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Abstract 
Human mobility in recent history is well documented and often related to drastic external changes, 

including war, famine, and the discovery and exploration of new geographic regions and resources. 

Reconstruction of mobility patterns in prehistory is thus a crucial part of understanding the forces that 

drove our ancestors, but it is complicated by the fact that the archaeological evidence becomes scarce 

as we go back in time. The application of stable isotopes in archaeological research has revolutionised 

palaeomobility studies by providing independent data, which can be used to evaluate models of 

migration, trade, and cultural change. This research project explores the use of strontium isotope ratios 

(87Sr/86Sr) to trace prehistoric human mobility patterns. Strontium isotope ratios vary across the 

landscape based on the age and composition of the underlying geology. Through diet humans incorporate 

strontium into their skeletal tissues such as bones and teeth. Teeth form during childhood and are 

resistant to weathering and geochemical alteration, often preserving the original isotope values. By 

comparing the strontium isotope ratios in teeth to the variations of strontium isotopes in the landscape 

it becomes possible to investigate mobility across geologically different areas between childhood and 

death.  

This study establishes the Isotopic Reconstruction of Human Migration (IRHUM) reference database 

and provides the first dataset of 87Sr/86Sr isotope ratios of plant and soil samples, covering all major 

geologic units of France. This provides a new powerful tool for the archaeological science community 

as it allows the mapping of the variations of bioavailable 87Sr/86Sr isotope across the landscape. Utilizing 

this dataset, a bioavailable 87Sr/86Sr isotope map for archaeological provenance studies in France is 

created.  

For the application of this method to human fossil teeth new analytical methods to detect diagenetic 

overprint were tested. These now allow for rapid scanning to investigate the suitability of samples, 

minimising the damage to fossil remains. Least destructive analytical techniques for strontium isotope 

analysis, such as micro drilling thermal ionisation mass spectrometry and in situ laser-ablation MC-ICP-

MS, were further developed and applied to a range of materials of known composition, including shark 

and dugong teeth, modern and archaeological fauna samples, and fossil and modern human teeth. 

Finally, strontium isotope tracing was applied to three key archaeological sites in France, including the 

Neanderthal sites of Moula-Guercy, and the Neolithic sites of Le Tumulus des Sables and La Grotte des 

Perrats. Strontium isotope tracing proved to be a valuable technique and in combination with additional 

strings of evidence from archaeological material and other isotopic tracers, such as oxygen, improved 

our understanding of prehistoric human mobility at these sites. By covering different geographic 

locations and different time periods this study tests geochemical fingerprinting and offers new insights 

into these renowned archaeological sites. 
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Scope of the project 

The chapters in this thesis are written as manuscripts for journal publication and are in various stages of 

the review process. The contributions of the author to the different publications are outlined at the 

beginning of each chapter. This thesis pursued three main aims: (i) defining the bioavailable strontium 

isotope range of France, (ii) development of least-destructive analytical techniques to screen for 

diagenetic overprint and to perform strontium isotope analysis of fossil human teeth, and (iii) application 

of isotopic tracing to key archaeological sites in France. The introduction to strontium isotope tracing, 

given in chapter 1, discusses the complexities involved in strontium isotope tracing of mobility patterns, 

including the effects such as preferential weathering, mixing of strontium reservoirs, input of strontium 

from the atmosphere or through anthropogenic influences, and the effects of post burial diagenesis on 

the skeletal remains. Conclusions and future directions are given at the end of the thesis in chapter 6. 

The appendix found in chapter 8 contains detailed laboratory methods as well as the supplementary 

material from the journal publications. 

 

(i) Defining the bioavailable strontium isotope range of France 

Archaeological provenance studies in France are currently limited due to the lack of baseline strontium 

isotope maps. In order to define the bioavailable strontium isotope range of France we developed the 

IRHUM (isotopic reconstruction of human migration) database (www.irhumdatabase.com, Willmes et 

al., 2014), see chapter 2. This online database allows the user to explore and map isotopic datasets and 

exchange data in a variety of formats. It is based on the open source software GeoNode (Boundless) and 

all modifications are tracked in GitHub, to allow future developments. To ensure the longevity of the 

dataset it is deposited in the Pangaea data repository (doi:10.1594/PANGAEA.819142). Since strontium 

isotope ratios are used as a geochemical tracer in a wide range of fields outside of archaeology, including 

ecology, soil, food and forensic sciences, the IRHUM database will hopefully prove to be a useful tool 

for the wider science community and encourage collaboration between the different fields of science for 

geochemical fingerprinting. The data found in the IRHUM database was then used to create a 

bioavailable 87Sr/86Sr isotope map of France for archaeological provenance studies, see chapter 3 

(Willmes et al., submitted). This baseline map now allows the investigation of prehistoric mobility 

patterns in France in great detail and provides the framework for future archaeological provenance 

studies.  

 

(ii) Development of least-destructive analytical techniques for strontium isotope analysis of 

fossil human skeletal remains 

The analysis of human remains is a particularly sensitive topic and has been hindered in the past because 

destructive sampling (drilling) was required for traditional strontium isotope analysis. In order to select 

suitable samples for strontium isotope analysis in situ methods to detect diagenetic overprint using laser-
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ablation ICP-MS were explored by Boel (2011) and Grün et al. (2008). We improved on these methods, 

see chapter 4, and now have a protocol in place that allows for the rapid scanning of human dental 

remains to select the best suited samples for isotopic tracing. An exploratory study by Benson et al.  

(2013) showed the potential of in situ strontium isotopic analysis from the outer sample surface, which 

avoids cutting of the sample. However, there are considerable analytical problems associated with in 

situ laser-ablation MC-ICP-MS analysis of strontium isotope ratios in teeth. A thorough investigation of 

these analytical problems and a new sample acquisition protocol are discussed in chapter 4. These 

methods were then evaluated using samples of known isotopic composition, including shark and dugong 

teeth, modern and archaeological fauna samples, and fossil and modern human teeth using micro drilling 

thermal ionisation mass spectrometry and in situ laser-ablation MC-ICP-MS.  

 

(iii) Application of isotopic tracing to key archaeological sites in France 

Combining least-destructive analysis with the baseline strontium isotope map proved to be a powerful 

technique and opened the doors to previously unavailable human fossil samples, such as Neanderthal 

teeth. The strontium isotope tracing conducted at the archaeological sites is often part of larger scale 

projects. The study at Moula-Guercy of two Neanderthal individuals and one Neolithic individual was 

part of a larger effort to investigate the chronology and mobility of this important Neanderthal site 

(chapter 5.2). Le Tumulus des Sables, an important Neolithic site near Bordeaux, was the focus of a new 

radiocarbon dating campaign combined with multi-isotope study to reconstruct mobility and diet using 

strontium, oxygen (James et al., 2013), nitrogen and carbon isotopes (chapter 5.3). The study at La 

Grotte des Perrats, chapter 5.4, is an ongoing investigation and only the strontium isotope data on human 

remains is presented here. The application of the strontium isotope tracing method to different 

geographic locations and different time periods tests the potentials and pitfalls of this method, and offers 

new insights into these renowned archaeological sites.  
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1 Fundamentals of strontium isotope tracing 

1.1 Strontium isotope geochemistry 

Strontium is a lithophile alkaline earth metal with a typical valence state of 2+ and an ionic radius of 

1.13 Å, which is similar to that of Ca2+ (0.99 Å). Sr2+ thus substitutes easily for Ca2+ in the mineral 

structures of plagioclase feldspar, gypsum, calcite, dolomite, aragonite and, most important in the 

archaeological context, biogenic apatite. Strontium is a major cation in strontianite (SrCO3) and celestite 

(SrSO4), which occur in hydrothermal deposits. As a trace element it is found in many igneous, 

metamorphic and sedimentary rock types, in the ocean, river and ground water, in soils, plants, and 

animal and human tissues. It has four naturally occurring isotopes, all of which are stable, namely 84Sr 

(∼0.56%), 86Sr (∼9.87%), 87Sr (~7.04%) and 88Sr (∼82.53%), de Laeter et al. (2003). The isotopic 

abundances of Sr vary because of the production of radiogenic 87Sr by the decay of 87Rb by emission of 

a negative β-particle with a half-life of ~4.88 x 1010 years (Faure and Mensing, 2005). Fission reactions 

have also produced a small amount of 90Sr, a short lived (half-life ~30 years) radioactive isotope, present 

in modern environments (Capo et al., 1998). 

𝟖𝟖𝟖𝟖
𝟑𝟑𝟑𝟑𝑹𝑹𝑹𝑹 →

𝟖𝟖𝟖𝟖
𝟑𝟑𝟑𝟑𝑺𝑺𝑺𝑺+𝜷𝜷− + 𝒗𝒗�+ 𝑸𝑸 

 

𝛽𝛽− 

𝒗𝒗� 

Q 

beta particle 

antineutrino 

decay energy 

 

 

Rubidium is an alkali metal and a large ion lithophile element that has two naturally occurring isotopes, 
85Rb and 87Rb. It has an ionic radius of 1.48 Å, which is similar to that of potassium (1.33 Å). Therefore, 

Rb+ can substitute for K+ in all K-bearing minerals like potassium feldspar, micas, certain clay minerals, 

and evaporate minerals such as sylvite. Many common rock types contain significant concentrations of 

Rb and Sr on the order of tens to hundreds ppm. Geochemically Rb and Sr behave very differently 

leading to high Rb/Sr variations in magmatic, metamorphic and sedimentary environments. All of these 

features make the Rb-Sr decay system widely applicable for geochronology and geochemical tracing 

(Faure and Mensing, 2005). In the context of tracing animal and human mobility with Sr isotopes several 

other factors are also important. Recent studies have shown that the stable isotopes of strontium can be 

fractioned by physical and chemical processes (Fietzke and Eisenhauer, 2006; Halicz et al., 2008; 

Krabbenhöft et al., 2009; Knudson et al., 2010). When measuring 87Sr/86Sr for provenance studies these 

changes are corrected during the mass spectrometry measurements, by normalizing the 87Sr/86Sr ratio to 

a constant 86Sr/88Sr value of 0.1194. The decay of 87Rb to 87Sr does not influence the 87Sr/86Sr of each 

component in these cycles, since these processes operate on a much shorter timescales (Bentley, 2006 
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and references therein). Typical Sr, Ca and Rb/Sr concentrations are given in Table 1-1. For geochemical 

tracing the 87Sr/86Sr notation is commonly used.  

An alternative notation is 𝛅𝛅𝟖𝟖𝟖𝟖𝐒𝐒𝐒𝐒 = � 𝑺𝑺𝑺𝑺𝟖𝟖𝟖𝟖 / 𝑺𝑺𝑺𝑺𝟖𝟖𝟖𝟖  Sample

𝑺𝑺𝑺𝑺𝟖𝟖𝟖𝟖 / 𝑺𝑺𝑺𝑺𝟖𝟖𝟖𝟖  Seawater
− 𝟏𝟏� ∗ 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 (Capo et al. 1998). 

Table 1-1: Typical concentrations for Sr and Ca in different materials and corresponding Rb/Sr ratios. 

These values are a guide and specific values can vary significantly. Table adapted from Bentley, (2006) 

with data compiled from various sources (Burton et al., 1999; Kohn et al., 1999; Aubert et al., 2002; 

Bashkin and Howarth, 2002). 

 Material Sr [ppm] Ca [ppm] Rb/Sr  

G
eo

lo
gi

c 

Sandstone 20 40 000 3 

Low-Ca granite 100 5000 2 

Deep-sea clay 180 30 000 0.6 

Syenite 200 20 000 0.6 

Shale 300 20 000 0.5 

High-Ca granite 440 25 000 0.3 

Ultramafic rock 1 25 000 0.2 

Basalt 500 75 000 0.07 

Deep-sea 
carbonate 

2000 300 000 0.005 

Carbonate 600 300 000 0.005 

So
ils

 

Soil minerals 10-1000 240 00  

Labile soil 
minerals 

0.2-20 1000  

Soil moisture 0.001-0.07 1-4  

W
at

er
 

Seawater 8 400  

Rivers 0.006-0.8 15  

Rain 0.001-0.4 1-100  

Snow 0.00001-0.001 0.01-0.1  

Bi
ol

og
ic

al
 Edible plants 1-100 3000-6000  

Mammal bone 100-1000+ ~370 000  

Mammal enamel 50-500+ ~370 000  
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1.2 Strontium isotope reservoirs 

This chapter describes the different 87Sr/86Sr isotope reservoirs and discusses the pathways and 

interactions between them. Figure 1-1 shows a sketch of the different processes that potentially influence 

the strontium composition before it enters the skeletal material of animals and humans.  

 

Figure 1-1: Simplified sketch of the strontium cycle showing important processes that affect the 

strontium composition before it reaches the skeletal material of animals and humans. 

1.2.1 Bedrock 

The 87Sr/86Sr isotope ratio in a rock depends on its initial 87Sr/86Sr ratio, its Rb concentration, and its 

age. Due to geochemical differences, the Rb/Sr ratio in rocks varies by several orders of magnitude 

(Table 1-1) and geologic regions can have very different ages, resulting in 87Sr/86Sr ratios that vary 

substantially between different geological terrains (Table 1-2). High 87Sr/86Sr ratios are usually found in 

very old rocks with high Rb/Sr ratios, while younger rocks with small Rb/Sr ratios have generally low 
87Sr/86Sr ratios. Igneous rocks show a large range of 87Sr/86Sr isotope ratios, from low values close to the 

isotopic composition of the mantle in mafic volcanic rocks, to high values in old granitic rocks. 

Carbonaceous sedimentary rocks exhibit 87Sr/86Sr isotope ratios that reflect the isotopic composition of 

the liquid they formed in, while clastic sediments reflect the sources of their components and thus can 

be highly variable. Subsequent changes and exchange during deposition can alter their 87Sr/86Sr ratios 
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from their source and metamorphic rocks often show 87Sr/86Sr isotope ratios very different from their 

unmetamorphosed source rock. 

Table 1-2: Common 87Sr/86Sr ratios for different geologic settings taken from Bentley (2006) and 

references therein. These numbers present a rough guide and specific settings can be highly variable. 

Geologic setting 87Sr/86Sr 

Basalts along mid oceanic ridges and volcanic islands 0.702-0.704 

Oceanic island arcs formed by subduction-related magmatism 0.703-0.707 

Overall continental crust 0.702-0.750 

Phanerozoic marine limestone and dolomite 0.707-0.709 

Old Granites 0.710-0.740> 

 

As a first order approximation the bedrock age can be used to estimate the bioavailable 87Sr/86Sr isotope 

range (Beard and Johnson, 2000) of a certain region. However, this has limited application because 

different minerals within a single rock can have vastly different Sr concentrations and 87Sr/86Sr isotope 

ratios and have varying resistance to weathering. This means that the bulk 87Sr/86Sr isotope ratios can 

vary significantly from the 87Sr/86Sr isotope ratios of the weathered material which is transported into 

the soils, plants, water reservoirs, and finally into the food chain. Models using bedrock lithology, age 

and weathering rates have been successful in providing large scale bioavailable 87Sr/86Sr isotope ranges 

(Beard and Johnson, 2000; Bataille and Bowen, 2012; Bataille et al., 2012), but need to be tested to 

investigate their usability across different geologic and geographic terrains. 

1.2.2 Surface water 

Strontium concentrations in river water vary between ~0.006 to ~0.8 ppm (Capo et al., 1998). The 
87Sr/86Sr isotope ratio in rivers is primarily determined by the eroding rocks in the catchment area, 

augmented by atmospheric deposition for example from precipitation. Tectonic activity and climate 

affect both the intensity of weathering processes as well as the type of rock subject to weathering and 

thus can have a strong effect on the amount and isotopic composition of the Sr in rivers and the ocean 

(Capo et al., 1998). Generally speaking, elevated areas are eroded more strongly than low plains and 

therefore contribute more to the sediments in the river. At high elevations the 87Sr/86Sr signal in river 

water can be closely correlated to the underlying bedrock (e.g., Hoogewerff et al., 2001; Aubert et al.,  

2002). At lower elevations, this close correlation may be lost, due to the mixture of strontium from 

different bedrocks and other reservoirs. River water and floodplain sediments deposited by rivers can 

thus introduce a significantly different 87Sr/86Sr isotope range, possibly related to a distant upper 

catchment to an area. This is of particular importance for archaeological provenance studies as 

floodplains can represent an important food and thus strontium source for animals and humans. 

Discharge variation of a river can also have an effect on the Sr concentration and 87Sr/86Sr isotope ratio. 

This means, that depending on the hydrological and moisture conditions of the catchment different Sr 
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isotopes will be measured for the same river on a homogenous bedrock (Aubert et al., 2002). 87Sr/86Sr 

isotope ratios from lake water will reflect the mixture of incoming rivers, precipitation, and potential 

equilibration with the lake bed sediments (Hodell et al., 2004). Frei and Frei (2011) studied surface 

waters in Denmark and found a 87Sr/86Sr isotope distribution related to two major sources, one being Sr 

from carbonaceous sediments and one from water that shows a radiogenic component due to the 

interaction of precipitation with Pleistocene glaciogenic soils and Precambrian granitoids. However, 

they also observe an offset between the 87Sr/86Sr isotope ratios measured in surface water compared to 

soil and snail shells, indicating that the topsoil might have a relatively lower 87Sr/86Sr isotope ratio, 

possibly due to the downward movement of Sr into the water tables. 

1.2.3 Groundwater 

The 87Sr/86Sr isotope ratios in groundwater are controlled by the process of dissolution and 

reprecipitation of Sr from the minerals it comes into contact with (Åberg, 1995) and in many cases 

reflect the underlying geology more closely than surface waters. In evaporates and marine limestones, 

the 87Sr/86Sr isotope ratio will reflect the isotopic composition of the rocks closely, due to their simple 

geochemical composition and high solubility of their main minerals. On the other hand, groundwater 

aquifers in regions with clastic sediments, magmatic, and metamorphic rocks, will show the 87Sr/86Sr 

isotope ratio of the easily soluble minerals and differ significantly from the bulk host rock (Blum et al.,  

1993; Åberg, 1995; Négrel et al., 2001; Jacobson et al., 2002; Montgomery et al., 2006). Large scale 

studies on natural mineral waters have shown a good correlation between the aquifer geology and 

variations in strontium isotope ratios in the water (Montgomery et al., 2006; Voerkelius et al., 2010).  

However, the mixing of different ground water sources, differences in flow rates, and the possibility of 

contamination by anthropogenic activities, such as agriculture, can have significant influences on the 

strontium isotope ratio in water samples and complicate the correlation with aquifer geology.  

1.2.4 Seawater 

The Sr concentration in the oceans is relatively high with 8100 µg/l compared to for example Rb (120 

µg/l) and Pb (0.03µg/l) and about 100 times that of average river water (~0.07 ppm). At depths of 

>1500 m the Sr concentration is mainly a function of salinity. Both salinity and Sr concentration in 

surface water decrease regionally in response to the dilution of the seawater by meteoric water, river 

water and glacial melt water (Faure and Mensing, 2005). In times of evaporation or formation of sea 

ice, salinity and Sr concentration will increase. The 87Sr/86Sr isotope ratio at present is 0.70918 

(McArthur et al., 2001) and is homogenous throughout the ocean. The homogenous distribution of 
87Sr/86Sr isotope ratios in the ocean is caused by the much shorter turnover time of the ocean ~103a, 

compared to the long residence time of Sr in seawater ~106a (Stosch, 2004). The 87Sr/86Sr isotope ratio 

of the ocean is driven by the average of the weathered continental crust, the amount of volcanic activity, 

and the influence from dissolution of marine carbonates on the continents and continental shelfs (Stosch, 

2004; Faure and Mensing, 2005). The Sr isotopic composition of the oceans has changed significant ly 



28 
 

over the history of the Earth depending on which of these three factors was dominating (Burke et al.,  

1982; Stosch, 2004). Figure 1-2 shows the evolution of Sr isotope ratios in the ocean for the geologic 

history of the Earth. 

 

Figure 1-2: Variation of the 87Sr/86Sr ratio of seawater in Phanerozoic and Precambrian times. BABI is 

the Basaltic Achondrite Best Initial. Modified from Stosch (1999). Data for the strontium isotope 

composition of seawater through time from Burke et al., (1982). 

During the Phanerozoic, 87Sr/86Sr varied between 0.707-0.709. The increase since the Middle Jurassic 

can be attributed to an increase in continental weathering, caused by the young orogenies. The same is 

proposed for the increase at the Ordovician-Silurian boundary (Caledonian orogeny) and Cambrian 

period (Pan-African orogeny). These time-dependent variations provide the possibility for global 

correlation of marine sediments. The rise of 87Sr/86Sr over the last 2 Ma is primarily due to the change 

of Sr entering the ocean through the rivers connected to an increase of overall chemical weathering of 

the continents. Data for the Precambrian is sparse since carbonate outcrops for that time are rare and 

have been altered geochemically. It seems that starting in the Proterozoic the Sr isotope signal of the 

ocean diverged from the mantel signal (Stosch, 2004). This would indicate that weathering of old 

continental crust did not play a major role in the Archean, compared to volcanism and weathering of 

young crust. Overall, the Sr isotopic curve of the ocean seems to be a time-delayed indicator for large 

scale tectonics. It may thus be used to date sedimentary rocks of marine origin. In turn this correlation 

also can be used to predict the 87Sr/86Sr isotope ratio of marine origin and known age (Hodell et al.,  

2004). In archaeological studies this can be used to identify the source of shell artefacts (e.g., Shackleton 

and Elderfield, 1990; Vanhaeren et al., 2004). However, differences between the predicted 87Sr/86Sr from 

the seawater curve compared to the sediments have been observed, possibly due to the presence of Rb-

rich clays as well as additional atmospheric inputs and secondary modification (Hodell et al., 2004; 

Bentley, 2006). 
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1.2.5 Soils and regolith 

Strontium occurs in all parts of the soil, including the bioavailable fraction, carbonate fraction and 

silicate fraction. The bioavailable Sr fraction is the part of the Sr in the soil, that is available for uptake 

to plants and only represents a part of the total strontium (Capo et al., 1998; Sillen et al., 1998; Price et 

al., 2002). Typical concentrations of bioavailable Sr in soil range from ~0.2 to ~20 ppm (Elias et al.,  

1982; Miller et al., 1993; Capo et al., 1998). Usually, mineral weathering from bedrock dominates the 

Sr in the soils, but additional input comes from river and ground water, atmospheric deposition such as 

dust, seaspray, and precipitation (Bentley, 2006; Evans et al., 2009, 2010; Slovak and Paytan, 2012). 

Areas that are not extremely weathered or under high annual levels of precipitation show 87Sr/86Sr 

isotope ratios dominated by bedrock weathering (Capo et al., 1998; Sillen et al., 1998; Bern et al., 2005; 

Bentley, 2006), while deeply weathered regions or areas under high annual rainfall or atmospheric 

deposition can be significantly altered towards the external 87Sr/86Sr ratio. The use of soil leachates to 

determine the local bioavailable Sr isotope ratio has shown varying degrees of success in different 

regions (Sillen et al., 1998; Price et al., 2002; Hodell et al., 2004; Bentley, 2006; Maurer et al., 2012; 

Slovak and Paytan, 2012). Some areas can be relatively homogenous while geologically complex 

regions can have high local variability in their 87Sr/86Sr values (Sillen et al., 1998; Hodell et al., 2004). 

A good example of low local variability is the study by Hodell et al. (2004) on the Yucatan Peninsula. 

They were able to distinguish five 87Sr/86Sr isotope regions, representing large geographic distances. A 

study by Sillen et al. (1998) in South Africa, on the other hand, found high variability of 87Sr/86Sr values 

ranging from 0.718 in soils on a shale to 0.900 in soils on an Archean granite within a 15 km radius.  

The strontium isotope ratio in soils is also a function of soil depth, with increasing soil depth bedrock 

weathering becomes more important relative to atmospheric influences (Probst et al., 2000; Prohaska et 

al., 2005). A study by Prohaska et al. (2005) in the Günser Mountains, Eastern Austria found that the Sr 

isotope signature in the first 10 cm of soil was dominated by atmospherically deposited dust. They found 

a gradual increase in the Sr isotope ratio down to 120 cm, reflecting a mixture of the underlying geology 

and recently deposited Sr from dust. The depth to which the soil is influenced by Sr from atmospheric 

deposition will vary greatly depending on the soil and the local climatological and hydrologica l 

conditions. Thus, the Sr isotopic composition in soil is the result of dynamic processes, that may vary 

spatially and through time as the surrounding conditions change. 

1.2.6 Plants 

Strontium is taken up by plants from the soil solution and the soil exchange complex (Capo et al., 1998).  

In general, plant samples have shown a good comparability with other direct indicators of bioavailable 

Sr like snail shells, caterpillars, and rodent teeth (Blum et al., 2000; Laffoon et al., 2012). The 87Sr/86Sr 

ratio in plants is influenced by the depth of the roots, the source water, and the addition of strontium 

from biomass and atmospheric deposition (Graustein and Armstrong, 1983; Gosz and Moore, 1989; 

Bentley, 2006). Atmospheric deposition and the addition of Sr from biomass is especially important for 
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the upper soil layers and as such affects plants with shallow roots the most. Thus, while no fractionation 

of 87Sr/86Sr isotope ratios occurs within plants, differences in plant anatomy and varying contributions 

of strontium from different reservoirs can lead to significantly different 87Sr/86Sr isotope ratios within a 

single plant and between different plant species in the same area (Graustein and Armstrong, 1983; 

Reynolds et al., 2012). Shallow rooted plants should more closely reflect the 87Sr/86Sr isotope ratio of 

the topsoil then plant species with deeper roots that might sample deeper soil horizons with different 
87Sr/86Sr isotope ratios (Poszwa et al., 2002, 2004; Drouet et al., 2007; Maurer et al., 2012). 

1.2.7 Atmospheric deposition 

Atmospheric deposition of strontium through processes such as precipitation, seaspray, and dust can 

have a significant influence on the strontium isotopic composition of a region. The effect atmospheric 

deposition of Sr will have on the strontium isotopic composition of a region primarily depends on the 

concentrations and differences in 87Sr/86Sr isotope ratios of the different end members. In general, the 

lower total the Sr concentration in the underlying lithological material, the higher the possible influence 

of atmospheric influences on the strontium isotope composition of a region. Evaporated seawater starts 

with a low strontium concentration and 87Sr/86Sr isotope ratio close to modern seawater 0.70918. The 

strontium concentration and isotopic ratio is then changed by the addition of terrestrial dust and aerosols 

(Miller et al., 1993; Åberg, 1995; Capo et al., 1998; Faure and Mensing, 2005). Rainwater 87Sr/86Sr 

isotope ratios measured in France range from 0.709-0.713 (Négrel and Roy, 1998; Probst et al., 2000; 

Négrel et al., 2001, 2007) show that rainwater 87Sr/86Sr can be highly variable. Due to the generally low 

Sr concentration in precipitation in comparison to most soils and plants, only areas with high annual 

precipitation are expected to show a significant effect. The western part of Britain exhibits high annual 

precipitation in excess of 2000 mm/a, which results in a pronounced influence on the 87Sr/86Sr isotope 

ratio in the biosphere (Evans et al., 2009, 2010). The island of Bornholm, Denmark, on the other hand, 

shows low annual precipitation of around ~550 mm, which has only minute effects on the 87Sr/86Sr 

isotope ratio (Frei and Frei, 2013). Predicting the Sr isotope signal of rainfall for a certain area is not 

simple due to changes in the different sources and mixing of strontium with time. Sr from rainwater, for 

example in the Massif Central, shows 87Sr/86Sr values that vary from 0.7090 to 0.7106 (Négrel et al.,  

2001). Seaspray can also have a significant effect on the bioavailable 87Sr/86Sr isotope ratio in coastal 

areas (Whipkey et al., 2000; Montgomery et al., 2006; Evans et al., 2009; Frei and Frei, 2013), causing 

a shift towards marine isotope values. Seaspray affects coastal areas more strongly and the effect 

decreases further inland. Studies in the Hawaiian rainforest have shown that atmospheric deposition of 

marine strontium can dominate the 87Sr/86Sr ratios of plants on highly weathered surfaces (Chadwick et 

al., 1999) and even on fresher surfaces may form a significant contribution (Vitousek et al., 1999). 

Terrestrial dust can also be a major source of strontium in the environment, especially in arid regions 

(Graustein and Armstrong, 1983; Capo and Chadwick, 1999; Benson et al., 2008). A study on basalt 

flows in New Mexico observed a pattern where the 87Sr/86Sr ratios on young basalt flows was dominated 

by atmospheric deposition, while older flows were more influenced by bedrock weathering (Reynolds 
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et al., 2012). Saharan dust from Africa is transported across the Atlantic and also north into the 

Mediterranean and Europe (Goudie and Middleton, 2001; Engelstaedter et al., 2006; Israelevich et al.,  

2012). Dust from the Sahara region of Africa is considered a significant component of the 

biogeochemical budget in Europe, and it might have been of even greater importance during the last 

glacial period. The strontium concentration and isotopic composition of dust may be highly variable 

since it can come from distant and from local sources and these sources change over time. Atmospheric 

deposition of strontium from precipitation, seaspray, and dust can have a significant contribution to the 
87Sr/86Sr isotope ratios of plants and soils in a given area and thus need to be considered. 

1.2.8 Exogenic surface deposits 

Regions with exogenic surface deposits (loess, peat, glacial deposits), may show bioavailable 87Sr/86Sr 

isotope ratios that are partially disconnected from the underlying geology. Loess can be locally derived 

or come from far distances, which makes it difficult to predict, whether a patch of loess has a local or 

non-local strontium isotope signature (Chadwick et al., 1999). Large areas of central Europe are covered 

by loess influencing the 87Sr/86Sr isotope ratio. Peat deposits are thought to mute the 87Sr/86Sr isotope 

ratio from the bedrock geology, due to their high rainwater content (Evans et al., 2009). Glacial deposits 

can contain material moved over vast distances and this material can in certain areas dominate the 

bioavailable 87Sr/86Sr isotope ratio. However, in some areas the till may contain exotic boulders while 

the surrounding matrix is of local origin (Evans et al., 2010). In addition, the timing and occurrence of 

exogenous surface deposits may be disconnected from the archaeological material in question.  

1.2.9 Anthropogenic influences 

Strontium in the environment can be heavily influenced by anthropogenic activity. Artificial fertilizers 

are commonly used in Europe and may contribute a significant component to the Sr content in local 

surface water, groundwater, soil, and plant material. Only very restricted information is available on the 

Sr concentration and isotopic composition of artificial fertilizers. A comprehensive study of fertilizers 

in Spain (Vitòria et al., 2004) found that there is a large variation in 87Sr/86Sr isotope ratios for different 

fertilizers covering the full range found in rocks on the Earth. Most fertilizers showed 87Sr/86Sr isotope 

ratios around 0.708-0.709 thus overlapping with modern seawater compositions. Other anthropogenic 

sources are urban and industrial wastes ~0.708 and detergents ~0.709-0.710 (Vitòria et al., 2004). A 

study on Danish surface waters found that unrealistically high amounts of fertilizer input would be 

needed to change their strontium isotopic composition (Frei and Frei, 2011). Varying degrees of fertilizer 

influence have been observed suggesting that while bedrock weathering is the dominant process that 

fertilizers can have a significant effect 87Sr/86Sr isotope ratios in surface water (Négrel and Deschamps, 

1996; Hosono et al., 2007). One important aspect is that while for example the Ca, Na, Mg, and K 

concentration in a watershed in the Massif Central was heavily influenced by fertilizer input (~40-80%), 

Sr was still largely derived from the bedrock with only a ~7% influence from the fertilizer (Négrel and 

Deschamps, 1996). This shows that even in areas with potentially high fertilizer application, strontium 
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concentration and 87Sr/86Sr isotope ratio in the environment and in the applied fertilizer need to be 

considered before the influence on soil and plant values can be evaluated. 

1.3 Strontium isotopes in skeletal remains 

1.3.1 Biopurification 

Calcium plays a vital role in many biological processes and strontium can substitute for calcium due to 

its similar atomic properties. Along biochemical pathways non-essential elements, such as strontium, 

are preferentially removed, in comparison to Ca, leading to a decrease of the Sr/Ca ratio with each 

progressive step. This process is called biopurification and it has been observed that the Sr/Ca ratio 

decreases per trophic level in terrestrial food chains (Elias et al., 1982; Blum et al., 2000). Many plants 

do not discriminate strongly between strontium and calcium and thus exhibit relatively high Sr/Ca ratios. 

Sr/Ca ratio in herbivores is lower than that of their average plant die, and carnivores would in turn 

exhibit even lower Sr/Ca ratios. This effect can be used to constrain the composition of prehistoric diets, 

however, this approach is limited by the large geographic and individual variability of these ratios 

(Schoeninger, 1985; Sillen, 1992). The variability of Sr/Ca ratios is also affected by biopurification and 

decreases with each step in the food chain. This reduction in variability also applies to 87Sr/86Sr isotope 

ratios. Animal groups higher in the food chain thus exhibit a reduced variability in the standard deviation 

of their 87Sr/86Sr ratios compared to their feeding source (Blum et al., 2000; Price et al., 2002). The 

biopurification effect is not identical for different species and dietary patterns. Animals with a large 

migratory range across geologically vastly different terrains are expected to show a relatively large 

variation of their 87Sr/86Sr isotope ratios, while local animals with small migratory ranges show low 

variations and very low standard deviations in their 87Sr/86Sr isotope ratios (Price et al., 2002; Bentley 

et al., 2004; Bentley, 2006).  

1.3.2 Tooth formation 

Human teeth consist of the hard inert enamel, supported by the less mineralised dentine and pulp (Figure 

1-3) and attached to the jaw by the alveolar bone, periodontal ligament, and cementum (Nanci, 2012). 

Tooth formation is a complex process beginning in utero and depending on the tooth takes years to 

complete (Ash and Nelson, 2003; Simmons et al., 2013). The primary dentition, which forms to 

accommodate for the small initial size of the jaw is later replaced by the permanent dentition, normally 

before the age of 12 (Ash and Nelson, 2003). Teeth consist of bioapatite, which is similar to 

hydroxyapatite, but is affected by numerous substitutions of the Ca, PO4, and OH groups in the mineral 

structure with secondary groups, such as Sr, Mg, and Ba. These secondary groups are under biologica l 

selection and thus vary in concentration based on changes in trophic levels, between different species, 

and with the element abundance in the underlying substrate (Burton and Wright, 1995; Elliott, 2002).  

Enamel formation is called Amelogenesis and is a multi-step process. After the induction stage the first 

enamel forms in the secretion stage as a partially crystallised (~30%) mineral by the release of enamel 

proteins from ameloblasts. Enamel first appears early during pregnancy at the cusps of the teeth and 
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then grows outwards from the center of the tooth. During the maturation stage the organic matrix breaks 

down and the enamel layer becomes fully mineralised (Nanci, 2012). Mature tooth enamel consists of 

~96 wt% Ca phosphate with a composition of Ca4.5 [(PO4)2.7(HPO4)0.2(CO3)0.3] (OH0.5). The ameloblasts 

are lost during the maturation stage, meaning that enamel cannot replace or regenerate itself (Nanci, 

2012). Dentine formation called dentinogenesis, is controlled by odontoblasts and occurs before the 

formation of enamel. Dentine forms the bulk of the tooth and is used to support the more rigid and brittle 

enamel. Like enamel it consists of bioapatite but it includes larger amounts of organic compounds, 

including collagen. Related to their timing of formation different types of dentine can be distinguished. 

Mantle and primary dentine form during the tooth formation process. Secondary dentine only starts to 

form after the root formation has been completed and forms at a much slower rate and may continue 

throughout the lifetime of the individual do the presence of the odontoblasts (Nanci, 2012). Finally, 

tertiary dentine is deposited at specific sites in the tooth as response to injury. The central chamber 

within the tooth is filled with pulp, a soft tissue related to dentine but often lost in tooth remains leaving 

a characteristic cavity. 

 

Strontium is taken into the body through food and water and serves no metabolic function and substitutes 

for calcium. The Sr isotopic ratio (87Sr/86Sr) measured in skeletal material thus reflects the concentration-

weighted average of dietary Sr, that was consumed while the skeletal tissue was formed (Beard and 

Johnson, 2000; Bentley, 2006). After formation, tooth enamel is closed to chemical exchange and thus 

forms an archive of the 87Sr/86Sr isotope ratios acquired during formation. Intra tooth isotopic variations 

are related to the sequential mineralisation and maturation of the tooth. Measurements along the growth 

axis of the tooth enamel in large mammals have connected the intra tooth isotopic variations to mobility 

(Balasse et al., 2002; Britton et al., 2009). However, while the timing of tooth development in humans 

is well constrained, the mineralisation and maturation times and rates of tooth enamel are not well 

understood. Intra tooth isotopic studies in human teeth are possible (Eerkens et al., 2011; Beaumont et 

al., 2013), but complicated by the fact that incremental features (e.g. Retzius lines) may not reflect the 

pattern of later mineralisation and maturation during which the minerals are incorporated into the enamel 

apatite (Suga, 1989). This hinders the development of a time sensitive record from human teeth for a 

direct comparison to mobility patterns (Balasse et al., 2002; Viner et al., 2010). Recent studies have 

shown that different tooth types show variability in their maturation patters but that it may be possible 

to gain time sensitive information when choosing the sampling path across the tooth carefully 

(Montgomery et al., 2012). Inter isotopic analysis of human teeth, measuring multiple teeth with 

different formation and maturation times from the same individual, can also be used to extend the 

temporal information (Poulson et al., 2013; Eerkens et al., 2014).  

 

In contrast to teeth, bones remodel throughout life and therefore their strontium isotope composition 

reflect more recent dietary intake (Sealy et al., 1995). Different individual bones have different rates of 

turnover, depending on their ratio of active osteoclasts, which precipitate hydroxyapatite, and 
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osteoblasts, which dissolve hydroxyapatite (Price et al., 2002 and references therein). Bone turnover 

rates also vary between different individuals including their age and diet (Cox and Sealy, 1997; Hedges 

and Reynard, 2007) complicating a direct inference of timing. Generally, it can be assumed that the 

bones will approach the local Sr isotope signature, depending on their turnover rate and the time the 

individual spends in the specific geologic region.  

