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Abstract 

 

The effect of Cu3+ ion-beam irradiation on the microstructure of two polyimide ( PI ) films 

( PMDA-ODA, Kapton® and BTDA-ODA ) was examined using ATR-FTIR and XPS 

spectroscopy. There were a number of significant changes in the FTIR spectra of the 

irradiated PI films which indicated the breakdown of the backbone linkages of the 

polymer, via cleavage of the nitrogen of the imide and elimination of hydrogen from the 

PI molecular structure, leading to the formation of crystallites containing graphite-like 

fused rings. These results were corroborated by XPS spectroscopy, where the 

development of carbon-rich regions with graphite-like properties were clearly identified. 

 

The results also indicated modifications to the molecular structure of both films, with the 

major reaction arising from chain scission and the formation of an extended ring 

structure, similar to graphite. It was concluded that the ion-beam etched nanochannels in 

the polymer, and that they were lined with graphite-like aromatic fused rings, which 

formed along the full depth of the ion-beam, which corresponded to about 10% surface 

penetration.  

 

ATR-FTIR spectroscopy was also used to examine the temperature dependent changes 

in the films after irradiation. Drying at 80 oC led to a reduction in the intensity of the water 

stretching band by approximately 90 to 95%. At higher ”annealing’’ temperatures, 180 oC 

-280 oC, the water band was eliminated. The experimental results demonstrated the 

superior thermal resistance of PMDA-ODA films for high temperature applications, in 

preference to BTDA-ODA films. 
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The electrical conductivity of the irradiated PMDA-ODA films was found to increase as a 

function of increasing exposure to the ion-beam ( fluence ). A study of the temperature 

dependent electrical conductivity characteristics of the PMDA-ODA films, revealed that 

they behaved as typical semiconductor films. Thus, the theoretical treatment of the 

temperature dependence of the electrical conductivity of the irradiated PMDA-ODA films 

was based on a standard semiconductor relationship, which enabled calculation of the 

temperature exponent.  The excellent linearity of this relationship suggests that while 

there were other mechanisms available for charge movement to occur through 

fluctuation-induced tunnelling, the dominant mechanism of direct current conduction in 

the irradiated PI films occurs via three dimensional thermally activated electron hopping 

from one site to the next. The resistance of the irradiated films was found to be inversely 

proportional to temperature, confirming their semiconducting behaviour with calculated 

thermally sensitive activation barriers in the range 0.4–2.3 eV. 

 

In the present work it was found that Cu
3+

 ion-beam irradiation was directly responsible 

for the disruption of the main chain imidic groups in the polymer, and this affected the 

tensile strength of the PI films, as evidenced by changes in Young’s Modulus, and they 

became slightly brittle at the highest levels of irradiation fluence. Thus, the degradation 

of PI films subjected to ion-beam irradiation consists of both chemical and physical 

modifications to the films.  Hence, PI films, although appropriate for applications in 

lightweight, flexible structures, are subject to ion-beam degradation of their mechanical 

properties which will limit their applications. 

 

The electromechanical properties of PMDA-ODA irradiated films were found to be 

consistent with those of semiconducting strain gauges.  The ”gauge factor” ( GF ) of a 

strain gauge indicates its strain sensitivity, which arises from changes in specific 

resistivity ( or conductivity ) of a material due to an applied strain. The PMD A-ODA 

irradiated films possessed GF values much higher those of conventional composites and 
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an order of magnitude higher than any previously reported. Thus, the irradiated PI films 

are suitable as sensitive strain gauges with applications as strain sensors, provided they 

are protected from intense radiation sources. 
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1 
INTRODUCTION AND LITERATURE REVIEW 

 

1.1  Introduction 

Polymers have emerged as an important class of advanced material due to their 

increasingly versatile applications in various fields of modern technology [1]. The five 

major areas of application are (i) plastics, (ii) rubbers or elastomers, (iii) fibres, (iv) surface 

finishes and protective coatings and (v) adhesives. Polymeric solids have been used for a 

number of  applications which utilise their exceptional properties, such as low density, the 

ability to form elaborate shapes, their versatile electronic properties, and low cost of 

manufacture. However, they have inherent disadvantages, such as low thermal stability 

and unpredictable dielectric properties which limit their use in many applications. As a 

result of these disadvantages, polymers such as polyimides (PI), which possess 

enhanced thermal stability, were developed. Due to current interest in the use of 

polymeric layers as insulators or conductors in electronic systems [2], the surface 

properties of polymers such as PI have been modified to incorporate conductive layers 

within the polymer matrix. 

 

Polyimides constitute an important class of polymers due to their excellent thermal 

stability, wear resistance, outstanding electrical properties, radiation resistance, solvent 

resistance, good adhesion properties, long term stability and superior mechanical 

properties [3]. In particular,  their  thermal robustness makes them useful in 

microelectronic systems where the temperature often reaches 400C [3]. The two 
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polyimides investigated here were 3,4,3’4'-benzophenonetetracarboxylic dianhydride 4,4'-

oxybisbenzenamine (BTDA-ODA), and pyromellitic dianhydride – 4,4′-oxidianiline (PMDA-

ODA) also known as Kapton®. These two particular polyimides were formulated to 

provide high temperature resistance and are illustrated in Figure 1.1. 
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Figure 1.1: The chemical structures of the polyimides, PMDA-ODA and BTDA-ODA  

 

It should be noted that both PI’s contain aromatic bifunctional imides linked by a bis -

aromatic ether which together create the essential PI backbone.  In addition, BTDA-ODA 

contains a carbonyl link ( >C=O ) in each monomeric unit in the PI chain.  

 

Various chemical and physical processes have been used to modify the behaviour of 

polymers. In this thesis, the emphasis is on Ion-beam irradiation, which is a flexible 

technique that may be used for the selective modification of the chemical structure, as 

well as the electrical and mechanical properties of polymers [3-13].  

 

1.1.1 Rationale of Research Project 

Significant research studies have been performed on the UV-laser, electron- and ion- 

beam irradiation of polymers, especially polyimides (PI’s) [12, 13], because they have 

excellent resistance to higher temperatures. Studies by Davenas et al. [25] deduced 

features of the pristine and irradiated polyimide structure using infrared spectroscopy and 

showed changes in the functional group bands. Although many studies [3,12, 26] have 

reported on the pristine structures of polyimides such as PMDA-ODA, very few have 

a 

PMDA-ODA 

b 

BTDA-ODA 
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examined BTDA-ODA [97]. In addition, the change in the molecular structure of PI’s is of 

great importance, where much of the characterisation has been performed before, and 

just after, irradiation [62]. The subsequent effect of the atmosphere on the PI’s after 

irradiation has largely been neglected. In addition, the FTIR analysis of irradiated PI’s after 

heat treatment, in particular, annealing, is an important aspect of molecular structure 

characterisation, as it provides details of the changes likely to occur within the 

environment that they operate in. Such thermal treatment studies on polymers, in 

particular polyimide, have been overlooked, and there are very few studies on the effects 

of annealing before, or after, irradiation, other than the research reported by Watamori et 

al. [27].  

 

The structural effects induced by UV-laser and heavy ion irradiation, and the electrical 

conductivity properties of PI’s have been widely studied [31]. However, a detailed 

description of the electrical transport mechanisms for polyimide films irradiated with a Cu3+ 

ion-beam, in the fluence range of 9x10
13

 to 5x10
14

 ions cm
-2
, is yet to be established. 

Thus, there is a need for a systematic study of the possible conduction mechanisms of the 

irradiated PI films. Also, in the literature, irradiation is discussed in terms of irradiating 

throughout the polymer film, and the electrical conductivity is discussed as the conduction 

through, and across, the irradiated film. In the work described here, the polyimide films 

have only been irradiated to the depth of about 10%, leaving 90% of the film thickness to 

act as an insulating substrate for the conducting layers of the film; this is advantageous as 

it eliminates the need to use an external substrate for film support. 

 

The changes in the micromechanical and electromechanical properties of irradiated PI 

films are examined here. Literature searches have indicated that there are only limited 

studies [32] on the mechanical properties of irradiated polymers in general, and very few 

on the mechanical properties of irradiated PI films. Similarly, there have only been a 
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limited number of studies on the electromechanical properties of composite thin films [65], 

and a paucity of literature on the electromechanical properties of irradiated PI films [65]. 

 

1.1.2 Objectives  

The first objective of this study was to identify the chemical and microstructural changes 

that occur when the PI film surfaces of PMDA-ODA and BTDA-ODA were irradiated with a 

5.5 MeV Cu3+ ion-beam. In this work, the structural changes were investigated via 

temperature-dependent FTIR analysis. 

 

The second objective was to characterise the semiconducting behaviour of the irradiated 

layer of the PI films, and to determine the electrical transport mechanisms that occur in 

this top 10% of the PI film. The changes in electrical properties were studied and related 

to alterations in the chemical structure after irradiation. 

 

The third objective was to determine the tensile properties of the irradiated PI films. This 

included evaluating the temperature dependent static and dynamic mechanical behaviour 

of the irradiated PI films. The electromechanical properties of the irradiated PI films were 

also evaluated, and the strain sensitivity of the PI films ( gauge factors ) were calculated 

and compared  to those reported for nanocomposite films and conventional composite 

films. 
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Background and Theory 

1.1.3 Polyimides 

In the early 1960’s a number of aromatic polyimides were reported, some of which were 

commercialised and their structure and properties were investigated by many research 

groups [33-36]. In addition to the chemical backbone structure, the molecular packing 

coefficient and the orientation of the polymer chains have been reported to significantly 

influence the film’s properties, such as water permeability [33-36]. Optical studies of 

PMDA-ODA polyimide films [33-36] prepared by casting the precursor polymer solutions 

onto substrates such as glass slides and silicon wafers, followed by imidization, have 

shown relatively large out-of-plane birefringence and negligible in-plane birefringence.  

 

1.1.4 Polyimide Composites 

Composites are heterogeneous materials consisting of a mixture of two or more 

components present as separate phases, and combined to improve a given property of 

the composite beyond each individual component [37]. A nanocomposite consists of 

nano-size particles embedded in a matrix. An electrically conductive composite consists of 

conductive carbon or metal based particles (fillers) embedded in an insulating matrix 

(which can be inorganic or an organic polymer). In this manner, an electrically conductive, 

lightweight and flexible, polymeric material is generated as a result of the formation of 

electrically conductive channels or pathways. 

 

A considerable literature exists on the preparation and characterisation of nanocomposite 

conductive films, composed of metal particles or metal oxides dispersed into polymers, for 

use in gas or vapour sensing applications [19]. The conducting particles used in electro-

conductive polymer composites include various forms of carbon such as carbon black, 

glassy carbon, graphite and carbon nano-tubes ( CNT’s ). Carbon black occurs in the form 
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of near spherical particles of colloidal size, coalesced into particle aggregates and 

agglomerates. In a polymer matrix composite, knowledge of the particle size, distribution 

and concentration is essential, as these parameters affect the chemical and physical 

properties of the material. It is reported [38-40] that the in-situ formation of nanoparticles 

within nanocomposite films results in well-distributed nanoparticles within the polymer 

matrix. 

 

During ion beam irradiation of a polymer, the degradation of chemical bonds leads to 

modification of the physical and chemical properties of the polymer film. The changes 

induced in the polymer are localized along the ion path in the irradiated material. The 

formation of carbonaceous material from organic components in the film results in 

electrical conductivity, and an increase in surface hardness. Marletta et al. [41] reported 

that the electrical conductivity of an ion-beam irradiated film was comparable to the 

conductivity obtained in doped poly-acetylene, but, in contrast to polyacetylene, these 

composite films were reported to exhibit excellent stability.  

 

Since 1991, carbon nanotubes (CNT’s) have been widely used for many applications due 

to their high strength and excellent conductivity. As carbon nanotubes have high aspect 

ratios, they readily form a conductive network. As a result of these conductive network 

properties, CNT’s possess useful electromechanical properties [42]. For example, when a 

CNT-polymer composite was investigated for strain sensing [37,43,44], it was found that 

the change in electrical resistance was linear with respect to the strain. Also, the strain 

gauge sensitivity (the so-called gauge factor, GF ) of a CNT nanoparticle composite was 

much higher than the gauge factor of other polymer composites [GF≈50]. Since the 

irradiation of PI films forms cylindrical-like graphitic tracks along the ion path, the electrical 

conduction mechanism in the irradiated PI’s may be similar to that in the CNT particles, 

and hence they may possess useful electromechanical behaviour [125]. 
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1.2 The Effects of Ion Beam Irradiation 

1.2.1 Surface Morphology of Irradiated Polymeric Materials 

Ion beam irradiation texturing of thin films has been studied for more than four decades. 

The earliest studies were performed primarily on face centred cubic metal films ex-situ, 

with the ion-beam incidence angle normal to the films. X-ray diffraction was used to 

determine beam induced changes in the crystallinity and molecular structure of the films. 

Simultaneous ion beam bombardment during deposition of the films has also been studied 

for the past fifteen years. 

 

Irradiation of a polymeric material may induce irreversible changes in their macroscopic 

mechanical properties such as electrical and optical behaviour [45]. Electron excitations, 

ionisation, chain scission, cross-link formation and mass losses are some of the 

fundamental mechanisms that give rise to the observed macroscopic changes [46,47].   

Heavy ion irradiation of solid organic polymeric material has been reported to form minute 

cylindrical-like carbon-rich regions along the ion path due to energy deposition and bond 

breaking and making processes [48]. The surface properties of the irradiated polymer 

were found to be affected predominantly by the ion species used in the irradiation process 

and by the irradiation dosage ( fluence ). The ions used for irradiation were also reported 

to be lodged in the polymer layer after penetrating the surface.  The ion species in this 

layer were found to increase the number of conjugated double bonds, resulting in an 

increase in electrical conductivity of the polymer. During irradiation, Davenas et al. [11] 

observed the appearance of conductive properties as the polymer darkened in colour. 

These changes in properties were interpreted as the formation of a carbon layer (i.e. 

carbonisation of the polymer layer). Similar observations were reported by Furere et al. 

[23]. 
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As noted earlier, ion beam irradiation-induced changes result in a modification of the 

chemical structure from a pristine polymer surface to a graphite-like surface, with 

nanotubes dispersed at a nanoscale. Modification of the chemical structure of polyimides 

via ion-beam bombardment has been investigated by, for example, Davenas et al. [12], 

Xu et al. [13] and Constantini et al. [14]. Hirata et al. [18] used ATR-FTIR spectroscopy to 

study the effect of cluster ion irradiation on the chemical structure of polycarbonates, and 

Mohammad et al. [19] analysed the microstructural properties of PI and 

poly(vinylsilsesquioxane) hybrid composite films by FTIR analysis.  

 

1.2.2 Attenuated Total Reflectance Fourier Transform Infrared 

Spectroscopy (ATR-FTIR) 

The infrared spectra of compounds containing structural moieties such as carbonyl, 

amino, phenyl and nitro groups have certain features that appear at the same general 

frequency for every compound containing these functional groups. Thus, FTIR spectral 

data reveal the significant degradation that materials can suffer as a result of bond 

breaking processes. Previous studies have utilized Attenuated Total Reflectance Fourier 

Transform Infrared Spectroscopy (ATR-FTIR) to identify the bond types and chemical 

functional groups in the polymer which are most sensitive to high energy radiation 

damage [100-105]. ATR-FTIR data were found to be particularly useful to identify the 

chemical changes that occurred in the evolution of carbon clusters, via the formation of 

conjugated double bonds and ring fusion processes [23, 56-60].  

 

A simple FTIR spectrum of a polymeric material can be divided into two regions: (i) The 

high frequency region, approximately 4000-2000 cm-1, and (ii) The low frequency region, 

approximately 1999-650 cm
-1
. Characteristic  bands due to hydroxyl groups in alcohols or 

carboxylic acids are observed in the high frequency region, whereas the carbonyl groups 
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in amides and amino acid have very broad and asymmetric bands extending over a range 

of several hundred wave numbers (from approximately 1700 to 1400 cm-1) [61-63].  

 

After irradiation of the sample material, the FTIR spectra would show an overall reduction 

in intensity of the characteristic bands, indicating degradation, and possibly transformation 

of the material. For example, in an irradiation study of polystyrene (PS) the intensity of the 

band at 2853 cm-1, assigned to the C-H symmetric stretching band, was reduced [89], and  

for polyethylene terephthalate (PET) the bands corresponding to the ethylene glycol 

residue of the trans-configuration at 1472, 1387, 973 and 850 cm-1 were reduced in 

intensity [64]. 

 

Kapton® polyimide is one of the best known and most extensively studied commercial 

polyimides, and its FTIR spectrum has been reported to change following exposure to 

intense electron beam irradiation [65]. After irradiation it was found that there was an 

increase in the intensity of the general phenyl band centred at 3060 cm
-1
 relative to the C-

H band at 2400 cm-1, and a decrease in the intensities of the di- and tri-substituted phenyl 

bands at 920-775 cm-1 was accompanied by an increase in the mono-substituted phenyl 

band at 690 cm-1, indicating a process of chain scission occurring adjacent to the aromatic 

groups [65].  

 

The high temperature ( 250 - 350 oC ) annealing of carbon polymer composite films has 

been intensively studied in the literature [30], and recent studies of the annealing effect on 

the electrical transport properties of Ag nanoclusters embedded in glass matrix was 

reported by Megudapathy et al. [63].  This study found that there was a significant 

depletion of hydrogen after annealing for five minute intervals over the temperature range 

100 C to 300 C.   Annealing over 300C led to the recovery of hydrogen, although other 

elements such as oxygen, nitrogen and carbon were found to be unaffected. Thus, 
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although the irradiated polyimide is stable at high temperatures, the annealing process 

reduces its stability. 

 

1.3 Electrical Properties  

Electrical conductivity is not usually observed in organic polymeric materials because they 

are covalently bonded networks, and any residual conductivity usually depends on the 

movement of adventitious ions. Where there is charge transfer, it can occur by the 

movement of an electron from a donor molecule of low ionization potential to an acceptor 

molecule of high electron affinity.  

 

Polymers with metallic conductivity and other conductive properties are in high demand 

since they open a gateway for the production of flexible, light weight, enduring and low 

cost devices [23, 67]. Conductive polymer composites consist of conducting particles and 

a polymer combined in a solid matrix. The conductive properties of the polymer 

composites are also affected by the concentration of the conducting particles that form 

percolation pathways within the transport network of the insulating material [68]. Currently, 

nanocomposites are used in electromagnetic interference shields as embedded passive 

(inert) components, since they are unaffected by electrostatic fields and possess a 

positive temperature coefficient, which are desirable properties for applications in heat 

regulators and switching devices [68-70]. 

 

Enhanced optical and electrical properties and/or enhanced or maintained mechanical 

properties can be produced in a composite material [119, 71-80].  The electrical 

conductivity of a composite is dependent on the temperature and the filler content.  

Another method of achieving enhancement in the electrical conductivity of a  polymer is 

via irradiation. The conductivity of the irradiated polymer is dependent on three factors :(i)  

the structural changes induced by irradiation; (ii) the temperature of the polymer, and (iii) 

the relaxation processes in the polymer. The electrical behaviour of composites is 
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dependent on the type of charge carriers and the charge transport mechanism. The 

mechanism may involve hopping (where the electrons hop between conducting sites) or 

tunnelling (where the electrons ”tunnel” through activation barriers between the 

conducting sites). If charge carriers are lacking in a composite, there is little or no current 

flow. The term “carriers” refers to the presence of free electrons and positive holes in the 

material. A hole is a vacant electron energy state that is manifested as a charge defect in 

a crystalline solid, the defect behaving as a positive charge carrier with a charge 

magnitude equal to that of the electron. Carriers arise from broken bonds which allow an 

electron to be placed in the conduction band and/or a hole to be created in the valence 

band.  

 

1.3.1 Hopping and Tunnelling Conduction Processes 

Hopping conduction occurs when there is a significant decrease in separation between 

overlapping orbitals, which limits the mobility of the electronic states, allowing them to 

become localised. Thus, the gap between the valence and conduction bands becomes a 

mobility gap rather then an energy gap, therefore the charge transfer can only occur by 

thermally activated hopping across the energy barriers between the localised states [101]. 

However, tunnelling occurs when the domains are separated by an orientation boundary 

or an amorphous region, where the mobility is due to quantum mechanical tunnelling [68]. 

 

The movement of electrons in a material requires them to pass over, or tunnel through, an 

energy barrier depending on the ‘shape’ of the barrier and the availability of thermal 

energy. In the case of semiconducting materials, this mobility will increase with an 

increase in temperature.  

 

In conventional semiconducting materials, the electrical transport mechanism can exhibit 

two major types of semiconductor behaviour, termed “intrinsic” or “extrinsic”. 
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Intrinsic semiconductors, typified by silicon, have small energy gaps ( ≈ 1 eV ) between 

the filled and empty conduction bands, which allows a small number of electrons to be 

excited into the conduction band at ambient temperatures, and so provide a route for 

charge conduction. 

