
Available online at www.sciencedirect.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by National Changhua University of Education Institutional Repository
www.elsevier.com/locate/eswa

Expert Systems with Applications 36 (2009) 1164–1178

Expert Systems
with Applications
Mining decision rules on data streams in the presence of concept drifts

Cheng-Jung Tsai a,*, Chien-I. Lee b, Wei-Pang Yang c

a Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, ROC
b Department of Information and Learning Technology, National University of Tainan, Tainan, Taiwan, ROC

c Department of Information Management, National DongHwa University, Hualien, Taiwan, ROC
Abstract

In a database, the concept of an example might change along with time, which is known as concept drift. When the concept drift
occurs, the classification model built by using the old dataset is not suitable for predicting a new dataset. Therefore, the problem of con-
cept drift has attracted a lot of attention in recent years. Although many algorithms have been proposed to solve this problem, they have
not been able to provide users with a satisfactory solution to concept drift. That is, the current research about concept drift focuses only
on updating the classification model. However, real life decision makers might be very interested in the rules of concept drift. For exam-
ple, doctors desire to know the root causes behind variation in the causes and development of disease. In this paper, we propose a con-
cept drift rule mining tree, called CDR-Tree, to accurately discover the underlying rule governing concept drift. The main contributions
of this paper are: (a) we address the problem of mining concept-drifting rules which has not been considered in previously developed
classification schemes; (b) we develop a method that can accurately mine rules governing concept drift; (c) we develop a method that
should classification models be required, can efficiently and accurately generate such models via a simple extraction procedure rather
than constructing them anew; and (d) we propose two strategies to reduce the complexity of concept-drifting rules mined by our
CDR-Tree.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Data mining; Classification; Decision tree; Data stream; Concept drift
1. Introduction

With the rapid development and large distribution of
electronic data, extracting useful information from many
numerous and jumbled sources has become a major goal
of many scholars. data mining (Han & Kamber, 2001; Men-
zies, 2003), an important technique for extracting informa-
tion from databases, has been proposed to solve this
problem. Among the several functions of data mining, clas-

sification (Lee, Tsai, Wu, & Yang, 2008; Tsai, Lee, Chen, &
0957-4174/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2007.11.034

* Corresponding author. Present address: 4F., No. 167, Sec. 1, Funong
St., East District, Tainan 70175, Taiwan, ROC. Tel.: +886 6 2133111x777;
fax: +886 6 3017137.

E-mail addresses: tsaicj@cis.nctu.edu.tw (C.-J. Tsai), leeci@mail.nutn.
edu.tw (C.-I. Lee), wpyang@mail.ndhu.edu.tw (W.-P. Yang).
Yang, 2007) is crucially important and has been applied
successfully to several areas; including the discovery of
commodity deal dependence, customer relationship man-
agement, risk analysis, etc. A standard classification task
can be divided into two steps. In the first step, a training

dataset is given. Each example in the training dataset con-
tains a number of attributes and a target class. Attributes
can be classified into continuous attributes and categorical

attributes. The main difference between them is that the
relations are ordered in the continuous attributes, but not
in the categorical attributes. With the given training data-
set, a classification system will generate a classifier to dem-
onstrate the relations between the attributes and the target
class in that training dataset. Then, the second step is to
evaluate the accuracy of the generated classifier from the
first step by using a testing dataset. The famous techniques
developed for classification include: Bayesian classification,

https://core.ac.uk/display/15638598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tsaicj@cis.nctu.edu.tw
mailto:leeci@mail.nutn.edu.tw
mailto:leeci@mail.nutn.edu.tw
mailto:wpyang@mail.ndhu.edu.tw

Fig. 1. The decision tree built using Table 1.

C.-J. Tsai et al. / Expert Systems with Applications 36 (2009) 1164–1178 1165
neural networks, genetic algorithms, decision trees, etc.
Among them, decision trees are the most popular due to
the merits of rapid construction, comparable accuracy,
and readable rules (Rastogi & Shim, 1998).

According to how the training dataset is obtained, the
classification problem also can be sorted into non-incremen-
tal learning and incremental learning. Incremental learning
is important for applications in which the training dataset
comes in the form of a data stream (Cunningham & Now-
lan, 2003; Domingos & Hulten, 2000; Jin et al., 2003). In
such an instance, it is not feasible to collect all training data
before applying an algorithm. Incremental learning
(Furnkranz & Widmer, 1994; Maloof, 2003; Maloof
et al., 2002; Utgoff, 1989; Utgoff, Berkman, & Clouse,
1997) is becoming ever more important since most of infor-
mation in our lives is presented in data stream consists of
data block. However, most proposed approaches to incre-
mental learning assumed data streams come under station-

ary distribution; namely, the data concept remains
unchanged. But in reality, any instance of applicable data,
such as disease variation, weather forecasts, consumers’
shopping habits, or virus detection may vary as time goes
by. Such a change of concept is known as concept drift

(Cunningham & Nowlan, 2003; Hulten, Spencer, &
Ddmingos, 2001; Klinkenberg, 2001; Klinkenberg et al.,
1998; Kolter et al., 2003; Koychev, 2000; Lane & Brodley,
1998; Lee, Tsai, Wu, & Yang, 2007; Wang, Fan, Yu, &
Han, 2003; Widmer & Kubat, 1996).

The current solutions to the problem of concept drift
focus on efficiently rebuilding classifiers to accurately pre-
dict new incoming datasets. Unfortunately, they are unable
to discern the main reasons why a concept drifts. As for the
users, they might be more interested in the rules of concept
drift. For example, doctors desire to know the main causes
of disease variation, scholars long for the rules of weather
transition, and sellers would like to find out the reasons
why the consumers’ shopping habits change. The idea is
simple but novel; to our knowledge, we are the first group
to address the problem of mining concept-drifting rules.
Note that, what we address is different from the emerging

pattern; which is the itemset whose support increases signif-
icantly in association rule mining (Fan & Ramamohan-
arao, 2006; Wang, Zhao, Dong, & Li, 2006). As claimed
in Freitas (2000), classification and association rule discov-
ery are fundamentally different mining tasks. The former
can be considered a nondeterministic task, which is
unavoidable given the fact that it involves prediction; while
the later can be considered a deterministic task which does
not involve prediction in the same sense as the classification
task does.

