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Abstract  

Cardiovascular disease is one of the leading causes of death in the developed world. It is 

well established that platelets play an essential role in the development of cardiovascular 

disease and formation of vascular thrombosis particularly in diabetic patients. Studies have 

shown that consumption of dietary flavonols is associated with cardiovascular benefits. 

Flavonols are polyphenolic compounds with well documented antioxidant activity. It has 

been suggested that the cardiovascular benefits are partly due to antiplatelet activity. The 

antiplatelet potential of the naturally occurring flavonol quercetin has been reported, but 

the antiplatelet mechanism is not fully elucidated. In addition to that, no studies have 

evaluated the antiplatelet potential of the structurally related synthetic flavonol 3’, 

4’dihydroxyflavonol, which has been shown to have greater antioxidant capacity than 

natural flavonols. Furthermore, the effect of Que or DiOHF on arterial blood flow in 

arterial thrombosis has not been investigated. 

Using a combination of in vitro and in vivo experimental models, the primary aims of the 

studies undertaken for this thesis were to investigate the antiplatelet potential of Que and 

for the first time DiOHF, and to elucidate the antiplatelet mechanism in vitro. Furthermore, 

the effect of Que or DiOHF treatment on platelet function and thrombus formation in a 

model of in vivo platelet mediated arterial thrombosis in healthy and type-1 diabetic animal 

models were also investigated. 

The first chapter provides a comprehensive review of the current understanding of 

antiplatelet mechanisms and potential of flavonols and justification for the current study. 

Chapter two contains a thorough description of the techniques and methods employed in 

this thesis, sufficient to allow replication of experiments by the reader. Accordingly, the 

specific aims of the first study described in Chapter three were to; determine the effects of 

Que or DiOHF on human platelet aggregation, dense and alpha granule exocytosis, 

GPIIbIIIa receptor activation and fluorescently labelled fibrinogen binding in vitro. Both 

Que and DiOHF showed a concentration dependent inhibition of collagen, adenosine 

diphosphate (ADP) and arachidonic acid (AA) stimulated platelet aggregation, and also 

inhibited agonist induced dense granule exocytosis. Greater inhibition of dense granule 

exocytosis occurred with DiOHF, as measured by both ATP release, and fluorescent 

quinacrine uptake and thrombin-induced release (P < 0.05 between DiOHF and Que). In 

contrast, while Que significantly inhibited alpha granule exocytosis, as measured by 
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platelet surface P-selectin expression stimulated with ADP, AA, and adrenaline + collagen, 

DiOHF did not produce significant inhibition. This was confirmed by agonist induced 

increase in platelet surface CD61 expression from intracellular alpha granule stores when 

stimulated with AA or TRAP. Both AA or TRAP significantly increased CD61 MFI in the 

presence of vehicle and 1 mM DiOHF, but not in the presence of 1 mM Que. Que or 

DiOHF (both 1 mM), significantly inhibited ADP, TRAP and adrenaline + collagen 

induced GPIIbIIIa activation as measured by PAC-1 binding. Correspondingly, 1 mM Que 

only achieved significant inhibition of 10 and 20 µM of TRAP- induced fibrinogen binding 

to platelets. This Chapter demonstrates that Que and DiOHF have anti-aggregatory actions 

with different inhibition of dense and α-granule exocytosis. 

The aim of the study undertaken in Chapter four was to investigate the effect of a single 6 

mg/kg intravenous bolus, or daily intraperitoneal doses of 6 mg/kg of Que or DiOHF over 

7 consecutive days, on thrombus formation in a well characterized mouse model of platelet 

mediated thrombosis, and murine platelet function ex vivo. Vehicle treated C57BL/6 mice 

had near complete vessel occlusion within the first 15 min following FeCl3 induced carotid 

artery damage with single IV dose or multiple IP dose regimens. Whereas, blood flow at 

15 min was maintained at near pre-injury levels for mice treated with 6 mg/kg of Que or 

DiOHF for both single IV and multiple IP regimens. Blood flow remained completely 

occluded for vehicle treated mice at 30 min following arterial injury for single IV and 

multiple IP regimens, while Que or DiOHF treated mice maintained significant blood flow 

for both treatment regimens. Improvement in blood flow corresponded to significant 

inhibition of platelet aggregation and dense granule exocytosis for both treatment 

regimens. This Chapter provides the first evidence of inhibition of thrombus formation in 

vivo by Que or DiOHF using two different treatment regimens.  

The aim of the study described in Chapter five was to investigate the effect of daily 6 

mg/kg intraperitoneal doses of Que or DiOHF over 7 consecutive days on thrombus 

formation in a mouse model of type-1 diabetes, and murine platelet function ex vivo. 

Vehicle treated diabetic mice had 50% blood flow at 5 min, while diabetic mice treated 

with 6 mg/kg of Que or DiOHF significantly delayed thrombus formation and improved 

blood flow in the carotid artery at 5 min. Blood flow at 30 min, expressed as area under the 

curve was significantly greater in flavonol treated diabetic mice when compared to the 

vehicle treated group. Platelets derived from diabetic mice were hyper-aggregable in 

response to AYPGKF-NH2 stimulation when compared to the vehicle treated control mice 
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(102.4± 9.2% diabetic platelets vs. 78.3± 1.9% control platelets, P <0.05). Platelet hyper-

aggregability in diabetic mice was significantly reduced following 7 day treatment with 

Que or DiOHF (64.0± 6.7 and 70.2± 8.9%, respectively, P <0.05 vs. vehicle). There was 

no difference in granule exocytosis between diabetic and non-diabetic mice in response to 

AYPGKF-NH2 stimulation. However, treatment with 6 mg/kg of Que or DiOHF 

significantly inhibited dense granule exocytosis as measured by quinacrine release in 

diabetic and control mice. In contrast, treatment with 6 mg/kg of Que or DiOHF did not 

produce inhibitory effect on alpha granule exocytosis as measured by P-selectin expression 

induced by AYPGKF-NH2 in both diabetic and control mice. The data in this Chapter 

demonstrates inhibition of platelet function and thrombus formation in an in vivo model of 

diabetes. 

In conclusion, this thesis provides the first evidence of inhibition of platelet activation, 

aggregation and granule secretion by DiOHF. Furthermore, it demonstrates that Que and 

DiOHF have different potencies for inhibiting dense and alpha granule release. This thesis 

also provides the first evidence of inhibition of platelet-mediated arterial thrombosis in 

vivo using different treatment regimens of these flavonols in both healthy and diabetic 

animal models mediated at least in part by inhibition of platelet function, and this effect 

persists for at least 24 hours after the last intraperitoneal dose. These data open the way for 

a potential clinical role for flavonols as anti-platelet therapy. 
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Platelets play a critical role in thrombosis and for this reason anti-platelet therapy is the 

mainstay of primary and secondary prevention of arterial thrombosis and cardiovascular 

events. However, considerable variability occurs in response to current antiplatelet agents, 

particularly in the context of diseases such as diabetes. Therefore exploration of the 

mechanisms of potential antiplatelet activity of compounds with reported cardiovascular 

benefits may be important to inform the development of novel and alternative antiplatelet 

therapies. Flavonols have generated considerable interest for their cardioprotective, anti-

oxidant capacity and reported antiplatelet properties. Exploration of the ability of flavonols 

to prevent mediated thrombosis is therefore warranted. 

1.1- Platelets 

Scientists have been studying platelets for many decades. In 1873 William Osler described 

disc like structures in the blood that rapidly form aggregates [1]. In 1881 Giulio Bizzozero 

made an important discovery using intravital microscopy of mesenteric vessels. He 

concluded that the blood “plate” structures were distinct cells that circulate in isolation and 

were blood components, which have a role in thrombosis and haemostasis. Bizzozero also 

noted leukocytes were attracted to aggregated platelets [1]. Since the late 1800s scientists 

have revealed a great deal of detail regarding platelet structure and function and role in 

many diseases.  

1.2 Platelet biology 

Platelets have a major role in thrombosis and haemostasis. Mammalian platelets have 

evolved to contain special structures and organelles in order to carry out their function. 

Platelets have different receptors for various agonists and internal organelles that have a 

variety of functions during the process of platelet activation. 

1.2.1 Platelet production 

It is well known that platelets are derived from the megakaryocytes; however, the 

mechanism by which the platelets are formed is still controversial. Several models of 

platelet production have been suggested to better understand platelet production 

mechanisms. These models include; cytoplasmic fragmentation, platelet budding from the 

megakaryocyte surface and proplatelet formation. It has been proposed that platelet 

production takes place in the bone marrow, and since the megakaryocytes can migrate 

from the bone marrow into the bloodstream platelet formation can also take place at other 

sites including the lungs [2-4]. The megakaryocytes originate from haematopoietic stem 



6 
 

cells that undergo a series of differentiation stages (Fig 1.1) under the influence of many 

growth factors and cytokines, such as interkeukin-6 (IL-6) and colony-forming unit-

megakaryocytes (CFU-MK) [5, 6]. Platelet production is regulated by interleukins and 

thrombopoietin, but mainly by the latter [7]. Thrombopoietin is produced in the liver and 

kidney to stimulate the production and differentiation of megakaryocytes [8]. Formed 

platelets will be released into the peripheral bloodstream. The released platelets are 

anulcear and discoid in shape with their size ranging from 2–3 μm in diameter [9]. The 

platelet reference range in a healthy adult is 150-350 x10
9
/L [10], and they remain in the  

circulation for about 7-10 days after which they are removed by the spleen [5]. The 

released platelets contain different granules, a dense tubular system, receptors, 

mitochondria, phospholipids and contractile proteins (Fig 1.2) [11, 12].  

1.2.2 Receptors 

The primary function of platelets is to arrest blood loss at sites of vascular injuries. 

Platelets, through interaction with the vessel wall at the site of injury that exposes a 

thrombogenic agent, are able to initiate primary haemostasis [13]. Platelet receptors play 

an essential role in mediating such interactions. Platelets express many receptors on their 

surface membrane that are specific to thrombogenic agents such as collagen, adenosine 

diphosphate (ADP), thrombin and thromboxane A2 (Fig 1.3). Platelets have receptors that 

recognise ligands such as ADP, or receptors that function as adhesion receptors such as 

GPIIbIIIa which serves as an adhesion receptor for fibrinogen and von Willebrand factor 

(vWF). Platelets receptors, through ligand interaction, are able to rapidly activate platelets 

and change the expression and conformation of other surface receptors in order to facilitate 

further activation and adhesion. 

1.2.2.1 Collagen receptors  

Collagen is one of the most thrombogenic agents found in the subendothelial matrix 

following endothelial injury. It exists in three types in blood vessels, types I, II and III [14, 

15]. Collagen plays a crucial role in the initial platelet adhesion and their  subsequent 

activation during thrombus formation [16]. Glycoprotein VI (GPVI) and GPIa-IIa are the 

platelet receptors for collagen [17]. Both receptors play an important role in platelet 

adhesion to collagen and collagen induced activation. Collagen binds to GPVI which 

initiates activation via the Fc receptor γ-chain, which leads to activation of Src kinases and 

tyrosine phosphorylation. This results in the activation of phospholipase C-γ2 (PLC-γ2) as 
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well as increase in calcium mobilization [18, 19]. Under high flow condition GP1a-IIa 

receptor interaction with collagen is crucial from platelet adhesion and thrombus formation 

[20]. 

1.2.2.2 Von Willebrand receptor 

Von Willebrand factor (vWF) is essential for mediating initial platelet adhesion and 

activation at the site of vascular injury particularly under the conditions of high shear rate 

such as in the arterioles [21]. vWF is synthesized by the megakaryocytes and endothelial 

cells, and is stored in Weibel-Palade bodies within the endothelial cells and in the alpha 

granules of the platelets (see section 1.1.4.1) [22]. vWF is found in the subendothelial 

matrix or bound to coagulation factor VIII [23, 24].  

Two platelet receptors bind to vWF during vascular injury, the glycoprotein Ib-IX-V  

(GPIb-IX-V) complex and the integrin αIIbβ3 [25]. The GPIb-IX-V complex consists of 

four subunits, Ibα, Ibβ, GPIX and GPV [26]. Under conditions of rapid blood flow and 

high shear rate vWF mediates initial platelet adhesion through binding to GPIb-IX-V 

complex. This initial adhesion initiates a series of intracellular signalling resulting in actin 

polymerisation and cytoskeletal rearrangement, which leads to the activation of inside-out 

signalling which includes increase in calcium concentration, shape change, kinase 

activation and granules secretion [27, 28]. Also vWF binds to αIIbβ3 integrin to change its 

conformation to the active form. The activated αIIbβ3 integrin will then bind to fibrinogen 

[21, 25, 29, 30]. 



8 
 

 

 

 

Fig 1.1: Diagrammatic representation of different stages of blood cell maturation. Platelets 

and most blood cells arise from a common myeloid progenitor cell. 
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Fig 1.2: Diagrammatic representation of a mature platelet, showing the intracellular 

contents including mitochondria, granules and contractile proteins.  
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Fig 1.3: Diagrammatic representation showing different platelet receptors. Each platelet 

agonist induces platelet activation via its specific receptor/s.  
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 1.2.2.3 Thrombin receptors 

Thrombin is generated as a result of the secondary haemostasis and the activation of the 

coagulation cascade (Fig 1.4), and is a very potent platelet agonist [31]. Protease activated 

receptors (PARs) are the specific platelet receptors, and are members of the seven 

transmembrane receptor family that are G-protein coupled receptors [32]. The PARs play 

an essential role in platelet activation by thrombin [33]. Human platelets express four 

PARs namely PAR 1, PAR 2, PAR 3 and PAR 4. PAR 1 and PAR 4 have been found to 

play an important role in thrombin induced platelet activation. Murine platelets have been 

shown to express PAR 3 and PAR 4 [34, 35]. PARs are activated by serine proteases such 

as thrombin. Thrombin cleaves the extracellular N-terminus of the PARs 1, 2 and 4, 

thereby creating a new amino terminal which acts as a tethered ligand. The newly formed 

N-terminus of the receptor will serve as an agonist and initiate thrombin induced platelet 

activation [36]. Both PAR 1 and PAR 4 are coupled to Gqα and G12/13α. Activated PAR 1 

and 4 will increase platelet cytosolic calcium which is in turn activates phospholipase A2 

[32, 37-39]. Both receptors are required to initiate thrombin activation. 
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Fig 1.4: Diagrammatic representation of the interaction of the coagulation cascade and 

platelets during activation.  



13 
 

1.2.2.4 ADP receptors 

ADP is a low molecular weight platelet agonist which is mainly stored in platelet dense 

granules, but it can be found in other cells as the product of ATP dephosphorylation by  the 

enzyme ATPase [40]. It has an important function in propagating the initial platelet 

activation process, because it serves as a positive feedback mechanism [41] which has been 

found to be an important step in platelet aggregation [42]. Activated platelets release ADP 

and other signalling molecules into the plasma during their shape change [43]. Released 

ADP binds to its platelet specific receptors and induces further activation. The main 

platelet ADP receptors are P2Y1 and PY12 [44, 45]. Both receptors activate platelets via G 

protein-coupled receptors. The P2Y1 receptor is coupled to Gq-type whereas P2Y12 

receptor is coupled to Gi-type which then activates PLC [43, 46, 47]. Studies have shown 

that both receptors are required for the full ADP-induced platelet activation [48, 49]. 

1.2.2.5 Thromboxane A2 receptors 

TXA2 is an important positive feedback mediator of platelet activation [47, 50]. TXA2 is 

generated in the platelets during the activation process. Agonist induced platelet activation 

results in the mobilization of arachidonic acid from phospholipids (Fig 1.5). The 

mobilised arachidonic acid is then converted to TXA2 in the presence of two enzymes 

cyclooxygenase and thromboxane A2 synthase [51, 52]. The synthesized TXA2 is then 

exported outside the platelet. TXA2 binds to its specific platelet receptor thromboxane 

receptor (TP) to induce activation. TP is a G-protein coupled receptor [53]. It has been 

reported that human platelets contain two different TP subclasses TPα and TPβ. TPα 

receptor is coupled to Gq, whereas TPβ is coupled to Gi [51]. TXA2-induced activation 

stimulates the activation of PLC and an increase in intracellular concentrations of inositol 

1,4,5-triphosphate and diacylglycerol (DAG). Increased concentration of inositol 1,4,5-

triphosphate induces an increase in the cytosolic calcium concentration which then leads to 

platelet shape change and granule exocytosis [51, 52]. 
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Fig 1.5: Diagrammatic representation of thromboxane A2 formation within platelets.
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1.2.3 Granules  

Platelets are highly populated with granules which are important for platelet adhesion and 

activation and ultimately thrombus formation and growth. Platelets contain three different 

types of granules, that is, alpha granules, dense granules and lysosomes [54]. Each of these 

secretory organelles differs in contents, composition, and their role in platelet adhesion and 

activation. 

1.2.3.1 Alpha granules 

Platelet α-granules are the largest and most abundant secretory organelle. Each platelet 

contains up to 80 α-granules [55]. Recent studies have shown that different subtypes of 

α-granules exist with different expression of pro- and anti-angiogenic factors [56, 

57]. α-granules contain a variety of proteins, such as coagulation proteins (factor V), 

growth factors (platelet factor 4 and beta-thromboglobulin), adhesion molecules (P-selectin 

and vWF), platelet ligands (fibrinogen) and cytokines [54, 58, 59]. Alpha granules begin 

development in the megakaryocytes, and continues in the circulating platelets. Alpha 

granule exocytosis plays an important role in both primary and secondary haemostasis. In 

primary haemostasis, alpha granules fuse with platelet plasma membrane expressing and 

secreting adhesion molecules such as P-selectin and vWF. P-selectin binds to leukocytes 

and plays an essential role in recruiting neutrophils and monocytes to the site of vascular 

breach [60]. vWF mediates platelet adhesion through its platelet receptor. Alpha granules 

also contain fibrinogen which is the ligand for the integrin GPIIbIIIa, which crosslinks 

activated platelets and stabilises the formed thrombus [55]. In secondary haemostasis, the 

alpha granules secret coagulation protein such factors V and XI which are both important 

in the activation of the coagulation cascade.  

1.2.3.2 Dense granules  

Like the alpha granules the dense granules develop in the megakaryocytes. The number of 

the dense granules is 10-fold less that of the alpha granules. Dense granules contain many 

signalling molecules, including ADP, ATP, serotonin and calcium. [61, 62]. Platelet dense 

granules are particularly important in the amplification of the initial platelet activation and 

thrombus growth. During platelet activation, the dense granules release their content. 

Calcium and ATP are required for the phosphorylation of a number of different kinases 

such as protein kinase C (PKC) and others that are required for platelet aggregation [63, 

64]. Also ADP and serotonin will be released which act as a positive feedback mechanism 
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in propagating the activation process. ADP binds to its receptors inducing enhanced 

activation [65]. ADP induced platelet activation will increase TXA2 formation [62]. 

1.2.3.3 Lysosomes 

Platelets contain a small number of primary and secondary lysosomes [66]. Platelet 

lysosomal development is also in the megakaryocytes, and there has been a suggestion that 

the lysosomal development begins before alpha granule development [54]. Platelet 

lysosomes contain acidic hydrolases and degradation enzymes [67]. It has been suggested 

that lysosomes are important for calcium regulation in platelets and other cells [68]. 

1.2.3.4 Granule exocytosis 

Binding of platelet agonists to their cognate receptors induces activation of various 

signalling pathways, leading to dramatic shape change and granule release reaction. 

Platelet release reaction is a critical component of platelet function and thrombus growth, 

as it allows both the site specific release of pre-formed thrombo-inflammatory mediators, 

as well as alterations of the platelet surface membrane adhesion molecule and receptor 

expression [69]. It has been shown that platelet granule exocytosis is carried out via 

membrane fusion. Granular membrane fuses with the platelet membrane and thereby 

releasing their content into the outside environment [70].  

The membrane fusion process requires a great deal of energy and dedicated machinery. A 

protein superfamily known as soluble-NSF-attachment-protein-receptors (SNAREs), play a 

major role in facilitating the fusion of granular and platelet central membranes [71]. 

SNAREs are membrane associated proteins are found in the membranes of target 

compartment of the cell. SNARE proteins are subdivided into two major types, namely 

vesicle SNAREs (v-SNAREs), which are the granular proteins located on the granular 

membrane, and target SNAREs (t-SNAREs) which are located on the target membrane i.e. 

platelet membrane.   

v-SNAREs in human and mouse platelets include VAMP 2/synaptobrevin, VAMP 

3/cellubrevin, VAMP 7 and VAMP 8/endobrevin. VAMP 8 is the most abundant. In mouse 

studies it has been shown that VAMP 8 is plays an important role in granule exocytosis, 

particularly of dense granules [72, 73]. Platelet t-SNAREs include syntaxin 2, 4, 7 and 11 

and SNAP 23 and 25 [56]. It has been suggested that syntaxin 4 is required for alpha 

granule secretion, while SNAP 23 is necessary for dense granule exocytosis [74]. 



17 
 

The fusion of both granular and platelet membranes requires the interaction of both v-

SNAREs and t-SNAREs to form a fusion complex. v-SNAREs and t-SNAREs form a four 

helix bundle leading to the formation of a coiled-coil in a parallel fashion, and thereby 

forming an exocytotic core that brings the granular membrane closer to the plasma 

membrane where the granular contents are released [56, 71]. 

1.3 Platelet physiology 

1.3.1 Role in thrombus formation 

Platelets play a pivotal role in haemostasis, which is the mechanism by which blood loss is 

arrested by thrombus formation; animal models have been used to demonstrate that 

thrombus formation is platelet mediated process [75]. Platelets are responsible for the 

primary haemostasis at the site of vascular breach. Injury to the vascular endothelial lining 

exposes the highly thrombogenic subendothelial matrix on which collagen and vWF are 

found [24, 76]. Collagen and vWF bind to their specific platelet receptors causing platelet 

tethering and adhesion to the damaged vessel wall. The adherent platelets undergo a series 

of activation processes including outside-in signalling, which leads to cytoskeletal 

rearrangement and phosphorylation of enzymes such as PLC. PLC has an important role in 

activating different signalling molecules such as SNARE proteins that are required for 

granule exocytosis. This results in platelet granule exocytosis. Platelet dense granules 

exocytose signalling molecules such as ADP, calcium and serotonin. In situ release of 

these signalling molecules results in autocrine activation of platelets which recruits more 

platelets from the circulation to the site of thrombus formation. Platelet alpha granules 

exocytose coagulation proteins (e.g factor V) and fibrinogen and tissue factor granules [23, 

77]. The coagulation proteins will initiate the secondary haemostasis, which is the 

activation of the coagulation cascade. The activation of the coagulation cascade leads to 

thrombin generation [35]. Thrombin is a very potent platelet agonist; its generation will 

further amplify platelet activation [38]. It will also convert fibrinogen to fibrin resulting in 

a stable platelet rich thrombus. Under normal circumstances this platelet rich thrombus is 

eventually degraded by the fibrinolytic system and normal blood flow is resumed in the 

vessel. 
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1.3.2 Adhesion 

Thrombus formation at the site of vessel injury is a complex and multistep process 

requiring many platelet receptor-ligand interactions. Platelet adhesion to the injured 

vascular wall is the first step in the formation of a stable thrombus [78]. Damage to the 

vessel wall exposes the extracellular matrix proteins such as collagen and fibrinogen [79]. 

