
 

 

Transient bioheat transfer analysis in biological tissues by 

fundamental-solution-based numerical methods 
 

 

 

 

 

 

Zewei Zhang 

A Thesis Submitted for the Degree of Doctor of Philosophy 

of 

The Australian National University 

 

 

March 2015 

 



 

 II

Declaration 
 

This thesis is an account of work undertaken between March 2010 and 

March 2015 in the School of Engineering at the Australian National 

University, Acton, Australia. 

 

This thesis contains no material that has been previously accepted for the 

award of any other degree in any university, and contains no material 

previously published or written by another person, except where 

acknowledged in the customary manner. 

 

 

 

 

 

Zewei Zhang 

June 2015 

 
 

 

 



 

 III

Publications 
 

Ze-Wei Zhang, Hui Wang, Qing-Hua Qin, Transient Bioheat Simulation 

of the Laser-Tissue Interaction in Human Skin Using Hybrid Finite 

Element Formulation, Molecular & Cellular Biomechanics, 2012, 9(1), 31-

53 (Journal Paper) 

 

Ze-Wei Zhang, Hui Wang, Qing-Hua Qin, Method of Fundamental 

Solutions for Nonlinear Skin Bioheat Model, Journal of Mechanics in 

Medicine and Biology, 2014, 14(4), 1450060 (20 pages) (Journal Paper) 

 

Zewei Zhang, Hui Wang, Qing-Hua Qin, Meshless Method with Operator 

Splitting Technique for Transient Nonlinear Bioheat Transfer in Two-

dimensional Skin Tissues, International Journal of Molecular Sciences, 

2015, 16(1), 2001-2019 (Journal Paper) 

 

Ze-Wei Zhang, Hui Wang, Qing-Hua Qin, Analysis of Transient Bioheat 

Transfer in the Human Eye Using Hybrid Finite Element Model, presented 

on the First Australasian Conference on Computational Mechanics 

(ACCM2013), 3rd-4th, October, 2013, Sydney, Australia. Applied 

Mechanics and Materials, 2014, 553, 356-361 (Conference paper) 

 



 

 IV

Acknowledgements 
 

I would like to express thanks from the bottom of my heart to my 

supervisor, Prof. Qing-Hua Qin, who has provided outstanding guidance, 

supervision, encouragement and support in my project. 

 

I also thank Dr. Hui Wang and Dr. Yi Xiao for their advice and discussion. 

I also express my gratitude to the administrators of the School of 

Engineering for their help and general support on a daily basis. 

 

I also offer my regards and gratitude to all those who supported me in any 

respect during the completion of the project, especially our biomechanics 

research group members: Leilei Cao, Jin Tao, Cheuk-Yu Lee, Changyong 

Cao and Song Chen. 

 

Last, I thank my parents. Most importantly, special thanks go to my wife 

Wenjia for her love and support. 

 

 

 



 

 V

 

Abstract 
 

In this thesis, fundamental-solution-based numerical methods, namely the 

hybrid finite element method with element boundary integrals and the 

meshless method of fundamental solutions, were developed for solving 

two-dimensional (2D) bioheat transfer problems, which are described by 

the Pennes bioheat transfer equation and related boundary conditions.  

First, a fundamental-solution-based hybrid finite element method 

(HFS-FEM) coupling radial basis functions (RBFs) was formulated for 

describing quantitatively the transient thermal response of skin tissue under 

laser irradiation. In this method, temporal discretization of the transient 

bioheat system of the laser-tissue interaction problem is conducted to 

convert the transient problem into the steady-state inhomogeneous 

modified Helmholtz equation problem, which is solved at each time step. 

Their corresponding particular and homogeneous solutions are respectively 

obtained by RBF interpolation and the HFS-FEM, in which two 

independent temperature fields linked by a two-variable variational 

functional are assumed to be a frame temperature field and an intra-element 

temperature field. The intra-element field is approximated through a linear 

combination of fundamental solutions at a number of source points outside 

the element domain, while the frame temperature field is expressed in 
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terms of nodal temperature and a shape function. Numerical results from 

the developed approach were validated by comparison with analytical 

solutions, and good agreement was observed. Then, sensitivity analysis was 

performed by tuning certain control parameters such as the ambient 

convection coefficient, ambient temperature, laser power and tissue heat 

conductivity. The burn degree of skin tissue was evaluated at different 

levels of power laser radiation. Additionally, simulation of transient bioheat 

transfer in 2D human eye tissue was conducted using the developed method. 

The results obtained were compared with those from ABAQUS and good 

agreement was also observed. 

Secondly, the method of fundamental solution (MFS) coupled with the 

dual reciprocity method (DRM) was developed to solve steady-state 

nonlinear bioheat transfer problems, in which the temperature-dependent 

blood perfusion rate is under consideration. Taylor’s expansion approach 

was applied to linearize the nonlinear term in the original nonlinear bioheat 

transfer governing equation. Then the meshless strategy combining the 

DRM and the MFS was established to obtain the particular and 

homogeneous solutions of the linear system, including the linearized 

governing equation and the specific boundary conditions. To demonstrate 

the accuracy and efficiency of the proposed meshless method, the relation 

between the blood perfusion rate and the temperature was assumed to be 

linear, quadratic and exponential. The influence of blood perfusion rate on 
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temperature distribution in the skin tissue was analysed by changing the 

coefficients in the three expressions of blood perfusion rate with respect to 

temperature. Numerical results showed that the variation of blood perfusion 

rate plays a significant role in the temperature distribution within the skin 

tissue, as the second and third coefficients in the expression of quadratic 

blood perfusion rate can cause evident temperature changes. 

Finally, a meshless numerical scheme combining the operator splitting 

method (OSM), the RBF interpolation and the MFS was developed for 

solving transient nonlinear bioheat problems in two-dimensional skin 

tissue. In the numerical scheme, the nonlinearity caused by linear and 

exponential relationships of temperature-dependent blood perfusion rate 

(TDBPR) is taken into consideration. In the procedure, the OSM is used 

first to separate the Laplacian operator and the nonlinear source term, and 

then second-order time-stepping schemes are employed for approximating 

two splitting operators in order to convert the original governing equation 

into a linear nonhomogeneous Helmholtz-type governing equation (NHGE) 

at each time step. Subsequently, the RBF interpolation and the MFS 

involving the fundamental solution of the Laplace equation are respectively 

employed to obtain approximated particular and homogeneous solutions of 

the NHGE. Finally, the full fields consisting of the particular and 

homogeneous solutions are enforced to fit the NHGE at interpolation points 

and the boundary conditions at boundary collocations to determine unknowns 
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at each time step. The proposed method was verified by comparison with 

other methods. Furthermore, the sensitivity of the coefficients in cases of a 

linear and an exponential relationship of TDBPR was investigated to reveal 

their bioheat effect on the skin tissue. 
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Chapter 1 Introduction 

 

1.1 Basic Tissue Bioheat Transfer Biology 

 

Bioheat transfer in tissue includes heat generation, heat absorption, heat 

transmission, evaporation, heat radiation and conduction, etc. [1-9]. It is a very 

complex process which couples with temperature distribution, tissue strain, stress 

on tissue and thermal damage of tissue [10-14]. 

As an example of biological tissue, the skin tissue shown in Figures 1.1 and 

1.2 [1, 2] contains three layers consisting of subcutaneous tissue, dermis and 

epidermis. Bioheat transfer in skin tissue is mainly a heat conduction process with 

blood perfusion, sweating, bioheat metabolic, heat generation and conduction 

between skin tissue and the outside surface environment [15-17]. Many factors, 

such as thermal properties, temperature, skin tissue damage, age of human, 

pressure on the skin, etc., affect the bioheat transfer process in skin tissue [18, 19].  
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Figure 1.1 Anatomy of the human skin 

(http://www.cancer.gov/cancertopics/pdq/treatment/skin/Patient/page1) 

 

 

Figure 1.2 Simplified model of three-layered skin 
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As another example of biological tissue, there are five parts in a human 

eyeball, the cornea, aqueous humor, lens, vitreous and sclera [20]. Some tissue 

layers such as the retina and choroid can be neglected due to their thickness [21-

23]. Each of the parts has different material properties such as thermal conductivity, 

density and specific heat [23-25]. In the Cartesian coordinate system, the bioheat 

transfer in biological tissue such as the skin and human eyeball is generally 

described by the well-known Pennes equation [23, 26, 27]. How to efficiently 

solve the bioheat system and establish effective prediction of thermal distribution 

in biological tissue is always of interest and the results can be useful for accurate 

assessment of burn severity, thermal protection, etc. 

 

1.2 Research Background 

 

Prediction of tissue temperature distribution in a biological system is required in 

many diagnostic applications to biological systems. For example, doctors would 

like to know heat and temperature changes during surgery on a skin tumour or the 

human eye so that they can adjust the power of laser therapy to avoid extra burning 

injury of healthy tissue [1, 28-32]. Cost and other factors may preclude real time 

measurement of temperature distribution [33], and also its theoretical solution is 
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very difficult in real tissue structure due to its complex geometry and loading 

conditions. Therefore, numerical simulation of bioheat transfer may be more 

attractive and necessary in practical noninvasive diagnostics than theoretical and 

experimental predictions. 

Some numerical methods have been widely developed to simulate and analyse 

bioheat transfer behaviours for various skin materials. Linear or nonlinear steady-

state bioheat models involving changed thermal conductivity and blood perfusion 

rate have been numerically solved to analyse the induced temperature distribution 

in biological tissues [34-37]. A non-Fourier heat conduction model in one-

dimensional multilayered systems has been analysed by Laplace transform and the 

fast inversion technique [16, 38, 39]. For instance, Marqa et al. investigated 

bioheat and thermal damage behaviour under laser irradiation using the 

conventional FEM [40], which was also used by Shibib to determine the thermal 

damage in human skin due to laser irradiation [41]. Ansari et al. studied short-pulse 

laser propagation in biological tissue by means of the boundary element method 

(BEM) with time-dependent fundamental solutions [42]. The Monte Carlo method 

and the dual reciprocity boundary element method (DRBEM) have also been 

applied to evaluate transient or steady-state thermal behaviours in biological 

tissues [43-45]. An axisymmetric boundary element formulation using the time-

dependent fundamental solution was derived by Majchrzak for the analysis of 
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freezing and thawing processes in biological tissues [46]. Xu et al. reviewed 

mathematical models and experimental methods to detail the progress of thermal 

damage in skin tissue [47]. For simplicity, some parameters in a complex 

biological system, such as blood perfusion rate and thermal conductivity, are 

generally assumed to be constants. As a result, the biological heat conduction 

system in skin tissues is usually approximated by a linear bioheat governing 

equation. Currently, the linear bioheat model has been well developed and 

simulated successfully using various numerical methods. However, these 

parameters actually change with temperature in the bioheat system, rather than 

remaining constant [35, 48, 49]. From the viewpoint of material, the skin can be 

viewed as a kind of functionally graded material for changed material properties 

with different location [50]. For this case, the commonly used linear biological 

system should be replaced by a nonlinear governing equation in order to obtain 

more accurate and reliable results. 

Regarding nonlinear bioheat transfer, some research has been conducted to 

simulate the effect of TDBPR on temperature distribution in the biological system 

using numerical methods rather than analytical methods, because of the complexity 

of the nonlinear bioheat system. For example, Liu et al. used the DRBEM to 

investigate plane nonlinear bioheat skin model with linear and exponential case of 

TDBPR for tumour hyperthermia diagnostics [45]. Deng et al. also employed the 
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DRBEM to study the response of temperature and heat flux in a transient nonlinear 

biological model [51]. In their research work, three linear cases of TDBPRs with 

different constants were involved. The FEM was used by Kim et al. to investigate 

nonlinear temperature behaviour by introducing various blood perfusion rates in a 

model of laser coagulation of human tissue [52]. Their research indicated that 

tissue temperature could be significantly overestimated if the temperature 

dependence of blood perfusion rate was ignored. Similar conclusions were drawn 

by Drizdal et al. in their research into prediction of three-dimensional temperature 

distribution for superficial hyperthermia using the commercial finite element 

software, COMSOL Multi-physics package [53]. Among the numerical methods 

mentioned above, the DRBEM can be viewed as a mixed-boundary-type element 

method, which integrates the domain boundary discretization by the boundary 

element technique and domain interior collocation implemented by the simple 

basis function interpolation. Thus, only boundary integrals are included in the 

procedure of DRBEM. Unlike the DRBEM, the FEM is a classical domain-type 

element method, which employs domain discretization by large number of 

elements, based on a weak energy integral functional [54-58]. Therefore the 

domain integrals are involved. 

Alternatively, a meshless method such as the method of fundamental solutions 

coupled with the dual reciprocity method (DRM-MFS) has also been well 
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developed to predict the temperature distribution for linear bioheat transfer 

problems [59-62]. The kernel functions, that is, fundamental solutions, in the 

conventional MFS can theoretically be viewed as one type of Trefftz basis [63, 64]. 

The meshless DRM-MFS is a type of collocation method and is usually performed 

by allocating internal and boundary points in the solution domain to achieve the 

proper particular and homogeneous solutions, respectively. The particular solutions 

are usually approximated by the RBF interpolation at interior points, while the 

homogeneous solutions are approximated by constructing an explicit solution with 

the superposition of a finite number of source points on an artificial boundary, in 

terms of the fundamental solutions of the homogeneous problems. Since no mesh 

generation process and integrals are involved in the DRM-MFS procedure, it is 

purely meshless or mesh-free. Additionally, it can be easily implemented and 

programmed because of the ease of collocation. These are advantages of the 

meshless DRM-MFS over the element-type methods like the DRBEM and the 

FEM. Moreover, to deal with problems in which complex governing equations are 

encountered and no explicit fundamental solutions are available, the DRM-MFS 

has been improved by introducing the analog equation method (AEM) [65] for the 

solution of nonlinear steady-state heat conduction problems in anisotropic and 

isotropic inhomogeneous systems [61, 62]. Furthermore, some potential problems 

in the use of DRM-MFS have been discussed, such as the location of the virtual 
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boundary, the differential and integrating strategies and the effect of shape 

parameter in a multiquadric basis [66].  

In the context of transient nonlinear bioheat transfer, some numerical models 

have been developed for various biological tissues and nonlinear engineering 

problems [67-73] where there is a need to dynamically monitor the changes of 

temperature in time and space during the bioheat transfer process. For instance, 

Trakic et al. predicted the transient temperature rise in a nonlinear heat transfer 

model of tumour and healthy mouse tissue by the commercial finite element 

software FEMLAB [74]. Feng et al. applied finite element technology coupled 

with a nested-blocked optimization algorithm to predict the temperature 

distribution in a prostate during a nanoshell-mediated laser surgery [75]. 