In this paper, we propose a concept drift rule mining
tree algorithm called CDR-Tree to accurately discover
the rules of concept drift. The main contributions of this
paper are: (a) mining concept-drifting rules, an interesting
problem has never been discussed in the past is addressed;
(b) our CDR-Tree can accurately mine the rules of concept
drift; (c) if classification models are required, CDR-Tree
can efficiently and accurately generate them via a simple
extraction procedure instead of building them from
scratch; (d) two strategies are also proposed to reduce the
complexity of concept-drifting rules mined by CDR-Tree.
The remainder of this paper is organized as follows: Sec-
tion 2 is the review of related works. In Section 3, the the-
ory of concept drift rules is introduced and then our
concept drift rule mining tree algorithm is elucidated.
The performance evaluation is shown in Section 4. In the
last section, our conclusions and future research directions
are explained.
2. Related work

In this section, we will introduce some related works,
including some dealing with the traditional decision tree,
incremental learning algorithms, and the proposed tech-
niques for solving the concept drift problem.
2.1. Decision trees

A traditional decision tree (Clark & Niblett, 1989; Quin-
lan, 1986; Quinlan, 1993), as shown in Fig. 1, is a flow
chart-like tree structure consisting of a number of Boolean
functions. Within the decision tree, each internal node

denotes a test on an attribute; and each branch represents
an outcome of the test. Each path from the root to a leaf
node forms a rule; and each leaf node is associated with a
target class (or class). Before building a decision tree, a
training dataset is required as shown in Table 1 (which is
used for the building of the decision tree in Fig. 1). Each
instance in the training dataset includes a set of attribute
values and a target class.

Traditional decision tree approaches consist of two
phases: the building phase and the pruning phase. In the
building phase, according to a splitting function such as
information gain, each internal node finds a splitting attri-
bute to partition the coming data into corresponding child
nodes unless all the examples in this node are pure (i.e. all

Table 1
The patients’ diagnostic data

ID Sex Location Fever Cough Diagnosis

1 Male New York Yes No Influenza
2 Female Chicago Yes No Influenza
3 Female New York Yes Yes Pneumonia
4 Male New York Yes Yes Pneumonia
5 Male Chicago Yes Yes Pneumonia
6 Male New York No Yes Influenza
7 Female New York No No Healthy
8 Male New York No No Healthy
9 Female Chicago No No Healthy

10 Female Chicago No No Healthy

1166 C.-J. Tsai et al. / Expert Systems with Applications 36 (2009) 1164–1178
examples in this node have the same target class) or cannot
be further partitioned. Nevertheless, many of the branches
reflect anomalies in the training data due to noise data or
outliers. To prevent such an overfitting problem, a decision
tree should prune its model to remove the least reliable
branches. This generally results in faster classification and
an improvement in the ability of the tree to correctly clas-
sify unseen data. To classify an unknown instance, begin-
ning with the root node, successive internal nodes are
visited until this example has reached a leaf node. The class
of this leaf node is then assigned to the corresponding
example as a prediction.
2.2. Incremental learning algorithms

A traditional decision tree algorithm such as ID3 (Utg-
off, 1989) is not precise enough without taking incremental
learning into consideration. Therefore, once the new
instances are obtained, the decision tree needs to be re-built
by using an integrated version of new and old datasets
(Utgoff et al., 1997). Based on ID3, Schlimmer and Fisher
proposed ID4 to solve this problem (Utgoff, 1989). The
major difference with ID4 is that the new instances are
added directly into the existing decision tree without gener-
ating a new one. ID4 keeps some information in every node
and judges if the best splitting attribute is still the same
after the addition of new instances. If they are the same,
the new instances continue going to the next node and
are evaluated again; but if they are not, the sub-tree root
in this node is discarded and a new sub-tree is then built.
However, the final decision tree is also influenced by the
different arrangement sequence of instances even they are
from the same new training dataset.

Regarding the solutions to ID4 problems mentioned
above, Utgoff upgraded and developed a new decision tree
evolution called ID5 (Utgoff, 1989). Similar to ID4, ID5
integrates new instances into decision trees. Also, ID5 pre-
serves the useful information in each node and determines
whether the best splitting attribute can still achieve optimal
performance. If the best splitting attributes change, ID5
will replace them instead of deleting the sub-tree. The sub-
stitution made by ID5 is called pull-up. For pull-up to
function properly, it is essential to have all instances stored
in the decision tree. Therefore, the recording cost of ID5 is
more expensive than that of ID4. Another disadvantage of
ID5 is that it generates a larger decision tree and rules of
greater complexity than either ID3 or ID4. In order to
reduce the size of the decision tree generated by ID5, Utg-
off has proposed ID5R (Utgoff, 1989). The primary pur-
pose of ID5R is to ensure that the splitting attribute in
each internal node is optimal and that the decision tree
after revisions is identical to the one re-built by ID3 by
applying the same training dataset.

2.3. Concept drift

Most incremental learning algorithms assume data
stream under stationary distribution. But in reality, the con-
cept of any given instance might either gradually or quickly
vary. While the concept of data starts drifting, the classifi-
cation model constructed by using old datasets becomes
unsuitable for the new one. Thus, it is imperative that the
old classification model be revised or a new one be re-built.
At present, the solutions to the problem of concept drift
can be generally divided into three categories:

2.3.1. Window-based approaches

Window-based approaches, like WAH (Widmer &
Kubat, 1996) and DNW (Klinkenberg et al., 1998), pick
up the training dataset within fixed or dynamic window
sizes to construct a classification model (Hulten et al.,
2001; Lazarescu & Venkatesh, 2004; Maloof, 2003).
WAH properly adjusts window sizes based on the accuracy
of classification. When the concept has drifted due to new
input instances, WAH will make the window size about
20% smaller. Also, WAH will reduce window size to avoid
retaining redundant and unnecessary instances while the
concept remains stable. Once the concept has drifted, but
while its variation still remains smaller than a given thresh-
old, WAH will retain the original window size. The above
mentioned conditions being unfulfilled indicates that more
instances are required to construct the classifier. In the
meanwhile, WAH will combine all new and old instances
together into a whole new training dataset. Although
WAH can resolve the problem of concept drift, it can only
be appllied to small datasets. Therefore, Klinkenberg and
Renz developed DNW to remedy this deficiency. DNW
constructs the predicted model by the way of data blocks;
its learning method is similar to WAH, but with different
methods for adjusting the window sizes. DNW builds a
classifier in each block and compare accuracy, recall, and
precision between the current classifier and the previous
one. After a full comparison, DNW will review the extent
of variations and make proper adjustments of window
sizes.