Under high shear rate, platelet adhesion is mediate by vWF and the GPIb-IX-V receptor 

complex [80]. This allows circulating platelets to tether and roll over the extracellular 

matrix, this will facilitate the interactions of collagen and GPIV [81, 82]. Under low shear 

rate, platelet adhesion is mediated by the interaction of platelet GPIa-IIa with collagen [83, 

84]. The interaction of collagen with its platelet receptor will initiate a series of 

intracellular signalling including outside-in signalling leading to platelet activation [85]. 

Activated platelets will express P-selectin, which facilitates platelet leukocyte adhesion. 

1.3.3 Signalling 

Platelets are activated by a variety of agonists. Each agonist induces platelet activation via 

binding to its specific platelet receptor. Agonist–receptor binding initiates a series of 

different intracellular and extracellular signalling events, these enable platelets to adhere to 

the site of injury and ultimately plug formation. 

1.3.3.1 Inside-out signalling 

Inside-out signalling changes the conformation of αIIbβ3 integrin from a bent to an 

extended form facilitating the binding of its ligands, including fibrinogen and vWF. 

Binding of these ligands to the activated αIIbβ3 plays an essential role in stable platelet 

adhesion and aggregation and initiates outside-in signalling [86, 87]. 

1.3.3.2 Outside-in signalling 

Ligand binding to αIIbβ3 triggers a series of intracellular signalling events known as 

outside-in signalling, these signalling events lead to the activation of different kinases 

which in turn phosphorylate other signalling molecules such as PI3K and PLC. Signals 

transduced by outside-in signalling propagate platelet activation and results in a stable 

platelet adhesion and spreading, granule exocytosis and clot retraction [88].  
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1.3. 4 Activation and aggregation 

Platelet activation is the second step in the series of events leading to a platelet rich 

thrombus formation. Platelet activation follows platelet adhesion to the extracellular matrix 

via the interactions of collagen and vWF with their respective platelet receptors [80]. The 

interaction of GPVI with collagen is particularly important in initiating platelet activation. 

It has been suggested that collagen causes clustering of GPVI, which leads to non-receptor 

phosphorylation of γ-chain by tyrosine kinases in the Src family. This initial 

phosphorylation of the γ-chain activates Syk which results in the phosphorylation and 

activation of the PLCγs isoform [86]. Activated PLC hydrolyses phosphatidylinositol-4,5-

bisphosphate (PIP2) resulting in the formation of 1,4,5-IP3 and DAG [89]. IP3 activates 

calcium channels in the dense tubular system, thereby increasing the cytosolic calcium 

concentration and aiding in triggering calcium influx [90, 91].  

Platelets are activated by a variety of agonists. However, all of these agonists lead to a 

common end point at the end of the activation process, which is the conformational change 

of GPIIbIIIa receptor, and hence platelet aggregation. For example accumulated thrombin 

binds to its platelet PAR receptors (PAR1 and PAR 4). Thrombin activates platelets via G-

coupled protein receptors (Gq and G12) by outside-in signalling resulting from tyrosine 

phosphorylation [92]. Inside-out signalling leads to the activation of PLCβ, which 

hydrolyses PIP2 forming IP3 and DAG. IP3 releases calcium from its stores and induce 

influx across the platelet membrane [87, 93]. 

DAG activates PKC, the activation of PKC leads to PLA2 activation. PLA2 hydrolyses 

phospholipids from the cell membrane mobilizing arachidonic acid. Arachidonic acid is 

converted to TXA2 by cyclooxygenase one (COX-1). Following its formation, TXA2 is 

then transported outside the platelet, which then binds to its platelet receptor and causes 

further activation [80, 94]. Calcium influx and activated PKC will induce platelet actin 

filament polymerization and cytoskeletal rearrangement, which leads to platelet shape 

change and the extension of pseudopodia and the release reaction. Platelet dense granules 

will release ADP and other signalling molecules to propagate the activation process and 

recruit more platelet to the growing thrombus [95]. Whereas the alpha granules will release 

coagulation and adhesion proteins such as P-selectin which will adhere platelet to 

leukocyte forming platelet-leukocyte aggregates. Platelet shape change and the release 

reaction lead to the conformational change of the fibrinogen receptor GPIIbIIIa. Activated 
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GPIIbIIIa will bind to fibrinogen. Fibrinogen crosslinks activated platelets, thereby causing 

platelet aggregation [96] (Fig 1.6). 
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Fig 1.6: Diagrammatic representation of platelet activation pathways.
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1.3.5 Inflammation 

Whilst the primary function of platelets is to control haemostasis and to prevent blood loss 

by thrombus formation, it has become increasingly evident that platelets also play a vital 

role in inflammation and the pathogenesis of inflammatory conditions such as 

atherosclerosis [97].  Platelet adhesion to a damaged vascular wall via the interaction of 

platelet receptors with the extracellular matrix components (collagen and vWF), leads to 

platelet activation [98, 99]. Activated platelets undergo a series of intracellular signalling 

events that lead to platelet shape and granule exocytosis. Platelet granules exocytose many 

different chemokines, cytokines and adhesion molecules into the extracellular environment 

that support chemotaxis and adhesion at the site of inflammation [100-102] see table 1.1.  

Platelet IL-1β has been implicated to be an important mediator of inflammation at sites of 

endothelial damage [103, 104]. Platelet derived IL-1β induces IL-6, IL-8 and macrophage 

chemoattractant protein-1(MCP-1) release from the endothelial cells. Also IL-1β increases 

the expression of adhesion molecules such as ICAM-1 on the surface of the endothelial 

cells, which results in monocyte and neutrophil adhesion to the endothelium [105-107].  

Platelets can also mediate inflammation at the site of vascular wall injury by adhering to 

leukocytes via P-selectin expression. P-selectin is a leukocyte adhesion protein expressed 

on the surface of activated platelets. Platelets release chemo-attractants such as platelet-

activating factor, macrophage inflammatory protein-1α, PF-4 and RANTES, recruiting 

monocytes and neutrophils [4, 108, 109]. P-selectin binding to the leukocytes induces 

further release and expression of adhesion molecules and chemoattractant from the 

leukocytes [110].  

Furthermore, platelets store CD40L a member of tumour necrosis factor superfamily, 

which is a stimulatory protein, at high concentrations. Activated platelets release CD40L 

[111] which stimulates inflammatory responses in the endothelium by increasing the 

release of IL-8 and MCP-1 which play an essential role in attracting monocytes and 

neutrophils. Also CD40L enhances the expression of endothelial adhesion molecules 

including E-selectin, VCAM-1 and ICAM-1 [105]. 
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1.3.6 Wound repair 

Platelets are major contributors to wound healing, tissue remodelling and innate immunity 

[112]. During the activation process platelets release various pro-inflammatory mediators 

and growth factors that are vital in initiating tissue repair and remodelling [112]. Platelets 

secrete several types of growth factors, including, IGF-1, PDEGF, PDGF, TGF-β, PF-4, 

VEGF, etc. see table 1.1.  

IGF-1 is an important chemotactic agent for many cell types. It stimulates proliferation and 

differentiation of various cell types. In platelets it was shown to regulate activation via Akt 

phosphorylation [113]. PDGF has been shown to play an important role in macrophage 

activation and vascular remodelling following injury. PDEGF is released from the alpha 

granules of the activated platelets; it stimulates proliferation of keratinocytes and dermal 

fibroblasts by stimulating epidermal regeneration, and thereby initiating wound healing 

and tissue repair. TGF-ß is also released from the alpha granules, it induces type 1 collagen 

synthesis and fibroblast proliferation. PF-4 is involved in many biological processes 

including wound healing. It induces the migration of neutrophils to the site of injury where 

more growth factors are released by the neutrophils promoting tissue regeneration and 

recruitment of more leukocytes. VEGF has a variety of important functions in promoting 

wound healing. It stimulates the migration and mitosis of endothelial cells, as well as the 

generation of new blood vessel lumen. VEGF can also act as a chemotactic agent for 

macrophages and leukocytes [114-116].  

Platelets can also release other mediators of tissue repair such ATP, ADP and serotonin. 

Serotonin is an important vasoconstrictor and mitogenic factor acting on vascular smooth 

muscle cells [117]. ATP and ADP promote the release of IL-6 and IL-8 from the 

keratinocytes, stimulating proliferation and differentiation and ultimately tissue 

regeneration [107].  

P-selectin expression mediates platelet-leukocyte interaction at the site of endothelial 

damage. Upon adhesion the leukocytes undergo activation, where they release growth 

factors and mediators of inflammation and wound healing [118]. 

Platelets have also been shown to possess different kinds of antibacterial agents  such as 

including thrombocidin-1 and -2, CXCL4, CCL5, connective tissue-activating peptide-3, 

platelet basic protein, thymosin b-4 and fibrinopeptide A and B [105].  
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This indicates that platelets play an essential role in wound healing and innate immunity, 

where they secret multiple growth factors and antibacterial agents, thereby recruiting 

different types of cells that are responsible for tissue repair and modelling.  
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Table 1.1, Cytokines and chemokines released by the platelets’ dense and α-granules 

 

Chemokines   CXCL1 (Growth-related oncogene-α) 

CXCL4 (Platelet factor-4) 

CXCL5 (Epithelial neutrophil-activating peptide-78) 

CXCL7 (β-thromboglobulin, neutrophil-activating peptide-2) 

CXCL8 (IL-8) 

CXCL12 (Stromal cell-derived factor-1) 

CCL2 (MCP-1) 

CCL3 (Macrophage inflammatory protein-1α) 

CCL5 (Regulated on activation, normal T cell expressed and 

secreted, RANTES) 

CCL7 (Macrophage chemotactic protein-3) 

Cytokine like factors IL-1β 

β-thromboglobulin 

Adhesion molecules  CD 40L 

P-selectin 

ICAM-2 

Growth factors Platelet-derived growth factor (PDGF) 

Vascular endothelial growth factor A and C (VEGF) 

Transforming growth factor-ß (TGF-ß) 

Insulin-like growth factor-1 

Platelet-derived endothelial growth factor (PDEGF) 

Endothelial growth factor (EGF) 

 

References [101, 103, 105, 119, 120] 
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1.4- Platelet Pathology 

Whilst the primary function of platelets is to maintain normal vascular integrity and 

physiology, they also contribute to vascular pathology, including the development of 

cardiovascular disease and arterial thrombosis. Antiplatelet agents have been demonstrated 

to reduce platelet mediated thrombosis, and therefore are the mainstay of secondary 

prevention in acute coronary syndrome. 

1.4.1 Cardiovascular disease 

Cardiovascular disease (CVD) is the leading causes of death in the world [121]. In 

Australia it was estimated that CVD accounted for 34% of all deaths in 2004, and CVD 

costs the Australian government more than 6 billion dollars per year in treatment and 

prevention [122]. The pathogenesis of CVD is multifactorial; however predisposing risk 

factors greatly contribute to the development of CVD. Cardiovascular risk factors include 

age, sex, obesity, diabetes mellitus, high blood pressure, smoking and high blood 

cholesterol levels [121]. Diabetes mellitus increases the risk of developing coronary heart 

disease, peripheral arterial disease and stroke by fourfold [123, 124].  

Diabetes mellitus, hypertension and hypercholesterolemia are associated with endothelial 

dysfunction and reactive oxygen species (ROS) production [123, 125, 126]. The 

endothelial cells play a major role in maintaining a healthy vascular structure. They 

produce and release vasodilators and tissue relaxing factors such as nitric oxide (NO) and 

prostacyclin. ROS such as hydrogen peroxide (H2O2) and superoxide anion (O2
-
) result 

from uncoupled electron transfer within the cells  [127], there are multiple pathways that 

inhibit ROS production. However, diabetes mellitus, hypertension and 

hypercholesterolemia are associated with overproduction of ROS. Generation of ROS can 

be very harmful to surrounding cells and tissue including the endothelial cells, leading to 

endothelial dysfunction [128]. The oxidative damage caused by these oxygen radicals 

plays an important role in worsening many conditions such as CVD, atherosclerosis, 

diabetes and cancer.  

As well as endothelial dysfunction cardiovascular patients have been found to have 

increased platelet activity and sensitivity. In a study performed by Elena et al. [129] 

comparing patients with a history of arterial thrombosis with healthy controls, the authors 

found that 85% of patients who had an episode of arterial thrombosis had low levels of 
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integrin-linked kinase (ILK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 

aldolase. Also it was found that these patients had elevated levels of non-muscle myosin 

heavy chain, coronine like (p57), pyruvate kinase (PK) and phosphoglycerate kinase 

(PGK). In addition to this, platelets from patients with conditions such as diabetes, 

hypertension and hypercholesterolemia were found to have increased activation and were 

more sensitive to platelet agonists. All of the aforementioned conditions are associated 

with cardiovascular complications [130, 131]. It was reported that hypertension and 

hypercholesterolemia increase the levels of the platelet activation marker beta 

thromboglobulin [132]. Platelets from diabetic patients were found to have increased 

adhesion and aggregation [133]. This increased platelet activity was accompanied by an 

increase in the production of thromboxane and arachidonic acid, increased platelet calcium 

concentration, decreased prostacyclin production, reduced fibrinolysis and over expression 

of adhesion molecules [123, 134, 135]. Increased platelet activity greatly contributes to the 

development of atherosclerosis, which leads to endothelial dysfunction and platelet 

mediated thrombus formations. 

1.4.1.1 Atherosclerosis   

Atherosclerosis refers to the thickening and hardening of the intima of large to medium 

sized arteries due to progressive lipid accumulation, leading to chronic inflammation. This 

is characterised by the presence of fibro-fatty plaques or atheromas, which are also known 

as atherosclerotic lesions [136]. Growth of these lesions causes narrowing of blood vessel 

lumen leading to infarction. Atherosclerosis is a multifactorial condition, which develops 

over many years, and it accounts for the majority of deaths due to cardiovascular disease in 

the developed world.  

Risk factors such as age, sex, smoking, diabetes mellitus, obesity, physical activity, 

hyperlipidaemia and life style have been reported to increase the likelihood of developing 

atherosclerosis and vascular disease. [137, 138].  

High levels of LDL accompanied with low levels of HDL play a major role in the 

development of atherosclerosis. Hypercholesterolemia results in the oxidation of LDL and 

increased production of ROS, which leads to endothelial damage. Damaged endothelium 

and nearby platelets releasing chemoattractant molecules trigger the activation of immune 

responses where monocytes and T-cells are recruited to the site of injury [139, 140]. 
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1.4.1.2 Atherogenesis 

Atherosclerosis is a progressive disease of the arterial vessel wall, with an asymptomatic 

presentation in the early stages. Development of atherosclerosis requires lipid deposition 

over many years in the arterial intima, which results in a chronic inflammatory response 

characterised by the presence of macrophages and T-lymphocytes. Excessive fat deposition 

leads to the accumulation of lipids in the macrophages and smooth muscle cells (SMCs), 

which then acquire a foamy appearance (foam cell formation) visible as fatty streaks [113, 

139]. Over time, these fatty lesions transform into lipid rich plaques, and finally fibro-

atheroma which leads to vessel occlusion and ischaemia. 

Low density lipids have been found to have a close association with the development of 

atherosclerosis and macrophage foam cell formation [141]. As lipids accumulate, LDL is 

oxidised by reactive oxygen species such as peroxynitrite (ONOO
-
) produced by the 

vascular cells, or by the activity of 15-lipoxygenase in endothelial cells, in the 

subendothelial matrix. Oxidised LDL (ox-LDL) greatly enhances foam cell formation, as it 

accumulates in the atherosclerotic plaques causing endothelial damage and dysfunction. 

[141, 142],  

Accumulation of ox-LDL in the vessel intima initiates an inflammatory response, where it 

stimulates the endothelial cells to secrete chemoattractant substances such as, chemotactic 

protein-1 and growth factors, thereby, recruiting monocytes and T-lymphocytes to the 

vessel wall. In addition, ox-LDL promotes monocyte and lymphocyte adhesion to the 

endothelial lining. It also enhances the production of caveolin (structural protein that binds 

cholesterol). Caveolin inhibits the production of nitric oxide (NO) by inactivating 

endothelial nitric oxide synthase (eNOS) [143]. NO is an important mediator of many 

biological activities including, vascular relaxation, and is an inhibitor of platelet 

aggregation [70]. Impaired NO production induces vascular dysfunction and accelerates 

the progression of arthrosclerosis [144].   

1.4.1.3 Thrombotic complication of atherosclerosis 

Atherosclerosis plays an important role in the development of arterial thrombosis. It is well 

established that platelets are major contributors in accelerating the progression of 

atherosclerosis and vascular complications. Platelets from atherosclerotic patients were 

found to be more sensitive to platelet agonists such as collagen, ADP, and thrombin. These 

platelets were also shown to have increased adhesion to the endothelium. In addition to 
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their high sensitivity to agonists, platelet secrete chemokines and cytokines that attract 

monocytes and neutrophils [143], hence further contributing to the ongoing inflammatory 

processes at the vessels wall, accelerating the progression of atherosclerosis and 

development of acute coronary syndrome (ACS) [139, 141].  As fat accumulates, the 

arterial lumen is narrowed as a consequence of foam cell formation and the migration of 

macrophages and T-cells, resulting in the formation of atherosclerotic lesions or athromas.  

Atheroma narrowed blood vessels are characterised by high levels of shear rate, favouring 

platelet activation and aggregation [145]. As the atherosclerotic plaque builds, it becomes 

less stable and eventually ruptures. Plaque rupture causes damage to the endothelial cells, 

thereby, exposing thrombogenic substances such as collagen and vWF, as well as the 

release of tissue factor. Interaction of these thrombogenic stimuli with circulating platelets 

results immediately in platelet rich thrombus formation within the artery. The newly 

formed platelet rich thrombus leads to vessel occlusion and tissue infarction. If the 

thrombus is unstable it will dislodge and occlude smaller arteries. 

1.4.2 Diabetes 

Diabetes mellitus is characterised by high blood glucose levels. Type-1 diabetes results 

from autoimmune destruction of the pancreatic beta islet cells, which produce insulin to 

metabolise glucose by the process of glycogenesis (conversion of glucose to glycogen for 

storage in liver and muscle). In contrast, type-2 diabetes is characterised by insulin 

resistance, which is associated with several pathological changes, that include, high blood 

pressure, high blood cholesterol levels, abdominal obesity  and an increase in coagulation 

factors such plasminogen activator inhibitor-1 (PAI-1) and  fibrinogen [144, 146]. 

According to the reports from the World Health Organisation (WHO), diabetes affects 

around 340 million individuals worldwide and 50% of these patients will die from 

cardiovascular disease [147]. Indeed, diabetes has been shown to increase the risk of 

cardiovascular disease up to fourfold [148]. Cardiovascular complication in diabetes has 

been linked to different mechanism and factors that include; platelet hyperactivity, 

hyperglycaemia accelerated atherosclerosis, AGE, PKC activation and sorbitol 

accumulation [149]. Most of these mechanisms and factors are associated with oxidative 

stress and increased ROS production, leading to endothelial dysfunction. It has been shown 

that normalisation of ROS production leads to reduction in glucose-induced AGE, PKC 

activation and sorbitol accumulation.  
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1.4.2.1 Oxidative stress 

Oxidative stress is characterised by the imbalance between the production of oxygen 

species and the body’s antioxidant defence mechanism causing disruption to the cells’ 

redox state [150]. Disturbances in the cell’s redox state can cause toxic effects through the 

production of peroxides and free radicals that damage components of the cell such as lipids 

and DNA. ROS or oxygen free radicals are formed during the metabolism processes in 

aerobic cells. There are a number of different enzymes that produces free radicals during 

cell metabolism. These enzymes include xanthine oxidase, NADPH oxidases and 

cytochromes P450. Free radicals are also formed in the mitochondria during oxidative 

phosphorylation via the mitochondrial electron transport chain [151, 152]. The newly 

formed free radicals are often neutralised by the body’s antioxidant activity carried out by 

different enzymes such superoxide dismutase (SOD), catalase, and glutathione peroxidase. 

However, when the antioxidant defense mechanism is compromised in many disease states 

and conditions such as diabetes, atherosclerosis, hyperlipidaemia, etc., the production of 

free radicals exceed  the antioxidant activity, resulting in toxic effects to the surrounding 

cells and causing oxidative stress [153]. Diabetes increases the production of ROS due to 

the number of metabolic abnormalities associated with it. ROS and oxidative stress play a 

major role in worsening diabetic complications. It has been reported that the major cause 

of death in the diabetic population is cardiovascular disease. It also has been shown that 

free radicals are the major cause of endothelial dysfunction and development of 

cardiovascular disease [128, 154, 155]. 

1.4.2.2 Endothelial dysfunction 

The endothelial monolayer plays a key role in regulating and maintaining a healthy 

vascular function. The endothelial cells respond to physical and chemical stimuli, by 

producing a variety of factors that regulate vascular tone, platelet function, SMC 

proliferation, thromboresistance and vessel wall inflammation. Endothelial cells maintain 

vascular tone be producing vasodilators such as NO and prostacyclin (PGI2), and 

vasoconstrictors such as endothelin, superoxide anion and angiotensin (II and TX). In 

addition to their vasodilation activity NO and PGI2 also play a major role regulating 

platelet function, by limiting platelet aggregation. Thromboresistance and role in 

inflammation are key functions of a healthy endothelium. Indeed, the endothelial cells limit 

the activation of the coagulation cascade by producing heparin sulphate, thrombomodulin 

and protein C [156].   
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Endothelial dysfunction refers to the pathological changes to the endothelium, leading to 

increased production of vasoconstrictors, prothrombotic and proinflammatory mediators. 

Endothelial dysfunction has been associated with different pathological conditions 

including diabetes and atherosclerosis. It has been reported that chronic hyperglycaemia 

inhibits NO by inactivating eNOS and increases ROS production, resulting in impaired 

antioxidant activity and endothelial damage [157, 158]. Furthermore, decreased or 

diminished NO bioavailability and increased ROS production leads to the activation of 

PKC, which has been shown to play a role in diabetes mediated endothelial dysfunction 

[159]. It has also been reported that hyperglycaemia increases the activation of nuclear 

factor (NF-kB) and activator-protein I (AP-I), which lead to increased production of pro-

inflammatory mediators such as IL-1β and TNF-α causing chronic inflammation [160].  