 

Figure 1-3: The anatomy of the tooth (Sam Fentress, Wikimedia Commons).  

 

1.3.3 Diagenesis 

Diagenesis is one of the major obstacles for isotopic studies in archaeology. Skeletal material is affected 

by both physical and chemical changes, potentially leading to the loss of the original 87Sr/86Sr isotope 

ratio. The degree of diagenetic overprint depends on a large number of factors, including the length of 

burial, the surrounding environment and the kind of skeletal material (Lee-Thorp, 2002, 2008; Hoppe et 

al., 2003) and may vary from sample to sample and within different domains of the same sample. Bone 

material is prone to local contamination due to its high content of organic matter (~30%), high porosity 

and poorly crystalline structure (Slovak and Paytan, 2011 and references therein). Similar to bone,  

dentine is easily altered because it has pores ~1 µm, which are larger than its phosphate crystals (Kohn 

et al., 1999), allowing contaminants from soil and water to enter into the pore space. In addition, 

dissolution and recrystallization of bone and dentine can occur (Koch et al., 1997). Both of these 

processes may alter element concentrations and the overall Sr isotope composition of the sample, 

rendering it unsuitable to determine the original isotopic signature. Tooth enamel has phosphate crystals 

above 1 µm, a compact structure and little pore space (Hillson, 2005; Nanci, 2012). It is thus much 

denser, harder and more inert than bone and dentine and consequently much more resistant towards post-

burial diagenesis and often retains the original strontium isotopic signature (Budd et al., 2000; Hoppe et 

al., 2003; Trickett et al., 2003; Bentley, 2006; Slovak and Paytan, 2012).  
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For the investigation of diagenetic changes in tooth enamel, a variety of methods have been used, 

including infra-red (IR) spectroscopy (Sponheimer and Lee-Thorp, 1999) and cathodoluminescence 

(CL) imaging (Schoeninger et al., 2003). Nearly all of these studies have employed bulk analysis with 

the aim of testing cleaning techniques (Price et al., 1992; Hoppe et al., 2003; Trickett et al., 2003) or 

coarse sub-sampling using mineralogical information (e.g. by CL) as a guide. While these approaches 

provide some information as to the mineralogical state of the hydroxyapatite or functional groups within 

this mineral (such as hydroxyl or phosphate sites), any conclusions about sample integrity for isotopic 

analysis are derived from conjecture. Mapping of element distributions has been used for the 

identification of the degree of diagenesis in bones (Trueman et al., 2008; Koenig et al., 2009; Fernandes 

et al., 2013). In addition, a few studies have investigated the mechanisms of diagenetic alteration using 

high resolution elemental or isotopic analysis (Kohn et al., 1999; Jacques et al., 2008; Martin et al.,  

2008; McCormack et al., 2015). Systematic mapping of U and Th concentrations can help identify 

domains within a tooth that are diagenetically overprinted. The basic principle is that modern teeth and 

bones contain only trace amounts of uranium (low ppb range) and thorium and thus their presence in 

archaeological skeletal remains can be used to identify zones of diagenetic overprinting (Budd et al.,  

2000; Eggins et al., 2003; Rainer Grün et al., 2008; Koenig et al., 2009; Hinz and Kohn, 2010; Boel, 

2011). 
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1.4 Tracing mobility 

In order to identify and trace human mobility across the landscape, the 87Sr/86Sr isotope ratio of the 

skeletal material is compared to the 87Sr/86Sr isotope range of the target areas. The method was first 

introduced to archaeological research by Ericson (1985), and since then has been rapidly developed and 

applied in numerous studies that showcased the huge potential, but also the limitations and pitfalls of 

the method (reviewed by Bentley, 2006; Slovak and Paytan, 2011). The ability to trace mobility is 

directly related to how tightly the isotope ranges of the different target regions can be constrained. This 

in turn is related to the internal isotopic variability of the local geology and the mixing with external Sr 

inputs. A multitude of different sample types can be used to constrain the strontium isotope range of 

different regions, each having its advantages and drawbacks, as summarised in Table 1-3. The different 

parts of a single individual thus archive a detailed record of the strontium isotopic composition of dietary 

intake over different timescales and potentially allow for the detailed reconstruction of past mobility. 

Teeth reflect the childhood signal, while bones average the dietary strontium isotope composition over 

the last years of an individual’s life, depending on their turnover rate. Soft tissues, hair, and nails also 

contain strontium and are used for isotope tracing in forensic cases to investigate mobility over the last 

few weeks to years. However, at most archaeological sites they are not preserved.  

Several assumptions have to be met for the archaeological interpretation of the data in terms of mobility. 

One assumption is that the people ate local food. Even small amounts of Sr rich non local food, like 

dairy products, fish and sea salt can significantly alter the 87Sr/86Sr isotope ratio of the skeletal remains. 

The definition of isotopically local simply means that an individual has an isotope range that is similar 

or overlaps with the isotope range of the target area. The Sr isotope values obtained from skeletal 

material are not necessarily directly related to a single defined residence area e.g., if the individual was 

highly mobile it will represent an average of multiple regions. A non-local 87Sr/86Sr ratio in tooth enamel 

means that the individual ate non-local food averaged over the tooth growth period. In a simple case this 

may indicate mobility from one place to another, but it could also be caused by movement over a wide 

area. A fundamental limitation is that strontium isotope ratios are often not unique to a single area, but 

can overlap with other, sometimes distant, regions. In general, the most robust case for the use of 

isotopes to trace mobility is when a specific geographic question is asked, because this minimizes the 

chance of overlap between the target areas. However, often the data do not fall neatly into two different 

groups, but form a range of values with no clear identifiable break. This creates a challenge to determine 

cut-off values between local and non-local data. Several studies (Grupe et al., 1997; Bentley et al., 2004) 

suggested the use of statistical methods (e.g. 2 standard deviation) to distinguish between local and non-

local individuals. However, this is not directly transferable because the cut-off will be specific for a 

certain the region with its different geologic units and the archaeological population and culture in 

question (Price et al., 2002; Evans and Tatham, 2004; Montgomery et al., 2007). The internal structure 

of the strontium isotope data of a population may offer additional information such as identifying simple 
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two end member mixing relationships (e.g. bedrock and precipitation) or a diffuse cloud of data, which 

would suggest multiple strontium end members (Montgomery et al., 2007).  

This is further complicated by the fact that an individual will be subject to changing sources of strontium 

as it moves across the landscape. In order to start to untangle all these different factors, we need to take 

the different areas and isotope reservoirs into account and use detailed baseline maps to define the 

internal variability of the different target regions. Based on this knowledge the strontium isotopic 

variability in the human dataset can be explored and appropriate cut-off values can be chosen based on 

the archaeological setting such as food sourcing practices. In some cases, even small variations in 

strontium isotope ratios may indicate significant movement, such as when the region and the population 

exhibit very homogenous strontium isotope ratios and there are some outliers. In other cases, highly 

variable strontium isotope ratios within a population may simply reflect the complex geologic substrate 

of the site and its immediate surrounding area. Strontium isotope tracing can provide one line of 

evidence to investigate past mobility. Additional lines of evidence such as geochemical methods, like 

element concentrations and other isotope systems are essential to gain a better understanding of past 

mobility. Element concentrations can help to constrain possible atmospheric and anthropogenic 

influences. δ13C and δ15N can be used to identify dietary bias, e.g., marine vs. terrestrial foods. Other 

isotope systems like δ18O and 207Pb/206Pb, 208Pb/206Pb add another layer of spatially variable independent 

data to the interpretation, and when overlayed with each other greatly enhance our ability to characterise 

different residence regions and mobility across the landscape. 

Table 1-3: Overview of sample types and their characteristics for strontium isotope tracing.  
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The clear advantage of using the bedrock geology to predict the bioavailable 87Sr/86Sr isotope range is that 

depending on the quality of the available geologic maps and already available samples no additional 
sampling is needed and that this method it is applicable on a global scale. However, relating the bedrock 

signal to the bioavailable Sr in the surrounding environment requires complex mixing models which need 

to be tested with direct sampling to evaluate their predictive capabilities for different geologic units and 

different climatic and environmental conditions. Exogenic surface deposits (loess, glacial deposits), can 
disconnect the 87Sr/86Sr range of the region from the underlying geology. 
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Overall, surface waters provide a good estimate of the average 87Sr/86Sr isotope ratios over their catchment 

area. A good correlation exists between the aquifer rocks and the strontium isotope ratios in ground water. 
Problems with surface and ground water samples can come from pollution, precipitation and flow rate 

effects. Due to the averaging effect these samples do not allow us to establish the 87Sr/86Sr isotope ratios 

of the individual geologic units. Since water is an important part of the dietary strontium intake, and is 

often sourced locally, water samples can provide a powerful tool to establish local strontium isotope 
ranges. 
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Soils and plants average Sr over a small area and are thus good candidates to establish 87Sr/86Sr isotope 

ratios for individual geologic units. The use of soil leachates to determine the local bioavailable Sr isotope 

ratio has shown varying degrees of success in different regions. Soil leachates are only an estimate of the 

bioavailable Sr pool, whereas plant samples on the other hand are a direct biosphere measurement. Plant 
samples are thus generally considered to be a better sample choice across different environments and can 

also offer insights into the variation of the Sr isotope ratio with depth, as different plant samples source Sr 

from different soil depths, depending on their root depth. Atmospheric inputs (precipitation, seaspray, 

dust) and anthropogenic inputs (fertilizers, land use) can influence both soil and plant samples. Both soil 
and plant samples are readily available in most areas and easy to collect, store, and transport. 
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Archaeological and modern fauna samples are good indicators of the 87Sr/86Sr isotope range over their 

feeding area. In case of snails or small mammals this feeding area can be well constrained and thus these 
samples offer a high spatial resolution and direct measurement of the 87Sr/86Sr isotope range for a specific 

location. For animals with continuously growing teeth it can be possible to investigate seasonal patterns. 

Disadvantages for the use of archaeological fauna is it’s restricted availably to excavation sites and their 

possible influence by diagenesis. Modern fauna is more easily found, but is possibly influenced by non-
local food sources and fertilizers. Domestic animals are not necessarily of local origin and thus cannot be 

used to determine the local strontium isotope range. 
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Tooth enamel contains the Sr isotope signature acquired during infancy and childhood and is most resistant 
to weathering and diagenetic overprint. It thus represents the best choice of sample to identify the original 

Sr isotope signature of an individual, while dentine is often diagenetically altered towards the local 

strontium isotope signature. Different bones have different rates of turnover and it can be possible to gain 

a very high temporal resolution of mobility for an individual. However, bones are also prone to 
contamination and thus often not that useful in archaeological cases. Dentine and bones can however be 

used to gain some insights into the Sr isotope signature of the archaeological site. In addition, if different 

isotopic values are found between dentine and enamel this can directly be used to identify non-local food 

sources. Soft tissues, hair and nails are potentially useful to investigate mobility of the last few weeks and 
years of an individual’s life, but are often not preserved in archaeological sites. To identify complex 

mobility patterns across different regions multiple samples of teeth, bones, and soft tissues, all 

representing different formation times can be used. Using the skeletal remains of known local human 

fossils can be a very effective measure to determine the strontium isotope range, however these are often 
not available. 
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2 The IRHUM (Isotopic Reconstruction of Human Migration) database 

This chapter has been published in the Journal of Earth System Science Data.  

M. Willmes, L. McMorrow, L. Kinsley, R. Armstrong, M. Aubert, S. Eggins, C. Falguères, B. Maureille, 

I. Moffat, R. Grün (2014), The IRHUM (Isotopic Reconstruction of Human Migration) database – 

bioavailable strontium isotope ratios for geochemical fingerprinting in France. Earth System Science 

Data 6, 117–122. doi: 10.5194/essd-6-117-2014 

 

The author’s contribution to the publication is as follows: The author led the sampling campaigns (2012-

2014), conducted the analysis in cooperation with L. McMorrow, and performed the evaluation of the 

data. The database and spatial infrastructure was implemented by the author. The article was written by 

the author with helpful comments from all co-authors. Additional unpublished information about the 

laboratory and analytical methods, including updated blank and standard values, can be found in the 

appendix 8.1. 

 

Abstract  
Strontium isotope ratios (87Sr/86Sr) are a key geochemical tracer used in a wide range of fields including 

archaeology, ecology, food and forensic sciences. These applications are based on the principle that the 

Sr isotopic ratios of natural materials reflect the sources of strontium available during their formation. 

A major constraint for current studies is the lack of robust reference maps to evaluate the source of 

strontium isotope ratios measured in the samples. Here we provide a new dataset of bioavailable Sr 

isotope ratios for the major geologic units of France, based on plant and soil samples (Pangaea data 

repository doi:10.1594/PANGAEA.819142). The IRHUM (Isotopic Reconstruction of Human 

Migration) database is a web platform to access, explore and map our dataset. The database provides 

the spatial context and metadata for each sample, allowing the user to evaluate the suitability of the 

sample for their specific study. In addition, it allows users to upload and share their own datasets and 

data products, which will enhance collaboration across the different research fields. This article 

describes the sampling and analytical methods used to generate the dataset and how to use and access 

of the dataset through the IRHUM database. Any interpretation of the isotope dataset is outside the scope 

of this publication.  

2.1 Introduction 

Strontium isotope ratios (87Sr/86Sr) can be used as a geochemical tracer in a wide range of fields, 

including archaeology (Bentley, 2006; Slovak and Paytan, 2012), ecology (West et al., 2010), food 

(Kelly et al., 2005; Voerkelius et al., 2010) and forensic sciences (Beard and Johnson, 2000). The Sr 

isotopic ratios of natural materials reflect the sources of strontium available during their formation. Sr 

isotope ratios in bedrock are a function of age and composition of the rock and thus vary between 
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geologic units (Faure and Mensing 2005). Through weathering Sr is released and transported into the 

soil, ground and surface water, where it becomes available for uptake by plants and eventually enters 

the food cycle (Capo et al., 1998; Bentley, 2006). Due to their large atomic mass, Sr isotope ratios 

(87Sr/86Sr) are not measurably affected by kinetic and equilibrium fractionations during processes at low 

temperatures and biologic processes (Faure and Mensing 2005). The isotopic composition of 

bioavailable Sr (the Sr taken up into the food cycle) can differ from the bulk Sr isotopic composition of 

the bedrock, mainly through to the preferential weathering of different minerals (Sillen et al., 1998). 

However, the bioavailable Sr isotope ratios can also be influenced by processes like precipitation, 

dryfall, seaspray, and in modern context by fertilizer application (Price et al., 2002; Bentley, 2006; Evans 

et al., 2010; Maurer et al., 2012; Slovak and Paytan, 2012; Frei and Frei, 2013). In addition, the range 

of Sr isotope compositions varies not only laterally between different regions, but also with depth and 

time as the local environmental conditions change. In summary, a direct connection exists between the 

measured Sr isotope ratio of a material and its source region, but determining the Sr isotope composition 

of different regions is complicated by the diverse range of possible influences on the bioavailable Sr 

isotope ratio composition. 

2.2 Mapping strontium isotopes 

The choice of sample material to constrain the bioavailable isotope ratio is a fundamental consideration 

and is discussed in detail in the literature (Price et al., 2002; Bentley, 2006; Maurer et al., 2012; Slovak 

and Paytan, 2012). In general, three different approaches can be distinguished: 

Fauna or human samples that are local to a region are considered to represent a robust average 

bioavailable Sr isotope composition over their feeding area (Price et al., 2002; Bentley, 2006). However, 

these samples are restricted in their availability in the context of a country wide study. In addition, fossil 

samples are subject to diagenetic overprint, while modern samples might be influenced by non-local 

food sources and fertilizer (Bentley, 2006; Maurer et al., 2012).  

The bioavailable Sr isotope ratio for different geologic units can be determined by analysing a number 

of soils, plants, ground and surface waters (Sillen et al., 1998; Price et al., 2002; Hodell et al., 2004; 

Evans et al., 2010; Maurer et al., 2012). Overall, surface and groundwater samples provide a good 

estimate of the bioavailable Sr isotope signal over their catchment area, but are influenced by seasonal 

changes and changes in precipitation (e.g. Shand et al., 2009). Soils and plants average Sr over a very 

small area and are readily available in many different environments and easily analysed. The use of soil 

leachates to determine the local bioavailable Sr isotope ratio has shown varying degrees of success in 

different regions (Sillen et al., 1998; Price et al., 2002; Hodell et al., 2004; Bentley, 2006; Frei and Frei,  

2011, 2013; Maurer et al., 2012; Slovak and Paytan, 2012). Plant samples are generally considered to 

be a better sample choice across different environments and can also offer insights into the variation of 

the Sr isotope ratio with depth, as different plant samples source Sr from different soil depths.  

The bioavailable Sr isotope ratio can also be modelled based on the bedrock lithology, age, and 

weathering rates (Beard and Johnson, 2000; Bataille and Bowen, 2012; Bataille et al., 2012). These 
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models have shown significant potential and the next step is to assess their predictive ability across 

different geologic and geographic regions using direct measurements.  

In many regions mineral weathering is the dominant influence on the bioavailable Sr isotope ratio and 

thus different geologic units can be differentiated. However, there are other processes including 

atmospheric Sr input (seaspray, dryfall), and in modern context fertilizers and other anthropogenic 

influences that can significantly affect the Sr isotope ratio. In addition, in regions with exogenic surface 

deposits (loess, glacial deposits) the local bioavailable Sr isotope ratio can be completely disconnected 

from the underlying geology. In conclusion, the choice of sample location and material and its value as 

a reference for mapping the geologic unit need to take these effects into consideration. This interpretative 

step will also depend on the focus of the study e.g., modern studies in contrast to archaeological studies.  

Strontium isoscapes have been published on a country scale for Mesoamerica (Hodell et al., 2004), 

United Kingdom (Evans et al., 2010), and Denmark (Frei and Frei, 2011, 2013), using a combination of 

directly sampled materials. Modelling of the bioavailable Sr isotope ratio has been undertaken for the 

contiguous USA (Beard and Johnson, 2000; Bataille and Bowen, 2012) and the Circum-Caribbean 

region (Bataille et al., 2012). Sr data also exist as smaller scale maps from different archaeologica l 

studies summarised in Slovak and Paytan (2011). While data are still lacking for many regions a robust 

approach is to combine as many different sample materials as possible to investigate their differences. 

Moreover, where possible, strontium isotope analyses should be undertaken in conjunction with other 

lines of evidence, including other isotope systems such as oxygen and lead, to validate a samples 

provenance. As a final note, a fundamental limitation of provenance studies is that it is only possible to 

disprove a source hypothesis, not to prove origin from a specific source. 

2.3 Dataset of bioavailable Sr isotope ratios of France 

The bioavailable Sr isotope ratio dataset of France is based on plant and soil samples. By sampling both 

sample types over a wide range of geologic units and large geographic regions, we hope to reliably 

constrain the local bioavailable Sr isotope ratios and gain insight into the possibly different sources of 

Sr to plants and soils. Ground and surface water samples would be a valuable addition to this dataset 

and are being considered for future sample collection. 

The dataset presently contains 840 sample locations, covering the major geologic units of France (Figure 

2-1, Table 2-1). As only small amounts of the collected sample material have been used for our analysis 

we have established a large archive of plant, soil and rock samples that is available to the scientific 

community for further investigation. The analysis of these samples is ongoing and new results will be 

added to the database as they become available with the aim of analysing all major geologic units of 

France within the next year. Finally, because the geology of France is varied and incorporates some of 

Europe’s dominant geologic units, the data gathered for France might be useable to infer Sr isotope 

values for similar geologic regions across Europe.  
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Figure 2-1: Map showing the sample locations (black dots) overlain on the 1:1M Geologic map of 

France (Chantraine et al., 2005). 
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Table 2-1: Metadata available for each sample site. 

Sample ID The sample ID can be used to identify the sample in our data tables and archives. Current 
standard is F-year-sample#, for example F11-02 means the second sample collected in 
2011. 

Researcher Names of the researchers collecting the samples 
Latitude, 
Longitude, 
Elevation 

Coordinates of the sample site 

Site image If available, a picture of the outcrop or sampling site will be shown here 
Outcrop type We distinguish different types of outcrops: 

Outcrop: A natural outcrop of rock, as far as we could identify. Not uncovered through 
recent human activity. 
Roadcut: Along a major road, rocks unearthed by human activity. 
Quarry: Outcrop created by human activity, often no longer in use. 
Field: A sample collected from a field or meadow. 
Turned over tree: A sample collected from or beneath a turned over tree that has 
excavated some fresh soil layers. 
Shallow pit: A sample collected from ~10-20 cm deep hole dug by us.  

Setting This is a short description of our observations in the field, such as the proximity of human 
activities (agriculture, forest plantations) or clear indications of other recent influences.  

Sample descriptions Field observations during sample collection, such as rock, soil and plant type and 
characteristics. 

87Sr/86Sr Bioavailable strontium isotope ratios 
Geologic setting Summary of the geologic information from the 1:1M BRGM geologic map including the 

geologic region, rock type, geologic unit, major lithologies and age ranges. 
 

2.4 Methods 

2.4.1 Sample collection 

The selection and density of the sample sites is based on the distribution of the geologic units on the 

1:1M Geologic map of France (Chantraine et al., 2005). There is a wide spacing of sample sites in 

sedimentary basins, where the geology does not change over large areas, and closer spacing in 

geologically complex regions. Some geologic units contain several very different lithologies and our 

sampling was aimed at covering each of these lithologies. Areas where the bioavailable Sr isotope ratios 

are likely to be detached from the bedrock geology, like coastal areas influenced by seaspray, areas 

covered with glacial or loess deposits, swamps and peat deposits, were targeted to investigate these 

processes. In addition, close-spaced samples were taken around sites of special interest, such as 

archaeological sites and we collected a number of samples from agricultural fields to investigate the 

possible influence of fertilizers in France. Typical sample sites include roadcuts, outcrops, fields, areas 

of forest, and shallow pits. At each site plant, soil and rock samples were collected in close proximity to 

each other. Each sample site was photographed and described in detail, including information about the 

rock, soil and plant type collected, as well as an assessment of possible recent geomorphic and 

anthropogenic influences.  
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2.4.2 Analytical methods 

Strontium is abundant in many materials in the environment. While this is an advantage for its use as a 

tracer it also increases the potential of contamination during sample preparation, especially for samples 

with low natural Sr concentrations. The samples were transported in sealed containers to Australia and 

irradiated at 50 Gy by the Australian Quarantine and Inspection Service to comply with quarantine 

procedures. All work is carried out under clean laboratory conditions. Only ultrapure reagents are used, 

and blanks are monitored at each step during the laboratory procedures to check for possible 

contamination. A summary of the sample preparation steps is illustrated in Figure 2-2 and described in 

detail in this section. 

 

 

Figure 2-2: Overview of the preparation procedure for Sr analysis of plant and soil samples. 

 

2.4.3 Sample treatment  

A ~30 g subsample of each soil sample was dried overnight at 60°C and then sieved through a 2 mm 

sieve. A 1 g aliquot was subsampled and leached by adding 2.5 ml 1 M ammonium nitrate (NH4NO3) 

following the protocol DIN ISO 19730 and shaking for 8 hours. Samples are then centrifuged at 3000 

rpm for 15 minutes, the supernatant extracted (~1-2 ml) and evaporated to dryness and then redissolved 

in 2 ml 2 M nitric acid (HNO3). Plant samples were placed in heat resistant ceramic crucibles and ashed 

in an oven at 800°C for 8 hours. A 0.1 g aliquot of each sample was then digested in 1 ml ultrapure 

concentrated nitric acid (HNO3) for at least 1 hour, before being evaporated to dryness overnight and 

redissolved in 2 ml 2 M nitric acid (HNO3). A 0.1 ml subsample was extracted and placed in a vial with 

4.9 ml 2% nitric acid (HNO3). These solutions were then analysed using the ICP-AES to determine Sr 

and other major and trace element concentrations. The samples are further processed by ion exchange 

chromatography to isolate Sr from other interfering elements, in particular 87Rb (isobaric interference), 

using two sets of columns filled with Eichrom Sr specific resin (pre-filter and Sr spec resin). In order to 

reach a target concentration of Sr in each sample volume eluted (600 ng in 2 ml) the amount of sample 
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added to the ion exchange columns is adjusted based on the Sr concentration determined by ICP-AES. 

The samples were finally diluted by a factor of 4 prior to MC-ICP-MS analysis to allow for reanalysis 

if necessary. 

2.4.4 Neptune MC-ICP-MS measurements  

Sr isotope ratios were measured in the Environmental Geochemistry and Geochronology Laboratory at 

the Research School of Earth Sciences, ANU, using a Neptune multi-collector inductively coupled 

plasma mass spectrometer (MC-ICP-MS). MC-ICP-MS was chosen over TIMS due to the requirement 

of high sample throughput for this project. A Quartz Dual Cyclonic Spray Chamber, PFA 100 µl 

nebulizer and standard Ni cones were used for sample introduction, and the instrument was tuned for 

maximum signal strength, stability and peak shape. The isotopes and Faraday cup configuration 

employed for analysis is shown in Table 2-2. Data reduction is performed offline in Microsoft Excel and 

includes Kr and 87Rb isobar corrections, an exponential mass bias correction, and 3 sigma outlier 

rejection.  

Table 2-2: Standard cup configuration and analysed masses (amu or isotope mass) employed for 

solution Sr isotope analysis on the Neptune MC-ICP-MS at RSES. 

L4 L3 L2 L1 C H1 H2 H3 H4 

82.152 83Kr 83.466 84Sr 85Rb 86Sr 86.469 87Sr 88Sr 

2.4.5 Quality control  

To assure dataset precision, accuracy, reproducibility and comparability to other international data 

sources we record and report blank and standard analyses as a long-term reference for our laboratory in 

the database. Total procedural blanks vary between 50-250 pg Sr, and were analysed by isotope dilution 

with an 84Sr enriched isotope spike using a TRITON Plus Thermal Ionisation Mass Spectrometer (TIMS) 

at RSES, ANU. These blank levels represent insignificant contributions to the amount of sample Sr 

measured (i.e. >100 ng). We tested the reproducibility of our analysis by running duplicate samples 

through the entire procedure and found differences between 87Sr/86Sr ratios measured for the same 

sample to be <0.004% (n=42). 

Biases between measured 87Sr/86Sr ratios in different laboratories relate to differences in instrument 

design, problems of resolution of mass peaks and differences in measurement protocols (Faure and 

Mensing, 2005). Measurements of the Sr carbonate standard SRM987 (National Institute of Standards 

and Technology) on the Neptune MC-ICP-MS gave an average 87Sr/86Sr value of 0.71023±0.00001 

(n=167, 2σ). This is in excellent agreement with measurements of the same standard by TIMS at RSES, 

ANU, which gave an average 87Sr/86Sr value of 0.71023±0.00002 (n=99, 2σ). It is also in agreement 

with the accepted 87Sr/86Sr value for SRM987 of 0.71025 (Faure and Mensing, 2005), and is within 

uncertainty of the original, albeit imprecise, certified value of 0.71034±0.00026 (Moore et al., 1982). 

To assess the comparability of our dataset we carried out a blind test on a grazing soil standard from the 

GEMAS project (Geochemical Mapping of Agricultural and Grazing Land Soil). Measurements at 
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RSES gave an average value of 0.70631±0.00005 (n=10, 2σ) which is in agreement with the GEMAS 

value of 0.70638±0.00003 (n=39, 2σ). For future comparability studies we have commenced measuring 

an in-house soil standard which will be made available upon request. 

2.5 Database architecture 

The IRHUM (Isotopic Reconstruction of Human Migration) database is a web platform to explore and 

share strontium isotope datasets and data products. It is built upon a highly flexible open source software 

stack (Opengeosuite, GeoNode) maintained by Boundless (http://boundlessgeo.com) and follows 

common web standards. Its current functionality allows the user to explore our datasets, upload their 

own data, and create basic isotope maps. It is also possible to connect to an external WMS server to load 

background data such as geologic and soil maps. In addition to the spatial isotope data the IRHUM 

website stores metadata and allows the user to upload documents to describe their project and methods. 

This will enable others to assess the suitability of specific data for their study. Finally, the data can be 

exported in a variety of formats (.csv, .kml, .shp, .pdf) for GIS analysis. In summary IRHUM provides 

easy access to datasets, which facilitate the reuse of data and collaborative development of isotope maps 

at a variety of scales. 

2.6 Data access 

The dataset can be viewed and downloaded on the IRHUM webpage (http://rses.anu.edu.au/research-

areas/archaeogeochemistry/tracing-human-migration or www.irhumdatabase.com). The full dataset is 

also available through the Pangaea data repository (doi:10.1594/PANGAEA.819142). Updates of the 

dataset are added to the IRHUM webpage as soon as they become available and will be passed on to the 

Pangaea data repository at the end of the project in 2014. 
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3 Spatial variability of bioavailable 87Sr/86Sr isotope ratios in France as a 
framework for archaeological provenance studies 

This chapter has been submitted to the journal of Applied Geochemistry 

 

M. Willmes, I. Moffat, L. McMorrow, L. Kinsley, R. Armstrong, S. Eggins, R. Grün (in review), Spatial 

variability of bioavailable 87Sr/86Sr isotope ratios in France as a framework for archaeologica l 

provenance studies. Applied Geochemistry 

 

The author’s contribution to the publication is as follows: The author was responsible for the analysis 

and interpretation of the data, as well as the spatial modelling. The article was written by the author with 

comments from all co-authors. Supplementary material for this chapter is found in appendix 8.2. 

 

Abstract 
Strontium isotope ratios (87Sr/86Sr) of archaeological samples (teeth and bone) can be used to trace the 

movement of animals, people, and their associated materials, across geologically different regions. 

Archaeological provenance studies in France are currently hindered by the lack of a baseline map to 

evaluate the variation of bioavailable 87Sr/86Sr isotope ratios across the landscape. Here we investigate 

the suitability of plant samples and soil leachates from the IRHUM database (www.irhumdatabase.com) 

to create a bioavailable 87Sr/86Sr isotope map for archaeological provenance studies in continental 

France. 87Sr/86Sr isotope ranges were classified for all major lithological units and isotope packages were 

created using cluster analysis to minimize in group variance and maximize the difference between the 

isotope packages. In this study it was not possible to untangle and quantify the processes that lead to 

variability between different sample types at some sample locations. However, these differences do not 

affect the overall variability of most lithological units, allowing us to create a robust 87Sr/86Sr isotope 

map for archaeological provenance studies. 

 

3.1 Introduction 

Strontium isotope ratios (87Sr/86Sr) are applied as provenance tracers in a wide range of fields such as 

archaeology, ecology, food and forensic sciences (Beard and Johnson, 2000; Hobbs et al., 2005; Kelly 

et al., 2005; Bentley, 2006; Voerkelius et al., 2010; West et al., 2010; Slovak and Paytan, 2012). 87Sr/86Sr 

isotope ratios vary between different geologic regions as a function of bedrock age and composition 

(Faure and Mensing 2005). Strontium is released by weathering of bedrock into the soils, ground and 

surface waters, from which it becomes available for uptake by plants and enters the food cycle (Capo et 

al., 1998; Bentley, 2006). Through their diet strontium is taken up by animals and humans and substitutes 

for calcium in biological apatite (bones, teeth), where it serves no metabolic function.  



48 
 

Recent studies have shown that the stable isotopes of strontium can be fractioned by physical and 

chemical processes (Fietzke and Eisenhauer, 2006; Halicz et al., 2008; Krabbenhöft et al., 2009; 

Knudson et al., 2010). This effect is removed when measuring 87Sr/86Sr for archaeological provenance 

studies during the mass spectrometry measurements, by normalizing the 87Sr/86Sr ratio to a constant 
86Sr/88Sr value of 0.1194.  

The isotopic composition of bioavailable strontium (i.e. the Sr that enters the food chain) can differ from 

the bulk 87Sr/86Sr isotopic composition of the bedrock, due to the preferential weathering of different 

minerals with different 87Sr/86Sr isotope ratios (Sillen et al., 1998). In addition, the isotopic composition 

of the bioavailable strontium can be influenced by atmospheric deposition (precipitation, seaspray, dust),  

the presence of exogenous surface deposits (loess, glacial till, cover sands, peat), mixing processes 

between different reservoirs, and anthropogenic influences such as fertilizer application and air pollution 

(Price et al., 2002; Bentley, 2006; Evans et al., 2010; Maurer et al., 2012; Slovak and Paytan, 2012; Frei 

and Frei, 2013). These processes vary between different areas and may introduce significant shifts in 

the bioavailable 87Sr/86Sr isotope ratio compared to the expected values based on bedrock geology.  

A variety of samples types have been used to create baseline bioavailable 87Sr/86Sr isotope maps 

including rock leachates, soil leachates, plant samples, surface and ground water samples, 

archaeological and modern fauna or human remains (Price et al., 2002; Evans and Tatham, 2004; 

Bentley, 2006; Evans et al., 2009; Maurer et al., 2012; Slovak and Paytan, 2012). The best suited sample 

material for archaeological provenance studies would be archaeological samples with the same food 

source range as the archaeological samples in question, e.g. well preserved teeth of known local origin. 

However, these are invariably not available for large-scale (e.g. country wide) studies and thus substitute 

sample materials are needed. The choice of sample material is a fundamental consideration for any study 

and currently no consensus exists in the literature as to what type of sample material is best suited to 

determine the overall spatial variability of bioavailable 87Sr/86Sr isotope ratios for a country wide study.  

Baseline 87Sr/86Sr isotope ratio maps using different sample types or modelling have been produced for 

a number of regions at different scales, including Europe (Voerkelius et al., 2010), Britain (Evans et al.,  

2009, 2010), Denmark (Frei and Frei, 2011, 2013), Israel (Hartman and Richards, 2014), the contiguous 

USA (Beard and Johnson, 2000; Bataille and Bowen, 2012), the Caribbean region (Bataille et al., 2012; 

Laffoon et al., 2012), Mesoamerica (Hodell et al., 2004), Puerto Rico (Pestle et al., 2013), South Africa 

(Sillen et al., 1998), and South Korea (Song et al., 2014). In addition, archaeological provenance studies 

on smaller spatial scales have been carried out in many areas around archaeological sites producing local 

baseline maps (Price et al., 2002, 2004; Bentley, 2006; Slovak and Paytan, 2012). Currently, no baseline 
87Sr/86Sr isotope map exists for France, hindering the use of 87Sr/86Sr isotope ratios to investigate 

provenance of samples from the vast archaeological record of France. The aim of this study is to use our 

recently published dataset of 87Sr/86Sr isotope ratios of plants and soil leachates for continental France 

(Willmes et al., 2014) to produce a bioavailable 87Sr/86Sr isotope baseline map for archaeologica l 

provenance studies. 
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3.2 Data and methods 

3.2.1 The IRHUM dataset 

The IRHUM (isotopic reconstruction of human migration) database presently contains 843 sample 

locations from continental France, for which plant samples and top soil leachates have been analysed 

for 87Sr/86Sr isotope ratios (Pangaea data repository doi:10.1594/PANGAEA.819142, 

www.irhumdatabase.com). We selected 610 sample locations from the dataset, which cover all major 

geologic units and lithologies of France (Figure 3-1). This subset excludes sample locations that are 

situated on geologic units that are not characteristic for their geographic area, such as minor geologic 

outcrops, river terraces, as well as sample sites that are likely to represent modern anthropogenic activity, 

such as agricultural fields. 

 

Figure 3-1: Surface geologic map of France (BRGM France) with sample sites from the IRHUM dataset 

marked as black dots.  
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3.2.2 Sample preparation and analytical methods 

The analytical methods are described in detail in Willmes et al. (2014). In brief, the plant samples 

analysed in this study were completely ashed at 800°C for 8 hours and a 0.1 g aliquot of each sample 

was then digested in 1 ml ultrapure concentrated nitric acid (HNO3). They are considered to represent a 

direct measure of bioavailable Sr. In contrast, strontium occurs in different parts of the soil, which can 

be divided into the bioavailable fraction, carbonate fraction and silicate fraction. The soil samples 

require a leaching process to mimic natural processes and extract the bioavailable part of the bulk Sr 

concentration (Capo et al., 1998; Sillen et al., 1998; Prohaska et al., 2005). Soil samples were dried, 

sieved to <2 mm, and a 1 g aliquot was subsampled. A 1M ammonium nitrate (NH4NO3) leach to extract 

the bioavailable Sr component was applied, following the protocol DIN ISO 19730. This leaching 

technique has been extensively tested (Hall et al., 1998; Gryschko et al., 2005; Meers et al., 2007; Rao 

et al., 2008) and is considered to produce robust results. Ion exchange chromatography, using two sets 

of columns in sequence that are filled with Eichrom Sr specific resin (pre-filter and Sr spec resin), was 

applied to isolate Sr from other interfering elements, in particular 87Rb isobaric interference (Horwitz et 

al., 1991). Sr concentrations and 87Sr/86Sr isotope ratios were measured at the Research School of Earth 

Sciences (RSES), The Australian National University. Sr concentrations were determined by inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) and Sr isotope ratios by a Neptune multi-

collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Procedural blank levels for 

plant samples and soil leachates were found to vary between 50-250 pg Sr, which represents an 

insignificant contribution to the amount of sample Sr measured (i.e. >100 ng). Reproducibility of the 

analysis was checked by running duplicate and triplicate samples through the entire procedure and 

differences between 87Sr/86Sr ratios measured for the same sample were found to be on average <0.004% 

(n=42). The Sr carbonate standard SRM987 (National Institute of Standards and Technology) is 

commonly used as a standard for 87Sr/86Sr isotope studies. Direct measurements of SRM987 on the 

Neptune MC-ICP-MS at RSES gave an average 87Sr/86Sr value of 0.71024±0.00001 (n=256, 2σ), which 

is in agreement with the original certified 87Sr/86Sr isotope value of 0.71034±0.00026 (Moore et al.,  

1982) and the accepted value of 0.71025 (McArthur, 1994). 

