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We introduce novel classes of higher-order spatial optical solitons in analogy with Laguerre-Gaussian
and Hermite-Gaussian linear eigenmodes. We reveal that stable higher-order optical solitons can exist in
nonlocal nonlinear media in the various forms of soliton necklaces and soliton matrices. Modulational
instability can lead to nontrivial transformations between energetically close solitons with different
symmetries through the intermediate states resembling generalized Hermite-Laguerre-Gaussian modes.
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Recent experimental observations of the existence,
stability, and interactions of spatial optical solitons in
nematic liquid crystals [1] and lead glasses [2] stimulate
further theoretical studies of intriguing properties of the
self-trapped optical beams in media with nonlocal non-
linear response. Some earlier theoretical results described
the basic properties of nonlocal optical solitons [3], as well
as analyzed the stabilization against symmetry breaking
instability of vortex solitons [4], rotating dipole solitons
[5–7], and azimuthons [8–10]. Very recently, novel experi-
mental results on the generation of dipole, tripole, and
quadrupole solitons, as well as necklace beams [11] have
been presented [12].

In any realistic nonlinear medium with a local response
[13], higher-order optical solitons and vortices are known
to be unstable [14]. Nonlocality can suppress the azimuthal
instability, and it can also support multisoliton bound states
[15] and otherwise nonstationary structures, such as dipole
solitons. Since the ringlike solitons resemble the structure
of the Laguerre-Gaussian (LG) linear modes, and the tri-
pole solitons resemble the Hermite-Gaussian (HG) optical
beams, it is natural to ask whether the counterparts of other
well-known linear optical modes [16,17] exist in nonlinear
media. In particular, we are interested in exploring what
kind of soliton ‘‘rings’’ and ‘‘matrices’’ can be supported
and stabilized by nonlocal nonlinear medium.

In this Letter, we start from a set of linear optical LG and
HG waveguide modes to construct higher-order spatial
solitons in nonlocal nonlinear media in the form of soli-
ton clusters: necklaces and matrices. We identify those
novel types of solitons as Laguerre-nonlocal (LNnm) and
Hermite-nonlocal (HNnm) spatial solitons with distinct
differences in their symmetry. In this approach, the
multiple-ring soliton necklaces LNnm are characterized
by the number of radial nodes n and the topological index
m. Similarly, the indices of the soliton matrices HNnm
determine the number of nodes in two orthogonal direc-
tions. Using the variational approach [18] and numerical
minimization of the error functional [19], we find analyti-
cally and numerically broad classes of higher-order local-

ized states and demonstrate that only a few of them are
energetically separated from each other. In general, local-
ized states with different symmetries coexist, i.e., they
have the same power and energy. While the lower-order
energetically separated states (e.g., dipoles) become stable
when the nonlocality parameter (or the beam power) ex-
ceeds a certain threshold value, the power of the higher-
order solitons can coincide and nontrivial effects of reviv-
als and transformations are observed.

We consider the propagation of paraxial optical beams
with scalar field envelope E in the medium with nonlocal
Gaussian response described by the nonlinear Schrödinger
(NLS) equation [13], i@zE � �H =�E� being its
Hamiltonian representation. Stationary states can be found
in a generic form as E�x; y; z� � U�x; y� exp�ikz� with the
Lagrangian L � �kP�H , where the integrals of mo-
tion are the power, P �

R
jUj2dr, and Hamiltonian,

 H �
Z �
jrUj2 �

1

2
jUj2

Z
e�jr�r0j2 jU�r0�j2dr0

�
dr: (1)

Physical variables absorb the transverse scale of nonlocal-
ity � as follows, ~z � z�2, ~r � r�, and ~E �

����
�
p

E=�. Note
that the power, ~P � �P, and the orbital angular momen-
tum, ~M � �M, do not depend on �, here M �
Im