2.3.2. Weight-based approaches

According to certain factors such as how long the has
been data stored, this kind of approach will assign each
training instance with a distinctive weight (Kolter et al.,

C.-J. Tsai et al. / Expert Systems with Applications 36 (2009) 1164–1178 1167
2003; Koychev, 2000). Based on the weights, some out-
dated instances will be opportunistically discarded. Thus,
its learning curve is quite similar to that of window-based
approaches.
2.3.3. Ensemble classifiers

An ensemble classifier (Lee, Tsai, & Ku, 2006) deals with
concept drift by utilizing multiple classifiers and by voting
to construct a proper predictive model (Fan, 2004; Street &
Kim, 2001; Wang et al., 2003). For each data block, there
will be a classifier built. According to the accuracy and the
period of construction of each classifier, each classifier will
be assigned a weight. These weights not only influence the
final voting results, but also are main factors for consider-
ation as to whether classifiers are eliminated or not.
Fig. 2. The decision tree built using Table 2.

3. Concept drift rule mining tree algorithm

The currently proposed solutions for concept drift prob-
lems discussed in Section 2 are feasible to effectively and
precisely predict the target class of new coming instances,
but they are incapable of informing users which rules cause
concept drift. However, as stated in the introduction, users
may be much more interested in the rules governing con-
cept drift.
3.1. The rules of concept drift

Take the patients’ diagnostic data in Table 1 as the
example again and assume that Table 2 is the new diagnos-
tic dataset from the same patients. In Table 2, the drifting
values are marked with both underline and boldface. An
instance with the same ID in both tables means the diag-
nostic data belongs to the same patient. Fig. 2 is the deci-
sion tree constructed by using Table 2. Comparing Fig. 1
with Fig. 2, we find that patients ID9 and ID10 are located
in leaf node A in the old decision tree and in node B in the
new one. The corresponding decision rules are:

If (fever = ‘‘no”) and (cough = ‘‘no”) then (diagnosis =
‘‘healthy”) and
If (fever = ‘‘yes”) and (work = ‘‘Shanghai”) and
(cough = ‘‘yes”) then (diagnosis = ‘‘SARS”).
Table 2
The new coming diagnostic data from the same patients

ID Sex Work Fever Cough Diagnosis

1 Male Chicago No No Healthy

2 Female Chicago No No Healthy

3 Female Shanghai Yes No Influenza

4 Male New York No No Healthy

5 Male New York Yes No Pneumonia
6 Male New York No Yes Influenza
7 Female New York Yes No Pneumonia

8 Male New York Yes Yes Pneumonia

9 Female Shanghai Yes Yes SARS

10 Female Shanghai Yes Yes SARS
Comparing the rules of those two patients, we can see
that someone might be infected with SARS if he displays
fever, his working location is transferred to Shanghai,
and had a bad cough. Simply stated, the variations of those
three attributes, fever, working location, and cough, are the
primary factors influencing concept drift. The concept drift
rules detected from the two patients can be written in the
form:

If (fever = ‘‘no ? yes”) and (location = ‘‘New York ?
Shanghai”) and (cough = ‘‘no ? yes”) then (diagnosis =
‘‘healthy ? SARS”).

In this example, owing to the few instances and very sim-
ple rules, users can clearly and quickly find the drifting rules
between the two datasets. However, in a real application, it
is a very difficult task for users to figure out such rules since
the number of produced rules is usually very large.
3.2. Concept drift rule mining tree

In order to mine the concept drift rules mentioned in
Section 3.1, here we propose our CDR-Tree algorithm.
Section 3.2.1 is the building step of CDR-Tree. The idea
is simple but novel. Without loss of generality, here we con-
sider only the case that there are two data blocks: Tp and
Tq in a data stream. Note that, in addition to the concept
drift rules, users might also require the classification model
of each data block. CDR-Tree algorithm can do that via a
quick and simple extraction step as will described in Sec-
tion 3.2.2. Finally, two strategies are proposed in Section
3.2.3 to reduce the complexity of concept drift rules mined
by CDR-Tree algorithm.
3.2.1. Building a CDR-Tree
To mine concept drift rules, CDR-Tree algorithm ini-

tially integrates new and old instances from different times

Table 3
The integrated data of Tables 1 and 2

ID Location Fever Cough Diagnosis

1 New York ? Chicago Yes ? No No ? No Influenza ? Healthy

2 Chicago ? Chicago Yes ? No No ? No Influenza ? Healthy

3 New York ? Shanghai Yes ? Yes Yes ? No Pneumonia ? Influenza

4 New York ? New York Yes ? No Yes ? No Pneumonia ? Healthy

5 Chicago ? New York Yes ? Yes Yes ? No Pneumonia ? Pneumonia
6 New York ? New York No ? No Yes ? Yes Influenza ? Influenza
7 New York ? New York No ? Yes No ? No Healthy ? Pneumonia

8 New York ? New York No ? Yes No ? Yes Healthy ? Pneumonia

9 Chicago ? Shanghai No ? Yes No ? Yes Healthy ? SARS

10 Chicago ? Shanghai No ? Yes No ? Yes Healthy ? SARS

1168 C.-J. Tsai et al. / Expert Systems with Applications 36 (2009) 1164–1178
into pairs; then, following the manner of traditional deci-
sion trees a CDR-Tree is built. During the building step,
information gain is used as the criterion to select the best
splitting attribute in each node. In other words, CDR-Tree
regards the pairs made by integration of new and old data
as a single attribute value and mines the rules of concept
drift through the construction of a traditional decision tree.
In addition, since a traditional decision trees stop building
while a node is pure, the generated concept drifting rules
would miss some important information. Taking Tables 1
and 2 as our example again, the integrated data of the
two tables are shown in Table 3, and Fig. 3 is the corre-
sponding CDR-Tree. As described in Section 3.1, for the
patients ID9 and ID10, there is a drifting rule:

If (fever = ‘‘no ? yes”) and (Work = ‘‘Chicago ?
Shanghai”) and (cough = ‘‘no ? yes”) then
(diagnosis = ‘‘healthy ? SARS”).

However, a traditional decision tree will stop splitting at
the node C in Fig. 4 and then produce a rule:
Fig. 3. The CDR-Tree
If (fever = ‘‘no ? yes”) and (Work = ‘‘Chicago ?
Shanghai”) then (diagnosis = ‘‘healthy ? SARS”).

