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Abstract—In this paper, the problem of frequency-limited H .. model
reduction for positive linear time-invariant systems is investigated. Specif-
ically, our goal is to find a stable positive reduced-order model for a
given positive system such that the Hoo norm of the error system is
bounded over a frequency interval of interest. A new condition in terms
of matrix inequality is developed for characterizing the frequency-limited
H o, performance. Then an equivalent parametrization of a positive
reduced-order model is derived, based on which, an iterative algorithm is
constructed for optimizing the reduced-order model. The algorithm uti-
lizes coarse reduced-order models resulting from (generalized) balanced
truncation as the initial value. Both continuous- and discrete-time systems
are considered in the same framework. Numerical examples clearly show
the effectiveness and advantages of the proposed model reduction method.

Index Terms—Model reduction, positive systems, frequency-limited
H . performance, iterative algorithm.

[. INTRODUCTION

Positive systems, whose state variables are always positive or
nonnegative, are a class of dynamic systems often encountered in
various industrial engineering and social science areas that include bi-
ological and chemical reactions, compartmental networks, economics
systems and ecosystems [1]. For positive systems, the positivity
constraint on system states results in some special properties. On one
hand, this kind of particular systems have some beneficial properties
that general systems do not have. For instance, without loss of
generality, the Lyapunov matrix in the bounded real lemma for
positive linear systems can be restricted to be diagonal [2]. On the
other hand, to preserve or achieve positivity, many well-established
results for general linear systems cannot be directly applied to positive
systems or at least need particular but conservative treatment. Due
to the significance and particularity, positive systems have received
considerable attention during the past decades, and many results on
positive systems have been proposed, see [3]-[10].

Model reduction is a basic theme in control theory. Modeling via
physical, chemical, social or biological laws often leads to high-order
mathematical models, which are inconvenient for system analysis
and synthesis, naturally leading to the problem of model reduction.
Some classical methods, for instance, balanced truncation (BT) and
Hankel norm approximation [11], have been shown to be effective
in reducing the order of general linear systems. In recent years,
many new approaches such as H. model reduction have been
proposed to handle more complicated systems [12]-[14]. Model
reduction for positive systems has been specifically addressed by
some researchers very recently [15], [16]. For model reduction of
positive systems, it is naturally desired that the reduced-order model
is also positive. Unfortunately, the aforementioned results on general
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linear systems do not have such a property, and thus cannot be applied
to positive systems. To circumvent this difficulty, a generalized BT
(GBT) method was proposed in [15], and an iterative approach was
constructed for positivity-preserving Ho, model reduction in [16].

For model reduction, sometimes one may be more concerned about
the approximation performance at some frequencies than at others
[17], [18]. For instance, the original aircraft model established by
analyzing its aerodynamics and considering practical constraints (e.g.,
actuators have limited bandwidths) are only valid within a specific
frequency range [19], therefore, to obtain a reduced-order model
for the aircraft, it is only necessary to consider the approximation
performance within this frequency range. Some methods exist for
enhancing the approximation performance over a limited frequency
interval (e.g., frequency weighting [14], [20], [21] and frequency-
specific balanced truncation [17], [22]) and at a specific frequency
(e.g., moment matching (MM) [23]), but to our knowledge, these
methods cannot guarantee positivity of the resulting reduced-order
model that is expected for model reduction of positive systems.
Hence, the problem of model reduction for positive systems over
a limited frequency range is still open, which motivates the work of
the paper. Especially, note a general fact on positive systems, namely,
a positive linear time-invariant (LTI) system always has the maximum
gain at zero frequency [2]. This fact reflects that the performance of
positive systems around zero frequency is in general more important
than that at other frequencies. Therefore, reduced-order models of
positive systems are desired to have good approximation performance
especially around zero frequency. Actually, since signals in positive
systems are all nonnegative, there always exists a remarkable zero-
frequency component in the signals, further highlighting the impor-
tance of the zero-frequency performance of positive systems.