 

Extrinsic semiconductors require the addition of a ‘’dopant’’ which alters the electron 

population of either the valence or conduction bands to induce conductivity.  A dopant is a 

small quantity of a substance such as phosphorus (usually added at the level of parts per 

million), added to another substance, such as a semiconductor, to alter the latter's 

properties. For example, phosphorus (Group V, 5 valence electrons ) doped silicon ( 

Group IV, 4 valence electrons ) leads to a small population of electrons permanently in the 

conduction band of the silicon due to the extra electrons from the Group V element, which 

gives rise to n-type ( n = negative charge ) semiconduction, with electrons as the principal 

charge carriers. In the case of boron (Group III, 3 valence electrons ) doped silicon, there 

are electron vacancies in the valence band which gives rise to positive holes, and hence 

they are termed p-type ( p = positive charge ) semiconductors. In the n-type materials, the 

Fermi energy level is closer to the conduction band than the valence band, whereas with 

the p-type, the Fermi energy level is closer to the valence band than the conduction band. 

The different forms of conduction mechanism discussed above involve the excitation of 

charge carriers from the valence band into the conduction band across a band gap [170]. 

 

In pristine PI materials, the number of electrons in the conduction band are equal to the 

number of holes in the valence band, but once they are irradiated they exhibit intrinsic 

semiconduction as a result of bond breaking and making processes which redistribute the 

electron density.    
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1.3.2 Temperature Dependent Electrical Conductivity 

The temperature dependent conductivity behaviour of a material contains important 

information about the charge transport mechanism that occurs in the material. It also 

allows prediction of the electrical conduction properties [15]. Huertas et al. [68] and 

Migahed et al. [111] report that conduction in a metal can be expressed as the logarithm 

of the conductivity ( symbol σ ) ie. log(σ), and it is inversely proportional to temperature, 

due to an increase in electron scattering at higher temperatures.   

Ie.,     log(σ)   α    1/T         for a metal 

However, conduction in semiconductors is directly proportional to the temperature, 

because the carriers are thermally excited across the band gap to enhance the band 

conduction transport mechanism. 

Ie.,    log(σ)   α    T               for a semiconductor 

The one-dimensional “Nearest Neighbour Hopping” model was found to give rise to a 

conduction directly proportional to temperature, which is consistent with semiconductor 

behaviour.  The “Variable Range Hopping model” [112] and “Tunnelling Transport” 

mechanisms give rise to simple fractional temperature exponents, originally proposed for 

amorphous semiconductors, as expressed in the following relationships [113]  :  

 

Ie.,           σ = σ○ exp (-Tc/T)
1/

 γ    or    log(σ / σ○) = -(Tc/T)
1/

 γ        (1.1)
 

 

Where σ  is the conductivity, σo and To are constants and T is the absolute temperature. 

The value of γ defines the hopping dimension, and is between 4 and 1 for one-, two- or 

three-dimensional hopping respectively [111]. 

For example, if  γ = 1, then Equation 1.1 reduces to : 

 

  log( σ )  =  log (σ 0) – Tc/T             (1.2) 

and since resistivity ( ρ ) is related to conductivity via,  ρ = 1 / σ , then it can be shown  :  
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 log(ρ )  =  log (ρ 0) + Tc/T             (1.3) 

 

so a plot of log(resistivity) [ or log(resistance) ] versus reciprocal temperature should be 

linear for a 3-dimensional charge hopping mechanism.  

 

1.3.3 Electrical Conductivity of Polyimides  

The electrical resistivity ( ρ ) of pristine polyimide films has been reported to be in the 

range of 1012 to 1014 ohm cm [83-85] which is typical of an insulating material such as 

Teflon, as presented in Table 1.1.  

 

Table 1.1:    Representative Resistivity and Conductivity data 

Material Resistivity = ρ 

ρ  ohm cm 

Conductivity = σ 

σ   S cm-1 or mho cm-1 

Reference 

Copper 1.7 x 10-6  6 x 105 
124 

Silver 1.5 x 10-6 7 x 105 

Carbon 3500 x 10-6 0.003 x 105 

Glass 1012 - 1016 10-16 – 10-12 

Teflon > 1015 < 10-13 

Fused silica 75 x 1018 1.3 x 10-20 

Polyimide 1012  - 1014 ( 10-14 – 10-12 )# 83 - 85 

HD Micro- 

systems PI 

( 1014 )# 10-14 106 

 

        # calculated from the relationship,  ρ = 1/ σ  
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The charge transfer mechanism in polyimides has been discussed in many literature 

reports, including those of Huertas et al. [68], Brown et al. [86], Suzuki et al. [89] and Loh 

et al.[88]. Brown et al. [86] have studied the intermolecular interactions in a polyimide in 

order to understand the influence of the polymer’s molecular chains on its electrical 

properties.  Charge transfer was found to be due to interactions between the amine 

phenyl acting as an electron donor and the diimine moiety acting as an electron acceptor 

[87].  

 

1.3.4 Electrical Conductivity of Irradiated Polyimides 

Ion-beam irradiation of an organic polymer increases its polarity and electrical 

conductivity, and modifies its surface properties by alteration of its chemical structure 

[49,90,94]. The chemical effect on a single-ion-irradiated polymer was found to be 

dependent on two factors: (i) the primary polymer’s molecular structure, and, (ii) the 

deposition of the implanted ion’s energy [95,96]. Solid polymer surface irradiation has 

been discussed by Bertrand et.al [91]. Bertrand et al., Benninghoven et.al, Demirev et al., 

and Leggett et al. [91-94] reported that the primary ions used in irradiation at various 

energy levels lead to the sputtering of molecular fragment ions or clusters, and these 

species were found to receive kinetic and internal energies shared between their different 

vibrational and rotational modes [100,101]. Schumann et al. [97], Marletta et al. [102] and 

others [103-105], that found that  laser irradiation induced a permanent increase in the 

electrical conductivity of the polymer which relied on the excitation of particles by visible–

laser irradiation or pyrolysis of the polymer. Srinivasan et al [23] observed that the laser-

induced conductivity was dependent on the nature of the ambient atmosphere during the 

irradiation process.  

 

Polyimides are reported to have high chemical and thermal stability [103] and the intrinsic 

electrical conductivity of a HD Microsystems polyimide was reported to be 10-14 S cm-1 
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[82]. However, the electrical conductivity can be enhanced by irradiation, and this has 

drawn much attention recently due to the possible application of kapton polyimide as a 

conducting polymer [97-101]. Although many groups have reported an increase in the 

polyimide conductivity by several orders of magnitude due to irradiation, an exact 

mechanism of conduction is yet to be established [102, 103]. Van der Putten et al [113] 

noted that upon irradiation, free radicals form and may interact with other molecular 

groups, resulting in an increase in conductivity.  Conductive behaviour after pyrolysis was 

found by Mittal et al. [105] and Phillips et al. [106] and Garnier [112] attributed the induced 

conducting properties to the formation of dense heterocyclic networks dispersed in an 

amorphous carbon matrix. Wang et al. [103] and Phillips et al. [107] found a comparable 

conductivity increase as a result of ion beam irradiation. Hioki et al. [104] and Fureur et al. 

[23] demonstrated that a laser beam could also cause a pristine polyimide layer to 

become conductive. Egusa et al. [29] and Singh et al.[31] suggest that the following 

sequence of events occurs after irradiation and leads to electrical conductivity of the 

polymer: (i) formation of radiation defects (fine carbon clusters, unsaturated compounds, 

macroradicals) accompanied by cross-linking of polymer chains, liberation of volatiles and 

transformation of heteroatom containing functional groups, (ii) -bonded carbon-rich 

cluster growth, and, (iii) creation of links between clusters leading to aggregation. This 

results in electron hopping between the carbon-rich clusters, and overlapping at high 

fluence creates percolation charge carriers along the irradiation layer, giving rise to 

electrical conductivity. Popok et al.[15] observed that at high fluence, channel overlapping 

in the irradiated polymer resulted in an increase of -conjugation forming a conductive 

polymer matrix. The transport carriers arise by electron gas formation in extended 

conglomerates and 3-dimensional hopping from conglomerate to conglomerate in the 

irradiated layer. Two mechanisms that are possibly responsible for conduction in an 

irradiated polymer are variable range hopping and band conduction [108]. 
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The conductive behaviour of Kapton-H polyimide in both transient and steady state modes 

was examined at different temperatures [118], and the current was found to be transient 

free at temperatures above 423K. The transient current  was attributed to the formation of 

free radicals in the irradiated Kapton-H, with a decay rate consistent with increasing 

fluence, while the ionic jump distance doesn’t support an ion hopping conduction 

mechanism. In a study of organic semiconducting materials used as thin film transistors, 

the conductivity of amorphous molecular polymers, and most conjugated polymers, was 

found to be governed by  thermally activated hopping mechanisms with limited charge 

mobility [119].  

 

1.4 Mechanical and Electromechanical Properties  

The mechanical behaviour of materials is the study of their deformation and breakdown 

when placed under load. Common types of deformation that occur in materials are elastic, 

plastic and creep deformations. Elastic deformation is the stretching of the material 

without the breaking of chemical bonds. The elastic modulus is found to be high for 

strongly bound covalent solids, while for metals it has an intermediate value, and for a 

polymer the modulus is low. Plastic and creep deformations are inelastic deformations, 

which involve change in the relative positions of atoms. Plastic deformation is time 

dependent and shape is not recovered after unloading, and creep deformation is time 

dependent at an elevated temperature [29]. The stress-strain behaviour is described by 

the constitutive equations which are developed below.  

 

The elastic behaviour of a material is described by Hooke’s Law, which states that, within 

the elastic limit, the deformation produced is proportional to the stress. Thus, by reference 

to Figure 1.3 :  
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Figure 1.2: Illustration of film extension during application of mechanical stress-strain. 

Where the applied force is F, the original length is ○ , the final length after the force is 

applied is   ( =  ○  +   ) and the cross-sectional area is  A0 . we can state Hooke’s Law 

as: 

 

    F α      ie., F =  constant.     =      constant.(○+   )                                        1.4 

 

If the initial length of the material to be analysed was doubled, then a doubling of the 

extension is observed. On the other hand, doubling of the cross-sectional area halves the 

extension. Hence, the extension varies linearly with initial length and inversely with cross-

sectional area [35].  

  α  ○ / A0       so,      = constant(  ○ / A0 )          

The stress (symbol  σ, units Nm-2 ) is the force per unit area applied to the sample ( F/A0 ), 

and the strain ( symbol ε ) is the relative change in dimension ( / ○ ) of the sample, and 

so is unitless. The modulus of elasticity is the ratio of the increment of unit stress to the 

increment of unit deformation within the elastic limit, and for a sample in tension is also 

called Young’s Modulus, designated E, and defined in equation (1.5): 

 

Young’s Modulus, E  =   stress / strain  =  σ / ε                                                             (1.5) 

F 

F 

○ ○ +    A○ 
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                               E =  ( F/A0 ) /  ( / ○ )   = F.   ○ /    A0 .     

Thus,   = F.   ○ /    E. A0   

   =   F.  [ ○ /    E. A0 ]   

   = F. constant 

which is a re-statement of Hooke’s law.  

On the basis of the expression for Young’s modulus, the elastic behaviour of a material 

with a linear stress-strain relationship can be determined by the calculation of stresses 

and deflections in simple components. In the stress-strain curve, an initial linear elastic 

region is observed, so that the slope of that region is used to determine Young’s modulus. 

The elastic limit is the point where the curve starts to deviate from linearity prior to 

material breakdown. 

 

In plastic deformation, the volume of the material remains constant [114] and if the 

deformation is uniform along the length of the material, then the shape of the material is  

changed. The resistance to plastic deformation is indicated by a positive slope of the 

stress-strain curve. Plastic deformation in metals and ceramics is due to slippage between 

planes of atoms in the crystal grains of the material. The material’s resistance to plastic 

deformation is roughly analogous to the friction of a block on a plane.  

 

Thermal strain is the elastic strain that occurs due to changes in temperature, and this 

arises because an increase in temperature causes expansion, while a decrease in 

temperature leads to contraction. An isotropic material has mechanical properties that are 

the same in all directions, so temperature affects the material equally in all directions. The 

thermal strain ε (which can be expressed as  δV/V , upon analogy with tensile strain) at a 

given temperature (T), is proportional to the temperature change (ΔT) : 

 

Ie.,      ε  α    ΔT         so       ε =  δV / V  = constant  x  ΔT              1.6 
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From this we find, δV  =  constant.V. ΔT, and the proportionality constant is the coefficient 

of thermal expansion (α). 

If T0 is the reference temperature where the strain is taken to be zero, we can write [124] : 

 

     ε = α (T-T0) = α (ΔT)             (1.7) 

 

1.4.1 Mechanical Properties of Irradiated Polymers 

Ion irradiation is known to affect the mechanical properties of polymeric materials and  the 

effects have been intensively studied since the 1960’s. Changes in the mechanical 

properties of irradiated materials are mostly dependent on whether or not crosslinking or 

degradation of the polymer occurs during the irradiation of the material [39,44]. In the 

study by Roy et al. [115] on the mechanical properties of electron beam irradiated polymer 

films, using low-density polyethylene (LDPE), biaxially oriented polypropylene (BOPP) and 

polyethylene terephthalate (PET), the LDPE maintained a high resistance, whereas PET 

and BOPP developed a low resistance to mechanical forces.  

 

Other studies reported that phenols, amines and secondary aromatic amines are effective 

in protecting the polymer against loss of performance due to irradiation. It was also noted 

that irradiation exposes the stabiliser in the polymer to oxidative transformation [116, 121]. 

Courtney et al. [117] and Klemchuk et al. [120] reported that syringe materials exposed to 

gamma radiation underwent oxidative degradation with discoloration and a potential loss 

of mechanical properties, depending on the stabiliser used [118]. This degradation was 

reported to increase with gamma radiation dose unless a stabiliser was added to the 

material. In another study of the mechanical properties of electron beam irradiated 

henequen fibre, the tensile strength and thermal stability were both found to decrease with 

an increasing dose of radiation.  

 



 21 

The bonded electrical resistance strain gauge has been the most powerful tool used in 

experimental stress analysis since the 1940’s, as it is one of the most accurate, sensitive, 

versatile and easy-to-use sensors. Bulk silicon strain gauges were reported by Khahifirooz 

et al. [119] to have some disadvantages such as poor flexibility, high fabrication costs and 

leakage of current. These “semiconducting strain gauges” have sensitivity (gauge factor) 

at least in an order of magnitude greater than their metallic counterparts. Thus, the 

development of improved thin film semiconductor strain gauges is of interest for their high 

sensitivity and good flexibility while having low fabrication costs, and this is one focus of 

the work reported in this thesis.  

 

1.5 Summary of Chapter Topics 

In summary, the modification of the chemical structures of polymers induced by ion-beam 

irradiation has been investigated by several groups [20, 26-29]. Although numerous 

studies of chemical structure modification induced by ion-beam irradiation have been 

reported in the literature, there are few FTIR studies which provide quantitative analysis or 

an examination of the effect of heat treatment (annealing) on the chemical structural 

evolution. The  impact of chemical structure change on the electrical transport properties 

of the irradiated polymer assist in establishing the relationship between the chemical 

structures of the precursor polymer and favourable irradiation conditions. Chapter 3 seeks 

to provide an insight into the evolution of the microstructure of PMDA-ODA and BTDA-

ODA polyimides following Cu3+ ion-beam irradiation. PMDA-ODA and BTDA-ODA were 

chosen because their physico-chemical properties are well characterised.  In Chapter 3 

the structure evolution after ion-beam irradiation has been analysed by both Attenuated 

Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-ray 

Photoelectron Spectroscopy( XPS ), along with a study of the effect of annealing when the 

irradiated films were heat treated at different temperatures.  
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The energy transfer from the incident Cu3+ ion-beam to the polymer contributes to 

modification of the microstructure of the irradiated polyimide. This is manifested as a 

change in the mechanical and thermal stability of the polyimide film which has been 

characterised over a wide temperature range.  In addition, the glass relaxation process in 

the polymer has also been examined.  

 

Chapter 4 focuses on a study of the change in polyimide (PMDA-ODA) electrical transport 

properties under different conditions after ion beam irradiation.  

 

Chapter 5 focuses on exploring the impact of ion beam irradiation on the electro-

mechanical properties of the PMDA-ODA polyimide by investigating how the energy loss 

mechanism involved in modification of chemical structure, and electrical transport 

properties, impacts on the micromechanical properties, particularly with regard to 

applications in strain gauges.  
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2 
MATERIALS AND METHODS  

2.1  Introduction 

Ion beam irradiation is a process by which effective modification of the chemical structure 

and microstructure of a polymer can be achieved. Ion beam irradiation is of great interest 

since the beam can be focused to influence a very small region of the polymer. In this 

work, two polyimides with similar chemical structures (PMDA-ODA and BTDA-ODA) were 

irradiated with a Cu3+ ion-beam over a wide range of ion fluences. Several factors are 

expected to increase the permeability of the polymer, such as the polymer type, the ion-

beam type and energy, and the time of exposure. To reproducibly modify the polymer 

surface and to alter the electrical and mechanical properties of the irradiated region, a 

systematic investigation was carried out on the effect of ion-beam irradiation on the 

chemical structure and microstructure of the polymer. The investigation concentrated on 

understanding the change in the chemical structure caused by ion-beam irradiation, and 

the resulting effect on the electrical, mechanical and electromechanical behavior of the 

polymer. Specifically, the effect of the ion-beam modification on the polymer structure was 

studied to examine any possible rearrangement of the chemical bonds and the loss of 

volatiles [1-7]. 

 

Polyimides, in particular PMDA-ODA and BTDA-ODA, were selected because they were 

commercially available and well characterized, and they had excellent potential for 

applications as sensor materials. The essential experimental approach was to 
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homogenously irradiate the PI films under an inert atmosphere, and then characterise the 

ion-beam induced modification of the film via its infrared spectrum, electrical conductivity, 

mechanical properties and electromechanical properties. For the experimental set-up 

used in these studies, the thin films consisted of an irradiated layer which penetrated to 

about 10 % of the film thickness, with the remaining 90 % (the un-irradiated, underlying 

layer) acting as a substrate. The choice of research method was based on the “particle 

dispersed in situ method” reported for forming polyimide composites, and closely followed 

the study of carbon-PI composites reported by Huertas et al. [17].  An example of this 

process has been reported for studying the onset and growth of conduction in a PI film 

which was subject to high-energy ion-beam irradiation [7]. This project focuses on a study 

of the effect of Cu3+ ion-beam irradiation of PMDA-ODA and BTDA-ODA thin films. 

 

This chapter describes the experimental methods used to characterize the properties of 

the polymer prior to, and following, ion-beam irradiation. ATR-FTIR and XPS studies were 

carried out to analyse the change in chemical structure induced by ion-beam irradiation. 

The change in the microstructure was determined by the depletion of hydrogen and 

nitrogen atoms, and rearrangements of bonds and atoms of the polyimide films. The 

fabrication and preparation of the polyimides are discussed in section 2.2.1 and the 

irradiation conditions are discussed in section 2.2.4. The irradiated films were prepared by 

an in situ method.   

 

2.2 Materials 

Two polyimides (PMDA-ODA and BTDA-ODA) were examined in this work, and the 

results were used to provide a theoretical basis for understanding the mechanism of 

reaction that occurs between the irradiation ion and polymer. The chemical structure and 

physical properties of each polyimide are presented in Table 2.1.  
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Table 2.1:  Chemical structure and physical properties of each polyimide. 

Repeat Unit Structure Polymer Properties 

BTDA-ODA 

N

O

O
O

N

O

O

n

O

 

 

Curing Temperature 295ºC 

Tg 325ºC 

1% (wt) loss 560ºC 

Coefficient of thermal 

expansion 

50 ppm/m0C 

 

Tensile Strength 130 MPa 

Tensile modulus 2.5 GPa 

PMDA-ODA 

N

O

O

N

O

O

O

n
 

 

Curing Temperature 400ºC 

Tg 360-4ºC 

1% (wt) loss 500ºC 

Coefficient of thermal 

expansion                        

20 ppm/m0C 

Tensile Strength 231 MPa 

Tensile modulus 2.5 GPa 

 

The polyimide PMDA-ODA was obtained from Dupont, UK. However, the polyimide 

BTDA-ODA, PI2525 BTDA-ODA was synthesized using the method of Ghosh et.al [8]. 