It is clear that the former rule is more reliable and
accurate than the latter one. To solve this problem,
CDR-Tree algorithm goes on splitting a pure node no in
which all instances have some common attribute value
ai, but this attribute a is never selected as a splitting attri-
bute in this path from the node no to the root. The con-
cept drifting rules are marked with dotted lines in the
CDR-Tree in Fig. 3. There are five concept drift rules
as follows:

Rule a: If (fever = ‘‘no ? yes”) and (work = ‘‘Chicago ?
Shanghai”) and (cough = ‘‘no ? Yes”) then
(diagnosis = ‘‘healthy ? SARS”).

Rule b: If (fever = ‘‘no ? yes”) and (work = ‘‘New
York ? New York”) then (diagnosis = ‘‘healthy ?
pneumonia”).

Rule c: If (fever = ‘‘yes ? no”) and (cough = ‘‘yes ?
no”) then (diagnosis = ‘‘pneumonia ? healthy”).
built using Table 3.

Fig. 4. The pseudo code of CDR-Tree algorithm.

C.-J. Tsai et al. / Expert Systems with Applications 36 (2009) 1164–1178 1169
Rule d: If (fever = ‘‘yes ? no”) and (cough = ‘‘no ? no”)
then (diagnosis = ‘‘influenza ? healthy”).

Rule e: If (fever = ‘‘yes ? yes”) and (work = ‘‘New
York ? Shanghai”) then (diagnosis = ‘‘pneumonia ?
influenza”).

In the above rules, the value on the left and right side of
‘‘?” respectively represents the value in two different data
blocks of a data stream. If observing carefully, we can find
that the concept drift rules of the patients ID9 and ID10

mentioned in Section 3.1 are definitely mined in this
CDR-Tree.

In order to provide users with meaningful and interest-
ing rules of concept drift, CDR-Tree algorithm defines a
rule support RS and a rule confidence RC to filter un-
meaningful ones out. For a leaf node no in the CDR-Tree,
suppose this node is assigned class label c and contains No

instance, then:

RS ¼ N o and

RC ¼ ð100Nc=NoÞ%;

where Nc is the number of instances with class c in this
node no. The default values of RS and RC are 2 and 50%
respectively. However, users can assign a larger threshold
if they only want to check the notable rules. For example,
by setting RS = 2 and RC = 90%, Rules c and e will be fil-
tered out. RS and RC are shown in the form of (RS, RC) in
Fig. 3 and the pseudo code of CDR-Tree algorithm is pre-
sented in Fig. 4.

1170 C.-J. Tsai et al. / Expert Systems with Applications 36 (2009) 1164–1178
3.2.2. Extracting the decision tree from CDR-Trees

When users require the old or new classification model,
or both, in addition to the concept-drifting rules, CDR-
Tree algorithm can provide them efficiently and accurately
via the following extraction steps:

Step 1. To extract the old (new) classification model, the
splitting attribute values of all internal nodes,
and the target class in all leaf nodes of the new
(old) instances are ignored.

Step 2. Check each node from the bottom-up and left-to-
right.

Step 3. For any node no and its sibling node(s) ns.
(a) If node no is a leaf and singleton node (i.e. it

does not have any sibling node), its parent
node will be removed from the CDR-Tee
and node no will be pulled-up. This situation
is illustrated in Fig. 5a.

(b) If node no is an internal and singleton node,
the parent node of no will be removed and
the sub-tree rooted at no will be pulled-up.
This situation is illustrated in Fig. 5b.

(c) If ns has the same splitting value as that of no

and no, ns are all leaf nodes. CDR-Tree will
merge them into a single node nm. The target
class of nm is assigned by a majority vote. This
situation is illustrated in Fig. 5c and d.

(d) If ns has the same splitting value as that of no

but not all of them are leaf nodes, CDR-Tree
will pick out the internal node nm, which con-
Fig. 5. Illustrations of the extraction
tains the most instances among all internal
nodes ns. Except for the sub-tree STm rooted
at nm, all sibling nodes and their sub-trees
are then removed from the CDR-Tree. The
instances, which belong to these removed leaf
nodes and sub-trees, are migrated into the
internal node nm and will follow the path of
STm until they reach a leaf node as Fig. 5e
illustrates. Note that a migrant instance may
stop in an internal node nI of STm if there is
no branch to proceed. In such a condition,
the CDR-Tree will use the splitting attribute
in nI to generate a new branch and accord-
ingly a new leaf node as illustrated in
Fig. 5f. The target class of the leaf nodes in
STm and the newly generated leaf node(s)
are then assigned by a majority vote.

Step 4. Repeat Step 2 until no more nodes can be merged.
Step 5. If there is a leaf node that is not pure, continue

splitting it.

Due to the merging strategy, some leaf nodes in a CDR-
Tree might be not pure. The goal of Step 5 is to solve this
problem. However, this step can be omitted if users do not
really need an overly detailed decision tree. Note that the
CDR-Tree keeps the count information in each node dur-
ing its building step; therefore, the computational cost for
this extraction procedure is small. Compare this to building
a decision tree from the beginning; CDR-Tree can generate
strategy in CDR-Tree algorithm.

C.-J. Tsai et al. / Expert Systems with Applications 36 (2009) 1164–1178 1171
the decision tree much more efficiently and quickly. Fig. 6
is the pseudo code of the CDR-Tree’s extraction proce-
dure. Taking the CDR-Tree in Fig. 3 as an example, the
extract decision trees are shown in Fig. 7, where Fig. 7a
is the old classification model for Table 1 without imple-
menting Step 5; Fig. 7b is still the model for Table 1 but
with the implementation of Step 5; and Fig. 7c and d cor-
respond to Table 2. By comparing these results to those in
Figs. 1 and 2, we can find that without the implementation
of Step 5, there are only 1 misclassified instance in Fig. 7a
and 2 in Fig. 7c. When Step 5 is executed, Fig. 7b and d
reach 100% accuracy as are Figs. 1 and 2. Furthermore,
Fig. 6. The pseudo code of the extraction
Fig. 7d is identical to Fig. 2, but Fig. 7b is a little different
from Fig. 1. From the example we determine that although
the decision tree extracted from the CDR-Tree is not
proved to be identical to that built from the beginning, it
can reach a comparable accuracy even without the imple-
mentation of Step 5.

3.2.3. Reducing the complexity of concept-drifting rules
Even though the main purpose of CDR-Trees is to

clearly discover concept drift rules and to utilize rule sup-
port (RS) and rule confidence (RC) to filter un-meaningful
ones, readers might wonder whether our approach has a
procedure in CDR-Tree algorithm.