It is noted that in these numerical methods, either the Laplace transform 

method or finite difference technology with respect to time has been applied to 

handle the time variable in the bioheat transfer governing equation. However, the 

Laplace transform method is usually limited to linear transient problems [76]. For 

other cases, the finite difference scheme needs careful consideration of the time 

step length to obtain accurate, stable and convergent results [77, 78]. These 

difficulties have motivated researchers to develop other methods for effective 

handling of the time derivative term and for approximating the nonlinear source 

terms in the governing equation. For example, the operator splitting method (OSM) 
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for uniformly handling the transient term and nonlinear source term explicitly 

using two-level higher-order time step schemes has received considerable attention 

[79, 80].  

In addition to numerical analysis of bioheat in skin tissue, some research has 

involved numerical results of bioheat transfer in eye tissues [81-87]. As well, 

Arunn et al. [88] investigated the variation of transient temperature in a 2D human 

eye computational model using the finite volume method. Ooi et al. [23] applied a 

time-stepping DRBEM to simulate corneal temperature during the treatment of 

laser thermokeratoplasty (L-TKP). The finite volume method developed by Chua 

et al. was able to calculate the temperature distribution in the human eyeball 

subjected to laser irradiation [22]. Brinkmann et al. [21, 89] developed a 

cylindrical eye model based on the FEM. Wang et al. evaluated the transient 

bioheat response in a two-dimensional human eye tissue by the FEM which was 

implemented by COMSOL. On the other hand, a novel HFS-FEM based on the 

fundamental solution was recently developed for human eye bioheat analysis [27, 

90]. 

Among existing computational methods, Green’s functions or fundamental-

solution-based methods such as the BEM/DRBEM and the MFS have been 

successfully developed to obtain highly accurate numerical approximations of 

solutions to linear elliptic partial differential equations (PDEs) [91-93]. The use of 
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fundamental solutions makes the boundary element or collocation discretization 

possible in these methods to preserve their boundary-only merits. As an alternative 

to the BEM and the MFS, another numerical method dependent of on fundamental 

solutions, the fundamental-solution-based HFS-FEM, was presented by Wang and 

Qin [94-99], which retains the advantages of both boundary integrals in the BEM 

[100-102], the eigenstrain boundary integral approach [103-105], and the flexible 

element division in the FEM [106, 107], and has been applied for solving thermal 

or elastic problems in human eyes [27], multilayer skins [108], functionally graded 

materials [109-112], fibre-reinforced composites [113-115], heat transfer problems 

[116-118], anisotropic materials [119, 120] and materials with defects or inclusions 

[102, 121-123]. In the proposed HFS-FEM formulation, the solution inside an 

element is approximated by a linear combination of fundamental solutions with 

sources located outside the element, as in the MFS [61, 66], and the conventional 

shape function interpolation is used to approximate the independent frame field 

defined over the element boundary. The linkage of the two groups of independent 

fields is established through the use of a two-variable hybrid variational functional. 

 

1.3 Aims and Organisation of the Research 
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In this study, a HFS-FEM model coupled with the dual reciprocity technique is 

developed for analysing transient bioheat transfer of laser treatment in a skin tissue 

and heat transfer in a human eye. First, a backward time-stepping scheme is 

employed to perform the time discretization, leading to the inhomogeneous 

modified Helmholtz system. Then, the particular solution part of the 

inhomogeneous system is obtained using the interpolation of RBFs at a number of 

points in the solution domain. The homogeneous solution part is obtained using the 

hybrid FEM. Finally, numerical results are presented to verify and assess the 

numerical approach and to illustrate the effect of laser power on temperature 

distribution in a skin tissue. 

To the author’s knowledge, the application of the DRM-MFS to nonlinear 

bioheat problems has not as yet been investigated. In this thesis, a meshless DRM-

MFS is developed to determine temperature distribution in a nonlinear skin system 

in which the blood perfusion rate is assumed to be a function of temperature. For 

this, a two-dimensional skin tissue model with temperature-dependent blood 

perfusion is presented first. Then, solution procedures including AEM, the DRM, 

and the MFS are described. The numerical results from the proposed DRM-MFS 

are compared with those obtained via MATLAB PDE Toolbox. Sensitivity 

analysis for various blood perfusions is also included. 
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A further aim of this work is to develop a mixed meshless method for 

analysing transient nonlinear bioheat transfer in a 2D skin tissue by way of the 

OSM. In the proposed solution procedure, the OSM is employed first to isolate the 

transient and nonlinear terms in the original Penney bioheat governing equation by 

the explicit second-order Adams-Bashforth (AB) time-marching for the half time 

step and the second-order Adams-Moulton (AM) scheme for the next time step. 

Then, the new equation in the form of a modified Helmholtz equation can be 

derived and solved at each time step. Next, the mesh-free dual-reciprocity method 

implemented by the RBF interpolation and the mesh-free MFS in terms of 

fundamental solution kernels are respectively utilised to determine the particular 

solutions and the homogeneous solutions of the modified Helmholtz problem at 

each time step by simple internal and boundary collocations.  

 

1.4 The Structure of the Thesis 

 

This thesis is organised as follows: In Chapter 2, the basic formulations of bioheat 

transfer in biological tissues are reviewed. The formulations of fundamental 

solutions are also described. In Chapter 3, transient linear bioheat transfer is 

analysed in human skin under laser-tissue interaction. In Chapter 4, the nonlinear 

bioheat transfer in the steady state with TDBPR is analysed. In Chapter 5, the 
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transient nonlinear bioheat transfer with TDBPR is analysed. Finally, in Chapter 6 

the conclusion of this thesis is presented and possible future work is suggested. 

Parameter values and descriptions are listed in Appendix A and MATLAB code is 

attached in Appendix B. 
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Chapter 2 Basic Formulation of Bioheat Transfer in Tissues 

 

2.1 General Bioheat Transfer Governing Equation 

 

The bioheat transfer in biological tissue is adequately described by the well-known 

Pennes equation, which was introduced by Pennes in 1948 to model the 

temperature distribution in a human forearm [18], in the following general form 

[124] 

  2            b b b a m r
Tk T c T T Q Q c
t

   
      


x  (2.1) 

where 2  represents the Laplacian operator, ( , )T tx  is the sought temperature field 

variable, t  denotes time ( 0t  ). k  is the thermal conductivity dependent on the 

special variables x ;   is the mass density and c  is the specific heat. 

t m rQ Q Q   stands for the general internal heat generation per unit volume due to 

metabolic heat and the interior heat caused by outer heating sources such as a laser 

beam. b , bc  and b  are respectively density, specific heat and perfusion rate of 

blood, bT  is the temperature of arterial blood, mQ  and rQ  are respectively metabolic 
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heat generation and heat deposition in tissues caused by outer heating factors such 

as laser and microwave. The constant aT  is artery temperature.  

The above Pennes equation (2.1) is based on the assumption that the heat 

exchange between blood vessels and the surrounding tissue occurs mainly across 

the walls of capillaries (blood vessels with diameters of the order of 0.01mm), 

where the blood velocity is very slow [18]. The first term on the left-hand side of 

Eq. (2.1) represents conduction of heat in the tissue caused by the temperature 

gradient [38], and the second term describes the heat transport between the tissue 

and microcirculatory blood perfusion [52]. The third and last terms are internal 

heat generation due to tissue metabolism and outer heating sources. On the right-

hand side of Eq. (2.1), Tc
t

 


 represents the changing rate of the temperature. 

In the next subsection, the PDE (2.1) is derived from the fundamental 

principles of heat conduction to facilitate deep understanding of the origin of each 

term in the Pennes equation. 

 

(1) Heat gain term caused by heat source  

A typical tissue segment generates heat per unit volume at a variable rate, 

Qt(X, t), where X  is the spatial coordinate set. When the contributions of all tissue 

elements in the volume V  are summed, the following expression is obtained for the 

rate of gain 
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  ,gain tV
U Q t dV  X  (2.2) 

 

(2) Thermal energy storage term 

When heat production or consumption is unsteady, part of the heat flow is 

stored in the control volume. The stored heat is reflected in temperature changes of 

the various tissues. The local rate of heat change of temperature is controlled by 

the intrinsic heat capacity (the product of density,  , and specific heat capacity, c, 

at a constant pressure). Then, the total rate of stored thermal energy over the tissue 

control volume V  can be given by 

  ,
storage V

T t
U c dV

t






X

 (2.3) 

 

(3) Heat conduction term 

Heat conduction cU  is the thermal energy transferred through a medium due 

to an internal temperature gradient. It is governed by the well-known Fourier law 

of heat conduction [125]. This law states that the amount of thermal energy is 

directly proportional to the cross-sectional area A , which is perpendicular to the 

heat conduction direction, i.e. the x-direction, the temperature difference T  across 

the medium, the time length t  of heat conduction, and simultaneously is inversely 
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proportional to the length L  across which conduction occurs. Also, introducing a 

proportionality constant, thermal conductivity k, the Fourier law can be written as 

 c
A T tU k

L
 

 


 (2.4) 

In Eq. (2.4), the minus sign is dictated by the second law of thermodynamics 

which states that heat flows from regions of higher temperature to regions of lower 

temperature. From Eq. (2.4), we can obtain the heat flow along the heat conduction 

direction, which is defined as the rate of heat per unit area per unit time, that is, 

 cU Tk
A t L


 

 
 (2.5) 

Further, the differential form of the heat flow component along the heat 

conduction direction can be obtained by letting 0L  , i.e., 

 
0 0

dlim lim
d

c
x L L

U T Tq k k
A t L x   

        
 (2.6) 

which can be extended to the standard Fourier’s law of heat conduction in vector 

form 

   d d, ,
d dx y
T Tq q k k k T
x x

        
 

q  (2.7) 

Integrating Eq. (2.7) over an arbitrary area A , which is perpendicular to the 

heat conduction direction, yields the following rate of heat production through the 

control volume 

  ,c A
U k T t dA    X n  (2.8) 
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where n  is the unit vector normal to the incremental surface area dA .  

 

(4) Blood perfusion term 

In perfused biological tissue, which is made up of cells, blood vessels, etc., 

one must consider the blood flow distribution. The perfusion distribution markedly 

influences the local temperature. For such cases, convection is the most important 

mechanism for thermal energy transfer between tissue and blood flow.  

To mathematically represent the local contribution of blood perfusion to 

energy exchange, the most common approach is based on the application of Fick’s 

principle: “the amount of substance taken up by an organ (or control volume) per 

unit time is equal to the arterial level of the substance minus the venous level times 

the rate of blood flow”, that is, 

  b b b b a vq c w T T   (2.9) 

where aT  and vT  are the temperature of the blood entering the tissue from the 

arterioles and the temperature of the venous blood leaving the tissue, respectively. 

Generally, the venous temperature is a function of the temperature of the tissue at 

the point of exit. However, considering the very slow blood flow, a further 

assumption of equality in the venous blood temperature and the tissue temperature 

may be applied. Thus, setting vT T  in Eq. (1.7), one obtains 

  b b b b aq c w T T   (2.10) 
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Further, the total amount of thermal energy over the tissue control volume can 

be expressed in the following equation [52, 126, 127] 

  b b b b aV
U c w T T dV   (2.11) 

which is the heat loss to adjacent tissues (convection and conduction) 

Finally, applying the principle of conservation of energy to a tissue control 

volume, we obtain 

 gain storage lossU U U   (2.12) 

where the term lossU  denotes heat loss to adjacent tissues by convection and 

conduction, that is, loss c bU U U  . 

For a tissue control volume, substitution of the heat gain, storage, and loss 

terms into Eq. (2.12) gives [90, 94] 

        ,
, ,t b b b aV V A V

T t
Q t dV c dV k T t dA c w T T dV

t
 


     

   
X

X X n  (2.13) 

Applying the divergence theorem to the surface integral and observing that Eq. 

(2.13) must hold for any arbitrary volume element, we obtain 

  2
b b b a t

Tk T c T T Q c
t

   
    


 (2.14) 

 

2.2 Boundary Conditions 
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In this work, the following three types of boundary condition are involved [15, 27, 

43, 51, 59, 84, 94, 128] 

(1) Temperature condition on the boundary 1  of the tissue 

Since the boundary 1  is assumed to be connected or adjacent to the body 

core of the tissue, the temperature on this boundary is assumed to be 

     1, = ,       T t T t  x x x  (2.15) 

where  ,T tx  is the tissue temperature on the boundary 1  and  ,T tx  is the 

assumed constant temperature. 

(2) Heat flux condition on the boundary 2  of the tissue 

On the boundary 2  the magnitude of the normal heat flow is assumed to be 

given. So the boundary conditions can be written as 

     2, = ,       q t q t  x x x  (2.16) 

where q  represents the boundary normal heat flux defined and q  is a constant 

normal heat flux value. 

(3) Convection conditions on the boundary 3  

If the boundary 3  is exposed to the environment, the heat loss caused 

through convection should be considered. For this case, the convection boundary 

condition is written as 

     3,       q t h T T    x x  (2.17) 
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where h  is the heat transfer coefficient between the tissue and ambient 

environment, T  is the sink temperature of the environment fluid. 

 

2.3 Elements of Fundamental Solutions 

 

Because fundamental-solution-based methods were developed in this work for 

numerically solving the bioheat transfer problem, the basic concept of fundamental 

solutions is reviewed here. 

Considering the following generic equation [59, 129, 130] 

    Lu fx x  (2.10) 

where  , tx r  are the space-time coordinates related to the spatial variable r  and 

time variable t , L  is a general linear differential operator and  u x  is the sought 

field and  f x  is a given function. 

If the linear differential operator L  is invariant with respect to the translations 

in space and time, a generic solution in terms of the Green’s function can be given 

as [131] 

      0 0 0u G f d x x x x x  (2.11) 

with the Green’s function G  satisfying the equation 

    0 0, ,LG x x x x  (2.12) 
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where 0( , ) x x  is the Dirac delta function centred at the field point x  and 0x  is the 

source point. Also, the function 0( , )G x x  is sometimes called the fundamental 

solution of the operator L  [26, 132]. 

In this work, some types of PDE such as the Laplace equation and the 

modified Helmholtz equation are involved. Therefore the corresponding 

fundamental solutions are reviewed in this section. 