The polyamic acid solution (PAA) obtained from HD Microsystems (Parlini, NJ, USA). The 

monomers (dianhydride and diamines) were purchased from the Aldrich Chemical 

Company. The solvent, N-methyl pyrrolidine (NMP) reagent grade, was also purchased 

from the Aldrich Chemical Company. The thin film fabrication process is described in 

section 2.2.1. 
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2.2.1 BTDA-ODA PI Thin Film Fabrication Process  

The PAA was diluted with NMP ( Sigma-Aldrich, St Louis, MO, USA) until the PAA content 

became 10-12% (w/w). A flowchart of the fabrication process is shown in Figure 2.1. 

Three types of films were prepared; one type was a freestanding virgin polyimide film and 

the other two films were formed by slip casting onto a glass surface, with a thickness of 

about 40 to 100 microns  [7]. Table 2.1 (shown previously) summarizes the properties of 

the fabricated BTDA-ODA films. 

 

Flowchart in Figure 2.1 shows the step by step preparation of the BTDA-ODA thin films, 

these steps were as follows: I) Mixing of the PAA precursor into the solvent NMP. II) 

Mixture was placed in a sonic bath. III) In a fume hood the thin films were cast on mercury 

inside a dry desiccator. IV) The films were removed from the desiccator and placed 

between two metal rings before placing them into the vacuum oven to be cured at 250 C. 

VI) Pristine BTDA-ODA thin films. This set of films was used in this research project. 
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Figure 2.1: The flow chart of BTDA-ODA film fabrication. The PAA viscosity was 3.5 Pa.s 

and BTDA-ODA concentration was 25% (w/w) in N-methyl pyrrolidinone (NMP) [7]. 

 

PAA Precursor 

 

MP 

Solvent (NMP) 

Precursor solution of PI in NMP, in 

sonic bath. 

 

 

Polyimide thin film cast on 

mercury in a desiccator 

 

Curing process at 250 0C in 

vacuum oven, clipped between 

metal rings  

 

   

 

PI thin films 
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2.2.2 Film Casting  

Free standing and supported BTDA-ODA films were fabricated by slip casting on mercury.    

The films were cured in a vacuum oven at a temperature of 250ºC for 30 minutes. The 

curing times and temperature are shown in Figure 2.2. 

 

 

 

 

 

 

Figure 2.2: Shows a schematic of the time and temperature at which the free standing 

films were cured in a vacuum oven.  

 

In preparation for irradiation, the polyimide thin film was cast as follows:  the polyimide ( 

0.5mL ) and NMP ( 0.5mL ) were mixed and the solution placed in a sonic bath for 2 hours 

at a temperature of 20 C – 30 C. The BTDA-ODA PI solution (200L) was then cast over 

mercury. After formation of the thin films on the surface of the mercury, tweezers were 

used to remove the films. This was carried out in a fume hood, while appropriate dress 

code, in gloves, lab coat and safety glasses. Then the films were removed and placed on 

a doughnut shaped metal ring. Each film was sandwiched between two metal rings were 

then placed in a desiccators and were moved by the oven. Films were removed from 

desiccators and placed in the vacuum oven where they were cured at 250 C. 

 

Accurate measurement of the film thickness is important as it is required for the 

calculation of electrical conductivity and other electrical properties of the irradiated film. 

The thickness of the BTDA-ODA films was measured using an ultrasonic thickness gauge 

 250 C  30 min 

60 min 60 min 

25C 25C 
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(Alcolmeter, Manchester England). This thickness measurement was not required for the 

PMDA-ODA as its thickness measurement were sent with it. 

 

The electrical conductivity of the unirradiated BTDA-ODA polyimide has been reported to 

be 10-14 S/cm [7]. Polyimide intermolecular interactions and the ordering of the polymer 

chain were studied using spectroscopic techniques [21]. Hasegawa et al. [9] and 

Wachsman et al. [10] have studied charge transport occurring between donor and 

acceptor moieties in the PI, where the donor is a segment of the amine phenyl and the 

acceptor is the diamine [11].  

 

2.2.3 Irradiation 

Ion-beam irradiation was performed using the Tandem Accelerator at The Australian 

Nuclear Science and Technology Organization (ANSTO), Lucas Heights, NSW.  All 

irradiation was performed at room temperature within a vacuum chamber at a pressure of 

7X10-3 mbar.  

 

The accelerator consists of several units as shown in Figure 2.3, the areas labelled 1 to 7 

are explained in Table 2.3. 
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Figure 2.3: shows the tandem accelerator used at ANSTO with its different units. 
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Table 2.2: shows the various areas and the explanation of their operations.  

Area Numbers Functions /Purpose 

1 The ion sources where the ion beam is formed to be accelerated.  

2 The magnet 

3 The electric analysers, where the ion mass, energy and electrical 

charge are selected. 

4 The voltage accelerator is surrounded by gas insulation in a high 

pressure vessel,. This high pressure is necessary to stop the high 

voltage from discharging into the surrounding environment. 

5 The beam lines provide a path way along which the ion-beam will 

travel to its destination whilst being focused directionally.  

6 The target is where a high energy beam of the ions are measured and 

information about the surface targeted is gathered by the beam. 

7 The ions used in the accelerator are knocked out of an atom of a 

sample material in the ion source, and accelerated by an electrostatic 

field. The ions are deflected by an electromagnet through a precise 

angle, where ions with specific mass are deflected and the ions with 

different mass are lost. 

 

To avoid over-heating of the PI samples, an aluminium plate (Figure 2.4) was used to 

dissipate heat and support the films when irradiating them. The energy of the incident ion-

beam was adjusted to ensure that only 10% of the film depth was modified using one type 

of ion (Cu3+ ) over a wide range of ion fluences. The variables to achieve each fluence 

were the current and exposure times. The fluence was calculated, and samples with 

fluence values ranging from 1013 to 1014 ions cm-2, were selected for study.  
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Figure 2.4: Shows the films supported by the aluminium plates for irradiation  

 

The ion beam irradiated polyimide films and their current density and exposure times are 

summarized in Table 2.4. 

 

Table 2.4: The fluence values achieved and the exposure time and current density.  

 

PMDA-ODA 

 

 

BTDA-ODA 

Current  

(nA/cm2) 

Time 

(sec) 

Fluence 

Ions cm-2  

47.53 1800 1 x10 14 

108.09 900 2x10 14 

114.36 1380 3x10 14 

120.34 1620 4x10 
14

 

102.22 2460 5x10 14 

 

Current  

(nA/cm2) 

Time 

(sec) 

Fluence 

Ions cm-2 

52.69 1500 1 x10 14 

54.18 1800 2x10 14 

63.31 2400 3x10 14 

51.87 4200 4x10 
14

 

53.53 4800 5x10 14 
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Figure 2.5: presents a schematic diagram of the irradiation process and storage 

sequence of the films after irradiation. 

 

 

 

 

 

 

Irradiation Chamber 
Beam line to Chamber 

Room temperature Storage dry 

box at ANSTO 

Cardboard storage box used for 

travelling back to Melbourne 

Upon arrival in Melbourne, the 

irradiated films were placed in a 

desiccator 
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2.3 Characterisation Techniques 

2.3.1 Thermogravimetric Analysis  

Thermogravimetric Analysis (TGA) is an analytical technique that is used to determine a 

material’s thermal stability and the fraction of volatiles in the material. These properties 

are measured by the change in weight that occurs during the heating of the analysed 

specimens. These analyses can be carried out in air or under an inert atmosphere, such 

as helium, nitrogen or argon. 

 

There are two different types of TGA, one uses a vertical balance, and the other uses a 

horizontal balance. The vertical TGA balance, as used at RMIT and shown in Figure 2.6, 

has a specimen pan hanging from the TGA instrument above the balance on a sample 

stem. It is important for this type of instrument to be calibrated to compensate for the 

buoyancy effect due to variation in the density of the purge gas with a change in 

temperature.  

 

Figure 2.6: Perkin Elmer TGA at RMIT University. 
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2.3.2 Thermal Stability Properties  

The thermal stability behaviour of each sample was measured using a Perkin-Elmer TGA 

series 7 instrument, shown in Figure 2.6.  The samples, with masses ranging from 0.1 to 

5mg, were placed in an open platinum pan.  The analysis of each sample was performed 

over the temperature range from 25 °C to 800 °C at a heating rate of 20 °C min-1. To 

obtain a stable thermal environment at 800 °C the chamber was purged with nitrogen gas. 

The onset of degradation, at a temperature Td, and the maximum rate of weight loss under 

nitrogen, were then determined. 

 

2.3.3 Thermal Stability of Polyimide  

The thermal degradation behaviour of the un-irradiated and irradiated polyimide samples 

were studied using the TGA. The thermal stability of polyimides is generally quite good, as 

they can withstand temperatures of up to 400 °C, in particular the PMDA-ODA polyimide. 

The effect of the filler on thermal stability was studied in the composite thin film structure 

investigation by Cella et al. [12],  where the thermal stability of the polyimide was found to 

withstand temperatures between -260 to 600 ºC [12]. The un-irradiated and irradiated PI 

samples were heated from 20 
o
C to 800 ºC under a nitrogen atmosphere at a heating rate 

of 10 ºC/min. The weight loss curves (TGA curves) and the derivative weight loss (%) 

curves (DTG curve) of PMDA-ODA films changed with varying fluence values. 

 

The TGA curve presented in Figure 2.7 shows that the un-irradiated PMDA-ODA  exhibits 

a small weight loss below 500 ºC, in the temperature range of 240 ºC to 380 ºC, resulting 

from the evaporation of NMP. The decomposition temperature of the films was obtained 

from the dw/dt versus temperature plot, where the weight loss was reported to be above 

10%.  In the un-irradiated PMDA-ODA the weight loss percentage curve showed a steady 

weight loss of 99.06 wt%, starting at a temperature of 530 ºC and ending at 700 ºC. The 

derivative weight loss occurs at a temperature of 620 ºC, where a broad and moderate 
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intensity peak was observed. This one step decomposition between 530 ºC to 700 ºC is 

attributed to the break-up of the molecular structure of the polyimide as it is thermally 

decomposed.  

 

Compared to the pristine BTDA-ODA exhibit a small weight loss below 500 OC where as 

the PMDA-ODA exhibit no weight loss below 500 OC. The first small weight loss in the 

BTDA-ODA was observed at 310 OC. This was reported by Cella et.al[12] to be due to 

small presences NMP in the BTDA-ODA film. The major weight loss was observed to 

occur at 590 OC. These high weight losses were indicative of the high thermal stability 

exhibited by these films. The decompositions temperature of the films is obtained from the 

dw/dt Vs temperature graphs, where the weight loss is above 10%.  
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Figure 2.7: (a) and (b) shows the weight loss percentage versus temperature and the 

derivative weight percentage vs. temperature of PMDA-ODA irradiated thin films. 

 

2.3.4 Drying and Annealing For ATR-FTIR Analysis 

The irradiated PI films were heat treated in two stages as shown schematically in Figure 

2.8: In stage 1, the drying of the polyimide films was performed in three steps, the first 

step involved the storage of the irradiated films in a dry desiccator, in the second step the 

irradiated films were heated to 80 C, at a rate of 20 C/10min in a vacuum oven, and held 

at a constant temperature of 80 C for a period of one hour, then cooled to room 

temperature at a rate of 1 C/min. Thirdly, the films were immediately placed in a 

desiccator and directly taken to the dry oven beside the FTIR. The films were in the dry 

oven for the duration of the analysis.   

 

In stage 2 of the analysis, the films were placed back in the vacuum oven for annealing at 

a temperature of 100 C for an hour. Stage 2 was again performed in 3 stages, then the 

FTIR analysis was promptly performed. The total annealing temperature was 280 C for 

each of the films. 
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Figure 2.8: Schematic diagram of the drying and annealing process of the films. 

 

 

2.3.5 Annealing effect on electrical conductivity 

The electrical resistance behaviour during the first thermal cycle is higher than in the 

remainder of the thermal cycles due to possible residual stress formed during preparation 

processes. Heat treatment of the films removes the possible stress and yields consistent 

and reproducible behaviour during the following cycles. During the thermal cycling of this 

semiconductor material, the resistance was found to decrease, thus increasing the 

electrical conductivity. Therefore, the thermal treatment ( or annealing ) removes the 

Irradiated PI films were dried at 80 0C, under 

nitrogen atmosphere. 

 

ATR-FTIR of PI films after irradiation  

800C 

Irradiated PI films were annealed at 180 0C and 280 

0C, under nitrogen atmosphere. 

 

 

1800C 

Annealing process 

Loss of H2O, R-

OH and possibly  

R-COOH 
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stress in the film and provides electrons with sufficient energy to pass through ( or hop ) 

from one valence state to another. 

 

2.3.6 Temperature cell (Annealing) 

To determine the electrical conductivity, annealing of the irradiated films was carried out at 

a temperature of 200 °C. A low temperature thermal treatment process of the irradiated 

film was carried out at temperatures of between 25 °C to 55 °C at a rate of 1 °C/min as 

demonstrated in Figure 2.9. The time required for each cycle was found to be about 2 

hours. This process was essential for the removal of moisture and other volatiles that are 

adsorbed onto the films. This measurement was carried out in the cell shown in Figure 

2.10. [17] under an inert atmosphere. 

 

 

 

 

 

 

 

Figure 2.9: The step-by-step heating and cooling cycle of the films. 
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Figure 2.10: Cell [17] used for electrical conductance measurements of irradiated films, 

under an inert atmosphere, during thermal cycling of the films. 

 

2.4.1 Fourier Transform Infrared and XPS Spectroscopy  

Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy was 

used to study the changes in the chemical structure of the polyimide films following 

irradiation. All the measurements were performed using a Perkin Elmer FTIR 100 .  The 

use of conventional Fourier Transform Infrared (FTIR) was not possible for two reasons (I) 

High background (II) Difficulties in compressing the carbonised PMDA-ODA film into a KBr 

pellet. The ATR-FTIR spectrum is measured by allowing the IR beam to penetrate a few 

microns into the surface of the irradiated polyimide. In the ATR-FTIR measurement, the 

evanescent wave produced on total reflection of the incident infrared beam at the prism 

surface is used to measure the FTIR spectra of the near surface regions of the films. The 

films were placed in contact with the transparent prism and pressure was applied to the 

films by the flat surface. The spectra of the films were measured under the same 
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conditions prior to, and following, ion irradiation to monitor any change of the spectrum 

induced by ion-beam irradiation. For ATR-FTIR analysis, the change in the amount of 

each relevant functional group was determined by the area under the peaks in the FTIR 

spectra. Figure 2.11 show the ATR-FTIR spectrometer setup, the lettering and numbering 

corresponds to the parts of the ATR-FTIR spectrometer, which are described as follows: 

Mirrors (M1-M6), Movable Mirrors (MM), Detector (D), Sample Holder (SH), Sample (S) 

and Prism (P). 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: ATR-FTIR spectrometer experimental setup. Diagram in this Figure is 

adapted from Hirata et al. [12] and the Perkin Elmer FT-IR user manual [21]. 

 

PMDA-ODA polyimide films of 125μm thickness were irradiated with 5.5 MeV Cu3+ ions at 

fluencies of 9x1013, 1x1014, 2x1014, 3x1014, 4x1014 and 5x1014 ions cm-2. These samples 

were investigated via ATR-FTIR using an instrument resolution of 32, which was found to 

give well-defined peaks.    

 

XPS measurements were carried out using a Thermo KAlpha XPS instrument at a 

pressure better than 1x10–9 Torr (1Torr =1.3336102 Pa) as shown schematically in Figure 

M1 
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M5 

  M3 

MM 

M2 

M6 

   P 

    Sample (S)  

 SH 

M5 
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3.2.  The general scan and C 1s,  O 1s, and N 1s core level spectra for the samples were 

recorded with polychromatic Mg Kα radiation (photon energy of 1253.6 eV) at a pass 

energy of 20 eV, an overall resolution of 0.1 eV, and an electron take off angle of 90 

degrees. The core level spectra were background corrected using the Shirley algorithm, 

and chemically distinct species were resolved using a nonlinear least squares fitting 

procedure. The core level binding energies (BE) were aligned with a carbon binding 

energy of 285 eV. 

 
 
Figure 3.2: Schematic outline of XPS instrumentation.  

 
(  http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy  ) 

http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
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2.5.1  Measurement of Electrical Resistance of Thin Films  

 

2.5.2 Sample Preparation 

All the films were cut into strips with specific dimensions of 2.00 mm in length and 1.56 

mm in width, and metallic contacts were applied to eliminate contact resistance. Prior to 

the application of the contact, the surface of the sample was wiped clean of dust or grease 

with a soft cloth and ethanol. Silver paint electrodes were then applied and tested for good 

ohmic contacts in the cell by using the two point method. 

 

2.5.3 Electrodes 

Micro TipTM, (SPI Supplies, West Chester, PA, USA) was a commercially available silver 

epoxy that was used in this study. The silver epoxy was applied to the film surface and 

allowed to dry at room temperature for a period of 24 hours to achieve good electrical 

contact. 

The electrodes provide two contact points at a distance (L) and of cross sectional area (A 

=  width x thickness) on the films, as shown in Figure 2.12  

 

  

 

 Width 

 

       

       

                                              

Figure 2.12:    The electrodes’ contact and shaded area with Thickness, Length and 

Width. 

Electrodes contacts 

Irradiated PI Film 

Thickness 

Length 
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2.5.4 DC Electrical Resistance Measurement 

The electrical resistance of the irradiated polyimide was studied using the two probe 

method, as suggested in the Handbook of Polymer testing for measurement of polymer 

resistance [21]. The electrical resistance of carbon-polyimide films was measured across 

the film and then the resistivity was calculated. The electrical resistivity was obtained 

using Equation 2.1.  [21]. 

 

ρ = R (A/L)                (2.1) 

 

Where ρ is the resistivity, R is the resistance of the film, A is the cross- sectional area of 

the film, and L is the film thickness between the electrodes. 

 

2.5.5    Current-Voltage Measurement 

The electrical resistance of each film was measured at different voltages, so as to; (a) 

evaluate the ohmic behaviour of the metallic contact, and (b) to confirm the sample has a 

very high resistance.  The current (I), voltage (V) and resistance (R) are related via Ohm’s 

law, Equation 2.2 : 

 

R =  V / I                           (2.2) 

 

Different voltages were applied to different films. Some films required voltages between 1 

and 30 V, but because of very high resistance, other samples required voltages of about 

170 or 320 V.  Figure 2.13 is a schematic diagram of the experimental set up. Similar 

current-voltage (I-V) experiments were carried out on a carbon nanotube-

polyoctylthiophene composite by Valentine et al. [15]. 
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Figure 2.13: Schematic of the current-voltage circuit set-up used for the resistance vs. 

temperature measurements. 

 

The electrical conductivity conditions were optimised for this research project using a 

polyimide-glassy carbon composite film. The resultant thermal cycles of electrical 

conductivity data are shown in Figure 2.14. The Arrhenius plot and the calculated 

activation energies are shown in Figure 2.15. 

 

 

Figure 2.14:  Graph of polyimide-glassy carbon thin film composite. The resistance is 

observed to be decreasing with increasing temperature. 
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Figure 2.15:  An Arrhenius plot which was used to calculate the activation energy (AE) for 

the polyimide-glassy carbon thin film composite. AE was calculated to be 34.35 meV/K.  

 

The magnitude of the activation energy provides a means of identifying the electron 

transfer mechanism and it also indicates the energy required for an electron to go from 

one electron state to another. For example, when an electron is activated it moves from its 

ground state level to a higher energy empty, or unfilled, level.  

 

2.6.1       Mechanical Measurements 

Mechanical analysis is a technique used to measure a material’s deformation in response 

to an applied stress or strain force. A stress-strain curve is obtained by measuring the 

applied force as a material is continuously elongated at a constant rate of extension until 

the breaking point of the material is reached. The stress σ is defined in Equation 2.3 : 

 

         σ =  F / A                            (2.3) 

 

Where F is the applied force ( in Newton ) and A is the cross-sectional area of the material 

( m2 ).  
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A typical stress-strain curve is shown in Figure 2.16.   The slope of the curve in the elastic 

linear region is termed the elastic or shear modulus ( also called Young’s modulus, 

symbol E ), which is a measure of the stiffness of the material analysed, and is defined by  

 

  E =   σ / ε                                      (2.4) 

 

Where E is the elastic modulus (Pa), σ is the stress (n/m2) and ε is the strain. 

The yield stress is the point where the material cross-sectional area begins to decrease, 

and is a measure of two properties of the material: its strength and its resistance to 

permanent deformation. The measure of the energy or toughness required to cause 

failure in the material is given by the total area under the stress-strain curve. The strength  

required to fracture the material completely is the ultimate strength, which is a measure of 

the force (stress or strain) required at breaking point. 

 

 

 

Figure 2.16: General stress-strain curve for polymeric materials adapted from Mernard et 

al.[16]. 
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2.6.2   Dynamic Mechanical Measurements 

A Perkin Elmer-DMA-7e Dynamic Mechanical Analyser ( See Figure 2.17 ) was used to 

obtain mechanical measurements on the PI films.   

