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6.1 Kärkkäinen et al. [2009] Algorithm . . . . . . . . . . . . . . . . . . . . . . . 60

iv



CONTENTS v

6.2 Pointer Copying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Scalable Inverse Burrows-Wheeler transform 71

7.1 Basic BWT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 An implementation of Ferragina et al. [2010] . . . . . . . . . . . . . . . . . . . 74

7.3 Variant of Ferragina et al. [2010] Algorithm . . . . . . . . . . . . . . . . . . . 80

7.4 New Inversion Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8 Conclusions and Future Work 94

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 99



List of Figures

2.1 Suffixes of string florreencee$ are sorted lexicographically forming the SA. On

the left hand side, the suffixes are listed in string order and the on the right

hand side they are listed lexicographically. . . . . . . . . . . . . . . . . . . . . 11

2.2 The suffix tree for string florreencee$ where the suffixes are stored as indices

into the original string at the leaves of the tree instead of the suffixes them-

selves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The relationship between suffix sorting, Burrows-Wheeler transform and In-

verse Burrows-Wheeler transform. . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 The relationship between SA, BWT and LCP of string florreencee$. . . . . . 15

2.5 The two rounds to compute the starting positions of each group in F. . . . . 15

3.1 The three main categories of the SACAs: Prefix-Doubling, Induced Copying

and Recursive that are identified by Puglisi et al. [2007]. The algorithms that

have emerged since the survey are categorized on the right of the figure as Low

Memory (space efficient). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Pseudocode SA-IS(x,SA) that uses LMS due to Nong et al. [2009b; 2011]. . . 20

3.3 An example of the modified algorithm that induces the sort of the string

ababaacaa$ using LMS substrings that are moved in queues. . . . . . . . . . . 23

3.4 Pseudocode to compute the BWT due to Ferragina et al. [2010; 2012]. . . . . 25

4.1 The suffix (SA), LCP, D and C arrays for databaseM = {GAGAG,TAGAG,CTAGA,AGTAGA}.
For clarity, the final column shows the (at most) first 5 characters of the suffix

of xM beginning at SA[i], but is never actually stored. . . . . . . . . . . . . 35

4.2 The two passes of unoptimized Algorithm FHK. . . . . . . . . . . . . . . . . . 37

vi



LIST OF FIGURES vii

4.3 AlgorithmGetBlock used to extract a block of SA and LCP where all suffixes

are greater than s�, and less than su, without exceeding an imposed block size

of bmax suffixes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 The algorithm used to apply FMV to contiguous blocks of SA and LCP. This

algorithm does not include the necessary detail to implement the RMQ over

portions of the LCP into previous blocks, which is given in Section 4.3.3. . . . 41

4.5 Time and memory required to mine protein for frequent strings with ρ = 0.1

and τ = 0.95 by the various algorithms. Note the point for KO [Kügel and
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Abstract

The suffix array (SA), which is an array containing the suffixes of a string sorted into lexi-

cographical order, was introduced in the late eighties as a space efficient alternative to the

suffix tree. It has since emerged as a useful data structure in string processing problems such

as pattern matching, pattern discovery, and data compression.

The SA is often coupled with the longest-common-prefix (LCP) array that contains the

length of the longest common prefixes between consecutive suffixes in the SA. When enhanced

with the LCP array, the SA can provide efficient solutions to the above applications including

a problem called pattern mining. To date, all the mining algorithms lie at either extreme of

the efficiency spectrum: they are either fast and use enormous amounts of space, or they are

compact and orders of magnitude slower. We present a mining algorithm that achieves the

best of both these extremes, having runtime comparable to the fastest published algorithms

while using less space than the most space efficient.

In all these applications, the construction of the SA — also known as suffix sorting —

is one of the main computational bottlenecks. Most papers describing the SA assume the

SA fits in RAM memory, limiting their applications. Even if the SA itself fits in memory,

many algorithms constructing such an array require more space than the final result. The

fastest algorithms in this large memory suffix sorting category use powerful pointer copying

heuristics to expedite suffix sorting. Several space efficient algorithms have emerged in the

last five years, where the trend is to use as little RAM as possible. They do so by finding

a clever way to trade runtime, or by using slow compressed data structures, or by using

external memory (disk), or some combination of these techniques. In this thesis, we focus

on improving the runtime of a space efficient algorithm due to Kärkkäinen by adapting the

heuristics from large memory suffix sorting to a semi-external setting.

Also, pointer copying has been heavily used to speed up the construction of the SA, but

not the LCP array. We also discuss our attempts of combining the pointer copying heuristics



2

to an efficient LCP construction algorithm due to Kärkkäinen, Manzini and Puglisi.

The Burrows-Wheeler transform (BWT) was discovered independently of the SA, but

it is now known that the two data structures are deeply linked. The BWT is central to

practical compression tools such as szip and bzip2. Many papers have been published on

constructing the BWT either in RAM or in external memory but few on inverting the BWT

to obtain the original string — in fact none in external memory. For larger datasets, the

existing traditional approaches cannot be used to invert the BWT. In such cases, we have

to use disk. We close the gap between theory and practice by examining the problem of

inverting the BWT efficiently on disk. We provide a practical implementation of the only

theoretical proposal for the problem by Ferragina, Gagie and Manzini. We also provide new,

faster solutions to the problem based on simple scanning and compression techniques.



Chapter 1

Introduction

The International Data Corporation (IDC) recent white paper sponsored by EMC Corpora-

tion,1 reported that 486 billion gigabytes of data was generated in 2008 [Gantz et al., 2008].

The IDC analysts have forecasted data to grow massively in the next few years and with

the decrease of hard disk costs per gigabyte, this does not seem implausible [Kirk, 2007].

It is clear that the amount of data is growing, and there is a pressing need to find useful

information from it. The sources of datasets could vary from natural language such as the

World Wide Web, to categorical sequences including genomic databases such as Genbank, or

even large customer databases held by many organizations.

Strings are one of the most basic and useful data representations, and algorithms for

their efficient processing pervade computer science with applications, perhaps too numerous

to be listed completely. Some of the string processing applications are in search engines, the

World Wide Web and operating systems. Other common, yet vital applications are in word

processors such as Microsoft Word, utilities such as grep on UNIX, telephone directories,

online dictionaries, thesauri and the list goes on [Gusfield, 1997].

The suffix tree [Wiener, 1973] is a fundamental data structure for string processing, but

it has large memory requirements, which hampers its use in practical situations. Reducing

suffix tree memory usage has been the focus of intense research in the algorithms commu-

nity and has given rise to the suffix array (SA) [Gonnet, 1987; Manber and Myers, 1990;

1993] data structure. It provides efficient — often optimal — solutions for pattern matching

(counting or finding all the occurrences of a specific pattern), pattern discovery and mining

(counting or finding generic, previously unknown, repeated patterns in data), and related

1EMC are the acronyms for the founders of the company where E is for Egan, M is for Marino and C is
for the third partner that left before the corporation was formed
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problems, such as data compression. The SA is widely used in bioinformatics and compu-

tational biology [Gusfield, 1997; Abouelhoda et al., 2004; Flicek and Birney, 2009], and as a

tool for compression in database systems [Chen et al., 2008; Ferragina and Manzini, 2010].

More recently, it is beginning to move from theory to practice as an index in information

retrieval [Culpepper et al., 2010; Patil et al., 2011].

In all these applications, the construction of the SA — a process also known as suffix

sorting — is one of the main computational bottlenecks. Suffix array construction algorithms

(SACAs) have been the focus of intense research effort in the last 20 years or so. The survey

due to Puglisi, Smyth and Turpin [Puglisi et al., 2007] counts 19 different large (internal)

memory SACAs. These algorithms have assumed that the SA fits in RAM memory and so,

limiting their applications to smaller datasets. Even if the SA itself fits in memory, many

algorithms constructing such an array require more space than the final result. Moreover,

this often makes the array construction infeasible. The fastest existing internal memory al-

gorithms [Itoh and Tanaka, 1999; Seward, 2000; Ko and Aluru, 2005; Maniscalco and Puglisi,

2007] require at least 5n bytes (n is the length of the string) for suffix sorting, and use a

broad class of heuristic methods called pointer copying to expedite sorting. In this method,

a complete sort of a selected subset of suffixes is used to derive the order of the remaining

suffixes as described in Chapter 3.

In the last five years, even more algorithms have emerged. The trend in these recent

SACAs, has been to use as little memory as possible, either by finding a clever way to trade

runtime, or by using slow compressed data structures, or by using disk, or some combination

of these techniques. It is these recent low memory (space efficient) SACAs that are the focus

of this thesis, in particular, a semi-external suffix sorting algorithm due to Kärkkäinen [2007].

At present, the algorithm sorts suffixes in blocks. A pass is made over the text to collect the

first block of suffixes. The block is sorted and written to disk to form a contiguous section

of SA. The memory is then reused to collect the second block where a second pass is made

over the text and so on. This process is repeated until all the suffixes are written to disk.

Observe that the number of passes made over the text is proportional to the sorting time

which is the bottleneck of this algorithm. We therefore ask:

• Can we implicitly sort the suffixes in a manner that will reduce the number of passes

to be made over text without increasing the memory requirement of the Kärkkäinen’s

suffix sorting algorithm?

In Chapter 5, we improve the runtime of this suffix sorting algorithm. The main con-
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tribution of this chapter is a method for implementing the pointer copying heuristics from

internal memory suffix array construction in a semi-external setting. It is not so straightfor-

ward as this method assumes the text and SA to be held in RAM memory throughout suffix

sorting. However, Kärkkäinen’s algorithm has a more restrictive setting. At any given time,

only the text, a block of SA and some small data structures can reside in the RAM memory.

We achieve a speed up of 2-4 times without increasing the memory usage of the algorithm.

When compared to the recent algorithm by Ferragina, Gagie and Manzini [Ferragina et al.,

2012], we are twice as fast when working memory is equated. To this end we ask:

• Using the new algorithm, can we suffix sort strings with large alphabets?

When compared to the best published algorithm for such strings, that is the algorithm

by Larsson and Sadakane [2007], we are 2-3 times slower but we use less memory.

The SA is often coupled with the longest-common-prefix (LCP) array that contains the

length of the longest common prefixes of adjacent suffixes in the SA. When enhanced with

the LCP array, the SA can provide efficient solutions to bottom-up and top-town traversals

within the same time bounds of the suffix tree, but less space overhead [Abouelhoda et al.,

2004]. These traversals are the heart for many string problems discussed above, including a

problem called pattern mining. In applications such as computational biology, pattern mining

could be used to find potential indicators of genetic disorders that are being analyzed. For

example, say a genetic disease is caused by a disorder of Chromosome-21 and the cause of

this failure is unknown. Rather than analyzing every single pattern of the chromosome, the

scope is narrowed down by collecting genetic sequences of Chromosome-21 of 1000 ill patients

which are then stored in the positive database, and likewise, another 1000 healthy patients

in the negative database. The patterns that are frequent (or always) in the positive database

and infrequent (or never) in the negative database are the potential indicators of genetic

disorder under consideration [Fischer, 2007].

In recent years, several algorithms for mining patterns from databases of string data

(such as proteins and natural language texts) have been discovered, all of which traverse the

enhanced SA data structure. All of these algorithms lie at either extreme of the efficiency

spectrum: they are either fast and use enormous amounts of space, or they are compact

and orders of magnitude slower. In particular, the two mining algorithms for string data

that are feasible on genome datasets are: optimal linear time (fastest) by Fischer, Heun and

Kramer [Fischer et al., 2006] and space efficient by Fischer, Mäkinen and Välimäki [Fischer

et al., 2008] algorithms. Assume M to be a database of strings that has σ alphabets.
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The optimal linear time algorithm solves mining problems in optimally linear time with the

drawback of having space requirement of O(n log n) bits, which is not optimal for σ << n

(especially for constant σ) as the datasets themselves consume n log σ bits. On the other

hand, the space efficient algorithm uses O(n log σ + |M| log n) bits with the drawback of

having a time requirement of O(n log n). To this end, we ask:

• Can we solve mining problems for string data closer time to the fastest published algor-

ithm and use the same amount of space or less than the most space efficient algorithm?

In Chapter 4, we present an algorithm that achieves the best of both these extremes,

having runtime comparable to the fastest published algorithms [Fischer et al., 2006] while

using less space than the most space efficient ones [Fischer et al., 2008]. This excellent

practical performance is underpinned by theoretical guarantees. Our main mechanism for

keeping memory usage low is to build the enhanced suffix array incrementally, in blocks.

Once built, a block is traversed to output patterns with required support before its space is

reclaimed to be used for the next block.

Pointer copying heuristics have been used to speed up SACAs but not LCP construc-

tion algorithms (LCPCAs) [Kasai et al., 2001; Manzini, 2004; Puglisi and Turpin, 2008;

Kärkkäinen et al., 2009; Gog and Ohlebusch, 2011]. We therefore ask:

• Can we reduce the construction time of the LCP array via pointer copying?

Chapter 6 presents our attempts to combine pointer copying heuristics with an efficient

LCPCA due to Kärkkäinen, Manzini and Puglisi [Kärkkäinen et al., 2009]. Unfortunately,

at the same time to us, Fischer [2011] had the same idea independently, and he published it

before us. He used less space than us as he saw a clever way to use unused space in the LCP

array which we did not see.

The Burrows-Wheeler transform (BWT) [Burrows and Wheeler, 1994] was discovered

independently of the SA, but it is now known that the two data structures are essentially

equivalent. The construction of the BWT — directly from the string or via the SA or via

some other method — is known as the forward BWT. In the last decade, the relationship

between the BWT and the SA has been heavily investigated, and has led to the very active

field of compressed full-text indexing: the study of data structures that allow fast pattern

matching, but require space close to that of the compressed text (see Navarro and Mäkinen

[2007] and references therein). The BWT itself has been the focus of much research in text

compression [Sadakane, 1998; Balkenhol et al., 1999; Manzini, 1999; Deorowicz, 2002; Abel,
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2005]. It performs no compression, but transforms the input string in such a way that makes

compression easy using other methods [Manzini, 2001a; Kärkkäinen and Puglisi, 2010]. The

BWT is used in compression tools such as szip [Schindler, 2002] and bzip2 [Seward, 2004].

These compression tools divide the BWT into blocks and then compress each block separately,

meaning that only local redundancy can be detected. Compression is significantly better if

the entire string is processed (see Ferragina and Manzini [2010]).

Much research has been carried out on the forward BWT algorithms but very little on

inverse (reverse) BWT (IBWT) where we obtain the input string from the BWT. For a

very large collection, there might not be enough RAM to invert the BWT using traditional

approaches [Kärkkäinen and Puglisi, 2010]. In such cases, we have to use external memory

(disk) and, invert the BWT on disk. There are forward BWT algorithms that work on

disk, but no inverse BWT algorithms. Only a theoretical proposal by Ferragina, Gagie,

Manzini [Ferragina et al., 2010] exists. We therefore ask:

• Can we provide an implementation of the only theoretical proposal of Ferragina, Gagie

and Manzini’s algorithm?

In Chapter 7, we close the gap between theory and practice by examining the problem of

inverting the BWT efficiently on disk. As there were open questions related to this proposal,

several possibilities were explored and the best approach in terms of time and space was

implemented. To this end, we ask:

• Their algorithm is complex, so can we discover simple, more practical inversion algo-

rithms for disk?

Several new inversion algorithms of our own that use simple scanning and compression tech-

niques were implemented. Our best approach is up to 14 times faster than the implementation

of Ferragina, Gagie and Manzini’s algorithm.

The significance and novelty of this thesis can be summarized as follows.

• We introduce a new approach to space efficient string mining in which the suffix and

LCP arrays are constructed one block at a time, with each block traversed before the

memory is reclaimed for the next block. Two algorithmic parameters can be tuned so

that this new approach requires O(n log σ + |M| log n) bits of space and O(n log2 n)

time in the worst case.

• The empirical performance of the new approach on large collections of DNA and Protein

data is examined. The new approach is as space efficient as Fischer et al. [2008] but
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is more than an order of magnitude faster, running only slightly slower in practice

than Fischer et al. [2006]. We stress, as Fischer et al. [2008] do, that for large scale

string mining problems space is often more of a concern than time: without adequate

memory, mining becomes impossible, though one is often willing to wait a little longer,

provided results eventually arrive. Our approach has two parameters which allow for

a space-time tradeoff, which we explore.

• We provide a practical implementation of a semi-external suffix sorting due to Kärkkäinen

[2007].

• We improve the practical performance of Kärkkäinen’s suffix sorting by showing how

to adapt powerful heuristics from large memory suffix algorithms to the semi-external

setting.

• We show the performance of the new algorithm has relevant space-time tradeoffs in

practice, relative to existing approaches.

• We demonstrate the efficacy of the algorithms for suffix sorting of strings on large

alphabets.

• We improve the practical performance of the LCP construction algorithm by Kärkkäinen,

Manzini and Puglisi [Kärkkäinen et al., 2009] using the powerful heuristics from large

memory suffix algorithms.

• We provide a practical implementation to invert the BWT of the only theoretical pro-

posal by Ferragina, Gagie and Manzini [Ferragina et al., 2010] .

• We provide faster solutions to the inversion problem, based on simple scanning and

compression techniques.

This thesis proceeds in the following manner.

Chapter 2 describes the background and notation used for the rest of the thesis. This

overview can be safely skimmed by readers already familiar with suffix sorting, but may

serve as a useful tutorial for those new to the problem.

Chapter 3 provides high level descriptions of several SACAs that have emerged since the

survey due to Puglisi et al. [2007], avoiding implementation details as much as possible.
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These algorithms have tended to strive for small working space (RAM), often at the cost of

runtime, and make use of compressed data structures or disk to achieve this goal.

Chapter 4 presents an efficient pattern mining algorithm that has runtime comparable to

the fastest published algorithms with space less than most space efficient algorithms.

Chapter 5 describes how pointer copying heuristics from internal memory suffix array

construction are adapted to work in a semi-external setting. Several algorithmic optimiza-

tion techniques are also used to speed up the construction time of the semi-external SACA

by Kärkkäinen [2007]. The runtime of our new algorithm is faster than the original algor-

ithm and alternative approaches when the amount of working memory is equated.

Chapter 6 describes our work on combining pointer copying heuristics with the LCPCA

due to Kärkkäinen et al. [2009]. The construction time of the LCP array is improved.

Chapter 7 considers the problem of inverting the BWT efficiently on disk. We describe

an implementation of Ferragina et al. [2010], a variant of their algorithm and several new

inversion algorithms. The runtime of our best approach is faster than the implementation

of Ferragina et al. [2010].

Chapter 8 concludes and outlines some directions that could benefit from further research.



Chapter 2

Preliminaries

This chapter sets out notation and introduces basic concepts used throughout this thesis.

We consider a string x of n + 1 characters (or symbols), x = x[0, n] = x[0]x[1] . . . x[n],

drawn from a fixed, ordered alphabet Σ of size σ. The final character, x[n], is a special end of

string character, ‘$’, which occurs nowhere else in x and is lexicographically (alphabetically)

smaller than any other character in Σ. The string x requires (n + 1) log σ bits of storage

without compression.

We write x[i, j] to represent the substring of x starting at position i and ending at position

j. There are two special types of substrings we are interested in: a substring x[0, i], 1 ≤ i ≤ n,

that begins at the first symbol of x is called a prefix of x; and a substring x[i, n], 0 ≤ i ≤ n,

that ends at the last letter of x is called a suffix of x. For brevity, we will often refer to suffix

x[i, n] as “suffix i”.

The suffix array SA[0, n] of string x (or just SA, when the context is clear) is a permuta-

tion of the integers 0 to n such that

x[SA[0], n] < x[SA[1], n] < . . . < x[SA[n], n].

In other words, SA lists the suffixes of x in ascending lexicographical order. As SA stores

n+1 integers in the range [0, n], it requires (n+1) log(n+1) bits of storage. Figure 2.1 shows

an example SA for the string x, florreencee$, where x[11, 11] = $ is the lexicographically least

suffix, x[8, 11] = cee$ is the second least and so on.

A suffix tree is a tree representation of the above suffixes and its string. To see the

relationship of the SA to the suffix tree, observe that the values in the SA are merely the

leaves of the tree as they would be visited in the depth first order, as we see in Figure 2.2.

10
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i Suffixes SA Suffixes
0 florreencee$ 11 $
1 lorreencee$ 8 cee$
2 orreencee$ 10 e$
3 rreencee$ 9 ee$
4 reencee$ 5 eencee$
5 eencee$ 6 encee$
6 encee$ 0 florreencee$
7 ncee$ 1 lorreencee$
8 cee$ 7 ncee$
9 ee$ 2 orreencee$

10 e$ 4 reencee$
11 $ 3 rreencee$

Figure 2.1: Suffixes of string florreencee$ are sorted lexicographically forming the SA. On
the left hand side, the suffixes are listed in string order and the on the right hand side they
are listed lexicographically.

Occasionally it will be useful for us to refer to the inverse suffix array SA−1, which is

defined such that SA−1[i] = j if and only if SA[j] = i. In other words, SA−1 refers to the

position of a given suffix in SA.

The longest-common-prefix (LCP) array, LCP[0, n] of x is an array defined relative to

SA. In particular, let lcp(y, z) denote the length of the longest common prefix of strings y

and z. Then for every j ∈ [1, n],

LCP[j] = lcp(x[SA[j−1], n], x[SA[j], n]),

that is, LCP[j] is the length of the longest common prefix of suffixes SA[j−1] and SA[j].

LCP[0] is undefined. For an overview of the state-of-the-art of LCP array construction

algorithms, see Kärkkäinen et al. [2009] and Gog and Ohlebusch [2011].

For strings with low amounts of repetition, string sorting algorithms such as multikey

quicksort (MKQS) [Bentley and Sedgewick, 1997] are effective for building the SA. However,

it is usually faster to employ one of the many specialized suffix sorting algorithms, which are

surveyed in Chapter 3. Some of these algorithms build a Difference Cover Sample [Burkhardt

and Kärkkäinen, 2003; Kärkkäinen, 2007] of size v, DCSv(x) for string x, which allows the

lexicographical order of suffixes to be determined efficiently. DCSv(x) is a sorted subset of

all suffixes that are chosen so that for any two positions in SA, say i and j, there exists a

k < v such that both SA[i + k] and SA[j + k] are in the sample, where v is a parameter



CHAPTER 2. PRELIMINARIES 12

!!"
#"

$"

%"

#"

%"

#"

&'((%%)*%%#"

("

(%%)*%%#"

!+"

," -"

+"

!"

."

/"

0"
1"

)*%%#"

2"

Figure 2.2: The suffix tree for string florreencee$ where the suffixes are stored as indices
into the original string at the leaves of the tree instead of the suffixes themselves.

that controls the size of the sample. For example, if v = 3, then the DCS can be set to all

suffixes whose index is 1 or 2 (mod 3). The set {1, 2} is a difference cover of the range 1

to 3 [Colbourn and Ling, 2000]. Now for any pair of positive integers, i and j, there will

exist k < 3 such that i + k (mod 3) and j + k (mod 3) will be in the set {1, 2}. Generally,

there exists a difference cover with Θ(
√
v) elements, given v. The usefulness of this type of

sampling is summarized in the following lemma.

Lemma 1 ([Burkhardt and Kärkkäinen, 2003; Kärkkäinen, 2007]). The Difference Cover

Sample DCSv(x) of text x[1, n] and period v ∈ [3, n] can be constructed in O(|S| log |S|+v|S|)
time and in O(v+ |S|) space (excluding the space for x), where S is a set of Θ(n/

√
v) suffixes.

Let x[i, n] and x[j, n] be two suffixes such that lcp(x[i, n], x[j, n]) ≥ v−1, then given DCSv(x)

the lexicographical order of x[i, n] and x[j, n] can be determined in constant time.

Thus, given any two positions in the text, the suffixes beginning at those positions can be

lexicographically ordered by comparing up to k < v individual characters from their prefixes.
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If any of these characters differ, then the order is resolved, but if all are the same, the order

can be resolved by the suffixes at positions i+ k and j + k which are already ordered in the

sample. Determining the relative order of two suffixes thus requires O(v) time.