The first consideration is the modified Helmholtz equation. Correspondingly, 

the linear differential operator L  is 2 2L    . Typically, the two-dimensional 

free-space fundamental solution of the modified Helmholtz operator can be 

obtained as the solution of the equation [133] 

      2 * 2 *
0 0 0, , ,G G   x x x x x x  (2.14) 

which gives [129] 

    *
0 0 0

1,
2

G K 


  x x x x  (2.15) 

where 0K  denotes the modified Bessel function of the second kind with order 0. 

For the Laplace operator 2L   , its fundamental solution is required to satisfy 

[132] 

    2
0 0, ,G  x x x x  (2.15) 

which has a solution [66, 108, 119, 121] 

  0 0
1, ln

2
G


 x x x x  (2.16) 
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for the two-dimensional case. 

 

2.4 Elements of Radial Basis Functions (RBFs) 

 

In this work, the summation of RBFs [134, 135] is used to approximate the given 

function, i.e. the right-handed inhomogeneous term of the PDE. Therefore the 

basics of RBFs are reviewed here. 

A RBF   is a real-valued function whose value depends only on the distance 

from the origin, i.e.    r  x , or alternatively on the distance from a reference 

point ξ , so that    r  x ξ . Any function   that satisfies the property

   r  x  is a radial function. The norm is usually the Euclidean distance [132] 

    2 2
1 1 2 2r x x      x ξ  (2.17) 

for the two-dimensional case, and 

      2 2 2
1 1 2 2 3 3r x x x         x ξ  (2.18) 

for the three-dimensional case, although other distance functions are also possible. 

Generally, there are two categories of RBF. One is the piecewise polynomial 

compactly supported RBF (CS-RBF) in the local domain and the other is the 
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globally supported RBF (GS-RBF) in the entire domain [136]. The commonly used 

types of GS-RBF include 

 Gaussian (c is a shape parameter) 

 2( )( ) crr e   (2.19) 

 Multiquadric (c is a shape parameter) 

 2( ) 1r cr    (2.20) 

 Polyharmonic spline 

 
 
   

,            1,3,5,

ln ,   2, 4,6,

k

k

r r k

r r r k





 

 




 (2.21) 

 Thin plate spline (a special polyharmonic spline) 

    2 lnr r r   (2.22) 

We know that RBFs are very suitable for building up an approximation 

function of a given function. For example, the right-hand inhomogeneous term 

 b x  of the Helmholtz-type PDE 

      2 2
p pu u b  x x x  (2.23) 

can be approximated by a serial linear combination of RBFs centred at different 

reference points  ( 1, 2, , )j j Nx   as below [66, 132, 136, 137] 

    
1

M

j j
j

b  


x x  (2.24) 
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where M  is the number of reference points, j  is the unknown weight coefficient, 

and      j j jr    x x x . 

Correspondingly, the particular solution ( )pu x  can be determined numerically 

by the dual reciprocity technique and has the form of [59, 138, 139] 

    
1

M

p j j
j

u r


 x  (2.25) 

where the kernel function of the particular solution is governed by 

      2 2
j j jr r r       (2.26) 

If the thin plate spline (TPS)  

 2( ) ln( )j j jr r r   (2.27) 

is used in Eq. (2.24), the approximate particular solution ( )jr  can be obtained by 

the annihilator method as [140] 

 
 2

04 4 2 4

4 4 4

4 4 1 4ln ln ,     0
( )

4 4 4 ln ,                                  0
2

j j j j j

j

j

r r r K r r
r

r


   

 
  

      
       

 (2.28) 

where 0.5772156649015328   is Euler’s constant. 
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Chapter 3 Transient Linear Bioheat Transfer Analysis in 

Human Skin under Laser-tissue Interaction 

 

3.1 Problem Description 

 

The two-dimensional rectangular skin model used in [45] is taken into 

consideration here, in which the skin material is assumed to be homogeneous and 

isotropic. In the model displayed in Figure 3.1, the outer surface of the skin tissue 

is subjected to the convention condition and the inner boundary is assumed to be 

distant from the skin surface so that its temperature is the same as the constant core 

temperature of the body. The upper and lower surfaces are treated as adiabatic 

boundaries by assuming that the tissue remote from the area of interest is not 

affected by the imposed thermal disturbance. Moreover, a Gaussian type laser 

beam is introduced in Figure 3.1 as the internal spatial heating source and the Beer-

Lambert law is used to model the exponential decay of heat generation by laser 

heating inside the tissue. 
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Due to the symmetry of the skin model, only half of the model is taken into 

consideration in the practical analysis (see the upper half shaded region displayed 

in Figure 3.1). Also in Figure 3.1, a Cartesian rectangular coordinate system is 

established and x  denotes the tissue depth from the skin surface while y  is the 

vertical distance along the skin surface. The length and width of the half 

rectangular solution are 4cm and 3cm, respectively [45]. The thermal properties of 

skin tissue used in the analysis are listed in [59]. 

 

 

Figure 3. 1 Simplified skin model of two-dimensional skin tissue 
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Table 3.1 Thermal properties of skin tissue 

Thermal properties of skin Value 

Thermal conductivity k  (Wm-1K-1) 0.5 

Density ρ  (kgm-3) 1000 

Specific heat c  (Jkg-1K-1) 4200 

Blood perfusion rate ωb (m3s-1m-3) 0.0005 

Density of blood ρb  (kgm-3) 1000 

Specific heat of blood cb (Jkg-1K-1) 4200 

Metabolic heat Qm  (Wm-3) 4200 

 

 

As shown in Figure 3.1, the laser beam, assumed to be produced from a CO2 

laser with scanner head and beam expander, injects directly onto the mid-point (0, 

0) of the skin surface. In the present work, the pattern of the laser beam is that of 

Gaussian distribution with 2.85mm standard deviation [141]. The Beer-Lambert 

law is used to model the laser heat absorption in the two-dimensional skin model, 

and thus the spatial heat source *
rQ  caused by the laser heating is described by 

    
2

22* 1, ,
2

a

y
x

r in aQ x y t P e e 
 

 
      (3.1) 



 

 47 

where inP  represents the laser power setting, a  is the absorption coefficient of the 

skin tissue determined by the wave length of the laser, and   is the standard 

deviation of the laser beam profile. 

Referring to the Cartesian coordinate system shown in Figure 3.1, the bioheat 

transfer in the biological skin tissue of interest is adequately described by the well-

known Pennes equation in the following general form [124] 

  
*

* 2 * * * * * * * * *
*            b b b a t

Tk T c T T Q c
t

   
     


x  (3.2) 

with the boundary conditions 

 

* * * *
1

* * * *
2

* * * * *
3

( , ) ( , )         
( , ) ( , )          

( , ) ( )    

T t T t
q t q t

q t h T T 

  


 
   

x x x
x x x

x x

 (3.3) 

where 2  represents the Laplacian operator, * *( , )T tx  is the sought temperature 

field variable, *t  denotes time ( * 0t  ). *k  is the thermal conductivity dependent on 

the spatial variables x , *  is the mass density and *c  is the specific heat. 

* * *
t m rQ Q Q   stands for the general internal heat generation per unit volume due to 

metabolic heat and the laser beam. *q  represents the boundary normal heat flux 

defined by 

 
*

* * * * Tq k T k
n


     


n  (3.4) 
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n  is the unit outward normal to the boundary  . A variable with over-bar denotes 

the variable being specified on given boundary. The constant *
aT  is artery 

temperature. The constant *h  is the convection coefficient and *T  is the 

environmental temperature. For a well-posed problem, we have 321  . 

Finally, the initial condition is defined as 

  * * *
0( , 0)T t T x x  (3.5) 

To avoid the potential numerical overflow of the present algorithm, the 

following dimensionless variables are employed in the analysis [142] 

 

 * * *
0

2
0 0 0 0 0

* ** *
0

2
0 0 0 0 0 0

,        ,    ,     

,        ,      ,         

a

t
t

T T kx y kX Y T k
L L Q L k

t k Qcc t Q
c L c Q




 


   

   

 (3.6) 

where 0L  is the reference length of the biological body, 0k , 0 , 0c  and 0Q  are 

respectively reference values of the thermal conductivity, density, specific heat of 

tissue and heat source term. 

From Eq. (3.6) and using the chain rule of the derivative of the composite 

function, we obtain 

 

2 2* *
0 0 0 0

0 0 0 0
2 22 * 2 2 * 2

0 0 0 0
2 2 2 2 2 2

0 0 0 0

2*
0 0 0

* 2
0 0 0 0

1 1,       

1 1,    

,

Q L Q LT T T T
x k L X y k L Y

Q L Q LT T T T
x k L X y k L Y

Q L kT T
t k L c t

   
 

   

   
 

   

 


 

 (3.7) 
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Substitution of Eq. (3.7) into the bioheat transfer governing equation (3.2) 

yields 

 2 ( , )( , ) ( , ) ( )b b b t
T tk T t c T t Q c

t
   

   

xx x x  (3.8) 

where 

 
* * * 2

0

0

b b b
b b b

c Lc
k

 
    (3.9) 

Correspondingly, the boundary conditions are rewritten as 

 
1

2

3

( , ) ( , )         
( , ) ( , )          
( , ) ( )    

T t T t
q t q t
q t h T T 

  
  
   

x x x
x x x
x x

 (3.10) 

with 

 
   

* * * ***0 00
2 2

0 0 0 0 0 0 0

,      ,     ,     
a a

T T k T T kh LqT q h T
Q L Q L k Q L


 

 
     (3.11) 

and 

 Tq k
n


 


 (3.12) 

Making use of finite difference method, the derivative of temperature can be 

written as [78] 

 
1( , ) ( ) ( )n nT t T T

t t

 


 
x x x  (3.13) 

where t  is the time step, 1 1( ) ( , )n nT T t x x  and ( ) ( , )n nT T tx x  represent the 

temperature at the time instances 1nt   and nt , respectively. 
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As a result, Eq. (3.8) at the time instance 1nt   can be rewritten as 

 
1

2 1 1 ( ) ( )( ) ( ) ( )
n n

n n
b b b t

T Tk T c T Q c
t

  


  
   


x xx x x  (3.14) 

Rearranging Eq. (3.14) gives 

 2 1 2 1( ) ( ) ( )n nT T b   x x x  (3.15) 

with 

 b b bcc
k t k

 
  


 (3.16) 

and 

 1( ) ( ) ( )n
t

cb Q T
k k t


  


x x x  (3.17) 

Accordingly, the boundary conditions at time instance 1nt   can be represented 

as 

 

1 1
1

1 1
2

1 1
3

( ) ( , )         
( ) ( , )          

( ) ( )    

n n

n n

n n

T T t
q q t

q h T T

 

 

 
 

  


 
   

x x x
x x x

x x

 (3.18) 

 

3.2 Algorithm Implementation 

 

The linear system consisting of the governing PDE (3.15) and boundary conditions 

(3.18) is a standard inhomogeneous modified Helmholtz system, which will be 
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solved by means of the present HFS-FEM and the dual reciprocity technique based 

on RBF interpolation described in this section. 

 

3.2.1 RBF for Particular Solutions 

Let 1n
pT   be a particular solution of the governing equation (3.15). Then we have 

 2 1 2 1( ) ( ) ( )n n
p pT T b   x x x  (3.19) 

It is necessary to point out that the particular solution is not required to satisfy 

the boundary condition (3.18). Then, the system consisting of Eqs. (3.15) and (3.18) 

can be reduced to a homogeneous system by introducing two new variables as 

follows 

 
1 1 1

1 1 1

( ) ( ) ( )

( ) ( ) ( )

n n n
h p

n n n
h p

T T T

q q q

  

  

 

 

x x x

x x x
 (3.20) 

where 

 
11

1 1 ( )( )( ) ,        ( )
nn
pn nh

h p

TTq k q k
n n


  

   
 

xxx x  (3.21) 

Substituting Eq. (3.20) into Eqs. (3.15) and (3.18), we obtain the following 

homogeneous equation 

 2 1 2 1( ) ( ) 0n n
h hT T   x x  (3.22) 

with modified boundary conditions 
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 (3.23) 

where 

 
1

1 1 ( )
( ) ( )

n
pn n

p

q
T T T

h


 

 


   
x

x x  (3.24) 

The above homogeneous system can be solved using the hybrid finite element 

model described in the next section. 

In what follows, we describe the solution procedure for the particular solution 

part 1( )n
pT  x . For the arbitrary right-handed source term ( )b x , the particular solution 

1( )n
pT  x  can be determined numerically by the dual reciprocity technique, in which 

it is essential to approximate the source term by a series of RBFs, as described in 

Chapter 2. 

Let   be a RBF. Then the source term ( )b x  in Eq. (3.19) can be approximated 

as follows [132, 136] 

    
1

M

j j
j

b r 


x  (3.25) 

where j jr  x x  denotes the Euclidean distance between the field point x  and 

reference point jx , and j  are unknown coefficients. 

Making use of Eq. (3.24), the particular solution can be obtained as 
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    1

1

M
n
p j j

j

T r



 x  (3.26) 

where the kernel function  jr  is governed by 

      2 2
j j jr r r       (3.27) 

Taking the TPS 

    2 lnj j jr r r   (3.28) 

as an example, the approximate particular solution  jr  can be obtained by the 

annihilator method as [140] 

 
 2

04 4 2 4

4 4 4

4 4 1 4ln ln ,     0
( )

4 4 4 ln ,                                  0
2

j j j j j

j

j
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   

 
  

      
       

 (3.29) 

where 0.5772156649015328   is Euler’s constant. 

 

3.2.2 Fundamental-solution-based Hybrid Finite Element for Homogeneous 

Solutions 

To perform the hybrid finite element analysis in a convenient way, the boundary 

conditions given in Eq. (3.23) are rewritten as 
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 (3.30) 
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with 

 
1

1 ( )( ) ,      ( ) ( )/ ,       
n

n h
h h h

T hq k h
n k

 


 



    


xx x x  (3.31) 

Then, the following hybrid variational functional expressed at element level 

can be constructed as [132] 

      
2 3

22 2
, ,

1 1d d d d
2 2e e e e

me i iT T T T T T h T T       
                  (3.32) 

in which T  is the temperature field defined inside the element domain e  with the 

boundary e , T  denotes the frame field defined along the element boundary, and 

2 2e e    , 3 3e e    . Note that in equation (3.32), the superscript ‘n+1’ and 

the subscript ‘h’ are discarded for the sake of simplicity. 