 

 

 

 

Figure 2.17: The Perkin-Elmer DMA-7e. 

 

Mechanical testing is used to measure the deformation of a material in response to the 

application of a controlled strain or stress.  

 

Dynamic mechanical analysis (DMA) is a widely used technique for the micromechanical 

characterization of polymers and polymer composites and gives information about the 

viscoelastic properties of the polymer. The modulus and damping measurements can be 

made as a function of temperature, time, frequency and stress or strain. A sinusoidal 

oscillating stress is applied to a material by a precision motor. A force transducer 

measures the response stress in the material (flexural, tensile or rotational), which is also 

in the form of a sinusoidal strain response. The response measured is reproducible if the 

material analysed is within its linear viscoelastic region, meaning the deformation can be 
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recovered on the removal of the applied stress force. The applied stress at time t, σ(t), is 

given by Equation 2.5 [16]. 

 

σ (t)  = σ0 sint               (2.5) 

 

Where σ0 is the maximum stress,  is the frequency of oscillation and t is the time. 

The viscoelastic properties of a material determine the shape of the strain wave, thus if 

the material behaves elastically with applied stress, its response will be in accordance 

with Hooke’s law for an ideal spring, where the elastic component of the strain curve may 

be described as follows in Equation 2.6 [16] 

 

ε(t) = (σ0/E)sin ((t)              (2.6) 

 

 

Where ε(t) is strain and E is the elastic modulus ( Young’s modulus ).  As σ and ε are 

related to E in the linear region by E = σ/ ε, Equation 2.6 can be written as Equation 2.7 

[16].  

 

ε(t)  = ε0sin (t)                     (2.7) 

 

Where ε0 is the strain at maximum stress. The sinusoidal in-phase part of the 

curve for equation 2.7 [16] is illustrated in Figure 2.18 (a). This curve has no lag 

between the stress and strain curve along the time axis. If the material analysed 

behaves in a viscoelastic manner with the applied stress, the strain response can 

be written as follows in Equation 2.8 
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ε(t) = ((σ0 cos(t))   or   ε(t) = ((σ0 sin ((t+((/2))          (2.8) 

  

Where  is the viscosity of the material. Equation 2.8 can also be rewritten as follows in 

Equation 2.9 : 

ε(t) = ε0 cos(t)      or  ε(t) = ε0 sin (t+((/2))     (2.9) 

 

Figure 2.18 (b) shows the strain in the viscoelastic material is out-of-phase with 

the applied stress. This is due to the materials ability to dissipate part of the 

deformation though damping, usually as heat, thus delaying the strain response 

behind the applied stress. 

 

The distance between the peaks of the stress and strain curves is known as the 

phase lag, which is given as an angle, the so-called phase angle, (due to the 

trigonometric relationship between the curves).  
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Figure 2.18: (a) shows the in-phase (elastic ), (b) Out of phase (viscous) materials strain 

response to applied stress and (c) material between the viscous and elastic extremes [8]. 

 

�

 
 

a. b. 

c. 
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The strain response of a material whose behaviour lies between the elastic and 

viscoelastic extremes can be described by Equation 2.10 [16] : 

 

ε(t)= ε0 sin (t+(δ))            (2.10) 

 

 

Where ε0  is the frequency of the oscillation and  is the phase angle, t is the time. By 

using the trigonometry model described in Equation 2.10, it can be rewritten as follows. 

 

ε(t)= ε0 [sin ((t).cos()+ cos(t).sin())]          (2.11) 

 

The strain response described by equation 2.6 [16] is illustrated in Figure 2.18 (c) 

The elastic and viscous, in-phase and out-of-phase, strain components of the analysed 

material are denoted as follows : 

 

ε'=ε0 sin()  in-phase component          (2.12) 

 

ε”=ε0 cos() out-of-phase component         (2.13) 

 

The sum of the vectors ε' and ε” results in a complex modulus ε*, which is given by 

Equation 2.14[2
 
] 

 

ε*  =  ε’ + iε”          (2.14) 

 

Where i is the √-1, and the complex number, ε*, is resolved into two components that 

describe material behaviour, a real component, ε', whereby the energy is stored and 
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recoverable and an imaginary component ε” whereby the energy is non recoverable, and 

lost as heat. The relationship between the vector components is illustrated in Figure 2.19 :  

 

          

           

 

 

Figure 2.19:   ε' In-phase, ε’’ out-of –phase strain vectors, and ε* the vector sum for 

materials behaving between viscous and elastic extremes [16].  

 

2.6.3  Thermo-Mechanical Measurement 

The thermo-mechanical properties of the films were measured using the Perkin-Elmer 

DMA-7e instrument, using Pyris software, version 3.81. The instrument was calibrated 

using indium and zinc standards. The film specimens, having a thickness of 0.125 mm  ( = 

125 micron ) and 199 mm long x 156 mm wide, were analysed in the extension mode.  

 

The elastic behaviour of the materials studied was assessed by E’, and E” and Tan (δ), 

the peak maxima of their curve can be used to determine the Tg of a material.  The 

extension mode was performed at both room temperature and selected temperatures from 

25 ºC to 125 ºC, with loadings scanned from 110 to 1000 mN at a rate of 100 mN/min. 

The dynamic measurement was performed by holding the sample at 25ºC for 2 min, then 

heating the sample from 25 ºC to 400 ºC at a rate of 10ºC/min. 

 

 

 

 

 

ε* 

  ε’’ 

ε' 

 
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2.6.4 Electromechanical Measurement 

Measurements of electromechanical properties in extension mode were performed on un-

irradiated and irradiated PI nanocomposite films. A photograph of the arrangement used 

to measure the electrical conductivity of the nanocomposites while the samples were 

strained is shown in Figure 2.20 . 

 

Figure. 2.20: The Perkin-Elmer DMA-7e using the Mora-Huertas et al. [17] set up. 

 

The arrangement was the same as that used by Mora-Huertas et al. [17] and similar to 

that used by Knite et al. [19] and Flandin et al. [18] for the measurement of the 

electromechanical properties of carbon-black-polyimide nanocomposite films, 

polyisoprene–carbon-black and styrene–butyl acrylate copolymer containing polypyrrole 

particles. The set-up consisted of a Perkin Elmer DMA-7e performing the extension of the 

films, and a computer controlled data acquisition system, which included a Keithley 

multimeter to measure and collect the electrical resistance data. Sample dimensions (199 

mm width x 1.56 mm length) were measured using a calliper. The samples were provided 

with electrical contacts as described previously.  

Irradiated PI 
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Once the strip of film was mounted, the electrical connections were verified and the 

mechanical analyser set to start the extension of the film, then the electrical resistance 

measurements were commenced. Mechanical extension of the films was carried out by 

applying an initial force of 110 mN, then increasing at 100 mN/min up to 2000 mN. This 

analysis was performed at temperatures of 25, 40 and 55 °C.  Stress and strain data 

obtained from the DMA-7e, and electrical resistance data, were synchronised to establish 

the values of electrical resistance and their corresponding value of strain.  
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3 
ATR-FTIR & XPS SPECTROSCOPIC 
CHARACTERISATION OF Cu

3+
 ION-BEAM IRRADIATED 

POLYIMIDE FILMS 

 

3.1         Introduction 

The extensive studies undertaken by Devasahayam et al. [17] and by Long and Long [2], 

which examined the property modification of polyimide (PI) films by irradiation processes, 

found that changes in chemical structural could be identified from the infrared spectrum. 

These studies indicated the presence of triple (CC), double (C=O) or single (C-N) bonds 

that were not evident in the unmodified, pristine PI films, and also noted the growth of new 

bands attributable to aromatic and functional group developments [1]. The chemical and 

physical modification processes induced by ion-beam irradiation of polymer films were 

examined by Davenas et al. [3], Xu et al. [4] and Sun et al. [5], who found a reduction in the 

infrared absorbance of the original functional groups present in the film, indicating pyrolytic 

conversion of material in the area exposed to radiation [3-6].  

 

Degradation of polyimide due to irradiation appears as an overall reduction in the intensities 

of the characteristic bands in the FTIR spectra. The first stage of degradation involves bond 

scission or cross-linking, and then rearrangement of the damaged macromolecules leading 

to the emission of some gaseous species [7]. The major gases evolved during irradiation 

were identified as carbon dioxide and carbon monoxide [8], thereby suggesting that the 

irradiation-induced damage occurred at the imide ring sites. Other studies have reported that 

degradation processes occur in multiple stages in radiation exposed polyimide [9]. In the 
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early stages of degradation, small losses of oxygen and nitrogen occurred. In later stages of 

degradation, the polymer loses other moieties identified as the imide ring structure and the 

depletion of hydrogen, which occurred with increased irradiation dose [6, 10-15]. 

 

Observations by Terai et al. [16] have shown that ion-beam irradiation causes carbonization 

and doping of the polymers near the surface region. However, polymers containing benzene 

rings or aryl-rings with multiple substituents such as polyimides, have considerable 

resistance to irradiation [17]. Therefore, it requires intense ion bombardment of a PI film to 

change its properties. This high energy irradiation results in an increase in the thickness of 

the carbonaceous layer and a reduction in the concentration of implanted ions.  

 

In this chapter, the structural changes induced by Cu3+ ion-beam irradiation of two different 

polyimide films, BTDA-ODA and PMDA-ODA (see Figure 1.1) have been investigated. These 

polyimide films have been reported to be unaffected by temperatures as low as -269 ºC or as 

high as 400 ºC [18]. This stability has been attributed to the influence of the aromatic rings 

present in the molecular structure, which gives the films protection against heat damage 

through an energy dissipation mechanism brought about by the polyimide vibrational states  

[5, 17-21].   

 

Also in this study, through the use of ATR-FTIR and XPS, additional key molecular structure 

changes have been identified that were not previously reported in the literature. Further work, 

examining the effect of heat treatment, ‘annealing’, found other modifications to the 

molecular structures of the irradiated PI films, as shown by changes to band positions and 

intensities in characteristic FTIR bands. These changes in molecular structure provide an 

opportunity for measuring the unique conductive properties of the PI films, due to the 

graphite-like fused rings structures, which provide a network of conductive π-electron 

pathways. This aspect of the modified PI films is explored in depth in Chapter 4. In Chapter 

5, studies of the micromechanical properties of the irradiation-modified PI films revealed that 
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there were fractures in the films due to the formation of the graphitic network. Thus, the ion-

beam irradiation that improved the electrical conductance properties generally compromised 

the mechanical properties of these films. The electromechanical properties of the modified 

films exhibited very high Gauge Factors (GF = strain sensitivity), in the range of 200 to 1000, 

in comparison to those reported in standard composites, which ranged from 2 to 50. These 

extraordinary GF values are indicative of the use of such irradiated films as strain gauge 

sensors. Further discussion of the GF values in relation to their mode of action is detailed in 

Chapter 5.  

 

The present chapter addresses the impact of ion-beam modification on the molecular 

structures of the two PI films, PMDA-ODA and BTDA-ODA, in particular, the effect on their 

thermal stabilities. These effects were principally examined by ATR-FTIR, supplemented by 

X-ray Photon Spectroscopy (XPS), and a detailed description of the various IR absorption 

bands arising from the molecular structures of the pristine PI’s is provided. The relationship 

between the ion-beam intensity (fluence) and the changes in functionality within the PI 

structure is discussed.  

 

3.2    Sample Preparation and Characterisation  

Polyimide surfaces were prepared as described in Section 2.2.1, with particular attention 

paid to the prevention of contamination and the removal of dust particles that may be 

attracted to the surface.  The Cu3+ ion-beam fluence used to modify the films ranged from 

9x1013 to 5x1014 ions cm-2, as listed in Table 2.1. After irradiation, the films were kept in a 

desiccator. 

 

The films were dried at a temperature of 80°C, and then annealed under vacuum in a 

temperature-controlled oven, at two pre-selected temperatures ( 180°C and 280°C ) for 5 
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minutes, as detailed in Section 2.1. Following annealing, the films were stored in a 

desiccator. 

 

Initial ATR-FTIR analyses were performed on the pristine, as prepared, PI films, with no heat 

treatment. After irradiation, the PI films were first dried at 80°C to remove residuals and then 

analysed by ATR-FTIR. Finally, the dry, irradiated PI films were “annealed” and then 

analysed by ATR-FTIR to investigate their thermal stability. The ATR-FTIR resolution was 

optimized at room temperature as described in Section 2.2, using the reflectance mode at a 

resolution of 32 and over the wave number range, 4000 to 650 cm -1.  

 

The following diagram shows the film contact with the prism, and the evanescent wave 

penetrating the film sample during analysis. 

 

                                                          Evanescent wave 

 

 

      

 

           

 

 

                    

Figure 3.1: Film contact with the single bounce transparent prism during ATR-FTIR analysis. 

 

The ATR-FTIR analysis technique involved placing the PI film in direct contact with the 

instrument’s transparent prism, and then applying pressure to maintain contact between the 

film and the prism. The infrared penetration depth in this arrangement was less than 10 

microns [22]. 

 

The initial XPS analyses were performed on the pristine PI films. After irradiation and 

before heat treatments, measurements were carried out using a Thermo KAlpha XPS 

Sample 

Prism 
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instrument at a pressure better than 1x10–9 Torr (1Torr =1.3336102 Pa) as described in 

Section 2.4.1 



72 

3.3    Irradiation-Induced Molecular Structure Changes of Films 

 

3.3.1      Molecular Characteristics of Pristine Polyimide  

Table 3.1 summarizes the infrared assignments of the functional group vibrations 

associated with the polyimides. The chemical structures of both the PMDA-ODA and 

BTDA-ODA polymers used in this study are displayed in Figure 3.2 (a) and (b), where the 

numbering corresponds to the characteristic infrared bands in the spectra, as indicated in 

Table 3.1, Figure 3.2 and Figure 3.3 (b).   
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Figure 3.2: (a) Molecular structure of 3'4,4'- benzophenonetetracarboxylic dianhydride; 4,4'- 

oxidianiline (BTDA-ODA), (b) Molecular structure of pyromellitic dianhydride–4,4′-oxidianiline 

(PMDA-ODA). 
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Table 3.1: Band assignments of ATR-FTIR spectra of PMDA-ODA and BTDA-ODA films 

before ion-beam modification.  

Number Type of vibration PMDA-ODA Band [cm-1] BTDA-ODA Band [cm-1] 

1&2 

 

 2b 

 

3 

4 

5 

 

6 (a-c) 

7 (a-b) 

8 

Imide carbonyl C=O 

stretching 

benzophenone carbonyl C=O 

stretching 

Aromatic C=C stretching 

Benzene ring  

Imide C-N  stretching   

                 

Ether C-O-C stretching 

Aromatic C-H bending 

Imide C-H bending 

1775 and 1709 

 

 

 

1599 

1497, 1456 

1373, 1305 and 1089 

 -1013 

1239 -1200, 1165 and 1113 

937 and 883, 815, 799, 775 

751-721 

1778 and 1713 

 

1671  

 

1598 

1496, 1426 

1361 and 1288,  

 

1229 1160 and 1090 

981, 922 and 829 

755-713 

 

The spectra of the PI films are similar. The PMDA-ODA had aromatic carbon bands at 

1497 and 1456 cm-1, attributed to the para-disubstituted phenyl group, whereas in BTDA-

ODA, bands indicative of benzene ring vibrations were observed at 1598 and 1426 cm-1. 

This difference in the frequency may be due to the isolated benzophenone carbonyl in 

BTDA-ODA causing the vibrational modes of the neighbouring atoms to be affected.  

 

The spectra of both PI films show asymmetric stretching ether (C-O-C) bands at 1239-1200, 

1160 and 1090 cm-1 and aromatic C-H bending bands between 981 to 775 cm-1 [3, 28-30]. 

The imide C-H bending appeared at 755-713 cm-1. The evaluation of the frequency bands 

after Cu3+ ion-beam irradiation will be discussed in the next section. 

 

The values of the FTIR frequencies of the pristine PI compare favourably with those 

described in the literature [23-27], As a comparison, for the well characterised [23] PMDA-

ODA (kapton), the infrared bands of interest are given in Table 3.2, and their similarity to 
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the PMDA-ODA and BTDA-ODA bands in Table 3.1 provides confirmation of the band 

assignments.  

 

Table 3.2: Literature Infrared band assignment for unirradiated kapton film [23]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3(a) presents typical ATR-FTIR spectra of the pristine PI films of PMDA-ODA and 

BTDA-ODA obtained at room temperature, and Figure 3.3(b) shows an expanded view of 

the lower frequency region, along with band identification. Note that in the spectra of the 

pristine PI films bands in the high frequency region of 3000-2000 cm-1 are very weak 

compared to the bands appearing at lower frequencies. 

 

 

Type of vibration  

(PMDA-ODA) 

Band Frequencies cm-1 

Aromatic C-H stretching 

Carbonyl C=O 

Aromatic C-C 

Imides C-N 

Ether C-O-C 

Aromatic C-H bending 

Imides C-N or C-H bending 

3040, 2900 

1775, 1709 

1605, 1501 

1369, 1300, 1115, 1088 

1239 

922, 879, 810 

721 
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Figure 3.3 (a): FTIR spectra of pristine PMDA-ODA and BTDA-ODA: range 4000-650 cm-1. 
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Figure 3.3 (b): FTIR spectra of pristine PMDA-ODA and BTDA-ODA: expanded view of the range 2000-650 cm-1. 
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3.3.2 Ion-beam irradiation induced molecular structure changes in the    

polyimide films 

 

Common changes observed after Irradiation in both PMDA-ODA and BTDA-

ODA 

ATR-FTIR spectra of PMDA-ODA and BTDA-ODA films irradiated with a 5.5 MeV Cu
3+

 

ion-beam at a fluence of 1x1014 to 5x1014 ions cm-2 were obtained. Figure 3.4 ( for PMDA-

ODA ) and Figure 3.5 ( for BTDA-ODA ) show the spectra of the prestine and the high 

fluence polyimides. In both sets of spectra a broad X-H stretching band appeared from 

3100 to 2400 cm-1 characteristic of N-H, C-H or O-H.   During the irradiation, gases such 

as CO, CO2, HCN, C2H2 and trace amounts of methane, ammonia, ethylene and water 

have been reported to be emitted from the PI films [7, 23, 29, 31-38].   Assuming that the 

band at 3100 to 2400 cm -1 is that of an O-H stretch, then it may have originated from 

adsorbed moisture on the surface of the irradiated PI film [41] as a result of exposure to 

the atmosphere after irradiation. Free radical formation has been reported to occur in 

irradiated PI films [39,40] and these chemically reactive sites would rapidly react with 

moisture from the atmosphere. This is supported by the observation that irradiated 

polyethylene exhibits a similar broad O-H band at 3100 to 2800 cm-1, attributed to 

moisture adsorbed on the exposed surface after treatment [41]. To investigate whether 

the O-H group arose due to moisture adsorption, the irradiated films were subjected to an 

annealing process as detailed in Section 3.3.4. 

 

The region of spectrum from 1700-1300 cm-1 contained many bands corresponding to 

different functional groups in the polymer (Figure 3.4b and Figure 3.5b). In the BTDA-ODA 

most of the band intensities in this region of the spectra were observed to diminish and 

broaden as the ion fluence increased. However the C=C bands at 1679 cm-1 to 1597 cm-1 

showed small increases in intensities. In the PMDA-ODA spectra the band intensities in 

the 1700-1300 cm-1  region were observed to increase, broaden and shift to lower 
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frequencies, with the exception of the band at 1360 cm -1 which decreased in intensity. In 

particular the C=C bands at 1667 and 1605 cm -1 appeared to increase in intensity, in 

comparison with the bands in the unirradiated spectra. The C=C bands at 1597 to 1455 

cm
-1
 displayed even more marked increases in intensities and band shifts at high fluence 

(5x1014 ions cm-1). This indicates that carbonization of the radiation exposed films 

occurred, which was also accompanied by a visual discoloration of the film surface. Both 

the changes in physical appearance, and the variation in the infrared sensitive bands, are 

evidence of molecular degradation in the irradiated films. 

 

Decrease in the intensities of other bands ( as illustrated in Figure 3.4 and Figure 3.5 ), 

were indicative of significant bond cleavage occurring at the carbonyl, imide, ether and C-

H bonds. At low fluence the C=O remains broad as they were in the pristine polymer and 

their intensity decreased. At higher fluence, the broad band in the pristine PMDA-ODA 

resolved into two bands at 1701 cm -1 and 1667 cm-1. Although these were more intense 

then the broad C=O obtained at low fluence (1X10
14

 ions cm
-2
 (spectrum not shown)) they 

were still less intense then the broad C=O band in the pristine polymer. Overall this 

changes suggest loss of C=O group, and or changes to their environment in the irradiated 

PMDA-ODA PI films. This suggests disintegration of the imide carbonyl and the five-

membered imide ring, consistent with the proposals of Tretinnikov et al. and Virk et al.[37, 

47]. 

