jd+1]. Such functions are

again typically represented as a sum of (d dimensional) nodal basis functions.

Definition 2.10. The d dimensional nodal basis functions are defined by

φi,j(x) :=
d∏

k=1

φik,jk(xk) .

Noting that each φi,j is 1 at xi,j and 0 for all other points in Ωi we can express

an approximation to u which is a (multi-)linear interpolation of samples of u on

Ωi as

ui(x) = Iiu(x) :=
∑

(0≤) j≤2i

u(xi,j)φi,j(x) , (2.2)

where 2i := (2i1 , . . . , 2id).

Notation 2.11. We denote the space of piecewise (multi-)linear functions given

by the span of the φi,j by

Vi := span{φi,j : (0 ≤) j ≤ 2i} .

Given the product nature of the nodal basis functions and the space Ω it

follows that Vi can be expressed as a tensor product of our one dimensional Vi,

that is

Vi = Vi1 ⊗ · · · ⊗ Vid .

As before, Iiu is not necessarily the best approximation of u in Vi.

We extend Lemma 2.7 to our d-dimensional nodal basis functions (adapted

from [22, 50] to include the boundary nodes).

Lemma 2.12. Let i ∈ Nd and (0 ≤) j ≤ 2i, then

‖φi,j‖1 = 2−(d−|i|0)2−|i|

‖φi,j‖2 =

(
1

3

)d/2
2|i|0/22−|i|/2

‖φi,j‖∞ = 1 ,

where |i|0 is the number of non-zero entries in i.
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Proof. Using the product structure of φi,j in Definition 2.10 each equality is ob-

tained by taking the product of the results of Lemma 2.7.

As in the one-dimensional case, for a given i approximations with the nodal

basis functions typically lead to relatively sparse linear systems since the support

of φi,j for each (0 ≤) j ≤ 2i overlaps with at most 3d neighbouring basis functions

(including itself). However, we again consider a hierarchical description of our

function space Vi.

Notation 2.13. Let l ∈ Nd then we define the (multi-)index set

Bl := Bl1 × · · · ×Bld =

{
j :

jk = 1, 3, 5, . . . , 2lk − 1 if lk > 0, k = 1, . . . , d

jk = 0, 1 if lk = 0, k = 1, . . . , d

}
,

and let

Wl = span{φl,j : j ∈ Bl}

Just as the Vi is equal to Vi1 ⊗ · · · ⊗ Vid one similarly has

Wl = Wl1 ⊗ · · · ⊗Wld .

Furthermore, it follows that

Vi =
d⊗

k=1

Vik =
d⊗

k=1

(
ik⊕
lk=0

Wlk

)
=
⊕

0≤l≤i

(
d⊗

k=1

Wlk

)
=
⊕

0≤l≤i

Wl .

Henceforth we drop the lower bound 0 for sums over l ≤ i as this is implicit for

l ∈ Nd.

The obvious question at this point is how one calculates coefficients cl,j such

that

ui =
∑
l≤i

∑
j∈Bl

cl,jφl,j

 .

The tensor product structure is again invaluable as we can simply apply our one

dimensional hierarchisation operator to each dimension. That is, for l ≥ 1

cl,j =

(
d∏

k=1

[ −1
2

1 −1
2

]xlk,jk ,lk

)
u .

At this point it is important to note that the literature generally considers the

domain [0, 1]d with the additional assumption that functions are zero on the

boundary. This somewhat simplifies the development and also fits in with the
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application of elliptic pdes with zero boundary which is typically presented in the

literature. In particular this means that they only need to consider l ≥ 1. With

our interest in hyperbolic pdes however, we must consider non-zero boundary

conditions and therefore must consider hierarchical basis functions which are

non-zero on the boundary. Let

Hxl,j ,l :=

{
[ −1

2
1 −1

2
]xl,j ,l if l > 0

[ 0 1 0 ]xl,j ,l if l = 0

then one has for all l ≥ 0

cl,j =

(
d∏

k=1

Hxlk,jk ,lk

)
u .

We now extend Lemma 2.9 to our d-dimensional hierarchical coefficient cl,j.

Lemma 2.14 ([22, 50]). Let Ω = [0, 1]d and u ∈ H2
mix(Ω) and cl,j be hierarchical

coefficients such that ui = Iiu =
∑

l≤i
∑

j∈Bl cl,jφl,j, then for l ≥ 1 one has

cl,j = (−1)d2−|l|−d
∫

Ω

φl,jD
2u dx . (2.3)

Additionally for l 6≥ 1 (and l ≥ 0), let k be the number of non-zero members of l

and {m1, . . . ,mk} ⊂ {1, . . . , d} be such that lm1 , . . . , lmk 6= 0 and {mk+1, . . . ,md}
are the remaining indices, then one has

cl,j = (−1)k2−|l|−k
∫ 1

0

. . .

∫ 1

0

φl,j
∂2

∂x2
m1

· · · ∂2

∂x2
mk

u|xmk+1
=jk+1,...,xmd=jd dxm1 · · · dxmk .

(2.4)

Proof. Given the product structure of both φl,j and cl,j then (2.3) follows immedi-

ately from Lemma 2.9 (observing that H2
mix([0, 1]d) = H2([0, 1])⊗· · ·⊗H2([0, 1]),

see [73]). Similarly (2.4) is the same argument applied to those indices which are

non-zero.

For l ≤ i we use the notation uhl to denote the contribution to the function

ui from the hierarchical space Wl, that is uhl ⊂ Wl. As such ui =
∑

l≤i u
h
l .

The following Lemma bounds the contribution from hierarchical surpluses and is

effectively a collection of two separate lemmas in [22].

Lemma 2.15 ([22, 50]). Let u ∈ H2
mix and for i ∈ Nd let ui = Ii be piecewise

linear approximations of u as in (2.2). For l ≤ i and j ∈ Bl let cl,j be such that

ui =
∑

l≤i

(∑
j∈Bl cl,jφl,j

)
, then for l ≥ 1∥∥∥cl,jφl,j∥∥∥

2
≤ 3−d2−2|l|

∥∥∥D2u|supp(φl,j)

∥∥∥
2
.
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Additionally, if uhl ∈ Wl are the hierarchical surpluses such that ui =
∑

l≤i u
h
l ,

then for l ≥ 1 one has

∥∥uhl ∥∥2
≤
(

1

3

)d
2−2|l| ∥∥D2u

∥∥
2
.

Proof. Combining Lemmas 2.12 and 2.14 for l ≥ 1 (for which |l|0 = d) one has

(via Hölder’s inequality)∥∥∥cl,jφl,j∥∥∥2

2
=
∣∣∣cl,j∣∣∣2 ∥∥∥φl,j∥∥∥2

2
=

(
1

6

)d
2−3|l|

∣∣∣∣∫
Ω

φl,jD
2u(x)dx

∣∣∣∣2
≤
(

1

6

)d
2−3|l|

∥∥∥φl,j∥∥∥2

2

∥∥∥D2u|supp(φl,j)

∥∥∥2

2

=

(
1

9

)d
2−4|l|

∥∥∥D2u|supp(φl,j)

∥∥∥2

2
.

Summing over all j ∈ Bl for a given l ≥ 1 we note that the supports of the φl,j

overlap only on their boundaries and the union is Ω, thus one obtains the bound

∥∥uhl ∥∥2
=

∥∥∥∥∥∥
∑
j∈Bl

cl,jφl,j

∥∥∥∥∥∥
2

≤
(

1

3

)d
2−2|l| ∥∥D2u

∥∥
2
,

as required.

We see that the contribution to the approximation from the hierarchical sur-

plus uhl decays exponentially according to the 1-norm of l. At the same time, the

number of hierarchical basis functions making up uhl is given by |Bl| = 2|l|−d for

l ≥ 1. Thus the cost increases exponentially whilst the benefit decreases expo-

nentially. We see that the uhl with the same cost and benefit are those with equal

|l|. The idea of a sparse grid is that rather than consider a full grid solution of

level n, that is u(n,...,n) =
∑

l≤(n,...,n) u
j
l we instead consider

∑
|l|≤n u

h
l . As will be

quantified in in the following subsections, this significantly reduces the number

of unknowns in the representation whilst only having small impact on the error.

Notation 2.16. We denote the sparse grid function space by V s
n and it can be

expressed in terms of its hierarchical decomposition into

V s
n =

⊕
|l|≤n

Wl .

Similarly we denote usn :=
∑
|l|≤n u

h
l to be an approximation of the function u in

the sparse grid space. It is typically referred to as the sparse grid solution.
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Figure 2.2: Here we depict a two dimensional sparse grid. On the left is a sparse grid

without boundary points and on the right is the same sparse grid with boundary points.

The largest hierarchical spaces in V s
n have O(2n) unknowns and contribute

O(2−2n) to the solution. Compared to a full grid where the largest hierarchical

space contains approximately O(2dn) unknowns and contributes only O(2−2dn)

to the solution we already have some indication that the sparse grid is more

efficient. Figure 2.2 depicts the sample points in a classical sparse grid in which

it is evident that the total number of points is far less than those of the smallest

full grid containing the sparse grid in each case. In the next section we quantify

the number of unknowns in a sparse grid. Following this we consider the error

‖u− usn‖2 allowing us to quantify the intuition gained thus far.

2.1.2 Number of unknowns in a sparse grid

On a level n full grid it is clear that we have (2n + 1)d if the grid includes points

on the boundary and (2n − 1)d if it does not include points on the boundary. In

either case we can see that the number of unknowns is approximately 2dn. We

first consider a sparse grid without boundary points as in [22, 50]. In literature

referring to sparse grids without boundaries it is typical to ‘shift’ the origin so

that what they refer to as a level n sparse grid is actually level n + d− 1 in the

notation introduced here. This shift accounts for the fact that 1 is the smallest

hierarchical level in this case. We will not do this and thus the result here differs

slightly.

Proposition 2.17 ([50]). The number of unknowns in a level n sparse grid with-
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out boundaries is given by

(−1)d + 2n−d+1

d−1∑
k=0

(
n

d− 1− k

)
(−2)k . (2.5)

Proof. Given no boundary points we note that the hierarchical levels of interest

are l ≥ 1 (point-wise) and that for such l one has

|Bl| = 2l1−1 × · · · × 2ld−1 = 2|l|−d .

Therefore the number of unknowns are∑
l≥1, |l|≤n

|Bl| =
n∑
k=d

 ∑
l≥1, |l|=k

2k−d

 =
n∑
k=d

(
k − 1

d− 1

)
2k−d =

n−d∑
k=0

(
k + d− 1

d− 1

)
2k .

Following from our last equation we have

n−d∑
k=0

(
k + d− 1

d− 1

)
2k =

1

(d− 1)!

n−d∑
k=0

(
xk+d−1

)(d−1)
∣∣∣
x=2

=
1

(d− 1)!

(
n−d∑
k=0

(
xk+d−1

))(d−1)
∣∣∣∣∣∣
x=2

=
1

(d− 1)!

(
xd−1 − xn

1− x

)(d−1)
∣∣∣∣∣
x=2

,

where the notation f(x)(a) denotes the ath derivative of f(x) with respect to x.

Applying the product rule we obtain

n−d∑
k=0

(
k + d− 1

d− 1

)
2k

=
1

(d− 1)!

d−1∑
k=0

((
d− 1

k

)(
xd−1 − xn

)(k)
(

1

1− x

)(d−1−k)
)∣∣∣∣∣

x=2

=
1

(d− 1)!

d−1∑
k=0

(
d− 1

k

)(
xd−1−k(d− 1)!

(d− 1− k)!
− xn−kn!

(n− k)!

)(
(d− 1− k)!

(1− x)d−k

)∣∣∣∣
x=2

=
d−1∑
k=0

((
d− 1

k

)
xd−1−k −

(
n

k

)
xn−k

)
(1− x)−(d−k)

∣∣∣∣
x=2

.

Substituting in x = 2 at this point yields

n−d∑
k=0

(
k + d− 1

d− 1

)
2k =

d−1∑
k=0

((
d− 1

k

)
2d−1−k −

(
n

k

)
2n2−k

)
(−1)d−k

= −
d−1∑
k=0

(
d− 1

k

)
(−2)d−1−k − 2n

d−1∑
k=0

(
n

k

)
(−1)d−k2−k .



2.1. SPARSE GRIDS 65

Noting that (x+y)d−1 =
∑d−1

k=0

(
d−1
k

)
xkyd−1−k then substituting x = 1 and y = −2

we see that the left sum reduces to (−1)d−1 yielding

n−d∑
k=0

(
k + d− 1

d− 1

)
2k = (−1)d − 2n

d−1∑
k=0

(
n

d− 1− k

)
(−1)k+12−(d−1−k)

= (−1)d + 2n−d+1

d−1∑
k=0

(
n

d− 1− k

)
(−2)k ,

as required.

If n ≥ 2(d − 1) then this result can be bounded by 1 + 2n+1
(
n
d−1

)
. Following

from this we have the asymptotic estimate

1 + 2n+1 n!

(n− d+ 1)!(d− 1)!
= 2n+1

(
nd−1

(d− 1)!
+O(nd−2)

)
which we see grows asymptotically like O

(
2nnd−1

)
which is much slower than the

O
(
2dn
)

for the full grid (d ≥ 2).

The calculation for a sparse grid with boundary points is more complex and

is not something I have come across in the literature.

Proposition 2.18. For a level n ≥ 2(d− 1) sparse grid with boundary points the

number of unknowns is bounded above by

1 + 2n−d+1(6d − 5d)

(
n

d− 1

)
. (2.6)

Proof. We first observe that on the boundaries lie level n sparse grids of smaller

dimensions, e.g. the (d− 1)-faces on a d-cube are sparse grids of dimension d− 1

without boundaries, the (d− 2)-faces are sparse grids of dimension d− 2 without

boundaries, etc. until one gets to the 2d vertices in the corners. Given that

there are 2d−e
(
d
e

)
e-faces on a d-cube we apply (2.5) to find that the number of

unknowns for a sparse grid with boundaries to be

2d +
d∑
e=1

2d−e
(
d

e

)(
(−1)e + 2n−e+1

e−1∑
k=0

(
n

e− 1− k

)
(−2)k

)

=1 + 2n−d+1

d∑
e=1

22(d−e)
(
d

e

) e−1∑
k=0

(
n

e− 1− k

)
(−2)k . (2.7)
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Given n ≥ 2(d− 1) then
(

n
e−1−k

)
≤
(
n
d−1

)
for all e = 1, . . . , d and k = 0, . . . , e− 1,

thus

(2.7) ≤ 1 + 2n−d+1

d∑
e=1

22(d−e)
(
d

e

) e−1∑
k=0

(
n

d− 1

)
2k

= 1 + 2n−d+1

(
n

d− 1

) d∑
e=1

4d−e(2e − 1)

(
d

e

)

= 1 + 2n−d+1

(
n

d− 1

)
4d

d∑
e=0

(2−e − 4−e)

(
d

e

)
= 1 + 2n−d+1

(
n

d− 1

)
4d
(
(3/2)d − (5/4)d

)
= 1 + 2n−d+1(6d − 5d)

(
n

d− 1

)
,

as required.

We see that the asymptotic rate with respect to n is the same as that without

boundaries, namely O(2nnd−1). For d = 1 we can see the result is 1 + 2n which

is exactly the number of unknowns in the level n discretisation of a unit interval

with boundaries. However, for d > 1 this result over-estimates of the number of

unknowns. In practice one can use (2.7) to quickly compute the exact number of

unknowns in a sparse grid with boundaries.

2.1.3 Error of sparse grid interpolation

Now we consider the error for interpolation u ∈ H2
mix onto a sparse grid. The

result will be obtained by bounding the contribution from hierarchical spaces that

are not included in the sparse grid. This is done using the result of Lemma 2.15,

namely for l ≥ 1 ∥∥uhl ∥∥2
≤
(

1

3

)d
2−2|l|‖D2u‖2 .

We start by deriving the classical result for functions which are zero on the

boundary of the domain, that is u ∈ H2
0,mix and later exploit the fact that the

boundary is made up of lower dimensional sparse grids. Note that this result again

differs slightly from the literature due to the different convention of only including

hierarchical spaces up to level n in the sparse grid (as opposed to n+ d− 1).
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Proposition 2.19 ([22, 50]). Let usn =
∑
|l|≤n& l≥1 u

h
l be the level n sparse grid

interpolant of u ∈ H2
0,mix([0, 1]d), then

‖u− usn‖2 ≤ 2−2n1

3

(
1

3

)d
‖D2u‖2

d−1∑
k=0

(
n

k

)(
1

3

)d−1−k

. (2.8)

Proof. Given the hierarchical decomposition of u and usn it follows that the error

of sparse grid interpolation is

‖u− usn‖2 ≤
∑

|l|>n& l≥1

‖uhl ‖2

≤
∑

|l|>n& l≥1

(
1

3

)d
2−2|l|‖D2u‖2

=

(
1

3

)d
‖D2u‖2

∞∑
k=n+1

∑
|l|=k& l≥1

2−2k .

As the number of l satisfying |l| = k& l ≥ 1 is equal to
(
k−1
d−1

)
one has

‖u− usn‖2 ≤
(

1

3

)d
‖D2u‖2

∞∑
k=n+1

(
k − 1

d− 1

)
2−2k

= 2−2(n+1)

(
1

3

)d
‖D2u‖2

∞∑
k=0

(
k + n

d− 1

)
2−2k .

For the sum we can use a similar approach as used in Proposition 2.17. Let

0 < x < 1, then

∞∑
k=0

xk
(
k + n

d− 1

)
=

x−n

(d− 1)!

(
∞∑
k=0

xk+n

)(d−1)

=
x−n

(d− 1)!

(
xn

1− x

)(d−1)

=
x−n

(d− 1)!

d−1∑
k=0

(
d− 1

k

)
(xn)(k)

(
1

1− x

)(d−1−k)

=
x−n

(d− 1)!

d−1∑
k=0

(
d− 1

k

)
xn−kn!

(n− k)!

(d− 1− k)!

(1− x)d−k

=
d−1∑
k=0

(
n

k

)(
x

1− x

)d−1−k
1

1− x
.

Substituting x = 2−2 one obtains

d−1∑
k=0

(
n

k

)(
1

3

)d−1−k
4

3
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therefore yielding the error bound

‖u− usn‖2 ≤ 2−2n1

3

(
1

3

)d
‖D2u‖2

d−1∑
k=0

(
n

k

)(
1

3

)d−1−k

as desired.

We note that if n ≥ 2(d− 1) we can sacrifice some tightness of the bound for

simplicity to obtain

‖u− usn‖2 ≤ 2−2n1

2

(
1

3

)d
‖D2u‖2

(
n

d− 1

)
. (2.9)

Thus one expects an asymptotic rate of convergence of O(2−2nnd−1) with respect

to n.

For comparison we can apply the same technique to estimate the error for

interpolation onto a full grid ui. This has been done for an isotropic full grid

u(n,...,n) (see [22]) which we extend here to an anisotropic full grid.

Lemma 2.20. Let u ∈ H2
0,mix and i ∈ Nd, then the piecewise multi-linear inter-

polant ui ∈ Vi of u satisfies

‖u− ui‖2 ≤ 9−d‖D2u‖2

d∑
k=1

4−ik . (2.10)

Proof.

‖u− ui‖2 ≤
∑
l 6≤i

‖uhl ‖2

≤ 3−d‖D2u‖2

∑
l 6≤i

2−2|l|

= 3−d‖D2u‖2

∑
l≥1

2−2|l| −
∑

1≤l≤i

2−2|l|


= 3−d‖D2u‖2

( ∞∑
l=1

4−l

)d

−
d∏

k=1

(
ik∑
l=1

4−l

)
= 9−d‖D2u‖2

(
1−

d∏
k=1

(1− 4−ik)

)
.

Now we claim that given x1, . . . , xd ∈ (0, 1) one has

d∑
k=1

xk ≥ 1−
d∏

k=1

(1− xk).
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If d = 1 then one has x1 = 1−(1−x1) and for d = 2 one has 1−(1−x1)(1−x2) =

x1 + x2 − x1x2 ≤ x1 + x2. Assuming the claim is true for the case d− 1, then for

the case d one has

1−
d∏

k=1

(1− xk) = 1−
d−1∏
k=1

(1− xk) + xd

d−1∏
k=1

(1− xk)

≤
d−1∑
k=1

xk + xd =
d∑

k=1

xk ,

and thus the claim is true for all d by induction. It follows that

‖u− ui‖2 ≤ 9−d‖D2u‖2

d∑
k=1

4−ik

as required.

Note that it can be similarly shown [22] that

‖u− ui‖∞ ≤ 6−d‖D2u‖∞
d∑

k=1

4−ik .

If i = (n, . . . , n) for some n ∈ N then our bound (2.10) reduces to the known result

for an isotropic grid ‖u−u(n,...,n)‖2 ≤ d 9−d4−n‖D2u‖2 . Here we see the expected

convergence rate of O(4−n) for isotropic full grids in which case it is clear that the

sparse grid is only a factor of nd−1 slower to converge asymptotically with respect

to n despite having O(nd−12−n(d−1)) times the number of unknowns. Figure 2.3

depicts the difference in rates of convergence for the right-hand sides of (2.9)

and (2.10) with respect to the number of unknowns.

We pause for a moment to prove an inequality stronger than Friedrich’s in-

equality [32] for functions u ∈ H2
0,mix([0, 1]2). As far as I am aware this has not

been shown in any other literature.

Lemma 2.21. If u ∈ H2
0,mix([0, 1]2) then

‖u‖2 ≤ 9−d‖D2u‖2 . (2.11)

Proof. We note that as u can be expressed in terms of the a sum of its hierarchical

components u =
∑

l≥1 u
h
l . Therefore

‖u‖2 ≤
∑
l≥1

‖uhl ‖2 ≤ 3−d‖D2u‖2

∑
l≥1

2−2|l|

= 3−d‖D2u‖2

(
∞∑
l=1

4−l

)d

= 9−d‖D2u‖2

as required.



70 CHAPTER 2. SPARSE GRIDS AND THE COMBINATION TECHNIQUE

100 103 106 109
10−12

10−8

10−4

100

total unknowns

er
ro

r

Error vs Unknowns (2D)

sparse grid
full grid

100 104 108 1012
10−11

10−7

10−3

101

total unknowns

er
ro

r

Error vs Unknowns (3D)

sparse grid
full grid

Figure 2.3: We plot an example of the error against the number of unknowns in two

and three dimensions. It is clear that a sparse grid can achieve the same accuracy as a

full grid with far fewer unknowns.

We now move on to the case with non-zero boundary. As far as I know this

has not been covered in the existing literature. When we estimated the unknowns

on the sparse grid with boundaries we noted that the boundaries are composed of

sparse grids in lower dimensions without boundaries plus the 2d vertices of the d-

cube. This same property may be used in the analysis of sparse grid interpolation

for functions u ∈ H2
mix. We first introduce some notation. Given Ω = [0, 1]d we

let ∂Ω denote the boundary of Ω, that is the union of the 2d (d− 1)-faces which

are each isomorphic to [0, 1]d−1. Similarly, for 1 < k ≤ d we denote ∂kΩ be the

union of the 2k
(
d
k

)
(d − k)-faces which are each isomorphic to [0, 1]d−k. Given a

function u ∈ H2
mix then |u|H2

mix(∂kΩ) denotes the sum of the H2
mix semi-norm over

each of the (d− k)-faces of Ω, that is

|u|H2
mix(∂kΩ) =

∑
{m1,...,mk}⊂{1,...,d}

∑
y∈{0,1}k

‖D2u|xm1=y1,...,xmk=yk‖L2([0,1]d−k) .

Proposition 2.22. Let u ∈ H2
mix([0, 1]d) and usn be a level n ≥ 0 sparse grid

interpolant of u (including boundary points), then

‖u− usn‖2 ≤
1

3
2−2n

d∑
k=1

3−(d+k)/2|u|H2
mix(∂d−kΩ)

k−1∑
m=0

(
n

m

)(
1

3

)k−1−m

. (2.12)
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Proof. Given the hierarchical decomposition of u and usn (with n ≥ 0) we have

‖u− usn‖2 ≤
∑
|i|>n

‖uhi ‖2

=
∑

|i|>n& i≥1

‖uhi ‖2 +
∑

|i|>n& i 6≥1

‖uhi ‖2 .

The left sum corresponds to the interior points of the sparse grid and we may

apply Proposition 2.19. We now concentrate on the right-hand sum. Note that

i 6≥ 1 is not the same as i < 1, it is equivalent to the statement ∃k ∈ {1, . . . , d}
such that ik = 0. The sum may be split up according to how many components of

i are zero. If i has k zero components then uhi is determined by the values of u on

∂kΩ. With |i| > n ≥ 0 at least one component of i is always non-zero. Similarly,

as i 6> 1 at least one component will always be zero, thus 1 ≤ k ≤ d− 1. Hence

we write ∑
|i|>n& i 6≥1

‖uhi ‖2 =
d−1∑
k=1

∑
|i|0=d−k& |i|>n

‖uhi ‖2 .

For a given k, the sum
∑
|i|0=d−k&|i|>n ‖uhi ‖2 is over all nodal basis functions

whose peak lies on the interior of the 2k
(
d
k

)
(d − k)-faces making up ∂kΩ. This

is precisely a (d− k)-dimensional sparse grid interpolation on these faces with a

tensor product of φ0,0 or φ0,1 in the remaining k dimensions, in particular∑
|i|0=d−k& |i|>n

‖uhi ‖2 =
∑

{m1,...,mk}∪{mk+1,...,md}
={1,...,d}

∑
y∈{0,1}k∑

imk+1
+···+imd>n

im1=···=imk=0

∥∥∥∥(uhi ∣∣ xm1=y1,
...,xmk=yk

)
φ0,y1(xm1) · · ·φ0,yk(xmk)

∥∥∥∥
L2(Ω)

.

Now as∥∥∥∥(uhi ∣∣ xm1=y1,
...,xmk=yk

)
φ0,y1(xm1) · · ·φ0,yk(xmk)

∥∥∥∥
L2(Ω)

=

∥∥∥∥uhi ∣∣ xm1=y1,
...,xmk=yk

∥∥∥∥
L2([0,1]d−k)

‖φ0,y1(xm1)‖L2([0,1]) · · · ‖φ0,yk(xmk)‖L2([0,1])

and each of the ‖φ0,y(x)‖L2([0,1]) = 3−1/2 by Lemma 2.7 then∑
|i|0=d−k& |i|>n

‖uhi ‖2

= 3−k/2
∑

{m1,...,mk}∪{mk+1,...,md}
={1,...,d}

∑
y∈{0,1}k

∑
imk+1

+···+imd>n
im1=···=imk=0

∥∥∥∥uhi ∣∣ xm1=y1,
...,xmk=yk

∥∥∥∥
L2([0,1]d−k

.
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Now the remaining sums simply bound the sparse grid error on the interior of

the (d − k)-dimensional boundaries for which Proposition 2.19 may be applied.

It follows that

∑
|i|>n&i 6>1

‖uhi ‖2 ≤
d−1∑
k=1

3−k/22−2n1

3
3−(d−k)|u|H2

mix(∂kΩ)

d−k−1∑
m=0

(
n

m

)(
1

3

)d−k−1−m

=
1

3
2−2n

d−1∑
k=1

3−(d+k)/2|u|H2
mix(∂d−kΩ)

k−1∑
m=0

(
n

m

)(
1

3

)k−1−m

.

Adding in the term for the interior of Ω one obtains

‖u− usn‖2 ≤
1

3
2−2n

d∑
k=1

3−(d+k)/2|u|H2
mix(∂d−kΩ)

k−1∑
m=0

(
n

m

)(
1

3

)k−1−m

,

as required.

We can sacrifice the tightness of this bound to obtain something a little simpler

for n ≥ 2(d− 1), namely

‖u− usn‖2 ≤
1

2
2−2n

d∑
k=1

3−(d+k)/2|u|H2
mix(∂d−kΩ)

(
n

k − 1

)

≤ 1

2(
√

3− 1)
3−d/22−2n

(
n

d− 1

) d∑
k=1

|u|H2
mix(∂d−kΩ) .

One can also obtain an inequality similar to that of Lemma 2.21 in the case of

a non-zero boundary. Taking (2.12) for n = 0 and adding the level 0 hierarchical

basis functions which are each 1 at one of the 2d vertices one obtains

‖u‖2 ≤ 3−d/2

∑
0≤j≤1

|u(x0,j)|

+

(
d∑

k=1

3−(d+3k)/2|u|H2
mix(∂d−kΩ)

)
.

2.1.4 Additional remarks

Classical sparse grids may not be suitable for all problems. For example, for some

problems it may be desirable to solve some dimensions at a finer scale than others,

e.g. consider phase space in which the velocity coordinates may not need be as

fine as the spatial coordinates. Problems with multi-scale phenomena may also

be problematic due to the difficulty in resolving fine scale effects in the absence

of the finer hierarchical surpluses. Fortunately there are many adaptations and

generalisations of classical sparse grids that address such issues. A particularly



2.1. SPARSE GRIDS 73

nice use of sparse grids is in multi-grid and multilevel methods [59, 19, 57]. There

are also extensions which utilise higher order hierarchical basis functions, see for

example [18]. Whilst finite difference methods for hyperbolic pdes have been

developed directly on the sparse grid, see for example [63, 60], this thesis will

focus on the combination technique for approximating sparse grid solutions which

is introduced in the following section.
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2.2 The Combination Technique

The combination technique was introduced in [61] as a method of approximat-

ing sparse grid solutions without the need to compute directly with hierarchical

basis functions. By adding approximations from several different Vi (which may

be computed using nodal basis functions for example) one is able to obtain an

approximation in V s
n . We motivate the combination technique by discussing the

problem of adding approximations from different approximation spaces in order

to obtain an approximation in a larger space. After giving the classical combi-

nation formula we then provide formula for the total number of unknowns in 2

and 3 dimensions and a bound for higher dimensions. We then review estimates

of the error of solutions obtained by the combination technique using an error

model for known as an error splitting for the approximations in each of the Vi.

2.2.1 Preliminaries and motivation

Suppose we have two approximations ui, uj to the function u ∈ H2
mix in the

function spaces Vi, Vj respectively. In particular we have

ui ∈
⊕
k≤i

Wk , uj ∈
⊕
k≤j

Wk .

Now consider the function ui +uj. Clearly this will give an approximation in the

space

ui + uj ∈ Vi + Vj =
⊕

{k|k≤i or k≤j}

Wk .

Since Vi, Vj ⊂ Vi +Vj then one expects that one should be able to obtain a better

approximation to u in the space Vi + Vj. However, it is clear that ui + uj will

generally not be a good approximation to u, but typically a closer approximation

to 2u (e.g. consider i = j). We can see what is happening if we look at the

hierarchical decomposition of our approximations. We have

ui + uj =

∑
k≤i

uhk

+

∑
k≤j

uhk

 =

 ∑
{k|k≤i or k≤j}

uhk

+

∑
k≤i∧j

uhk

 .

From here it is clear that we have additional contributions to the hierarchical

components uhk for k ≤ i ∧ j which is equivalent to an additional contribution

from ui∧j. Therefore, in order to approximate u in Vi + Vj we may compute

ui + uj − ui∧j .
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Figure 2.4: The combination uc4 for d = 2. The 9 component grids are arranged

according to the frequency of data points in each dimension. A plus or minus denotes

a combination coefficient of +1 or −1 respectively. In the top right is the (enlarged)

sparse grid corresponding to the union of the component grids.

This is effectively a simple application of the inclusion-exclusion principle, we add

an approximation from two function spaces and subtract an approximation from

the intersecting space to obtain an approximation in the combined space (or join

space).

The combination technique can be viewed as the extension of this observa-

tion to obtain approximations in the sparse grid space V s
n by attempting to add

approximations from Vi for |i| = n. The classical combination formula [50] is

ucn =
d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
|l|=n−k

ul , (2.13)

where ucn is referred to as the combination solution and the ui ∈ Vi are often

referred to as component solutions. A detailed derivation of this formula is given

in Lemma 4.25 via the more general theory of adaptive sparse grids. An example

of the combination technique in two spatial dimensions is depicted in Figure 2.4

For interpolation, that is ui = Iiu, the combination ucn is equal to the sparse

grid interpolant [61, 50]. One can see this by decomposing each ui into their

hierarchical components which then cancel out (via the inclusion-exclusion prin-

ciple as in our simple example) leaving the same hierarchical contributions as

the sparse grid interpolant. As an immediate consequence the error bounds of
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Propositions 2.19 and 2.22 may be applied to ucn when ui = Iiu.

2.2.2 Unknowns in the combination technique

Given that the ui making up ucn have hierarchical components in common with

each other it is clear that the combination technique has more unknowns than the

sparse grid. Note that, whilst both usn and ucn have range V s
n , for the combination

technique we count the total number of unknowns in the collection of function

spaces {Vi : n − d + 1 ≤ |i| ≤ n}. The reason for this is that one needs to

compute an approximation ui in each Vi to construct ucn and as this is generally

done for each ui independently (despite some redundancy in the information they

carry) we sum the number of unknowns in each Vi for which ui is computed. The

obvious question that arises is whether the redundancies are few enough that

the combination technique is still an efficient way to compute approximations of

u in V s
n . If an approximation ui includes boundary points then the number of

unknowns is

d∏
k=1

(1 + 2ik) .

We denote the sum over the unknowns in each ui with |i| = n (with i ∈ Nd) by

αn,d :=
∑

{i∈Nd:|i|=n}

d∏
k=1

(1 + 2ik) . (2.14)

Therefore the total number of unknowns computed for the combination ucn is∑d−1
k=0 αn−k,d. For d = 2 we have the following result.

Lemma 2.23. Given αn,d defined by (2.14) and d = 2 then

αn,2 = n− 1 + (n+ 5)2n

and therefore the total number of unknowns in the computation of ucn is

2n− 3 +

(
3

2
n+ 7

)
2n .
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Proof. We have

αn,2 =
∑

i1+i2=n

(1 + 2i1)(1 + 2i2) =
n∑

i1=0

(1 + 2i1)(1 + 2n−i1)

=
n∑

i1=0

(1 + 2i1 + 2n−i1 + 2n)

= (n+ 1)(1 + 2n) + 2(2n+1 − 1)

= n− 1 + (n+ 5)2n .

It follows that

αn,2 + αn−1,2 = n− 1 + (n+ 5)2n + n− 2 + (n+ 4)2n−1

= 2n− 3 +

(
3

2
n+ 7

)
2n ,

as required.

Notice that αn,d may be calculated recursively as for d ≥ 2 one has

αn,d =
n∑

id=0

 ∑
i1+···+id−1=n−id

d∏
k=1

(1 + 2ik)

 =
n∑

id=0

(1 + 2id)αn−id,d−1 . (2.15)

This property will be useful in the following result for d = 3.

Lemma 2.24. Given αn,d defined by (2.14) and d = 3 then

αn,3 =
1

2
n2 − 3

2
n− 5 +

(
1

2
n2 +

15

2
n+ 13

)
2n

and therefore the total number of unknowns in the computation of ucn is

3

2
n2 − 15

2
n− 8 +

(
7

8
n2 − 97

8
n+ 16

)
2n .

Proof. Using the recursion (2.15) and Lemma 2.23 we have

αn,3 =
n∑

i3=0

(1 + 2i3)αn,2 =
n∑

i3=0

(1 + 2i3)
(
n− i3 − 1 + (n− i3 + 5)2n−i3

)
.
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Note that via the substitution i3 7→ n−i3 one has
∑n

i3=0 i32i3 =
∑n

i3=0(n−i3)2n−i3 .

Therefore

αn,3 =
n∑

i3=0

n− i3 − 1 + (n− i3 + 5)2n−i3 + (n− i3 − 1)2i3 + (n− i3 + 5)2n

=
n∑

i3=0

n− i3 − 1 + 5 · 2n−i3 + (n− 1)2i3 + (n− i3 + 5)2n

=
n∑

i3=0

(n− 1 + (n+ 5)2n)− (1 + 2n) i3 + 5 · 2n−i3 + (n− 1)2i3

= (n− 1 + (n+ 5)2n) (n+ 1)− (1 + 2n)
n(n+ 1)

2
+ (n+ 4)

(
2n+1 − 1

)
=

1

2
n2 − 3

2
n− 5 +

(
1

2
n2 +

15

2
n+ 13

)
2n .

From here it is straightforward to show

αn,3 + αn−1,3 + αn−2,3 =
3

2
n2 − 15

2
n− 8 +

(
7

8
n2 − 97

8
n+ 16

)
2n ,

as required.

Evaluating this sum for a general number of dimensions unfortunately does

not reduce to a simple equation. However, it may be shown that αn,d = nd−1

(d−1)!
2n+

O(nd−22n). Note that

2|i| =
d∏
t=1

2it ≤
d∏
t=1

(2it + 1) ≤
d∏
t=1

21+it = 2d+|i| (2.16)

which leads to the lower and upper bounds

αn,d ≥
(
n+ d− 1

d− 1

)
2n , αn,d ≤

(
n+ d− 1

d− 1

)
2d+n

respectively. Thus asymptotically the total number of unknowns in computing

ucn with respect to n is

d−1∑
k=0

(
n− k + d− 1

d− 1

)
2n−k =

nd−1

(d− 1)!
2n+1(1− 2−d) +O

(
nd−22n

)
in which case we see the asymptotic growth rate of unknowns in the combination

technique is the same as that for sparse grids up to a constant.

Summarising so far, we have that the combination technique has a similar

number of unknowns compared to sparse grid and gives the same result for piece-

wise linear interpolation of u ∈ H2
mix. We will now look at error estimates of ucn

for ui which are not necessarily piecewise linear interpolants of u.
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2.2.3 Error of the combination technique

A classical result in [59] for the error of combination technique solutions ucn is

obtained by assuming an error model for the ui which is known as an error

splitting. For 2 dimensional problems, an approximation ui of u satisfies the

error splitting model if the pointwise error expansion

u− ui = C1(hi1)hpi1 + C2(hi2)hpi2 +D(hi1 , hi2)hpi1h
p
i2

(2.17)

holds where hk := 2−k, p > 0 and C1, C2, D implicitly depend on x ∈ Ω. Using

this error model, the following Lemma bounds the error of |u−ucn| which is similar

to the result in [59] but with our slightly different definition of ucn and arbitrary

p > 0 (rather than just p = 2).

Lemma 2.25 (Adapted from [61]). Let ui : [0, 1]2 7→ R for i ∈ N2 be approxima-

tions to some function u : [0, 1]2 7→ R which satisfies the pointwise error expan-

sion (2.17) with p > 0 and |C1(hi1)| ≤ K, |C2(hi2)| ≤ K and |D(hi1 , hi2)| ≤ K

∀i for some K > 0. Then the combination ucn =
∑
|i|=n ui −

∑
|i|=n−1 ui satisfies

|u− ucn| ≤ (3 + (1 + 2p)n)Khpn (2.18)

pointwise.

Proof. First notice that as
∑
|i|=n u−

∑
|i|=n−1 u = (n+ 1)u− nu = u one has

u− ucn = u−

∑
|i|=n

ui −
∑
|i|=n−1

ui

 =
∑
|i|=n

(u− ui)−
∑
|i|=n−1

(u− ui) .

Now substituting the error splitting (2.17) we obtain

u− ucn =
∑
|i|=n

(
C1(hi1)hpi1 + C2(hi2)hpi2 +D(hi1 , hi2)hpi1h

p
i2

)
−

−
∑
|i|=n−1

(
C1(hi1)hpi1 + C2(hi2)hpi2 +D(hi1 , hi2)hpi1h

p
i2

)
=

n∑
i1=0

C1(hi1)hpi1 −
n−1∑
i1=0

C1(hi1)hpi1 +
n∑

i2=0

C2(hi2)hpi2 −
n−1∑
i2=0

C2(hi2)hpi2

+
∑

i1+i2=n

D(hi1 , hi2)hpn −
∑

i1+i2=n−1

D(hi1 , hi2)hpn−1

=

(
C1(hn) + C2(hn) +

∑
i1+i2=n

D(hi1 , hi2)− 2p
∑

i1+i2=n−1

D(hi1 , hi2)

)
hpn .
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Taking the absolute value of both sides we have

|u− ucn| ≤ |C1(hn)|hpn + |C2(hn)|hpn

+

( ∑
i1+i2=n

|D(hi1 , hi2)|+ 2p
∑

i1+i2=n−1

|D(hi1 , hi2)|

)
hpn

≤ Khpn +Khpn + (n+ 1)Khpn + 2pnKhpn

= (3 + (1 + 2p)n)Khpn ,

as required.

A similar result was also derived in [59] for d = 3 dimensions assuming the

pointwise error splitting

u− ui = C1(hi1)hpi1 + C2(hi2)hpi2 + C3(hi3)hpi3

+D1(hi1 , hi2)hpi1h
p
i2

+D2(hi1 , hi3)hpi1h
p
i3

+D3(hi2 , hi3)hpi2h
p
i3

+ E(hi1 , hi2 , hi3)hpi1h
p
i2
hpi3 . (2.19)

An analogous result to Lemma 2.25 holds in three dimensions.

Lemma 2.26 (Adapted from [61]). Let ui : [0, 1]3 7→ R for i ∈ N3 be approx-

imations to some function u : [0, 1]3 7→ R satisfying the pointwise error split-

ting (2.19) with |C1(hi1)| ≤ K, |C2(hi2)| ≤ K, |C3(hi3)| ≤ K, |D1(hi1 , hi2)| ≤ K,

|D2(hi1 , hi3)| ≤ K, |D3(hi2 , hi3)| ≤ K and |E(hi1 , hi2 , hi3)| ≤ K for all i for some

K > 0. Then the combination

ucn =
∑
|i|=n

ui − 2
∑
|i|=n−1

ui +
∑
|i|=n−2

ui

satisfies the pointwise bound

|u− ucn| ≤
(

7 +
(
9 + 23+p − 22p

) n
2

+ (1 + 2p)2 n
2

2

)
Khpn . (2.20)

Proof. The approach is the same as that of Lemma 2.25 and the details essentially

the same as those in [59]. We give a rough sketch of the proof for completeness.

As
(
n+2

2

)
− 2
(
n+1

2

)
+
(
n
2

)
= 1 one has

u− ucn =
∑
|i|=n

(u− ui)− 2
∑
|i|=n−1

(u− ui) +
∑
|i|=n−2

(u− ui) .

One may now substitute the error splitting (2.19). We focus on each term indi-

vidually. For the C1 term by noting
∑
|i|=n f(i1, i2, i3) =

∑n
i1=0

∑n−i1
i2=0 f(i1, i2, n−
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i1 − i2) one has∑
|i|=n

C1(hi1)hpi1 − 2
∑
|i|=n−1

C1(hi1)hpi1 +
∑
|i|=n−2

C1(hi1)hpi1

=
n∑

i1=0

n−i1∑
i2=0

C1(hi1)hpi1 − 2
n−1∑
i1=0

n−1−i1∑
i2=0

C1(hi1)hpi1 +
n−2∑
i1=0

n−2−i1∑
i2=0

C1(hi1)hpi1

=C1(hn)hpn +
n−1∑
i1=0

(
n−i1∑
i2=0

C1(hi1)hpi1 −
n−1−i1∑
i2=0

C1(hi1)hpi1

)

− C1(hn−1)hpn−1 −
n−2∑
i1=0

(
n−1−i1∑
i2=0

C1(hi1)hpi1 −
n−2−i1∑
i2=0

C1(hi1)hpi1

)

=C1(hn)hpn +
n−1∑
i1=0

C1(hi1)hpi1 − C1(hn−1)hpn−1 −
n−2∑
i1=0

C1(hi1)hpi1 = C1(hn)hpn .

The C2, C3 terms are similar. For the D1 term one has∑
|i|=n

D1(hi1 , hi2)hpi1h
p
i2
− 2

∑
|i|=n−1

D1(hi1 , hi2)hpi1h
p
i2

+
∑
|i|=n−2

D1(hi1 , hi2)hpi1h
p
i2
.

(2.21)

For the first sum one has

∑
|i|=n

D1(hi1 , hi2)hpi1h
p
i2

=
n∑

i1=0

n−i1∑
i2=0

D1(hi1 , hi2)hpi1h
p
i2

=
n∑

i1=0

D1(hi1 , hn−i1)hpn +
n−1∑
i1=0

n−1−i1∑
i2=0

D1(hi1 , hi2)hpi1h
p
i2
.

Similarly for the second sum one has

∑
|i|=n−1

D1(hi1 , hi2)hpi1h
p
i2

=
n−1∑
i1=0

D1(hi1 , hn−1−i1)hpn−1 +
n−2∑
i1=0

n−2−i1∑
i2=0

D1(hi1 , hi2)hpi1h
p
i2
.

Substituting these two equalities back into (2.21) therefore yields

n∑
i1=0

D1(hi1 , hn−i1)hpn −
n−1∑
i1=0

D1(hi1 , hn−1−i1)hpn−1 .

The D2, D3 terms are similar. There is no cancellation in the E terms so that

one simply has∑
|i|=n

E(hi1 , hi2 , hi3)hpn − 2
∑
|i|=n−1

E(hi1 , hi2 , hi3)hpn−1 +
∑
|i|=n−2

E(hi1 , hi2 , hi3)hpn−2 .
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Thus, taking the absolute values, bounding the remaining Ck, Dk and E by K

and summing the terms one obtains

|u− ucn| ≤ 3Khpn + 3 (1 + (1 + 2p)n)Khpn

+

(
(n+ 2)(n+ 1)

2
+ 2p+1 (n+ 1)n

2
+ 22pn(n− 1)

2

)
Khpn

from which the result follows.

We note that the asymptotic rates of convergence for Lemmas 2.25 and 2.26

with p = 2 are O(nd−12−2n) which is the same as the piecewise multi-linear

interpolation error for sparse grids. It is noted [59] that this type of proof is

easily extended to higher dimensions, however it is not immediately clear what

the constants will be. Something else that isn’t clear in these results is how large

K may be. This will be problem dependant but if it also increases exponentially

in the number of dimensions then larger n may be required in higher dimensions

to obtain useful results.

Some of these questions are addressed by Reisinger [110, 109] who extends the

two and three dimensional results to arbitrary dimensions. We will review this

work but again, we derive slightly different results given our context of including

boundary points and the different definition of ucn. Qualitatively the results will

be the same but constants will differ.