By invoking the divergence theorem and assuming that T  satisfies the 

specified temperature boundary condition (the first equation of (3.30)) and the 

compatibility condition on the interface between the element under consideration 

and its adjacent elements as prerequisites, equation (3.32) can be written as 

 
     

 
2

3

2
, d d d

          d
e e e

e

me iiT T T T T T

h T T T

      

 

  

 

         

     

  


 

 
 (3.33) 

from which it can be seen that the third integral enforces the equality of T  and T  

along the element boundary e . The first, second and fourth integrals enforce 

respectively the governing equation, flux and convection boundary conditions. 
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If the internal temperature field T  satisfies the homogeneous modified 

Helmholtz equation, i.e. 

 2 2 0T T    (3.34) 

then applying the divergence theorem again to the functional (3.32), we have 

  
2 3

21 d d d d
2 2e e e e

me
hT T T T T   

   
              (3.35) 

which involves boundary integrals only. 

In the proposed HFS-FEM, the variable T  is given as a superposition of 

fundamental solutions *( , )jG P Q  at sn  source points to guarantee satisfaction of 

equation (3.34) 

 1 *

1

( ) ( , ) ( ) ,    ,
sN

n
h j ej e e e j e

j
T P G P Q c P P Q



    N c  (3.36) 

where ejc  is undetermined coefficients and sN  is the number of virtual sources jQ

applied at points outside the element. 

The free-space fundamental solution of the modified Helmholtz operator can 

be obtained as the solution of 

 2 * 2 *( , ) ( , ) ( , )j j jG P Q G P Q P Q      (3.37) 

and is given by [132] 

 *
0

1( , ) ( )
2j jG P Q K P Q


    (3.38) 
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where ( , )jP Q  is the Dirac delta function and 0K  denotes the modified Bessel 

function of the second kind with order 0. 

Simultaneously, the independent frame variable on the element boundary can 

be defined by the standard shape function interpolation 

 
1

( ) ( ) ( ) ,     
n

i ei e e e
i

T P N P d P P


   N d    (3.39) 

where n  is the number of nodes of the element under consideration, iN  is the shape 

function and eid  is the nodal temperature. Their descriptions can be found in 

standard finite element texts and are not repeated here. 

By substituting equations (3.36) and (3.39) into equation (3.35) we obtain 

 T T T T T1 1
2 2me e e e e e e e e e e e e e e       c H c d g c G d d F d d f a  (3.40) 

in which 
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and 

 e
e n





NQ  (3.42) 
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3.3 Results and Discussion 

 

In this section, the proposed numerical model is applied to several examples for 

validating and assessing its applicability and effectiveness. Values of the 

parameters employed in the following analysis are listed in Table 3.2 for 

convenience [143, 144]. 

 

Table 3.2 Control parameters related to boundary conditions 

Control parameters Value 

Ambient temperature T∞ (ºC) 0~30 

Ambient convection coefficient h∞ (Wm-2K-1) 40~12500 

Heat conductivity of tissue k (Wm-1K-1) 0.2~0.9 

Laser power setting Pin (W) 100~250 

Absorption coefficient µa (m-1)  5~20 

 

To validate and assess the performance of the present HFS-FEM for analysing 

the transient heat transfer of skin materials with blood perfusion and metabolic 

heat, a benchmark example is considered whose steady-state analytical solution is 

expressed as [43] 
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where 
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



 (3.44) 

and L  is the thickness of the skin tissue. 

In the computation, the solution domain is modelled with 20 eight-node 

quadratic elements including 99 nodes. Three different time steps, ∆t =50s, 80s and 

100s, are employed to assess the performance of the time-stepping scheme 

employed in this work. It is assumed that a relatively steady state is reached when 

the inter-iteration difference between adjacent time instances is less than or equal 

to 10-3. After 120, 82 and 68 iterations respectively, the corresponding distributions 

of temperature to these three time steps along x axis are plotted. The results from 

the analytical solution equation (3.43) are also plotted for the purpose of 

comparison. As is evident in Figure 3.2, the numerical results from the proposed 

HFS-FEM are in good agreement with the analytical solutions. At the origin point 

of the coordinate system, the percentage relative errors of surface temperature are 

respectively 0.022%, 0.45% and 0.56% for the three time steps used during the 

computation. The maximum value of the percentage relative errors is 1.44%, 
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which occurs at the region close to the skin surface. Here it is necessary to point 

out that a smaller time step does not produce better results. It can be explained that 

in b b bc c
k k t

  
  


, the second term representing the blood perfusion effect 

b b bc
k

   is much smaller than the first term associated with time discretization c
k t



, 

that is 

 b b bcc
k t k

 

  (3.45) 

if the time step becomes smaller. This will cause a round-off error during 

computation. 

 

 

Figure 3.2 Steady-state temperature distribution along x axis 
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In Figure 3.3 the temperature distribution of skin tissues at 500s, 1000s, 3000s 

and steady state is displayed, showing that, with the increase of time, the 

temperature curves do not become steeper but finally tend to a steady state. The 

surface temperature of the skin decreases gradually. This procedure clearly 

displays the propagation of the thermal wave inside the tissue and the heat 

exchange between the skin and the ambient fluid. Therefore, accurate results can 

be obtained for the transient thermal simulation in skin tissue using the present 

algorithm. 

 

 

Figure 3.3 Temperature variation vs time along x axis 
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The effect of environmental fluids on skin temperature is evaluated by 

changing the ambient convection coefficient and ambient temperature. In this study, 

the ambient convection coefficient is assumed to be 40, 2500 and 12500Wm-2K-1, 

to represent different fluids such as air, oil and water [143], and the ambient 

temperature is set to be within the interval [0ºC, 30ºC]. The transient temperature 

variations are presented in Figure 3.4 and Figure 3.5 respectively. In Figure 3.4, 

the ambient temperature T∞ is specified at 0ºC while the ambient convection 

coefficient changes from 40 to 12500Wm-2K-1. Figure 3.4 shows that there is very 

little difference between the numerical results for h∞=12500Wm-2K-1 and 

h∞=2500Wm-2K-1, whereas the difference between h∞=40Wm-2K-1 and 

h∞=2500Wm-2K-1 is significant. The main reason for this significant difference is 

that the effect of forced convection increases as the convection coefficient 

increases. The larger convection coefficient permits more heat flow from tissue to 

environment. As a result, the temperature at the convection surface is significantly 

reduced. Hence it is necessary to increase the convection coefficient to prevent 

thermal damage during treatment. When the convection coefficient reaches its 

critical value, however, further increases in its value do not continuously increase 

the heat flow from tissue to environment. In Figure 3.5, the ambient convection 

coefficient h∞ is set to be 40Wm-2K-1, which corresponds to a general forced 

convection, while the ambient temperature changes. As expected, there is a 
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significant increase in temperature at the origin of the coordinate system (0, 0) 

when the ambient temperature increases from 0ºC to 30ºC. This is because heat 

energy transfers rapidly from skin tissue to the environmental fluid by convection 

when there is a large temperature difference between the fluid and the tissue. 

 

 

Figure 3.4 Surface temperature variation for various ambient convection 

coefficients 
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Figure 3.5 Surface temperature variation for various ambient temperatures 

 

To study the effect of tissue thermal conductivity on skin temperature, the 

thermal conductivity of the tissue is assumed to vary from 0.2Wm-1K-1 to 0.9Wm-

1K-1 in this example. In the calculation, the ambient temperature and convection 

coefficient are assumed to be 0ºC and 40Wm-2K-1 respectively. The variation of 

temperature is plotted along the x axis in Figure 3.6. As expected, the tissue 

temperature increases with the increase of thermal conductivity. This is reasonable, 

because higher values of thermal conductivity mean more heat transfer from high-

temperature regions like the body core and arteries to the low-temperature region 

(the skin surface), causing the increase in surface temperature. 
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Figure 3.6 Surface temperature variation for various heat conductivities 

 

In the fourth example, the effect of laser heating on skin temperature is 

studied. In practice, there are many different types of laser for various applications. 

In the present work, the Beer-Lambert law is used for modelling heat absorption in 

two-dimensional skin tissue. The induced spatial heat source Qr  caused by the laser 

beam is described by Eq. (3.1). In accordance with reference [141, 144], the 

parameters of the laser beam are taken as Pin=100~250W, µa=20m-1 and 

σ=2.85mm, respectively. The ambient temperature, ambient convection coefficient 

and tissue heat conductivity are respectively assumed to be 25ºC, 2500Wm-2K-1 

and 0.5Wm-1K-1. Figure 3.7 presents the variation of temperature at the origin (0, 0) 

with power settings 100W, 150W, 200W and 250W. It is clearly seen from Figure 
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3.7 that the temperature increases significantly as the laser power increases, 

because the higher laser power generates more internal heat energy inside the 

tissue. In addition, it is also evident from Figure 3.7 that temperature increases by 

about 5.4ºC at each sampling point along with an increment of laser power by 50W. 

Figure 3.8 displays the steady-state temperature distribution along the x axis at 

4100s and it is observed that the peak value of the temperature occurs in the region 

close to the body core. For comparison, the temperature distribution in the absence 

of laser beam is also plotted in Figure 3.8. Finally, the spatial temperature 

variations in the entire tissue domain are shown in Figure 3.9 and Figure 3.10 

respectively for the cases with and without laser heating. It can be clearly seen that 

the effect of the laser beam prevents the temperature from being distributed one-

dimensionally, and in the local region close to the centre of the laser beam at 

several penetration depths there is greater temperature gradation. Moreover, the 

heating effect of the laser in the thickness direction of the tissue is more obvious 

than that in the vertical direction. 
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Figure 3.7 Temperature variation at origin for various laser power settings 

 

 

Figure 3.8 Steady temperature variation along x axis for laser 
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Figure 3.9 Steady-state temperature distribution without laser 
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Figure 3.10 Steady-state temperature distribution with laser 

 

As evident from Figure 3.7, the temperature of skin tissue increases rapidly 

along with an increase in laser power. Consequently, thermal injury or damage to 

biological tissue may occur as a result of laser heating [145]. The burn degree of 

biological tissue is usually estimated by means of the tissue damage rate Ω(t) 

expressed in the form [143, 146] 

    0

exp
273

t Et P d
R T


 

     
  (3.46) 

where P is a constant determined by the tissue properties and local temperature. ∆E 

represents the activation energy and R is the universal gas constant. T is the local 

tissue temperature at time t.  
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Figure 3.11 and Figure 3.12 present the numerical results for skin tissue 

damage rate at the point (3.75mm, 0mm) of laser heating with power settings at 

250W and 150W respectively. According to references [143, 146], the threshold 

values of first, second and third degree burns are Ω=0.53, Ω=1 and Ω=104 

respectively. Figure 3.11 shows that at about 2900s the burn degree of skin tissue 

increases from second degree to third degree. That means that the damage to skin 

tissue induced by laser heating at 250W power setting exacerbates as time 

progresses. First and second degree burns occur very quickly at the beginning of 

laser heating. Therefore, a 250W laser can cause skin damage easily and quickly. 

As evident in Figure 3.12, under 150W laser irradiation, first degree burning 

occurs at about 1800s and second degree burning occurs at about 2400s. It would 

be expected that users avoid burning of skin tissue by reducing the laser power 

setting or the laser irradiation time flexibly in different applications. 
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Figure 3.11 Skin tissue damage rate of laser with power setting at 250W 

 

 

Figure 3.12 Skin tissue damage rate of laser with power setting at 150W 
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3.4 Summary 

 

In this chapter, a transient HFS-FEM algorithm is developed to analyse bioheat 

transfer in two-dimensional skin tissue under laser irradiation. The effects of blood 

perfusion, metabolic heat and spatial heating induced by a Gaussian type laser 

beam are considered by way of the Pennes bioheat governing equation. Numerical 

results from the HFS-FEM coupled with RBF are first validated by comparing with 

the analytical solutions, and good agreement is observed. Then, sensitivity analyses 

are conducted by tuning the control parameters ambient convection coefficient, 

ambient temperature, tissue heat conductivity and laser power setting. Finally, the 

burn degree of skin tissue is estimated under laser radiation with different powers. 
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Chapter 4 Steady-State Nonlinear Bioheat Analysis with 

Temperature-Dependent Blood Perfusion Rate 

 

4.1 Problem Description 

 

We know that the governing equation for two-dimensional steady-state bioheat 

transfer in a homogeneous biological tissue can be expressed as [27] 

  2 0b b b b r mk T c T T Q Q        (4.1) 

which can be obtained by discarding the right-hand term representing the changing 

rate of temperature in Eq. (2.1).  

In Eq. (4.1), the second term on the left side describes the heat transport 

between the tissue and microcirculatory blood perfusion, and the blood perfusion 

rate is denoted as b . Practically, in the physiology of biological tissue containing 

blood vessels, the blood vessels expand with an increase in temperature to allow 

greater blood flow to dissipate the heat accumulated in the body [12, 51, 85]. 

Therefore, the blood perfusion rate varies practically with varying tissue 
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temperature T . In such cases, the blood perfusion rate b  is a function with respect 

to the tissue temperature T . As a result, the governing equation (4.1) can be 

rewritten as follows 

  2 ( ) 0b b b b r mk T c T T T Q Q        (4.2) 

In hyperthermia treatment, blood perfusion is usually assumed to vary in the 

following form 

 Linear form in terms of T [51, 147, 148] 

   1 2b T a a T    (4.3) 

 Exponential form in terms of T [35, 48, 52, 148] 

   2
1

a T
b T a e   (4.4) 

 Quadratic form in terms of T 

   2
1 2 3b T a a T a T     (4.5) 

where 1a , 2a  and 3a  are positive constants. 

For convenience, we introduce a new temperature variable  as 

 bT T    (4.6) 

Then, the governing equation (4.2) can be rewritten in terms of the new 

variable as 

 2 ( ) 0b b b b r mk c T Q Q           (4.7) 
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To deal with the nonlinearity caused by the TDBPR, the following linearized 

strategy is introduced using the first order Taylor-series expansion, i.e. 

 1 2( ) ( ) ( )n n
b b b bc T f f          (4.8) 

where n  is the solution at the thn  iteration and 
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2 1
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 
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      


    

  

 (4.9) 

Making use of the three types of blood perfusion rate defined by Eqs. (4.3)-

(4.5), the term  f1 can be written as 
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 (4.10) 

Substituting Eq. (4.8) into Eq. (4.7), we have  

 2
1 2( ) ( ) 0n n

r mk f f Q Q          (4.11) 

or 

 2 21 ( )( ) nn
r mf Q Qf

k k
 

 
    (4.12) 

Eqs. (4.11) and (4.12) are nonhomogeneous potential equations and the 

coefficient  1
nf   changes with spatial position, because the iteration temperature 

 is generally a function of spatial coordinates.  
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To solve the governing equation (4.11) or (4.12) at each iteration, the 

corresponding boundary conditions must be provided. Consider the two-

dimensional homogeneous skin model shown in Figure 4.1. 