1.4.2.3 Platelet dysfunction 

It is well known that high blood glucose levels lead to platelet hyperactivity in diabetes 

[161]. Indeed, platelets from diabetic patients were found to be more sensitive to chemical 

agonists when compared to platelets from non-diabetic patients [148]. It has been shown 

that platelet aggregation and TXA2 synthesis were enhanced within days following the 

induction of diabetes in rat [162]. This could be due to the overproduction of arachidonic 

acid and increased COX activity. TXA2 is an important platelet activator that acts as 

positive feedback mechanism, it leads to granule exocytosis and enhanced platelet 

activation. It was also reported that platelets from diabetic patients had abnormal Ca
2+ 

homeostasis, and  had higher Ca
2+

 concentrations when compared to normal subjects [131]. 

Ca
2+

 is required for platelet shape change, secretion and TXA2 production. In a study in 

which platelets exposed to high concentration of glucose found that the concentration of 

Ca
2+ 

in resting platelets was higher than the control group. It was also found that the 

Na
+
/Ca

2+
 exchanger was in reverse mode that is more Ca

2+
 was transferred into the platelet 

cytoplasm, thereby increasing the Ca
2+

 influx.  Furthermore, platelets from diabetic 

patients were found to have reduced membrane fluidity, reduced fibrinolysis and over 

expression of adhesion molecules [123, 134, 135]. Platelet hyperactivity is thought to be an 

important contributor in the development of cardiovascular diseases amongst diabetic 

patients [123]. Table 1.2 summarizes the mechanisms leading to platelet hyperactivity in 

diabetes.  
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Table 1.2: Mechanisms which contribute to increased underlying platelet activation and 

reactivity in diabetes 

Component Mechanism References 

Membrane Disordered membrane fluidity [163-165] 

 Increase expression of adhesion molecules and 

receptors 

[166-170] 

Signalling Disordered calcium signalling [171, 172] 

 Increased P2Y12 signalling [169, 173] 

 Increased thromboxane synthesis [174, 175] 

Production Increased reticulated platelets [176-178] 

Environment Oxidative stress and reduced endothelium-

dependent relaxation 

[179, 180] 

 Activation of coagulation [181, 182] 

 Increased platelet-leukocyte interaction [167, 183-185] 

 Hyperglycaemia [186-188] 
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1.5- Anti-platelet pharmacology 

Antiplatelet therapy is the standard treatment for patients with CVD and patients 

undergoing percutaneous coronary intervention (PCI). Despite the clinical benefits 

achieved with antiplatelet therapy, patients still develop thrombotic episodes, as there are 

many limitations associated with the current antiplatelet regimes. Therefore, safe and 

effective new antiplatelet therapies need to be developed [189, 190]. 

1.5.1 Aspirin 

Acetylsalicylic acid (aspirin) has been the drug of choice for patients with cardiovascular 

disease or as a prophylaxis, because it is cost effective and readily available [191, 192]. 

Aspirin inhibits platelet function via the irreversible acetylation of COX 1 by inactivating 

its catalytic activity. COX 1 catalyses the formation of arachidonic acid to prostaglandin 

H2, and finally TXA2 formation [193].  Inhibition of TXA2 results in the blockade of 

platelet activation through the thromboxane receptor. 

1.5.1.1 Limitations 

 

Although aspirin has been the most common antiplatelet agent for many decades, there are 

many limitations and concerns associated with it that must be taken into consideration. It 

has been shown that that aspirin is a weak platelet inhibitor [190, 194]. Despite the benefits 

achieved with aspirin therapy, there are patient populations who are less responsive to 

aspirin treatment leading to CVD [117, 195]. This lack of response is often termed as 

aspirin resistance [193, 196]. Therefore, many of such patients are placed on dual 

antiplatelet therapy such as aspirin and clopidogrel [197]. A meta-analysis study showed 

that 12.5% patients on aspirin had severe cardiovascular events. Also aspirin has side 

effects that include bleeding and gastrointestinal toxicity [198]. 
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1.5.2 Thienopyridine 

Also called ADP receptor antagonists, the commonly prescribed thienopyridines are 

clopidogrel and ticlopidine [191]. Both drugs are metabolised by cytochrome P450 in the 

liver; after metabolism, the active metabolite irreversibly blocks the ADP receptor P2Y12. 

P2Y12 is a seven trans-membrane domain G-protein coupled receptor [199]. During 

platelet activation ADP is released from the dense granules. ADP signalling through 

P2Y12 results in the amplification of platelet activation and formation of a stable thrombus 

[61].  

1.5.2.1 Limitations 

Thienopyridines have been shown to be effective antiplatelet agents. However, there is an 

increasing body of evidence suggesting non responsiveness/ resistance to clopidogrel in 

some cardiovascular patients on a standard dose [117, 200]. Thienopyridines must be 

metabolised in the liver, therefore patients with polymorphism in the hepatic cytochrome 

P450 will have reduced antiplatelet activity [201]. It was also reported that thienopyridines 

were associated with skin rash, neutropenia and thrombotic thrombocytopenic purpura 

[202]. Thienopyridines therapy is also associated with bleeding and gastrointestinal 

toxicity [200]. 

1.5.3 Glycoprotein IIb-IIIa antagonists 

This group of antiplatelet agents include abciximab, eptifibatide and tirofiban. GPIIbIIIa 

antagonists inhibit the conformational change of GPIIbIIIa receptor [191], thereby making 

it inaccessible for fibrinogen and/or vWF (under high shear flow rate) to bind. In resting 

platelets GPIIbIIIa is at low affinity state, upon platelet activation it changes its conformer 

to the active state [39]. 

1.5.3.1 Limitations 

There are several limitations associated with GPIIbIIIa antagonists. It has been shown that 

the reduction of risk of serious vascular event following 30 days of adjunctive inhibition of 

GPIIbIIIa receptor is 38%. In a comparison study performed by Topol et al. [203], they 

showed that tirofiban is associated with more cardiovascular complications when 

compared to with abciximab. In another comparison study done by Suleiman et al. [204], it 

was shown that in hospital death in patients on eptifibatide was higher than the patients on 

abciximab.  Other major limitations associated with GPIIbIIIa antagonists are bleeding, 
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and more importantly these agents have to be administered intravenously. This is a major 

limitation [205, 206], if patients are unable to self-administer these agents and therefore 

will require a clinical setting for administration.  

1.5.4 Limitations of antiplatelet therapy in diabetes  

Aspirin and/or clopidogrel are the mainstay treatment for patients with atherosclerotic 

cardiovascular disease, including those with diabetes [169, 207]. However, increasingly, 

patients are becoming less responsive to antiplatelet therapy, even in patients on dual 

antiplatelet therapy [208] Indeed, it has been found that 10-20% of aspirin treated patients 

with an arterial thrombotic event had recurrent arterial thrombosis [207]. Furthermore, 

diabetic patients on aspirin and/or clopidogrel remain at high risk of recurrent thrombotic 

events [209, 210]. While aspirin and clopidogrel are used for primary and secondary 

prevention of cardiovascular events in diabetes [211, 212] there is a large body of evidence 

to suggest inadequate cardiovascular protection by these agents [213], with a meta-analysis 

of randomized trials showing no significant benefit of aspirin in reducing clinical 

ischaemic events in people with diabetes, while the general population showed a 18% 

decrease in event rates [214-216].  This finding has been referred to as antiplatelet 

resistance [207]. Resistance to antiplatelet agents is a laboratory finding that consists of 

failure of an antiplatelet agent to adequately block the target such as COX-1-mediated 

thromboxane A2 pathway for aspirin, and P2Y12 receptor signalling for clopidogrel [169]. 

Antiplatelet resistance can lead to clinical failure, which is defined by the recurrence of an 

ischemic event. Several mechanisms have been suggested to cause resistance to antiplatelet 

agents. These mechanisms include, reduced absorption and bioavailability the antiplatelet 

agent, increased platelet turnover, decreased NO production, increased TXA2 synthesis and 

TXA2 receptor activation particularly in diabetics and single nucleotide polymorphism 

[207, 213, 217]. Resistance to antiplatelet therapy is an emerging clinical problem 

affecting many patients, especially diabetics. This emerging phenomenon  requires the 

development of new and effective strategies to reduce recurrent thrombotic events in 

patients with CVD.    

 

1.5.5 Emerging antiplatelet therapy  

The current antiplatelet therapies are effective in reducing the risk of recurrent vascular 

events. However, there is mounting evidence of reduced responsiveness to these therapies 
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in some patients, especially in diabetes, while other patients experience increased risk of 

bleeding and toxicity [204]. New antiplatelet therapies are constantly being developed, 

aiming to achieve effective, safe and effective agents. Some of the emerging agents which 

are undergoing advanced clinical trials include: 

 ADP receptor antagonists; ticagrelor and cangrelor. These agents inhibit platelet 

function by reversible inhibition of P2Y12 receptor [201, 218]. 

 Thrombin receptor antagonist; vorapaxar (SCH530348) and atopaxar (E-5555). The 

mode of action of these antiplatelet drugs is reversible inhibition of PAR1. Both of 

these drugs are currently in advanced clinical trial stages [191]. 

 Thromboxane receptor antagonists; these agents include 51888, Z-335, PBT-3 [191]. 

1.5.6 Future directions in antiplatelet therapy  

The main aim of antiplatelet drugs is to reduce platelet activation/aggregation without 

inducing excessive bleeding. Most of the current therapies target agonist receptors on the 

platelet surface membrane and thereby inhibit platelet function, however bleeding 

complications are always associated with some of these agents. One useful approach to 

developing safe and affective antiplatelet therapy is to target platelet secretory machinery 

[74, 204]. It has been shown in an in vivo model of VAMP-8 knockout mice; thrombus 

formation was slow and unstable when compared to wild type mice. Despite slow 

thrombus formation, these mice did not have significant tail bleeding. The VAMP-8 

knockout mouse model demonstrates that inhibiting dense granule exocytosis will limit 

platelet aggregation, by reducing GPIIbIIIa receptor activation, while not affecting normal 

platelet adhesion and in situ release of growth factors [56]. 

This model suggests that targeting the platelet exocytosis machinery such as NSF and 

SNARE proteins might be an effective approach to prevent thrombosis in vivo without 

excessive bleeding [204, 218]. Future development of agents/compounds that target 

platelet exocytosis mechanisms will validate this concept, and provide the basic building 

blocks for the new antiplatelet therapies.  

1.6- Flavonols   

Flavonols are a subgroup of flavonoids. Flavonoids are low molecular weight phenolic 

substances widely found in plants, fruits and vegetables [127, 219]. Flavonols are well 
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known to be potent scavengers of free radicals. This important biological activity is 

principally based on the redox properties of their phenolic hydroxyl groups, and the 

structural relationships between different parts of their chemical structure (Fig 1.7). 

Flavonols have three structural groups that determine their antioxidant activity, which are: 

the o-dihydroxy (catechol) structure in the B-ring, the 2,3-double bond conjugated with a 

4- oxo function and the presence of hydroxyl (OH) groups. These structural features and 

particularly the number of OH groups present are uniquely arranged giving different 

flavonols varying antioxidant capacity [140, 154].                                                                                                                                                                                                  

Flavonols have been shown to exert different biological activities. These include 

antioxidant, antimicrobial, antiviral and antiplatelet activities [219-221]. The mechanisms 

by which flavonols are thought to carry out their beneficial activities are due to: 1) Free 

radical scavenging and chelation of metal ions, 2) Reduction in platelet activation and 

aggregation, 3) Inhibition of lipoxygenase (LPO), cyclooxygenase and phospholipase A2 

(PLA2), 4) Enhancement of NO and PGI2 release and 5) Anti-inflammatory action and 

interaction with bio-membranes [136, 222, 223]. Flavonols differ in the number and 

arrangement of hydroxyl group, degree of acylation or glycosylation, their absorption, 

metabolism, bioavailability, antioxidant activity and specific interactions with cellular 

receptors and enzymes. This is governed predominately by their structural characteristics 

and as well as solubility and the dosage administered. Nevertheless, epidemiological 

studies have indicated that consumption of a flavonol rich diet is associated with reduced 

deaths due to CVD [153, 224]. Indeed, the Rotterdam study showed a reduction in the 

occurrence of myocardial infarction with increased flavonol intake [225].  

1.6.1 Cardiovascular protective properties 

Studies have shown that flavonoids particularly flavonols exert their antioxidant activity by 

different mechanisms. The first mechanism is inhibiting the formation of ROS by 

suppressing the enzymes involved in the generation of these reactive particles. These 

enzymes include xanthine oxidase and protein kinase C [221]. Flavonols also have the 

ability to chelate trace elements such iron and copper which play a vital role in the 

production and metabolism of reactive particles [221]. 

The second mechanism by which flavonols exert the antioxidant activity is by scavenging 

reactive oxygen particles. The presence of hydroxyl groups in the heterocyclic ring 

increases this activity.  
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1.6.2 Quercetin (Que) 

Quercetin (3,5,7,3’,4’-pentahydroxyflavone) (Fig 1.7A ) is one of the most abundant 

flavonols, and  due to its chemical structure is one of the most potent naturally occurring 

antioxidants within the flavonoid subclasses. It is ubiquitously found in a variety of fruits 

and vegetables [154]. See table 1.3 for a summary of common plants, and plant derived 

beverages containing Que.  In food, Que is lipophilic, and is mainly bound to sugars, 

phenolic acids or alcohols [158]. However, following ingestion, Que and its derivatives are 

hydrolysed, mostly in the gastrointestinal tract and then absorbed and metabolised. Que 

absorption rate depends on the food source being ingested, and the absorbed forms of Que 

are mainly glucosides and aglycones [154]. Due to its strong antioxidant activity, Que has 

been intensely investigated. As well as its antioxidant and cardiovascular beneficial 

properties, Que was found to produce several other important biological effects, including 

anti-inflammatory, antiplatelet and anti-hypertensive effects [156, 157].  

Indeed, Que is well known for its cardiovascular effects. It has been shown that Que 

induces endothelium-independent vasodilation and restores NO production and 

endothelium function, in conditions under oxidative stress [226]. It was also shown that 

Que in a concentration dependent manner improved endothelium relation and increased 

cyclic AMP,  phosphodiesterases and PKC in rat aortas [227]. It was recently demonstrated 

that Que 3-O-β-D-glucuronide (Q3GA), a Que conjugate in human plasma, inhibits 

vascular smooth muscle cell (VSMC) proliferation and migration and prevents 

angiotensin-II induced VSMC hypertrophy leading to reduced effects of arteriosclerosis 

[228]. In diabetic model assessing diabetes induced vascular dysfunction, Que restored 

endothelium-dependent relaxation and reduced vascular constriction mediated by different 

chemical agonist such as acetylcholine (Ach) [229]. 
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Table 1.3, Que content in common plants and beverages  

Food mg/100 g Beverage mg/100 mL 

Apple 

Apricot 

Pear 

Plum 

Red grape 

Broad bean 

Broccoli 

Cauliflower 

White onion 

Lettuce 

10 - 26 

5.3 

2.8 

0-1.5 

3.7 

134 

0.6 

3.1 

54 

32 - 47 

Apple juice 

Grape juice 

Grapefruit juice 

Lemon juice 

Orange juice 

Red wine 

Black tea (loose) 

Black tea (bags) 

Green tea 

Tomato juice 

0.25 

0.44 

0.49 

0.74 

0.34 - 0.57 

0.4 -1.6 

1.6 

1.7- 2.5                                

1.4 - 2.3                                                                                          

1.3 

References [150-152, 154] 
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1.6.2.1Anti-platelet properties 

Que has well-established cardiovascular benefits; furthermore, it has been shown to exert 

antiplatelet activity that might contribute to its overall cardiovascular protective 

mechanism. Many studies have attempted to explore the antiplatelet potential of flavonols 

and determine the mechanism(s) by which these flavonols inhibit platelets. Recent studies 

have confirmed antiplatelet activity of flavonols. However, the concentration required to 

produce an inhibitory effect remains controversial, and the exact mechanisms are yet to be 

fully understood. 

1.6.2.1.1 Effect of Que on platelet aggregation 

A study performed by Raghavendra et al.  [230] aimed to investigate the antiplatelet 

activity of the flavonol Que using human volunteers. The authors showed that Que was not 

a significant inhibitor of arachidonic acid induced platelet aggregation with an IC50 of 

>400 µM. 

Raghavendra et al. also investigated the effect of 100 µM of Que on collagen stimulated 

platelet aggregation, and 200 µM of the same compound on ADP induced platelet 

aggregation. It was shown that 100 µM of Que caused only 1.7% inhibition of collagen 

induced aggregation, while at 200 µM it inhibited 25% of ADP induced aggregation. 

Sheu et al. performed a study examining the effects of rutin (a Que glycoside). In contrast 

to Raghavendra’s finding, Sheu showed that rutin at 250 and 290 µM inhibited platelet 

aggregation stimulated by collagen, thrombin and arachidoinc acid in a concentration 

dependent manner. At 290 µm rutin completely inhibited collagen induced aggregation. In 

a different study carried out by Chen et al.  [231], Que and dihydroquercetin (DHQ) were 

tested against ADP induced platelet aggregation at 10 µM of the falvonols. Chen et al. 

found that Que induced 50% inhibition of platelet aggregation, while DHQ was ineffective. 

Table 1.4 summarises the findings of the different research groups. 

A study by Hubbard et al [232], investigated the in vivo effect of a quercetin-4’-O-β-D-

glucoside supplement (Q-4-G, a Que plasma conjugate) in healthy human volunteers. It 

was shown that the ingestion of a 150 or 300 mg Q-4-G, inhibited collagen induced platelet 

aggregation 30 and 120 min post supplementation. 

Raghavendra et al results indicate that Que is ineffective in inhibiting platelet aggregation 

stimulated by different agonists at the concentration tested. Chen et al. and Sheu et al. 
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show that Que and Que glycoside are effective in inhibiting platelet aggregation stimulated 

with different stimuli. The difference in the effectiveness of Que and degree of inhibition 

could be related to the different methods used to assess platelet aggregation. Raghavendra 

et al. and Sheu et al. applied a platelet rich plasma platelet aggregometry method to 

measure platelet aggregation, which is the gold standard method for measuring platelet 

aggregation. Raghavendra et al. used high concentrations of platelet agonist, this could 

have affected the ability of Que to induce inhibitory effect. On the other hand Chen et al. 

used a 96 well plate reader to record platelet aggregation.  
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Table 1.4, A summary of published reports on the effect of Que and related compounds on 

platelet aggregation 

Flavonol Flavonol conc 

(µM) 

Agonist % inhibition Ref  

Que 100 

200 

10 

200 

Collagen 

ADP 

ADP 

Calcium 

ionophore         

1.7 

25 

50 

12 

Raghavendra et al   

Raghavendra et al  

Chen et al  

Raghavendra et al  

Rutin 250 

290 

Collagen 

Collagen 

Insignificant 

100 

Sheu et al  

Sheu et al  

Dihydroquercetin 10 Collagen Insignificant Chen et al  
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1.6.2.1.2 Effect of Que on protein kinases 

Protein kinases play an important role in signal transduction during platelet activation, they 

are involved in all aspects of platelet activation including platelet shape change and 

granule exocytosis. Que is thought to inhibit some protein kinase activity which 

contributes to its overall antiplatelet effect. Navarro-Núñez et al.  [233] tested the effect of 

50 µM Que on different platelet signalling pathways that included protein kinases Fyn, 

Lyn, Src and Syk, using a commercial fluorescence assay. At the concentration tested 

Navarro-Núñez et al. reported that Que significantly inhibited the activity of the kinases 

tested.   

PI3K protein kinases play an important role in integrin – dependent platelet adhesion, 

spreading and aggregation through the activation of Akt1 and Akt2. Navarro-Núñez et al. 

found that Que at 50 µM completely inhibited all PI3K isoforms, and significantly 

inhibited Akt1 and Akt2 activity.  

In a different study performed by Agullo et al. [234], the authors tested six different 

classes of flavonoids including Que for their inhibitory effects against platelet PI3K. The 

authors found that Que at 60 µM was one of the most potent inhibitors of PI3K; it reduced 

the total activity of PI3Kα by 90%, and weakly inhibited PKC isoforms. 

PKC phosphorylation is required for shape change and granule exocytosis, PKC activity 

can be measured by p47 phosphorylation. In a study investigating the effect of rutin on p47 

phosphorylation, Sheu et al. [235] found that rutin was able to inhibit the phosphorylation 

of p47 in a concentration dependent manner. 

1.6.2.1.3 Effect of Que on ATP release 

Dense granule exocytosis plays a major role in the propagation of platelet activation 

process. ATP is stored within the dense granules. Upon release, it provides energy for the 

phosphorylation of signalling molecules. Sheu et al. [235] investigated the effect of rutin 

on ATP release using luminescence. The authors found that rutin at 290 µM completely 

prevented ATP release induced by collagen, while 250 µM of the same compound did not 

produce significant inhibition of ATP release. 
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1.6.2.1.4 Effect of Que on inside-out and outside-in platelet signalling 

Platelet-ligand interaction employs different signalling mechanisms during platelet 

activation. Inside-out and outside-in platelet signalling greatly contribute to the overall 

signal transduction initiated by agonist binding. The effects of Que on these signalling 

events have been investigated as a potential mechanism of action. Navarro-Núñez et al. 

[233] found that 50 µM Que decreased platelet spreading on collagen, suggesting that Que 

inhibits TXA2 and ADP signalling pathways. Outside-in signalling was assessed by 

measuring platelet spreading over a fibrinogen coated surface, where it was shown that 

Que caused significant reduction in spreading. Sheu et al assessed the effect of rutin on the 

binding of fibrinogen to its platelet receptor by measuring PAC-1.  

Sheu et al. [235] showed that rutin didn’t have any effect on GPIIbIIIa conformational 

change, suggesting that rutin does not interfere with inside-out signalling. 

1.6.2.1.5 Effect of Que on calcium mobilisation and thromboxane B2 formation 

Calcium is vital for platelet shape change and aggregation [236], Sheu et al [235] found 

that in the presence of rutin, calcium mobilization induced by collagen was greatly 

reduced. Thromboxane B2 (TxB2) results from the hydrolysis of TxA2, and is present in 

small concentrations in resting platelets. Serum TxB2 is used as a measure of platelets’ 

ability to synthesize TxA2 [237]. Sheu et al, showed that rutin inhibited the formation TxB2 

in a concentration dependent manner. 250 µM of rutin exerted 41% inhibition of collagen-

stimulated TxB2 formation, whereas at 290 µM rutin caused 48% inhibition. . Fig 8 

summarises the effect of Que on platelet function. 
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1.6.3. 3’,4’-dihydroxyflavonol (DiOHF) 

Previous research studies have predominantly investigated the antioxidant and antiplatelet 

potential of naturally occurring flavonols and other flavonoid subgroups [238-240]. It has 

been shown that the number and substitution of the OH groups, particularly on the A and B 

rings of flavonoids, plays an important role in determining the antioxidant activities of 

these compounds. Therefore, different structurally related flavonols have been synthesised 

by varying these OH group substitutions to determine the structure activity relationship. 