 

The imide stretch band observed at 1373, 1305, 1089-1013 cm-1 in the pristine PMDA-

ODA spectra were observed to shift to 1360 and 1029 cm -1. The band at 1360 cm-1 was 

observed to initial decrease in the intensity at the low fluence and increase in intensity at 

the highest fluence and also the band narrowed. However, compared to the pristine 

PMDA-ODA spectra displayed a decrease in the width and intensity. Also the band at 

1305 cm-1 was completely removed, whilst the bands at 1089-1013 cm-1 showed shift to 

1029 cm-1 and an increase in the band intensity compared both to the low fluence and 
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pristine PMDA-ODA spectra. There was very strong band at 801 cm -1 this is 

representative of the imide ring deformation. The change observed in these spectra is 

indicative of changes to the PMDA-ODA molecular chain and surrounding environment.  

 

The imide groups then form as an interim system, and simultaneous breakage of some 

ether bonds (of the phenyl group link) releases aromatic carbon moieties (of multi-

substituted benzene rings)  which may then condense to form PAH’s and graphitic -type 

structures.  The degradation of the BTDA-ODA films essentially follows the same chain of 

events as the disintegration of the PMDA-ODA film, with the exception that the 

benzophenone carbonyl does not readily decompose, due to its placement between the 

benzophenone aromatic rings in an inner plane orientation. Figures 3.6 (b) to (d) illustrate 

the sites in the polyimide molecular structure where the radiation induced decomposition 

has occurred. 

 

The ether linkage band at 1239 cm
-1
 of the pristine PMDA-ODA films was observed at 

appears as a very weak shoulder at the low fluence. At highest fluence this ether band 

(1239 cm-1) was observed to be broader, with decease intensity compared to the pristine 

PMDA-ODA. As well as a shift in the band at 1239-1200 cm-1 in the pristine PMDA-ODA 

appeared resolved into two bands, this new bands are 1228 and 1214 cm -1. These 

changes in the bands are indicative of damages and loss of the ether linkage and some 

deformation and possible cleaving occurring at this site. 

 

The pristine PMDA-ODA aromatic C-H bending at 937, 883, 815 and 799 cm -1 were 

observed to be sharp narrow intensity bands. After irradiation this bands were observed to 

be very broad and stretched from 986-958 cm-1 and 775 cm-1. In the low fluence film 

spectra one broad band was observed, however at the highest fluence this band 

appeared to be broad, with shoulder like bands. 
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Most importantly the intensity of the C=C band at approximately 1600 cm-1 increased 

compared to C=O. In the BTDA-ODA, low fluence, the aromatic bands between 1600-

1500 cm-1 show increase in the intensities compared to the aromatic bands in the 

unirradiated. As for  the PMDA-ODA films, the aromatic carbon band appeared at 

frequency from 1667 cm-1 to 1455 cm-1, with a strong band at 1597 cm -1 indicating 

increased aromaticity [23, 46, 47]. Here, the increase in aromaticity indicated by an 

increase of C=C bonds, demonstrates carbonization of the polyimide films via elimination 

and the creation of bonds between carbon atoms. That is, the elimination of imide nitrogen 

and aromatic hydrogen groups resulted in an increase in carbon-rich structures. This 

leads to graphite-like formation of aromatic crystallites in PMDA-ODA and BTDA-ODA 

films. 

  

In contrast, the BTDA-ODA band before irradiation was at band 1775 cm-1, had shifted to 

1784 cm-1 when the BTDA-ODA was irradiated, which showed that there was still a 

considerable amount of the carbonyl moiety between the benzophenone phenyl rings in the 

BTDA-ODA molecular structure. Therefore, in the irradiated BTDA-ODA, the benzophenone 

carbonyl in the BTDA molecular structure was not significantly affected by irradiation because 

it was wedged between the two aromatic rings of the benzophenone, which acted as 

protective shields.  

 

Although the formation of fused rings was observed, it was not indicative of complete 

conversion to a graphitic fused-aromatic structure over the entire irradiated surface area. 

Irradiation at high fluence resulted in the elimination of C-H bands, partial elimination of 

imide linkages and significant changes in the aromatic characteristic of the polyimides 

[48].  In the irradiated BTDA-ODA the phenyl ether band appears as a weak shoulder in 

bands at 1100 cm-1, 1030 cm-1, and 1092 cm-1, at ion fluences of (1x1014, 3x1014 spectra 

not shown) and 5x1014ions cm-2 respectively, therefore it was affected by irradiation, as 

clearly shown by the reduction in peak intensity indicating degradation of the phenyl ether 
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during irradiation. Observation of the phenyl ether peaks at lower ion fluences (spectra not 

shown), indicated that this group was not removed at a fluence lower than 3x1014 ions cm-

2. However in BTDA-ODA the carbonyl band was observed to shift to 1784 cm -1 from the 

initial position of 1775cm
-1
. Such a shift to higher frequency for BTDA-ODA, is distinctive 

of the symmetric vibration of a carbonyl band [49]. 
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Figure 3.4 (a): ATR-FTIR spectra region of 4000-650 cm-1 of pristine and irradiated PMDA-ODA (5x1014 ions cm-2) films.  

Pristine PMDA-ODA 

Irradiated PMDA-ODA 
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Figure 3.4 (b): ATR-FTIR spectra region of 2000-650 cm-1 of pristine and irradiated PMDA-ODA (5x1014 ions cm-2) films. 
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Implications of the Observed Changes in the ATR-FTIR Spectra 

In PMDA-ODA spectra,  shifts in  the characteristic bands and the reduction in their 

intensities may also be attributed to the displacement and /or elimination of imide and 

aromatic C-H groups [16, 42]. The backbone cleavage that occurred between the nitrogen of 

the imide group and the ether of the phenyl group, is indicative of partial breakdown of the 

linkage at the imide site. Considering the diminished intensities of the imide bands, it is 

reasonable to suspect that the backbone is cleaved between the imide nitrogen and the 

adjacent phenyl rings at either end of the repeat unit, consistent with  the proposal of 

Steckenreiter et al [43]. This, together with the increases of aromatic carbon band intensity at 

1597 cm-1 of the PMDA-ODA, the para-disubstituted phenyl at 1501 and 1455 cm-1, and the 

out-of-plane imide C-H deformation at about 801 cm -1, are all indicative of carbon rich 

structures forming in the irradiated films. 

 

Upon examination of the carbonyl bands after irradiation of the PMDA-ODA films a variation 

in the bands was observed. The initial band at 1775 cm
-1
 in the pristine PMDA-ODA shifted to 

1775 cm-1, however the strong band at 1709 cm -1 had most changes which include the 

splitting, narrowing of, broaden and decrease in bands intensities. Also this pristine band at 

1709cm-1 was observed to have shifted slightly to about 1710 cm -1 and the smaller band 

shifted to 1708cm-1. Although the shift to higher frequency is indicative of presence of 

carbonyl, the decrease in the band intensity and the presence of the other carbonyl band at 

lower frequency are indicative of weakening of the bond between carbonyl and the phenyl 

rings. A study of polycarbonate (PC) films by Hirata et al. reported similar behaviour, where 

the carbonyl stretching band at 1770 cm -1 was reported to shift to a lower frequency after ion-

beam irradiation [35]. This was shown to occur in PC due to decomposition of the weak 

carbonyl bonds between the phenyl rings in the irradiated PC. 

 

In the spectra of the PMDA-ODA films, the increase in the aromatic carbon band intensity 

indicates that the aromatic carbon rings were resistant to irradiation damage and that the 
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relative concentrations of aromatic carbons increased. Mohammad et al. [36] reported that 

the intensity of the (C=C) stretch at 1610 cm -1 gradually increased with increase of irradiating 

fluence. The aromatic carbons in the pristine PMDA-ODA spectra were observed at band 

1599, 1497 and 1456 cm
-1
, after irradiation of PMDA-ODA the aromatic carbon band were 

observed to extend from 1605 cm-1 to 1460 cm-1. the band at 1599 cm-1 was sharp and low 

intensity band, however the band shifted to slightly lower frequency 1597 cm -1 and was 

strong band, whereas the band at 1497 cm -1 shifted to about 1500 cm-1 and the band at 1456 

cm-1 move also slightly to 1460 cm -1. The band at 1605 and 1597 cm-1 are indicative of 

aromatic carbons in general, whereas those at 1500 cm -1 and 1460 cm-1 are indicative of 

benzene rings in particular [31-38]. 

 

The band characteristic of the imide ring appeared in the pristine spectra at about 1373 

and 1305 cm-1, bands of C-N bonding appeared at 1089 and 1013 cm -1. After irradiation of 

the PMDA-ODA there was a band at about 1374 cm -1, this band had half the intensity of 

the band at 1373 cm-1, also there was a shift in the position of the original band at 1305 

cm-1 to about 1350 cm-1. The band at 1089 and 1013 cm -1 were also observed to shift to 

1100 and about 1050 cm-1. This compared with the shift of band and the decrease in 

intensities as well as the strong new band at 801 cm -1 (which is indicative of imide ring 

deformation) is due to bond scission [50]. Svorcik et al. [36, 51] found that the bands at 

1386 cm-1 and 730 cm-1 were due to imide ring deformation. This was associated with a 

thermally induced structural change of the PMDA-ODA films, consistent with the four 

stage mechanism shown in Figure 3.6. Primarily, the PMDA-ODA chain disintegrates via 

breakage of imide bonds to give a para-disubstituted phenyl and a symmetric stretching 

carbonyl. 
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Changes in the relative intensities and the shift of the carbonyl, aromatic carbon, and ether 

linkage bands suggest the surface chemistry change involves partial elimination of molecules 

in the repeat unit of the polyimide via chain scission. The phenyl ether bands appeared at 

1239 cm
-1
-1200 cm

-1
 and at 1165 and 1113 cm

-1
 in the spectra of the pristine PMDA-ODA 

films, these bands were observed to shift to 1228-1214 cm-1 after irradiation. The bands were 

broad and not well defined (figure 3.4 (a)). 

 

In addition, the aromatic carbon atoms were able to cluster together and bond to create 

stable fused rings, arising from imidic and carbonyl loss [7, 44]. Feurer et al. have reported 

that an increase in peak intensity for the aromatic carbons observed at 1605 cm -1, results 

from a decrease in the intensity of imidic and carbonyl peaks [23]. This mechanism is 

reported to involve the formation of a graphite-like fused ring structure. The possibility of this 

occurring in the present case is supported by the broadening of the aromatic carbon band at 

1597 cm-1 [7, 45] as seen in the expanded spectra in Figure 3.4 (b).  
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Figure 3.5 (a): ATR-FTIR spectra region of 4000-650 cm-1 of pristine and irradiated BTDA-ODA (5x1014 ions cm-2) films 
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Figure 3.5 (b): ATR-FTIR spectra region of 2000-650 cm-1 of pristine and irradiated BTDA-ODA (5x1014 ions cm-2) films. 
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The first three stages in the change in molecular structure of a PI after irradiation are 

represented in Figure 3.6. 
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Figure 3.6: Decomposition and formation of unsaturated bonds and the formation of 

free radicals such as H atoms, adapted from literature [7]. (a) PI film before ion beam 

irradiation, (b & c) PI during irradiation and (d) PI films after Irradiation.  
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Following the fragmentation illustrated in Figure 3.6 (d), it is expected that the aromatic 

moieties would condense to form fused rings, PAH’s and ultimately carbonisation to give 

graphitic-like structures. 
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3.3.3 Effect of Annealing on the Molecular Characteristics of the irradiated 

Polyimide Films 

 

Common Changes after Irradiation and Annealing in both PMDA-ODA and BTDA-

ODA 

In the PMDA-ODA and BTDA-ODA high frequency region of the spectra ( 3100-2400 cm-1 ) a 

broad moisture absorbance band was observed. The following discussion specifically targets 

efforts to remove moisture and identify any structural changes associated with annealing of  

pristine and irradiated films of PMDA-ODA and BTDA-ODA prior to FTIR analysis. The 

annealing process enabled the spatial rearrangement of the polyimide molecular chains to 

give a more tightly packed and stronger interchain interaction. After drying, careful avoidance 

of exposure to moisture was taken, and the films were stored in a dry cabinet. In the initial 

ATR-FTIR examination of the annealed and irradiated PMDA-ODA and BTDA-ODA films, 

significant differences were observed when compared to the spectra of the non-annealed 

irradiated films.  

 

The spectra of the pristine films (Figure 3.3) compared to the spectra of the irradiated films  

in Figures 3.4 and 3.5 after drying at 80°C, show a significant reduction in the width and 

intensity of the moisture band . The ATR-FTIR of films annealed at temperatures of 180°C 

and 280°C are shown in Figures 3.7 (a) and (b), where it is clear that any moisture adsorbed 

on the films has been eliminated . Watamori.et al. [18], in a study of the annealing effect on 

irradiated polyimide films, found that there was a significant depletion of hydrogen after 

annealing between 100°C and 300°C when the film was progressively held for five minute 

intervals at each temperature.  Hydrogen desorption was reported when kapton films were 

annealed at 300°C; however, other elements such as oxygen, nitrogen and carbon were not 

affected [18]. The effects of annealing on the band positions and intensities of the 

characteristic functional groups in PMDA-ODA and BTDA-ODA are shown in Figures 3.7 (a) 

and (b).   
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In the spectra of PMDA-ODA and BTDA-ODA, characteristic imide deformation bands 

were observed at 805 and 801 cm
-1
 respectively. As shown in Figure 3.7, after drying at 

80ºC, the imide deformation band increased in intensity. Annealing of both PMDA-ODA 

and BTDA-ODA at 180ºC and 280ºC reveals that the imide bands at 1371, 1305 and 1166 

were diminished and/or eliminated, whilst the imide band at 1089-1013 cm-1 shows minor 

changes which indicate that there is a presence of the imide in some form, but the imide 

deformation bands at 805 and 801 cm -1 increased in intensity. These changes suggest 

that the imide rings were unstable after irradiation and are more unstable after annealing, 

which was indicated by further decomposition of the imide when heat treatment was 

applied.  

 

The asymmetric ether bands of the irradiated PMDA-ODA and BTDA-ODA were observed 

at 1239 and 1229 cm
-1
 respectively. After drying at 80ºC, the ether band shifted to 1200 

cm-1 and the symmetric ether stretch, which increased in intensity, appeared at 1092 cm-1.  

 

However the PMDA-ODA film annealed at 180○C, and the BTDA-ODA film annealed at 

280○C, both reveal a slight increase in intensity of the C-H bands at 713 and 680 cm -1. 

This finding is consistent with the recovery of hydrogen that was reported by Watamori et 

al.[42], and attributed to the thickness of the irradiated film’s surface. 

 

The drying and annealing processes at temperatures of 80C, 180C and 280C were 

selected for this analysis to understand, and identify, the changes that occur in the irradiated 

PI films as a result of thermal treatment.  
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Changes in the Spectra of PMDA-ODA Polyimide films After Annealing  

In the previous section, the low frequency ATR-FTIR data for the un-annealed pristine and 

irradiated polyimide films, ( PMDA-ODA and BTDA-ODA ) were discussed.   For PMDA-

ODA the symmetric stretching mode of the carbonyl group, coupled through the five-

membered imide ring, was at 1709-1701 cm-1 in the irradiated and dried PMDA-ODA. The 

carbonyl appeared as a shoulder at 1700 cm -1, and although weak, it suggested that there 

was still some carbonyl functionality remaining in the films [52, 53]. In the dried and 

annealed PMDA-ODA, the carbonyl band shifted from 1765 cm -1 to 1756 cm-1 after 

annealing at 180°C and 280°C, exhibiting slow but gradual thermal decomposition of the 

PMDA-ODA carbonyl. Simultaneously, the shift of the band at 1765 to 1756 cm -1 toward 

the benzene ring band position suggests that annealing assists in the orientation and 

elimination of unstable bonds as well as an increase in aromaticity. 

 

Drying and annealing affected the aromatic structure of both PI’s (Figure 3.6). The PMDA-

ODA films exhibited a shift in the benzene ring band position from 1559 cm
-1
 to 1593 cm

-1
. 

The phenyl band positions were also observed to shift from 1600 cm -1 and 1455 cm-1 to 

1599 cm-1 and 1588 cm-1. Aromatic carbon groups were no longer observed as single 

peaks but rather as part of a larger peak. The shift of the aromatic carbon ring peak to a 

slightly higher frequency meant it became part of several different bands of the aromatic 

rings in the infrared spectrum, one of the vibrations in the spectrum being in the 1700 cm -1 

region. This again suggests that there are relatively more aromatic carbon groups than 

there were before irradiation. 

 

These changes included the shift of the imide carbonyl stretching band towards the lower 

frequency of 1700 cm-1, which was indicative of gradual decomposition of the PMDA-ODA 

carbonyl; the shift to a higher frequency for the band at 1557 cm -1 to 1592 cm-1, signifying the 

formation of benzene rings; the shift in the phenyl band from 1600 cm -1 and 1455 cm-1 to 

1599 cm-1 and 1588 cm-1, which also demonstrated a shift towards the formation of aromatic 
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carbon rings; and finally, the elimination of the imide band represented by the increased 

intensity of the imide deformation band at 801 cm -1. 

 

Changes in the BTDA-ODA thin film spectra 

 In contrast to PMDA-ODA the BTDA-ODA the partially reduced intensity of the 

benzophenone carbonyl ( >C=O ) stretching mode at 1779 cm -1 was accompanied by a 

progressive increase in intensity of the imide.  This was consistent with the observations 

of Sun et al., Hu et al., and Maneesha et al. [7, 42, 44]. 

 

In the BTDA-ODA film spectra, the benzene ring bands were also observed to shift from 

1501 cm-1 and may have been incorporated into the band at 1779 cm -1, which is a broad 

band stretching from approximately 1800 cm -1 to 1500 cm-1.The spectra of the BTDA-ODA 

PI film, dried and annealed at 180○C, show that at high ion fluence, the intensity of the C-

H peak at 680 cm-1 was reduced.  

 

In the spectra of the BTDA-ODA irradiated films exhibited a shift in the carbonyl stretch to 

1779 cm-1 along with an increase in the band intensity, which was indicative of the 

formation of a carboxylic group; this was accompanied by a slight recovery in intensity of 

the C-H bands at 713 cm-1 and 680 cm-1 at a temperature of 280C. 

 

To date, there have been very few literature reports on annealing studies after radiation 

exposure of polymer films. It was evident from the annealing studies that irradiated PMDA-

ODA films were the more suitable for the measurements described in the subsequent 

 Chapters of this thesis, due to their superior thermal stability.  
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 Figure 3.7 (a): The ATR-FTIR spectra of irradiated, pristine, dried and annealed films, PMDA-ODA with fluence values of 3x1014 ions cm-2. 
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Figure 3.7 (b): The ATR-FTIR spectra of irradiated, pristine, dried and annealed films, BTDA, with fluence values of 3x1014 ions cm-2. 

680 

713 

1779 

885 

805 

1306-1004 

Irradiated BTDA-ODA annealed at 80C 

Irradiated BTDA-ODA annealed at 280C 

Irradiated BTDA-ODA annealed at 180C 



97 

3.3.4     X-Ray Photoelectron Spectroscopic studies of the PMDA-ODA films.   

Although ATR-FTIR examination of the irradiated PI films showed variations in band 

position and intensity consistent with radiation induced chemical changes, a more 

sensitive method of analysis is desirable to confirm the presence of the increased 

aromatic carbon structure, indicative of the formation of carbon-rich  regions in the surface 

of the PMDA-ODA PI films after Cu
3+

 ion-beam irradiation. Thus, X-ray photoelectron 

spectroscopy (XPS) was chosen as an appropriate technique which has been widely used 

for elemental analysis and chemical structure characterisation as it is a sensitive probe for 

the electronic environment around an atom, examining as it does, the ionisation ( binding ) 

energies of electrons in individual atomic orbitals [56].  

 

Table 3.3 lists changes in the elemental concentrations in the PI films resulting from Cu3+ 

ion-beam irradiation. An average value of the binding energy was determined over three 

areas per film, with standard deviations of the order of 1%. Survey and high resolution 

XPS spectra of carbon, nitrogen and oxygen were acquired before, and after, Cu3+ ion-

beam exposure for various fluences. The most significant changes in the irradiated 

surface layer occurred at the highest fluence of 5x10
14

 ions cm
-2
. Clearly, the Cu

3+
 ion-

beam irradiation has selectively depleted the oxygen and nitrogen content, and 

simultaneously increased the amount of carbon in the film. 