(1) Specified temperature condition 

In Figure 4.1, the boundary 1  represents the right-most surface of the skin, so 

the temperature on 1  can be approximately assumed to be the body core 

temperature c  [45], that is 

 1   at boundary c    (4.13) 

Moreover, at the left surface of the tissue, the temperature is assumed to be 

constant and approximately equal to the temperature of the contact heating body, 

i.e. the heating disc [34, 149], that is 

 4   at boundary s    (4.14) 

(2) Adiabatic condition 

At the upper and bottom surfaces, no heat flow occurs along these two edges, 

assuming that tissue distant from the area of interest is not affected by the imposed 

thermal disturbance [34, 150]. Therefore, the thermally insulated conditions at 

these two surfaces are given by 

 2 30   at boundaries  and Tk
n


   


 (4.15) 
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Figure 4.1 Two-dimensional skin model with heating disc 

 

4.2 Algorithm Implementation 

 

To solve the system consisting of the PDE (4.11) or (4.12) with a variable 

coefficient at each iteration and the boundary conditions (4.13)-(4.15), a mixed 

meshless strategy, referred to as the DRM-MFS, coupling of the MFS and the RBF 

approximation is established as described in this section. 
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4.2.1 The Analog Equation Method (AEM) 

 

Due to nonhomogeneity of the PDE (4.11) or (4.12) caused by the variable 

coefficient 1f , no explicit fundamental solutions or particular solutions are 

available. This absence can be overcome, however, by the indirect AEM [15]. 

According to the basic theory of the AEM [15], if the temperature   is twice-

differentiable with respect to spatial variable x , we can apply the Laplace operator 

to the sought solution   leading to the following equivalent system [61, 65] 

 2 ( ) ( )b x x  (4.16) 

in which the right-hand term b  is referred to as a fictitious source and is not an 

explicit expression due to the unknown temperature field  . Eq. (4.16), which is 

referred to as an analog equation, indicates that the solution of the original 

equation (4.11) can be established by solving this Poisson’s equation under the 

boundary conditions (4.13)-(4.15), if the fictitious source b  is known. 

Due to the linearity of the Laplace operator, the solution to equation (4.16) 

can be divided into two parts  

 ( ) ( ) ( )h p   x x x  (4.17) 

where ( )h x  is the homogeneous solution satisfying 

 2 ( ) 0h x  (4.18) 

and ( )p x  stands for the particular solution satisfying [136] 
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 2 ( ) ( )p b x x  (4.19) 

Equations (4.18) and (4.19) respectively represent the Laplace equation and 

Poisson’s equation. Their solutions can be obtained separately using the DRM and 

the MFS. 

 

4.2.2 RBF for Particular Solutions 

In the dual reciprocity technique, it is essential to approximate the fictitious source 

term ( )b x  by a series of RBFs [132, 139]. Let   be a RBF, then the fictitious source 

term b in equation (4.19) can be approximated as [151] 

 
1

( ) ( )
M

i i
i

b r


x  (4.20) 

where ir  x x  and 1{ }M
ix  is a set of points for interpolation in the domain of 

interest. 

Then, the particular solution of Eq. (4.19) can be obtained in the following 

way [152] 

 
1

( ) ( )
M

p i i
i

r 


 x  (4.21) 

where 

 2 ( ) ( )i ir r    (4.22) 



 

 79 

If we employ the following TPS as the interpolating basis to approximate the 

fictitious source term b in Eq. (4.20) [132] 

 2( ) ln            1, 2,3, ...n
i r r r n    (4.23) 

then the particular solution ( )i r  can be obtained directly as [132] 

  
 

2 2
3

1 ln 1
( )            1, 2, 3,...

4 1
n

i

n r
r r n

n
 

  


 (4.24) 

 

4.2.3 MFS for Homogeneous Solutions 

In the proposed MFS, N virtual source points   ( 1, 2, , )j j Ns   are placed on a 

pseudo boundary, which is geometrically similar to the physical boundary and is 

outside the domain [60, 66, 153]. Then, the homogeneous solution of Eq. (4.18) 

can be approximated by the linear combination of the fundamental solutions at 

different source points, that is, 

  
1

( ),   
N

h j j j
j

G 


 x x x s  (4.25) 

where ( , )x yx  is a field point within the domain of interest or on its boundary,

( , )j j
j s sx ys  are the fictitious source points outside the domain and    ,j jG Gx x s  is 

the fundamental solution for the Laplacian operator, which satisfies [132] 

    2 , , 0j jG   x s x s  (4.26) 

and has the form 
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    2 21( ) ln
2

j j
j s sG x x y y


    x  (4.27) 

Obviously, the approximation (4.25) exactly satisfies the Laplace governing 

equation (4.18).  

 

4.2.4 Complete Solutions 

Based on the process above, the final complete solution can be expressed as 

 
1 1

( ) ( ) ( )
M N

i i j j
i j

G  
 

   x x x  (4.28) 

Correspondingly, the derivative of the temperature field (4.28) gives 

 
1 1

( )( )( )
M N

ji
i j

i j

G
q

n n
 

 


  

  
xxx  (4.29) 

For the sake of the subsequent derivation, Eqs. (4.28) and (4.29) are rewritten 

in matrix form, i.e. 

 ( ) ( ) x U x c  (4.30) 

 ( ) ( )q x Q x c  (4.31) 

where 

  1 1( ) ( ) ( ) ( ) ( )M NG G  U x x x x x   (4.32) 

 1 1 ( )( ) ( ) ( )( ) NM GG
n n n n

            

xx x xQ x    (4.33) 

  T
1 1M N   c    (4.34) 
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These N M unknowns can be uniquely determined by imposing the 

temperature θ to satisfy the governing equation at M internal points and the 

boundary conditions at N boundary points. In the practical computation, as can be 

seen from Figure 4.1, the complete boundary  of the two-dimensional skin 

domain is composed of four boundaries, Γ1, Γ2, Γ3 and Γ4. A set of points   1

N
i i

P


 are 

selected on the boundary Γ. There are N1, N2, N3 and N4 points uniformly 

distributed on boundaries Γ1, Γ2, Γ3 and Γ4, respectively. Therefore, 

1 2 3 4N N N N N    . Similarly, a set of fictitious source points   1

N
i i

s  outside the 

solution domain are placed on the pseudo boundary Γps. Correspondingly, N1, N2, 

N3 and N4 fictitious source points are uniformly distributed on the pseudo boundary 

segments parallel to Γ1, Γ2, Γ3 and Γ4 [130]. Finally, the resulting equation system 

can then be written as 

 

 
1

2

3

( ) ( ) ( ) ( ),        1
( ) ,                                      1
( ) 0,                                      1
( ) 0,                                       1
( )

i i i i

j c

k

l

m

A F i M
j N

k N
l N


  
 
 
 

B x x U x c x
U x c
Q x c
Q x c
U x c






4,                                     1s m N








  

 (4.35) 

in which 

 

1

2

( )( )

( )( )

i

i

n

i

n
r m

i

fA
k

f Q QF
k







 


x

x

x

x
 (4.36) 
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and 

 
 

2 2 2 2 2
1 1

1

( ) ( ) ( ) ( ) ( ) ( )

                          ( ) ( ) 0 0
i i i M i i N i

i M i

G G

 

          


B x U x x x x x

x x

 

 
 (4.37) 

Solving the linear equation system yields the unknown coefficient vector c 

and then the temperature field can be determined using equation (4.30). 

 

4.3 Results and Discussion 

 

In all the calculations below, due to the symmetry of the bioheat model in the 

rectangular domain, only half of the domain is chosen as the solution domain. In 

total, 63 interpolation points inside the rectangular domain are used for modelling 

the particular solutions, while 32 boundary nodes along each of the four physical 

boundaries Γ1, Γ2, Γ3 and Γ4 ( 2 3 7N N   and 1 4 9N N  ) and the same number of 

source points along the pseudo boundary are, respectively, used to determine the 

homogeneous solutions.  

To investigate the convergence of the present algorithm with respect to the 

interpolation points, the results obtained using 486 interpolation points are 

compared with those using 63 points. The collocation scheme with 486 random 

interpolation points is displayed in Figure 4.2. 
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Figure 4.2 Collocation scheme with 486 random interpolation points 

 

The thermal parameters used in the calculation are listed in Table 4.1 [59, 149] 
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Table 4.1 Thermal parameters of the skin tissue 

Thermal properties of skin Value 

Thermal conductivity k  (Wm-1K-1) 0.5 

Density of blood ρb  (kgm-3) 1000 

Specific heat of blood cb  (Jkg-1K-1) 4200 

Spatial heat Qr (Wm-3) 30000 

Metabolic heat Qm  (Wm-3) 4200 

Temperature of body core Tc (ºC) 37 

Temperature of skin surface Ts (ºC) 25 

 

4.3.1 Validation of the Proposed Method 

To validate the efficiency and accuracy of the proposed mixed meshless method 

DRM-MFS for analysing the steady-state nonlinear bioheat transfer in the two-

dimensional skin tissue displayed in Figure 4.1 with the specified metabolic heat 

(see Table 4.1) and the TDBPR, MATLAB Partial Differential Equation (PDE) 

Toolbox is employed to simulate bioheat transfer in the same 2D skin tissue model. 

The results from DRM-MFS and PDE Toolbox are compared for the three cases of 

TDBPR. In the procedure with MATLAB PDE Toolbox, the finite element scheme 

is employed to produce the corresponding results, and the rectangular solution 
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domain is discretized with 1044 triangular elements and 560 nodes to produce 

convergent results which can be viewed as a reference for comparison. 

Consider first the linear case 1 2( )b T a a T    with 1 0.0005a   and 2 0.0001a  . 

Figure 4.3 displays the temperature variation along the x axis. From Figure 4.3, the 

results from the proposed DRM-MFS algorithm (with 63 interpolation points 

inside the rectangular domain) show negligible difference from the finite element 

results obtained using MATLAB PDE Toolbox, and the results from the proposed 

DRM-MFS algorithm converge to those from the MATLAB PDE Toolbox when 

the interpolation points within the rectangular domain increase to 486. The relative 

errors of the temperature results from the DRM-MFS algorithm with respect to the 

results from the MATLAB PDE Toolbox are listed in Figure 4.4. Figure 4.4 shows 

that the maximum relative error for the DRM-MFS with 63 interpolation points is 

roughly 0.34%. In contrast, the maximum relative error for the DRM-MFS with 

486 interpolation points is about 0.06%. 
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Figure 4. 3 Temperature distribution along x axis for the linear case of blood 

perfusion rate 
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Figure 4.4 Relative error of temperature along x axis for the linear case of 

blood perfusion rate 

 

Secondly, for the quadratic case of blood perfusion rate 2
1 2 3( )b T a a T a T    , 
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axis from the present DRM-MFS with 63 and 486 interpolation points are 

presented in Figure 4.5 and the corresponding relative error is shown in Figure 4.6. 
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Figure 4.5 Temperature distribution along x axis for the quadratic case of 

blood perfusion rate 
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Figure 4.6 Relative error of temperature along x axis for the quadratic case of 

blood perfusion rate 

 

Thirdly, consider the exponential case of blood perfusion rate 2
1( ) a T
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Figure 4. 7 Temperature distribution along x axis for the exponential case of 

blood perfusion rate 
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Figure 4.8 Relative error of temperature along x axis for the exponential case 

of blood perfusion rate 
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In the region x  12.18mm, the quadratic form produces the highest tissue 

temperature and the exponential form produces the lowest tissue temperature, 

while in the region x 12.18mm, the temperature distribution changes inversely. 

The highest temperature is found to exceed 39 C , due to the nonlinearity of the 

bioheat transfer equation. 

 

 

Figure 4.9 Temperature distribution along x axis for three cases of blood 

perfusion rate with 486 interpolation points 
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TDBPR is taken into consideration. One can observe that the curve of the skin 

tissue temperature obtained by the proposed DRM-MFS with order n=2 matches 

much better with those from the MATLAB PDE Toolbox simulation results than 

the DRM-MFS with order n=1. Figure 4.11 shows the relative error of the 

proposed DRM-MFS with different orders of TPS basis function. The maximum 

error for n=1 is 0.56%, which is slightly higher than that for n=2 (0.17%). This 

result indicates that increasing the order of the TPS basis function can improve the 

accuracy of the DRM-MFS, without increasing the number of interpolation points 

within the domain. 

From the foregoing analysis, it is concluded that numerical experiments using 

the DRM-MFS can converge to the reference value by increasing the number of 

internal interpolation points or increasing the order of the TPS basis function. The 

DRM-MFS seems to be a promising and simple method for solving nonlinear 

steady state bioheat transfer problems. In the next subsection, sensitivity analysis 

of parameters in the blood perfusion rate expression is conducted using the 

proposed meshless method. 
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Figure 4.10 Temperature distributions along x axis for the quadratic case of 

blood perfusion rate with different TPS orders 
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Figure 4.11 Relative error of temperature along x axis for the quadratic case 

of blood perfusion rate with different TPS orders 
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changed from 0.0005 to 0.00005, the variation of the skin tissue temperature curve 

is negligible. However, when the constant a2 is changed from 0.0005 to 0.005, the 

variation of the skin tissue temperature curve is relatively large. The location at 

about (12.2mm, 0) is the crossing point of three curves with different constant a1. 

That means that from location (1.875mm, 0) to (12.2mm, 0), the skin tissue 

temperature increases with an increase in the constant a1. But between location 

(12.2mm, 0) and (28.125mm, 0), the skin tissue temperature decreases along with 

an increase in the constant a1. The main reason is that before location (12.2mm, 0), 

the skin tissue temperature is lower than the blood temperature. Therefore, the heat 

flow is transferred from blood to skin tissue. A higher blood perfusion rate means 

that more heat flows from blood to skin tissue. In contrast, roughly after the 

location (12.2mm, 0) the skin tissue temperature is higher than the blood 

temperature. Thus the heat flow is transferred from skin tissue to blood. Therefore, 

a higher blood perfusion rate allows more heat flow to be lost from skin tissue to 

blood.  

 



 

 97 

 

Figure 4.12 Sensitivity to constant a1 in the quadratic case of blood perfusion 

rate 
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regulation effect of blood to the skin tissue is shown in Figure 4.13, especially 

when the first order term coefficient a2 is equal to 0.002.  