Recently, Puglisi and Turpin [2008] showed how to extend the above DCSv(x) data struc-

ture so that lcp(x[i, n], x[j, n]) for any suffixes i and j can also be computed in O(v) time.

We summarize their result with the following lemma.

Lemma 2 ([Puglisi and Turpin, 2008]). The extended Difference Cover Sample can be con-

structed from DCSv(x) and x in O(v|S|) time and in O(v + |S|) space (including DCSv(x)

and excluding the space for x), where S is the same set of Θ(n/
√
v) suffixes used in DCSv(x).

For any two suffixes that share a prefix of v − 1 characters, given the extended Difference

Cover Sample, lcp(x[i, n], x[j, n]) can be determined in constant time.

Suffix sorting, the process of constructing SA, is also the computational bottleneck for

performing the Burrows-Wheeler transform (BWT) [Burrows and Wheeler, 1994]. The BWT

was discovered independently of the suffix array, but it is now known that the two data

structures are deeply linked.

The BWT transforms the string x by sorting its n + 1 cyclic rotations as shown in

Figure 2.3b. To see the relationship between the SA and BWT: in the matrix of sorted

rotations, the prefixes of each rotation up to the $ are precisely the suffixes of x in the same

order in which they appear in SA. BWT is a permutation of x defined by SA: BWT[i] =

x[SA[i] − 1], unless SA[i] = 0, in which case BWT[i] = $. To see the relationship between

SA, BWT and LCP, see Figure 2.4.

For the full properties of the BWT matrix, we refer the reader to Burrows and Wheeler

[1994], Manzini [2001a] and Ferragina and Manzini [2005]. We only discuss properties that

will aid in understanding the algorithms in this thesis. The two main columns of the matrix

are: F, the first column which is obtained by lexicographically sorting the characters in x;

and L, the last column that represents the BWT. Although simple, these cyclic rotations are

a powerful tool that can be used to invert the BWT.

The elements critical for inverting the BWT are as follows [Ferragina and Manzini, 2005].

• C[c] where c ∈ Σ denotes the starting position of the group that begins with character

c in F. Sometimes, these positions in C are referred as group counters.

• rank(L[q],L, q) denotes the number of occurrences of c at position q in prefix L[0, q].
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i Suffixes SA Suffixes
0 florreencee$ 11 $
1 lorreencee$ 8 cee$
2 orreencee$ 10 e$
3 rreencee$ 9 ee$
4 reencee$ 5 eencee$
5 eencee$ 6 encee$
6 encee$ 0 florreencee$
7 ncee$ 1 lorreencee$
8 cee$ 7 ncee$
9 ee$ 2 orreencee$
10 e$ 4 reencee$
11 $ 3 rreencee$

(a) Suffixes of string florreencee$ are sorted lexicographically forming the SA.

All Rotations F L rank(L[i],L, i) i

florreencee$ $ florreence e 0 0
lorreencee$f c ee$florree n 0 1
orreencee$fl e $florreenc e 1 2
rreencee$flo e e$florreen c 0 3
reencee$flor e encee$flor r 0 4
eencee$florr e ncee$florr e 2 5
encee$florre f lorreencee $ 0 6
ncee$florree l orreencee$ f 0 7
cee$florreen n cee$florre e 3 8
ee$florreenc o rreencee$f l 0 9
e$florreence r eencee$flo r 1 10
$florreencee r reencee$fl o 0 11

(b) The left column shows all rotations of the string florreencee$. When sorted (right column) this gives the
BWT as column L. The F column contains characters of the input sorted lexicographically. Position 6 in L is
the starting point for inversion.

Figure 2.3: The relationship between suffix sorting, Burrows-Wheeler transform and Inverse
Burrows-Wheeler transform.

C is combined with rank to obtain the Last to First mapping, that is the LF function of

Equation 2.1.

LF = C[L[i]] + rank(L[i],L, i) (2.1)

To compute C, we count the occurrences of each character in L as shown in Figure 2.5a.

By replacing C[j] with the cumulative sum of the counts in C[j− 1] for j > 0, we can obtain

the starting position of each character group in F (see Figure 2.5b). For example, C[$] is 0

as the starting position of ‘$’ in F is 0.

To invert the BWT, the symbol in the BWT which is the last symbol of the input string



CHAPTER 2. PRELIMINARIES 15

0 1 2 3 4 5 6 7 8 9 10 11

x f l o r r e e n c e e $
SA 11 8 10 9 5 6 0 1 7 2 4 3
BWT e n e c r e $ f e l r o
LCP 0 0 0 1 2 1 0 0 0 0 0 1

Figure 2.4: The relationship between SA, BWT and LCP of string florreencee$.

is output. The position of this symbol is recorded when the forward transform is performed.

The LF function is then used to find the next character (of the input string) as shown in

Figure 2.3b. Position 6 is the starting point for inversion and so, $ is output. To compute

rank($,L, 6), we count the occurrences of symbol ‘$’ in prefix L[0,6] which is 0 as there are no

occurrences in L[0,6]. 0 is then added to C[$] which gives the next character to be inverted,

that is the character at position 0 in L.

In the above example, the BWT is inverted in reverse order. The implementation of

reverse order operations are faster in practice [Kärkkäinen and Puglisi, 2010] and so, imple-

mented in algorithms described in Chapter 7. However, to invert the BWT in forward order

using the reverse operations, the input string can be reversed before a forward transform is

performed.

$ c e f l n o r
j 0 1 2 3 4 5 6 7

C 1 1 4 1 1 1 1 2

(a) Round 1: Occurrences of each character are stored in C.

$ c e f l n o r
j 0 1 2 3 4 5 6 7

C 0 1 2 6 7 8 9 10

(b) Round 2: Cumulative count for each distinct character. This corresponds to the starting position of each
character group in F.

Figure 2.5: The two rounds to compute the starting positions of each group in F.



Chapter 3

Survey of Recent Suffix Sorting

Algorithms

In this chapter, we survey several suffix array construction algorithms (SACAs) that have

been discovered since the survey due to Puglisi, Smyth and Turpin [Puglisi et al., 2007].

These algorithms strive for small working space (RAM), at the cost of runtime, and use com-

pressed data structures or secondary memory (disk) to achieve this goal. Previous work and

applications of suffix arrays (SAs) are briefly reviewed in Section 3.1. Then, in Section 3.2,

a high level description of each new algorithm is given. Experimental comparisons of some

of the recent algorithms that we have efficient implementations are given in Section 3.3.

3.1 Suffix arrays: History and Applications

In the early seventies, Knuth, Morris and Pratt described pattern matching algorithms that

compute a failure-function. This failure-function indicates the number of character compar-

isons that can be skipped based on the previously performed comparisons. Despite having

linear time complexity, the KMP algorithm is inefficient on very large input strings as the

search is bounded by n, the length of the input string [Knuth et al., 1977].

Wiener [1973] introduced the suffix tree (or position tree or patricia (PAT) tree) data

structure that reduces pattern search time to be proportional to the length of the pattern.

The drawback of Wiener’s approach was that although the suffix tree requires O(n) space,

it has high constant factors, and occupies about 30n bytes in practice. Moreover, the suffix

tree is unsuitable for applications such as document listing [Muthukrishnan, 2002].

16
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McCreight [1976] improved the space requirements of Weiner’s approach by about 25%

by adding the suffixes in the decreasing order of their length, in contrast to Wiener who

adds them in increasing order, without affecting its linear construction time. Ukkonen [1995]

then produced a simpler and easier variant of McCreight’s algorithm that runs in the same

time bounds but processes the string from left-to-right, a property that is required in some

applications.

The above suffix tree construction algorithms assume a constant alphabet size. Farach

[1997] described the first recursive algorithm that is linear for all alphabets including integers.

Several improvements have since been made to this recursive algorithm (see Farach-Colton

et al. [2000]). The sorting routing of this algorithm has inspired several recursive SACAs,

such as KS [Kärkkäinen and Sanders, 2003], KSPP [Kim et al., 2003] and KA [Ko and Aluru,

2005]. The suffix tree has been superseded, at least in practice, by the SA, mostly due to the

large space requirements to construct the tree even with the improvements by Kurtz [1999].

The SA is a fundamental data structure for string processing. It provides efficient so-

lutions for pattern matching (counting or finding all the occurrences of a specific pattern),

pattern discovery and mining (counting or finding generic, previously unknown, repeated

patterns in data), and related problems, such as data compression. SA is also widely used

in bioinformatics and computational biology [Gusfield, 1997; Abouelhoda et al., 2004; Flicek

and Birney, 2009], and as a tool for compression in database systems [Chen et al., 2008;

Ferragina and Manzini, 2010]. More recently, it is beginning to move from theory to practice

as an index in information retrieval [Culpepper et al., 2010; Patil et al., 2011].

3.2 Suffix array construction algorithms (SACAs)

The suffix array (or patricia (PAT) array) was discovered independently with different in-

tentions. Gonnet [1987] implemented a suffix array to speed pattern search in the Oxford

English Dictionary project, and Manber and Myers [1990; 1993] for genome databases. Since

then, many SACAs have emerged. The survey by Puglisi, Smyth and Turpin [Puglisi et al.,

2007] counts 19 different SACAs and categorizes them as follows:

• Prefix-Doubling

Suffixes in this category of algorithms are not sorted in a single iteration but semi-sorted

in several iterations (at most log2 n). The overall runtime is O(n log n). The two main

algorithms in this category are the MM [Manber and Myers, 1990; 1993] (or alternatively

G [Gonnet, 1987]) algorithm and the LS [Larsson and Sadakane, 2007] algorithm.
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• Induced Copying

Induced Copying (or pointer copying) is a heuristic method for suffix sorting. A com-

plete sort of a selected subset of suffixes is used to derive the order the remaining

suffixes. The basic principle of this method was first introduced by Burrows and

Wheeler [1994] and since then, many different styles have developed: IT [Itoh and

Tanaka, 1999], S [Seward, 2000], BK [Burkhardt and Kärkkäinen, 2003], MF [Manzini

and Ferragina, 2004], SS [Schürmann and Stoye, 2005], BB [Baron and Bresler, 2005],

M [Maniscalco, 2005] and MP [Maniscalco and Puglisi, 2007]. The selected subset of

suffixes can be sorted with any efficient string sorting algorithms such as ternary-split

quicksort (TSQS) [Bentley and McIlroy, 1993], multikey quicksort (MKQS) [Bentley

and Sedgewick, 1997] and burst sort [Sinha and Zobel, 2004]. These string sorting

algorithms must not be used to construct the entire suffix array as they are computa-

tionally expensive in runtime, in particular for large strings that have many repetitions.

With an exception of the BK algorithm which is O(n log n), the algorithms in this

category generally have a super linear worst case runtime.

• Recursive

The general idea of the algorithms in this category is similar to induced copying except

that the selected subsets are sorted recursively. The algorithms in this category are

usually linear and include: KS [Kärkkäinen and Sanders, 2003], KSPP [Kim et al., 2003],

KJP [Kim et al., 2004], N [Na, 2005], KA [Ko and Aluru, 2005], NZC variants [Nong et al.,

2009a;b; 2011; Nong, 2011] and OS [Okanohara and Sadakane, 2009].

For more details about the above SACAs, we refer the reader to the survey by Puglisi

et al. [2007]. In this section, we describe several SACAs that have emerged since the survey.

We categorize them as “low memory” in Figure 3.1. These recent low memory algorithms

(S [Sirén, 2009], FGM [Ferragina et al., 2010] and BCR [Bauer et al., 2011]) are covered in this

chapter, with the exception of the K algorithm that is described in more detail in Chapter 5,

as it is vital for other parts of the thesis. We also describe two SACAs that are “lightweight”

(they use space to hold the input string and the resulting SA or BWT): NZC variants [Nong

et al., 2009a;b; 2011; Nong, 2011] and OS [Okanohara and Sadakane, 2009]. The NZC variants

are the most space efficient algorithms when compared to the 2007 survey, but the most

space consuming algorithms in this section.
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Figure 3.1: The three main categories of the SACAs: Prefix-Doubling, Induced Copying and
Recursive that are identified by Puglisi et al. [2007]. The algorithms that have emerged since
the survey are categorized on the right of the figure as Low Memory (space efficient).

3.2.1 Algorithm NZC [Nong et al., 2009a;b; 2011; Nong, 2011]

Several variants of Nong, Zhang and Chan algorithm exist. The variants are as follows.

Algorithm NZC (variable-length substrings)

The algorithm due to Nong, Zhang and Chan [Nong et al., 2009b; 2011] begins by selecting

and sorting a subset of suffixes, and then using the order of those suffixes to induce the sort

of the remaining suffixes. It uses RAM to hold the input string and the resulting suffix array.

In this sense, it is “lightweight” in the terminology of Manzini and Ferragina [2004]. It also

runs in linear time in the length of the string, settling an open problem posed by Puglisi

et al. [2007], by showing that it is possible to be simultaneously lightweight in space usage

and linear in runtime.
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The way the suffixes are differentiated into subsets is similar to the algorithm by Ko and

Aluru [2005] and Maniscalco and Puglisi [2007]. Suffixes are split into Larger and Smaller

types (L and S respectively) depending on their lexicographic rank relative to their right

hand neighbouring suffix. Then, a group of leftmost S suffixes (LMS) can be used to derive

the sort of the L suffixes, which in turn is used to induce the sort of the S suffixes.

Input: x.
1: Label each position S or L.
2: Identify LMS substrings.
3: Induce sort the LMS substrings.
4: Name each LMS substring by rank to obtain a shorter string, x1.
5: if each character in x1 is unique then
6: Compute SA1 from x1.
7: else
8: Recursively call this pseudocode, that is SA-IS(x1,SA1)
9: Induce SA from SA1.
Output: SA.

Figure 3.2: Pseudocode SA-IS(x,SA) that uses LMS due to Nong et al. [2009b; 2011].

Pseudocode of this algorithm is presented in Figure 3.2. The algorithm begins by making

a pass over the string, x[0, n] assigning a type of either L or S to the suffix (of the input

string) depending if it is Larger or Smaller than its right hand neighbouring suffix. Thus, a

suffix x[i, n] is type S if x[i, n] < x[i+1, n], or type L if x[i, n] > x[i+1, n]. These definitions

are then used to define the leftmost S-type (LMS) character and substrings respectively. A

character in the string is defined as an LMS character if x[i] is a type S and x[i − 1] is a

type L if x > 0. An LMS substring is a substring x[i, j] with both x[i] and x[j] being LMS

characters, and there is no other LMS character in the substring, for i �= j. The end of

string symbol, x[n] = $, is defined to be S, and hence is also an LMS suffix (as its left hand

neighbour must be larger than it). Types are shown below for the example input string x,

ababaacaa$.

0 1 2 3 4 5 6 7 8 9

x a b a b a a c a a $

type S L S L S S L L L S

LMS ∗ ∗ ∗

Suffix 8 (a$) is of type L as it is lexicographically larger than suffix 9 ($). Suffix 7 (aa$)

is of type L as it is lexicographically larger than suffix 8. This process is repeated until
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the types are assigned to all the suffixes of the string. During the scan, the LMS types are

identified and are indicated above by ‘∗’.
After identifying the types, the indices of the LMS suffixes are placed in their character

groups in the SA. Each suffix beginning with an LMS character is placed at the rightmost end

of its character group in SA, and the group counter decremented. Let C[j] be the cumulative

count of all characters in the string that are lexicographically less than or equal to j. Thus,

for our input string:

$ a b c

j 0 1 2 3

C[j] 0 6 8 9

The first LMS character encountered is ‘a’, the beginning of suffix 2, which is placed at

position 6, as C[a] = 6, and C[a] is decremented. Next we encounter ‘a’ at the beginning

of suffix 4, and so it is inserted at C[a] = 5. Finally, suffix 9 beginning with ‘$’ is inserted

at C[$] = 0. The end result is shown here, with the boundaries of each group denoted by

brackets and the empty positions denoted by ‘⊥’.

0 1 2 3 4 5 6 7 8 9

SA 9 (⊥ ⊥ ⊥ ⊥ 4 2) (⊥ ⊥) ⊥
x1 1 1 0

groups $ ( a) ( b) c

Ranks are then assigned to the LMS suffixes to obtain a shorter x1 string while preserving

the order of the string. So, in our example, x1 is 110. As there is a single LMS $ suffix in

the $ group, LMS $ suffix is given the rank 0. The remaining LMS aba suffixes are given the

rank 1 as they cannot be differentiated with just LMS aba. Induced sorting is applied until

the ranks become unique. Unique ranks indicate that the LMS suffixes have been sorted.

It is a coincidence that the order of the LMS indices in this example do not change as the

indices are in their correct positions.

Once the LMS suffixes are sorted, a left-to-right (j = 0..n) scan is made over SA to derive

the order of the L suffixes. Within a group, type L suffixes always come before type S suffixes

as the latter is lexicographically larger than the former. If, while scanning, we find a suffix i

(i = SA[j]) such that suffix i− 1 is of type L and has not been placed on SA (has not been

sorted), we place suffix i − 1 at the empty position of its group. The starting position of

each group in the SA is stored in C and so, C = {0, 1, 7, 9}. Continuing with the example,

when j = 0, i = SA[0] = 9, suffix 9− 1 = 8 is a suffix of type L, beginning with ‘a’ and has
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not been sorted. It is thus placed at position 1 as C[a] = 1 before incrementing its group

counter. Likewise, when j = 2, i = SA[2] = 8, suffix 8 − 1 = 7 is a type L suffix that has

not been placed on the SA and so, placed at position 2 as C[a] = 2. This process is repeated

until all the type L suffixes have been placed on the SA.

0 1 2 3 4 5 6 7 8 9

SA 9 (8 7 ⊥ ⊥ 4 2) (3 1) 6

groups $ ( a) ( b) c

After placing the type L suffixes, the type S suffixes are collected in a single scan over the

SA. A right-to-left scan is made over SA and for each i (i = SA[j]), we inspect suffix i − 1

and if it is a type S suffix that has not been placed on the SA, it is placed at the end of its

group. The group counters in C are reset so that the ending position of each group is stored,

C = {0, 6, 8, 9}. Should there be a LMS suffix at the said position, it is overwritten with the

S suffix. Continuing with the example, when j = n, i = SA[j] = 6, suffix 6 − 1 = 5 is a

type S suffix, beginning with ‘a’ and so, it is placed at position 6 as C[a] = 6. C[a] is then

decremented. Likewise, when j = 8, i = 1, suffix 1 − 1 = 0 is a suffix of type S, beginning

with ‘a’, and so, it is placed at position 5 as C[a] = 5. This process is repeated until all the

type S have been derived. An exceptional case occurs when j = 5, i = 0 as there is no suffix

0− 1. When this occurs, we simply ignore the suffix and scan to the next position, which is

j = 6 in this example.

0 1 2 3 4 5 6 7 8 9

SA 9 (8 7 4 2 0 5) (3 1) 6

groups $ ( a) ( b) c

Algorithm NZC (fixed-length substrings)

Nong, Zhang and Chan [Nong et al., 2009a; 2011] proposed an algorithm that offers space-

time tradeoff by using fixed length substrings known as d-critical substrings. A character in

the string is defined as a d-critical character (d ≥ 2) if it is an LMS character; or x[i − d]

is a d-critical character and x[i + 1] is not an LMS character with no d-critical character in

x[i− d+ 1, i− 1]. An exception occurs as the first character of the string is not a d-critical

character. That is, it is neither an LMS character nor does x[0 − d] exists. A substring is

defined to be a d-critical substring x[i, i+ d+ 1] if x[i] is a d-critical character.

Say d is 2. The 2-critical substrings are indicated below by ‘∗’ for the example string,

ababaacaa$. The 2-critical substrings are: abaa, aaca, caa$, $$$$. ‘$’ is added to suffix 9 to

ensure the length of the final 2-critical substring is four.
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0 1 2 3 4 5 6 7 8 9

x a b a b a a c a a $

type S L S L S S L L L S

2-critical ∗ ∗ ∗ ∗

As noted by the authors, the LMS substrings form a subset of d-critical substrings. The

number of d-critical substrings is equal to the number of LMS substrings in the best case.

However, the former is higher than the latter in the worst case.

Algorithm N (variable-length substrings)

A bit vector of O(n) bits of space (RAM) is required to differentiate type L and S suf-

fixes. Nong [2011] improves the space efficiency of Algorithm NZC (variable-length substrings)

by using unused space in the SA for the bit vector. The C array is removed during recursion.

This algorithm runs in linear time and uses O(1) working space excluding the space for the

text and SA.

3.2.2 Algorithm OS [Okanohara and Sadakane, 2009]

Figure 3.3: An example of the modified algorithm that induces the sort of the string ababaa-
caa$ using LMS substrings that are moved in queues.

The algorithm of Okanohara and Sadakane [2009] uses the same framework as the algor-

ithm by Nong et al. [2009b], described in the previous section, but derives the BWT string
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instead of the SA. This algorithm runs in linear time via careful implementation of data

structures that reduce memory overheads to O(nlogσloglogσn) bits.

Okanohara and Sadakane explicitly store and move LMS substrings in queues, namely,

LMSc, Lc and Sc queues. The LMSc queue, as the name suggests, stores LMS substrings

where c represents the last character of the substring. Lc stores substrings that are of type

L and ends with character c. Sc stores substrings that are of type S and ends with character

c. As the LMS substrings are moved between Lc and Sc, the character c which is the BWT

character is removed and stored in its character group data structure, namely, BWTLc
and

BWTSc
. The character c of type L is stored in BWTLc

and the character c of type S is

stored in BWTSc
. These character group based data structures are then combined to form

the BWT once all the characters have been removed from the LMS substrings.

Figure 3.3 shows an example for string string ababaacaa$. Once the LMS substrings are

stored in LMSc queues, they are moved between the Lc and Sc queues. LMS $aacaa, stored

in LMS$, LMS aba, stored in LMSa and LMS aba, stored in LMSa. ‘$’ is removed from

LMS$ and stored in BWTS$
. Substring aacaa is moved to La. Likewise, ‘a’ is removed from

La and stored in BWTLa
.

3.2.3 Algorithm S [Sirén, 2009]

Sirén [2009] describes a method for directly building the compressed SA (CSA) of a collection

of strings, such as a collection of documents or genomes. In the worst case, this method

requires O(n log n) time and O(n) bits of extra space in addition to the space for the CSA.

We use the collection M = {x1, x2} = {taa$1, aat$2} as an example. The end of string

symbol ‘$1’ has a smaller lexicographical rank than the end of string symbol ‘$2’. The BWT

is computed for the collection. The positions of the characters from string x2 in the BWT

are marked in an bit vector called I. As the second symbol ‘t’ in BWT at position 1 is from

x2, position 1 in I is marked. The compact representation of this collection is built based

on the compressed representation of two bit vectors. The bit vectors are based on character

groups, namely, ψa and ψt in our example. ψa as the name suggests, marks each position of

symbol ‘a’ in the BWT and ψt marks each position of symbol ‘t’ in BWT.
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0 1 2 3 4 5 6 7

M t a a $1 a a t $2

SA 3 7 2 1 4 5 6 0

I 0 1 0 0 0 1 1 1

BWT a t a t $1 a a $2

ψa 1 0 1 0 0 1 1 0

ψt 0 1 0 1 0 0 0 0

Each pair of distinct characters that are represented by the bit vectors is merged by

making a scan over I. This method is thus inefficient for collections that have a large alphabet,

as several scans are made over I to merge the character group based bit vectors. Sirén

overcomes this inefficiency by combining the BWT of each string in the collection using the

“backward search algorithm” (see Navarro and Mäkinen [2007]). For more details, we refer

the reader to Sirén [2009].