In the paper, we will consider the problem of frequency-limited
Ho model reduction for positive LTI systems. For a given stable
positive system, the goal of the paper is to find a stable, positive,
reduced-order model such that the H., approximation error over a
limited frequency interval is minimized. First, a new condition based
on the generalized Kalman-Yakubvich-Popov (GKYP) lemma will
be derived for characterizing the frequency-limited H., norm of the
error system. In this new condition, the product terms between the
Lyapunov matrices and the parameter of the reduced-order model
have been eliminated. Then, a necessary and sufficient condition
will be proposed for parameterizing a positive reduced-order model.
It is shown that this new parametrization establishes a connection
between a positive reduced-order model and a general one. With
coarse reduced-order models resulting from the BT or GBT method
as the initial value, an iterative algorithm is constructed to search
for a positive reduced-order model with the frequency-limited Hoo
error optimized. Numerical examples will be provided to show the
effectiveness and advantages of the proposed method.

Notation: R™*™ is the set of all m x n real matrices. Especially,
Ry, represents R™*"™ for simplicity, and R *™ represents R™*™ with
nonnegative elements. A matrix A € R7"™™ is said to be positive; a
matrix A € R,, is said to be Metzler, if all its off-diagonal elements
are nonnegative. P > 0 (> 0) means that matrix P is positive
definite (semi-definite). I denotes an identity matrix with appropriate
dimension. diag{Ai,..., A,} stands for a block-diagonal matrix.
For a matrix A € R,,, sym{A} indicates AT + A,

II. PROBLEM STATEMENT
Consider the following state-space model of the stable system (3):
(2) : A=z(t)] = Az(t) + Bu(t)
y(t) = Cz(t) + Du(t) M



where z(t) € R"™, u(t) € R™ and y(t) € R" are the state,
input and output vectors, respectively. [A, B; C, D] are real constant
matrices with appropriate dimensions. The operator A [x(¢)] denotes
z(t) for the continuous-time (CT) case (respectively, z(t + 1) for
the discrete-time (DT) case). In the frequency domain, we also use
A as Laplace operator s for the CT case (respectively, operator z
for the DT case). The system (X) is supposed to be positive. The
definition of positivity for system (X) and its characterization are
given as follows:

Definition 1 ( [1]): The system (X) in (1) is said to be positive
if z(t) € R® and y(t) € R}, ¢t > 0, for all z(0) € R}” and
u(t) e RP, t > 0.

Lemma 1 ( [1]): The system (X) in (1) is positive if and only if
A is Metzler, B, C' and D are positive for the CT case (respectively,
A, B, C and D are positive for the DT case).

Exactly speaking, Definition 1 corresponds to internal positivity,
stronger than external positivity that is defined only for the input
and output (see [1, Definition 1]). Note that internal positivity is
state coordinate-specific, that is, when we say a system is internally
positive, we must refer to a specific state-space realization. This is
because internal positivity in general cannot be preserved under a
similarity transformation. This paper is only concerned with internal
positivity, and for brevity, we just call it positivity in the sequel.

To approximate the system (X), the goal of this paper is to explore
a reduced-order stable model (X;) in the following state-space form:

(1) + Aze(t)] = Arze(t) + Bru(t)

Y (t) = Crax(t) + Dru(t) @)

where z:(t) € R™ with 1 < n, < np and y:(t) € R™ are the
state and output vectors of the reduced-order model. The values of
matrices [A;, By, Cy, D;] are to be determined later. Augmenting the
state vector as £(t) = col{z(t), z.(t)}, we obtain the state-space

dynamics of the approximation error e(t) £ y(t) — v.(t) as

(Ze) : AE(1)] = Aeg(t) + Beu(t)

e(t) = Ce&(t) + Deu(t) 3

where

(1>

A 0 A [ B
welo a]oee s

Cc2[C —C: ], De2D—Dx.
The transfer function of the error system in (3) is given by Go(\) 2
Ce MI—Ae) ™! Be + De.

For convenience, we define a set of matrices.