Theorem 2.27 (Adapted from [110]). For i ∈ Nd let ui : [0, 1]d 7→ R be an

approximation to u : [0, 1]d 7→ R satisfying the pointwise error expansion

u− ui =
d∑

m=1

∑
{j1,...,jm}
⊂{1,...,d}

vj1,...,jm(hij1 , . . . , hijm )hpij1
· · ·hpijm . (2.22)

Additionally, suppose there is some K > 0 such that

|vj1,...,jm(hj1 , . . . , hjm)| ≤ K ∀1 ≤ m ≤ d and ∀{j1, . . . , jd} ⊂ {1, . . . , d} .

Then, the combination

ucn =
d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
|i|=n−k

ui

satisfies the pointwise error bound

|u− ucn| ≤ K2−pn(1 + 2p)d−1

(
n+ 2d− 1

d− 1

)
.
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Before we prove this we first introduce some notation and prove a few combi-

natorial identities. We define

S(n, d) =
∑

{i∈Nd:|i|=n}

ui

where we will typically omit i ∈ Nd. We also define the difference operator δ on

functions f : N 7→ R by

δf(n) := f(n)− f(n− 1) .

Lemma 2.28 ([110]). The combination formula in d dimensions is given by

δd−1S(n, d) =
d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
|i|=n−k

ui .

Proof. We claim that δmS(n, d) =
∑m

k=0(−1)k
(
m
k

)∑
|i|=n−k ui (where the sum is

over i ∈ Nd). For m = 0 we note S(n, d) =
∑
|i|=n ui, and for m = 1 we have

δS(n, d) = S(n, d)− S(n− 1, d)

=
∑
|i|=n

u(i)−
∑
|i|=n−1

u(i) =
1∑

k=0

(−1)k
(

1

k

) ∑
|i|=n−k

ui .

Notice that

δmS(n, d) = δm−1S(n, d)− δm−1S(n− 1, d) .

We will prove the claim via induction, assuming the case m− 1 holds one has

δmS(n, d) =
m−1∑
k=0

(−1)k
(
m− 1

k

) ∑
|i|=n−k

ui −
m−1∑
k=0

(−1)k
(
m− 1

k

) ∑
|i|=n−1−k

ui

=
∑
|i|=n

ui +
m−1∑
k=1

(−1)k
(
m− 1

k

) ∑
|i|=n−k

ui

−
m−2∑
k=0

(−1)k
(
m− 1

k

) ∑
|i|=n−1−k

ui − (−1)m−1
∑
|i|=n−m

ui

=
∑
|i|=n

ui +
m−1∑
k=1

(−1)k
(
m− 1

k

) ∑
|i|=n−k

ui

+
m−1∑
k=1

(−1)k
(
m− 1

k − 1

) ∑
|i|=n−k

ui + (−1)m
∑
|i|=n−m

ui

=
m∑
k=0

(−1)k
(
m

k

) ∑
|i|=n−k

ui .
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Thus the claim is true for all m, in particular for m = d−1 we have δd−1S(n, d) =

ucn.

Using similar arguments we can show the consistency of the combination

technique.

Lemma 2.29 ([110]). Let

N(n, d) :=
∑

{i∈Nd:|i|=n}

1 =

(
n+ d− 1

d− 1

)

then

δd−1N(n, d) = 1 .

Proof. We claim δkN(n, d) = N(n, d− k). For k = 0 it is clearly satisfied and for

k = 1 we have

δN(n, d) = N(n, d)−N(n− 1, d)

=

(
n+ d− 1

d− 1

)
−
(
n+ d− 2

d− 1

)
=

(
n+ d− 2

d− 2

)
= N(n, d− 2) .

Assuming that δk−1N(n, d) = N(n, d − k + 1) for each n then we have for k by

induction

δkN(n, d) = δk−1N(n, d)− δk−1N(n− 1, d)

= N(n, d− k + 1)−N(n− 1, d− k + 1)

=

(
n+ d− k
d− k

)
−
(
n+ d− k − 1

d− k

)
=

(
n+ d− k − 1

d− k − 1

)
= N(n, d− k) .

Thus the claim is true for all k and in particular δd−1N(n, d) = N(n, 1) =
(
n
0

)
=

1.

Note that if ui = 1 for all i then S(n, d) = N(n, d) and therefore As a result

of Lemmas 2.28 and 2.29 one has

1 = δd−1N(n, d) =
d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
|i|=n−k

1 .

We also have a lemma which is the Leibniz rule for our difference operator, a

proof is included for completeness.
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Lemma 2.30. Let f, g : N→ R, then for all k ≤ n.

δk(f(n)g(n)) =
k∑
j=0

(
k

j

)
(δk−jf(n− j))(δjg(n)) .

Proof. The case k = 0 clearly holds and for k = 1 we have

δ(f(n)g(n)) = f(n)g(n)− f(n− 1)g(n− 1)

= f(n)g(n)− f(n− 1)g(n) + f(n− 1)g(n)− f(n− 1)g(n− 1)

= (δf(n))g(n) + f(n− 1)(δg(n)) .

Assuming that the assertion is true for k − 1 then we have

δk(f(n)g(n)) = δk−1(f(n)g(n))− δk−1(f(n− 1)g(n− 1))

=
k−1∑
j=0

(
k − 1

j

)(
(δk−1−jf(n− j))(δjg(n))

−(δk−1−jf(n− 1− j))(δjg(n− 1))

)
.

Notice that

(δk−1−jf(n− j))(δjg(n))− (δk−1−jf(n− 1− j))(δjg(n− 1))

=(δk−1−jf(n− j))(δjg(n))− (δk−1−jf(n− 1− j))(δjg(n))

+ (δk−1−jf(n− 1− j))(δjg(n))− (δk−1−jf(n− 1− j))(δjg(n− 1))

=(δk−jf(n− j))(δjg(n)) + (δk−1−jf(n− 1− j))(δj+1g(n)) ,

and further

k−1∑
j=0

(
k − 1

j

)
(δk−jf(n− j))(δjg(n))

= (δkf(n))g(n) +
k−1∑
j=1

(
k − 1

j

)
(δk−jf(n− j))(δjg(n))

and similarly

k−1∑
j=0

(
k − 1

j

)
(δk−1−jf(n− 1− j))(δj+1g(n))

=
k∑
j=1

(
k − 1

j − 1

)
(δk−jf(n− j))(δjg(n)) .



86 CHAPTER 2. SPARSE GRIDS AND THE COMBINATION TECHNIQUE

Adding the two parts together using the fact that
(
k−1
j

)
+
(
k−1
j−1

)
=
(
k
j

)
for j =

1, . . . , k − 1 and
(
k−1
j−1

)
=
(
k
j

)
for j = k one has

δ(f(n)g(n)) = (δkf(n))g(n) +
k∑
j=1

(
k

j

)
(δk−jf(n− j))(δjg(n))

=
k∑
j=0

(
k

j

)
(δk−jf(n− j))(δjg(n)) ,

as required.

Now we prove a lemma relating to the combination of a quantity whose value

depends only upon the level of each component grid.

Lemma 2.31 ([110]). Led d ∈ N and f : N→ R and define

F (n) :=
n∑
l=0

(
n− l + d− 1

d− 1

)
fl . (2.23)

If 0 ≤ k < d ≤ n then δkF (n) = Gk(n) +Hk(n) where

Gk(n) :=

{
0 k = 0∑k

l=1

(
d−l−1
k−l

)
fn−k+l k ≥ 1

,

Hk(n) :=
n−k∑
l=0

(
n− k − l + d− 1

d− k − 1

)
fl .

Additionally, δdF (n) = fn.

Proof. For k = 0 it is clear that δ0F (n) = F (n) = H0(n) = G0(n) + H0(n).

Similarly for k = 1 we note that

δF (n) = F (n)− F (n− 1)

= fn +
n−1∑
l=0

((
n− l + d− 1

d− 1

)
−
(
n− 1− l + d− 1

d− 1

))
fl

= fn +
n−1∑
l=0

(
n− l + d− 2

d− 2

)
fl = G1(n) +H1(n) .

We will prove the general case by induction. Assume k > 1 and δk−1F (n) =

Gk−1(n) +Hk−1(n), then

δkF (n) = δ
(
δk−1F (n)

)
= δ(Gk−1(n) +Hk−1(n)) .
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Looking at δGk−1(n) first we have

δGk−1(n) =
k−1∑
l=1

(
d− l − 1

k − l − 1

)
(fn−k+l+1 − fn−k+l)

and as

k−1∑
l=1

(
d− l − 1

k − l − 1

)
fn−k+l+1 =

(
d− k

0

)
fn +

k−2∑
l=1

(
d− l − 1

k − l − 1

)
fn−k+l+1

= fn +
k−1∑
l=2

(
d− l
k − l

)
fn−k+l

and similarly

k−1∑
l=1

(
d− l − 1

k − l − 1

)
fn−k+l =

(
d− 2

k − 2

)
fn−k+1 +

k−1∑
l=2

(
d− l − 1

k − l − 1

)
fn−k+l

then one has

δGk−1(n) = fn −
(
d− 2

k − 2

)
fn−k+1 +

k−1∑
l=2

(
d− l − 1

k − l

)
fn−k+l

= −
(
d− 2

k − 2

)
fn−k+1 −

(
d− 2

k − 1

)
fn−k+1 +

k∑
l=1

(
d− l − 1

k − l

)
fn−k+l

= −
(
d− 1

k − 1

)
fn−k+1 +Gk(n) .

Similarly for δHk−1(n) we have

δHk−1(n) =
n−k+1∑
l=0

(
n− k − l + d

d− k

)
fl −

n−k∑
l=0

(
n− k − l + d− 1

d− k

)
fl

=

(
d− 1

d− k

)
fn−k+1 +

n−k∑
l=0

(
n− k − l + d− 1

d− k − 1

)
fl

=

(
d− 1

k − 1

)
fn−k+1 +Hk(n) .

Thus δkF (n) = Gk(n) + Hk(n) and the hypothesis is true for all k ≥ 0. For the

special case k = d− 1 we have

δd−1F (n) = Gd−1(n) +Hd−1(n) =

(
d−1∑
l=1

fn−d+1+l

)
+

(
n−d+1∑
l=0

fl

)
=

n∑
l=0

fl
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and therefore

δdF (n) =
n∑
l=0

fl −
n−1∑
l=0

fl = fn

as required.

One last Lemma now which relates to the combination of individual error

terms in the error splitting.

Lemma 2.32 ([110]). Let m, d, p ≥ 1, v : Rm
+ → R and for n ∈ N

F (n) :=
∑

{i∈Nd:|i|1=n}

v(2−i1 , . . . , 2−im)2−pi1 · · · 2−pim .

Then

δd−1F (n) = 2−pn
m−1∑
j=0

(
m− 1

j

)
(−2p)jsn−j

where sl :=
∑
{i∈Nm:|i|1=l} v(2−i1 , . . . , 2−im).

Proof. We begin by noting that we can rewrite F (n) as

F (n) =
∑

{i∈Nd:|i|1=n}

v(2−i1 , . . . , 2−im)2−p(i1+···+im)

=
n∑
l=0

∑
i1+···+im=l

v(2−i1 , . . . , 2−im)2−pl
∑

ik+1+···+id=n−l

1

=
n∑
l=0

sl2
−pl
(
n− l + d−m− 1

d−m− 1

)
.

Noting F (n) is now in the form of (2.23) with fl 7→ sl2
−pl and d 7→ d − m we

have from Lemma 2.31 that

δd−1F (n) = δm−1
(
δd−mF (n)

)
= δm−1

(
2−pnsn

)
. (2.24)

Additionally using Lemma 2.30 we also have

δm−1(sn2−pn) =
m−1∑
j=0

(
m− 1

j

)
(δm−1−j2−p(n−j))(δjsn) .

Notice that for k > 0 one has

δk2−pn = δk−1
(
2−pn − 2−p(n−1)

)
= δk−1(1− 2p)2−pn = (1− 2p)δk−12−pn
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from which it follows that δk2−pn = (1 − 2p)k2−pn. Substituting this back

into (2.24) for k = m− 1− j one has

δm−1(2−pnsn) =
m−1∑
j=0

(
m− 1

j

)
(1− 2p)m−1−j2−p(n−j)(δjsn)

= 2−p(n−m+1)

m−1∑
j=0

(
m− 1

j

)
(2−p − 1)m−1−j(δjsn)

= 2−p(n−m+1)(δ + 2−p − 1)m−1sn

= 2−p(n−m+1)

m−1∑
j=0

(
m− 1

j

)
(δ − 1)j2−p(m−1−j)sn .

Now (δ − 1)sn = sn − sn−1 − sn = −sn−1 from which it follows that (δ − 1)jsn =

(−1)jsn−j. Therefore

δd−1F (n) = 2−p(n−m+1)

m−1∑
j=0

(
m− 1

j

)
(−1)j2−p(m−1−j)sn−j

= 2−pn
m−1∑
j=0

(
m− 1

j

)
(−2p)jsn−j

as required.

Finally, we have all of the ingredients for the main result.

Proof of Theorem 2.27. From Lemma 2.29 we have that

δd−1
∑
|i|=n

u = uδd−1
∑
|i|=n

1 = uδd−1N(n, d) = u ,

and therefore combined with Lemma 2.28 one has

u− ucn = δd−1
∑
|i|=n

u− ui . (2.25)

Letting

Fj1,...,jm(n) =
∑
|i|=n

vj1,...,jm(hij1 , . . . , hijm )hpij1
· · ·hpijm

then upon substituting (2.22) into (2.25) and changing the order of summation

one has

u− ucn =
d∑

m=1

∑
{j1,...,jm}
⊂{1,...,d}

δd−1Fj1,...,jm(n) .
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For each of the Fj1,...,jm we apply Lemma 2.32 resulting in

u− ucn =
d∑

m=1

∑
{j1,...,jm}
⊂{1,...,d}

2−pn
m−1∑
j=0

(
m− 1

j

)
(−2p)jsn−j,m

= 2−pn
d∑

m=1

∑
{j1,...,jm}
⊂{1,...,d}

m−1∑
j=0

(
m− 1

j

)
(−2p)jsn−j,m ,

where sl,m :=
∑

i∈Nm
|i|1=l

vj1,...,jm(hij1 , . . . , hijm ). As each |vj1,...,jm(hij1 , . . . , hijm )| ≤ K

then from the triangle inequality

|sn−j,m| ≤
(
n− j +m− 1

m− 1

)
K =⇒ max

j=0,...,m−1
|sn−j,m| ≤

(
n+m− 1

m− 1

)
K ,

and it follows that

∣∣∣∣∣
m−1∑
j=0

(
m− 1

j

)
(−2p)jsn−j,m

∣∣∣∣∣ ≤ K

(
n+m− 1

m− 1

)m−1∑
j=0

∣∣∣∣(m− 1

j

)
(−2p)j

∣∣∣∣
≤ K

(
n+m− 1

m− 1

)
(1 + 2p)m−1 .

Therefore

|u− ucn| ≤ 2−pn
d∑

m=1

∑
{j1,...,jm}
⊂{1,...,d}

∣∣∣∣∣
m−1∑
j=0

(
m− 1

j

)
(−2p)jsn−j,m

∣∣∣∣∣
≤ 2−pn

d∑
m=1

∑
{j1,...,jm}
⊂{1,...,d}

K

(
n+m− 1

m− 1

)
(1 + 2p)m−1

= K2−pn
d∑

m=1

(
d

m

)(
n+m− 1

m− 1

)
(1 + 2p)m−1 (2.26)

≤ K2−pn(1 + 2p)d−1

d∑
m=1

(
d

m

)(
n+m− 1

m− 1

)
.
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Now given the Vandermonde type identity

n+2d−1∑
k=0

(
n+ 2d− 1

k

)
xk = (1 + x)n+2d−1

= (1 + x)d(1 + x)n+d−1

=

(
d∑
i=0

(
d

i

)
xi

)(
n+d−1∑
j=0

(
n+ d− 1

j

)
xj

)

=
n+2d−1∑
k=0

xk

(
k∑

m=0

(
d

m

)(
n+ d− 1

k −m

))
,

consider the xd−1 term, one has(
n+ 2d− 1

d− 1

)
=

d−1∑
m=0

(
d

m

)(
n+ d− 1

d− 1−m

)
=

d∑
m=1

(
d

d−m

)(
n+ d− 1

m− 1

)
where the second equality is obtained by the substitution m 7→ m − d. Since(

d
d−m

)
=
(
d
m

)
then

|u− ucn| ≤ K2−pn(1 + 2p)d−1

(
n+ 2d− 1

d− 1

)
,

as required.

Note that for d = 1 and p = 2 our bound reduces to |u− ucn| ≤ K2−2n as one

would expect from a tight bound. For d = 2 and p = 2 we obtain |u − ucn| ≤
K2−2n5(n+3) compared to the (3+5n)Kh2

n derived in Lemma 2.25. Similarly for

d = 3 and p = 2 Theorem 2.27 gives the bound |u−ucn| ≤ K2−2n 25
2

(n+ 5)(n+ 4)

compared to the
(
7 + 25

2
n+ 25

2
n2
)
Kh2

n of Lemma 2.26. In both cases we see the

leading error term is consistent with the result of the previous lemmas whilst the

non-leading error terms are larger. Thus Theorem 2.27 sacrifices some tightness

for generality but still provides an accurate asymptotic result. For a given d one

may expand (2.26) to obtain better estimates of the non-leading error terms.

2.2.4 Other work and additional remarks

There have been many other error analyses of the combination technique in the lit-

erature, see for example [104, 58] which consider the combination of Ritz-Galerkin

and Galerkin projections respectively. We have focused on error analysis based on

error splittings because of our interest in finite difference methods for hyperbolic
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pdes. It has been shown that the error splitting model is satisfied for the numeri-

cal solutions of the Laplace equation [23, 24, 25] and also for a first order implicit

advection scheme in which time was treated as another spatial variable [110]. In

Chapter 3 we will discuss whether more general hyperbolic problems satisfy the

error splitting model and also review an analysis of leading order error terms as

in [82].

In Lemmas 2.25, 2.26 and Theorem 2.27 it was assumed that the order of

convergence was the same for all of the spatial variables and each of the terms

in the error splitting were bounded by the same constant. In practice there are

applications for which the order of convergence may be different and/or the con-

stant terms may differ significantly in magnitude. For example consider physical

problems defined in phase space for which it is not unreasonable to expect that

convergence with respect to the velocity dimensions is different from that in the

spatial dimensions. This was considered for 2 dimensional Galerkin projections

in [58] with a modified combination technique that allows one to skew the layers

in order to compensate for different rates of convergence.

The combination technique presented thus far is a very specific combination

of component solutions for a given dimension and level. In practice however,

there are several variations of the combination technique which are used. One

such variation is the truncated combination [9]. For some problems the strongly

anisotropic grids, that is those with coarse grid spacing in one or more dimensions

and much finer spacing in the remaining dimensions, may resolve the solution

poorly resulting in inaccurate extrapolation when the combination technique is

applied. To avoid this problem the truncated combination technique excludes

these strongly anisotropic grids from the sum. Another variation is combinations

onto dimension adaptive sparse grids. Here we choose our combination grids and

coefficients differently such that unknowns are only used where they provide the

most benefit. Several other variations and generalisations exist. We will discuss

some of these further in Chapter 4.

The combination technique has several computational advantages over direct

sparse grid approaches. First, there is no need to compute using hierarchical

bases. The approximation on each component/coarse grid can be computed in

almost any way, e.g. finite difference methods, finite element methods, finite

volume methods, to name a few, as long as the same method is used for all

of the component/coarse grids. In particular this means that no modifications

are required for existing grid based solvers if one wanted to try the combination

technique. Second, each component/coarse approximation can be computed in-
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dependently. This makes the combination technique embarrassingly parallel with

respect to the computation of different ui. As a result, the combination tech-

nique has the potential to be easily adapted to existing applications whilst also

providing additional parallelism.
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Chapter 3

Hyperbolic PDEs

Much of the classical combination technique literature has focused on solving

elliptic pdes. Whilst many recent papers have published numerical results for

the combination technique applied to a wider range of problems, there has been

limited analysis of the combination technique for these problems. Many of the

largest problems being solved on HPCs are physical problems which evolve over

time. These are typically modelled by hyperbolic or parabolic pdes. Our focus

is on the former of the two but it should be noted that much of the work pre-

sented here applies equally well to parabolic problems. In Section 3.1 we give

a brief background on hyperbolic pdes. Whilst there are numerous examples

of hyperbolic pdes our attention is focused on the advection pde which is used

in subsequent chapters for testing generalisations of the combination technique

(Chapter 4) and fault tolerant pde solvers based on the combination technique

(Chapter 5). Following this, Section 3.2 reviews finite difference schemes used

to solve the advection equation covering important properties like order of ap-

proximation and stability. Of particular interest are errors which are dependent

on the time stepping as these are not present in the analysis of the combination

technique in most of the literature. We give some proofs of convergence and sta-

bility of some classical schemes for illustrative purposes. Whilst the techniques

are relatively standard and well-known they are presented here with a little more

care than most texts on the subject. In Section 3.3 we look at the application of

the combination technique to the solution of time-dependent pdes particularly

focusing on numerical aspects like stability, order of approximation and error ex-

pansions. We provide results which extend and make more precise the work found

in [82] which roughly shows finite difference solutions of the advection equation

satisfy an error splitting. Whilst the techniques are relatively standard the results

95
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are original to the extent described.

3.1 Background on Hyperbolic PDEs

The wave equation,

∂2

∂t2
u− c2 ∂

2

∂x2
u = 0

where c ∈ R and u = u(x, t) : Ω × R+ → R with Ω ⊂ R and R+ := [0,∞),

is typically given as the prototypical hyperbolic pde. For simplicity we assume

functions are real valued and consider initial value problems moving forward

in time from an initial condition given at time t = 0. For finite domains we

typically consider periodic boundary conditions. The wave equation is extremely

important to science, particularly physics, as it models many physical waves of

interest including pressure waves (e.g. sound in air) and electromagnetic waves

(via Maxwell’s equations). The wave equation may be factored into the form(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c ∂

∂x

)
u = 0 .

Now transforming to characteristic coordinates u(x, t) 7→ u(ξ, η) where ξ = x−ct
and η = x+ ct one obtains

∂2

∂ξ∂η
u = 0 .

Solutions to this equation clearly have the form

u(x, t) = F (ξ) +G(η) = F (x− ct) +G(x+ ct)

where F,G : R→ R. Notice that F (x− ct) is a solution to the pde(
∂

∂t
+ c

∂

∂x

)
F (x− ct) = −cF ′(x− ct) + cF ′(x− ct) = 0 (3.1)

(where F ′(ξ) := d
dξ
F (ξ)). The pde (3.1) is the advection equation in one spatial

dimension. The advection equation is a special case of more general conservation

equations which may be written as

∂

∂t
u+

∂

∂x
f(u, x, t) = 0 , (3.2)

where f(u, x, t) is sometimes referred to as the flux of u.
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The (inviscid) Burgers’ equation is one of the simplest examples of a non-

linear hyperbolic pde. It is obtained from the conservation equation (3.2) with

f(u, x, t) = 1
2
u2 for which one may write

∂u

∂t
+

∂

∂x

(
u2

2

)
. (3.3)

Solutions may again be obtained via the method of characteristics, namely given

an initial condition u(x, 0) = u0(x), then a given point x at t = 0 travels at

constant speed u0(x). It follows that u(x, t) = u0(x − u(x, t)t). However, there

is an implicit assumption made here that the characteristics are well behaved, in

particular that they do not intersect or diverge. This is not always the case and

rarefactions and shocks can occur depending upon u0(x). We give two examples.

Example 3.1. Consider the solution of (3.3) on the spatial domain Ω = R for

t ≥ 0 with the initial condition

u0(x) =


1 x ≤ 0

1− x 0 < x < 1

0 x ≥ 1 .

One sees that the function values for x ≤ 0 propagate forwards at a speed of 1,

for x ≥ 1 do not move, and for 0 < x < 1 move forward at speed 1− x such that

as t→ 1 they all converge towards the location x = 1. In particular for 0 ≤ t < 1

one has

u(x, t) =


1 x ≤ t

1− x−t
1−t t < x < 1

0 x ≥ 1 ,

which converges to the discontinuous solution (shock) u(x, 1) = χ(−∞,1](x). For

t ≥ 1 a classical solution does not exist but in practice one might continue to

propagate the non-zero portion of the solutions such that u(x, t) = χ(−∞,t](x) for

t ≥ 1. It is straightforward to show this solution satisfies (3.3) for t ≥ 1 given

the initial condition u(x, 1) = χ(−∞,1](x).

Example 3.2. Consider the solution of (3.3) on the spatial domain Ω = R for

t ≥ 0 with the initial condition u0(x) = χ[0,∞)(x). Here we see that for x < 0

the solution is zero and does not propagate but for x ≥ 1 the solution propagates

forwards with a speed of 1 such that u(x) = 0 for x < 0 and u(x) = 1 for

x ≥ t. Here the characteristics diverge such that there is no classical solution
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Figure 3.1: Here we depict a solution to the scalar advection equation ∂u
∂t + 2∂u∂x = 0

on the domain R with initial condition u(x, 0) = e−x
2/2 which is depicted on the left.

The solution at time t = 1 is depicted on the right and is simply a translation of the

Gaussian function 2 units to the right.

for 0 ≤ x < t. This is a case of a rarefaction and in practice one may linearly

interpolates in this interval, that is

u(x, t) =


0 x ≤ 0

x/t 0 < x < t

1 x ≥ t ,

for which it is easily checked that this satisfies Burgers’ equation (in the interval

(0, t) one has ∂u
∂t

= −x
t2

and u∂u
∂x

= x
t

1
t
).

These examples demonstrate some features that sometimes occur in hyper-

bolic pdes that make hyperbolic pde solvers more difficult to develop compared

to parabolic or elliptic pdes where these features do not occur. The combination

technique has been applied to hyperbolic pdes for which shocks occur [81]. The

ability to resolve these typically appears to depend on the location and direction

of the shock due to the sparse nature of local regions of a classical sparse grid. It

is an open area to study the combination technique in more detail for such prob-

lems. Whilst being an interesting area of study this is not addressed in this thesis

and as such we focus on problems for which shocks and rarefactions do not occur.

In particular, we focus on problems for which we can write f(u, x, t) = a(x, t)u

and a(x, t) ∈ C1(Ω × R+). In Figure 3.1 we depict an example on the domain

Ω = R with constant a = 2 and initial condition u(x, 0) = e−x
2/2.

We consider the solution to the advection equation over many spatial dimen-

sions. Let 0 < d ∈ N be the number of spatial dimensions, Ω ⊂ Rd be the domain

and u = u(x, t) : Ω × [0,∞) 7→ R. Given a ∈ Rd one has the (scalar) advection
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equation
∂u

∂t
+∇ · (au) = 0 . (3.4)

For constant a and initial condition u(x, 0) := u0(x) one has ∇ · (au) = a ·
∇u and the solution u(x, t) = u0(x − at) is easily obtained via the method of

characteristics. More generally a could be a (vector valued) function of x, t.

A noteworthy example is a stationary velocity vector field a = a(x) for which

∇a(x) = 0 for all x ∈ Ω. This corresponds to an incompressible flow and such

a(x) is often called a solenoidal vector field. Again one has ∇ · (au) = a · ∇u
and the method of characteristics may be used to obtain a solution, that is by

solving the ordinary differential equation

d

dt
x(t) = a(x(t)) =⇒ x(t) = x(0) +

∫ t

0

a(x(t)) dt ,

and setting u(x(t), t) = u(x(0), 0).

Adding a diffusion term to (3.4) one obtains the advection-diffusion equation

∂u

∂t
+∇ · (au)−∇ · (D∇u) = 0 , (3.5)

where D > 0 is the diffusivity. This may be used to describe the diffusion of ink in

water flowing down a channel. We do not study this in any detail but test some

of our fault tolerant algorithms on this pde as well. The advection diffusion

pde is often easier to solve numerically than a pure advection equation. The

reason for this is that the diffusion term leads to greater stability in numerical

schemes. For example, most explicit advection solvers require some artificial

diffusion to achieve stability whilst for an advection-diffusion solver there is less

need for artificial diffusion because of the presence of diffusion term in the actual

problem.

We now briefly describe some hyperbolic problems that are fundamental to

the physical sciences. Maxwell’s equations for a vacuum (no source or current)

are an example of a wave equation and are given by

∇×E = −∂B
∂t

, ∇×B =
1

c2

∂E

∂t
,

∇ ·E = 0 , ∇ ·B = 0 ,

with c being the speed of light, and E, B being the electric and magnetic fields

respectively. Taking the curl of the first equation and substituting the second

yields

∇× (∇×E) = −∂∇×B
∂t

= − 1

c2

∂2E

∂t2
.
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As

∇× (∇×E) = ∇(∇ ·E)−∇2E = −∇2E

(with ∇2E = (∇2E1, . . . ,∇2Ed)) and observing one can do the same for B then

one reduces Maxwell’s equations in a vacuum to the wave equation in each com-

ponent.

Boltzmann equations are used to describe transport in thermodynamic sys-

tems. A relatively general form is given by

∂u

∂t
+
p

m
· ∇xu+ F · ∇pu =

(
∂u

∂t

)
coll

, (3.6)

where ∇xu :=
(
∂u
∂x1
, . . . , ∂u

∂xd

)
and similarly for ∇pu. Here p is the momentum

coordinates, m is the mass, F is the force acting on the particles and u is a (prob-

ability density) function over x,p, t. Without the collision term
(
∂u
∂t

)
coll

this is

often referred to as the Vlasov equations. The Vlasov equations are effectively

an advection equation in 6 dimensional phase space with the velocity field given

by p
m

and F for the spatial and momentum coordinates respectively. For the

Vlasov-Maxwell system the force F is determined by q(E + 1
mc

(p×B)) where c

is the speed of light, q is the electric charge of each particle, and E and B are the

electric and magnetic fields obtained by solving the Maxwell equations over the

charged field. When there are many species (i.e. types of particles) then we have

a system of pdes, i.e. one pde for each species, which interact via the electric

and magnetic fields (and collisions if included). The GENE code (genecode.org)

solves a related system of equations for simulating plasma turbulence. A gyroki-

netic transformation is applied to the Vlasov-Maxwell system which averages over

the gyromotion (fast cyclic motion) of the particles to obtain a 6 dimensional sys-

tem of equations (5 in space compared to the 6 for the Vlasov-Maxwell system).

In the papers [5, 72] several numerical experiments using the large scale and com-

plex GENE code have been presented. These results validate the fault tolerant

adaptation of the combination technique developed later in this thesis. However,

the study of these systems of equations is not the focus of this thesis and we

therefore refrain from discussing them in depth. For a detailed discussion of the

GENE code we refer the reader to [54]. In this thesis we assume that our hyper-

bolic problems have solutions which are suffiently smooth and that the velocity

(and forces) are locally constant such that they may be treated like advection.
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3.2 Finite Difference Schemes for Solving Hy-

perbolic PDEs

There are several classes of numerical methods for solving pdes which include

finite difference, finite volume, finite element and meshless methods. Finite dif-

ference is perhaps the simplest to implement, typically using Taylor series ex-

pansions around each vertex of a regular grid to obtain a discrete approximation

to the pde. Finite volume methods can also be derived using Taylor series ex-

pansions, but applied to the average density over each cell in a mesh. Function

densities are transported over cell boundaries and by equating the outgoing flux

of one cell with the incoming flux of the corresponding neighbours one develops

conservative methods. Finite element methods are designed to find an approxi-

mation to the pde on a given finite dimensional function space, for example the

space of piecewise linear functions on a given mesh (typically of simplices). By

representing the discrete function space by nodal basis functions and substituting

into the weak formulation of the pde one derives a system of equations which one

then solves to obtain an approximate solution via the Galerkin method. Meshless

methods is another wide class of methods which do not require a grid or mesh of

any kind (as the name suggests).

As the combination technique combines approximate solutions from nested

regular grids we focus on solving the advection equation on such grids for which

finite difference methods are a natural choice. Whilst finite volume and finite

element methods may also be applied to the advection equation on nested reg-

ular grids we do not consider these in this thesis. In this section we have two

aims. First we discuss the classical approach to the analysis of finite difference

schemes for hyperbolic pdes. In particular we point out why classical convergence

results are not enough to guarantee convergence of the combination technique.

Second, we examine some classical schemes for the scalar advection equation in

one spatial dimension and demonstrate how these may be extended to the solu-

tion of the scalar advection equation in higher dimensions. This is a challenge as

a naive extension of many one dimensional schemes to higher dimensions leads

to unconditionally unstable schemes.

3.2.1 Classical convergence analysis

We define an initial value problem as follows.
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Definition 3.3. Consider a pde of the form

∂u

∂t
= Au (3.7)

where A is a linear operator which transforms the (possibly vector) function

u(x, t) : Rd × R+ to some other function Au(x, t) : Rd × R+ via spatial differ-

entiations, matrix-vector multiplications and the like. The initial value problem

is to find a one-parameter set of functions u(t) := u(x, t) which satisfy (3.7) for

0 ≤ t ≤ T given the initial state u(0) = u0.

For simplicity we assume that A does not depend on t. Further we do not

discuss boundary conditions in this thesis and for problems on bounded domains

it will generally be assumed that solutions are periodic. Before we can discuss

solutions of such problems it is important that they are well-posed.

Definition 3.4. An initial value problem is well-posed if a solution exists, is

unique and depends continuously on the initial condition.

Remark 3.5. In this brief discussion we will not specify the function spaces

involved. I feel these details are poorly covered by the modern literature but at

the same time a detailed description of the theory in terms of Banach spaces is

beyond the scope of this discussion. For a thorough treatment of the subject

we refer the reader to the early literature, particularly [84, 112]. Typically the

function space will be one which permits a Fourier analysis, for example a Hilbert

space.

Classical convergence analysis for hyperbolic pdes is based on the notions of

consistency and stability. Lax and Richtmyer consider the discretisation of (3.7)

to the finite difference equations

u(x, t+ ∆t) ≈ B(∆t,∆x1, . . . ,∆xd)u(x, t)

where B is a linear finite difference operator, that is a superposition of shift

operators which shift by multiples of ∆xk in the xk direction for each k = 1, . . . , d

with coefficients depending on ∆t,∆x1, . . . ,∆xd, which is bounded for any fixed

∆t,∆x1, . . . ,∆xd. It is assumed that ∆xk = gk(∆t) with gk(∆t)→ 0 as ∆t→ 0

for k = 1, . . . , d and we define

C(∆t) := B(∆t, g1(∆t), . . . , gd(∆t)) .

Here we provide an abbreviated definition of consistency, stability and conver-

gence as defined by Lax and Richtmyer in [84].
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Definition 3.6. Consider a well-posed initial value problem and a finite difference

approximation C(∆t).

• C(∆t) is a ‘consistent’ approximation to the solution of the initial value

problem if

lim
∆t→0

∥∥∥∥C(∆t)u(t)− u(t)

∆t
− Au(t)

∥∥∥∥ = 0 uniformly in t for 0 ≤ t ≤ T

(where the norm is such that the function space of solutions is complete,

typically L2, see Remark 3.5).

• C(∆t) is ‘stable’ if for some τ > 0 the set of operators

{C(∆t)n}0<∆t≤τ, 0≤n∆t≤T

is uniformly bounded.

• C(∆t) is a ‘convergent’ approximation for the initial value problem if for

any sufficiently smooth u0 and any sequences ∆tj, nj such that ∆tj → 0

and nj∆tj → t where 0 ≤ t ≤ T then

‖C(∆tj)
nju0 − u(t)‖ → 0

where here u(t) denotes the exact solution to the initial value problem at

time t (and again the norm completes the underlying function space).

When the solution space permits a Fourier analysis, e.g. L2, then stability may

be shown via a von Neumann stability analysis [123]. This involves showing that

no Fourier mode grows over time in the finite difference equations, or equivalently

that the eigenvalues of C(∆t) are no more than 1 (or even 1 +O(∆t)). Stability

is typically only satisfies for ∆t sufficiently small depending on the width spatial

discretisation ∆x1, . . . ,∆xd. This was first observed by Courant, Friedrichs and

Lewy [34] and is often referred to as the cfl condition. We may now give the

Lax–Richtmyer equivalence theorem.

Theorem 3.7 ([84, 112]). Given a well-posed initial value problem and consistent

finite difference approximation C(∆t) then stability is a necessary and sufficient

condition for C(∆t) to be convergent.

Whilst the above equivalence theorem is very nice and has formed the foun-

dations of numerical analysis of hyperbolic pdes it does not guarantee that the
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combination technique will converge when applied to a convergent scheme. To

illustrate this let B(∆t,∆x1, . . . ,∆xd) be a finite difference approximation of A

such that the corresponding C(∆t) is convergent. Fix 0 ≤ t ≤ T and a positive

integer m. Now let ∆t = t/m and ui(t) = B(∆t, 2−i1 , . . . , 2−id)mu0. As C(∆t) is

convergent then the approximation ui(t) of u(t) converges as m, i1, . . . , id → ∞.

Recall the combination technique of level n is given by

ucn :=
d−1∑
k=0

(−1)d
(
d− 1

k

) ∑
|i|=n−k

ui .

Now it is clear that if all of the ui converged as n → ∞ then ucn also converges

(as the sum of combination coefficients is 1). Unfortunately, all of the ui do not

converge. For example, consider i = (n, 0, . . . , 0). Clearly as n → ∞ the corre-

sponding ui does not necessarily converge to u(t). Thus for convergence of the

classical combination technique it is not enough that our numerical schemes are

convergent. In particular, one typically requires that the error of our approxima-

tion satisfies an error splitting formula as in Theorem 2.27. These error splittings

must be satisfied pointwise and therefore we effectively require that our numeri-

cal schemes converge pointwise. This is much stronger than the usual notions of

convergence and as such we typically require additional smoothness of our initial

condition and solution. In Section 3.3 we show that a particular class of finite

difference approximations for the scalar advection equation do indeed satisfy this

error splitting.

Remark 3.8. We could consider the starting combination ucn with which we

then refine all of the components ui, that is by incrementing each ik by 1 at each

refinement. In this scenario convergence of the combination does indeed follow as

as the number of refinements n′ →∞ then each ui+n′ converges. However, these

combinations correspond to a sequence of truncated combinations which will be

discussed separately in Section 4.1.

3.2.2 Numerical schemes for advection

Here we consider the pde (3.2) in one spatial dimension and the pde (3.4) in d > 1

spatial dimensions. For any analysis we will typically assume that f(u) = au with

constant a ∈ R and constant a ∈ Rd for each of the pdes respectively. As in

Section 2.2 we consider the domain [0, 1]d discretised into level l grids Ωl with

vertices (j12−l1 , . . . , jd2
−ld) with 0 ≤ j ≤ 2l. For the finite difference methods that

follow we consider discrete times tn = n∆t and grid points xj = j∆x for problems
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in one spatial dimension and xj = (j1∆x1, . . . , jd∆xd) more generally. We use

the notation Un
j to denote the finite difference approximation of the function

u at the point xj at time tn, that is Un
j ≈ u(xj, tn). We emphasise here the

difference between Un
j , the finite difference approximation of u and some point on

a grid, and uj, the approximation of u discussed in the context of the combination

technique. Similarly F n
j denotes an approximation to the flux f(u(xj, tn), xj, tn).

The difference between the approximation and the exact value of u is denoted by

εnj := Un
j − u(xj, tn).

First order schemes

We first look at first order schemes for the advection equation. The upwind, or

forward time backward space (ftbs), discretisation of the scalar advection pde

in one spatial dimension (3.2) is given by

Un+1
j − Un

j

∆t
+
F n
j − F n

j−1

∆x
= 0 , (3.8)

which is used when ∂f
∂u
> 0, that is transport is in the positive x direction. For

transport in the opposite direction one replaces F n
j − F n

j−1 with F n
j+1 − F n

j to

obtain a forward time forward space (ftfs) scheme. Re-arranging (3.8) yields

the explicit update formula

Un+1
j = Un

j −
a∆t

∆x
(F n

j − F n
j−1) .

If f(u, x, t) = au with constant a > 0 then a von Neumann stability analysis

shows that this method is stable iff 0 ≤ a∆t
∆x
≤ 1. The Godunov scheme is

a closely related discretisation for finite volume methods where one solves the

Riemann problem over cell boundaries to obtain the flux terms. With ∂f
∂u
> 0 the

Godunov scheme reduces to the upwind scheme given. The following proposition

tells us that the ftbs scheme is in fact pointwise convergent given a sufficiently

smooth initial condition and constant velocity.

Proposition 3.9. The numerical scheme (3.8) with F n
j = aUn

j and constant

a ∈ R+ for solving the pde (3.2) with f(u) = au and initial condition u(x, 0) ∈
W 2,∞(R) is pointwise convergent if 0 < a∆t ≤ ∆x and U0

j = u(xj, 0). Further,

with tn = n∆t and xj = j∆x one has the error bound

∣∣u(xj, tn)− Un
j

∣∣ ≤ tn
a∆x+ a2∆t

2

∥∥∥∥∂2u(x, 0)

∂x2

∥∥∥∥
∞
.
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Proof. Using a Taylor series expansion over time around tn one obtains

εn+1
j := Un+1

j − u(xj, tn+1)

= Un
j −

a∆t

∆x
(Un

j − Un
j−1)−

(
u(xj, tn) + ∆t

∂

∂t
u(xj, tn) +

∆t2

2

∂2

∂t2
u(xj, ξt)

)
= εnj −

a∆t

∆x

(
Un
j − Un

j−1 −∆x
∂

∂x
u(xj, tn)

)
− ∆t2

2

∂2

∂t2
u(xj, ξt) ,

for some ξt ∈ [tn, tn+1]. Now using a Taylor expansion over x around xj we obtain

εn+1
j = εnj −

a∆t

∆x

(
εnj − εnj−1 −

∆x2

2

∂2

∂x2
u(ξx, tn)

)
− ∆t2

2

∂2

∂t2
u(xj, ξt)

=

(
1− a∆t

∆x

)
εnj +

a∆t

∆x
εnj−1 +

a∆x∆t

2

∂2

∂x2
u(ξx, tn)− ∆t2

2

∂2

∂t2
u(xj, ξt) ,

for some ξx ∈ [xj−1, xj]. Notice that if 0 < a∆t ≤ ∆x then
(
1− a∆t

∆x

)
εnj + a∆t

∆x
εnj−1

is a convex combination. It follows that∣∣∣∣(1− a∆t

∆x

)
εnj +

a∆t

∆x
εnj−1

∣∣∣∣ ≤ max{|εnj |, |εnj−1|} ≤ max
j
|εnj | ,

and therefore

|εnj | ≤ max
j
|εn−1
j |+ a∆x∆t

2

∣∣∣∣ ∂2

∂x2
u(ξx, tn)

∣∣∣∣+
∆t2

2

∣∣∣∣ ∂2

∂t2
u(xj, ξt)

∣∣∣∣ .
Now as ∂u

∂t
= −a∂u

∂x
one has ∂2u

∂t2
= a2 ∂2u

∂x2 . Additionally, as u(x, t) = u(x − at, 0)

for all x, t one has
∥∥∥∂2u(·,t)

∂x2

∥∥∥
∞

=
∥∥∥∂2u(·,0)

∂x2

∥∥∥
∞

for all t ≥ 0. Thus

|εnj | ≤ max
j
|εn−1
j |+ a∆x∆t+ a2∆t2

2

∥∥∥∥ ∂2

∂x2
u(x, 0)

∥∥∥∥
∞
,

and substituting the result into the right hand side recursively one obtains

|εnj | ≤ max
j
|ε0j |+ n

a∆x∆t+ a2∆t2

2

∥∥∥∥ ∂2

∂x2
u(x, 0)

∥∥∥∥
∞
.

Note that tn = n∆t and therefore given the initial values are exact (ε0j = 0 for all

j) then

|εnj | ≤ tn
a∆x+ a2∆t

2

∥∥∥∥ ∂2

∂x2
u(x, 0)

∥∥∥∥
∞

from which it is clear that the method is first order pointwise convergent.
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Notice that the error grows linearly with respect to t. Also notice that the

scheme will still be first order pointwise convergent if we relax the initial values

to satisfy U0
j = u(xj, 0) +O(∆x).

The ftbs scheme has a natural extension for solving the advection equation

in higher dimensions, given the constant velocity vector a = (a1, . . . , ad) ∈ Rd
+

then one may approximate solutions of (3.4) with the scheme

Un+1
j = Un

j −∆t
d∑

k=1

ak
∆xk

(
Un
j − Un

j−ek

)
(3.9)

where ek is the multi-index which is 1 in the jth component and 0 elsewhere.

Treating Un
j as a vector we may write this scheme generically as the matrix vector

product Un+1
j = AUn

j with A being the matrix associated with the discretisation.

One may allow ak < 0 for any k ∈ {1, . . . , d} and simply use a forwards spatial

discretisation in the corresponding k terms within the sum.

Proposition 3.10. The numerical scheme (3.9) with constant a ∈ Rd
+ for solving

the pde (3.4) with initial condition u(x, 0) ∈ W 2,∞(Rd) is pointwise convergent

with order 1 if 0 <
∑d

k=1
ak∆t
∆xk
≤ 1 and U0

j = u(xj, 0). Further, with tn = n∆t

and xj = (j1∆x1, . . . , jd∆xd) one has the pointwise error bound

∣∣∣u(xj, tn)− Un
j

∣∣∣ ≤ tn
2

(
∆t

∥∥∥∥∂2u

∂t2

∥∥∥∥
∞

+
d∑

k=1

ak∆xk

∥∥∥∥∂2u

∂x2
k

∥∥∥∥
∞

)
.

Proof. Similar to the proof of Proposition 3.9 one may use Taylor series expan-

sions about u(xj, tn) to obtain

εnj =

(
1−

d∑
k=1

ak∆t

∆xk

)
εn−1
j +

d∑
k=1

ak∆t

∆xk
εn−1
j−ek

− ∆t2

2

∂2

∂t2
u(xj, ξt) +

d∑
k=1

ak∆xk∆t

2

∂2

∂x2
k

u(ξxk , tn) , (3.10)

for some ξxk = (x1, . . . , xk−1, ξk, xk+1, . . . , xd) with ξk ∈ [xjk−1, xjk ] for each k =

1, . . . , d, and some ξt ∈ [tn−1, tn]. As before, with 0 ≤
∑d

k=1

∣∣∣ak∆t
∆xk

∣∣∣ ≤ 1 the

contribution from the {εn−1
j }j is a convex combination, and thus as u(x, t) =

u(x− at, 0) one has

|εnj | ≤ max
j
|en−1
j |+ ∆t2

2

∥∥∥∥∂2u(x, 0)

∂t2

∥∥∥∥
∞

+
d∑

k=1

ak∆xk∆t

2

∥∥∥∥∂2u(x, 0)

∂x2
k

∥∥∥∥
∞
. (3.11)
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Now by recursively substituting the {εn−1
j }j, {εn−2

j }j, . . . terms into the equation

and using tn = n∆t one obtains

|εnj | ≤ max
j
|e0
j |+

tn
2

(
∆t

∥∥∥∥∂2u

∂t2

∥∥∥∥
∞

+
d∑

k=1

ak∆xk

∥∥∥∥∂2u

∂x2
k

∥∥∥∥
∞

)
,

from which it follows that the scheme is first order pointwise convergent.