3.2.4 Algorithm FGM [Ferragina et al., 2010; 2012]

Ferragina, Gagie and Manzini [Ferragina et al., 2010; 2012] describe an external memory

algorithm to compute the BWT. Their algorithm computes the BWT for the first block of a

certain size in RAM and stores it on disk. For the subsequent blocks, the BWT of the block

is computed in RAM, and denoted as BWTint. It is then merged with the BWT that is on

disk, which we refer to as BWText. This process is repeated until the entire BWT for the

input string has been computed. Pseudocode is shown in Figure 3.4.

Input: x.
1: Compute BWT for the rightmost block.
2: Store BWT on external disk, BWText.
3: while BWT not fully computed do
4: Compute BWTint for the next block.
5: Merge BWText and BWTint.
Output: BWT.

Figure 3.4: Pseudocode to compute the BWT due to Ferragina et al. [2010; 2012].

Computing BWT for the first block

The algorithm of Ferragina et al. begins by dividing the input string into blocks of size m.

In the example below we set m = 3. The blocks are numbered from right-to-left.
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0 1 2 3 4 5 6 7 8 9

x (b a a) (a a a) (a a b) $

B 3 2 1

The first block, B1 = x[6, 8], is brought into RAM and its BWT is derived. The BWT for

the block is then stored on disk as BWText.

0 1 2 3 4 5 6 7 8 9

x (b a a) (a a a) (a a b) $

BWTint

BWText b a a

SA 6 7 8

B 3 2 1

Computing BWT for the subsequent blocks

The BWT computation for subsequent blocks differs from the first block. The input string

for the blocks B1 = x[6, 8] and B2 = x[3, 5] are brought into RAM. Suffixes are compared

näively, character by character. For example, while comparing suffix 3 (aaaaab$) to suffix 4

(aaaab$), the order is resolved when a mismatch occurred at character 5, position 8 in the

string. Having ordered the suffixes (that is, built the SA) for block B2, the BWT is derived

and stored in RAM as BWTint.

0 1 2 3 4 5 6 7 8 9

x (b a a) (a a a) (a a b) $

BWTint a a a

BWText b a a

SA 3 4 5 6 7 8

B 3 2 1

The next step is to find the number of suffixes of the already processed string (covered by

previous blocks) that fall between the suffixes of the current block. Let Bi = x[j, j +m− 1]

be the current block, and let SAB be it’s SA. We compute an array G such that G[i] is the

number of suffixes of x[j +m − 1, n] that are lexicographically smaller than SAB[i]. G can

be computed efficiently using the “backward search algorithm” (see Navarro and Mäkinen

[2007]) on a suitably preprocessed BWTint. In our example, the current block is B2.
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k x[k] G

0 1 2 3

SA 3 4 5

9 $ 1

8 b 1

7 a 1

6 a 1

Using the G array for the SA of the first block, BWText and BWTint are merged. For

instance, G[0] indicates there is one suffix that is lexicographically smaller than suffix 3 (in

fact suffix 9 ($)). As the BWT for this suffix is never computed, the entry for G[0] is ignored.

G[0, 2] = 0 and so, BWTint[0, 2] is copied to disk. Then, the BWText[0, 2] is copied (as

indicated by G[3]) which shows that there are three suffixes that are lexicographically larger

than suffix 5.

0 1 2 3 4 5 6 7 8 9

x (b a a) (a a a) (a a b) $

BWTint

BWText b a a a a a

SA 3 4 5 6 7 8

B 3 2 1

Lastly, the BWT for B = 3 is computed. Similar to the previous round, x[0, 5] is brought

into RAM and the SA for it is computed näively, via character comparisons, and in the case

of a tie, a data structure that orders the suffixes in O(m) time is used (see Ferragina et al.

[2010; 2012] for implementation details).

0 1 2 3 4 5 6 7 8 9

x (b a a) (a a a) (a a b) $

BWTint b a #

BWText b a a a a a

SA 1 2 0 3 4 5 6 7 8

B 3 2 1
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k x[k] G

0 1 2 3

SA 1 2 0

9 $ 1

8 b 1

7 a 1

6 a 1

5 a 1

4 a 1

3 a 1

G[2] = 6 shows there are six suffixes that exist between SA[1] and SA[2]. Therefore, the

BWText is merged as below.

0 1 2 3 4 5 6 7 8 9

x (b a a) (a a a) (a a b) $

BWTint

BWText b a b a a a a a #

SA 1 2 0 3 4 5 6 7 8

B 3 2 1

3.2.5 Algorithm BCR [Bauer et al., 2011]

Sirén [2009] describes a method for directly building the compressed suffix array of a collection

of strings, such as documents or genomes. Bauer, Cox and Rosone [Bauer et al., 2011] consider

a similar problem of suffix sorting on a collection of strings that is examined by Sirén, but

each string in the collection is relatively short, in particular, a sequenced DNA fragment.

Bauer et al. compute the BWT for a collection M consisting of m strings of k length. Their

algorithm requires O(m log m) bits of memory and it runs in either O(sort (m)) or O(km)

time (depending on the implementation).

We use the collection M = {x1, x2, x3} = {taa$1, cct$2, aaa$3} as an example. This

collection consists of three strings where the lexicographical ranks of end of string symbols

are as follows: $1 < $2 < $3. Let j-suffix of xi be the last non-$ symbol of the string whereas

0-suffix is the $ symbol. The symbol that precedes j-suffix is a BWT symbol and is written

into the h file that we call Bj(h). Bj(h) contains BWT symbols of j-suffixes that are of

length j or less, and begins with c0 = $ and ch ∈ Σ for h = 1, . . . ,σ.
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Computing BWT for the first round

For the first round, the partial BWT is computed by extracting characters preceding the

0-suffixes, that is, symbols that precede the end of string symbols. For example, the 0-suffix

for suffix a$1 is $1 and the BWT symbol is ‘a’, which is written into B1(0). Likewise, symbol

‘t’ precedes 0-suffix $2 and is inserted into B1(0).

B1(0) BWT 0-suffixes suffixes

0 a $1 a$1

1 t $2 t$2

2 a $3 a$3

Computing BWT for the subsequent rounds

For the subsequent rounds, the BWT symbols are inserted into the B2(h) files using LF

mapping (see Ferragina and Manzini [2005] for details). The observation of their algorithm

is similar to Ferragina et al. [2010; 2012]. The BWT symbols inserted in each round do not

affect the relative order of the existing symbols in the partial BWT.

B2(0) BWT 0-suffixes suffixes

0 a $1 a$1

1 t $2 t$2

2 a $3 a$3

B2(1) BWT 1-suffixes suffixes

0 a a$1 aa$1

1 a a$3 aa$3

B2(2) BWT 1-suffixes suffixes

0 c t$2 ct$2

The manner in which the BWT symbols are inserted for the third round is shown below

using the LF function (Equation 2.1 on page 14). Say, to find the position to insert the BWT

symbol, ‘a’ of suffix aa$3, rank(a,BWT, 4) = 3 is added to C[a] = 3 which gives 6. Therefore,

‘a’ must be inserted at position 6 in BWT but corresponds to position 3 in B3(1).
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B3(0) BWT 0-suffixes suffixes

0 a $1 a$1

1 t $2 t$2

2 a $3 a$3

B3(1) BWT 2-suffixes suffixes

0 a a$1 aa$1

1 a a$3 aa$3

2 t aa$1 taa$1

3 a aa$3 aaa$3

B3(2) BWT 2-suffixes suffixes

0 c ct$2 cct$2

B3(3) BWT 1-suffixes suffixes

0 c t$2 ct$2

3.3 Experiments

In this section, we provide experimental comparison on runtime and peak memory usage

of the recent SACAs that we have efficient implementations for. These implementations

are obtained from the websites of the authors themselves, except for Algorithm K that we

implemented ourselves and Algorithm NZC (variable-length substrings) that is implemented

by Mori [2008]. The performance of Algorithms K, NZC (variable-length substrings), NZC

(fixed-length substrings), OS and FGM is measured.

These algorithms either construct the SA or BWT for a single string. S and BCR compute

SA for a collection of strings. The latter benefits from fast disk access made possible by Solid

State Disk (SSD), as reported in their paper. As our experimental machine does not have

SSD, the performance of BCR is not measured relative to S.

3.3.1 Data and Setup

Table 3.1 shows the test data: 200MB of ENGLISH (english texts from Gutenberg Project, May

2005 download), DNA (bare DNA sequences from Gutenberg Project, June 2005 download) and

SOURCES (source code from the selected LINUX and gcc distributions, June 2005 download),

from the Pizza & Chilli corpus.1 This well-known corpus contains benchmark datasets for

testing algorithms.

All code was written in C/C++, compiled using gcc/g++ version 4.4.3 and the -O3

1http://pizzachili.dcc.uchile.cl/
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optimization flag. The code was executed on an otherwise idle 3.16 GHz Intel R� CoreTM 2

test machine of 4 GB of RAM and 6144 KB of cache. The operating system was Ubuntu

10.04.3. Times reported are the minimum of three runs, measured with the C time function.

We also report peak memory usage, measured using the memusage tool.

3.3.2 Results and Analysis

The runtimes are reported in Table 3.2 and the peak memory usage is reported in Table 3.3.

RAM of 481 MB is allocated to the K and FGM algorithms. NZC variants (NZC (variable-length

substrings) and NZC (fixed-length substrings)) require both the SA and input string to be

resident in RAM and so, consume 1,000 MB of memory.

NZC (variable-length substrings) is clearly the fastest to build the SA. It uses an induced

copying heuristic, and such methods are used in all fast algorithms. NZC variants also use

twice the memory of other algorithms. OS computes the BWT directly and so, a small amount

of RAM is used: each BWT character takes a single byte and an integer in SA takes 4 bytes

(up to 8 bytes for larger datasets). The amount of RAM used by OS depends on the length of

the LMS substrings. K requires only the input string to be in memory and for FGM, all the

data including the input string resides in external memory (disk). The size of the available

RAM of 4 GB on the test machine is sufficient to hold the input string and SA in memory,

and so, K and FGM may get faster if they are tuned for RAM.

3.4 Summary

This chapter surveyed several SACAs that have emerged since the survey due to Puglisi,

Smyth and Turpin [Puglisi et al., 2007]. The trend in these more recent algorithms is to use

as little memory as possible by trading runtime. NZC variants are the most space efficient

algorithms when compared to the 2007 survey, but the most space consuming algorithms in

this chapter. OS, which is based on NZC, uses less space than NZC as it computes the BWT

(and not the SA). K requires the text, small data structures (for efficient sorting) and a block

Files σ Mean LCP Max LCP
ENGLISH 226 9,390 987,770
DNA 17 59 97,979
SOURCES 231 373 307,871

Table 3.1: LCP is the longest common prefix between adjacent suffixes in the SA. A higher
Mean LCP generally increases the cost of suffix sorting.
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Algorithms ENGLISH DNA SOURCES
K 244 247 293
NZC (variable-length substrings) 72 72 53
NZC (fixed-length substrings) 169 166 116
OS 76 65 62
FGM 560 577 479

Table 3.2: Total wall clock time taken in seconds by the algorithms to run on the 200 MB
dataset. The minimum time is shown in bold.

Algorithms ENGLISH DNA SOURCES
K 481 481 481
NZC (variable-length substrings) 1000 1000 1000
NZC (fixed-length substrings) 1102 1119 1086
OS 446 383 434
FGM 481 481 481

Table 3.3: The peak memory usage (MB) by the algorithms for the 200 MB dataset. The
minimum usage is shown in bold. OS computes the BWT directly and so a small amount of
RAM is used in contrast to the other algorithms that compute the SA. Each BWT character
takes a single byte and an integer in SA takes 4 bytes.

of SA to reside in RAM. In contrast, FGM requires the text to reside on disk, and small amount

of RAM is used to sort a block of suffixes.

Our experiment results show that NZC (variable-length substrings) is the fastest as it uses

a induced copying heuristic that is used in all fast algorithms. As the size of the RAM on

the test machine is sufficient to hold the text and SA, K and FGM might have shown faster

runtimes if they had been tuned for RAM. S and BCR are used to sort a collection of strings

where the latter requires SSD for fast disk access. Since our test machine does not have SSD,

the performance of BCR relative to S was not measured.
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Practical Efficient String Mining

The growth of genomic databases and other large volumes of textual data has led to the need

for efficient algorithms for string mining problems. For example, given a multi-set (database)

of strings M = {s1, s2, . . . , s|M|} the frequent string mining problem is to report all patterns

or substrings in M that occur in at least ω different strings, where ω is called the support of

the pattern. This and other such string mining problems are analogs of classical data mining

problems over itemsets.

In recent years, several algorithms for mining frequent and emerging substring patterns

from databases of string data (such as proteins and natural language texts) have been dis-

covered. Fischer, Huen and Kramer [Fischer et al., 2006], building on earlier work by Hui

[1992], showed how the suffix array, combined with auxiliary information, could be used to

solve frequency constrained string mining problems – that is, problems where our interest in

a pattern is based solely on its frequency in the underlying database(s) – in optimal O(n)

time, using O(n log n) bits of space, where n =
�M

i=1 |si| is the number of characters in the

database. We refer to their approach as Algorithm FHK. Experimental results show this

approach is fast in practice, but has difficulty scaling to large databases due to its unwieldy

space requirements [Fischer et al., 2006]. To address this later problem, Fischer, Mäkinen

and Välimäki [Fischer et al., 2008] applied recently developed techniques for compressing

suffix arrays to the data structures of Fischer et al. [2006] and reduced space requirements to

O(n log σ+ |M| log n) bits. The price for these space savings in Algorithm FMV is an increase

in asymptotic runtime to O(n log n) time, however in practice an even greater penalty is

incurred: the compressed data structure is around two orders of magnitude slower than the

FHK algorithm [Fischer et al., 2006]. We observe that these and the other recent algorithms

33



Preliminaries 34

Table 4.1: Summary of theoretical and practical performance of previous string mining
algorithms, and this chapter’s contribution in the final row. n is the length of the input
database and σ is its alphabet size. Theoretical space is in bits, practical space is in bytes.
Practical time is given relative the original frequent linear algorithm in the first row [Fischer
et al., 2006].

Reference Theory Practice
Space Time Space Time

FHK [Fischer et al., 2006] O(n log n) O(n) 22n 1
[Kügel and Ohlebusch, 2008] O(n log n) O(n) 11n 0.5
[Weese and Schulz, 2008] O(n log n) O(n) 11n 0.5
FMV [Fischer et al., 2008] O(n log σ) O(n log n) 3n 90

This chapter O(n log σ) O(n log2 n) 2n 3

for string mining [Kügel and Ohlebusch, 2008; Weese and Schulz, 2008] lie at either extreme

of the efficiency spectrum: they are either fast and use enormous amounts of space, or they

are compact and orders of magnitude slower. Table 4.1 presents a summary of the asymptotic

resource usage for existing approaches, with the result from this chapter listed in the final

row.

In this chapter we present an algorithm that aims to achieve the best of both these ex-

tremes; having runtime near the fastest published algorithms, while using less space than the

most space efficient ones. In the next section we set notation and define the data structures

we will refer to throughout. Section 4.2 gives an overview of the basic FHK algorithm [Fischer

et al., 2006]. Section 4.3 describes our new algorithm and Section 4.4 gives an empirical

comparison to previous incarnations of Fischer et al.’s algorithms.

4.1 Preliminaries

A string database is simply a multiset of d strings, M = {s1, s2, . . . , sd}, si ∈ Σ∗.

The suffix array for a string database M = {s1, s2, . . . , s|M|} is the suffix array built from

the string:

xM = s1#1s2#2 . . .#|M|−1s|M|,

formed by concatenating the database’s contents, placing symbols #i between each string,

where these symbols do not occur in the database.1 The algorithms we describe in later

1We build the SA for multiple databases in a similar way by concatenating the string for each database.
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i xM SA LCP D C xM[SA[i] . . .]
0 G 24 - 0 0 $
1 A 5 0 1 0 $#1TAGA...
2 G 11 1 2 0 #2CTAG...
3 A 17 1 3 0 #3AGTA...
4 G 23 0 4 3 A$
5 # 16 1 3 1 A#3AGT...
6 T 3 1 1 1 AG#1TA...
7 A 9 2 2 1 AG#2CT...
8 G 21 2 4 1 AGA$
9 A 14 3 3 0 AGA#3A...
10 G 1 3 1 0 AGAG#1...
11 # 7 4 2 0 AGAG#2...
12 C 18 2 4 1 AGTAG...
13 T 12 0 3 4 CTAGA...
14 A 4 0 1 1 G#1TAG...
15 G 10 1 2 1 G#2CTA...
16 A 22 1 4 1 GA$
17 # 15 2 3 0 GA#3AG...
18 A 2 2 1 0 GAG#1T...
19 G 8 3 2 1 GAG#2C...
20 T 0 3 1 0 GAGAG...
21 A 19 1 4 1 GTAGA
22 G 20 0 4 3 TAGA$
23 A 13 4 3 0 TAGA#3...
24 $ 6 4 2 0 TAGAG...

Figure 4.1: The suffix (SA), LCP, D and C arrays for database M =
{GAGAG,TAGAG,CTAGA,AGTAGA}. For clarity, the final column shows the (at most)
first 5 characters of the suffix of xM beginning at SA[i], but is never actually stored.

sections all require a data structure to map suffixes of xM back to the strings sj of M. We

use D to denote this suffix-to-string mapping, with D(SA[i]) = j if and only if suffix SA[i] of

xM begins in string sj ∈ M (including the added #).

Figure 4.1 gives an example of these arrays for a small database containing four strings.

The array C is explained in Section 4.2.1. For example, the final entry in the suffix array,

SA[24] = 6, indicates that the suffix of xM beginning at position 6 (TAGAG...) is the

lexicographically largest of all suffixes of the string. The entry LCP[24] = 4 indicates that

suffix 13 shares the first 4 characters with suffix 6 (TAGA). Note that every possible substring

of the original database appears as a prefix of some suffix that is listed in SA, which facilitates

us solving substring-mining problems.

The LCP array gives the length of the longest common prefix of adjacent suffixes in the
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suffix array. Consider two arbitrary suffixes SA[i] and SA[j], 0 ≤ i < j ≤ n. A well-known

and useful result (see, for example, Manber and Myers [1993]; Kasai et al. [2001]) is that

the longest common prefix of these two suffixes, lcp(x[SA[i], n], x[SA[j], n]), is the minimum

value in LCP[i + 1, j]. For example, in Figure 4.1, the longest common prefix of SA[16]

through SA[20] is 2 (GA), which is the minimum value in LCP[17, 20]. For this reason, we

will often be interested in answering so-called range minimum queries (RMQs) on the LCP

array. Formally,

RMQ(i, j) = argmini<k≤jLCP[k].

There are several methods for preprocessing any array of n integers in O(n) time to build a

data structure of O(n) bits such that future RMQs can be answered in constant time [Fischer,

2007].

4.2 Existing Algorithms

Algorithm FHK of Fischer et al. [Fischer et al., 2006] makes two passes from start to finish

of the LCP array to calculate the support of all substrings in the database. The first pass

computes and stores how often substrings repeat within a single string of the database. We

call these correction factors, and store them in an array C. The second pass then computes

how often all substrings occur within the whole database. By subtracting the correction

factor from this number, you get the support for each substring. That is,

Support for substring s = Number of times s

occurs in M
− Number of times

s repeats within

strings in M.

4.2.1 Computing Correction Factors

The aim of the first pass over the LCP array is to calculate the number of times that

substrings in the database repeat within individual strings. This information is stored in

the C array, where if C[i] = k, then the substring beginning in position SA[i] of xM and

containing LCP[i] characters, repeats at least k times in some strings in xM. For example,

in Figure 4.1, C[7] = 1 reflects that “AG” repeats once (occurs twice) in some string (s2), as

does C[8] and C[12]. Hence the total correction factor for the string “AG” is three. A second

example: C[19] = 1 indicates that “GAG” repeats once in some string (s1). Note that when
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LCP[i] = 0, C[i] has no ready interpretation, but can be set during the construction process

(for example, C[4] = 3).

Input: LCP and D.
1: P[0, |M|] ← −1
2: C[0, n] ← 0
3: for i ← 0 to n do
4: p ← P[D[i]]
5: if p > −1 then
6: j ← RMQ(p+ 1, i)
7: C[j] ← C[j] + 1
8: P[D[i]] ← i

Output: C.

(a) Pass 1: deriving the C array.

Input: LCP and C.
1: for i ← 2 to n do
2: if LCP[i] < LCP[i− 1] then
2: for � ← LCP[i− 1] to LCP[i]− 1 do
4: Find the largest j < i and LCP[j] < �

5: Support is i− j + 1−
�j

k=i C[k]
Output: Support values.

(b) Pass 2: computing support.

Figure 4.2: The two passes of unoptimized Algorithm FHK.

Fischer et al. give an efficient algorithm for calculating C, shown in Figure 4.2a, where

the value of C[RMQ(P[D[i]]+1, i)] is incremented for all 1 ≤ i ≤ n, and P[i] stores the index

of the last occurrence of D[i] in D[1, i − 1]. The key observation, proved in [Fischer, 2007],

allowing the algorithm to work is that if a substring of length � repeats within string sk, then

there are at least two suffixes of xM beginning with that substring, say at positions p and

i, with D[p] = D[i] = k; now the minimum LCP value in the range LCP[p + 1, i] must be

�. For example, in Figure 4.1, “A” repeats in s4, and the minimum LCP value in the range

LCP[4 + 1, 8] is 1, occurring at LCP[5], and this is recorded by increasing C[5] by one.

In order to get the total number of times a substring s repeats in all of the strings in xM,

one sums all of the C values for suffixes beginning with s whose LCP value is at least |s|.
For example, “G” repeats 4 times (twice in s1, once in s2 and once in s4), and the sum of

all C entries in the range [14, 21] with an LCP value greater than zero is 4. Similarly, “AG”

repeats 3 times within strings in xM, and the sum of C[6, 12] ignoring C[6] is 3.
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4.2.2 Computing Support

Once the correction factors are computed in C, another pass is made over the LCP array.

When processing the LCP array from start to end, we know that when LCP[i] ≥ LCP[i+1],

then the prefix of SA[i] of length LCP[i] characters repeats at least once in the database. For

example, at position i+ 1 = 21 in Figure 4.1, the LCP value has fallen from LCP[20] = 3 to

1. This indicates that the 3 character prefix of the suffix beginning at SA[20] (GAG) occurs

at least twice in the database. By searching backwards from LCP[i] towards LCP[0], looking

for the largest j < i such that LCP[j] < LCP[i], we can locate the range of suffixes in the SA

whose prefix is equal to the first LCP[i] characters of SA[i]. In this example, when i = 20,

j = 18, and so the substring “GAG” must be the prefix of suffixes in the range SA[18, 20].

This fact is also true for all prefixes of SA[i] of length up to LCP[i+1]+ 1. For example,

when i = 20, LCP[i+1]+ 1 = 2, and so the range in SA where substring “GA” is a prefix of

a suffix can be found by locating the maximum j < i where LCP[j] < 2. In this case j = 16,

and so all suffixes in SA[16, 20] begin with “GA”.

The difference between j and i plus one gives the total count of the number of times the

substring occurs in the database, and subtracting the sum of C[j+1, i] gives the support. For

example, “GA” has a support of (20-16+1)-1=4, and “GAG” has a support of (20-18+1)-1=2.

To avoid a linear-time scan backwards through the LCP array every time the condition

LCP[i] > LCP[i + 1] is met when increasing i, Algorithm FHK keeps a stack of previous

LCP values which grows (push) as LCP values increase during processing, and shrinks (pop)

when LCP values decrease. This general notion has been exploited by many authors for

different string processing problems on the SA [Abouelhoda et al., 2004; H.Bannai et al.,

2004; Kasai et al., 2001]. Using the stack values allows constant time computation of j

whenever a decrease in LCP values is encountered. Similarly, cumulative sums of C values

can be computed as part of this pass, rather than in a separate pass, and stored on the stack.

In summary, FHKmakes an initial pass of the LCP to compute C using RMQ, and then the

second pass moves from left-to-right through the LCP array, pushing/popping information

onto a stack of occurrence counts and correction factors which are used to compute support.