 

Elemental ratios of the non-irradiated and irradiated PI films 

The elemental composition and C/N, C/O ratios are presented in Table 3.3, where it is 

evident from the data for the film exposed to a fluence of 2x1014 ions cm-2 that the 

elemental composition of the irradiated PMDA-ODA films decreased for oxygen and 

nitrogen and increased for carbon. These results indicate that the oxygen and nitrogen 

atoms in the pristine PMDA-ODA were selectively ablated from the film’s surface by the 
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Cu3+ ion-beam. This selective ablation not only reduced the relative ratio, but also caused 

the gradual formation of graphitic-carbon in the irradiated surface layer.   

 

Table 3.3: The elemental composition ratios of the PI, pristine PMDA-ODA film surface, 

the irradiated film surface. 

Samples  Elemental composition ( wt % )            Elemental ratio (atom %) 

C N O C:N C:O 

Theoretical Values of PI 69.1 7.3 20.9 11:1 4.4:1 

pristine PI 67.4 4.38 27.58 38:1 9:1 

      

2x10
14

 ions cm
-2

 85.81 2.96 11.23 29:1 7.6:1 

3x10
14

 ions cm
-2 87.11 2.44 10.45 35:1 8.3:1 

5x10
14

 ions cm
-2

 89.9 0.89 9.21 101:1 9.7:1 

 

 

PI = PMDA-ODA , Empirical formula  C22H10O5N2 , molar mass = 382  

The elemental composition is calculated automatically from the relative areas under the 

XPS bands. 

 

 Figure 3.8 presents the XPS survey spectra of PMDA-ODA PI films before, and after, 

Cu3+ ion-beam irradiation at a fluence of 5x1014 ions cm-2. The peaks observed in these 

spectra can be assigned to the C 1s, O 1s and N 1s ionisation levels, and the C/N and 

C/O atomic ratios change significantly after irradiation when compared to the pristine ratio. 

The surface composition of the PI films before, and after, irradiation are listed in Table 3.3, 

where it can be seen that after the most intense irradiation the initial C/N atomic ratio of 

38:1 increased to 101:1, and the initial C/O atomic ratio of 9:1 increased slightly to 9.7:1, 

suggesting a significant loss of N and a small decrease in O from the PI film, respectively.     

These results clearly indicate a progressive trend towards carbonisation of the PI film as 

the ion-beam fluence increases. Although the values of the pristine PI are different, the 

change that occurred after irradiation is very clear.  
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Figure 3.8 : XPS survey spectra of the pristine PMDA-ODA PI film and the film irradiated 

at a fluence of 5x1014 ions cm-1 . 

 

 

The ratio of components in the XPS bands of the non-irradiated PI films 

The molecular structure of pyromellitic dianhydride–4,4′-oxidianiline (PMDA-ODA) is 

presented in Figure 3.9.  
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Figure 3.9: Molecular structure of pyromellitic dianhydride–4,4′-oxidianiline (PMDA-ODA). 

The numbers on the atoms in this structure refer to the numbers on the component peaks in 

Figure 3.10. 
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Figure 3.10: XPS spectra of the non-irradiated pristine PI films after curve–fitting; each 

curve was assigned to a corresponding bond in the PMDA-ODA polyimide. 

 

Peak deconvolution of the XPS results for each element in the non-irradiated PMDA-ODA 

film are shown in Figure 3.10, where each component of all the element peaks was found 

to have a Full Width at Half-Maximum height (FWHM) in the range of 1.07 to 1.71 eV.    

The numbers attached to the component peaks correspond to the numbers indicated on 

the atoms in Figure 3.9.  
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The C 1s band was deconvoluted into three different components, as reported by 

Hoffmann et al. [55].  Component peak 1, at a binding energy of 284.96 eV, is attributed to 

the sp2 hybridised carbon atoms ( >C=C< ) of the three benzene rings in the PMDA-ODA 

structure..   Component peak 2, at a binding energy of 286.1 eV, was assigned to the sp
2
 

hybridised carbon atoms attached to a nitrogen  single bond in the imide group and to the 

ethereal oxygen and component peak 3 at a binding energy of 288.89 eV, corresponds to 

the sp2 hybridised carbon atom in the carbonyl group (>C=O ) double bond. The C-O 

single bonds and the C-N single bond fall in the same region with very similar binding 

energies, hence it is difficult to separate the components, as the binding energy 

differences are very small.  

 

Before irradiation, the O 1s band appears as two bands at binding energies of 532.51 and 

534. eV , this is attributed to the oxygen of the C=O bond, and the ether oxygen of the 

ODA portion. Also, in the non-irradiated PMDA-ODA polyimide, the N 1s band, at a 

binding energy of 400.79 eV, was assigned to the imide nitrogen, and a very weak 

component at 399 eV was attributed to impurities in the film.  
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Figure 3.11: presents the deconvoluted XPS spectra for the irradiated PI films, from 

which the data in Tables 3.4 and 3.5 have been compiled.     
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The ratio of components in the XPS bands of the Cu3+ ion-beam irradiated PI films 

 

Table 3.4: below, presents a summary of the deconvoluted XPS data for both the pristine 

and irradiated PMDA-ODA films. 

 Binding Energy (eV) 

C1s N 1s O 1s 

Component peaks 1 2 3 1 2 1 

Samples       

Pristine PI film 284.96 286.1 288.89 400.79 399.46 532.51 

Fluence 5x1014 ions cm-2 284.95 286.68 289.01 400.42     --- 532.56 

 

Table 3.5 provides a summary of the component ratios, including the theoretical values for 

PMDA-ODA and samples of a pristine PMDA-ODA film surface, the irradiated films, and 

graphite, as determined from deconvolution of the XPS bands shown in Figures 3.12 & 

3.13. 

 

Table 3.5: The XPS component ratios for the C 1s, N 1s and O 1s binding energy bands for 

the theoretical PI, pristine PMDA-ODA film surface, the irradiated films, and graphite. 

Samples Component atomic ratio 

Carbon Nitrogen Oxygen 

1             2            3 1             2 1             2 

        

Non-irradiated PI 47.1 15.28 5.02 3.64 0.74 27.53  

2x1014 ions cm-2 53.36 4.12 6.09 3.27  25.76  

3x10
14

 ions cm
-2
 57.13 4.3 3.77 2.67  32.24  

5x1014 ions cm-2 58.72 8.84 4.56 2.11  31.14  

 

 

Component peak 1 for C 1s at a binding energy of 284.95 eV ( previously assigned to the 

benzenoid >C=C< bonds ) increased in the component ratio from it’s original value of 47.1 

to 57.1 after irradiation. This increase in component peak 1 was indicative of an increase 
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in the number of sp2 hybridised carbons, implying an increase in carbon-rich  structure 

along the ion path in the PI. This C=C structure formed due to chain scission and 

molecular rearrangements. After superimposing component peak 1 of the irradiated PI 

and the corresponding peak of the pristine PI film, an increase in the irradiated PIs’ 

component peak 1 ratio was noted which is attributed to the decrease in the ratio of 

component peak 2 ( =C-N ) from 15.28 to 4.3. These results suggest the carbon atoms in 

component peak 1 in the PMDA structure before irradiation have rearranged after 

irradiation, and formed C=C bonds, consistent with the observations reported in the XPS 

studies of Ektessabi et al. [57].  

 

In the irradiated sample, the C 1s component peak 2 was slightly broader than the 

corresponding peak in the pristine film, which is attributed to the presence of three 

different bonds; one was the aromatic ring bonds of the PMDA-ODA structure, the other 

was the C-N bonds of the imide in the PMDA structure, and the third was created by the 

redistribution of carbon and nitrogen atoms that occurred due to chain scission and 

rearrangements of the molecular structure after ion-beam irradiation. The decrease in the 

C 1s component 3 ratio from 5.02 to 3.77 is suggested to arise from the loss of the ether 

oxygen bonds. This loss of oxygen is only marginal, and not supported by the data from 

the O 1s binding energy spectra shown in Figures 3.12 and 3.13, where the component 

ratios of the C=O plus C-O-C bonds changed from 27.53 to 25.76 ( or 31.1 at higher 

fluence )  before and after irradiation, respectively, although the small increase may be 

indicative of post-irradiation reactions of the films with ambient oxygen.  

 

Prior to irradiation, the FWHM of component 2 in the C 1s peak of the non-irradiated 

PMDA-ODA was 1.29eV, and after irradiation the value changed to 2.22eV.  The change 

in the FWHM indicates broadening of the peak ( previously assigned to the imide =C-N 

bond ) which was reported by Ektessabi et al. [57] and attributed to the random collision of 

the incident ions (i.e nitrogen ions) with the neighbouring C=O structure.  
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Such a broadening in the binding energy was reported Ektessabi et al. [57] to arise from 

the adjacent molecular structure directly affecting the variation in binding energy of the 

atom analysed.  For instance, component peak 2 of the C 1s band in Figure 3.12, 

assigned to  the sp2 C of the aromatic ring attached to the imidic N of the PMDA structure, 

may have been affected by the proximity of the C=O during irradiation as was reported by  

Ektessabi et al. [57]. A similar effect is believed to operate in the broadening of 

component peak 3 in the C 1s spectra, which was found to have a FWHM variation from 

1.07eV, pristine, to 1.75eV after irradiation.   Moreover, the change in the FWHM of 

component peak 1 of the C 1s binding energy spectra was relatively large in comparison 

to the FWHM of component peaks 2 and 3 before irradiation, and relatively smaller after 

irradiation, with FWHM’s ranging from 1.44eV to 2.22eV. This is attributed to bond 

breaking and deformation of the molecular structure causing a redistribution and 

scattering of hydrogen, oxygen and nitrogen atoms as a consequence of ion-beam 

irradiation. These changes are consistent with radiation induced carbonisatio n of the PI 

film surface. 

 

3.5    CONCLUSION  

The two polyimide films studied here using ATR-FTIR and XPS, PMDA-ODA and BTDA-ODA, 

were found to exhibit structural changes and molecular modification in direct response to ion-

beam irradiation, and the impact of the surrounding atmosphere on the irradiated films. Both 

bond scission and cross-linking reactions, and an increase in the size of the aromatic 

crystallites, accompanied by a decrease in imidic and hydrogen atoms was observed. The 

presence of aromatic crystallites was suggested by the increase in intensity, and the shift in 

band position, of aromatic carbon in fused rings. The evidence presented suggests that chain-

scission reactions gave rise to the formation of graphite-like structures in the area where the 

ion-beam penetrated the PI surface, consistent with reported observations [54-56].  
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Following ion-beam irradiation, the surface reactivity of the PI films was enhanced which 

caused them to become susceptible to their surrounding atmosphere, especially toward the 

facile absorption of moisture. This was evident from the broad moisture-related band that 

stretched from 3100 to 2400 cm
-1
. Drying and annealing after the films were irradiated was 

found to result in the reduction and eventual elimination of this band. As such, all future PI films 

were treated to remove any adsorbed moisture before measurement.   

 

The ATR-FTIR spectra in the low frequency region revealed that the modification which 

occurred to the carbonyl bonded imide nitrogen, directly affected the carbonyl functionality. The 

breakdown of the backbone imide linkage, and the elimination of hydrogen from the PI 

molecular structure, resulted in the formation of graphitic-like fused rings along the ion-paths in 

the modified surface of the PI, and this was supported by the XPS results. This was found to be 

consistent with the proposed mechanism for the pyrolytic conversion of a polyimide insulator to 

a semi-conductor and the laser induced permanent electrical conductivity, reported in the 

literature [23, 46]. It is concluded that the degradation of a polyimide film subjected to ion-beam 

irradiation was the consequence of chain scission reactions. The changes that were observed 

to occur in the molecular structure of these PIs suggested that the etched channels in the 

penetrated surface have been modified both chemically and physically. These changes have an 

impact on certain physical properties including electrical conductivity, micromechanical and 

electromechanical behaviour, as will be discussed in Chapters 4, 5 and 6. 

 

A further important effect of annealing at the elevated temperatures of 180°C and 280°C, which  

completely removed moisture, was the increase in the intensity of the bands that represent the 

deformation of imide rings, along with a decrease in the intensity of bands that were 

characteristic of carbonyl and C-H. The BTDA-ODA benzophenone carbonyl band was only 

slightly affected. At these higher temperatures, the intensity of the PMDA-ODA ether bands was 

slightly affected, while the peaks of the aromatic carbons were observed to increase in intensity 

as the imide carbonyl peaks diminished in intensity [17, 23, 34, 37].   For BTDA-ODA the 
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change in hydrogen content was found to be dependent on the thickness of the film and the 

depth of irradiation.  From the ATR-FTIR analysis of the two different polyimide films, the 

PMDA-ODA films have been found to have superior properties with regard to thermal 

degradation  and structural stability.   

 

In Chapters 4 and 5 extensive studies on the PMDA-ODA irradiated films will be described. 

Chapter 4 discusses the electrical conductivity properties of the irradiated films, concentrating 

on the aromatic crystallites that originate as a result of irradiation, since they are an essential 

requirement for the attainment of semiconducting properties. Chapter 5 describes a 

micromechanical study of the irradiated films, particularly with regard to their structural integrity. 

In addition, it includes a study of the electromechanical behaviour of the irradiated films.   
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4 
TEMPERATURE DEPENDENT ELECTRICAL BEHAVIOUR 

of IRRADIATED POLYIMIDE FILMS 

 

4.1. Introduction 

As discussed in Chapter 1 irradiation is an efficient route to promoting the formation of 

conducting sites as well as the introduction of other substantial modifications to polymer 

properties. Use of the irradiation process is attractive as there are a range of different ions 

which have the ability to change materials at the molecular level. This structural 

modification of PI films has been described in Chapter 3, where it was found that 

graphitic-fused ring structures were formed along the path etched by the ion-beam in the 

insulating PMDA-ODA films. The carbon-rich clusters were found to be well dispersed in 

the surface penetrated by radiation in the PMDA-ODA film, forming carbon composites 

similar to those of the conventional carbon nanotube and carbon nanocomposite films 

investigated by Mora-Huertas et al. [17] The carbon-black nanoparticles used in the study 

by Mora-Huertas et al. [18] possessed a microstructure of many overlapping graphitic 

layers well dispersed in a PI matrix. 

 

Wolszczak et al. [4] investigated the behaviour of both conducting and insulating polymers 

after γ-ray or electron-beam irradiation, and found that the electrical properties of the 

materials changed significantly [4]. The changes to the conducting polymers, polyaniline, 

polypyrrole and polythiophene, included two variations of their properties. Firstly, the 
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conductivity decreased with increasing dose when the irradiation was performed in a 

vacuum; and secondly, the conductivity increased with irradiation under a dopant 

atmosphere [4]. For the non-conducting polymers, polyaniline, polypyrrole and 

polythiophene, the conductivity was reported to increase with increasing radiation dosage
 

[4].  

 

The introduction of this type of electrical conductivity in an insulating material has been 

studied extensively over the years.  For example, Yuguaug et al. [5] studied polyethylene 

terephthalate (PET) modified by Ag, Cr, Cu and Si ion implantations at doses ranging from 

1x1016 to 2 x1017 ions cm-2.  These workers found that at a dose of 2 x1017 ions cm-2 the 

resistivity was less than 10 Ohm cm for all irradiation ions with the exception Si ion, which 

was several hundred Ohm cm. This change was related to the effect of the different ions 

on the molecular structure of PET [5].  

 

Other studies, such as that reported by Fitzer et.al [1] in the review article, “The chemistry 

of the pyrolytic conversion of organic compound to carbon”  [1] emphasises the pyrolytic 

conversion of organic compounds into carbonaceous materials. For example, in the 

1980s, Kaplan used heavy ion irradiation, to induce conductivity in organic insulating 

materials by degradation processes, which involved the nucleation and growth of 

conducting clusters [2].  In addition, Feurer et al. [6] reported that the electrical 

conductivity of a polyimide increased by 16 orders of magnitude after UV-laser irradiation, 

and that the activation energy for electron transfer was 3.9 eV after 300 pulses which 

decreased to 5 meV after 1000 pulses, at a fluence of 80 mJ cm-2  [6]. The study of 

electrically conducting structures reported by Philips et al.[7], found that polyimide films 

evolved into electrical conductors as a result of laser irradiation to produce electrically 

conductive localised clusters of carbonaceous materials after a sufficient accumulation of 

clusters, dependent on the extent of exposure to the laser beam. 
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The temperature dependent electrical conductivity of the irradiated materials and/or 

polymers was used to determine the charge transport mechanism. Davenas et al. [14] 

have reported that the irradiation of PI films at both liquid nitrogen and room temperature 

resulted in a conducting phase that was thermally assisted in accordance with the 

reported large dose effect. This conductivity was also reported to be inhibited when the PI 

films were heated to 400C. The UV-laser irradiation study by Phillips et al. [7] discovered 

that the functional dependence of the resistivity resulting from temperature changes was 

consistent with the so-called Variable Range Hopping (VRH) electrical conduction 

mechanism. Similar VRH conduction mechanisms were also observed by Feurer et al. [6] 

to be associated with heat treatment of the irradiated polyimide.  

 

The hopping conduction between two localised electronic states was reported to be the 

result of an electron-lattice interaction. The atomic vibrational motion resulting from the 

hop varies with the relative energy between the localised states [3]. If the hopping is 

adiabatic, this implies that the electron transfer energy between the two sites that take 

part in the hop is larger than the phonon energy, thus the electronic carriers follow the 

changing atomic configuration. If the hopping is non-adiabatic, then it suggests that the 

electron transfer energy between the two sites is smaller than the phonon energy. The 

hopping rate of the non-adiabatic jump depends on the relative distance between hopping 

centres.  

 

Since ion-beam irradiation can modify the electrical conductivity properties of very small 

areas of polymer, it is possible to reduce the size of devices used in various industries, as 

the irradiation process allows for targeted atomic molecular structure change. This 

technology is particularly applicable in the nuclear power, defence electronics and space 

industries [3].  Other examples of micro-devices include flexible circuits, semiconductor 

pads, microprocessor chip carriers, coil insulation, magnetic wire insulation and solar 

arrays [8]. It is evident from the study carried out by Svoroik et al.[8] among others, that 
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polyimides provide the ultimate, unique and superior chemical, mechanical and thermal 

properties for irradiation investigations [8]. 

In this chapter, the conversion of insulating polyimide into conducting polyimide films is 

examined with respect to conductivity and charge transport mechanisms. In the previous 

Chapter, the effect of irradiation on the molecular structure and thermal stability were 

discussed. In this Chapter the relationship between the molecular structure changes and 

the electrical conductivity will be addressed, as well as the effect of heat on electrical 

conductivity, in terms of charge transport and moisture absorption post-irradiation.  

 

4.2 Sample Preparation and Characterisation 

Several irradiated PMDA-ODA films were used depending upon the analysis method. 

Here, the PMDA-ODA films were prepared according to the process shown in Figure 2.12 

of Chapter 2. PMDA-ODA films exposed to an ion-beam fluence of 1x1014 to 5x1014 ions 

cm-2 were used for electrical conductivity studies. The dimensions of the film strips were, 

length 2 mm and width 1.56 mm, and conductive silver contacts [9, 21] were painted on 

each end of the irradiated films. 

   

The temperature dependent electrical conductivity was performed in a chamber filled with 

nitrogen. The standard ‘two probe method’ was used for PMDA-ODA films with low 

resistance.  The “two probe method” involved two probes placed in direct contact with the 

silver painted area of the films. Further details of the contact arrangement are available in 

Section 2.3.3.2 of Chapter 2. 

 

The ohmic contact of the silver paint was confirmed by impedance and current-voltage (I-

V) measurements as discussed in Chapter 2. The room temperature electrical conductivity 

measurements were performed as described in Section 2.2.1 of Chapter 2, and involved 

the films being held at 25°C in a nitrogen atmosphere for 30 minutes before data 

collection.  
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4.3 Electrical Resistance Behaviour of Irradiated Films 

 

4.3.1 Ambient Temperature Electrical Properties of Irradiated Polyimide 

Films 

The room temperature Current (I)-Voltage (V) measurements were performed by applying 

a voltage ranging from 0 to 28 Volt to the PI films which had been irradiated at various 

fluences.   

 

When a voltage ( V ) is applied across a material, a current of magnitude ( I ) flows, and in 

accordance with Ohm’s law, the current is proportional to the voltage at low applied 

voltages :          

 

So,    I   α      V   ;  and  Ohm’s law gives    
R

V
I      (4.1) 

 

Where I ( ampere = coulomb/sec )  is the current flow, V ( Joule/coulomb) is the voltage 

applied and R ( ohm ) is the electrical resistance.  

 

In addition to illustrating ohmic conduction, the I-V curves can also be used to obtain 

information about the nature of the conduction processes occurring, such as, ionic 

hopping, tunnelling, Schottky and Poole-Frankel mechanisms [25-28].  

 

Figure 4.1 illustrates a typical I/V curve demonstrating ohmic behaviour. 

From the I-V plot the electrical resistivity of the irradiated films was calculated using the 

following equation: 
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L

RA
           (4.2) 

Where ρ is the electrical resistivity, R is the electrical resistance of the specimen, A and L 

are the area and length of the specimen, respectively, through which the current passes. 