R
U�jr�rUjdr. However, the soliton constant and

the Hamiltonian scale as ~k � k=�2 and ~H � �H =�2.
One-dimensional solitons.—In local media, the only

stationary scalar solution is a fundamental soliton, while
nonlocality allows us to compensate the soliton repulsion
stabilizing multihump solitons [20], similar to nonlinear
modes in confining potential [21]. We notice that in the
linear limit U ! 0, such modes correspond to the diffract-
ing HG modes

 Un�x� � A exp��x2=2a2�Hn�x=b�; (2)

where the integer index n determines the number of
nodes across the Gaussian envelope and Hn�t� �
��1�net

2
dne�t

2
=dtn is the Hermite polynomial. We use

Eq. (2) as the ansatz in the nonlinear problem (1) and
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derive variational solutions using the standard Ritz mini-
mization procedure [18] with the variational parameters A,
a, and b (b � 1 for n � 0, 1). Numerical solutions for
different n are shown in Fig. 1.

Laguerre-Nonlocal solitons.—The variational ansatz for
the LNnm solitons can be constructed using the separation
of variables in the cylindrical coordinates, U�x; y� �
Rnm�r��cosm’� ip sinm’�, where the radial envelope
Rnm with n nodes solves the nonlinear ordinary differential
equation [5]. Parameter p 2 	0; 1
 determines the depth
of azimuthal modulation (p � 1 for m � 0) as well as
the angular momentum, M � 2mpP=�1� p2�. Further
simplification of this method was implemented in
Refs. [7,10] for the radially symmetric vortices with p �
1, and here we extend it to the general case p � 1. Radial
envelope is sought in the form

 Rnm�x; y� � Arm exp��r2=2a2�Lmn �r2=b2�

with the generalized Laguerre polynomial Lmn �t� �
1
n! t
�metdn�tn�me�t�=dtn. The results in terms of the soliton

power P vs propagation constant k and Hamiltonian H vs
P are plotted in Fig. 2(a) for several different LNnm
solitons.

The singular LNnm solitons with m � 0 occupy the
continuous bands in the diagrams in Fig. 2(a) which we
obtain by varying the modulation parameter p. Thus, soli-
ton necklaces with p � 0 and vortex solitons with p � 1
form the lower and the upper-energy edges of the bands.
For the lowest-order single-ring LN0m necklaces the bands
are quite narrow, while their width diverges quickly with
the number of rings. Note that solitons with different
values of p are physically separated within the band by
the conservation of the angular momentum M.

Hermite-nonlocal solitons.—Separation of variables
U�x; y� � X�x�Y�y� in Eq. (1) leads to two coupled one-
dimensional subsystems for the envelopes X and Y which
can be, in general, complex. Indeed, the more general
family of the HN solitons will include singular solutions
with nontrivial phase and nonzero angular momentum,
similar to the LN solitons. However, their structure is
expected to contain multiple phase dislocations and, for
simplicity, here we consider only real envelopes X�x� �
Un�x� and Y�y� � Um�y� given by Eq. (2) with independent
parameters. Deriving variational equations, we establish
the relations between the parameters of one-dimensional
envelopes which give the final parameters of two-

dimensional ‘‘soliton matrices.’’ Variational solution
serves as a good guess for further use in numerical relaxa-
tion method; two examples of exact HNnm solitons are
presented in Figs. 2(e) and 2(f). Exact envelopes U�x; y�
were obtained with relaxation procedure [19] which con-
sist of numerical minimization of the error functional,R
jfj2dr, generated at the right hand side of stationary

NLS equation, kUtr � �H =�Utr � f, so that f ! 0
when the trial function approaches solution Utr ! U.