In order to print out the actual strings that are identified with high support values, the

algorithm also needs access to SA and the original text.
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4.2.3 Memory Reductions

Fischer et al. published a modification to Algorithm FHK that removed the need for the C

array to be explicitly computed and stored in a first pass over the LCP array [Fischer et al.,

2008].

The key observation allowing C to be removed and computed as part of the support cal-

culation pass was that the stack of LCP values that was accumulated to compute occurrence

counts can also hold the C values required as correction factors. In this algorithm, when pro-

cessing LCP[i], p = RMQ(P[D[i]] + 1, i) is computed, but the result is stored in the topmost

stack entry that has an LCP value of LCP[p], rather than being stored in C in pre-processing

stage. Hence Algorithm FMV only requires one pass over LCP, but must maintain the P array

of previous string occurrences throughout the pass, and must also search the stack at each

step for the correct position for the correction factor.

Algorithm FMV also makes heavy use of compressed data structures, which further re-

duces the memory requirements from Algorithm FHK, but also significantly increases the

time required to mine repeating strings.

4.3 New Algorithm

By observing that almost all accesses to SA, LCP, and D in FMV are left-to-right, allows us to

propose several non-trivial modifications to the algorithm that result in large space savings,

but which do not lead to an increase in running time over the original FHK algorithm. To

exploit this observation we draw on a recent suffix sorting algorithm due to Kärkkäinen [2007]

and its relationship to an LCP algorithm due to Puglisi and Turpin [2008]. We combine these

two algorithms to efficiently obtain the SA and LCP arrays left-to-right one block at a time.

After it is produced, each completed SA/LCP block is “fed” into the FMV algorithm. The

memory for that block is then reused for subsequent blocks, enabling us to keep overall

memory usage low — we never hold the entire SA or LCP array in memory.

The only complication introduced by this approach is answering the range minimum

queries over LCP required to compute correction factors. It may be the case that the range

of the query extends back into a block we have already discarded. We show how to service

the necessary RMQs on-demand using a separate, small data structure, which we describe

in Section 4.3.3.

We begin by describing how the SA and LCP can be efficiently obtained in blocks from

left-to-right.
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Input: A strict lower and loose upper bound on suffixes, s� and su, and bmax.
1: B ← {}
2: for j ← 0 to n do
3: if s� < xM[j, n] ≤ su then
4: if |B| = bmax then
5: sort the suffixes beginning at positions in B
6: discard B[bmax/2..bmax]
7: su ← B[bmax/2− 1]
8: B ← B ∪ j

9: sort the suffixes beginning at positions in B and construct the LCP on the result
Output: B (including LCP), and su.

Figure 4.3: Algorithm GetBlock used to extract a block of SA and LCP where all suffixes
are greater than s�, and less than su, without exceeding an imposed block size of bmax suffixes.

4.3.1 Difference Cover Sample

The first step in the new algorithm is to build the Difference Cover Sample of the in-

put string [Burkhardt and Kärkkäinen, 2003; Kärkkäinen, 2007], DCSv(x) (as explained

on page 12).

4.3.2 Constructing SA and LCP in Blocks

Having built DCSv(x) we proceed to (conceptually) divide the SA lexicographically into

contiguous, non-overlapping blocks and make multiple passes over xM populating each block

in turn. In each pass we gather all the suffixes that belong in the current block. At the end

of each pass we sort the suffixes we have collected and so form a contiguous section (block)

of the SA. In order to allow for memory restrictions, particularly in the case where main

memory is not large enough to hold xM, DCSv(xM), SA, LCP, and the required stack and P

arrays, we impose a limit of bmax suffixes per block. Figure 4.3 shows Algorithm GetBlock,

which extracts a single block of SA and LCP strictly bounded below by s�, and containing

no suffix greater than su.

The approach is to simply collect suffixes as they are encountered in a left-to-right sweep

of the text. There is no guarantee that the number of suffixes in the range [s�, su] is equal

to bmax, and so Step 4 checks if a block gets too full; if so, then the top half is discarded.

This strategy guarantees that we always gather at least bmax/2 suffixes in every pass, hence

a total of O(n/bmax) passes over the string are required to construct the full SA and LCP.
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Input: String x[0, n], DCSv(x), and bmax.
1: stack ← {} and P[0, |M |] ← 0
2: Populate Q, a queue of m splitters, from DCSv(x)
3: s� ← dequeue(Q)
4: remaining ← n

5: while remaining > 0 do
6: su ← dequeue(Q)
7: (B, s�) ← GetBlock (s�, su, bmax)
8: Process B, maintaining stack and P
9: remaining ← remaining− |B|
Output: The incremental results from Step 8.

Figure 4.4: The algorithm used to apply FMV to contiguous blocks of SA and LCP. This
algorithm does not include the necessary detail to implement the RMQ over portions of the
LCP into previous blocks, which is given in Section 4.3.3.

Using the DCSv(x) to aid comparisons, Step 3 can be achieved in O(v) time, so the

running time for GetBlock is O(nv) in addition to the cost of any sort-and-throw-away

executions in Steps 5 to 7. However, a further optimization is possible to speed up each pass,

so that the total time for each pass used in collecting suffixes into blocks is O(n) [Kärkkäinen,

2007]. We do not reproduce the algorithm here, simply observe that this faster approach is

contingent on the skipping characters based on the upper splitter, su, in the spirit of the

classic Boyer-Moore string searching algorithm.

Ideally, in order to gain maximum advantage of this speed up, each su should be the last

element of its respective block. Of course this is not known, a priori, so the su values, or

splitters, are estimated. It is conceivable that a distribution count could be undertaken as a

pre-processing phase, choosing splitters that are lexiographically close, and then discarding

splitters that lead to underful blocks. In this chapter we do not explore this option, but

rather sample (in a periodic fashion) m splitters from the already sorted suffixes in the

DCSv(x). We will conveniently assume throughout that this (sorted) queue of splitters, Q,

contains both the lexicographically smallest and largest suffixes in the collection. Removing

this assumption at implementation time is not difficult. For each splitter si ∈ Q we use

Algorithm GetBlock, altering s� and su as appropriate. Figure 4.4 outlines the process.

At the end of a scan in Step 7, the block B contains pointers to all the suffixes that fall

lexicographically in the range [s�, su) in the suffix array, but they are not yet in any particular

order and must be sorted to produce SA[SA−1[si], SA
−1[si+1]]. The sort is performed in two
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phases. First, the suffixes are sorted to depth v using multikey quicksort (MKQS) [Bentley

and Sedgewick, 1997]. Second, for any groups of suffixes that remain tied (that is, share

common prefix ≥ v with at least one other suffix in the block) the sort is completed using

the DCSv(xM), exploiting Lemma 1 (on page 12). The time required to sort a block of b

suffixes this way is O(vb+ b log b) [Kärkkäinen, 2007].

With a completed block SA[SA−1[si], SA
−1[si+1]] in hand, obtaining the corresponding

block of the LCP array — LCP[SA−1[si], SA
−1[si+1]] — is straightforward. We scan the

SA block and to compute each LCP[j] we compare the first v symbols of suffixes SA[j] and

SA[j − 1]. If the suffixes mismatch in this v length prefix then we know LCP[j]: it is simply

the offset of the first mismatching symbol. If instead the suffixes share the same v length

prefix, we determine their LCP using the extended Difference Cover Sample (Lemma 2 on

page 13) in constant extra time. Thus, the time required to compute a block of b LCP values

is O(vb) in the worst case [Puglisi and Turpin, 2008].

Once a block of SA and LCP is completed, we can process that block to find repeating

substrings and their support, using the stack and P arrays of the FMV method. Without

reinitializing the stack nor the P array, we continue using the value returned fromGetBlock

as the s� for the next block. Note that while the stack and P array are easy to maintain as

they are updated left-to-right in the original FMV algorithm, as written the algorithm does

not allow for the RMQs over LCP values that may extend back into previous blocks. That

is, P may contain indexes that are in previous blocks. We add an extra data structure to

cope with this problem in the next section.

Using the above algorithm, the number of passes required is O(n/bmax), and each pass

requires O(n) time, making O(n2/bmax) total for collecting. We collect O(bmax) suffixes

per pass and then we sort these in O(vbmax + bmax log bmax) time and then take a further

O(vbmax) time to compute LCP values. If we set bmax = n/
√
v the overall time simplifies

to O(n log n + vn). The space required on top of the input string and DCSv is O(bmax) =

O(n/
√
v) words for the SA and LCP blocks, and O(n/bmax) = O(

√
v) words for the splitters,

which is O(n log n/
√
v +

√
v log n) bits.

4.3.3 Computing RMQs On Demand

Recall P[0, d] is an array of integers such that P[D(SA[i])] = j where j < i is the largest j

such that D(SA[j]) = D(SA[i]) or is -1 if no such j exists. In other words, P[j] is maintained

to hold the position in D of the last occurrence of string sj (initially -1).
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We seek a data structure of a reasonable size that will quickly tell us the minimum value

in LCP[P [D(SA[i])] + 1, i]. Fischer et al. [2006] preprocess the LCP array for constant time

Range Minimum Queries for this purpose. Such a solution will not do for us however, as we

never have the entire LCP array available to preprocess. We now describe a data structure

to provide RMQ(P[D(SA[i])] + 1, i) on-the-fly, as needed, in O(log d) time, and using just

O(d) words of memory, where d is the number of strings in the database.

Our data structure, S, is essentially a stack which keeps track of at most f of the most

recent potential minima in the LCP array and their positions; that is, the stack contains

pairs (mk, pk) where mk is the value of the kth most recent possible minima (m0 is the most

recent, and is atop the stack) and pk is where it occurred in LCP. The stack is maintained

as follows. At a generic position i in the LCP array, if LCP[i] > LCP[i − 1] we push the

pair (LCP[i],i) onto the stack. Otherwise, if LCP[i] ≤ LCP[i− 1] we pop elements from the

stack while LCP[i] < m0 and finally push the pair (LCP[i],p−1) on, where p−1 is the position

value of the last item popped. In many cases, the effect will be to just update value of m0 to

be LCP[i]. Observe that the elements popped in this action could not be the answer to any

RMQ we may subsequently issue between the current position i and some other position < i

as they are all greater than the newly added item, which is in that range.

Note that when maintained this way the elements on the stack are always in descending

order ofmk and pk. Also, any given element on the stack indicatesmk is the minimum value in

LCP[pk, i]. These two observations mean that at any point we can output RMQ(P[D(SA[i])]+

1, i) by binary searching the elements on the stack for the smallest pk > P[D(SA[i])] + 1, in

O(log |S|) (this requires the stack to be implemented as an array).

We will now show how to bound the size of the stack to O(d) items. This in turn bounds

the time to answer minimum queries by binary searching the stack elements to O(log d).

First, assuming the LCP can be an arbitrary sequence of n non-negative integers, observe

that, if left unfettered, the stack can grow to size n with the sequence 1, 2, 3, 4, 5, ... The

sequence has a potential minima at every position and each one is greater than the last so

will be added to the stack. Secondly, observe that we should be able to get away with only

d elements on the stack, because we are only ever interested in the range minimum in LCP

between the current position i and the position of the last previous occurrence of D[i].

We let S grow to at most 2d items, at which point we perform a “clean up” step, which

will always reduce S to at most d items. The clean up involves, for each P[j], searching for

the element in S having the smallest pk > P[j] and marking these elements. We search for at

most d items and so at most d items get marked. We remove all unmarked items, leaving at
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most d items on the stack. In total, the clean up process requires O(d log d) time, which we

can afford as the stack only requires a clean up at most every d elements. Our maintenance

of the stack adds O(nd log d) to the overall runtime, which is dominated by the time to sort

each block. As the size of S is kept to O(d) words the total extra space is O(d log n) bits.

4.3.4 Analysis

We now summarize the complexity of our approach.

Space Complexity. Our stack for on-demand RMQs, S, and the P array both require

O(d log n) bits. We represent D, the string mapping, in n + o(n) bits by using a bitarray

preprocessed for rank and select queries [Clark, 1996] as in Fischer et al. [2008]. As the LCP

array is still processed using the FHK approach (albeit one block at a time) we still require

their stack (R). Using the compressed representation of stack R introduced for FMV [Fischer

et al., 2008], the size of R is limited to O(n) bits in total. 2 Apart from the input string, which

is always held in memory, and requires O(n log σ) bits, the space complexities discussed in

the preceding sections are dominated by the size of DCSv and the SA and LCP blocks, all of

which require O(n log n/
√
v) bits. If we set v = log2σ n the total space complexity becomes

O(n log σ) bits.

Time Complexity. Runtime is dominated by the building of SA blocks, which overall

requires O(n log n + vn) time. With v = log2σ n as above, this is O(n log n + n log2 n) =

O(n log2 n) time.

4.4 Experiments

This section reports the performance of our implementation, referred to as NEW, relative to

FMV and FHK using the same experiments as reported by Fischer et al. [2008]. The purpose of

the experiments is twofold. Firstly, they aim to assess the performance of the new algorithm

relative to the previously published algorithms; and secondly aim to elucidate the effect on

performance of the parameters v, the size of the difference cover, and b, the size of the blocks

processed in each pass.

All code tested was written in C++ and compiled using the GNU g++ compiler with

-O3 optimization level.

2In our prototype implementation used for the experiments in the next section we use an explicit, rather
than compressed, stack; it remains relatively small in practice.
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Table 4.2: Running time (seconds) for mining frequent patterns using FMV (s = 16), FHK and
NEW (b = 5mill, v = 128). ρ is the minimum support threshold for M1, and the maximum
support threshold τ = 0.95. The final column is the number of bytes output. The final row
gives the memory usage in MB for the three methods.

ρ FHK FMV NEW Out
0.1 135 12,132 337 3,559
0.2 135 12,121 336 1,211
0.3 136 12,150 335 953
0.4 136 12,127 337 694
0.5 136 12,170 337 436
0.6 136 12,118 335 196
0.7 136 12,121 335 49
0.8 136 12,341 336 7
0.9 136 12,132 335 2

MB 1,267 245 161 –

We used two different datasets. The first, protein, was obtained from the authors

of Fischer et al. [2008], and contains d = 133, 984 strings, n ≈ 53 MB characters, and has

σ = 23 different characters. The whole set contains 71,622 protein strings from a human

database, and 62,362 from a mouse database. The second, genome, was the entire human

genome, downloaded from the NCBI.3 This contains d = 24 strings, n = 2.8 GB characters,

with σ = 5.

4.4.1 Protein Data

Experiments on this dataset were conducted on an otherwise idle 3GHz Intel Xeon with 4

GB main memory and 1024 KB L2 Cache. The operating system was Fedora Linux running

Kernel 2.6.9. Memory use was measured using the memusage utility, and times reported are

the minimum of three runs.

Table 4.2 shows the times for FHK, FMV and NEW to extract frequent patterns with threshold

ρ, replicating Table 1 from Fischer et al. [2008]. As expected, the times for FHK and FMV are

comparable to those previously reported: an average of 3 hours 22 minutes and 2 minutes

16 seconds respectively. Our approach required 5 minutes 36 seconds to report the same,

frequent strings. The memory use of the techniques is also remarkable. Even though NEW is

3ftp://ftp.ncbi.nih.gov/genomes/H sapiens/
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Figure 4.5: Time and memory required to mine protein for frequent strings with ρ = 0.1
and τ = 0.95 by the various algorithms. Note the point for KO [Kügel and Ohlebusch, 2008]
and WS [Weese and Schulz, 2008] is indicative only: we did not implement and run their
methods on this data. For the expanded area showing NEW in the top right, the blocksize for
each group of 4 points is given above the points (n = 53.6 MB), and for each group of 4, the
v parameter is as labelled for the n/8 case. Numbers above the open circles for FMV show the
sample rate used. The plain dotted line is explained in the text.

approaching the speed of FHK, it uses only 161 MB of memory: less than the space-efficient

FMV algorithm that requires over 3 hours for the task!

Figure 4.5 summarizes this tradeoff for the frequent mining problem, and also includes

the performance for NEW and FMV as their algorithmic parameters vary. FMV uses sample

rate s as a parameter, which is shown above the open circles in the figure. As the sample

rate increases, the space required by FMV decreases, but time increases accordingly. Note

that our accounting of the space used by FMV seems to be about n bytes higher than that

reported in Fischer et al. [2008]. We assume that the implementation we are using (obtained

from Fischer himself) is slightly different to that used in their original paper. The dotted
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Table 4.3: Running time (seconds) for mining emerging patterns using FMV (s = 16), FHK
and NEW (b = 5mill, v = 128). ρs is the minimum support threshold, and ρg the growth rate.

ρs ρg FHK FMV NEW

.1 1.33 135 12,121 335
.05 1.33 135 12,149 335
.01 1.33 135 12,191 335
.005 1.33 136 12,220 325
.001 1.33 141 12,354 336

.1 2.00 136 12,134 335
.05 2.00 135 12,138 335
.01 2.00 135 12,170 335
.005 2.00 136 12,177 335
.001 2.00 142 12,289 337

curve underneath the FMV curve in the figure shows the performance with n bytes subtracted,

consistent with the original paper [Fischer et al., 2008].

For various parameter choices of blocksize b and difference cover size v, algorithm NEW is

about as fast as FHK, but uses less space than FMV.

The magnified portion of the graph in the top right shows the affect of altering b and v

on the resource usage of NEW. As blocksize is decreased from 13MB (b = n/4) down to 1.6

MB (n/32), running time increases, but memory use decreases slightly as less data is held in

memory, regardless of v. For a fixed block size, increasing v decreases the amount of memory

used, as DCSv(xM) reduces in size. Generally, as v increases, running times increase as the

MKQS employed must do more operations per string comparison, as the strings can be up

to v in length. Interestingly, as v is increased from 32 to 64, running times drop slightly, but

this is more likely a quirk of the data, and we will investigate this further in future work.

Continuing our comparison with Fischer et al. [2008], Table 4.3 presents running times

for mining emerging patterns (see Fischer et al. [2008] for definition). In this instance, the

collection of human protein strings in protein is the positive database, and the collection of

mouse protein strings in protein is the negative database. Again, our algorithm is slightly

slower than FHK, but still much faster than FMV and the memory requirements remain as in

Table 4.2.

Figure 4.6 confirms that the running time and memory usage of our algorithms scale in

a similar way to Fischer et al. [2008].
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Figure 4.6: Time and memory required to mine frequent patterns from differing size prefixes
of protein using the three approaches (ρ = 0.1 and τ = 0.95). NEW has b = n/8 and v = 64,
while FMV is using s = 16.

4.4.2 Genome Scale Data

Tests on this dataset were conducted on an otherwise idle Quad-Core AMD Opteron(tm)

2.3 GHz processor with cache size of 1 MB and 32 GB of RAM running Red Hat 4.1.2-44,

and compiled with g++ version is 4.1.2. Memory use was measured using the memusage

utility, and times reported are for three runs.

Table 4.4 shows the resources required by FMV and NEW to mine frequent strings from the

genome database. The FMV algorithm required nearly 72 hours, and used 10 GB of memory,

Table 4.4: Resources required to mine the whole human genome for support ρ = 0.9, and
τ = 1.0. NEW used v = 128. † Note that FHK was not actually run, but resource usage is as
estimated by Fischer et al. [2008].

Algorithm Time Memory (GB)
FHK 1h† 50.0†

FMV, s = 16 72h 12m 10.0
NEW, b = n/2 3h 4m 17.7
NEW, b = n/4 4h 27m 12.1
NEW, b = n/8 5h 55m 9.3
NEW, b = n/16 6h 4m 7.9
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using a sample rate of s = 16. This is slightly slower than that report by Fischer et al. [2008],

because their CPU was faster. NEW performed as expected: an order of magnitude faster than

FMV, and using comparable memory.

4.5 Summary

In this chapter, we have presented an algorithm for mining substrings from a database of

strings that is, in practice, is either much faster with comparable use of space, or uses much

less space with comparable running time. Our main mechanism for keeping memory usage

low is to build the enhanced suffix array incrementally, in blocks. Once built, a block is

traversed to output patterns with required support before its space is reclaimed to be used

for the next block. Asymptotically we require O(n log σ) bits of memory and O(n log2 n)

space to mine a database of total length n symbols drawn from an alphabet of σ possible

symbols.



Chapter 5

Faster Semi-external Suffix Sorting

The suffix array (SA) provides efficient solutions to many problems of pattern matching and

pattern discovery in string data. SA construction is a time and memory bottleneck in many

applications and, as the size of strings requiring processing grows, more efficient construction

algorithms are required. To date SA construction algorithms fall into two sets: large memory

and small memory. Algorithms in the first set assume the SA fits in memory and are thus

limited to smaller datasets. The fastest existing algorithms in this set [Itoh and Tanaka,

1999; Ko and Aluru, 2005; Maniscalco and Puglisi, 2007] require at least 5n bytes. The

second, more recent set of algorithms use much less memory via compression or external

memory [Ferragina et al., 2012; Kärkkäinen, 2007], at the price of a slower runtime.

In this chapter, we improve the runtime of a semi-external SA construction algorithm

by Kärkkäinen [2007]. Section 5.1 describes the Kärkkäinen’s algorithm and the algorithmic

optimization techniques used. The main contribution of this chapter is a method for im-

plementing the “pointer copying” heuristic from internal memory suffix array construction

in a semi-external setting and is described in Section 5.2. A comprehensive experimental

comparison is given in Section 5.3.

5.1 Kärkkäinen’s Algorithm

The essence of Kärkkäinen’s suffix sorting algorithm is similar to samplesort for integers. In

samplesort, elements are randomly selected and sorted to become alternating lower bound,

s�, and upper bound, su, splitters of buckets (delimited by them) with the remaining elements

distributed into those buckets.

Kärkkäinen applies this idea to suffix sorting. Rather than distributing the elements

50
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(suffixes) into all the buckets at once (which would consume too much space), Kärkkäinen

builds and processes each bucket separately; first the leftmost bucket, is collected, sorted and

written to disk to form a contiguous section of SA. The memory is then reused to process

the next bucket.

Once we have built the Difference Cover Sample of the input string, DCSv(x) (as ex-

plained on page 12), we choose a random set of suffixes from x and sort them. We call

these suffixes splitters. Like in samplesort, they delimit the lower and upper bounds buckets.

Although not mentioned in [Kärkkäinen, 2007], we found in practice it makes sense to choose

the splitters from the already sorted DCSv(x).

We now describe how a block of SA that we call B, lower-bounded by splitter, s� and

upper-bounded by su, that is [s�, su) range is computed. Let bmax be the maximum number

of suffixes we can collect in one round in B, determined by the amount of available RAM

memory. The algorithm begins by making a left-to-right pass over string x, collecting and

storing pointers of suffixes that have the same or higher lexicographical rank (lexrank) than s�

but smaller than su. To determine if a suffix falls between the splitters efficiently, the splitters

are preprocessed using a Knuth-Morris-Pratt (KMP)-like failure function before falling back

to DCSv(x) so that at most v character comparisons are required and the time for each scan

is O(n). Pseudocode for the KMP-like failure function is presented in Figure 5.1.

At the end of a generic round, B contains pointers to the suffixes that fall between the

range [s�, su), but not necessarily in lexrank. The suffixes in B are then sorted using multikey

quicksort (MKQS) [Bentley and Sedgewick, 1997] until the depth of v where a mismatch

obviously orders the suffixes. But, if there is a tie after v comparisons, DCSv(x) is used

to order them. The time required to sort b suffixes this way is O(vb + b log b) [Kärkkäinen,

2007]. B is then written to disk as a contiguous section of the SA.

We demonstrate Kärkkäinen’s suffix sorting algorithm using an example string x, znefni-

inzznefr$. Assume bmax is 4 and the splitters are stored in an array Q = {14, 6, 13}. So, for

the first round, s� is x[14..14] = $ and su is x[6..14] = inzznefr$. When a left-to-right pass is

made over x, the first suffix, suffix 0 (znefniinzznefr$) is ignored as it has a higher lexrank

than su but the pointer for suffix 2 (efniinzznefr$) is stored in B as it fits in the range [s�,

su). This process continues until the suffixes in the range are collected.