Definition 2: A set of matrices, P, is defined as

(CT)

P4
{ {[A+, Br; Cr, Dy] : Ay is Metzler, By, C; and D, are positive}
{[ (DT)

Ar, By; Cr, Dy] : Ay, By, Cr and D are positive}

First, as commented in [16], it is expected that the reduced-order
model (X,) is also positive since it approximates a positive system
(X). According to Lemma 1, the matrices [A,, By, Cy, D;] are re-
quired to belong to the set P. Second, for many practical applications,
one may be interested in the approximation performance only in some
finite frequency interval [17]. In this paper, the following frequency-
limited H index is employed to describe such a requirement:

IGeMI% < @)

where -y is a scalar to be optimized, and

A CT
1G22 { (€T

(DT)

SUD, g T G ()]
SUD,cq Tamax G ()]

with omax[] denoting the maximum singular value of matrix [-], and
Q £ [w1,ws] representing the frequency interval of interest. Here
0 < w1 < wsz < oo for the CT case (respectively, 0 S w <wz <7
for the DT case). In summary, the model reduction problem to be
addressed in the paper is formulated as follows.

Problem 1: Given a frequency interval €2, find a reduced-order
model (X,) for the system (X), such that

1) the system (%) is stable, and [A;, Br; Cr, D;| € P; and

2) the error system (X.) satisfies (4).

The following result, i.e., the GKYP lemma, will be used later.

Lemma 2 ( [24], [25]): Suppose that the error system in (3) is
stable, then [|Ge(N)||$ < ~ if and only if there exist symmetric
matrices P, @ € Ry, 1r, such that @ > 0 and

U < 0. ®

where
L AeT I C;F 0 T w 7(4)24-(4)1 w W2 — w1

B o pf 1| "~ o T o

: -Q P+ jwc@Q 2
02 diag PoiweQ  —wiwsQ ] I —y I} (CT)
- . P eich 2
diag e 9eQ  —P - 2coswaQ } I — I} (DT)

III. MAIN RESULTS
A. A New Performance Characterization

Note that the condition in (5) cannot be directly applied to
computing the reduced-order model, since the matrices A, and B, are
coupled with & that includes Lyapunov matrices P and Q). Moreover,
the structured specification [Ay, By; Cr, D;] € P further increases
the difficulty in solving the considered model reduction problem. To
circumvent these difficulties, we present the following new result for
characterizing the performance specification [|Ge(\)||, < 7.

Theorem 1: Let the systems () and (2,) be given, and suppose
that the system () is stable. The following statements are equivalent.

(i) The system (X;) is stable, and (X.) satisfies (4).

(i) There exist symmetric matrices P, Q) € Rnrﬁnr, Ps e Ry,
and diagonal matrices X € R,,, Y € R, such that @ > 0,
Ps>0,X>0,Y >0and

Ty

} (DT)

Wrew — 20 diag {X,Y}U <0 ©6)
O, — 2UF XU, <0 %)
where ® is defined in (5), and
rA O0O|B|O 0
0O O0O|O0|I 0 0 P
wa | T 000 0| 4 a P 0 } €D
T]lo0o 1|]0|0 0 [»FsT _P. 0
C 0|D|0 -I 0 P,
0O 0| I]|O 0
a0 A | B | -1 o0 N
palo alB|- _I],Usf[Ar 1.

(iif) There exist symmetric matrices 15: Q € Rnytn,, P, € Ry,
a~nd diag0~nal mat{ices X eR,,,Y €R,, such that @ > 0,
P;>0,X>0,Y >0and

WoeW?™ — 20diag {X,f/} 0" <0
$,—20.X0T <0

(®)
©)



where ® is defined from ® with P and Q replaced by P and
@, respectively, and with the values of ny and n. exchanged,
®; is defined from P with Ps replaced by Ps, and

A 0|TI 0|BJ|oO 0 0
y 0 0|0 I|o0]|oO ~ Ar B
W& |7 C 0|0 o|D|T |,U%| =C; —D,

0 1|0 0]O0]O0 - | 0

0 0/0 0|I|oO 0 -1
U2 ar -1]".