 

 

Figure 4.13 Sensitivity to constant a2 in the quadratic case of blood perfusion 

rate 
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a3. It is clear that when the quadratic term coefficient of the temperature-dependent 

blood perfusion a3 is equal to 0.00001, the skin tissue temperature maintains 

stability from location (11.25mm, 0) to (26.25mm, 0) at 37 C , which is the same as 

the blood temperature. 

 

 

Figure 4.14 Sensitivity to constant a3 in the quadratic case of blood perfusion 

rate 
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In this chapter, a meshless DRM-MFS algorithm is developed for analysing the 

nonlinear bioheat transfer in a 2D skin model. The nonlinearity is due to the 

temperature dependence of the blood perfusion rate. The Taylor expansion 

technology is first employed to linearize the nonlinear bioheat equation and then 

the DRM and the MFS coupled with the analog equation technique are respectively 

used to derive the particular and homogeneous solutions. Satisfaction of the 

governing equations and boundary conditions at interpolation points and boundary 

collocation points can determine all unknowns. Next, numerical experiments are 

performed to verify the developed meshless algorithm, with numerical results 

showing that accurate and convergent results can be obtained by using the 

proposed meshless method in solving the nonlinear bioheat transfer problems 

considered in the study. Results obtained from the proposed meshless model also 

show that changes in the blood perfusion rate in terms of temperature play a 

significant role in altering the temperature distribution within the tissue body. 

Finally, the sensitivities of the three positive constants in the quadratic form of the 

blood perfusion rate are evaluated to investigate the temperature changes in the 

tissue attributable to various parameters. It is found that variations in the second 

and third coefficients in the expression of quadratic blood perfusion rate can cause 

evident temperature change. 
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Chapter 5 Transient Nonlinear Bioheat Transfer with 

Temperature-dependent Blood Perfusion Rate 

 

5.1 Problem Description 

 

This chapter deals with transient nonlinear bioheat transfer in biological skin tissue. 

Bioheat behaviour is governed by the well-known Pennes bioheat transfer equation 

[18] 

  2 ( , )( , ) ( , )b b b b r m
T tk T t c T T t Q Q c

t
   

     

xx x  (5.1) 

where T  is the temperature,   the tissue density, c the tissue specific heat, k the 

tissue thermal conductivity, b  the blood density, bc  the blood specific heat, b  the 

blood perfusion rate, bT  the arterial temperature, rQ  the spatial heat sources, mQ  the 

metabolic heat generation rate, t the time and 2  the standard Laplacian operator. 

As described in Chapter 4, blood flow accelerates with the increase of 

temperature in the environmental tissue. Thus, the blood perfusion rate can be 
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viewed as a function of tissue temperature [154]. In this case, the governing 

equation (5.1) can be rewritten in the form of a nonlinear equation as 

  2 ( , )( , ) ( ) ( , )b b b b r m
T tk T t c T T T t Q Q c

t
   

     

xx x  (5.2) 

In this study, two types of blood perfusion rate are considered, the linear form 

and the exponential form.  

 Linear form in terms of T [51, 147, 148] 

   1 2b T a a T    (5.3) 

 Exponential form in terms of T [35, 48, 52, 148] 

   2
1

a T
b T a e   (5.4) 

where 1a  and 2a  are positive constants. 

For the sake of convenience, a new temperature variable  is introduced 

 bT T    (5.5) 

Then, the nonlinear governing equation (5.2) can be rewritten in terms of the 

new variable   as 

 2 ( )b b b b r mk c T Q Q c
t
      

     


 (5.6) 

or 
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  2 b b t
b b

c Qk T
c c c t

 
   

  


    


 (5.7) 

where 

 t r mQ Q Q   (5.8) 

represents the generalized interior heat source term including the metabolic heat of 

the tissue and the spatial heat source caused by laser heating or others. 

Further, Eq. (5.7) can be expressed in the general unsteady Poisson equation 

form as 

  2k f
t c
  




  


 (5.9) 

with the following nonlinear source term 

    b b t
b b

c Qf T
c c


   

 
     (5.10) 

Besides the governing equation (5.9), the boundary conditions of the problem 

and initial condition should be added to form a complete PDE system. Here, the 

two-dimensional rectangular skin model shown in Figure 4.1 is studied and the 

same boundary conditions (4.13)-(4.15) are used in the computation. In addition, 

the initial condition of the problem is given by 

    0, 0t  x x  (5.11) 

where  0 x  is a specific function. 
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5.2 Algorithm Implementation 

 

In this section, the transient nonlinear PDE system consisting of the nonlinear 

governing equation (5.9), the boundary conditions (4.13)-(4.15), and the initial 

condition (5.11) is solved by the meshless method coupled with the OSM 

involving a two-level time-stepping scheme, the DRM and the MFS, as developed 

in the next section. 

 

5.2.1 The Operator Splitting Method 

To solve this transient nonlinear PDE system, the concept of operator splitting [79] 

is first used. At this time, the time-dependent governing equation (5.9) can be 

expressed as a sum of two operators, 1L  and 2L  

 1 2L L
t

 


 (5.12) 

with 

 2
1

kL
c




   (5.13) 

  2L f   (5.14) 
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For Eq. (5.12), a solution in time can be obtained by a two-level time-stepping 

scheme including [79] 

 The second-order Adams-Bashforth scheme 

    
1/2

13 1
2 2

n n
n nf f

t
   




 


 (5.15) 

 The second-order Adams-Moulton scheme 

 
1 1/2

2 1 21
2

n n
n nk k

t c c
 

 
 

 
 

      
 (5.16) 

which are respectively employed to model the nonlinear operator 2L  and the 

Laplacian operator 1L . In Eqs. (5.15) and (5.16), 1n  , n , 1n   and 1/2n   are the 

temperature at the previous time step ( 1)n  , the current time step ( )n , the next time 

step ( 1)n   and the half time step 1( )
2

n  , respectively. 1n nt t t    is the length of 

the time step. 

Adding Eq. (5.16) to Eq. (5.15) yields 

    
1

1 2 1 23 1 1
2 2 2

n n
n n n nk kf f

t c c
 

   
 


  

        
 (5.17) 

Further, replacing n  with 2 n n   in Eq. (5.17) yields 

      
1

1 2 12 3 1
2 2 2

n n n
n n n nkf f

t c
  

   



  

    


 (5.18) 
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If a new variable *  defined by 

 
1

2

n n 


 
  (5.19) 

is introduced, Eq. (5.18) can be transformed to 

    1 22 2 3 1
2 2

n
n n kf f

t t c
 

  



     

 
 (5.20) 

which can be rearranged in the form 

    2 12 3 1 2
2 2

n n nc c cf f
k t k k t
  

               
 (5.21) 

Clearly, Eq. (5.21) is a type of modified Helmholtz equation and *  is a 

generalized function to be determined at each time step. The right 

nonhomogeneous term in Eq. (5.21) is explicitly known by the previous values of 

1n   and n . Then, the values of 1n   can be obtained through Eq. (5.19). 

Unlike the backward time-stepping scheme, this scheme requires the function 

values at step (n) and the previous step (n-1) [155]. Therefore, it cannot start by 

itself. To begin, the function value at the first time step can be evaluated by the 

extrapolated explicit forward Euler scheme presented here [79, 132] 

 
1 0

t t
   


 
 (5.22) 

Then we have 



 

 107

  
1 0

2 1 0kc f
t c

 
  




  


 (5.23) 

If the initial guess is set at 0 , the value of 1  for the first time step can be 

calculated according to Eq. (5.23). Furthermore, the iteration with time can 

commence from Eq. (5.21). 

For the sake of simplicity, Eq. (5.21) is rewritten as 

 2 2 F       (5.24) 

with 

 2 2 c
k t
 


 (5.25) 

and 

    13 1 2
2 2

n n nc cF f f
k k t
 

         
 (5.26) 

As well, the boundary condition equations (4.13)-(4.15) should be modified 

for the time iteration so that a complete PDE system can be formed in conjunction 

with the governing equation (5.24) and the modified boundary conditions 
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 
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 (5.27) 
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In this subsection, the DRM using RBFs and the MFS using fundamental 

solutions are applied to solve the modified Helmholtz equation system (5.24)-

(5.27). Both methods are based on boundary or internal collocation and have been 

successfully applied to similar nonhomogeneous problems [59, 60, 62]. The 

methods are described in detail. 

 

5.2.2 RBF for Particular Solutions 

First, the DRM is introduced by simply setting 

 2( ) ( )b F   x x  (5.28) 

and then Eq. (5.24) can be expressed as the following nonhomogeneous Laplace 

equation 

 2 ( ) ( )b x x  (5.29) 

According to the linear feature of the Laplace operator, the solution to the 

Laplace equation (5.29) can be expressed as [60, 62] 

 ( ) ( ) ( )h p    x x x  (5.30) 

where ( )h x  is a homogeneous solution satisfying 

 2 ( ) 0h x  (5.31) 

and ( )p x  is a particular solution satisfying 
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 2 ( ) ( )p b x x  (5.32) 

Generally, the particular solution cannot be determined exactly. In order to 

find the approximated particular solution, the RBF approach is employed [61, 66, 

139, 153]. The source term ( )b x  is first approximated by a series of RBFs in the 

domain of interest [139, 153] 

    
1

M

i i
i

b r 


x  (5.33) 

where i  stands for a set of RBFs that are defined in terms of the Euclidian distance 

r between any two interpolation points located in the domain, and i  are the 

corresponding interpolating coefficients. M is the number of interpolation points. 

Then, the particular solution of Eq. (5.32) is represented in a form similar to 

that in Eq. (5.33) [61, 66, 139, 153] 

 
1

( ) ( )
M

p i i
i

r 


 x  (5.34) 

where ( )i r  are a set of particular solution kernels satisfying the following 

differential equation 

 2 ( ) ( )i ir r    (5.35) 
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In this analysis, the one-order TPS   2 lni r r r   is employed for RBF 

interpolation. In this case, expressions of the particular solution kernel can be 

written as [60] 

 42 ln 1( )
32i
rr r

   (5.36) 

 

5.2.3 MFS for Homogeneous Solutions 

On the other hand, the homogeneous solution satisfying the Laplace equation (5.31) 

can be obtained by means of the MFS, in which the linear combination of 

fundamental solutions in terms of a series of source points js  outside the domain is 

used to approximate the homogeneous solution at an arbitrary field point x , that is, 

  
1

( )
N

h j j
j

G 


x x  (5.37) 

where N  is the number of fictitious source points, j  are source intensity and

( ) ( , )j jG Gx x s  is the fundamental solution to the linear Laplace operator [156] 

    2 , , 0j jG   x s x s  (5.38) 

and has the form 

    2 21( ) ln
2

j j
j s sG x x y y


    x  (5.39) 
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5.2.4 Complete Solutions 

With the obtained particular and homogeneous approximations, the full solution of 

the nonhomogeneous Laplace equation (5.29) can be written in the form 

 *

1 1

( ) ( ) ( )
M N

i i j j
i j

G  
 

   x x x  (5.40) 

The normal derivative of the full solution can then be given by 

  
1 1

( )( )M N
ji

i j
i j

G
n n n


 



 

 
  

   
xx x  (5.41) 

For the purpose of simplicity, Eqs. (5.40) and (5.41) are written in matrix 

form as 

 *( ) ( ) x U x c  (5.42) 

 
( ) ( )
n

 





x Q x c  (5.43) 

where 

  1 1( ) ( ) ( ) ( ) ( )M NG G   U x x x x x   (5.44) 

 1 1 ( )( ) ( ) ( )( ) NM GG
n n n n

             

xx x xQ x    (5.45) 

  T
1 1M N   c    (5.46) 
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Then, applying equation (5.42) and (5.43) to the original governing equation 

(5.24) at M interpolation points in the domain and the boundary conditions at N 

boundary collocation points leads to the following system of equations 
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B x U x c x

U x c

Q x c
Q x c

U x c

 (5.47) 

where  ( 1,2,3,4)iN i   are respectively the number of collocation points on the four 

edges of the rectangular domain and 1 2 3 4N N N N N    . B  is the Laplacian 

operator matrix in the form 

  2
1( ) ( ) ( ) ( ) 0 0i i i M i    B x U x x x   (5.48) 

The unknown coefficient vector c can be determined by solving the linear 

equation system (5.47), and then the temperature variable *  at each time step can 

be calculated from Eq. (5.40) or (5.42). Due to the symmetry of the bioheat model 

in the rectangular domain, only half of the domain is chosen as the solution domain. 

Figure 5.1 shows an illustration of the 32 collocations, 32 source points and 63 

interpolation points for the half rectangular domain in the calculation. 
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Figure 5.1 Collocation scheme with 63 interpolation points and 32 boundary 

collocations 

 

5.3 Results and Discussion 

 

In this section, the efficiency and accuracy of the proposed method for 

analysing transient nonlinear bioheat transfer in a 2D skin tissue are validated by 

the finite element software ANSYS through a benchmark example. The thermal 

parameters of the 2D skin tissue model used in the calculation are given in Table 

5.1 [59, 148, 149]. 
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The ANSYS Transient thermal toolbox is employed to simulate bioheat 

transfer in biological material. The mesh generated by ANSYS is shown in Figure 

5.2, in which 647 elements and 733 nodes are generated for finite element analysis 

[157]. 

 

Table 5.1 Thermal properties of the skin 

Thermal parameters Value 

Thermal conductivity k (Wm-1K-1) 0.5 

Density of blood ρb (kgm-3) 1000 

Specific heat of blood cb (Jkg-1K-1) 4200 

Spatial heat Qr (Wm-3) 30000 

Metabolic heat Qm (Wm-3) 4200 

Arterial temperature Tb (ºC) 37 

Temperature of body core Tc (ºC) 37 

Temperature of skin surface Ts (ºC) 25 
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Figure 5.2 Finite element mesh used in ANSYS 

 

5.3.1 Validation of the Proposed Method 

For the purpose of comparison, consider that the blood perfusion rate is a 

linear function of tissue temperature 1 2( )b T a a T   , where 1 0.0005a   and 

2 0.0001a  . A total of 63 interpolation points and 32 boundary collocations (see 

Figure 5.1) are used to calculate the transient temperature distribution. Numerical 

results along the x axis at three time instants, ∆t =50s, 80s and 100s, are presented 

to show the accuracy and stability of the second-order Adams-Bashforth and 

Adams-Moulton schemes. From Figure 5.3, it can be seen that the results from the 

proposed algorithm with fewer collocation points are in good agreement with the 

results from the ANSYS Transient thermal toolbox. The relative error of the results 
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from the proposed method with respect to those from the Transient thermal toolbox 

of ANSYS is less than 0.5%. 