The derived error bound again tells us our scheme is first order in both the

spatial and temporal variables. Whilst this pointwise bound is a nice result it is

still insufficient for showing the convergence of the combination technique. Note

that (3.10) gives an exact expression for the error over one time step. One may

be tempted to substitute in the expression for the εn−1
j in terms of the εn−2

j and

then iterate to obtain an exact expression of the error. However, this is somewhat

cumbersome and leads to an accumulation of powers of ak∆t
∆xk

terms which do not

fit with the classical error splitting model (2.22). In Section 3.3 we use a different

approach to show that finite difference solutions satisfy the error splitting model.

Rather than the explicit upwind scheme, one could instead use a backwards

time discretisation to obtain an implicit method. For example a backwards time

backwards space (btbs) discretisation of (3.2) leads to update formula

Un+1
j +

∆t

∆x
(F n+1

j − F n+1
j−1 ) = Un

j .

A von Neumann stability analysis shows this is unconditionally stable (for ∂f
∂u
> 0)

and we may obtain an error bound similar to that of the forwards time scheme.

Whilst implicit schemes typically require solving a linear system of equation we

observe that if the left boundary condition is specified, e.g. u(0, t) = g(t) for some

g : R→ R, then each time step can be computed quickly via forward substitution.

For periodic boundary conditions the full linear system must be solved. This

scheme is also easily extended to the solution of the advection equation in higher

dimensions. Reisinger [110] considered such an implicit method for the solution

of the advection equation for d ≥ 1 spatial dimensions and his work is discussed

further in Section 3.3.

Second-order schemes

The Lax–Wendroff scheme [83] is second order in both space and time variables.

It is typically presented as a two step method for the solution of the advection

equation in one spatial dimension. The first step is given by

U
n+1/2
j+1/2 =

1

2

(
Un
j + Un

j+1

)
− ∆t

2∆x

(
F n
j+1 − F n

j

)
,
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and the second step by

Un+1
j = Un

j −
∆t

∆x

(
F
n+1/2
j+1/2 − F

n+1/2
j−1/2

)
,

with F
n+1/2
j±1/2 = f

(
U
n+1/2
j±1/2 , xj±1/2, tn+1/2

)
. If f(u, x, t) = au with a ∈ R constant

this reduces to the one step method

Un+1
j = Un

j −
a∆t

∆x

(
Un
j+1 − Un

j−1

2
− a∆t

2∆x

(
Un
j+1 − 2Un

j + Un
j−1

))
. (3.12)

The pointwise error estimates for the ftbs scheme effectively used the mono-

tonicity of the scheme (via the convex combination). Godunov’s theorem [53]

tells us that monotonicity is not possible for linear schemes of order more than 1.

Thus it is more difficult to obtain pointwise error estimates in this case. Instead

we will show stability condition via a von Neumann stability analysis to illustrate

the approach.

Lemma 3.11. The Lax–Wendroff scheme (3.12) for solving the pde (3.2) with

f(u) = au and constant a ∈ R and initial condition u(x, 0) ∈ L2([0, 1]) is stable

for
∣∣a∆t

∆x

∣∣ ≤ 1.

Proof. We consider a solution which consists of a single Fourier mode k ∈ Z. Let

Un
j = erteιjk∆x where ι :=

√
−1, then substituting into (3.12) and dividing out

common term ertneιjk∆x we have

er∆t = 1− a∆t

2∆x

(
eιk∆x − e−ιk∆x

)
+
a2∆t2

2∆x2

(
eιk∆x − 2 + e−ιk∆x

)
= 1− ιa∆t

∆x
sin(k∆x)− a2∆t2

∆x2
(1− cos(k∆x)) .

As stability requires that |er∆t| ≤ 1 (von Neumann stability analysis) we have

1 ≥
(

1− a2∆t2

∆x2
(1− cos(k∆x))

)2

+
a2∆t2

∆x2
sin2(k∆x)

= 1− a2∆t2

∆x2

(
1− a2∆t2

∆x2

)
(1− cos(k∆x))2 .

As 0 ≤ 1− cos(k∆x) ≤ 2 then stability is satisfied if 0 ≤ 4a
2∆t2

∆x2

(
1− a2∆t2

∆x2

)
≤ 1.

Thus if −1 ≤ a∆t
∆x
≤ 1 we have |Un+1

j | = |er∆tUn
j | ≤ |Un

j |. As the chosen Fourier

mode was arbitrary then |Un+1
j | ≤ |Un

j | for solutions consisting of any Fourier

mode. It follows that the problem is stable for |a∆t
∆x
| ≤ 1 given any u(x, 0) ∈

L2([0, 1]) via its Fourier decomposition and the linearity of the discretisation.
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We can also check the order of consistency for the Lax–Wendroff scheme.

Lemma 3.12. The Lax–Wendroff scheme (3.12) for solving the pde (3.2) with

f(u) = au and constant a ∈ R is second order consistent if u(x, 0) ∈ C3([0, 1]).

Proof. The exact solution clearly satisfies u(x, t) ∈ C3([0, 1] × [0,∞)), now con-

sider the numerical scheme applied to the exact solution, that is

u(x, t+ ∆t)− u(x, t) +
a∆t

2∆x
(u(x+ ∆x, t)− u(x−∆x, t))

− a2∆t2

2∆x2
(u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)) ,

which we expect to equal zero if the scheme is exact. Now substituting the Taylor

expansions

u(x, t+ ∆t) = u(x, t) + ∆t
∂u(x, t)

∂t
+

∆t2

2

∂2u(x, t)

∂t2

+

∫ ∆t

0

(∆t− τ)2

2

∂3u(x, t+ τ)

∂t3
dτ

= u(x, t) + ∆t
∂u(x, t)

∂t
+

∆t2

2

∂2u(x, t)

∂t2
+O(∆t3)

and

u(x+ ∆x, t) = u(x, t) + ∆x
∂u(x, t)

∂x
+

∆x2

2

∂2u(x, t)

∂x2

+

∫ ∆x

0

(∆x− y)2

2

∂3u(x+ y, t)

∂t3
dy

= u(x, t) + ∆x
∂u(x, t)

∂x
+

∆x2

2

∂2u(x, t)

∂x2
+O(∆x3)

one obtains

∆t
∂u(x, t)

∂t
+ ∆t2

∂2u(x, t)

∂t2
+O(∆t3) + a∆t

∂u(x, t)

∂x
+O(∆t∆x2)

− a2∆t2
∂2u(x, t)

∂x2
+O(∆t2∆x)

Now using the fact that ∂u
∂t

+ a∂u
∂x

= 0 and thus also ∂2u
∂t2

= a2 ∂2u
∂x2 then the partial

derivatives cancel out and one has

u(x, t+ ∆t)− u(x, t) +
a∆t

2∆x
(u(x+ ∆x, t)− u(x−∆x, t))

−a
2∆t2

2∆x2
(u(x+∆x, t)−2u(x, t)+u(x−∆x, t)) = O(∆t3)+O(∆t2∆x)+O(∆t∆x2) .

Thus the Lax–Wendroff scheme is second order consistent.
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It follows from the Lax–Richtmyer equivalence theorem that the scheme is

second order convergent if u(x, 0) ∈ H3([0, 1]).

Extending the Lax–Wendroff method to higher dimensions is not straightfor-

ward and indeed the naive extension to two spatial dimensions

un+1
j1,j2

= unj1,j2 +
a1∆t

∆x1

(
unj1+1,j2

− unj1−1,j2

2
+

a∆t

2∆x1

(
unj1+1,j2

− 2unj1,j2 + unj1−1,j2

))
+
a2∆t

∆x2

(
unj1,j2+1 − unj1,j2−1

2
+

a∆t

2∆x2

(
unj1,j2+1 − 2unj1,j2 + unj1,j2−1

))
can be shown to be (unconditionally) unstable. For a problem with constant

velocity a ∈ Rd in two spatial dimensions the Lax–Wendroff method is given by

un+1
j1,j2

= unj1,j2 −
a1∆t

2∆x1

(unj1+1,j2
− unj1−1,j2

)− a2∆t

2∆x2

(unj1,j2+1 − unj1,j2−1)

+
a2

1∆t2

2∆x2
1

(unj1+1,j2
− 2unj1,j2 + unj1−1,j2

)

+
a2

2∆t2

2∆x2
2

(unj1,j2+1 − 2unj1,j2 + unj1,j2−1)

+
a1a2∆t2

4∆x1∆x2

(unj1+1,j2+1 − unj1−1,j2+1 − unj1+1,j2−1 + unj1−1,j2−1) .

Notice the additional term which approximates the mixed derivative ∂2u
∂x1∂x2

which

was not present in the naive extension. Turkel [122] shows that this scheme is

stable iff (a1∆t/∆x1)3/2 + (a2∆t/∆x2)3/2 ≤ 1. An example of the Lax–Wendroff

scheme applied to an advection problem on [0, 1] with periodic boundaries is

depicted in Figure 3.2.

For the advection problem with more than two spatial dimensions many 2nd

order schemes have been studied but it is not particularly clear if any one of them

could be said to be the definitive Lax–Wendroff scheme in a given number of di-

mensions. Fortunately another approach may be used to extend one dimensional

schemes to higher dimensional domains, so called directional splitting (also as di-

mensional splitting and more generally operator splitting). Directional splitting

is based upon splitting methods developed for the solutions of differential equa-

tions [98]. We illustrate the approach on the advection equation in two spatial

dimensions
∂u

∂t
+ a1

∂u

∂x1

+ a2
∂u

∂x2

= 0

with constants a1, a2 ∈ R and u = u(x1, x2, t). If u is analytic for all t ≥ 0 we

may write

u(·, ·, t+ ∆t) =
∞∑
k=0

∆tk

k!

∂k

∂tk
u(·, ·, t) =: e∆t ∂

∂tu(·, ·, t) .
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Lax–Wendroff

Figure 3.2: Here we compare the ftbs and Lax–Wendroff schemes applied to the

advection problem ∂u
∂t + ∂u

∂x = 0 on the domain [0, 1] with initial condition u(x, 0) =

sin(2πx) and periodic boundary conditions. The exact solution at time t = 1 satisfies

u(x, 1) = u(x, 0). Applying the two schemes to this problem with ∆x = 2−5 and ∆t =

2−6 we observe the ftbs solution has suffered from some numerical diffusion whilst the

Lax–Wendroff scheme is much more accurate but exhibits some slight dispersion.

Now substituting the advection equation one has

u(·, ·, t+ ∆t) = e
∆t
(
−a1

∂
∂x1
−a2

∂
∂x2

)
u(·, ·, t) = e

∆t
(
−a1

∂
∂x1

)
e

∆t
(
−a2

∂
∂x2

)
u(·, ·, t) ,

where e
∆t
(
−a1

∂
∂x1

)
:=
∑∞

k=0
(−a1∆t)k

k!
∂k

∂xk1
, similarly for e

∆t
(
−a1

∂
∂x1

)
, and the last

equality holds here as the operators −a1
∂
∂x1

and −a2
∂
∂x2

commute. Now we may

introduce the new initial value problems

ũ(·, ·, t+ ∆t) = e
∆t
(
−a2

∂
∂x2

)
u(·, ·, t) with ũ(·, ·, t) = u(·, ·, t) ,

and

u(·, ·, t+ ∆t) = e
∆t
(
−a1

∂
∂x1

)
ũ(·, ·, t+ ∆t) with u(·, ·, t) = ũ(·, ·, t+ ∆t) .

Thus, we can solve our two dimensional advection problem by treating it as two

separate one dimensional advection problems. In particular we can first step u(t)

over the x2 dimension to obtain ũ, and then step ũ forward over the x1 dimension

to obtain the updated u(t+∆t). For the scalar advection equation with constant

velocity we can in fact evolve from time 0 to t over each direction separately. For

more complex problems this serves as an approximation by treating coefficients

as locally constant and thus one applies each scheme one time step at a time. In

this latter case the discretisation is effectively a tensor product of the one dimen-

sional discretisations. This concept extends naturally to higher dimensions and
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means one can use a one dimensional scheme to solve the d-dimensional problem.

In general such directional splittings do not give the same result as a ‘full’ d-

dimensional scheme, that is additional approximation errors are introduced. For

example, given an operator C = A + B then in general e∆tC 6= e∆tAe∆tB, in fact

it can be shown [75] that(
e∆tAe∆tB − e∆t(A+B)

)
u(·, ·, t) =

∆t2

2
(AB −BA)u(·, ·, t) +O(∆t3) (3.13)

and thus e∆tAe∆tB is a first order consistent approximation to e∆tC . If A,B

commute then the RHS of (3.13) vanishes and the splitting does not introduce

any additional error into the problem as in our example of the scalar advection

problem with constant velocity. A second order approximation may be obtained

for general problems via the Strang splitting

e
∆t
2
Ae∆tBe

∆t
2
A − e∆t(A+B) = O(∆t3) .

Higher order splittings also exist, see [129, 75]. For example, a fourth order

splitting is given by

e
c
2

∆tAec∆tBe
1−21/3

2
c∆tAe−21/3c∆tBe

1−21/3

2
c∆tAec∆tBe

c
2

∆tA

with c = (2 − 21/3)−1. Additionally, splittings can be extended to more than 2

terms. For example given ∆tD = ∆t(A+B+C) one has the second order Strang

splitting

e
∆t
2
Ae

∆t
2
Be∆tCe

∆t
2
Be

∆t
2
A .

For a detailed account of splitting methods applied to pdes we refer the reader

to [75, 39, 85].

Remark 3.13. As already noted, for the scalar advection problem with constant

velocity the operators ak
∂
∂xk

commute and thus directional splittings are exact,

that is e∆t ∂
∂t =

∏d
k=1 e

−ak∆t ∂
∂xk . This means directional splittings work exception-

ally well for advection problems. Further, we have discussed how the directional

splitting is equivalent to a tensor product discretisation for linear problems. For

example, the directional splitting concept is similar to the unidirectional prin-

ciple used in tensor product quadrature formula. This would suggest that such

approaches may work very well with the combination technique. In essence, if a

finite difference discretisation in one dimension satisfied an error splitting then

it would be reasonable to expect that when applied to higher dimensions via

directional splittings then approximations satisfy the higher dimensional error

splitting.
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Remark 3.14. Another advantage of using directional splitting methods is one

need only satisfy stability for each one dimensional problem. For example, when

applied to the Lax–Wendroff discretisation in 2 spatial dimensions we require

∆t such that |a1|∆t ≤ ∆x1 and |a2|∆t ≤ ∆x2 as opposed to (a1∆t/∆x1)3/2 +

(a2∆t/∆x2)3/2 ≤ 1 for the full 2D scheme.

Crank-Nicolson is an implicit method originally developed to solve the heat

equation ∂
∂t
u − D ∂2

∂x2u = 0. It can be derived starting from a centred difference

approximation about U
n+ 1

2
j leading to

Un+1
j − Un

j

∆t
= D

U
n+ 1

2
j−1 − 2U

n+ 1
2

j + U
n+ 1

2
j+1

∆x2
.

On the right hand side we simply approximate each U
n+ 1

2
j term with the average

1
2
(Un

j + Un+1
j ) leading to the equations

Un+1
j − D∆t

2∆x2
(Un+1

j−1 − 2Un+1
j + Un+1

j+1 ) = Un
j +

D∆t

2∆x2
(Un

j−1 − 2Un
j + Un

j+1) .

A von Neumann analysis shows that this is unconditionally stable. One can

therefore use relatively large time steps compared to the typical restriction of

∆t ∝ ∆x2 for explicit methods for the heat equation.

The Crank-Nicolson scheme can be adapted to the advection equation re-

placing the centred difference approximation of ∂2

∂x2u with a centred difference

approximation of ∂
∂x
u. This leads to the equation

Un+1
j − Un

j

∆t
+
F
n+ 1

2
j+1 − F

n+ 1
2

j−1

2∆x
= 0

and upon approximating the F
n+ 1

2
j terms with the average 1

2
(F n

j +F n+1
j ) we obtain

Un+1
j +

∆t

4∆x
(F n+1

j+1 − F n+1
j−1 ) = Un

j −
∆t

4∆x
(F n

j+1 − F n
j−1) . (3.14)

It is readily checked that this too is unconditionally stable and gives a second or-

der approximation in both space and time. The unconditional stability allows one

to use arbitrarily large time steps such that despite the increased cost associated

with solving the linear system given by (3.14) one could potentially obtain solu-

tions in a similar time. Unfortunately, in practice using time steps significantly

larger than the cfl condition typically leads to large errors in the approximation.

Thus it is typically much cheaper to use an explicit method to obtain an approxi-

mate solution having some desired error. For this reason we will not consider im-

plicit schemes like Crank-Nicolson in further detail for pure advection problems.
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The Crank-Nicolson scheme is quite effective for advection-diffusion problems.

Consider the pde (3.5) in one spatial dimension with constants a = a ∈ R and

D > 0, then one has the numerical scheme

un+1
j +

a∆t

4∆x
(un+1

j+1 − un+1
j−1 )− D∆t

∆x2
(un+1

j+1 − un+1
j + un+1

j−1 )

= unj −
a∆t

4∆x
(unj+1 − unj−1) +

D∆t

∆x2
(unj+1 − unj + unj−1) ,

(3.15)

which is unconditionally stable and gives a second order approximation with

respect to ∆x and ∆t. The unconditional stability here means we can have

2D∆t � ∆x2 unlike typical explicit methods for advection diffusion equations.

However, for accuracy in the advection term we still may choose a∆t ∝ ∆x. This

scheme extends naturally to problems in higher dimensions, for d ≥ 1 and a ∈ Rd

constant one has the scheme

un+1
j +

d∑
k=1

(
ak∆t

4∆xk
(un+1

j+ek
− un+1

j−ek)−
D∆t

∆x2
k

(un+1
j+ek
− un+1

j + un+1
j−ek)

)

= unj −
d∑

k=1

(
ak∆t

4∆xk
(unj+ek − u

n
j−ek)−

D∆t

∆x2
k

(unj+ek − u
n
j + unj−ek)

)
.

Mixed order schemes

Here we briefly mention some advection schemes which have a higher order of tem-

poral accuracy than spatial accuracy. Such schemes will be useful for numerical

experiments that involve extrapolation of spatial error terms and are fundamental

to the practical application of results obtained in Section 3.3. Consider the one

dimensional scalar advection equation with a centred difference approximation of

the spatial derivative, that is with a ∈ R

∂Un
j

∂t
= − a

2∆x

(
Un
j+1 − Un

j−1

)
.

It is well known that if the
∂Unj
∂t

is approximated as 1
∆t

(
Un+1
j − Un

j

)
then one

obtains an unconditionally unstable scheme. However, if
∂Unj
∂t

is approximated

with a classical Runge–Kutta method of order 3 or higher then the scheme is

stable for sufficiently small ∆t. For example, the classical 4th order Runge–Kutta

method for approximating ∂u(x,t)
∂t

= f(t, u(x, t)) is given by

u(x, t+ ∆t) ≈ u(x, t) +
∆t

6
(k1(x, t) + 2k2(x, t) + 2k3(x, t) + k4(x, t))
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where

k1(x, t) = f(t, u(x, t))

k2(x, t) = f

(
t+

∆t

2
, u(x, t) +

∆t

2
k1(x, t)

)
k3(x, t) = f

(
t+

∆t

2
, u(x, t) +

∆t

2
k2(x, t)

)
k4(x, t) = f (t+ ∆t, u(x, t) + ∆tk3(x, t)) .

With f(t, u(x, t)) = − a
2∆x

(u(x+ ∆x, t)− u(x−∆x, t)) then the resulting scheme

for solving the advection equation is second order with respect to ∆x, fourth order

with respect to ∆t, and stable if |a|∆t < 2.82∆x [75]. If the 2nd order spatial

errors were successfully cancelled with an extrapolation method applied to this

scheme for u ∈ C4(Ω) then one would expect to obtain a fourth order scheme (as

the centred approximation of the spatial derivative means there are no odd order

terms in the error expansion). This scheme can be applied to higher dimensional

problems via directional splitting or via finite difference discretisations described

in Section 3.3.

Other schemes

We briefly remark here that for hyperbolic conservation laws (3.2) there has been

much research into discretisations which satisfy additional stability properties.

Among these are weighted essentially non-oscillatory (weno) schemes and strong

stability preserving (ssp) Runge–Kutta methods, see for example [78]. Whilst this

is a very interesting area of research with such schemes being essential for the

practical numerical simulation of many physical problems we will not investigate

these in this thesis. As our focus is on the application of the combination tech-

nique to approximate solutions of hyperbolic pdes we use much simpler schemes

for which the approximation error is better understood. Further, it is not clear if

the additional stability properties of more complex schemes would be preserved

by the application of the combination technique. Such schemes often rely on

convex combinations but as the classical combination technique is not convex it

would likely fail to preserve these additional stability properties. Investigating

the compatibility of the combination technique with such schemes would be an

interesting direction of research.
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3.3 Solving with the Combination Technique

When pdes involving time evolution are solved with the combination technique

one evolves the solution on many anisotropic grids to some fixed time t and then

combines the results accordingly. The application of the sparse grid combina-

tion technique applied to the advection equation has been studied by Lastdrager

et.al. [82] and Reisinger [110]. Reisinger studied an implicit first order finite dif-

ference solution of the advection equation in arbitrary dimensions. He showed

that the implicit first order finite difference solutions when interpolated by con-

tinuous basis functions (piecewise linear for example) satisfy the error splitting

model. This was done by studying the error of several corresponding semi-discrete

problems whereby one discretises a subset of the spatial dimensions and supposes

that the operator is exact along the remaining dimensions. The unconditional

stability of the implicit method allowed Reisinger to apply the combination tech-

nique to a space-time sparse grid. Using the error splitting he was able to obtain

error bounds for the combined solution. Poisson and advection-diffusion prob-

lems were also considered. It was suggested that the semi-discrete framework

could be used to study different numerical schemes for advection and/or diffusion

and perhaps even other problems entirely. For example, one might consider ex-

tending Reisinger’s bounds on the advection equation to a second order method.

Crank-Nicolson is another implicit method for which the space-time sparse grid

could also be considered. However, extending Reisinger’s work to this scheme is

difficult because it relies on a discrete maximum principle. As Godunov’s the-

orem [53] implies linear discretisations with order greater than 1 can not have

the property that new extrema are not generated then one is unable to obtain a

similar discrete maximum result for the Crank-Nicolson method. The extension

of this work to different discretisations remains open and is not something that

will be considered in this thesis.

Lastdrager et.al. considered the solution to the advection equation in two

spatial dimensions discretised using the method of lines (mol) with finite differ-

ence approximations to spatial derivatives and gave numerical results focusing on

some specific explicit methods. Several assumptions were made to simplify the

analysis. First, it was assumed that the error from time stepping is negligible

compared to the spatial discretisation error. Second, it was also assumed that

the approximation error obtained from interpolation of component grids onto a

full (or sparse) grid is also negligible. This is justified by their focus on numerical

results where a 3rd order upwind biased discretisation of the spatial derivatives
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is used with 4th order Runge–Kutta time integration and 4th order interpolation

(referred to as prolongation in their work). The authors then considered how the

leading order error terms are extrapolated when the combination technique is ap-

plied and obtained an estimate of the combination of the leading order error term

from different component grids. The effect of several combinations throughout

the computation was also studied and they show that M combinations through-

out the computation leads to a decrease of the leading order error terms by factors

M−1.

Error bounds are common in the literature for finite difference solutions of

time-dependent pdes, see for example [75, 88], but to obtain reasonable esti-

mates when the combination technique is applied we need something stronger

than a bound. We require an equality similar to the error splittings studied in

Section 2.2. This can be difficult to establish for a specific pde and discretisation

in which case one might settle for an analysis of the leading order error terms.

Here we extend the study of the leading error terms of the spatial discretisation

error of a two dimensional scalar advection problem by Lastdrager et.al. [82] to

a precise analysis of the scalar advection problem in arbitrary dimensions. As

in this reference literature we study the mol approach using finite differences to

discretise the spatial derivatives. Consider solutions to the advection equation

∂u

∂t
+ a · ∇u = 0 , (3.16)

with constant a ∈ Rd, periodic boundary conditions and periodic initial condition

u(x, 0) := u0(x) ∈ H1
per([0, 1]d) (where H1

per([0, 1]d) consists of functions f ∈
C(Rd) such that f(x) = f(x + ek) for all x with ek being the unit vector in

the kth direction, and f restricted to [0, 1]d is an element of H1([0, 1])d, that is∑
|i|≤1 ‖Dif‖2

L2([0,1]d)
is finite). For t ≥ 0 the exact solution u(x, t) = u0(x − at)

is obtained via the method of characteristics. Observe that the solution is in

the same function space as the initial condition as the norm is invariant under

translation. Establishing the accuracy of numerical solutions typically requires

additional assumptions on differentiability of the initial condition which we will

come back to later. Note that we may represent u0 by the Fourier series

u0(x) =
∑
ξ∈Zd

û0,ξe
2πιξ·x ,

where the û0,ξ are the Fourier coefficients

û0,ξ =

∫
[0,1]d

u0(x)e2πιξ·x dx .
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Substituting in the characteristics one has the exact solution

u(x, t) =
∑
ξ∈Zd

û0,ξe
2πιξ·(x−at) .

Using operator notation we may write u(x, t) = e−ta·∇u0(x) for which we observe

the operator e−ta·∇ has the eigenvalues e−2πιξ·at and corresponding eigenfunctions

e−2πιξ·x for each ξ ∈ Zd.
We now consider a discretisation of the ∇ operator with a finite difference

approximation. For m ∈ Z, i ∈ N and k ∈ {1, . . . , d} let Sk,i,m be the shift

operator defined by Sk,i,mu(x, t) := u(x + m2−iek, t) with ek being the unit

vector in the kth direction. Now consider the approximation of∇ in the advection

equation with the operator Di = (Di1 , . . . , Did) with each Dik a superposition of

shift operators in the kth direction. In particular, let Dik approximate ∂
∂xk

via

the shift operators Sk,ik,m with m = −r,−r+ 1, . . . , r−1, r for some fixed integer

r > 0. We define

Diku(x, t) = 2ik
r∑

m=−r

αk,mSk,ik,mu(x, t) , (3.17)

where αk,m ∈ R are some appropriate coefficients.

Lemma 3.15. If Dik is a pth order consistent approximation of ∂
∂xk

then

r∑
m=−r

αk,mm
q =

1 if q = 1

0 if q = 0, 2, 3, . . . , p.
(3.18)

Proof. If Dik is a pth order approximation of ∂
∂xk

then it is exact for polynomials

of degree p or less. Now as both Dik and ∂
∂xk

are translation invariant it is enough

to consider approximations at xk = 0. Consider the monomial xqk with q ∈ N,

then one has

Dikx
q
k|xk=0 = 2ik

r∑
m=−r

αk,m(xk +m2−ik)q

∣∣∣∣∣
xk=0

= 2ik(1−q)
r∑

m=−r

αk,mm
q .

For comparison one has

∂

∂xk
xqk

∣∣∣∣
xk=0

= qxq−1
k

∣∣
xk=0

=

1 if q = 1

0 otherwise.

Thus if Dik is exact for monomials up to degree p then clearly (3.18) holds. As any

polynomial of degree p or less can be expressed as a superposition of monomials

up to degree p one has the desired result.
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Let ωi = ωi(x, t) be the solution of

∂ω

∂t
+ a ·Diω = 0 , (3.19)

with initial condition ω(x, 0) = u0(x). If we restrict ourselves to considering

the function ω on the grid points Ωi ⊂ [0, 1]d (with the usual definition Ωi =

Ωi1 × · · · × Ωid and Ωl := {s2−l : s = 0, 1, . . . , 2l}) then we observe that the

shift operators making up the Dik translate each grid point in Ωi to another

grid point in Ωi. Therefore we may write −a ·Diω(Ωi, t) generically as a matrix

vector product Aiωi where ωi = ω(Ωi, t). Thus our discretised pde restricted to

ωi := ω(Ωi) reduces to a linear system of ode’s

∂ωi
∂t

(t) = Aiωi(t)

which has solution ωi(t) = exp(tAi)ωi(0) where exp(tAi) :=
∑∞

n=0

tnAni
n!

is the

usual matrix exponential. For d = 1, Ai is a circulant matrix which is diagonalised

via the discrete Fourier transform (dft). For d = 2, Ai is a block circulant

matrix with circulant blocks (bccb matrix) which is similarly diagonalised via

the 2-dimensional dft. This structure is similarly extended to higher dimensions.

For a stable numerical scheme one typically requires that the finite difference

discretisation Di is such that the eigenvalues λξ of the matrix Ai have non-positive

real part (that is Re(λξ) ≤ 0) in which case it follows that ‖ exp(tAi)‖2 ≤ 1.

We are interested in the difference between the approximation ω(x, t) and the

exact solution u(x, t) not only on the grid points Ωi but everywhere on [0, 1]d.

Therefore, despite the discretised operator corresponding to a grid Ωi, we still

consider ω(x, t) as a continuous function over [0, 1]d. This can be thought of as a

continuous family of solutions on grids Ωi translated by some y with 0 ≤ yk ≤ 2−ik

for each k ∈ {1, . . . , d}. Note that as we have defined the Di in terms of shift

operators (i.e. translations) they are perfectly valid operators on continuous

function spaces like L2. The following lemma gives an expression for the solution

ω(x, t) via the Fourier series of the initial condition.

Lemma 3.16. Suppose u0(x) ∈ L2
per([0, 1]d) has the Fourier series

u0(x) =
∑
ξ∈Zd

û0,ξe
2πι(ξ·x) ,

then a unique solution ω(x, t) to (3.19) with initial condition ω(x, 0) = u0(x)

exists and is given by

ω(x, t) =
∑
ξ∈Zd

û0,ξe
2πι(ξ·x)+cξt .
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where

cξ = −
d∑

k=1

ak2
ik

r∑
m=−r

αk,ik,me
2πιm2−ik ξk . (3.20)

Further, if <(cξ) ≤ 0 for all ξ ∈ Zd then given any t ≥ 0 one has ω(x, t) ∈
L2
per([0, 1]d).

Proof. Suppose that ω(x, t) has the form

ω(x, t) =
∑
ξ∈Zd

bξe
2πι(ξ·x)ecξt .

Note that we have ω(x, 0) = u0(x) and thus bξ = û0,ξ for all ξ ∈ Zd. As

the pde (3.19) is linear we may consider each component of the Fourier series

separately. Fixing ξ ∈ Zd, for the series to satisfy (3.19) we require

0 = cξû0,ξe
2πι(ξ·x)ecξt + a ·Diû0,ξe

2πι(ξ·x)ecξt

= cξû0,ξe
2πι(ξ·x)ecξt +

d∑
k=1

akû0,ξe
cξt2ik

r∑
m=−r

αk,ik,me
2πι(ξ·(x+m2−ikek)) .

Dividing out the common factor û0,ξe
2πι(ξ·x)ecξt and re-arranging we obtain (3.20).

Finally, for any given t ≥ 0 the convergence of the Fourier series of ω(x, t) when

<(cξ) ≤ 0 follows from the convergence of the series for u0(x), in particular

‖ω‖2
2 =

∑
ξ∈Zd |û0,ξe

cξt |2 ≤
∑
ξ∈Zd |û0,ξ|2 = ‖u‖2

2 via Parseval’s identity.

Notice that cξ is simply a sum of the eigenvalues one obtains for the one

dimensional advection problem corresponding to each of the dimensions k =

1, . . . , d. In particular we may write cξ = cξ1 + · · ·+ cξd where each

cξk := −ak2ik
r∑

m=−r

αk,ik,me
2πιm2−ik ξk

depends only on the ξk component of ξ (and only the kth component of i and

a). Further, for each k, as ik →∞ one has cξk → −2πιξkak as a consequence of

consistency of the discretisation. This is evident in the following lemma.

Proposition 3.17. Let Dik be a finite difference discretisation as in (3.17) which

is a pth order consistent approximation of ∂
∂xk

with eigenvalues cξk such that

Dike
2πιξkxk = cξke

2πιξkxk , then

−akDike
2πιξkxk =

(
−2πιξkak − ξp+1

k 2−pikηk
)
e2πιξkxk , (3.21)

where ηk is uniformly bounded with respect to ξk.
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Proof. As a consequence of Lemma 3.16 we know that

cξk = −ak2ik
r∑

m=−r

αk,ik,me
2πιm2−ik ξk .

Letting h = 2−ik we use a Taylor expansion of e2πιmhξk up to pth order around

h = 0 we have

cξk = −akh−1

r∑
m=−r

αk,ik,m

(
p∑
q=0

(2πιmhξk)
q

q!

+(2πιmhξk)
p+1

∫ 1

0

(1− t)p

p!
e2πιmhξkt dt

)
= −akh−1

(
p∑
q=0

(2πιhξk)
q

q!

r∑
m=−r

αk,ik,mm
q

+(2πιhξk)
p+1

r∑
m=−r

αk,ik,mm
p+1

∫ 1

0

(1− t)p

p!
e2πιmhξkt dt

)
.

Using the properties of the αk,m from Lemma 3.15 one obtains

cξk = −akh−12πιhξk − akh−1(2πιhξk)
p+1

r∑
m=−r

αk,ik,mm
p+1

∫ 1

0

(1− t)p

p!
e2πιmhξkt dt

= −2πιξkak − hpξp+1
k ηk ,

where ηk := ak(2πι)
p+1
∑r

m=−r αk,ik,mm
p+1
∫ 1

0
(1−t)p
p!

e2πιmhξkt dt. Substituting h =

2−ik back in we obtain (3.21). Finally we notice that |ηk| ≤ |ak| (2π)p+1

(p+1)!
(2r +

1)rp+1 maxm |αk,ik,m| which is independent of ξk.

Our goal is to study the difference between the solutions ω of the discretised

problem and the (exact) solutions u of the advection equation. For this purpose

we define the error function

ε(x, t) := u(x, t)− ω(x, t) . (3.22)

We also define the operator Ei := ∇−Di, that is Ei =
(

∂
∂x1
−Di1 , . . . ,

∂
∂xd
−Did

)
,

for which Eiu gives the difference between the continuous and discrete spatial

derivatives of u.

Proposition 3.18. Fix i ∈ Nd and let u and ω be solutions to (3.16) and (3.19)

respectively, then ε(x, t) = u(x, t)− ω(x, t) is the unique solution to

∂ε

∂t
= −a ·Diε− a · Eiu ,
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with ω(x, t) ∈ L2
per([0, 1]d) and u(x, 0) ∈ H1

per([0, 1]d). Further, one has

ε(x, t) = exp(−ta ·Di)ε(x, 0) + u(x, t)− exp(−ta ·Di)u(x, 0) . (3.23)

Before proceeding with the proof we note that exp(−ta ·Di) :=
∑∞

n=0
(−ta·Di)n

n!

is well defined as a ·Di is bounded, in particular

‖a ·Diu‖2 ≤

(
d∑

k=1

|ak|2ik
r∑

m=−r

|αk,m|

)
‖u‖2

for all u ∈ L2
per([0, 1]d).

Proof. We have ∂ε
∂t

= ∂u
∂t
− ∂ω

∂t
and substituting equations (3.16) and (3.19) into

the right hand side yields the pde

∂ε

∂t
=
∂u

∂t
− ∂ω

∂t
= −a · ∇u+ a ·Diωi

= −a · (Diu−Diω + (∇−Di)u) = −a ·Diε− a · Eiu .

The expression (3.23) is obtained via

ε(x, t) = u(x, t)− ω(x, t)

= u(x, t)− exp(−taDi)ω(x, 0)

= u(x, t) + exp(−taDi) (u(x, 0)− ω(x, 0))− exp(−taDi)u(x, 0)

= exp(−taDi)ε(x, 0) + u(x, t)− exp(−taDi)u(x, 0) ,

as required.

Note that Lastdrager et.al. also considered problems where a may vary over

time in which case one must replace −ta ·Di in (3.23) with −
∫ t

0
a(τ) ·Di dτ . We

do not consider this case in detail. Further, we typically assume that the initial

condition is exact, that is εi(x, 0) = 0. We provide the proof for an identity which

will be useful.

Lemma 3.19. Let y1, . . . , yd ∈ R, then

y1 · · · yd − 1 =
d∑

k=1

∑
{s1,...,sk}
⊂{1,...,d}

(ys1 − 1) · · · (ysk − 1) .
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Proof. The case d = 1 is trivial, similarly for d = 2 one obtains via expansion

(y1 − 1)(y2 − 1) + (y1 − 1) + (y2 − 1) = y1y2 − 1 .

By induction, given the case 2 and d− 1 one has

y1 · · · yd − 1 = (y1 · · · yd−1)yd − 1

= (y1 · · · yd−1 − 1)(yd − 1) + (y1 · · · yd−1 − 1) + (yd − 1)

=
d−1∑
k=1

∑
{s1,...,sk}
⊂{1,...,d}

(ys1 − 1) · · · (ysk − 1)(yd − 1)

+
d−1∑
k=1

∑
{s1,...,sk}
⊂{1,...,d}

(ys1 − 1) · · · (ysk − 1) + (yd − 1) .

For the sums in the last equality we observe for a fixed k ∈ {2, . . . , d − 1} that

the first sum contributes
(
d−1
k−1

)
terms which is a product of k terms of the form

(ysl − 1) (including (yd− 1)) whilst the second sum contributes
(
d−1
k

)
such terms.

As these are all distinct then they must be all
(
d−1
k−1

)
+
(
d−1
k

)
=
(
d
k

)
terms in

the sum
∑
{s1,...,sk}
⊂{1,...,d}

(ys1 − 1) · · · (ysk − 1). For the case k = d then one obtains

(y1 − 1) · · · (yd − 1) from the first of the two sums. Similarly, for the case k = 1

the last sum provides (y1 − 1) + · · · + (yd−1 − 1) to which we add the (yd − 1).

Therefore the identity holds for the case d and thus for all integers d ≥ 1 by

induction.

Before proceeding with the main result we first define a special class of func-

tions whose mixed derivatives have a Fourier series which is absolutely convergent.

Definition 3.20. Given a function u ∈ L2(Ω) with Ω ⊂ Rd we define

‖u‖A =
∑
ξ∈Zd
|ûξ| ,

where the ûξ are the Fourier coefficients of u. We define Hp
mpa([0, 1]d) (mpa short

for mixed, periodic, absolute) to be the functions in Hp
mix which are periodic and

have a Fourier series which is absolutely convergent for all mixed derivatives,

specifically

Hp
mpa([0, 1]d) =

u ∈ C(Rd) :

u|[0,1]d ∈ Hp
mix([0, 1]d)

u(x) = u(x+ ek) ∀k ∈ {1, . . . , d}
‖Dju‖A <∞ ∀0 ≤ j ≤ p

 ,

(with ek the unit vector in the kth direction).
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The reason we require the Fourier series to be absolutely convergent is that

a particular finite difference discretisation may generate dispersion which causes

the peaks of all of the basis functions to line up at some time during the evolution.

Theorem 3.21. Let ε(x, t) be as in Proposition 3.18 with ε(x, 0) = 0 and u0(x) ∈
Hp+1

mpa([0, 1]d). Additionally, let each Dik be a pth order consistent approximation

of ∂
∂xk

whose eigenvalues have non-positive real part. Then, ε(x, t) has the form

of the error splitting

ε(x, t) =
d∑

k=1

∑
{s1,...,sk}
⊂{1,...,d}

tk2−p(is1+···+isk )γs1,...,sk(2
−is1 , . . . , 2−isk ) , (3.24)

and, further, there exists K > 0 such that |γs1,...,sk(2−is1 , . . . , 2−isk )| < K for all

{s1, . . . , sk} ⊂ {1, . . . , d}, k = 1, . . . , d.

Proof. As ε(x, 0) = 0 one has ε(x, t) = u(x, t)−exp(−ta ·Di)u(x, 0) from Propo-

sition 3.18. Now given the Fourier series for u(x, 0) one has

ε(x, t) =

∑
ξ∈Zd

û0,ξe
2πιξ·(x−at)

− exp(−ta ·Di)

∑
ξ∈Zd

û0,ξe
2πιξ·x


=
∑
ξ∈Zd

(
e−2πιξ·at − ecξt

)
û0,ξe

2πιξ·x

=
∑
ξ∈Zd

(
1− et(cξ+2πιξ·a)

)
û0,ξe

2πιξ·(x−at) .

Defining εξ(t) := 1− e2πιξ·at+cξt we may write

ε(x, t) =
∑
ξ∈Zd

εξ(t)û0,ξe
2πιξ·(x−at) .

Now as cξ = cξ1 + · · ·+ cξd with each cξk depending only on the ξk component of

ξ (and only the kth component of i and a) we can write this as

εξ(t) = 1− et
∑d
k=1 2πιξkak+cξk

= 1−
d∏

k=1

et(2πιξkak+cξk ) .

Further, by rewriting the identity of Lemma 3.19 as

1− y1 · · · yd =
d∑

k=1

(−1)k−1
∑

{s1,...,sk}
⊂{1,...,d}

(1− ys1) · · · (1− ysk)
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we can decompose εξ(t) as

εξ(t) =
d∑

k=1

(−1)k−1
∑

{s1,...,sk}
⊂{1,...,d}

k∏
l=1

εξsl (t) , (3.25)

where

εξsl (t) =
(

1− et(2πιξslasl+cξsl )
)
.

Now as a consequence of Proposition 3.17 we have that

cξk = −2πιξkak − hpikξ
p+1
k ηk

and thus with k = sl

εξsl (t) =
(

1− e−th
p
isl
ξp+1
sl

ηsl
)
.

Now we perform a Taylor series expansion of e
−thpik ξ

p+1
k ηk . Note that as ηk is

complex we must take care to determine the remainder via complex contour

integrals. As the eigenvalues cξk of Dik have non-positive real part then it follows

that −thpikξ
p+1
k ηk must have non-positive real part. Consider the function ez with

z ∈ C, then as ez is analytic everywhere then we have via Cauchy’s integral

formula

ez =
∞∑
n=0

zn

2πι

∫
C

ew

wn+1
dw

= 1 +
1

2πι

∫
C

ew

w

∞∑
n=1

( z
w

)n
dw = 1 +

z

2πι

∫
C

ew

w(w − z)
dw ,

where C is some closed path containing the origin and z. Now letting η̃ =
1

2πι

∫
C

ew

w(w−z) dw we have ez = 1 + zη̃. It follows that with η̃sl = η̃ one has

εξsl (t) = 1− e−th
p
isl
ξp+1
sl

ηsl = thpisl
ξp+1
sl

ηsl η̃sl . (3.26)

Now as each cξk has non-positive real part it follows that |εξsl (t)| ≤ 2 and thus

|η̃sl | ≤ 2
thpisl

|ηsl |
independent of ξsl ≥ 1 (and η̃sl = 0 if ξsl = 0). Substituting (3.26)

into (3.25) we obtain

εξ(t) =
d∑

k=1

(−1)k−1
∑

{s1,...,sk}
⊂{1,...,d}

tk2−p(is1+···+isk )(ξs1 · · · ξsk)p+1γs1 · · · γsk ,
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where γsk := ηsk η̃sk . As ηsk and η̃sk are bounded independently of ξsk then γsk is

also bounded independently of ξsk . Thus we have an error splitting formula for

the error of the eigenmode e2πιξ·x. In the sum over all eigenmodes we have

ε(x, t) =
∑
ξ∈Zd

εξ(t)û0,ξe
2πιξ·(x−at)

=
d∑

k=1

∑
{s1,...,sk}
⊂{1,...,d}

tk2−p(is1+···+isk )γs1,...,sk(2
−is1 , . . . , 2−isk ) ,

where

γs1,...,sk(2
−is1 , . . . , 2−isk ) := (−1)k−1

∑
ξ∈Zd

û0,ξ(ξs1 · · · ξsk)p+1(γs1 · · · γsk)e2πιξ·(x−at) .

Further, using Holder’s inequality we have that

|γs1,...,sk(2−is1 , . . . , 2−isk )| ≤
(

sup
ξ
|γs1 · · · γsk |

)∑
ξ∈Zd
|û0,ξξs1 · · · ξsk |p+1

=

(
sup
ξ
|γs1 · · · γsk |

)∥∥∥∥ ∂k(p+1)u0

∂xp+1
s1 · · · ∂xp+1

sk

∥∥∥∥
A

,

where the right hand side is finite as each of the γsl is uniformly bounded and

‖Dju0(x)‖A < ∞ for all 0 ≤ j ≤ p+ 1. Thus by taking K > 0 to be the

maximum of the γs1,...,sk(2
is1 , . . . , 2isk ) for all k = 1, . . . , d and {s1, . . . , sk} ⊂

{1, . . . , d} then ε(x, t) satisfies the desired error splitting model.

For a fixed t, by setting Kt = max{K, tdK}, an error bound for the combina-

tion of technique applied to the ωi follows immediately from Theorem 2.27, that

is if we use ucn to denote the level n combination of the ui (which is each the

solution of ∂u
∂t

+ a ·Diu = 0) then

|u− ucn| ≤ Kt2
−pn(1 + 2p)d−1

(
n+ 2d− 1

d− 1

)
.