Proof: ((i) = (ii)) It is known that A, is stable if and only if
the Lyapunov stability inequalities,

ATP, + PLA, <0 (CT)
ATP.A, — P, <0 (DT)

are satisfied for some Ps > 0. Conditions in (10) can be uniform%y
written as \IIE<I>S\I/S < 0, where ®y is in (7) and U £ [ I ATT } .
Note that, since A, is block diagonal and A is supposed to be stable,
the error system (X.) in (3) is stable if A, is stable.

From Lemma 2 and the Lyapunov stability inequalities, it follows
that the statement (i) is true if and only if some matrices P, () and
Ps exist such that Q > 0, Ps > 0 and the conditions in (5) and (10)
hold. These conditions imply that

10)

Vo0 4+ UV TOEETOU < 0
VIO U, + e, VI D FEEXd U < 0

(11)
(12)
hold for two sufficiently small scalars € > 0 and €5 > 0, where
T
0O I{0 Ol 0O T
P=10alo o] dfo]  m=to 1

Using the Schur complement, the inequalities in (11) and (12) can
be written as

vTor UToFE

{ . g <0 (13)
UIo, v, UId E,
[ . P ]<0. (14)

Furthermore, we can choose a scalar € such that € > 0.5MET®E +
e ') and € > 0.5N(EL®.F, + ¢ 'T), where \(-) represents the
maximum eigenvalue of matrix (-). Thus, we have

21> ETOE + 71, 2l > EX®,F, + 2. '
or equivalently,
e ' I< 2d— ETOE, £;'1 < 2¢1 — EX 0, E,

which combined with (13) and (14) ensure

v Tow vToFE
Y
T_{ " ET<I>E—2eI}<O
T, o vTo, E
A s s *s E slus
Y= { «  ETO.E, — 2 } <0
Define matrices
I 0
nel [0 —A|-B | , ,Tlsé[_IA H
0 —-C:|-D, r

By substituting Ae, Be, Ce and D, into V¥, and setting X = eI and
Y = €l, it can be verified that

WTeW — 20 diag {X,Y}U = T TT1 <0
O, — U XU, = TEY T1s < 0

which are the inequalities in (6) and (7), respectively. The statement
(ii) is thus proven.

((i) < (ii)) Suppose that the conditions in (6) and (7) hold for
some symmetric matrices P, Q > 0, Ps > 0 and diagonal matrices
X >0 and Y > 0. Define a matrix

1
T, & { 0 A | B: } (15)
0 C.| D

Noting that W1y = ¥, UT> = 0 and Us ¥ = 0, we have
oy = 77 (WT<1>W — 2U " diag {X, Y} U) Ty <0
o, v, — 9T (@s - 2USTXUS> W, < 0.

Then, by Lemma 2 and the Lyapunov stability condition U3 &, ¥ <
0, we can obtain the statement (i).

The statement (iii) is the dual version of (ii), and can be proven
similarly, so its proof is omitted for brevity. |

Remark 1: The statement (ii) of Theorem 1 is an equivalent char-
acterization of the index in (4) and stability of the error system (%)
(suppose that the system (X) is stable). In this new characterization,
the reduced-order model parameters [A,, B:] have been separated
from the Lyapunov matrices P and @ in (5). Due to this feature,
Theorem 1 is more appealing than the GKYP lemma for reduced-
order model synthesis for three reasons. First, [A;, B:] multiplied
by two matrices P and () cannot be handled by the commonly
used change-of-variable method for reduced-order model synthesis.
To illustrate this point, suppose that P = diag{Pi1, P22} and
Q = diag{Q11, Q22}, where P2 and Q22 are n, X n, matrices. On
one hand, if we absorb, for instance, M = P2 A, and N = Q22A; as
new variables, the condition in (5) is not a linear matrix inequality yet,
and thus still cannot be easily tested. On the other hand, it is in general
impossible to recover a common matrix A, by reversing the change
of variables, that is, the above change of variables is irreversible.
Second, note that a structured specification [Ay, By; Cr, Dy] € P is
required, but the mentioned change of variables does not preserve
this requirement for model reduction of positive systems. In other
words, even if the mentioned change of variables were applicable,
the recovered matrix, for instance, A, = Pj,' M would not be
guaranteed to be Metzler or positive. Third, an extra condition in
(10) is needed to guarantee stability of the reduced-order model,
which further strengthens the previous two aspects. Nevertheless, the
statement (ii) of Theorem 1 includes the multiplication of (A,, B;)
by one matrix X, rather than by P and (), overcoming the above
difficulties. Specially, X and Y are positive and diagonal, providing
flexibility for constructing positive reduced-order models, which will
be shown in Section III-B.