3.2.3 Spatial and statistical methods 

The strontium isotope data from the IRHUM database were spatially joined with the geologic map of 

France (Chantraine et al., 2005) and the surface geologic map of France (BRGM France) using ESRI 

ArcGISTM. The definition of the lithological units is taken from OneGeology-Europe 

(http://www.onegeology-europe.org). The data were then screened to check that the sampled lithology 

from the IRHUM dataset matches the lithology from the background maps and inconsistencies were 

manually corrected. Finally, we removed minor lithological units form the map (e.g. impact generated 

rocks, mud, amphibols, quartzites) and simplified and merged some of the lithological information to 

achieve uniform descriptions of units across France. For non-parametric statistical analysis Microsoft 

Excel and the free software environment R (R Core Team, 2013) were used. For the box and whisker 
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plot the top and bottom of the box are defined as the third and first quartiles. The interquartile range 

(IQR) is calculated by subtracting the first quartile from the third. The second quartile, which is the 

median, is shown as a black line. The whiskers are defined as Q1-1.5*IQR for the lower whisker and 

Q3+1.5*IQR for the upper whisker. Cluster analysis was conducted using R with the cluster (Maechler 

et al., 2015), fpc (Hennig, 2015), and clValid (Brock et al., 2008) packages. 

3.3 Results and Discussion 

3.3.1 Comparison of strontium isotope ratios in plant and soil samples 

In theory, both soil leachates, which represent the bioavailable Sr of the soil, and plant samples, which 

are a direct measure of the bioavailable Sr, should give similar 87Sr/86Sr isotope ratios at a given sample 

location (Blum et al., 2000; Hodell et al., 2004). 499 sample locations in this study contain data for both 

plant samples and soil leachates and thus can be used to investigate potential differences between these 

sample types. We define the difference between plant samples and soil leachates as ΔPS= (87Sr/86Srplant - 
87Sr/86Srsoil leachate). Overall, we find a strong positive correlation between the plant and soil 87Sr/86Sr 

isotope ratios with an r value of 0.94, indicating a good match between different sample materials for 

large parts of the dataset (Figure 3-2). The average ΔPS value for this dataset, calculated from absolute 

values, is 0.0008±0.0012 (SD, n=499). However, some sample sites show a significant higher offset 

between plant and soil samples. The largest ΔPS found in the dataset is -0.0085, which accounts for a 

large part of the entire 87Sr/86Sr isotope ratio variation of France at just one sample location. Sites with 

large ΔPS values show that soil and plant samples collected even in very close spatial context may sample 

vastly different strontium isotope reservoirs. This has been observed in previous studies (Blum et al.,  

2000; Evans and Tatham, 2004; Hodell et al., 2004; Evans et al., 2010; Maurer et al., 2012), and can 

result from a multitude of different processes. 

The primary driver for 87Sr/86Sr isotopic variation across a landscape is the underlying geology and thus 

differences between sample materials may also be related to lithology. Soils and plants in geologica lly 

complex areas may form on geochemically highly mixed substrates, caused by the weathering of 

different rock types and different minerals within the same rock (e.g., Sillen et al., 1998). Thus, 

lithological units with homogenous geochemical compositions (e.g., limestones) are expected to show 

smaller average ΔPS values than lithological complex units (gravels, granites, orthogneisses). For 

example, we find high ΔPS values for gravel units, that could reflect their heterogeneous composition 

consisting of rock fragments with potentially vastly different 87Sr/86Sr isotope ratios placed next to each 

other. However, in contrast to this hypothesis, the average ΔPS values of limestones and granites are 

similar (Table 3-1). The vast majority of soils is not only the product of in situ weathering but a 

composite of different processes and strontium sources. Overall, we find high average ΔPS values both 

in heterogeneous as well as in homogenous geologic substrates, indicating that the underlying geology 

is not the only driver for the observed difference between soil and plant samples.  
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The sampling of different soil horizons by different plant root depth can also cause differences in 
87Sr/86Sr isotope ratios between top soil and plant samples. In addition, atmospheric deposition of 

strontium will affect shallow rooted plants more than deeply rooted plants. In this study we concentrated 

on top soil samples and shallow rooted plants (grasses, shrubs). We dissolved the entire plant rather than 

specific tissues to mitigate this potential source of variability. Grasses should more closely reflect the 
87Sr/86Sr isotope ratio of the topsoil then other plant species with deeper roots that might sample deeper 

soil horizons with different 87Sr/86Sr isotope ratios (Poszwa et al., 2002, 2004; Drouet et al., 2007; 

Maurer et al., 2012). However, we observe high ΔPS values for all plant sample types including grass 

samples (Figure 3-3). There is no significant difference in average ΔPS values for grass samples 

(0.00082, n=380) compared to tree roots (0.00086, n=35) and other plant sample types (0.00083, n=84). 

The exception being moss samples that show higher average ΔPS values (0.00107, n=35). Finally, both 

soil and plant samples have a similar variance of 0.00002, indicating that the variability did not decrease 

as strontium was moved from the soil into the plant tissue.  

External input of strontium, such as precipitation, seaspray, and dust, can potentially create difference 

between sample materials. As a first order observation we find no direct spatial correlation between the 

occurrence of ΔPS values and precipitation and land use (appendix Figure 8-3 and Figure 8-4). Dust a 

major potential source of external strontium could not be investigated in detail because high quality dust 

distribution data with strontium concentration and 87Sr/86Sr isotope ratios do not exist for France. It is 

possible, that fine dust particles could contaminate plant samples with a foreign strontium isotopic ratio 

and that this fine dust was not removed in our sample preparation procedure.  

Finally, on the scale of France it is likely that at any given sample location a combination of the discussed 

processes is at work. Identification of the driving process is confounded by the complex interplay 

between weathering of lithology, soil genesis, plant processes, and external strontium inputs that vary 

both in absolute strontium concentrations as well as isotope ratios, spatially and with time. Based solely 

on the strontium isotope ratios it is thus not possible to untangle these processes and quantification of 

these external strontium inputs was beyond the scope of this work. We intend to revisit a range of sites 

to conduct detailed sampling to investigate the differences between plant samples and soil leachates. 

Concerning the aim of this study, which is to create a robust baseline map, we suggest to incorporate 

the observed local variability but exclude anomalous sites that are not representative of their lithologica l 

unit and geographic area. This approach does not favour a specific sample material, taking into account 

that there are likely multiple processes at work that create the variations in 87Sr/86Sr isotope ratios 

observed at specific sites. Using the top and bottom whisker of the boxplot (Figure 3-2) we can identify 

outlier ΔPS values as any value above +0.00170 and below -0.00115. In total, 70 sample locations (~14%) 

have ΔPS values outside of this range (Table 3-1). Removing these sample locations results in a dataset 

with an average ΔPS value of 0.0004±0.0004 (SD, n=429) and improves the correlation between plant 

and soil samples to R= 0.99. The danger in removing these sites is that it could potentially lead to an 

underestimation of the strontium isotopic variability for certain lithological units. We tested this by 
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comparing the strontium isotope range for each lithological unit from the complete and the outlier 

removed dataset (appendix Figure 8-5). No significant differences are observed, indicating that 

removing the outliers did not affect the overall strontium isotopic variability of the different lithologica l 

units. The exception from this observation are the gravel and chalk units, which show significant ly 

narrower strontium isotope ranges after outlier removal. However, these lithologies are represented only 

by a small number of sample locations with 2 for gravel and 4 for chalk. The results for these two units 

should thus be treated with caution and specifically the gravel samples cannot be considered to represent 

the full strontium isotopic range of these units for France. 



 
 

Table 3-1: Summary statistics of the ΔPS values for the different lithological units. ΔPS values are calculated as absolute values to accurately reflect the offset 

between the sample types. 

ΔPS (plant sample - soil leachate) Outlier   

 
Lithologies Min Max Average Sample 

pairs [n] SD 
Sample 
pairs [n] % 

Outlier removed 
average ΔPS 

 
Volcanics (Basanites, Tephrites, 
Pyroclastica, Trachytes) 0.00001 0.00065 0.00022 22 0.00017 0 0 0.00022 

 Chalk 0.00006 0.00563 0.00147 6 0.00213 2 33 0.00034 
 Dolomite 0.00013 0.00047 0.00028 4 0.00014 0 0 0.00028 
 Limestone 0.00001 0.00557 0.00066 67 0.00107 6 9 0.00036 
 Impure carbonate sedimentary rock 0.00001 0.00471 0.00079 95 0.00094 14 15 0.00047 
 Clay 0.00002 0.00760 0.00096 26 0.00160 5 19 0.00036 
 Sand 0.00000 0.00774 0.00082 52 0.00132 8 13 0.00041 
 Gravel 0.00023 0.00531 0.00207 5 0.00217 3 40 0.00023 
 Conglomerate 0.00006 0.00572 0.00128 15 0.00176 4 27 0.00036 
 Sandstone 0.00007 0.00429 0.00094 20 0.00111 4 20 0.00047 
 Wacke 0.00010 0.00066 0.00031 3 0.00031 0 0 0.00031 
 Granite 0.00001 0.00847 0.00067 64 0.00119 4 5 0.00043 
 Paragneiss 0.00001 0.00145 0.00048 15 0.00037 0 0 0.00048 
 Orthogneiss 0.00001 0.00437 0.00096 19 0.00100 3 11 0.00073 
 Migmatite 0.00005 0.00590 0.00091 15 0.00150 2 13 0.00041 
 Schist 0.00002 0.00780 0.00113 55 0.00155 12 20 0.00045 
 Mica schist 0.00006 0.00090 0.00038 5 0.00039 0 0 0.00038 
 Rhyolitoid 0.00015 0.00375 0.00130 11 0.00133 3 27 0.00055 
 All lithologies 0.00000 0.00847 0.00082 499 0.00123 70 14 0.00043 
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Figure 3-2: A: Geographic distribution of ΔPS values in France and B: Boxplot of the ΔPS values. Outliers 

are defined by the whiskers, as any value higher than 0.00170 and lower than -0.00115.
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Figure 3-3: 87Sr/86Sr isotope ratios of plants plotted against soil leachate values from the same site. A: 

Plot including all sample pairs, a linear fit is shown in red. Grey lines are the top and bottom whisker 

from the boxplot of ΔPS values (Figure 3-2), and any data point outside of the grey lines is identified as 

an outlier. B, same data plotted as in A, classified based on plant type.
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3.3.2 Mapping the spatial variability of bioavailable 87Sr/86Sr isotope ratios 

3.3.2.1 Isotope packages 

The dataset presented here consists of 540 sample locations, with a total of 968 individual samples, after 

outlier removal. The bioavailable 87Sr/86Sr isotope ratios for each lithological unit are shown in Figure 

3-4, Table 3-2. Significant overlap in 87Sr/86Sr isotope ratios exists between different lithological units,  

showing that the strontium isotope ratios form a continuum rather than specific readily distinguishable 

groups.  

We performed cluster analysis to identify groups of lithological units with minimized internal variance 

and maximum difference between groups in 87Sr/86Sr isotope ratios. Several different clustering 

techniques (hierarchal, k-means, pam) were tested and k-means clustering set to 5 cluster was found to 

produce the highest optimized values, as determined by cluster validation (Silhouette, Dunn value). We 

thus group the lithological units and their strontium isotope ranges into 5 isotope packages, weighted by 

the area of the lithological unit. 

Isotope package 1 (0.7033-0.7059) includes the volcanic units (basanites, tephrites, trachytoids) 

predominantly found within the Massif Central. Isotope package 2 (0.7072-0.7115) is composed of the 

carbonaceous sediments (chalk, dolomite, limestone, impure carbonate sedimentary rocks) and is the 

dominant lithology in the Aquitaine Basin, Paris Basin and Alpine Foreland. Isotope package 3 (0.7076-

0.7170) comprises the Clay, Sand, Conglomerate Wacke, Paragneiss, Schist units. The clastic sediments 

are found within the Basins along rivers intercutting the units of isotope package 2 as well as along the 

Atlantic coastline. Paragneiss and Schist units are found in the mountainous regions with large outcrops 

in the Armorican Massif, Massif Central, and in the Pyrenees. Isotope package 4 (0.7084-0.7252) is 

composed of the Gravel, Sandstone, Granite, Migmatite, Mica schist, and Rhyolitoid units. These units 

are found dominantly in the mountainous regions of France. The last isotope package 5 (0.7155-0.7213) 

includes the Orthogneiss units found in the Massif Central and Pyrenees.  

The isotope package map (Figure 3-5) is a simplified representation of the bioavailable 87Sr/86Sr isotope 

ranges of the lithological units and first strontium isotope baseline map for France. Since it is based on 

the surface geologic map it is accurate in displaying the sharp geologic boundaries and their 

corresponding changes in bioavailable 87Sr/86Sr isotope ratios. Limitations of the map are that because 

lithology was used as classification it does not allow us to investigate isotopic variation within single 

lithological units. The large strontium isotope ranges and significant overlaps are a direct result of using 

the broad lithological units as classifiers. For example, granites are represented as one group but 

different types of granites can have vastly different initial Rb concentrations and resulting 87Sr/86Sr 

isotope ratios. A similar effect can be observed in the clastic sediments, that vary significantly in their 
87Sr/86Sr isotope ratios depending on their source region (e.g., between mountainous areas and the 

basins) but are here grouped together increasing their internal variability. 
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Figure 3-4: Box and whisker plot of the bioavailable 87Sr/86Sr isotope range, A for each lithology and 

B for the 5 isotope packages as determined by cluster analysis. The 5 isotope packages group the 

lithologies into packages that minimize the internal variance and maximize the difference between 

groups.
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Table 3-2: Summary statistics for the bioavailable 87Sr/86Sr isotope range for each lithology and the 

isotope packages. 

  Bioavailable 87Sr/86Sr   

Lithologies Isotope 
package 

Q1-1.5 
*IQR Q1 Q2 Q3 

Q3+1.5
*IQR n Area 

[km2] 
Volcanics  1 0.70328 0.70428 0.70468 0.70514 0.70587 46 12693 
Chalk 2 0.70764 0.70765 0.70770 0.70790 0.70808 8 100291 
Dolomite 2 0.70818 0.70825 0.70846 0.70877 0.70923 8 5772 
Limestone 2 0.70741 0.70802 0.70842 0.70904 0.71052 127 172254 
Imp. carb. sedi. rock 2 0.70720 0.70832 0.70910 0.71017 0.71284 171 252846 
Clay 3 0.70877 0.70983 0.71152 0.71253 0.71504 47 114622 
Sand 3 0.70794 0.71067 0.71236 0.71354 0.71781 94 159230 
Conglomerate 3 0.70763 0.70825 0.71284 0.71617 0.72528 26 2562 
Wacke 3 0.71136 0.71177 0.71191 0.71244 0.71261 9 25385 
Paragneiss 3 0.70790 0.71007 0.71104 0.71196 0.71399 34 20603 
Schist 3 0.70799 0.71035 0.71214 0.71489 0.72057 102 75615 
Gravel 4 0.70839 0.70862 0.71434 0.71766 0.71788 5 1800 
Sandstone 4 0.71041 0.71312 0.71374 0.71525 0.71829 37 27438 
Granite 4 0.70849 0.71193 0.71441 0.71808 0.72521 145 100313 
Migmatite 4 0.71022 0.71414 0.71638 0.71893 0.72343 30 16332 
Mica schist 4 0.70928 0.71161 0.71518 0.71883 0.71989 18 14434 
Rhyolitoid 4 0.71135 0.71332 0.71390 0.71552 0.71593 22 9635 
Orthogneiss 5 0.71555 0.71717 0.71876 0.72007 0.72126 39 18940 

         
Isotope package 1 0.70328 0.70428 0.70468 0.70514 0.70587 46 12693 

 2 0.70720 0.70790 0.70842 0.70937 0.71147 314 531163 
 3 0.70763 0.71048 0.71180 0.71311 0.71699 312 398017 
 4 0.70839 0.71216 0.71441 0.71786 0.72521 257 169952 
 5 0.71555 0.71717 0.71876 0.72007 0.72126 39 18940 
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Figure 3-5: Map of the surface geologic lithologies of France, coloured by their classification into the 

5 isotope packages. Grey represents no data available in this study. Isotope ranges given represent the 

interquartile range (Q1 – Q3). 

3.3.2.2 Atmospheric deposition of strontium 

Atmospheric deposition of strontium through processes such as precipitation, seaspray, and dust can 

have a significant influence on the bioavailable strontium isotopic 87Sr/86Sr isotope ratio. The effect 

atmospheric deposition of Sr will have on the strontium isotopic composition of a region primarily 

depends on the concentrations and differences in 87Sr/86Sr isotope ratios of the different end members. 

Evaporated seawater starts with a low strontium concentration and 87Sr/86Sr isotope ratio close to modern 

seawater of 0.70918. The strontium concentration and isotopic ratio is then changed by the addition of 

terrestrial dust and aerosols (Miller et al., 1993; Åberg, 1995; Capo et al., 1998; Faure and Mensing, 

2005). Rainwater 87Sr/86Sr isotope ratios measured in France range from 0.709-0.713 (Négrel and Roy, 

1998; Probst et al., 2000; Négrel et al., 2001, 2007) show that rainwater 87Sr/86Sr can be highly variable. 
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Due to the generally low Sr concentration in precipitation, in comparison to most soils and plants, only 

areas with high annual precipitation are expected to show a significant effect. The western part of Britain 

exhibits high annual precipitation in excess of 2000 mm/a, which results in a pronounced influence on 

the 87Sr/86Sr isotope ratio in the biosphere (Evans et al., 2009, 2010). The island of Bornholm, Denmark, 

on the other hand, shows low annual precipitation of around ~550 mm, which has only minute effects 

on the 87Sr/86Sr isotope ratio (Frei and Frei, 2013). Areas of high mean annual precipitation 

(>1000 mm/a) in France are constrained to small parts of the Pyrenees, the Alps, the western Massif 

Armorican and the south western part of the Aquitaine basin. Predicting the Sr isotope signal of rainfall 

for a certain area is not simple due to changes in the different sources and mixing of strontium over 

different timescales. Seaspray can also have a significant effect on the bioavailable 87Sr/86Sr isotope ratio 

in coastal areas (Whipkey et al., 2000; Montgomery et al., 2006; Evans et al., 2009; Frei and Frei, 2013), 

causing a shift towards marine isotope values. Seaspray affects coastal areas more strongly and the effect 

decreases further inland. Studies in the Hawaiian rainforest have shown that atmospheric deposition of 

marine strontium can dominate the 87Sr/86Sr ratios of plants on highly weathered surfaces (Chadwick et 

al., 1999) and even on fresher surfaces may form a significant contribution (Vitousek et al., 1999). 

Terrestrial dust can also be a major source of strontium in the environment, especially in arid regions 

(Graustein and Armstrong, 1983; Capo and Chadwick, 1999; Benson et al., 2008). A study on basalt 

flows in New Mexico observed a pattern where the 87Sr/86Sr ratios on young basalt flows was dominated 

by atmospheric deposition, while older flows were more influenced by bedrock weathering (Reynolds 

et al., 2012). Saharan dust from Africa is transported across the Atlantic and also north into the 

Mediterranean and Europe (Goudie and Middleton, 2001; Engelstaedter et al., 2006; Israelevich et al.,  

2012). Dust from the Sahara region of Africa is considered a significant component of the 

biogeochemical budget in Europe, and it might have been of even greater importance during the last 

glacial period. The strontium concentration and isotopic composition of dust may be highly variable 

since it may come from distant and from local sources and these sources change over time. The lack of 

average dust distribution maps combined with the lack of Sr isotope data for the dust found in France 

prohibits the detailed investigation of its potential influence. However, since we find a good correlation 

between 87Sr/86Sr isotope ratios and lithological units, dust from distant sources does not appear to make 

a significant contribution in this dataset. 

In conclusion, the atmospheric deposition of strontium from precipitation, seaspray, and dust can have 

a significant contribution to the 87Sr/86Sr isotope ratios of plants and soils in France. Due to their spatially 

and temporally complex patterns it was not possible to quantify their contribution to the bioavailable 
87Sr/86Sr isotope ranges for the lithological units in this study. Thus the 87Sr/86Sr isotope ranges 

established in this map may not adequately reflect times of greatly different climatological and 

atmospheric regimes in the past. 
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3.3.2.3 Anthropogenic inputs 

Artificial fertilizers are commonly used in Europe and may contribute a significant component to the Sr 

content in soil and plant material. Only very restricted information is available on the Sr concentration 

and isotopic composition of artificial fertilizers. A comprehensive study of fertilizers in Spain (Vitòria 

et al., 2004) found that there is a large variation in 87Sr/86Sr isotope ratios for different fertilizers spanning 

most of the geological materials on Earth. Most fertilizers showed 87Sr/86Sr isotope ratios around 0.708-

0.709 thus overlapping with modern seawater compositions. However, depending on their source, 

fertilizers can have highly variable Sr concentrations and 87Sr/86Sr isotope ratios. Other anthropogenic 

sources are urban and industrial wastes ~0.708 and detergents ~0.709-0.710 (Vitòria et al., 2004). A 

study on Danish surface waters found that unrealistically high amounts of fertilizer input would be 

needed to change their strontium isotopic composition (Frei and Frei, 2011). A case study investigating 

the Allanche river watershed in the Massif Central found that while there was a high fertilizer input of 

dissolved major ions, the Sr source was dominated (~90%) by bedrock weathering (Négrel and 

Deschamps, 1996). Studies of stream and ground water in the mountainous areas of France such as 

Armorican Massif and Massif Central have found variable influence of fertilizers and have related 

generally low 87Sr/86Sr isotope ratios to manure from livestock farming (0.7092-0.7109) and fertilizer 

application (0.7079-0.7095) (Négrel, 1999; Négrel et al., 2004). Data from the GEMAS atlas do not 

show a systematic and significant difference between the extractable Sr content of agricultural or grazing 

soils (Reimann et al., 2014), indicating that fertilizer application might not be a major source of Sr for 

soils in many areas in France. We directly investigated soil and plant samples from 4 fertilized 

agricultural fields and compared them to soil and plant samples collected in close proximity (<200 m) 

on grazing land (Table 3-3). We observe small differences between agricultural and grazing samples, 

but no trend to higher or lower strontium isotope values is detected. This could be the result of the use 

of different fertilizer with different Sr concentrations or reflect small scale variability caused by the 

underlying geology. Our data offer no clear indication of wide spread effects on the Sr isotope ratios 

due to fertilizer use. However, we cannot exclude the possibility that fertilizer use could influence single 

sample locations and introduce significant shifts, since even small amounts of fertilizer with a very high 

or low 87Sr/86Sr isotope ratio could have a significant effect. New geochemical data on large spatial 

scales e.g. from the GEMAS atlas (Reimann et al., 2014) may allow to investigate these inputs in more 

detail in the future. 

Table 3-3: Differences in bioavailable 87Sr/86Sr isotope ratios between grazing land and agricultura l 

field samples. 

 Grazing land 87Sr/86Sr Field sample 87Sr/86Sr Grazing - Field 
Sample ID Soil Plant Soil Plant Soil Plant 
F12-146 0.7076 0.7077 0.7075 0.7081 0.0002 -0.0004 
F12-151 0.7083 0.7084 0.7083 0.7093 0.0000 -0.0009 
F13-155 0.7100 0.7109 0.7088 0.7098 0.0012 0.0011 
F12-147 0.7086 0.7102 0.7080 0.7111 0.0005 -0.0010 
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3.3.2.4 Exogenous surface deposits 

Exogenous surface deposits such as loess, cover sands, and glacial till, can disconnect the bioavailable 
87Sr/86Sr isotope ratios from the underlying geology. This can create a problem for mapping 87Sr/86Sr 

isotope ratios in areas where the exogenous surface deposits are patchy and do not represent the larger 

region. In addition, the timing and occurrence of exogenous surface deposits may be disconnected from 

the archaeological material in question. Care was taken in areas with exogenous surface deposits before 

accepting a sample to be representative of the surrounding surface geologic unit. The spatial distribution 

of exogenous surface deposits (Scheib et al., 2014) does not match any of the observed spatial trends in 

our dataset and thus does not seem to contribute significantly to our 87Sr/86Sr isotope ratio distribution 

maps. We also collected a loess sample at one location and found 87Sr/86Sr isotope ratios of 

0.70823±0.00001 and 0.70882±0.00001 for soil leachate and plant, respectively. Samples on loess in 

south west Saxony-Anhalt, Germany gave a values of 0.7095±0.0010 (Maurer et al., 2012), showing 

that, as expected loess deposits can have variable 87Sr/86Sr isotope ratios.  

 

3.3.3 Application to archaeological provenance studies 

France exhibits a significant contrast in 87Sr/86Sr isotope ratios making it a suitable area to apply 

strontium isotopes for archaeological provenance studies. The map produced in this study represents the 

first attempt to provide bioavailable 87Sr/86Sr isotope baseline data for all of France. The previous 

discussions have shown that more in-depth studies are needed to quantify the spatial and temporal 

variability of the input from different strontium reservoirs into soils and plants. Nevertheless, this map 

may still be useful for archaeological province studies, when keeping its limitations in mind. 

The main limitation of this map is related to the high variability in 87Sr/86Sr isotope ratios observed for 

many lithological units. This map can thus be used to identify broad geographic patterns of residence 

change, but may not resolve smaller scale mobility changes within similar 87Sr/86Sr isotopic regions. For 

example, isotope package 1 is constrained to a small area in the Massif Central and thus a sample with 

a corresponding isotope value could be placed into a tight geographic constrain, while samples with 

isotope values similar to isotope package 2 could correspond to many areas in the Paris and Aquitaine 

Basin. This reflects both the high variability found in isotope package 2 as well as the fact that distant 

geographic locations may exhibit similar 87Sr/86Sr isotope ratios based on their similar underlying 

geology.  

In addition, the extend of the strontium baseline map in this study is constrained to present day France, 

which creates boundaries that have not much meaning for archaeological provenance studies. This can 

be overcome by including other strontium isotope baseline maps and detailed local studies into the 

analysis. This is facilitated by founding the baseline map on the surface geologic map of Europe, which 

uses consistent lithological identifiers across all of Europe and sharing the data on the IRHUM database 
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(Willmes et al., 2014). The isotope packages established here are in good agreement with the strontium 

isotopic signatures of natural mineral water samples (Voerkelius et al., 2010) collected at coarse spatial 

resolution Europe wide. Within France there are a number of detailed studies on 87Sr/86Sr isotope ratio 

variations for different watersheds, ground and river waters (Négrel and Deschamps, 1996; Négrel et 

al., 1997; Probst et al., 2000; Semhi et al., 2000; Aubert et al., 2002; Négrel and Petelet-Giraud, 2005), 

as well as a few archaeological provenance studies (Britton et al., 2011; Goude et al., 2012). Overall,  

the results from these small scale studies fit well within the broad isotope packages established in this 

study. At the same time these small scale studies show how closer spaced sampling can be used to 

untangle the 87Sr/86Sr isotope ratio variations over small spatial and temporal scales. Rodents and other 

local animals with small feed ranges from within archaeological sites may be useful to constrain the 

local 87Sr/86Sr isotope ratio at archaeological sites, especially when using rapid analytical techniques to 

identify potential diagenetic overprints (see chapter 4). 

Another limitation of the baseline map presented here is caused by the use of modern environmental 

samples. For example, the last ice age has significantly influenced the distribution of surface deposits in 

many parts of Europe and this needs to be taken into account when applying a map like this to trace 

human mobility in the distant past. The spatial distribution of exogenous surface deposits (Scheib et al.,  

2014) could be used to identify problematic areas that may have been significantly altered in recent 

geological time. In addition, climatological and atmospheric conditions change and thus could have a 

temporally variable effect on the strontium isotope ratios measured in plants and soils. Modern samples 

that are affected by anthropogenic influences are particular problematic in this regard and need to be 

avoided for the creation of a baseline map for archaeological provenance studies. Care was taken during 

the creation of this map to avoid these areas. 

Finally, to maximize the use of this map it is best used in combination with detailed strontium isotopic 

studies around the archaeological site in question. In this capacity is provides a powerful tool to identify 

possible residence and food source areas for samples that are identified as non-locals to the 

archaeological site. For the application to provenance human or animal remains we can make use of the 

fact that they will average their food source over a geographic area and time. Thus more extreme 
87Sr/86Sr isotope values are less likely to contribute significantly, increasing our ability to identify 

different regions and thus allowing a more nuanced interpretation of the data. The map is also a useful 

tool to determine a prior where strontium isotopic tracing studies should best be applied and what kind 

of geographic constrain can be expected. Statistical methods such as linear discriminant function 

analysis could then be used to determine probable residence or food source areas.  
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3.4 Conclusions 

The map produced in this study represents the first bioavailable 87Sr/86Sr isotope baseline map for 

archaeological provenance studies in France. Significant differences in 87Sr/86Sr isotope ratios were 

observed between plant samples and soil leachates at a number of sample locations. Identification of the 

driving process behind these differences is confounded by the complex interplay between weathering of 

lithology, soil genesis, plant processes, and external strontium inputs that vary both in absolute strontium 

concentrations as well as isotope ratios, spatially and with time. Based solely on the strontium isotope 

ratios it is thus not possible to untangle these processes and quantification of these external strontium 

inputs was beyond the scope of this work. To create a robust baseline map, we incorporated the observed 

local variability but excluded anomalous sites that are not representative of their lithological unit and 

geographic area. Removing these samples sites did not influence the overall variability of the lithologica l 

units, with the exception of gravel and chalk units, and thus represents a viable approach. 87Sr/86Sr 

isotope ranges for all major lithological units were established. These were then grouped into five 

isotope packages, based on k-means cluster analysis, to achieve minimal internal variability and 

maximise the difference between the isotope packages. 

The large 87Sr/86Sr isotope ranges found in many lithological units and isotope packages, and the 

occurrence of similar lithological units with overlapping 87Sr/86Sr isotope ranges at geographically 

distant areas in France may limit the identification of mobility between those areas. In addition, the use 

of modern samples to create a map for archaeological provenance studies may not be appropriate if the 

surface deposits have changed significantly (e.g. deposits from the Ice Ages) or the climatological and 

atmospheric conditions were different enough to significantly change the 87Sr/86Sr isotope ratios in 

plants and soils. Nevertheless, keeping the limitations of this map in mind, it still provides a useful tool 

to identify patterns of mobility within France and to identify areas suitable for more in-depth studies of 

strontium isotopic tracing. Additional archaeological evidence, and isotopic tracers such as oxygen and 

lead, that are independent of the variability of strontium isotopes, can then be used to further constrain 

possible mobility patterns and residence areas.
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4 Improvement of laser ablation in situ micro-analysis to identify 
diagenetic alteration and measure strontium isotope ratios in fossil 
human teeth 

This chapter is in review in the Journal of Archaeological Science 

 

M. Willmes, L. Kinsley, M.-H. Moncel, R. A. Armstrong, M. Aubert, S. Eggins, R. Grün (in review), 

Improvement of laser ablation in situ micro-analysis to identify diagenetic alteration and measure 

strontium isotope ratios in fossil human teeth. Journal of Archaeological Science 

The author’s contribution to the publication is as follows: The screening for diagenetic overprint has 

been a continuous development in this research group (Rainer Grün et al., 2008; Boel, 2011) and the 

new analyses were performed by R. Grün. The investigation of the interferences on strontium isotopes 

by in situ laser ablation ICP-MS was conducted primarily by the author and in collaboration L. Kinsley. 

Micro-drilling and TIMS analysis were performed by the author and R. A. Armstrong. The manuscript 

was written jointly by the author and R. Grün. 

 

A part of the data in this chapter has been published in the journal of Archaeological Science.  

A. Benson, L. Kinsley, M. Willmes, A. Defleur, H. Kokkonen, M. Mussi, R. Grün (2013), Laser 

ablation depth profiling of U-series and Sr isotopes in human fossils. Journal of Archaeological 

Science, 2991–3000. doi: 10.1016/j.jas.2013.02.028 

The author’s contribution to the publication is as follows: The author conducted the strontium isotope 

analysis by micro-drilling, contributed to the interpretation of the data and wrote the section on strontium 

isotope analysis in the article. 

 
 

Abstract 
Strontium isotope ratios measured in fossil human teeth are a powerful tool to investigate past mobility 

patterns. In order to apply this method, the sample needs to be investigated for possible diagenetic 

alteration and a least destructive analytical technique needs to be employed for the isotopic analysis. We 

tested the useability of U, Th, and Zn distribution maps to identify zones of diagenetic overprint in 

human teeth. Areas with elevated U concentrations in enamel were directly associated with diagenetic 

alterations in the Sr isotopic composition. Once suitable domains within the tooth are identified, 

strontium isotope ratios can be determined either with micro-drilling followed by TIMS analysis or in 

situ LA-MC-ICP-MS. Obtaining accurate 87Sr/86Sr isotope ratios from LA-MC-ICP-MS is complicated 

by the occurrence of a significant direct interference on mass 87 from a polyatomic compound in many 

analytical facilities. We found that this polyatomic compound is present in our analytical setup but is Ar 
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rather than Ca based, as was previously suggested. The effect of this interference can be significant ly 

reduced by tuning the instrument for reduced oxide levels. We applied this improved analytical protocol 

to a range of human and animal teeth and compared the results with micro-drilling strontium isotopic 

analysis using TIMS. Tuning for reduced oxide levels allowed the measurement of accurate strontium 

isotope ratios from human and animal tooth enamel and dentine, even at low Sr concentrations. The 

average offset between laser ablation and solution analysis using the improved analytical protocol is 

38±394 ppm (n=21, 2σ). LA-MC-ICP-MS thus provides a powerful alternative to micro-drilling TIMS 

for the analysis of fossil human teeth. This method can be used to untangle diagenetic overprint from 

the intra-tooth isotopic variability, which results from genuine changes in 87Sr/86Sr isotope ratios related 

to changes in food source, and by extension mobility. 

4.1 Introduction 

Radiogenic strontium isotope compositions (87Sr/86Sr) of human and animal skeletal remains can be used 

to reconstruct their habitat use and ranging patterns (Price et al., 2002; Bentley, 2006; Slovak and Paytan, 

2012). Radiogenic strontium isotope ratios vary between different regions, primarily depending on the 

age and composition of the underlying geology, augmented by external processes such as precipitation, 

seaspray, and dust (Capo et al., 1998; Sillen et al., 1998; Bentley, 2006; Montgomery et al., 2007; Evans 

et al., 2010; Maurer et al., 2012). Strontium enters the body through diet, substitutes for calcium in 

biological apatite, which is used in the formation of bones and teeth, and serves no metabolic function. 

Therefore, the 87Sr/86Sr isotope ratio measured in skeletal remains will reflect the concentration-

weighted average of dietary Sr, that was consumed while the skeletal tissue was formed (Beard and 

Johnson, 2000; Bentley, 2006). Thus, 87Sr/86Sr isotope ratios can be used to reconstruct change in food 

source and by extension residence area. A common problem when working with fossils remains is that 

diagenetic processes can change the original isotope compositions, rendering the sample unsuitable for 

isotopic provenance studies. In addition, isotopic analyses are often destructive, which prohibits their 

application to valuable fossil remains. Laser-ablation MC-ICP-MS is an analytical method that has the 

potential to overcome both of these limitations, because it allows for rapid in situ screening for 

diagenetic overprints, and least-destructive strontium isotope analysis of the same sample (Benson et 

al., 2013; Grün et al., 2014). In this paper, we outline a method to investigate diagenetic overprinting in 

fossil teeth using U, Th, and Zn concentration distribution maps. We then tested our protocol for 87Sr/86Sr 

isotope analysis in teeth in regard to the current limitations in terms of accuracy and precision, which 

have been observed in a significant number of analytical facilities, and are hypothesized to be mainly 

caused by a polyatomic interference on mass 87 (Horstwood et al., 2008; Lewis et al., 2014). 

4.1.1 Diagenetic overprint in fossil teeth 

The formation of human tooth enamel and dentine of the permanent dentition is a complex process 

beginning in utero (Ash and Nelson, 2003; Nanci, 2012). The mineral component of teeth is bioapatite, 

which is similar to hydroxyapatite, but affected by numerous substitutions of the Ca, PO4, and OH 
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groups with secondary groups, such as Sr, Mg, and Ba. These secondary groups are subject to biologica l 

selection and vary in concentration with changes in trophic levels, between different species, and with 

the element abundance in the underlying substrate (Burton and Wright, 1995; Elliott, 2002). Intra-tooth 

measurements in mammals may be used to connect the intra tooth isotopic variations to mobility 

(Balasse et al., 2002; Britton et al., 2009). In human teeth, enamel does not remodel after formation and 

is closed to chemical exchange (Nanci, 2012). Thus, intra-tooth isotopic variations may relate to the 

sequential mineralisation of the tooth enamel. However, while the timing of tooth development in 

humans is well constrained, the complex pattern, timing and rates of mineralisation and maturation of 

tooth enamel are currently not completely resolved (Suga, 1989; Balasse, 2002; Montgomery et al.,  

2012).  

The preservation of skeletal remains depends on their environmental surroundings. Diagenetic 

alterations are a common problem for many archaeological samples. To ensure that the isotopic ratios 

measured in a tooth reflect the original isotopic composition, it is important to identify the domains 

within the tooth that are least affected by diagenetic alteration (Nelson et al., 1986). For the investigation 

of diagenetic changes in tooth enamel, a variety of methods have been used, including infra-red (IR) 

spectroscopy (Sponheimer and Lee-Thorp, 1999) and cathodoluminescence (CL) imaging (Schoeninger 

et al., 2003). Nearly all of these studies have employed bulk analysis with the aim of testing cleaning 

techniques (Price et al., 1992; Hoppe et al., 2003; Trickett et al., 2003) or coarse sub-sampling using 

mineralogical information (e.g. by CL) as a guide. While these approaches provide some information as 

to the mineralogical state of the hydroxyapatite or functional groups within this mineral (such as 

hydroxyl or phosphate), any conclusions about sample integrity for isotopic analysis are derived from 

conjecture. Mapping of element distributions has been used to identify the degree of diagenesis in bones 

(Trueman et al., 2008; Koenig et al., 2009; Fernandes et al., 2013). In addition, a few studies have 

investigated the mechanisms of diagenetic alteration using high resolution elemental or isotope analysis 

(Kohn et al., 1999; Jacques et al., 2008; Martin et al., 2008; McCormack et al., 2015).  