Lastdrager et.al. considered truncated combinations whereby one discards grids

from the combination technique which do not have a specified minimum level

of discretisation in each dimension. We consider such combinations in greater

detail in Section 4.1. As we have shown the spatial discretisation satisfies the

error splitting model many of the results in developed in Section 4.1 will be di-

rectly applicable to the advection problem solved with an explicit finite difference

method.
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In addition to the bound obtained via Theorem 2.27 we will also study what

happens to each of the error terms tkγl1,...,lk(x, t)h
p
il1
· · ·hpilk individually to better

understand the effect of repeated combinations on the solution error. We can

apply Lemma 2.32 to each of these terms to find that the level n combination

technique applied to tkγl1,...,lk(x, t)h
p
il1
· · ·hpilk yields

tk2−pn
k−1∑
m=0

(
k − 1

m

)
(−2p)m

 ∑
il1+···+ilk=n−m

γl1,...,lk(x, t)

 . (3.27)

Let K > 0 be such that |γl1,...,lk(x, t)| ≤ K for all x, i, k ∈ {1, . . . , d} and

{l1, . . . , lk} ⊂ {1, . . . , d}, then the absolute value of (3.27) is bounded by

K ′tt
k2−pn

k−1∑
m=0

(
k − 1

m

)
|−2p|m

(
n−m+ k − 1

k − 1

)
≤ K ′tt

k2−pn
(
n+ k − 1

k − 1

)
(1 + 2p)k−1 ,

Which leads to a result for |u − ucn| analogous to (2.26) in the proof of Theo-

rem 2.27, namely

|u− ucn| ≤ K2−pn
d∑

k=1

tk
(
d

k

)(
n+ k − 1

k − 1

)
(1 + 2p)k−1 . (3.28)

Suppose now that the solutions on the coarse grids were to be combined at time

t/M where M is a positive integer. One has that the leading error terms (3.27) has

the additional factor M−k. During the next evolution of t/M these leading error

terms from the previous evolution become the initial error, that is from (3.23) we

consider

ε̂i(2t/M) = e−(t/M)a·Diε(x, t/M) + u(x, 2t/M)− e−(t/M)a·Diu(x, t/M)

Now the u(x, 2t/M) − e−(t/M)a·Diu(x, t/M) term satisfies the same bound as

εi(x−at/M, t/M) as the only difference is the translation of u by at/M . On the

other hand the e−(t/M)a·Diε(x, t/M) term is evolution of the error generated via

the discrete advection operator. If the discrete operator were exact this would

just be a translation. Of course this is not the case and there is an additional

error term generated. However, as the εi(x−at/M, t/M) term is O
(
t
M

2−pnnd−1
)

and the discrete advection operator is order p it is reasonable to assume that this

contribution to the error is negligible compared to the other terms. Thus at time
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2t/M with combinations at time t/M and 2t/M the error is bounded above by

K ′t2
−pn

d∑
k=1

(2 + δ)

(
t

M

)k (
d

k

)(
n+ k − 1

k − 1

)
(1 + 2p)k−1 ,

where δ bounds the contribution of e−(t/M)a·Diε(x, t/M)− ε(x− at/M, t/M) for

which we assume |δ| � 1. We may now repeat this argument for additional

combinations at times 3t
M
, 4t
M
, . . . , t. For the last combination at time t one obtains

the bound

K ′t2
−pn

d∑
k=1

(M + δ′)

(
t

M

)k (
d

k

)(
n+ k − 1

k − 1

)
(1 + 2p)k−1 ,

where the δ′ term encapsulates the error of the discrete advection operator applied

to the ε̂i from previous steps which we assume satisfies |δ′| � 1. Thus we note that

for the k = 1 in the sum we have (M + δ′) t
M
≈ t and thus repeated combinations

has no impact on this term. However, for the k > 1 in the sum we have (M +

δ′)
(
t
M

)k ≈ tkM−k+1 which leads to a reduction in the error. In particular, the

k = d in the sum (which contributes the large term tk
(
n+d−1
d−1

)
(1 + 2p)d−1 to the

error when there is only one combination at time t > 1) has a reduction of M−d+1.

Whether this is noticed in practice depends on how tight a bound K ′t is to the

γ terms corresponding to the k = d term in the sum. In the limit M → ∞ the

k > 1 terms vanish leaving K ′t2
−pntd. However, this ignores the possibility of

terms accumulating in the δ′ which may become a significant contribution to the

error for large M .

Remark 3.22. Theorem 3.21 shows that mol solutions of advection from a

specific family of finite difference discretisations satisfy an error splitting when

the finite difference operator is applied over the entire domain (as opposed to

grid points) and the time integration is exact. Of course, in practice this is not

how we compute solutions to advection. However, the result is still relevant as

we shall point out here.

• If one samples the mol solution ωi on a grid Ωi at time t, that is ωi(Ωi, t),

then the result is the same as solving the ode system

∂ω(Ωi, t)

∂t
+ a ·Diω(Ωi, t) = 0,

with initial condition ω(Ωi, 0) = u0(Ωi), up to time t. Clearly the resulting

ωi(Ωi, t) satisfy the error splitting as described by the theorem at each grid

point.
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• In practice one computes the combination technique approximation by in-

terpolating the function values on Ωi to the sparse grid (or a full grid

containing the sparse grid). This is either done explicitly or implicitly

via the hierarchisation approach. It is reasonable to expect that interpola-

tion/quadrature methods based on tensor product rules also satisfy an error

splitting. For example, Reisinger shows [110] that for v ∈ H2
0,mix then the

piecewise multi-linear interpolant function samples on the grid Ωi (denoted

Iiu) satisfies the pointwise error splitting

v − Iiv =
d∑

k=1

∑
{s1,...,sk}
⊆{1,...,d}

αs1,...,sk(2
−is1 , . . . , 2−isk )4−is1 · · · 4−isk ,

and there exists L > 0 such that each |αs1,...,sk | ≤ L for all i. More generally

if v ∈ Hq
0,mix we assume we have an interpolation method I ′i which is order

q and satisfies

v − I ′iv =
d∑

k=1

∑
{s1,...,sk}
⊆{1,...,d}

αs1,...,sk(2
−is1 , . . . , 2−isk )2−qis1 · · · 2−qisk .

If q ≥ p then applying such an integration method to the ωi(t) one has

u(t)− I ′iωi(t) =
d∑

k=1

∑
{s1,...,sk}
⊂{1,...,d}

tk2−p(is1+···+isk )γ′s1,...,sk(2
−is1 , . . . , 2−isk ) ,

(with u(t) being the exact solution of the advection equation at time t) as

the error splitting terms from the interpolation can be effectively absorbed

into the original γs1,...,sk(2
−is1 , . . . , 2−isk ) to form γ′s1,...,sk(2

−is1 , . . . , 2−isk ).

• Lastly, we must consider that our ode is not integrated exactly in practice.

However, we assume that the ode solver used is of sufficiently high order

that the spatial errors are dominant for all stable choices of ∆t. Under

this assumption it is clear that as ∆t,∆x1, . . . ,∆xd → 0 (with ∆t always

such that the scheme is stable) convergence of the combination solutions

will follow from analysis of the spatial errors. In our numerical results in

Sections 4.5 and 5.2.4 we typically use the classical fourth order Runge–

Kutta method to solve the ode obtained via second order discretisation of

spatial derivatives.



Chapter 4

Variations and Generalisations of

the Combination Technique

Many variations and generalisations of the combination technique have been de-

veloped in the literature. In Section 4.1 we will discuss the truncated combina-

tion technique, a variation which avoids some of the strongly anisotropic grids

of the classical combination technique. Error estimates from Chapter 2 will be

adapted to truncated combinations. In Section 4.2 we consider dimension adap-

tive sparse grids which inspired much of the initial work on fault tolerant adap-

tations of the combination technique. In particular, we review the framework

of projections onto function space lattices developed in [70] and extend this via

a study of projections onto hierarchical surpluses. Section 4.3 considers the use

of multi-variate extrapolation within the combination technique to obtain high

order solutions. Combined with the adaptive sparse grids framework one ob-

tains an adaptive extrapolation algorithm. Section 4.4 develops a generalisation

of the combination technique for combining arbitrary collections of grids. Two

approaches for the computation of coefficients will be considered based upon the

work in Section 4.2. Much of the work in the latter three sections is featured in

the publications [69, 65, 64].

4.1 Truncated Combination Technique

The classical combination technique

ucn :=
d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
|i|=n−k

ui

131
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is typically not used ‘as is’ in practice. There are often problems with using

grids where the refinement is extremely coarse in all but one dimension which is

extremely fine. For example the grid corresponding to the multi-index (n, 0, . . . , 0)

within the set {i ∈ Nd : |i| = n}. Such grids are referred to as strongly anisotropic.

There are several reasons why the inclusion of these grids can lead to poor results.

For example, the initial condition may be poorly represented on such grids or the

numerical scheme may be ill-suited to the elongated cells. In theory some of

the error on such grids should cancel with that on nearby grids (that is grids

corresponding to the multi-index j with |j − i| small) but, in practice, what

remains can be significant. A solution to this is to simply omit some of the

strongly anisotropic grids. This is equivalent to truncating the sums used in

the classical combination, hence leading to the so called truncated combination

technique [9]. Leentvaar [86] extends the classical analysis based on the point-

wise error splitting to these truncated combinations but with the restriction that

the corresponding full grid is isotropic. Here we provide results for truncated

combinations for which the corresponding full grid may be anisotropic. There are

two important reasons for doing this. First, the rate of convergence may differ in

the different dimensions for some applications which means we may wish to have

finer discretisation in the slowest converging dimensions. Second, we may have

different requirements for the minimum discretisation in each dimension which

also leads to an isotropic full grid.

There are several ways in which a truncated combination technique may

be defined. Fundamentally a truncated combination is just a translation of a

classical combination with respect to the multi-indices i corresponding to the

coarse/component solutions ui. As such we will use the following definition.

Definition 4.1. Given n ≥ 0 and s ∈ Nd we define the truncated combination

as

utn,s :=
d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
{i∈Nd:|i|=n−k}

ui+s . (4.1)

The sum over {i ∈ Nd : |i| = n− k} will be typically abbreviated to
∑
|i|=n−k

and is defined to be 0 when n − k < 0. Here n corresponds to the level of the

classical combination for which we translate the multi-indices by s. Equation (4.1)

may be expressed as a classical combination of level n + |s| with the sum over i
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Figure 4.1: From left to right we depict the two dimensional truncated combination

ut3,(1,2), the corresponding sparse grid points and the corresponding full grid points.

truncated/restricted to i ≥ s, that is

utn,s =
d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
|i|=n+|s|−k

i≥s

ui .

Given a truncated combination utn,s it will be useful to define the corresponding

full grid approximation. The full grid approximation uf corresponding to a trun-

cated combination utn,s is the approximation on the smallest grid which contains

all of the grids that the ui+s where computed on. It is clear that fk = sk + n

for each k which we sometimes write as f = s + n. An example of a truncated

combination and the corresponding sparse and full grids is depicted in Figure 4.1.

Remark 4.2. We depart momentarily to comment on combinations which have

been truncated relative to a full grid. Given a full grid index f and a level n ≤ |f |
one might have thought to consider the combination

d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
|i|=n−k
i≤f

ui .

However there is a problem with this combination if n > min{f1, . . . , fd}. For

example, in 2 spatial dimensions the above reduces to∑
i1+i2=n

(i1,i2)≤(f1,f2)

ui1,i2 −
∑

i1+i2=n−1
(i1,i2)≤(f1,f2)

ui1,i2

for which the combination coefficients sum to −1 if n > min{f1, f2}. It follows

that this combination is not consistent and does not approximate the desired

solution. This can be corrected by modifying the coefficients for the k > 0 terms
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using the theory of adaptive sparse grids which is developed in Section 4.2. In

d = 2 dimensions one obtains the truncated combination utf1+f2−n,(f1−n,f2−n) but

for d ≥ 3 the resulting combination is typically no longer a truncated combination

as we have defined. These are unusual but interesting combinations which will

not be developed further in this section. We note that the results of Section 4.2

can be applied to such combinations.

As was done for classical combinations, we will consider the number of un-

knowns and the approximation error for truncated combinations. Given the trun-

cated combination utn,s, the number of unknowns in each grid ui+s, denoted as

#(ui+s), satisfies

#(ui+s) =
d∏

k=1

(2ik+sk + 1) ≤
d∏

k=1

2sk(2ik + 1) = 2|s|
d∏

k=1

(2ik + 1) .

It follows that the total number of unknowns required for the computation of

utn,s is bounded above by 2|s| times the number of unknowns required for the

computation of ucn (see Section 2.2).

We now consider the approximation error of utn,s when each of the ui+s is the

usual piecewise linear interpolants. A rough bound is obtained via the following

proposition.

Proposition 4.3. Let u ∈ H2
0,mix, n ≥ 0, s ∈ Nd and ui be the usual piecewise

linear interpolant of u for all i ∈ Nd. Further, let f = s+n (with n = (n, . . . , n)),

and

εcn := 2−2n1

3

(
1

3

)d
‖D2u‖2

d−1∑
k=0

(
n

k

)(
1

3

)d−1−k

.

The truncated combination technique utn,s satisfies the error bound

‖uf − utn,s‖2 ≤ εcn+|s| .

Recall that when the ui are piecewise linear interpolants then one has usn = ucn
and therefore from Proposition 2.19 one has ‖u − ucn‖2 = ‖u − usn‖2 ≤ εcn. Thus

this result says we can bound the difference between interpolation onto the full

grid and the interpolant obtained via the truncated combination by a classical

combination error bound for ucn+|s|.

Proof. As uhi denotes the level i hierarchical surplus of u (see Section 2.1) we

may write uf =
∑

i≤f u
h
i and as utn,s contains all uhi with |i| ≤ n + |s| with the
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exception of i 6≤ s+ n one may also write

utn,s =
∑

|i|≤n+|s|
i≤s+n

uhi .

As f = s+ n it follows that

‖uf − utn,s‖2 =

∥∥∥∥∥∥
∑

{i∈Nd:|i|>n+|s| and i≤s+n}

uhi

∥∥∥∥∥∥
2

≤
∑

{i∈Nd:|i|>n+|s| and i≤s+n}

‖uhi ‖2

≤
∑

|i|>n+|s|

‖uhi ‖2

≤ εcn+|s| ,

where the last inequality is obtained via the proof of Proposition 2.19.

Corollary 4.4. Let u, ui, n ≥ 0, s ∈ Nd and εcn be as in Proposition 4.3. Let

f = s+ n and

εf := 9−d‖D2u‖2

d∑
k=1

4−fk ,

then

‖u− utn,s‖2 ≤ εf + εcn+|s| .

Proof. This follows from the triangle inequality as

‖u− utn,s‖2 = ‖u− uf + uf − utn,s‖2 ≤ ‖u− uf‖2 + ‖uf − utn,s‖2

and ‖u− uf‖2 ≤ εf by Lemma 2.20.

A similar result may also be obtained for the∞ or energy norms by replacing

εcn and εf with the appropriate bounds found in [22]. The result is given for the

case where u ∈ H2
0,mix but it should be clear how this can be extended to u ∈ H2

mix

similar to Proposition 2.22.

Proposition 4.3 gives us a simple way to estimate the interpolation error for

truncated combinations (compared to the full grid interpolant) using the error

estimate from the classical combination ucn+|s|. However, the bound is generally

an overestimate. For example, if n = 0 (and thus f = s) then uf = ut0,f and

thus the difference is 0. Obtaining a tighter bound requires a bit more work, we

provide a tighter bound for two and three dimensions to help illustrate how the

truncated combination differs from a classical combination.
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Proposition 4.5. Let n ≥ 0, s ∈ Nd, f = s+ n, u ∈ H2
0,mix([0, 1]d) and ui be the

usual piecewise linear interpolant of u for i ∈ Nd. Then for the case d = 2 one

has

‖uf − utn,s‖2 ≤ 3−4‖D2u‖22−2(n+|s|) (3n− 1 + 4−n
)
.

Similarly, for the case d = 3 one has

‖uf − utn,s‖2 ≤ 3−6‖D2u‖22−2(n+|s|)
(

1

2
(9n2 + 51n− 22) + 12 · 2−2n − 2−4n

)
.

Proof. As in Proposition 4.3 we observe that

uf − utn,s =
∑
i≤f

|i|>n+|s|

uhi .

From the triangle equality it follows that

‖uf − utn,s‖2 ≤
∑

|i|>n+|s|& i≤f

‖uhi ‖2 =
∑

|i|>n& i≤n

‖uhi+s‖2 .

We now need only estimate the sum in each case. For d = 2 one has

∑
|i|>n& i≤n

‖uti+s‖2 =
2n∑

k=n+1

n∑
i=k−n

‖uhi+s1,k−i+s2‖2

≤
2n∑

k=n+1

n∑
i=k−n

3−2‖D2u‖22−2(k+|s|)

= 3−2‖D2u‖22−2|s|
2n∑

k=n+1

2−2k(2n− k + 1)

= 3−4‖D2u‖22−2(|s|+n)
(
3n− 1 + 4−n

)
.

Similarly for d = 3 one has

∑
|i|>n& i≤n

‖uhi+s‖2 =
3n∑

k=n+1

∑
|i|=k& i≤n

‖uhi+s‖2

=
2n−1∑
k=n+1

∑
|i|=k& i≤n

‖uhi+s‖2 +
3n∑

k=2n

∑
|i|=k& i≤n

‖uhi+s‖2 .

For the latter of the sums it is straightforward to show |{|i| = k& i ≤ n}| =
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3n−k+2

2

)
for 2n ≤ k ≤ 3n and therefore using the estimate of Lemma 2.15

3n∑
k=2n

∑
|i|=k& i≤n

‖uhi+s‖2 ≤
3n∑

k=2n

∑
|i|=k& i≤n

3−3‖D2u‖22−2(k+|s|)

= 3−3‖D2u‖22−2|s|
3n∑

k=2n

2−2k
∑

|i|=k& i≤n

1

= 3−3‖D2u‖22−2|s|
3n∑

k=2n

2−2k

(
3n− k + 2

2

)
= 3−6‖D2u‖22−2(2n+|s|) (18n2 + 42n+ 28− 2−2n

)
.

Similarly for the former sum one obtains

2n−1∑
k=n+1

∑
|i|=k& i≤n

‖uhi+s‖ ≤ 3−3‖D2u‖22−2|s|
2n−1∑
k=n+1

2−2k
∑

|i|=k& i≤n

1 .

It is straightforward to check that for n < k < 2n one has∑
|i|=k& i≤n

1 = 3nk − k2 + 1− 3

2
n(n− 1) .

Further,

2n−1∑
k=n+1

2−2k

(
3nk − k2 + 1− 3

2
n(n− 1)

)
= 3−32−2n

(
9

2
(1− 22−2n)n2 +

(
51

2
− 42 · 2−2n

)
n− 11− 24−2n

)
.

Multiplying by 3−3‖D2u‖22−2|s| and adding to the other sum one obtains∑
|i|>n& i≤n

‖uhi+s‖ ≤ 3−6‖D2u‖22−2(n+|s|)
(

1

2
(9n2 + 51n− 22) + 12 · 2−2n − 2−4n

)
,

which is the desired result.

As before we can extend these results to the error ‖u− utn,s‖2 via the triangle

inequality. This result may also be extended to the L∞ and L1 norms by using the

corresponding bounds of the uhi from [22]. Notice that n increases, the difference

between the full grid solution uf = us+n and utn,s decreases at a rate O(2−2nnd−1),

i.e. the same rate that classical combinations converge to the true solution.

Additionally if n is fixed and s increases then convergence is second order with

respect to |s|.
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We also consider the error of truncated combinations when the ui satisfy

the error splitting model (2.22). Here we extend Theorem 2.27 to truncated

combinations.

Theorem 4.6. For all i ∈ Nd let ui : [0, 1]d 7→ R be approximations to u :

[0, 1]d 7→ R satisfying the error splitting (2.22), that is

u− ui =
d∑

m=1

∑
{j1,...,jm}
⊂{1,...,d}

vj1,...,jm(hij1 , . . . , hijm )hpij1
· · ·hpijm ,

with all of the |vj1,...,jm| bounded by a positive constant K. Let utn,s be the truncated

combination defined by (4.1), then

|u− utn,s| ≤ K2−pn
(
n+ d− 1

d− 1

)
(1 + 2p)d−1

(
−1 +

d∏
k=1

(1 + 2−psk)

)
.

Proof. The proof follows the same procedure as the proof of Theorem 2.27. The

only difference is that the hij1 · · ·hijm terms become

hsj1+ij1
· · ·hsjm+ijm

= 2−sj1−···−sjmhij1 · · ·hijm .

By carrying this factor through the steps of the previous proof then we notice

that at the line prior to (2.26) one has

|u− ucn| ≤ 2−pn
d∑

m=1

∑
{j1,...,jm}
⊂{1,...,d}

K

(
n+m− 1

m− 1

)
(1 + 2p)m−1 ,

which for the truncated combination technique becomes

|u− utn,s| ≤ 2−pn
d∑

m=1

∑
{j1,...,jm}
⊂{1,...,d}

K2−p(sj1+···+sjm )

(
n+m− 1

m− 1

)
(1 + 2p)m−1 .

Bounding each
(
n+m−1
m−1

)
(1 + 2p)m−1 by the m = d term

(
n+d−1
d−1

)
(1 + 2p)d−1 one

obtains

|u− utn,s| ≤ K2−pn
(
n+ d− 1

d− 1

)
(1 + 2p)d−1

d∑
m=1

∑
{j1,...,jm}
⊂{1,...,d}

2−p(sj1+···+sjm )

= K2−pn
(
n+ d− 1

d− 1

)
(1 + 2p)d−1

(
−1 +

d∏
k=1

(1 + 2−psk)

)
.

which is the desired result.
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We notice that when the s is isotropic (i.e. s1 = s2 = · · · = sd) then the

bound reduces to

|u− utn,s| ≤ K2−pn
(
n+ d− 1

d− 1

)
(1 + 2p)d−1

(
(1 + 2−ps1)d − 1

)
.

When s = 0 then utn,0 = ucn and we obtain the bound |u−ucn| ≤ K2−pn
(
n+d−1
d−1

)
(1+

2p)d−1(2d − 1) which is weaker than that of Theorem 2.27 for n > d− 1.
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4.2 Dimension Adaptive Sparse Grids

In this section we review the paper Adaptive Sparse Grids [70] in detail. The use

of lattices of projections in the study of the combination technique was a nice

idea and a powerful tool for extending the original notion of the combination

technique. We extend upon the proofs in the paper making some clarifications

as we go. Additionally we extend upon the existing work and obtain some new

results. In particular, the original paper presented a procedure for calculating

the updated coefficients. We quantify this result showing explicitly what the

coefficient updates are. This allows for much faster computation of the coefficients

and reveals more about the nature of adaptive sparse grids, namely the relation to

the inclusion-exclusion principle. Further, we derive error formulae for adaptive

sparse grids for both the classical interpolation of u ∈ H2
0,mix and for ui satisfying

the error splitting model. Much of this section appears in the papers [64, 65].

In this thesis we consider lattice to be a partially ordered set (L,≤) for which

every two elements a, b ∈ L have a unique greatest lower bound, a ∧ b, and

a unique least upper bound, a ∨ b. It is well-known that a partially ordered set

which is a lattice is equivalent to the algebraic lattice (L;∧,∨) in which the binary

operations ∧ and ∨ acting on the non-empty set L are idempotent, commutative,

associative and satisfy a ∧ (a ∨ b) = a ∨ (a ∧ b) = a for all a, b ∈ L. The natural

definition of ∧ and ∨ given a partially ordered set (L,≤) is a ∧ b = inf{a, b} and

a ∨ b = sup{a, b}.
We consider vector spaces which are tensor products V = V 1 × · · · × V d and

each component V k (k ∈ {1, . . . , d}) is hierarchical, that is,

V k
0 ⊂ V k

1 ⊂ · · · ⊂ V k
mk

= V k .

Additionally we assume that each V k
0 6= {0} and each V k = V k

mk
is finite dimen-

sional. For the tensor product formulation we write Vi = V 1
i1
× · · · × V d

id
where

i is a multi-index (i1, . . . , id) ∈ Nd. We claim that the resulting function spaces

form a lattice as we will demonstrate. An example of such spaces are the spaces

of piecewise linear functions Vi defined in Section 2.1.

We define an ordering on these spaces given by V k
i ≤ V k

j iff V k
i ⊆ V k

j for

i, j ∈ N. We see that this partial ordering relates to a natural ordering of the

indices V k
i ⊆ V k

j ⇔ i ≤ j. The greatest lower bound of two such spaces is then

given by V k
i ∧ V k

j = V k
i ∩ V k

j = V k
min{i,j}. Note that the natural ordering of

{0, 1, . . . ,mk} ⊂ N leads to the greatest lower bound i ∧ j = min{i, j} such that

we can write V k
i ∧ V k

j = V k
i∧j. Similarly we have the least upper bound given by
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V k
i ∨ V k

j . In general this is given by the linear span of the V k
i and V k

j . In this

case the hierarchical/nested structure of the V k means that V k
i ∨V k

j = V k
i ∪V k

j =

V k
max{i,j} = V k

i∨j. Thus we see that the lattice structure on the V k
i can be viewed

as being lifted from N via V k
i ≤ V k

j ⇔ i ≤ j, V k
i ∧V k

j = V k
i∧j and V k

i ∨V k
j = V k

i∨j.

Now we consider the partial ordering induced on the tensor product space V .

Given Vi and Vj we say Vi ≤ Vj iff Vik ≤ Vjk for k = 1, . . . , d, or equivalently

Vi ⊆ Vj. The greatest lower bound can also be defined via the tensor product

Vi ∧ Vj := (V 1
i1
∧ V 1

j1
) ⊗ · · · ⊗ (V d

id
∧ V d

jd
). Alternatively we can write this as

Vi ∧ Vj = Vmin{i,j} where the min is taken component wise. Similarly we define

the least upper bound as Vi ∨ Vj := (V 1
i1
∨ V 1

j1
) ⊗ · · · ⊗ (V d

id
∨ V d

jd
) which can

be simplified to Vmax{i,j} (with the max also taken component wise). Note that

whilst Vi ∧ Vj = Vi ∩ Vj it is generally not true that Vi ∨ Vj is equal to Vi ∪ Vj.
Just as the lattice structure on the V k

i can be viewed as having been lifted from

the natural lattice on N, the same is also true of the Vi. Consider the partial

ordering on i, j ∈ Nd defined by i ≤ j iff ik ≤ jk for k = 1, . . . , d. The addition of

the binary relations i ∧ j := min{i, j} and i ∨ j := max{i, j} describes a lattice

on Nd. Thus we observe the ‘lifting’ of the lattice structure via Vi ≤ Vj ⇔ i ≤ j,

Vi ∧ Vj = Vi∧j and Vi ∨ Vj = Vi∨j.

With these binary operations our nested function spaces now form a lattice.

Similarly we have a corresponding lattice on the multi-indices in Nd. Figure 4.2

depicts some elements of Nd and describes their relations in the lattice. From

here we will stick to discussing the lattice as applied to Nd acknowledging that

this can be lifted to the corresponding function space lattice. We continue with

a few more definitions.

An element j ∈ Nd is said to cover another element i ∈ Nd if i < j and

there is no l such that i < l < j (here < means ≤ and 6=), see for example [36].

Equivalently, j covers i if jk = ik+1 for exactly one k ∈ {1, . . . , d} and jr = ir for

r 6= k. We use the notation i� j to denote that j covers i. Similarly, Vj covers Vi

if Vi ≤ Vj and there is no Vl such that Vi < Vl < Vj. The lattice of multi-indices in

Nd is also graded when equipped with the rank function r(i) = |i|. Analogously

the lattice Vi is graded when equipped with the rank function r(Vi) = |i|.
We will consider a family of projections P k

ik
: V k → V k

ik
. Taking the tensor

product provides the projection Pi =
⊗

k P
k
ik

: V → Vi. The existence of such

projections is given by the following proposition.

Proposition 4.7 ([70]). For every lattice space generated from a tensor product

of hierarchical spaces we have:
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i j

kl

s

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

Figure 4.2: Here we depict several elements of N2 and describe their relations with

respect to the natural lattice described in the text. Oberve that k ≥ j ≥ i, k ≥ l ≥ i

and k ≥ s ≥ i. Note that s is neither ≤ nor ≥ either of j and l. Additionally one has

j ∧ l = i, j ∨ l = k, s ∧ i = i and s ∨ k = k. The two elements highlighted in blue are

the two possible covering elements of i. The diagram and relations described can also

be interpreted as applying to the lattice on Vi.

• there are linear operators Pi on V with range R(Pi) = Vi and PiPj = Pi∧j.

• Consequently PiPi = Pi and PiPj = PjPi.

Proof. The results are an immediate consequence of the tensor product construc-

tion of the lattice.

Let I be a subset of the lattice of multi-indices on Nd. We say I is a downset

if

i ∈ I and j ≤ i⇒ j ∈ I .

Given J ⊂ Nd we use the notation J↓ to denote the smallest downset that contains

J . Consider P(Nd), i.e. the power set of the set of all multi-indices, and let D(Nd)

be the restriction of the power set to contain only finite downsets. We can define

a partial ordering and binary relations on the set of downsets.

Definition 4.8. Given I, J ∈ D(Nd) then we define the partial ordering

I ≤ J ⇔ I ⊆ J

Additionally we define the binary relations

I ∧ J := I ∩ J
I ∨ J := I ∪ J .

This leads us to the following lemma.

Lemma 4.9. D(Nd) with the partial ordering and binary operations defined in

Definition 4.8 is a lattice.
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Proof. We need only show that given any I, J ∈ D(Nd) then I ∧ J ∈ D(Nd) and

I ∨ J ∈ D(Nd).

Let i ∈ I ∧ J = I ∩ J , then i ∈ I and i ∈ J . It follows for each j ∈ Nd

such that j ≤ i then j ∈ I and j ∈ J since I and J are downsets and therefore

j ∈ I ∧ J . As a consequence I ∧ J is a downset.

Similarly it can be shown that I ∨ J is also a downset.

We also have the cover relation I � J iff J = I ∪ {i} for some i /∈ I for which

j � i ⇒ j ∈ I for all j ∈ Nd (or equivalently j < i ⇒ j ∈ I for all j ∈ Nd).

Figure 4.3 depicts several elements of N2 and describes their relations.

Just as the lattice on Nd can be lifted to a lattice on {Vi}i∈Nd we can lift the

lattice on D(Nd) to the so called combination space lattice

VI :=
∑
i∈I

Vi ,

for I ∈ D(Nd). It is straightforward to show that VI is a downset if I is itself

a downset, and furthermore VJ↓ = VJ↓. Furthermore we can define the partial

ordering VI ≤ VJ iff I ≤ J and the binary relations VI ∧VJ = VI∧J and VI ∨VJ =

VI∨J . The result is therefore a lattice on {VI}I∈D(Nd). We also have the covering

relation VI � VJ iff I � J . This brings us to a second proposition.

Proposition 4.10 ([70]). Let the lattices Vi have the projections Pi as in Propo-

sition 4.7, then for I, J ∈ D(Nd) there are linear operators PI on V with range

R(PI) = VI such that PIPJ = PI∩J . Conversely, if PI is a family of projec-

tions with these properties, then Pi := P{i}↓ defines a family of projections as in

Proposition 4.7.

This is as in [70] and is closely linked to the lattice I described on D(Nd). An

extended proof is given here.

Proof. We define the linear operators

PI = 1−
∏
i∈I

(1− Pi) .

Now using the fact that PiPj = Pj if j ≤ i we claim that PI = 1−
∏

i∈max I (1− Pi),
where max I are the maximal elements of I, i.e. i ∈ max I if there is no l ∈ I\{i}
such that i ≤ l. Let l ∈ I\max I, then

1−
∏
i∈I

(1− Pi) = 1− (1− Pl)
∏

i∈I\{l}

(1− Pi)

= 1−
∏

i∈I\{l}

(1− Pi) + Pl
∏

i∈I\{l}

(1− Pi) .
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Figure 4.3: Here we depict a few elements of D(N2) and describe their relations with

respect to the lattice described in the text. Clockwise from the top left let us denote the

sets by A,B,C,D,E and F respectively. One has E ≤ C ≤ A ≤ F ≤ D, C ≤ B ≤ F ,

A∧B = C and A∨B = F . Additionally, C is a cover of E. The diagrams and relations

described can also be interpreted as applying to the lattice on {VI}I∈D(N2).

Now examining the last product we have

Pl
∏

i∈I\{l}

(1− Pi) =
∏

i∈I\{l}

Pl(1− Pi)

=
∏

i∈I\{l}

(Pl − Pl∧i)

but since l /∈ max I then there exists i′ ∈ max I such that l ≤ i′ and therefore

Pl∧i′ = Pl. Hence
∏

i∈I\{l} (Pl − Pl∧i) = 0 and

1−
∏
i∈I

(1− Pi) = 1−
∏

i∈I\{l}

(1− Pi) .

By repeating this argument on all elements in I\max I we obtain PI = 1 −∏
i∈max I (1− Pi).
Now, by expanding the product over the maximal elements and using the

equality PiPj = Pi∧j it follows that

PI =
∑
i∈I

ciPi

for some ci, referred to as combination coefficients, which are zero if i is not in

the sub-lattice generated by max I. Note that if i ∈ max I then ci = 1. Thus the
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range of PI is VI . Let Q = PIPJ − PI∩J . The range is VI∩J which is in the null

space of Q. Now PI is a projection mapping elements of VI onto themselves and

so Q2 = Q and thus Q=0. The converse follows directly.

Corollary 3 of [70] tells one how to update the coefficients when a new element

if added to the downset. Unfortunately the result does not make it particularly

clear how to compute the updated coefficients. We clarify this in the alternate

version of the corollary below.

Corollary 4.11 ([70]). Let J = I ∪ {j} be a covering element of I and let PI be

the family of projections as in the previous proposition and Pi = P↓i. Then one

has:

PJ − PI =
∑
i∈J

diPi

where dj = 1 and for i ∈ I we have

di = −
∑
l∈Ii|j

cl

with Ii|j := {l ∈ I : j ∧ l = i}.

Proof. Notice that

PJ − PI =

1− (1− Pj)
∏
i∈I

(1− Pi)

−
1−

∏
i∈I

(1− Pi)


= Pj

∏
i∈I

(1− Pi)

= Pj − Pj

1−
∏
i∈I

(1− Pi)

 = Pj − PjPI .

Therefore with PI =
∑

i∈I ciPi one has

PJ − PI = Pj − Pj
∑
i∈I

ciPi

= Pj −
∑
i∈I

ciPj∧i

= Pj −
∑
i∈I

Pi
∑

{l∈I:l∧j=i}

cl =
∑
i∈J

diPi

as required.
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Figure 4.4: Here we depict an iteration of adaptive sparse grid algorithm in d = 2

dimensions. The x and y axes denote the i1 and i2 components of i ∈ N2. On the

left is a downset I (shaded blue) and the corresponding combination coefficients (+ for

+1 and − for −1). In the middle we have identified the covering elements of I in

red. On the right a covering element j has been chosen and the corresponding downset

J = I ∪ {j} is shown (shaded blue) with the new combination coefficients.

As a result, if we have a solution to a problem using the combination PI and

we add a solution from another grid Vj such that the new lattice is J = I ∪ {j}
which is a covering element of I then the combination coefficients are given by:

PJ = Pj +
∑
i∈I

(ci + di)Pi

where the di’s are given by the corollary. An example of this process is depicted

in Figure 4.4. This completes our review of [70] and we will now extend upon

this work, but first we make a couple of brief remarks.

Remark 4.12. An important observation to be made is that combination coeffi-

cients are uniquely determined by a set of maximal elements. In particular, given

a downset I then the coefficients are obtained by expanding

PI = 1−
∏

i∈max I

(1− Pi)→
∑
i∈I

ciPi .

In particular there is a one-to-one correspondence between sets of maximal ele-

ments and sets of combination coefficients.

Remark 4.13. We also observe that the assumption that I, J are downsets can

be replaced with the assumption that I, J are sets which are closed under ∧. Such

sets are known as lower semi-lattices. This is a consequence of the coefficients

being non-zero only for i in the closure of the maximal elements under ∧ which we

denote by (max I)∧. In particular this means that we can reduce the complexity of
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computing a combination by only computing projections Pi for i ∈ (max I)∧ ⊂ I

rather than the whole downset I↓. Note that the assumption that J = I ∪ {j}
for I, J ∈ D(Nd) in Corollary 4.11 becomes J↓ = I↓ ∪ {j} for I, J ⊂ Nd closed

under ∧.

We now introduce projections onto hierarchical surpluses which will be an

important tool in the remainder of this section.

Definition 4.14. For k = 1, . . . , d let ik ∈ N and Qk
ik

: V k → V k be defined as

Qk
ik

:= P k
ik
− P k

ik−1 (where P k
ik−1 := 0 if ik − 1 < 0).

We now give some basic properties of the Qk
ik

.

Lemma 4.15. Let Qk
ik

be as defined in Definition 4.14, then

1. Qk
ik

has co-domain V k
ik

,

2. P k
jk
Qk
ik

= Qk
ik
P k
jk

= 0 if jk < ik,

3. P k
jk
Qk
ik

= Qk
ik
P k
jk

= Qk
ik

if jk ≥ ik,

4. Qk
ik
Qk
ik

= Qk
ik

,

5. Qk
jk
Qk
ik

= 0 if ik 6= jk

6. P k
ik

=
∑ik

jk=0 Q
k
jk

Proof. The first is immediate as P k
ik

and P k
ik−1 have range V k

ik
and V k

ik−1 ⊂ V k
ik

respectively. For the second and third properties we observe

P k
jk
Qk
ik

= P k
jk
P k
ik
− P k

jk
P k
ik−1 =

P k
jk
− P k

jk
= 0 for jk < ik ,

P k
ik
− P k

ik−1 = Qk
ik

for jk ≥ ik .

It follows that

Qk
jk
Qk
ik

= (P k
jk
− P k

jk−1)Qk
ik

=


Qk
ik
− 0 = Qk

ik
for jk = ik ,

Qk
ik
−Qk

ik
= 0 for jk > ik ,

0− 0 = 0 for jk < ik ,

which corresponds to the fourth and fifth properties. The final property is a result

of the telescoping sum

ik∑
jk=0

Qk
jk

=

ik∑
jk=0

P k
jk
− P k

jk−1 = P k
ik
− P k

−1 = P k
ik
.

As with the Pi we define Qi :=
⊗

kQ
k
ik

. This leads us to the following lemma
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Lemma 4.16. Let Qk
ik

:= P k
ik
− P k

ik−1 and Qi :=
⊗

kQ
k
ik

, then

Qi =
∑
j≤1

(−1)|j|Pi−j

with Pi−j = 0 if ik − jk < 0 for some k ∈ {1, . . . , d}.

Proof. One has

Qi =
d⊗

k=1

Qk
ik

=
d⊗

k=1

(P k
ik
− P k

ik−1)

=
∑
j≤1

(−1)|j|
d⊗

k=1

P k
ik−jk =

∑
j≤1

(−1)|j|Pi−j ,

as required. Since P k
ik−1 := 0 if ik − 1 < 0 one obtains Pi−j = 0 if ik − jk < 0 for

some k ∈ {1, . . . , d}.

Additionally we have that the Pi is equal to a sum of the Qj for j ≤ i.

Lemma 4.17. With Pi and Qi as previously defined one has

Pi =
∑

(0≤) j≤i

Qj .

Proof. We note that

∑
(0≤) j≤i

Qj =

i1∑
j1=0

· · ·
id∑

jd=0

d⊗
k=1

(P k
jk
− P k

jk−1)

=
d⊗

k=1

ik∑
jk=0

(P k
jk
− P k

jk−1)

=
d⊗

k=1

P k
ik

= Pi

as required.

A few more properties of Qi will also be useful.

Lemma 4.18. With Pi and Qi as previously defined one has

1. QiQi = Qi,

2. QiQj = QjQi = 0 for j 6= i,
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3. PiQj = QjPi = Qj for j ≤ i,

4. PiQj = QjPi = 0 for j 6≤ i (that is j ∈ Nd\{i}↓).

Proof. The first two are a direct consequence of the analogous results shown for

the Qk
ik

’s in Lemma 4.15 and the latter two are a consequence of the first two

combined with Lemma 4.17.

Given a downset I ∈ D(Nd) let us define QI :=
∑

i∈I Qi. Given that Pi =∑
j≤iQj it would be reasonable to expect that QI = PI and indeed this is the

subject of the following proposition.

Proposition 4.19. Let I ∈ D(Nd), then PI = QI .

Proof. We have that

PI = 1−
∏

i∈max I

(1− Pi)

= 1−
∑

J⊂max I

(−1)|J |
∏
j∈J

Pj

=
∑

J⊂max I
J 6=∅

(−1)|J |+1
∑
j≤∧J

Qj ,

where |J | is the number of elements of J and ∧J is the greatest lower bound over

all elements of J (that is if J = {j
1
, . . . , j|J |} then ∧J = j

1
∧ · · · ∧ j|J |). This last

line reduces to

PI =
∑
j∈I

diQj

for some coefficients di. We are required to show that di = 1 for all i ∈ I.

Consider QiPI , using Lemma 4.18 we have

QiPI =
∑
j∈I

djQiQj = diQi .

Additionally we note that

Qi

∑
j≤∧J

Qj =

{
Qi if i ≤ ∧J
0 otherwise .
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Further, i ≤ ∧J if and only if i ≤ j for all j ∈ J . Let Ji ⊂ max I be the largest

set such that i ≤ j for all j ∈ Ji. Thus

QiPI =
∑

J⊂max I
J 6=∅

(−1)|J |+1
∑
j≤∧J

QiQj =

|Ji|∑
m=1

∑
{j

1
,...,j

m
}⊂Ji

(−1)m+1Qi

= Qi

|Ji|∑
m=1

(
|Ji|
m

)
(−1)m+1

= Qi

1−
|Ji|∑
m=0

(
|Ji|
m

)
(−1)m


= Qi

(
1− (1− 1)|Ji|

)
= Qi .

Therefore diQi = QiPI = Qi and hence di = 1. Since the choice of i ∈ I was

arbitrary the proof is complete.

This brings us to a lemma which says something about the nature of the

combination coefficients.

Lemma 4.20. Given I ∈ D(Nd) with corresponding projection

PI =
∑
i∈I

ciPi

one has for each l ∈ I
cl = 1−

∑
l<j∈I

cj .

Proof. From Proposition 4.19 one has that∑
i∈I

Qi = PI =
∑
i∈I

ciPi =
∑
i∈I

ci
∑
j≤i

Qj .

It follows that for l ∈ I one has

Ql = QlPI =
∑
i∈I

ci
∑
j≤i

QlQj =
∑
l≤i∈I

ciQl .

Therefore

1 =
∑
l≤j∈I

cj

and re-arranging gives the desired result.
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Let χI be the characteristic function on multi-indices, that is

χI(i) :=

1 if i ∈ I,

0 otherwise.

We now give a useful result regarding the calculation of combination coefficients.

Proposition 4.21. Let I ∈ D(Nd) with corresponding projection

PI =
∑
i∈I

ciPi ,

then for each i ∈ I one has

ci =
∑

i≤j≤i+1

(−1)|j−i|χI(j) .

Proof. From Lemma 4.20 we have that for i ∈ I

1 =
∑
i≤j∈I

cj =
∑
i≤j

cjχI(j) .

It follows that for i ∈ Nd

χI(i) =
∑
i≤j

cjχI(j) .

We substitute this into the following∑
i≤j≤i+1

(−1)|j−i|χI(j) =
∑

i≤j≤i+1

(−1)|j−i|
∑
j≤l

clχI(l)

=
∑

i≤j≤i+1

(
(−1)|j1−i1|

∞∑
l1=j1

· · · (−1)|jd−id|
∞∑

ld=jd

)
clχI(l)

=

(
∞∑

l1=i1

−
∞∑

l1=i1+1

)
· · ·

(
∞∑

ld=id

−
∞∑

ld=id+1

)
clχI(l)

= ciχI(i) ,

as required.

We are now able to easily compute combination coefficients given an arbitrary

downset I. Many of the coefficients are typically 0 as we will see from the following

corollary.

Corollary 4.22. Let I ∈ D(Nd) with corresponding projection PI =
∑

i∈I ciPi.

Let i ∈ I, if i+ 1 ∈ I then ci = 0.
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Proof. i + 1 ∈ I implies that j ∈ I for all j ≤ i + 1. Therefore using Proposi-

tion 4.21 we have

ci = ciχI(i) =
∑

i≤j≤i+1

(−1)|i−j|χI(j) =
∑

i≤j≤i+1

(−1)|i−j| = 0 ,

as required.

In [70] an update formula was given when a covering element is added to

a downset I. It turns out that the update coefficients have a very particular

structure as the next lemma will demonstrate.

Lemma 4.23. Let I, J ∈ D(Nd) such that I � J . In particular, let i be the

multi-index such that J = I ∪ {i}. Then

PJ − PI =
∑

i−1≤j≤i

(−1)|i−j|Pj

where Pj := 0 if any of the jk < 0.

Proof. Clearly we have PJ − PI = Qi. Now we simply note that

Qi =
∑
j≤1

(−1)|j|Pi−j

=
∑

i−1≤j≤i

(−1)|i−j|Pj ,

as required.

This is quite a useful result. For example, in 2 dimensions when a covering

element is added with i = (i1, i2) ≥ (1, 1) then only 4 coefficients need to be

changed. Namely c(i1,i2) 7→ 1, c(i1−1,i2) 7→ c(i1−1,i2)−1, c(i1,i2−1) 7→ c(i1,i2−1)−1 and

c(i1−1,i2−1) 7→ c(i1−1,i2−1) + 1. Similarly in d dimensions one only needs to change

2d coefficients.

The following lemma shows that if the downset I is non-empty then the co-

efficients will sum to 1 which is essentially a consistency property for adaptive

sparse grids.

Lemma 4.24. If I ∈ D(Nd) is non-empty, then the coefficients ci corresponding

to

PI =
∑
i∈I

ciPi

satisfy

1 =
∑
i∈I

ci .
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Proof. We note that I 6= ∅ implies 0 ∈ I. Now P0 = Q0 and clearly

P0PI = Q0PI =
∑
i∈I

Q0Qi = Q0 = P0 .

Now we also have that P0Pi = P0 for all i ∈ Nd and therefore

P0 = P0PI = P0

∑
i∈I

ciPi = P0

∑
i∈I

ci ,

from which the desired result follows (noting that for each k one has V k
0 6=

{0}).

We have spent some time now building up these adaptive sparse grids but we

should check that the classical combination technique comes out of this.

Lemma 4.25. Let I = {i ∈ Nd : |i| ≤ n}, then the ci corresponding to PI satisfy

ci = (−1)n−|i|
(
d− 1

n− |i|

)
.