B. A Parametrization of Positive Reduced-Order Models

The inequalities in (6)—(9) are not convex conditions with respect to
the reduced-order model parameters [A,, By, C;, D;]. In this section,
based on Theorem 1, we further develop a necessary and sufficient
condition for parameterizing a positive reduced-order model. For
convenience, we write the parameters of the reduced-order model
together as K £ [Ar, Br; Cr, Dy).

Theorem 2: Given system (X), the following statements are equiv-
alent.

(i) There exists a reduced-order model (X,) solving Problem 1.

(ii) There exist symmetric matrices P, @ € Ry, 4n,, P € Ry,
diagonal matrices X € R,,, Y € R,, and matrices K =
[A,B;C, D] € Rwtnm)x(uwtnu) 1 — [, Lp:Le,Lp) €
P such that @ >0, P >0, X >0,Y >0 and

E(K) 2 WTOW —sym{UTV} <0 (16)



Eg(A) £ & —sym {USVi} <0
where ® is defined in (5), W in (6), @5 in (7), and

a7

0 A -1 0
“é{o C‘D 0 —I]’uSé[A 1]
2[00 LalLe|-X 0 N B
V‘{o Le | Lp| 0 —Y}?VS_[LA X1

(iif) There exist symmetric matrices~15, Q € Rnytn,, B € Ry,
diagonal matrices X € R,,, Y € R,, and matrices L =
[A,B;C,D] € RUm+r)x(udnu) 1 — [[, Lp:Lo,Lp| €

P such that @ >0, P, >0, X >0, Y > 0 and
2(K) 2 WeWT —sym{VUT} <0
és(.A) 2o, — sym {‘ZZ:{E} <0

(18)
19)

where @, W are defined in (8), &, in (9), and

gal0 ATt |-1 o * gal A

“lo BY|-DT| o0 1| | -1
gol0 Li|-LE|-X" 0 * gol La
“lo Ly |-LY| o YT | T | -X |-

Moreover, if the statement (ii) (respectively, (iii)) is true, the
parameters of the reduced-order model (X.) can be obtained by
K = diag{X ™!, Y '} L (respectively, K = Ldiag{X ', Y ~'}).

Proof: ((i) = (ii)) Suppose the statement (i) is true. According
to Lemma 1 and Theorem 1, there exist matrices P, @, Ps, X, Y
and K such that @ >0, P, >0, X >0,Y > 0, K € P and the
conditions in (6) and (7) hold. Let L = diag{X,Y} K, K = K,
then we have Y = U, V = diag {X, Y} U, Us = Us and V5 = XU,
which imply

2(K) =wWTew — 20 diag {X,Y}U
=Wrew —sym{U" vV} <0
E(A) = @, — 2US XUy = @ — sym{U Vi} < 0.

That is, the conditions in (16) and (17) hold. Since X and Y are
positive and diagonal and K belongs to P, the matrix L from L =
diag {X,Y} K also belongs to P. Thus, the statement (ii) is true.

((i) < (ii)) Suppose the statement (ii) is true. Substituting L =
diag {X,Y} K into (16) and (17), we have

E(K) = WTeW —sym {UTdiag {X,Y}U} <0
Ze(A) = &y — sym{US XU} < 0.