DiOHF is one of the synthetic flavonols, with a structure lacking the OH group on the A 

ring (Fig 1.7B), suggesting it could be a potent antioxidant. It has been shown that 

flavonols with OH on the A ring were associated with reduced antioxidant activity [241, 

242]. 

Although the antiplatelet potential of DiOHF is yet to be investigated, DiOHF has been 

shown to be more effective in restoring NO bioavailability than Que and other flavonols. 

DiOHF was also found to inhibit superoxide generation in the presence of 

xanthine/xanthine oxidase, or in the presence of NADPH, and reduced vascular contraction 

[242, 243]. It was also shown to reduce vascular damage due to ischaemia and reperfusion 

injury in animal models [241]. Song et al. [244] reported that DiOHF decreases vascular 

contraction by inhibiting of the RhoA/Rho-kinase pathway in rat endothelium-denuded 

aorta. In animal models of diabetes, DiOHF has been shown to improve endothelial 

dysfunction by restoring endothelium-dependent relaxation [245]. DiOHF was also shown 

to inhibit diastolic dysfunction and reduced oxidative stress in a model of diabetes [246]. 

Structure-activity studies, as well as ischaemia and reperfusion models, have demonstrated 

DiOHF is able to produce both antioxidant and vasorelaxant activity in both in vivo and in 

vitro settings more effectively than many naturally occurring flavonols, including Que. 

However, the question that remains whether DiOHF is able to produce antiplatelet activity 

and ultimately reduce thrombus formation.  
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Fig 1.7: Flavonol structure: A) chemical structure of the naturally occurring flavonol Que 

and B) the chemical structure of the synthetic flavonol DiOHF. 
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Fig 1.8: Summary of the effects of Que on platelet function. Que inhibits platelet 

function at the cross-out symbol. 
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1.7 Summary 

In summary, platelet hyperactivity remains the highest cause of myocardial infarction and 

stroke in patients with cardiovascular disease. Over the years many antiplatelet therapies 

have been developed in order to prevent thrombus formation in cardiovascular patients. 

While these anti-platelet therapies are effective in preventing thrombus formation 

especially in cardiovascular disease, there are still populations of patients who respond 

poorly to the current anti-platelet therapies, such as those with diabetes. A study involving 

287 randomised trials showed that only 7% of diabetic patients treated with aspirin had a 

reduction in the risk of developing arterial thrombosis [194]. Flavonols have been reported 

to have antiplatelet potential. Research studies have shown that intake of flavonoids 

reduces the occurrence of myocardial infarction [225]. The mechanism by which flavonols 

exert their action however is not fully understood. Research studies have found that 

flavonols inhibit reactive oxygen singlet production, and increase nitric oxide 

bioavailability which increases tissue relaxation. The effect of flavonols on platelets 

investigated recently, however, most of the research has been limited to in vitro studies 

[247], with contradictory results [248, 249] and multiple but poorly defined mechanisms 

[250]. Therefore exploring the in vitro and the in vivo effect of flavonols on platelet 

function, could lead to developing new antiplatelet therapy that is effective and 

inexpensive, which will have an important role in reducing mortality and morbidity due to 

cardiovascular disease. The antiplatelet potential of DiOHF is yet to be explored. 

Examination of the literature reveals multiple and important questions that remain to be 

answered. These questions include 1) the effect of DiOHF on platelet function, 2) the 

effect of Que and DiOHF on granule exocytosis, 3) the effect of these flavonols on 

platelet-mediated thrombus formation and finally, 4) the effect of these flavonols on 

platelet-mediated thrombus formation in a disease model such as diabetes. These questions 

must be addressed using appropriate experimental design and well established methods, 

such as gold standard methods for assessing platelet aggregation, flow cytometry for the 

assessment of granule exocytosis, and well established methods for platelet-mediated 

arterial thrombosis and diabetes, such as FeCl3 induced arterial thrombosis and STZ 

induced diabetes.  

Therefore, the hypotheses of this thesis are i) the antiplatelet potential of the flavonols Que 

and DiOHF contribute to the vascular benefits previously reported and , ii) Que and 

DiOHF reduce diabetes induced platelet hypersensitivity. Accordingly, the aims of this 
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thesis are to examine: i) the in vitro effect of the naturally occurring flavonol Que and for 

the first time the synthetic flavonol DiOHF on human platelet function, including effect on 

platelet aggregation and granule exocytosis, ii) the effect of these flavonols on platelet 

function and platelet- mediated arterial thrombosis in vivo, and iii) the effect of these 

flavonols on platelet function and platelet- mediated arterial thrombosis in vivo in an 

animal model of diabetes.
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Chapter Two: General Materials and Methods 
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2.1 General Materials 

Que and DiOHF both were purchased from Indofine Chemicals Inc. (NJ. USA). Platelet 

agonists ADP, collagen, AA, thrombin, adrenaline, luciferin-luciferase reagent and ATP 

standard were purchased from Chrono-Log Co. (USA). Human fibrinogen, FITC 

conjugation kit (Fluoro Tag), dimethyl sulfoxide (DMSO), Rose Bengal, FeCl3, potassium 

chloride (Kcl), polyethylene glycol (PEG), calcium chloride (CaCl2), sodium chloride 

(NaCl), NaHCO3,  glucose, MgCl2-6H2O, sodium citrate, HEPES, streptozotocin (STZ), 

quinacrine and thrombin receptor activating peptide (TRAP) were sourced from Sigma 

Aldrich (USA). Blood collection (Vacuette) tubes were from Greiner bio-one (Austria). 

PAR 4 agonist peptide (H-Ala - Tyr - Pro - Gly - Lys - Phe -NH2 (AYPGKF-NH2)) was 

sourced from GL Chemicals (Shanghai, China). Ketamine and xylazine were purchased 

from ilium (Troy Laboratories Australia, Australia). Eptifibatide was from Millennium 

Pharmaceuticals (Japan). Monoclonal antibodies CD61- PE, CD62P- PE, PAC1- FITC, 

CD42b- PC5, and CD42a- PE for flow cytometric analysis were purchased from BD-

Pharmingen (USA). Anti-mouse CD62P- PE was purchase from Thermo Scientific, Pierce 

Antibodies (USA). Insulin (Protophane & Actirapid) was sourced from Novo Nordisk 

pharmaceuticals Australia. 

2.2 Preparation of buffers 

2.2.1 HEPES saline (HS) buffer 

HS was buffer was prepared at 10x strength by adding 11.9 g of HEPES and 43.85 g of 

NaCl and dissolving in 500 mL of distilled water. This 10 x stock solution was stored in 5 

mL aliquots at -20°C. 1 x working HS buffer was prepared freshly each week by thawing 

10 x stock and diluting 1:10 in distilled water. pH was adjusted to 7.4 using 0.1 mM NaOH 

as required and the working stock kept at 4°C. 

2.2.2 Ringer citrate dextrose (RCD) buffer 

RCD buffer was prepared by dissolving 3.15 g of NaCl, 1.4 g of KCl, 0.07 g of NaHCO3, 

3.12 g of Na citrate, 2.5 g of glucose and 0.115 g of MgCl2-6H2O in 500 mL of distilled 

water. The pH was adjusted to 7.4, and stored at 4°C. 
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2.2.3 Sodium citrated buffer 

Sodium citrate buffer was prepared by dissolving 14.71 g of sodium citrate in 500 mL of 

distilled water. The pH of the buffer was adjusted to 4.5 using 0.1 mM HCl and stored at 

4°C for a maximum of 4 weeks. 

2.2.4 Preparation of 3.2 % (w/v) sodium citrate 

The anticoagulant sodium citrate was prepared by adding 3.2 g of tri-sodium citrate in 100 

mL distilled water. The solution was stored at room temperature for 6 weeks. 

2.3 Human Volunteers 

RMIT University Human Ethics Committee approval and informed consent was obtained 

prior to blood collection. All subjects were healthy volunteers of both sexes, age 18 - 60 

years with no history of vascular disease, bleeding disorder or thrombosis and had not 

taken aspirin or any other medication that affects platelet function two weeks prior the 

study. The volunteers were sourced from RMIT University. 

2.4 Blood collection 

Human Blood collection was performed using established methods for platelet function 

studies [251]. Briefly, fresh whole blood was collected from an antecubital vein using a 21-

gauge butterfly needle into 3.8% sodium citrate Vacuette tubes and used immediately for 

platelet aggregation, ATP release or flow cytometric studies.  

Mouse PRP aggregation was performed as previously described [252, 253]. Mouse blood 

was collected in to a 3.2 % sodium citrate tube via cardiac puncture while the mouse was 

under deep anaesthesia with Ketamine and xylazine (200:10 mg/kg). 

2.4.1 Platelet rich plasma (PRP) 

Human PRP for platelet aggregation studies and dense granule exocytosis was obtained 

from the fresh blood after centrifugation at 250x g for 10 min at room temperature. Mouse 

PRP was prepared by centrifuging the blood at 200x g for 15 min (with brake off) at room 

temperature. 

Human or mouse platelet poor plasma (PPP) was obtained by centrifugation of the 

remaining blood at 800 x g for 15 min at room temperature. Mouse PRP platelet counts 

were normalised to 100x10
9
/L in RCD buffer, the platelet count was determined using 

ACTdiff 5 blood analyser (Beckman, USA). 
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2.5 Assessment of platelet function 

Platelet function testing is vital for assessing the efficacy of new antiplatelet therapies and 

for monitoring current therapies. Platelet function testing is also pivotal in the diagnoses of 

acquired and congenital platelet defects. Since the introduction of platelet assays such as 

the bleeding time tests in the beginning of the last century, , technology has developed 

newer and more accurate platelet tests that can pin point the defect or drug target. 

2.5.1 Light transmission platelet aggregation 

Light transmission aggregometry (LTA) was developed in the late 1960s, and still remains 

the gold standard test for assessing platelet aggregation [236, 254]. LTA utilises the use of 

platelet rich plasma (PRP) which is obtained following the centrifugation of citrated whole 

blood. The PRP is placed in a glass cuvette and stirred using a stir bar at 37ºC in order to 

keep the platelets in suspension. The cuvette is then placed between the light source and 

light detector. The aggregometer channel is calibrated against the patient’s own platelet 

poor plasma (PPP). PRP, where the suspension is turbid and minimal light passes through 

the cuvette, is calibrated to represent 0% aggregation. PPP, where the plasma lacks 

turbidity and maximal light passes through the cuvette is set to 100% aggregation. Upon 

the stimulation of platelet aggregation with chemical agonists such collagen, ADP and 

arachidonic acid, the platelets begin to aggregate and fall out of suspension in small 

aggregates. This increases light transmission.  

Platelet response to chemical agonists can be monitored by the following: 

- Lag phase:  is the time it takes from agonist addition to platelet shape change 

- Shape change: platelet shape change in response to agonists   

- Primary and secondary aggregation: primary aggregation is platelet aggregation in 

response to agonist, whilst the secondary aggregation is platelet aggregation 

resulting from platelet degranulation and the release of other chemical agonists 

such as ADP 

- Slope: is the rate of aggregation (vs time) 

- Maximum amplitude: is the maximum aggregation over the test time (usually a 6 

min test period) 
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One major advantage of LTA is the visualisation of aggregation process e.g. shape change, 

and primary and secondary aggregation. In addition, ATP release from the dense granules 

can be measured using this technology in the presence of luciferin luciferase reagent [236].   

2.5.2 Whole blood platelet aggregation 

Whole blood aggregometry (WBA) uses the electrical impedance principle [149]. This 

technique measures the electrical impedance between two electrodes placed in a whole 

blood sample [255]. The electrodes contain two metal wires which, once immersed into the 

test sample are coated with a monlayer of platelets and a small voltage is applied. The 

stable electrical resistance (impedance, measured in ohms) between the two wires is 

recorded. As platelets which are stimulated by chemical agonists begin to aggregate, their 

accumulation on the wires increases resistance to the flow of the electrical current in the 

circuit. The change in resistance is measured and quantified as ohms. Whole blood 

aggregation results obtained are as follows: 

- The rate of reaction or slope 

- Maximum aggregation expressed in ohms 

Limitations of this assay include a relatively poor body of literature supporting its use, 

inability to standardize the platelet count, and the fact that it is unable to differentiate 

between primary and secondary stages of aggregation.  

2.5.3 Platelet Function Analyser 100 

The platelet function analyser 100 (PFA 100) is a simple and easy to use point of care 

platelet function analyser [123, 148]. It assesses platelet function under a physiological 

shear rate, resembling the conditions of medium and small sized arteries. It uses a cartridge 

with agonist coated membranes. The membranes are coated with either 

collagen/epinephrine or collagen/ADP. Testing involves placing a whole blood sample into 

the cartridge. The PFA 100 measures the closure time (CT) in seconds, which is the time 

required to form platelet rich thrombus to occlude the aperture. This type of testing has a 

number of limitations associated with it, including limited types of agonists and 

insensitivity to P2Y12 antagonists, however recently INNOVANCE® PFA P2Y cartridge 

has been released, and it was found to have high sensitivity for the detecting P2Y receptor 

blockage [131]. Also this assay is dependent on the platelet count and haematocrit [236]. 
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2.5.4 Assessment of the effect of the flavonols on human platelet aggregation 

In order to test the effect of Que or DiOHF on platelet aggregation in vitro, flavonol 

samples at different concentration (ranging from 0.1 to 1.0 mM) or vehicle (1% DMSO) 

were incubated with PRP for 5 min at 37°C in a glass cuvette, and stirred at 1000 rpms 

using a stir bar. Platelet count wan not normalised as each acted as own control. Platelet 

aggregation was stimulated by different agonists. Turbidimetric platelet aggregation was 

calibrated against a PPP control as 100% aggregation using a Chrono-log 700 

aggregometer.  The data was recorded using AGGRO/LINK(8) software (Chrono-Log Co, 

USA). The maximum platelet aggregation amplitude over six min was recorded, see Fig 

2.1. 

2.5.5 Assessment of the effect of the flavonols on murine platelet aggregation 

In order to test the effect of Que or DiOHF on mouse platelet aggregation in vivo, PRP 

from blood collected from flavonol treated mice at 100 x 10
9
 /L (250 µl), was incubated 

with 100 µg/mL fibrinogen and 1 mM CaCl2 at 37°C with constant stirring at 1000 rpms. 

The platelet aggregation baseline was set using mouse PPP diluted 1:2 in RCD buffer. 

Platelet aggregation was stimulated by 250 µM PAR 4 agonist peptide (AYPGKF-NH2), 

250 µM was determined to be a submaximal concentration of PAR 4 agonist peptide, as 

shown in Fig 2.2. Platelet aggregation was recorded for 9 min. 
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Fig 2.1. Representative platelet aggregation tracing, showing agonist induced aggregation 

in the presence of vehicle (blue), Que (red) or DiOHF (black). 
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Fig 2.2. Dose response for PAR 4 agonist peptide (AYPGKF-NH2). 
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2.5.6 Dense granule exocytosis 

Dense granules store and release signalling molecules including ATP, ADP and serotonin. 

These are important in platelet activation and aggregation. Disorders of dense granules or 

antiplatelet effect on dense granule exocytosis can be assessed using traditional methods 

such as radioactively labelled serotonin or ATP release (luminescence method) [71, 253]. 

However, flow cytometric analysis of dense granule exocytosis is replacing the traditional 

assays with a one-step assay [256]. This assay measures fluorescent quinacrine uptake and 

release to assess dense granule exocytosis. Quinacrine is a fluorescent dye that is taken up 

by the dense granules only. Once inside the dense granules the platelet fluorescence 

intensity increases. While fluorescence intensity decreases following exocytosis of dense 

granules with stimulation by chemical agonists.   

2.5.6.1 ATP release 

ATP secretion from the platelet dense granules was measured using the 

chemoluminescence method in the presence of luciferin luciferase reagent. ATP release 

was measured using a Chrono-log 700 aggregometer.  

2.5.6.1.1 Instrument calibration 

The instrument was calibrated before ATP release measurement using a 2 nM ATP 

standard according to the manufacturer’s instructions. The calibration procedure was 

performed as follows: 

I. The instrument luminesce gain was set at 0.005. 

II. 50 µL of Chrono-Lume (luciferin luciferase) reagent was incubated with 450 µL of 

PRP for 3-5 min at 37°C in a glass cuvette, and stirred at 1000 rpms using a stir bar 

and placed in the PRP channel. 

III. Immediately, 5 µl of 2 nM of ATP standard was added to the PRP sample. 

IV. Following the addition of ATP standard the gain was adjusted and set between 20 

and 60%. 

V. The gain was transferred into the test set up, and agonist induced ATP release in the 

presence of flavonols or vehicle was then measured. 
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2.5.6.1.2 Measurement of ATP release 

In order to investigate the effect of Que or DiOHF on ATP release from the dense granule, 

different concentrations of the flavonols or vehicle were incubated with PRP, incubated for 

5 min at 37°C in a glass cuvette, and stirred at 1000 rpms using a stir bar. Luciferin-

luciferase reagent was then added to the mixture and further incubated for 3 min. At the 

end of the incubation period ATP release was stimulated by various agonists. The amount 

of ATP release was measured against a 2 nM ATP standard by luminescence, see Fig 2.3. 
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Fig 2.3. Agonist induced ATP release in the presence of vehicle (blue), Que (red) or 

DiOHF (black). 
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2.5.6.2 Dense granule exocytosis using quinacrine release 

Dense granules release their content in response to platelet agonists, see chapter 1 section 

5.2.3.1. Dense granule release was assessed by quinacrine uptake and agonist induced 

release in the presence of flavonols or vehicle. Quinicrine is a fluorescent dye that is taken 

up by the dense granules only, see section 1.7.2.3.1. 

2.5.6.2.1 Preparation of quinacrine: 

A stock concentration of quinacrine (500 µM) was prepared by dissolving 0.13 mg of 

quinacrine in 1 ml of distilled water, the stock solution was stored at 4°C for a maximum 

of two months. 

To investigate the capacity of platelets treated with investigational agents to release 

quinacrine following chemical stimulation with agonists, fresh PRP was incubated with 

100 µM quinacrine at 37°C for 20 min in the dark, to allow quinacrine to be taken up by 

the dense granules. Platelets were then washed using 1 ml HEPES saline buffer by 

centrifugation at 500x g without the brake. Platelet agonist was then added and incubated 

at 37°C for 5 min. At the end of the 5 min incubation period the reaction was stopped by 

1:25 dilution in HEPES saline buffer and immediately read on a FACSCanto II flow 

cytometer. Dense granule release was recorded as the percentage of decrease in quinacrine 

fluorescent intensity, see Fig 2.4. 
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Fig 2.4: Representative flow cytometric analysis of dense granule exocytosis using 

quinacrine loading and agonist induced release: A) The platelets were identified using 

forward and side scatter characteristics; B) Platelet fluorescence prior to quinacrine loading 

of dense granules, C) Increase in fluorescence intensity indicating dense granule uptake of 

quinacrine and D) Decrease in fluorescence intensity indicated agonist induced dense 

granule exocytosis. 
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2.5.6.2.2 Confocal microscopy 

To visualise quinacrine uptake and release, and confirm the effect of Que or DiOHF on 

dense granule exocytosis, fresh human PRP was incubated with (100 µM) quinacrine at 

37°C for 20 min in the dark. Platelets were then washed in HEPES saline buffer by 

centrifugation at 500x g without the brake before incubation with investigational agents at 

37°C for 5 min. Exocytosis was stimulated by incubation with (0.5 U.mL
-1

) thrombin at 

37°C for 5 min. The reaction was stopped by a 1:15 dilution in HEPES, and examined by 

confocal laser microscope (Nikon A1, Nikon corp. Japan) using 60x water immersion 

objective (NA 1.42) and excitation with a 488 nm laser. The percentage of platelets with 

fluorescent granules was quantified by counting the number of platelet with visible 

fluorescent in a field over a minimum of five fields per sample.  

2.5.7 Immunophenotyping 

One of the most valuable advances in assessing antiplatelet therapies and platelet disorders 

is the use of flow cytometry. Flow cytometry uses fluorescently conjugated monoclonal 

antibodies targeting a specific receptor or protein. Flow cytometry measures specific 

characteristics e.g. size of different cells in a suspension using side and forward scatter 

characteristics [257]. Flow cytometry can be used to assess different aspects of platelet 

function inducing activation, granule exocytosis and aggregation as well as monitoring and 

evaluating different antiplatelet therapies [123, 252]. 

2.5.7.1 PAC1 

The efficacy of GPIIbIIIa antagonists or GPIIbIIIa receptor complex disorders can be 

monitored using monoclonal antibodies which recognise an activation dependent 

conformational change in the GPIIbIIIa complex. Wirth inside-out signalling, platelets 

change their GPIIbIIIa conformation from low affinity resting state to high affinity active 

state, thereby exposing the fibrinogen binding site. PAC1 is one of the most widely used 

fluorescently labelled monoclonal antibodies which recognise and selectively binds to 

GPIIbIIIa only after it has undergone this activation dependent conformational 

change[253, 258].  
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2.5.7.2 Fibrinogen binding 

Fibrinogen plays a critical role in platelet aggregation. It binds to activated platelets 

through its specific receptor GPIIbIIIa. The cross linking of fibrinogen bound activated 

platelets results in platelet aggregation. Flow cytometry can measure binding of 

fluorescently labelled fibrinogen to platelets and is used to assess GPIIbIIIa antagonists as 

well as disorders associated GPIIbIIIa complex. Fluorescein isothiocyanate (FITC) 

conjugated fibrinogen is used to assess its binding to activated platelets [132].   

2.5.7.3 Granule exocytosis 

Platelets granule exocytosis is vital for platelet function, and is routinely tested to diagnose 

defects of exocytosis as well as in the assessment of antiplatelet therapies which prevent 

exocytosis. As platelet granules contain different contents, expression or release of these 

contents by whole blood flow cytometry can be used to distinguish the exocytosis of the 

different granules. 

2.5.7.3.1 Alpha granule exocytosis 

P-selectin (CD62P) is a component of platelet alpha granules. It mediates platelet adhesion 

to monocytes and neutrophils [56]. Activated, but not resting platelets, express P-selectin 

on their surface therefore it is a useful maker of platelet activation. Fluorescently labelled 

monoclonal antibodies against P-selectin are frequently used to measure platelet alpha 

granule exocytosis in response to chemical agonists in the assessment of antiplatelet 

therapy [253].  

A limitation of P-selectin is that it is shed within 5 min of expression in vivo. This 

meansthat it has limited utility asa marker of in vivo platelet exocytosis. However by using 

chemical agonists and fixing samples rapidly after activation, alpha granule exocytosis 

may still be assessed using P-selectin.  

2.5.7.3.2 Assessment of alpha granule exocytosis and GPIIbIIIa activation in human 

blood samples 

The effect of Que or DiOHF on platelet alpha granule exocytosis and the fibrinogen 

receptor GPIIbIIIa conformational change, in response to a variety of platelet agonists, was 

determined using established flow cytometric methods [259-261]. 