Fig. 7. The extracted decision trees from Fig. 3: (a) the model of Table 1
without implementing Step 5; (b) the model of Table 1 with the
implementation of Step 5; (c) the model of Table 2 without implementing
Step 5; and (d) the model of Table 2 with the implementation of Step 5.

1172 C.-J. Tsai et al. / Expert Systems with Applications 36 (2009) 1164–1178
higher computational cost due to the fact that CDR-Trees
are more complex than a traditional decision trees. Never-
theless, it is not as bad as imagined. Here we discuss the
corresponding computational cost under the conditions
of concept stability and concept drift. First, suppose that
there are no drifting concepts: the number of attributes,
the number of instances, and the number of values for an
attribute in the integrated dataset would be all the same
as that in the old or new dataset. Therefore, the computa-
tional cost is very similar. The extra cost of CDR-Trees is
the integration of new and old instances from different time
points and the extraction procedure. However, such com-
putational costs are trivial when compared to those of
building a decision tree. When there are drifting instances,
the number of attributes and the number of instances
remain the same, but the number of values for an attribute
might increase. The increase of attribute values burdens the
building of a node. Suppose a dataset contains i attributes
and each attribute has j kinds of values, the computational
cost for building a node in a CDR-Tree would be ij times
that of a traditional decision tree. The worst case occurs
only when the drifting ratio (i.e. the proportion of drifting
instances to all instances) is 100% and all values of an attri-
bute in the old dataset change to different values in the new
dataset. In the worst case, each attribute in the integrated
dataset would contain j2 kinds of values. However, the
worst case should rarely happen since in most real datasets:
(a) the drifting ratio should be not too large; (b) drifting
instances should gather in some specific areas in the dimen-
sional space of attributes, i.e., there must be some meaning-
ful attribute-values to cause concept drift. For example,
age and salary may influence credit card applications but
weight and height will not; IP address and the number of
sending packages may be the main basis for finding a PC
which sends virus packages.

Of course, many good discretization algorithms (Kurgan
& Cios, 2004; Lee, Tsai, Yang, & Yang, 2007; Liu,
Hussain, Tan, & Dash, 2002) can be used to preprocess
the integrated dataset to speed-up the construction of the
CDR-Tree. In this paper, we also propose two strategies:
T-strategy and V-strategy. The main goal of T-strategy is
to reduce the number of concept-drifting rules and it
is adopted after a CDR-Tree is built; on the contrary,
V-strategy is used to simplify the training dataset to
speed-up the building of CDR-Tree.

3.2.3.1. T-strategy. If the taxonomy tree of an attribute is
given, we can remove some branches from the CDR-Tree
and merge some produced drifting rules. For example,
suppose the taxonomy tree of attribute ‘‘location” is
shown in Fig. 8a: the CDR-Tree in Fig. 8b can be simpli-
fied as Fig. 8c. Similarly, the two discovered concept drift
rules:

If (fever = ‘‘no ? yes”) and (work = ‘‘Chicago ?
Shanghai”) then (diagnosis = ‘‘healthy ? influenza”),
If (fever = ‘‘no ? yes”) and (work = ‘‘New York ?
Shanghai”) then (diagnosis = ‘‘healthy ? influenza”)

can be merged into only one rule:

If (fever = ‘‘no ? yes”) and (work = ‘‘USA ? Shang-
hai”) then (diagnosis = ‘‘healthy ? influenza”).

3.2.3.2. V-strategy. If two people of different weights dem-
onstrate an abnormal increase of K kilograms synchro-
nously, their health is at risk. That is to say, for some
attributes, we can regard the variance K as the cause of
concept drift even if the original values are different. We
define such an attribute as variance attribute in the
following:

Definition 1. For a continuous attribute M and two data
blocks Tp andTq, assume that the attribute values of
instance i and j are respectively Mp

i , Mp
j in Tp, and

Mp
i ,Mp

j , respectively, varies into Mq
i and Mq

j in Tq, where
Mp

i –Mq
i and Mq

j –Mp
j . If Mp

i �Mq
i ¼ Mp

j �Mq
j ¼ vðv P 1Þ,

and the variance v of attribute M would make the concept
of both instance i, j drift form c to c0, attribute M is called a
variance attribute.

A scheme governing the variable attribute ‘‘weight” is
illustrated in Fig. 9a. It means an increase of 0 or 5 kg in
weight has the same influence on concept drift. Similarly,

Fig. 8. Illustrations of T-strategy: (a) The taxonomy tree of attribute ‘‘location”; (b) a CDR-tree; and (c) the simplified CDR-tree of (b) by using
T-strategy.

C.-J. Tsai et al. / Expert Systems with Applications 36 (2009) 1164–1178 1173
the increase of 12 or 25 kg would cause the same degree of
concept drift. For the real datasets, there may be some var-
iable attributes such as weight and blood pressure. With
the given scheme, the CDR-Tree can reduce the number
of attribute values after data integration and prevent the
decision tree from being too immense and complex.
Fig. 9b and c are the illustrations of a CDR-tree, where
Fig. 9c is the simplified version of Fig. 9b created by apply-
ing the V-strategy. Note that, the V-Strategy is different
from the proposed discretization algorithms.
4. Experimental analysis and performance evaluation

In this section, we implement CDR-Tree algorithm in
Microsoft Visual C++ 6.0 for experimental analysis and
performance evaluation. The experimental environment
Fig. 9. Illustrations of the V-strategy: (a) the scheme of the variable attribute ‘
the V-strategy.
and datasets are clearly described in Section 4.1. In Section
4.2, we demonstrate how the accuracy of CDR-Trees is
affected b y different drift levels. The effectiveness of the
V-strategy is evaluated in Section 4.3. We compare the
accuracy of C4.5 to that of the model extracted from the
CDR-Tree in Section 4.4. Finally, the comparison of exe-
cution time among CDR-Tree, the model extracted from
the CDR-Tree, and C5.0 is given in Section 4.5.
4.1. Experimental environment and datasets

All experiments in this paper are done on a 3.0 GHz
Pentium IV machine with 512 MB DDR memory, running
Windows 2000 professional. Experimental datasets are
generated by IBM Data Generator (Agrawal, Ghosh, Imi-
elinski, & Swami, 1992). We use IBM Data Generator
‘weight”; (b) a CDR-Tree; and (c) the simplified CDR-Tree of (b) by using

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

5 10 15 20 30

concept drift ratio (%)

ac
cu

ra
cy

 (
%

) D(3)

D(43)

D(5)

D(45)

Fig. 10. The accuracy of CDR-Trees under five different drifting ratios.