 

 

 

Figure 4.1: Current-Voltage graph confirming ohmic behaviour of the irradiated PI film 

fluence 5x1014 ions cm-2. 

 

Figure 4.2 illustrates the significant decrease in resistivity ( ρ ) ( ie., an increase in 

electrical conductivity, σ ) of the PI films with increased ion-beam fluences, ranging from  

9x1013 to 5x1014 ions cm-2. For example, the resistivity of a PMDA-ODA film was lowered 

by almost five orders of magnitude from a resistivity high of 105 Ω cm to approximately 101 

Ω cm. Likewise, in the study by Kaplan et al.[ 29] of the initially highly resistive organic thin 

films (3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), 1,4,5,8 

naphthalenetetracarboxylic dianhydride (NTCDA),  and Ni phthalocyanine (NiPc)) it was 

observed that the resistivity of the films decreased by 13 orders of magnitude, as the ion 

dose increased. A comparison of the behaviour of the two PIs examined in this study, 



118 

PMDA-ODA and BTDA-ODA, showed a significant compositional dependence. This was 

evident at a fluence of 3x1014 ions cm-2, where the resistivity difference was nearly two 

orders of magnitude. The dependence of the electrical resistivity on the ion-beam fluence 

in these irradiated PMDA-ODA nanocomposite films was consistent with the reported 

results of CNT-polymer composites [14, 17, 21, 30].  

 

Figure 4.2: Electrical resistivity variation with fluence of irradiated PMDA-ODA and BTDA-

ODA PI nanocomposite films.  

 

4.3.2 Temperature Dependent Electrical Behaviour of Irradiated Polyimide 

Films  

As reported in Chapter 3, the high energy Cu3+ ion-beam irradiation of PMDA-ODA 

polyimide films results in chain scission and bond cleavage along the ion path as the 

energy is dissipated into the surrounding polymer matrix. This gives rise to the formation 

of carbon-rich graphite-like tracks etched into the surface of the films.  

● PMDA-ODA 

 BTDA-ODA 
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The temperature dependent electrical resistivity of PMDA-ODA films over the temperature 

range of 298 to 328K, and exposed to ion-beam fluences of 9x1013 to 5x1014 ions cm-2, are 

plotted in Figure 4.3.  As can be seen, the resistivity ( and hence, resistance ) decreases 

with increasing temperature, which is consistent with the reported  semiconducting 

behaviour of the films. During the first cycle of measurements, the residual stress and 

thermal history arising from irradiation of the PMDA-ODA films produced distorted data. 

However, the subsequent second and third cycles of electrical resistive behaviour were 

observed to be reproducible, reversible and free of hysteresis.  
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Figure 4.3: Temperature dependent electrical resistivity of the irradiated PMDA-ODA films 

with fluence values ranging from 9x1013 to 5x1014 ion cm-2. 

 

Because of the semiconducting behaviour of the irradiated PMDA-ODA films, the 

resistivity variation with temperature can be analysed in terms of an Arrhenius relationship 

of the form :  

 

ρ = ρ○ exp[-( Ea / kT ) γ ]                       (4.3) 

3x1014 ions cm-2 

5x1014 ions cm-2 

2x1014 ions cm-2 

1x1014 ions cm-2 

9x1013 ions cm-2 
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where ρ is the resistivity,   ρ○ is  the pre-exponential factor,  Ea is the activation energy ( 

which in this case is expressed in electron-volts ( eV ) ),  k is the Boltzmann constant ( 8.6 

x 10
-5

 eV / K), γ is the power law of the temperature exponent, and T is the absolute 

temperature in Kelvin .  

 

The temperature exponent, γ, also defines the hopping dimension (as in Equation 1.5, 

Chapter 1). 

 

So ln ( ρ/ ρ○ )  =     - ( Ea / kT ) γ     ie.,     ln ( ρ ) = ln ( ρ○ )  - ( Ea / kT ) γ              (4.4) 

For a 3-D charge hopping process, γ is 1,  

 

So,      ln ( ρ ) = ln ( ρ○ )  - ( Ea / kT )                                     (4.5) 

 

And so a plot of  ln ( ρ ) [ or ln (σ) , since ρ =1/σ ] versus 1/T should be linear, from which 

the slope can used to obtain a value of Ea. 

 

Figure 4.4 illustrates how the calculated Ea values decrease with increasing fluence, with 

a value of 2.28 eV at a  fluence of 0.9 x 1013 ions cm-2, and 0.42 eV at a fluence of  5x1014 

ions cm-2 . This observation is consistent with the fact that at higher fluences there will be 

many more overlapping graphitic tracks, arranged more densely, so the ‘’hopping 

distances’’ should be shorter, with a lower activation barrier, allowing more ready charge 

movement. 
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Figure 4.4: Variation in Ea for different fluences of the Cu3+ ion-beam irradiation of the  

PMDA-ODA films. 

 

Electrical Transport Mechanism(s)  

The electron transport properties of composites containing semiconductors have been 

extensively investigated in the past. For example, semiconducting irradiated films were 

studied by Salvetal [3] , Klafter [23], Phillips [7] and Sheng, Abeles and Arie [24]  who 

reported electrical transport via various hopping conduction mechanisms, including 

Nearest Neighbour Hopping (NNH), which involves charge hopping at close particle 

proximity, and Variable Range Hopping (VRH), which occurs at large particle separations. 

Sheng [22, 23] also reported Fluctuation Induced Tunneling (FIT), which involves 

thermally activated electron tunneling from one site to another.  

 

The typical Arrhenius plot, based on Equations 4.4 and 4.5,  [ ln ( ρ/ ρ○ )  =     - ( Ea / kT ) γ 

ie., ln ( ρ ) = ln ( ρ○ )  - ( Ea / kT ) γ ] , allows the Arrhenius equation exponent of T (γ) to be 

evaluated. Studies reported by Cella et al., Magudapathyet al. and Quivy et al. [11,12,13] 

on polymer-graphite composite materials and Silver nanoclusters embedded in glass 

matrix indicate a variation of the power law exponent from 0.25 to 1 in complex composite 
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systems, suggesting more than one type of mechanism was involved in conduction [6,7,9, 

11]. For example, the temperature dependence of the resistivity of granular metals was 

reported to exhibit a temperature exponent (γ) of -0.5, suggesting the operation of various 

transport mechanisms. 

 

Yuguang et al. and Feurer et al. [5,6]  reported the low temperature behaviour of metal 

implanted polymer and laser irradiated polyimide films fitted a 1/T0.25 relationship ( γ = 

0.25 = 1/4 )  which results from Mott’s three dimensional (3D) Variable Range Hopping 

(VRH) mechanism, and at a higher temperature activated charge transport, which gave a 

1/T relationship .  

 

Figure 4.5 presents a plot of log(σ = conductivity) versus ( 1/T , putting γ =1 ) where it can 

be seen that an excellent linear correlation was observed over a wide temperature range, 

consistent with the variable range hopping theory reported by Mott, predicting a T -1 

dependence.  
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Figure 4.5: Plots of the natural logarithm of the conductivity versus 1/T, (a) PMDA-ODA 

PI film fluence 2x1014 ions cm-2 and (b) PMDA-ODA PI film fluence 5x1014 ions cm-2, over 

the temperature range 25 oC ( 298 K ) to 55 oC ( 328 K ). 

T0 = 303 K 

R2 = 0.998 

T0 = 303 K  

R2 = 0.997 
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This behaviour of the conductivity can thus be ascribed to the hopping of carriers between 

conducting sites that were separated by an insulating barrier, as suggested by Sheng and 

Abeles [24, 20,19,15]. 

 

Hence, the results presented here suggest that the electron transport mechanism in the 

irradiated PMDA-ODA PI films arises from three dimensional (3D) hopping within the ion 

tracks and charge transport tunnelling between the ion tracks [28]. This mechanism is 

similar to the electron charge transport reported to occur between carbon nanotubes 

(CNT) in a CNT-PI composite [31,32].   

 

Evidence to support this model comes from work performed for this thesis, where a 

HRTEM of the cross sectional image of the irradiated films has revealed the formation of 

dense ion tracks whose paths criss-cross and overlap one another, as shown in Figure 

4.6-a. The SAED diffraction pattern presented in Figure 4.6-b confirmed the ion-tracks 

were carbon-rich with a graphitic-like structure ( as discussed earlier, in Chapter 3 ) so this 

microstructure has similarities to a carbon nanotube composite as in CNT-PI composite 

[31, 32].  

 

 
 

 

Figure 4.6: (a) HRTEM of the cross sectional image of the irradiated films (b) The SAED 

diffraction pattern. 
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4.3.4 Moisture Effect on Electrical Properties 

There has been great interest in the conductive behaviour of polymers exposed to various 

gases for application as gas sensors in industry. For example, the temperature dependent 

conductivity of PMDA-ODA polyimide was reported to increase when exposed to water 

vapour [34].    Polyimide materials benefit from aromatic chain layering, and are expected 

to have good mechanical properties, such as thermal stability and easy processability. 

However, polyimide materials may not be ideal sensor materials due to the inherent time 

dependence of their response and susceptibility to moisture-induced stress relaxation. 

Increased absorption of moisture uptake in the irradiated polyimide films as compared to 

their pristine counterpart is reported in the literature [35]. In the present work, the electrical 

behaviour of the irradiated PI films was investigated when they were exposed to moisture 

with nitrogen as carrier gas.  All the polyimide films irradiated in the fluence range from 

1x1014 to 5x1014 ions cm-2 exhibited increased electrical resistance when exposed to 

moisture as compared to corresponding dried and moisture free samples.  The sensitivity 

to moisture was higher at high fluences consistent with increased moisture uptake in high 

fluence irradiated films.  Moisture sensitive characteristics of polyimide film irradiated at a 

fluence of 5x10
14

 ions cm
-2
 were investigated by subjecting the film to a range of 

environmental conditions as presented below.  

 

The PMDA-ODA film irradiated at a fluence of 5x1014 ions cm-2 was used in the study of 

the moisture effect on electrical properties. Under air-conditioned situations, the film was 

found to have a resistance value of 0.174 M ohms (Figure 4.7 (a)). When subjected to dry 

nitrogen and left for 30 minutes, the measurement of the electrical resistance of the film 

was found to increase to 0.189 M ohms (Figure 4.7 (b)). Whilst under the same 

conditions, the film was subjected to slow heat treatment in temperature ranging from 25 

oC to 50 oC. The temperature was then cycled back to 25 oC. This assisted in the 

alignment and relaxation of the polymer molecular structure. After the thermal cycle, the 
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resistance value was found to be stable at 0.189 M ohms (Figure 4.7 (b)). This indicates 

that electrons can easily flow between conducting sites under these conditions.  

 

The film was again subjected to an air conditioned atmosphere and the electrical 

resistance was found to decrease to 0.176 M ohm (Figure 4.7 (c)).  When the film was 

subjected to water-saturated nitrogen at room temperature there was an increase in 

electrical resistance to 0.4 M ohm (Figure 4.7 (d)). The films were then subjected to heat 

treatment whilst under this condition, and this resulted in a small decrease in the electrical 

resistance to 0.35 M ohm (Figure 4.7 (e)). 

 

The film was again subjected to air and the electrical resistance was found to drop to 0.30 

M ohms (Figure 4.7 (f)).   

 

 

Figure 4.7: Irradiated PMDA-ODA film fluence 5x1014 ions cm-2 resistance change over 

time, atmosphere and temperature. 
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Similar behaviour was observed for PMDA-ODA PI films irradiated at fluence values of 

1x1014and 3x1014 ions cm-2.  

 

The observed behaviour of the PMDA-ODA PI film irradiated at fluence range of 1x10
14

 to 

5x1014 ions cm-2 (possessing substantial room temperature electrical conductivity), 

indicates that exposing the irradiated polyimide to water vapour affects their charge 

transport characteristics.  The D.C. resistance increase in these irradiated films may be 

due to the influence of space charges and charge trapping phenomena at the functional 

groups present in the in the irradiation altered portion of the polyimide film (the 

mechanism has not been investigated yet) .   In contrary,  in un-irradiated polyimide films 

(unaltered polyimide films possessing very high electrical resistance > 1014
 Ohms ), the 

electrical resistance decreases by orders of magnitude as compared to dry films [36]. 

 

4.4 Conclusion 

The effect of ion-beam irradiation on the electrical conductivity of PMDA-ODA PI films has 

been described in this chapter, where it was found that the electrical conductivity of the 

irradiated films increased as a function of increasing fluence value. For example, the 

electrical conductivity of a film exposed to a fluence of 5x1014 ions cm-2 was found to be 

more than 4 orders of magnitude higher, when compared to that of a film irradiated at a 

fluence of 1x10
14

 ions cm
-2
.  

 

The temperature dependent electrical conductivity characteristics of PMDA-ODA films 

irradiated over the fluence range of 9x1013 to 5x1014 ions cm-2
, established that they 

behaved as typical semiconductor films. The temperature dependent behaviour of the 

electrical conductivity was also exploited to establish the effective charge transport 

mechanism.  
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An examination of the relationship between electrical conductivity and temperature was 

modelled on the granular metal films reported by Salvetat et al. [3], and the multiwall 

carbon nanotube composites reported by Kim et al. [10], in order to determine the 

temperature exponent of the irradiated PMDA-ODA films, which provides information 

about the charge transport mechanism. The films were found to exhibit a thermally 

activated characteristic of (1/T1) in the temperature range 298 K to 328 K (Figure 4.5). The 

linear relationship observed suggests that while other mechanisms were available for 

charge transfer to occur though fluctuation induced tunnelling (exponents of 0.5), the 

dominant mechanism for electrical conduction in the irradiated films occurs through 

electron hopping from one site to the next, in a three dimensional manner (exponent of 1). 

 

It was also found that the irradiated films had a higher activation energy of 2.28 ± 0.05 eV 

to 0.42 ± 0.05 eV for electron transfer, compared to that required in the CNT-PI composite 

films studied by Mora-Huretas et al., which were found to be  23 ± 0.05 meV [21].    

 

The effect of gases on the electrical behaviour of the irradiated films was evident by the 

increase and decrease of resistance in response to changes in the atmosphere bathing 

the film.   Water vapour was found to weaken the temperature dependence of the films, 

whilst the mere retention of water vapour was found to reduce the electrical conductivity.  
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5 
MICROMECHANICAL and ELECTROMECHANICAL 

BEHAVIOUR of IRRADIATED POLYIMIDE THIN FILMS 

 

5.1 Introduction  

The irradiation of PI materials was intended to produce substantial changes in the 

polymers’ micro-structure, with a view to enhancing their mechanical properties. Currently, 

modified PI’s are used in nuclear power plants and for the manufacture of military aircraft 

as well as space shuttles [1]. The mechanical properties of the PI films were found by 

Chen et al. to improve as a result of irradiation, and this may allow them to be used for a 

much wider range of applications, especially where other materials are eroded and 

fatigued as a result of their environment [1].  Indeed, it has been found that after 

irradiation of PI films with light ions such as 1H, 4He, 5B and 13C at various energies, the 

mechanical properties, such as elongation at break, show improvement, as reported by 

Kucheyev et al. [2] and Guenther et al. [3]. 

 

Crosslinking and degradation caused by irradiation considerably changes the 

microstructure of the material, and this can, in turn, result in a change to the mechanical 

properties of the PI films. Thomas et al. [4] reported in the study of irradiated blends of 

polypropylene and ethylene-vinyl acetate rubber, that there was a decrease in the tensile 

strength, elongation at break, modulus of elasticity and hardening and softening 

temperatures as a result of chain scission, whereas crosslinking caused an increase in 

these respective properties in the study of Charge Transfer in Aromatic Polyimide [5]. A 
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study into the effect of -ray irradiation of polypropylene (PP), polyethylene (PE), polyvinyl 

chloride (PVC), ethylene propylene copolymers and other polymeric materials revealed 

that oxygen was incorporated during the irradiation process, resulting in a change in the 

mechanical properties of the films [6-12]. Other findings, such as that by Yoda et al. [13] 

on intermediately crosslinked polymers, reported a linear relationship between the 

irradiation dose and the logarithm for volume swelling. In addition, the study by Gillen and 

Clough [14] reported the degradation of cable elastomeric materials after polymer 

irradiation in oxygen under pressure. 

 

Additionally, it has been reported that the competing chain scission and crosslinking 

reactions that occur in polyamide (PA) due to irradiation, result in a reduction in the 

modulus, tensile strength and yield stress of the PA films [66]. Irradiation of the polymers 

generally caused one or more of the following changes in the irradiated material, a 

decrease in the length of molecular chains, an increase in crosslinking between molecular 

chains and/or other modifications in the crystalline structure [67].  

 

Moreover, several other studies have been carried out on the mechanical properties of 

polymer composites irradiated at low temperatures [6,7,15-17]. Research into the 

mechanical properties of composites such as E-glass-PI/epoxy or carbon fibre-PI/epoxy 

after electron irradiation, has illustrated a reduction in the ultimate strength and the shear 

modulus. This suggests degradation in the mechanical properties of the electron irradiated 

composites [18]. It was reported that the decrease in the capacity of the load transferred 

from matrix to the fibre was due to radiation damage at the interface [18]. The efficiency of 

the irradiation induced degradation generally depends on the aromaticity of the polymer 

used. Fast neutron irradiation was reported to be several times more efficient than -rays  

in inducing the change, but the degradation was dependant on the type of polymer and its 

susceptibility to irradiation[19].  
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With the use of PI’s in various applications, in particular, in thermal blankets, electric 

insulators, satellite antenna covers, array substrates and as a polymeric membrane for 

solar sail systems [20,21], it is vital that the PI is able to retain good tensile and optical 

properties [22]. In electron beam irradiation investigations, PI’s were reported to have 

maintained good optical and tensile properties at temperatures below 177 C. However, 

above this temperature the modulus began to deteriorate and the transmittance of the 

exposed films decreased [22]. 

 

In the work described in this thesis, the pristine PI, as well as irradiated PI films, were 

examined in relation to their mechanical properties as a function of different temperatures 

and fluences. Molecular structural changes corresponding to changes in mechanical 

properties discussed in this Chapter have been discussed in Chapter 3.  

 

In a study of composite films as strain gauge materials, electromechanical 

characterisation was reported to demonstrate the adaptability and correct functioning of 

the sensor as a strain gauge [50].   In the work described in this thesis, irradiation of the PI 

films resulted in carbon-rich fused-ring cylindrical-like molecular structures, with electrical 

conductivity in the semiconducting range.  The change in an irradiated film’s electrical 

resistance, in response to the mechanical strain applied, is investigated in this study. A 

change in electrical resistance of the composites can be expected when modification 

occurs due to the deformation and damage resulting from mechanical loading. This 

change in resistance as a result of external loading has also been reported for a carbon 

black-elastomer composite [51]. The electromechanical behaviour of single-walled carbon 

nano-tube composites was reported to elicit detailed information on the localised structural 

behaviour: this can be extracted by measuring the component-level and structural 

response resulting from external loading [51].  
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The studies of thin film composites for strain gauge materials have been extensive due to 

their suitability for various commercial and industrial applications. Dynamic strain 

measurements of materials refers to the measurement of the strain rate of change, where 

the strain rate of change is larger than the temperature rate of change [52]. If the gauge 

factor is higher as a result of the deformation factors, then the change in resistance under 

an applied static strain and the changes in the dimensions of the films would both be due 

to microstructure change.  

 

The effect of mechanical strain on the electrical resistance of cermet -based composites 

filled with nano-phase carbon black has been examined, due to their potential use as 

strain sensor materials [53,54,60]. Conductive carbon black-polymer composite films were 

found to behave reversibly when used as sensor materials for a wide variety of gases [55]. 

Advanced sensor materials require characterisation in aggressive environments to provide 

experimental verification [56] of their reliability.  

 

The investigation on sensor development by Cochrane and co-workers [50] reported that 

the longitudinal extension of the sensor leads to a shrinking in the cross section area. This 

was also reported to decrease the electrical connection between the conductive particles 

in the conductive polymer composite.  

 

In this chapter of the thesis, micromechanical and electromechanical characteristics of 

irradiated polyimide films were investigated and the results compared in terms of the 

radiation dose (fluence) given to each film. The observations in the previous Chapters, 

and the findings reported by Mora-Huertas et al. [41], initiated the electromechanical and 

micromechanical studies of irradiated PI films described in this Chapter, due to their 

possible application as flexible and simple sensors. 
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 5.2 Sample Preparation and Characterisation  

This section briefly describes the experimental methods used to characterise the 

mechanical properties of the polyimide thin films prior to, and following, ion-beam 

irradiation. The thin polyimide films were prepared via the process shown in Chapter 2, 

Section 2.5.2, and films exposed to a fluence ranging from 1x1014 ions cm-2 to 5x1014 ions 

cm
-2
 were used in the present study. 