However, there is no guarantee that the splitters in Q divide the SA evenly because they

are randomly chosen (from a lexicographic point of view). That is, the number of suffixes

placed in B may reach bmax before the scan completes. In our example, suffix 14 ($) cannot

be stored in the current B = {2, 3, 5, 11} as it is full. Kärkkäinen provides a clever method for
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Input: x, su, and LCP[0, v − 1].
1 : i ← 0
2 : j ← −1
3 : k ← −1
4 :while i ≤ n do
5 : if i > k then
6 : k ← i

7 : l ← 0
8 : else
9 : l ← LCP[i− j]
10: if i+ l ≡ k then
11: while l < m and k < n and su[l] ← x[k] and l ≤ v do
12: k ← k + 1
13: l ← l + 1
14: if l ≡ v then
15: Use DCSv(x) to resolve the order between su[l] and x[k].
16: break from loop.
17: j ← i

18: else if i+ l > k then
19: l ← k − i

20: j ← i

21: if l �= m and (i+ l ≡ n or x[i+ l] < su[l]) then
22: Found the suffix that is smaller than su, that is suffix i.
23: i ← i+ 1
Output: Suffixes that are lexicographically smaller than su.

Figure 5.1: Pseudocode for KMP-like failure function used in Kärkkäinen’s suffix sorting
algorithm [Kärkkäinen, 2007]. This same function can easily be modified to preprocess the
v-length prefix of suffix splitters which is stored in the LCP array.

dealing with this problem. If, while collecting suffixes for the current block, bmax is reached,

the scan is halted and the content of the current block is sorted. The lexicographically larger

half of the block is then discarded, the median suffix in the block becomes the new su, and

the scan resumes. When this occurs, we say the block has a split. This method does not

asymptotically increase the number of scans, although practical execution time increases, as

more rounds are required to compute the entire SA.

Thus, B is sorted and the median in B = {2, 11, 3, 5} which is suffix 3 is chosen to be the

new su. Suffix 5 is discarded as it is lexicographically larger than the current su and the scan

resumes. At the end of the round, B = {2, 11, 14} is sorted in the usual way and written to



Kärkkäinen’s Algorithm 53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

SA1 14 2 11
SA2 14 2 11 3 12 5
SA3 14 2 11 3 12 5 6 1 10
SA4 14 2 11 3 12 5 6 1 10 4 7
SA5 14 2 11 3 12 5 6 1 10 4 7 13 0 9 8

Figure 5.2: SAi is the portion of the SA constructed after round i when processing string x,
znefniinzznefr$, bmax = 4, and using initial splitters Q = {14, 6, 13}.

disk as SAi where i represents the round the portion of SA is constructed (see Figure 5.2).

The memory that was used to hold them (during collection) is reclaimed for the subsequent

round. The previous su becomes the new s� and su is assigned suffix 6, that is Q[1] as we

never collected the suffixes within the said range, since there was a split.

The algorithm requires O(n log n+ vn) time and O(n log n/
√
v) bits of space in addition

to the text. Via v and bmax the algorithm also allows for different space-time tradeoffs,

depending on the amount of available memory.

We now describe our first optimization. Using suffixes as splitters as Kärkkäinen described

is a good general approach to dividing lexicographic space, which in turn allows the SA to

be built one block at a time. In practice however, we found a significant boost to runtime is

possible if one simply uses symbol frequencies (or bigram frequencies) to divide the suffixes

into lexicographic blocks. More precisely, we make a scan of x and count the frequency of each

symbol. Let C[0..σ] be an array containing these symbol frequencies. We then (conceptually)

partition the suffix array by determining k symbols, t0 < t1 < . . . < tk, such that, for i < k,
�ti+1

j=ti
C[ti] < bmax and

�ti+2
j=ti

C[ti] > bmax. Consecutive selected symbols ti and ti + 1 are

later used as (respectively) upper- and lower-bound splitters. This approach is faster because

suffix inclusion in a block is determined with a single symbol comparison, not several, as can

be the case with the use of the KMP-like failure function. Moreover, preprocessing of the

v-length prefix of suffix splitters is avoided. Of course there can be inputs for which the

frequency of one symbol exceeds bmax, but these are rare in practice. In such cases it is easy

to have the algorithm fall back to using suffix splitters, as in Kärkkäinen’s original approach.

In order to enable this when counting symbols, we also collect a single suffix that starts with

the consecutive selected symbols (ti and ti + 1).
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5.2 Pointer Copying

Pointer Copying is the name given to a broad class of heuristic methods for suffix sorting

that derives the order of some suffixes from the order of other suffixes whose order is already

known. The method was first introduced by Itoh and Tanaka [1999] and now many different

styles are known [Seward, 2000; Ko and Aluru, 2005; Maniscalco and Puglisi, 2007]. All

pointer copying methods are designed for large memory use. We adapted these to work in

a semi-external setting. We describe how we adapted the Itoh and Tanaka’s method; other

methods work similarly.

Itoh and Tanaka distinguish each suffix as type U or type V. If (x[i] ≤ x[i+1]) then suffix

x[i..n] is type U, otherwise (x[i] > x[i + 1]) it is type V. We illustrate these types below on

our example string x, znefniinzznefr$.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x z n e f n i i n z z n e f r $

type V V U U V U U U U V V U U V U

$ e f i n r z

j 0 1 2 3 4 5 6

C 0 2 4 6 10 11 14

Importantly, for suffixes with equal first letter, type V suffixes always precede type U

suffixes in SA. Let C[0,σ] be an array of integers such that C[c] is the total number of

symbols less than c in the input string x. Thus SA[C[c]..C[c + 1]] is the area of the suffix

array where the group of suffixes that start with symbol c belong. Itoh and Tanaka first scan

x and calculate C, then they scan x again to place the U suffixes at the end of the appropriate

groups, as determined by C. They then sort the U suffixes with MKQS. To complete the

computation of SA, it remains to sort the V suffixes. To do this, Itoh and Tanaka scan the

partially complete SA, which to begin with has only U suffixes in it, from left-to-right. For

each suffix j = SA[i] encountered in the scan, if j − 1 is a V suffix, it belongs at position

C[x[j− 1]] (i.e. the start of its group). We place it there, setting SA[C[x[j− 1]]] = j− 1, and

then increment C[x[j − 1]].

We now describe how we adapted Itoh and Tanaka’s approach to work in external memory.

First, we initialize a file of n integers, which will eventually contain SA, to contain n sentinel

(‘⊥’) values. There are two hurdles to using Itoh and Tanaka’s approach in a semi-external

setting. The first is that we cannot necessarily afford to use MKQS to sort the U suffixes,
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as the U suffixes for a character group may exceed the amount of available memory. We can

jump this hurdle by using Kärkkäinen’s algorithm, and restricting it to only collect and sort

the U suffixes. This is easy to do because the type (U or V) of a suffix is determined in

constant time. The U suffixes are placed in the correct (and final) positions on disk with the

help of the C array, from which we can tell the end of each group of suffixes with the same

first letter.

The second problem is to mitigate the non-local memory accesses to SA that occur in

Itoh and Tanaka’s algorithm when moving the V suffixes into place in the final phase of the

algorithm. Our approach here is to delay writing a V suffix to its final position in SA as soon

as it is known, but instead to buffer V suffixes in memory, buffering as many as available

memory will allow us to hold. Because we must buffer both the V suffix pointer and its

position in SA, we can buffer at most bmax/2 suffixes. When memory becomes full, we halt

the scan of SA and write all the buffered V suffixes to their final positions. This requires at

most σ non-sequential accesses to disk each time, and nσ/bmax overall.

5.3 Experiments

We implemented our improvements to Kärkkäinen’s algorithm and measured practical per-

formance on real data. These experiments aim to show the effect of the parameters v, and

b. Ferragina, Gagie and Manzini’s external memory approach [Ferragina et al., 2012] was

used as a baseline. We say these experiments are at the character level as SA or BWT is

computed for each character of data.

But, in some types of data, particularly natural language, pattern matching is done at

a word rather than character level. We say a word is a maximal sequence of alpha-numeric

characters. A second set of experiments gauges the efficacy of Kärkkäinen’s algorithm for

suffix sorting at the word level. The performance of another SA construction algorithm

suitable for integer strings by Larsson and Sadakane [2007] serves as a baseline. We use the

abbreviations: K for Kärkkäinen’s algorithm; D for K optimized as described at the end of

Section 5.1; D-XX for D with pointer copying method XX; FGM for Ferragina et al.’s external

memory algorithm; LS for Larsson and Sadakane’s SA algorithm.
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Table 5.1: Files used for testing. A higher LCP generally increases the cost of suffix sorting.
The last four columns give the percentage of suffixes that require explicit sorting for various
pointer copying methods.

Dataset Size Mean LCP Max LCP σ IT KA MP S
PROT 1.1 713 343,628 27 54 50 16 54
LAW 5.0 3,977 692,921 256 53 49 14 53
WIKI 8.8 6,012 556,673 128 50 48 15 50
GUTEN 3.1 37,006 2,475,053 256 50 48 16 50
HUMAN 2.9 214,002 20,289,999 7 64 45 13 64

Table 5.2: Description for the words data corpus which consists of LAW and WIKI files from
Table 5.1. The second column is the size of the original file in GB. The number of integer
word tokens is in the third column.

Dataset Size Total words Distinct words
LAW 5.0 762,754,420 3,507,436
WIKI 5.0 861,471,533 2,608,830

5.3.1 Data and Setup

For testing we used the files in Table 5.1. The files are used in other papers and are available

in public repositories.123 PROT (December 2006 download) is a collection of protein base

sequences from the Swissprot database and GUTEN (September 2005 download) is a concate-

nation of English text files from Gutenberg Project. WIKI is a crawl of English Wikipedia

articles (early 2009 version). In contrast, LAW is a crawl of HTML pages from the UK domain

(2006-2007). HUMAN (March 2008 version) is the entire human genome in bases.

In character level experiments, the first 1 GB prefix from each file in the corpus is used.

In word level experiments, maximal sequences of alpha-numeric characters were converted to

integers for different prefixes of LAW and WIKI, see Table 5.2.

All code was written in C++, compiled with g++ -O3. Peak memory was measured with

memusage. Times are the minimum of three runs, measured with C time. The experimental

machine was a 3.4 GHz Intel Core i7-2600, with Ubuntu 12.04, 4 GB RAM (for character

level experiments)/8 GB RAM (for word level experiments), 8192 KB cache, and a Seagate

Momentus SATA 500GB 7200 RPM disk.
1ftp://ftp.ncbi.nih.gov/genomes/
2http://pizzachili.dcc.uchile.cl/
3http://boston.lti.cs.cmu.edu/Data/clueweb09/
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Table 5.3: Character-level experiment: v = 128 and b varies. Running time in minutes (in
brackets, peak memory usage in GB) on 1 GB prefixes of files.

Dataset bmax K D D-IT D-KA D-MP D-S FGM
PROT n/4 29 (3.4) 14 (3.4) 12 (3.4) 27 (3.5) 21 (3.5) 16 (3.5) 21 (3.5)

n/8 28 (2.4) 14 (2.4) 11 (2.4) 19 (2.5) 17 (2.5) 14 (2.5) 26 (2.5)
n/16 34 (2.2) 14 (2.2) 12 (2.2) 19 (2.3) 17 (2.3) 13 (2.2) 26 (2.4)
n/32 41 (2.2) 15 (2.2) 13 (2.2) 20 (2.3) 17 (2.3) 13 (2.2) 26 (2.3)
n/64 53 (2.2) 17 (2.2) 14 (2.2) 21 (2.3) 18 (2.3) 14 (2.2) 26 (2.2)

LAW n/4 50 (3.4) 23 (3.4) 16 (3.4) 28 (3.5) 24 (3.5) 24 (3.5) 20 (3.5)
n/8 41 (2.4) 23 (2.4) 16 (2.4) 23 (2.5) 19 (2.5) 21 (2.5) 24 (2.5)
n/16 46 (2.2) 23 (2.2) 16 (2.2) 22 (2.3) 19 (2.3) 20 (2.2) 24 (2.4)
n/32 86 (2.2) 27 (2.2) 19 (2.2) 23 (2.3) 21 (2.3) 22 (2.2) 25 (2.3)
n/64 109 (2.2) 31 (2.2) 21 (2.2) 26 (2.3) 20 (2.3) 23 (2.2) 25 (2.2)

WIKI n/4 52 (3.4) 27 (3.4) 18 (3.4) 21 (3.5) 26 (3.5) 26 (3.5) 20 (3.5)
n/8 52 (2.4) 26 (2.4) 17 (2.4) 17 (2.5) 21 (2.5) 22 (2.5) 25 (2.5)
n/16 62 (2.2) 26 (2.2) 18 (2.2) 17 (2.3) 21 (2.3) 21 (2.2) 25 (2.4)
n/32 72 (2.2) 27 (2.2) 18 (2.2) 18 (2.3) 21 (2.3) 20 (2.2) 25 (2.3)
n/64 106 (2.2) 31 (2.2) 19 (2.2) 19 (2.3) 22 (2.3) 21 (2.2) 24 (2.2)

GUTEN n/4 14 (3.4) 13 (3.4) 10 (3.4) 12 (3.5) 20 (3.5) 16 (3.5) 21 (3.5)
n/8 16 (2.4) 12 (2.4) 10 (2.4) 10 (2.5) 17 (2.5) 13 (2.5) 29 (2.5)
n/16 27 (2.2) 13 (2.2) 10 (2.2) 11 (2.3) 17 (2.3) 12 (2.2) 29 (2.4)
n/32 36 (2.2) 13 (2.2) 11 (2.2) 11 (2.3) 18 (2.3) 12 (2.2) 29 (2.3)
n/64 45 (2.2) 20 (2.2) 14 (2.2) 14 (2.3) 18 (2.3) 15 (2.2) 29 (2.2)

HUMAN n/4 15 (3.4) 11 (3.4) 11 (3.4) 11 (3.5) 18 (3.5) 23 (3.5) 22 (3.5)
n/8 24 (2.4) 11 (2.4) 10 (2.4) 10 (2.5) 17 (2.5) 11 (2.5) 27 (2.5)
n/16 29 (2.2) 17 (2.2) 15 (2.2) 14 (2.3) 19 (2.3) 14 (2.2) 27 (2.4)
n/32 34 (2.2) 24 (2.2) 19 (2.2) 17 (2.3) 20 (2.3) 19 (2.2) 27 (2.3)
n/64 47 (2.2) 36 (2.2) 27 (2.2) 22 (2.3) 22 (2.3) 26 (2.2) 27 (2.2)

Table 5.4: The running time in minutes (in brackets peak memory usage in GB). The algor-
ithm by Larsson and Sadakane [2007] takes 6 minutes with 5.7 GB on LAW and 10 minutes
with 6.4 GB on WIKI.

LAW WIKI
bmax v = 128 v = 256 v = 512 v = 1024 v = 128 v = 256 v = 512 v = 1024
n/4 14 (4.6) 17 (4.5) 20 (4.5) 24 (4.4) 19 (5.2) 21 (5.1) 25 (5.0) 27 (5.0)
n/8 15 (3.9) 17 (3.8) 21 (3.8) 25 (3.7) 20 (4.4) 23 (4.3) 25 (4.2) 29 (4.2)
n/16 16 (3.7) 19 (3.5) 22 (3.4) 28 (3.4) 21 (4.2) 25 (4.0) 30 (3.8) 30 (3.8)
n/32 17 (3.7) 19 (3.5) 26 (3.3) 31 (3.2) 22 (4.2) 25 (4.0) 31 (3.7) 31 (3.6)
n/64 20 (3.7) 26 (3.5) 31 (3.3) 38 (3.2) 26 (4.2) 30 (4.0) 32 (3.7) 39 (3.6)
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5.3.2 Results and Analysis

Results of character level experiments for varying b and fixed v = 128, are shown in Table 5.3.

Note that from b = n/16 onwards, peak memory usage is the same regardless of the block

size because memory is dominated by DCSv(x). The peak memory of Kärkkäinen’s suffix

sorting algorithm at any given time is n + 2|DCSv(x)|. There is a slight difference in the

reported peak memory usage for D-KA, D-MP and D-S. For D-KA and D-MP, a bit vector of

size n is needed to differentiate the type U and V suffixes in O(1) time.

Times for K are similar when b = n/4, n/8, n/16 due to underfilled blocks. If splitters

are not carefully chosen, blocks are underfull at the end of each scan, and more scans are

required. Likewise, overfull blocks result in splits (part way through a scan), again leading

to more scans overall. Both cases increase runtime. D outperformed K as blocks are relatively

full due to our splitter selection approach, and as expected, splitter comparisons are faster

than the failure-function used in K.

When pointer copying methods are added to D, we expected the method that explicitly

sorts the least suffixes to be fastest, as with large memory SA algorithms. That is, we

expected |MP| ≤ |KA| ≤ |IT| ≤ |S|, where |XX| is the time for method XX. However, we

discovered that right-to-left scans to induce the order of suffixes are expensive when the SA

is on disk. Both KA and MP use right-to-left scans. D-IT, which uses a left-to-right scan,

speeds up D by about 30%.

Compared to the external memory FGM algorithm, we are generally faster when available

memory is higher (i.e. smaller v) and always at least as fast. Our memory usage is 2.4n

bytes of memory, which was used to set FGM’s memory.

The difference covers period, v affects overall runtime and peak memory usage. Up to v

comparisons are made via MKQS before employing DCSv(x) to resolve the order. There is a

space-time tradeoff here. The larger the value of v, the fewer suffixes are chosen to become

sample suffixes and so, less memory is required. However, for a dataset with high Mean LCP,

the sorting time increases with v.

Table 5.4 shows the performance of the D-IT and LS algorithms for the large alphabet

data. While LS is faster than D-IT at all parameter settings, LS does not allow a space-time

tradeoff, and so D-IT can operate at lower memory levels. Memory can often be the limiting

factor in many tasks (more so than time).
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5.4 Summary

SA construction is a time and memory bottleneck in many application and, as the size of

strings requiring processing grows, more efficient construction algorithms are required. In this

chapter, we improve the runtime of a semi-external SA construction algorithm by Kärkkäinen

[2007]. We achieve a speed up of 2-4 times without increasing the memory usage of the algor-

ithm. Four pointer copying methods ([Itoh and Tanaka, 1999; Seward, 2000; Ko and Aluru,

2005; Maniscalco and Puglisi, 2007]) were adapted to work in a semi-external setting. We are

up to twice as fast as the next fastest algorithm by Ferragina, Gagie and Manzini [Ferragina

et al., 2012] when working memory is equated. That is, the same amount of memory is made

available to the algorithms so that their running time can be compared.

The performance of the improved algorithm is also measured on strings that have large

datasets. We are 2-3 times slower on such strings than Larsson and Sadakane [2007] (the

best published algorithm for strings with large alphabets), but we use less memory. In many

applications (for instance bioinformatics experiments) we may be willing to wait a long time

(days or weeks say) to compute a result, but if our algorithm uses more memory than is

available we will not be able to compute the result at all. In such applications memory (not

time) is the limiting factor.



Chapter 6

Pointer Copying for

Longest-Common-Prefix

The longest-common-prefix (LCP) array is often used with the SA to simulate bottom-up

and top-down traversals of the suffix tree for string processing problems, within the same

time bounds but with less space overhead [Abouelhoda et al., 2004; Puglisi and Turpin, 2008].

Pointer copying is a technique which has been heavily used to speed up the construction of

SA, but not LCP array.

In this chapter, we discuss our attempts in combining a fast, space efficient LCP construc-

tion algorithm due to Kärkkäinen, Manzini and Puglisi [Kärkkäinen et al., 2009] with three

pointer copying techniques (Itoh and Tanaka [1999], Seward [2000] and Ko and Aluru [2005]).

Section 6.1 describes the LCP array construction algorithm by Kärkkäinen et al. [2009], and

the way we combined the algorithm with pointer copying is described in Section 6.2. Related

work is in Section 6.3. A comprehensive experimental comparison is given in Section 6.4.

6.1 Kärkkäinen et al. [2009] Algorithm

Kärkkäinen, Manzini and Puglisi [Kärkkäinen et al., 2009] reduce the practical time and

space cost of LCP construction by storing the values in position order in the permuted LCP

(PLCP) array, instead of the classic lexicographical rank. The PLCP[0, n] is the same as

LCP with an exception on the order of its content. In particular, for every j ∈ [0, n],

PLCP[SA[j]] = LCP[j].

60
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The LCP values can then be simulated from the PLCP. The sparse PLCP array, called

PLCPq, stores every qth entry of the PLCP such that PLCPq[i] = PLCP[iq]. The remaining

entries are computed using the following lemma.

Lemma 3 ([Kärkkäinen et al., 2009]). For any i ∈ [0, n], let a = �i/q� and b = i mod q,

i.e., i = aq + b. If (a+ 1)q ≤ n− 1, then PLCPq[a]− b ≤ PLCP[i] ≤ PLCPq[a+ 1] + q − b.

If (a+ 1)q > n− 1, then PLCPq[a]− b ≤ PLCP[i] ≤ n− i ≤ q.

Thus, at most q + PLCPq[a + 1] − PLCPq[a] comparisons (or at most q comparisons if

((a+1)q > n− 1)) are made, and this number can be close to n for some i. For strings that

have a high Mean LCP, obtaining the missing values via comparisons will affect the running

time of the algorithm. The amortized number of comparisons over all i is at most q as shown

in the following lemma.

Lemma 4 ([Kärkkäinen et al., 2009]). Assuming the text and the SA are available, the sparse

PLCP array PLCPq supports random access to LCP values in O(q) amortized time.

Sequential accesses are made to the SA and the LCP array is built sequentially with some

random accesses made to the PLCPq array. This is fast in practice although it has a time

complexity of O(nq) and O(n/q) words of space are required, excluding the space required

for the text and SA.

6.2 Pointer Copying

We next describe how we combined the Itoh and Tanaka [1999] pointer copying method

to the LCP construction algorithm of Kärkkäinen, Manzini and Puglisi using our example

input string x = cbabcdbabcbab$. Other pointer copying methods (Seward [2000] and Ko

and Aluru [2005]) are combined in a similar way.

6.2.1 Collecting Type U LCPs

As explained in the previous chapter, Itoh and Tanaka classify each suffix as being type

U or type V. A suffix is type U if the first character of the suffix has a smaller or equal

lexicographical rank (lexrank) than its rightmost suffix (x[i] ≤ x[i + 1]). Otherwise, the

suffix has a higher lexrank than its rightmost suffix (x[i] > x[i + 1]) and is type V. We

illustrate these types below on our example string.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

x c b a b c d b a b c b a b $

type V V U U U V V U U V V U V U

Suffix 0 (cbabcdbabcbab$) is of type V as it is lexicographically larger than suffix 1

(babcdbabcbab$). If a suffix is a type V suffix, the LCP for the suffix is of type V as well.

Recall for suffixes with equal first letter, type V suffixes always precede type U suffixes in SA,

and similarly for the LCP. The algorithm of Kärkkäinen et al. is used to compute the type

U LCPs. They are then placed in the LCP array using the C array that stores the starting

positions of the type U LCPs as shown below.