60

65

70

75

80

85

90

95

100

5 10 15 20 30

concept drift ratio (%)

ac
cu

ra
cy

 (
%

) D(3)

D(43)

D(5)

D(45)

Fig. 11. The accuracy of concept-drifting rules produced by CDR-Trees.

1174 C.-J. Tsai et al. / Expert Systems with Applications 36 (2009) 1164–1178
instead of the hyperplane synthetic data used in (Kolter
et al., 2003) since IBM Data Generator is a public and
widely used data generator. In addition, IBM Data Gener-
ator has several well-defined classification functions and
parameters which can be used to generate different charac-
teristics of datasets. The dataset generated by IBM Data
Generator contains one Boolean target class and nine basic
attributes: salary, commission, loan, age, zip code, h-years,
h-value, e-level, and car. Among the nine attributes, zip
code, e-level, and car are categorical attributes, and others
are the continuous attributes. We use IBM Data Generator
because we want to generate several kinds of datasets to
evaluate our CDR-Tree. In our experiment, four classifica-
tion functions, P3, P5, P43, and P45 are randomly selected
to generate the experimental datasets.

In order to analyze the performance of our CDR-Tree
under different drifting ratios R% (i.e. the proportion of
drifting instances to all instances), we use the four func-
tions mentioned above to generate required experimental
datasets. For each function, the noise level is set to 5%
and the dataset generated by IBM Data Generator is
regarded as the original/first dataset in the data stream.
Then we code a program to amend the first dataset and
generate the second ones as a new dataset. Our program
works as follows: First, it randomly picks up one instance
S in the original dataset and randomly selects attributes am

(0 < m < 6) for reference. Instances, which have the same
values in all attributes am to that of S, are picked out.
The class label and values belonging to am of these picked
out instances are then replaced by a random value in the
corresponding value-domain. The main principle of our
program is that concept drifts are caused by the variances
of some attributes. We limit the number of referable attri-
butes less than five since drifting concepts should be caused
by some but not a lot attribute values and there are only
nine basic attributes in IBM data generator. If the number
of drifting instances is less than the requirement, the pro-
gram goes on next loop to get more drifting instances.
On the contrary, if there are more instances satisfy the
requirement, R% instances are randomly picked up as
drifting ones. As a result, each function will generate 5 s
datasets with different drifting ratios. A total of 4 old data-
sets and 20 new datasets are generated in our experiments.
Every dataset includes 10,000 instances and the 10-fold
cross-validation test method is applied to all experiments.
That is, each experimental dataset is divided into 10 parts
of which nine parts are used as training sets and the
remaining one as the testing set. In the following experi-
ments, we will use D(i) to denote a dataset generated by
the classification function Pi and D(i,R) to represent a
dataset with R% drifting ratio resulting from D(i).

4.2. The analysis of CDR-Tree

In this section, we use the 24 datasets mentioned in Sec-
tion 4.1 to evaluate the accuracy of CDR-Trees and to ana-
lyze whether it can precisely explore the concept drift rules.
At first, focusing on five different drift levels, the accuracy
of the CDR-Tree in 20 integrated datasets is shown in
Fig. 10. As can be found in this figure, CDR-Tree main-
tains high accuracy in all 20 datasets. However, it is worth
noting that the higher the concept-drifting ratio is, the
lower the accuracy of CDR-Tree will be. This is because
a higher drifting ratio makes the CDR-Tree more complex.

To further analyze whether the concept-drifting rules
produced by CDR-Tree can accurately predict the drifting
instances, for each experimental dataset, we only select the
instances that really have a drifting concept from the test-
ing data to calculate the accuracy. The experimental result
is shown as Fig. 11. As expected, the concept drift rules
mined by CDR-Tree can accurately predict those drifting
instances.

4.3. The comparison between CDR-Trees and V-CDR-Trees

Due to the lack of background knowledge, we are not
able to produce a proper taxonomy tree for our experimen-
tal dataset to evaluate our T-strategy. However, to analyze
whether the V-Strategy can effectively reduce the complex-
ity of CDR-Tree, 4 old datasets and 24 new ones men-
tioned in Section 4.1 are again utilized. We use V-CDR
to represent a CDR-Tree with V-Strategy in this experi-
ment. A simple variance scheme |v| = 1 for all continuous

D(43)

0

100

200

300

400

500

600

700

800

900

5 10 15 20 30
concept drift ratio (%)

nu
m

be
r o

f n
od

es

CDR

V-CDR

Fig. 13. The comparison of number of nodes using dataset D(43).

D(5)

0

100

200

300

400

500

600

700

800

900

5 10 15 20 30
concept drift ratio (%)

nu
m

be
r o

f n
od

es

CDR

V-CDR

Fig. 14. The comparison of number of nodes using dataset D(5).

D(3)

0

100

200

300

400

500

600

700

800

900

5 10 15 20 30
concept drift ratio (%)

nu
m

be
r o

f n
od

es

CDR

V-CDR

Fig. 12. The comparison of number of nodes using dataset D(3).

D(43)

60

65

70

75

80

85

90

95

100

CDR

V-CDR

5 10 15 20 30

concept drift ratio (%)

ac
cu

ra
cy

 (
%

)

Fig. 17. The comparison of accuracy of concept drift rules using dataset
D(43).

D(45)

0

100

200

300

400

500

600

700

800

5 10 15 20 30
concept drift ratio (%)

nu
m

be
r o

f n
od

es

CDR
V-CDR

Fig. 15. The comparison of number of nodes using dataset D(45).

D(3)

60

65

70

75

80

85

90

95

100

CDR

V-CDR

5 10 15 20 30

concept drift ratio (%)

ac
cu

ra
cy

 (
%

)

Fig. 16. The comparison of accuracy of concept drift rules using dataset
D(3).

C.-J. Tsai et al. / Expert Systems with Applications 36 (2009) 1164–1178 1175
attributes is used. The experimental results are shown from
Figs. 12–15. As can be seen from the four figures, the num-
ber of nodes in V-CDR-Trees is significantly smaller than
that of CDR-Trees in all drift ratios. In conclusion, it is
shown that V-Strategy can effectively lower the complexity
of the CDR-Tree.
In order to compare the accuracy of the mined concept
drift rules between CDR-Trees and V-CDR-Trees, among
each experimental dataset, the testing instances that really
have a drifting concept are used to calculate accuracy.
The experimental results are shown from Figs. 16–19 and
we can see that the accuracy of the V-CDR-Tree is slightly
lower than that of the CDR-Tree in these cases even
though we use a very simple variance scheme.