Pre- and post-multiplying the first condition by 75 and T with T}
defined in (15), and the second condition by WY and W, respectively,
we further obtain
VToU = T (WTOW — sym{UTdiag {X, Y} UNTz < 0
VS, = U (D — sym {US XU }) ¥ < 0.

According to Lemma 2 and the Lyapunov stability theory, UT®¥ <
0 and \IJE'I>S\IJS < 0 imply that the statement (i) of the theorem is true
for a positive reduced-order model with the parameter K obtained as
K =diag{X "Y'} L.

Consequently, the statement (i) is equivalent to (ii). By virtue of
the statement (iii) of Theorem 1, the equivalence between statements
(i) and (iii) of Theorem 2 can be similarly established. Obviously, K
obtained by K = diag{X ', Y '}L or K = Ldiag{X ', Y '}
is guaranteed to belong to P. |

From the necessity part of the proof, it is seen that L comes from
the change of variable L = diag {X, Y} K; thus, requiring L € P
is not restrictive. According to the statement (ii) of Theorem 2, the
reduced-order model is parameterized as K = diag {X ', Y '} L.

Because L € P, and X, Y are positive definite and diagonal, it is
guaranteed that K € P, that is, the obtained reduced-order model
is also positive. Hence, Theorem 2 circumvents the difficulties of
Theorem 1 in handling the multiplication of K by P, @ and P; that
are pointed out in Remark 1. Note that the requirement, L € P, is
actually an element-wise convex constraint, implying that it can be
easily checked by standard softwares.

Compared with Theorem 1, the conditions in (16) and (17) include
an additional matrix X, which satisfies an important property shown
by the following theorem.

Theorem 3: For K = [ A B; C D | satisfying the state-
ment (ii) or (iii) of Theorem 2, the state-space model given by

(Z0) 0 Az (t)] = Az (t) + Bu(t)

yr(t) = Cax(t) + Dult) (20)

is a stable n,th-order model approximating the system (X) such that
the resulting error system (X) satisfies (4).

Proof: Suppose thatamatrix = [ A B; C D ] satisfies
the statement (ii). Pre- and post-multiplying the condition in (16) by
7'2T and 7> with

1
T2 & 0 A|B
0 C|D

one can obtain (5) for the error system (3) that results from the
reduced-order system (3}), that is, (4) is satisfied. From (17), the
Lyapunov stability inequality can be obtained through

HEREHEC R

Therefore, the reduced-order system (33.) is stable.

The proof for the case of the statement (iii) of Theorem 2 can be
completed similarly. |

Theorem 3 shows that the matrix IC also gives rise to a reduced-
order model (X}) for the same system (X). The difference between
systems (3,) and (X}) is that the latter is not necessary to be positive.
In other words, according to Theorem 3, the statement (ii) or (iii) in
Theorem 2 establishes a connection between a positive reduced-order
model and a common reduced-order one.

C. An Iterative Algorithm for Positive Model Reduction

The inequalities in (16)—(19) are not convex constraints. However,
if K is fixed, these conditions become convex with respect to the
remaining variables. Hence, an algorithm is naturally proposed for
computing reduced-order models: First fix /C corresponding to some
reduced-order model known a priori, and then solve the conditions
in (16), (17) and/or (18), (19) to obtain K &€ PP corresponding to a
positive reduced-order model. A merit of the proposed design method
is that the design flow can be repeated for further reducing the
approximation error. Consequently, the following iterative algorithm
is proposed for solving the model reduction problem.

Iterative Algorithm for Positive Model Reduction

S-1  Find the parameter K of an n.th-order model (X/) in (20) via
the existing model reduction methods. Set 7 = 1.
S-2 (Primal) Solve the following optimization problem:

s.t. 2(K) <0, Zs(A) <0,Q >0
P, >0, LeP, diag{X,Y} >0
for P, Q, Ps, X, Y, L and ~.

min 7y

@n

Set K = diag { X1, Y1} L.