 

 

Figure 5.3 Results of temperature along x axis for the linear case of blood 

perfusion rate 

 

Next, the exponential case of the TDBPR 2
1( ) a T

b T a e   with 1 0.0005a   and 

2 0.01a   is considered. Again, numerical results along the x axis at three time 

instants ∆t =50s, 80s and 100s are evaluated and shown in Figure 5.4. It is evident 

that there is negligible difference between the results from the proposed algorithm 

and those from the ANSYS Transient thermal toolbox. 
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Figure 5.4 Results of temperature along x axis for the exponential case of 

blood perfusion rate 

 

Figure 5.5 presents the temperature variation from t=0s to t=2560s at the point 

(1.875mm, 0) on the x axis for the case of a linear blood perfusion rate. It can be 

seen from Figure 5.5 that the variation of temperature with time from the proposed 

meshless method is almost identical to that obtained from ANSYS, although fewer 

unknowns are used in the proposed method.  

From the above numerical results, the convergence and accuracy of the 

present meshless method with the higher-order Adams-Bashforth and Adams-

Moulton time-stepping schemes are validated for transient nonlinear bioheat 

analysis in the rectangular model of skin tissue.  
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Figure 5.5 Variation of temperature with time for the linear case of blood 

perfusion rate 

 

More numerical results are now presented to illustrate temperature 

distribution in the solution domain caused by different TDBPRs. In Figures 5.6 and 

5.7, the temperature distribution in the skin tissue along the x axis at different times 

is presented. The steady state in Figure 5.6 is reached much earlier (linear case, at 

about 1600s) than that in Figure 5.7 (exponential case, at about 8000s). It is also 

noted that the slope of the steady-state temperature curve along the x axis increases 

and then decreases from left to right for both linear and exponential cases. 

However, the slope in the linear case appears greater than that in the exponential 
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case in the region close to the left surface, which has a lower environmental 

temperature, whereas the slope in the linear case becomes less than that in the 

exponential case in the region close to the right surface, which has a higher body 

core temperature. Moreover, the exponential-form blood perfusion rate produces a 

higher interior temperature in the region close to x=18.75mm than that for the 

linear-form rate. The main reason is that the exponential-form blood perfusion rate 

generally has a lower value than that of the linear form with the coefficients given 

above. In the region close to the left of the surface, where the skin tissue 

temperature is evidently lower than the blood temperature, the greater blood 

perfusion rate means that more heat flows from blood to skin tissue, causing a 

rapid increase of the tissue temperature. Thus there is greater temperature gradient 

in this region for the linear case than the exponential case. When the tissue 

temperature exceeds the blood temperature, a greater blood perfusion rate causes 

more heat to flow from tissue to blood and leads to the tissue temperature decrease. 
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Figure 5.6 Temperature variation vs time along x axis for the linear form of 

blood perfusion rate 

 

 

Figure 5.7 Temperature variation vs time along x axis for the exponential 

form of blood perfusion rate 
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5.3.2 Sensitivity Analysis 

In this subsection, the linear case of TDBPR 1 2( )b T a a T    is considered for the 

sensitivity analysis of temperature to the constant coefficients 1a  and 2a . First, the 

coefficient 2a  is set to be constant 0.0002 and the constant 1a  is assumed to be 

0.005, 0.0005 and 0.00005. As evident in Figure 5.8, the steady-state temperatures 

are quite close to each other when 1 0.00005a   and 1 0.0005a  . But the skin 

temperature curve has a relatively larger gap from the two curves mentioned above 

when 1 0.005a  . The three temperature curves intersect at the point (12.65mm, 0), 

at which the skin temperature is approximately 37ºC. Therefore, from the left 

surface of the skin tissue to the approximate location point (12.65mm, 0), the 

greater blood perfusion rate indicates that more heat flow transfer occurs between 

the blood and skin tissue. If the blood temperature is higher than that in the skin 

tissue, more heat flows from blood to skin tissue, causing a rapid increase in skin 

temperature. If the blood temperature is lower than that in the skin tissue, more 

heat flow transfers from skin tissue to blood, causing a rapid decrease in skin 

temperature. It can be seen that blood perfusion protects the skin tissue from 

extreme temperature increases or decreases caused by the environment. 
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Figure 5.8 Sensitivity of temperature to a1 in the linear case of blood perfusion 

rate 

 

To study the effect of 2a  on skin temperature, we assume the first constant 1a  

to be 0.0005 and the second constant 2a  is set as 0.00002, 0.0002 and 0.002. From 

Figure 5.9, it can be seen that variation of the constant 2a  causes a more rapid 

change in the steady-state temperature curve than that due to variation of the 

constant 1a . In particular, when the constant 2 0.002a  , the curve of the tissue 

temperature is steeper than the other two curves. The highest value of the skin 

temperature appears at the approximate location (7.5mm, 0), which is closer to the 

left boundary of the skin tissue than to the other two curves. From location (15mm, 
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0) to (26.25mm, 0), the skin tissue temperature is stable at a certain level when the 

constant 2 0.002a  . 

 

 

Figure 5.9 Sensitivity of temperature to a2 in the linear case of blood perfusion 

rate 

 

Next, the sensitivity of temperature to the constant coefficients   ( 1,2)ia i   is 

investigated by considering the exponential case of TDBPR 2
1( ) a T

b T a e  . Assume 

that the constant 2a  is 0.01, and the constant 1a  is tested at 0.005, 0.0005 and 

0.00005. Compared with the linear case shown in Figure 5.9, the difference or gap 

between each skin temperature curve is relatively greater, as shown in Figure 5.10. 
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Similarly, the three temperature curves with different values of constant 1a  

intersect at almost the same point (the distance from the left boundary being 

roughly 13.125mm). This finding means that, at location (13.125mm, 0), the skin 

temperature has almost the same value of 37.75ºC for different values of constant 

1a . Figure 5.10 illustrates the stronger regulatory and protective effect of the 

exponential-form blood perfusion rate than that in the linear case (see Figure 5.9). 

 

 

Figure 5.10 Sensitivity of temperature to a1 in the exponential case of blood 

perfusion rate 
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Again, assume constant 1a  to be 0.0005, while constant 2a  is set to be 0.03, 

0.01 and 0.003. As evident from Figure 5.11, when constant 2 0.03a  , the 

temperature of the skin tissue increases more steeply before the point (11.25mm, 0), 

but the curve is flatter than the temperature curves with smaller values of 2a . 

Compared with the effect of the different values of 1a  in Figure 5.10, the increase 

in the value of 2a  causes a greater reduction of the peak value of the skin tissue 

temperature and the temperature becomes more stable from location (11.25mm, 0) 

to (26.25mm, 0). In summary, an increase in the value of constant 2a  has higher 

sensitivity to the temperature of skin tissue than an increase in the value of 

constant 1a . Simultaneously, it is found that an increase in the blood perfusion rate 

causes the temperature of the skin tissue to reach its final steady state more quickly 

and reduces the peak value of the tissue temperature. That means that if the skin 

tissue absorbs a large amount of biological heat from its environment, the blood 

perfusion effect causes the temperature to reach a certain value quickly and reduces 

the risk of burning of the skin tissue. 
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Figure 5.11 Sensitivity to a2 in the exponential case of blood perfusion rate 

 

5.4 Summary 

 

In this chapter, an operator splitting technique coupled with the DRM and the MFS 

is presented to develop a mesh-free algorithm for solving the transient nonlinear 

bioheat transfer in a 2D rectangular skin model with a TDBPR. Use of the operator 

splitting technique including two-level second-order time-stepping schemes makes 

it possible to establish an accurate and convergent solution procedure for transient 
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meshless method is dependent only on the internal interpolating points and 

boundary collocation points of the domain, and thus is really meshless and 

dimension-independent. The numerical results demonstrate the accuracy and 

efficiency of the meshless method in the analysis of the transient nonlinear bioheat 

transfer problem under consideration, with very few interpolation and collocation 

points. Moreover, the analysis of temperature change sensitivity to the constant 

coefficients in the linear and exponential expressions of the blood perfusion rate 

demonstrates the increase in the constant 2a  in the linear case. It is found that the 

exponential case has a more significant influence on the tissue temperature 

distribution than the constant 1a , and an increase in its value results in a relatively 

fast increase in the tissue temperature in the region close to the outer surface and, 

simultaneously, the peak temperature value decreases. This reflects the regulatory 

and protective effect of the blood perfusion rate in biological tissue. 
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Chapter 6 Conclusion and Future Work 

 

6.1 Conclusions 

 

In the present work, a transient HFS-FEM algorithm is developed for analysing 

bioheat transfer in two-dimensional skin tissue under laser irradiation. The effects 

of blood perfusion, metabolic heat and spatial heating induced by a Gaussian type 

laser beam are considered by way of the Pennes bioheat governing equation. 

Numerical results from the HFS-FEM coupled with RBF are first validated by 

comparison with analytical solutions, and good agreement is observed.  

In the next step, a meshless DRM-MFS algorithm is developed for analysing the 

nonlinear bioheat transfer in a 2D skin model. The nonlinearity is due to the 

temperature dependence of the blood perfusion rate. The Taylor expansion 

technology is first employed to linearize the nonlinear bioheat equation and then 

the DRM and the MFS coupled with the analog equation technique are used to 

derive the particular and homogeneous solutions. Satisfaction of the governing 

equations and boundary conditions at interpolation points and boundary collocation 
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points can determine all unknowns. Next, numerical experiments are performed to 

verify the developed meshless algorithm and numerical results show that accurate 

and convergent results can be obtained by using the proposed meshless method in 

solving the nonlinear bioheat transfer problems considered. Also, results obtained 

from the proposed meshless model show that the change in the blood perfusion rate 

in terms of the temperature variable plays a significant role in altering the 

temperature distribution within the tissue body. It is also found that variations of 

the second and third coefficients in the expression of the quadratic blood perfusion 

rate can cause evident temperature change. 

In the third step, an operator splitting technique coupled with the DRM and the 

MFS is presented to develop a mesh-free algorithm for solving transient nonlinear 

bioheat transfer in a 2D model of skin tissue with a TDBPR. Use of the operator 

splitting technique with two-level second-order time-stepping schemes makes it 

possible to establish an accurate and convergent solution procedure for transient 

and nonlinear cases, and then the DRM and the MFS are employed to solve the 

obtained modified Helmholtz equation system at each time step. This meshless 

method is dependent only upon the internal interpolating points and boundary 

collocation points of the domain, and thus is really meshless and dimension-

independent. The numerical results demonstrate the accuracy and efficiency of the 

meshless method in the analysis of the transient nonlinear bioheat transfer problem 
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under consideration, with very few interpolation and collocation points. It is found 

that the exponential case has a more significant influence on the tissue temperature 

distribution than the constant 1a  , and an increase in its value results in a relatively 

fast increase in the tissue temperature in the region close to the outer surface, and 

simultaneously, the peak temperature value decreases. This reflects the regulatory 

and protective effect of blood perfusion rate in biological tissue. 

Finally, the proposed HFS-FEM method is effective for calculating the transient 

state temperature distribution in a 2D human eye model. Good agreement of the 

simulation results between the proposed HFS-FEM and ABAQUS are observed. 

These findings mean that we can obtain almost the same simulation results by 

HFS-FEM, with many fewer elements and a lower degree of freedom, compared 

with ABAQUS. Therefore, the effectiveness of the proposed HFS-FEM is proved 

in solving the transient linear bioheat transfer problem in a 2D human eyeball 

model. This method provides an effective option in the simulation of both the 

steady state and the transient state bioheat transfer model. 

 

6.2 Future Work 
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In future work, the author and colleagues would like to develop the current two-

dimensional skin tissue models from homogeneous tissue with an isotropic single 

property to three layers with different thermal properties. Also the multiple sub-

domains, namely the cornea, aqueous humor, lens, vitreous and sclera with 

different thermal properties, in the two-dimensional human eyeball model need to 

be considered and calculated in the analysis of transient bioheat in an eyeball with 

laser interaction.  

For the transient term in the Pennes bioheat transfer governing equation, the 

Laplace transform method would be used to solve the transient state bioheat 

transfer problem rather than the previous finite difference method.  

Furthermore, the three-dimensional (3D) linear bioheat transfer, 3D nonlinear 

bioheat model and 3D linear bioheat model in tissues under laser injection models 

would be used in the bioheat transfer problems. 

Next, the radial integration method would be applied to solve the 2D and 3D 

singular and domain integrals generated in the governing functional rather than the 

previous RBF method used. 
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Appendix A Parameter Values and Description 

 

 

c Specific heat of tissue (Jkg-1K-1) 

cb Specific heat of blood (Jkg-1K-1) 

h∞ Convection coefficient of ambient fluid 

(Wm-2K-1) 

k Thermal conductivity of tissue (Wm-1K-1) 

L Width of 2D skin model (m) 

Pin Laser power setting (W) 

q Heat flux (Wm-2) 

Qm Metabolic heat of tissue (Wm-3) 

Qr Spatial heat (Wm-3) 

Qt Sum of metabolic heat and spatial heat 

(Wm-3) 

t Time (s) 

∆t Time step (s) 
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T Temperature of tissue (ºC) 

Ta Artery temperature (ºC) 

Tc Temperature of body core (ºC) 

T∞ Sink temperature of ambient fluid (ºC) 

ρ Density of tissue (kgm-3) 

ρb Density of blood (kgm-3) 

σ Standard deviation of laser beam profile 

(m) 

ωb Blood perfusion rate (m3s-1m-3) 

µa Absorption coefficient of tissue (m-1) 

P Pre-exponential factor (s-1) 

∆E Activation energy (Jkmol-1) 

R Universal gas constant (Jkmol-1K-1) 
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Appendix B MATLAB Code 

 

 

function [NT,TC,UC]=MFS_RBF_2DNonlinearSkinModel 

% Iteratively solve 2D transient bioheat problems in nonlinear skin bioheat 

model using the DRM-MFS and operator splitting technique 

% 

% **** 2D transient nonlinear equation of skin bioheat: 

%      kD2t(T)+wb*rhob*cb*(T-Tb)+Qr+Qm=rho*c*dT/dt 

% with B.C. 