Systematic mapping of U, Th, and Zn concentrations may help to qualitatively identify domains of 

diagenetic alteration in skeletal materials. The basic principle is that modern teeth and bones contain 

only trace amounts of uranium and thorium and thus their presence in archaeological skeletal remains 

can be used to identify zones of diagenetic overprinting (Budd et al., 2000; Eggins et al., 2003; Rainer 

Grün et al., 2008; Koenig et al., 2009; Hinz and Kohn, 2010; Boel, 2011). Uranium is water soluble and 

highly mobile in skeletal tissues and consequently its concentration and spatial distribution are highly 

variable and can change on small scales on the order of tens of µm (Rainer Grün et al., 2008; Duval et 

al., 2011; Grün et al., 2014). Thorium, on the other hand, is water insoluble and represents mechanical 

overprinting of the sample, for example by clay particles in pores and on the surface. However, there is 

no linear correlation between uranium and thorium incorporation and the uptake of other elements, such 

as Sr. This hinders the quantification of possible Sr overprint based on the distributions of U and Th. 

Nevertheless, zones within a tooth showing high U or Th concentrations can indicate diagenetic 

overprints, while zones with low U and Th concentrations are more likely to preserve the original Sr 
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isotope ratio. In mammals, low U zones often occur close to the surface of the tooth enamel, within 200 

– 400 µm (Budd et al., 2000; Eggins et al., 2003; Rainer Grün et al., 2008; Boel, 2011). The first aim of 

this research project is to further test this screening method and to evaluate the usefulness of Zn as an 

additional tracer to identify zones which have retained the original strontium isotopic compositions. 

4.1.2 Strontium isotope analysis of fossil teeth 

Strontium isotope ratios from fossil teeth can be analysed either using sample dissolution followed by 

mass spectrometric measurements (thermal ionisation mass spectrometry (TIMS) or multi-collector 

inductively coupled plasma mass spectrometry (MC-ICP-MS)), or in situ using laser ablation (LA)-MC-

ICP-MS. For solution analyses, a micro-drill can be used to extract a small amount of sample, which is 

then digested in acid and Sr is separated from the matrix elements using ion exchange chromatography. 

This technique is accurate and reliable, but also time intensive and potentially more destructive to the 

sample than in situ LA-MC-ICP-MS. The amount of material required varies between a few µg to 

several tens of mg depending on the Sr concentration, drill setup, and instrument capacity. For samples 

requiring more than 0.5 mg, drilling causes large destructive marks on the sample, making this technique 

unsuitable for valuable archaeological materials. Micro-drilling smaller amounts of sample < 0.1 mg is 

much less destructive, but it is also technically challenging and the equipment is not widely available 

(e.g., Charlier et al., 2006). LA-MC-ICP-MS allows in situ analysis of a sample and has shown great 

potential in analysing skeletal remains because it is fast, requires minimal sample preparation, and 

provides high spatial resolution (50-200 µm). Additionally, this method allows for large numbers of 

measurements on the same skeletal fragment to test for compositional variability within the same 

specimen. Traditionally, samples were cut to create a flat sample surface for laser ablation analysis which 

creates significant damage. However, recent studies have shown that accurate data can also be obtained 

from the outer uncut sample surface (Copeland et al., 2011; Benson et al., 2013; Le Roux et al., 2014).  

Problems with laser ablation analysis of the 87Sr/86Sr isotope ratios in fossil skeletal material result from 

molecular interferences from Ca, Kr, Ar, and Rb, that can severely limit the accuracy and precision 

(Woodhead et al., 2005; Paton et al., 2007; Copeland et al., 2008; Horstwood et al., 2008; Simonetti et 

al., 2008; Vroon et al., 2008). In particular, the occurrence of a direct interference on mass 87 from a 

polyatomic compound, possibly 40Ca31P16O, has been suggested to be the main cause for the consistent 

positive offsets, observed in a significant number of analytical facilities, between the 87Sr/86Sr isotope 

ratios measured with LA-MC-ICP-MS and with solution methods (ΔLA-TIMS) on the order of 500 to 1500 

ppm (Horstwood et al., 2008; Simonetti et al., 2008; Lewis et al., 2014). The effect of this polyatomic 

interference on the 87Sr/86Sr isotope ratio was found to be highest in samples with low Sr concentration, 

relative to Ca and P (Horstwood et al., 2008; Simonetti et al., 2008). The Sr/Ca ratio in biogenic apatite 

is controlled by the Sr concentration, because calcium is a stoichiometric component and can thus be 

treated as constant. It follows, that under constant laser sampling ablation conditions, the effect of the 

polyatomic interference on the 87Sr/86Sr ratio varies in proportion with changes in Sr concentration 

(Horstwood et al., 2008). The effect of this interference on samples with high Sr concentration (e.g. 
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>1500 ppm) is minimal (Simonetti et al., 2008), however, most human tooth samples have much lower 

Sr concentrations, in the range of 50 ppm to 500 ppm (Bentley, 2006). An isotopically homogenous 

tooth that has varying Sr concentrations could then show varying 87Sr/86Sr isotope ratios when this 

interference is not corrected for adequately (Horstwood et al., 2008; Simonetti et al., 2008; Nowell and 

Horstwood, 2009; Richards et al., 2009).  

Several methods have been tested to increase the accuracy of LA-MC-ICP-MS analyses on human teeth. 

Horstwood et al. (2008) used samples with known 87Sr/86Sr isotope ratios to calibrate the LA-MC-ICP-

MS analyses, but found that this approach limited the precision of the analysis. Tuning for reduced oxide 

levels has been successful in reducing ΔLA-TIMS to 600-100 ±100 ppm (Foster and Vance, 2006; de Jong 

et al., 2007). A recent study by Lewis et al. (2014) combined tuning for reduced oxide levels with a 

customized plasma interface. Their setup is similar to a collision cell and allowed for the addition of a 

variable He flow after the skimmer cone, requiring minimal modification of the mass spectrometer.  

Using tuning for reduced oxide levels they achieved an accuracy of 100 – 600 ppm in bone and tooth 

enamel, which improved to 30±50 ppm with the addition of the customized plasma interface. Their 

analytical setup reduced the signal intensity by only 20-30% and thus is highly applicable to samples 

with low strontium concentration, such as human teeth. However, modification of the plasma interface 

is not always possible at an analytical facility with a broad range of applications of different isotopic 

systems. The second aim of this paper is to further investigate the causes of the polyatomic interference 

on mass 87 and evaluate our analytical protocol to reduce its effect on the measurement of 87Sr/86Sr 

ratios in fossil human teeth. 

 

4.2 Materials and methods 

4.2.1 Sample materials 

Diagenetic overprinting was investigated using a modern human tooth, a M3 extracted from R. Grün, 

and a prehistoric Neanderthal tooth (Payre 1), which is a unerupted molar of an approximately three-

year-old child. Detailed U and U-series maps of the Neanderthal tooth were published by Grün et al.  

(2008). 87Sr/86Sr isotope ratios were measured both with solution TIMS and in situ LA-MC-ICP-MS. 

TIMS results are taken here to represent the true value against which the LA-MC-ICP-MS results are 

compared. Samples were taken from the same locations within each tooth. These samples include eight 

teeth from Le Tumulus des Sables (Courtaud et al., 2010; Boel, 2011), four Neanderthal teeth from the 

site of Payre in France, one bovid tooth from Holon, Israel (Porat et al., 1999; Benson et al., 2013) and 

a diprotodon molar from Camel Swamp, Australia (Benson et al., 2013). We also measured modern 

marine teeth from a grey nurse shark (Carcharias taurus) and a dugong (Dugong dugon). In addition, 

the strontium carbonate standard SRM987 (National Institute of Standards and Technology) was used 

to mix a series of standard solutions containing varying concentrations of P using the 1000 ppm 



71 
 

Phosphorus AccuTrace Reference Standard. A solution of 2% nitric acid in MilliQ, was mixed with 

varying concentrations of P and Ca + P (1:1 to 1:0.05) in order to create an additional standard solution. 

4.2.2 Thermal ionisation mass spectrometry (TIMS) 

After cleaning the surface of the teeth, 0.2-0.5 mg of material was drilled out using a 0.3 mm custom 

made drill bit at 500 rpm. The samples were then leached in 0.5 ml 1 M ammonium nitrate to remove 

any residual contamination and digested in 1 ml ultrapure concentrated nitric acid for 1 h. The samples 

were then evaporated to dryness, redissolved in 2 ml 2 M nitric acid and subjected to ion exchange 

chromatography using micro-columns with Eichrom Sr specific resin (pre-filter and Sr spec resin) to 

isolate Sr from other elements (Horwitz et al., 1992). A drop of diluted phosphoric acid was added to 

each sample before loading onto rhenium filaments with a TaF5 activator. Samples were measured on a 

TRITON Plus thermal ionisation mass spectrometer (TIMS) at the Research School of Earth Sciences, 

ANU. Data reduction procedures include Rb correction (85Rb/87Rb=2.591), exponential mass bias 

correction (86Sr/88Sr ratio of 0.1194), and 2σ outlier rejection. Total procedural blanks were determined 

by isotope dilution using a 84Sr enriched spike, measured on the TRITON Plus TIMS and are below 100 

pg Sr. This blank contribution is insignificant compared to the amount of sample Sr measured (>100ng). 

Long term measurements of the Sr carbonate standard SRM987 (National Institute of Standards and 

Technology) gave 87Sr/86Sr value of 0.71023±2 (n=99, 2σ) which is in agreement with the original 

certified 87Sr/86Sr isotope value of 0.71034±26 (Moore et al., 1982) as well as the more commonly 

quoted accepted value of 0.71025±1 (Thirlwall, 1991; McArthur, 1994; Hans et al., 2013).  

4.2.3 Laser ablation analysis 

Samples were prepared by cutting along the buccal-lingual (cheek to tongue) axis using a fine diamond 

saw (100 μm) to produce a flat surface exposing both the enamel and dentine. Two of the Neanderthal 

teeth (Payre 2, 3) and the shark and dugong teeth were analysed from the outside without cutting. The 

in situ elemental and isotopic analyses were carried out using a custom-built laser ablation sampling 

system (ANU HelEx) interfaced between an ArF Excimer laser (193 nm; Lambda Physik Compex 110) 

and ICP-MS and MC-ICP-MS. Details of the ANU system and its capabilities have been described in 

detail previously (Eggins et al., 1998, 2003). In brief, it employs a single long-working distance lens to 

project and demagnify (by a factor of 20) the image of a laser-illuminated aperture onto the sample 

surface, which enables a range of geometries to be ablated within bounding dimensions of between 

about 5 μm and 400 μm. Samples were mounted so that their surface lies in the focal plane of the laser. 

In this study laser pulse rates of 10 Hz were employed with a fluence of 10 J/cm2 (power density 0.3 

GW/cm2), the latter resulting in removal of a uniformly thick layer (≈200 nm) from the targeted sample 

site with each laser pulse. The in-house developed laser ablation cell produces very fast response times, 

which permits high spatial resolution analysis. Laser ablation was performed under a pure helium 

atmosphere with a continuous flow of 500 cm3 min-1 through the cell. After the cell, approximately 1 l 

min-1 argon is added to the gas stream and is adjusted to optimise ionisation conditions. 
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4.2.3.1 Element distributions 

Element concentrations were measured with a Varian-820 quadrupole ICP-MS. The maps presented here 

are part of a larger study that measured 58 elements in fossil and modern human teeth (Grün et al., 2013). 

Pre-cleaning was performed using a 230 µm spot scanned at 100 µm/s across the sample surface, with 

the laser operating at 10 pulses per second. For elemental analysis, a track with a spot size of 100 µm 

with laser pulse rates of 10 Hz was employed. The NIST reference glasses SRM610 and SRM612 were 

used as calibration standards for element concentration determinations. Data reduction for elemental 

analysis followed Longerich et al. (1996) and involved the subtraction of interpolated plasma 

background intensities, measured before and after analysis of the sample. Signal intensities were 

normalised to 43Ca for each time slice, drift corrected relative to the NIST standard measured before and 

after the sample sequence, and then calibrated with respect to the known element ratios of the NIST610 

and NIST612 standards. Reference data for the NIST standards (Jochum et al., 2011) were taken from 

the GeoRem database (http://georem.mpch-mainz.gwdg.de). 

4.2.3.2 Strontium isotope measurements 

For in situ Sr isotope analysis, the laser ablation-system was connected to a Neptune MC-ICP-MS with 

Faraday cup detectors set to measure three different sequences in dynamic mode, thus allowing for 

monitoring of all potential interferences (Table 4-1,Table 4-2). Only spot sampling measurements were 

performed for isotope analyses, with a sample ablation time of 60 seconds, using a 180 µm diameter 

spot and the laser operating with a pulse frequency of 5 Hz. Typical operating conditions are shown in 

Table 4-3. To remove any surface contamination produced during the sample preparation process, 

including settled dust and fine particles, the samples were first subjected to a cleaning run using a laser 

spot of 265 µm for 10 s. Faraday detector integration times were 5 s. An in-house Sr standard, consisting 

of a piece of modern Giant Clam (Tridacna gigas) from the Great Barrier Reef, was measured 3 times 

before and after each sample analytical sequence. For the modern Giant Clam, we obtained an average 

Sr isotope composition of 0.70920±6 (n=153, 2σ), which is consistent with present-day values of 

seawater (McArthur et al., 2001).  

4.2.4 Interference correction protocol 

A number of methods have been used to account and correct for the different interferences present when 

analysing strontium isotopes using LA-MC-ICP-MS (Vroon et al., 2008). The relevant interferences on 

LA-MC-ICP-MS analysis of Sr in skeletal tissue are shown in Table 4-1. The potential isobaric 

interferences on the 87Sr/86Sr ratio are double charged rare earth elements (REEs), Kr, Rb, Ca dimers, 

and polyatomic interferences (Woodhead et al., 2005; Paton et al., 2007; Horstwood et al., 2008; 

Simonetti et al., 2008; Vroon et al., 2008; Müller and Anczkiewicz, 2016). Since some of the corrections 

required use mass peaks that have pre-existing interferences, the order in which the corrections are 

applied is important and is discussed below. All isotope ratios used were taken from Rosman and Taylor 
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(1998). Table 4-4 lists average elemental concentrations in tooth enamel for a variety of elements for 

the assessment of possible interferences. 

Background levels: Background levels were monitored before and after each measurement using the 

same instrument conditions as during analysis, except without ablating material. Washout times of ~60 

s are long enough to ensure that no wash-out effects, e.g. from the previous sample, are present and 

typical blank levels are shown in Table 4-5. 

Rare Earth Elements: Significant interferences from REE elements may occur due to the formation of 

doubly charged REE species (Paton et al., 2007). REE concentrations in skeletal material are generally 

low, however, post burial uptake can occur (Trueman and Tuross, 2002; Trueman et al., 2011). The 

measured intensities at half masses 81.5, 83.5, 85.5 and 86.5 are used to monitor 163Dy++, 167Er++, 171Yb++, 
173Yb++, respectively. The signals could be used to subtract the appropriate amounts of relevant double 

charged on-peak interferences from all Sr peaks. As can be seem in Table 4-4, these REE are close to 

background in both the modern and fossil samples. Should significant REE signals occur, this would be 

a sign of either diagenetic alteration or incomplete cleaning (some polishing pastes contain high REE 

and W concentrations). Such samples should be checked and rerun or removed from further analysis. 
89Y was used as the primary indicator for the presence of REE in the teeth. 89Y is a sensitive indicator of 

potential REE interference because it is chemically similar to the lanthanide REEs, and is generally 

concentrated in minerals that contain REEs. In addition, doubly charged REE would be several orders 

of magnitude lower than the single charged species.  

Ca dimers and argides: Samples with high Ca concentrations may produce calcium dimers and calcium 

argides in the plasma. 40Ca44Ca, 40Ca46Ca and 40Ca48Ca dimers interfere with the 84Sr, 86Sr and 88Sr, 

respectively. To correct for these the Ca dimer intensity on mass 82 was measured. However, on this 

mass there is a 82Kr interference, which is monitored on mass 83 and calculated using the known 
83Kr/82Kr ratio. 82Kr was then subtracted from the total intensity at mass 82, leaving the 40Ca42Ca or 
40Ar42Ca interferences. Using the known isotopic ratio for 42Ca/44Ca, 42Ca/46Ca, and 42Ca/48Ca all dimer 

and argide interferences could be corrected. We did not observe any Ca dimers or argides. 

Polyatomic interferences: Both 40Ca31P16O and 40Ar31P16O may interfere on mass 87 when measuring 

calcium phosphate matrices. This interference is investigated in this study and discussed in detail in the 

results and discussion section. 

Mass bias: The isotopic fractionation induced from the laser and the instrument mass discrimination are 

corrected during Sr isotope analyses by using the stable 86Sr/88Sr ratio of 0.1194 and an exponential 

correction.  

Krypton: Kr occurs as an impurity in the Ar gas and interferes with masses 84Sr and 86Sr. The amount of 

Kr varies depending on the gas supplier, between different batches, and also with time from a single 

vessel, as the Ar is used up (Woodhead et al., 2005). A standard method to correct for Kr is using a gas 

blank correction, measured before and after each sample and to subtract the intensities (Woodhead et 
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al., 2005; Vroon et al., 2008). A problem with this correction is the assumption that the measured Kr 

intensity stays the same whether or not sample material is being ablated. This is not necessarily correct,  

as the presence of ablated material changes the plasma loading and consequently the percentage of 

ionisation of atoms in the plasma. Correcting for the Kr interference using peak stripping is further 

complicated by the uncertainty surrounding the Kr mass bias (Jackson and Hart, 2006; Vroon et al.,  

2008). We used a similar approach to Jackson and Hart (2006) and corrected for the Kr interference by 

subtracting 84Kr from mass 84 until the 84Sr/88Sr ratio reaches the known value of 0.00672, see also 

Konter and Storm (2014). Iterations are used for the mass bias correction, substituting the Kr number in 

the 86Sr/88Sr ratio and repeating the calculations until there is no more change in the calculated isotope 

ratios (often less than 2 iterations). Using this correction method means that the 84Sr/86Sr ratio as data 

quality control is lost. The 84Sr/86Sr isotope ratio, while useful as a general monitor of the correction 

procedures, is problematic because of the very small intensities at these masses. The precision of the 
84Sr/86Sr does not necessarily reflect that of the 87Sr/86Sr ratios (Copeland et al., 2010). 

Rubidium: The direct interference of 87Rb on the 87Sr/86Sr is corrected by monitoring 85Rb and 

subtracting the appropriate amount from the signal at mass 87 assuming the natural 85Rb/87Rb ratio. The 
85Rb/87Rb ratio is then reversely corrected for mass bias, using the Sr mass bias. This correction method 

is limited because it assumes that the mass bias for Rb and Sr are the same, which is not necessarily true. 

Generally, in teeth the Rb/Sr ratio is low (see Table 4-4), thus this correction has only a negligible effect. 

However, in samples with higher Rb/Sr ratio the possible difference between the Rb mass bias and Sr 

mass bias would have to be considered and this correction method could have a significant effect. A 

recent study by Müller and Anczkiewicz (2015) was able to accurately constrain the mass bias corrected 
85Rb/87Rb ratio, allowing for accurate measurements of tooth enamel with high Rb/Sr ratio. 

 

Table 4-1: Summary of relevant isotopes of this study and their interferences (adapted from Horstwood 

et al., 2008). 

89 88 87.5 87 86.5 86 85.5 85 84.5 84 83.5 83 82.5 82 81.5 81 

 Sr  Sr  Sr    Sr       

   Rb    Rb         

     Kr    Kr  Kr  Kr   

Y Lu2+ Lu2+ Yb2+ Yb2+ Yb2+ Yb2+ Yb2+ 

Er2+ 
Tm2+ Yb2+ 

Er2+ 
Er2+ Er2+ Ho2+ Er2+ 

Dy2+ 
Dy2+ Ar2H 

 40Ca 
48Ca 

   40Ca 
46Ca 

   40Ca 
44Ca 

   40Ca 
42Ca 

  

   40Ca31P16O 
40Ar31P16O 

            

 

 

 



75 
 

Table 4-2: Cup configuration of the LA-MC-ICP-MS for strontium isotope measurements of skeletal 

remains at RSES. 

 L4 L3 L2 L1 C H1 H2 H3 H4 Integration time [s] 

Seq. 1 - 82 83 84 85 86 87 88 89 5 

Seq. 2 - 81.5 82.5 83.5 84.5 85.5 86.5 87.5 88.5 5 

Seq. 3     71     3 

Seq. 4     103.9     3 

 

Table 4-3: Instrument operating conditions for in situ Sr isotope measurements. 

Neptune MC-ICP-MS 

Forward power 1200 W 

Extraction voltage  -2000 V 

Analyser pressure  < 5e-8 mbar 

Cones Jet sampler 

+ standard skimmer 

(both Nickel) 

Gas flows 

Plasma gas 17 l/min 

Auxiliary gas  1 l/min 

Nebuliser gas ~ 1 l/min 

HelEx laser ablation system 

ArF Excimer laser, Lambda Physik Compex 110  193 nm 

Laser fluence  ~ 10 J/cm2 

Repetition rate 5 Hz 

He gas to cell 500 ml/min 

 

Table 4-4: Average elemental concentrations measured in the enamel of a modern tooth (RG) and a 

Neanderthal tooth from Payre (from Grün et al. 2013). DL stands for detection limit. 

 
 Sr 

(ppm) 

Rb 

(ppb) 

Y 

(ppb) 

Dy 

(ppb) 

Ho 

(ppb) 

Er 

(ppb) 

Tm 

(ppb) 

Yb 

(ppb) 

Lu 

(ppb) 

U 

(ppb) 

RG 100.0±0.2 299±1.0 15±2 1.4±0.2 0.20±0.04 0.7±0.1 0.11±0.03 9.7±0.1 0.15±0.02 1.0±0.1 

Neanderthal 151.3±3.6 232±1.8 19±1 2.2±0.3 0.41±0.08 <DL 0.22±0.06 1.8±0.3 0.20±0.08 625±7.8 
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Table 4-5: Typical blank levels after 60 s washout time.  

Mass Isotopes/polyatomic compounds Average V (n=30) 2se 

89 89Y 4.2E-06 9.2E-07 

82 82Kr+40Ca42Ca 1.3E-04 1.2E-05 

83 83Kr 8.1E-05 5.7E-06 
84 84Sr+84Kr+40Ca44Ca 3.6E-04 2.8E-05 

85 85Rb 2.0E-05 1.3E-06 

86 86Sr+86Kr+40Ca46Ca 1.5E-04 1.1E-05 

87 87Sr+87Rb+40Ca31P16O,40Ar31P16O 4.0E-05 4.1E-06 

88 40Ca31P, 40Ar31P 1.7E-04 6.9E-06 

71 88Sr+40Ca48Ca 3.2E-04 2.9E-05 

104 88Sr+16O 4.6E-05 4.0E-06 
 

4.3 Results and discussion 

4.3.1  Identifying diagenetic alteration in fossil human teeth using element distribution maps 

The results of the systematic mapping of elemental distribution in a Neanderthal tooth (Payre 1) and a 

modern human tooth (RG) and are shown in Figure 4-1and Figure 4-2, respectively. Since the resolution 

along a laser ablation track is greater (500 data points) than in the perpendicular direction (up to 35 data 

points from the parallel tracks, see lowest profiles in B, C), we carried out two maps focusing on the 

enamel with horizontal and vertical track directions. In the modern sample (RG) the Sr concentrations 

throughout the tooth are relatively uniform with little contrast between enamel and dentine, the dentine-

enamel junction (DEJ) is barely identifiable in the Sr maps. Towards the buccal enamel boundary (BEB) 

there is a moderate decrease in the Sr concentrations. The U and Th concentrations are all close to the 

detection limit of 0.1 ppb for our particular analytical setup. The Zn distribution shows a clear contrast 

between enamel and dentine, but also an outer rim in the enamel with high concentrations (D). Where 

the occlusal surface of the tooth is worn this is also evident by the absence of the Zn rim (vertical tracks 

8 to 16, cycles 100 to 200). The Zn rim in the enamel can be geochemically used to identify erosion of 

the enamel surface, which would facilitate diagenetic alteration (Eggins et al., 2003).  

The U and Th distribution in the Neanderthal tooth (Payre 1) has previously been mapped by Grün et 

al., (2008). Figure 4-1 shows maps of Sr (Figure 4-1B, C) and U concentration (Figure 4-1D, E). In 

contrast to the modern sample (Figure 4-2), Sr concentrations vary significantly between dentine and 

enamel. In dentine they are between 150 to 250 ppm, whereas in enamel, they are around 60 to 110 ppm. 

The Sr concentrations also show a clear separation at the DEJ. There is a gradient in Sr concentration 

from the dentine that is not covered with enamel towards the interior of the tooth (see arrow in Figure 

4-1C). The enamel has somewhat elevated Sr concentrations near the base (solid ellipse in Figure 4-1C) 

and low concentrations near the outer surface (e.g. area of the dotted ellipse in Figure 4-1C). The general 

concentration gradients of Sr and U are similar, and even smaller features of concentration changes are 

reproduced (compare circled sections in track 3, or details in track 6). Since virtually all measured U is 
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the result of post depositional U-uptake, we interpret the co-varying distribution of Sr in dentine to 

reflect post depositional Sr uptake as well. 

In contrast to dentine, there are both similarities as well as clear differences between the U and Sr 

distributions in the enamel. Both Sr and U are enriched at the base of the enamel (solid ellipses in Figure 

4-1C and E), and depleted close to the outer surface (dotted ellipses in Figure 4-1C and E). However, U 

is enriched along lineaments, and in a central patch (see rectangle in Figure 4-1D and track 13), while 

Sr does not show any apparent concentration changes in these areas (Figure 4-1C and track 13). 

Furthermore, U concentrations drop by a factor of 25 to 100 at the DEJ while the Sr concentrations drop 

by a factor of 2 to 3. The Sr concentrations in the detrital material on the outside of the enamel are less 

than twice the Sr inside the enamel while the U contrast is in the range of 100. Figure 4-3 shows the Zn 

and Th maps for the Neanderthal tooth. The Zn rim is completely intact for the tooth (Figure 4-3A) 

showing that no abrasion or material removal through weathering has taken place. Th only occurs within 

a very small volume on the surface of the tooth and is an indicator of remaining sediment and other 

surface contaminations (Figure 4-3B). Figure 4-4 details the relationship between Sr and U 

concentrations in the different enamel domains. While the U concentrations vary over 5 orders of 

magnitude, Sr varies only by a factor of 2 to 4. The enamel was subdivided into four different domains. 

The outside domain is the volume of enamel immediately on the interior of the Th peaks to a depth of 

about 50 μm (see Figure 4-3B, track 4 and track 12). The BEB domain corresponds to the volume with 

increased Zn concentrations (Figure 4-3A, track 4 and track 12). The base domain relates to the area 

with increased Sr and U concentrations (solid circles in Figure 4-1C and E), and the DEJ domain 

contains the remaining data points. It can be seen that all high U and Sr concentrations occur in the 

surface veneer (Figure 4-4B) and are the result of diffusion from the outside. The base domain (Figure 

4-4C) has the highest Sr concentrations in the enamel, followed by the DEJ domain (Figure 4-4D). The 

BEB domain has the lowest U and Sr concentrations and is thus least influenced by diagenesis (Figure 

4-4E). This means that on the one hand, U can be used to identify domains that contain original Sr 

isotope signatures, on the other hand, if no such low U domains can be identified, it will be impossible 

to ascertain whether any Sr analysis provided non-contaminated results. As soon as the outer surface of 

the enamel is weathered, U-migration proceeds from the outside (Eggins et al., 2003). Such teeth will 

be rendered unsuitable for Sr isotope analysis. The effect of diagenetic overprint is illustrated in Figure 

4-5. 87Sr/86Sr isotope ratio analysis using micro-drilling TIMS yielded a value of 0.7087 for the dentine. 

Three of the enamel 87Sr/86Sr ratios are closely similar, around 0.7108, while the forth is significant ly 

lower at 0.7097. The latter was drilled from the domain with highly elevated U-concentrations (rectangle 

in Figure 4-1E), and shows a diagenetic overprint from the dentine, lowering the 87Sr/86Sr ratio by around 

0.0011. 



78 
 

 

Figure 4-1: Elemental distribution maps of the Neanderthal tooth (Payre 1). A: Scanning electron 

microscope (SEM) image of the tooth, B, C: Sr concentration maps (oblique and planar view) and 

selected tracks D, E: U concentration maps oblique and planar view and selected tracks. The arrow 

indicates a general concentration gradient. The sections indicated by circles, ellipses and rectangles are 

discussed in the text. 
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Figure 4-2: Elemental distribution maps of a modern human tooth (RG), A: location of tracks, B-C: Sr, 

U and Zn element distribution maps (top maps: vertical tracks, below: horizontal tracks; left maps: linear 

scale, right maps logarithmic scale). Right hand diagrams: selected tracks indicated with the white lines 

in the respective maps. 
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Figure 4-3: A: Zn distribution map (planar view) and selected tracks, B: Th distribution map (planar 

view) and selected tracks, of the Neanderthal tooth (Payre 1).  

 



81 
 

 

Figure 4-4: Relationship of Sr and U concentrations in different domains of a modern human tooth 

(RG); Enamel, Dentine, Base, Dentine-enamel junction (DEJ), buccal enamel boundary (BEB). 
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Figure 4-5: U and Sr elemental concentration map and 87Sr/86Sr isotopic composition at 5 locations 

determined by TIMS analysis from the Neanderthal tooth Payre 1. There is a direct relationship between 

diagenetic overprint as indicated by elevated U concentrations at location 2 and variation in 87Sr/86Sr 

isotopic composition. 

4.3.2 Investigating the accuracy of strontium isotope measurements by LA-MC-ICP-MS 

In 2007, we created a distribution map of 87Sr/86Sr ratios with the aim of resolving the changes of the 

strontium isotope ratios caused by changes in diet and mobility from the diagenetic overprint. We found 

a large range of 87Sr/86Sr ratios of 0.707 to 0.710 for dentine and 0.712 to 0.718 for enamel (Figure 4-6). 

Initially, this was interpreted as diagenetic overprint with the end members reflecting the 87Sr/86Sr 

composition of the Jurassic limestone, the bedrock where the tooth was found, and a 87Sr/86Sr ratio of 

around 0.718, thought to be the isotopic signature of the region of origin of this individual (Figure 4-6D). 

However, further investigations showed that these LA-MC-ICP-MS results, especially in the enamel, 

are much higher than the 87Sr/86Sr ratios determined by micro-drilling TIMS. In conjunction with the 

observed correlation between increasing 87Sr/86Sr ratios and decreasing Sr concentrations (Figure 4-6D) 

this points to a bias stemming from analytical interferences, most likely the previously identified 

polyatomic interference on mass 87 (Horstwood et al., 2008; Simonetti et al., 2008; Lewis et al., 2014). 

This example illustrates that monitoring and, if necessary correcting for this analytical bias, is critical 

for any interpretation of strontium isotope ratios from teeth in terms of diagenetic overprint or mobility.  
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Figure 4-6: A, B: Distribution map of the 87Sr/86Sr ratios of the Neanderthal tooth (Payre 1) in oblique 

and planar view, circles show the positions of the solution TIMS analyses. C: Track 13 with a projection 

of the TIMS analysis spots and their corresponding 87Sr/86Sr ratios. D: Differences between Sr 

concentrations and 87Sr/86Sr ratios in the enamel and dentine.  
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4.3.2.1 The polyatomic interference on mass 87 

A polyatomic interference on mass 87 is suggested to be the main cause of observed offsets between 

solution and in situ analyses of 87Sr/86Sr isotope ratios in teeth, observed in many analytical facilities. 

This interference has been described in the literature as 40Ca31P16O (Horstwood et al., 2008; Simonetti 

et al., 2008). However, a 40Ar31P 16O interference is also possible as Ar is always present in analysis on 

a MC-ICP-MS. In order to determine whether this interference originates from Ca or Ar we used 

solutions of ultra-clean nitric acid mixed with Ca and P in varying concentrations and monitored masses 

71 (40Ca or 40Ar, 31P) and 87 (40Ca or 40Ar, 31P16O). Figure 4-7A, B show that there is a positive 

correlation between P concentration and the voltage produced on mass 71 and 87. No difference was 

observed, whether the solutions contained Ca or not (Figure 4-7). This indicates that the polyatomic 

interference is related to Ar rather than Ca and provides direct evidence of the 40Ar31P16O polyatomic 

compound. Figure 4-7C shows the effect on the measured Sr isotope ratio of the standard solution 

SRM987, with increasing P concentrations. We observe increasing deviations from the accepted value 

of this standard, and in the absence of other interferences, are directly attributable to the 40Ar31P16O 

polyatomic compound. Furthermore, in solution analysis, there is a direct relationship between 

increasing 71/88 (40Ar31P), as a measure of relative P to Sr concentration, and the deviation from the 

accepted 87Sr/86Sr isotope ratio of SRM987. This suggests that mass 71 could be used to monitor and 

correct the polyatomic interference on 87. At 71/88 ratios of >0.05, significant offsets are observed. As 

the 71/88 voltage increases, this offset becomes larger reaching values of 0.03, dominating the 87Sr/86Sr 

ratio at high P concentrations (Figure 4-7C). The effect of the interference on the 87Sr/86Sr ratio is 

hypothesised to be essentially controlled by the Sr concentration and oxide production rate, which in 

turn depends on the specific analytical facility used and the instrument conditions during analysis. Both 

Ca and P are stoichiometric components in bioapatite, and Ar is always present in the plasma, and thus 

can be assumed to be constant. 
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Figure 4-7: A: Signal intensity of Mass 71 (V) plotted against P concentration, B: Signal intensity of 

Mass 87 (V) caused by the interference plotted against P concentration. P + Ca not shown because the 

Ca standard contains traces of Sr. C: SRM987 mixed with various P concentrations. Blue square 

indicates the value of SRM987 without any added P measured during this analytical session 0.71024±2 

(n=8, 2σ). 
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4.3.2.2 Correcting for the polyatomic interference 

To mitigate the bias arising from the polyatomic interference it is necessary to either reduce the oxide 

production rate (Foster and Vance, 2006; Lewis et al., 2014), to apply a correction for the interference 

by using a suitable proxy, or a calibration with known sample materials (Horstwood et al., 2008).  

The oxide production rate during laser-ablation MC-ICP-MS analysis depends on the instrument tuning 

conditions, and the material and element being analysed (i.e. on the metal - oxide bond strength). 

Changes in oxide production rates caused by the different tuning of the instrument can be monitored for 

example by measuring UO+/U+, in NIST 610 or in a U bearing solution. Horstwood et al. (2008) found 

an UO+/U+ production rate of 0.25% to 1% using a U-solution and oxide production rates of 2.8% during 

laser-ablation analysis. The oxide production rate is different for solution and laser ablation MC-ICP-

MS analyses and is not directly transferable between different analytical setups. It varies greatly between 

different instruments and analytical facilities. Assuming that the blank corrected voltage on mass 87 in 

the ultra-clean nitric acid solution is solely caused by the oxide, it is possible to calculate an average 

oxide production rate from mass 71 (40Ar+31P) to mass 87 (40Ar+31P +16O) of 2.2±0.56% (n=10, 2σ). We 

find no positive linear correlation (r=-0.64) between the increase in P concentration and changes in oxide 

production rate in our solution analysis (Figure 4-8).  

 

Figure 4-8: Relationship between P concentration and oxide production rate during solution analysis 

using 2% nitric acid (r= -0.64). 

 

LA-MC-ICP-MS analysis of NIST 610 and monitoring of UO+/U+ shows that the oxide production rate 

is highly dependent on the tuning. Tuning for maximum signal intensity of 88Sr showed UO+/U+ 

production rates of ~1%, but depending on the tuning, rates of up to 7.5% were possible. The oxide 

production depends on the residence time of the particles in the plasma and thus sample gas flow and 

position of the torch are hypothesised to be the most sensitive tuning parameter. A low sample gas flow 

allows the plasma to break down oxides more efficiently, but comes at the expense of decreased signal 
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intensity. This can be countered by adding nitrogen to the plasma, which increases the energy 

distribution into the central channel, resulting in a higher signal intensity. Adding 8cc/min nitrogen 

allows the reduction of the sample gas flow by ~50%, significantly increasing the residence time of the 

particulates in the plasma. This reduces oxide production rates by 2 orders of magnitude while 

decreasing the 88Sr intensity by only a factor of 2-3. Possible nitrogen based interferences were checked 

by running mass scans across the full Sr isotope mass range and none were found. 

However, while the tuning of the LA-MC-ICP-MS can be kept the same between a series of analyses, 

the conditions in the plasma may change due to different loading conditions when analysing different 

samples. This means that the residual oxide production rate cannot assumed to be constant and may 

change between samples and should ideally be monitored independently. Since it is not possible to 

monitor 40Ar+31P +16O directly, a proxy for the oxide production rate needs to be used, perhaps mass 89 

(40Ar+31P+18O), but this has a potential REE interference. In addition, the error magnification from the 
18O/16O ratio would make this correction problematic. Mass 103.9 (88Sr16O) could be used to determine 

the residual oxide production during each analysis but the production of this oxide is extremely low and 

very close to the background level of 4.6x10-5, at Sr concentrations of ~300 ppm. Since the oxide 

production rates cannot assumed to be constant, and no adequate independent monitor was found, it was 

not possible to correct for the residual oxide production rate using our analytical setup. 

4.3.2.3 Improvement in accuracy 

Tuning the instrument for reduced oxide production resulted in an average ΔLA-TIMS value of 38±394 ppm 

(n=21, 2σ) for the human and animal teeth (Figure 4-9 and Table 4-6). This is a significant improvement 

over our previously obtained data which had an average ΔLA-TIMS value of ~3700 ppm. In absolute terms 

we reduced the average ΔLA-TIMS value and now achieve an accuracy of 0.00003±0.00028 (n=21, 2σ). 