Coexistence of HN and LN solitons.—We introduced
above two distinct families of solutions, but the compari-
son of two H �P� diagrams in Figs. 2(a) and 2(b) suggests
that it is not always possible to separate them energetically
and to distinguish between ‘‘lower-’’ and ‘‘higher-order’’
solitons. For the radially symmetric LN-solitons with p �
1, the variational solutions provide a very good approxi-
mation of the integral characteristics [7] (power and
Hamiltonian), and here we confirm this result for soliton
necklaces LNnm with p � 0 and low-order soliton matrices
HNnm. Indeed, for a given value of k, the power of exact
solutions in Fig. 2(c)–2(f) differs from variationally pre-
dicted values in Figs. 2(a) and 2(b) within a remarkable 1%
of accuracy, while differences in Hamiltonian values are
within 10%.

However, for higher-order HN solitons, such as HN22

soliton matrix in Fig. 3 (top), the profiles of exact solutions
deviate from our ansatz. For low power in Fig. 3(a), the
HN22 soliton attains a shape of a square array of 9 out-of-
phase spatially well-separated solitons, the square being
stretched by its corners. At intermediate powers, as in
Fig. 3(b), the shape is fairly close to the HG ansatz. With
further increase of the power, the square geometry is

 

FIG. 1 (color online). Variational parameters of the one-
dimensional HNn solitons, Eq. (2). The index n is shown next
to the curves.

 

FIG. 2 (color online). (a,b) Variational diagrams and (c–
f) exact profiles for (a, c, d) Laguerre- and (b, e, f) Hermite-
nonlocal solitons. Solitons in (c–f) have the power P ’ 200.
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gradually lost [there is still a nonzero peak at the origin of
the ‘‘matrix’’ HN22 in (c)], and at approximately P � 250,
the soliton matrix HN22 disappears by ‘‘fusion’’ with 8-
soliton necklace LN04 (see Fig. 3(d)). The change of the
geometry of the HN22 solutions slows down our relaxation
procedure; it is in contrast to the LN04 solitons in Fig. 3
(bottom), for which the variational ansatz provides an
excellent approximation.

Two major conclusions can be drawn from Fig. 3. First,
the high-order HNnm solitons can exist in a limited domain
(P � Pmax and k � kmax), which implies that there should
be an upper limit for the number of solitons in the matrix,
N � Nmax, here N � �n� 1��m� 1�. Second, despite dif-
ferences in their geometry, the soliton matrix HN22 and
soliton necklace LN04 belong, in fact, to the same general
family of solitons.

For deeper understanding of the soliton coexistence, we
recall the so-called generalized Hermite-Laguerre-
Gaussian HLGnm�x; y;�� modes in linear media [16].
Two sets of modes, the LG and HG beams, appear as two
particular realizations of the HLG family attained for the
limiting values of the parameter �. The idea of such
generalization is that for the intermediate values of �,
any HLG beam also represents a self-similar and structur-
ally stable solution. Thus, we expect that, similar to the LN
and HN solitons, there is a greater variety of nonlinear
states parameterized by some structural parameter, such as
modulational parameter p for the LN-solitons. Indeed,
while our ansatz  cosm’� ip sinm’ [5] represents ex-
actly the HLGnm modal beam for n � 0 and m � 1 only
[16], it is no longer the case for higher-order HLG modes.
Particularly important will be to trace the continuation
M> 0 for HN solitons which is offered by HLG modes
with astigmatic transformations through the parameter �.

The results on nonlinear generalized HLG beams will be
presented elsewhere.

Mode conversion.—We use variational solutions as in-
put profiles for the direct simulation of the beam propaga-
tion. At the initial stage, the beams oscillate slightly [6]
because the variational profiles differ from the stationary
solutions. When the soliton is stable, these oscillations
(internal modes) slowly decay with propagation [5]. In
the region of instability, we observe different scenarios of
soliton dynamics, depending on their power. Apart from
the breakup into several fundamental solitons at low power
(as in local media) or irregular dynamics for stronger
nonlocality, we describe below the quasiperiodic dynamics
with soliton revivals and mode transformations.