65 
 

2.5.7.3.2.1 Preparation of antibody mix 

Antibodies used to assess P-selectin expression and GPIIbIIIa conformational change was 

prepared as follows: 

I. PAC-1-FITC was diluted (1:4) in HS. PAC-1 detects GPIIbIIIa conformational 

change. 

II. CD62P-PE was diluted (1:3.125) in HS. CD62P detects P-selectin expression. 

III. CD42b- PC5 was diluted (1:6) in HS. CD42b is a platelet maker. 

Also an isotype control was prepared in conjunction with the antibody mix. The isotype 

control contained PAC-1 (diluted 1:4) blocked with 5 µg/ml of eptifibatide and mouse 

IgG-PE. The isotype control also contained the platelet marker CD42b-PC5. The antibody 

mix and isotype control were prepared as required and stored at 4°C. 

2.5.7.3.3.2 Assessment of P-selectin expression and GPIIbIIIa conformational change  

To test the effect of investigational agents on alpha granule exocytosis in whole blood (as 

measured by the expression of P-selectin), fresh citrated whole blood was diluted 1:5 with 

HEPES saline buffer and incubated at 37°C for 5 min with the investigational agent. 10 µL 

aliquots of the diluted whole blood and agent mixture were incubated with either the 

isotype control or the antibody mix and a chemical platelet agonist for 15 min at 37°C. The 

reaction was stopped by the addition of 1% formaldehyde and the samples were analysed 

using a FACSCanto II flow cytometer. 10,000 individual platelet events were counted; the 

platelet population was identified using characteristic side and forward laser scatter and 

expression of the platelet specific marker (CD42b) to include only single platelets. 

Platelets were further interrogated for expression of CD62P and PAC-1 binding using 

mean fluorescence intensity, see Fig 2.5. 
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Fig 2.5: Representative flow cytometric analysis of platelet expression of CD62P: A) The 

platelets were identified using forward and side scatter characteristics; B) The platelet 

population was double gated using platelet specific marker (CD42b) and characterising 

laser scatter, C) Platelets showing no expression of CD62P (negative control) and D) 

Platelets showing CD62P expression (positive control). 
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 2.5.7.3.2 Measurement of alpha granule exocytosis in mice 

Alpha granule exocytosis was measured by flow cytometric detection of the alpha granule 

protein P-selectin. Both circulating and agonist induced parameters were measured. Mouse 

PRP was obtained as previously indicated (section 1.4.1) and incubated 1:50 with anti-

mouse CD62P-PE  and 250 µM of PAR 4 agonist peptide (AYPGKF-NH2) at 37 ºC for 30 

mins before fixation with 800 µl of 1% formaldehyde.  Samples were analysed using a 

FACSCanto II flow cytometer.  10,000 individual platelet events were counted. Platelet 

population was identified using characteristic side and forward laser scatter and 

interrogated for expression of CD62P-PE. 

2.5.8 Fibrinogen binding 

Fibrinogen binding to platelets via GPIIbIIIa was assessed by flow cytometry using human 

fibrinogen conjugated to FITC. Fibrinogen binding is an important indicator of GPIIbIIIa 

function during platelet aggregation. 

2.5.8.1 Fibrinogen – FITC conjugation 

Reagents and materials provided with FTIC conjugation kit. 

I. 2.0 mg of lyophilized FITC vials were reconstituted with 2 ml of 0.1 mM 

carbonate-bicarbonate buffer 

II. 0.1 M carbonate-bicarbonate buffer pH 9 was prepared by following the 

manufacturer’s instructions. 

III. PBS pH 7.4. Prepared by following the manufacturer’s instruction. 

IV. 5 mg of human fibrinogen was dissolved in 1.0 ml of 0.1 mM carbonate-

bicarbonate buffer. 

V. 500 µL of reconstituted FITC was added to the fibrinogen and incubated at room 

temp for 2-3 h protected from light. 

VI. At the end of the incubation time the reaction mixture (fibrinogen and FITC) was 

applied to the top of the column (gel filtration column packed with Sephadex G-

25M), and let run through the column to be collected as the first fraction. 
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VII. The column was eluted with 15 mL (15 x 1 mL) of PBS and 1 ml fractions were 

collected. 

VIII.  The absorbencies of each fraction at 280 and 495 nm were read using a 

spectrophotometer. The fractions with the highset absorbencies (3 fractions) were 

pooled and the absorbance was read again. The Fluorescence /Protein ratio is the 

ratio of moles of FITC to moles of protein (fibrinogen in this case) was determined. 

Calculation of the F/P ratio as follows:  

     

     

A280; absorbance of the pool at 280 nm 

A495; absorbance of the pool at 495 nm 

 

The expected F/P ratio for the dilution used in this experiment was 1-2 (according to the 

manufacturer’s instructions). The calculated F/P ratio was 1.52. 

2.5.8.2 Platelet binding to FITC conjugated fibrinogen 

In order to test the ability of activated platelets to bind to FITC labelled fibrinogen via the 

GPIIbIIIa receptor in the presence of the flavonols, diluted fresh human whole blood was 

incubated with the agents for 5 min. Aliquots of the diluted whole blood and flavonol 

mixture (20 µl) were incubated with CD42a PE and FITC conjugated human fibrinogen 

mix, or isotype control (10 µl), for 15 min at 37°C (FITC conjugated human fibrinogen 

was mixed with CD42a PE (specific platelet identifier) at a 1.6:1 ratio. An isotype control 

was prepared by adding 5 µg/ml of eptifibatide to the mixture). Fibrinogen binding was 

stimulated with different concentrations of TRAP at 37°C for 5 min before fixation with 

1% formaldehyde. Fibrinogen binding was assessed using FACSCanto II flow cytometer 

and mean FITC fluorescent intensity was recorded, see Fig 2.6. 

 

 

2.77 x A495   

A280 – (0.35 - A495) 
Molar F/P = 
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Fig 2.6: Flow cytometric analysis of human platelet fibrinogen binding: A) The platelets 

were identified using forward and side scatter characteristics; B) The platelet population 

was double gated using platelet specific marker (CD42a) and characteristic laser scatter, C) 

Negative control showing no platelet fibrinogen binding and D) Increased fluorescence 

intensity indicating platelet fibrinogen binding. 
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2.6 Animal models  

Animal models of arterial thrombosis are vital in the development of new antiplatelet 

agents. These models are used to mimic human thrombus formation, and thus the only 

means of in vivo testing of antiplatelet agent [262, 263]. Animal models include chemically 

induced endothelial injury such as in Rose Bengal and ferric chloride (FeCl3) to initiate 

thrombus formation, or mechanically inducing endothelial damage by using guide wire, or 

by pinching the vessel using forceps [264, 265].  

2.6.1 General husbandry  

2.6.1.1 Ethics  

All animal experiments were approved by the RMIT University animal ethics committee, 

and were conducted in accordance with National Health and Medical Research Council 

guidelines. Experiments were carried out in a certified PC2 laboratory. Rats were 

euthanized by an intra-cardiac injection of KCl, and the mice were euthanized by cervical 

dislocation. 

2.6.1.2 Sourcing 

Sprague Dawley rats and C57 black 6 mice were sourced from either Monash Animal 

Services (Melbourne, Australia) or Animal Resource Centre (ARC, Western Australia, 

Australia). Non-Obese diabetic (NOD) mice were purchased from ARC. 

2.6.1.3 Housing 

The animals were kept and cared for at the RMIT University Animal House. The animals 

were housed in plastic containers which were secured with removable wired lids. No more 

than 4 animals were housed in a standard container or 5 animals in a large container and 

sexes were separated, all animals had access to food and water at all times. The animal 

containers were cleaned and changed once a week. 

2.6.2 Models of arterial thrombosis 

Animal models of arterial thrombosis and diabetes are commonly used to assess the 

effectiveness of different novel and emerging antiplatelet treatments and preventions [266].  

In this project, we initially used rose Bengal and green laser induced arterial thrombosis in 

rats femoral artery as described by Przyklenk et al. [257]. However we were unable to 
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obtain consistent injury with attendant spontaneous formation and dislodgement of platelet 

rich thrombus (see section 2.9.2.2), and therefore employed a different but well established 

mouse model of thrombosis induced by FeCl3.  

2.6.2.1 FeCl3 induced thrombus formation in the carotid artery 

The FeCl3 model of arterial thrombosis is a well-established and widely used model of 

choice for its simplicity, reproducibility and cost effectiveness. A Doppler flow probe is 

positioned proximal to the artery prior to injury, in order to establish blood flow baseline. 

FeCl3 is then applied externally on the common carotid artery or mesenteric arterioles 

using filter paper for four min. Following the removal of FeCl3 blood flow through the 

artery is recorded for 30 min or until 95% vessel occlusion is reached. Typically, FeCl3 

initiates thrombus formation via iron mediated endothelium oxidation, this results in 

endothelial damage leading to platelet and leukocyte adhesion. In addition, the transfer of 

ferric ion (Fe3
+
) to the lumen leads to lipid peroxidation of red blood cell membranes 

causing red cell haemolysis. The released haemoglobin (Hb) from the haemolysed red cells 

is further oxidised by iron generating ROS and protein radicals. Excessive production of 

Hb-derived oxidation products plays an essential role in inducing severe vascular injury, 

collagen exposure, platelet activation and thrombus development [266]. Ferric chloride-

induced arterial injury was performed as previously published method [267]. 
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I. Mice were anaesthetised with ketamine and xylazine (200:10 mg/kg) via 

intraperitoneal injection (IP).  

II. Once the animal was under deep anaesthesia an incision was made on the right side 

of its neck using a surgical scalpel. Blunt dissection was performed to expose and 

isolate the carotid artery, see Fig 2.7 A &B. 

III. A Doppler flow probe was positioned proximal to the carotid artery, and blood flow 

at baseline was recorded on a laser Doppler perfusion monitor (Moor Instruments 

Ltd, England), see Fig 2.8 A &B. 

IV. After surgical preparation, a strip of Filter paper was soaked in 20% FeCl3 solution 

for 4 seconds and carefully placed over the exposed segment of the carotid artery for 

4 mins. It was shown by  Orlowski et al [267] that 20% FeCl3 solution induces 

sufficient injury to cause platelet mediated thrombosis. 

V. The filter strip was then removed, and the carotid blood flow was monitored. The 

blood flow recording was continuous until blood flow readings fell below 50 AU, 

which is equivalent to 95% vessel occlusion. The time taken for 95% vessel 

occlusion was calculated; see Fig 2.9 A &B. 

VI. At the end of each experiment and whilst under deep anaesthesia the mouse was 

euthanized by cervical dislocation.  
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Fig 2.7: Surgical preparation for ferric chloride induced thrombus formation in C57bL/6 

mice: A) An incision was made on the right side of the neck and B) Using blunt dissection 

the right common carotid artery was isolated and lifted with medical sutures. 
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Fig 2.8: Surgical preparation for ferric chloride induced thrombus formation: A) 

positioning of a Doppler flow probe proximal to the carotid artery and B) Measuring the 

baseline blood flow before thrombus initiation (baseline blood flow 1000 arbitrary unites 

(AU). 
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Fig 2.9: Initiation of ferric chloride induced arterial thrombosis: A) Filter paper soaked in 

20% ferric chloride was placed over the carotid artery for 4 min, B) Blood flow recording 

showing decreased blood flow indicating thrombus formation and C) Schematic diagram 

showing mouse model of ferric chloride induced arterial injury. 
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2.6.2.2 Rose Bengal induced thrombus formation in the femoral artery 

Initially an attempt was made to produce spontaneous platelet rich thrombosis in rats’ 

femoral artery, using the classic Folts’ model as was described by Przyklenk et al. The 

classic Folts’ model is canine model of spontaneous platelet rich thrombus formation. It 

utilises endothelial injury to initiate platelet activation. Activated platelets aggregate in the 

injured lumen reducing the blood flow to zero, then as the thrombus emobolises, blood 

flow returns to normal levels, causing cyclic flow reductions (CFRs) [268, 269]. The size 

and frequency of the CFRs depends on the amount of endothelial injury and other factors 

such as plasma catecholamine levels [268]. This is a useful model of platelet rich 

thrombosis to determine the effective antiplatelet dose that is able to reduce the size and 

frequency of the CFRs [57]. Rose Bengal is a dye that is often used in this model to induce 

endothelial damage. 

 Rose Bengal is a photoactive iodinated fluorescein dye that is activated when irradiated 

with green laser light. The activated Rose Bengal generates a highly electrophilic singlet 

oxygen species such as singlet oxygen and superoxide [270]. The generation of these free 

radicals causes; inactivation of nitric oxide and lipid peroxidation of platelets, and 

endothelial cell membranes [271]. The peroxidation of membranes resulting from the 

endothelial damage leads to platelet activation and aggregation, and subsequently the 

formation of platelet rich thrombus in the lumen of the targeted vessel [272]. 

 

I. SD rats (10 week old of both sexes) were anaesthetized with ketamine and xylazine 

(75 and 5 mg/kg, respectively, via intraperitoneal injection).  

II. The experimental rat was intubated via tracheostomy, and ventilated with room air.  

III. The left femoral artery was isolated and instrumented with a 1-mm R-series Doppler 

flow probe.  

IV. The left femoral artery served as the site of thrombosis. The right femoral vein was 

also isolated and inserted with a fluid filled catheter for administration of rose Bengal 

and further anaesthetics.  

V. Rose Bengal was then administered at 25 mg/kg dissolved in 1 mL saline, 

administered as an intravenous bolus over 1 minute.  
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VI. Immediately after the injection, green laser light (λ=542-532) at an energy fluency of 

0.6mW/mm2 irradiated the exposed arterial segment directly proximal to the flow 

probe. Laser light was maintained on the anaesthetised rat for one hour, and femoral 

blood flow (mL/min) was recorded.  

VII. After each experiment, the rats were euthanized under deep anaesthesia by intra-

cardiac injection of KCL followed by exsanguination. 

Due to technical difficulties this animal model of arterial thrombosis was abandoned. The 

difficulties encountered included inability to consistently produce similar data to what 

previously was reported by Przyklenk et al. [257] (see Figure 2.10). This could have been 

due to improper technique and incorrect probe size. We tried to resolve this problem by 

contacting Prof Przyklenk for advice and purchasing a smaller size probe, however the new 

probe was not compatible with our existing instrumentation.  Furthermore, unforseen 

changes in arrangement for accessing the instrumentation arose. Therefore, we chose to 

abandon development of the Rose-Bengal method and adopt a well-established mouse 

model of arterial thrombosis.  
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Fig 2.10: Photochemical induced platelet mediated thrombus in rat femoral artery: A) 

spontaneous and recurrent thrombus formation in the femoral artery produced by 

Przyklenk et al. and B) non- spontaneous and recurrent thrombus formation in the femoral 

artery produced by our model. 
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2.6.3 Models of diabetes

2.6.3.1 Diabetes in NOD mice 

NOD mice were used in an attempt to mimic type-1 diabetes. Diabetes in NOD mice is 

characterised by selective destruction of the pancreatic beta islet cells, this is produced by 

leukocytic infiltration of the pancreas [273]. Onset of diabetes is confirmed by a marked 

glycosuria and a non-fasting blood glucose level > 13 mmol/L. According to the suppliers, 

prevalence of diabetes in females is greater than males. Diabetes in females occurs at 

around 12 weeks of age and approximately two weeks later in males. However, in our 

hands, these mice did not consistently develop diabetes after 20 weeks of age, see Fig 2.11. 

This could have been due to pyogenic and environmental factors, including housing 

conditions, animal health status and diet. After consultation with the suppliers and the 

animal facility management, we decided to move to a more consistent model of type 1 

diabetes. We have chosen the well-known STZ induced diabetic mice; it’s a widely 

accepted and utilised model with extensive literature to support it. STZ induced diabetes is 

well characterised and easier to develop a model without major complications. 

Furthermore, it has been shown that type-1 diabetes is associated with increased platelet 

hyper-sensitivity at a fast rate; therefore it was appropriate to use this model. 
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Fig 2.11: Morning non-fasting glucose level (mmol/L) for NOD mice over seven week 

period (n= 13). Mean  SEM.  
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 2.6.3.2 STZ induced diabetes in mouse model 

I. Diabetes was induced in 6-8 week old C57BL6 mice by an IP injection of STZ at 60 

mg / kg in citrated buffer for five consecutive days.  

II. Blood glucose level was checked 48 hours after the 5
th

 STZ injection using a one 

touch glucometer (Roche, Sydney, NSW, Australia). Diabetes was confirmed when 

blood glucose level was > 13 mmol/L. Mice that did not develop diabetes within 4 

days of the last STZ injection were given a second series of five STZ injections. 

III. The mice were weighed and glucose measured twice weekly see Figs 2.12 & 2.13.  

IV. Diabetic mice were kept under observation for 8 weeks prior to commencement of 

flavonol therapy with additional water and fibre cycle bedding to accommodate 

increased urine void.  

V. Where blood glucose exceeded >30 mmol/L insulin was administered at 0.1 to 0.2 

U/mouse. 
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Fig. 2.12: Weight of STZ-induced diabetic and non-diabetic mice over the 8 week period 

(n= 35). Mean  SEM. 
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Fig. 2.13: Plasma glucose levels of STZ-induced diabetic and non-diabetic mice during the 

8 week period. Mean  SEM. 
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Chapter Three: The effect of quercetin and 3’, 4’ 

dihydroxyflavonol on human platelet function in 

vitro 
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3.1 Introduction 

Consumption of flavonol rich food including fruit and vegetables is associated with 

reduced cardiovascular risks [127, 219]. Flavonols exert a variety of biological activities 

including antioxidant, anti-inflammatory and vasorelaxant effects [226, 274] which are all 

believed to contribute to their capacity to decrease the incidence of cardiovascular disease 

[221, 224, 225, 229, 242, 246, 275, 276]. Recently it has been demonstrated that the 

synthetic flavonol 3’, 4’-dihydroxyflavonol (DiOHF) is able to reduce injury after 

myocardial ischaemia and reperfusion [242, 243, 277, 278] and to improve endothelial 

function in diabetes [246].   

Whilst considerable attention has been paid to the antioxidant activity of flavonols as a 

major contributor to their cardioprotective actions, there is growing evidence of other 

properties that may be of importance. There have been several studies demonstrating that 

flavonols, particularly Que, have anti-platelet aggregation activity that may also contribute 

to their beneficial effects [230, 231, 235, 265]. Several mechanisms of action have been 

proposed including inhibition of  cyclooxygenase or phosphodiesterases [279], antagonism 

of the TxA2 receptor [280-282], as well as more recent evidence showing inhibition of 

kinase activity  [232, 247, 283, 284] (for more information see section 1.6.2). One study 

has demonstrated inhibition of collagen stimulated serotonin release from platelets 

following incubation with Que, suggesting inhibition of dense granule exocytosis [265]. 

This has not been explored as a potential mechanism of inhibition of platelet function by 

flavonols, rather a generalised effect on platelets, furthermore, the effect on  alpha granules 

has not yet been explored.  

Furthermore, while the functional impact of Que on the capacity of platelets to aggregate 

has been explored, it is not clear whether this relates to impaired activation of GPIIbIIIa, 

impaired fibrinogen binding, α-granule exocytosis, or other mechanisms. The antiplatelet 

potential of DiOHF has not previously been explored.  

Therefore, the aims of this chapter were to elucidate and compare the effects of Que and 

DiOHF on human platelet aggregation, GPIIbIIIa activation, fibrinogen binding and 

granule exocytosis in vitro. 
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3.2 Materials and methods 

3.2.1 Human volunteers  

RMIT University Human Ethics Committee approval and written consent was obtained 

from all participating volunteers prior to blood collection, see section 2.3.  

3.2.2 Sample preparation 

Blood collection was performed as described in section 2.4. PRP for platelet aggregation 

studies was obtained from the fresh blood as described in section 2.4.1. All treatments 

were assessed from the same blood from each individual donor 

3.2.3 Platelet aggregation 

The effect of Que (n = 3) or DiOHF (n = 3) or vehicle (n = 3) on agonist induced light 

transmittance platelet aggregation and ATP release was determined as shown in sections 

2.5.4 & 2.5.6.1.1.  

3.2.4 Flow cytometric immunophenotyping  

The effect of Que or DiOHF on platelet GPIIbIIIa activation, α-granule exocytosis and 

fibrinogen binding was performed using established flow cytometric methods [259-261].  

3.2.4.1 Assessment of GPIIbIIIa activation and α-granule exocytosis  

Platelet expression of P-selectin, changes in surface CD61 expression and GPIIbIIIa 

conformational change in the presence of 1mM Que (n = 6), 1mM DiOHF (n = 6) or 

vehicle (n = 6) were assessed as described in section 2.5.7.3.2. 

3.2.4.2 Assessment of fibrinogen binding 

The effect of the 1mM Que (n = 3), 1mM DiOHF (n = 3) or vehicle (n = 3) on FITC 

conjugated human fibrinogen was examined as outlined in section 2.5.8. 

3.2.4.3 Assessment of dense granule exocytosis 

Dense granule exocytosis was quantitatively assessed by quinacrine uptake and thrombin-

induced release with flow cytometry as described previously in sections 2.5.6.2. 
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3.2.5 Confocal laser scanning microscopy 

The ability of platelet dense granules to release their contents in the presence of 1mM Que 

1mM DiOHF or vehicle was visualised using laser confocal imaging. For method details 

please refer to section 2.5.6.2.2. 

3.2.6 Toxicity assay 

The toxic effect of 1 mM Que, DiOHF and the vehicle (1% DMSO) was determined using 

Trypan blue toxicity assay as previously reported [285]. In brief, fresh human PRP (n =3) 

was incubated with 1 mM Que, DiOHF, vehicle or 90% ethanol (positive control) for 5 

min at 37ºC, the incubation time in this experiments corresponds to the time of the platelet 

function assay, so that any toxic effect produced by the flavonol during incubation is 

observed. At the end of the incubation period an equal volume of Trypan blue (0.4%) was 

added to the PRP containing the flavonols or vehicle, and mixed thoroughly. The toxic 

effect was immediately examined under the microscope (x40 objective) using a 

haemocytometer, 300-400 platelets were counted and the percentage of viable platelets was 

calculated. 

3.2.7 Statistical analysis 

All values are expressed as mean ± standard error of mean (SEM). Comparisons between 

samples from the same volunteer with aliquots spiked with flavonol or control were 

performed using one-way ANOVA with repeated measures and Dunnett’s test, for post hoc 

comparisons. Comparisons between Que and DiOHF were performed with Bonferroni post 

tests. Figs 3.2 and 3.3 were analysed using Two way ANOVA, to compare between vehicle 

and flavonols treated samples Bonferroni post-test was used. Statistical analysis was 

performed using PRISM Graphpad software. 
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3.3 Results  

3.3.1 Platelet aggregation  

Incubation of PRP with Que or DiOHF inhibited platelet aggregation when induced by 5 

µg.ml
-1

 collagen, 10 µM ADP and 0.5 mM AA in a concentration-dependent manner (Fig. 