Without tuning for reduced oxide production, the strontium isotope ratios acquired by in situ LA-MC-

ICP-MS in our laboratory were dominated by the interference of the polyatomic compound. The 

analyses of the shark and dugong teeth show only slight differences between the different tuning 

protocols. This is because shark and dugong teeth have much higher Sr concentrations (>1000 ppm) 

than the human and terrestrial animal teeth (~100s of ppm) and were thus not significantly influenced 

by the polyatomic interference in the first place. Applying the improved analytical protocol to the 

Neanderthal tooth (Payre 1) resulted in 87Sr/86Sr ratios of 0.70885±10 (±2se) and 0.71084±9 (±2se) for 

the dentine and enamel (next to spot 3), respectively. These new values are in agreement with the 

solution TIMS analysis with 87Sr/86Sr ratios of 0.70871±8 (±2se) for the dentine, and 0.71094±11 (±2se), 

0.71080±5 (±2se), 0.71081±6 (±2se) for the enamel. This indicates that our improved analytical 

technique now allows the investigation of changes in 87Sr/86Sr ratios within a tooth. In terms of mobility, 

the original LA-MC-ICP-MS values of the enamel would have indicated a vastly different geologic 

substrate than those obtained by the new analytical protocol or with TIMS
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With the new protocol our laser ablation data show both positive and negative offsets from the TIMS 

value. Figure 4-10 shows increased ΔLA-TIMS values at low 88 signal intensities, the result of less precise 

measurements at low signal intensities. There is a residual positive offset to higher 87Sr/86Sr ratios at 

high 88 signal intensities, indicating a residual production of the polyatomic interference of ~ 59 ppm, 

for samples > 1V 88Sr. The effect of the polyatomic compound does not correlate with the 71/88 ratio, 

which could have been a useful monitor as indicated by the solution analysis of SRM987 + P 

(comparison of Figure 4-7C and Figure 4-10). This is likely because P is a stoichiometric component of 

the bioapatite in teeth, and thus like Ca, and Ar from the gas, not limited during the analysis on a MC-

ICP-MS. Since the isotopic composition in teeth may vary spatially, one expects to find both positive 

and negative ΔLA-TIMS values because it was assumed that a single TIMS values was representative for 

that part of the tooth. Finally, the ΔLA-TIMS values now achieved in our lab (38±394 ppm) are comparable 

to the results of Lewis et al. (2014), without the need of a customized plasma interface, though at a 

greater loss of signal intensity.  

 

Figure 4-9: Enamel and dentine samples analysed using LA-MC-ICP-MS with tuning for maximum 

signal intensity (circles) compared to tuning for reduced oxide production (diamonds). Spots for each 

analysis were directly bordering the TIMS drill spot of each samples used to determine the correct 
87Sr/86Sr isotope ratio. Analytical errors are smaller than the size of the symbols. 
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Figure 4-10: A: ΔLA-TIMS 87Sr/86Sr values for the complete dataset plotted against 88 V, B: Expanded ΔLA-

TIMS values of the dataset tuned for reduced oxide production plotted against 88 V, and C: plotted against 

71/88. 



 

 
 

Table 4-6: Summary of the TIMS and LA-MC-ICP-MS strontium isotope data for the human and animal tooth samples. 

Sample details TIMS LA-MC-ICP-MS LA-MC-ICP-MS 8cc N Absolute difference Relative difference (ppm) 
Sample Sample type 87Sr/86Sr 2se Spot size (µm) 87Sr/86Sr 2se 88 (V) 71 (V) 104 (V) 87Sr/86Sr 2se ΔLA-TIMS ΔLA-TIMS 8cc N ΔLA-TIMS ΔLA-TIMS 8cc N 

Tum SLMEM263 dentine 0.70967 0.00003 265 0.71248 0.00013 0.70 0.00440 0.00004 0.70945 0.00010 0.00281 -0.00022 3957 -313 
Tum SLMEM466 dentine 0.71058 0.00004 265 0.71318 0.00020 0.45 0.00675 0.00005 0.71032 0.00021 0.00259 -0.00026 3650 -367 
Tum SLMEM308 dentine 0.70918 0.00002 265 0.71249 0.00030 0.58 0.00534 0.00006 0.70947 0.00011 0.00332 0.00029 4676 407 
Tum SLMEM308 enamel 0.70939 0.00001 265 0.71564 0.00029 0.72 0.00775 0.00003 0.70951 0.00010 0.00625 0.00012 8815 167 
Tum SLMEM282 dentine 0.71014 0.00003 265 0.71249 0.00034 0.65 0.00799 0.00007 0.71012 0.00008 0.00236 -0.00002 3316 -23 
Tum SLMEM282 enamel 0.71141 0.00001 265 0.71682 0.00059 0.44 0.00638 0.00007 0.71132 0.00017 0.00541 -0.00009 7609 -122 
Tum SLMEM432 dentine 0.70936 0.00003 265 0.71083 0.00031 0.56 0.00464 0.00006 0.70932 0.00021 0.00147 -0.00004 2073 -58 
Tum SLMEM432 enamel 0.70938 0.00008 265 0.71584 0.00054 0.42 0.00678 0.00003 0.70940 0.00009 0.00646 0.00002 9104 22 
Tum SLMEM861 dentine 0.70988 0.00002 265 0.71170 0.00016 1.25 0.00791 0.00015 0.70986 0.00006 0.00182 -0.00002 2559 -31 
Tum SLMEM1007 enamel 0.71331 0.00007 265 0.72437 0.00047 0.18 0.00524 0.00004 0.71326 0.00071 0.01106 -0.00005 15505 -76 
Tum SLMEM1251 dentine 0.70904 0.00016 265 0.71064 0.00031 0.90 0.00618 0.00005 0.70918 0.00008 0.00160 0.00013 2251 186 
Bovid (1557) enamel 0.70828 0.00002 265 0.70904 0.00015 2.15 0.00682 0.00016 0.70834 0.00005 0.00076 0.00006 1073 80 
Bovid (1557) dentine 0.70844 0.00002 265 0.70884 0.00008 5.21 0.00714 0.00016 0.70849 0.00002 0.00040 0.00005 566 68 
Diprotodon (2104) molar dentine 0.71023 0.00001 265 0.71026 0.00005 13.99 0.00572 0.00026 0.71029 0.00001 0.00003 0.00005 41 77 
Neanderthal Payre 1 dentine 0.70871 0.00008 265 0.70948 0.00019 1.53 0.00959 0.00010 0.70885 0.00010 0.00077 0.00014 1083 204 
Neanderthal Payre 1 enamel 0.71080 0.00005 265 0.71356 0.00020 1.05 0.00763 0.00010 0.71084 0.00009 0.00276 0.00004 3880 52 
Neanderthal Payre 2 dentine 0.70945 0.00006 265 0.71015 0.00104 0.96 0.00818 0.00009 0.70939 0.00012 0.00070 -0.00006 988 -82 
Neanderthal Payre 2 enamel 0.70909 0.00003 265 0.71144 0.00083 1.79 0.00764 0.00011 0.70902 0.00005 0.00235 -0.00007 3307 -101 
Neanderthal Payre 3 dentine 0.70975 0.00002 265 0.71125 0.00033 1.86 0.00979 0.00012 0.70978 0.00006 0.00150 0.00003 2107 47 
Neanderthal Payre 5 dentine 0.70922 0.00043 265 0.70951 0.00013 0.96 0.00818 0.00009 0.70939 0.00012 0.00029 0.00017 413 242 
Neanderthal Payre 5 enamel 0.71069 0.00028 265 0.71179 0.00015 0.82 0.00772 0.00010 0.71099 0.00011 0.00110 0.00030 1543 425 
Modern human (RG) enamel   265 0.71280 0.00020 0.74 0.00826 0.00010 0.70987 0.00004     
Modern human (RG) dentine   265 0.71091 0.00029 0.67 0.00760 0.00008 0.70995 0.00020     
           Mean 0.00266 0.00003 3739 38 
Grey nurse shark 0.70918 0.00001 160 0.70927 0.00001 4.73 0.00258 0.00015 0.70918 0.00003 0.00009 0.00000 132 4 

    160 0.70929 0.00002 4.78 0.00243 0.00014 0.70920 0.00004 0.00011 0.00002 158 32 
    205 0.70926 0.00001 7.83 0.00485 0.00016 0.70922 0.00002 0.00008 0.00005 114 64 
    205 0.70925 0.00001 10.85 0.00848 0.00031 0.70926 0.00001 0.00007 0.00008 105 108 

Dugong  0.70918 0.00004 265 0.70923 0.00001 32.38 0.03099  0.70921 0.00001 0.00006 0.00003 78 49 
    265 0.70922 0.00001 28.86 0.02882  0.70920 0.00001 0.00004 0.00002 57 30 
    265 0.70923 0.00002 26.91 0.02951  0.70921 0.00001 0.00005 0.00003 76 47 

Dugong   0.70919 0.00004 160 0.70927 0.00001 13.87 0.01665 0.00256 0.70925 0.00001 0.00008 0.00006 113 84 
    160 0.70930 0.00002 12.14 0.01468 0.00211 0.70927 0.00002 0.00011 0.00008 157 112 

                      Mean 0.00008 0.00004 110 59 
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4.3.3 Analytical sampling strategies for fossil human teeth 

The recent advancements of in situ laser ablation micro-analytical techniques made by a number of 

studies (Benson et al., 2013; Le Roux et al., 2014; Lewis et al., 2014) and in this research project 

significantly improve the application of this technique to fossil human teeth.  

Scanning for diagenetic overprint can be rapidly applied to a large number of samples to identify teeth 

that have most likely preserved the original isotopic signatures. In an earlier paper we suggested to use 

laser ablation drilling for U-series micro-sampling (Benson et al., 2013). Figure 4-11 shows how the 

laser can be used to probe the enamel BEB domain. The laser holes are 85 μm in diameter and cannot 

be seen with the naked eye (Figure 4-11A). The uranium profiles can be used to identify the best 

locations for isotope analysis. From our study, we can develop the following sampling strategies for 

human teeth that keep any destruction to an absolute minimum. Firstly, the enamel is probed with an 85 

μm laser for U, Th and Zn to estimate the depth of surface contamination (Th), to locate the BEB domain 

(Zn) and to evaluate diagenetic contamination (U). Intra-tooth isotopic variation can be investigated 

either along already broken surfaces, or possibly by sequential laser drilling similar to the U-series 

analysis (Benson et al., 2013). Once a suitable sample has been selected, different analytical methods 

can be applied to analyse its strontium isotopic composition.  

In situ spot analysis for LA-MC-ICP-MS and micro-drilling for TIMS cause comparable damage 

(Figure 4-11B), on the same scale as most surface impurities such as scratches, cracks and dirt.  

However, for the study of intra-tooth isotopic variations, and a large number of samples, TIMS analysis 

can be prohibitively labour intensive and time consuming. In addition, TIMS analysis may average 

intra-tooth isotopic variation depending on the amount of material required and the size of the micro-

drill. LA-MC-ICP-MS presents a valuable alternative because it allows for a high sample throughput, 

requires minimal sample preparation, and enables the investigation of intra-tooth isotopic variability at 

high spatial resolution. Intra-tooth isotopic variation can be investigated either along already broken 

surfaces, or possibly by sequential laser drilling similar to the U-series analysis (Benson et al., 2013). 

The potential of the polyatomic interference on mass 87 during LA-MC-ICP-MS analysis varies 

between different analytical facilities. Changes in instrument conditions (laser cell design, gas sources, 

cones and torch design) can have a significant effect, and thus this interference should be monitored 

during each study. If present, tuning to minimise the oxide levels, is currently the most promising way 

for achieving accurate 87Sr/86Sr isotope ratio measurements from teeth using LA-MC-ICP-MS (this 

study, de Jong et al., 2007; Lewis et al., 2014). Monitoring and tuning to minimise ΔLA-TIMS should be 

performed on a well characterised tooth standard with low Sr concentration (~100-300 ppm), in the 

same range as the unknown samples (e.g., Copeland et al., 2010, 2008; Le Roux et al., 2014). 

Finally, the level of precision required to relate human samples to strontium isotope regions in the 

landscape will vary considerably between different geologic terrains. LA-MC-ICP-MS analysis with 
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the accuracy range obtained here is sufficient for human mobility studies between most geologic terrains 

(e.g., Hodell et al., 2004; Evans et al., 2010; Frei and Frei, 2011; Bataille and Bowen, 2012; Willmes et 

al., 2014) and thus offers an alternative to solution analysis. This allows the application of this method 

to a large range of archaeological samples, which in turn will significantly improve our understanding 

of human and animal mobility and ranging patterns in the past. 

 

 

Figure 4-11: Neanderthal tooth from Moula-Guercy (Benson et al., 2013) as an example of the overall 

damage done to a tooth for isotopic analysis. A before and B after strontium isotope analysis by LA-

MC-ICP-MS and drilling for solution TIMS. The row of holes in the dentine were used for U-series 

dating and are not related to the strontium isotope analysis. 

4.4 Conclusions 

The main conclusions from this project are: 

(1) Using in situ LA-ICP-MS for U, Th, Sr and Zn concentrations in fossil teeth allows for rapid 

screening to identify zones of least diagenetic overprint. This method limits damage to the 

sample and ensures that only suitable samples are further processed for isotopic analysis.  

(2) The polyatomic interference on mass 87 is the principal cause for the offset between solution 

and LA-MC-ICP-MS strontium isotope analysis observed in a significant number of analytical 

facilities. We found direct evidence that this interference originates from Ar, rather than Ca 

compounds. The effect of the interference on the 87Sr/86Sr isotope ratio is essential controlled 

by the Sr concentration and oxide production rate, because both Ca and P are stoichiometric 

components in bioapatite, and Ar is always present in the plasma. 

(3) The oxide production rate in LA-MC-ICP-MS analysis varies between different analytical 

facilities, analytical conditions of the instrument, and the sample being analysed. No suitable 

proxy was found in this study to determine the oxide production rate during the analysis of a 

tooth independently, prohibiting online correction of potential oxide related interferences. 
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(4) Monitoring for this interference, and if present, tuning for reduced oxide levels is currently the 

most promising way to obtain accurate 87Sr/86Sr isotope ratio measurements from teeth using 

LA-MC-ICP-MS. We achieved ΔLA-TIMS values of 38±394 ppm (n=21, 2σ). This analytical 

offset is small, particularly when considering the variability of 87Sr/86Sr isotope ratios in the 

environment.  

(5) LA-MC-ICP-MS analysis of fossil human teeth can be used to investigate intra-tooth strontium 

isotopic variability and relate it to diagenetic alteration or changes in food source, thus 

providing a powerful technique to investigate diet and mobility patterns in archaeology.
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5 Archaeological case studies 

5.1 Introduction 

The archaeological sites investigated in this research project are not connected through their time period 

or geographic location (Figure 5-1). They represent case studies to test the application of strontium 

isotopic tracing under a variety of different archaeological contexts and geologic settings. The strontium 

isotope tracing conducted at the archaeological sites is part of larger projects including dating and dietary 

reconstruction. At the Neanderthal site of Moula-Guercy we established a robust chronology of the site 

and used strontium isotopes to reconstruct the mobility of two Neanderthal individuals and one Neolithic 

individual. The Neolithic site of Le Tumulus des Sables was subject to a large project including new 

radiocarbon dating, and combined multi-isotope reconstruction of diet and mobility using strontium, 

oxygen (James et al., 2013), nitrogen and carbon isotopes. Finally, the study at La Grotte des Perrats is 

an ongoing investigation and only the newly obtained strontium isotope data on human remains is 

presented here. 

 

Figure 5-1: Location of the archaeological sites investigated in this research project. Elevation map for 

France created from data of worldclim.org (Hijmans et al., 2005). 
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5.2 Moula-Guercy 

This chapter is in preparation to be submitted to PLOS ONE 

 

M. Willmes, R. Grün, K. Douka, V. Michel, R. A. Armstrong, A. Benson, E. Crégut-Bonnoure, E. 

Desclaux, F. Fang, L. Kinsley, T. Saos, A. R. Defleur (in preparation), Chronology and human mobility 

at the Neanderthal site of Moula-Guercy (Ardèche, France). PLOS ONE 

 

The author’s contribution to the publications is as follows: The author conducted the strontium isotope 

analysis. The chronology studies were conducted in collaboration with all co-authors under the direction 

of R. Grün. The article was written jointly by the author and R. Grün with suggestions and corrections 

from all co-authors.  

 

Abstract 

The Baume (cave) Moula-Guercy, in southeast France, contains an important sedimentary sequence, 

which includes the remains of a cannibalised group of Neanderthals. For the upper layers of the cave a 

tephra deposit (layer VI) has been dated to 72±12 ka using thermoluminescence. The middle and lower 

layers of the cave have been constrained by biostratigraphy, pointing towards MIS 5.5 for the 

Neanderthal bearing layer XV. In order to refine the chronology of the site, we applied radiocarbon, 
40Ar/39Ar, U-series and ESR dating analyses. Radiocarbon dates on bone samples from the upper layer 

(IV) showed ages older than 50 ka. 40Ar/39Ar dating on sanidines reveals, that these volcanic minerals 

derived probably from the Hercynian basement, and thus provided no tangible chronological constrain. 

Combined US-ESR results on faunal teeth place layer IV at 61±8.5 ka, layer VIII at 66 ±4 ka, layer XIV 

at 83.5 ±20 ka, and layer XV at 119±13 ka. Direct U-series analyses on two Neanderthal teeth shows, 

that U-mobilisation even into small teeth is highly complex, but nevertheless indicates that the 

Neanderthals could correlate to MIS 5.5. In addition, we carried out strontium isotopic analysis 

(87Sr/86Sr) on two Neanderthal and one Neolithic teeth to investigate childhood residence and mobility. 

Strontium isotope ratios of two the Neanderthal teeth suggest a childhood food source within the Rhône 

valley and exclude the Massif Central. This provides direct support for the archaeological evidence, 

which suggests that Moula-Guercy was used by mobile hunter-gathers as a specialised hunting site for 

the gregarious herbivores of the Rhône valley, when they were seasonally abundant in this area. The 

Neolithic individual, with a strontium isotope ratio indicative of young volcanic units, presents a strong 

case for mobility. The closest volcanic units occur ~30 km south east of Moula-Guercy, another possible 

childhood residence area for this individual are the larger occurrences of these units in the Massif Central 

~50-80 km to the west of the cave. In either case this individual experienced significant mobility in its 

lifetime. 
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5.2.1 Introduction 

The Baume (cave) Moula-Guercy is located 80 m above the west bank of the Rhône River near the city 

of Valence, southeastern France, in the parish of Soyons, Ardèche (Figure 5-2). The archaeological site 

was discovered in 1970 and excavated in two phases: between 1975 and 1982 by an amateur 

archaeologist. After a 1 m2 test pit was dug in 1991, systematic excavations were carried out between 

1993 and 1999 by A.R. Defleur.  

The earlier excavation from 1975 to 1982 removed about 100 m3 of Mousterian sediments, destroying 

much of the upper section of the sequence, and reached down to the mid of layer XIV (the stratigraphy 

is shown in Figure 5-3). This campaign yielded only two Neanderthal teeth that cannot be attributed 

with certainty to any level. The 1991 test pit, starting at the base of the previous excavation more than 

5 m below the surface, yielded 13 Neanderthal remains, some of which showed cut marks and evidence 

of fractures of fresh bones (Defleur et al., 1993). The follow-up excavations yielded 119 human remains 

from layer XV representing at least six individuals: two adults - a large older male individual and a 

smaller one, possibly a female, two adolescents most likely female and two children aged between four 

and seven years (Defleur et al., 1999). DNA analyses of the material did not yield any results due to the 

difficulty in extracting any organic material from the examined fossils (pers. comm. S. Pääbo to A.R. 

Defleur, 15 August 2013). 

Anatomical studies on the crania and mandibles (Guipert and Defleur, n.d.), teeth (Hlusko et al., 2013) 

and postcranial remains (Mersey et al., 2013a, 2013b), identified characteristic Neanderthal traits, while 

no evidence for the presence of any of other hominid taxa was found. Detailed forensic examinations 

on the human remains showed that all individuals, including a 4 year old child, had been cannibalised. 

The skulls had been skinned and the pericranium removed before fracturing. All muscles from the 

crania, mandibles, limbs were removed. Shoulders, elbows, feet and hands were disarticulated and all 

bones with marrow were systematically fragmented, while those without marrow were not (Defleur et 

al., 1999, 2014). Human remains were only found in Layer XV, apart from Neolithic graves dug into 

upper layers, and the two Neanderthal teeth uncovered during the initial excavation.  

Thermoluminescence dating on quartz from layer VI provided an age of 72±12 ka (Sanzelle et al., 2000). 

This was used to correlate this tephra layer with two other volcanos in the Ardèche: le Ray-Pic with TL 

dating on plagioclases: 77±10 ka and/or le Pic de l’Etoile with TL dating on plagioclases: 83±9 ka 

(Guérin, 1983; Guérin and Gillot, 2007). The first one is characterised by abundant mineral of basement 

olivines and shows a strong mineralogical similarity with those found at Moula-Guercy (Debard and 

Pastre, 2008). Using studies of large mammals, rodents, reptiles and amphibians the remainder of the 

layers are placed in the general biochronology of Europe. In order to corroborate the existing 

chronological framework of the whole sedimentary sequence, in particular the crucial layer XV, we 

carried out a range of radiometric dating analyses. In the following sections we first give a brief 

description of the stratigraphy, lithics, biostratigraphy, followed by our new dating and isotope analyses.   
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Figure 5-2: Geographical location of the Moula-Guercy Cave. Elevation data from worldclim.org 

(Hijmans et al., 2005). 

 

5.2.2 The site of Moula-Guercy 

5.2.2.1 Stratigraphy 

The stratigraphy of Moula-Guercy has been investigated in detail by Saos et al. (2014) and an overview 

is shown in Figure 5-3. All depths refer to below datum and the bedrock has not been reached during 

the excavations. The description of the excavated sections and the sedimentological analysis of the cave 

infilling (Saos, 2003; Saos et al., 2014) allow the distinction of three major depositional complexes, 

which are further subdivided into layers, some of which include archaeological levels. The lower 

stratigraphic complex comprises of layers XIX to XVI from the base to 610 cm below datum, and is 

only exposed in the pit near the west wall (see inset in Figure 5-3). The sediments are mainly sandy with 

limestone blocks. The middle stratigraphic complex (from 610 cm to about 400 cm) begins with layer 

XV, which yielded numerous human remains, and ends with layer XI. All layers are sloped (up to 30º) 

towards the north. The upper stratigraphic complex (from 400 cm to 0 cm) is only exposed at the 

entrance of the cavity, since it was strongly affected by previous excavations. The sedimentologica l 

sequence can be interpreted as follows: the lower complex represents an active karst system with alluvial 

deposits from sands to small limestone pebbles. The sediments indicate a cold climate (Saos et al., 2014). 

With the onset of the deposition of the middle stratigraphic complex, the cave opened to the outside. 
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During this time the cave dried out and the infill is characterised by cave wall fragments and the matrix 

is dominated by windblown sediments. Importantly, the cave becomes inhabited by animals and men. 

The sediments indicate a warmer climatic phase. Finally, the upper sedimentological complex shows 

solifluction in a periglacial environment (Saos et al., 2014). 

 

Figure 5-3: Cave plan and locations of the cross sections (Saos et al., 2014). 
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5.2.2.2 Lithics 

The more recent excavations yielded a total of 2595 lithic artefacts from 11 layers, 1294 of which were 

larger than 25 mm (Defleur, 2015). The vast majority of the lithics, 92.3 %, were found in four layers 

(IV, VIII, XIV and XV). The lithics of layers IV and VIII are technologically and typologically distinct 

from those of XIV and XV. 225 chips larger than 25 mm and 57 retouched tools were found in layer 

XV. The débitage belongs to the same family of Levallois/discoidal technology (Bordes, 1961). Over 

30 % of the lithic materials have been identified to come from ~40 km south of the Rhône River between 

the municipalities of Meysse and Rochemaure), which contains high quality flint (Defleur, 2015). Due 

to the significant distance of these sources and the use of small flint pebbles and siliceous limestone 

from the alluvium of the Rhône river, Levallois débitage is low, but of good quality. The few tools are 

dominated by simple, transverse and convergent scrapers. 

 

5.2.2.3 Biostratigraphy 

Based on the detailed paleontological studies of macrofauna, microfauna, reptiles and amphibians 

(Desclaux and Defleur, 1997; Defleur et al., 2001, 2014; Cregut-Bonnoure et al., 2010) the stratigraphic 

layers can be divided into three major climatic phases. 

The lower stratigraphic complex does not contain any macrofauna, but a large number of micromammal 

remains (Dicrostonyx torquatus, Microtus gregalis, Sicista betulina), indicating cold, steppe 

environmental conditions. 

The middle stratigraphic complex is a thick homogenous deposit and contains diverse faunal remains. 

Layers XIV and XV contain cultural remains including a lithic assemblage, fireplaces, charcoal and 

abundant fauna such as red deer (Cervus elaphus), alpine ibex (Capra ibex), gazelle (Dama sp.), straight-

tusked elephant (Palaeoloxodon antiquus,) rhinoceros (Dicerorhinus hemitoechus) and many 

carnivores. Layers XIV to XII contain wolf (Canis lupus) remains that are intermediate between Late 

and Middle Pleistocene. Furthermore, the bear lineage deningeri-spelaeus is dominated by the more 

primitive character of Ursus deningeri, the presence of Ursus thibetanus in association with brown bear 

(Ursus arctos), badger (Meles meles) and wildcat (Felis silvestris) is similar to other interglacial sites 

(Cregut-Bonnoure et al., 2010). 

The upper stratigraphic complex contains Mammuthus primigenius, Rangifer tarandus, Dicrostonyx 

torquatus, Microtus (Stenocranius) gregalis which is also indicating a cold phase. In addition, these 

layers contain wolf remains whose evolutionary stage is typical for the Upper Pleistocene, bear and 

hyena species typical for European Würm cave sites, as well as red deer (Cervus elaphus) similar to 

species during the Würm in the southwest France.  

The cenogram method (Legendre, 1986, 1988), has been successfully applied to southern France 

Pleistocene communities (Montuire and Desclaux, 2008) and can be used to investigate the nature of 

the environment. For Moula-Guercy, the results of the cenogram method are summarised in Table 5-1 
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and Figure 5-4. We find an opening of the environment from the basis (level XV) to the top (level IV) 

of the sedimentary sequence. With a regular and continuous slope and no important gap in body mass, 

the cenogram obtained for the level XV indicates a closed and humid environment, which is 

representative of a temperate forest and characteristic of an interglacial period in Europe, indicating MIS 

5.5. Layers XIV and XIII show similar cenograms, but with a smaller number of species, indicating 

more arid conditions. This trend continuous in Layer XII. Overall, there is a trend towards an open 

landscape from layer XI-X to IV, where based on the scarcity of medium-weight species, the 

environment is interpreted to be open and the climate more arid and cold. These levels may be assigned 

to earlier stages of MIS 5 or to MIS 4 (Montuire and Desclaux, 2008).  

 

The chronological and environmental deductions from the sedimentology, microfauna and macrofauna 

are in agreement. They allow a preliminary association of the lower stratigraphic complex to MIS 6, the 

middle stratigraphic complex MIS 5 and the upper stratigraphic complex MIS 4. Apart from the 

Neolithic human graves at the top of the sequence, all other human remains from the site come from 

layer XV in the middle stratigraphic complex. The fauna of layer XV shows the first occurrence of 

fallow deer and its other faunal elements can be correlated to MIS 5.5 interglacial sites in the 

Mediterranean area. Similar results were suggested by the study of rodent remains. The presence of 

Hystrix vinogradovi, in association with three species typical of the Middle Pleistocene (Allocricetus 

bursae, Pliomys lenki and Microtus (Iberomys brecciensis) not encountered in association with any late 

Pleistocene levels in Mediterranean Europe so far, further point towards MIS 5.5. A recent study on 

amphibians and reptiles provide additional support to this chronological attribution (Manzano, 2015).  

Furthermore, the marked persistence of taxa characteristics of a continental climate and an open 

environment, such as Marmota marmota, Microtus (Stenocranius) gregalis and Spermophilus citellus, 

suggests that this level is contemporary of the start of the early late Pleistocene temperate climatic 

oscillation. A detailed taphonomic analysis of the larger mammals from Layer XV (Valensi et al., 2012) 

concluded that many animal remains were brought to the site for consumption. The faunal remains were 

processed in the same way as the human remains for food extraction (Defleur et al. 1999, Defleur et al.,  

2014). 
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Figure 5-4: Cenograms of the layers of Moula-Guercy. 
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Table 5-1: Cenogram method results. 

Species Log (weight) XV XIV XIII XII XI-X IX VIII VII-V IV 
Mammuthus primigenius 15.61             +     
Palaeoloxodon antiquus 14.95 + +         
Dicerorhinus hemitoechus 14.43 + + +   +   + 
Equus caballus 12.88 + + +  + + + + + 
Sus scrofa 11.55 + +   +      
Bos/Bison 13.30    + +   +  + 
Bos primigenius 13.01 + +         
Megaloceros giganteus 13.00 + +         
Cervus elaphus 12.59 + + +  +  + + + 
Rangifer tarandus 11.56 + + +  + + + + + 
Capra caucasica 10.90 +          
Dama sp. 10.88 + +         
Capra ibex 10.86   +   +  + + + 
Rupicapra sp. 10.03 + + +      + 
Capreolus capreolus 9.99 + + + + +      
Hystrix cf. vinogradovi 8.99 +          
Lepus sp. 8.16 +          
Marmota marmota 7.55 +       +   
Oryctolagus cuniculus 7.47 + +  +  + + +   
Erinaceus europaeus 7.08 + + +        
Sciurus vulgaris 5.70 + + + +     + 
Citellus citellus 5.67 + +    +     
Arvicola sapidus 5.08 + + + + + + + + + 
Arvicola terrestris 4.79 + + + + + + + + + 
Glis glis 4.53 + + + +  + +    
Pliomys lenki 4.38 +          
Eliomys quercinus 4.28 + + + + +   + + 
Talpa europeaa 4.31 + + + + + + + + + 
Microtus (I.) brecciensis 4.19 + +         
Microtus agrestis 3.97 + + + + + + + + + 
Microtus oeconomus 3.96 + + + + + + + + + 
Dicrostonyx torquatus 3.95       +   + 
Microtus (S.) gregalis 3.91 + +   + + + + + 
Microtus (T.) pyrenaicus 3.74 + + +        
Microtus (C.) nivalis 3.66 + +  +  + + + + 
Allocricetus bursae 3.60 + +         
Microtus (T.) duodecimcostatus 3.40 + + +  +    + 
Microtus arvalis 3.35 + + + + + + + + + 
Microtus (T.) subterraneus 3.09   + + +  +     
Apodemus sylvaticus 3.08 + + + + + + + + + 
Microtus (T.) multiplex 3.01 + + + +       
Muscardinus avellanarius 3.00 + + +   +     
Crocidura leucodon 2.77 + +         
Neomys fodiens 2.65    +        
Crocidura russula 2.26 +          
Sorex araneus 2.12 + + + + +      
Crocidura suaveolens 2.01 +          
Myodes glareolus 1.99 + + + + + + + + + 
Sorex minutus 1.63 +     +       +   
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5.2.3 Strontium isotope analysis and the reconstruction of human mobility 

Strontium isotope ratios (87Sr/86Sr) measured in skeletal remains can be used to directly investigate past 

mobility (Capo et al., 1998; Bentley, 2006; Slovak and Paytan, 2012). The fundamental principal is that 
87Sr/86Sr isotope ratios vary between different geologic regions depending on their age and composition, 

due to the radioactive decay of 87Rb by emission of a negative β-particle with a half-life of ~4.88 x 1010 

years to 87Sr. Weathering releases Sr into the soil, where it can be taken up by plants and enters the food 

cycle. The 87Sr/86Sr isotope ratio is mainly controlled by weathering of the underlying geology, but can 

be augmented by additional sources of Sr, such as atmospheric deposition (Price et al., 2002; Bentley, 

2006; Evans et al., 2009, 2010; Frei and Frei, 2011, 2013; Maurer et al., 2012; Slovak and Paytan, 2012). 

Humans incorporate Sr from their diet into their dental and skeletal tissues (Beard and Johnson, 2000), 

where it substitutes for calcium and serves no metabolic function. 87Sr/86Sr isotope ratios of dental 

remains reflect the average isotope ratios of food intake and to a lesser extent drinking water, during 

childhood when the teeth were formed. Archaeological dental remains can be affected by both physical 

and chemical changes after deposition, potentially leading to the loss of the original isotope composition. 

The degree of subsequent diagenetic overprinting can be different from sample to sample and depends 

on a large number of factors, including the length of burial, the hydro-geochemical environment, and 

the type of dental material (e.g., Bentley, 2006; Slovak and Paytan, 2011). Tooth dentine is prone to 

diagenetic overprinting because it contains pores ~ 1 µm diameter, which are larger than its phosphate 

crystals (Kohn et al., 1999). Tooth enamel, on the other hand consists of ~ 96 wt.% Ca phosphate, has 

phosphate crystals larger than 1 µm, a compact structure, little pore space and is thus much denser and 

more inert. Several studies have shown that tooth enamel is much more resistant than bone or dentine 

to post-burial diagenesis and more likely to retain its original isotopic signature (Budd et al., 2000; 

Hoppe et al., 2003; Bentley, 2006; Slovak and Paytan, 2012). Finally, to investigate mobility the 
87Sr/86Sr isotopes measured in the human remains can be compared to the bioavailable 87Sr/86Sr isotope 

range of the surrounding environment to identify potential childhood residence areas. A limitation of 

this method is that geographically distant areas can have similar or overlapping isotope ratio 

compositions, depending on their geologic substrate. 87Sr/86Sr isotope ratios can thus be used to exclude 

areas, but cannot provide a definite childhood residence area. Isotopically “local” therefore only means 

indistinguishable from the local isotopic signature. In order to investigate mobility, the source of diet 

intake also needs to be considered. For farming communities this correlation is relatively straight 

forward, as long as exotic food sources can be excluded, and is tied to the residence area. However, in 

the case of a largely hunting based diet it is possible that even a relatively stationary individual could 

acquire a non-local isotopic signature related to the movement of the prey.  
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5.2.4 Neanderthal mobility 

The extent of Neanderthal mobility is currently not well understood. Lithic raw materials found at 

Neanderthal sites are often local, with only a small percentage coming from sites > 5 km away, 

suggesting limited mobility (Féblot-Augustins, 1993; Mellars, 1996). Some exotic materials do occur at 

Mousterian sites, suggesting that substantial mobility of Neanderthals may have occurred sometimes 

(Mellars, 1996). However, lithic materials can travel by barter and thus are not a direct measure of 

mobility. Faunal remains at Palaeolithic sites show that Neanderthals in central and northern Europe 

were hunting large, gregarious herbivores and may have tracked the seasonal migrations of these herds 

(Patou-Mathis, 2000). Zooarchaeological evidence from the Quina Mousterian deposits from the site of 

Jonzac (Charente-Maritime, France) indicate that Neanderthals were hunting reindeer when it was 

seasonally abundant in that area. This would support the idea of Neanderthals as highly mobile hunter-

gathers and the use of Jonzac as a frequent, but short-term hunting camp (Niven et al., 2012). Strontium 

isotopic investigation of these reindeer by Britton et al. (2011) further support this interpretation, in 

showing that these reindeer were most likely killed during the same hunting event. Migrating gregarious 

herbivores, can be considered an important prey species for Neanderthals and potentially exhibit 

complex and changing mobility patterns. This adds another layer of complexity when trying to infer 

Neanderthal childhood origin using strontium isotopes because a change in strontium isotope ratio might 

simply reflect the changing mobility pattern of the food source. Richards et al. (2008) first applied 

strontium isotope tracing to directly investigate the mobility of a Neanderthal individual from the site 

of Lakonis, Greece. They argued, that this individual had spent its childhood in an area at least 20 km 

away from the site. However, due to potential problems with the analytical technique they used, as well 

as the lack of a strontium isotope baseline map for the area their interpretation of the data has been 

disputed by Nowell and Horstwood, (2009), but see also Richards et al. (2009) for further discussion.  
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5.2.5 Materials and methods 

5.2.5.1 Samples 

Accelerator Mass Spectrometry (AMS) radiocarbon dating of five bone samples [M93-C4-IV 21, 22, 

26, 32 and M93-C3-IV 28] from layer IV was carried out at the Oxford Radiocarbon Accelerator Unit 

(ORAU), University of Oxford (Table 5-2). A sample from the tephra, layer VI, was collected for 
40Ar/39Ar dating. In addition, we applied U-series and electron spin resonance (ESR) dating on a range 

of teeth. Teeth were selected by A.R. Defleur from the collection in the Musée Archéologique de 

Soyons. All samples were originally collected in situ and were completely cleaned. Combined U-

series/ESR dating was carried out on 14 faunal teeth (Figure 5-5,) sample layers are given in Table 5-3 

and Table 5-4. U-series dating was carried out on Neanderthal teeth from layer XV. Tooth 3524 (M-D1-

230), Figure 5-6A, was intact, while sample 3525 (M-H3-73), Figure 5-7A, was a tooth fragment. In 

addition, we analysed one intact tooth (3526) of a Neolithic individual from a grave dug into the 

uppermost layer, Figure 5-8A. For the reconstruction of human mobility, we applied 87Sr/86Sr isotope 

analysis to three human dental remains. The bioavailable 87Sr/86Sr isotope range for Moula-Guercy was 

determined by analysing 11 soil samples collected from different layers within the cave and just outside 

of the present day cave entrance. 

 

5.2.5.2 Radiocarbon analysis 

Prior to dating, the material was subjected to %N testing as a way of assessing the preservation of protein 

in the bone (Brock et al., 2010b). Two of the Moula-Guercy bones (21 and 28) failed to provide N above 

the cut-off limit of the ORAU and were not treated further. Three samples were dated using the latest 

preparation protocol for bone collagen, which includes an ultrafiltration step (Higham et al., 2006; Brock 

et al., 2010a). About 600 mg of bone powder was drilled from each sample, and collagen was extracted 

using a series of chemical steps. These included immersion in HCl and NaOH for the demineralizat ion 

and removal of humic acids, respectively, interspersed with cleaning in ultrapure MilliQ water. The 

extracted collagen was gelatinised and underwent ultrafiltration, after which ~1 ml of >30 kD gelatin 

was lyophilised. About 5 mg of dried collagen was combusted using a GC-MS system and the CO2 

generated via this process was purified, graphitised, and pressed into target holders prior to its 

introduction to the AMS system for 14C measurement.  