Proof. We know from Proposition 4.21 that

ci =
∑

i≤j≤i+1

(−1)|j−i|χI(j) ,

therefore for I = {i ∈ Nd : |i| ≤ n} and i such that |i| = n − k for some

k ∈ {0, . . . , d− 1} one has

ci =
k∑
l=0

(−1)l
(
d

l

)
.

With an induction argument on k using the identity
(
d
k

)
−
(
d−1
k−1

)
=
(
d−1
k

)
it is

easily shown that

ci = (−1)k
(
d− 1

k

)
.

Substituting k = n− |i| and recognising that ci = 0 =:
(
d−1
n−|i|

)
for |i| ≤ n− d and

|i| > n completes the proof.

For the next proposition we restrict ourselves to considering nested spaces

of piecewise multi-linear functions so that we may formulate an error bound for

interpolation onto adaptive sparse grids. Let V = C([0, 1]d), that is the space

of bounded continuous functions on [0, 1]d. Further, for i ∈ Nd we define Vi

to be the space of piecewise multi-linear functions which interpolate between
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function values given on the grid Ωi = {xi,j = (j12−i1 , . . . , jd2
−id) : 0 ≤ j ≤ 2i =

(2i1 , . . . , 2id)}, that is Vi = span{φi,j : 0 ≤ j ≤ 2i} with the nodal basis functions

φi,j as in Definition 2.10. We consider the projections Pi : V → Vi given by the

Lagrange interpolation formula

Piu =
∑

0≤j≤2i

u(xi,j)φi,j , (4.2)

where u ∈ V . Given a downset I ⊂ Nd one obtains projections PI : V 7→ VI =∑
i∈I Vi via the combination

PI =
∑
i∈I

ciPi .

We will use the notation ui := Piu and uI := PIu leading to the general combi-

nation formula

uI =
∑
i∈I

ciui , (4.3)

with the coefficients determined by Proposition 4.21. If the Piu for u ∈ V are

defined to be the piecewise linear interpolants of u(Ωi) then the uI are simply

the sparse grid interpolants of u onto VI . This leads us to the following error

estimate.

Proposition 4.26. Let I ⊂ Nd
+ be a downset, u ∈ H2

0,mix and Vi, Pi, ui as

in (4.2). Let ci ∈ R be the combination coefficients

PI =
∑
i∈I

ciPi ,

and let uI be as given in (4.3). Then

‖u− uI‖2 ≤ 3−d‖D2u‖2

3−d −
∑

1≤i∈I

2−2|i|

 . (4.4)

Proof. We note that as u is zero on the boundary one has

ui =
∑
1≤i

uhi and uI =
∑

1≤i∈I

uhi

where uhi ∈ Wi are the hierarchical surplus’ of u (where Wi = Qi is defined in

Section 2.1). It follows that

‖u− uI‖2 ≤ ‖
∑

1≤i 6∈I

uhi ‖2 ≤
∑

1≤i 6∈I

‖uhi ‖2 .
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By applying Lemma 2.15 we have

‖u− uI‖2 ≤ 3−d‖D2u‖2

∑
1≤i 6∈I

2−2|i| .

Using the fact that

∑
1≤i∈I

2−2|i| +
∑

1≤i 6∈I

2−2|i| =
∑
1≤i

2−2|i| =
∞∑

i1,...,id=1

2−2i1 · · · 2−2id = 3−d

one obtains the desired result.

This can be extended to a similar result on H2
mix in a the same manner as

the extension of the classical sparse grids in Section 2.1. Because the classical

combination technique interpolates exactly to the sparse grid and also performs

well for more general problems we expect the same to be true of these adaptive

sparse grids. We will provide a general error splitting estimate but first we require

a lemma.

Wong [127] shows that a combination projected onto a subset of its dimen-

sions results in a valid combination on these dimensions. We can provide an

alternative proof within this framework. Let I ⊂ Nd be a downset, 1 ≤ k ≤ d

and {e1, . . . , ek} ⊂ {1, . . . , d}. We define

Ie1,...,ek = {i ∈ Nk : i = (je1 , . . . , jek) for some j ∈ I} ,

and for l ∈ Nk we also define

Il|e1,...,ek = {i ∈ I : (ie1 , . . . , iek) = (l1, . . . , lk)}.

These two definitions allow us to write

∑
i∈I

f(i) =
∑

l∈Ie1,...,ek

 ∑
i∈Il|e1,...,ek

f(i)

 . (4.5)

Clearly given I ∈ D(Nd) then Ie1,...,ek is a downset in Nk. We have the following

lemma.

Lemma 4.27. Let I ∈ D(Nd) and {ci}i∈I be coefficients corresponding to the

projection PI =
∑

i∈I ciPi. Further, fix 1 ≤ k ≤ d and {e1, . . . , ek} ⊂ {1, . . . , d}
and let

PIe1,...,ek : V e1 ⊗ · · · ⊗ V ek → VIe1,...,ek ,
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where VIe1,...,ek :=
∑

i∈Ie1,...,ek
V e1
i1
⊗ · · · ⊗ V ek

ik
. Additionally let {cj}j∈Ie1,...,ek be co-

efficients corresponding to the projection PIe1,...,ek =
∑

j∈Ie1,...,ek
cj
⊗k

l=1 P
el
jl

, then

for all j ∈ Ie1,...,ek one has

cj =
∑

i∈Ij|e1,...,ek

ci .

Proof. Consider a function u ∈ V = V 1 ⊗ · · · ⊗ V d which only depends on

the coordinates xe1 , . . . , xek , that is u(x1, . . . , xd) = v(xe1 , . . . , xek) for some v ∈
V e1 ⊗ · · · ⊗ V ek . It follows that Piu =

⊗k
l=1 P

el
iel
v for all i ∈ I and therefore

PIu =
∑
i∈I

ciPiu =
∑
i∈I

ci

k⊗
l=1

P el
iel
v

=
∑

j∈Ie1....,ek

∑
i∈Ij|e1,...,ed

ci

(
k⊗
l=1

P el
iel
v

)

=
∑

j∈Ie1....,ek

(
k⊗
l=1

P el
jl
v

) ∑
i∈Ij|e1,...,ed

ci .

Finally, since it is clear that PIu = PIe1,...,ekv and u depending on only xe1 , . . . , xek
was arbitrary, one has the desired result.

This result allows us to write down a general formula regarding error estimates

of dimension adaptive sparse grids when an error splitting is assumed. Here we

show that the coefficients obtained via the projection framework produce good

results when applied to a larger class of problems, namely those which satisfy an

error splitting.

Proposition 4.28. Let I ∈ D(Nd) be non-empty. For each 1 ≤ k ≤ d and

{e1, . . . , ek} ⊂ {1, . . . , d}, we define cIe1,...,ek ,j for j ∈ Ie1,...,ek to be the coefficients

corresponding to the projection

PIe1,...,ek =
∑

j∈Ie1,...,ek

cIe1,...,ek ,j

k⊗
l=1

P el
jl
.

Consider the corresponding combination

uI :=
∑
i∈I

cI,iui

with each ui being an approximation of a function u which satisfies

u− ui =
d∑

k=1

∑
{e1,...,ek}⊂{1,...,d}

Ce1,...,ek(hie1 , . . . , hiek )h
pe1
ie1
· · ·hpekiek , (4.6)
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where p1, . . . , pd > 0 and for each {e1, . . . , ek} ⊂ {1, . . . , d} one there exists

Ke1,...,ek > 0 such that |Ce1,...,ek(hie1 , . . . , hiek )| ≤ Ke1,...,ek for all hie1 , . . . , hiek .

Then

|u− uI | ≤
d∑

k=1

∑
{e1,...,ek}⊂{1,...,d}

Ke1,...,ek

∑
j∈Ie1,...,ek

|cIe1,...,ek ,j|h
pe1
j1
· · ·hpekjk .

Proof. Since
∑

i∈I cI,i = 1 by Lemma 4.24 we have

u− uI =
∑
i∈I

cI,i(u− ui) .

From here we substitutes the error splitting formula (4.6) and take the absolute

value of both sides to obtain

|u− uI | =

∣∣∣∣∣∣
∑
i∈I

cI,i

d∑
k=1

∑
{e1,...,ek}⊂{1,...,d}

Ce1,...,ek(hie1 , . . . , hiek )h
pe1
ie1
· · ·hpekiek

∣∣∣∣∣∣
≤

d∑
k=1

∑
{e1,...,ek}⊂{1,...,d}

Ke1,...,ek

∣∣∣∣∣∣
∑
i∈I

cI,ih
pe1
ie1
· · ·hpekiek

∣∣∣∣∣∣ .
Now the inner most sum we can rewrite as∑

i∈I

cI,ih
pe1
ie1
· · ·hpekiek =

∑
j∈Ie1,...,ek

∑
i∈Ij|e1,...,ek

cI,ih
pe1
ie1
· · ·hpekiek

=
∑

j∈Ie1,...,ek

h
pe1
j1
· · ·hpekjk

∑
i∈Ij|e1,...,ek

cI,i .

Using Lemma 4.27 we have cIe1,...,ek ,j =
∑

i∈Ij|e1,...,ek
cI,i. Substituting these back

into the inequality for |u− uI | we have

|u− uI | ≤
d∑

k=1

∑
{e1,...,ek}⊂{1,...,d}

Ke1,...,ek

∣∣∣∣∣∣
∑

j∈Ie1,...,ek

h
pe1
j1
· · ·hpekjk cIe1,...,ek ,j

∣∣∣∣∣∣
≤

d∑
k=1

∑
{e1,...,ek}⊂{1,...,d}

Ke1,...,ek

∑
j∈Ie1,...,ek

|cIe1,...,ek ,j|h
pe1
j1
· · ·hpekjk ,

which is the desired result.

Whilst this result is not simple enough that one could easily write down the

resulting bound for a given I, it does give one a way to quickly compute the

bound.
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4.3 Multi-variate Extrapolation

In this section we study extrapolation methods in the context of sparse grids.

First we give a brief review of extrapolation methods, in particular the multi-

variate/splitting extrapolation methods which have been studied extensively in

the literature, see for example [115, 17, 89]. We look at how multi-variate ex-

trapolation can be viewed as a sparse grid approximation to classical Richardson

extrapolation and through some examples demonstrate how the coefficients of

other truncated combinations can be modified to achieve a similar effect. Sec-

ond, we will review Reisinger’s approach of applying the classical combination

technique to ũi which are extrapolations [109]. We show how these combina-

tions can be studied within the framework of adaptive sparse grids developed

in Section 4.2. This leads to an adaptive extrapolation method for which the

combination coefficients are easily computed.

Consider approximations ui for i ∈ Nd which satisfy an extended version of

the error splitting model (2.22) defined as follows.

Definition 4.29. Given integers 0 < p < q an approximation ui : Ω ⊂ Rd 7→ R
of u : Ω 7→ R is said to satisfy the p, q extended error splitting model if

u− ui =
d∑

k=1

∑
{j1,...,jk}⊂{1,...,d}

Cj1,...,jkh
p
ij1
· · ·hpijk +Ri (4.7)

where each Cj1,...,jk term depends only upon x ∈ Ω, and the remainder term Ri

has the form

Ri =
d∑

k=1

∑
{j1,...,jk}⊂{1,...,d}

Dj1,...,jk(hij1 , . . . , hijd )hqij1
· · ·hqijk (4.8)

and there exists finite K > 0 such that |Dj1,...,jk | ≤ K for all k ∈ {1, . . . , d} and

{j1, . . . , jk} ⊂ {1, . . . , d}.

This was the error model used in the work of Reisinger [109]. The motivation

behind this error model is that as the Cj1,...,jk do not depend on hi1 , . . . , hid which

makes it possible to cancel these terms out by adding approximations ui for

different i given the right coefficients. Notice that the Ri term is equivalent to

the previous error splitting model (2.22) but with exponent q > p. This error

splitting model can typically be shown for a given problem and discretisation in

the same way one derives the error model (2.22) with the exception that additional

terms in the Taylor series expansion are retained.
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4.3.1 Richardson and Multi-Variate Extrapolation

Classical Richardson extrapolation [111] involves taking the two approximations

ui and ui+1 of order p > 0 and combining them according to the formula

urei :=
2p

2p − 1
ui+1 −

1

2p − 1
ui (4.9)

in order to obtain a higher order approximation of u. For functions with only one

spatial dimension satisfying the error model of the form u − uj = Chpj + O(hqj)

for j ∈ N and 0 < p < q one has

u− urej =
2p(u− uj+1)

2p − 1
− u− uj

2p − 1
= O(hqj) ,

and thus one achieves an order q approximation rather than p. For functions in

higher dimensions error models typically have many more terms, not all of which

will cancel. For example, with the p, q extended error splitting model only the

C1, . . . , Cd terms are eliminated by this extrapolation as is shown in the following

result.

Proposition 4.30. Let 0 < p < q and ui, ui+1 be approximations of u satisfying

the p, q extended error splitting model, then the approximation urei defined by (4.9)

satisfies

∣∣u− urei ∣∣ ≤ d∑
k=2

∑
{j1,...,jk}⊂{1,...,d}

1− 2−(k−1)p

2p − 1
|Cj1,...,jk |h

p
ij1
· · ·hpijk

+
d∑

k=1

∑
{j1,...,jk}⊂{1,...,d}

2p−kq + 1

2p − 1
Khqij1

· · ·hqijk .

Observe that the sum over the Cj1,...,jk terms starts at k = 2 as the k = 1

terms have been eliminated.

Proof. We start by noting that

u− urei =
2p

2p − 1
(u− ui+1)− 1

2p − 1
(u− ui) .

Substituting (4.7) then collecting each of the Cj1,...,jk terms we observe that

2p

2p − 1
Cj1,...,jkh

p
ij1+1 · · ·h

p
ijk+1−

1

2p − 1
Cj1,...,jkh

p
ij1
· · ·hpijk =

2−(k−1)p − 1

2p − 1
Cj1,...,jkh

p
ij1
· · ·hpijk ,
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for which the right hand side is 0 when k = 1. Thus we obtain

∣∣u− urei ∣∣ ≤ d∑
k=2

∑
{j1,...,jk}⊂{1,...,d}

1− 2−(k−1)p

2p − 1
|Cj1,...,jk |h

p
ij1
· · ·hpijk

+

∣∣∣∣2pRi+1 −Ri

2p − 1

∣∣∣∣ .
For the Dj1,...,jk terms in Ri we observe that∣∣∣∣ 2p

2p − 1
Dj1,...,jk(hij1+1, . . . , hijk+1)hqij1+1 · · ·h

q
ijk+1

− 1

2p − 1
Dj1,...,jk(hij1 , . . . , hijk )hqij1

· · ·hqijk

∣∣∣∣ ≤ 2p−kq + 1

2p − 1
Khqij1

· · ·hqijk ,

which leads to the desired result.

From this result it may seem that Richardson extrapolation is not as effective

for functions in higher dimensions. However, if we assume that our computational

grids are isotropic then the following result is obtained.

Corollary 4.31. Let 0 < p < q, i = (n, . . . , n) for some n ∈ N, and ui, ui+1 be

approximations of u satisfying the p, q extended error splitting model, then∣∣∣∣u− 2pui+1 − ui
2p − 1

∣∣∣∣ = O(2−nmin{2p,q}) .

Proof. As hik = 2−n for each k ∈ {1, . . . , d} one obtains

∣∣u− urei ∣∣ ≤ d∑
k=2

∑
{j1,...,jk}⊂{1,...,d}

1− 2−(k−1)p

2p − 1
|Cj1,...,jk |2−npk

+
d∑

k=1

∑
{j1,...,jk}⊂{1,...,d}

2p−kq + 1

2p − 1
K2−npq .

As the dominating terms are those for k = 2 in the first sum and k = 1 in the

second sum one obtains the desired asymptotic result.

Therefore we see that if the computational grids are isotropic the order of

convergence is min{2p, q} which is better than the order p convergence obtained

for |u− ui|

Remark 4.32. There is a difficulty with using Richardson extrapolation with

finite difference methods. Consider the domain Ω = [0, 1]d discretised by the
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collection of grids Ωi = {(j12−i1 , . . . , jd2
−id) : 0 ≤ j ≤ 2i} for i ∈ Nd (and

2i := (2i1 , . . . , 2id)). Approximations ui+1 and ui consist of function values stored

on the grids Ωi+1 and Ωi respectively for which the error splitting model is satisfied

at these grid points. To add the approximations they must first be represented

on a common grid. This means interpolating ui onto Ωi+1 or down-sampling

ui+1 to Ωi. For the former, we require the solution to be sufficiently smooth and

the interpolation to have order more than p or else the constants Cj1,...,jk will

potentially be different on the grid points Ωi+1\Ωi and the extrapolation could

give very different results. Down-sampling ui+1 to Ωi is straightforward and has

almost negligible cost compared to interpolation. As a result, down-sampling is

typically the preferred option.

Richardson extrapolation is somewhat expensive compared to the computa-

tion of ui alone. If the computation time is proportional to the number of un-

knowns that it is clear that the computation of (4.9) costs approximately 2d + 1

times that of ui. The question we now ask is if we can obtain a similar result for

smaller cost.

We now consider the so called multi-variate extrapolation formula

umvei :=
2p

2p − 1

d∑
m=1

ui+em −
1 + (d− 1)2p

2p − 1
ui , (4.10)

where em is the multi-index which is 1 in the mth term and 0 elsewhere. For

multi-variate extrapolation we have the following result.

Proposition 4.33. Let 0 < p < q and ui, ui+em for m ∈ {1, . . . , d} be approxima-

tions of u satisfying the p, q extended error splitting model, then the approximation

umvei defined by (4.10) satisfies

∣∣u− umvei

∣∣ ≤ d∑
k=2

∑
{j1,...,jk}⊂{1,...,d}

(k − 1)|Cj1,...,jk |h
p
ij1
· · ·hpijk

+
d∑

k=1

∑
{j1,...,jk}⊂{1,...,d}

(
2d2p

2p − 1
+ 2d− k − 1

)
Khqij1

· · ·hqijk .

Proof. As the coefficients sum to one, that is

d
2p

2p − 1
− 1 + (d− 1)2p

2p − 1
=

2p − 1

2p − 1
= 1 ,

we have

u− umvei =
2p

2p − 1

d∑
m=1

(u− ui+em)− 1 + (d− 1)2p

2p − 1
(u− ui) .
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We now need only substitute the error splitting model and look at what happens

to each term. As before we see that for k = 1 the Cj1 terms (for each j1 ∈
{1, . . . , d}) cancel as

2p

2p − 1

(
Cj1h

p
ij1+1 + (d− 1)Cj1h

p
ij1

)
− 1 + (d− 1)2p

2p − 1
Cj1h

p
ij1

= 0 .

For k = 2, . . . , d and {j1, . . . , jk} ⊂ {1, . . . , d} we obtain

Cj1,...,jk
2p − 1

hpij1
· · ·hpijk

(
2p
(
k2−p + (d− k)

)
− (1 + (d− 1)2p)

)
= (1− k)Cj1,...,jkh

p
ij1
· · ·hpijk .

Therefore we obtain

∣∣u− umvei

∣∣ ≤ d∑
k=2

∑
{j1,...,jk}⊂{1,...,d}

(k − 1)|Cj1,...,jk |h
p
ij1
· · ·hpijk

+

∣∣∣∣∣ 2p

2p − 1

d∑
m=1

Ri+em
− 1 + (d− 1)2p

2p − 1
Ri

∣∣∣∣∣ .
For k ∈ {1, . . . , d} each Dj1,...,jk term in the Ri satisfies∣∣∣∣∣ 2p

2p − 1

k∑
m=1

Dj1,...,jk(hij1+δj1,m
, . . . , hijk+δjk,m

)hqij1+δj1,m
· · ·hqijk+δjk,m

−1 + (d− 1)2p

2p − 1
Dj1,...,jk(hij1 , . . . , hijk )hqij1

· · ·hqijk

∣∣∣∣
≤ k2p−q + 1 + (2d− k − 1)2p

2p − 1
Khqij1

· · ·hqijk .

Now as
k2p−q + 1 + (2d− k − 1)2p

2p − 1
≤ 2d2p

2p − 1
+ 2d− k − 1

we obtain the desired result.

Thus we observe that the multi-variate extrapolation results in cancellation of

the same terms as the classical Richardson extrapolation. Further, if i is assumed

to correspond to an isotropic grid (that is i1 = i1 = · · · = id) we obtain a result

similar to that of Corollary 4.31 If the cost of computing the ui is proportional

to the number of unknowns then the cost of computing umvei is approximately

2d + 1 times that of computing ui which for large d is significantly smaller than

the cost of Richardson extrapolation (≈ 2d + 1 times cost of ui). The trade-off is
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that the constants in the error bound for umvei are larger than those obtained for

Richardson extrapolation.

There is a nice connection between the multi-variate extrapolation formula

and the truncated combination technique. Consider the truncated combination

ut1,i =
d∑

m=1

ui+em − (d− 1)ui .

The full grid corresponding to this truncated combination is uf where f = i+ 1.

Therefore we could consider ut1,i to be an approximation of ui+1. If we make this

substitution in the classical Richardson extrapolation (4.9) then one obtains

2p

2p − 1

(
d∑

m=1

ui+em − (d− 1)ui

)
− 1

2p − 1
ui

which is precisely the multi-variate extrapolation (4.10) once the ui terms are

collected. Thus the multi-variate extrapolation can be viewed as a sparse grid

approximation of the classical Richardson extrapolation.

This observation can be applied to develop additional extrapolation formula.

First observe that the classical Richardson extrapolation formula can be extended

to
2sp

2sp − 1
ui+s −

1

2sp − 1
ui .

for some s ∈ N+ and s = (s, . . . , s). It is straightforward to show that this

results in the same cancellation of error terms as (4.9). The cost of computing

this is approximately 2sd+1 times that of ui where the cost is proportional to the

unknowns. However, if we are to replace ui+s with the truncated combination uts
then we expect to obtain a similar result but with a cost which is proportional

to (s + d− 1)d−12s times that of ui for large s. The fact that the Cj1 terms still

cancel for j1 ∈ {1, . . . , d} comes from the fact that the truncated combination

over these terms produces Cj1h
p
ij1+s which is identical to these terms in the error

splitting for ui+s. This means that when computing a truncated combination

uts,i we can attempt to obtain a higher order approximation by computing ui in

addition to the coarse solutions required for uts,i. The difficulty with this however

is that for large s, downsampling the solution to Ωi means many of the high

frequency components from uts,i are lost. One would need to determine whether

higher accuracy function values on Ωi outweighs the contribution from higher

frequencies. The alternative is to interpolate all coarse solutions to the sparse (or

full) grid, but requires interpolation of order more than p for the extrapolation

to be effective.
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4.3.2 Combinations of extrapolations

Reisinger [109] considered a different extrapolation formula which cancels all of

the Cj1,...,jk terms in the extended error splitting model leaving only contributions

from Ri. He then considered replacing each of the ui in the classical combination

technique with extrapolations of this kind. We review this work and then analyse

it from the perspective of adaptive sparse grids. This will enable us to give

compact formula for computing the combination coefficients and also leads to

and adaptive extrapolation algorithm.

For ui satisfying the p, q extended error splitting model with p = 2 and q > p

we consider the extrapolation formula

ũi :=
∑

i≤j≤i+1

(−4)|j−i|

(−3)d
uj . (4.11)

To show why it is this works as an extrapolation formula we first have a Lemma.

Lemma 4.34 ([109]). One has ∑
0≤j≤1

(−4)|j|

(−3)d
= 1 .

Proof.∑
0≤j≤1

(−4)|j|

(−3)d
= 3−d

(
1∑

j1=0

(−4)j1

)
· · ·

(
1∑

jd=0

(−4)jd

)
= (−3)−d

d∏
k=1

(1− 4) = 1 .

Now we can analyse what ũi looks like when the ui satisfy the extended error

splitting model.

Proposition 4.35 ([109]). Let ui satisfy the p, q extended error splitting model

for q > p = 2, then

|u− ũi| ≤
5d

3d
K

d∑
k=1

∑
{l1,...,lk}⊂{1,...,d}

(
1 + 22−q

5

)k
hqil1
· · ·hqilk .

Proof. Lemma 4.34 tells us that

u− ũi =
∑

i≤j≤i+1

(−4)|j−i|

(−3)d
(u− uj)

=
∑

0≤j≤1

(−4)|j|

(−3)d
(u− ui+j) .
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From here we can substitute in the error splitting model (4.7) to obtain

u− ũi =
∑

0≤j≤1

(−4)|j|

(−3)d

 d∑
k=1

∑
{l1,...,lk}⊂{1,...,d}

Cl1,...,lkh
2
il1+jl1

· · ·h2
ilk+jlk

+Ri+j

 .

We look at an arbitrary Cl1,...,lk term, hence fix k ∈ {1, . . . , d} and {l1, . . . , lk} ⊂
{1, . . . , d}, then we have∑
0≤j≤1

(−4)|j|

(−3)d
Cl1,...,lkh

2
jl1+il1

· · ·h2
jlk+ilk

=
Cl1,...,lk
(−3)d

h2
il1
· · ·h2

ilk

∑
0≤j≤1

(−4)|j|h2
jl1
· · ·h2

jlk
.

Now let {lk+1, . . . , ld} = {1, . . . , d}\{l1, . . . , lk}, then

∑
0≤j≤1

(−4)|j|h2
jl1
· · ·h2

jlk
=

1∑
j1=0

· · ·
1∑

jd=0

(−4)j1+···+jd2−2(jl1+···+jlk )

=
k∏

m=1

 1∑
jlm=0

(−1)jlm

 d∏
m=k+1

 1∑
jlm=0

(−4)jlm


= (0)k(−3)d−k = 0 .

Therefore all of the Cl1,...,lk terms cancel and we are left with contributions from

the Ri+j terms, that is

|u− ũi| =

∣∣∣∣∣∣∣∣
∑
j≤1

(−4)|j|

(−3)d

d∑
k=1

∑
{l1,...,lk}
⊂{1,...,d}

Dl1,...,lk(hil1+jl1
, . . . , hilk+jlk

)hqil1+jl1
· · ·hqilk+jlk

∣∣∣∣∣∣∣∣
≤

d∑
k=1

∑
{l1,...,lk}
⊂{1,...,d}

K

3d
hqil1
· · ·hqilk

∑
j≤1

4|j|hqjl1
· · ·hqjlk .

For the inner most sum letting {lk+1, . . . , ld} = {1, . . . , d}\{l1, . . . , lk} we have

∑
0≤j≤1

4|j|hqjl1
· · ·hqjlk =

1∑
j1=0

· · ·
1∑

jd=0

4j1+···+jd2−q(jl1+···+jlk )

=
k∏

m=1

 1∑
jlm=0

2(2−q)jlm

 d∏
m=k+1

 1∑
jlm=0

4jlm


= (1 + 22−q)k(5)d−k = 5d

(
1 + 22−q

5

)k
,

which gives the desired result.
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Note that we can derive a similar extrapolation formula for p 6= 2, namely∑
i≤j≤i+1

(−2p)|j−i|

(1− 2p)d
uj .

It is straightforward to check that this satisfies results analogous to those in the

case p = 2. We extend this even further by considering problems where the order

of convergence may be different in each dimension. Let p1, . . . , pd be the rate of

convergence in each dimension, then the corresponding general extended error

splitting model is

u− ui =
d∑

k=1

∑
{l1,...,lk}⊂{1,...,d}

Cl1,...,lkh
pl1
il1
· · ·hplkilk +Ri (4.12)

with the remainder term given by

Ri =
d∑

k=1

∑
{l1,...,lk}⊂{1,...,d}

Dl1,...,lk(hil1 , . . . , hilk )h
ql1
il1
· · ·hqlkilk

with exponents q1 > p1, . . . , qd > pd and constant K > 0 such that |Dl1,...,lk | <
K for all i and {l1, . . . , lk}. For this more general error splitting one has the

extrapolation formula ∑
j≤1

(
d∏

m=1

(−2pm)jm

1− 2pm

)
uj+i . (4.13)

To show (4.13) do indeed result in an extrapolation we first need two lemmas.

Lemma 4.36. One has ∑
0≤j≤1

(
d∏

m=1

(−2pm)jm

1− 2pm

)
= 1 .

Proof. We observe that

∑
0≤j≤1

d∏
m=1

(−2pm)jm

1− 2pm
=

1∑
j1=0

· · ·
1∑

jd=0

(
(−2p1)j1

1− 2p1
· · · (−2pd)jd

1− 2pd

)

=

(
1∑

j1=0

(−2p1)j1

1− 2p1

)
· · ·

(
1∑

jd=0

(−2pd)jd

1− 2pd

)

=
d∏

m=1

(
1∑

jm=0

(−2pm)jm

1− 2pm

)
=

d∏
m=1

(
1− 2pm

1− 2pm

)
= 1 .
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Lemma 4.37. Fix k ∈ {1, . . . , d} and {l1, . . . , lk} ⊂ {1, . . . , d}, then

∑
j≤1

(
d∏

m=1

(−2pm)jm

1− 2pm

)
h
pl1
jl1
· · ·hplkjlk = 0 .

Proof. Letting {lk+1, . . . , ld} = {1, . . . , d}\{l1, . . . , lk} we may swap the sum and

product in a similar manner to Lemma 4.36 obtaining

∑
j≤1

(
d∏

m=1

(−2pm)jm

1− 2pm

)
h
pl1
jl1
· · ·hplkjlk

=

 k∏
m=1

 1∑
jlm=0

(−2plm )jlmh
plm
jlm

1− 2pm

 d∏
m=k+1

 1∑
jlm=0

(−2plm )jlm

1− 2pm

 .

Now as (−2plm )jlmh
plm
jlm

= (−1)jlm then each of the terms in the first product is 0.

As k ≥ 1 the result follows.

Thus we have the following proposition.

Proposition 4.38. Let ui satisfy the general extended error splitting model (4.12)

then∣∣∣∣∣∣u−
∑

0≤j≤1

(
d∏

m=1

(−2pm)jm

1− 2pm

)
uj+i

∣∣∣∣∣∣ ≤ K

(
d∏

m=1

1 + 2pm

2pm − 1

)(
−1 +

d∏
k=1

(1 + hqkik )

)
.

Proof. Lemma 4.36 tells us that

u−
∑
j≤1

(
d∏

m=1

(−2pm)jm

1− 2pm

)
uj+i =

∑
j≤1

(
d∏

m=1

(−2pm)jm

1− 2pm

)
(u− uj+i) .

On substituting the general extended error splitting (4.12) then Lemma 4.37 tells

us that all of the Cl1,...,lk cancel leaving

|u− ũi| =

∣∣∣∣∣∣
∑
j≤1

(
d∏

m=1

(−2pm)jm

1− 2pm

)

d∑
k=1

∑
{l1,...,lk}
⊂{1,...,d}

Dl1,...,lk(hil1+jl1
, . . . , hilk+jlk

)h
ql1
il1+jl1

· · ·hqlkilk+jlk

∣∣∣∣∣∣∣∣
≤

d∑
k=1

∑
{l1,...,lk}
⊂{1,...,d}

Kh
ql1
il1
· · ·hqlkilk

∑
j≤1

(
d∏

m=1

(2pm)jm

2pm − 1

)
h
ql1
jl1
· · ·hqlkjlk .
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For the inner most sum we have

∑
j≤1

(
d∏

m=1

(2pm)jm

2pm − 1

)
h
ql1
jl1
· · ·hqlljlk ≤

∑
j≤1

(
d∏

m=1

(2pm)jm

2pm − 1

)

=
d∏

m=1

(
1∑

jm=0

2pmjm

2pm − 1

)
=

d∏
m=1

1 + 2pm

2pm − 1

and finally using the fact that

d∑
k=1

∑
{l1,...,lk}⊂{1,...,d}

h
ql1
il1
· · ·hqlkilk = −1 +

d∏
k=1

(1 + hqkik )

we obtain the desired result.

Throughout the remainder of this section we will focus on the case p = 2

but we observe that much of the work is easily extended to these more general

cases much in the same manner the previous result have been extended from the

p = 2 case. Given the extrapolation formula ũi, as in (4.11), Reisinger goes on to

consider replacing the classical combination formula

ucn :=
d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
|i|=n−k

ui

with

ũcn :=
d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
|i|=n−k

ũi .

His work went on to determine coefficients when ũi is expressed as a sum of ui

and also to derive an error bound in the q = 4 case, specifically

|u− ũcn| ≤
10K

3 · (d− 1)!

(
85

24

)d−1

(n+ 2d− 2)d−12−4n ,

(although we point out that this result is based on the definition of a level n

combination without boundaries, i.e. equivalent to the truncated combination

utn,1). For the complete details we refer the reader to [109].

The work we are interested in here is the determination of combination co-

efficients. Reisinger [109] shows that when the combination ũcn is written in the

form

ũcn =
d∑

k=−d+1

∑
|i|=n+k

c̃iui ,
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then the coefficients are

c̃i =

min{|i−n+d−1,d−1|}∑
k=max{0,|i|−n−1}

(−4)|i|−n+d−1−k

(−3)d
(−1)d−1−k

(
d− 1

k

)(
|i|0

|i| − n+ d− 1− k

)
,

where |i|0 is the number of non-zero elements of i. Rather than recount the proof

of this we instead look at the coefficients using the framework of adaptive sparse

grids that we developed in Section 4.2. This will naturally give rise to an adaptive

version of the extrapolation combination technique and a simpler expression for

the determination combination coefficients.

Consider linear projections Pi : V → Vi such that ui = Piu satisfies the p =

2, q extended error splitting (4.7) (here Vi must be an appropriate approximation

space, for example degree q− 1 piecewise polynomials with function values given

on the usual grid points). Further suppose that PiPj = Pi∧j for all i, j in Nd. We

can express ũi in terms of these projections of u, specifically

ũi =

∑
0≤j≤1

(−4)|j|

(−3)d
Pi+j

u .

Thus we define the new linear projection operator

P̃i :=
∑

0≤j≤1

(−4)|j|

(−3)d
Pi+j

such that ũi = P̃iu. The idea now is that rather than substituting this into

a classical combination formula we may substitute this into any combination

formula obtained via the adaptive sparse grids formulation. That is, given a

downset I ∈ D(Nd) and the corresponding combination

PI =
∑
i∈I

ciPi

with coefficients given by Proposition 4.21, then we define the modified version

P̃I :=
∑
i∈I

ciP̃i .

The fact that this would give a reasonable approximation follows from the fact

that the P̃i cancels the order p terms in the extended error splitting leaving the

order q terms, and as these have the form of an error splitting the error estimate

of Proposition 4.28 is easily adapted.
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There are two questions that immediately come to mind regarding the choice

of grids and the coefficients. Given a set S ⊂ Nd we define S+1 := {i : j ∈
S for some i−1 ≤ j ≤ i}. For a downset I the set I+1 has the simpler description

I+1 = {i : ∃j ∈ I, i ≤ j + 1}. Using this one may write

P̃I =
∑
i∈I+1

c̃iPi .

Note that P̃I is actually a projection onto VI+1 but as the combination is defined

with respect to the downset I we use this index P̃I . Additionally, in practice the

computation of the ũi = P̃iu may involve down-sampling the ui+j for 0 < j ≤ 1

similar to computations of classical Richardson extrapolation in which case the

combined solution is now in the space VI . The first question is whether there is a

simple way to determine the c̃i in this general formulation. The second question

is more subtle and regards the possibility of extending these combinations to

downsets that are not of the form I+1. Given a (non-empty) downset I then

clearly the corresponding I+1 is also a downset. However, for any (non-empty)

downset J we note that there is not necessarily a downset I for which J = I+1

(e.g. J = {0}). The second question is therefore whether or not we may extend

the definition of P̃I to sums over arbitrary (finite) downsets J . This will be

addressed later as a consequence of a simple expression for the c̃i which is the

result of the following proposition.

Proposition 4.39. Let I ∈ D(Nd). Given the combination of extrapolations

P̃I =
∑
i∈I+1

c̃iPi ,

which is equal to
∑

i∈I ciP̃i, then the c̃i are given by

c̃i =
∑
−1≤l≤1

(−1)|l|

(−3)d
5d−|l|04d−|l+1|0χI(i+ l)

where |l|0 is defined to be the number of non-zero elements of l.

Proof. We first write

P̃I =
∑
j∈I

cjP̃j =
∑
j∈I

cj
∑

0≤k≤1

(−4)|k|

(−3)d
Pj+k

for which we know the cj are given by

cj =
∑

0≤k≤1

(−1)|k|χI(j + k) . (4.14)



4.3. MULTI-VARIATE EXTRAPOLATION 171

The aim is to collect the Pi for each i ∈ I+1. Now we note that a P̃j contains Pi

in its sum if j ≤ i ≤ j + 1. Conversely, for a given Pi, those P̃j which contain

Pi in its sum satisfy i − 1 ≤ j ≤ i (and j ≥ 0). Further, the term for which

Pj+k = Pi clearly satisfies k = i− j. It follows that

P̃I =
∑
i∈I+1

Pi
∑

i−1≤j≤i
j≥0

cj
(−4)|i−j|

(−3)d

and therefore

c̃i = (−3)−d
∑

i−1≤j≤i
j≥0

cj(−4)|i−j| .

Now substituting (4.14) for cj we obtain

c̃i = (−3)−d
∑

i−1≤j≤i
j≥0

(−4)|i−j|
∑

0≤k≤1

(−1)|k|χI(j + k)

= (−3)−d
∑

(0≤) j≤1
j≤i

(−4)|j|
∑

0≤k≤1

(−1)|k|χI(i− j + k) ,

where the last line follows from the substitution j 7→ i−j. We now make another

substitution l = k − j, notice that we allow l to take on negative values,

c̃i = (−3)−d
∑

(0≤) j≤1
j≤i

(−4)|j|
∑

−j≤l≤1−j

(−1)|l+j|χI(i+ l)

= (−3)−d
∑
−1≤l≤1

χI(i+ l)
∑

max{0,−l}≤j≤min{1,1−l}

(−4)|j|(−1)|l+j| .

The second line here is a change of order of summation and the min,max over

the multi-indices are component wise. We now consider the inner summation,

noting that j ≥ 0 and l + j ≥ 0 we can write this as∑
max{0,−l}≤j≤min{1,1−l}

(−4)j1+···+jd(−1)l1+j1+···+ld+jd

= (−1)l1+···+ld
∑

max{0,−l}≤j≤min{1,1−l}

4j1 · · · 4jd

= (−1)l1+···+ld

 min{1,1−l1}∑
j1=max{0,−l1}

4j1

 · · ·
 min{1,1−ld}∑
jd=max{0,−ld}

4jd


= (−1)l1+···+ld5d−|l|04d−|l+1|0 ,
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where d − |l|0 and d − |l + 1|0 are the number of elements of l which are 0 and

−1 respectively. (Note that when an element of l is 1 the corresponding sum is

1). Finally we note that (−1)l1+···+ld = (−1)|l| since for any lk = −1 we have

(−1)lk = (−1)lk+2 = (−1)−lk . Substituting this back into equation for c̃i yields

the desired result.

As a result of this proposition we can compute coefficients for an adaptive

extrapolation approach very quickly. The following proposition leads to a consis-

tency property for the P̃I .

Proposition 4.40. Let I ∈ D(Nd) (non-empty) and P̃I be the combination of

extrapolations

P̃I =
∑
i∈I+1

c̃iPi ,

with coefficients c̃i given by Proposition 4.39, then for i ∈ I one has PiP̃I = Pi,

or equivalently ∑
j≥i

c̃j = 1 .

Proof. We note that

PiP̃I =
∑
j∈I+1

c̃jPiPj

=
∑
j∈I+1

j≥i

c̃jPi .

Now writing the c̃j in terms of cj we have

∑
j≥i

c̃j =
∑
j≥i

cj
∑

0≤k≤1

(−4)|k|

(−3)d
,

and as the inner sum is 1 (Lemma 4.34) we have∑
j≥i

c̃j =
∑
j≥i

cj = χI(i) = 1

as a consequence of Lemma 4.20.

Corollary 4.41. Let I ∈ D(Nd) (non-empty) and P̃I be the combination of ex-

trapolations

P̃I =
∑
i∈I+1

c̃iPi ,
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then ∑
i∈I+1

c̃i = 1 .

Proof. Simply apply Proposition 4.40 to the case i = 0.

Now that we have addressed the question regarding the coefficients we turn

to the second question regarding the downsets over which we combine. When a

covering element i with one or more zero components is added to a downset I to

form J = I ∪ {i} then J+1 is not simply I+1 ∪ {i + 1} (as is the case if i > 0).

For example, for d = 2 given I = {(0, 0)}, and hence I+1 = {(1, 1)}↓), then

for J = I ∪ {(1, 0)} we have J+1 = I+1 ∪ {(2, 1), (2, 0)} and thus two additional

projections are required to compute P̃J compared to P̃I . More generally the

number of additional projections required is 2d−|i|0 where i is the covering element

added to I. The question that arises is whether we can modify the combination to

act on any downset so that only 1 element needs to be added to the combination

at each stage. Let us rewrite the c̃i of P̃I by shifting l by 1 as follows

c̃i =
∑

−1≤l−1≤1

(−1)|l−1|

(−3)d
5d−|l−1|04d−|l|0χI(i+ l − 1)

=
∑

0≤l≤2

(−1)|l|

3d
5d−|l−1|04d−|l|0χI+1(i+ l) .

Now given a (non-empty, finite) downset J we consider the combination

˜̃PJ :=
∑
i∈J

˜̃ciPiu

where the coefficients are given by

˜̃ci :=
∑

0≤l≤2

(−1)|l|

3d
5d−|l−1|04d−|l|0χJ(i+ l) .

If there exists a downset I such that J = I+1 then ˜̃PJ = P̃I . Our second question

can now be rephrased as whether ˜̃PJ is a reasonable projection if there does not

exist a downset I such that J = I+1. By reasonable we specifically mean two

things, first the coefficients should sum to 1 to provide consistency, and second,

the order p = 2 error terms should sum to zero when the Piu satisfies the extended

error splitting model. Observations and experiments seem to indicate that the

resulting combination is reasonable if 1 ∈ J (and thus {1}↓ ⊂ J). This is not

too surprising as the multi-variate extrapolation applied to a single ui requires



174 CHAPTER 4. VARIATIONS OF THE COMBINATION TECHNIQUE

those uj with i ≤ j ≤ i + 1. We suspect this is both a sufficient and necessary

condition. This is relatively straightforward to show in 2 dimensions by breaking

the problem up into the few cases that can occur. It remains an open problem in

higher dimensions.

This lends itself to a more general adaptive scheme, and analogous to the

regular adaptive sparse grids we could ask what ˜̃PJ − ˜̃PI looks like for a cover J

of I.

Corollary 4.42. Let I ∈ D(Nd) with 1 ∈ I and let i be a covering element of I.

Let J = I ∪ {i}, then

˜̃PJ − ˜̃PI =
∑

i−2≤j≤i
j≥0

(−1)|i−j|

3d
5d−|i−j−1|04d−|i−j|0Pj

Proof. This is an immediate consequence of Proposition 4.39.

For the general extrapolation formula (4.13) one may follow the same proce-

dure to obtain the formulas

c̃i =
∑
−1≤l≤1

(−1)|l|χI(i+ l)

(
d∏

m=1

δ−1,lm2pm + δ0,lm(1 + 2pm) + δ1,lm

1− 2pm

)
,

(with δa,b = 1 if a = b and δa,b = 0 otherwise), and

˜̃PJ − ˜̃PI =
∑

i−2≤j≤i
j≥0

(−1)|i−j|

(
d∏

m=1

δim−2,jm + δim−1,jm(1 + 2pm) + δim,jm2pm

2pm − 1

)
Pj

for Proposition 4.39 and Corollary 4.42 respectively.
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4.4 The General Coefficient Problem

In Section 4.2 we considered combinations over sets of indices I ⊂ Nd which were

downsets. In such cases we had the nice framework of projections onto function

space lattices which allowed us to derive simple expressions for the combination

coefficients. In this section we are concerned with the determination of combina-

tion coefficients given any finite I ⊂ Nd such that∑
i∈I

ciui

is a good approximation to u. The motivation for this is that on a computer

in which faults occur, one may intend to compute ui for i in some downset I,

but if the computation of some of these are affected by faults then the subset

of I for which the ui were computed successfully may no longer be a downset.

In such circumstances it would not be clear how these remaining ui could be

combined. Thus our aim is to develop new ways to compute coefficients for such

circumstances. Further, we would like the coefficients to be the best possible in

some sense.

Opticom [71] is a generalisation of the combination technique that is applicable

to minimisation problems. For example, given a convex function J : V → R and

a numerical scheme which finds the v ∈ Vi ⊂ V which minimises J , that is

argminv∈Vi J (v), then given approximations ui for i ∈ I opticom is the problem

of finding the ci such that J
(∑

i∈I ciui

)
is minimised. It is clear that this leads

to the best possible outcome given the ui available. Opticom is an example of

a naturally fault tolerant algorithm as any faults in the ui are automatically

handled through the minimisation process. For hyperbolic pdes it is not typical

to have such a function to minimise. An exception is when solutions are obtained

via the least squares finite element method [12] but we will not consider this here.

We consider the problem of minimising
∥∥∥u−∑i∈I ciui

∥∥∥ with respect to an

appropriate norm. As the exact function u is generally not available in practice

and finite difference methods generally do not maintain an estimate of the residual

it is not feasible to minimise this directly. However, in Section 4.2 we obtained

bounds on the 2 and ∞ norms of this quantity for interpolation of u ∈ H2
0,mix

and for ui satisfying the error splitting model respectively. Thus we consider

two different approaches for computing combination coefficients based on these a

priori error bounds. By choosing coefficients which minimise these bounds we can

be reasonably confident that the result will be close to the best possible, provided
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the bounds are tight. Of course, the bounds obtained in Section 4.2 applied to

I ⊂ Nd which were downsets and we therefore need to find a way to extend these

results to arbitrary I.

4.4.1 Combination Coefficients via Interpolation Bounds

In Proposition 4.26 we showed that for u ∈ H2
0,mix([0, 1]d) and ui which are

piecewise linear interpolants of u between the function values on the grid points

Ωi = {(j12−i1 , . . . , jd2
−id) : 0 ≤ j ≤ 2i}, downsets I ⊂ Nd

+, and corresponding

combination coefficients given by

ci =
∑

i≤j≤i+1

(−1)|j−i|χI(j) ,

see Proposition 4.21, then one has∥∥∥∥∥∥u−
∑
i∈I

ciui

∥∥∥∥∥∥
2

≤ 3−d
∥∥D2u

∥∥
2

3−d −
∑

1≤i∈I

2−2|i|

 . (4.15)

Given an arbitrary (finite, non-empty) J ⊂ Nd if we can find a downset I ⊂ J↓
such that the coefficients corresponding to the combination over I are zero on

J\(I∩J) then the same combination can be computed over the set J . Further, the

error of this combination over J will satisfy the bound (4.15) for the corresponding

I. We note that there is always at least one such I, for example take I = {i}↓
for any i ∈ J . Thus in order to minimise the bound we need to choose a suitable

I which maximises
∑

1≤i∈I 2−2|i|. We note that there is typically not a unique I

which satisfies these criteria.