$ a b c

C 0 1 8 12

LCP Suffixes SA j

0 $ 13 0

0 ab$ 11 1

2 abcbab$ 7 2

3 abcdbabcbab$ 2 3

⊥ b$ 12 4

⊥ bab$ 10 5

⊥ babcbab$ 6 6

⊥ babcdbabcbab$ 1 7

1 bcbab$ 8 8

2 bcdbabcbab$ 3 9

⊥ cbab$ 9 10

⊥ cbabcdbabcbab$ 0 11

1 cdbabcbab$ 4 12

⊥ dbabcbab$ 5 13

In the above example, position 0 in the LCP is undefined as there is no previous suffix

to be compared, and is indicated with 0. The LCP between SA[1] and SA[0], that is suffix

11 (ab$) and suffix 13 ($) is 0, as no common prefix is shared. 0 is then placed at position 1

in the LCP as suffix 11 begins with the letter ‘a’, and C[a] is 1. C[a] is then incremented so

that the LCP for the next suffix that begins with the letter ‘a’ can be placed correctly. This

process is repeated until all type U LCPs are placed in the LCP array. Only for illustration

purposes, type V LCPs are indicated with ‘⊥’.
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6.2.2 Deriving Order of Type V LCPs

Input: x, SA and LCP.
1 : for j ← 0 to n do
2 : maintain the S stack.
3 : i ← SA[j]
3 : if i > 0 then
4 : if x[i] > x[i− 1] then
5 : if LCP not been derived for letter group x[i− 1] then
6 : P[x[i− 1]] ← j

7 : LCP[C[x[i− 1]]] ← 0
8 : C[x[i− 1]] ← C[x[i− 1]] + 1
9 : else
10: mk ← RMQ(P[x[i− 1]] + 1,j)
11: P[x[i− 1]] ← j

12: LCP[C[x[i− 1]]] ← 1+S[mk]
13: C[x[i− 1]] ← C[x[i− 1]] + 1
Output: LCP.

Figure 6.1: Pseudocode for deriving the LCP. The S refers to the stack used in the RMQ
data structure (defined on page 42).

Pseudocode for deriving the type V LCPs from the type U LCPs is presented in Figure 6.1.

Once the type U LCPs are placed in the LCP, the type V LCPs are derived in a single scan

over the SA. A left-to-right (j = 0 . . . n) scan is made over SA, and for each i (i = SA[j]),

we inspect suffix i − 1 and if it is a type V suffix, the length of the common prefix within

its single letter group until position j is computed. The value is then written (with some

adjustments which we explain later for clarity) to the position indicated by C[x[i− 1]] array

(see Steps 3 to 13) as shown below.

b c d

C 4 10 13

The length of the common prefix within the its single letter group is found efficiently

using the RMQ data structure (defined on page 42). Recall S stack stores the the most

recent potential minima values in LCP and their positions; that is, the stack contains pairs

(mk, pk) where mk is the value of the kth most recent possible minima (m0 is the most recent,

and is atop the stack) and pk is where it occurred in LCP. The stack is maintained as follows.

At a generic position j in the LCP array, if LCP[j] > LCP[j−1] we push the pair (LCP[j],j)
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onto the stack. Otherwise, if LCP[j] ≤ LCP[j − 1] we pop elements from the stack while

LCP[j] < m0 and finally push the pair (LCP[j],p−1) on, where p−1 is the position value of

the last item popped. In many cases, the effect will be to just update value of m0 to be

LCP[j]. Observe that the elements popped in this action could not be the answer to any

RMQ we may subsequently issue between the current position j and the other position < j

stored in P[x[i−1]] as they are all greater than the newly added item, which is in that range.

P[x[i− 1]] stores the current position in the LCP (see Steps 6 and 11).

LCP Suffixes SA j

0 $ 13 0

0 ab$ 11 1

2 abcbab$ 7 2

3 abcdbabcbab$ 2 3

0 b$ 12 4

0+1 bab$ 10 5

2+1 babcbab$ 6 6

⊥ babcdbabcbab$ 1 7

1 bcbab$ 8 8

2 bcdbabcbab$ 3 9

⊥ cbab$ 9 10

⊥ cbabcdbabcbab$ 0 11

1 cdbabcbab$ 4 12

⊥ dbabcbab$ 5 13

Continuing with the example, when j = 0, i = SA[0] = 13, is a suffix beginning with ‘$’

whose LCP is undefined, that is 0 as it is the first suffix in the LCP array. In contrast, suffix

i − 1 = 13 − 1 = 12 is a type V suffix beginning with ‘b’ whose LCP has not been derived.

LCP[0] = 0 is thus copied to position 4 as C[b] = 4, before incrementing its group counter.

P[x[i − 1]] is set to 0 as j is 0. Likewise, when j = 1, i = SA[1] = 11, is a suffix beginning

with ‘a’ whose LCP is 0. This value is then copied to position 5, indicated by C[b] as suffix

11− 1 = 10 is a type V suffix whose LCP has not been derived. But, it is the second entry

in the in the x[i − 1] = b group and so, an additional 1 is added to the derived LCP as it

obviously shares the prefix ‘b’ with the previous consecutive entry. P[x[i− 1]] is set to 1 as j

is 1. For i = SA[2] = 7, suffix 7− 1 = 6 is a type V suffix beginning with ‘b’ whose LCP has

not been derived. The RMQ data structure is used to find the length of the common prefix
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between SA[2] and SA[1]. That is, RMQ(P[x[i− 1]] + 1, 2) is 2 as these consecutive suffixes

share the prefix “ab”. This value is then copied to position 6 as C[b] = 6. 1 is then added

to LCP[6] as this entry obviously shares the prefix ‘b’ with the previous consecutive entry

and so, LCP[6] = 2 + 1 = 3. This process is repeated until the all type V LCPs have been

derived.

The Kärkkäinen et al. algorithm, combined with pointer copying has the same time

complexity of the original algorithm as left-to-right scans (or sometimes, right-to-left scans

as for the Ko and Aluru [2005] pointer copying technique) are made, with the RMQ data

structure taking O(log |S|) time per query. Space is mainly used to store the LCP array (4n

bytes) as the original algorithm by Kärkkäinen et al. overwrites SA with LCP, but SA is

required here for pointer copying.

6.3 Related Work

Recently, Fischer [2011] published an approach similar to ours. The pointer copying technique

due to Nong, Zhang and Chan [Nong et al., 2009b] is combined with Kärkkäinen et al.’s

algorithm. The RMQ is found efficiently using the stack due to Gog and Ohlebusch [2011].

One subtle but important difference of Fischer’s approach to ours is that he saw a clever way

to use unused space in the LCP which we did not see. He stored the values of the sparse

PLCP array, PLCPq in the LCP and later, overwrote them with the correct LCP values.

Thus, his total memory usage is 9n bytes.

6.4 Experiments

We implemented several different versions of our improvements to Kärkkäinen, Manzini and

Puglisi algorithm and measured its practical performance using the data of Section 6.4.1.

These experiments aim to elucidate the effect on performance of the q. The performance

of Fischer [2011] is also measured as a second baseline. We use the abbreviations: KMP for

Kärkkäinen et al.’s algorithm; KMP-XX for KMP combined with the pointer copying XX; F for

Fischer’s algorithm.
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6.4.1 Data and Setup

For testing, we used the files in Table 6.1. The files are available in public repositories.1 The

files can be categorized based on the source generated, that is, Artificial, Pseudo-Real and

Real texts.

As the name suggests, the Artificial texts are artificially generated via some mathematical

definitions (i.e. FIBONACCI, RUN RICH and THUE MORSE). In contrast, Pseudo-Real texts are

generated by repeating real texts (i.e. XML, ENGLISH and PROTEINS) from the Pizza & Chilli

corpus. Real texts are DNA sequences from three species. That is, Saccharomyces Paradoxus

(PARA), Saccharomyces Cerevisiae (CERE) and Escherichia Coli (ECOLI).

All code was written in C/C++, compiled using g++ version 4.6.3 with the -O3 opti-

mization flag. Experiments were run on an otherwise idle 3.40GHz Intel R� CoreTM i7-2600

of 4 GB of RAM and 8192 KB of cache. The operating system was Ubuntu 12.04 running

Kernel 3.2.0-25-generic. Times reported are the minimum of three runs, measured with the

C getrusage function. Peak memory usage is the sum of data structures reported by the C

sizeof function.

Table 6.1: The LCP, size (in MB) and σ is for our dataset that is terminated with the special
end of string character (see text). A higher LCP generally increases the cost of suffix sorting.
The last four columns give the percentage of LCPs that require explicit sorting for various
pointer copying methods.

Dataset Size Mean LCP Max LCP σ IT KA S NZC
FIBONACCI 255.5 70,711,161 165,580,139 2 62 38 62 38
RUN RICH 206.7 44,038,468 114,413,063 2 62 50 62 38
THUE MORSE 256.0 32,156,331 67,108,864 2 67 50 67 33
XML 100.0 95,781 510,561 89 50 49 50 28
ENGLISH 100.0 987 11,222 106 51 49 51 31
PROTEINS 100.0 991 11,091 21 54 50 54 32
CERE 439.9 7,080 303,204 5 66 48 66 26
ECOLI 107.5 11,322 698,433 15 62 48 62 28
PARA 409.4 3,275 104,177 5 65 48 65 27

6.4.2 Results and Analysis

Tables 6.2, 6.3 and 6.4 show the runtimes in seconds and space usage in MB. As all methods

need to build the SA, these times are not included.

1http://pizzachili.dcc.uchile.cl/repcorpus.html
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Recall parameter q controls the memory used, which further affects the runtimes. If q is

large, less memory is used by the sparse PLCP array, which further reduces the speed of the

algorithm as more values are computed via comparisons. As expected, these comparisons

become a bottleneck for KMP in files that have a high Mean LCP (repetitive text), in contrast

to the pointer copying variants that use RMQs to compute the value. It is then copied to

the position indicated by the group counters stored in C.

However, Fischer who independently developed the same approach to us reported less

space as he used the unused space in the LCP array to store the sparse PLCP array and

later, overwrote it with the correct values. This clever way ensured his total memory usage

to be 9n.

In theory, we expect the pointer copying technique that requires the least number of LCP

to be explicitly sorted to be fastest |NZC| ≤ |KA| ≤ |IT| ≤ |S| (see Table 6.1). That is, NZC has

the least number of LCP to be explicitly sorted and should therefore be the fastest and so

on. However, in practice, there is only a small difference in runtimes reported between these

technique. This could perhaps be due to the fact that these experiments were run in RAM

memory. Although the pointer copying techniques require a lot of random accesses to text,

these accesses are fast when done in RAM in contrast to disk.

6.5 Summary

This chapter describes our attempts to introduce pointer copying methods to a fast, space

efficient LCP construction algorithm due to Kärkkäinen, Manzini and Puglisi [Kärkkäinen

et al., 2009]. We experimented with three pointer copying techniques (Itoh and Tanaka

[1999], Ko and Aluru [2005] and Seward [2000]) and showed that pointer copying, an approach

that is used to speed up SA construction, does speed up LCP array construction as well,

especially on repetitive texts when the q parameter is large. However, Fischer [2011] who

came up with the same idea to us independently, used less space as he used the unused space

in the LCP array to store the sparse PLCP array, PLCPq. This clever way ensured his total

memory usage to be 9n regardless of the q value used.
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Table 6.2: Running time in minutes (in brackets, peak memory usage in MB) on Artifical

texts.

Dataset q KMP KMP-IT KMP-KA KMP-S F
FIBONACCI 4 8 (2555.0) 21 (2555.2) 31 (2555.2) 21 (2555.2) 29 (2299.5)

8 9 (2427.3) 21 (2427.4) 31 (2427.4) 21 (2427.4)
16 9 (2363.4) 21 (2363.5) 31 (2363.5) 20 (2363.5)
32 11 (2331.5) 22 (2331.6) 32 (2331.6) 22 (2331.6)
64 17 (2315.5) 26 (2315.6) 34 (2315.6) 25 (2315.6)
128 16 (2307.5) 25 (2307.6) 34 (2307.6) 25 (2307.6)
256 13 (2303.5) 24 (2303.7) 32 (2303.7) 23 (2303.7)
512 59 (2301.5) 52 (2301.7) 50 (2301.7) 51 (2301.7)
1024 59 (2300.5) 52 (2300.7) 50 (2300.7) 51 (2300.7)
2048 59 (2300.0) 52 (2300.2) 50 (2300.2) 51 (2300.2)

RUN RICH 4 7 (2067.1) 17 (2067.2) 22 (2067.2) 16 (2067.2) 24 (1860.4)
8 7 (1963.7) 17 (1963.8) 22 (1963.8) 17 (1963.8)
16 8 (1912.0) 17 (1912.2) 22 (1912.2) 17 (1912.2)
32 9 (1886.2) 18 (1886.3) 22 (1886.3) 17 (1886.3)
64 10 (1873.3) 19 (1873.4) 23 (1873.4) 18 (1873.4)
128 10 (1866.8) 19 (1866.9) 23 (1866.9) 19 (1866.9)
256 16 (1863.6) 22 (1863.7) 26 (1863.7) 22 (1863.7)
512 37 (1862.0) 35 (1862.1) 37 (1862.1) 35 (1862.1)
1024 55 (1861.2) 46 (1861.3) 45 (1861.3) 46 (1861.3)
2048 164 (1860.8) 113 (1860.9) 100 (1860.9) 113 (1860.9)

THUE MORSE 4 11 (2560.0) 23 (2560.1) 27 (2560.1) 23 (2560.1) 27 (2304.0)
8 10 (2432.0) 22 (2432.1) 26 (2432.1) 22 (2432.1)
16 10 (2368.0) 22 (2368.1) 25 (2368.1) 21 (2368.1)
32 9 (2336.0) 21 (2336.1) 25 (2336.1) 21 (2336.1)
64 9 (2320.0) 21 (2320.1) 25 (2320.1) 21 (2320.1)
128 8 (2312.0) 20 (2312.1) 24 (2312.1) 20 (2312.1)
256 7 (2308.0) 19 (2308.1) 24 (2308.1) 19 (2308.1)
512 5 (2306.0) 18 (2306.1) 23 (2306.1) 18 (2306.1)
1024 5 (2305.0) 18 (2305.1) 23 (2305.1) 18 (2305.1)
2048 5 (2304.5) 18 (2304.6) 23 (2304.6) 18 (2304.6)
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Table 6.3: As of Table 6.2, but on Pseudo-Real texts.

Dataset q KMP KMP-IT KMP-KA KMP-S F
XML 4 4 (1000.0) 9 (1000.1) 10 (1000.1) 9 (1000.1) 9 (900.0)

8 4 ( 950.0) 9 ( 950.1) 10 ( 950.1) 9 ( 950.1)
16 5 ( 925.0) 9 ( 925.1) 10 ( 925.1) 9 ( 925.1)
32 5 ( 912.5) 9 ( 912.6) 10 ( 912.6) 9 ( 912.6)
64 7 ( 906.3) 10 ( 906.4) 11 ( 906.4) 10 ( 906.4)
128 10 ( 903.1) 12 ( 903.3) 13 ( 903.3) 11 ( 903.3)
256 17 ( 901.6) 15 ( 901.7) 16 ( 901.7) 15 ( 901.7)
512 33 ( 900.8) 23 ( 900.9) 24 ( 900.9) 23 ( 900.9)
1024 62 ( 900.4) 38 ( 900.5) 38 ( 900.5) 37 ( 900.5)
2048 116 ( 900.2) 65 ( 900.3) 64 ( 900.3) 64 ( 900.3)

ENGLISH 4 5 (1000.0) 9 (1000.1) 11 (1000.1) 9 (1000.1) 10 (900.0)
8 5 ( 950.0) 9 ( 950.1) 11 ( 950.1) 9 ( 950.1)
16 5 ( 925.0) 9 ( 925.1) 11 ( 925.1) 9 ( 925.1)
32 6 ( 912.5) 10 ( 912.6) 11 ( 912.6) 10 ( 912.6)
64 8 ( 906.3) 11 ( 906.4) 12 ( 906.4) 10 ( 906.4)
128 12 ( 903.1) 13 ( 903.3) 14 ( 903.3) 12 ( 903.3)
256 18 ( 901.6) 16 ( 901.7) 17 ( 901.7) 16 ( 901.7)
512 31 ( 900.8) 23 ( 900.9) 23 ( 900.9) 22 ( 900.9)
1024 51 ( 900.4) 33 ( 900.5) 33 ( 900.5) 32 ( 900.5)
2048 75 ( 900.2) 46 ( 900.3) 45 ( 900.3) 45 ( 900.3)

PROTEINS 4 5 (1000.0) 9 (1000.1) 11 (1000.1) 9 (1000.1) 10 (900.0)
8 5 ( 950.0) 9 ( 950.1) 10 ( 950.1) 9 ( 950.1)
16 5 ( 925.0) 9 ( 925.1) 11 ( 925.1) 9 ( 925.1)
32 6 ( 912.5) 10 ( 912.6) 11 ( 912.6) 9 ( 912.6)
64 8 ( 906.3) 11 ( 906.4) 12 ( 906.4) 10 ( 906.4)
128 11 ( 903.1) 12 ( 903.3) 14 ( 903.3) 12 ( 903.3)
256 18 ( 901.6) 16 ( 901.7) 17 ( 901.7) 16 ( 901.7)
512 30 ( 900.8) 23 ( 900.9) 23 ( 900.9) 23 ( 900.9)
1024 50 ( 900.4) 34 ( 900.5) 33 ( 900.5) 33 ( 900.5)
2048 74 ( 900.2) 47 ( 900.3) 45 ( 900.3) 46 ( 900.3)
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Table 6.4: As of Table 6.2, but on Real texts.

Dataset q KMP KMP-IT KMP-KA KMP-S F
CERE 4 26 (4399.2) 44 (4399.3) 52 (4399.3) 43 (4399.3) 47 (3959.3)

8 26 (4179.2) 44 (4179.3) 51 (4179.3) 43 (4179.3)
16 28 (4069.2) 46 (4069.4) 52 (4069.4) 44 (4069.4)
32 32 (4014.2) 48 (4014.4) 54 (4014.4) 46 (4014.4)
64 41 (3986.7) 54 (3986.9) 58 (3986.9) 52 (3986.9)
128 57 (3973.0) 65 (3973.1) 66 (3973.1) 62 (3973.1)
256 89 (3966.1) 86 (3966.3) 81 (3966.3) 84 (3966.3)
512 148 (3962.7) 127 (3962.8) 109 (3962.8) 123 (3962.8)
1024 253 (3961.0) 199 (3961.1) 159 (3961.1) 193 (3961.1)
2048 430 (3960.1) 320 (3960.2) 243 (3960.2) 311 (3960.2)

ECOLI 4 6 (1074.7) 10 (1074.8) 12 (1074.8) 10 (1074.8) 10 (967.2)
8 6 (1021.0) 10 (1021.1) 12 (1021.1) 10 (1021.1)
16 7 ( 994.1) 11 ( 994.2) 12 ( 994.2) 10 ( 994.2)
32 8 ( 980.7) 11 ( 980.8) 12 ( 980.8) 11 ( 980.8)
64 10 ( 973.9) 12 ( 974.1) 13 ( 974.1) 12 ( 974.1)
128 13 ( 970.6) 14 ( 970.7) 15 ( 970.7) 14 ( 970.7)
256 18 ( 968.9) 18 ( 969.0) 17 ( 969.0) 17 ( 969.0)
512 28 ( 968.1) 24 ( 968.2) 22 ( 968.2) 23 ( 968.2)
1024 42 ( 967.6) 33 ( 967.8) 29 ( 967.8) 32 ( 967.8)
2048 64 ( 967.4) 47 ( 967.6) 39 ( 967.6) 45 ( 967.6)
4 25 (4093.8) 42 (4093.9) 49 (4093.9) 40 (4093.9) 45 (3684.4)
8 25 (3889.1) 42 (3889.2) 48 (3889.2) 40 (3889.2)
16 27 (3786.8) 43 (3786.9) 49 (3786.9) 41 (3786.9)
32 31 (3735.6) 45 (3735.7) 51 (3735.7) 44 (3735.7)

PARA 64 38 (3710.0) 50 (3710.1) 54 (3710.1) 49 (3710.1)
128 53 (3697.2) 60 (3697.3) 62 (3697.3) 58 (3697.3)
256 82 (3690.8) 80 (3690.9) 75 (3690.9) 77 (3690.9)
512 135 (3687.6) 115 (3687.7) 101 (3687.7) 111 (3687.7)
1024 231 (3686.0) 180 (3686.1) 147 (3686.1) 174 (3686.1)
2048 396 (3685.2) 290 (3685.3) 226 (3685.3) 281 (3685.3)



Chapter 7

Scalable Inverse Burrows-Wheeler

transform

In this chapter, we consider the problem of inverting the Burrows-Wheeler transform (BWT)

efficiently in external memory. The only previous work on the problem is due to Ferragina,

Gagie and Manzini [Ferragina et al., 2010]. However, no implementation of their algorithm

exists. Section 7.2 describes an implementation of Ferragina et al.’s approach and we explore

a variant in Section 7.3. Then, in Section 7.4 we describe several new inversion algorithms of

our own which utilize scanning and compression techniques. A comprehensive experimental

comparison on a wide range of large datasets is given in Section 7.5.

7.1 Basic BWT Algorithm

To invert the BWT in RAM, the basic BWT inversion algorithm begins at the symbol in

the BWT which is the last symbol of the input string. The inverse algorithm recovers the

symbol of the original string in reverse order. The position of this symbol is recorded when

the forward transform is performed. The character at that position is output, and then the LF

function (Equation 2.1 on page 14) is used to find the next character (of the input string). We

illustrate this process in Figure 7.1 using the BWT of input string x = flooorrreeeencccee$.

In the example, position 10 is the starting point for inversion. The ‘$’ symbol is output

as the first character in array xr. Using the LF function, rank($,L, 10) is added to C[$] which

gives the next inversion point as 0. The BWT character at position 0 is output as xr[1] = e.

Continuing the example, rank(e,L, 0) is 0 as there are no occurrences of ‘e’ in prefix L[0, 0]

and so, 0 is added to C[e] which gives the next decoded character xr[2] = e.

71
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$ c e f l n o r
j 0 1 2 3 4 5 6 7

C 0 1 4 10 11 12 13 16

(a) The C array, which is derived in a single pass over L.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

L e n c c e c r e e e $ f e l o o r r o
rank(L[i],L, i) 0 0 0 1 1 2 0 2 3 4 0 0 5 0 0 1 1 2 2
next 4 12 1 2 5 3 16 6 7 8 0 10 9 11 13 14 17 18 15
xr $ e e c c c n e e e e r r r o o o l f

(b) The position 10 in the L array is the starting point for inversion. When C is combined with rank as in
the LF function, the next character of the input string is output.

Figure 7.1: The two arrays: C and L that are required by the LF function to invert the
BWT.

The movement through the L array in the above example can be likened to a linked list,

a set of nodes where each node is chained to the next node with an exception of the last

node [Sedgewick, 1999]. The order in which these nodes are traversed is very important

as the predecessor must be visited before the successor. This problem of determining the

order for a given set of nodes is known as “list ranking” [Chiang et al., 1995; Sibeyn et al.,

1999; Ferragina et al., 2010], and is similar to our problem of inverting the BWT where

each position can be represented as a node that is chained to the next position as shown in

Figure 7.2.

Figure 7.2: When a pointer is set from one position to the next using the LF function, a
chain is formed where the head of the chain is the first node. A substring is produced when
the characters indicated by these nodes are output in xr.

In the example, the head of the chain is the first node and has the recorded starting

point of 10. This in turn is chained to the next of 0 and that, in turn is chained to another

node whose next is 4 and so on. This chain can be implemented by setting a pointer to

10 and then moving to the next position computed by the LF function. This process of

following the pointer is fast, provided that L and xr fit in RAM. It is slow in the case that

they do not and must reside on disk. Should L and xr reside on the same disk, the time

taken in seeking between these two data structures (files henceforth) is excessive, as a single

disk pointer is shared. These two files are thus stored on two separate disks.
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Input: L on disk, and C in RAM.
1 : F[0,σ] ← 0
2 : starting ← position of the last symbol of the string
3 : current ← starting
4 : c ← L[current]
5 : insert c into xr

6 : next ← C[c] + F[c]
7 : F[c] ← F[c] + 1
8 :while not all BWT inverted do
9 : c ← L[current]
10: if next > current then
11: current ← current+ 1
12: F[c] ← F[c] + 1
13: else if current < next then
14: current ← start of the file
15: reset F
16: else
17: append c into xr

18: next ← C[c] + F[c]
19: F[c] ← F[c] + 1
Output: xr on a second disk.

Figure 7.3: Pseudocode to invert BWT on two disks. F stores the ranks of characters in L
and is reused as long as next is to the right of current. These ranks are thrown when next

is to the left of current. F is then reset and the scan begins from the start of the file.

