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Phase-shifting interferometric imaging is shown to be a powerful analytical tool for studying

graphene films, providing quantitative analysis of large area samples with an optical thickness

resolution of �0.05 nm. The technique is readily able to identify single sheets of graphene and to

quantitatively distinguish between layers composed of multiple graphene sheets. The thickness

resolution of the technique is shown to result from the phase shift produced by a graphene film as

incident and reflected light pass through it, rather than from path-length differences produced by

surface height variations. This is enhanced by the high refractive index of graphene, estimated in

this work to be nG¼ 2.99 6 0.18. VC 2011 American Institute of Physics. [doi:10.1063/1.3664633]

There is considerable fundamental1,2 and technologi-

cal2,3 interest in the synthesis, properties, and applications of

graphene. However, from a practical point-of-view, it can be

quite difficult to locate and identify single layers of graphene

on a substrate due to their small physical thickness and opti-

cal transparency. Optical detection is especially attractive

because it offers the potential for rapid, nondestructive char-

acterization of large-area samples. This can be achieved by

conventional optical microscopy but requires that the

graphene layers be transferred to an engineered substrate,

typically a thin film structure, to increase their optical

contrast.4–6 Recently, a similar method has been used for the

identification of single graphene sheets deposited on a Cu

substrate.7 Because this technique relies on small contrast

differences to distinguish layers of different thickness, it is

often subject to ambiguity, particularly when graphene is

only a minor component of the film. As a consequence,

highly sophisticated image processing tools are required to

image graphene directly on metallic substrates such as Ni or

Cu that are commonly used for large area synthesis of gra-

phene by chemical vapour deposition8 or by ion implanta-

tion9 techniques. Ellipsometry has recently emerged as a

viable alternative technique but also requires properly

designed substrates.10 Thus, rapid measurement of graphene

on different substrates over large areas but with high lateral

resolution is extremely desirable. In addition, the approach

needs to be robust so that measurement setup and artifacts do

not affect the results.

In this study, we introduce phase-shifting interferomet-

ric imaging as a simple and fast optical detection method for

the rapid identification and characterization of graphene

layers. In principal, this technique can be used to character-

ize graphene layers on a variety of substrates, and of an arbi-

trary number of layers, and offers the potential for in-situ
observation of physical changes induced by graphene proc-

essing, such as oxidation.

Samples consisting of graphene flakes of different thick-

ness on a SiO2 (300 nm)/Si substrate were purchased from

Graphene Industries Limited (Manchester, UK). The flakes

were deposited using the exfoliation technique.11 As a part

of the present study, samples were characterized by conven-

tional optical microscopy and Raman spectroscopy in addi-

tion to the phase-shifting interferometry (PSI). Optical

imaging was undertaken with an Olympus BX41 microscope

fitted with a 100� objective lens using normal-incidence,

white light illumination. PSI images were measured using a

Veeco (Wyko NT9100) optical profiler operating with a

source wavelength defined by a 10 nm band-pass filter cen-

tered at a wavelength of 525 nm.

The optical contrast of graphene layers can be enhanced

by thin-film interference effects, which in the present case is

achieved by using a 300 nm SiO2/Si substrate for the sam-

ples. A typical optical image of the supplied graphene sam-

ple is, shown in Fig. 1(a), clearly showing light and dark

regions that can be correlated with 1, 2, or 3þ graphene

layers, based on the optical density12 and sample-maps pro-

vided by the supplier. The assignment of the different step

heights was independently confirmed by Raman spectros-

copy (results not shown).

For comparison, Fig. 1(b) shows a phase-shifting image

of the same region collected with the optical profiler in less

than 60 s. This clearly identifies regions with four different

step heights corresponding to the substrate (SiO2) and mono-,

bi-, and tri- layer graphene sheets, as labeled. Although not

immediately evident from Fig. 1(b), the measured step

heights of the different graphene layers are inverted relative

to their expected physical thickness, with the SiO2 substrate

appearing higher than regions covered with graphene, and

thicker graphene layers appearing lower than thinner ones.

This is more clearly seen in Fig. 1(c) which shows a three-

dimensional view of a selected area of the sample [marked

by a rectangle in Fig. 1(b)]. To understand this inverted to-

pology, it is necessary to consider the phase-shifting mea-

surement in more detail. To construct a topological map

from PSI data, the relative step height between neighboring

regions on a surface is calculated from the measured phase

difference as follows:

Dh12 ¼
k

4p
D/12; (1)
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where k is the wavelength of the source beam and D/12 is

the position-dependent phase-difference data. For light inci-

dent normal to a reflective surface, this is straight forward,

and a positive phase difference between region 1 and region

2, D/12¼/1�/2> 0, indicates that region 1 is higher than

region 2, i.e., the reflection path length is longer for the

lower region than from the higher region. Under the phase-

shift interferometry technique, the strongest reflection is

used as the “sample arm” of the interferometer, which is a

function of the refractive index, thickness of each layer, and

the wavelength used to probe the sample. However, the

reflectivity of a layer of graphene on silica is extremely low

(less than 4%), and a simple calculation for the present sam-

ple structure13 shows that the strongest reflection comes

from the silica-silicon interface. By comparing the optical

path lengths of the most strongly reflected beam with and

without a graphene layer, it can be seen that the former intro-

duces a phase shift equal to two passes through the graphene

layer, such that

D/ ¼ þ 4p
k
ðtGnG6dÞ; (2)

where tG and nG are thickness and refractive index of the gra-

phene layer and d is an optical path contribution from adsor-

bates or residues that are specific to the substrate or graphene

layers. The phase-shift defined by Eq. (2) manifests itself as

an increased sample arm length, and is therefore interpreted

as coming from a “deeper” layer or a “recess” relative to the

silica surface as observed in Fig. 1(c). Importantly, in cases

where the reflection from the graphene surface is stronger

than that from the substrate, the sign of the apparent thick-

ness will swap and Eq. (2) becomes

D/ ¼ � 4p
k
ðtGnA6dÞ; (3)

where nA is the refractive index of the imaging ambient (air

in the current experiments), and the graphene layer will

appear as a positive step on the substrate. Significantly, the

measured phase shift does not depend on details of the sub-

strate structure. All that is required for high-quality imaging

is reflection from some interface, and a sufficiently low sur-

face roughness such that the edges of the graphene flake are

visible.

A particular strength of this technique is that it can pro-

vide rapid quantitative analysis of over large area samples,

with typical images taking just a few seconds. As an exam-

ple, Fig. 2(a) presents a PSI image of a 140 lm� 75 lm

region of the sample, together with line-scans showing

“apparent” step height profiles across particular paths, Fig.

2(b). The step height is initially calculated assuming a refrac-

tive index of 1.0 and as a consequence indicates the optical

thickness of the layers.

To calibrate the measured data, the optical thicknesses

of regions containing one, two, and three layers of graphene

were determined by direct measurements between the sub-

strate and the layers, as shown in Fig. 3(a). As expected, the

measured average optical thicknesses show a linear depend-

ence with increase in the number of graphene layers, with a

slope, tGnG, corresponding to 2.0 6 0.12 nm per layer and an

offset, d, of 0.6 6 0.26 nm. Using a typical value for the

physical thickness of graphene of 0.335 nm,11 this corre-

sponds to a refractive index of 2.99 6 0.18—more than that

associated with bulk graphite5 and within the range reported

by others.14 Figure 3(b) shows a PSI image of a selected

region of the sample, together with line scans calibrated

using this data [Fig. 3(c)]. The step heights between the sub-

strate and two-layers of graphene and between two- and

FIG. 1. (Color online) (a) Optical image of graphene film on a SiO2/Si sub-

strate measured under white light illumination. NB: The distance between

markers is 0.4 mm, (b) a PSI image of the graphene sample depicted in (a),

and (c) a 3D PSI image of a region of the graphene sample, as indicated by

the square in (b).

FIG. 2. (Color online) (a) PSI image of a selected region of the graphene

sample with lines indicating the trajectory of line scans 1 and 2, and (b) a

plot of optical thickness versus position for scans 1 and 2.
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three-layers of graphene are clearly evident, and the signal-

to-noise ratio is consistent with a resolution of �0.05 nm.

Commercially available optical profilers, such as that

employed in the present work, are capable of measuring sur-

face height variations of <0.1 nm in air, which corresponds

to <0.03 nm thickness variations in graphene, consistent

with the results presented in Fig. 3(c), and sufficient to

observe graphene-graphene oxide transitions. The technique

is also capable of imaging large surface areas, with field of

view and lateral spatial resolution ranging from �50 lm to

>2 mm and �160 nm to >7 lm, respectively, depending on

the choice of camera resolution and lenses. Although not

optimized for high spatial resolution, scan 2 in Fig. 3 clearly

shows the presence of a pin hole, located at a scan distance

of 10 lm. The power of the technique is further enhanced by

its ability to undertake in-situ investigations of samples dur-

ing thermal or other processing.

In summary, phase-shifting interferometric imaging was

shown to provide quantitative thickness analysis of large-

area graphene films and to be readily able to distinguish films

composed of single or multiple graphene sheets. The sensi-

tivity of the technique was shown to result from the phase

shift produced by the graphene film as incident and reflected

light pass through it, rather than from path-length differences

produced by surface height variations, as is usually the case

for PSI imaging. This was enhanced by the high refractive

index of graphene, estimated in the present work to be

nG¼ 2.99 6 0.18. Importantly, this technique has the poten-

tial to characterize films consisting of an arbitrary number of

graphene sheets on a variety of substrates and offers the sen-

sitivity for in-situ observation of physical changes induced

by graphene processing, such as oxidation.
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FIG. 3. (Color online) (a) Plot of measured average optical thickness as a

function of the number of graphene layers. Inset shows a PSI image of the

graphene sample showing the position of line scans used for the thickness

measurements, (b) PSI image of a selected region of the graphene sample

with lines indicating the trajectory of line scans 1 and 2, and (c) calibrated

line scan showing the graphene film thickness along line scans 1 and 2.
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