Example 4.43. Let d = 2 and J = {(2, 1), (1, 2)}. There are only two possible

(non-empty) combinations one may obtain which correspond to P(1,2)↓ and P(2,1)↓.

It is clear that 2−2|(1,1)| + 2−2|(2,1)| = 5
64

= 2−2|(1,1)| + 2−2|(1,2)|. It is not possible to

determine if one of these is better than the other without additional information

about u.

Another point is that we typically deal with functions which are not zero on

the boundaries. We could extend the result of Proposition 2.22 to the adaptive

sparse grids setting to specifically handle this scenario but we will instead take

the approach of simply extending the sum to i ∈ I (i.e. removing the restriction

i ≥ 1) so that we choose I which maximises
∑

i∈I 2−2|i|.

To summarise, we define our problem as follows.
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Figure 4.5: Suppose J ⊂ N2 is the set of elements marked in blue in the diagram on

the left, then for the general coefficient problem we need to find a downset I ≤ J↓ such

that the combination coefficients generated by I are only non-zero on the set J . The

set J↓ is depicted in the centre and on the right is a candidate I with the corresponding

combination coefficients. This particular I solves the gcp for the set J .

Definition 4.44. Let J ⊂ Nd be finite and non-empty. The general coefficient

problem (gcp) for the set J is the problem of finding a downset I ≤ J↓ with

coefficients {ci}i∈I corresponding to the projection

PI =
∑
i∈I

ciPi

which satisfy ci = 0 for i ∈ I\(J ∩ I) and I maximises

J (I) :=
∑
i∈I

2−2|i| . (4.16)

We denote gcp(J) to be the set of solutions for a given J . An example is given

in Figure 4.5.

Where |gcp(J)| > 1 we cannot say any one solution in this set is better than

another unless we have more information about u. There are a few approaches we

can take in such cases. The first option is to randomly pick a I ∈ gcp(J) and be

satisfied that any such one minimises the bound on interpolation error. A second

option is to compute the combinations uI =
∑

i∈I ciui for each I ∈ gcp(J) and

then analyse the hierarchical surpluses of each to determine which contribute the

most. A third option is to again compute uI for each I ∈ gcp(J) but this time

we pick one such solution, say uI′ and add to it the hierarchical surpluses from

the remaining ui which do not contribute to uI′ . In practice we typically choose

the first option as it is cheaper than the other two options (requiring only one

combination to be computed).
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Whilst Definition 4.44 gives a nice description of the problem we are trying to

solve it does not give a clear indication of how solutions may be computed. We

address this by reformulating the problem. We start by defining the hierarchical

coefficient.

Definition 4.45. Let ci ∈ R for each i ∈ Nd, then we define the hierarchical

coefficients to be

ωi :=
∑
j≥i

cj .

The motivation for this definition is that given ui which are the piecewise

multi-linear interpolants of some function u in the usual function space lattice

(e.g. (2.2)), then given the hierarchical surpluses uhi , a finite I ⊂ Nd and combi-

nation coefficients ci for i ∈ I, then with ci := 0 for i 6∈ I one has∑
i∈I

ciui =
∑
i∈Nd

ωiu
h
i .

Thus each hierarchical contribution ωi tells us how many times the corresponding

hierarchical surplus uhi contributes to the approximation. If I is a finite downset

and the ci are the coefficients corresponding to the projection PI then as a conse-

quence of Lemma 4.20 we have ωi = χI(i). Thus, in this case, we can also write

the ci in terms of the ωi via

ci =
∑

i≤j≤i+1

(−1)|j−i|ωj .

Now let c,ω be vectors for {ci}i∈I , {ωi}i∈I respectively (with the same ordering).

It follows we can define a matrix M such that ω = Mc, in particular, it follows

from the definition that given indices m,n and i, j such that cm = ci and cn = cj

(and similarly for ω) then Mm,n = 1 if i ≤ j and Mm,n = 0 otherwise. If the

entries in the vectors c,ω are ordered according to non-decreasing values of |i|
then M is clearly upper triangular with 1’s on the main diagonal. It follows that

M is invertible and we can write c = M−1ω. Further, the structure of M−1

is given by the result of Proposition 4.21, namely given positive integers m,n

and multi-indices i, j such that cm = ci and cn = cj (and similarly for ω) then

(M−1)m,n = (−1)|j−i| if i ≤ j ≤ i + 1 and (M−1)m,n = 0 otherwise. It is clear

that this too is upper triangular and all entries are elements of the set {−1, 0, 1}.
There are two important observations I will emphasise at this point. First, the

hierarchical coefficients, ωi, are always 0 or 1 for combinations which correspond

to adaptive sparse grids. Therefore we can consider the hierarchical coefficients
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to be binary variables if we are only interested in such combinations. Second, as

M−1 has integer coefficients then it is a direct consequence that the combination

coefficients, ci, are integers.

Given an arbitrary (finite) J ⊂ Nd we form the vectors c = {ci}J↓ and ω =

{ωi}J↓, and the matrix M with entries as described above. Our goal is to find a

downset I ≤ J↓ such that I maximises J (I) and the resulting coefficients are zero

on I\(J ∩ I). For I ≤ J↓ we observe that the resulting hierarchical coefficients

satisfy ωi = 1 for i ∈ I and ωi = 0 for i ∈ J↓\I. Further, the condition that the

resulting ci are zero on I\(J ∩ I) and hence are zero on J↓\J is equivalent to

the condition (M−1ω)m = 0 for each m such that ωm corresponds to an ωi for

which i ∈ I↓\I. To simplify notation we denote mi as the index corresponding

to ωmi = ωi (and cmi = ci). We can rewrite J (I) for downsets I ≤ J↓ in terms

of the ωi as ∑
i∈J↓

4−|i|ωi .

Thus, putting all of this together we have the following lemma.

Lemma 4.46. Given finite J ⊂ Nd then I ∈ gcp(J) if and only if {ωi =

χI(i)}i∈J↓ is a solution to the binary integer programming (bip) problem of find-

ing ω = {ωi}i∈J↓ ∈ {0, 1}|J↓| which maximises

J2(ω) =
∑
i∈J↓

4−|i|ωi (4.17)

subject to the equality constraints (M−1ω)mi = 0 for i ∈ J↓\J and the inequality

constraints ωj ≥ ωi for all j ≤ i.

Proof. By construction we have a one to one correspondence with I which solve

the gcp and ω which solves the bip described.

Remark 4.47. We depart for a moment to remark on the inequality restraints

ωi ≥ ωj for all i ≤ j. The inclusion of this restraint is necessary to ensure that

the set

{i ∈ J↓ : ωi = 1}

is a downset which is a requirement for the solutions of the gcp. Typically

the solution to the bip formulation without this constraint naturally leads to

a downset. However, there are some J for which this is not so. For example,

consider in two dimensions the set I = {(3, 0), (0, 1), (0, 2)}. It is clear that the

solution to the gcp is given by (3, 0)↓. On the other hand, the solution to the
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bip formulation without the downset constraint is given by ωi which are 1 for

i ∈ (3, 0)↓ ∪ (0, 2). It is straightforward to check that this satisfies the equality

constraints and maximises the sum. However, clearly this is not a downset and

therefore one would typically dismiss it as being a sensible combination. That

said, in some circumstances this may yield a reasonable result, particularly in

cases where the ui are exactly the piecewise multi-linear interpolants of u.

The above bip formulation can be solved by listing all downsets I ≤ J↓, filter-

ing out those which do not satisfy the equality constraints, and then evaluating

which of the remaining downsets achieves the maximum. This exhaustive ap-

proach is typically not feasible due to the number of possible downsets that one

may be required to check which grows incredibly fast with respect to the size of

J . The optimisation problem can also be solved using branch and bound and/or

cutting plane techniques. None the less, the formulation as a constrained bip

problem reveals that the gcp is np-complete [77]. As a result, given any algo-

rithm there are always sets J which will take a long time to be solved compared

to other sets of similar size. This is also why in practice we typically choose a

random I ∈ gcp(J) to use as the solution as finding the exhaustive set of solu-

tions gcp(J) can be significantly more expensive than finding just 1. It is worth

noting there are some J for which the solution is trivial to compute. For example

if J is a downset (i.e. J = J↓) then we can solve this rather quickly with the

coefficients simply being those given by the projection PJ = PJ↓. Similarly if J

is closed under meet then we know that the projection PJ↓ produces coefficients

which are non-zero only for multi-indices i ∈ J and thus solutions are again quick

to compute in such cases.

Whilst the gcp is based upon an error estimate for the interpolation of u ∈
H2

mix it is applicable to a much more broad range of problems. First we observe

that if the ui satisfy the error splitting model (2.22) then the error bound of

Proposition 4.28 for adaptive sparse grids is applicable to the solutions of the

gcp. Further, as solutions to the gcp are adaptive sparse grids then they should

perform well in the wide range of applications for which adaptive sparse grids

have been studied.

Combinations with real coefficients

We can also consider an alternative approach for which the hierarchical coeffi-

cients are reals (and thus the combination coefficients are also reals). This first

requires us to extend the result of Proposition 4.26 to arbitrary combination
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formula.

Proposition 4.48. Let u ∈ H2
0,mix([0, 1]d) and let ui be piecewise linear inter-

polants of u as defined in (2.2). Given J ⊂ Nd which is finite and non-empty,

and real coefficients {ci}i∈J then∥∥∥∥∥∥u−
∑
i∈J

ciui

∥∥∥∥∥∥
2

≤ 3−d
∥∥D2u

∥∥
2

∑
j≥1

2−2|j|

∣∣∣∣∣∣1−
∑

i∈J s.t. i≥j

cj

∣∣∣∣∣∣ . (4.18)

Proof. The ui may be expressed as ui =
∑

j≤i u
h
j where uhj is the level j hierar-

chical surplus of u (see Section 2.1). Thus as u is zero on the boundaries one

has

u−
∑
i∈J

ciui =

∑
j≥1

uhj

−∑
i∈J

ci

∑
1≤j≤i

uhj


=
∑
j≥1

uhj

1−
∑

i∈J s.t. i≥j

ci

 .

Using the triangle inequality it follows that∥∥∥∥∥∥u−
∑
i∈J

ciui

∥∥∥∥∥∥
2

≤
∑
j≥1

∥∥∥uhj∥∥∥
2

∣∣∣∣∣∣1−
∑

i∈J s.t. i≥j

ci

∣∣∣∣∣∣ .
Inserting the bound ‖uhj ‖2 ≤ 3−d ‖D2u‖2 2−2|j| from Lemma 2.14 and moving the

common terms to the left of the sum gives the desired result.

Here, if we let ci = 0 for i 6∈ J then we can rewrite this result in terms of our

hierarchical coefficients ωi =
∑

j≥i cj as∥∥∥∥∥∥u−
∑
i∈J

ciui

∥∥∥∥∥∥
2

≤ 3−d
∥∥D2u

∥∥
2

∑
j≥1

2−2|j|
∣∣∣1− ωj∣∣∣ .

The idea is to now choose coefficients which minimise this bound on the error.

We again drop the restriction j ≥ 1 to extend the problem beyond functions

which are zero on the boundary. Further, as the only coefficients we can control

are those in J then we are really only concerned with minimising over j ∈ J↓. As

before we form the vectors c = {ci}J↓, ω = {ωi}J↓ and the matrix M for which
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ω = Mc. The alternative approach now consists of solving the L1 minimisation

problem of finding ω ∈ R|J↓| which minimises

J3(ω) :=
∑
j∈J↓

2−2|j|
∣∣∣1− ωj∣∣∣ (4.19)

subject to the equality constraints (M−1ω)m = 0 for any index m corresponding

to i ∈ J↓\J .

It is clear that the solutions to this problem lead to an error bound which is

no larger than that of the gcp solutions. Quite often this alternative approach

produces solutions identical to the gcp. However this is not always the case as

we show in the following example.

Example 4.49. Consider the two dimensional problem with J = {(1, 0), (0, 1)}.
Clearly gcp(J) = {{(1, 0)}↓, {(0, 1)}↓} leading to the combinations u(1,0) and

u(0,1). On the other hand, it is easily shown that the solutions to the alternative

problem correspond to the combinations αu(1,0) + (1− α)u(0,1) for α ∈ [0, 1].

In our experience, whilst the combinations produced by this alternative for-

mulation work well for interpolation they are not as robust for other applications

(e.g. problems satisfying an error splitting) when the solutions differ from those

of the gcp. Nonetheless, this L1 minimisation problem can be used as a first at-

tempt at finding solutions to the gcp. If the ω which solves the L1 minimisation

problem has entries which are all {0, 1} then we can take this to be a solution to

the gcp provided the downset condition is also satisfied. Otherwise, we can find

the binary vector closest to the given solution and use this as an initial guess in

the gcp solver.

4.4.2 Combination Coefficients via Error Splitting Bounds

Here we consider finding coefficients which minimise a bound on the combination

error when the ui are assumed to satisfy an error splitting. So far we have

considered two different error splitting models, that is (2.22) and the extended

version (4.7), and the generalisations (4.6) and (4.12) respectively. We consider

both here as they typically lead to different combinations. Proposition 4.28 bound

the error for adaptive sparse grid combinations over ui which satisfied the error

splitting model (2.22). Here we extend this result to arbitrary combinations so

that the bound may be optimised with respect to the combination coefficients.

First we remind the reader of the following notation as introduced in Section 4.2.
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Given I ⊂ Nd we let

Ie1,...,ek = {i ∈ Nk : i = (je1 , . . . , jek) for some j ∈ I} ,

and for l ∈ Nk we let

Il|e1,...,ek = {i ∈ I : (ie1 , . . . , iek) = (l1, . . . , lk)} .

such that ∑
i∈I

f(i) =
∑

j∈Ie1,...,ek

 ∑
l∈Ij|e1,...,ek

f(i)

 . (4.20)

Proposition 4.50. Let u ∈ C([0, 1]d) and J ⊂ Nd be finite and non-empty. For

each i ∈ J let ci ∈ R such that
∑

i∈J ci = 1 and let each ui be an approximation

of u satisfying the point-wise error splitting model

u− ui =
d∑

k=1

∑
{e1,...,ek}⊂{1,...,d}

Ce1,...,ek(hie1 , . . . , hiek )h
pe1
ie1
· · ·hpekiek ,

where p1, . . . , pd > 0. Then∣∣∣∣∣∣u−
∑
i∈J

ciui

∣∣∣∣∣∣ ≤
d∑

k=1

∑
{e1,...,ek}
⊂{1,...,d}

∑
j∈Je1,...,ek

|Ce1,...,ek(hj1 , . . . , hjk)|h
pe1
j1
· · ·hpekjk

∣∣∣∣∣∣
∑

l∈Jj|e1,...,ek

cl

∣∣∣∣∣∣ .
Proof. As

∑
i∈J ci = 1 we have

u−
∑
i∈J

ciui =
∑
i∈J

ci(u− ui) .

We may now substitute in the error splitting into the right hand side which leads

to ∣∣∣∣∣∣u−
∑
i∈J

ciui

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
i∈J

ci

d∑
k=1

∑
{e1,...,ek}
⊂{1,...,d}

Ce1,...,ek(hie1 , . . . , hiek )h
pe1
ie1
· · ·hpekiek

∣∣∣∣∣∣∣∣
≤

d∑
k=1

∑
{e1,...,ek}
⊂{1,...,d}

∣∣∣∣∣∣
∑
i∈J

ciCe1,...,ek(hie1 , . . . , hiek )h
pe1
ie1
· · ·hpekiek

∣∣∣∣∣∣ .
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For the inner most sum we use the decomposition (4.20) to obtain∣∣∣∣∣∣u−
∑
i∈J

ciui

∣∣∣∣∣∣
≤

d∑
k=1

∑
{e1,...,ek}
⊂{1,...,d}

∣∣∣∣∣∣
∑

j∈Je1,...,ek

∑
l∈Jj|e1,...,ek

clCe1,...,ek(hle1 , . . . , hlek )h
pe1
le1
· · ·hpeklek

∣∣∣∣∣∣
≤

d∑
k=1

∑
{e1,...,ek}
⊂{1,...,d}

∑
j∈Je1,...,ek

|Ce1,...,ek(hj1 , . . . , hjk)|h
pe1
j1
· · ·hpekjk

∣∣∣∣∣∣
∑

l∈Jj|e1,...,ek

cl

∣∣∣∣∣∣
as required.

Corollary 4.51. Let u ∈ C([0, 1]d) and J ⊂ Nd be finite and non-empty. For

each i ∈ J let ci ∈ R such that
∑

i∈J ci = 1 and let each ui be an approximation

of u satisfying the extended point-wise error splitting model (4.12) with q1 > p1 >

0, . . . , qd > pd > 0, then∣∣∣∣∣∣u−
∑
i∈J

ciui

∣∣∣∣∣∣ ≤
d∑

k=1

∑
{e1,...,ek}
⊂{1,...,d}

|Ce1,...,ek |

∣∣∣∣∣∣
∑
j∈J

h
pe1
j1
· · ·hpekjk cj

∣∣∣∣∣∣
+

d∑
k=1

∑
{e1,...,ek}
⊂{1,...,d}

∑
j∈Je1,...,ek

|De1,...,ek(hj1 , . . . , hjk)|h
qe1
j1
· · ·hqekjk

∣∣∣∣∣∣
∑

l∈Jj|e1,...,ek

cl

∣∣∣∣∣∣ .
Proof. This follows the same proof as Proposition 4.50 for the two different com-

ponents of the extended error splitting. As the Ce1,...,ek in the leading component

do not depend on the hj1 , . . . , hjd they can be moved to the left of the sum over

j ∈ J .

Now we may formulate a minimisation problem such that for a given J ⊂ Nd

one finds coefficients which minimise the bounds of Proposition 4.50 or Corol-

lary 4.51 depending on the error splitting model that one assumes. With the

extended error splitting model used in the Corollary, if the coefficients are such

that the
∑

j∈J h
pe1
je1
· · ·hpekjek cj terms are zero then the Ce1,...,ek disappear and one

obtains a higher order estimate. We first look at the problem of minimising the

bound of Proposition 4.50 in detail.
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Let c = {ci}i∈J , then consider the minimisation of

J4(c) :=
d∑

k=1

∑
{e1,...,ek}
⊂{1,...,d}

∑
j∈Je1,...,ek

|Ce1,...,ek(hj1 , . . . , hjk)|h
pe1
je1
· · ·hpekjek

∣∣∣∣∣∣
∑

l∈Jj|e1,...,ek

cl

∣∣∣∣∣∣
(4.21)

subject to the equality constraint
∑

i∈J ci = 1. The equality constraint here

ensures consistency of the combination coefficients. This is essentially a weighted

L1 minimisation problems over the N =
∑d

k=1

∑
{e1,...,ek}⊂{1,...,d} |Je1,...,ek | terms of

the form
∣∣∣∑l∈Jj|e1,...,ek

cl

∣∣∣ with weights |Ce1,...,ek(hj1 , . . . , hjk)|h
pe1
j1
· · ·hpekjk . We can

write this generically as the problem

minimise ‖Wc‖1

subject to 1ᵀc = 1 ,
(4.22)

where c has length |J | and W is a |J | ×N matrix mapping c to the each of the∑
l∈Jj|e1,...,ek

cl terms (multiplied by their respective weights). This may be solved

via the equivalent linear programming problem

minimise 1ᵀd

subject to

[
W −I
−W −I

][
c

d

]
≤

[
0

0

]
1ᵀc = 1 ,

where I is an N ×N identity matrix and d is an N -vector (and 1ᵀ has length N

and |J | in the first and second instance respectively).

One difficulty is in the estimation of the |Ce1,...,ek(hj1 , . . . , hjk)| which weight

each term in the minimisation problem. Observe that they need only be estimated

up to a constant factor, that is we need only know the relative size of the weights.

In the classical sparse grid error bounds we use a constant K > 0 to bound all of

these terms from above. If we take this approach in determining the coefficients

than the value of K may be factored out and we need only minimise

J5(c) :=
d∑

k=1

∑
{e1,...,ek}
⊂{1,...,d}

∑
j∈Je1,...,ek

h
pe1
j1
· · ·hpekjk

∣∣∣∣∣∣
∑

l∈Jj|e1,...,ek

cl

∣∣∣∣∣∣ . (4.23)

However, if we can tighten the bound by treating the terms separately then one

would expect the coefficients obtained from the minimisation problem should lead

to a better result.
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The estimation of the |Ce1,...,ek(hj1 , . . . , hjk)| terms is an interesting problem

in itself. These values depend on both the exact u we are trying to approx-

imate and the numerical scheme used to approximate u. In the absence of a

detailed error analysis which tells us exactly what these terms are we can esti-

mate them from some computed ui. Rather than have individual estimates for

each |Ce1,...,ek(hj1 , . . . , hjk)| it is simpler to find Ke1,...,ek for each {e1, . . . , ek} ⊂
{1, . . . , d} such that |Ce1,...,ek(hj1 , . . . , hjk)| ≤ Ke1,...,ek for all hj1 , . . . , hjk (and x

in the domain). For example, given a two dimensional problem with p1 = p2 = p

we note that

u(i1,i2) − u(i1−1,i2) = (u− u(i1−1,i2))− (u− u(i1,i2))

= C1(hi1−1)hpi1−1 − C1(hi1)hpi1

+ C1,2(hi1−1, hi2)hpi1−1h
p
i2
− C1,2(hi1 , hi2)hpi1h

p
i2
.

By increasing i2 such that the contribution from C1,2 terms are negligible and

assuming that C1(hi1) ≈ C1(hi1−1) for sufficiently large i1 then one is able to

estimate C1. C2 may be estimated in a similar fashion and C1,2 may be estimated

via

u(i1,i2) − u(i1−1,i2) − u(i1,i2−1) + u(i1−1,i2−1) .

In higher dimensions one estimates a Ce1,...,ek term for {e1, . . . , ek} ⊂ {1, . . . , d}
by studying ∑

{j∈{0,1}d:js=0 if s 6∈{e1,...,ek}}
(−1)|j|ui+j .

There are times when the elements of i may not be sufficiently large to accurately

estimate the Ce1,...,ek terms, for example in high dimensions where it is too costly

to compute i without some of the components being small. In this thesis we

typically stick with the case of generically bounding all of these terms by a single

K and thus minimise (4.23). In practice we have observed that this minimisa-

tion problem often leads to combination coefficients that are the same as those

produced by the gcp. An interesting direction to extend this work would be to

apply techniques from uncertainty quantification to investigate the sensitivity of

the coefficients obtained depending on the accuracy of the weights Ce1,...,ek used.

Now consider ui which satisfy the general extended error splitting (4.12).

We observe that the minimisation over the bound for the remainder terms has

identical structure to the minimisation (4.21) (just change the exponents from

p1, . . . , pd to q1, . . . , qd and relabel the C as D). However, in addition to these
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terms we have an additional 2d − 1 terms to minimise, namely

|Ce1,...,ek |

∣∣∣∣∣∣
∑
j∈J

h
pe1
j1
· · ·hpekjk cj

∣∣∣∣∣∣
for each k = 1, . . . , d and {e1, . . . , ek} ⊂ {1, . . . , d}. This leads to the optimisation

problem of minimising

J6(c) :=
d∑

k=1

∑
{e1,...,ek}
⊂{1,...,d}

|Ce1,...,ek |

∣∣∣∣∣∣
∑
j∈J

h
pe1
j1
· · ·hpekjk cj

∣∣∣∣∣∣
+

d∑
k=1

∑
{e1,...,ek}
⊂{1,...,d}

∑
j∈Je1,...,ek

|De1,...,ek(hj1 , . . . , hjk)|h
qe1
je1
· · ·hqekjek

∣∣∣∣∣∣
∑

l∈Jj|e1,...,ek

cl

∣∣∣∣∣∣ (4.24)

subject to the equality constraint
∑

i∈J ci = 1. The estimation of the constants

Ce1,...,ek is done in the same way as before. The De1,...,ek are more difficult requir-

ing one to first compute the extrapolations ũi from Section 4.3 to eliminate the

Ce1,...,ek terms and then then compare the ũi for neighbouring i as was done for

the Ce1,...,ek . As before, one can take a generic approach of bounding all of these

terms by the same K in order to simplify the problem (that is K bounds both

the Ce1,...,ek and De1,...,ek). As the primary purpose of considering the extended

error splitting is to obtain coefficients that result in an extrapolation it may be

favourable use two constants KC , KD bounding the C and D terms respectively.

By making the KC large enough we can ensure that the minimisation problem

will emphasise the cancellation of the Ce1,...,ek .

In practice we find that in some circumstances the extrapolation works and

good results may be obtained. However there are times when the extrapolation

does not work and the result is poor, in particular, worse than the results of the

gcp. Thus we conclude that whilst this has potential to provide more accurate

results it is less robust. It is possible that the robustness could be improved with

careful tuning of the bounds on the C and D terms but we do not study this in

more detail here.
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4.5 Numerical Results

We provide some numerical results for advection in 2 spatial dimensions to demon-

strate the extrapolation combination introduced in Section 4.3, and the combi-

nations over arbitrary index sets developed in Section 4.4. Some of the numerical

results presented in this section were published in the paper [65].

Consider the index sets Jn,τ,l ⊂ N2 given by

Jn,τ,l := {i ∈ N2 : i1, i2 ≥ τ and n− l < |i| ≤ n} ,

with n, τ and l being the level, truncation and layer count parameters respec-

tively. We require n ≥ 2τ for this set to be non-empty. The classical/truncated

combination coefficients for i ∈ Jn,τ,l with l ≥ 2 are

ci =

1 if |i| = n

−1 if |i| = n− 1 ,
(4.25)

which correspond to the truncated combination utn−2τ,τ from Section 4.1. Note

that coefficients which are not specified are zero. For these index sets with l ≥ 2

the gcp has a unique solution which leads to exactly the truncated combination

coefficients given. These combinations will be compared with those using ci de-

rived from the minimisation of the order p error splitting estimate (4.21). We

will also compare with the combination of multi-variate extrapolations for second

order schemes, namely ũi as defined in Section 4.3. For i ∈ Jn,τ,l with l ≥ 4 and

n ≥ 2(τ + 2) the coefficients are

ci =



16
9

if |i| = n and i ≥ (τ + 1, τ + 1)

−24
9

if |i| = n− 1 and i ≥ (τ + 1, τ + 1)

−4
9

if |i| = n− 1 and i 6≥ (τ + 1, τ + 1)

1 if |i| = n− 2 and i ≥ (τ + 1, τ + 1)

5
9

if |i| = n− 2 and i 6≥ (τ + 1, τ + 1)

−1
9

if |i| = n− 3 .

(4.26)

These results are compared with ci derived from the minimisation of the or-

der p, q error splitting estimate (4.24) as both are expected to give higher order

approximations. We will also compare results of the gcp and the two error split-

ting combinations for several different randomly chosen subsets J ⊂ J16,4,9 with

E[|J |] = 0.8|J16,4,9|. Figure 4.6 shows the combination coefficients derived from

the gcp for one such subset of J16,4,9.

To summarise, in the results that follow we refer to the following combinations:
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Figure 4.6: On the left we depict the set J16,4,9 (shaded blue) with the classical com-

bination coefficients (+ for +1 and − for −1). In the middle we depict a subset J of

J16,4,9 with the corresponding combination coefficients obtained from the gcp. On the

right we depict the downset I ⊂ J↓ which corresponds to the gcp solution. Note that

I also includes {(3, 12), (12, 3)}↓ which are not visible.

• The gcp combination has corresponding hierarchical coefficients which min-

imise (4.17) subject to the appropriate constraints. For the sets Jn,τ,l this

is exactly the coefficients given by (4.25).

• The extrapolation combination for the sets Jn,τ,l has coefficients as in (4.26).

• The order p error splitting combination has coefficients which minimise

(4.21) subject to the consistency constraint.

• The order p, q error splitting combination has coefficients which minimise

(4.24) subject to the consistency constraint.

For the latter two we use the estimate |Ce1,...,ek | = 1 and |De1,...,ek | = 1 unless

stated otherwise.

4.5.1 2D advection problem with constant flow field

Here we perform tests on numerical solutions of the scalar advection equation

∂u

∂t
+ a · ∇u = 0 , (4.27)

where u : [0, 1]2 → R and a = (1, 1). We specify an initial condition at t = 0 given

by u0 = cos(2πx) sin(2πy) and enforce periodic boundary conditions. We evolve

up to t = 0.25 using second order centred finite difference discretisation of spatial

derivatives and the classical fourth order Runge–Kutta scheme for integration

over time (thus p = 2 and q = 4 in the error splitting models). In particular,
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Figure 4.7: Starting with J12,4,4 we compare the classical combination (4.25), the

extrapolation combination (4.26), the order p error splitting combination (minimis-

ing (4.21)) and the order p, q error splitting combination (minimising (4.24)). The

grids of J12,4,4 are refined in both spatial dimensions several times and the computa-

tions repeated. Note that the results for gcp and order p error splitting are overlapping.

given the numerical approximations Un
i,j ≈ u(tn, xi, yj) = u(n∆t, i∆x, j∆y) we

use the numerical scheme

Un+1
i,j = Un

i,j +
∆t

6
(k

(1)
i,j + 2k

(2)
i,j + 2k

(3)
i,j + k

(4)
i,j )

where

k
(1)
i,j = − a1

2∆x
(Un

i+1,j − Un
i−1,j)−

a2

2∆y
(Un

i,j+1 − Un
i,j−1)

k
(2)
i,j = k

(1)
i,j −

a1∆t

4∆x
(k

(1)
i+1,j − k

(1)
i−1,j)−

a2∆t

4∆y
(k

(1)
i,j+1 − k

(1)
i,j−1)

k
(3)
i,j = k

(1)
i,j −

a1∆t

4∆x
(k

(2)
i+1,j − k

(2)
i−1,j)−

a2∆t

4∆y
(k

(2)
i,j+1 − k

(2)
i,j−1)

k
(4)
i,j = k

(1)
i,j −

a1∆t

2∆x
(k

(3)
i+1,j − k

(3)
i−1,j)−

a2∆t

2∆y
(k

(3)
i,j+1 − k

(3)
i,j−1) .

In Figure 4.7 we compare the rate of convergence of several methods starting

with the index set J12,4,4 and then refining each grid uniformly by a factor of 2 for

subsequent computations (corresponding to index sets J14,5,4, J16,6,4, J18,7,4 and

J20,8,4). We observe that the classical combination and the order p error splitting

result have the same order of convergence (2) and have very similar results in

general. The combination of extrapolations and the order p, q error splitting
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Table 4.1: Here we give the L1 error for combinations obtained via interpolation (gcp)

and error splitting (‘p split’ and ‘p, q split’) estimates for the combination error over

20 random samples J ⊂ J16,4,9 with each element having an 80% chance of appearing

in J . The 10 samples on the left use the generic weighting |Ce1,...,ek | = 1 whilst the 10

samples on the right use a rough estimate of ‖Ce1,...,ek‖∞ which helps to stabilise the

order p error splitting results. Note that gcp solutions do not depend on the Ce1,...,ek
estimate.

Unit weighting ‖Ce1,...,ek‖∞ estimate

sample gcp p split p, q split sample gcp p split p, q split

1 2.636E-6 3.680E-6 7.893E-7 11 1.457E-6 1.457E-6 1.275E-6

2 1.312E-6 3.103E-5 1.452E-6 12 2.613E-6 2.614E-6 1.267E-6

3 3.340E-6 7.946E-6 4.680E-6 13 1.153E-6 1.153E-6 3.655E-7

4 1.153E-6 3.680E-6 7.223E-7 14 1.153E-6 1.153E-6 3.655E-7

5 3.253E-6 3.564E-6 7.866E-7 15 1.488E-6 1.489E-6 2.349E-7

6 1.932E-6 2.968E-5 1.554E-6 16 1.455E-6 1.312E-6 3.655E-7

7 1.312E-6 7.946E-6 4.113E-7 17 2.585E-6 1.153E-6 3.655E-7

8 2.590E-6 3.564E-6 3.683E-6 18 1.153E-6 1.153E-6 2.795E-5

9 2.636E-6 1.260E-5 5.361E-7 19 1.801E-6 1.630E-6 2.359E-7

10 1.631E-6 3.103E-5 7.866E-7 20 2.822E-6 2.822E-6 1.723E-6

mean 2.180E-6 1.347E-5 1.540E-6 mean 1.768E-6 1.594E-6 3.415E-6

stdev 8.170E-7 1.215E-5 1.457E-6 stdev 6.584E-7 6.182E-7 8.637E-6

both exhibit a higher rate of convergence (4) and the order p, q error splitting

result outperforms the combination of extrapolations by a factor of approximately

2. A generic weighting of 1 is used for the |Ce1,...,ek | and |De1,...,ek | in these tests.

In Table 4.1 we compare the error splitting based coefficients with solutions

of the gcp. We take random samples J ⊂ J16,4,9 with each multi-index in J16,4,9

appearing in J with probability 0.8. We then compute coefficients using the differ-

ent approaches developed in Section 4.4 and compare the resulting combinations.

On the left the first 10 samples use the generic weighting |Ce1,...,ek | = 1 for the

error splitting approach (similar for the D). We see that the gcp outperforms

the order p error splitting coefficients (p split). The order p, q error splitting coef-

ficients (p, q split) have higher order convergence and thus outperforms the order

p splitting results in most cases but only outperforms the the gcp approach in

7/10 cases. On the right we have an additional 10 samples where the Ce1,...,ek are

weighted with a rough estimate of ‖Ce1,...,ek‖∞ (and similarly for D) for the error

splitting approaches. This leads to significant improvement in the order p error

splitting results results which typically yields similar combination coefficients to

the gcp and even outperforms in some cases. The order p, q error splitting results

also improve and outperform the other approaches with the exception of one out-
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Figure 4.8: The evolution of the initial condition under the divergence free velocity

field (4.28). In a clockwise direction from the top left we have the solution at times 0,

0.25, 0.5 and 0.75 respectively.

lier. We conclude that the error splitting based coefficients can outperform the

gcp approach when an error splitting is applicable and the Ce1,...,ek are estimated

with reasonable accuracy. Without this estimate of Ce1,...,ek the error splitting

results are have significant variance and appear to be less robust than the those

obtained with the gcp.

4.5.2 2D advection problem with divergence free flow field

Here we again solve a 2D advection equation (4.27) but this time with a depending

on the spatial coordinates. In particular, consider the divergence free velocity field

a(x, y) = (sin(πx) cos(πy),− cos(πx) sin(πy)) (4.28)

for (x, y) ∈ [0, 1]2 and the solutions of the advection equation ∂u
∂t

+a ·∇u = 0 with

initial condition u(x, 0) = exp(−6 + 4(1− π2(x− 3/8)2) + 2(1− 2π2(y− 3/8)2)).

The initial condition is a Gaussian peak centred at (3/8, 3/8) which follows the

velocity field around the centre of the domain in an anti-clockwise direction time

evolves as depicted in Figure 4.8. Note that along the boundary the velocity
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Figure 4.9: Starting with J12,4,4 we compare the four different combinations (gcp,

extrapolation, order p error splitting and order p, q error splitting combinations) for the

rotating velocity field (4.28). The grids of J12,4,4 are refined in both spatial dimensions

several times and the computations repeated.

field is perpendicular to the boundary normal such that there is zero flux leaving

or entering the domain. We solve up to time t = 0.25 and perform the same

experiments as was done for the constant velocity field. The exact solution is

obtained by using a high order ode solver to integrate backwards along the

velocity field and L1 error is computed relative to this.

Figure 4.9 shows analogous results to those of Figure 4.7 for this rotating ve-

locity field and initial condition. As before we compare the rate of convergence of

the different methods by starting with the index set J12,4,4 and then refining each

grid uniformly by a factor of 2 for subsequent computations. A generic weighting

of 1 is again used for the |Ce1,...,ek | and |De1,...,ek | in these tests when determining

the order p/p, q error splitting combinations. The classical combination and the

order p error splitting combination are both very similar again and exhibit 2nd

order convergence. The combination of extrapolations exhibits 4th order conver-

gence. However, the result from the p, q error splitting is not as accurate for this

problem. For the first two refinements the error does not change substantially,

and it is only for the subsequent two refinements that 4th order convergence is

achieved.

In Table 4.2 we compare the error splitting based coefficients with solutions

of the gcp for this new problem analogous to the results of Table 4.1. As before

we take random samples of J ⊂ J16,4,9 with each multi-index in J16,4,9 appearing
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Table 4.2: Here we give the L1 error for combinations obtained via interpolation (gcp)

and error splitting (‘p split’ and ‘p, q split’) estimates for the combination error over

20 random samples J ⊂ J16,4,9 with each element having an 80% chance of appearing

in J . The 10 samples on the left use the generic weighting |Ce1,...,ek | = 1 whilst the 10

samples on the right use a rough estimate of ‖Ce1,...,ek‖∞. Note that gcp solutions do

not depend on the Ce1,...,ek estimate.

Unit weighting ‖Ce1,...,ek‖∞ estimate

sample gcp p split p, q split sample gcp p split p, q split

1 5.6031E-6 1.4712E-6 6.7669E-6 11 2.5795E-6 2.5794E-6 1.9397E-5

2 4.0978E-6 7.0190E-5 1.3552E-5 12 5.5722E-6 5.5722E-6 7.0050E-7

3 1.7608E-6 6.8661E-6 6.7584E-6 13 8.9001E-6 8.9001E-6 1.0675E-5

4 4.3890E-6 2.3201E-5 6.7565E-6 14 4.4020E-6 4.3760E-6 7.9408E-6

5 1.7096E-6 1.2359E-5 6.6645E-6 15 4.5229E-6 4.5229E-6 1.8274E-6

6 2.4972E-6 6.6887E-6 6.7590E-6 16 2.8716E-6 2.8640E-6 5.0656E-7

7 1.7096E-6 6.5493E-6 6.4503E-6 17 4.3207E-6 4.3207E-6 7.1996E-6

8 1.3830E-5 1.5578E-5 6.7565E-6 18 4.2122E-6 4.2122E-6 3.5387E-6

9 2.1760E-6 1.6241E-5 6.7590E-6 19 5.5297E-6 5.5297E-6 1.5854E-5

10 1.4610E-5 1.8233E-5 1.7650E-5 20 2.1876E-6 2.1876E-6 1.4133E-6

mean 5.2383E-6 1.7738E-5 8.4873E-6 mean 4.5098E-6 4.5065E-6 6.9053E-6

stdev 4.6657E-6 1.8567E-5 3.6741E-6 stdev 1.8271E-6 1.8279E-6 6.3104E-6

in J with probability 0.8 and then compare the combinations obtained via the

different approaches. On the left the first 10 samples use the generic weighting

|Ce1,...,ek | = 1 for the error splitting approach (similar for the D). The gcp

outperforms the order p error splitting coefficients (p split) in most cases and

is much more robust having a lower standard deviation. However, the order

p, q error splitting coefficients (p, q split) does not perform significantly better

than the order p error splitting combination except where the latter performs

particularly poorly. Curiously these 10 order p, q error splitting combinations have

lower standard deviation than the gcp combinations for this particular problem

although the gcp combinations have a smaller mean. On the right we have an

additional 10 samples where the Ce1,...,ek are weighted with a rough estimate of

‖Ce1,...,ek‖∞ (and similarly for D) for the error splitting approaches. This leads

to significant improvement in the order p error splitting results which typically

the same result as the gcp and is slightly smaller in the coupe of instances in

which they differ. The mean error of the order p, q error splitting combinations

also improves although the standard deviation increases. In 5/10 of these results

we observe that the order p, q error splitting combination is the best of the three

but is significantly worse on the other occasions. With a better estimate of the
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Ce1,...,ek and D terms it may be possible to improve the success rate of these order

p, q error splitting combinations. We conclude that the gcp is again the more

reliable approach and produces good results without the need for fine tuning.
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Chapter 5

Fault Tolerant Combination

Technique

This chapter describes and analyses a fault tolerant adaptation of the combina-

tion technique based upon the generalisations developed in Chapter 4. This work

is related to several publications which develop and demonstrate the fault tolerant

combination technique (ftct) and its application to high performance comput-

ing [67, 68, 66, 69, 5, 120, 3, 79]. In Section 5.1 two checkpointing routines for the

combination technique are described. Given that checkpoint-restart is the most

common approach to fault tolerance used in the computing community today this

will be used as a basis of comparison for other methods of algorithm based fault

tolerance which will be developed. In Section 5.2 we describe an implementation

of the ftct based on the work in Section 4.4. This form of algorithm based fault

recovery is lossy in the sense that data is not recovered exactly. Rather, we adjust

our combination to obtain reasonable results with the data that remains. The end

result is therefore stochastic in nature depending on how many faults occurred

and which component solutions were affected. As such, we analyse the expected

error by utilising the fault models developed in Chapter 1 to extend some of the

error estimates presented in Chapter 2 to the ftct. Section 5.2.4 presents some

numerical results for the ftct applied to the advection equation with simulated

faults. The results demonstrate that the overhead is low and that the expected

error is close to the error of the solution obtained in the absence of faults. We

end with Section 5.3 which consists of many additional comments and remarks

in relation to fault tolerant computations with the combination technique.

197
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5.1 Checkpointing the Combination Technique

Checkpoint restart has historically been the most widely used approach for hard

fault recovery in high performance computing. As such we compare the over-

heads of our new approach with those of checkpoint restart. It is important to

point out that there are many varieties of checkpoint restart and that there has

been extensive research in recent years to improve the performance of checkpoint

restart for peta/exa scale computing. However, as we clearly are not able to

investigate and compare against all of these varieties we look at two of relatively

simple checkpoint restart implementations which we refer to as ‘global’ and ‘local’

checkpointing.

The ‘global’ checkpointing is based on a traditional checkpointing fault model.

In this model is assumed that any fault, independent of nature and origin, causes

the entire application to stop immediately. To overcome this the complete state

of the application is saved to stable storage periodically. After a failure has

occurred the application is restarted. From here the last saved state is reloaded

into memory and computations continue from this state. Because the entire state

of the application must be saved checkpoints are typically large. The total time

required to take a checkpoint is typically limited by the write speed of the storage

system. Historically hard disks in a separate storage cluster were used whilst in

recent years systems have begun to used solid state disks attached to each node

of the cluster.

In Algorithm 1 an outline of ‘global’ checkpointing implemented with the

combination technique is described. On starting, the application either starts

from the initial condition or the most recent (complete) checkpoint. It then

begins the main computation loop in which the state of the application is saved

at the end of each iteration. In the context of the combination technique the

state of the application is the current field on the combined sparse grid which is

equivalent to the current field of all of the coarse solutions. Although not explicit

in the pseudocode we assume that various run time parameters like the current

iteration are also saved. The main loop runs until either it reaches the end of

the last iteration or it is terminated due to a failure. It is also assumed that

checkpoints are written in a redundant fashion such that if a failure results in

an incomplete checkpoint then the previous completed checkpoint still exists and

can thus be used for restart. Note that one may modify the algorithm to evolve

the coarse solutions several times before combining with checkpoints occurring

after each evolution. This allows the checkpoint interval to be decoupled from
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Algorithm 1 Outline of ‘global’ checkpointing algorithm for the combination

technique. Here it is assumed that a failure results in immediate termination of

the application/algorithm which is then restarted from the beginning.

if no checkpoint exists then

set coarse solutions to initial condition and set n = 0

else

load coarse solutions and current iteration n from checkpoint

end if

while n < N do

evolve each coarse solution by some fixed number of time steps

hierarchise each coarse solution

combine hierarchical surpluses // communication between processes

reconstruct coarse solutions

set n = n+ 1

checkpoint each coarse solution and the step counter n

end while

the combination interval (up to an integer multiple).

Remark 5.1. We pause for a moment to describe how the hierarchical surpluses

are combined in our algorithms. Given approximations ui for i ∈ I and a com-

bination uI =
∑

i∈I ciui then the hierarchical implementation of the combination

technique goes as follows.

• We first hierarchise each ui for i ∈ I. This means computing the coeffi-

cients of the hierarchical basis functions described in Section 2.1. Here we

will denote Hj(ui) to be the jth hierarchical surplus of the approximation

ui. Note that unlike interpolation problems each hierarchical surplus will

generally differ for each approximation ui (that is given i 6= k and j ≤ i

and j ≤ k then typically Hj(ui) 6= Hj(uk)). Also observe that Hj(ui) = 0

if j 6≤ i.

• Now we apply the combination formula for each of the hierarchical surpluses.

That is, for each j ∈ I↓, we compute Hj(uI) =
∑

i∈I ciHj(ui).

• One now reconstructs/updates each of the ui as a sample of the combination

uI via the update ui ←
∑

j≤iHj(uI).

The ‘local’ checkpointing approach is based on a fault model in which pro-

cesses operate independently. That is, we assume that when a process fails the
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application is not terminated. The failed process is restarted (possibly on a differ-

ent physical processor in the event of hardware failure) whilst all other processes

continue uninterrupted. The only data lost is the most recent computation on

the failed process. Computations which were previously completed on the failed

process are restored from checkpoints made ‘locally’ by that process.

Algorithm 2 Outline of ‘local’ checkpointing algorithm for the combination

technique. This parallel algorithm describes the procedure on each process. We

assume a failure on one process requires the restart of only that particular process.