S-3  (Dual) Solve the following optimization problem:
min v S.t. é~(/C) <0, Z5(A) < 0,~Q~~> 0
P, >0, L € P, diag{X,V} >0 22)
for P, Q, Ps, X, Y, L and ~.
Set K = Ldiag { X1, ¥~} and denote the optimum of ~ as
A0,
S4 If "y(” — A0 ‘ /v < § with § being a prescribed tolerance

or if ¢ = k with k being the prescribed maximum allowable
number of iterations, then output K = K and v = ~v(9) as the
optimized reduced-order model, and EXIT; else, set ¢ «— i + 1
and go back to S-2.

Remark 2: Optimization of the frequency-limited H ., level 'y(i) of
the error system is realized directly by running the algorithm. It can
be shown that y*) is monotonically non-increasing with respect to ¢,
which will be demonstrated by numerical examples. Note that each
fy(i) is bounded below by zero. Hence, the sequence {fy(l) , 7(2), -}
must be converging as i increases. What value v theoretically
converges to, however, is unknown. The terminating conditions in the
algorithm are just some heuristic criteria for numerical programming.

Remark 3: The algorithm incorporates the primal and dual forms
of the derived conditions. One may note that simpler algorithms can
be constructed similarly but only using the primal form (S-1, S-2
and S-4) or the dual form (S-1, S-3 and S-4). However, no guarantee
exists such that the two simpler algorithms give rise to the same
result. Because all these algorithms are heuristic, the algorithms using
a single form may produce “early mature” results. In other words,
the value of 4(*) for one form decreases too slow after very few
initial iterations so that one has to terminate computation and accept
the obtained result that would be too conservative. According to our
experience, combining the two forms together can partly overcome
this effect, which will be illustrated by numerical examples.

IV. NUMERICAL EXAMPLES

In this section, two numerical examples are presented to illustrate
the effectiveness of the proposed model reduction method. Numerical
solver SeDuMi [26], invoked through the interface Yalmip [27], will
be used to solve the convex optimization problems encountered.

Example 1 (Positive CT System): Consider an example of the pos-
itive CT system (X) with state-space parameters given by

—-1.5 0.6 1.0 0 0 0 1 0

03 —-19 0.2 0 0 0 0 1

0.2 0.5 —2.7 1 0 0 0 O

A= 0 0 05 -3 06 0.5 , B= 0 0

0 0 0 04 —-16 0.3 0 0

0 0 0 06 05 —1.6 0 O
C=]Iax2a Oaxs |, D=02x2.

This numerical example was composed in [16] to describe a com-
partmental network with two subsystems. Suppose that the limited
frequency range 2 takes [0, 2] rad/s. By the developed algorithm,
the goal of this example is to explore a positive second-order model
and optimize the approximation error level ~ for the index in (4).
By the GBT method in [15], a reduced-order model is obtained
via retaining the first two states of the original model. Using this
reduced-order model as the initial value of the developed algorithm,
and setting 6 = 0.01 and k = 50, we obtain a reduced-order model:

~1.2546  0.6718 | 0.9192 0.0054
A Br ] _ | 02371 —1.6161‘0.0172 0.9329 |
c, D, |~ | 09153 00197 [0.0330 o003 | 2P
0.0180  0.8975 ‘0.0014 0.0396

and the corresponding optimal ~, denoted as v*, is v* = 0.0154.
Obviously, the obtained reduced-order model in (23) is positive

Frequency response of the error systems
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Fig. 1. Frequency response of the error systems in Example 1.
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Fig. 2. Evolution of 'y“) by different iterative methods in Example 1. For

the case of Primal+Dual, the horizontal axis denotes the times solving the
problem in (21) or (22).

according to Lemma 1. For illustration and comparison, Figure 1
presents the frequency response of the error systems for the proposed
method and some existing methods. First, it is seen that, for the
reduced-order model in (23), the actual maximum singular value of
the error system over 2 = [0, 2] rad/s is effectively upper bounded
by v* = 0.0154. Second, it is observed that, over the interested
frequency range 2 = [0, 2] rad/s, the reduced-order models obtained
by GBT, the H method in [16] and MM have larger approximation
errors than the one in (23) in the frequency-limited H., sense.
Although MM gives a reduced-order model perfectly matching the
original one at zero frequency, it loses such matching at other
frequencies and the overall approximation performance over the
frequency range €2 could be further improved.