D(45)

60

65

70

75

80

85

90

95

100

CDR

V-CDR

5 10 15 20 30

concept drift ratio (%)

ac
cu

ra
cy

 (
%

)

Fig. 19. The comparison of accuracy of concept drift rules using dataset
D(45).

D(5)

60

65

70

75

80

85

90

95

100

CDR

V-CDR

5 10 15 20 30

concept drift ratio (%)

ac
cu

ra
cy

 (
%

)

Fig. 18. The comparison of accuracy of concept drift rules using dataset
D(5).

0
10
20
30
40
50
60
70
80
90

100

D(3,10) D(43,10) D(5,10) D(45,10)

dataset

ac
cu

ra
cy

 (%
)

E-CDR

C5.0

Fig. 20. The comparison of accuracy between E-CDR-Tree and C5.0
using four datasets with 10% drifting ratio.

0

2

4

6

8

10

12

14

16

18

D(43,5) D(43,10) D(43,15) D(43,20) D(43,30)

dataset

ex
ec

ut
io

n
tim

e
(s

ec
.)

CDR

E-CDR

C5.0

Fig. 21. The comparison of execution time among CDR-Tree, E-CDR-
Tree, and C5.0 by using datasets D(43).

1176 C.-J. Tsai et al. / Expert Systems with Applications 36 (2009) 1164–1178
4.4. The comparison of accuracy between E-CDR-Trees and

C5.0

In this experiment, we evaluate whether our approach
mentioned in Section 3.2.2 can accurately extract classifica-
tion models from CDR-Trees. First, all 24 datasets are
used by C5.0 to build the decision tree. For 20 CDR-Trees,
the old and new classification models are extracted as E-
CDR-Trees. Since the results of the 24 datasets are very
similar due to the limitation of content, we only show the
accuracy of datasets with 10% drifting ratio. The results
are shown in Fig. 20. From Fig. 20 we can see that the
accuracy of E-CDR-Trees is similar to that of C5.0. This
demonstrates the accuracy of our extracting strategy as
described in Section 3.2.2.

4.5. The comparison of execution time among CDR-Trees,

E-CDR-Trees, and C5.0

The motivation behind CDR-Trees and C5.0 is inher-
ently different: CDR-Tree algorithm mainly aims at pro-
viding concept-drifting rules and quickly extracts the
prediction model if it is required by users; but C5.0 is pri-
marily designed to build a decision model to predict the
unseen data. Thus comparing the execution time between
them might be unfair. However, in order to give readers
a clear overview of our approach, we show the comparison
of execution time among a CDR-Tree, an E-CDR-Tree,
and C5.0 in Fig. 21. The execution time for C5.0 on dataset
D(i,R) denotes the total building time of two models on
datasets D(i) and D(i,R); that for E-CDR denotes the total
time to extract the old and new decision trees. Similarly,
due to the limitation of content and the fact that the results
of all datasets are very similar, we only show the execution
time of datasets generated by function P43. As expected,
the CDR-Tree needs more execution time than C5.0 since
the training dataset is more complicated than that used
by C5.0. However, the time required for the CDR-Tree
to extract the decision tree is much less than that required
for C5.0. This demonstrates that with the given CDR-Tree,
our extraction strategy proposed in Section 3.2.2 can effi-
ciently elucidate the classification model than building it
from scratch.
5. Conclusions and future research direction

Recently, concept drift has become a popular research
issue in the field of data mining. Even though many schol-

C.-J. Tsai et al. / Expert Systems with Applications 36 (2009) 1164–1178 1177
ars have proposed different methods, they all focus only on
updating the classification model and are unable to eluci-
date the main causes why concept drifts. However, the
decision makers might be more interested in the rules of
concept drift. In this paper, we address this issue and pro-
pose the Concept Drift Rule Mining Tree algorithm to
solve this problem. Our CDR-Tree cannot only produce
drifting rules, but also efficiently extract the classification
model of each data block for decision makers to have wide
application. T-strategy and V-strategy, which need the sup-
port of users in the corresponding domain, are also pro-
posed to simplify the CDR-Tree and the mined rules.
The experimental results in Section 4 show the accuracy
of the CDR-Tree and the efficiency of our extracting
strategies.

There are still many issues worth further investigation.
First, in this paper we only analyze the cases in which there
are only two data blocks in a data stream. If analysis of
greater than two is required, the CDR-Tree will become
much larger and more complicated. Therefore, one of our
future focuses is to extend the use of the CDR-Tree which
can more efficiently process multi-block concept drift prob-
lems. Secondly, although we propose two strategies to
reduce the complexity of our CDR-Tree algorithm, for a
given dataset, there might be no given taxonomic tree or
variance attributes. Therefore, another interesting problem
is to propose a method to generate a taxonomic tree or to
find variance attributes automatically. Thirdly, an existing
discretization algorithm can also be used to reduce the
complexity of CDR-Trees. However, since the integrated
dataset used in CDR-Trees is different than a traditional
dataset, another future focus is to propose a discretization
algorithm which is more suitable to CDR-Trees. Finally,
although our extraction methods can efficiently extract
the classification model for each data block from CDR-
Trees and the extracted model can reach accuracy compa-
rable to the decision tree built from the beginning, it would
be interesting to find a way in which one can extract an
identical tree.

References

Agrawal, R., Ghosh, A., Imielinski, T., Iyer B., & Swami, A. (1992). An
interval classifier for database mining applications. In Proceedings of

the 18th conference on very large databases.
Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine

Learning, 3(4), 261–283.
Cunningham, P., & Nowlan, N. (2003). A case-based approach to spam

filtering that can track concept drift. In Proceedings of the ICCBR

workshop on long-lived CBR systems.
Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In

Proceedings of the sixth international conference on knowledge discovery

and data mining (pp. 71–80). Boston.
Fan, H., & Ramamohanarao, K. (2006). Fast discovery and the

generalization of strong jumping emerging patterns for building
compact and accurate classifiers. IEEE Transactions on Knowledge

and Data Engineering, 18(6), 721–737.
Fan, W. (2004). Systematic data selection to mine concept-drifting data

streams. In Proceedings of the 10th ACM SIGKDD international

conference on knowledge discovery and data mining (pp. 128–137).
Freitas, A. A. (2000). Understanding the crucial differences between
classification and discovery of association rules. SIGKDD Explora-

tions, 2(1), 65–69.
Furnkranz, J., & Widmer, G. (1994). Incremental reduced error pruning.