3.1). Que and DiOHF caused concentration-dependent inhibition of aggregation, and 

achieved near complete inhibition of ADP and collagen-induced aggregation at 1 mM 

DiOHF fully inhibited AA- induced platelet aggregation at 0.2 mM, whereas Que achieved 

full inhibition at 0.50 mM.  

3.3.2 Dense Granule Exocytosis 

Dense granule exocytosis was measured by agonist induced ATP release and fluorescent 

quinacrine uptake and release. Que or DiOHF inhibited ATP release in a concentration 

dependent manner when stimulated by 2 µg.ml
-1

 collagen, 10 µM ADP or 0.5 mM AA. 1 

mM of Que or DiOHF achieved complete, or near complete, inhibition of ATP release 

from dense granules caused by collagen (Que 91 ± 4% and DiOHF 93 ± 2%) and AA 

(Que, DiOHF, 100% inhibition at 1 mM,) (Fig. 3.2). The rationale of using 2 µg.ml
-1

 of 

collagen in these experiments was because dense granule exocytosis requires triggering of 

primary aggregation only, while assessment of aggregation requires triggering of both 

primary and secondary aggregation, therefore low concentrations of agonists is required. 

 

 Inhibition of dense granule exocytosis was confirmed by quinacrine uptake and thrombin-

induced decrease in quinacrine fluorescence. Quinacrine release was significantly inhibited 

by concentrations of either Que or DiOHF greater than 0.5 mM (Fig 3.3). Inhibition of 

quinacrine release by DiOHF was significantly greater than Que when used at the same 

concentration and identical experimental conditions. Failure of flavonol treated platelets to 

release quinacrine labelled dense granules was visually confirmed by confocal laser 

microscopy. Thrombin caused visible shape change associated with activation for all 

treatments, but retained visible dense granules in platelets treated with Que and DiOHF 

(Fig 3.4). The proportion of platelets with fluorescent granules by confocal microscopy 

following stimulation with 0.5 U.ml
-1

 thrombin is shown in Fig 3.5. 
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Fig. 3.1. Inhibition of platelet aggregation in the presence of Que (squares) and DiOHF 

(circles). Increasing concentrations of Que or DiOHF dissolved in DMSO were incubated 

with fresh PRP (n=3) at 37°C for 5 min. Maximal turbidimetric platelet aggregation over 6 

minutes was recorded. Platelet aggregation was induced by (A) 5 µg.ml
-1 

collagen, (B) 10 

µM ADP and (C) 0.5 mM AA. 
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Fig. 3.2: Effect of Que or DiOHF on ATP release. ATP release from platelets treated with 

vehicle, Que or DiOHF at 37°C over 5 minutes was measured against a 2 nM ATP 

standard by chemiluminescence of luciferin-luciferase stimulated by (A) 2 µg.ml
-1 

collagen, (B) 10 µM ADP and (C) 0.5 mM AA. Mean  SEM. Two way ANOVA with 

Bonferroni post-test (n=3). * P < 0.05 vs vehicle, ** P < 0.05 between DiOHF and Que. 
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Fig. 3.3. Inhibition of 0.5 U.mL
-1 

thrombin induced dense granule exocytosis by Que or 

DiOHF by flow cytometry. Fresh PRP was incubated with quinacrine in the presence of 

vehicle, 1 mM Que or 1 mM DiOHF in the dark at 37°C for 20 min. Platelets were 

identified by characteristic forward and side light scatter.  The thrombin induced decrease 

in fluorescence indicating dense granule exocytosis was recorded. Mean  SEM. Two way 

ANOVA with Bonferroni post-test (n=3). * P < 0.05 vs vehicle, ** P < 0.05 between 

DiOHF and Que. 
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Fig. 3.4: Inhibition of dense granule exocytosis was visually confirmed by confocal 

microscopy (Nikon A1, Nikon Corp. Japan) using a 60x water immersion objective (NA 

1.42) and excitation with a 488 nm laser, and NIS-Element advanced research software for 

image analysis. Quinacrine labelled platelets were incubated with vehicle, 1 mM Que or 1 

mM DiOHF in the dark at 37°C for 20 min. Representative images of quinacrine labelled 

platelets with (A) Que only, (B) Que + 0.5 U.mL
-1

 thrombin, (C) DiOHF only, (D) DiOHF 

+ 0.5 U.ml
-1

 thrombin, (E) Vehicle only, (F) Vehicle + 0.5 U.mL
-1

 thrombin.  
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Fig. 3.5: Inhibition of dense granule exocytosis was quantified by confocal microscopy. 

The percentage of platelets per field with fluorescent dense granules was quantified over a 

minimum of 6 fields per condition.* P < 0.05 vs vehicle. Mean ± SEM. One way ANOVA 

with Dunnett’s post-test. 
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3.3.3 Alpha Granule Exocytosis 

Alpha granule exocytosis was measured by platelet surface P-selectin expression and 

agonist induced changes in GPIIIa expression. 

1 mM Que significantly inhibited ADP (58% inhibition, p < 0.05), AA (36% inhibition, p 

< 0.05), TRAP (14% inhibition, p < 0.05), and adrenaline + collagen (54% inhibition, p < 

0.05) induced α-granule exocytosis as measured by P-selectin mean fluorescence intensity 

(Fig 6). Inhibition was observed with DiOHF also, but this failed to achieve statistical 

significance; ADP (25% inhibition, p = 0.06), AA (18% inhibition, p = 0.07), TRAP (3% 

inhibition, p = 0.09), adrenaline + collagen (31% inhibition, p = 0.06) (Fig 3.6). Although 

there is a trend towards a greater inhibition, the experiment may have been underpowered 

to detect significance. Fig 3.7 shows the agonist induced increase in platelet surface CD61 

expression from intracellular alpha granule stores. 0.5 mM AA induced a significant 

increase in CD61 MFI in the presence of vehicle (40% increase, p < 0.05) and 1 mM 

DiOHF (45% increase, p < 0.05) but not in the presence of 1 mM Que (19% increase, p = 

0.82) (Figure 7A). Similarly, 20 µM TRAP induced a significant increase in CD61 MFI in 

the presence of vehicle (30% increase, p < 0.05) and 1 mM DiOHF (27% increase, p < 

0.05) but not in the presence of 1 mM Que (14% decrease, p = 0.66). 
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Fig. 3.6: Effect of 1 mM Que or DiOHF on platelet surface P-selectin (CD62P) expression 

by flow cytometry. Whole blood aliquots were incubated with vehicle, 1 mM Que or 1 mM 

DiOHF at 37°C for 5 min. Platelets were identified by characteristic forward and side light 

scatter and expression of the platelet-specific CD42b. Platelet surface P-selectin expression 

was determined by CD62P fluorescence induced by (A) 25 µM ADP, (B) 0.5 mM AA, (C) 

20 µM TRAP or (D) 25 µg.ml-
1
 collagen + 250 µM adrenalin. Mean  SEM. One way 

ANOVA with Dunnett’s post-test (n=6). 
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Fig. 3.7: Effect of 1 mM Que or DiOHF on platelet surface GPIIIb (CD61) expression by 

flow cytometry. Whole blood aliquots were incubated with vehicle, 1 mM Que or 1 mM 

DioHF at 37°C for 5 min. Platelets were identified by characteristic forward and side light 

scatter and expression of the platelet-specific CD61. Mean fluorescence intensity (MFI) of 

CD61 relative to circulating (No Agonist) levels for 0.5 mM AA (A) and 20 µM TRAP 

(B). Mean ± SEM. * P < 0.05 vs No Agonist. One way ANOVA with Dunnett’s post-test 

(n = 3). 
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3.3.4 GPIIbIIIa Receptor Activation and Fibrinogen Binding 

1 mM Que, and to a lesser extent DiOHF, significantly inhibited ADP (DiOHF = 56%, 

Que = 71% inhibition, both p < 0.05), AA (DiOHF = ns, Que = 45% inhibition, p < 0.05 

for Que only), TRAP (DiOHF = 43%, Que = 59% inhibition, both p < 0.05), and 

adrenaline + collagen (DiOHF = 59%, Que = 78% inhibition, both p < 0.05) induced 

GPIIbIIIa activation as measured by PAC-1 binding (Fig 3.8).  

Correspondingly, 1 mM Que achieved greater inhibition of 10 and 20 µM of TRAP- 

induced fibrinogen binding to platelets than 1 mM DiOHF (Que inhibited 60 ± 2% p < 

0.05, DiOHF ns 35 ± 7%, p = ns ) (Fig 3.9). 

3.3.5 Toxicity assay 

Incubation of PRP with 1mM of Que, DiOHF or 1% DMSO vehicle did not affect platelet 

viability (Que = 93 ± 2%, DiOHF = 94 ± 1%, DMSO = 94 ± 2%, EtOH = 18 ± 2%), (Fig 

3.10).
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Fig. 3.8: Effect of 1 mM Que or DiOHF on PAC-1 binding by flow cytometry.  Whole 

blood aliquots were incubated with vehicle, 1 mM Que or 1 mM DiOHF at 37°C for 5 min. 

Platelets were identified by characteristic forward and side light scatter and expression of 

the platelet-specific CD42b. PAC-1 binding was determined by increase in fluorescence 

upon stimulation by (A) 25 µM ADP, (B) 0.5 mM AA, (C) 20 µM TRAP or (D) 25 µg.ml-

1
 collagen + 250 µM adrenalin.* P < 0.05 vs vehicle. Mean  SEM. One way ANOVA 

with Dunnett’s post-test (n=6). 
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Fig. 3.9. Effect of 1 mM Que or DiOHF on FITC conjugated fibrinogen platelet binding by 

flow cytometry. Que or DiOHF treated platelets were incubated with FITC conjugated 

fibrinogen at 37°C for 5 min. Platelets were identified by characteristic forward and side 

light scatter and expression of the platelet-specific CD42a. Platelet surface fibrinogen 

binding was determined by fluorescent detection of FITC labelled fibrinogen on the 

platelets. Fibrinogen binding was induced by (A) 10 µM and (B) 20 µM TRAP. * P < 0.05 

vs vehicle. Mean  SEM. Paired t-test (n=6). 
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Fig. 3.10. Effect of 1 mM Que, 1 mM DiOHF or vehicle on platelet viability. Human PRP 

(n =3) was incubated with 1 mM Que, 1 mM DiOHF or vehicle at 37°C for 5 min. Trypan 

blue (0.4%) was added at end of the 5 min incubation period and mixed thoroughly. The 

platelet viability was examined under the microscope using x40 objective.  
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3.4 Discussion  

This chapter shows that both Que and DiOHF inhibited human platelet aggregation in a 

concentration dependent manner in response to various platelet agonists. It also provides 

evidence of different inhibitions of dense and alpha granule exocytosis in response to a 

range of agonists by these flavonols. Both Que and DiOHF inhibited dense granule 

exocytosis at concentrations corresponding to those inhibiting agonist induced platelet 

aggregation. Consistent with inhibition of aggregation, both 1 mM Que and DiOHF 

inhibited GPIIbIIIa receptor activation, as demonstrated by PAC-1 binding. Que 

significantly inhibited α-granule exocytosis with a range of agonists, as demonstrated by 

CD62P expression and prevention of an agonist induced increase in CD61 expression. 

While some inhibition of P-selectin expression was observed with DiOHF, this failed to 

achieve statistical significance, and was not supported by any inhibition of agonist induced 

release of α-granule GPIIIb. Thus the potency of α-granule inhibition may be less in 

DiOHF than in Que. Furthermore, Que significantly inhibited fluorescently labelled 

fibrinogen binding, whereas inhibition with DiOHF was less and did not achieve statistical 

significance. However, DiOHF showed significantly greater inhibition of dense granule 

exocytosis across a range of agonists, as measured by ATP release and by thrombin 

induced fluorescent quinacrine uptake and release. Table 3.1 summarises the findings of 

this chapter.  

An unexpected finding of this study was differences in the potency of inhibition of α-

versus dense granule exocytosis by the two structurally related flavonols. Platelet α-

granule secretion occurs more readily than dense granule secretion, however the 

mechanisms leading to membrane fusion and exocytosis of the two granule types have 

generally been assumed to be similar [286, 287]. Studies have shown that aspirin at certain 

concentrations is capable of inhibiting ADP induced serotonin release (a dense granule 

component) whilst P-selectin expression is unaffected [287], suggesting potential for 

selective inhibition of exocytosis the different granule types. The results obtained in the 

current study suggest enhanced inhibition of dense granule exocytosis with DiOHF, while 

greater inhibition of α-granule exocytosis was seen with Que. This supports the concept 

that release of dense and α-granules may be independently regulated, and therefore 

potentially independently inhibitible. This represents a potentially interesting therapeutic 

strategy. 
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Platelet granule-cell membrane fusion necessary for exocytosis is governed, in part, by the 

matching of a vesicle SNARE (v-SNARE) with SNAP or syntaxin proteins in the plasma 

membrane [288] (for more information see section 1.1.3.4). In platelets, syntaxin 2 and 4 

function to mediate α- granule release, but dense granules lack syntaxin 4. This dual usage 

of syntaxin 2 and 4 in α-granules may potentially explain how differential release of dense 

and α-granules could occur. Different inhibition of syntaxin function by Que and DiOHF 

has the potential to explain the differences in relative potency of inhibition of dense and α-

granule exocytosis observed in this study, but has not been examined. Further studies are 

warranted to elucidate the potential role of syntaxin in the mechanism of different 

inhibition of α-and dense granule exocytosis by structurally related flavonols. 

Recent studies have suggested that α-granules are heterogeneous in composition [286, 

289]. While all α-granules contain P-selectin, subtypes have been identified with 

differential expression of pro- and anti-angiogenic factors [289] and vWF [290]. While our 

results demonstrate that overall α-granule exocytosis, as measured by P-selectin 

expression, inhibited by Que, it dose remains possible that subtypes of α-granules may be 

uninhibited, and further studies are warranted to elucidate this. 

Platelet exocytosis is a critical component of platelet function and thrombus growth [69] 

(for more information see section 1.1.3.4). The ability to modulate the inhibition of dense 

granule exocytosis relative to α-granule exocytosis by structural modification of flavonols 

represents a potential novel therapeutic target for antiplatelet therapy. Such an approach 

would inhibit release of ADP and serotonin, which are critical molecules involved in the 

positive feedback loop of platelet activation and thrombus propagation, whilst providing 

less inhibition of the capacity of platelets to activate, adhere to the site of injury, and 

deliver important immune and growth factor molecules from α-granules. 

While a potential for different inhibition of dense and α-granule exocytosis by two 

structurally related flavonols is shown in this study, it is clear that this is in addition to 

antiplatelet effects of flavonols that have been previously described.  

The concentrations of DiOHF and Que that were found to significantly inhibit collagen and 

ADP induced platelet aggregation were higher than previously reported by Sheu et al. 

[235] and Yin et al. [28], but are consistent with Raghavendra et al. [230]. Because ADP, 

collagen and AA induced aggregation were all inhibited, these flavonols may inhibit 

platelet function by multiple mechanisms or a common pathway that is shared by these 
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agonists. The ability of flavonols to inhibit  kinase activity [232, 283, 284, 291] including 

Fyn and PI3 kinase activity and the tyrosine phosphorylation of Syk and PLCγ2 [291-293] 

may contribute to the inhibition of platelet activation, aggregation and granule exocytosis 

observed in this study. However, more potent inhibition of AA induced platelet 

aggregation suggests an additional mechanism may be through inhibition of 

cyclooxygenases [294] or binding to the thromboxane receptor [280, 295] as has been 

previously demonstrated. 

It is worth mentioning that these antiplatelet effects are not due to toxic effects of these 

flavonols or vehicle on platelet function. Platelet viability was determined in the presence 

of the flavonols or vehicle using Trypan blue viability assay. Trypan blue is a dye widely 

used to stain non-viable cells. The principle of this assay is that viable cells have intact cell 

membrane and theretofore will exclude the dye, whereas, non-viable cells do not have an 

intact membrane allowing the dye to enter and stain the cell.  

3.5 Limitations 

In this study, concentrations corresponding to that of Sheu et al and Chen et al were 

instigated, however at those concentrations the investigational flavonols failed to produce 

substantial inhibitory effects, therefore, high concentrations of Que and DiOHF were used 

in order to demonstrate a novel mechanism of action of inhibition of different parameters 

of platelet function, the use of these concentrations was determined following the 

determination of a dose repose curve, also The range of these concentrations relates to 

those used by Raghavendra et al. Further studies are required to confirm the antiplatelet 

effects in vivo and assess the effect on platelet mediated thrombosis in vivo.  
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Table 3.1, a summary of the effects of Que or DiOHF on human platelet function in vitro 

 Platelet parameter significantly inhibited 

Que Aggregation 

Fibrinogen binding 

PAC-1 

Alpha granules 

Dense granules 

GPIIIb (CD61) 

DiOHF Aggregation 

PAC-1 

Dense granules 
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Chapter Four: The effect of quercetin and 3’, 4’ 

dihydroxyflavonol on thrombus formation in an in 

vivo model of acute arterial thrombosis  
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4.1 Introduction  

Arterial thrombosis is one of the leading causes of death in the developed world [296]. It is 

well established that platelet-vessel wall interactions play an essential role in the formation 

of vascular thrombosis. Platelets adhere to thrombogenic substances exposed on the 

damaged endothelial surface such as collagen via glycoprotein (GP) VI [297] leading to 

platelet activation, aggregation and ultimately thrombus formation. A healthy endothelium 

plays a major role in limiting platelet activation and thrombus formation by producing NO 

and prostacyclin maintaining vascular tone and regulating platelet function. However, 

when the endothelial cells lose their function due to oxidative stress it leads to over 

production of vasoconstrictors and prothrombotic mediators, and hence increased risk of 

thrombus formation [298, 299]. 

There is increasing evidence that dietary flavonols exert cardiovascular benefits. Flavonols 

are phenolic substances widely found in fruits and vegetables [127, 219]. Epidemiological 

studies have indicated that consumption of a flavonol rich diet is associated with reduced 

deaths due to cardiovascular disease (CVD) [300]. The Rotterdam study showed a 

reduction of > 65% in the occurrence of fatal myocardial infarction with a flavonol intake 

>33 mg/d [225]. 

Flavonols have been shown to exert both antioxidant and antiplatelet activity in vitro [219-

221]. Rechner et al. [301] showed that dietary polyphenolic compounds inhibit platelet 

aggregation. Other studies have shown that ingestion of flavonol rich foods and beverages 

reduces platelet aggregation induced by different agonists [240, 302-304]. Briggs et al. 

[304], demonstrated a significant reduction in collagen induced platelet aggregation in 

dogs following intravenous administration of onion juice (0.09 ±0.1 mL/kg), or intragastric 

administration of onion homogenate (2.0 g/kg). Que is a well-documented antioxidant with 

antiplatelet activity. Hubbard et al. [232] reported that following ingestion of Que, 

collagen-induced platelet aggregation was inhibited. However, no studies have assessed the 

duration of this antiplatelet effect, or whether it is capable of inhibiting platelet-mediated 

thrombosis in vivo. 

In addition to antiplatelet activity, flavonols exert well characterised vasorelaxant activity. 

Que has been shown to induce endothelium-independent vasodilation and to restore nitric 

oxide (NO) production and endothelial function in conditions of oxidative stress [305]. 

Que improves endothelium-dependent relaxation and increases cyclic AMP 
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phosphodiesterases and protein C kinase (PKC) in rat aortae. DiOHF is a synthetic 

flavonol with a structure suggested to improve antioxidant activity over natural flavonols 

[242] (for more information see section1.5.3.1). It has been shown to be highly effective in 

restoring NO bioavailability [242]. DiOHF was also found to inhibit superoxide generation 

by blood vessels or in the presence of xanthine/xanthine oxidase and to reduce vascular 

contraction [306, 307]. In a study by Woodman et al [246] showing reduced endothelial 

damage in rats following the administration of 5 mg/Kg of DiOHF. DiOHF was also 

shown to reduce vascular damage due to ischaemia and reperfusion injury in animal 

models [227, 277].  

In Chapter 3 it was demonstrated that flavonols have potent anti-platelet potential 

including anti-aggregatory activity and inhibition of granule exocytosis. Accordingly, the 

aims of this chapter were to examine the effect of Que and DiOHF; on thrombus formation 

in an animal model of platelet mediated thrombosis, and murine platelet aggregation and 

dense granule exocytosis ex vivo. Specifically, the aim was to determine (i) the effect of 

Que and DiOHF platelet mediated thrombus generation in vivo, 30 mins after a single 

intravenous (IV) dose, and 24 hours after the last of 7 daily intraperitoneal (IP) doses, (ii) 

ex vivo platelet aggregation, and (iii) dense granule exocytosis using the two treatment 

regimes.  
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4.2 Materials and methods 

4.2.1 Animals  

All experimental procedures performed in this study were approved by the Animal 

Experimentation Ethics Committee of RMIT University as stated in section 2.6.1.1. 

4.2.2 Flavonol administration  

Mice (13 weeks old of both sexes) were treated with Que (6 mg/kg), DiOHF (6 mg/kg), 

and eptifibatide (4.5 mg/kg, a potent antiplatelet drug - see section 1.4.3, to act as a 

positive control) or vehicle (0.5% DMSO plus 20% PEG and saline). Flavonols or controls 

were administered as either a single IV bolus or multiple doses via IP injection (6 mg/kg 

per day for 7 days). Experimental procedures were performed 30 min after the IV bolus 

treatment, and 24 h following the last flavonol IP treatment. Woodman et al [246] 

demonstrated improved endothelial function following the administration of 5 mg/kg of 

DiOHF in rats, therefore 6 mg/kg flavonol doses were chosen in this study. 

4.2.3 FeCl3 Carotid injury model 

FeCl3-induced arterial injury was performed as a well characterized model of platelet-

mediated thrombosis as previously described in section 2.6.2.1.  

At the end of each experiment and whilst the mouse was under deep anaesthesia the mouse 

was euthanized by cervical dislocation.  

4.2.4 Sample preparation for platelet aggregation and dense granule exocytosis 

Blood collection and PRP preparation was performed as outlined in sections 2.4 and 2.4.1. 

For the acute effect the blood was collected 30 min after the flavonol administration, 

whereas, for the chronic effect the blood was collected 24 hr after the last flavonol 

injection. 
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4.2.5 Platelet aggregation  

Platelet aggregation was measured by turbidimetric aggregometry using a Chrono-log 700 

aggregometer as described earlier in section 2.5.5. For platelet aggregation the PAR 4 

agonist peptide AYPGKF-NH2 was used, as murine platelets predominantly express the 

thrombin PAR 4 receptor (see section 1.1.2.). 

4.2.6 Assessment of dense granule exocytosis 

Dense granule exocytosis was measured by quinacrine uptake and PAR 4 agonist peptide 
AYPGKF-NH2 (250 µM) induced release, was performed as described in section 2.5.6.2. 