To illustrate the usefulness of combining the primal and dual forms
in the proposed algorithm, we show the evolution of v in Figure
2, which also presents the results on the algorithms only using the
primal or dual form. All the algorithms are configured as omitting
the terminating condition regarding the tolerance § and setting k =
1000; moreover, the iteration number ¢ for the proposed algorithm
is scaled by 2, hence the horizontal axis for the proposed method
actually denotes the times solving a single problem in (21) or (22).
It is shown that the algorithms only using the primal or dual form
produce “early mature” results, while the proposed algorithm can
provide some improved ones, verifying the comments in Remark 3.

Example 2 (Positive DT System): Consider the following differ-
ence evolution equation:

(t+1) _ 0.24 0.48 0.76 0.76 0.76 0.76 0.76 0.76 0.72 0.64
z - diag{0.24, 0.30, 0.33,0.34, 0.33, 0.30, 0.28,0.24, 0.27} Og 1

] a(t)

which is an example of Leslie’s age structured population model
[28] specified for the squirrel population data in [1]. It means that
the considered population model includes 10 age groups, while x; (%)
denotes the number of individuals of the age group ¢ in the current
year. The first equation,

21 (t+1) = [0.24 0.48 0.76 0.76 0.76 0.76 0.76 0.76 0.72 0.64] z(t)

represents the next year population of the (youngest) age group 1 that



are reproduced by all the age groups (the coefficients are computed
from survival and fertility rates). Other equations can be written as

ZEz‘(t + 1) = Si71$i71(t), 1=2,...,10

where s; is the survival rate of age group ¢ in one year. Corresponding
to the system (X), suppose that other matrices are given by

O2xs ]T, D:[ 0 O]
C=(1 11111111 1].
The matrix B means that the first two age groups are still affected
by external input due to immigration, artificial propagation, etc.
Matrix C' means that the output is the total population of all the age
groups. Furthermore, assume that the frequency interval 2 is [0, /3]
rad/year. We are interested in constructing a positive second-order
model to approximate this population model.

By BT, a second-order model is first obtained as

A B 0.6637  —0.2282 | 1.4723  1.8451
[ Cr Dr :| = | —0.0305 0.1792 | 0.8133 —0.5173
r r 0.5927 01611 | O 0

which, however, is not a positive system according to Lemma 1.
Use this model as the initial value and set § = 0.01 and k£ = 50.
The developed algorithm gives rise to a second-order model as

A B ] 0.6645 0.0006 | 1.0480 1.8138
C. Dy |

0.4625 0.0073 | 2.2148 0.0159
0.5360 0.1968 \ 0.0046 0.0081

with v* = 0.0176. It can be verified that the model in (24) is stable

and positive.

] (24)

V. CONCLUSION

This paper has addressed model reduction for positive LTI systems
in the frequency-limited H . sense. The cases for CT and DT systems
are considered in a unified framework. To preserve positivity of
the reduced-order model, a novel necessary and sufficient condition
for the existence of a positive reduced-order model with a guaran-
teed frequency-limited H. approximation error has been proposed,
which parameterizes a positive reduced-order model through another
common reduced-order one. By virtue of this property, an iterative
algorithm has been accordingly developed to search for and optimize
the positive reduced-order model. Numerical results show that the
proposed algorithm, when initialized by the simple BT or GBT
method, can produce satisfactory reduced-order models. It should be
noted that the proposed method can only deal with internally positive
systems. How to deal with the same problem for externally positive
systems is worth future investigation.
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! Accidentally, this reduced-order model can be realized by a positive system
further through a similarity transformation, for instance, TAT! with T =
[1 —5;0.3 1]. But in general, the BT method is not positivity-preserving.
This does not contradict to the above result, because (internal) positivity is
state coordinate-specific.
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