In Proceedings of the 11th international conference on machine learning

(pp. 70–77). San Francisco.
Han, J., & Kamber, M. (2001). Data mining: Concepts and techniques.

Morgan Kaufmann Publisher.
Hulten, G., Spencer, L., & Ddmingos, P. (2001). Mining time-changing

data streams. In Proceedings of the seventh ACM SIGKDD interna-

tional conference on knowledge discovery and data mining (pp. 97–106).
San Francisco.

Jin, R., & Agrawa, G. (2003). Efficient decision tree construction on
streaming data. In Proceedings of the nineth ACM SIGKDD interna-

tional conference on knowledge discovery and data mining (pp. 571–576).
Washington.

Klinkenberg, R. (2001). Using labeled and unlabeled data to learn drifting
concepts. Workshop notes of the IJCAI-01 workshop on learning from
temporal and spatial data (pp. 16–24). CA.

Klinkenberg, R., & Renz, I. (1998). Adaptive information filtering:
Learning in the presence of concept drifts. Workshop notes of the
ICML-98 workshop on learning for text categorization (pp. 33–40).
CA.

Kolter, J. Z., & Maloof, M. A. (2003). Dynamic weighted majority: A new
ensemble method for tracking concept drift. In Proceedings of the third

international IEEE conference on data mining (pp. 123–130). Mel-
bourne, FL.

Koychev, I. (2000). Gradual forgetting for adaptation to concept drift. In
Proceedings of ECAI 2000 workshop current issues on spatio-temporal

reasoning. Germany.
Kurgan, L., & Cios, K. J. (2004). CAIM discretization algorithm. IEEE

Transactions on Knowledge and Data Engineering, 16(2), 145–153.
Lane, T., & Brodley, C. E. (1998). Approaches to online learning and

concept drift for user identification in computer security. In Proceed-

ings of the fourth international conference on knowledge discovery and

data mining (pp. 259–263). New York.
Lazarescu, M., & Venkatesh, S. (2004). Using multiple windows to track

concept drift. Intelligent Data Analysis Journal, 8(1), 29–59.
Lee, C. I., Tsai, C. J., Wu, T. Q., & Yang, W. P. (2008). A multi-relational

classifier for imbalanced database. Expert Systems with Applications,

36(3), 2008.
Lee, C. I., Tsai, C. J., Yang, Y. R., & Yang, W. P. (2007). A top-down and

greedy method for discretization of continuous attributes. In Proceed-

ings of the fourth international conference on fuzzy systems and

knowledge discovery. Haikou, China.
Lee, C. I., Tsai, C. J., Wu, J. H., & Yang, W. P. (2007). A decision tree-

based approach to mining the rules of concept drift. In Proceedings of

the fourth international conference on fuzzy systems and knowledge

discovery. Haikou, China.
Lee, C. I., Tsai, C. J., & Ku, C. W. (2006). An evolutionary and attribute-

oriented ensemble classifier. In Proceedings of the international

conference on computational science and its applications (pp. 1210–
1218).

Liu, H., Hussain, F., Tan, C. L., & Dash, M. (2002). Discretization: An
enabling technique. Journal of Data Mining and Knowledge Discovery,

6(4), 393–423.
Maloof, M. (2003). Incremental rule learning with partial instance

memory for changing concepts. In Proceedings of the international

joint conference on neural networks. CA.
Maloof, M.A., and Michalski, R.S. (2002). Incremental learning with

partial instance memory. In Proceedings of the 13th international

symposium on methodologies for intelligent systems. Lyon, France.
Menzies, T. (2003). Data mining for very busy people. In Proceedings of

the international IEEE conference on data mining (pp. 22–29).
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1),

81–106.
Quinlan, J. R. (1993). C4.5: Program for machine learning. San Mateo,

CA: Morgen Kaufmann Publisher.

1178 C.-J. Tsai et al. / Expert Systems with Applications 36 (2009) 1164–1178
Rastogi, R., & Shim, K. (1998). PUBLIC: a decision tree classifier that
integrates building and pruning. In Proceedings of the 24th interna-

tional conference on very large databases (pp. 404–415).
Street, W., & Kim, Y. (2001). A streaming ensemble algorithm for large-

scale classification. In Proceedings of the seventh international confer-

ence on knowledge discovery and data mining (pp. 377–382). NY.
Tsai, C. J., Lee, C. I., Chen, C. T., & Yang, W. P. (2007). A multivariate

decision tree algorithm to mine imbalanced data. WSEAS Transactions

on Information Science and Applications, 4(1), 50–58.
Utgoff, P. E. (1989). Incremental induction of decision trees. Machine

Learning, 4(2), 161–186.
Utgoff, P., Berkman, N., & Clouse, J. (1997). Decision tree induction
based on efficient tree restructuring. Machine Learning, 29(1), 5–44.

Wang, H., Fan, W., Yu, P. S., & Han, J. (2003). Mining concept-drifting
data streams using ensemble classifiers. In Proceedings of the nineth

ACM SIGKDD international conference on knowledge discovery and

data mining (pp. 226–235). Washington, DC.
Wang, L., Zhao, H., Dong, G., & Li, J. (2006). On the complexity of

finding emerging patterns. Theoretical Computer Science, 335(1),
15–27.

Widmer, G., & Kubat, M. (1996). Learning in the presence of concept
drift and hidden contexts. Machine Learning, 23(1), 69–101.

	Mining decision rules on data streams in the presence of concept drifts
	Introduction
	Related work
	Decision trees
	Incremental learning algorithms
	Concept drift
	Window-based approaches
	Weight-based approaches
	Ensemble classifiers

	Concept drift rule mining tree algorithm
	The rules of concept drift
	Concept drift rule mining tree
	Building a CDR-Tree
	Extracting the decision tree from CDR-Trees
	Reducing the complexity of concept-drifting rules
	T-strategy
	V-strategy

	Experimental analysis and performance evaluation
	Experimental environment and datasets
	The analysis of CDR-Tree
	The comparison between CDR-Trees and V-CDR-Trees
	The comparison of accuracy between E-CDR-Trees and C5.0
	The comparison of execution time among CDR-Trees, E-CDR-Trees, and C5.0

	Conclusions and future research direction
	References