5.2.5.3 40Ar/39Ar dating 

The 40Ar/39Ar dating for sanidine grains followed the protocol of Michel et al. (2013). The largest 

possible well-preserved sanidine grains (500 µm) were extracted using standard heavy liquid methods 

and then hand-picked under a binocular microscope. Grains were treated with HNO3 and HF for 10 

minutes, followed by deionised water for 10 minutes in an ultrasonic bath. Their chemical composition 
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was estimated using scanning electron microscopy with Energy Dispersive X-ray Spectroscopy (EDS) 

in order to check the homogeneous presence of potassium (Ecole des Mines, Sophia Antipolis,  

Valbonne, France). The samples were irradiated for one hour with Cd shielding in 5C position at 

McMaster University Reactor (Hamilton, Canada). The sanidine grains were subsequently loaded onto 

a copper plate by sets of about 50-100 grains per hole for multigrain aliquot analyses. Gas was extracted 

with an infrared continuous laser and purified in stainless and glass extraction line using two Al-Zr 

getters and a N2 cold trap. System blanks were run for every two or three analysed samples. The mass 

spectrometer is a VG3600 with a Daly detector. Mass discrimination was monitored by regularly 

analysing one air pipette volume. The ultimate accuracy of the 40Ar/39Ar method depends on well-dated 

homogeneous standards (Nomade et al., 2005). 

 

5.2.5.4 U-series analysis 

The laser ablation U-series analysis was carried out at the Research School of Earth Sciences (RSES), 

using a custom-built laser ablation sampling system (ANU HelEx) interfaced between an ArF Excimer 

laser (193 nm; Lambda Physik Compex 110) and a Neptune MC-ICP-MS. Details of the laser ablation 

system including detailed description of the equipment, sampling strategies, and data reduction, has 

been given by Grün et al. (2014). U-series analysis on the Neanderthal tooth 3524 and of the Neolithic 

tooth utilised laser drilling (Benson et al., 2013). Neanderthal tooth 3525 was already broken and 

analyses were carried out on cross section through the dentine. The faunal samples were cut and analysed 

along cross sections using laser spot analysis (e.g., Storm et al., 2013). The U concentrations in enamel 

were too low for U-series isotopic analysis. 

 

5.2.5.5 ESR analysis 

In order to obtain external dose rate data, in situ gamma spectrometric measurements were carried out 

at the site and representative sediment samples were collected and analysed for U, Th, and K by solution 

ICP-MS/OES (Genalysis, Perth). 

The dating procedures followed those routinely applied in the ANU ESR dating laboratory (R. Grün et 

al., 2008). From each tooth, an enamel fragment was removed and powdered. The sample was then 

successively irradiated in 9 steps to 810 Gy using an X-ray source, which was calibrated using secondary 

standards (samples that had previously been irradiated with a calibrated gamma source). 

For the calculation of the internal dose rate values we used beta attenuation values of Marsh (1999) and 

an alpha efficiency of 0.13±0.02 (Grün and Katzenberger-Apel, 1994). Dose rates were calculated with 

the conversion factors of Guérin et al. (2011) and for the estimation cosmic dose rate (Prescott and 

Hutton, 1988) an average depth of 10±5 m was assumed. For layer XV, gamma dose rate measurements 

were also carried out by thermoluminescent dosimeters (TLDs) by Helene Valladas in 1993. For this 
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layer all measurements were averaged. A time averaged water content of 10±5 % was assumed for the 

sediments and dentine. The U concentrations in enamel are too low for U-series isotopic analysis. For 

the calculation of the enamel dose rates the dentine U-series values were used. Age calculations were 

carried out with the ESR-DATA program (Grün, 2009) for combined U-series/ESR (Grün et al., 1988) 

and the closed system U-series (CSUS) ESR system (Grün, 2000). 

 

5.2.5.6 87Sr/86Sr isotope analysis at Moula-Guercy 

The analysis of the sediment samples followed standard protocols to extract the bioavailable Sr (DIN 

ISO 19730) and chemical separation was performed using ion exchange chromatography with Eichrom 

Sr specific resin. The Neptune multi-collector inductively coupled plasma mass spectrometer (MC-ICP-

MS) at the Research School of Earth Sciences was used for measurement. The blank contribution for 

the analysis of soil samples varied between 50-250 pg Sr, which is negligible compared to the amount 

of sample (>100 ng). For the analysis of the human remains micro-drilling followed by thermal 

ionisation mass spectrometry (TIMS) was used. A custom made 0.3 mm drill bit was used to extract 

~0.5 mg of sample material and a 1M acetic acid leach was performed to remove possible residual 

contamination. The samples underwent ion exchange chromatography to isolate Sr from other elements 

using a micro column set filled with the Eichrom Sr specific resin. A drop of dilute phosphoric acid was 

added to each sample before loading onto rhenium filaments with a tantalum fluoride activator. Samples 

were measured on the TRITON Plus thermal ionisation mass spectrometer (TIMS) at RSES. Data 

reduction includes an isobaric Rb interference correction, exponential mass bias correction (using the 

internal 86Sr/88Sr ratio of 0.1194) and 2σ outlier rejection. Total procedural blank levels for the human 

samples are below 100 pg Sr. Long term measurements of the Sr carbonate standard SRM987 (National 

Institute of Standards and Technology) on the Neptune MC-ICP-MS gave an average 87Sr/86Sr value of 

0.71024±3 (n=256, 2σ) and 0.71023±2 (n=99, 2σ) on the TIMS. This is in agreement with the original 

certified 87Sr/86Sr isotope value of 0.71034±26 (Moore et al., 1982) and the more commonly quoted 

value of 0.71025±1 (Thirlwall, 1991; McArthur, 1994; Hans et al., 2013). 

 

5.2.5.7 87Sr/86Sr regional isotope baseline data 

In order to create baseline bioavailable 87Sr/86Sr isotope data for the region surrounding Moula-Guercy 

soil leachates and plant samples from the IRHUM (isotopic reconstruction of human migration) database 

(Willmes et al., 2014) were used. A box and whisker plot was created in R (R Core Team, 2013) to 

compare the different lithological units. The top and bottom of the box are the third and first quartiles. 

The interquartile range (IQR) is calculated by subtracting the first quartile from the third. The second 

quartile, which is the median, is shown as a black line. The whiskers are defined as Q1-1.5*IQR for the 

lower whisker and Q3+1.5*IQR for the upper whisker. 
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5.2.6 Results and discussion 

5.2.6.1 Radiometric dating 

Radiocarbon dating The dating results are summarised in Table 5-2. One bone sample (26) was dated 

twice (OxA-28094 & OxA-28095) as a routine internal laboratory check. Both results were infinite - 

greater than our background ages, as were the two further determinations (OxA-28093 & OxA-28096). 

These ages provide a minimum age for the formation of layer IV, which seems to predate 50 ka BP. 

Table 5-2: Radiocarbon results. 

Sample Material OxA 14C age BP Chemistry parameters of dated samples 

    Used bone 
mg 

Collagen 
yield, mg 

Collagen yield, %  δ13C δ15N C:N 

M93 C4 IV 21 bone Failed        

M93 C4 IV 22 bone 28093 >47000 610 29.69 4.9 -21.2 2.35 3.38 

M93 C4 IV 26 bone 28094 >48500 600 16.8 2.8 -20.0 5.91 3.38 

M93 C4 IV 26 bone 28095 >48000 600 17.93 3.0 -20.0 5.78 3.34 

M93 C4 IV 32 bone 28096 >49400 600 19.99 3.3 -20.6 1.72 3.32 

M93 C3 IV 28 bone Failed        

 

 
40Ar/39Ar dating Each laser step-heating experiment of the multigrain aliquots provided an extremely 

high 40Ar signal (> 6 V) whereas the 39Ar signal was very low (under 15 mV), suggesting that these 

sanidines are not of Quaternary age. The estimated ages are older than 200 Ma. The new 40Ar/39Ar dating 

results unfortunately did not provide any tangible chronological information and are thus excluded from 

the discussion on the chronology of Moula-Guercy. 

 

U-series on faunal teeth For the interpretation of the U-series data one has to keep in mind that the U-

series ages are indications of when uranium migrated into the skeletal tissue. Firstly, there can be a long 

delay between the deposition of a bone or tooth and the U-uptake. Secondly, there may be several 

consecutive overprinting uptake phases in the skeletal tissue (see e.g., Grün et al. (2014), and sample 

3525, below). Thus, apparent U-series ages have generally to be regarded as minimum age estimates. 

However, U migration processes can be highly complex and U-leaching can also occur, leading to older 

apparent ages. Leaching is usually associated with lower U-concentrations in the effected domains 

compared to their surroundings. 

The U-series results on the faunal teeth are given in Table 5-3 and shown in Figure 5-5. For layer IV, all 

apparent U-series determinations are of Holocene age, whereas for layer VIII, of late Pleistocene to early 

Holocene age. The results from layer XIV vary between around 14 and 70 ka and those of layer XV 

between 9 and 104 ka. Since the sedimentological and biochronological data of this cave indicate that 

these layers are in stratigraphic order (Defleur et al., 2014; Saos et al., 2014) we attribute the huge spread 

in U-series age results from the faunal teeth to be caused by complex U-migration on small scales. In an 

intact sample the 234U/238U ratios change little within a tooth and are an indication of the U source. As it 
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can be seen, layer IV has very similar 234U/238U ratios, but with the increase in age spread in the lower 

layers the spread in 234U/238U ratios also increase. That is a sign that the U sources for the different teeth 

were different, most probably by the position within a given layer. Samples 3040 and 3041 have clearly 

distinct 234U/238U ratios from all other samples. It is important to note that in spite of having very 

different U-series isotopic compositions, none of the samples show any indication of U-leaching. 

 

 

Figure 5-5: U-series results of the faunal teeth. Errors are 2σ, plot created using Isoplot (Ludwig, 2003). 

Solid purple lines highlight the different 234U/238U ratios. 

 

U-series on human teeth Figure 5-6A shows the Neanderthal tooth 3524 and the laser ablation scans of 

the 14 holes (Figure 5-6B) and the 1500s hole (Figure 5-6E). The results of the 14 holes (Figure 5-6D) 

yield an average age of 91.8±0.9 ka, each age estimation has an average error of 0.55 ka. This shows 

that there is some inhomogeneity in the U-series composition within the range of the 14 holes. The 

1500s scan was binned into 30 sections with a length of 40 cycles. It is clearly visible that the errors in 

the isotope ratios (Figure 5-6F) and consequently the calculated ages (Figure 5-6G) increase as the 

isotope intensities decrease (Figure 5-6E). Nevertheless, the average of the 30 age calculations along 

the depth probing 92.8±6.3 ka is indistinguishable from the previous measurements. The average errors 

increased nearly tenfold to 4.9 ka. Using the continuous diffusion model for uranium acquisition of 

Sambridge et al. (2012), the ages become slightly older, but only by about 1.8 ka (see Figure 5-6D,G).  
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Figure 5-6: U-series results of Neanderthal tooth 3524. (A) Photo and location of the sampling spots 

from LA-MC-ICP-MS (Benson et al., 2013) and drilling spots for TIMS analysis. (B) U-series isotope 

ratios along the 300 s drill holes. (C) Binned data of B. (D) Apparent U-series ages for closed system 

(single stage uptake) and continuous diffusion from B. (E) Isotope measurements along the 1500 s drill 

hole. (F) Binned isotope ratios. (G) Apparent U-series ages for closed system (single stage uptake) and 

continuous diffusion from E. 
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The results of sample 3525 show the full complexity of U-migration into teeth (Figure 5-7). As it was a 

broken specimen, we could measure several traverses through various dentine sections. The results of 

all three sections are different. Transect I (Figure 5-7B) yielded ages between 90 and 120 ka, and it is 

possible to calculate an age using the diffusion-adsorption-decay (DAD) model of Sambridge et al.  

(2012), yielding an age of 118±15 ka (2σ). The first two spots of transect II (Figure 5-7C) yielded 

younger ages of around 70 ka while the rest yielded ages of around 86 ka. Transect III (Figure 5-7D) 

starts with ages of around 95 ka, increasing to around 130 ka (spots 5 to 7) then decreasing back to 

around 82 ka towards the outside of the tooth. This shows that even small teeth may experience complex 

U-uptake histories. Contrary to expectations, the high age values in transect C are associated with higher 

U-concentrations, i.e. it is unlikely that the older ages were the result of U-leaching. It seems that there 

is an earlier U-uptake phase from the base of the tooth, perhaps around 120 to 130 ka migrating from 

the lower end into the dentine as well as from the left side (as in the photo) followed by diffusion from 

the right side and somewhat later overprinted near the pulp cavity. 

 

The U-series analyses of the two Neanderthal teeth clearly demonstrate that layer XV at least 

corresponds to MIS 5 sensu lato. As all results still have to be regarded as minimum age estimates, any 

older age cannot be excluded: the results of the faunal teeth of layer IV indicate a delay in U-uptake of 

at least 45 ka.  

 

The tooth of the Neolithic individual yielded only one analysis that could be evaluated (Figure 5-8). 

Cycles 1 to 20 and 21 to 40 yield ages of 4.8±1.4 ka and 3.6±1.6 ka, respectively. However, the average 
230Th is on average only 1.1 and 0.6 counts above background, which was 1.4 counts per cycle, i.e., any 

age results are critically dependent on the accurate assessment of the background levels. The very low 

U-concentrations in this tooth may be taken as indication that U-accumulation was delayed in the other 

human teeth as well. 

 

In conclusion, the U-uptake into skeletal elements recovered from the sediments of Moula-Guercy 

involves complex processes. Even small human teeth are subject to complicated U-migration histories. 

If layer XV was accumulated within a reasonably short time range, its minimum age would be given by 

the U-series results from 3524 and the upper age range from transect III in 3525, i.e. around 120-130 

ka. However, it would be difficult to assess a maximum age, because U-series results on faunal material 

are always a minimum age. This is best illustrated by the Neolithic tooth, where large domains did not 

experience any U-uptake. 
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Figure 5-7: U-series results of Neanderthal tooth 3525. (A) Photo and location of the transects. (B) 

Isotope ratios and apparent U-series age estimates along transect I. (C) Isotope ratios and apparent U-

series age estimates along transect II. (D) Isotope ratios, U-concentrations and apparent U-series age 

estimates along transect III. 
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Figure 5-8: U-series results of the Neolithic tooth (3526). (A) Photo and location of the laser ablation 

drill holes. (B) Isotope measurements of the first 100 cycles of hole one. 
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ESR dating on faunal teeth For ESR dating of teeth an assessment of the dose rates of the surrounding 

sediments is critical. All samples had been cleaned long before the measurement of the dose rates of the 

sediment layers. The sediments give reasonably similar geochemical results, the dose rates in layer XV, 

where six independent measurements were carried out, vary between 500 μGy/a, and 733 μGy/a. This 

implies that the actual external dose rate (beta and gamma) at a given place within a layer could vary by 

as much 20-40 %. 

 

Table 5-3: U-series results on the faunal teeth from Moula-Guercy. EN stands for enamel and DE for 

dentine.  

Lab 

Number 
Field Number Layer 

U(EN) 

(ppm) 

U(DE) 

(ppm) 

U(CE) 

(ppm) 
234U/238U (DE) 230Th/234U (DE) Apparent Age (ka) 

3043 M93-F4-29 IV 0.05 33.0  1.0517±0.0022 0.0561±0.0012 6.3±0.1 

3044 M93-F5-17 IV 0.15 21.5  1.0544±0.0028 0.0553±0.0015 6.2±0.2 

3045 M93-C3-M1 IV 0.09 58.1  1.0607±0.0018 0.0802±0.0010 9.1±0.1 

3046 M94-D4-23 VIII 0.75 41.9  1.0576±0.0025 0.0394±0.0009 4.4±0.1 

3046     70.0 1.0719±0.0018 0.1265±0.0011 14.7±0.1 

3047 M94-C3-222 VIII 0.10 55.1  1.0628±0.0023 0.0977±0.0013 11.2±0.2 

3034 M95-D2-154 XIV 0.10 13.8  1.0990±0.0040 0.4712±0.0060 68.8±1.3 

3035 M95-D2-287 XIV 0.05 6.1  1.0915±0.0062 0.3742±0.0080 50.8±1.5 

3036 M95-G2-46 XIV 0.05 8.6  1.0461±0.0060 0.2681±0.0069 34.0±0.9 

3037 M95-G2-83 XIV 0.07 2.2  1.0775±0.0094 0.1184±0.0071 13.7±0.9 

3038 M95-F3-217 XV 0.03 7.6  1.0647±0.0051 0.0774±0.0036 8.8±0.4 

3039 M97-784 XV 0.14 22.5  1.0721±0.0030 0.2638±0.0037 33.3±0.6 

3040 M95-F2 XV 0.18 25.3  1.1327±0.0023 0.6227±0.0042 103.7±1.4 

3041 M97-F1-398 XV 0.30 57.2  0.9662±0.0310 0.1060±0.0015 12.2±0.2 

3042 
M06-96-E1-

177 
XV 0.01 9.6  1.0732±0.0044 0.4444±0.0059 63.7±1.1 

 

 

The sediment data are shown in Table 5-4 and the results of the ESR measurements and age calculation 

in Table 5-5. Since all teeth were analysed for U-series, we present only combined US-ESR (Grün et al.,  

1988) and CSUS-ESR (Grün, 2000) age calculations. The difference between the models is that the 

former assumes a continuous U uptake while the latter assumes a single short phase uptake at a time that 

corresponds to the closed system U-series age. The two models encompass all possible U-uptake 

scenarios (except for leaching). As it can be seen in Table 5-5, there is only one sample (3039) where 

the CSUS-ESR model yielded an 11 ka older age, however, still within overlapping errors. All other 

results are indistinguishable. 

Three teeth (3046, 3037 and 3038) returned much younger ages than the other samples from the same 

layers. Surprisingly, all samples have closely similar dose values between 33.7 to 36 Gy. None of the 

other samples have such low dose values. This may indicate either that they were located in 

unexpectedly low dose rate environments (e.g. surrounded by large limestone blocks) or that these teeth 
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were incorporated from higher levels. However, incorporation from higher levels is deemed very 

unlikely based on the known stratigraphy of the site (Defleur et al., 2014; Saos et al., 2014).  

The age estimates are calculated as averages and their errors as the root of sum of squares for standard 

deviation of the ages and their average error. The age estimate for layer IV is 61±8.5 ka (n=3). The age 

estimate for layer VIII is presented by a single sample (3047) with an age of 66±4 ka (n=1). This overlaps 

with the thermoluminescence result on layer VI (Sanzelle et al., 2000) on a 1σ basis. The age estimates 

for layers XIV and XV yield values of 83.5±20 ka (n=2) and 119±13 ka (n=2), respectively. Detailed 

studies on the composition of the ESR signals in teeth show that gamma irradiation induced large 

amounts of unstable components (Joannes-Boyau and Grün, 2011). A sample from Broken Hill in 

Zambia yielded a 30 % higher dose value once the dose response curve was corrected for these unstable 

components. However, the teeth from Moula-Guercy were irradiated with an X-ray source, which 

induced significantly less unstable signals, in the range of 6 % more than the natural, (Grün et al., 2012b).  

In contrast to the U-series results, it is not possible to assume that the oldest ESR results come closest 

to the age of deposition. The scatter in the ESR ages is in the first instance caused by our inability to 

accurately reconstruct the external dose rate for a given tooth. It seems that ESR, in spite of all its 

conceived failings, is essential for reconstructing chronologies for complex sites, such as Moula-Guercy. 

The newly developed dating procedures using laser ablation drilling will help to tighten the ages of 

human fossils, however, additional analyses seem essential to move from minimum U-series age 

estimates to more constrained age assessments. It has to be noted that nearly non-destructive ESR 

analysis, which also allows the quantification of thermally unstable components, is a highly work 

intensive process (Joannes-Boyau and Grün, 2011, and references therein). Furthermore, the tendency 

of palaeoanthropologists to CT scan everything that comes out of excavations will make direct ESR 

dating of human teeth virtually impossible (Grün et al., 2012a). 

 

Table 5-4: Sediment data for ESR dating. 

Layer U (ppm) Th (ppm) K (ppm) External Gamma 

dose rate (μGy/a) 
Cosmic dose 

rate (μGy/a) 
IV 3.53±0.18 9.80±0.49 8904±1000 581±25 63±23 
VIII 3.46±0.17 9.13±0.46 11800±1000 546±25 63±23 
XIX 3.68±0.18 10.70±0.54 14800±1000 709±41 63±23 
XV 4.55±0.22 9.39±0.47 16700±1000 642±98 63±23 
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Table 5-5: ESR results, EN stands for enamel and DE for dentine. Samples in parentheses were not used 

for the average age calculation for that layer. 

Lab Number Layer De (Gy) 
TT  

(μm) 

EN+DE 

DR (μGy/a) 

Beta SED 

(μGy/a) 

Total DR 

(μGy/a) 

p-value 

(DE) 
US-ESR Age (ka) CSUS-ESR Age (ka) 

3043 IV 44.7±0.8 900 31±5 180±25 856±41 6.08±0.45 52±2 52±2 

3044 IV 50.9±0.8 1050 16±2 157±21 817±39 7.77±0.58 62±3 62±3 

3045 IV 60.3±1.1 1000 58±10 164±22 867±40 5.36±0.41 69±4 69±3 

3046 VIII 36.0±0.6  32±3  787±43 8.22±0.70 45±3 (46±2) 

3047 VIII 56.4±1.0 1100 68±11 170±22 847±41 3.70±0.32 66±4 66±4 

3034 XIV n/a        

3035 XIV 98.1±2.1 1100 35±6 201±36 1008±59 0.23±0.11 97±7 97±6 

3036 XIV 73.9±1.4 950 42±9 230±46 1045±64 0.04±0.13 70±5 70±4 

3037 XIV 33.7±0.8 1350 9±2 165±24 946±52 0.51±0.21 35±2 (35±2) 

3038 XV 34.7±0.6 1200 13±3 226±40 944±107 2.07±0.55 36±5 (36±4) 

3039 XV 109.8±2.5 1050 72±14 236±30 1013±105 0.98±0.35 108+15/ -11 119±13 

3040 XV 109.1±2.1 1000 no US-ESR calculation possible U-series too old (103.7±1.4) 

3041 XV 120.8±3.0 950 52±11 259±34 1016±106 7.26±1.14 118+16/ -12 119±13 

3042 XV 101.2±2.1 900 71±14 272±37 1049±110 0.58±.015 96+13/ -9 (97±10) 

 

5.2.6.2 Radiometric chronology of Moula-Guercy 

The radiometric chronology of the site is summarised in Figure 5-9. The radiocarbon dating results on 

bone samples show that layer IV is older than 50 ka. Combined US-ESR results on faunal teeth place 

layer IV at 61±8.5 ka, layer VIII at 66±4 ka, layer XIV at 83.5±20 ka, and layer XV at 119±13 ka. All 

results for layer IV fall within 62 to 69 ka, fitting well with the infinite radiocarbon dates of the same 

layer and the previously obtained thermoluminescence result on layer VI of 72±12 ka (Sanzelle et al.,  

2000). The single date on layer VIII most likely underestimates the age of the layer and more analysis 

are needed to resolve this discrepancy. Taking the uncertainties into account the remaining results are 

in stratigraphical order. The U-series results on faunal materials from various layers demonstrate a 

greatly delayed U-uptake yielding results which are significantly younger than the expected ages from 

biostratigraphy. The data on the faunal teeth show that U-series on bones and teeth alone can lead to 

considerable age underestimations. Direct U-series analyses on two Neanderthal teeth indicate an age 

for the crucial layer XV corresponding to MIS 5 sensu lato. The U-series analyses of both human teeth 

from layer XV fall within the ESR age range. The U-series results on the Neanderthal tooth 3525 show 

that U-mobilisation even into small teeth is highly complex, but nevertheless give an indication that the 

Neanderthals could correlate to MIS 5.5. The difference in age estimates for layers XIV and XV are 

unexpected, since these layers are only distinguished by the presence of human remains. Micro and 

macro fauna, as well as lithics are similar in these layers (Defleur, 2015). 
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Figure 5-9: Summary of the refined chronology of Moula-Guercy. Marine isotope stage data and 

boundaries taken from Lisiecki and Raymo, (2005). 

5.2.6.3 Isotope tracing of mobility 

87Sr/86Sr isotope baseline data The cave of Moula-Guercy is situated on a narrow cliff consisting of 

Upper Jurassic limestone and dolomite on the west bank of the Rhône River (Figure 5-2). The isotopic 

variation in bioavailable 87Sr/86Sr of the cave sediment is shown in Table 5-6. Within the cave the 

bioavailable strontium isotope values range between 0.70844-0.70886. The Neanderthal bearing layer 

XV has an average value of 0.70851 (n=2). The two soil samples collected directly outside of the present 

day cave entrance exhibit values of 0.70809 and 0.70815, lower than the cave deposits themselves. 

These two samples were collected from soils and plants sitting directly on top of the limestone, while 

the cave deposits consist of limestone and dolomite fragments mixed in with sand, silt and clay deposits,  

which could explain the higher strontium isotope values found within the cave. The bioavailable 
87Sr/86Sr isotope range of the different lithological units of France, taken from Willmes et al. (2014), is 

shown in Figure 5-10. Note that only sample locations within the study area were chosen from the 

IRHUM dataset and not all sample sites from across France as in chapter 3. The clastic and carbonaceous 
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units found within the Rhône valley have a bioavailable 87Sr/86Sr isotope range of 0.7064-0.7139. The 

igneous and metamorphic units of the Massif Central to the west of the cave consist of granites, gneisses, 

schists, mica schists, migmatites and amphibolites. The soils and plants on these units show a large range 

of bioavailable 87Sr/86Sr ratios of 0.7086-0.7234, reflecting the heterogeneous geology that changes over 

short distances. Finally, the young volcanic units found in the Massif Central and south of Moula-Guercy 

range between 0.7037-0.7053. The bioavailable 87Sr/86Sr isotope range of Moula-Guercy, taking both 

the cave deposits and samples outside of the cave (blue shaded area in Figure 5-10) overlaps with some 

of the clastic and carbonaceous units of the Rhône valley, but is distinct from most of the igneous and 

metamorphic units of the Massif Central and from all of the young volcanic units of the Massif Central.  

This broad scale classification of the landscape into three isotope regions forms the underlying 

framework for the investigation of human mobility. 

 

Table 5-6: 87Sr/86Sr isotope results for the soil samples and human remains from Moula-Guercy. 

Soil samples 87Sr/86Sr ±2se Human remains sample 87Sr/86Sr ±2se 
Cave entrance west 0.70809 0.000003 Neanderthal (3524) Enamel 0.71014 0.00010 
Cave entrance east 0.70815 0.000004 Dentine 0.70891 0.00005 
IV 0.70865 0.000003 Neanderthal (3525) Enamel 0.71036 0.00002 
IV 0.70886 0.000006 Dentine 0.70882 0.00003 
VIII 0.70857 0.000003 Neolithic (3526) Enamel 0.70547 0.00001 
VIII 0.70859 0.000004 Dentine 0.70962 0.00040 
XIV 0.70848 0.000004     
XIV 0.70844 0.000003     
XIV 0.70849 0.000004     
XV 0.70849 0.000004     
XV 0.70853 0.000005     
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Figure 5-10: Boxplot of the bioavailable 87Sr/86Sr isotope ratios lithological units of France. Data are 

taken from the IRHUM database (Willmes et al., 2014). Isotope packages are taken from chapter 3. The 
87Sr/86Sr isotope range of Moula-Guercy cave is shown as a shaded area and the values ratios for the 

enamel samples from the human remains are shown as red dashed lines. 

Neanderthal mobility at Moula-Guercy The 87Sr/86Sr isotope results of the Neanderthal teeth are shown 

in Table 5-6. The two Neanderthals (3524, 3525) show dentine 87Sr/86Sr isotope values of 0.70891±5 

and 0.70882±3 and enamel values of 0.71014±10 and 0.71036±2, respectively. Dentine and enamel 

form at the same time and thus should exhibit the same strontium isotope ratio. However, dentine is 

much more susceptible to digenetic alteration and was not well preserved in these samples. We observe 

that the dentine strontium isotope values are lower than the enamel value and approach the isotope ratios 

of layer XV of 0.70851, an indication for diagenetic overprint. The enamel values on the other hand, are 

outside of the strontium isotope range of the cave, and the material was better preserved, indicating no 

significant diagenetic alteration. See also Benson et al. (2013) for a more detailed study on sample 3524. 

Using our established isotope baseline, it is apparent that the strontium isotope values of the enamel 

samples from the Neanderthals are overlapping with many lithological units across France (Figure 5-10). 

Based on the surface geologic map of France (Figure 5-11A) it is possible to map all lithologic units 

that are an isotopic match for the enamel Neanderthal values (Figure 5-11B). Using only the IQR of the 

strontium isotope ratios for the different lithological units shows gravel, sand and clay units within the 

Rhone Valley as the closet match, while using the full range (IQR+whiskers) includes a significant area 

of south east France. Even at this broad scale the Massif Central can be excluded as the major childhood 

food source region of the Neanderthals. The clastic and carbonaceous sediment units of the Rhône valley 
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represent the spatially closest match for the enamel values of both Neanderthals. We can thus consider 

them as isotopically local to the larger Rhône Valley, with their food source possibly constrained to 

come from the clastic lithological units north and east of Moula-Guercy. However, isotopically local 

does not have to equate to stationary. A detailed study on the Middle Palaeolithic assemblages of the 

Rhône valley has shown different types of occupation, ranging from long-term residential camps to 

short-term hunting and stopover camps (Daujeard and Moncel, 2010). Based on the small amount of 

lithic material and based on the animal remains found at Moula-Guercy this site is considered to have 

been a used as specialized, short-term hunting camp (Daujeard and Moncel, 2010; Valensi et al., 2012; 

Saos et al., 2014). Our isotopic analysis provides further evidence that the Neanderthals were mobile 

hunter-gathers, using Moula-Guercy when their prey animals, such as red deer, were seasonally 

abundant in this area. Determining a mobility range of the Neanderthals, with a certain number of kms, 

is complicated by a number of factors, including the large strontium isotope ranges found in many 

lithological units, and more importantly, the fact that the composition and spatial distribution of the 

surface geologic features has likely changed since MIS 5. Nevertheless, the new strontium isotope 

measurements shown here provide direct evidence for Neanderthal mobility within the Rhône Valley. 

 

Mobility of the Neolithic individual The Neolithic individual (3526) shows 87Sr/86Sr isotope values of 

0.70962±40 for dentine and 0.70547±1 for enamel (Table 5-6). The dentine was poorly preserved and 

shows 87Sr/86Sr isotope values that fall outside of the 87Sr/86Sr isotope range of the sediments we 

collected from the cave. This may indicate that there is variability in the upper layers of the cave that 

we did not sample, perhaps caused by mixing with loess, dust, or clay rich deposits that shifted the 

diagenetic overprint in this sample. However, due to the poor preservation of this sample and associated 

large analytical uncertainties this result should be regarded with great caution. The enamel on the other 

hand is well preserved and shows an 87Sr/86Sr isotope ratio outside the local bioavailable 87Sr/86Sr isotope 

range of the cave. It is consistent with the strontium isotope range of young volcanic units (purple colour 

in Figure 5-11B) in central and southern France. A small Palaeogene basanite volcanic outcrop occurs 

~30 km south east of Moula-Guercy. Another possible region is ~50-80 km to the west of the cave, 

where volcanic deposits of Palaeogene to Quaternary age occur over a large area in the Massif Central.  

It follows, that this individual did not grow up on food from the Rhône valley, but grew up on food from 

an area of young volcanic units, possibly within the Massif Central. The Neolithic individual is thus 

interpreted as a non-local with significant mobility (>30 km) in its lifetime. 
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Figure 5-11: A: Surface geologic map of France (BRGM) with the colours representing the lithologica l 

units. B: Strontium isotope overlap between the IQR and IQR+whisker range of the different lithologica l 

units for the Neanderthal samples (green) and the Neolithic individual (purple). 

 

5.2.7 Conclusions 

This study provides the first comprehensive radiometric chronology of Moula-Guercy. It places the 

layers IV to XV between 60 ka to 120 ka, between MIS 4 and MIS 5 and using combined U-series/ESR 

dating, indicates that the crucial layer XV, which contains the Neanderthal remains, could correspond 

to MIS 5.5, and is younger than MIS 6. These results agree with the biostratigraphy at the site, which 

places layer XV to MIS 5.5. The combined U-series/ESR dating results for layer XIV are younger and 

do not agree with the biostratigraphy of the site. More dating of material from this layer is needed to 

resolve these discrepancies. Direct U-series analyses of the two Neanderthal teeth also demonstrate that 

layer XV at least corresponds to MIS 5 sensu lato, and sample 3525 likely corresponds to MIS 5.5. From 

the strontium isotope analysis of the two Neanderthal teeth we can infer the Rhône valley as the 

childhood food source region and exclude the Massif Central. The isotopic evidence is consistent with 

the archaeological data and shows that the Neanderthals were mobile within the Rhône Valley and used 

Moula-Guercy as specialized, short-term hunting camp, when their prey animals, such as red deer, were 

seasonally abundant in this area. Care should be taken to extrapolate from this small (n=2) dataset to 

any interpretation of Neanderthal mobility overall and more direct investigations of Neanderthal 

mobility are certainly needed. The Neolithic individual, with a strontium isotope ratios indicative of 

young volcanic units, presents a strong case for childhood mobility. The closest volcanic units occur 

~30 km south east of Moula-Guercy, another possible childhood residence area for this individual are 

the much larger occurrences of these units in the Massif Central ~50-80 km to the west of the cave. In 

either case this individual experienced significant mobility in its lifetime. 
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5.3 Le Tumulus des Sables 

This chapter has been submitted to the Journal of Archaeological Science: Reports 

M. Willmes, H. F. James, C. A. Boel, P. Courtaud, A. Chancerel, R. Wood, S. Fallon, L. McMorrow, R. 

A. Armstrong, I. S. Williams, L. Kinsley, M. Aubert, S. Eggins, I. Moffat, R. Grün (in preparation), 

Radiocarbon dating and isotopic tracing of human diet and mobility at the collective burial site, Le 

Tumulus des Sables, France. Journal of Archaeological Science: Reports. 

The author’s contribution to the publications is as follows: The author conducted the strontium isotope 

study, and in collaboration with R. Wood performed the radiocarbon dating and carbon and nitrogen 

isotope analysis. The oxygen isotope data was collected and interpreted by H. F. James (James et al.,  

2013) as part of her Master thesis. The article was written together with H. F. James and suggestions 

from all co-authors.  

 

Abstract 

Radiocarbon dating and multi-isotope analysis (δ13C, δ15N, δ18O, 87Sr/86Sr) were used to investigate the 

human remains found at the collective burial site Le Tumulus des Sables, southwest France. The burial 

is heavily disturbed, and the radiocarbon dates reveal a long use of the burial site spanning from the 

Neolithic into the Iron Age, consistent with the associated archaeological material. The wide age range 

of the site and the disturbed stratigraphy, prevent the definite identification of a particular sample as 

belonging to a certain time period without individually dating it. δ13C and δ15N in tooth collagen samples 

indicate a dominantly terrestrial diet, in agreement with data from other Neolithic sites in Europe. K-

means cluster analysis of combined δ18O and 87Sr/86Sr of tooth enamel from 22 individuals suggests 5 

distinct groupings within this dataset. Interpreting these isotopic differences in terms of human mobility 

is limited, due to the uncertainties associated with the in situ δ18O analysis and the difficulty of relating 

δ18O and 87Sr/86Sr values in tooth enamel to prehistoric geographic location. Nevertheless, for three of 

the five groups some inferences about childhood residence area were possible, placing group 1 as locals 

to the site and individuals from group 2 and 3 as possible short-distance migrants from the surrounding 

Aquitaine basin.  

5.3.1 Introduction 

5.3.1.1 The site of Le Tumulus des Sables 

The collective burial site of Le Tumulus des Sables is located in the town of Saint-Laurent-Médoc, in 

the Gironde department, about 40 km north-west of Bordeaux, southwest France (Figure 5-12). It was 

discovered in 2006 when human remains were accidentally uncovered by school children. The site was 

excavated until 2010 (Chancerel and Courtaud, 2006; Courtaud et al., 2010). The collective burial was 
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contained within a roughly circular raised mound, 7 x 8 m in diameter and 0.5 m high at its peak (Figure 

5-13). It is believed that this mound is natural and that the burials were placed within it.  

The human remains found at the site are highly disarticulated and fragmented. No individual burials 

could be identified. The remains of at least 30 individuals were identified—20 adults and 10 juveniles. 

The archaeological deposit associated with the burial area is irregular in shape and extends well beyond 

the mound itself (Figure 5-13). Distinctive pottery, arrow heads and bone buttons discovered within the 

burial area suggest use of the site by people of the Bell Beaker Phenomenon (BBP) (Chancerel and 

Courtaud, 2006). A radiocarbon date previously measured on a human bone from within the collective 

burial yielded an age of 2485-2290 cal. BC (Table 5-7), supporting this conclusion. However, ceramic 

finds at the site suggest activity extending from the Early Neolithic, through the Bell Beaker period, and 

into protohistoric and Iron Age periods (Chancerel and Courtaud, 2006; Courtaud et al., 2010). 

Radiocarbon dates also suggest the mound was used over a significant period of time. A date on a 

juvenile vertebra yielded an age of 3650-3375 cal. BC. Two radiocarbon dates on charcoal from the top 

and bottom of the burial mound gave dates of 1395-1215 cal. BC and 6090-5925 cal. BC, respectively. 

However, there is no archaeological evidence to link these charcoal dates to the funeral use of the site. 

The purpose of the present study was to investigate the chronology of the site in more detail using 

radiocarbon dating and to apply multi-isotope techniques to determine the diet and mobility of the 

individuals.  