4.2.7 Statistical analysis 

All values are expressed as the mean ± standard error of the mean (SEM). Comparisons 

between test samples and control are performed using one-way ANOVA with Dunnett’s 

test, for post hoc comparisons.  
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4.3 Results  

4.3.1 Effect of Que or DiOHF on FeCl3 induced arterial thrombosis 

In order to assess the effect of Que or DiOHF on platelet mediated thrombosis in vivo, 

blood flow through the carotid artery of C57BL/6 mice was measured following FeCl3 

injury. Vehicle treated mice had near complete vessel occlusion within the first 15 min 

following FeCl3 application with both the single IV dose  (1.7 ± 1.7% flow, Fig 4.1A) and 

multiple IP dose regimens (21.5 ± 9.2% flow, p = n.s. between regimens, Fig 4.1B). As 

expected, the platelet GPIIbIIIa receptor antagonist eptifibatide (4.5 mg/kg) maintained 

blood flow at near pre-injury levels (96.7 ± 3.3% flow, p < 0.05 vs vehicle, Fig 4.1A) when 

administered IV, but there was a reduction in blood flow when it was administered IP (64.8 

± 19.6% flow, p = n.s. vs vehicle, Fig 4.1B). 

Blood flow at 15 min was maintained at near pre-injury levels for mice treated with 6 mg/ 

kg of Que for both the single IV (83.1 ± 17.0% flow, p < 0.05 vs vehicle, Fig 4.1A) and 

multiple IP regimen (100 ± 0% flow, p < 0.05 vs vehicle, Fig 4.1B). Likewise, blood flow 

at 15 min was well maintained in mice treated with 6 mg/kg DiOHF as either a single IV 

(100 ± 0% flow, p < 0.05 vs vehicle, Fig 4.1A) or with a multiple IP regimen (83.1 ± 

17.0% flow, p < 0.05 vs vehicle, Fig 4.1B). 

Blood flow remained completely absent for vehicle treated mice at 30 min following 

arterial injury for both the single IV (0% flow, Fig 4.1C) and multiple IP regimens (0% 

flow, p = n.s. between regimens, Fig 4.1D). Blood flow in mice treated with 6 mg/kg Que 

was lower at 30 min vs. 15 min for both the single IV (23.0 ± 4.7% and 83.1 ± 17.0% 

respectively, p < 0.05) and multiple IP regimens (52.0 ± 15.8% and 100 ± 0% respectively, 

p < 0.05), but remained significantly higher than the vehicle control (Figs 4.1C and 4.1D, p 

< 0.05 vs. vehicle for each regimen). Similarly, mice treated with 6 mg/kg DiOHF had 

reduced blood flow at 30 min vs. 15 min for both the single IV dose (37.2± 16.1% and 100 

± 0% respectively, p < 0.05) and multiple IP dose regimens (27.5 ± 14.4% and 83.1 ± 

17.0% respectively, p < 0.05). Nevertheless, mice treated with 6 mg/kg DiOHF as a single 

IV dose had improved blood flow at 30 min vs. vehicle control (37.2 ± 16.1% vs. 0%, p < 

0.05, Fig 4.1C). However, while showing a similar trend, blood flow at 30 min was not 

significantly improved in mice treated with 6 mg/kg DiOHF as multiple IP doses (27.5 ± 

14.4% vs 0%, p = n.s., Fig 4.1D). 



111 
 

Improved blood flow over the 30 min period following arterial injury was also reflected in 

area under the curve (AUC). There was no difference in blood flow in mice treated with 

multiple IP vehicle vs. a single IV vehicle (948 ± 156 AUC vs. 476 ± 56 AUC, p = 0.06).  

A single IV bolus of 6 mg/kg of Que significantly improved arterial blood flow over the 30 

min following injury when compared to IV vehicle (2062 ± 296 AUC vs. 476 ± 56 AUC, p 

< 0.05, Fig 4.2A), and a similar improvement was seen with the multiple IP regimen (2705 

± 98 AUC vs. 948 ± 156 AUC, p < 0.05, Fig 4.2B). Similarly, a single IV bolus of 6 mg/kg 

DiOHF significantly improved arterial blood flow over the 30 min following injury when 

compared to the IV vehicle (2472 ± 164 AUC vs. 476 ± 56 AUC, p < 0.05, Fig 4.2A), and 

a similar improvement was seen with the multiple IP regimen (2328 ± 289 AUC vs. 948 ± 

156 AUC, p < 0.05, Fig 4.2B).  
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Fig. 4.1: Arterial blood flow expressed as percentage of baseline. Blood flow was 

measured at 15 minutes (A and B) and 30 minutes (C and D) after arterial injury. Mice 

were treated vehicle, 6 mg/kg Que, 6 mg/kg DiOHF or 4.5 mg/kg eptifibatide (positive 

control) either with a single IV bolus 30 minutes prior to arterial injury (A and C, n = 5 for 

each treatment) or with daily IP doses over sequential days with the last dose 24    hours 

prior to arterial injury (B and D, n = 6 for each treatment). Eptifibatide was used as a 

positive control for the IV bolus group only. Data are mean ± SEM. One way ANOVA 

with Dunnett’s post-test. * p < 0.05 vs vehicle control. 
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Fig. 4.2: Arterial blood flow area under the curve (AUC) over 30 minutes for the mice 

treated with vehicle, 6 mg/kg Que, 6 mg/kg DiOHF or 4.5. mg/kg eptifibatide (positive 

control) following ferric chloride induced arterial injury. (A) Mice treated by intravenous 

injection 30 minutes prior to arterial injury (n = 5 for each treatment). (B) Mice treated by 

intraperitoneal injection once per day for 7 consecutive days, with the last dose 24 hours 

prior to arterial injury (n = 6 for each treatment). Data are mean ± SEM. One way ANOVA 

with Dunnett’s post-test. * p < 0.05 vs vehicle control. 
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4.3.2 Platelet aggregation 

Stimulation with 250 μM AYPGKF-NH2 induced 57.6 ± 6.1% platelet aggregation in mice 

treated with a single IV vehicle (Fig 4.3A) and 73.4 ± 4.6% aggregation in mice treated 

with multiple IP doses of vehicle (Fig 4.3B, p = 0.06 between regimens). As expected, a 

single IV bolus of 4.5 mg/kg eptifibatide significantly inhibited 250 μM AYPGKF-NH2 

induced platelet aggregation vs. vehicle (31.0 ± 2.1% vs. 57.6 ± 6.1%, p < 0.05, Fig 4.3B). 

Que significantly inhibited 250 μM AYPGKF-NH2 induced aggregation vs. vehicle when 

administered as a single IV (47.0 ± 4.0% vs. 57.6 ± 6.1% respectively, p < 0.05, Fig 4.3A) 

and multiple IP doses (50.4 ± 6.6% vs. 73.4 ± 4.6% respectively, p < 0.05, Fig 4.3B). 

Similarly DiOHF significantly inhibited 250 μM AYPGKF-NH2 induced aggregation vs. 

vehicle control when administered as a single IV (46.3 ± 7.0% vs. 57.6 ± 6.1% 

respectively, p < 0.05, Fig 4.3A) and multiple IP doses (49.9 ± 6.5% vs. 73.4 ± 4.6% 

respectively, p < 0.05, Fig 4.3B). 

4.3.3 Dense granule exocytosis 

Dense granule exocytosis was measured by fluorescent quinacrine release. Stimulation 

with 250 μM AYPGKF-NH2 induced 55.0 ± 4.1% release of fluorescent quinacrine with a 

single IV vehicle (Fig 4.4A) and 61.9 ± 3.6% release with multiple IP vehicle (Fig 4.4B, p 

= n.s. between regimens). As expected, treatment with a single IV bolus of 4.5 mg/kg 

eptifibatide did not affect dense granule exocytosis (52.3 ± 4.0% vs. 55.0 ± 4.1%, Fig 

4.4A, p = n.s.). 

Que significantly inhibited 250 μM AYPGKF-NH2 induced release of fluorescent 

quinacrine vs. vehicle when administered as a single IV dose (32.0 ± 11.0% vs. 55.0 ± 

4.1%, Fig 4.4A, p < 0.05) and multiple IP doses (38.2 ± 7.8% vs 61.9 ± 3.6%, Fig 4.6B, p 

< 0.05). Similarly DiOHF significantly inhibited 250 μM AYPGKF-NH2 induced release 

of fluorescent quinacrine vs. vehicle when administered as a single IV dose (29.3 ± 12.5% 

vs. 55.0 ± 4.1%, p < 0.05, Fig 4.4A) and multiple IP doses (34.7 ± 6.7% vs. 61.9 ± 3.6%, p 

< 0.05, Fig 4.4B). 
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Fig. 4.3: PRP platelet aggregation stimulated with PAR 4 agonist (250 µM). PRP was 

derived from mice treated with 6 mg/kg Que (n=8), DiOHF (n=8) or vehicle (n=8). Platelet 

count was normalised to 100x10
9
/L in all test groups. A, Single IV bolus treatment, B, 

Multiple IP treatments. * P < 0.05 vs vehicle. Mean  SEM. One way ANOVA with 

Dunnett’s post-test. 
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Fig.4.4: PAR 4 agonist (250 µM) induced dense granule exocytosis was assessed using 

flow cytometry. PRP was derived from blood collected from mice treated with 6 mg/kg 

Que (n=6), DiOHF (n=6) or vehicle (n=6). Platelet count was normalised to 100x10
9
/L in 

all test groups. A, Single IV bolus treatment, B, Multiple IP treatments. * P < 0.05 vs 

vehicle. Mean  SEM. One way ANOVA with Dunnett’s post-test. 
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4.4 Discussion 

This chapter demonstrates that the naturally occurring flavonol Que and the synthetic 

flavonol DiOHF delay thrombus formation and improve carotid artery blood flow for up to 

30 minutes following injury in a well-established mouse model of acute platelet mediated 

arterial thrombosis. Two treatment regimens were employed, 30 min after a single IV 

bolus or 24 h following 7 consecutive daily IP injections of 6 mg/kg of Que or DiOHF. 

These improvements in arterial flow correspond to inhibition of platelet aggregation and 

dense granule exocytosis. Table 4.1 summarises the findings of this chapter. 

At 15 min after arterial injury, blood flow in the vehicle control had reduced to close to 

zero, while blood flow for 6 mg/kg Que and DiOHF were maintained at close to 100% 

with both dosage regimens. However, at 30 min after injury, while still significantly 

improved over the vehicle control, blood flow in the mice treated with Que and DiOHF 

had fallen below 50%. This suggests that the flavonols tested delay thrombus formation, 

rather than preventing it completely. Eptifibatide (positive control) is a well-established 

antiplatelet agent, commonly used in patients undergoing percutaneous coronary 

intervention (PCI), it reversibly inhibits GPIIbIIIa [308]. As expected it inhibited thrombus 

formation when administrated using both treatment regimes. When eptifibatide was 

administered IV it produced persistent and strong inhibition of platelet mediated 

thrombosis when compared to both Que and DiOHF, indeed, blood flow was maintained at 

over 70% of the initial flow at the end of the 30 min recording period. This corresponds to 

platelets being unable to bind to fibrinogen and form aggregates. It has been shown that 

eptifibatide strongly inhibits platelet aggregation shortly after IV adminstration [191, 309]. 

However, at 24 h following the last IP treatment of eptifibatide, thrombus formation 

occurred more readily when compared to Que and DiOHF, this finding was expected as it 

indicates a decrease in the number of GPIIbIIIa occupied with eptifibatide. It has been 

shown that the number of blocked GPIIbIIIa receptors with eptifibatide drops over time 

[309], and platelets are able to bind to fibrinogen. This data suggest that these flavonols 

have longer lasting antithrombotic effects when compared to eptifibatide. 

The model used is a well characterised model of platelet-mediated arterial thrombosis and 

the current study demonstrates direct antiplatelet potential of flavonols. However, the 

ability of flavonols to improve vascular relaxation and function is likely to also contribute 

to the observed improvements in blood flow. In this model FeCl3 injures the carotid artery 

by a redox-active mechanism requiring erythrocyte haemolysis [266], leading to 
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endothelial damage and exposure of the thrombogenic subendothelial matrix and 

subendothelial collagen. Circulating platelets recognise collagen and begin binding to it via 

the GPVI and GPIb-IX-V complex receptor on the platelet surface, initiating platelet 

activation, and subsequent thrombus formation at the site of endothelial injury [267]. 

Propagation of the growing thrombus beyond the site of injury is limited by expression of 

mediators such as NO and prostacyclin by the surrounding healthy endothelium. Several 

studies [227, 244, 305, 310, 311] have previously demonstrated the capacity of flavonols to 

improve endothelial NO bioavailability and prevent endothelial dysfunction in conditions 

of oxidative stress. Indeed, endothelial dysfunction plays a major role in thrombus 

formation, and is characterised by increased smooth muscle tone and proliferation, 

dysregulated platelet aggregation, increased adhesion of circulating leukocytes, and 

increased production of pro-inflammatory mediators [299]. Furthermore, NO activity and 

bioavailability is markedly reduced [156], largely due to the increased production of ROS  

accompanied by impaired production of endogenous antioxidant defence mechanisms 

leading to a prothrombotic environment favouring thrombus formation [312].  

There are several mechanisms responsible for reduced NO bioavailability in endothelial 

dysfunction. These include increased activity of NADPH oxidase, leading to increased 

generation of superoxide anion which reacts with NO resulting in the production of 

OONO
-
, leading to reduced activity of NO [313]. Increased OONO

- 
production causes lipid 

peroxidation and endothelial damage. Uncoupling endothelial NO synthase (eNOS) has 

also been associated with endothelial dysfunction as it leads to decreased NO production 

and increased superoxide anion synthesis by the uncoupled eNOS. This enzymatic 

uncoupling occurs with a decrease in cofactors required for NO synthesis such as 

tetrahydrobiopterin (BH4), leading to reduced production of NO [314]. Furthermore, it has 

been reported that xanthine oxidase and the inflammatory process also lead to increased 

superoxide generation [147, 315]. Increased production of superoxide
 

anion and 

endothelial dysfunction has been associated with conditions such as ischaemia/reperfusion 

injury [316],
 
diabetes [317]

 
and heart

 
failure [318]. It has been shown that Que inhibits 

lipid peroxidation via inhibition of xanthine oxidase, restores endothelial relaxation and 

increase NO and neutralise free radicals [206, 319]. While DiOHF has been reported to be 

more potent antioxidant than Que [241, 242], It has been shown to improve NO 

bioavailability and vascular function after ischemia and reperfusion injury [227].  
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While no studies have assessed the effect of Que and DiOHF on prostacyclin production, 

structurally related flavonoids found in several foods have been shown to double the 

production of 6-keto-prostaglandin F1α (a stable metabolite of prostacyclin) in endothelial 

cells [320, 321]. In a study performed by Briggs et al. [304] demonstrated inhibition of 

thrombus formation in a dog model of platelet mediated arterial thrombosis by  

intravenously or intragastrically administering onion juice or homogenate at 

0.09±0.1mL/kg or 2.0 g/kg, respectively. Furthermore, Freedman et al. [240] demonstrated 

reduced platelet aggregation, increased platelet-derived NO release, and decreased 

superoxide production following platelet incubation with purple grape juice in vitro. These 

effects were also demonstrated in healthy subjects following oral supplementation. 

This preservation of endothelial function and increased expression of key anti-platelet 

mediators, combined with well characterized enhancement of endothelium-dependent 

relaxation [227, 228, 244, 302], in addition to the direct anti-platelet activity we have 

demonstrated,  may contribute to the improved blood flow following injury observed in 

this study. In addition, we have shown that seven consecutive daily IP injections of 6 

mg/kg of Que or DiOHF significantly delays thrombus formation in the carotid artery. This 

corresponds to doses previously shown to significantly reduce oxidative damage produced 

by oxygen free radicals, and reverse endothelial dysfunction by restoring endothelial 

relaxation, and the increased nitric oxide bioavailability [227, 228, 302].  

Another potential mechanism by which Que and DiOHF might reduce thrombus formation 

in the FeCl3 induced injury model is through the potential for antioxidant activity 

ameliorating the oxidative damage produced by FeCl3, rather than by direct inhibition of 

platelet function.  

Platelet aggregation is one of the final steps in the thrombus formation, and is stimulated 

by many agonists, via different pathways. Agonist induced platelet activation is mediated 

via an increase in intracellular calcium concentration, the activation of different enzymes 

such as myosin light chain kinase (MLCK), and calcium dependent phospholipase A2. The 

activation of these enzymes leads to phosphorylation of actin filaments and induces platelet 

shape change. Following shape change, platelets undergo release reaction in which 

platelets’ dense and alpha granules release their content resulting in the amplification of 

the activation process and platelet adhesion to the site of injury [322, 323]. This chapter 

demonstrates the inhibition of dense granule exocytosis with 6 mg/kg of Que or DiOHF 
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either by single IV or multiple IP injections, this is an interesting finding, because as seen 

in Fig 3.3 there is a marked reduction in dense granule exocytosis with concentrations 

almost impossible to achieve in vivo. While this chapter indicates that at doses achievable 

in vivo, these flavonols are able to produce inhibitory effect and also suggest that these 

flavonols behave differently in vivo. Dense granule exocytosis is a major contributing 

factor to thrombus growth and stability, as dense granules contain ADP, which is critical to 

thrombus propagation [61]. Inhibition of dense granule exocytosis limits release of these 

important mediators and is consistent with a delay in thrombus generation. As expected 

eptifibatide inhibited platelet aggregation without effecting dense granule exocytosis.  

In this study IV treatment was used to assess the acute effect, while the multiple IP 

treatments were used to investigate the longer lasting effects of Que and DiOHF treatment. 

IV injection of 6 mg/kg will result in approximately 200 µM of Que and 270 µM of 

DiOHF in the plasma. This is much higher than concentrations associated with dietary 

intake of Que (20 – 30 nM [324]). IP treatments of the same dose are absorbed through the 

peritoneal circulation, while some of it is metabolised by the liver. It has been suggested 

that IP administered Que reaches the liver unchanged [325] where it is conjugated [326]. 

Therefore, the plasma flavonol concentration following IP administration would be less 

than that of IV treatment. However, a characteristic feature of the bioavailability of Que is 

the elimination of this flavonol and its metabolites is quite slow, with reported half-life up 

to 11 hr [327, 328]. This could favour accumulation in the plasma with multiple IP doses. 

The pharmacodynamics of DiOHF are not yet established. We have shown that seven 

consecutive IP injections of 6 mg / kg of Que or DiOHF significantly reduced thrombus 

formation in the carotid artery. This corresponds to doses previously shown to significantly 

reduce oxidative damage produced by oxygen free radicals and reverse endothelial 

dysfunction by restoring endothelium dependent relaxation and increased nitric oxide 

bioavailability [227, 228, 244, 302]. Both single IV and multiple IP treatments with Que 

and DiOHF resulted in incomplete, yet significant inhibition of platelet aggregation and 

dense granule exocytosis accompanied by significant reduction in thrombus formation. 

 

 



121 
 

Conclusion 

We provide evidence that the naturally occurring flavonol Que, and for the first time the 

synthetic flavonol DiOHF delay thrombus formation in a well-established mouse model of 

acute platelet mediated arterial thrombosis. The delay in thrombus formation occurs with 

both IV administration just prior to, or with multiple IP doses over 7 days with the last 

dose 24 hours before arterial injury. Furthermore, this Chapter demonstrates inhibition of 

platelet aggregation and dense granule exocytosis with both treatment regimens, indicating 

that the delay in thrombus formation is at least in part mediated by the antiplatelet effects 

of Que and DiOHF. 

4.5 Limitations 

In this study healthy animal were used to mimic platelet mediated arterial thrombosis. 

Therefore, further studies are warranted to investigate the effect of these flavonols on 

platelet mediated arterial thrombosis in disease model such as diabetes. 
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Table 4.1, A summary of the effect of Que or DiOHF on thrombus formation and platelet 

function in vivo in healthy mice. 

  Blood flow (%) Platelet parameter 

significantly inhibited 

Que 83.1 at 15 min IV 

23.0 at 30 min IV 

100.0 at 15 min IP 

52.0 at 30 min IP 

IV platelet aggregation 

IV dense granules 

IP platelet aggregation 

IP dense granules 

DiOHF 100.0 at 15 min IV 

37.2 at 30 min IV 

83.0 at 15 min IP 

27.5 at 30 min IP 

IV platelet aggregation 

IV dense granules 

IP platelet aggregation 

IP dense granules 
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Chapter Five: The effect of quercetin and 3’, 4’ 

dihydroxyflavonol on thrombus formation and 

platelet activation and aggregation in a model of 

type 1 diabetes 
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5.1 Introduction 

Diabetes mellitus is characterised by increased plasma glucose levels, and is often 

associated with macro and micro-vascular complications [222]. Macro-vascular 

complications of diabetes presents as accelerated atherosclerosis, leading to coronary and 

peripheral arterial disease. Diabetes is therefore an important independent risk factor for 

cardiovascular disease (CVD) and a major contributor to cardiovascular events, 

particularly in Western countries. The incidence of CVD is between 2 and 4 times greater 

in people living with diabetes [12, 329], and once diagnosed people with diabetes have a 

poorer prognosis [169, 330, 331]. Indeed, recent reports from the WHO state that 50% of 

diabetic patients will die from CVD [147]. Thrombotic complications of cardiovascular 

disease, such as myocardial infarction (MI) and stroke, are responsible for up to 84% of 

deaths in people with diabetes aged 65 and older [329, 332]. Patients with diabetes as their 

only risk factor are at equivalent risk of cardiovascular death as non-diabetic patients with 

a previous MI [333].  

It has become increasingly clear that platelet hyperactivity and endothelial dysfunction 

play a major role in the development of cardiovascular disease amongst the diabetic 

population [254].  It is well established that hyperglycaemia results in increased platelet 

reactivity and sensitivity to chemical agonists [334]. It has been shown that platelets from 

diabetic patients have dysregulated signalling pathways due to the activation of PKC and 

altered calcium mobilisation [130], increased aggregation and enhanced TXA2 synthesis 

[160], and increased activation evident by the increased number of circulating platelets 

expressing P-selectin and activated GPIIb-IIIa [130].  

The underlying causes of platelet activation and hyper-reactivity in diabetes include; COX-

1 independent platelet stimulation (e.g. thrombin resulting from hyper-coagulable state), 

COX-1 independent thromboxane synthesis [335] or a underlying thrombo-inflammatory 

co-morbidity (e.g. atherosclerosis, obesity) which is well known to cause platelet hyper-

reactivity [336, 337]. Indeed, the level of platelet activation and hyper-reactivity correlates 

with the severity of underlying disease [259].  

Diabetes is associated with a systemic inflammatory state that may contribute to 

endothelial dysfunction and accelerated atherosclerosis [338], as well as triggering 

increased underlying platelet hyper-reactivity. Loss of bioavailable NO, increased 

production of endothelin, pro-inflammatory cytokines and increased oxidative stress all 
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contribute to the increase in platelet reactivity seen in diabetes [169]. The multiple 

mechanisms which contribute to this phenomenon are summarized in table 1.2.  