Pseudocode for inverting the BWT using two disks is presented in Figure 7.3. In order

to ensure that as many ranks as possible are processed during the left-to-right scan over L,

the frequency of each character is recorded in an array called F (see Steps 7, 12 and 19) so

that the ranks can be reused during the move as long as the next positions are to the right

of the current position. However, should a next fall to the left of the current position, the

ranks in F are reset and built from the start of the file (see Steps 13 to 15).

In addition to the disk pointer, a disk has a cache [Haas, 2012] that acts as an intermediate

storage between the RAM memory and disk. Should a read be required from a file, a seek is

made into the file and that portion of data is stored in the disk cache. Access time is reduced

if the same data is required again, provided it exists in cache. This scenario is called a cache

hit. The probability of cache hits occurring is high if left-to-right accesses are made to the

file. Therefore, an external memory algorithm will benefit in runtime if it accesses a file in a

left-to-right manner.

A cache miss is the opposite of cache hit. That is, the requested data does not exist

in cache and so, it must be buffered. The cache is emptied in the event that there is no
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space for the buffered data. Similar operations occur when writing data into a file. These

operations are controlled by the operating system. In summary, when a disk seek is made,

it is not necessarily the case that a seek is made to the file on disk, as the data might have

been accessed from the cache.

7.2 An implementation of Ferragina et al. [2010]

With the Basic BWT algorithm, as long as next is to the right of the current position, as

shown in Figure 7.3, we continue moving right while keeping and reusing F. However, as

soon as next is to the left of current, the left move erases F and the scan begins at the start

of the file. Ferragina, Gagie and Manzini recommend only moving right by keeping track of

several starting points simultaneously, where each produces a separate chain. Each chain

in turn produces a separate substring of the original text. These chains become adjacent to

each other and overlap as inversion progresses. Sufficient information to manage these chains

is stored in a data structure called header.

Header

The positions of the first m symbols in the BWT are used as the starting points. The BWT

characters at the starting points are copied into a buffer before writing them into xr. At

the same time, the algorithm records the length and location of each substring to len and

loc respectively. As xr and L reside on the same disk, the buffer prevents seeking between

the two files. The positions of the BWT characters are marked simultaneously in a bit vector

called USED that resides on the second disk. The nexts are then computed using the LF

function before sorting them numerically. The sorted next values allow the respective BWT

symbols to be assigned to the chars in a single left-to-right pass over L. In parallel, the next

positions are marked in USED. These positions are marked in advance to avoid accessing the

disk when the chars are being output to xr. Illustrated below is the header using the BWT

of input string x = flooorrreeeencccee$.

header

starting 2 3 0 1

len 1 1 1 1

loc 2 3 0 1

next 1 2 4 12

char n c e e
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

L e n c c e c r e e e $ f e l o o r r o

USED 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

xr e| n| c| c|

In the above example, the starting points are positions of the first four symbols in the

BWT, that is, positions 0,1,2 and 3. The symbols at these positions are output into xr

indicated by loc. xr is empty as inversion is yet to begin, and so the first symbol ‘e’ is

written at the start of the file, that is, position 0. Likewise, the second symbol ‘n’ is written

to the consecutive position, which is 1 in our case and so on. For clarity, the substrings are

separated here with ‘|’. The len is set to 1 as each substring consists of a single character.

The next values (4,12,1,2) are then sorted to 1,2,4,12, so that the BWT symbols in nexts

are collected in a single left-to-right pass. In parallel, the unmarked positions of the next

values, 4 and 12, are marked in USED.

Chains

The starting point for the Basic BWT algorithm is the recorded position of the last symbol

of the input string. This produces a single chain. In contrast, Ferragina et. al’s algorithm

has several starting points that produce several chains, and these chains will overlap at

some point in time. Overlapping chains can be identified by recursively binary searching

each starting point in the next values. If the starting point cannot be found, then that

is the head of the chain and is marked as shown below.

header

starting 2 3 0 1

len 1 1 1 1

loc 2 3 0 1

next 1 2 4 12

char n c e e

head 0 1 1 0

Continuing with the example, starting point of 3 is not found in the next values and

so, is the head of a chain. A mark is thus placed in its head field. Recall this chain can be

represented using linked lists if a pointer is set from its starting point to its next, as shown

in Figure 7.4. Therefore, the head of each chain, implied by a mark, must be identified to

ensure substrings are chained correctly.
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Figure 7.4: When a pointer is set from each starting point (that has a mark in the head

field) to its next, two chains are formed. The head of each chain is the first node.

Once the head of chains have been identified, a new copy of substrings is made. The copy

must begin with the starting point marked in head as it represents the first node of a chain

that corresponds to the first character of a substring. There are several options for writing

these substrings. The options are as follows.

a. Storage in a single file

Substrings are stored in one file. Pairs of loc and len are created to manage the scattered

substrings. Otherwise, nm space would be required as n positions are reserved for each

substring should the chains become adjacent (as the length of each substring is not known

in advance). The disk pointer needs to skip n positions for each substring in order to store

the next decoded character. This increases the access time and could be reduced by using

a fast disk such as Solid State Disk; however, our intention is to make our implementation

disk independent.

b. Storage in multiple files

Storing each substring in an individual file removes the need of having loc and len. There

arem files as there arem substrings form starting points. In theory, an operating system

can open an infinite number of files, but in practice, this number is limited by the available

RAM to handle and manage each file. Should there be sufficient memory to handle these

files, seeks are still unavoidable between these files, as they are stored on the same (or

several) disks. It is not viable to store m files on m disks as m can be very large.

c. Storage in a second file

Substrings are copied from the source file (that resides on one disk) to the destination file

on a second disk. This method is used in our implementation of the algorithm. The next

values are recursively binary searched in starting points while copying the substrings

from source xr (indicated by loc and len) to destination yr. Should a next value not be

found, the char is added to its substring (on disk, as described in the original Ferragina,

Gagie and Manzini algorithm) in yr without the need for the USED bit vector, as the failed
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search implies that the subsequent character (of the input string) has not been previously

inverted. Should a chain become adjacent to or overlap another chain, an empty header

in created for the corresponding starting point as we illustrate below.

header

starting 0 1 2 3

len 1 1 1 1

loc 0 1 2 3

next 4 12 1 2

char e e n c

head 1 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

L e n c c e c r e e e $ f e l o o r r o

USED 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0

xr e| n| c| c|

In the above example, starting point of the first header is a head of a chain. So, the

single character substring “e” is copied from position 0 (indicated by loc) in source xr,

to the beginning of destination yr. Its loc is updated to the new position in destination,

which is also 0. Its next of 4 is then binary searched in the starting points, and as it

is not found (a failed search), we know that the subsequent character, ‘e’ (indicated by

char) has not been previously inverted. It is thus appended to yr. len is then updated

to 2 as the present substring consist of two characters, that is, “ee” as shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

yr e e|

Once the substrings are copied into yr and if there is an empty header, it is replaced with

the next unmarked position in the BWT, to ensure m characters are inverted in each

round. USED is scanned for the first unmarked position and the BWT symbol is copied

into a buffer. The buffer prevents seeking between two files that reside on the same disk.

It is then copied into yr as shown below.
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header

starting 0 5 6 3

len 2 1 1 4

loc 0 6 7 2

next 4 12

char

head 1 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

L e n c c e c r e e e $ f e l o o r r o

USED 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0

yr e e| c c n e| c| r|

The overlapped substrings have created space for two inversion points, that is, two empty

headers. The next unmarked position in USED is position 5 and is assigned to the second

starting point, followed by position 6 that is assigned to the third starting point. At

the same time, the corresponding BWT symbols are output into yr while recording the

respective length and location. A round of inversion is completed when |xr|+m characters

are written into yr. This process is repeated until the entire BWT is inverted.

7.2.1 Implementation details

Our implementation of Ferragina et al.’s algorithm differs from that described in the original

paper [Ferragina et al., 2010]. The differences are as follows.

a. Header

In the original paper, a header consists of the following fields: starting point, next and

char. Each substring is prefaced by this header and is stored in a file called S that resides

on disk. In contrast, the header in our implementation has three additional fields: len,

loc and head, and resides in RAM. Only the substrings reside on disk.

We explored the possibility of storing the headers on disk via the use of an efficient external

memory library, that is the Standard Template Library for XXL (STXXL) [Dementiev

et al., 2005]. However, this variant was very slow due to the time taken to search the

starting point in nexts (and vice versa) on disk. As a result, we decided to store the
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headers in RAM to have a better runtime where the number of headers, m is restricted

by the available RAM in contrast to the original paper that sets m to n/log n.

We note that our implementation of Ferragina et al.’s algorithm can easily be modified to

use the STXXL should there be insufficient RAM.

b. Chains

In the original paper, the headers are extracted from S, which resides on one disk, and

written to another file, called S�, which resides on a second disk. The list ranking algorithm

of Chiang et al. [1995] is then applied (after each round) to the starting points and nexts

in S� to find the chains that will become adjacent to each other and overlap. Should overlap

occur, the merge order is stored in the char field. These headers are then reinserted into S

while merging adjacent substrings into a single substring. Then, the constituent substrings

are deleted using the merge order stored in chars.

The chars are then reused to hold new BWT characters. Once the chars are assigned,

the headers are reinserted into S. The char is only appended to its substring if the next

is unmarked in the bit vector (indicating that the character has not yet been inverted).

The bit vector is accessed m times as there are m chars. This process is repeated until

the entire BWT is inverted.

There is an open question as to how the substrings are stored and merged in S. Several

possibilities of storing the substrings were explored, and we chose to alternate substrings

between two files. That is, we placed source xr on one disk and destination yr on the

second disk. loc and len were then introduced to store the location and the length of each

substring in the file. When the BWT characters are assigned to chars, the bit vector is

marked in parallel even though these characters have not been added to their substrings.

This effect can be simulated during inversion without even accessing the said bit vector.

A failed search of the next in starting points implies that the BWT character has not

been previously inverted.

We also replaced the list ranking algorithm with binary search as it gave us similar asymp-

totic complexity. The head field was introduced so that the head of each chain can be

marked (identified).

c. Others

Sorting nexts enables one to collect the chars in a single left-to-right pass over the BWT

file (as described in the original paper). However, random accesses are made to the bit
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vector as it is checked each time the char is appended to see if it has been inverted

before. Thus, we explored the possibility of replicating the bit information to the header.

However, we later found that replicating the bit information was not required as a failed

search would imply that the character has not been previously inverted.

We also explored the possibility of interleaving the BWT and the USED bit vector in the

same file that resides on a disk. Each bit used 1 byte as there is no bit data type. To cache

as many BWT characters as possible in the disk cache in a single pass over the BWT, we

chose to store the BWT and USED in two separate files on two separate disks.

Note that a journal version of their paper was recently published in [Ferragina et al.,

2012]. The implementation in this chapter was based on the earlier conference paper.

7.3 Variant of Ferragina et al. [2010] Algorithm

We explored a variant, Algorithm FGM-V where the starting points begin inside the longest

character run of the BWT string, followed by the second longest run and so on, until there

are m inversion points. The starting points from a run are in increasing order (with the

values only differing by one), and so are the values in nexts. These nexts might land in the

same character run or even split across two or three runs. In either case, should we begin in

a run, there is a great possibility that the nexts remain clumped together as shown below.

header

starting 2 7 8 9

len 1 1 1 1

loc 3 0 1 2

next 1 6 7 8

char n r e e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

L e n c c e c r e e e $ f e l o o r r o

USED 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

xr e| e| e| c|

In this example, the last three starting points (7,8,9) are from the longest character

run, that is run e, and the first starting point (2) is from the second longest character

run, namely run c. Note that the values in the starting points are in increasing order
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(only differing by one) and so is the order of the nexts. In other words, the next values are

clumped together. A single seek is thus sufficient to process these nexts.

Negligibly small arrays are used to manage these character runs in constant time. These

runs are used during the initialization and replacement stage of empty headers. Should the

longest runs become exhausted, the algorithm retreats to the original approach of choosing

the starting points, that is, the positions of the first m unmarked symbols in the BWT.

7.4 New Inversion Algorithms

Our new inversion algorithms use scanning and simple compression methods to invert the

BWT. Like the Ferragina, Gagie and Manzini algorithm, our new algorithm inverts the

BWT from multiple starting points. However, unlike Ferragina, Gagie and Manzini we

assume the starting points are evenly spread in the input file. Thus, a starting point is

chosen at every interval p of the input string. The position of the first character (of each

substring) in the input string is available together with the starting point in a file called

START. We note that no additional time is required in computing these positions if they are

recorded when the BWT is produced as we illustrate below using the BWT of input string

x = flooorrreeeencccee$.

START → �1, 12� , �10, 18� , �16, 6�

In the above example, assume p is 6. Each angle bracket shows the position of the

starting point in the BWT and in the input string. For example, L[1] = x[12] = n. That

is, the character n has the index of 1 in L and of 12 in x. It is trivial to modify any BWT

algorithm to record these multiple starting points.

Header

The starting points and the respective positions in the input string are read from START

into the next and loc arrays (which we define later for clarity). The next values are then

inserted into a heap, where each next is linked to its respective loc via the index (of the

loc), called i. Thus, each entry in the heap consists of next and i. A min-heap based on

the next values is created as shown below, where the first entry of the heap is the root.

min-heap

next 1 10 16

i 1 0 2
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Input: L.
1 : create min-heap of next values
2 :while min-heap is not empty do
3 : current ← next[0] (root of the heap)
4 : output L[current] into the respective substrings
5 : use LF function to compute next
6 : if next is on the right of current then
7 : add to min-heap
8 : else
9 : add to temporary list
10:copy temporary list into min-heap
Output: xr.

Figure 7.5: Pseudocode of our inversion algorithms that uses a min-heap and a list to ensure
more than m characters are inverted in each round.

Pseudocode for inverting the BWT using a min-heap is presented in Figure 7.5. The

character indicated by the next value at root of the heap is output, and the LF function is

used to compute the new next for that inversion point. Should the new next be to the right

of the root, the value is inserted into the heap. Otherwise, it is stored in a temporary list.

The items in the list are then emptied into the heap once all the characters indicated by the

next values have been output into their corresponding substrings (see Steps 1 to 10).

Unlike Ferragina et. al’s algorithm that inverts m BWT characters in each round, our

method of using a min-heap and temporary list guarantees at least m characters are inverted

in each round, although there are m starting points.

Chains

The substrings in our new algorithms never overlap, as their positions in the input string

(computed when the BWT was produced) have been recorded in the loc array. No memory

is allocated for these substrings during the initialization stage. If there is a character waiting

to be output, 1 byte of RAM is allocated for the respective substring. This amount is doubled

whenever the substring runs out of space to append the output character. We also ensure

the amount of the new memory allocated never exceeds the number of remaining uninverted

characters. We note that the initial growing size of each substring can be set to any size,

within the limits of available RAM.

The memory blocks for these substrings are managed using cap (which stores the amount

of allocated RAM for each substring) and len (which stores the current length of each
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substring) as shown below.

i 0 1 2

loc 0 6 12

substr ⊥ ⊥ ⊥
len 0 0 0

cap 0 0 0

The length and capacity of each substring is set to 0, and ⊥ is indicated for the (empty)

substrings as the decoding is yet to begin. The index, i links the corresponding arrays to the

respective entries in the min-heap. For example, the second column of the arrays stores the

substring’s information for the root as they share a similar i, which is 1 in this case. The

len values avoid use of a bit vector to track inverted characters. When the sum of lengths

of all the substrings equals n, we know the entire BWT has been inverted.

If at any point the substrings exhaust the available RAM memory, the inversion is paused

and the substrings are written into xr on positions indicated by loc values. The memory

allocated for these substrings is released. Then, inversion resumes as illustrated below.

i 0 1 2

loc 0 6 12

substr $e ne rro

len 2 2 3

cap 2 2 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

xr $ e n e r r o

In the above example, the first substring ($e) consist of two characters (indicated by

len) and 2 bytes have been allocated for it (indicated by cap). The BWT character in

L[current] cannot be outputted as the substrings have exhausted the allocated RAM, that

is 8 bytes. The inversion thus comes to a halt and the substrings are written into xr at

positions indicated by locs, in a single left-to-right pass. For instance, the first substring

is written at position 0 as loc is 0. This loc is then updated to 2 so that the substring

is written from position 2 onwards for the next write. Note that each substring requires

another four characters for the inversion to be completed. So, when the memory is released

for the substrings, cap is set to 0, but not len as it keeps track on the number of inverted

characters as shown below.
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i 0 1 2

loc 2 8 15

substr ⊥ ⊥ ⊥
len 2 2 3

cap 0 0 0

Releasing this memory is important as each substring grows at a different rate. This

process is repeated until the entire BWT is inverted. This algorithm, which we call SCAN is

the basis of several variants that are described in the following sections.

7.4.1 Scan based approach

We explored a variant, Algorithm SCAN-PR that stored partial information about the ranks

in a two dimensional R array [Lauther and Lukovszki, 2005; Kärkkäinen and Puglisi, 2010].

The idea is that storing this information will improve the speed of the basic algorithm as

time is not wasted recounting the BWT symbols during each round of inversion.

More precisely, for each symbol we store rank values at every d position in the BWT

string. That is, there is a reference point at positions 0, d, 2d, . . .. These reference points

divide the BWT into b = n/d blocks where each reference point correlates to the beginning

of a block. Each position j in the block is associated to a reference point ref(j) and for all

c ∈ Σ

rank(c,L, j) = rank(c,L, ref(j)) + F[c]

and

rank(c,L, ref(j)) = R[ref(j)][c],

as shown below. This method counts the symbols between the reference point and the current

position j, and R is stored in memory.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

L (e n c c e c r) (e e e $ f e l) (o o r r o)

rank(c,L, ref(j)) 0 0 0 1 1 2 0 0 1 2 0 0 3 0 0 1 0 1 2

ref(j) 0 1 2

In this example, assume d is 7. The reference points at positions 0, 7 and 14 correlate to

the start of the respective blocks. The boundaries of the block are indicated by the brackets.
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For clarity, the associated block for each position j is shown in ref(j). The partial ranks are

stored in the R array as illustrated below.

ref(j) 0 1 2

$ 0 0 1

c 0 3 3

e 0 2 6

f 0 0 1

l 0 0 1

n 0 1 1

o 0 0 0

r 0 1 1

The second column indicates the ranks for the first reference point, that is position 0.

Likewise, the third column indicates the ranks for the second reference point, that is position

7. For instance, to compute rank(e,L, 12), we must find the block associated with position

12. It is the second block as ref(12) is 1. This index is then used to access the partial ranks

in R in constant time. R[1][e] is 2 and is added to the occurrences of character ‘e’ in prefix

L[7, 12], which is 3 here. So, rank(e,L, ref(12)) is 5.

Unlike the previous variant, that always uses the reference point at the start of the block,

our second variant, Algorithm SCAN-NR uses the nearest reference point approach [Lauther

and Lukovszki, 2005; Kärkkäinen and Puglisi, 2010]. That is, the reference point at the end

of block is sometimes closer than the reference point at the start of the block. Should a

position j fall in the first half of the block,

rank(c,L, j) = rank(c,L, ref(j)) + F[c]

and should it fall in the second half of the block,

rank(c,L, j) = rank(c,L, ref(j)) + F[c]− 1.

The partial ranks are computed and stored in a file. These ranks are interleaved with the

BWT characters. Each BWT character and rank pair uses 3 bytes (1 byte for the character,

and the other 2 bytes for the partial rank). The maximum value that can be stored for this

partial rank is thus 65536.
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7.4.2 Block based approach

We explored a simple variant of SCAN-PR, Algorithm BLOCK-PR that prioritizes each block

based on the number of next values it contains. That is, the block processed always has the

most number of next values. A max-heap keyed on the number of next values in each block

is created. Each entry in the heap contains the unique ref(j) value (to differentiate blocks

from each other) and a separate heap (to store the next values contained in the block).

The next values are processed with slight modifications to the pseudocode in Figure 7.5.

That is, a next is only stored in the temporary list should it belong to the existing block in

the RAM. Otherwise, the next is stored in its respective min-heap. These individual heaps

are accessed in constant time, by recording the position of each block (after the heapifying

process) in an array called I. The existing block (in RAM) is reprocessed only while the

number of next values exceed a threshold. This is to take advantage of the block already

residing in RAM in contrast to having to make a seek to access a new block on disk.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

L (e n c c e c r e e e $ f e l) (o o r r o)

rank(c,L, ref(j)) 0 0 0 1 1 2 0 0 1 2 0 0 3 0 0 1 0 1 2

ref(j) 0 1

max-heap

min-heap {0,10},{1,1} {2,16}
ref(j) 0 1

In the above example, assume d is 14. The reference points at positions 0 and 14 correlate

to the start of the respective blocks. Similar to the previous variants, the associated block

for each position j is indicated in ref(j), which is used to access the partial ranks in the R

array. The max-heap consist of two entries. The first entry which is the root contains the

inversion points for the first block, that is 2 here. Likewise, the second entry contains a single

inversion point for the second block. Therefore, the first block is brought into RAM to be

processed as it has the most number of inversion points in contrast to the other block.

7.4.3 Compression approach

Our final algorithm, Algorithm COMP-PR is a modification of BLOCK-PR that boosts the effec-

tive block size using Run Length Encoding (RLE) [Salomon and Motta, 2010]. As the name
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suggests, in this encoding (compression) technique, each character run (consecutive repeated

symbols) is replaced with the character and the run length, as shown below.

aaabbcd → a3b2c1d1

In this example, the encoded string has 4 runs. This type of compression is efficient

on BWT data if the encoded string contains repetitions. Encoding can be effective for this

algorithm for two main reasons: more characters are brought into RAM, and time is not

spent counting occurrences of each character (from the respective reference point onwards)

as this value has been indicated in the run length. Moreover, strings that compress well with

the BWT are known to contain many runs [Manzini, 2001b].

The encoding is done in linear time using two disks. The BWT is stored on one disk

and the encoded BWT on the other disk. We fix each (BWT character , run length) pair

in the encoded BWT to use 2 bytes: 1 byte for the BWT character, and the other byte for

the run length. The maximum value that can be stored for length is thus 255. However, by

considering the existence of the BWT character, each encoded pair can be represented by

the run length of 256 as shown below. The encoded BWT is stored in a file called RLE.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

RLE (e 0 n 0 c 1) (e 0 c 0 r 0) (e 2 $ 0 f 0) (e 0 l 0 o 1) (r 1 o 0)

ref(j) 0 1 2 3 4

In the above encoded BWT string, the length for single character runs is indicated with a

0. We note that the 0 can be removed but this is not done here due to the intensive checking

required during inversion. The third pair (c 1) indicates that the character ‘c’ has a run

length of 2.

Unlike the previous variants that store partial information about the ranks at every d

position in the BWT string, this variant stores them at every r run, as the number of

characters varies in each run. In the example, assume r is 3. That is, each block consist of 3

runs. In other words, we divide the string into b = n/r variable size blocks. The total number

of characters in each block is stored in an array called S. This array is then binary searched

to find the block associated to the next so that the partial ranks in R can be accessed in

constant time, as shown below.

ref(j) 0 1 2 3 4 5

S 0 4 7 12 16 19
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Continuing with the same example, the second column in S represents the number of

characters prior to the first reference point, which is 0. The number of characters prior to

the second reference point is indicated in the third column. For instance, to find rank(e,L, 12),

we must find the block associated with position 12. This can easily be obtained by binary

searching S for 12 and if it does not exist, the first value that is smaller than 12 is searched.

In our case, it is 3 as ref(12) = 3. This index is then used to access R in constant time.

We also explored a simple variant to COMP-PR, that is COMP-SCAN-PR. This variant scans

each block sequentially without giving any priority to the the block that contains the most

number of next values. The purpose of implementing this variant is to take advantage of

compression and cache hits due to the left-to-right accesses over the smaller encoded BWT.