 

Figure 5-12: Regional setting of the collective burial at Le Tumulus des Sables, southwest France. 

Elevation data taken from worldclim.org (Hijmans et al., 2005). 
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Figure 5-13: Sketch map of the site of Le Tumulus des Sables, showing collective burial and remains 

of the mound. 

5.3.1.2 The Bell Beaker Phenomenon  

The term Bell Beaker initially referred to a distinctive type of ceramic ware (inverted-bell shaped 

beakers), but has since come to describe an artefact assemblage, a cultural complex, a group of people, 

and time period (Benz and van Willigen, 1998; Price et al., 1998; Vander Linden, 2006; Desideri and 

Besse, 2010). The Bell Beaker Phenomenon (BBP) was widespread across Europe, from Central Europe 

to the Atlantic Ocean and from Scandinavia to the North Africa. It appears at the transition from the 

Neolithic to the Bronze Age about 3000 BC and persisting until about 1800 BC. The BPP appears at 

different times in different areas, was established on very different preceding local substrates, and in 

some cases coexisted with local cultures (Desideri and Besse, 2010). Numerous types of artefact have 

come to be recognised as part of a Bell Beaker assemblage, including some of the first gold and copper 

objects in Europe, jet, amber and obsidian ornaments, V-perforated bone buttons, tanged daggers, and 

archery equipment including projectile points and stone wrist guards (Price et al., 1998, 2004; Vander 

Linden, 2006). While this artefact assemblage unites this widespread phenomenon, the funerary and 

domestic structures vary greatly. Funerary practices ranged from individual graves (predominantly in 

Eastern Europe) to re-use of graves, collective tombs and mass inhumations (predominantly in Western 

Europe) (Benz and van Willigen, 1998; Price et al., 1998, 2004; Besse and Desideri, 2004; Vander 

Linden, 2007; Desideri and Besse, 2010). 
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The wide geographic distribution of the BBP has been interpreted in a number of different ways. These 

include migration of a unique population into Europe, long distance exchange of prestige goods, and 

diffusion of the cultural components of the BBP without movement of people. The appearance sequence 

of sites attributed to the BBP suggests a southwest to northeast trend originating on the Iberian Peninsula 

(Desideri and Besse, 2010; Fokkens and Nicolis, 2012; Czebreszuk, 2014) and movement along the 

Atlantic coastline (Prieto Martínez and Salanova, 2009). Direct evidence for high mobility during the 

Bell Beaker period comes from Sr isotope studies of Bell Beaker sites in Germany, Hungary, Austria 

and the Czech Republic (Grupe et al., 1997; Price et al., 2002, 2004). Price et al. (2004) found no 

difference in 87Sr/86Sr derived mobility between sex and age, and between early and late Bell Beaker 

people. In that study 51 out of 81 individuals were classified as non-locals. Direct investigation of 

mobility at the site Le Tumulus des Sables in south-western France fills an important geographic gap 

and can offer new insights into the distribution and mobility patterns of the BBP in western in Europe. 

5.3.2 Isotopic analysis of human remains 

Through radiocarbon dating and multi-isotope studies it is possible to reconstruct the age, diet and 

mobility pattern of an individual using a single tooth fragment. 

5.3.2.1 Reconstructing diet 

Carbon (δ13C) and nitrogen (δ15N) isotopic compositions can be used to reconstruct diet in 

archaeological populations due to isotopic differences between food types and trophic levels (Richards 

and Hedges, 1999; Privat et al., 2002; Richards, 2002; Schulting et al., 2008). The δ13C and δ15N of 

collagen, the main organic component of dentine, reflect the average protein components of the 

childhood diet. This means it will reflect the diet of food eaten over a long period of time and will 

average out individual potentially isotopically different food sources. 

The isotopic composition of plant C (δ13C) is determined by the photosynthetic pathway utilised by the 

plant during photosynthesis to fix carbon from the atmosphere. Three pathways, C3, C4 and 

Crassulacean Acid Metabolism (CAM) lead to different average δ13C values of -26.5, -12.5 and -19‰, 

respectively (Deines, 1980). However, geographic, temporal and plant specific differences exist 

(Heaton, 1999). Most C4 plants (e.g. grasses and sedges) are dominantly found in dry or arid 

environments, so in temperate climatic regions δ13C can be used to distinguish between terrestrial and 

marine diet sources. The source of C in these two systems differs; atmospheric C (-7‰) being the main 

source in terrestrial systems and dissolved carbonate (0‰) being the main source in marine systems 

(Katzenberg, 2008). Fractionation occurs between the C in plant and herbivore animal tissue, decreasing 

δ13C by 5‰ in bone collagen, and 10‰ in tooth enamel and bone collagen of carnivores exhibits an 

additional decrease of 1.5‰ (Schoeninger and DeNiro, 1984). Thus the δ13C measured in human bone 

collagen will reflect the full range of isotopic variability of the food source caused by environmental,  

physiological and dietary processes. Generally, in human populations, an exclusively marine diet leads 
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to a bone collagen δ13C of about -13‰ and an exclusively terrestrial C3 diet to a bone collagen δ13C of 

about -20‰ (Chisholm et al., 1982).  

In archaeological research δ15N can be used to assess the amount and tropic level from which the food 

originated (Schoeninger et al., 1983; Sealy et al., 1987; Hedges and Reynard, 2007; Richards and 

Trinkaus, 2009). Nitrogen is incorporated into the food chain through plants by adsorbed soil compounds 

or from the atmosphere. 14N is excreted by the body in preference to the heavier 15N. Generally, an 

herbivore would have higher δ15N than the plant source and a carnivore that fed on the herbivore would 

have another step higher than the herbivore. In the same area omnivores (such as humans) would fall in 

between those values. Typically, an increase in trophic level within a given environment is expected to 

lead to an increase in δ15N of 1.3–5.3‰ per level (Schoeninger and DeNiro, 1984). However, a higher 

increase of ~6‰ from δ15N from the diet to human bone collagen has also been observed (O’Connell et 

al., 2012). The greater number of trophic levels found in marine ecosystems result in higher δ15N values, 

compared to terrestrial environments, resulting. Animals whose diet consisted entirely of marine 

resources have a δ15N on average 9‰ higher (14.8±2.5‰) than those with an entirely terrestrial diet 

(5.9±2.2‰) while those with a mixed diet have intermediate values (Schoeninger and DeNiro, 1984). 

5.3.2.2 Reconstructing mobility 

Strontium (87Sr/86Sr) and O (δ18O) are two independent isotope systems that have been used together in 

various recent studies to investigate past mobility in Europe (Bentley and Knipper, 2005; Evans et al.,  

2006; White et al., 2007; Eckardt et al., 2009; Chenery et al., 2010; Hemer et al., 2013, 2014; Buckberry 

et al., 2014; Lamb et al., 2014). The basic principle is that the 87Sr/86Sr and δ18O of teeth reflect the 

average isotopic composition of food and drinking water consumed during childhood, when the teeth 

were forming. By comparing the isotopic composition of a tooth with isotopic baseline maps it can be 

possible to identify mobility between different terrains and environments. A fundamental limitation of 

this method, however, is that geographically distant areas can have similar or overlapping isotopic 

compositions. Thus ‘local’ in this context means that it is not possible to distinguish between the isotopic 

composition of the skeletal remains and the surrounding environment. It remains possible that the 

individual came from a distant area of similar isotopic composition, however the use of multiple isotope 

systems reduces this possibility. 

The isotopic composition of bioavailable Sr differs depending on the age, composition and weathering 

regime of the local rocks (Capo et al., 1998; Bentley, 2006; Slovak and Paytan, 2012). The 87Sr/86Sr 

signature in archaeological human remains is mainly controlled by the underlying geology, but can be 

modified by additional sources of Sr from atmospheric deposition (precipitation, seaspray, dust) and, in 

a modern context, fertiliser use (Price et al., 2002; Bentley, 2006; Evans et al., 2010; Voerkelius et al.,  

2010; Maurer et al., 2012; Slovak and Paytan, 2012; Frei and Frei, 2013). In regions with exogenic 

surface deposits (loess, glacial deposits, peat), the local bioavailable 87Sr/86Sr can be completely 

disconnected from the underlying bedrock geology. These complexities hinder inferring the range of 
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bioavailable 87Sr/86Sr from the bedrock geology, making it necessary to either measure or model that 

compositional range for a specific area. Humans and animals incorporate Sr from their diet into their 

dental and skeletal tissues (Beard and Johnson, 2000) where it substitutes for Ca and serves no metabolic 

function.  

The oxygen isotopic composition of meteoric water is a function of geographic location and climate 

(Gat, 1996). δ18O changes with the water source, temperature, elevation and quantity of precipitation, 

which creates a distinctive geographic profile (Dansgaard, 1964; Bowen and Wilkinson, 2002). 

However, this geographic profile will exhibit seasonal and annual variability as the climatological and 

atmospheric conditions change. The δ18O of skeletal and dental remains is related to the composition of 

body water, which in turn is influenced by diet, physiology and climate. Most of the water consumed by 

humans comes from drinking water, typically sourced locally. The constant body temperature of 

mammals means the δ18O is not influenced by environmental temperature, changing only with the 

composition of the ingested water (Longinelli, 1984; Luz et al., 1984). Seasonal changes in drinking 

water δ18O cause fluctuations in δ18O in a sedentary population. Seasonal changes in diet and behaviour 

can also add to this pattern (Balasse, 2003).  

5.3.3 Materials and Methods 

5.3.3.1 Human dental remains 

Twenty five teeth (18 permanent, 7 deciduous) from Le Tumulus des Sables were selected for this study. 

The left maxillary second molar (LM2) was chosen for the adult samples and the left deciduous 

maxillary second incisor (LdI2) for juveniles, thus ensuring that each tooth came from a different 

individual. The permanent teeth represent individuals over 14 years of age, and the deciduous teeth 

represent individuals younger than 8 years of age.  

Archaeological dental and skeletal material are affected by both physical and chemical changes after 

deposition, potentially leading to the loss of the original isotope composition. The degree of subsequent 

diagenetic overprinting can be different from sample to sample and depends on a large number of factors, 

including the length of burial, the hydro-geochemical environment, and the type of dental material (e.g.,  

Bentley, 2006; Slovak and Paytan, 2011). Tooth dentine is prone to diagenetic overprinting because it 

contains pores ~ 1 µm diameter, which are larger than its phosphate crystals (Kohn et al., 1999). With 

time, elements from soil and water can move into the pore spaces of bones and dentine where dissolution 

and recrystallisation can occur. Tooth enamel, on the other hand, has phosphate crystals larger than 1 µm, 

a compact structure, and little pore space. It consists of ~ 96 wt.% Ca phosphate and is much denser, 

harder and more inert than bone and dentine. Several studies have shown that tooth enamel is much 

more resistant than bone or dentine to post-burial diagenesis and more likely to retain its original isotopic 

signature (Bentley, 2006; Slovak and Paytan, 2011; and references therein). The samples for the present 

study were checked for diagenetic overprint using in situ mapping of U, Th and Sr concentrations (Boel, 
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2011), and only samples that contained enamel areas likely to have preserved their original isotopic 

signatures were chosen for analysis. Due to the limited amount of material available, not all analytical 

techniques were applied to all samples. Of the 25 teeth selected, eight (7 permanent, 1 deciduous) were 

chosen for radiocarbon dating as well as C and N isotope analysis, and 22 (17 permanent, 5 deciduous) 

were chosen for O isotope analysis. All 25 (enamel and dentine) were analysed for Sr isotopes.  

5.3.3.2 Radiocarbon dating 

The discoloured surface of the dentine was removed with a tungsten carbide drill and the sample either 

drilled or cut and crushed in a pestle and mortar. Collagen was extracted and purified using an 

ultrafiltration protocol similar to that described by Brock et al. (2010). Briefly, the powdered sample 

was demineralised (HCl, 0.5M, 5°C, overnight), washed in NaOH (0.1M, room temperature, 30 minutes) 

and HCl (0.5M, room temperature, 1 hour), with thorough rinsing in MilliQ water between each 

treatment. Subsequently the sample was gelatinised (0.001 M HCl, 70°C, 20 hours), filtered (~ 90 μm 

EzeeTM filter) and ultrafiltered (VivaspinTM VS15 30 kDa MWCO ultrafilter). The freeze-dried collagen 

was combusted in an evacuated sealed quartz tube in the presence of CuO wire and Ag foil. The CO2 

generated was cryogenically collected and purified prior to reduction to graphite over an Fe catalyst in 

the presence of H for measurement in a NEC single stage accelerator mass spectrometer at the ANU 

(Fallon et al., 2010). A sample size dependant background subtraction derived from repeat 

measurements of > 50 ka bone (from Latton, UK) and young bone (from the Batavia and Vergulde 

Draeck shipwrecks, Australia) was subtracted from each sample following the method of Wood et al.,  

(2010). Calibration was carried out in OxCal v4.2 (Bronk Ramsey, 2009) against IntCal13 (Reimer, 

2013). 

5.3.3.3 Carbon and nitrogen isotope analysis 

A second aliquot was taken from the collagen extracted for radiocarbon dating for C and N stable isotope 

analysis. δ13C and δ15N were measured in a Sercon 20-22 isotope ratio mass spectrometer coupled to an 

ANCA GSL elemental analyser operating in continuous flow mode. Samples were referenced to an in-

house gelatin standard and corrected against USGS-40 and USGS-41. 

5.3.3.4 Strontium isotope analysis 

After the tooth surface was cleaned, 0.2–0.5 mg of enamel and dentine were drilled out using a custom 

made drill bit at 500 rpm. The tooth powder was then leached in 0.5 ml 1 M NH4NO3 to remove any 

residual contamination and digested in 1 ml ultrapure concentrated HNO3 for 1 h. The samples were 

then evaporated to dryness, redissolved in 2 ml 2 M HNO3 and subjected to ion exchange 

chromatography using micro columns with Eichrom Sr specific resin (pre-filter and Sr spec resin) to 

isolate Sr from other elements. A drop of dilute H3PO4 was added to each sample before loading onto 

Re filaments with a TaF5 activator. Samples were analysed on the TRITON Plus thermal ionisation mass 

spectrometer (TIMS) at the Research School of Earth Sciences, ANU. Data were evaluated using a Rb 
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correction, exponential mass bias correction (86Sr/88Sr = 0.1194) and 2σ outlier rejection. Total 

procedural blanks were determined by isotope dilution using an 84Sr enriched spike, measured on the 

TRITON Plus TIMS and were below 100 pg Sr. Long term measurements of the Sr carbonate standard 

SRM987 gave 87Sr/86Sr = 0.71023±0.00002 (n = 99, 2σ) which is in agreement with the most precise of 

modern measurements (0.710250±0.000003: Hans et al., 2013) and within uncertainty of the original 

certified value of 0.71034±0.00026 (Moore et al., 1982). 

5.3.3.5 Oxygen isotope analysis 

A cross section of tooth enamel was cut using a dental drill fitted with a fine diamond saw blade. The 

samples were then mounted around crystals of Durango 3 mineral apatite standard (Rigo et al., 2012), 

cast in epoxy and polished to expose the enamel in cross section. After washing with petroleum spirit,  

RBS solution and Millipore H2O the mounts were dried for at least 24 h in a 60˚C vacuum oven, then 

coated with high purity Al prior to analysis using the Sensitive High Resolution Ion MicroProbe 

(SHRIMP II) at the Research School of Earth Sciences. Analytical and instrumental conditions are 

described in detail by Trotter et al. (2008) and Ickert et al. (2008). Archaeological applications of 

SHRIMP II are outlined in Aubert et al. (2012). Durango 3 was analysed first and then after every five 

enamel measurements. The δ18O of Durango apatite was 9.4‰ relative to VSMOW. Each tooth traverse 

consisted of a line of between 3 and 17 spots, working from the enamel layer closest to the dentine 

outward to the tooth surface. The number of spots was determined primarily by the thickness of the 

enamel. Three samples (A4, J4, J5) did not contain enough enamel for analysis. The standard deviations 

of the SHRIMP δ18O apatite analyses of Durango 3 from the six sample mounts ranged from 0.12 to 

0.39‰. 

The incorporation of O isotopes into skeletal tissues involves physiological mass fractionation. The 

isotopic offset between structural carbonates and body water is ~ 27‰; the phosphate to body water 

offset is smaller ~18‰ (Kohn and Cerling, 2002; France and Owsley, 2015). To compare the δ18O 

measured in situ (δ18OIS) in tooth enamel with that in the environment, it is necessary to estimate the 

contribution of carbonates to the measurement and then apply a conversion equation from phosphate 

(δ18Op) to water (δ18Ow). 

Approximately 12% of the tooth O analysed by in situ techniques is not derived from the phosphate 

fraction (Kohn and Cerling, 2002). Most of that 12% is carbonate bound. The difference in δ18O between 

co-existing carbonate and phosphate is 7.8±1.5‰ (France and Owsley, 2015). Correcting for the 

contribution of carbonate to the δ18OIS measured in situ decreases the δ18Op by ~ 0.9‰. The conversion 

of δ18Op to δ18Ow has been outlined in several equations (Longinelli, 1984; Luz et al., 1984; Levinson et 

al., 1987; Daux et al., 2008; Chenery et al., 2010). The multiple sources of uncertainty associated with 

the in situ measurement of δ18O and with the conversion to δ18OW have led many researchers to suggest 

that it is better to rely on direct comparisons to the δ18O of skeletal material from local fauna (e.g.,  

rodents), not to measured drinking water compositions (Pollard et al., 2011; Laffoon et al., 2013). There 
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is a scarcity of data on δ18O in skeletal material from Le Tumulus des Sables, however, so for this study 

the estimation of δ18OW from measured tooth δ18OIS has been necessary. For the human teeth we used 

equation (6) in Daux et al. (2008) where δ18Ow = 1.54(± 0.09) δ18Op - 33.72(± 1.51). We have accounted 

for the uncertainties in the conversion from δ18OIS to δ18Ow by increasing the error envelope around each 

analysis to ± 1.9‰ (2σ). 

5.3.3.6 Baseline Sr and O isotope maps 

To determine the local range of bioavailable 87Sr/86Sr at Le Tumulus des Sables soil samples and 

associated fauna samples (Microtus. sp. teeth) were collected from several sediment layers from within 

and around the burial. The faunal teeth were crushed using a mortar and pestle and then subject to the 

same analytical procedure as the human teeth. The soil samples were pre-treated for Sr isotope analysis 

following the protocol DIN ISO 19730. Strontium was isolated from other elements using ion exchange 

chromatography using Eichrom Sr specific resin (pre-filter and Sr spec resin). Strontium isotope ratios 

were measured using a Thermo Finnigan Neptune multi-collector inductively coupled plasma mass 

spectrometer (MC-ICP-MS) equipped with a quartz dual cyclonic spray chamber, PFA 100 µl nebuliser 

and standard Ni cones at the Environmental Geochemistry and Geochronology Laboratory at the 

Research School of Earth Sciences, ANU. Data reduction included a correction for Kr and Rb isobaric 

interferences, exponential mass bias correction (86Sr/88Sr = 0.1194) and 2σ outlier rejection. Long term 

measurements of the Sr carbonate standard SRM987 (National Institute of Standards and Technology) 

on the Neptune MC-ICP-MS gave an average 87Sr/86Sr value of 0.71023±0.00001 (n = 167, 2σ). 

Plant samples and soil leachates from the Isotopic Reconstruction of Human Migration (IRHUM) 

database (Willmes et al., 2014) were used to infer the regional range of bioavailable 87Sr/86Sr for the 

major geologic units of southern France, including the Aquitaine Basin, the Pyrenees and Massif Central.  

These sample types were chosen because they provide a good estimate of the differences in bioavailable 
87Sr/86Sr. A map of bioavailable 87Sr/86Sr for all of France, including a detailed overview of our mapping 

procedures can be found in chapter 3.  

A subset of the global dataset of gridded maps of the isotopic composition of meteoric waters (Bowen 

and Revenaugh, 2003; Bowen, 2015) was used to determine the range of δ18O in the surrounding 

environment. Local modern weather station data from the International Atomic Energy Agency (IAEA) 

Global Network of Isotopes in Precipitation (GNIP) database from France and northern Spain were also 

used, the closest station to the site being Cestas-Pierroton (44°44'17"N, 00°46'29"W). The data were 

processed in ESRI ArcGISTM and statistical analysis was carried out using R (R Core Team, 2013). 
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5.3.4 Results and discussion 

5.3.4.1 Chronology of the site 

The new radiocarbon results from eight teeth, in combination with the two human bone and two charcoal 

dates from previous studies, illustrate the complex chronology of the site (Table 5-7, Figure 5-14). The 

two charcoal dates from the top and bottom of the burial are 1395–1215 cal. BC and 6090–5925 cal.  

BC, respectively, bracketing the teeth and bone ages from the site. However, the charcoal dates may not 

directly relate to the funeral use of the site, and charcoal can easily move within the sediments. One 

bone date and six of the teeth dates fall within the range of the Bell Beaker period in France: 2900–1800 

BC (Champion et al., 2009). One tooth (A4-SLMEM466) and the juvenile vertebra are significant ly 

older, 3650–3520 cal. BC and 3650–3375 cal. BC, respectively. One tooth (A3-SLMEM454) was much 

younger, 1275–1120 cal. BC, close to the age of the charcoal sample from the top of the burial. These 

dates show that Le Tumulus des Sables is a highly mixed site that was used across multiple time periods. 

The collective burial was built during the Neolithic and reused during the Bell Beaker Period, during 

the second half of the third millennium BC. The discovery of many broken and dislocated bones outside 

of the burial the chamber, near the entrance (Figure 5-13) indicate a partial emptying of the burial, before 

its use by the Bell Beaker. According to one radiocarbon date, the use of the burial continued during the 

Early Bronze Age indicating a re-occupation of this space, without direct relation with the collective 

burial. This conclusion is in agreement with the archaeological material found at the site that indicates 

use during multiple time periods. The large number of artefacts associated with the BBP found at the 

site, and the fact that six of the eight randomly selected individuals are from the BBP period, suggests 

that most of the individuals found at this site belong to the BBP. The wide age range of the site and the 

disturbed stratigraphy, however, prevent the definite identification of a particular sample as belonging 

to a certain time period without individually dating it. When using isotope analysis to determine diet 

and mobility it cannot be assumed a priori that the samples represent a single population. 
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Table 5-7: Details of 14C dating samples. The bone and charcoal dates are summarised in the excavation 

reports (Courtaud et al., 2009, 2010). δ13C is measured on the AMS and used during date calculation. It 

is not equivalent to IRMS δ13C values. For reliable stable isotope and radiocarbon analysis, % collagen 

yield should be >1%, C:N ratio between 2.9-3.4 and %C >30% (van Klinken, 1999). 

Sample Name Laboratory 
code 

Sample 
material δ13C ± Collagen 

yield [% ] C:N % C 
14C 
age 
[BP] 

± 
14C age 
[calBC, 

95.4% range] 
A01 - SLMEM263 SANU 39010 Tooth -21 1 2.8 3.2 46.7 3570 25 2017 1784 
A02 - SLMEM900 SANU 38939 Tooth -15 1 9.1 3.2 46.2 3950 25 2566 2347 
A03 - SLMEM454 SANU 38938 Tooth -15 1 7.6 3.2 46.0 2980 25 1277 1121 
A04- SLMEM466 SANU 39009 Tooth -22 1 6.9 3.2 45.0 4800 30 3650 3522 
A06 - SLMEM282 SANU 39005 Tooth -19 1 5.9 3.2 46.0 4030 25 2620 2475 
A08 - SLMEM432 SANU 39006 Tooth -20 1 9.3 3.2 45.3 4045 25 2831 2480 
A12 - SLMEM1007 SANU 39007 Tooth -19 1 5.9 3.2 45.5 3850 25 2458 2207 
J02 - SLMEM66 SANU 38901 Tooth -20 1 6.0 3.2 46.3 3815 25 2345 2146 
Bone SLMEM07 Poz 23194 Bone      3915 35 2487 2291 
Bone St. Laurent 02/07-1 Erl 10575 Bone      4755 35 3648 3374 
Charcoal Lyon-6217 SacA 16631 Charcoal      3040 30 1397 1216 
Charcoal Lyon-6216 SacA 16630 Charcoal      7160 40 6092 5927 

 

 

Figure 5-14: Radiocarbon results of the eight teeth analysed in this study, as well as the two bone and 

two charcoal dates previously obtained from this site (Courtaud et al., 2010). Bell Beaker time period 

estimates (Champion et al., 2009) are shown as dashed lines. 

5.3.4.2 Diet 

The eight individuals analysed have δ13C between -19.6 and -20.6‰ and δ15N between 9.4 and 11.4‰. 

These are narrow ranges, despite the very different ages of the individuals, and suggest a predominantly 

terrestrial diet consistent with isotopic compositions found at other European Neolithic sites (Figure 

5-15). It appears that diet remained relatively terrestrial throughout the extended lifetime of the site, 

despite its close proximity to the Gironde Estuary and the Atlantic Ocean. 



 

133 
 

 

Figure 5-15: Carbon and nitrogen isotope results for eight individuals in this study with approximate 

dietary groups as dashed boxes (Schoeninger et al., 1983; Pollard, 1993).  

 

5.3.4.3 Human mobility 

87Sr/86Sr and δ18O baseline data 

Le Tumulus des Sables is situated on the Médoc peninsula, a flat, low lying region situated between the 

Atlantic coast and the Gironde Estuary, dominated by unconsolidated Quaternary and Neogene 

sediments. The site lies within Pliocene sand, clay and gravel, with a band of Holocene sands, clays, 

pebbles and gravel along the shorelines to the north and east. There are small patches of Eocene and 

Oligocene limestone, conglomerate and sandstone towards the eastern edge in close proximity to the 

site (Figure 5-16). The range of bioavailable 87Sr/86Sr at Le Tumulus des Sables is 0.7081–0.7102, as 

determined from soil leachates (0.7088–0.7099) and faunal samples (0.7081–0.7102), with average 

differences between the sample types of 0.0007 (Table 5-8). This intra site variation is large and most 

likely reflects the variability of the sand and clay sedimentary units within the site and the mixing caused 

by repeated burials in this location.  
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Table 5-8: Bioavailable 87Sr/86Sr at Le Tumulus des Sables determined by soil leachates and faunal 

samples (Microtus. sp. teeth). 

Grid reference Location 
Soil 
87Sr/86Sr ±2se 

Faunal 
87Sr/86Sr ±2se 

H43 Within the burial 0.70893 0.00001 0.70827 0.00003 
I43 Within the burial 0.70973 0.00002 0.70909 0.00002 
H42 Within the burial 0.70963 0.00002   
H45 Within the burial 0.70910 0.00004   
J44 Within the burial 0.70883 0.00002 0.70808 0.00005 
G40 Within the burial 0.70879 0.00002 0.70906 0.00017 
G44 Within the burial 0.70876 0.00002 0.70904 0.00015 
E30 Outside the burial 0.70949 0.00004 0.71016 0.00006 
E34 Outside the burial 0.70920 0.00002 0.70906 0.00009 
H36 Outside the burial 0.70991 0.00002 0.70961 0.00003 
H38 Outside the burial 0.70887 0.00001 0.70827 0.00008 
87Sr/86Sr range in the burial 0.7088-0.7097 0.7081-0.7091 
87Sr/86Sr range adjacent to the burial 0.7089-0.7099 0.7083-0.7102 
Local 87Sr/86Sr range combined 0.7081-0.7102 

 

The range of bioavailable 87Sr/86Sr from different geologic units in France is based on plant and soil 

leachate data from the IRHUM database (Willmes et al., 2014). There are significant differences between 

different lithological units both in terms of average bioavailable 87Sr/86Sr and the range of bioavailable 
87Sr/86Sr within the lithological unit (Figure 5-16A). The isotope packages (Figure 5-16B) encompass 

all lithological units and group them to reduce internal variability while maximising the difference 

between groups. The local range of bioavailable 87Sr/86Sr at Le Tumulus des Sables is distinct from the 

isotopic compositions of volcanic, igneous and metamorphic rocks mainly found in the Massif Central,  

Armorican Massif and Pyrenees, but overlaps with those of carbonaceous sediment units of the 

Aquitaine Basin. Although there is significant overlap in bioavailable 87Sr/86Sr between the lithologica l 

units of southern France, the different areas of the study region can be broadly distinguished (Figure 

5-17).  

The annual average δ18O of precipitation (δ18OW) exhibits a distinct geographic profile across Western 

Europe and Northern Africa. The δ18OW is highest in Africa, becoming progressively lower northwards 

into Spain and southwest France (Figure 5-18). There is a strong trend to more negative δ18OW across 

Europe from southwest to east. Lower δ18OW is also found in areas of higher elevation, such as the 

Pyrenees and the Alps. The global dataset of gridded maps of the isotopic composition of meteoric 

waters (waterisotopes.org; Bowen and Revenaugh 2003) provides an estimated δ18OW for Le Tumulus 

des Sables (45°8'44" N, 00°49'37" W, elevation 20 m) of -6.4±0.3‰.  

These predicted compositions are close to those of modern precipitation in the area (Daux et al., 2008). 

Modern weather station data from the IAEA-GNIP database for the closest station (Cestas-Pierroton: 

44°44'17" N, 00°46'29" W, elevation 59 m) 50 km south of Le Tumulus des Sables, shows an average 

annual δ18OW of -5.72±1.57‰. IAEA modern weather station data from France and northern Spain 

shows an average shift of 3‰ between winter and summer meteoric water δ18OW. The seasonal averages 
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for δ18OW at Cestas-Pierroton are winter: -6.59±1.17‰, spring: -5.79±1.36‰, summer: -4.75±1.07‰, 

autumn: -5.85±2.23‰. A conservative estimate of the modern range in δ18OW for Le Tumulus des Sables 

and the western Aquitaine Basin is therefore -4.15 to -6.7‰. The baseline map presented here can only 

serve as a guideline to predict the variation of δ18O across the landscape, because significant variation 

in δ18O is expected between different seasons and subtle changes from year to year in atmospheric 

patterns can have a significant effect on δ18O in rainwater. Finally, how δ18OW has changed through time 

is not well understood, both the magnitude and geographic distribution of δ18OW might have been quite 

different ~ 4 ka ago.  
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Figure 5-16: A: Box plots of bioavailable 87Sr/86Sr isotope ranges for the different lithological units of 

France based on soil leachate and plant data from the IRHUM database (Willmes et al., 2014). B: Box 

plots of the bioavailable 87Sr/86Sr isotope packages. The shaded bar shows the 87Sr/86Sr range at the site 

of Le Tumulus des Sables.  
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Figure 5-17: A: Surface geologic map of France (BRGM). B: Isotope package map of bioavailable 
87Sr/86Sr in southern France based on the IRHUM database (Willmes et al., 2014). 
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Figure 5-18: A: Annual average δ18Ow of precipitation across Europe and part of northern Africa. B: 

Average δ18Ow of precipitation in France. Data from waterisotopes.org (Bowen and Revenaugh, 2003; 

Bowen, 2015).  
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Intra-tooth differences in δ18O  

In situ analysis of tooth enamel, which allows for multiple measurements across the enamel thickness, 

can be used to investigate intra-tooth differences in δ18O (Figure 5-19, Table 5-9). Intra-tooth 

compositional heterogeneity appears to be a remnant of the two-stage enamel formation process, 

amelogenesis. The initial phase, matrix production, results in the creation of successive organic-rich 

layers that become highly mineralised during the second phase of maturation (Butler, 1978; Hillson, 

2005). Changes in the δ18O of ingested water during this formation process, due to seasonal influences 

of rainwater, physiological changes, geographical movement or cultural changes, may produce changes 

in δ18O within the enamel. Intra-tooth heterogeneity has previously been found in hypsodont and 

continuously growing teeth, and has been used to assess climate, seasonality and migration (Fricke and 

O’Neil, 1996; Balasse, 2002; Zazzo et al., 2005; Bernard et al., 2009; Stevens et al., 2011). The present 

study is one of the first to assess intra-tooth δ18O variation across the enamel in human teeth. 

The teeth analysed had intra-tooth ranges in δ18O of between 1.1 and 3.1‰. The first analysis in two of 

the samples (A11, A15), that closest to the enamel-dentine boundary, was more than 2‰ different from 

the next spot in the profile, accounting for most of the isotopic range in those teeth. Studies of diagenetic 

overprint in human tooth enamel have shown that areas closest to the enamel-dentine boundary 

commonly have higher levels of diagenetic overprint (Rainer Grün et al., 2008). In contrast, some studies 

of herbivore teeth have shown the opposite (e.g., Müller et al., 2013). It is possible that a diagenetic 

overprint has influenced the first spot analyses from samples A11 and A15, so the compositions of those 

spots have been omitted from further consideration. This reduces the intra-tooth heterogeneity in A11 

from 3.5 to 1.7‰, and in A15 from 3.2 to 2.8‰. One sample (A16) shows an overall rise in δ18O of 

3.1‰ along the measured profile, a compositional range that is probably an original feature.  

Considering the seasonal variation in the δ18O of modern precipitation, it is likely that the intra-tooth 

heterogeneity in δ18O in the analysed samples records seasonal changes in the δ18O of water ingested 

during the period of tooth formation/mineralisation. However, due to the complex spatial and temporal 

patterning of human enamel mineralisation (Suga, 1989) this is unlikely to represent a simple time series 

record. As all samples appear to be influenced by the same agent (seasonality), the median δ18O for each 

profile can be used to assess human mobility. 
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Figure 5-19: Intra-tooth profiles of enamel δ18O. All profiles are plotted running outwards from close 

to the enamel-dentine boundary to the tooth's outer surface. 

 

Table 5-9: δ18O of human teeth from Le Tumulus des Sables. 

Sample ID Tooth δ18OIS Average 
[‰]  ±2σ N Intra tooth range 

‰ 
Enamelp 

[‰] ±2σ 
Enamelw 

[‰] ±2σ 

A01 - SLMEM263 Permanent 20.1 0.6 14 1.1 19.2 1.6 -4.2 2.2 
A02 - SLMEM900 Permanent 19.2 1.3 15 2.5 18.3 2.0 -5.5 2.5 
A03 - SLMEM454 Permanent 19.6 1.2 16 2.2 18.7 1.9 -4.9 2.4 
A04- SLMEM466 Permanent        
A05 - SLMEM308 Permanent 19.8 0.9 11 1.4 18.9 1.7 -4.7 2.3 
A06 - SLMEM282 Permanent 19.4 1.3 15 2.5 18.5 2.0 -5.3 2.5 
A07 - SLMEM1157 Permanent 19.7 0.9 11 1.5 18.7 1.8 -4.9 2.3 
A08 - SLMEM432 Permanent 19.8 1.1 17 2.4 18.9 1.9 -4.6 2.4 
A09 - SLMEM112 Permanent 19.7 0.8 9 1.1 18.8 1.7 -4.8 2.3 
A10 - SLMEM813 Permanent 19.9 0.5 10 0.6 18.9 1.6 -4.6 2.2 
A11- SLMEM861 Permanent 23.4 1.1 10 1.7 22.4 1.8 0.8 2.4 
A12 - SLMEM1007 Permanent 20.4 1.1 14 2.0 19.4 1.9 -3.8 2.4 
A13 - SLMEM1094 Permanent 19.4 0.9 14 1.5 18.5 1.8 -5.3 2.3 
A14 - SLMEM1289 Permanent 20.4 0.8 17 1.3 19.5 1.7 -3.8 2.3 
A15 - SLMEM491 Permanent 19.7 1.7 15 2.8 18.7 2.3 -4.9 2.7 
A16 - SLMEM298 Permanent 19.5 1.4 17 3.1 18.6 2.1 -5.1 2.6 
A17 - SLMEM509 Permanent 19.6 0.9 15 1.6 18.7 1.8 -5.0 2.3 
A18 - SLMEM5 Permanent 19.6 1.0 5 1.2 18.7 1.8 -5.0 2.4 
J02 - SLMEM66 Deciduous 19.7 2.0 3 2.0 18.8 2.5 -4.8 2.9 
J03 - SLMEM1251 Deciduous 20.0 1.2 3 1.1 19.1 1.9 -4.3 2.5 
J04 - SLMEM119 Deciduous        
J05 - SLMEM102 Deciduous        
J06 - SLMEM1192 Deciduous 20.7 1.4 9 2.4 19.7 2.1 -3.3 2.6 
J07 - SLMEM86 Deciduous 20.6 1.2 7 1.8 19.7 1.9 -3.4 2.4 
J08 - SLMEM276 Deciduous 21.3 1.4 7 2.1 20.4 2.0 -2.4 2.5 
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87Sr/86Sr and δ18O in the human remains 

The 87Sr/86Sr of enamel and dentine from the 25 individuals is in the ranges 0.70904–0.71331 and 

0.70904–0.71187, respectively (Table 5-10). Nine individuals have significant differences in 87Sr/86Sr 

(> 0.00050) between dentine and enamel, the ratio being lower in dentine (Figure 5-20A). Dentine and 

enamel should have similar 87Sr/86Sr, but as discussed above, dentine is the more susceptible to 

diagenetic alteration that can shift its isotopic composition towards the local range. It is likely, therefore, 

that the nine samples with Sr isotopic differences between enamel and dentine have been affected by 

diagenesis. The 87Sr/86Sr in two other samples is higher in dentine than in the enamel, again indicative 

of alteration, but possibly under different conditions. These inconsistencies between dentine and enamel 

compositions show that, at this site, dentine has not preserved its original 87Sr/86Sr, leaving enamel 

compositions as the more reliable tracer of human mobility. Enamel δ18Op from the 22 analysed 

individuals ranged from 18.3 to 22.4‰, equivalent to δ18OW of approximately -5.5 to 0.8‰ (Table 5-10). 