The restarted process starts from the beginning and is able to continue computing

from the correct state based on the counters n,mp.

if no checkpoint exists then

compute a load balancing of coarse solutions to processes

get list of coarse solutions u[0], . . . , u[Mp − 1] assigned to this process

set n = mp = 0 and coarse solutions u[0], . . . , u[Mp − 1] to initial condition

checkpoint load balancing, counters n,m and solutions u[0], . . . , u[Mp − 1]

else

load the load balancing information and counters n,mp from checkpoint

load the u[0], . . . , u[Mp − 1] assigned to this process from checkpoints

end if

while n < N do

for ip = mp, . . . ,Mp − 1 do

evolve coarse solution u[ip] by some fixed number of iterations

checkpoint the coarse solution u[ip] and counter mp = ip + 1

end for

hierarchise coarse solutions u[0], . . . , u[Mp − 1]

combine hierarchical surpluses // communication between processes

reconstruct coarse solutions u[0], . . . , u[Mp − 1]

checkpoint u[0], . . . , u[Mp − 1] and the counters mp = 0 and n = n+ 1

end while

In Algorithm 2 an outline of ‘local’ checkpointing implemented with the com-

bination technique is described. This is a somewhat simplified description and

in practice one would only load data from checkpoints if there had been a recent

failure on that process. Further, there would need to be a mechanism for the ap-

plication to re-enter at the correct point in the computation which is not described

in this pseudocode. The advantage of this procedure is that checkpoints can be
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saved independently by processes during the evolution of the coarse grids and that

the entire application need not be restarted, only the affected process/processes.

This model is representative of something which may be competitive with the

modern and sophisticated checkpoint-restart implementations. Similar to the

‘global’ checkpointing algorithm, we may again evolve and checkpoint the com-

ponent solutions several times prior to combination to decouple the checkpoint

interval from the combination interval.

In our numerical experiments using fault simulation the implementation of

these checkpointing procedures saves checkpoints to local memory rather than

stable storage. We can do this because faults are only simulated, that is no

process is actually killed. This gives the checkpoints a further advantage in our

numerical simulations as the write speed to local memory is much higher than

the read/write speeds in any real checkpoint-restart implementation that writes

to stable storage. Thus our reporting of checkpoint restart overheads will be

somewhat optimistic.

We wish to estimate the overhead of both checkpointing algorithms using the

stochastic models developed in Chapter 1. In Section 1.4.2 we studied a renewal

process model for checkpointing which we used to estimate the optimal check-

point restart interval. This was effectively a model of the ‘global’ checkpointing

algorithm. Recall that given the independent and identically distributed random

variables Xi denoting the time between successive failures, c the time required to

save a checkpoint, s the startup time of the application and r the computation

time between checkpoints, then the waste time (i.e. time not spent on the core

computation) between the i− 1th and ith failures is

Ri = Xi − r
⌊

max{Xi − s, 0}
c+ r

⌋
.

From Proposition 1.20 we know that when the Xi are exponentially distributed

then

E[Ri] = λ− re−s/λ

e(c+r)/λ − 1

where λ = E[Xi]. Further, we showed that a minimum for E[Ri] is achieved for

r + c ≈
√

2cλ when r + c� λ.

The relative overhead of the checkpointing algorithm is given by T−Tcomp

Tcomp
where

Tcomp is the computation time in the absence of checkpointing and faults and

T is the computation time in the presence of checkpointing and faults. If the

computation requires N computation cycles to complete, then the total compu-

tation time in the absence of checkpointing and faults is Tcomp = s + Nr. T
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is stochastic in nature as it depends on when faults occur during the compu-

tation. As such we will estimate E[T ] so that we may estimate the expected

relative overhead. To simplify the calculation will will assume the startup time

is negligible, that is s = 0 and thus Tcomp = Nr. Consider a compute check-

point cycle starting at some time t. The probability that this cycle completes

successfully is Pr(N(t + r + c) − N(t) = 0), i.e. the probability that there are

no renewals/faults in the interval [t, r + c). Given a random starting time t this

is equivalent to the probability that the forward recurrence time is larger than

r+c, i.e. Pr(SN(t)+1− t ≥ r+c). If the time between failures is exponentially dis-

tributed then we know the forward recurrence is identically distributed to the Xi.

Thus the probability of no failure during a randomly chosen compute checkpoint

cycle is Pr(X1 ≥ r+ c) = e−(r+c)/λ where λ = E[X1]. Further, as the exponential

distribution is memory-less the same then the probability of no failure is the same

for all compute checkpoint cycles. We require N successes for the algorithm to

complete with the last trial being a success. Given, K ≥ N trials then we want

N − 1 successes out of K − 1 trials followed by a success. The probability of

this event is q
(
K−1
N−1

)
qN−1(1 − q)K−N where q = Pr(X1 > r + c) = e−(r+c)/λ. It

is straightforward to check that
∑∞

K=N p
(
K−1
N−1

)
qN−1(1− q)K−N = 1 and that the

expectation of the number of trials K which yields N successes (with the last a

success) is
∞∑

K=N

Kq

(
K − 1

N − 1

)
qN−1(1− q)K−N =

N

q
.

Thus the expected number of compute checkpoint cycles in which a failure occurs

is N
q
−N = N(1−q)

q
. In each these compute checkpoint cycles the expected wasted

time is given by

E[X1 | X1 < r + c] =

∫ r+c

0

xe−x/λ)

λPr(X1 < r + c)
dx = λ− (r + c)

e(r+c)/λ − 1
.

Now from Section 1.4.2 we know that for r + c� λ we have 1
e(r+c)/λ−1

≈ λ
r+c
− 1

2

and thus

E[X1 | X1 < r + c] ≈ r + c

2
.

Therefore the expected lost time from a failed compute-checkpoint cycle is approx-

imately r+c
2

. Thus the expected computation time in the presence of checkpoints

and failures is E[T ] = N(r+ c) + N(1−q)(r+c)
2q

. It follows that the expected relative

overhead is

E

[
T − Tcomp

Tcomp

]
=

E[T ]−Nr
Nr

≈
Nc+ N(1−q)(r+c)

2q

Nr
=
c

r
+

(r + c)(1− q)
2rq

.
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The c
r

term is the contribution of checkpoints of successful compute checkpoint

cycles whilst the (r+c)(1−q)
2rq

term is the expected time spent on computations which

are lost due to faults. Notice that the N drops out such that the expected relative

overhead does not depend on the number of iterations. This is a consequence of

our assumption that s = 0 and the memory-less property of the exponential

distribution.

Under certain assumptions the ‘local’ checkpointing algorithm can also be

modelled with the same renewal process. Suppose that the evolution of each u[ip]

by one time step takes the same amount of time, the time to checkpoint each u[ip]

is c′ = c/Mp, and that the time spent outside the evolution loop is negligible. In

these circumstances we effectively have the global checkpointing algorithm over

N×M compute cycles of length r′ with checkpoint time c′. Note that the optimal

r′ in this scenario is r′ ≈ −c′ +
√

2c′Mp = −c/Mp +
√

2cλ/Mp. Additionally the

probability of success in an interval of length r′ + c′ is q′ = Pr(X1 > r′ + c′) =

e−(r′+c′)/λ. Thus the expected relative overhead is simply

E

[
T − Tcomp

Tcomp

]
≈ c′

r′
+

(r′ + c′)(1− q′)
2r′q′

.

As an example, suppose λ = 104, s = 0, c = 10 and Mp = 100. For ‘global’

checkpointing the optimal interval is approximately r = −10 +
√

2× 105 ≈ 437.2

which leads to an upper bound for the overhead of ≈ 4.63%. For ‘local’ check-

pointing we obtain r′ = −0.1 +
√

2× 103 ≈ 44.62 which leads to an upper bound

for the overhead of ≈ 0.449%. Thus we see that the ‘local’ checkpointing algo-

rithm is approximately one tenth of the overhead of the ‘global’ checkpointing

algorithm. In general we expect the improvement to be a factor of ≈M−1/2.

Remark 5.2. In the papers [67, 79, 80] it is discussed how the combination

technique could be implemented within a map-reduce framework. The map-

reduce framework typically involves one master process that delegates a large

number of relatively small tasks to a collection of worker processes. A form

of fault tolerance is achieved in many implementations by remapping tasks as

necessary, for example, if a worker process is killed or fails to complete an assigned

task within a specified time limit then the master re-sends that task to a different

worker process. If the master is immediately notified of failures then the overheads

in this model are comparable to the ‘local’ checkpointing discussed here and

thus we do not provide a separate analysis for a map-reduce based combination

technique.
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5.2 Fault Tolerant Combination Technique

Suppose we have a set I of multi-indices for which we intend to compute each of

the solutions ui and combine according to

ui =
∑
i∈I

ciui (5.1)

where the ci are given by a solution to the general coefficient problem (gcp), see

Section 4.4. As each of the ui can be computed independently the computation

of these is easily distributed across different process pools in a high performance

computer. To simplify the discussion we will assume these process pools consist

of hardware nodes. Suppose that one or more of these nodes experiences a fault,

which may be hardware or software in nature. As a result, some of our ui may

not have been computed correctly. We denote J ⊂ I to be the set of indices for

which the ui where not correctly computed. A lossless approach to fault tolerance

would be to recompute ui for i ∈ J , for example as described in algorithm 2.

However, recomputation in a parallel environment is costly even if it is just for

one ui. For example, consider 100 process pools of equal size with an equal

balance of workload, and suppose that one of the process pools is delayed by

time t as a result of recomputing a ui, then the other 99 process pools are idle

making the parallel efficiency at most 1% for that period of time. To avoid this

we propose a lossy approach to fault tolerance in which the failed solutions are

not recomputed. This means we must find new combination coefficients ci for

i ∈ I\J . In Section 4.4 we discussed several approaches for finding combination

coefficients given an arbitrary collection of grids. Any of those methods could

be used to find new combination coefficients for I\J . The numerical results in

Section 4.5 indicated that the combinations obtained via the gcp were more

robust than the other approaches. It also has the advantage of working well

without the need to estimate additional parameters as is the case for the error

splitting based combinations. As such this is the method we consider for dealing

with lost data due to faults. To find new combination coefficients we need only

solve the gcp problem for the set of multi-indices I\J .

As discussed in Section 4.4.1, the gcp is difficult to solve in its most general

form. Whilst it can be solved rather quickly if the poset (I,≤) is closed under ∧
(i.e. a lower semi-lattice), this is no longer any help in the ftct since the random

nature of faults means we cannot guarantee that (I\J,≤) is always a lower semi-

lattice. The only way we could ensure this is to restrict which elements of I can

be in J . A simple way to achieve this is to recompute missing ui if (I\{i},≤) is
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not a lower semi-lattice. In particular this is achieved if all ui with i /∈ max I are

recomputed. Since elements in max I correspond to the solutions on the largest

of the grids, we are avoiding the recomputation of the solutions which take the

longest to compute. This means that any delays caused by recomputation are

less likely to occur and are much shorter compared to the ‘local’ checkpointing

algorithm (if they do occur). Additionally, this also means only the largest of the

hierarchical spaces are ever omitted as a result of a failure. As these contribute

the least to the solution we expect the resulting error to be relatively close to

that of ui, i.e. the computed solution in the event that no faults occur. Finally,

since (I\J,≤) is then a lower semi-lattice, the resulting gcp for I\J has a unique

maximal solution which is easily computed.

We now illustrate this approach as it is applied to the classical combination

technique. We define In = {i ∈ Nd : |i| ≤ n}. It was shown in [67] that the

proportion of additional unknowns in computing the solutions ui for all i ∈ In

compared to n − d < |i| ≤ n is at most 1
2d−1

. If no faults occur then the com-

bination is exactly the classical combination technique with ci = (−1)n−|i|
(
d−1
n−|i|

)
if n − d < |i| ≤ n and ci = 0 otherwise. If faults do occur then we recompute

any ui with |i| < n that were not successfully computed. If no faults occurred for

any ui with |i| = n then we can again proceed with the classical combination. If

faults affect any ui with |i| = n then we add such i to the set J and then solve

the gcp for In\J . The solution is trivially obtained with hierarchical coefficients

ωi = 1 for all i ∈ In\J .

The largest solutions (in terms of unknowns) which may have to be recom-

puted are those with |i| = n − 1 which would be expected to take at most half

the time of those solutions with |i| = n. Since they take less time to compute

they are also less likely to be lost due to failure. Additionally, there are
(
n−1+d−1

d−1

)
solutions with |i| = n − 1 which is less than the

(
n+d−1
d−1

)
with |i| = n. As a

result of these observations, we would expect to see far less disruptions caused by

recomputation when using this approach compared to a lossless approach where

all failed solutions are recomputed.

The worst case scenario with this approach is that all ui with |i| = n are not

successfully computed due to faults. In this case the resulting combination is

simply a classical combination of level n− 1. This only requires the solutions ui

with n − d ≤ |i| ≤ n − 1. Likewise, all solutions to the gcp in this approach

result in zero coefficients for all ci with |i| < n− d. We can therefore reduce the

overhead of the ftct by only computing the solutions ui for n − d ≤ |i| ≤ n

(instead of all ui with |i| ≤ n). It is known that the proportion of additional
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unknowns compared to the classical combination technique in this case is at

most 1
2(2d−1)

[67]. This asymptotic estimate is perhaps misleading as for d > 2

and practical levels n ≤ 20 this is an overestimate. It also neglects the fact that

a load balancing for ui with n− d < |i| ≤ n will generally be imperfect and that

the computation of the additional ui with |i| = n − d will often fill the gaps in

the load balancing without extending the total computation time. Further still,

the algorithm could be adjusted to only compute the necessary ui in the event of

failures.

The solutions ui with |i| = n−1 have approximately half the unknowns of the

largest ui and the recomputation of these may still be disruptive and undesirable.

We could therefore consider recomputing only solutions with |i| ≤ n−2. By doing

this the recomputations are even more manageable having at most one quarter

the unknowns of the largest ui. The worst case here is that all solutions with

|i| ≥ n−1 fail and we end up with a classical combination of level n−2. Again it

turns out one does not require the entire downset In, in this case the (modified)

ftct requires solutions ui with n− d− 1 ≤ |i| ≤ n. Using arguments similar to

those in [67] it is easily shown that the overhead in this case is at most 3
4(2d−1)

(although again one typically has far less redundancy in practice). The trade-off

now is that the update of coefficients takes a little more work. We are back in

the situation where we cannot guarantee that (In\J,≤) is a lower semi-lattice.

To solve the gcp in this case we start with all ωi equal to 1. If failures affected

any ui with |i| = n we set the corresponding constraints ci = ωi = 0. For failures

occurring on ui with |i| = n − 1 we have the constraints ωi −
∑d

k=1 ωi+ek = 0

(with ek being the multi-index with ekl = δk,l). We note that (since the ωi are

binary variables) this can only be satisfied if at most one of the ωi+ej is equal

to 1. Further, if
∑d

k=1 ωi+ek = 0 we must also have ωi = 0. This gives us a

total of d+ 1 feasible solutions to check for each such constraint. Given g failures

on solutions with |i| = n − 1 we have at most (d + 1)g feasible solutions to the

gcp to check. This can be kept manageable if solutions are combined frequently

enough that the number of failures g that are likely occur in between is small.

One solves the gcp by computing the objective function (4.16) for each of the

feasible solutions identified and selecting one which maximises this. Where some

of the failures on the second layer are sufficiently far apart on the lattice, it is

possible to significantly reduce the number of cases to check as constraints can

be optimised independently.

We could continue and describe an algorithm for only recomputing the fourth

layer and below, however the coefficient updates here begin to become much more
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complex (both to describe and to compute). Our experience indicates that the

recomputation of the third layer and below is a good trade-off between the need

to recompute and the complexity of updating the coefficients. The numerical

results in Section 5.2.4 are obtained using this approach.

5.2.1 Implementation of the FTCT

In Algorithm 3 we describe the parallel ftct algorithm. Note that the pseu-

docode focuses on fault tolerance during the time consuming evolution of the ui

and would require some additional modifications to be fault tolerant through the

combination stages. Here we elaborate on some details.

• On line 2 the partition is done in such a way that the workload on each

process pool is balanced, that is given a work function W : Nd → R+ for

which W (i) is the amount of time required to compute the coarse approxi-

mation ui then the Ip are chosen such that
∑

i∈IpW (i) ≈ 1
P

∑
i∈IW (i) for

all p = 1, . . . , P .

• When a fault occurs we assume that only the affected process pool need to

be restarted (with all other process pools continuing uninterrupted). The

restarted process then loads data from checkpoints and uses the values of

the states Si and n to continue execution from the correct location.

• The setting of Si = −1 on line 12 is meant to flag the ui which we will not

recompute in the event of a failure. In particular, only the smaller of the

component solutions are typically recomputed upon failure.

• On line 17 the process pools communicate which ui have been successfully

computed. This allows all processes to compute combination coefficients

which are consistent and only utilise those component solutions which are

available (via the gcp).

• The combination of hierarchical surpluses in line 20 is first done on the local

process over the ui with i ∈ Ip, the results of this are then combined glob-

ally. For example, implemented using the message passing interface (mpi)

we use mpi allreduce to sum the partial combination of the surpluses

(premultiplied by the appropriate coefficients) and distribute the results to

all processes.
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Algorithm 3 Parallel fault tolerant combination technique algorithm. This de-

scribes the procedure on each process (or work group in a process pool). As

with the local checkpointing algorithm we assume that when a process fails then

only the failed process needs to be restarted (all others continue as usual). The

restarted process is able to continue where it left off using the counter n and the

states Si possibly skipping the evolution of a ui for which a failure occurred.

1: if no checkpoint exists then

2: compute partition of I = I1 ∪ · · · ∪ IP amongst P process pools

3: set n = 0 and partition Ip associated with this process (with rank p)

4: initialise ui and set state Si = n for all i ∈ Ip
5: checkpoint n, Ip and the pairs ui, Si for all i ∈ Ip
6: else

7: from checkpoint load n, the partition Ip, and the pairs ui, Si for all i ∈ Ip
8: end if

9: while n < N do

10: for each i ∈ Ip with Si = n do

11: if ui is to be discarded upon failure then

12: set Si = −1 and write to checkpoint

13: end if

14: evolve ui by some fixed number of iterations

15: set Si = n+ 1 and checkpoint the pair ui, Si

16: end for

17: broadcast and gather the Si for all i ∈ I // global communication

18: compute combination coefficients ci by solving the gcp for J = {i : Si =

n+ 1}
19: hierarchise each ui for all i ∈ Ip for which Si = n+ 1

20: combine hierarchical surpluses // global communication

21: reconstruct nodal basis for ui for all i ∈ Ip
22: set Si = n+ 1 and checkpoint the pair ui, Si for all i ∈ Ip
23: set n = n+ 1 and write to checkpoint

24: end while
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• The reconstruction of ui on line 21 includes those ui which had previously

failed. That is the ui which were lost are estimated with the combination

of the remaining ui.

• The evolution and combination parts of the code are decoupled in such a

way that several evolution steps can be done between checkpoints, that is

the checkpoint times and combination times can be decoupled.

At the time of writing this thesis there was limited support available for

restarting individual process pools without restarting the entire job. We think the

most promising software at this time is the User Level Fault Mitigation ulfm [11,

10] proposal developed by the mpi forum’s fault tolerance working group for which

the third beta release was available1 at the time of writing this thesis. Mohsin

Ali has done extensive work in implementing a version of our ftct algorithm

that supports real fault recovery using ulfm [3, 4, 5] and we report some results

from this work in Section 5.2.4. However, my own work involved the validation of

the ftct algorithm via fault simulation for advection problems in two and three

spatial dimensions.

When simulating faults we assume that the probability of failure occurring

during the combination phase is negligible and therefore we to not implement fault

simulation for this portion of the code. We base this assumption on profiling of

the code which indicates that the combination is typically less than 1% of the total

computation time for large computations with relatively infrequent combinations.

Fault simulation was implemented within the parallel ftct algorithm as follows.

• On line 4 each process (or work group in a process pool) samples a time

of failure tp before initialising the ui. The sample is made by sampling a

distribution for the time to failure and adding this to the current time. In

our experiments we sample the Weibull distribution with some mean λ > 0

and shape 0 < κ ≤ 1 which is set at run-time.

• Before writing the checkpoint on line 15 we check if the current wall time

has exceeded the sampled time of failure tp for that process. If this is the

case then a failure is deemed to have occurred during the computation of

the last ui and the data is discarded. We then pretend that the effected

process pool has been instantly restarted (although a delay can be inserted

to simulate the time required to do this). A new time to failure is then

1http://fault-tolerance.org/ulfm/downloads/
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sampled on the effected process pool and the algorithm then proceeds to

determine if the ui should be recomputed.

Due to limited data at the current time we are unable to predict what recovery

times one might expect for the replacement of a failed node in an application.

Some measurements we made using ulfm in [5] but as ulfm is still in beta

we feel these results are not representative of what could be expected in a first

release. Also note that (simulated) failures are checked for at the completion of

the computation of each ui. Since a failure is most likely to occur some time

before the computation completes then time is wasted in the simulation from the

sampled time of failure to the completion of the affected computation. In practice,

the failure of a process causing the loss of a grid that is not to be recomputed

would cause the process to finish earlier than expected (provided the restart of

the process is less than the compute time which remained for the lost solution).

Depending on the load balancing this may in turn cause the application to finish

sooner than expected.

5.2.2 Expected error of the FTCT for interpolation

In this section, we bound the expected interpolation error for the ftct as applied

to the classical combination technique as described in Section 5.2. In particular

we look at the case where all solutions with |i| < n are recomputed, and the case

where all solutions with |i| < n − 1 are recomputed as described in Section 5.2.

Although we do not do so here, it should be clear how these results can be

extended to truncated combination starting from the estimates in Section 4.1.

Given u ∈ H2
0,mix then for each i ∈ Nd let ui be the piecewise multi-linear inter-

polant of u on the grid Ωi = {j2−i : 0 ≤ j ≤ 2i} (with j2−i = (j12−i1 , . . . , jd2
−id)

and 2i = (2i1 , . . . , 2id)). Define

εn :=
1

3
3−d2−2n‖D2u‖2

d−1∑
k=0

(
n

k

)(
1

3

)d−1−k

(5.2)

then the classical combination

ucn :=
d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
|i|=n& i≥1

ui .

satisfies ‖u − ucn‖2 ≤ εn, see Proposition (2.19). Note that we can restrict i ≥ 1

because ui = 0 for i 6≥ 1 as u is zero on the boundary. Therefore, in this
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subsection, we define the set of multi-indices In := {i ∈ Nd : |i| ≤ n& i ≥
1}. Thus, given {ui}i∈In one is able compute ucn. Further, we note that it is

straightforward to extend the work of this section to index sets that would be

more useful for computing truncated combinations using the results of Section 4.1.

When faults prevent successful computation of some of the ui we must find ugcp
I′

for some I ′ ⊂ In containing only those i for which ui was successfully computed.

Consider the independent Bernoulli random variables {Ui}i∈In for which

Ui(σ) :=

0 if σ is the event that ui is computed successfully

1 otherwise.
(5.3)

We assume that the only event preventing the successful computation of ui is the

failure of at least one process involved in the computation of ui. Additionally

it is assumed that no process is involved in the computation of more than one

ui at any given time such that the Ui are independent. Supposing that failures

on each hardware node are accurately modelled by an ordinary renewal process,

then Pr(Ui = 1) depends on the number of hardware nodes over which the com-

putation of ui is distributed. We assume that a failure on any node involved in

the computation of ui results in the failure of the computation itself. Let Ni be

the number of nodes, Y1, . . . , YNi be random variables for the time to next failure

on each of the nodes (that is the forward recurrence times, which are iid) and ti

be the computation time (wall time), then

Pr(Ui = 1) = 1− Pr(Y1 > ti, . . . , YNi > ti)

= 1−
Ni∏
k=1

Pr(Yk > ti)

= 1− Pr(Y1 > ti)
Ni .

If the time between failures on each hardware node is exponentially distributed

with mean λ then the forward recurrence time Y1 is also exponentially distributed

with mean λ (for asymptotically large starting times, see Theorem 1.13). In

this case the probability of at least one failure on the Ni nodes is exponentially

distributed with mean λ/Ni, in particular we have Pr(Ui = 1) = 1 − e−tiNi/λ.

Similarly if the time between failures on each node is Weibull distributed with

scale λ and shape 0 < κ ≤ 1 (and thus mean λΓ(1 + 1/κ)) then the cumulative

distribution of the forward recurrence time Y1 is given by

Pr(Y1 ≤ s) =
1

λ

∫ s

0

e(r/λ)κ dr ,
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(again this is for asymptotically large starting times, see Theorem 1.13). From

Proposition 1.22 we know that that Pr(Y1 ≤ s) ≤ Pr(X ≤ s) (with X Weibull

distributed with scale λ and shape κ). As a consequence it also follows that

1− Pr(Y1 > ti)
Ni ≤ 1− Pr(X1 > ti)

Ni ,

and therefore

Pr(Ui = 1) ≤ 1− e−Ni(ti/λ)κ .

In particular we obtain an upper bound for Pr(Ui = 1) by modelling the proba-

bility of at least one failure on the Ni nodes during the computation by a Weibull

random variable having scale λ/N
1/κ
i and shape κ.

Given that we have shown that for computations distributed over several hard-

ware nodes one may obtain an upper bound for Pr(Ui = 1) by simply adjusting

the scale λ (or equivalently the mean λΓ(1 + 1/κ)) appropriately we simplify the

calculations that follow by assuming that the computation of each ui is performed

within one hardware node. Further, as ui with identical |i| have a similar number

of unknowns it will be assumed that the time to compute such ui is also similar.

In particular we define tn := max|i|=n ti such that ti ≤ t|i| for all i and therefore

Pr(Ui = 1) = Pr(Y1 ≤ ti) ≤ Pr(Y1 ≤ t|i|) ≤ Pr(X ≤ t|i|) = 1− e−(t|i|/λ)κ .

Consider the situation in which we recompute any ui which fail if |i| < n. We

define the random vector Un,1 = (Ui)i∈In\In−1 which contains the random variables

Ui which indicate the success or failure of the corresponding ui. As In\In−1 has(
n−1
d−1

)
elements there are 2(n−1

d−1) possible states of the random vector Un,1, namely

Un,1 ∈ {0, 1}(
n−1
d−1). More generally we have the following definition.

Definition 5.3. Given s, n ∈ N with 1 ≤ s ≤ n and then Un,s is defined as the

random vector

Un,s := (Ui)i∈In\In−s ,

with the Ui as defined in (5.3) (which are independent). Further we define the

support of Un,s as

supp(Un,s) := {i ∈ In\In−s : Ui = 1} .

If the ui with i ∈ In−s are recomputed upon failure then the set of multi-

indices corresponding to the successfully computed ui is given by In\ supp(Un,s).

Given Un,s then the solution of the fault tolerant combination technique with
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combination coefficients given by a solution to the gcp for the set In\ supp(Un,s)

is denoted by ugcp
In\ supp(Un,s)

, that is

ugcp
In\ supp(Un,s)

:=
∑

i∈In\ supp(Un,s)

ciui ,

where the ci are given by a gcp solution for the set In\ supp(Un,s) and each ui is

the piecewise multilinear interpolant of u on the grid Ωi. Note that ugcp
In\ supp(Un,s)

is effectively a function of the random variable Un,s and is therefore also a random

variable. With this we can now give the first result which bounds the expectation

of the interpolation error if only those ui with |i| < n are recomputed if lost due

to a fault.

Proposition 5.4. Fix the dimension d > 0 and let n ≥ d. Let u ∈ H2
0,mix([0, 1]d)

and for finite J ⊂ Nd let ugcpJ :=
∑

i∈J ciui where the ui are piecewise multi-linear

interpolants of u on the grid Ωi = {j2−i : 0 ≤ j ≤ 2i} and the ci are given by a

solution of the gcp for the set J . For each ui we define ti to be the time required to

compute ui and set tn = max|i|=n ti. Let εn be as defined in (5.2). Let Un,s be the

random vector defined in Definition 5.3 with s = 1 and Pr(Ui = 1) ≤ 1− e−(ti/λ)κ

for each i with λ > 0 and 0 < κ ≤ 1. Then

E
[
‖u− ugcpIn\ supp(Un,1)‖2

]
≤ εn

(
1 + 3

(
1− e−(tn/λ)κ

))
. (5.4)

Proof. Consider a sample J = In\ supp(Un,1). We observe that In−1 ⊆ J ⊆ In

and J is a lower-semilattice (i.e. closed under ∧). It follows that there is a

unique solution to the gcp for the set J (in particular ωi = 1 for all i ∈ J↓
and ωi = 0 otherwise, see Section 4.4). Additionally, the resulting coefficients ci

which are non-zero satisfy i ∈ J . Thus ugcp
J = uJ := PJu with PJ as described in

Section 4.2. Further, we may apply Proposition 4.26 to obtain

‖u− uJ‖2 ≤ 3−d‖D2u‖2

3−d −
∑
i∈J

2−2|i|

 ,

which we may decompose into

‖u− uJ‖2 ≤ 3−d‖D2u‖2

3−d −
∑

1≤i∈In

2−2|i|

+ 3−d‖D2u‖2

∑
i∈In\J

2−2|i| .

Note that the left term bounds ‖u−ucn‖2 which is in turn bounded by εn (Propo-

sition 2.19). Also, as In\J = supp(Un,1) and i ∈ supp(Un,1) implies that |i| = n
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and Ui = 1 then it follows that

‖u− ugcp
In\ supp(Un,1)‖2 ≤ εn + 3−d‖D2u‖2

∑
i∈supp(Un,1)

2−2|i|

= εn + 3−d‖D2u‖2

∑
i∈In\In−1

Ui2
−2n .

We now take the expectation of both sides. As E[Ui] = Pr(Ui = 1) and expecta-

tion is linear and monotone one has

E
[
‖u− ugcp

In\ supp(Un,1)‖2

]
≤ εn + 3−d‖D2u‖2

∑
i∈In\In−1

2−2n Pr(Ui = 1)

≤ εn + 3−d‖D2u‖2

∑
i∈In\In−1

2−2n
(
1− e−(t|i|/λ)κ

)
≤ εn + 3−d‖D2u‖2

(
n− 1

d− 1

)
2−2n

(
1− e−(tn/λ)κ

)
,

Lastly we observe that

3−d‖D2u‖2

(
n− 1

d− 1

)
2−2n ≤ 3−d‖D2u‖2

(
n− 1

d− 1

)
2−2n

d−1∑
k=0

(
n

k

)(
1

3

)d−1−k

= 3εn

and therefore

E
[
‖u− ugcp

In\ supp(Un,1)‖2

]
≤ εn + 3εn

(
1− e−(tn/λ)κ

)
.

Collecting the common factor εn yields the desired result.

Note that as tn/λ → ∞ we have E
[
‖u− ugcp

In\ supp(Un,1)‖2

]
≤ 4εn. However,

the worst case scenario is when supp(Un,1) = In\In−1 which results in a classical

combination of level n− 1 which has the error bound

‖u− ucn−1‖2 ≤ εn−1 =
1

3
· 3−d2−2(n−1)‖D2u‖2

d−1∑
k=0

(
n− 1 + d

k

)(
1

3

)d−1−k

≤ 4

3
· 3−d2−2n‖D2u‖2

d−1∑
k=0

(
n+ d

k

)(
1

3

)d−1−k

= 4 · εn .

This is consistent with the upper bound (5.4).

Notice that we sacrificed some tightness in the proof of Proposition 5.4 in

order to express the bound as a multiple of εn. The reason for doing this is is
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that one obtains some indication for what the expected relative increase in error

is when faults are of concern. In particular, if the bound ‖u − ucn‖2 ≤ εn was

tight, one might expect

E
[
‖u− ugcp

In\ supp(Un,1)‖2

]
/ ‖u− ucn‖2

(
1 + 3

(
1− e−(tn/λ)κ

))
,

for which we see the relative increase is 3
(
1− e−(tn/λ)κ

)
.

Now consider the situation in which we recompute any ui which fail if |i| <
n − 1. In this scenario the random vector Un,2 (see Definition 5.3) tells us the

state of those ui with i ∈ In\In−2. As In\In−2 has
(
n−1
d−1

)
+
(
n−2
d−1

)
elements there

are 2(n−1
d−1)+(n−2

d−1) possible outcomes. The set of multi-indices corresponding to the

successfully computed ui is In\ supp(Un,2) (which contains In−2) and ugcp
In\ supp(Un,2)

is the corresponding random variable denoting the output of the fault tolerant

combination technique. We now prove an error bound for this scenario analogous

to Proposition 5.4.

Proposition 5.5. Fix the dimension d > 0 and n ≥ d. Let u ∈ H2
0,mix([0, 1]d)

and for each finite J ⊂ Nd let ugcpJ be as defined in Proposition 5.4. We again

define ti as the time required to compute ui and set tn = max|i|=n ti and similarly

for tn−1. Let εn be as defined in (5.2). Let Un,s be the random variable defined in

Definition 5.3, s = 2 and Pr(Ui = 1) ≤ 1 − e−(ti/λ)κ with λ > 0 and 0 < κ ≤ 1.

Then

E
[
‖u− ugcpIn\ supp(Un,2)‖2

]
≤ εn ·min

{
16, 1 + 3

(
d+ 5− e−( tnλ )

κ

− (d+ 4)e
−
(
tn−1
λ

)κ)}
.

Proof. Unlike the situation in Proposition 5.4, given a sample J = In\ supp(Un,2)

the solution to the gcp may not be unique. However, we observe that there

exists a largest downset J ′ (with respect to Nd
+ with N+ = {1, 2, 3, . . . }) such that

In−2 ⊆ J ′ ⊆ J . The gcp has a unique solution for the set J ′ which corresponds to

the combination uJ ′ := PJ ′↓u. As uJ ′ is a candidate solution to the gcp for the set

J any actual solution must satisfy ‖u−ugcp
J ‖2 ≤ ‖u−uJ ′‖2. Further, J ′ is obtained

by taking In and removing all i such that i ≥ j for some j ∈ In\J = supp(Un,2).

In particular, given j ∈ supp(Un,2) with |j| = n we need only remove j. On the

other hand, for |j| = n − 1 we remove j and j + em for m = 1, . . . , d (where

emk = δm,k). By applying the result of Proposition 4.26 and decomposing in a
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manner similar to Proposition 5.4 we observe

‖u− uJ ′‖2 ≤ 3−d‖D2u‖2

3−d −
∑
i∈J ′

2−2|i|


≤ 3−d‖D2u‖2

3−d −
∑
i∈In

2−2|i|

 + 3−d‖D2u‖2

∑
i∈In\(J ′∪In−1)

2−2|i|

+ 3−d‖D2u‖2

∑
i∈In−1\(J ′∩In−1)

2−2|i| .

As before, the first term is bounded above εn. The third term consists of only

those |i| = n−1 for which ui was not successfully computed, that is i ∈ supp(Un,2)

with |i| = n− 2. For the second term we have i ∈ In\(J ′ ∪ In−1) if |i| = n and at

least one of the following is true

• ui was not successfully computed (that is i ∈ supp(Un,2)),

• uj was not successfully computed for some |j| = n − 1 with i ≥ j (that is

i− em ∈ supp(Un,2) for some m = 1, . . . , k).

Thus, as i ∈ supp(Un,2) if and only if Ui = 1, one has

‖u− ugcp
J ′ ‖2 ≤ εn + 3−d‖D2u‖2

 ∑
i∈In\In−1

2−2|i|

(
Ui +

d∑
m=1

Ui−em

)

+
∑

i∈In−1\In−2

2−2|i|Ui

 .

We observe that i ∈ In\In−1 implies |i| = n and similarly i ∈ In−1\In−2 implies

|i| = n− 1. Additionally, as ‖u−ugcp
J ‖2 ≤ ‖u−uJ ′‖2 and J = In\ supp(Un,2) one

obtains

‖u− ugcp
In\ supp(Un,2)‖2 ≤ εn + 3−d‖D2u‖2

 ∑
i∈In\In−1

2−2n

(
Ui +

d∑
m=1

Ui−em

)

+
∑

i∈In−1\In−2

2−2(n−1)Ui

 .

Taking the expectation of both sides (and using the fact expectation is linear and
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monotone) we have

E
[
‖u− ugcp

In\ supp(Un,2)‖2

]
≤ εn + 3−d‖D2u‖22−2n× ∑

i∈In\In−1

(
E[Ui] +

d∑
m=1

E[Ui−em ]

)
+ 4

∑
i∈In−1\In−2

E[Ui]

 .

Now as E[Ui] = Pr(Ui = 1) ≤ 1− e−(t|i|/λ)κ we have

E
[
‖u− ugcp

In\ supp(Un,2)‖2

]
≤ εn + 3−d‖D2u‖22−2n

 ∑
i∈In\In−1

(
1− e−(tn/λ)κ +

d∑
m=1

1− e−(tn−1/λ)κ

)

+4
∑

i∈In−1\In−2

1− e−(tn−1/λ)κ


= εn + 3−d‖D2u‖22−2n

((
n− 1

d− 1

)(
(1− e−(tn/λ)κ) + d(1− e−(tn−1/λ)κ)

)
+4

(
n− 2

d− 1

)
(1− e−(tn−1/λ)κ)

)
≤ εn

(
1 + 3(1− e−(tn/λ)κ) + 3

(
d+ 4

n− d
n− 1

)
(1− e−(tn−1/λ)κ)

)
,

where the last line uses the inequality 3−d‖D2u‖22−2n
(
n−1
d−1

)
≤ 3εn derived in

Proposition 5.4. Noting that n−d
n−1
≤ 1 and re-arranging we obtain

E
[
‖u− ugcp

In\ supp(Un,2)‖2

]
≤ εn

(
1 + 3

(
d+ 5− e−( tnλ )

κ

− (d+ 4)e
−
(
tn−1
λ

)κ))
.

Now the expected error can be no more than the worse case supp(Un,2) = In\In−2

corresponding to the classical combination of level n− 2 for which it is straight-

forward to show ‖u − ucn−2‖2 ≤ 16εn. Taking the minimum of the two bounds

yields the desired result.

This result is actually an over-estimate of the error bound. The main reason

for this is that our bound for the approximation ugcp
In\ supp(Un,2) always excludes

the hierarchical surplus uhj if |j| = n − 1 and uj is not successfully computed.

In practice the actual gcp solution will only exclude the surplus uhj if there are

several ui which have also failed for i in a neighbourhood of j. For example if

there has only been one failure resulting in the loss of uj for |j| = n− 1 then the

gcp solution is able to retain the surplus uhj by instead removing d− 1 surpluses
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uhi with |i| = n, that is the factor d + 4 can quite often be replaced with d − 1.

A better bound could be computed by enumerating all possible outcomes and

bounding the gcp solution for each. However, as the total number of outcomes

is 2(n−1
d−1)+(n−2

d−1) this becomes cumbersome even for modest dimensions and levels.

To illustrate how this result may be used in practice, suppose we compute

a level n = 12 interpolation in d = 3 dimensions on a machine whose mean

time to failure can be modelled by the Weibull distribution with scale λ = 1000

and shape parameter κ = 0.7 (thus the mean time between failures is ≈ 1266

seconds). Further, suppose ui with |i| > 10 are not recomputed if lost as a

result of a fault and that t12 is estimated to be 1.0 seconds and t11 is at most

0.5 seconds. The expected error for our computation is bounded above by 1.126

times the error bound if no faults were to occur, i.e. a relative increase of 12.6%.

This may seem somewhat large initially but to put this into perspective suppose

that ‖D2u‖2 = 1 then εn ≈ 5.16×10−8 and an increase of 12.6% leads to an upper

bound of 5.81 × 10−8 for the expected error which for most practical purposes

is not likely to make a perceivable difference in the solution. Even the worst

case scenario which has error bounded above by 8.25 × 10−7 is quite small and

certainly much better than no solution at all.

Proposition 5.5 gives some insight into how one may construct a bound for

more general Un,s with s = 3, ..., n− d. Despite not being able to explicitly write

down all of the gcp solutions in advance we can always find one candidate solution

for which any gcp solution must improve upon. However, as with Proposition 5.5

this tends to lead to an over estimate. The over estimate is particularly significant

for s > d as here a single failure on a grid i with |i| ≤ n − d gives quite a poor

error bound despite the fact that the gcp solution is just the combination uIn .

As such we have not included a bound for more general Un,s here.

So far we have only studied the expectation of interpolants computed with the

fault-tolerant combination technique. Of course it would be nice to be able to say

something about the variance (or standard deviation) as well. However it is very

difficult to obtain a reasonable bound for this as we only have an upper bound for

E[‖ugcp
Un\ supp(Un,2) − u‖2]. For s = 1 and s = 2 we can bound ‖ugcp

Un\ supp(Un,2) − u‖2

from above by 4εn and 16εn respectively and thus via Popoviciu’s inequality

their variances are bounded above by 4ε2n and 64ε2n respectively (noting that the

lower bound is zero). Studying the variance (or standard deviation) is useful for

understanding the spread of results from the mean. However, in our computations

it would be just as, if not more, useful to bound the spread of results from that

obtained in the absence of failures. In particular we study ‖uIn − u
gcp
In\ supp(Un,s)

‖2
2
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for the case s = 1.

Proposition 5.6. Consider the same assumptions as in Proposition 5.4. Then

E
[
‖uIn − u

gcp
In\ supp(Un,1)‖

2
2

]
≤ 9ε2n

(
1− e−(tn/λ)κ

)(
1− e−(tn/λ)κ +

e−(tn/λ)κ(
n−1
d−1

) ) .

Proof. Observe that

uIn − u
gcp
In\ supp(Un,1) =

∑
i∈In\In−1

Uiu
h
i

where each uhi is the ith hierarchical surplus of u. It follows that

‖uIn − u
gcp
In\ supp(Un,1)‖

2
2 ≤

∑
i,j∈In\In−1

UiUj‖uhi ‖2‖uhj ‖2 .

As expectation is linear and monotone it follows that

E
[
‖uIn − u

gcp
In\ supp(Un,1)‖

2
2

]
≤

∑
i,j∈In\In−1

E[UiUj]‖uhi ‖2‖uhj ‖2 .

Observe that E[UiUj] = Pr(UiUj = 1). Further, for i 6= j one has

Pr(UiUj = 1) = Pr(Ui = 1) Pr(Uj = 1) ≤ (1− e−(tn/λ)κ)2

whilst for i = j one has Pr(UiUj = 1) = Pr(Ui = 1) ≤ 1 − e−(tn/λ)κ . Further, as

|i| = n for i ∈ In\In−1 then

‖uhi ‖2 ≤ 3−d‖D2u‖22−2n ≤ 3εn(
n−1
d−1

) .
Lastly, as |In\In−1| =

(
n−1
d−1

)
we obtain

E
[
‖uIn − u

gcp
In\ supp(Un,1)‖

2
2

]
≤
(
n− 1

d− 1

)((
n− 1

d− 1

)
− 1

)
9ε2n(
n−1
d−1

)2 (1− e−(tn/λ)κ)2

+

(
n− 1

d− 1

)
9ε2n(
n−1
d−1

)2 (1− e−(tn/λ)κ) .

Collecting the common terms and re-arranging yields the desired result.

Remark 5.7. Note that for interpolation the gcp solutions will sometimes throw

away some information that has been computed, that is some ui which were suc-

cessfully computed may not be used due to a failure. In practice one may add
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contributions from such ui via the hierarchical decomposition. In this case a hier-

achical surplus uhi does not contribute only if uj is not successfully computed for

all j ≥ i. Thus the probability that uhi contributes to the error is
∏

j≥i Pr(Ui = 1).

Whilst one could provide an error bounds based on these probabilities interpo-

lation we do not do so here. The time required to compute interpolants will

typically be fast enough that the probability of failure is negligible and even in

the event of failure it is not likely to be inconvenient to recompute. Our results

here are meant to give an indication of the expected error for more complex and

time consuming computations for which the approximations ui are close to the

piecewise multi-linear interpolant of the true solution u.

5.2.3 Results for point-wise error splitting

Whilst knowing we get reasonable results for interpolation is a good start, what

we are really interested in is whether we can expect to obtain good results for

approximate solutions of partial differential equation (pde’s). In particular we

are interested in the advection equation, for which we showed in Section 3.3

that certain finite difference methods lead to an approximation which satisfies

the classical error splitting model (see (3.24) and (2.22)). Thus our goal in this

section is to obtain error bounds for the fault tolerant combination technique

when coarse solutions satisfy the error splitting model.

We start with an analysis of the two dimensional case for which we assume

approximations ui,j of u satisfy

ui,j(x)− u(x) = εx(x, hi)h
p
i + εy(x, hj)h

p
j + εxy(x, hi, hj)h

p
ih

p
j , (5.5)

with hi := 2−i, p ≥ 1 and |εx|, |εy|, |εxy| ≤ K for some K > 0 for all x, hi, hj. We

typically drop the x argument for ease of notation. Unlike the previous section

in which we considered u ∈ H2
0,mix we do not make this assumption here. In

particular we allow functions which are non-zero on the boundary. Therefore in

this section we consider index sets In = {i ∈ Nd : |i| ≤ n}, i.e. unlike the previous

section we now allow the components of i to be zero. For these sets we define

Un,s analogous to that in the previous section, that is Un,s = (Ui)i∈In\In−s , but

with the In including i having zero components. This random vector can again

be mapped to the result of the fault tolerant combination technique via

ugcp
In\ supp(Un,s)

:=
∑

i∈In\ supp(Un,s)

ciui ,
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where the ci are determined by a gcp solution for the set In\ supp(Un,s) and

the ui are approximations of u satisfying a pointwise error splitting, e.g. (5.5) in

2 dimensions. As with the interpolation estimates, it should be clear how the

following results can be extended to truncated combinations (by translating the

index set In and building on the estimates given in Section 4.1) but for brevity

we do not develop this here.

Consider the case s = 1 where ugcp
In\ supp(Un,1) is an approximation obtained from

the fault tolerant combination technique when we do not recompute ui which fail

if |i| = n (as described in Section 5.2.2). For these combinations with d = 2 we

have the following lemma.

Lemma 5.8. Let d = 2 and In−1 ⊂ J ⊆ In then J is a downset and the combi-

nation uJ is given by

uJ =
∑
|i|=n

ui −
∑
|i|=n−1

ui −
∑
|i|=n
i≥1

χIn\J(i)(ui1,i2 − ui1−1,i2 − ui1,i2−1 + ui1−1,i2−1)

− χIn\J((n, 0))(un,0 − un−1,0)− χIn\J((0, n))(u0,n − u0,n−1) .

Proof. A consequence of Proposition 4.19 is that we may write the combination

uJ as

uJ =
∑
i∈J

ui1,i2 − ui1−1,i2 − ui1,i2−1 + ui1−1,i2−1

where ui1,i2 := 0 if i1 < 0 and/or i2 < 0. Similar applies for uIn such that one has

uJ − uIn = −
∑
i∈In\J

ui1,i2 − ui1−1,i2 − ui1,i2−1 + ui1−1,i2−1 .

Now consider those i ∈ In\J for which at least one of i1, i2 are zero. There are

only two such i, namely (n, 0) and (0, n) and for these two values we observe that

the neighbours satisfy un,−1 = un−1,−1 = 0 and u−1,n = u−1,n−1 = 0 respectively.