7.5 Experiments

In this section, we report the practical performance of the algorithms on real data. The

experiments aim to measure the effect on performance of the number of starting points m

(chosen evenly at every p = n/m position in the new inversion algorithms), and reference

points (chosen at every d character in the BWT and every r run in the encoded BWT).

7.5.1 Data and Setup

For testing, we used the files listed in Table 7.1. These files are typical datasets from a number

of different public domains.123 DNA is from the Saccharomyces Genome Resequencing Project4

that provides 36 sequences of Saccharomyces Paradoxus and 37 sequences of Saccharomyces

Cerevisiae species. WIKI is a crawl of English Wikipedia articles (early 2009), and GOV2 is a

crawl of HTML pages from .gov domain in the US (early 2004). Each of the test files is 512

MB as it is enough data to significantly exceed the available memory to test the scalability

of the algorithms.

All code was written in C/C++, compiled using gcc/g++ version 4.4.5 and the -O3

optimization flag. Experiments were run on an otherwise idle 2.80 GHz Intel R� Pentium R� 4

of 371 MB of RAM, 512 KB of cache and two Seagate Barracuda SATA II 1TB 7200 RPM

disks. The operating system is Red Hat Enterprise Linux Server release 6.1 running Kernel

2.6.32-131.2.1.el6.i686. Times reported are the minimum of three runs, measured with the C

1http://pizzachili.dcc.uchile.cl/repcorpus.html
2http://boston.lti.cs.cmu.edu/Data/clueweb09/
3Text REtrieval Conference (TREC)
4http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp
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Table 7.1: All test files are 512 MB, and terminated with the special end of string character.

Dataset Mean LCP Max LCP σ No. of runs
DNA 3,044 104,177 5 23,381,469
WIKI 7,495 556,673 128 41,336,845
GOV2 96 94,066 195 149,228,428

time function. Our inversion algorithms make many scans of the BWT and try to work on

disk. There is a possibility that some of the BWT characters are cached in memory. Thus,

memory was flushed after each run. Note that this was not done in the previous chapters

as we explicitly held the text in RAM, and streamed the SA to disk for suffix sorting. We

further eliminate the caching effect as much as possible by ensuring the I/O files (BWT and

inverted BWT) are larger than the available memory. The I/O time for reading and writing

to disk is also included. Peak memory usage is the sum of data structures reported by the C

sizeof function.

7.5.2 Results and Analysis

The effect of parameters p, d and r on the performance is given in Tables 7.3, 7.4 and 7.5. The

size of the substrings is set to 64 MB. Upon reaching this limit, the substrings are written to

disk. Table 7.6 summarizes the results between the new inversion algorithms and Ferragina

et. al algorithms.

In general, the reported times are not always relative to the space used as they are

influenced by various factors. These factors include the number of headers that require

sorting, random accesses made to files, the use of fast compressed data structures and others.

A large number of headers does not indicate the inversion speed.

FGM and FGM-V require two sorts. The headers are first sorted based on the nexts to

find the head of the chains, before resorting them based on the starting points to find the

nexts. The second sort can be removed, provided the indexes of the nexts are stored in the

headers during the first sort. We explored this approach (removal of the second sort) but the

reported times were almost twice of FGM in Table 7.2, as fewer characters were being inverted

in each round since 4m bytes were being used to store each index.

The likelihood of random accesses occurring in FGM algorithm is reduced in FGM-V as the

starting points are chosen from the longest character runs so that the inversion points are

clumped together in the subsequent round. This increases the possibility of the substrings
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Table 7.2: The time measured in minutes, the peak memory in MB (in brakets).

Dataset m FGM FGM-V
DNA 9,942,053 253 (248) 305 (248)

5,779,785 184 (144) 190 (144)
5,137,299 187 (128) 188 (128)
4,971,026 189 (124) 192 (124)
3,853,222 195 ( 96) 199 ( 96)
3,314,017 208 ( 83) 211 ( 83)
3,211,000 210 ( 80) 214 ( 80)
2,889,900 220 ( 72) 221 ( 72)
2,809,500 223 ( 70) 227 ( 70)

WIKI 9,942,053 257 (248) 301 (248)
5,779,785 180 (144) 181 (144)
5,137,299 181 (128) 178 (128)
4,971,026 186 (124) 183 (124)
3,853,222 203 ( 96) 189 ( 96)
3,314,017 217 ( 83) 211 ( 83)
3,211,000 218 ( 80) 208 ( 80)
2,889,900 236 ( 72) 221 ( 72)
2,809,500 237 ( 70) 225 ( 70)

GOV2 9,942,053 933 (248) 973 (248)
5,779,785 535 (144) 549 (144)
5,137,299 508 (128) 518 (128)
4,971,026 497 (124) 506 (124)
3,853,222 477 ( 96) 467 ( 96)
3,314,017 459 ( 83) 463 ( 83)
3,211,000 460 ( 80) 466 ( 80)
2,889,900 454 ( 72) 463 ( 72)
2,809,500 463 ( 70) 468 ( 70)

being clumped together in the files as well. However, the character runs were used up in the

first round of inversion itself.

In the new inversion algorithms, competitive times are observed between the scan based

algorithms and the block based algorithm. The efficiency of the block based algorithm,

BLOCK-PR depends on the number of next values contained in the block. There is a tradeoff

between this number and with the random access made to access the block. The number of

nexts characters that are inverted may outweigh the time taken to seek and read the par-

ticular block from disk into RAM. The reference points, as expected, increased the inverting

speed due to the storing of partial information about the ranks.

By far the best approaches were compression based algorithms, which outperformed all

other algorithms by boosting the effective block size using RLE.
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Table 7.3: The running time in minutes (in brackets, peak memory usage in MB) on various
p for 512 MB prefix of DNA dataset. d is shared between SCAN-PR and SCAN. r is shared between
COMP-PR and COMP-SCAN-PR.

p SCAN d SCAN-PR BLOCK-PR SCAN-NR r COMP-PR COMP-SCAN-PR
256 47 (128) n/4 48 (128) 45 (240) 76 (128) n/32 19 (144) 18 (144)

n/16 56 (128) 40 (144) n/64 19 (120) 17 (120)
n/64 60 (128) 41 (120) n/128 18 (114) 17 (114)
n/256 57 (128) 42 (114) n/256 17 (113) 17 (113)
n/1024 49 (128) 51 (113) n/512 17 (112) 16 (112)

512 70 (96) n/4 73 (96) 64 (216) 206 (96) n/32 17 (120) 17 (120)
n/16 86 (96) 60 (120) n/64 17 ( 96) 16 ( 96)
n/64 88 (96) 62 ( 96) n/128 16 ( 90) 16 ( 90)
n/256 85 (96) 65 ( 90) n/256 15 ( 89) 15 ( 89)
n/1024 66 (96) 76 ( 89) n/512 15 ( 88) 15 ( 88)

1024 120 (80) n/4 124 (80) 110 (204) 357 (80) n/32 17 (108) 17 (108)
n/16 151 (80) 97 (108) n/64 16 ( 84) 16 ( 84)
n/64 153 (80) 112 ( 84) n/128 15 ( 78) 15 ( 78)
n/256 131 (80) 109 ( 78) n/256 14 ( 77) 15 ( 77)
n/1024 105 (80) 121 ( 77) n/512 14 ( 76) 14 ( 76)

2048 214 (72) n/4 231 (72) 222 (198) 343 (72) n/32 19 (102) 18 (102)
n/16 284 (72) 144 (102) n/64 18 ( 78) 18 ( 78)
n/64 281 (72) 203 ( 78) n/128 17 ( 72) 18 ( 72)
n/256 237 (72) 200 ( 72) n/256 16 ( 71) 17 ( 71)
n/1024 190 (72) 213 ( 71) n/512 15 ( 70) 16 ( 70)

7.6 Summary

Previously, there were no BWT inversion algorithms that scale to disk. This chapter has

closed this gap by providing the first implementation of the only previous work due to

Ferragina, Gagie and Manzini [Ferragina et al., 2010]. As there were open questions related

to this algorithm, especially as to how partially decoded substrings should be stored and

managed, several implementation possibilities were explored. The best approach in terms

of time and space was then implemented. We also removed the frequent disk accesses to

the USED bit vector for each inverted BWT character by simulating its effect during binary

search. A failed searched implies that the sought character has not yet been decoded.

Several new inversion algorithms of our own that use scanning, blocking, and compres-

sion techniques were also described. A comprehensive experimental comparison on a wide

range of datasets shows that our compression approach is up to 14 times faster than the

implementation of Ferragina et al., and that the inversion of the BWT in external memory

is practical.
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Table 7.4: The running time in minutes (in brackets, peak memory usage in MB) on various
p for 512 MB prefix of WIKI dataset. d is shared between SCAN-PR and SCAN. r is shared
between COMP-PR and COMP-SCAN-PR.

p SCAN d SCAN-PR BLOCK-PR SCAN-NR r COMP-PR COMP-SCAN-PR
256 38 (128) n/4 37 (128) 49 (240) 71 (130) n/32 19 (144) 20 (144)

n/16 38 (128) 38 (144) n/64 18 (120) 18 (120)
n/64 38 (128) 35 (120) n/128 18 (114) 17 (114)
n/256 38 (128) 35 (114) n/256 17 (113) 17 (113)
n/1024 39 (129) 43 (113) n/512 17 (112) 17 (112)

512 53 (96) n/4 53 (96) 69 (216) 187 (98) n/32 17 (120) 17 (120)
n/16 51 (96) 55 (120) n/64 17 ( 96) 17 ( 96)
n/64 50 (96) 50 ( 96) n/128 16 ( 90) 16 ( 90)
n/256 50 (96) 50 ( 90) n/256 16 ( 89) 16 ( 89)
n/1024 49 (97) 64 ( 89) n/512 15 ( 88) 15 ( 88)

1024 86 (80) n/4 83 (80) 117 (204) 307 (82) n/32 19 (108) 18 (108)
n/16 84 (80) 93 (108) n/64 18 ( 84) 17 ( 84)
n/64 81 (80) 83 ( 84) n/128 18 ( 78) 17 ( 78)
n/256 80 (80) 83 ( 78) n/256 16 ( 77) 16 ( 77)
n/1024 78 (81) 108 ( 77) n/512 16 ( 76) 16 ( 76)

2048 146 (72) n/4 146 (72) 225 (198) 276 (74) n/32 23 (102) 22 (102)
n/16 147 (72) 171 (102) n/64 21 ( 78) 20 ( 78)
n/64 143 (72) 151 ( 78) n/128 21 ( 72) 20 ( 72)
n/256 138 (72) 149 ( 72) n/256 20 ( 71) 19 ( 71)
n/1024 138 (73) 194 ( 71) n/512 19 ( 70) 18 ( 70)
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Table 7.5: The running time in minutes (in brackets, peak memory usage in MB) on various
p for 512 MB prefix of GOV2 dataset. d is shared between SCAN-PR and SCAN. r is shared
between COMP-PR and COMP-SCAN-PR.

p SCAN d SCAN-PR BLOCK-PR SCAN-NR r COMP-PR COMP-SCAN-PR
256 48 (128) n/4 48 (128) 50 (240) 87 (131) n/32 32 (144) 33 (144)

n/16 54 (128) 44 (144) n/64 27 (120) 32 (120)
n/64 56 (128) 42 (120) n/128 27 (114) 30 (114)
n/256 54 (128) 44 (114) n/256 31 (113) 28 (113)
n/1024 48 (129) 53 (113) n/1024 53 (114) 26 (114)

512 68 (96) n/4 70 (96) 81 (216) 183 (99) n/32 33 (120) 43 (120)
n/16 82 (96) 65 (120) n/64 29 ( 96) 42 ( 96)
n/64 81 (96) 63 ( 96) n/128 32 ( 90) 40 ( 90)
n/256 71 (96) 66 ( 90) n/256 33 ( 89) 37 ( 89)
n/1024 60 (97) 81 ( 89) n/1024 50 ( 90) 32 ( 90)

1024 115 (80) n/4 118 (80) 144 (204) 324 (83) n/32 43 (108) 69 (108)
n/16 128 (80) 110 (108) n/64 37 ( 84) 67 ( 84)
n/64 116 (80) 110 ( 84) n/128 36 ( 78) 63 ( 78)
n/256 100 (80) 114 ( 78) n/256 39 ( 77) 58 ( 77)
n/1024 87 (81) 136 ( 77) n/1024 48 ( 78) 49 ( 78)

2048 194 (72) n/4 202 (72) 227 (198) 284 (75) n/32 67 (102) 118 (102)
n/16 212 (72) 195 (102) n/64 60 ( 78) 113 ( 78)
n/64 185 (72) 200 ( 78) n/128 64 ( 72) 108 ( 72)
n/256 158 (72) 203 ( 72) n/256 58 ( 71) 99 ( 71)
n/1024 144 (73) 245 ( 71) n/1024 68 ( 72) 83 ( 72)

Table 7.6: The running time in minutes (in brackets, peak memory usage in MB) on 512
MB prefix of files.

Dataset SCAN SCAN-PR BLOCK-PR SCAN-NR COMP-PR COMP-SCAN-PR FGM FGM-V
DNA 47 (128) 48 (128) 41 (120) 76 (128) 19 (120) 17 (120) 187 (128) 188 (128)

70 ( 96) 73 ( 96) 62 ( 96) 206 ( 96) 17 ( 96) 16 ( 96) 195 ( 96) 199 ( 96)
120 ( 80) 105 ( 80) 109 ( 78) 357 (80) 15 ( 78) 15 ( 78) 210 ( 80) 214 ( 80)
214 ( 72) 190 ( 72) 200 ( 72) 343 (72) 17 ( 72) 18 ( 72) 220 ( 72) 221 ( 72)

WIKI 38 (128) 37 (128) 35 (120) 71 (130) 18 (120) 18 (120) 181 (128) 178 (128)
53 ( 96) 50 ( 96) 50 ( 96) 187 ( 98) 17 ( 96) 17 ( 96) 203 ( 96) 189 ( 96)
86 ( 80) 80 ( 80) 83 ( 78) 307 ( 82) 18 ( 78) 17 ( 78) 218 ( 80) 208 ( 80)
146 ( 72) 138 ( 72) 149 ( 72) 276 ( 74) 21 ( 72) 20 ( 72) 236 ( 72) 221 ( 72)

GOV2 48 (128) 48 (128) 42 (120) 87 (131) 27 (120) 32 (120) 508 (128) 518 (128)
68 ( 96) 70 ( 96) 63 ( 96) 183 ( 99) 29 ( 96) 42 ( 96) 477 ( 96) 467 ( 96)
115 ( 80) 100 ( 80) 114 ( 78) 324 ( 83) 36 ( 78) 49 ( 78) 460 ( 80) 466 ( 80)
194 ( 72) 158 ( 72) 203 ( 72) 284 ( 75) 64 ( 72) 83 ( 72) 454 ( 72) 463 ( 72)



Chapter 8

Conclusions and Future Work

This thesis has presented several improved methods for processing strings in restricted mem-

ory settings. In this chapter, we reaffirm our research questions, summarize the main results,

and outline some directions for future work.

8.1 Conclusions

The current suffix array construction algorithms (SACAs) lie at either extreme of the effi-

ciency spectrum: they are either fast and use at least 5n of space, or they trade runtime

by using slow compressed data structures or disk or some combination techniques that use

less memory. A space-efficient, semi-external suffix sorting algorithm by Kärkkäinen [2007]

lies in the middle of the spectrum. Kärkkäinen builds the suffix array (SA) in blocks. He

builds and processes each block separately; first the leftmost block is collected, sorted and

written to disk to form a contiguous section of SA. The memory is then reused to process the

next block. For each block that is processed, a pass is made over the text. The number of

passes made over the text is proportional to the sorting time which is the bottleneck of this

algorithm. In Chapter 5, we aimed to reduce the sorting time of the algorithm. In particular,

we aimed to address the following research question:

• Can we implicitly sort the suffixes in a manner that will reduce the number of passes

to be made over text without increasing the memory requirement of the Kärkkäinen’s

suffix sorting algorithm?

The main contribution of this chapter is a method for implementing the pointer copying

heuristics from internal memory suffix array construction in a semi-external setting besides

94
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using algorithmic optimization techniques. We achieve a speed up of 2-4 times without

increasing memory usage of the algorithm. We are up to twice as fast as the next fastest

algorithm by Ferragina, Gagie and Manzini [Ferragina et al., 2012] when working memory is

equated. We then set out to answer the following research question:

• Using the new algorithm, can we suffix sort strings with large alphabets?

We are 2-3 times slower than Larsson and Sadakane [2007] (the best published algorithm

for strings with large alphabets), but we use less memory. This new algorithm is thus of use

when memory is particularly tight.

Often used with the SA, is the longest-common-prefix (LCP) array. When enhanced with

the LCP array, the SA can provide efficient solutions to many string processing applications

including a problem called pattern mining. The existing mining algorithms lie at either

extreme of the efficiency spectrum: they are either fast and use enormous amounts of space,

or they are compact and orders of magnitude slower. In Chapter 4, we aimed to address the

following research question:

• Can we solve mining problems for string data closer time to the fastest published algor-

ithm and use the same amount of space or less than the most space efficient algorithm?

We presented an algorithm for mining substrings from a database of strings that is,

in practice, as fast as the fastest existing approaches, and uses less memory that the most

space efficient approaches. Our main mechanism for keeping memory usage low is to build the

enhanced SA incrementally, in blocks. Once built, a block is traversed to output patterns with

required support before its space is reclaimed to be used for the next block. Asymptotically,

we require O(n log σ) bits of memory and O(n log2 n) space to mine a database of total length

n symbols drawn from an alphabet of σ possible symbols.

Using our approach one can find all frequent patterns in the human genome with a

given support in under 6 hours using 9 GB of RAM on a standard work station. It should

be noted that our algorithm is capable of handling all string mining problems where the

reporting (or not) of a pattern is based on the frequency of the pattern in the database,

similar to [Fischer et al., 2006; 2008; Kügel and Ohlebusch, 2008; Weese and Schulz, 2008].

We have considered frequent patterns and emerging patterns here, but we can also restrict

patterns to, for example, pass the χ2-test.

Pointer copying heuristics have been used to speed SACAs, but not LCP construction

algorithms. We then set out to ascertain the following research question:
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• Can we reduce the construction time of the LCP array via pointer copying?

In Chapter 6, we investigated new approaches to combine the pointer copying heuristics to

an efficient LCP construction algorithm due to Kärkkäinen, Manzini and Puglisi [Kärkkäinen

et al., 2009]. Improvements in construction time are observed.

The Burrows-Wheeler transform (BWT) was discovered independently of the SA, but it

is now known that the two data structures are essentially equivalent. In the last 20 years or

so, hundreds of papers have been published on SACAs, forward BWT algorithms and their

variants, but very few papers on inverting the BWT. For very large collections, there may not

be enough RAM memory to invert the BWT using traditional approaches [Kärkkäinen and

Puglisi, 2010]. There are forward BWT algorithms that work on disk but none for inversion.

Only a theoretical proposal due to Ferragina, Gagie and Manzini [Ferragina et al., 2010]

exists. We then set out to establish the following research question:

• Can we provide an implementation of the only theoretical proposal of Ferragina, Gagie

and Manzini’s algorithm?

Chapter 7 has closed the gap between the theory and practice by examining the problem

of inverting BWT efficiently on disk. Several possibilities of implementing the only theoretical

proposal due to Ferragina, Gagie and Manzini [Ferragina et al., 2010] were explored. The

best approach in terms of time and space was implemented. To this end, we aimed to address

the following research question:

• Their algorithm is complex, so can we discover simple, more practical inversion algo-

rithms for disk?

Some of our new inversion techniques include scanning, prioritizing the block based on ranks,

and boosting the effective block size with Run Length Encoding. These techniques are further

aided with previous and nearest reference points that store precomputed ranks. We have

shown that our best approach is up to 14 times faster than the implementation of Ferragina

et al., and that inversion of the BWT in external memory is practical.

8.2 Future Work

We now outline some directions that could benefit from future research.
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8.2.1 Suffix Sorting

Some potential areas for future research in suffix sorting are as follows.

Suffix selection. A problem where one seeks the suffix of a given rank, without resorting to

sorting all suffixes, has received some attention recently [Franceschini and Muthukrishnan,

2007a;b; Franceschini et al., 2009; Franceschini and Hagerup, 2011]. Efficient suffix selection

algorithms can aid suffix sorting algorithms. For example, they could be used to choose good

splitters in Kärkkäinen’s algorithm. This removes the situation of underfull/overfull blocks

as each pass will always collect bmax number of suffixes. Recall the algorithm currently falls

back to using suffix splitters when the frequency of one symbol in the input string exceeds

bmax, although this is rare in practice. Should this occur, a good selection of splitters can

reduce the number of passes over the text which further reduces the overall running time.

However, suffix selection algorithms discovered to date have high constant factors (both on

time and space bounds) and do not seem practical. Developing more practical lightweight

suffix selection algorithms would be of interest.

Free of alphabet size. A somewhat neglected aspect of many of the space-efficient suf-

fix sorting algorithms is the alphabet size. In particular, the external memory algorithm

of Ferragina et al. [2012] assumes a small, constant alphabet. We have shown Kärkkäinen’s

algorithm works for larger alphabets, but memory use is still quite high. The development

of an efficient external memory algorithm free of this assumption is an important open

problem. Some theoretical progress has been made [Hon et al., 2003; Na, 2005], but we are

aware of no practical approaches. The algorithm due to Hon et al. [2003] was implemented

a long time ago but it was slow and used too much space [Kärkkäinen, 2007].

Improving average-case runtime. For inputs where the length of the maximum (or

even the average) longest-common-prefix is relatively small (O(v) say), the Difference Cover

Sample of size v, DCSv(x) will not be greatly utilized, with most (or all) of the SA/LCP

block determined by multikey quicksort (MKQS) and brute force symbol inspection. For

such inputs the memory used by DCSv(x) would be better spent on a larger block size, so

that more suffixes could be collected each pass, speeding overall processing. We observe

that the sampled LCP values contained in DCSv(x) and used for Lemma 2 (on page 12)

tell us within v the maximum overall LCP value [Puglisi and Turpin, 2008], allowing us to

make the decision to discard it in favour of a larger block size before traversal begins. A

prototype of this approach has been completed and we plan to integrate it into the suffix
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sorting code of Chapter 5.

8.2.2 String Mining

Some potential areas for future research in string mining are as follows.

Further reducing space. While we use dramatically less memory than the algorithm of

Fischer, Heun and Kramer [Fischer et al., 2006], the random accesses we make to the input

string of concatenated databases during block sorting necessitates they be held in memory,

and for very large inputs (hundreds of gigabytes or more) this will be onerous. It may be

worth investigating ways to make only sequential accesses to the input string so that it

can reside on secondary memory throughout the sorting/mining process. One idea is to

explicitly copy v length prefixes of suffixes into the block instead of simply storing a pointer

into the text for each suffix. This requires us to make (at most) v times the number of

passes, but may still lead to acceptable runtimes.

Parallelization. The block-oriented nature of our algorithm in Chapter 4 means it paral-

lelizes naturally: each processing element can be given a different lexicographically contigu-

ous subset of the splitters and then processes its own part of the suffix array, computing the

frequent items therein. Each element would need (read-only) access to xM and DCSv(xM),

which is trivial if the elements share a common memory. If processing elements do not share

memory, then xM and DCSv(xM) can be computed centrally and then replicated for each

node. Care is needed in accumulating counts for short patterns which may span blocks. We

sketch a possible approach: choose σλ splitters, λ ≥ 1 such that each splitter has a different

λ length prefix. Substring patterns of length ≥ λ are mined in parallel by different cores

using the new algorithm. Provided λ is not too large, short patterns with length < λ can be

gathered separately in a single scan of x using a table of size O(σλ) to accumulate counts.

Suffix tree traversals. Here we have focussed on substring mining, but the bottom-up

suffix tree traversal we simulate has many other interesting and useful applications, for

example computing the LZ77-factorization of the input [Chen et al., 2008; Gusfield, 1997].
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