First, we consider the transformation of the radially
symmetric LN10 soliton into the structure resembling
LN02 (or HN11) quadrupole [see column (c) of Fig. 4].
The corresponding H �P� diagram in Fig. 4(a) features
crossing of these two modes, and also indicates that the
double-ring fundamental soliton LN10 exists always within
the band of the quadrupole mode LN02. We argue that
energy crossing of the two states is responsible for the
mutual transformation of these two modes observed in
Ref. [7]. As the next step, we simulate the propagation of
the quadrupole soliton in Fig. 4(d) and observe remarkable

 

FIG. 4 (color online). (a,b) Energy crossings chosen from the
overlapping of two (H , P) diagrams in Figs. 2(a) and 2(b).
Examples of the propagation dynamics of (c) LN10 soliton with
P � 100, (d) HN11 (quadrupole, same as LN02) with P � 75,
(e) LN20 with P � 250, and (f) HN22 with P � 210.

 

FIG. 3 (color online). Coexistence of HN22 matrix (top row,
dashed line) and LN04 necklace (bottom row, solid line).
Variational (lines) and exact (dots and profiles) solutions are
shown for k � 2:12 (a), 11.5 (b), 30.34 (c), and 54.45 (d).
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similarities between the two; the latter includes periodic
transformations to the LN02 as well as revivals. Thus, when
two states cross, we expect and indeed observe mutual
transformations of solitons, despite the sharp differences
of their symmetry and stability.

The diagram in Fig. 4(a) also includes the ‘‘four-soliton
vector’’ HN30 and the tripole HN20 [12]. In the region of
powers in Fig. 4(a), both soliton vectors disintegrate into
repelling fundamental solitons; thus, we do not observe
any transformations involving other states. For higher
powers, the soliton vectors become energetically isolated
and stable; note however that the tripole was shown to be
unstable in media with thermal nonlinearity [10].

Next, we show in Figs. 4(b), 4(e), and 4(f) another
example of soliton transformations. The energy diagrams
of four different solitons in Fig. 4(b) remain very close
after crossing, and consequently, we observe mutual trans-
formations among three of them. Namely, a double-ring
fundamental soliton LN20 in Fig. 4(e) undergoes complex
dynamics where we could clearly identify periodic appear-
ance of LN12 and HN22 states, followed by soliton revival.
Similarly, the 3� 3 ‘‘soliton matrix’’ HN22 in Fig. 4(f)
transforms quasiperiodically to LN20 mode. Interestingly,
we do not observe appearance of the eight-soliton necklace
LN04, while its transformation to the matrix HN22 takes
place (e.g., for P � 220, not shown), before it became
stable at P � 250 [cf. Figure 3(b)]. Note also that crossed
states appear largely distorted by their internal vibrations.
This observation suggests that overlapping of soliton in-
ternal modes, in addition to crossing of stationary states,
must determine mutual soliton transformations.

We considered above the transformations between states
with zero vorticity as the simplest example. Because of the
conservation of angular momentum, the transformations
between singular states will be accompanied by their rota-
tion, as in Ref. [5]. Furthermore, it is expected that a
variety of ‘‘solitonic molecules’’ or clusters will increase
dramatically in the rotating grid [8,17], and novel states
with multiple vortices, or ‘‘vortex clusters,’’ will appear
[9]. Quasiperiodic topological transformations within self-
localized beams promise to bring many novel exciting
phenomena.

Conclusions.—We have introduced novel classes of
higher-order spatial optical solitons in the form of the
soliton necklaces and soliton matrices stabilized by the
nonlocal nonlinearity. These higher-order solitons repre-
sent generalization of the well-known Laguerre-Gaussian
and Hermite-Gaussian linear modes in the case of non-
linear media. A rich variety of the stationary states found
both analytically and numerically allows for nontrivial
mutual transformations induced by modulational instabil-
ity when the soliton powers become close or coincide.
These soliton transformations are manifested as periodic
robust oscillations between two or more spatially localized
states with distinctly different symmetries.
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