 

Mechanical, electromechanical and dynamic analysis experiments were performed on the 

polyimide (PMDA-ODA) thin films ( length 2.00 mm and width 1.56 mm ) having a 

thickness of 125 microns and irradiation depth of 10 microns.   The study used a Perkin 

Elmer DMA7 linked to a Keithley multimeter and data acquisition system to determine 

each sample’s Young’s modulus, glass relaxation temperature and gauge factor. The 

dynamic mechanical thermal analysis was carried out in a nitrogen atmosphere with a 10 

C/min temperature ramp for temperatures from 25C to 125C. The mechanical load 

applied was between 110mN and 2000mN longitudinal tension applied at a rate of 

100mN/min. 

 

5.3.1   Room Temperature Mechanical Analysis 

Static stress-strain curves were obtained for the pristine (unirradiated) and irradiated 

PMDA-ODA PI thin films exposed to ion-beam fluences between 1X1014 and 5X1014 ions 

cm-2. 

 

Figure 5.1 shows the initial mechanical analysis of an unirradiated PMDA-ODA film, 

illustrating, (a) static stress-strain measurements at room temperature, (b) Storage and 

loss modulus behaviour in the frequency range 1 to 30 Hz, and (c) storage and loss 

modulus behaviour over the temperature range 25 to 250 C.   
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Figure 5.1: Initial mechanical analysis of unirradiated PMDA-ODA film, (a) static stress-

strain measurements at room temperature, (b) storage and loss modulus, in frequency 

range 1 to 30 Hz and (c) storage and loss modulus, over temperature range 25 to 250 C. 

 

The static stress-stain curves for the pristine PI thin films exhibited elastic behaviour in the 

strain range studied. The reproducibility of the measurements is also evident from the 

repeated cycles on each plot. 
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Figure 5.2 illustrates Stress-Strain curves for unirradiated and irradiated PMDA-ODA films 

measured at ambient temperature. Young’s modulus was calculated from the slope of the 

curves in Figure 5.2 for all the different films, and the results are shown in Table 5.1. The 

small degree of reduction observed with increased fluence was found to be similar to that 

reported for a CNT-polyimide composite [23,24], in which case it was attributed to the 

minimum interaction between the polyimide matrix and the filler. Although the 

nanochannels in this study are not foreign particles, the properties of these nanochannels, 

i.e. ion tracks, are similar to those of CNT’s, as suggested by the ATR-FTIR spectra and 

electrical conductivity discussed in Chapters 3 and 4. 

 

Figure 5.2: Stress Strain curves of unirradiated and irradiated PMDA-ODA films at 

ambient temperature. 
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5.3.2         Temperature Dependent Mechanical Analysis  

Temperature dependent static mechanical analyses were performed on the unirradiated 

and irradiated PMDA-ODA films exposed to fluence values ranging from 1x1014 ions cm-2 

to 5x1014 ions cm-2, at temperatures ranging from 25 C to 125 C, and the results are 

presented in Figure 5.3 a-d. Both unirradiated and irradiated PMDA-ODA films were 

longitudinally pre-stretched at an ambient temperature of 25C. The same stress 

measurements were applied to all the PMDA-ODA films at pre-stretching and throughout 

the test. 
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Figure 5.3: Temperature effect on the static mechanical analysis of PMDA-ODA films 

with fluence values of ; a) unirradiated, b) 1x10
14

 ions cm
-2
, c) 3x10

14
 ions cm

-2
, and d) 

5x1014 ions cm-2. 
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The PMDA-ODA films displayed in a linear decrease with increasing temperature. For 

example, a sample exposed to a fluence of 3x1014 ions cm-2 and subjected to a 0.25% 

strain, exhibited a stress of 2.35 MPa at 25 C which decreased to 1.6 MPa at 50 C, and 

continued to decrease to 1.45, 1.35 and 1.33 MPa at 75 C, 100 C, 125 C respectively. 

This decrease in stress is attributed to molecular motion, leading to softening of the films 

due to the broad glass transition, such as a 2 sub-glass transition. Fuming Li et al. [64] 

have described the glass transition processes as follows: the β1 process is attributed to 

the local motion of the diamine constituents, while the β2 process is caused by the local 

motion of the dianhydride constituents. The α process is associated with the glass 

transition. Hence, it is suggested that thermal activation of these motions softens the 

irradiated polyimide and decreases the stress and its modulus.  

 

It is observed that the stiffness of the films decreased with increasing temperature, which 

resulted in a progressive decrease in Young’s modulus, which is obtained from the slope 

of the stress-strain curves. The change arises from microstructure changes (fused ring 

formation, see Chapter 3) leading to increased mobility of the polymer materials in the 

composite films. The change in Young’s modulus was most noticeable for the PMDA-ODA  

film exposed to a fluence  of 3x1014 ion cm-2, starting at 50C. For the film exposed to a 

fluence of 5x10
14

 ions cm
-2
 the difference is more evident at 125C. 

 

This difference at 125 C for the higher exposure film, appears to be less ( 0.23 MPa ) 

than that for the room temperature value in the lower exposure film ( 0.36 MPa ).   In the 

study of composites by Huertas et al. [41] and Miwa et al. [40], similar decreases were 

evident in Young’s modulus. Table 5.1 presents a list of Young’s modulus values versus 

temperature, and the trend is indicative of some threshold of irradiation between fluence 

values of 1x1014 and 3x1014 ions cm-2 linked to a change in molecular structure. 
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Table 5.1. Young’s Modulus of the irradiated PMDA-ODA films at different temperatures. 

 

Temperature (◦C) Young’s Modulus (GPa) 

Unirradiated 1x1014 (ions cm-2) 3x1014 (ions cm-2) 5x1014(ions cm-2) 

 

25 1.93 1.65 1.21 0.98 

50 1.87 1.59 1.11 0.89 

75 1.81 1.53 1.08 0.83 

100 1.69 1.46 0.99 0.95 

125 1.64 1.44 0.78 0.73 

 

 

5.3.3    Temperature-Dependent Dynamic Mechanical Analysis 

Polyimide, although considered a quality engineering polymer with high strength and heat 

resistance, does exhibit susceptibility to temperature after irradiation, as discussed in 

Chapter 3, due to the effect of radiation on functional groups and molecular structure.   In 

the static stress-strain measurements, Young’s modulus of the PMDA-ODA films (Table 

5.1) shows a decrease as a result of structural modification with irradiation across ambient 

to elevated temperatures (25-125 C). Whilst the irradiation induced changes have 

increased the aromatic content of the matrix, chain cleavage and decomposition have 

reduced the high temperature stability due to changes in glass relaxation processes in this 

PI composite thin film. PI thin films have been found to exhibit structural relaxations that 

are temperature dependent. In 
238

U ion irradiated PI samples, the carbonyl groups 

influenced the dipolar relaxation of free radicals, causing deep and shallow energy traps 

that affected the -glass relaxation behaviour [42]. Proton beam irradiation was reported 

to create two relaxations, notably they were the 2-sub-glass relaxation at 100 C and the 

main glass relaxation at about 400 C [43], which were possibly due to crystallisation. 

Electron beam irradiation on the other hand, caused chain scission in PI’s and resulted in 

a decrease in the 2-sub-glass relaxation temperature [22]. Irradiation by these various 

sources alter the relaxation and crystallisation processes, with the 2-sub-glass relaxation 
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being the most susceptible, while the main glass relaxation appears more stable.  Artiage 

et al. [42], noted two relaxations, the 1-sub-glass relaxation and 2-sub-glass relaxation at 

temperatures between 50 C and 250 C in the analysis of electron beam irradiated PI. 

According to those studies the aromatic ring structures present in the PI decreased the 2 

sub-glass relaxation temperature and therefore fluctuations in glass relaxation processes 

[11-14, 42, 43]. This is primarily due to aromatic groups protecting the imidic groups from 

radiation damage. In this work, the glass transition relaxation behaviour of PI films has 

been investigated to observe effects of ion beam irradiation.  

 

Figure 5.4 shows the DMTA storage modulus and loss modulus of unirradiated and 

irradiated PI films. With increasing irradiation dosage, the PI’s storage modulus increased 

over the temperature range of 25 C and 150 C. It can also be seen there is a gradual 

decrease in the storage modulus at each fluence between the temperatures of 25 C and 

150 C.   This indicated that structural change with irradiation has changed the elastic 

response of the PI (PMDA-ODA) films.  It has been shown that increase of irradiation 

dose increases the graphitic structure, and this results in an increase in the rigidity within 

the films. This aromaticity increase protected the PI from any significant decomposition.  

 

The loss modulus exhibited a continuous decrease with increasing temperature up to 350 

oC, however, some very small increases (like little peaks) were also observed. This peak 

like increases indicated a reduction in stiffness of the molecular structure of the irradiated 

PMDA-ODA films. Similar results have been reported by Kang et al., who observed two 

relaxation peaks at 100 oC and 420 oC in electron beam irradiated PI films [22], similar 

observations of small relaxation peak-like were reported in other literature [32-37].   In 

accordance with the properties listed by Du Pont for their pristine PI, it was reported that 

the high temperature this peak-like increases originated from glass relaxation. The lower 

temperature peaks originated from a contribution of adsorbed water molecules and/or 2 
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sub-glass relaxations. The 2 sub-glass relaxation was found to be associated with the 

rotation or oscillation of phenyl groups within the PI diamine moiety as reported by Pireaux 

et al. and Chern et al. [44,45]. The 2 sub-glass relaxation peak in the PMDA-ODA films 

although broad, could arise from some overlap between the 1 sub-glass relaxation and 

the 2 sub-glass relaxation processes. 
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Figure 5.4: DMTA of unirradiated and irradiated PI films (a) storage modulus, (b) loss 

modulus. 
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c. 

 

 

Figure 5.4: DMTA of unirradiated and irradiated PI films (c) Tan  

 

5.4 Electromechanical Characterisation of PMDA-ODA 

The sensitivity of a strain sensor is conventionally expressed as a gauge factor (GF) 

which relates the relative change in resistance (R/Ro  where Ro is the resistance without 

any displacement or imposed strain   (L/L) and R is the change in resistance) to the 

relative change in length (L/L).  The relative change in length equals the axial strain (), 

so we can write:  











 


R

R

GF                            (5.1) 

The changes in the electrical resistance of the irradiated PI films (fluences of 3 x 1014 and 

5x1014 ions cm-2) were monitored while the films were subjected to strain [Figure 5.5a]. 

Fluence Tan  peak 

Pristine 400C 

1x1014   397C 

3x1014   391C 

5x1014 391C 
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The resistance of the film with fluence of 5x1014 ions cm-2  increased by 26% for an applied 

strain of 1000 micro-strain  resulting in a gauge factor of about 290. This GF value was 

markedly greater than the GF values of 8-12 reported by Huertas [41]. Above 1000 micro-

strain the resistance increased exponentially. This change in the behaviour is consistent 

with a tunnelling gap electron transport mechanism that occurs between the carbon 

nanoclusters along the conducting channels as discussed by Murugaraj et al. [68] and 

references cited therein. 

In the exponential region, the resistance –strain measured fitted the following expression 

R = Roe
αε                (5.2) 

where R  is the electrical resistance for a given strain ε, Ro is the resistance at zero strain 

[which was 21x103 Ohm for film irradiated at fluence of 5x1014 ions cm-2]. By taking logs of 

each, this relationship becomes; 

 

ln(R) = ln( R0) + α. ε                                      (5.3) 

So a plot of ln(R) versus ε should yield a straight line of slope α. The calculated 

exponents () had a value of about 300 (with R2 of  0.99) . 
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a. 
 

 

 
 

b. 

  
 

Figure 5.5: (a) Change in resistance with applied tensile strain for fluence 5x10 14 ions  

cm-2; (b)  Relative change in resistance in response to the application of strain on a PI film 

irradiated at fluence values of 3x1014 and 5x1014ions cm-2 at ambient temperature. 

Linear fit region  
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Exponential fit region 
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The relative changes of resistance with applied strain for the irradiated films with fluence 

3x1014 ions cm-2 and 5x1014 ions cm-2 are compared in Figure 5.5 (b). The relative change 

in resistance increased continuously with applied strain. In the linear regions, the Gauge 

Factor sensitivities obtained were 120 and 334 respectively. At higher tensile strain of 

about 300 micro-strain the electrical resistance increased, yielding a much higher Gauge 

Factor of about 1000.  

 

The irradiated PI films were found to be free of hysteresis when subjected to strain over 

three cycles, with the resistance being observed to return to the initial value at the end of 

each cycle, suggesting reproducibility. The maximum strain to which the strain-sensing 

film is subjected is within the elastic limit of the irradiated PI film. 

 

Previous work described in this thesis indicates that the microstructure of the irradiated 

PMDA-ODA films consists of overlapping ion tracks, with graphite-like structures within 

the ion irradiation channels originating at the surface, and propagating in a direction 

perpendicular to the planar surface of the film.  These ion tracks contribute to the electrical 

conductivity via 3D hopping and tunnelling mechanisms in the irradiated PMDA-ODA 

films, as discussed in Chapter 4. The electron tunnelling occurs between the tracks which 

are separated by insulating dielectric polymeric medium.  

 

The electromechanical behaviour of the irradiated PMDA-ODA films was found to be 

consistent with the electrical conduction mechanism in CNT (carbon nanotubes) - and 

carbon fibre- composites, as reported by Wang et al. [48]. In other studies on a continuous 

carbon fibre composite, the change in resistance in response to strain was attributed to 

the alignment of the fibre in the longitudinal direction of the strain [15,19, 57-63]. 

 

The Gauge Factor values for irradiated PMDA-ODA films were also observed to increase 

with increasing fluence values. This is possibly due to the existence of increased ion track 

density contributing to the tunnelling current. 
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 5.5 Conclusion 

The degradation of PMDA-ODA PI films during ion-beam irradiation results in changes in 

their mechanical properties. The increased radiation dosage broke down the original 

network structure of the PI molecular chain, and this was reflected in a decrease in 

Young’s Modulus. The tensile strength measurements indicated that the PI films became 

slightly brittle at an irradiation fluence of 5x10
14

 ions cm
-2
. In this study it was found that 

Cu3+ ion-beam irradiation was directly responsible for the destruction of the imidic groups 

in the PI molecular backbone. Thus, it can be concluded that PI films are, to a degree, 

non-resistant to ion-beam irradiation damage. Dynamic mechanical analysis indicated a 

decrease in the 1- and 2-sub-glass relaxation temperatures and the decomposition 

temperature. The PI used in the mechanical analysis study, while being generally stable, 

was not found to be sufficiently durable to survive reasonably high irradiation doses or 

temperature fluctuations. 

 

The electromechanical properties of PMDA-ODA irradiated films were investigated as a 

function of fluence when placed under longitudinal strain. The behaviour of the irradiated 

films was found to be consistent with that of semiconducting strain gauges, and the 

PMDA-ODA irradiated films exhibited high Gauge Factor values, much higher than those 

reported for conventional composites. This illustrates that these irradiated PI films are 

suitable as strain sensitive gauges due to their desirable physical properties which 

include: a high strain sensitivity (for maximum electrical output for a given strain); a low 

and controllable temperature coefficient of resistance (for good temperature 

compensation); a wide operating temperature range (for widest range of applications); and 

a good fatigue life (for dynamic measurement) [2] . 
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6 
 

SUMMARY  

The effect of Cu3+ ion-beam irradiation on the microstructure of two polyimide (PI) films  

(PMDA-ODA, Kapton® and BTDA-ODA) was examined using ATR-FTIR and XPS 

spectroscopy. The results indicated modifications to the molecular structure of both films, 

with the major reaction arising from chain scission accompanied by a decrease in the 

number of imidic and hydrogen atoms present. The ion-beam etched nanochannels in the 

polymer that were found to be lined with graphite-like aromatic fused rings, which formed 

along the full depth of the ion-beam, to the point where the ion-beam was completely 

absorbed, which corresponded to about 10% surface penetration.  

 

There were a number of significant changes in the FTIR spectra of the irradiated PI films, 

most notably the appearance of a broad water band in the 3100-2400 cm-1 range 

indicating moisture absorption into the film, suggesting that irradiation enhanced the 

vulnerability of the film to atmospheric effects. In the low frequency region (2000 – 600 

cm-1) it was found that the carbonyl group attached to the imide nitrogen was chemically 

modified, thus affecting the carbonyl’s functionality. In addition, the breakdown of the 

backbone linkages of the polymer, via cleavage of the nitrogen of the imide and 

elimination of hydrogen from the PI molecular structure, led to the formation of crystallites 

containing graphite-like fused rings. This latter observation was also supported by the 

XPS results, which clearly demonstrated the growth of π-type C-C bonding as the 

irradiation dose fluence increased. 
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ATR-FTIR spectroscopy was used to examine the temperature dependent changes in the 

films following irradiation. Drying at 80 oC led to a reduction in the intensity of the 

adsorbed water stretching band by approximately 90 to 95%. At higher ”annealing’’ 

temperatures, 180
 o

C-280
 o

C, the water band was eliminated and the intensities of the 

imide ring deformation bands increased, while the characteristic carbonyl bands 

decreased in intensity and hydrogen was eliminated. In addition, the intensity of the 

backbone ether band was found to be slightly decreased. Similar changes were observed 

in the FTIR bands of both PI films, but in the BTDA-ODA sample the benzophenone keto-

carbonyl band was found to be slightly increased. Also, the change in the hydrogen 

content of the BTDA-ODA film was found to be dependent on the film’s thickness and the 

depth to which the ion-beam penetrated during irradiation. The experimental results 

demonstrate the potential use of PMDA-ODA films for high temperature sensor 

applications, in preference to BTDA-ODA films, as the former films were more thermally 

robust. 

  

The electrical conductivity of the irradiated PMDA-ODA films was found to increase as a 

function of increasing fluence ( ion-beam intensity ). Indeed, the electrical conductivity of a 

film treated at a fluence of 5x1014 ions cm-2 was found to be more than 4 orders of 

magnitude higher, when compared to that of a film irradiated at a fluence of 1x1014 ions 

cm-2. Hence ion-beam irradiation of the PI films can be manipulated to provide desirable 

electrical behaviour. 

 

A study of the temperature dependent electrical conductivity characteristics of the PMDA-

ODA films, irradiated at fluence values ranging from 0.9x1014 to 5x1014 ions cm-2, revealed 

that their conductivity behaviour was typical of that of semiconductor films. Thus, the 

theoretical treatment of the temperature dependence of the electrical conductivity of the 

irradiated PMDA-ODA films was based on a standard semiconductor relationship, which 

enabled calculation of the temperature exponent, based on the granular metal film model 
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reported by Salvetat et al.[1] and the treatment of multiwalled carbon nanotube 

composites reported by Kim et al.[2]. The resistance of the irradiated films was found to 

be inversely proportional to temperature, confirming their semiconducting behaviour with a 

thermally sensitive activation barrier. The excellent linearity of this relationship suggests 

that while there were other mechanisms available for charge movement to occur though 

fluctuation-induced tunnelling, the dominant mechanism of dc conduction in the irradiated 

PI films occurs via three dimensional thermally activated electron hopping from one site to 

the next.  

 

Previous work in the literature suggested that PI films are irradiation resistant due to the 

presence of the aromatic rings which protect the imidic groups in the main chain structure. 

However, in the present work it was found that Cu3+ ion-beam irradiation was directly 

responsible for the disruption of the imidic groups and this affected the tensile strength of 

the PI films, as evidenced by changes in Young’s Modulus, and they became slightly 

brittle at an irradiation fluence of 5x10
14

 ions cm
-2
. Thus, the degradation of PI films 

subjected to ion-beam irradiation consists of both chemical and physical modifications to 

the films. Hence, PI films are not appropriate for applications in unshielded space 

environments, since ion-beam degradation of their mechanical properties may engender 

deformation and rupture, and possibly result in failure. 

 

The electromechanical properties of PMDA-ODA irradiated films were found to be 

consistent with those of semiconducting strain gauges. The ”gauge factor” (GF) of a strain 

gauge indicates its strain sensitivity, which arises from changes in specific resistivity (or 

conductivity) of a material due to an applied strain. The PMDA-ODA irradiated films 

possessed GF values much higher those of conventional composites and an order of 

magnitude higher than any previously reported. Thus, these high GF films are suitable as 

sensitive strain gauges due to their desirable features which include: a high strain 

sensitivity (for maximum electrical output for a given strain); a low and controllable 
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temperature coefficient of resistance (for good temperature compensation); a wide 

operating temperature range (for widest range of applications); and a good fatigue life (for 

dynamic measurement). Thus, these irradiated films have great potential as strain sensors 

for civil applications in bridges, roads, buildings and aircraft, and in technological devices 

used in medical research, submarines, nuclear power plants and space craft, provided 

they are protected from intense radiation sources. 
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