The conversion from δ18Op to δ18Ow is subject to several sources of uncertainty in the equations (Daux 

et al., 2008), leading to large uncertainties of ~ 2.5‰ in each calculated value (Figure 5-20B). Some of 

the larger uncertainties apply equally to all analyses, however, so differences between individuals may 

still be observed. 
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Figure 5-20: A: 87Sr/86Sr in tooth enamel and dentine. Uncertainties are 2se. B: δ18Ow calculated from 

the δ18Op of enamel. Uncertainties are 2σ. Dashed lines indicate the local isotope range at the site of Le 

Tumulus des Sables. 
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Human mobility 

K-means cluster analysis was applied to the tooth enamel isotopic compositions. The number of clusters 

was varied to achieve the best fit using clValid (Brock et al., 2008). Five statistically distinct groups of 

individuals (Figure 5-21) were identified. The median compositions of the defined clusters can be 

compared to the isotope baseline maps (Figure 5-17, Figure 5-18) to assess the regions from which those 

people might have originated. No systematic differences were found between the isotopic compositions 

of adults and juveniles. The wide range of isotopic composition in the bioavailable Sr within the burial 

site and the immediately surrounding Aquitaine Basin, as well as the large uncertainties associated with 

the calculation of δ18Ow from the δ18Op analyses, and uncertainties associated with predicting the 

geographic variations of δ18Ow back in time limit the interpretation of the data in terms of human 

mobility. Nevertheless, some careful observations can be made about the different groups. The 

individuals in Group 1 (n = 8) have isotopic compositions (87Sr/86Sr: 0.70938–0.71001, δ18Ow: -5.1 – 3.4) 

consistent with the modern range of Sr compositions at the burial site, and O isotopic compositions of 

precipitation in the western Aquitaine Basin. The individuals in Groups 2 (n = 8) and 3 (n = 3) have 

more radiogenic 87Sr/86Sr isotope ratios than those in Group 1 (0.70988–0.71069 and 0.71141–0.71331 

respectively), but similar δ18Ow. Isotopically the closest fit for Group 2 is isotope package 2, and for 

Group 3 isotope package 3. The geographically closest fit for the Sr isotope ratios in Group 2 are the 

carbonaceous sedimentary units < 5 km south of Le Tumulus des Sables. Large areas of the Aquitaine 

Basin have 87Sr/86Sr consistent with Group 3. The individuals in Group 4 (n = 2) and a single individua l 

Group 5 (A11) have δ18Ow (-3.3 – -2.4‰), and (0.8±2.4‰), respectively. These δ18Ow compositions are 

outside the range of the modern δ18Ow in the Aquitaine Basin. The 87Sr/86Sr isotope ratios of Group 4 

fall into isotope package 3 and Group 5 to isotope package 1 within the 87Sr/86Sr isotope range of the 

burial. Using the current dataset, it is not possible to determine if these higher δ18Ow values are an 

indication of a different childhood residence area or if they represent local and or seasonal variations in 

the drinking water supply, or water use practices (e.g. boiling) of these individuals. This reflects both 

the high analytical uncertainties when converting in situ δ18Op to δ18Ow values, as well as the problem 

of comparing modern day precipitation water values to the hydrological environment several thousand 

years ago. Drinking water intake of prehistoric populations is likely to reflect a mixture of precipitation 

input and other surface and ground water inputs that could result in significantly different δ18O values. 

In regards to human mobility we can interpret Group 1 to contain individuals who spent their childhood 

in the area of Le Tumulus des Sables. Groups 2 and 3 contain individuals who spent their childhood not 

directly at the site but in close proximity elsewhere in the Aquitaine Basin. No further interpretation is 

currently possible for Group 4 and 5. Finally, any interpretation of the individuals from Le Tumulus des 

Sables in regards to mobility within the Bell Beaker period is further limited because only eight of the 

teeth collected were of sufficient size and quality for 14C dating. While six of these did fall into the Bell 

Beaker period the burial is too disturbed to assume any individual belonging to a certain period without 

individually dating it. 



 

144 
 

 

Figure 5-21: Strontium and oxygen isotope compositions of tooth enamel from the individuals buried 

at Le Tumulus des Sables. Groups determined by K-means cluster analysis using R (R Core Team, 2013). 

  



 

 
 

Table 5-10: Summary of isotopic data for the individuals from Le Tumulus des Sables. 

 Sample  87Sr/86Sr δ18O δ13C δ15N   

 ID Tooth Enamel ±2se Dentine  ±2se Enamelp 
‰ ±2σ Enamelw 

‰ ±2σ Dentine 
(PDB) ‰ 

Dentine 
(AIR) ‰ Group 

A01  A01 - SLMEM263 Permanent 0.71051 2 0.70967 3 19.19 1.63 -4.16 2.22 -20.2 10.5 2 
A02 A02 - SLMEM900 Permanent 0.70988 18 0.70995 4 18.31 1.98 -5.53 2.49 -19.81 11.41 2 
A03 A03 - SLMEM454 Permanent 0.71039 3 0.70994 7 18.70 1.90 -4.92 2.43 -20.21 10.51 2 
A04 A04- SLMEM466 Permanent 0.70951 3 0.71058 4     -19.6 10.5  
A05 A05 - SLMEM308 Permanent 0.70939 1 0.70918 2 18.87 1.74 -4.65 2.31   1 
A06 A06 - SLMEM282 Permanent 0.71141 1 0.71014 3 18.48 1.97 -5.26 2.48 -19.7 10.8 3 
A07 A07 - SLMEM1157 Permanent 0.71000 2 0.70960 4 18.72 1.76 -4.88 2.32   2 
A08 A08 - SLMEM432 Permanent 0.70938 8 0.70936 3 18.90 1.87 -4.62 2.40 -19.6 9.4 1 
A09 A09 - SLMEM112 Permanent 0.71169 1 0.71003 2 18.80 1.72 -4.77 2.29   3 
A10 A10 - SLMEM813 Permanent 0.71046 4   18.93 1.57 -4.57 2.18   2 
A11 A11- SLMEM861 Permanent 0.70989 4 0.70988 2 22.43 1.83 0.82 2.38   5 
A12 A12 - SLMEM1007 Permanent 0.71331 7 0.71187 26 19.44 1.88 -3.79 2.41 -20.3 9.7 3 
A13 A13 - SLMEM1094 Permanent 0.71069 9 0.70922 1 18.46 1.75 -5.29 2.31   2 
A14 A14 - SLMEM1289 Permanent 0.70963 4 0.71023 2 19.45 1.68 -3.77 2.26   1 
A15 A15 - SLMEM491 Permanent 0.70951 3 0.70953 7 18.71 2.25 -4.90 2.71   1 
A16 A16 - SLMEM298 Permanent 0.70962 3 0.70972 16 18.61 2.08 -5.06 2.57   1 
A17 A17 - SLMEM509 Permanent 0.70950 2 0.70934 3 18.65 1.76 -5.00 2.32   1 
A18 A18 - SLMEM5 Permanent 0.71028 18 0.70958 3 18.67 1.80 -4.96 2.35   2 
J02 J02 - SLMEM66 Deciduous 0.71027 11 0.71005 43 18.78 2.48 -4.81 2.90 -20.62 9.89 2 
J03 J03 - SLMEM1251 Deciduous 0.70962 2 0.70904 16 19.10 1.94 -4.31 2.46   1 
J04 J04 - SLMEM119 Deciduous 0.71019 4 0.70986 6        
J05 J05 - SLMEM102 Deciduous 0.71024 1 0.71014 4        
J06 J06 - SLMEM1192 Deciduous 0.71113 14 0.70929 13 19.73 2.07 -3.34 2.56   4 
J07 J07 - SLMEM86 Deciduous 0.71001 13 0.70999 4 19.70 1.91 -3.38 2.44   1 
J08 J08 - SLMEM276 Deciduous 0.71106 25 0.71030 18 20.35 2.03 -2.38 2.53   4 
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5.3.5 Conclusions  

The results of this study of the chronology, diet, and mobility of individuals from the collective burial 

Le Tumulus des Sables lead to the following conclusions: 

(1) The site was used for burials over a much longer period than previously thought. Initially classified 

as an early Bell Beaker site, the radiocarbon chronology and artefacts associated with the burials instead 

document occupation over a period of ~ 2.5 ka. Given the tendency of the BBP people to re-use 

collective tombs of preceding cultures, and considering the relatively large quantity of Bell Beaker 

material exhumed (especially ceramic finds), it is possible that most of the human remains found at this 

site represent the deceased of the BBP. However, without dating each individual the disturbed condition 

of the burial does not allow the secure identification of a specific individual to the BBP. 

(2) The remains of eight individuals analysed to determine diet had a narrow range of isotopic 

compositions (δ13C = -19.6 to -20.6‰, δ15N = 9.4 to 11.4‰). This suggests, in combination with the 

radiocarbon dates, that the diet of the inhabitants remained terrestrial throughout the lifetime of the site, 

despite its close proximity to the Gironde Estuary and the Atlantic Ocean. A similar result has been 

found at other Neolithic sites in Europe. 

(3) Assuming a local, terrestrial diet, the geographic differences in bioavailable 87Sr/86Sr and 

precipitation δ18O within southern France make it possible to infer the regions in which the individuals 

spent their childhood. Five groups were identified that represent statistically different isotopic 

compositions of their food and drinking water source. Interpreting these isotopic differences in terms of 

human mobility is limited due to the large range of bioavailable 87Sr/86Sr near Le Tumulus des Sables 

and in the surrounding Aquitaine Basin and the uncertainties associated with interpreting the δ18OW 

values. Nevertheless, for three of the five groups some inferences about childhood residence area were 

possible, placing group 1 as locals to the site and individuals from group 2 and 3 as possible short-

distance migrants from the surrounding Aquitaine Basin. 
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5.4 La Grotte des Perrats 

This chapter has been submitted as part of an archaeological report about this site. 

M. Willmes, L. Kinsley, R. Grün (submitted), Strontium isotope tracing of human mobility at la Grotte 

des Perrats, Charente, France. 

 

The author’s contribution to the publications is as follows: The author conducted the strontium isotope 

analysis, evaluated the data and wrote the article including suggestions from all co-authors. This study 

represents the first direct application of the improved LA-MC-ICP-MS analytical protocol at RSES. 

5.4.1 Introduction 

Strontium isotope ratios (87Sr/86Sr) can be used to reconstruct human and animal mobility across 

geologically different terrains (e.g., Bentley, 2006; Capo et al., 1998; Price et al., 2002; Slovak and 

Paytan, 2011). The underlying principal is, that 87Sr/86Sr isotope ratios vary between different geologic 

regions depending on their age and composition, due to the radioactive decay of 87Rb by emission of a 

negative β-particle with a half-life of ~4.88 x 1010 years to 87Sr (e.g., Faure and Mensing, 2005). The 
87Sr/86Sr isotope signature of a region is mainly controlled by the underlying geology, but can be 

augmented by additional sources of strontium from atmospheric deposition (precipitation, seaspray, 

dust) and exogenic surface deposits (loess, peat) (Price et al., 2002; Bentley, 2006; Montgomery et al.,  

2007; Evans et al., 2010; Maurer et al., 2012; Slovak and Paytan, 2012; Frei and Frei, 2013). Humans 

and animals incorporate strontium from their diet into their dental and skeletal tissues (Beard and 

Johnson, 2000), where it substitutes for calcium and serves no metabolic function. 87Sr/86Sr isotope ratios 

of dental remains reflect the average isotope ratios of food intake and drinking water, during childhood 

when the teeth were formed. In order to investigate mobility, the 87Sr/86Sr isotope ratios measured in the 

human remains are compared to the bioavailable 87Sr/86Sr isotope range of the surrounding region. A 

limitation of this method is that geographically distant areas can have similar or overlapping isotope 

ratio compositions. 

5.4.2 The site of la Grotte des Perrats 

La Grotte des Perrats is located in Charente, southwest France near the town of Agris, 23 km northeast 

of Angouleme. It is one of many karst cavities found in this area within the Jurassic limestone of the 

northern Aquitaine Basin. The cave opens to the steep side of a hill bordering the north Bellonne valley, 

a tributary of the river Tardoire. The site was discovered in 1981 and excavated until 1994 under the 

direction of J. Gomez de Soto. New excavations under the direction of B. Boulestin from 2002 until 

2008 focused on the entrance of the cave, which had not been studied in the previous exactions. This 

site contains one of the most important post Palaeolithic sequences in western France. The oldest known 

occupation of the cave is in the Mesolithic but different layers of occupation continue into the High 

Middle Ages. 8 individuals, consisting of 5 adults and 3 children (age 2-10), were found in the Mesolithic 
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sequence at the entrance of the cave. Radiocarbon dating on two human bones show ages of 7345-6704 

(GifA-95476) and 7308-7069 cal. BC (Lyon-5914(GrA)). They are associated with a number of animal 

remains, including aurochs, boars, deer, roe deer, dog and wildcat. The human and animal remains are 

mixed, possibly due to post depositional processes. Both the animal and human remains show 

characteristic scraping and cut marks linked to anthropogenic origin. Many bones are broken to extract 

bone marrow, the skulls are cracked open, and specific bones are missing indicating preferential 

removal. This indicates that the remains found at this site are the product of food preparation techniques 

from humans, and therefore indicate cannibalism at this site. Cannibalism in human groups can take 

many forms. It can be related to food shortages, can be part of a ritual or common way of dealing with 

the dead within a group, or related to cannibalism of rivals during conflicts. This is a complex subject 

and our understanding of what drove cannibalism at this site is only in its beginning. As a small case 

study we investigated the mobility of 2 of the Mesolithic adults and 4 bovid to test if they were locals 

to this area. This could have implications for the form of cannibalism practiced at this site. 

5.4.3 Materials and Methods 

Two human teeth and four bovid teeth were chosen for strontium isotope analysis. Samples were 

prepared by cutting along the long axis using a fine diamond saw to produce a flat surface exposing both 

the enamel and dentine. The in situ isotopic analyses were carried out using a custom-built laser ablation 

sampling system (ANU HelEx) interfaced between an ArF Excimer laser (193 nm; Lambda Physik 

Compex 110) and Finnigan MAT Neptune MC-ICP-MS using Faraday cup detectors. Details of the 

ANU system and its capabilities have been described in detail previously (Eggins et al., 1998, 2003). 

Spot measurements were performed with a sample ablation time of 60 seconds, using a 233 µm diameter 

spot and the laser operating at 5 pulses per second. To remove any surface contamination received during 

the preparation process, such as dust and fine particles, the samples were first subjected to a cleaning 

run using the laser with a 233 µm spot at 10 Hz for 5s. There are a number of interferences that have to 

be corrected when using LA-MC-ICP-MS to measure strontium isotopes of dental material (Woodhead 

et al., 2005; Horstwood et al., 2008; Simonetti et al., 2008; Vroon et al., 2008). Data were corrected 

offline for Ca-dimers, polyatomic interferences (40Ca+31P+16O, 40Ar+31P+16O), Krypton, Rubidium, and 

Mass bias, in this order. The data were then subject to a 2σ outlier rejection. Double charged rare earth 

elements (REE), which can cause interferences on the 87Sr/86Sr ratio were monitored but their 

contribution was negligible. A strontium standard, consisting of a piece of Tridacna gigas, with modern 

seawater Sr isotopic composition was measured and we obtained an average value of 0.70920±6 (n=6, 

2σ), which is consistent with present-day values of marine taxa 0.7090-0.7092 (Burke et al., 1982; 

Hodell et al., 1990). In addition, we measured a modern shark and dugong tooth and obtained an average 

value of 0.70919±2 (n=4, 2σ). 
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5.4.4 Bioavailable strontium isotope range around la Grotte des Perrats 

The variability of bioavailable 87Sr/86Sr isotope ratios for the different geologic units around the site was 

inferred from plant and soil leachate data from the IRHUM database, for details see Willmes et al.  

(2014). The site is situated within the carbonaceous units of the Aquitaine Basin, which are intercut by 

clastic sediments of varying compositions, coming from the near-by Massif Central (Figure 5-22A). 

Lacking direct samples from the excavation we use the isotope packages (see Chapter 3) to characterise 

the 87Sr/86Sr isotope ranges of the surrounding area. The carbonaceous sediments (isotope package 2) 

have an 87Sr/86Sr isotope range of 0.7072-0.7115 (Figure 5-22B). The clastic sediments of the Aquitaine 

and Paris Basin (isotope package 3) are highly variable and have 87Sr/86Sr isotope values of 0.7076-

0.7170. The igneous and metamorphic units of the Massif Central and the Armorican Massif belong to 

isotope package 4 and 5. Isotope package 4 (0.7084-0.7252) is composed of the Gravel, Sandstone, 

Granite, Migmatite, Mica schist, and Rhyolitoid units and isotope package 5 (0.7155-0.7213) includes 

the Orthogneiss units found in the Massif central. The 87Sr/86Sr isotope range of la Grotte des Perrats is 

similar to many areas within the Aquitaine and Paris Basins (Figure 5-22B), but significantly lower than 

the Massif Central and Armorican Massif, allowing us to identify possible mobility between these 

regions. 

5.4.5 Human and animal mobility 

The results for the two human and four bovid teeth are shown in Figure 5-23 and Table 5-11. Since 

dentine and enamel form at the same time, we would expect them to show the same 87Sr/86Sr isotope 

ratio. The observation that all samples show lowered 87Sr/86Sr isotope ratios in their dentine compared 

to the enamel indicates, that the dentine has been partially overprinted with the 87Sr/86Sr isotope range 

of the site. 

The bovid enamel samples show 87Sr/86Sr isotope ratios of 0.71152±17, 0.71197±14, 0.71169±74 and 

0.71092±22. These values are on the upper limit of isotope package 2 and fit well within the highly 

variable clastic sediment units of the Aquitaine and Paris Basin as defined by isotope package 3. They 

are below the 87Sr/86Sr isotope ratios expected from many units within the Massif Central and the 

Armorican Massif. This indicates that the movement of the bovids was constrained to areas dominated 

by carbonaceous and clastic sediments in the Aquitaine and Paris Basin (Figure 5-22B). The lower 
87Sr/86Sr isotope ratios of 0.71092±22 suggest that this bovid had a different feeding area than the other 

three, most likely within the Basins. 

The human enamel 87Sr/86Sr isotope ratios are 0.71351±41 and 0.71332±14 for sample 3455 and 3456, 

respectively. These values are higher than the carbonaceous and clastic sediments of the Aquitaine and 

Paris Basins, excluding these regions as possible childhood residence areas. They are also lower than 

isotope package 5 (orthogneiss) units. The closest fit for their 87Sr/86Sr isotope ratios are the schist units 

and clastic sediment units that occur as patches in the western part of the Massif Central. The closest of 
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these units is 12 km to the east of the site (Figure 5-22B). The granites and metamorphic rocks of that 

dominate the Massif Central and Armorican Massif are highly variable in their 87Sr/86Sr isotope ratios 

(isotope package 4) and are thus also possible childhood residence areas. In conclusion, the two 

individuals did not spend their childhood in the immediate vicinity of the burial site but come from an 

area with higher 87Sr/86Sr isotope ratios. In terms of distance the closet possibly match is the western 

part of the Massif Central. Additional tracers such as oxygen and lead isotopes could be used to further 

constrain the childhood residence area for these individuals. 

 

Figure 5-22: A: Surface geologic map of France (BRGM). B: 87Sr/86Sr isotope packages, data taken 

from the IRHUM dataset (Willmes et al., 2014) and chapter 3 of this thesis. 
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Figure 5-23: 87Sr/86Sr isotope ratios for the human and bovid samples from la Grotte des Perrats. The 

dashed lines indicate the 87Sr/86Sr isotope range for the lithological units. In addition to the isotope 

packages we added a further subdivision to distinguish between clastic sediments in the basins, and 

clastic sediments in the Massif Central. 

Table 5-11: Results for the human and bovid samples from la Grotte des Perrats. 

Sample ID 88Sr Volts 87Sr/86Sr ±2se 

H
um

an
 

3455 Dentine 2.85 0.71174 0.00003 
 Enamel 1.85 0.71351 0.00041 

3456 Dentine 1.16 0.71163 0.00016 
  Enamel 0.97 0.71332 0.00014 

B
ov

id
 

3557 Dentine 0.81 0.71046 0.00017 
 Enamel 0.29 0.71152 0.00045 

3558 Dentine 1.39 0.71112 0.00014 
 Enamel 1.19 0.71197 0.00012 

3559 Dentine 1.06 0.71054 0.00008 
 Enamel 0.75 0.71092 0.00022 

3560 Dentine 0.51 0.71078 0.00021 
 Enamel 0.23 0.71169 0.00074 

M
ar

in
e Dugong 16.73 0.70920 0.00001 

Dugong 21.78 0.70919 0.00001 
Shark 17.46 0.70918 0.00002 
Shark 13.99 0.70921 0.00002 
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6 Conclusions and future directions 

The aim of the research project was to (i) define the bioavailable strontium isotope range of France, (ii) 

develop least-destructive analytical techniques to screen for diagenetic overprint and to perform 

strontium isotope analysis of fossil human teeth, and (iii) to apply isotopic tracing to key archaeologica l 

sites in France. The main research outcomes and future directions for each of these aims is discussed 

below. 

(i) The IRHUM database (Willmes et al., 2014) and the new baseline map of the spatial 

variability of bioavailable strontium isotopes for France (Willmes et al., in review), provide 

a powerful tool for archaeological provenance studies. This database and map are also 

potentially suitable for other applications such as food provenance studies and forensics. 

The database (www.irhumdatabase.com) and its associated dataset are both open access. 

Usage of the open source software GeoNode (Boundless) for the database and storage of 

the dataset in the Pangea data repository (doi:10.1594/PANGAEA.819142) proved to be a 

fundamental advantage, by allowing for easy access and future developments from the 

scientific community. 

(ii) Using the plant and soil samples from the IRHUM database we produced the first 

bioavailable 87Sr/86Sr isotope baseline map for archaeological provenance studies in France. 

Significant differences in 87Sr/86Sr isotope ratios were observed between plant samples and 

soil leachates at a number of sample locations. Identification of the driving process behind 

these differences is confounded by the complex interplay between weathering of lithology, 

soil genesis, plant processes, and external strontium inputs that vary both in absolute 

strontium concentrations as well as isotope ratios, spatially and with time. Based solely on 

the strontium isotope ratios it is thus not possible to untangle these processes and 

quantification of these external strontium inputs was beyond the scope of this work. For 

future sampling campaigns, it would be beneficial to collect a number of soil and plant 

samples from a single site to investigate the full range of the different Sr fluxes between 

soil horizons, plant types, and external Sr inputs, over multiple seasons. 

To create a robust baseline map, we incorporated the observed local variability but excluded 

anomalous sites that are not representative of their lithological unit and geographic area. 

Removing these samples sites did not influence the overall variability of the lithologica l 

units, with the exception of gravel and chalk units, and thus represents a viable approach. 
87Sr/86Sr isotope ranges for all major lithological units were established. These were then 

grouped into five isotope packages, based on k-means cluster analysis, to achieve minimal 

internal variability and maximise the difference between the isotope packages. The large 
87Sr/86Sr isotope ranges found in many lithological units and isotope packages, and the 

occurrence of similar lithological units with overlapping 87Sr/86Sr isotope ranges at 

geographically distant areas in France may limit the identification of mobility between those 
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areas. In addition, the use of modern samples to create a map for archaeological provenance 

studies may not be appropriate if the surface deposits have changed significantly (e.g. 

deposits from the Ice Ages) or if the climatological and atmospheric conditions were 

different enough to significantly change the 87Sr/86Sr isotope ratios in plants and soils.  

Nevertheless, keeping the limitations of this map in mind it still provides a useful tool to 

identify patterns of mobility within France and to identify areas suitable for more in-depth 

studies of strontium isotopic tracing. A logical next step is to create isotope variability maps 

for additional isotopic tracers such as oxygen and lead. Combining multiple independent 

proxies would greatly improve the ability to discriminate different geographic regions. In 

addition, strontium isotope maps of the Iberian Peninsula and Italy would greatly enhance 

the current capabilities of strontium isotope tracing in Europe. 

(iii) The isotopic analysis of valuable fossil human remains requires the use of least destructive 

analytical techniques. Systematic mapping of U, Th, Zn, and Sr element distributions can 

detect diagenetic overprint in fossil teeth, which is a common problem in archaeologica l 

studies. Comparison of a modern human tooth and a Neanderthal tooth showed the full 

potential of these chemical tracers to detect zones within a tooth, which are least affected 

by diagenetic overprint. This nearly destruction free screening method ensures that only 

suitable samples are further processes for either micro-drilling TIMS or in situ LA-MC-

ICP-MS analysis. 

The polyatomic interference on mass 87 is the principal cause of the offsets between 

solution and LA-MC-ICP-MS strontium isotope analyses observed in a significant number 

of analytical facilities. We found direct evidence that this interference originates from Ar, 

rather than Ca. The effect of the interference on the 87Sr/86Sr isotope ratio is essentially 

controlled by the Sr concentration and oxide production rate. This is because both Ca and P 

are stoichiometric components in bioapatite, and Ar is always present in the plasma. 

Currently, monitoring for this interference and, if present, reducing the oxide production 

rate is the most promising approach to minimise the effect of this interference. The 

improved analytical protocol significantly reduced the effect of the polyatomic interference 

on the 87Sr/86Sr isotope ratio to 38±394 ppm (n=21, 1σ). In terms of mobility studies, the 

analytical uncertainties of LA-MC-ICP-MS analysis are now significantly smaller than the 

variability in 87Sr/86Sr isotope ratios in the environment, thus allowing the use of in situ LA-

MC-ICP-MS as an alternative to micro-drilling TIMS.  

(iv) Combining rapid screening for diagenetic overprint and least destructive strontium isotope 

analysis, either by in situ LA-MC-ICP-MS, or micro-drilling TIMS, has opened the door to 

previously unavailable human fossil samples. 

The study at Moula-Guercy of 2 Neanderthal individuals and one Neolithic individual was 

part of a larger effort to investigate the chronology and mobility of this important 
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Neanderthal site. The radiometric chronology for Moula-Guercy, provided by combined U-

series/ESR dating, indicated that the crucial layer XV, corresponds to MIS 5 sensu lato, and 

is younger than MIS 6. These results agree with the biostratigraphy at the site, which places 

layer XV to MIS 5e. Strontium isotopic tracing on two Neanderthal individuals provided 

consistent results with the archaeological data. This shows that the Neanderthals were 

mobile within the Rhône Valley and used Moula-Guercy as specialized, short-term hunting 

camp, when their prey animals, such as red deer, were seasonally abundant in this area. Care 

should be taken to extrapolate from this small (n=2) dataset to any interpretation of 

Neanderthal mobility overall and more direct investigations of Neanderthal mobility are 

certainly needed. In contrast, the Neolithic individual showed strontium isotope ratios 

indicative of young volcanic units. The closest volcanic units occur ~30 km south east of 

Moula-Guercy, but a more likely residence area for this individual are the much larger 

occurrences of these units in the Massif Central ~50-80 km to the west of the cave. In either 

case, this individual experienced significant mobility in its lifetime. To gain a better 

understanding of Neanderthal mobility as a whole, least destructive strontium and oxygen 

isotope studies could be carried out on a range of Neanderthal samples across France. 

The study at Le Tumulus des Sables, an important Neolithic site near Bordeaux, was the 

focus of a new radiocarbon dating campaign combined with multi-isotope study to 

reconstruct mobility and diet using strontium, oxygen (James et al., 2013), nitrogen and 

carbon isotopes. We found that the site was used for burials over a much longer period than 

previously thought. Initially classified as an early Bell Beaker site, the radiocarbon 

chronology and artefacts associated with the burials instead document occupation over a 

period of ~ 2.5 ka. Given the tendency of the BBP people to re-use collective tombs of 

preceding cultures, and considering the relatively large quantity of Bell Beaker material 

exhumed (especially ceramic finds), it is possible that most of the human remains found at 

this site represent the deceased of the BBP. However, without dating each individual the 

disturbed condition of the burial does not allow the secure identification of a specific 

individual to the BBP. The remains of eight individuals had narrow C and N isotopic ranges, 

suggesting that the diet of the inhabitants remained terrestrial throughout the lifetime of the 

site, despite its close proximity to the Gironde Estuary and the Atlantic Ocean. Assuming a 

local, terrestrial diet, the geographic differences in bioavailable 87Sr/86Sr and precipitation 

δ18O within southern France make it possible to infer the regions in which the individua ls 

spent their childhood. Five groups were identified that represent statistically different 

isotopic compositions of their food and drinking water source. Interpreting these isotopic 

differences in terms of human mobility is limited due to the large range of bioavailab le 
87Sr/86Sr near Le Tumulus des Sables and in the surrounding Aquitaine Basin and the 

uncertainties associated with interpreting the δ18OW values. Nevertheless, for three of the 

five groups some inferences about childhood residence area were possible, placing group 1 



 

155 
 

as locals to the site and individuals from group 2 and 3 as possible short-distance migrants 

from the surrounding Aquitaine basin. The study at La Grotte des Perrats provided evidence 

that the individuals found at this site may have come from the Massif Central. This could 

have implications for the interpretation of cannibalism at this site, but only presents one line 

of evidence and needs to be substantiated with more archaeological and geochemical 

datasets. The different archaeological case studies illustrate the potentials and pitfalls of 

strontium isotope tracing, and offer new insights into these renowned archaeological sites. 

Especially when multiple isotopic tracers are used in conjunction with archaeologica l 

evidence, detailed insights about the mobility patterns of our ancestors can be gained from 

minute amounts of sample material. 
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8 Appendix 

 

8.1 Laboratory and analytical method details for the IRHUM database 

This chapter expands on the quality control section of chapter 2 and includes updates to our standard, 

blank, and reproducibility measurements. Furthermore, it discusses our data reduction schema for 
87Sr/86Sr isotope measurements of soil and plant samples on the Neptune MC-ICP-MS at the Research 

School of Earth Sciences, ANU.  

8.1.1 Soil standards 

The comparability of our dataset was tested by carrying out a blind test on a grazing soil standard from 

the GEMAS project (Geochemical Mapping of Agricultural and Grazing Land Soil). Measurements at 

RSES gave an average value of 0.70634±0.00002 (n=14, 2σ) which is in agreement with the GEMAS 

value of 0.70638±0.00003 (n=39, 2σ), see Figure 8-1. For future comparability studies we have 

commenced measuring an in-house soil standard which is available upon request. Measurements 

between 2011 and 2014 gave an average value of 0.70465±0.00004 (n=22, 2σ), see Figure 8-2. 

 

Figure 8-1: Comparison of the grazing soil standard measured at RSES and by the GEMAS project.  

Error bars are 2σ. 
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Figure 8-2: Measurements of the RSES soil standard between 2011 and 2014. Error bars are 2σ. 

8.1.2 SRM987 standard 

The Sr carbonate standard SRM987 (National Institute of Standards and Technology) is commonly used 

as a standard for 87Sr/86Sr isotope studies. It original certified 87Sr/86Sr isotope value is 0.71034±0.00026 

(Moore et al., 1982). Most studies however quote the accepted 87Sr/86Sr value for SRM987 of 

0.71025±0.00001 (Thirlwall, 1991; McArthur, 1994; Faure and Mensing, 2005; Hans et al., 2013). 

Direct measurements of SRM987 on the Neptune MC-ICP-MS at RSES gave an average 87Sr/86Sr value 

of 0.71024±0.00003 (n=256, 2σ). We also measured SRM987 after passing through the ion exchange 

column chemistry, which gave 87Sr/86Sr value of 0.71024±0.00003 (n=35, 2σ) and after our total 

procedure which gave 87Sr/86Sr value of 0.71024±0.00002 (n=26, 2σ). All of these results are in excellent 

agreement with the literature values and with measurements of the same standard by TIMS at RSES, 

ANU, which gave an average 87Sr/86Sr value of 0.71023±0.00003 (n=99, 2σ).  

8.1.3 Blank levels and reproducibility 

Blanks (n=278) were monitored during each step of the analytical procedure and representative blanks 

were measured by isotope dilution with an 84Sr enriched isotope spike using a TRITON Plus Thermal 

Ionisation Mass Spectrometer (TIMS) at RSES, ANU. Blank levels were found to vary between 50-250 

pg Sr, which represents an insignificant contribution to the amount of sample Sr measured (>100 ng). 

We tested the reproducibility of our analysis by running duplicate and triplicate samples through the 

entire procedure and found differences between 87Sr/86Sr ratios measured for the same sample to be 

<0.004% (n=42). 

8.1.4 Rubidium interference of plant samples 

Rubidium can cause an interference on mass 87 and as such influence the final 87Sr/86Sr isotope ratio. It 

can potentially reach the final sample due to problems or errors in the operation of the column chemistry, 
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especially when the sample started out with high Rb concentrations and low Sr concentrations. A number 

of plant samples (n=65) from the IRHUM dataset showed high Rb concentrations even after multiple 

passes through the column chemistry. The level of Rb after column chemistry was found to be 

independent of the initial Rb level of the sample, the type of plant, or the amount of sample loaded onto 

the columns. At this stage we suggest that organic compounds from the plants may block columns and 

leach Rb into the sample aliquot. This requires careful monitoring of the Rb concentration in the samples 

after column chemistry and potentially to reanalyse samples using stronger acid digestion to remove 

residual organic compounds. 
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8.2 Supplementary material: Spatial variability of bioavailable 87Sr/86Sr isotope ratios 
in France as a framework for archaeological provenance studies 

 

 

Figure 8-3: Average annual precipitation map of France created from data of worldclim.org (Hijmans 

et al., 2005). No spatial correlation is observed with the differences in 87Sr/86Sr isotope ratios between 

plant samples and soil leachates. 
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Figure 8-4: CORINE 2006 land cover data (European Environment Agency (EEA), 2009) of France. 

No spatial correlation is observed with the differences in 87Sr/86Sr isotope ratios between plant samples 

and soil leachates. 
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Figure 8-5: Boxplot of the bioavailable 87Sr/86Sr isotope range for the different lithological units of 

France. In red the uncorrected dataset, in black the corrected dataset with sample location with large ΔPS 

values removed.  
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Empirical Bayesian Kriging 

In order to incorporate the spatial variability within lithological units into the bioavailable 87Sr/86Sr 

isotope map we performed Empirical Bayesian Kriging (EBK) and compared the results to the isotope 

package approach discussed in chapter 3. EBK generates a smooth continuous surface and does not rely 

on any external input from the surface geologic map. Empirical Bayesian kriging (EBK) was performed 

using the geostatistical analyst in ESRI ArcGISTM. Kriging is a complex geostatistical interpolation 

technique and a detailed evaluation of this method is outside the scope of this chapter, for details see 

Pilz and Spöck, (2007). In short, EBK automates the building of a valid kriging model through a process 

of subsetting and simulations and thus reduces the amount of interactive modelling. It also provides 

more accurate uncertainty estimates by accounting for the error introduced by estimating the underlying 

semivariogram. We performed an empirical data transformation and used the K-Bessel semivariogram 

type. Maximum neighbours were set to 30, minimum to 15 and the model was run for 500 simulations. 

A subset size of 120 with an overlap of 2 was chosen after varying these parameters to create a best 

visual fit to the empirical semivariances for the complete dataset. To simulate the sharp geologic 

boundaries, we performed a second EBK analysis where the dataset was split EBK was performed 

separately for the different geologic regions of France. We used a subset size of 40 for the Armorican 

Massif, 50 for the Pyrenees, 60 for Massif Central, 40 for the Alps, and 140 for the Aquitaine and Paris 

Basins, which include the Vosges and Black forest. All of these used an overlap of 2, with 30 maximum 

and 5 minimum neighbours. The results from the geostatistical layers were exported into raster format, 

plant data and soil data were merged and averaged, using the raster calculator. 

The EBK maps allow us to investigate subtle changes in 87Sr/86Sr isotope ratios within lithological units 

across France (Figure 8-6). However, the EBK method also introduces errors, by creating a smooth 

continuous change in 87Sr/86Sr isotope ratios across otherwise sharp geologic boundaries, and ignoring 

compositional gaps in 87Sr/86Sr isotope ratios. In addition, the fundamental assumption that the sample 

at a certain location is representative of the surrounding area limits the use of this method using the 

comparatively small IRHUM dataset compared to the size of France. These limitations of the EBK map 

can be evaluated by taking the prediction standard error map into account (Figure 8-6C, D). The 

prediction standard error incorporates two processes. Firstly, it increases in areas of low sample density. 

Secondly, it increases in areas where the 87Sr/86Sr isotope ratio changes rapidly over small spatial scales. 

The first effect is visible at the northern boundary of the Massif Central. Here high bioavailable 87Sr/86Sr 

isotope ratios occur in the Massif Central and extend far into the Paris Basin. This is caused by the 

interpolation from the igneous and metamorphic units of the Massif Central into the carbonaceous 

sediments of the Paris Basin across the geologic boundary. In the IRHUM dataset there are no sample 

locations in this part of the Paris Basin from the carbonaceous sediments. This is reflected in the high 

prediction standard errors. Interpolation across geologic boundaries may be reasonable in the direction 

from mountainous areas into basins, to simulate sediment transport. However, the basins should not 

have an effect on the mountainous areas at all. This calls for the implementation of boundaries, to restrict 

the interpolation to within geologic regions. We can simulate this effect by splitting the dataset between 
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the geologic regions and running EBK separately (Figure 8-6B). Investigating the area north of the 

Massif Central now shows a much better fit of bioavailable 87Sr/86Sr isotope ratios with the surface 

geology. Prediction standard errors are now also much lower for this area. This shows that the composite 

EBK is advantageous, since it avoids the large interpolation errors that can occur when crossing sharp 

geologic boundaries, while maintaining the subtle changes in bioavailable 87Sr/86Sr ratios within 

geologic regions. Large standard prediction error remains in some geologic regions, mainly the Massif 

Central. This reflects the rapid changes in surface lithology connected to large variability in bioavailable 
87Sr/86Sr ratios that are poorly constrained using the current sample collection density. While this method 

certainly shows great promise using the current dataset it is not possible to adequately predict the 

bioavailable 87Sr/86Sr ratio at a specific location within large areas of the Massif Central. The prediction 

standard errors shown for this map also do not capture the full uncertainties that arise from the 

underlying assumptions of using this interpolation technique. For now, it is thus best to use the isotope 

package approach and further test the EBK kriging approach and its associated uncertainties in smaller 

areas with a well-established 87Sr/86Sr isotope baseline. 

 



 

 

Figure 8-6: A: EBK map created using the complete dataset. B: Composite EBK map created by splitting the dataset and performing EBK separately the 

different geologic regions. C, D: Prediction standard error maps for the EBK map and composite EBK map, respectively. 
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