Thus we obtain

uIn − uJ =
∑
i∈In\J
i≥1

(ui1,i2 − ui1−1,i2 − ui1,i2−1 + ui1−1,i2−1)

+ χIn\J((n, 0))(un,0 − un−1,0) + χIn\J((0, n))(u0,n − u0,n−1) .

Now as uJ = uIn − (uIn − uJ) and uIn is the classical level n combination we

obtain the desired result.
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Now consider a sample In\ supp(Un,1), then i ∈ In\ supp(Un,1) implies that

Ui = 0 if |i| = n. As in the previous section we assume that time between

failures is Weibull distributed with shape 0 < κ ≤ 1 and scale λ > 0 such

that Pr(Ui = 1) ≤ 1 − e−(ti/λ)κ . Using this we provide a point-wise bound for

E[|uIn\ supp(Un,1) − u|].

Proposition 5.9. Fix the dimension d = 2 and n ≥ 0. Let u ∈ C([0, 1]d) and

for each finite J ⊂ Nd let ugcpJ :=
∑

i∈J ciui where the ci are given by a solution of

the gcp for the set J and the ui satisfy the error splitting (5.5) with p ≥ 1 and

K > 0 such that |εx|, |εy|, |εxy| ≤ K for x and i. For each ui let ti be the time

required to compute ui and set tn = max|i|=n ti. Let Un,s be the random variable

defined above, s = 1 and Pr(Ui = 1) ≤ 1 − e−(ti/λ)κ for each i with λ > 0 and

0 < κ ≤ 1. Then

E[|ugcpIn\ supp(Un,1) − u|] ≤
(

3 + (1 + 2p)n

+ (n+ 3 + (n− 1)2p)(1− e−(tn/λ)κ)
)
K(1 + 2p)2−2n .

Proof. We observe that ugcp
In\ supp(Un,1) = uIn − (uIn − u

gcp
In\ supp(Un,1)) and therefore

via the triangle inequality

|ugcp
In\ supp(Un,1) − u| ≤ |uIn − u|+ |uIn − u

gcp
In\ supp(Un,1)| .

For the right most term we observe that by Lemma 5.8

uIn − u
gcp
In\ supp(Un,1)

=
∑
|i|=n
i≥1

Ui

(
(ui1,i2 − u)− (ui1−1,i2 − u)− (ui1,i2−1 − u) + (ui1−1,i2−1 − u)

)
+ Un,0 ((un,0 − u)− (un−1,0 − u)) + U0,n ((u0,n − u)− (u0,n−1 − u)) ,

and therefore by the triangle inequality

|uIn − u
gcp
In\ supp(Un,1)| (5.6)

≤
∑
|i|=n
i≥1

Ui |(ui1,i2 − u)− (ui1−1,i2 − u)− (ui1,i2−1 − u) + (ui1−1,i2−1 − u)|

+ Un,0 |(un,0 − u)− (un−1,0 − u)|+ U0,n |(u0,n − u)− (u0,n−1 − u)| .

Substituting the error splitting (5.5) gives

|(ui1,i2 − u)− (ui1−1,i2 − u)− (ui1,i2−1 − u) + (ui1−1,i2−1 − u)|
=
∣∣εxy(hi1 , hi2)2−np − εxy(hi1−1, hi2)2−(n−1)p

−εxy(hi1 , hi2−1)2−(n−1)p + εxy(hi1−1, hi2−1)2−(n−2)p
∣∣ ≤ K(1 + 2p)22−np ,
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and

|(un,0 − u)− (un−1,0 − u)| =
∣∣εx(hn)2−np + εxy(hn, h0)2−np

−εx(hn−1)2−(n−1)p − εxy(hn−1, h0)2−(n−1)p
∣∣ ≤ 2K(1 + 2p)2−np ,

and similarly for |(u0,n − u)− (u0,n−1 − u)|. Substituting these bounds into (5.6)

we take the expectation of both sides. As E[Ui] = Pr(Ui = 1) and expectation is

both linear and monotone one obtains

E
[
|uIn − u

gcp
In\ supp(Un,1)|

]
≤
∑
|i|=n
i≥1

Pr(Ui = 1)K(1 + 2p)22−np

+ (Pr(Un,0 = 1) + Pr(U0,n = 1))2K(1 + 2p)2−np

≤ (n+ 3 + (n− 1)2p) (1− e−(tn/λ)κ)K(1 + 2p)2−np .

Combining this with the bound |uIn − u| ≤ (3 + (1 + 2p)n)K2−np (Lemma 2.25)

yields the desired result.

Note that as the right hand side is independent of x it also provides a bound

for ‖E[|ugcp
In\ supp(Un,1) − u|]‖∞.

We can extend the result of Proposition 5.9 to obtain a bound for the case

s = 2, that is when only those ui with |i| ≤ n − 2 are recomputed upon failure

and the random vector Un,2 reflects the state of those ui with n− 2 < |i| ≤ n.

Proposition 5.10. Fix d = 2, n ≥ 0 and consider the same assumptions as in

Proposition 5.9 but with s = 2. Additionally let tn−1 = max{ti : |i| = n − 1}.
Then

E[|ugcpIn\ supp(Un,2)−u|] ≤
(
3 + (1 + 2p)n+ (n+ 3 + (n− 1)2p)(1 + 2p)(1− e−(tn/λ)κ)

(2n+ 2 + 3n2p + (n− 2)22p)(1 + 2p)(1− e−(tn−1/λ)κ)
)
K2−2n .

Proof. We may write ugcp
In\ supp(Un,2)−u = (uIn−u)− (uIn−u

gcp
In\ supp(Un,2)) and thus

|ugcp
In\ supp(Un,2) − u| ≤ |uIn − u|+ |uIn − u

gcp
In\ supp(Un,2)| .

For the right most term we observe that

|uIn − u
gcp
In\ supp(Un,2)| =

∣∣∣∣∣∣
∑

i∈supp(Un,2)

(ui1,i2 − ui1−1,i2 − ui1,i2−1 + ui1−1,i2−1)

∣∣∣∣∣∣
≤

∑
i∈supp(Un,2)

|ui1,i2 − ui1−1,i2 − ui1,i2−1 + ui1−1,i2−1| ,
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where ui1,i2 := 0 if i1 < 0 and/or i2 < 0. As in Proposition 5.5 given a sample

of In\ supp(Un,2) we let J ′ be the largest downset contained in that sample. It

follows that supp(Un,2) ⊆ In\J ′ and thus

|uIn − u
gcp
In\ supp(Un,2)| ≤

∑
i∈In\J ′

|ui1,i2 − ui1−1,i2 − ui1,i2−1 + ui1−1,i2−1| .

Now each term on the right hand side can be written as

|(ui1,i2 − u)− (ui1−1,i2 − u)− (ui1,i2−1 − u) + (ui1−1,i2−1 − u)|

for which we may substitute the error splitting and bound in the same way as

in Proposition 5.9. Notice that now we have terms with |i| = n − 1 in addition

to those with |i| = n. In particular we also have the special cases i = (n − 1, 0)

and i = (0, n − 1) for which ui1,i2−1 = ui1−1,i2−1 = 0 and ui1−1,i2 = ui1−1,i2−1 = 0

respectively. Now as in Proposition 5.5 we observe that i ∈ In\J and |i| = n− 1

if and only if ui failed, that is Ui = 1. Further, i ∈ In\J and |i| = n if and only if

ui failed (Ui = 1) or ui−ek failed (Ui−ek = 1) for some k ∈ {1, 2} (with eks = δk,s).

Putting this together one obtains

|uIn − u
gcp
In\ supp(Un,2)| ≤

∑
|i|=n−1
i≥1

UiK(1 + 2p)22−(n−1)p

+ (Un−1,0 + U0,n−1)2K(1 + 2p)2−(n−1)p

∑
|i|=n
i≥1

(
Ui +

2∑
k=1

Ui−ek

)
K(1 + 2p)22−np

+ (Un,0 + Un−1,0 + U0,n + U0,n−1)2K(1 + 2p)2−np .

Now collecting the common K(1+2p)2−np, taking the expectation (which is linear

and monotone) and noting E[Ui] = Pr(Ui = 1) we have

E[|uIn − u
gcp
In\ supp(Un,2)|] ≤K(1 + 2p)2−np

( ∑
|i|=n−1
i≥1

E[Ui](1 + 2p)2p

+ (E[Un−1,0] + E[U0,n−1])2 · 2p

+
∑
|i|=n
i≥1

(
E[Ui] +

2∑
k=1

E[Ui−ek ]

)
(1 + 2p)

+ 2(E[Un,0] + E[Un−1,0] + E[U0,n] + E[U0,n−1])

)
.
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We know that E[Ui] = Pr(Ui = 1) ≤ 1 − e−(t|i|/λ)κ . Substituting this we find

the sums no longer depend on the specific i. Thus, as
∑
|i|=n& i≥1 1 = n− 1 and

similarly for |i| = n− 1, we obtain

E[|uIn − u
gcp
In\ supp(Un,2)|]

≤ K(1 + 2p)2−2n
(

(n− 2)(1− e−(tn−1/λ)κ)2p(1 + 2p) + 4(1− e−(tn−1/λ)κ)2p

+ (n− 1)((1− e−(tn/λ)κ) + 2(1− e−(tn−1/λ)κ))(1 + 2p)

+ 4(1− e−(tn/λ)κ) + 4(1− e−(tn−1/λ)κ)
)

= K(1 + 2p)2−2n
(

(2n+ 2 + 3n2p + (n− 2)22p)(1− e−(tn−1/λ)κ)

+ (n+ 3 + (n− 1)2p)(1− e−(tn/λ)κ)
)
.

Adding to this the bound |uIn − u| ≤ (3 + (1 + 2p)n)K2−np (Lemma 2.25) yields

the desired result.

Similar to Proposition 5.5 this result is an over-estimate of the expected error

but gives a rough idea of how the error depends on the distribution of the time

between failures. It should be clear how the technique used to prove Proposi-

tion 5.10 could be applied to more general Un,s but for s > 2 the resulting bound

becomes quite weak for the same reasons as discussed for Proposition 5.5. Ob-

serve that Propositions 5.9 and 5.10 only apply to d = 2. The main difficulty in

extending this to d > 2 is that there are more cases of indices i for which some

of the i − j with 0 ≤ j ≤ 1 have negative components. These affect the error

splitting differently depending on the number of non-zero components as we will

see in the following lemma.

Lemma 5.11. Let d ∈ N+ and i ∈ Nd. For 0 ≤ j ≤ 1 consider approximations

ui−j of some function u which satisfy the error splitting

ui − u =
d∑

k=1

∑
{e1,...,ek}
⊂{1,...,d}

γe1,...,ek(hie1 , . . . , hiek )hpiek
· · ·hpiek , (5.7)

with |γe1,...,ek | ≤ K for all {e1, . . . , ek} ⊂ {1, . . . , d} and x for some K > 0.

Additionally, let ui−j = 0 if ik − jk < 0 for any k = 1, . . . , d. Then∣∣∣∣∣∣
∑

0≤j≤1

(−1)|j|ui−j

∣∣∣∣∣∣ ≤ (1 + 2p)d−σK2−p|i|2σ .

where σ = d− |i|0 is the number of zero components of i.
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Proof. Let {l1, . . . , lσ} ⊂ {1, . . . , d} be such that il1 = · · · = ilσ = 0. Without

loss of generality we assume that li = i for i = 1, . . . , σ. It follows that

∑
0≤j≤1

(−1)|j|ui−j =
1∑

jσ+1=0

· · ·
1∑

jd=0

(−1)jσ+1+···+jdu(i1,...,iσ ,iσ+1−jσ+1,...,id−jd)

=
1∑

jσ+1=0

· · ·
1∑

jd=0

(−1)jσ+1+···+jd(u(i1,...,iσ ,iσ+1−jσ+1,...,id−jd) − u) .

Now we may substitute the error splitting into this last equality. First consider

substituting just one of the terms from the error splitting into this equation, that

is fix k ∈ {1, . . . , d} and {e1, . . . , ek} ⊂ {1, . . . , d} and consider substituting

u(i1,...,iσ ,iσ+1−jσ+1,...,id−jd) − u = γe1,...,ek(hie1−je1 , . . . , hiek−jek )hpie1−je1 · · ·h
p
iek−jek

,

where j1 = · · · = jσ = 0. Observe that

1∑
jσ+1=0

· · ·
1∑

jd=0

(−1)jσ+1+···+jdγe1,...,ek(hie1−je1 , . . . , hiek−jek )hpie1−je1 · · ·h
p
iek−jek

is zero whenever {σ+ 1, . . . , d}∩ ({1, . . . , d}\{e1, . . . , ek}) is non-empty. Thus an

error term does not experience cancellation if this set is empty, or equivalently

if {lσ+1, . . . , ld} ⊆ {e1, . . . , ek}. Now fixing a {lσ+1, . . . , ld} ⊆ {e1, . . . , ek} then

without loss of generality we let {lσ+1, . . . , lσ+m} = {lσ+1, . . . , ld} ∩ {e1, . . . , ek}.
We observe that∣∣∣∣∣∣

1∑
jσ+1=0

· · ·
1∑

jd=0

(−1)jσ+1+···+jdγe1,...,ek(hie1−je1 , . . . , hiek−jek )hpie1−je1 · · ·h
p
iek−jek

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1∑

jσ+1=0

· · ·
1∑

jσ+m=0

(−1)jσ+1+···+jσ+mγe1,...,ek(hie1−je1 , . . . , hiek−jek )

hpie1−je1 · · ·h
p
iek−jek

∣∣∣∣∣ ≤ K(1 + 2p)mhpie1 · · ·h
p
iek
.

Further, as {lσ+1, . . . , ld} ⊆ {e1, . . . , ek} then ie1 + · · · + iek = |i| and therefore

hpie1 · · ·h
p
iek

= hp|i|. Having now established a bound when a single term of the error

splitting is substituted we now wish to sum over all of the error splitting terms.

Note that for each k = 1, . . . , d, the number of {e1, . . . , ek} ⊂ {1, . . . , d} which

contain {lσ+1, . . . , ld} is equivalent to the number of {l1, . . . , lσ} which contain
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{1, . . . , d}\{e1, . . . , ek} which is clearly
(
σ
d−k

)
. Now summing over k = d−σ, . . . , d

we obtain ∣∣∣∣∣∣
∑

0≤j≤1

(−1)|j|ui−j

∣∣∣∣∣∣ ≤
d∑

k=d−σ

(
σ

d− k

)
K(1 + 2p)d−σhp|i|

= 2σK(1 + 2p)d−σ2−p|i| ,

as required.

This lemma allows us to give a result for Un,1 for general d ≥ 2.

Proposition 5.12. Fix the dimension d ≥ 2 and n ≥ 0. Let u ∈ C([0, 1]d) and

for each finite J ⊂ Nd let ugcpJ :=
∑

i∈J ciui where the ci are given by a solution

of the gcp for the set J and the ui satisfy the error splitting (5.7) with p ≥ 1

and K > 0 such that such that each |γe1,...,ek | ≤ K. For each ui let ti be the time

required to compute ui and set tn = max|i|=n ti. Let Un,s be the random variable

defined previously, s = 1 and Pr(Ui = 1) ≤ 1− e−(ti/λ)κ for each i with λ > 0 and

0 < κ ≤ 1. Then,

E[|ugcpIn\ supp(Un,1) − u|] ≤ K2−pn(1 + 2p)d−1

((
n+ 2d− 1

d− 1

)
+(1− e−(tn/λ)κ)(1 + 2p)

d−1∑
σ=0

(
n− 1

d− 1− σ

)(
d

σ

)(
2

1 + 2p

)σ)
.

Proof. The triangle inequality yields

|ugcp
In\ supp(Un,1) − u| ≤ |uIn − u|+ |uIn − u

gcp
In\ supp(Un,1)| .

The first term is bounded above by Theorem 2.27, specifically

|uIn − u| ≤ K2−pn(1 + 2p)d−1

(
n+ 2d− 1

d− 1

)
.

For the latter term we observe that

uIn − u
gcp
In\ supp(Un,1) =

∑
i∈supp(Un,1)

∑
0≤j≤1

(−1)|j|ui−j , (5.8)

(with ui−j := 0 if ik − jk < 0 for any k ∈ {1, . . . , d}). To bound the right hand

side we may use Lemma 5.11 but first we must split this sum up over the i with
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different number of non-zero components. One has

|uIn − u
gcp
In\ supp(Un,1)| =

∣∣∣∣∣∣∣∣
d−1∑
σ=0

∑
i∈supp(Un,1)
|i|0=d−σ

∑
0≤j≤1

(−1)|j|ui−j

∣∣∣∣∣∣∣∣ by (5.8)

≤
d−1∑
σ=0

∑
i∈supp(Un,1)
|i|0=d−σ

∣∣∣∣∣∣
∑

0≤j≤1

(−1)|j|ui−j

∣∣∣∣∣∣ tri. ineq.

≤
d−1∑
σ=0

∑
i∈supp(Un,1)
|i|0=d−σ

2σK(1 + 2p)d−σ2−p|i| Lem. 5.11.

Now we note that the size of the set |{i ∈ supp(Un,1) : |i|0 = d−σ}| is
(
n−1
d−1−σ

)(
d
σ

)
as for a given σ there are

(
d
σ

)
partitions {l1, . . . , lσ} ∪ {lσ+1, . . . , ld} = {1, . . . , d}

and for each of these there are
(
n−1
d−1−σ

)
different {ilσ+1 , . . . , ild} ∈ Nd−σ

+ which sum

to n. Further, i is in supp(Un,1) if and only if Ui = 1. As Pr(Ui = 1) ≤ 1−e−(t|i|/λ)κ

one obtains

E[|uIn−u
gcp
In\ supp(Un,1)|] ≤

d−1∑
σ=0

(
n− 1

d− 1− σ

)(
d

σ

)
(1− e−(tn/λ)κ)2σK(1 + 2p)d−σ2−pn .

Adding to this the bound for |uIn − u| we obtain the desired result.

We can sacrifice some tightness in this result to simplify the expression. As
2

1+2p
≤ 1 and

∑d−1
σ=0

(
n−1
d−1−σ

)(
d
σ

)
=
(
n+d−1
d−1

)
via Vandermonde’s identity we have

E[|uIn − u
gcp
In\ supp(Un,1)|] ≤

(
n+ d− 1

d− 1

)
(1− e−(tn/λ)κ)K(1 + 2p)d2−pn

≤
(
n+ 2d− 1

d− 1

)
(1− e−(tn/λ)κ)K(1 + 2p)d2−pn .

Adding this to the bound for |uIn − u| then yields

E[|ugcp
In\ supp(Un,1) − u|]

≤
(
1 + (1 + 2p)(1− e−(tn/λ)κ)

)(n+ 2d− 1

d− 1

)
K2−pn(1 + 2p)d−1 .

The result of Proposition 5.12 can be extended to Un,2 in much the same way

that Proposition 5.9 was extended to Proposition 5.10. As it should be clear

how this is done at this point we state the result in the weaker but simpler form

without proof.
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Proposition 5.13. Fix d ≥ 2, n ≥ 0 and consider the same assumptions as in

Proposition 5.12 but with s = 2. Then

E[|ugcpIn\ supp(Un,2) − u|] ≤
(

1 + (1 + 2p)
(
1− e−(tn/λ)κ + d(1− e−(tn−1/λ)κ)

)
+ 2p(1 + 2p)(1− e−(tn−1/λ)κ)

)(n+ 2d− 1

d− 1

)
K(1 + 2p)d−12−pn .

Thus far we have studied the expectation of pointwise error estimates. As

with the interpolation estimates in Section 5.2.2 it would also be useful to know

something about the variance. There is no clear way that one go about estimating

E[(ugcp
In\ supp(Un,1) − E[ugcp

In\ supp(Un,1)])
2] but as we expect E[ugcp

In\ supp(Un,1)] to be close

to uIn for small fault rates then we will instead study E[(ugcp
In\ supp(Un,1) − uIn)2].

Proposition 5.14. Fix d ≥ 2, n ≥ d− 1 and consider the same assumptions as

in Proposition 5.12. Then

E[(ugcpIn\ supp(Un,1) − uIn)2] ≤ K2(1 + 2p)2d2−2pn

((
n+ d− 1

d− 1

)
(1− e−(tn/λ)κ)

+

(
n+ d− 1

d− 1

)((
n+ d− 1

d− 1

)
− 1

)
(1− e−(tn/λ)κ)2

)
.

Proof. From the proof of Proposition 5.12 we observe that

|ugcp
In\ supp(Un,1) − uIn| ≤

∑
i∈supp(Un,1)

K(1 + 2p)d2−pn

=
∑
|i|=n

UiK(1 + 2p)d2−pn .

Therefore

(ugcp
In\ supp(Un,1) − uIn)2 ≤ K2(1 + 2p)2d2−2pn

 ∑
|i|=|j|=n
i 6=j

UiUj +
∑
|i|=n

U2
i

 .

Upon taking the expectation we use the fact that

E

 ∑
|i|=|j|=n
i 6=j

UiUj

 ≤
(
n+ d− 1

d− 1

)((
n+ d− 1

d− 1

)
− 1

)
(1− e−(tn/κ)κ)2

and similarly

E

∑
|i|=n

U2
i

 ≤ (n+ d− 1

d− 1

)
(1− e−(tn/κ)κ)

to obtain the desired result.
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It is clear how this could be extended to the case Un,2. This concludes our

error estimates for the ftct and we now proceed with some numerical results.

5.2.4 Numerical results

In this section, we present numerical results for the ftct, specifically Algorithm 3,

applied to numerical solutions of the advection equation using simulated faults

(as described in Section 5.2.1). In particular, we demonstrate that the ftct

has low overhead and that the expected error is close to the error obtained in

the absence of faults. The performance of the ftct has been studied in several

papers [65, 66, 3, 69]. We point out that the ftct has been successfully tested

on more complex problems, for example results for the application gene which

performs gyrokinetic plasma turbulence simulations are reported in [5, 72], but

these will not be reported in this thesis. Here we focus on the scalar advection

equation for which the exact solution is known so that we can compute the error

for each of our computations. Many of the results and conclusions presented in

this section are taken from the paper [69] and an earlier preprint.

As in Section 4.5, the pde we choose to test the ftct on is the scalar advection

equation
∂u

∂t
+ a · ∇u = 0 .

Here we consider problems in 3 spatial dimensions on the domain [0, 1]3 ⊂ R3 with

flow field a ∈ R3. We consider two different variations of this problem. The first

considers a constant a = (1, 1, 1) whilst the second considers a a which depends

on the first two spatial coordinates. We compute approximations of u(x, t) on the

grids Ωi = {j12−i1 : j1 = 0, 1, . . . , 2i1}×{j22−i2 : j2 = 0, 1, . . . , 2i2}×{j32−i3 : j1 =

0, 1, . . . , 2i3} for i ∈ Nd. For a fixed solution time t we denote the approximation

of u computed on Ωi by ui.

A truncated combination technique as in (4.1) is used as the starting point

for our experiments. This is because the combination technique is known to give

poor results for some problems when some of the grids are too coarse in one or

more dimensions. A reason for this is that the initial condition may be poorly

represented on such grids. This can lead to solutions that differ significantly from

the exact solution which do not extrapolate in the way one usually expects. In

order to apply the ftct we need to compute some additional grids which are

used in the event of failures. We define

In,τ := {i ∈ Nd : min{i1, . . . , id} ≥ τ and n− d− 1 ≤ |i| ≤ n}
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which is the set of indices for which we are required to compute solutions ui (that

is approximations to u computed on the grid) if the top two levels are not to be

recomputed in the event of a fault. The corresponding random vector denoting

the failure or success of ui which are not recomputed upon failure is

Un,τ,s := (Ui)i∈In,τ\In−s,τ ,

with s = 2. We compute samples of the resulting ugcp
In,τ\ supp(Un,τ,s)

via an imple-

mentation of the ftct with fault simulation as described in Algorithm 3 with

each ui being a finite difference solution to an advection pde.

Constant flow field

Here we consider constant a = (1, 1, 1), periodic boundary conditions and the

initial condition

u(x, 0) = sin(4πx1) sin(2πx2) sin(2πx3) .

Notice that the initial condition itself is periodic and is consistent with the peri-

odic boundary condition, in particular u(x+ ie1 + je2 + ke3, 0) = u(x, 0) where

i, j, k ∈ Z and e1, e2 and e3 are the standard unit basis vectors (1, 0, 0), (0, 1, 0)

and (0, 0, 1) respectively. Via the method of characteristics it is straightforward

to show that the exact solution is given by

u(x, t) = sin(4π(x1 − a1t)) sin(2π(x2 − a2t)) sin(2π(x3 − a3t)) .

The pde is solved numerically using a tensor product application of the Lax-

Wendroff finite difference scheme (that is we apply (3.12) over each dimension)

giving results which are second order in space and time. The time step size must

be sufficiently small such that the stability criterion is satisfied for update in each

direction.

Note that as the grid sizes vary between the ui so does the maximum stable

time step size as determined by the CFL condition. We choose the same time

step size for all component solutions to avoid instability that may otherwise arise

from the extrapolation of time stepping errors during the combination. As a

result our time steps must satisfy the CFL condition for all component grids. By

choosing ∆t such that it satisfies the CFL condition for the numerical solution of

u(n−2τ,n−2τ,n−2τ) it follows that the CFL condition is also satisfied for all ui with

i ∈ In,τ .
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Table 5.1: Numerical results for r = 100 samples of ugcpIn,τ\ supp(Un,2) for different n, τ

using the Weibull distribution with mean of 1000 seconds and shape parameter of 0.7

for the fault simulation. The computations were performed on 2 nodes with 6 OpenMP

threads on each.

n τ fave εave εmin εmax wave wmin wmax

18 4 0.13 2.103e-4 2.096e-4 2.298e-4 26.96 26.94 27.07

20 5 0.37 7.064e-5 7.004e-5 8.580e-5 72.03 71.82 72.72

19 4 0.48 6.355e-5 6.266e-5 6.899e-5 131.1 130.8 131.9

21 5 1.21 1.979e-5 1.886e-5 3.030e-5 379.9 379.3 381.9

20 4 1.80 1.925e-5 1.856e-5 2.156e-5 649.8 648.2 653.3

All the computations for this problem were performed on a Fujitsu primergy

cluster provided by Fujitsu Laboratories of Europe. This machine consists of 36

nodes, each with 2 Intel Xeon X5670 CPUs (6 core, 2.934GHz) and Infiniband

interconnect.

We first looked at the effect of simulated faults on the error of the computed

solution. Given level n and truncation parameter τ the code was executed for

some number of runs r on a fixed number of nodes using the same number of

threads. Component solutions are combined twice in each run, once halfway

through the time steps and again at the end. For each run we recorded the

number of faults f that occurred, the l1 error of the solution ε and the wall time

w spent in the solver (we exclude some initial startup overhead and the error

calculation from the timing). We then calculated the average number of faults

fave =
1

r

r∑
k=1

fk ,

the average, minimal and maximal observed errors

εave =
1

r

r∑
k=1

εk , εmin = min{ε1, . . . , εr} , εmax = max{ε1, . . . , εr} ,

and the average, minimal and maximal observed wall times (in seconds)

wave =
1

r

r∑
k=1

wk , wmin = min{w1, . . . , wr} , wmax = max{w1, . . . , wr} .

Table 5.1 shows our results for r = 100 runs of the ftct with fault simulation

on 2 nodes with 6 openmp threads on each. Faults were simulated as described



5.2. FAULT TOLERANT COMBINATION TECHNIQUE 233

Table 5.2: Numerical results for r = 200 samples of ugcpIn,τ\ supp(Un,2) for each n, τ

using the Weibull distribution with mean of 1000 seconds and shape parameter of 0.7

for the fault simulation. The computations were performed on 6 nodes with 6 OpenMP

threads on each.

n τ fave εave εmin εmax wave wmin wmax

18 4 0.305 2.119e-4 2.096e-4 2.418e-4 9.216 9.196 9.392

20 5 0.535 7.166e-5 7.004e-5 1.170e-4 24.77 24.67 25.22

19 4 0.690 6.385e-5 6.244e-5 7.392e-5 44.55 44.40 45.90

21 5 1.805 2.015e-5 1.886e-5 3.179e-5 131.7 130.9 134.6

20 4 2.475 1.961e-5 1.844e-5 2.478e-5 224.4 223.3 228.7

in Section 5.2.1 using the Weibull distribution with mean of 1000 seconds and

shape parameter 0.7 to sample the time between failures. As we increase the level

n (or decrease τ) we increase the problem size and hence computation time. This

in turn leads to an increase in the average number of faults that occur per run

as seen in the fave column. The minimal error is the same as the error without

failure (sometimes it is fractionally smaller). Comparing with the average error

we see that the additional error generated by recovery from simulated faults is

small. Also worth noting is that the variability in computation time is quite small

indicating that any recomputations, when they occur, do not seem to cause any

significant disruptions.

In Table 5.2 we repeat this experiment with r = 200 runs on 6 nodes with

6 openmp threads on each. Whilst running with additional nodes leads to a

decrease in computation time we experience more faults on average because of

the additional nodes. However, we can see that the effect of the increased average

number of faults is quite small on both the average solution error and the average

wall time.

Table 5.3 again shows results for r = 100 runs of the ftct with fault simu-

lation on 2 nodes with 6 openmp threads on each. However, for this experiment

the faults are exponentially distributed with a mean of 1000 seconds. We see

that for this distribution the faults are a little less frequent on average leading

to a slightly smaller average error. Similar is observed in Table 5.4 where we

repeat the experiment with r = 200 runs on 6 nodes with 6 openmp threads on

each. Here the average number of faults is substantially less than the results of

Table 5.2 and this is again reflected by a smaller average error in comparison.

The large wmax in the 2nd row is due to a single outlier, the next largest time
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Table 5.3: Numerical results for r = 100 samples of ugcpIn,τ\ supp(Un,2) for each l, τ using

exponentially distributed time between simulated failures with mean of 1000 seconds.

Computations were performed on 2 nodes with 6 openmp threads on each.

l τ fave εave εmin εmax wave wmin wmax

18 4 0.06 2.098e-4 2.096e-4 2.230e-4 26.96 26.93 27.10

20 5 0.17 7.098e-5 7.006e-5 1.155e-4 72.01 71.87 72.47

19 4 0.26 6.321e-5 6.266e-5 7.283e-5 131.1 130.8 131.7

21 5 0.71 1.942e-5 1.886e-5 2.980e-5 379.8 379.3 380.8

20 4 1.27 1.921e-5 1.856e-5 2.127e-5 649.3 647.9 653.4

Table 5.4: Numerical results for r = 100 samples of ugcpIn,τ\ supp(Un,2) for each l, τ with

exponentially distributed time between simulated failures with mean of 1000 seconds.

Computations were performed on 6 nodes with 6 OpenMP threads on each.

l τ fave εave εmin εmax wave wmin wmax

18 4 0.070 2.103e-4 2.096e-4 2.296e-4 9.231 9.214 9.340

20 5 0.155 7.034e-5 7.004e-5 8.162e-5 24.80 24.70 30.83

19 4 0.265 6.327e-5 6.244e-5 7.039e-5 44.48 44.36 45.07

21 5 0.865 1.936e-5 1.886e-5 3.203e-5 131.7 131.0 134.5

20 4 1.415 1.921e-5 1.844e-5 2.178e-5 224.0 222.9 227.4
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Figure 5.1: We compare the time taken to compute the solution to the 3D advection

problem using three different approaches to fault tolerance. The problem size is fixed at

level n = 21 with truncation parameter τ = 5. All computations used 6 mpi processes

with 6 OpenMP threads each. Component solutions are combined 4 times throughout the

computation and it is during the combination that we check for faults. For each method

the problem was run numerous times with mttf varying from 25 to 1000 seconds.

being 25.34. No simulated faults occurred for this outlier so we suspect it was

due to a system issue.

In Figure 5.1 we compare the computation time required for our approach

to reach a solution compared to more traditional checkpointing approaches, in

particular, with a local and global checkpointing approaches described by Algo-

rithms 2 and 1 respectively. Note that for the checkpointing methods the extra

component solutions required for the ftct are not required and are hence not

computed. As a result these approaches are slightly faster when no faults occur,

although the difference is small. As the number of faults increases, it can be seen

from Figure 5.1 that the computation time for the local and global checkpointing

methods begins to grow. A line of best fit has been added to the figure which

makes it clear that the time for recovery with global checkpointing increases

rapidly with the number of faults. Local checkpointing is a significant improve-

ment on this but still shows some growth. On the other hand our approach
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Figure 5.2: A zoom of the bottom left corner of Figure 5.1. It is clearer that the

ftct approach takes slightly longer when no faults occur. With one fault the run times

of the ftct method have much less spread and are slightly better on average. For two

or more faults the advantage is much clearer.

is barely affected by the number of faults and outperforms both the local and

global checkpointing approaches after only a few faults. For much larger number

of faults our approach is significantly better. It is important to point out that

we tuned neither of the checkpointing or ftct algorithms to be optimal with

respect to the mean time between failures (mtbfs). The compute-checkpoint

interval was the same for all methods and all mtbfs.

Divergence free flow field

In this section the advection equation is solved with the divergence free velocity

field

a(x) = (sin(πx1) cos(πx2),− cos(πx1) sin(πx2), 1) ,

and initial condition

u(x, 0) = exp

(
−π

2

2

(
x1 −

3

8

)2

− 2π2

(
x2 −

3

8

)2

− 2(1 + cos(2πx3))

)
.

Notice that the flow field is such that x1 and x2 boundary conditions are not

required. In the x3 direction we specify the boundary condition u|x3=1 = u|x3=0.

The initial condition is a Gaussian like peak centred around
(

3
8
, 3

8
, 1

2

)
which flows
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Table 5.5: Numerical results for r = 50 samples of ugcpIn,τ\ supp(Un,2) with level n = 22

and truncation τ = 5 (which computes 110 different ui). Faults were simulated with

varying mtbf (in seconds) to study the effect on error and time to solution. The

simulated faults are Weibull distributed with shape κ = 0.7 in each case. Component

solutions were combined 4 times throughout the computation. The computations were

performed on 64 processors (8 mpi processes with 8 OpenMP threads each). Times

reported are for the inner computation loop and exclude overheads (including the load

balancing and error calculations).

MTBF fave εave εmin εmax wave wmin wmax

3600 1.22 1.132e-5 1.057e-5 1.815e-5 152.1 151.4 153.2

1800 1.78 1.159e-5 1.057e-5 1.848e-5 153.0 151.9 155.7

900 3.48 1.293e-5 1.057e-5 2.044e-5 150.9 149.0 153.5

450 5.66 1.412e-5 1.058e-5 2.048e-5 152.3 151.0 153.8

225 9.42 1.641e-5 1.059e-5 3.199e-5 153.0 151.4 155.0

112.5 16.00 1.803e-5 1.064e-5 3.452e-5 152.9 151.0 155.4

56.25 26.76 2.170e-5 1.159e-5 3.593e-5 154.2 152.0 157.9

in a helix like pattern around the line x1 = x2 = 1/2. (The flow in the x1, x2

coordinates is the same as that considered in Section 4.5.2). We evolve from

t = 0 up to t = 0.25 in our computations using a second order central difference

discretisation of spatial derivatives and fourth order Runge–Kutta (RK4) time

integration (i.e. analogous to that described for the two dimensional advection

problem in Section 4.5.1). We compare numerical solutions against the exact

solution obtained via the method of characteristics computed with an RK4 solver.

Similar to the constant flow problem, we use the same ∆t for the computation

of all ui and thus ∆t must be sufficiently small such that all of these are stable. All

of our computations for this problem were performed using the Raijin cluster at

the National Computational Infrastructure2 which is supported by the Australian

Government. Raijin is a Fujitsu primergy cluster consisting of 3592 compute

nodes, each with two Intel Xeon Sandy Bridge CPUs (8 core, 2.6GHz) with

Infiniband FDR interconnect.

As with the constant flow problem we first studied the effect of simulated

faults on the error of the computed solution. The notation for the number of

faults, error and wall clock times are the same as that used for the results of

the constant flow computations. Table 5.5 shows results for r = 50 runs of the

2http://nci.org.au/
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Table 5.6: Numerical results for r = 50 samples of ugcpIn,τ\ supp(Un,2) with level n = 22

and truncation τ = 6 (which computes 35 different ui). Faults were simulated with

different mtbf (in seconds) to study the effect on error and time to solution. The

simulated faults are Weibull distributed with shape κ = 0.7 in each case. Component

solutions were combined 4 times throughout the computation. The computations were

performed on 32 processors (4 mpi processes with 8 OpenMP threads each). Times

reported are for the inner computation loop and exclude overheads (including the load

balancing and error calculation).

MTBF fave εave εmin εmax wave wmin wmax

128 3.08 1.671e-4 1.305e-4 3.727e-4 32.99 32.56 33.43

64 4.32 1.693e-4 1.305e-4 2.938e-4 33.04 32.63 33.60

32 7.02 1.791e-4 1.305e-4 2.681e-4 33.07 32.63 33.77

16 12.02 2.191e-4 1.340e-4 5.722e-4 33.01 32.61 33.68

8 19.04 2.700e-4 1.393e-4 4.785e-4 33.22 32.64 33.79

4 31.58 3.382e-4 1.830e-4 6.305e-4 33.40 32.80 35.28

ftct with fault simulation on a problem with n = 22, τ = 5 consisting of 110

grids and computed on 8 mpi processes with 8 openmp threads each. Faults

were simulated as described in Section 5.2.1 using the Weibull distribution with

varying mean time between failures (mtbf) per mpi process and shape parameter

0.7. Decreasing the mtbf leads to an increase in the average number of faults

that occur per run as one would expect. The time to solution is not significantly

affected by the number of faults as seen in tave which varies relatively little over

a 10 fold increase in the average number of faults. It is clear that the error

εave increases with fave and from εmin and εmax one has some indication that the

variance in error also increases. For mtbf of 450 seconds and above the effect is

relatively small. For higher frequencies of failure there is a noticeable effect but

even at 27 faults per run the average error is approximately twice that without

faults.

Table 5.6 again shows results for r = 50 runs of the ftct with fault simulation

this time with a n = 22, τ = 6 truncated combination consisting of only 35 grids.

Having less grids and therefore less redundancy this problem is more sensitive to

faults. Faults were again simulated as Weibull distributed with varying means

and shape parameter 0.7. The mtbf are significantly smaller here to investigate

what happens to this problem for a large number of faults. The same observations

can be made as in Table 5.5, namely that the time to solution is not significantly
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Figure 5.3: The left plot demonstrates the parallel scaling of our implementation

with a l = 22, τ = 5 truncated combination on the left and a l = 22, τ = 4 truncated

combination on the right. Each problem has 110 and 230 coarse grids respectively.

Given a fixed number of grids one observes that the scalability eventually drops off

which is due to the distribution of grids to nodes. However, also notice that additional

grids leads to increased parallelism. By increasing the number of grids or computing

each grid over several nodes we would expect good scalability for many more processors.

The mtbf per node used for fault simulation on the τ = 5 problem was 128 seconds

which led to 9 up to 36 faults occurring in each of the computations. For the τ = 4

problem the mtbf per node was 900 seconds which led to 12 up to 41 faults occurring

in each of the computations.

affected by the failure rate and that the mean and variance of the error increases

with fave. Whilst growing faster in for this problem at almost 32 faults on average

the error is less than 3 times that when no faults occur.

Whilst not shown here, we have observed that if the number of grids is large

enough then the expected error initially decreases as the number of faults in-

creases. We suspect this occurs because such large numbers of grids becomes a

sub-optimal use of resources and the solution error becomes dominated by terms

which are additive when the combination technique is applied. As more grids

fail there are less such terms in the resulting solution leading to smaller error.

Eventually with enough failures the error again increases as the dominating terms

become those which cancel and similar trends as above are observed from this

point. Determining the number of grids which is optimal in terms of error versus

time to solution is problem dependent but can be estimated by careful study of

error bounds based on error splittings.

In Figure 5.3 we demonstrate the parallel scalability and efficiency of our im-

plementation both with and without fault simulation for a reasonably high failure
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Figure 5.4: We compare the time taken to compute the solution to the 3D advection

problem using three different approaches to fault tolerance. The problem size is fixed

at level 22 with truncation parameter 5. All computations used 8 mpi processes with

8 OpenMP threads each. Component solutions are combined 4 times throughout the

computation and it is during the combination that we check for faults. For each method

the problem was run several times with many different mtbf per mpi process to study

the effect of the number of faults on the run time.

rate. The advection problem was solved using a n = 22, τ = 5 truncated combi-

nation having 110 grids and a n = 22, τ = 4 truncated combination having 230

grids. The component solutions were combined 4 times throughout each compu-

tation. The times reported here include the timing of the core of the code, that

is the repeated computation, combination and communication of the solution.

Start up and completion overheads including python imports, the dynamic load

balancing procedure and the error calculation are excluded. It is clear that the

implementation scales very well as far as the distribution of grids to nodes will

allow and that the presence of faults makes no discernible difference. In par-

ticular, it is apparent that adding fault resilience has had negligible impact on

the speedup of the application. Therefore, for an application that is otherwise

capable of scaling to an exascale system it is not anticipated that adding fault

resilience via this method would be a barrier to deployment on such a system.

In our test case, by further increasing the number of grids and computing each
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Figure 5.5: A zoom of the bottom left corner of Figure 5.4. It is clearer that the

ftct approach takes slightly longer when no faults occur but with even just one fault

the runs times of ftct are typically better.

grid across several nodes we expect the implementation to scale much further.

We note however, that increasing the number of grids does not necessarily lead

to improved error.

In Figure 5.4 we again compare the computation time required for our ap-

proach to reach a solution compared to the local and global checkpointing ap-

proach. As before, the checkpointing implementations to not require the compu-

tation of additional grids and are therefore slightly faster when no faults occur.

As the number of faults increases it can be observed that the computation time

for the local and global checkpointing methods begins to grow. A line of best

fit makes it clear that the time for recovery with global checkpointing increases

rapidly with the number of faults. Local checkpointing is a significant improve-

ment on this but still shows growth. On the other hand our approach is barely

affected by the number of faults and beats both the local and global checkpointing

approaches after only a few faults.
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5.3 Additional remarks and conclusions

In [67] it is discussed how a failed grid could be approximated with a sample

from a grid having similar resolution. Some investigation of this approach was

undertaken but it was observed that results were strongly affected by which so-

lution grid was chosen to be sampled from. Experiments also found that this

approach was not very robust, that is in some cases it provided acceptable results

whilst in others the results were poor. Attempts to improve the robustness of

this approach led to algorithms which typically gave the same results as the gcp.

As such we felt it was unnecessary to expand upon this approach here.

Another observation to be made is that there are cases in which the gcp

solution does not use all of the information from the successfully computed com-

ponent solutions. For example, this often occurs when one (or more) of the

finer of the component solutions (i.e. those on the top layer) which was suc-

cessfully computed cannot be incorporated into the combination because of the

failure of another component solution having smaller resolution. In such sit-

uations the unused component solution carries some information on the finest

hierarchical surplus which can still make a contribution to the combined solu-

tion. One can simply add this hierarchical information to the combined solution.

This is straightforward as the combined solution (via the gcp solution) would

initially carry no information for this particular hierarchical surplus and so it may

be added without affecting the rest of the combined solution.

In this thesis our fault model is largely based on hardware faults for which

a process stops working. Since starting this work it has become clear that a

large portion of the hpc community is interested in silent faults detection and

correction. We note that the ftct algorithm could also be used to recover from

silent errors, that is where some of the data is changed without the application

knowing. Of course the real challenge here is in detecting which component

solutions have been affected by silent faults. It would be reasonable to expect

that by comparing the approximations on different component schemes one would

be able to filter out the erroneous component solution via a statistical analysis and

an appropriate voting mechanism. This will require an optimisation between the

number of false negatives (that is discarding component solutions which differ

slightly from the others but were not affected by an error) and false positives

(e.g. accepting component solutions with an error small enough not to be easily

detected). Investigation into silent error detection and correction is the subject

of ongoing research.
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The numerical results presented in this thesis have been restricted to the scalar

advection pde. The main reason for this is that the exact solution is known and

we can therefore easily compute the error and assess whether the ftct produces

results close to those obtained in the absence of faults. There has been some work

at applying the ftct to more complex problems, for example gyrokinetic plasma

simulations [5, 72], and work in this direction will continue. Results thus far have

been promising and give a good indication that the algorithm should work well

for a large variety of problems.

Another important point to be made is that the comparisons we made to

checkpoint restart routines did not use the current state of the art checkpointing.

The reason for this is that checkpoint restart has developed rapidly in the last few

years. Compare for example the survey article [27] and the follow up article [28].

In the former it is pointed out there is a need to research fault tolerance because

existing checkpoint restart will be too costly. In the latter, an advancement of

checkpoint restart methods is acknowledged that may allow such methods to

be used after all. We simply did not have the resources to keep up with these

advances whilst also researching a novel alternative. Future work may involve

comparisons with state of the art checkpoint restart techniques with optimal

checkpointing intervals.

Our results were obtained by sampling a Weibull like distribution of time

between failures based on the study [116] and then simulating the effect of a

fault, that is the loss of data. There has been effort to implement the ftct with

User Level Fault Mitigation (ulfm) by M. Ali such that it may one day used

and tested in the presence of real hardware failures as opposed to just simulated

failures.

In conclusion, we have developed a new approach to fault tolerant computation

via a careful study and generalisation of the sparse grid combination technique.

Additionally we have provided an extensive error analysis for this approach which

is applicable to finite difference solutions of the advection equation and could be

extended to a large class of hyperbolic partial differential equations. Numeri-

cal experiments based on approximate solutions to the advection equation show

that the new approach is significantly better than traditional checkpointing ap-

proaches in terms of overhead and produces results that are close to that obtained

in the absence of faults. Many of the results in this thesis could also be applied to

many other hpc problems in which the combination technique has been applied

successfully, for example uncertainty quantification, big data and inverse prob-

lems. There are several more ways in which this work may be extended going
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into the future. These include further error analysis for more general use cases of

the ftct algorithm, additional numerical experiments on large scale and complex

problems that require significant computing resources, more detailed comparisons

with alternative approaches to fault tolerance, and extensions to different nested

function spaces (for example higher order sparse grid methods and nested fractal

function spaces generated by iterated function systems).
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