%     Potential B.C:    T1=Tc   T4=Ts   q2=q3=0  

% where T is the sought field function 

% 

%---------------------------------------------------------------- 

% **** Variable statments: 

%   NDIM: Dimensions of the problem 

%   NDN: Number of DOFs at each point 

% 

%   NNR: Number of nodes on the physical boundary 

%   RC = NNR by NDIM matrix: Coordinates of boundary nodes 

%   RN = NNR by NDIM matrix: Normal at boundary nodes 

%   KODE = NNR by NDN matrix: Types of given boundary conditions 

%   FI = NNR by NDN matrix: Values of given boundary conditions 
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% 

%   NNV: Number of source nodes outside the domain 

%   VC = NNV by NDIM matrix: Coordinates of source nodes 

% 

%   NNI: Number of interpolation points in the domain 

%   IC = NNI by NDIM matrix: Coordinates of interpolation points 

% 

%   NT: Number of computing points in the domain 

%   TC = NT by NDIM matrix: Coordinates of computing points 

% 

%   Title = 101 by 1 array: problem description 

% 

 

%**************************************************************** 

 

% Open input data file 

XX=input('Input data file name: ','s'); % The name of input data file is 

*.txt 

fp=fopen(XX,'rt'); 

if(fp<0) 

    display('Could not find data file!'); 

    return; 

end 

 

% **** Initial guess at NNI interpolation points 

[U0,UX0,UY0]=InitialGuess(NNI,IC); 

% 

U00=U0; 

UX00=UX0; 
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UY00=UY0; 

% 

U0=U0-12; 

U01=(30000+4200)*80/1000/4200*U0; 

UX01=(30000+4200)*80/1000/4200*UX0; 

UY01=(30000+4200)*80/1000/4200*UY0; 

 

% **** Iteration loop 

eps=1.0e-4; 

nor=1; 

Numit=0; 

N=NNV+NNI; % default selection is NNR=NNV 

while nor>=eps 

    Numit=Numit+1; 

    disp('Number of iteration ='); 

    disp(Numit); 

    if Numit>1 

        U0=U01;    

        UX0=UX01;  

        UY0=UY01;  

        U01=U1;    

        UX01=UX1;  

        UY01=UY1;  

    end 

    % ***** Form the system matrix and right hand vector 

    HH=zeros(N,N); 

    FF=zeros(N,1); 

    [HH,FF]=FMAT(NDIM,NDN,NNR,RC,RN,KODE,FI,NNV,VC,NNI,IC,..., 
U0,UX0,UY0,U01,UX01,UY01); % Modified 
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    % **** Solve the linear system of equations 

    [FF,Condnum]=SVDSolver(N,HH,FF); 

    % **** Compute u and ux, uy at interpolation points 

    U1=zeros(NNI,1); 

    UX1=zeros(NNI,1); 

    UY1=zeros(NNI,1); 

    [U1,UX1,UY1]=SolutionIP(NDIM,NDN,NNV,VC,NNI,IC,FF); 

    UStepXY=zeros(NT,3);  

    UStepXY=TPC(NDIM,NDN,NNV,VC,NNI,IC,NT,TC,FF);  

    UStep=zeros(NT,1);  

    UStep=UStepXY(:,1)+37;  

    nor=norm(U1-U0); 

    if Numit>500 

        error('Warning: Exceed the maximum number of iteration!'); 

        return; 

    end 

end 

disp('Solving nonlinear system of equations is OK!'); 

 

% *********** Give quantities at computing points *********** 

UC=zeros(NT,3); 

UC=TPC(NDIM,NDN,NNV,VC,NNI,IC,NT,TC,FF); 

 

% *********** Output results *********** 

OUTPUT(NDIM,NDN,NNR,NNV,NNI,NT,TC,UC,Title,U0,UX0,UY0,Numit); 

 

close all; 
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%=========================================== 

% Subroutine Initial Guess 

%=========================================== 

function [U0,UX0,UY0]=InitialGuess(NNI,IC) 

% Give the initial guess at interpolation points 

X=IC(:,1); 

Y=IC(:,2); 

U0=zeros(NNI,1); % column vector 

UX0=zeros(NNI,1); 

UY0=zeros(NNI,1); 

 

 

%=========================================== 

% Subroutine FMAT 

%=========================================== 

function [HH,FF]=FMAT(NDIM,NDN,NNR,RC,RN,KODE,FI,NNV,VC,NNI,IC,..., 

U0,UX0,UY0,U01,UX01,UY01) 

% Form the system matrix HH and the right hand vector FF 

% declaration of global variables 

global TypeRBF cparameter OrderN; 

N=NNV+NNI; % total unknowns 

HH=zeros(N,N); 

FF=zeros(N,1); 

% 

k=0.5; % Thermal conductivity 

rho=1000; % Blood Density 

a1=0.0005; % linear coefficient 

a2=0.0002; % linear coefficient 



 

 139

cb=4200; % Specified heat 

Tb=37; % Blood temperature 

deltat=80; % Time step 

% Satisfy boundary conditions at NNR nodes 

for i=1:NNR 

    x=RC(i,1); 

    y=RC(i,2); 

    nx=RN(i,1); 

    ny=RN(i,2); 

    for j=1:N 

        if (j<=NNV) 

            xj=VC(j,1); 

            yj=VC(j,2); 

            [h,hx,hy]=FDS2D(x,y,xj,yj); 

        else 

            xj=IC(j-NNV,1); 

            yj=IC(j-NNV,2); 

            % [h,hx,hy,hxx,hxy,hyy]=RBF2D(x,y,xj,yj); 

            % Modified 

            [h,hx,hy]=BigRBF2D(x,y,xj,yj); 

        end 

        qx=k*hx;  

        qy=k*hy;  

        q=-(qx*nx+qy*ny);  

        if (KODE(i,1)==0) % Specified potential 

            HH(i,j)=h; 

        elseif (KODE(i,1)==1) % Specified flux 

            HH(i,j)=q; 

        elseif (KODE(i,1)==2) % Specified mixture of potential and flux 
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            HH(i,j)=Henv*h-q; 

        end 

    end 

    FF(i,1)=FI(i); 

end 

% Satisfy the governing equation at NNI interior interpolation points 

for i=1:NNI 

    x=IC(i,1); 

    y=IC(i,2); 

    u=U0(i,1); 

    ux=UX0(i,1); 

    uy=UY0(i,1); 

    u1=U01(i,1);    

    ux1=UX01(i,1);  

    uy1=UY01(i,1);  

    % 

    wb=a1+a2*(u+Tb); % Linear case 

    wb1=a1+a2*(u1+Tb);  

    f1=-rho*cb/rho/cb*wb*u+(30000+4200)/rho/cb;  

    f2=-rho*cb/rho/cb*wb1*u1+(30000+4200)/rho/cb; % Modified 3rd paper 

    An=2*rho*cb/k/deltat;  

    for j=1:N 

        if (j<=NNV) 

            xj=VC(j,1); 

            yj=VC(j,2); 

            [h,hx,hy,hxx,hxy,hyy]=FDS2D(x,y,xj,yj); 

            BB=0; % M 

            UU=h; % M  

        else 
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            xj=IC(j-NNV,1); 

            yj=IC(j-NNV,2); 

            [h,hx,hy,hxx,hxy,hyy]=RBF2D(x,y,xj,yj); 

            BB=h;  

            [hh,hx,hy]=BigRBF2D(x,y,xj,yj); 

            UU=hh; % Calculate capital Fai for RBF 

        end 

        HH(i+NNR,j)=BB-An*UU; 

    end 

    FF(i+NNR,1)=CFXY(x,y,f1,f2,u1); 

end 

 

 

%=========================================== 

% Subroutine BigRBF2D 

%=========================================== 

% 

function [h,hx,hy]=BigRBF2D(x,y,xj,yj) 

% Particular solution kernels h and its derivatives at field point (x,y) 

% (xj,yj): the central point 

 

rx=x-xj; 

ry=y-yj; 

r=sqrt(rx^2+ry^2); 

 

% Thin plate spline RBF=(r^2)*ln(r) 

 

if (r+1==1) % r=0 

 lnr=1.0; 
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else 

 lnr=log(r); 

end 

 

h=(2*lnr-1)/32*r^4; 

hx=(4*lnr-1)/16*r^2*rx; 

hy=(4*lnr-1)/16*r^2*ry; 

 

 

%=========================================== 

% Subroutine CFXY 

%=========================================== 

function f=CFXY(x,y,f1,f2,u1) 

% Compute f(x,y) at a given point (x,y) 

% x, y and f are scales 

Qm=4200; 

Qr=30000; % Can be adjusted according to different outer factors such as 

later power adjustment 

Qt=Qr+Qm; 

k=0.5; % Thermal conductivity 

rho=1000; % Modified 

c=4200; % Modified  

deltat=80; % Modified  

f=-rho*c/k/2*(3*f2-f1)-2*rho*c/k/deltat*u1;  

 

 

%=========================================== 

% Subroutine FDS2D 

%=========================================== 
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function [h,hx,hy,hxx,hxy,hyy]=FDS2D(x,y,xj,yj) 

% Compute the fundamental solution at the field point (x,y) and the source 

% point(xj,yj) 

% x, y, xj, yj are scales 

rx=x-xj; 

ry=y-yj; 

r=sqrt(rx^2+ry^2); 

if (r+1==1) 

    error('Distance of the field pint and the source point should be 

nonzero!'); 

end 

rx=rx/r; 

ry=ry/r; 

h=log(1.0/r)/(2*pi);               % u* 

hx=-(1.0/2/pi/r)*rx;               % du*/dx 

hy=-(1.0/2/pi/r)*ry;               % du*/dx 

hxx=-(1.0/2/pi)*(ry*ry-rx*rx)/r/r; % d2u*/dx/dx 

hxy=(1.0/pi)*(rx*ry)/r/r;          % d2u*/dx/dy 

hyy=-hxx;                          % d2u*/dy/dy 

 

 

%=========================================== 

% Subroutine RBF2D 

%=========================================== 

% 

function [h,hx,hy,hxx,hxy,hyy]=RBF2D(x,y,xj,yj) 

% Compute RBF at the field point (x,y) and the central 

% point(xj,yj) 
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% x, y, xj, yj are scales 

% Differential scheme 

rx=x-xj; 

ry=y-yj; 

r=sqrt(rx^2+ry^2); 

% Thin plate spline RBF=(r^n)ln(r) 

n=2; 

rn=r^n; 

rn1=r^(n-1); 

rn2=r^(n-2); 

rn3=r^(n-3); 

rn4=r^(n-4); 

if (r+1==1) % r=0 

 lnr=1.0; 

else 

 lnr=log(r); 

end 

 

h=rn*lnr; 

hx=rn2*rx*(n*lnr+1); 

hy=rn2*ry*(n*lnr+1); 

hxx=rn4*rx*rx*((n*n-2*n)*lnr+2.0*(n-1))+rn2*(n*lnr+1); 

hxy=rn4*rx*ry*((n*n-2*n)*lnr+2.0*(n-1)); 

hyy=rn4*ry*ry*((n*n-2*n)*lnr+2.0*(n-1))+rn2*(n*lnr+1); 

 

 

%=========================================== 

% Subroutine EQUIL 

%=========================================== 
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% 

function [A,b]=EQUIL(n,A,b) 

% Equilibration treatment of Ax=b 

% 

% Determine the maximum element in each row and store them in column vector 

% temp 

temp=(max(abs(A')))'; 

% Elements in each row divide the maximum element 

for i=1:n 

    A(i,:)=A(i,:)/temp(i); 

end 

b=b./temp; 

 

 

%=========================================== 

% Subroutine SVDSolver 

%=========================================== 

 

function [x,condnum]=SVDSolver(n,A,b) 

% The system of linear equations (SLE) solver using standard SVD 

%            [U,S,V]=svd(A) and A=U*S*V' 

% where A is a square matrix, U and V are unitary matrices and S is a 

% diagonal matrix with nonnegative elements in decreasing order for linear 

% system A*x=b, finally we have x= V*[diag(1/sj)]*U'*b and in the process 

% we simply replace 1/sj by zero if sj=0 

% 

x=zeros(n,1); 

% equilibration treatment 

[A,b]=EQUIL(n,A,b); 
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% condition number 

condnum=cond(A); 

% SVD 

[U,S,V]=svd(A); 

% zeroing the small singular values 

for i=1:n 

    if (S(i,i)+1)==1 

        S(i,i)=0; 

    else 

        S(i,i)=1/S(i,i); 

    end 

end 

% solve x= V*[diag(1/sj)]*U'*b 

x=V*(S*U'*b); 

clear U S V A b; 

 

 

%=========================================== 

% Subroutine SolutionIP 

%=========================================== 

 

function [U1,UX1,UY1]=SolutionIP(NDIM,NDN,NNV,VC,NNI,IC,FF) 

% Compute potential and its derivatives at interpolation points 

N=NNV+NNI; % Total number of knowns 

U=zeros(NNI,3); 

for i=1:NNI 

    x=IC(i,1); 

    y=IC(i,2); 

    for j=1:N 
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        if j<=NNV 

            xj=VC(j,1); 

            yj=VC(j,2); 

            [h,hx,hy,hxx,hxy,hyy]=FDS2D(x,y,xj,yj); 

        else 

            xj=IC(j-NNV,1); 

            yj=IC(j-NNV,2); 

            % [h,hx,hy,hxx,hxy,hyy]=RBF2D(x,y,xj,yj); 

            [h,hx,hy]=BigRBF2D(x,y,xj,yj); 

        end 

        U(i,1)=U(i,1)+FF(j,1)*h; 

        U(i,2)=U(i,2)+FF(j,1)*hx; 

        U(i,3)=U(i,3)+FF(j,1)*hy; 

    end 

end 

U1=U(:,1); 

UX1=U(:,2); 

UY1=U(:,3); 

 

 

%=========================================== 

% Subroutine TPC 

%=========================================== 

% 

function UC=TPC(NDIM,NDN,NNV,VC,NNI,IC,NT,TC,FF) 

% Compute potential and its derivatives at computing points 

N=NNV+NNI; % Total number of knowns 

UC=zeros(NT,3); 

for i=1:NT 
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    x=TC(i,1); 

    y=TC(i,2); 

    for j=1:N 

        if (j<=NNV) 

            xj=VC(j,1); 

            yj=VC(j,2); 

            [h,hx,hy,hxx,hxy,hyy]=FDS2D(x,y,xj,yj); 

        else 

            xj=IC(j-NNV,1); 

            yj=IC(j-NNV,2); 

            % [h,hx,hy,hxx,hxy,hyy]=RBF2D(x,y,xj,yj); 

            [h,hx,hy]=BigRBF2D(x,y,xj,yj); 

        end 

        UC(i,1)=UC(i,1)+FF(j,1)*h; 

        UC(i,2)=UC(i,2)+FF(j,1)*hx; 

        UC(i,3)=UC(i,3)+FF(j,1)*hy; 

    end 

end 
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