While antiplatelet agents such as aspirin and clopidogrel are used for both the primary and 

secondary prevention of cardiovascular events in diabetes [211, 212] there is convincing 

data to suggest inadequate cardiovascular protection by these agents [213], with a meta-

analysis of randomized trials showing no significant benefit of aspirin in reducing clinical 

ischaemic events in people with diabetes, while the general population showed a 18% 

decrease in event rates [214-216]. Similar variability in response to clopidogrel has been 

observed in patients with diabetes [339]  (for more details see section 1.4). Dual treatments 

of clopidogrel and new generation agents with a similar mechanism of action but higher 

potency and bioavailability, such as prasugrel, have been used in an effort to overcome 

failure of antiplatelet treatment in patients with type-2 diabetes. These strategies have 

shown some benefit, with greater platelet inhibition and better response profiles [251]. 

However, such approaches are associated with increased risk of bleeding, including life 

threatening bleeds [340]. There is therefore an urgent need for development of antiplatelet 

agents with mechanisms of action that are effective in patients with diabetes, but with less 

risk of bleeding consequences. 

It has been reported in animal models of diabetes that treatment with Que restores 

endothelial function [206], reduces pancreatic β-cell injury [127], systolic blood pressure, 

plasma lipids and plasma glucose levels [226, 341]. On the other hand, DiOHF was found 

to prevent diabetes-induced endothelial dysfunction [246], increased nitric oxide activity 

[244] and to restore endothelium dependent relaxation [245]. However, the question 

remains whether the administration of Que or DiOHF reduces platelet hyperactivity and 

thrombus formation in an in vivo model of diabetes.  

It was demonstrated in Chapter 4 that both Que and DiOHF inhibit platelet function 

through effects on aggregation and granule exocytosis corresponding to delayed platelet 

mediated thrombus generation in healthy mice. Accordingly, the aims of this Chapter are 

to investigate the effects of Que or DiOHF on arterial thrombus formation and platelet 

function ex vivo in an animal model of diabetes. Specifically, the effects of Que or DiOHF 

24 h after the last dose of daily IP doses for 7 consecutive days on (i) FeCl3 induced 

arterial thrombosis, (ii) platelet aggregation, and (iii) dense and alpha granule exocytosis 

were investigated.  
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5.2 Materials and Methods 

5.2.1 Animals 

All experimental procedures performed in this study were approved by the Animal 

Experimentation Ethics Committee of RMIT University as stated in section 2. 6.1.1. 

Diabetes was induced according to previously described methods [342, 343] with minor 

modifications as outlined in section 2.6.3.2. Briefly, diabetes was developed in C57BL/6 

mice following a series of injections with streptozotocin and confirmed by glucose 

measurement. Diabetic mice were kept for an 8 week period. 

At the end of the 8 week period diabetic and control mice were randomised to receive Que 

(6 mg/kg), DiOHF (6 mg/kg) or vehicle (0.5% DMSO plus 20% PEG and saline), via IP 

injection using a 27 gauge needle daily for 7 days.  

FeCl3-induced arterial injury was induced 24 hours after the last dose of the experimental 

agent, and arterial blood flow monitored according to a well characterized model of 

platelet-mediated thrombosis [344] as described in section 2. 6.2.1.  

5.2.2 Sample preparation and analysis 

Blood collection and PRP preparation was performed as outlined in sections 2.4 and 2.4.1. 

Platelet count was performed using an ACTdiff 5 blood analyser (Beckman). Platelet count 

was normalised in all treatments groups to 100 x 10
9
 / L in RCD buffer. 

Platelet aggregation was measured by turbidimetric aggregometry using a Chrono-log 700 

aggregometer as described in section 2.5.5. 

Dense granule exocytosis was measured by quinacrine uptake and agonist-induced release, 

and was performed as previously described in section 2.5.6.2. Alpha granule exocytosis 

was measured by flow cytometry as previously described in 2.5.7.3.2. 

All values are expressed as mean ± standard error of mean (SEM). Comparisons between 

test samples and controls are performed using one-way ANOVA with Dunnett’s test, for 

post hoc comparisons. 
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5.3 Results 

5.3.2 Effect of Que and DiOHF on FeCl3 induced arterial thrombosis 

Diabetic mice showed rapid thrombus formation when compared to the non-diabetic mice. 

Vehicle treated diabetic mice had 49.5±16.5% blood flow at 5 min (Fig 5.1A), while 

vehicle treated control mice maintained greater than 90% blood flow (93.5± 6.5% flow, p 

< 0.05 vs. diabetic vehicle treated mice, Fig 5.1B). However, at 15 min both diabetic and 

non-diabetic vehicle treated mice had near complete vessel occlusion (0.5± 0.5% flow vs 

5.5± 0.6% flow, respectively, p < 0.05. between diabetic and non-diabetic mice, Figs 5.1 

C&D). Blood flow remained completely occluded at 30 min following arterial injury for 

vehicle treated diabetic (0% flow, Fig 5.1E) and non-diabetic (5.5± 0.6% flow, p = 0.61. 

vs. diabetic mice, Fig 5.1F) mice. 

Treatment of diabetic mice with 6 mg/kg of Que or DiOHF significantly improved blood 

flow in the carotid artery at 5 min (Que 93.8 ± 4.9% flow, DiOHF 92.8 ± 6.9% flow, p < 

0.05 vs. diabetic vehicle treated mice, Fig 5.1A). At 15 min flavonol treated diabetic mice 

maintained significant blood flow (Que 61.3±15.3% flow, DiOHF 82.8±17.8% flow, p < 

0.05 vs. diabetic vehicle treated mice, Fig 5.1C). Likewise, blood flow at 15 min was well 

maintained in non-diabetic mice treated with 6 mg/kg of either Que or DiOHF (Que 

91.4±6.1% flow, DiOHF 70.3±18.0% flow, p < 0.05 vs. non-diabetic vehicle treated mice, 

Fig 5.1D). Blood flow at 30 min after FeCl3 injury was not significantly different in 

diabetic mice treated with the flavonols or vehicle (Que 48.25±20.9% flow, DiOHF 

51.5±18.6% flow, p = 0.09. vs. diabetic vehicle treated mice, Fig 5.1E).  

In contrast, when non-diabetic mice were treated with the flavonols, Que only maintained 

significant blood flow when compared to the vehicle treated group (Que 74.8±17.6% flow, 

p <0.05, DiOHF 52.8±26.2% flow, p = 0.07. vs. vehicle, Fig 5.1F). The magnitude of the 

improvement in blood flow at 5 min was significantly higher in diabetic mice treated with 

6 mg/kg than of Que in non-diabetic mice when compared to the vehicle treated group 

(44.6±21.3% in diabetics vs. 11.7±6.8% in non-diabetics, p <0.05). Similarly, DiOHF 

produced higher magnitude in blood flow in diabetic than in non-diabetic mice when 

compared to the vehicle treated group (48.6±15.2% in diabetics vs. 11.7±6.8% in non-

diabetics, p <0.05).  

At 15 and 30 min after injury, Que and DiOHF improved blood flow in both diabetic and 

non-diabetic mice by more than 90% when compared to the vehicle treated mice, and there 
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was no significant difference in the magnitude of the improved blood flow between 

diabetic and non-diabetic mice. 

Blood flow was also measured as the AUC over the 30 min recording period after FeCl3 

injury. Both vehicle treated diabetic and non-diabetic mice showed reduced AUC at the 

end of the 30 min recording period (502.3±109.8 AUC diabetic vs. 631.5±38.3 AUC non-

diabetic, p = 0.08). However, the AUC was significantly greater in flavonol treated 

diabetic mice when compared to the vehicle treated group (Que 2028±322 AU, DiOHF 

2288±376 vs. vehicle 502±109, p <0.05, Fig 5.2A). Likewise, treatment with the flavonols 

produced significantly higher AUC in non-diabetic mice (Que 2482±258 AUC, DiOHF 

2350±366 vs. vehicle 631± 38, P <0.05, Fig 5.2D). There was no significant difference 

between Que or DiOHF treatments in both diabetic and control groups.   
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Fig. 5.1. Arterial blood flow expressed as percentage of baseline. A) Carotid blood 

flow in diabetic mice at 5 min, B) Carotid blood flow in non-diabetic mice at 5 min, 

C) Carotid blood flow in diabetic mice at 15 min, D) Carotid blood flow in non-

diabetic mice at 15 min, E) Carotid blood flow in diabetic mice at 30 min and F) 

Carotid blood flow in non-diabetic mice at 30 min after ferric chloride injury, n= 4 

for each treatment group. Data are mean ± SEM. Tow way ANOVA. For 

comparisons with vehicle a Dunnett’s post-test was performed, for comparison 

between diabetic and non-diabetic mice a Bonferroni post test was performed. 
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Fig.5.2: Arterial blood flow expressed as area under the curve (AUC) over 30 min for the 

mice treated with 6 mg/kg Que, 6 mg/kg DiOHF or vehicle control following ferric 

chloride induced arterial injury. (A) Diabetic mice. (B) Non-diabetic mice. * P < 0.05 vs 

vehicle. Mean  SEM. One way ANOVA with Dunnett’s post-test. 
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5.3.3 Platelet aggregation 

Platelets derived from diabetic mice showed higher aggregation response to AYPGKF-

NH2 stimulation when compared to the vehicle treated control mice (102.4±9.2% diabetic 

platelets vs. 78.3±1.9% control platelets, p <0.05, Fig 5.3). Platelet hyper-aggregability in 

diabetic mice was significantly reduced following 7 day treatment with Que or DiOHF 

(64.0±6.7 and 70.2±8.9%, respectively, p < 0.05 vs. vehicle, Fig 5.4A). In control mice 

Que or DiOHF treatments, as expected, significantly reduced platelet aggregation (Que 

52.7±5.5% and DiOHF 52.6±10.4%, p < 0.05 vs. vehicle, Fig 5.4B). The magnitude of 

inhibition in platelet aggregation was not different between treatments in both diabetic and 

non-diabetic mice. Que produced 40.1±4.2% magnitude inhibition of platelet aggregation 

in diabetics and 32.6±6.6% magnitude inhibition in non-diabetic, p = 0.12. between 

diabetic and non-diabetic mice. Similarly, DiOHF produced 36.5±4.9% magnitude 

inhibition of platelet aggregation in diabetics and 35.6±4.1% magnitude inhibition in non-

diabetic, p = 0.11. between diabetic and non-diabetic mice. 
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Fig. 5.3: Platelet aggregation in diabetic mice (n = 4) in response to AYPGKF-NH2 (250 

µM) compared to non-diabetic group (n=4). Platelet count was normalised to 100x10
9
/L in 

all test groups. * P < 0.05 vs non-diabetic group. Mean  SEM. Student t-test. 
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Fig. 5.4: Platelet aggregation stimulated with AYPGKF-NH2 (250 µM). Platelets were 

obtained from diabetic and non-diabetic mice treated with 6 mg/kg Que (n = 5), DiOHF (n 

= 5) or vehicle (n = 4). Platelet count was normalised to 100x10
9
/L in all test groups. (A) 

Diabetic mice. (B) Non-diabetic mice. * P < 0.05 vs vehicle. Mean  SEM. One way 

ANOVA with Dunnett’s post-test. 
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5.3.4 Granule exocytosis 

There was no significant difference in dense granule exocytosis, as measured by quinacrine 

release, between diabetic and non-diabetic mice in response to AYPGKF-NH2 stimulation 

(51.2±4.1% vs. 57.9±2.7%, p = 0.89., Fig 5.5). However, treatment with 6 mg/kg of Que or 

DiOHF significantly inhibited dense granule exocytosis in diabetic (Que 34.2±4.0% and 

DiOHF 34.0±3.4%, p < 0.05 vs. vehicle, Fig 5.6A), and non-diabetic mice (Que 47.6± 

3.1% and DiOHF 46.0±1.6%, p <0.05 vs. vehicle, Fig 5.6B). Que produced 34±11.7% 

inhibition of dense granule exocytosis in diabetic mice and 18.1±6.3% inhibition in non-

diabetic mice, such that there was no significant difference between diabetic and non-

diabetic mice. Similarly, DiOHF produced 26.3±1.8% inhibition of dense granule 

exocytosis in diabetic mice and 20.0±3.3% inhibition in non-diabetic mice, such that there 

was no significant difference between diabetic and non-diabetic mice. 

Treatment with 6 mg/kg of Que or DiOHF did not produce an inhibitory effect on alpha 

granule exocytosis as measured by P-selectin expression induced by AYPGKF-NH2 in 

both diabetic (Que 2850±334 MFI and DiOHF 3328±420 MFI vs. vehicle 3296±619MFI, 

p = 0.08, Fig 5.7A) and non-diabetic mice (Que 2671±463 MFI and DiOHF 3306±694 

MFI vs. vehicle 3257±297 MFI, p =0.06, Fig 5.7B). 
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Fig. 5.5: Dense granule exocytosis in platelets derived from diabetic and non-diabetic mice 

treated with vehicle (n=6). Platelet count was normalised to 100x10
9
/L in all test groups. 

ns P > 0.05 vs non-diabetic group. Mean  SEM. Student t-test. 
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Fig. 5.6: Platelet dense granule exocytosis stimulated with PAR 4 agonist peptide (250 

µM). Platelets were obtained from diabetic and non-diabetic mice treated with 6 mg/kg 

Que (n=6), DiOHF (n=6) or vehicle (n=6). Platelet count was normalised to 100x10
9
/L in 

all test groups. (A) Diabetic mice. (B) Non-diabetic mice. * P < 0.05 vs vehicle. Mean  

SEM. One way ANOVA with Dunnett’s post-test. 
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Fig.5.7: Platelet alpha granule exocytosis as measured by the mean fluorescence intensity 

(MFI) of P-Selectin expression stimulated with PAR 4 agonist peptide (250 µM). Platelets 

were obtained from diabetic and non-diabetic mice treated with 6 mg/kg Que (n=6), 

DiOHF (n=6) or vehicle (n=6). Platelet count was normalised to 100x10
9
/L in all test 

groups. (A) Diabetic mice. (B) Non-diabetic mice. 
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5.4 Discussion  

It is well established that diabetes is associated with endothelial dysfunction and platelet 

hyperactivity [171, 199]. In this chapter we confirm accelerated thrombus generation and 

platelet hyper-aggregability in a mouse model of type-1 diabetes. We provide the first 

evidence that 6 mg/kg of either Que or DiOHF delays thrombus formation and reduces 

platelet aggregation and dense granule exocytosis in this model. Table 5.1 summarises the 

findings of this chapter. 

In this study STZ was used to induce type 1 diabetes in C57BL/6 mice. Once diabetes was 

confirmed, the mice were kept in a hyperglycaemic state for 8 weeks to allow the effect of 

hyperglycaemia on platelets and endothelium. 8 weeks was chosen as it has been shown 

that 8 weeks of hyperglycaemia is sufficient time to induce endothelial dysfunction [127, 

246]. At the end of the eight week period, FeCl3 was used to induce arterial thrombosis. 

FeCl3 induces platelet mediated thrombus formation by mildly damaging the endothelial 

lining, and more importantly causing severe RBC haemolysis and haemoglobin oxidation. 

This leads to more ROS production, causing further endothelial damage, resulting in 

increased platelet activation and adhesion [266, 345]. 

Diabetic mice showed more rapid thrombus formation when compared to healthy mice. 

Indeed, diabetic mice thrombus formation commenced prior to the removal of the FeCl3 

strip, and when FeCl3 strip was removed blood flow had fallen below 90%. In contrast, 

non-diabetic mice maintained 100% blood flow during and after FeCl3 application. 

Furthermore, at 5 min after FeCl3 application blood flow in diabetic mice had reached 

below 50%, whilst blood flow in control mice was close to pre-injury levels. However, the 

time to total vessel occlusion between diabetic and non-diabetic mice was not different, 

and both showed greater than 90% vessel occlusion in under 15 min following arterial 

injury. This supports previous observations that hyperglycaemia accelerates thrombus 

formation when induced by FeCl3 in mice [346], and suggests that diabetes accelerates 

thrombus formation, but there is no difference in the magnitude of thrombus formation 

over 30 min. The accelerated thrombus generation following arterial injury in diabetic 

mice observed in this study corresponded to enhanced agonist stimulated platelet 

aggregation. It is well established that impairment of endothelial function is associated 

with diabetes, and is likely to contribute to the accelerated thrombus generation in 

diabetics. This may be due to the reduced production of NO and other vasorelaxant and 
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antithrombotic agents such as prostacyclin from the endothelial cells [347], in addition to 

the enhanced platelet aggregation associated with this disease state.   

Treatment with 6 mg/kg of either Que or DiOHF significantly improved blood flow and 

delayed thrombus formation in diabetic mice. Indeed, at 5 min of recording blood flow in 

flavonol treated diabetic mice was maintained to near 100% flow, and there was no 

significant difference in blood flow between diabetic and non-diabetic mice at that time of 

recording. In addition, full vessel occlusion did not occur at 30 min after FeCl3 injury.  

 In our diabetic model, and as expected, platelets were found to be hyper-aggregable in 

response to AYPGKF-NH2 when compared to non-diabetic mice, which is in agreement 

with previous observations that diabetic animals show enhanced platelet aggregation [162, 

198, 200]. This also corresponds with rapid formation of platelet mediated thrombosis. On 

the other hand, alpha and dense granule exocytosis was not significantly different between 

diabetic and non-diabetic mice. Treatment with 6 mg/kg of Que or DiOHF for seven 

consecutive days significantly reduced platelet aggregation, and inhibited dense, but not 

alpha granule exocytosis in response to AYPGKF-NH2. Platelet aggregation was reduced 

by more than 30% in platelets from diabetic mice and the levels were similar to that of the 

non-diabetic mice.  

Although the delay in thrombus formation observed in this study corresponds to the 

reduction of platelet aggregation and dense granule exocytosis, it is likely that the effect of 

these flavonols on endothelial function have contributed to the overall vascular benefits 

achieved. Que and DiOHF have been reported to produce potent vasoprotective effects on 

both healthy and diabetic models. Que has also been demonstrated to exert beneficial 

vascular effects in a range of pathological conditions including diabetes [348-350]. Indeed, 

it has been shown to restore endothelial relaxation in diabetes in response to acetylcholine, 

increase NO, neutralise free radicals and reduce oxidative damage in STZ treated rats [206, 

351, 352]. Que has also been reported to inhibit lipid peroxidation via inhibition of 

xanthine oxidase [319].  

DiOHF has been reported to produce vasoprotective action, improve endothelial dependent 

relaxation, superoxide formation and preserving NO activity. In a study by Woodman et al, 

[246] investigating the effect of DiOHF (5 mg/kg per day IP, for 7 days) on diabetes 

induced endothelial dysfunction in rats. It was found that DiOHF reduced O2ˉ formation 

and prevented endothelial dysfunction. In a study by Jiang et al, [353] it was found that 
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DiOHF suppressed the accumulation of NADPH oxidase-dependent superoxide in cell 

cultures. Improvements in endothelial function in diabetes would be expected to maintain 

NO production and reduce O2ˉ formation, which can result in reduced thrombus formation 

and as well as regulation of platelet function. 

An unexpected finding of this study was an absence of any inhibition of alpha granule 

exocytosis by the flavonols, whereas inhibition of dense granule exocytosis was observed. 

Platelet alpha granule secretion occurs more readily than dense granule secretion, however 

the mechanisms leading to membrane fusion and exocytosis of the two granule types have 

generally been assumed to be similar [286, 287]. Studies have shown that aspirin, at certain 

concentrations, is capable of inhibiting ADP-induced serotonin release (a dense granule 

component) whilst P-selectin expression is unaffected [287], suggesting potential for 

selective inhibition of exocytosis by the different granule types. The results obtained in the 

current study suggest a similar mechanism of selective inhibition of dense granule 

exocytosis whilst alpha granule exocytosis is maintained. However, further investigation, 

including investigation of different concentrations of the flavonols, and exocytosis induced 

by different chemical agonists, is warranted before conclusions can be drawn from this 

interesting observation. In addition, as these flavonols restore blood flow and platelet 

aggregation in diabetes to normal levels, more studies are warranted to determine optimal 

doses, and also structural modifications to these compounds that might increase the 

antithrombotic potency.  

Conclusion 

This chapter demonstrates a potential role of Que and DiOHF to overcome diabetes-

induced platelet hyper-sensitivity and increased thrombotic tendency, suggesting, clinical 

use in reducing diabetes associated micro/macro-thrombosis is worthy of investigation. 

5.5 Limitations 

This study demonstrates improved blood flow and reduced platelet responsiveness in a 

model of type-1 diabetes. However, these improvements also need to be investigated in 

type-2 diabetes. Furthermore, reduced platelet aggregation might be associated with 

increased bleeding risks; therefore appropriate studies investigating the effect of these 

flavonols on bleeding times are warranted. 
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Table 5.1, A summary of the effects of Que or DiOHF on thrombus formation and platelet 

function in an in vivo model of type-1 diabetes 

 Blood flow (%) Platelet parameter 

significantly inhibited 

Diabetic 

Que 

 

 

 

DiOHF 

 

 

93.8 at 5 min 

61.3 at 15 min 

48.2 at 30 min 

 

92.8 at 5 min 

82.8 at 15 min 

51.5 at 30 min 

 

Platelet aggregation 

Dense granules 

 

 

Platelet aggregation 

Dense granules 

 

Non-diabetic 

Que 

 

 

 

DiOHF 

 

97.6 at 5 min 

91.4 at 15 min 

52.8 at 30 min 

 

100 at 5 min 

70.3 at 15 min 

52.8 at 30 min 

 

Platelet aggregation 

Dense granules 

 

 

Platelet aggregation 

Dense granules 
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Chapter Six: General Discussion 
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6.1 General discussion  

Platelets play an important role in the development of CVD [354]. Platelet activation and 

adhesion to the site of vascular injury initiates thrombus formation by recruiting additional 

platelets and leukocytes [355]. Similarly, the endothelial lining of the vasculature is 

responsible for maintaining a healthy vascular tone by producing endothelium-derived 

vasorelaxants. In addition to that, the endothelial cells produce thromboresistant agents 

limiting platelet activation and thrombus formation. In conditions where there is an 

increased oxidative stress and over production of ROS, the endothelial cells are damaged 

and eventually lose their function. Endothelial dysfunction is associated with reduced or 

diminished levels of NO leading to vasoconstriction and increased platelet activation [356]. 

Phenolic compounds, such as flavonols, have been demonstrated to possess antithrombotic 

activities via antiplatelet and antioxidant effects. 

The primary aims of the studies undertaken for this thesis were to investigate the 

antithrombotic potential of the naturally occurring flavonol Que and the structurally related 

synthetic flavonol DiOHF in both in vitro and in vivo animal models and ultimately the 

effect on arterial thrombosis in a disease model. The results presented in this thesis 

extended our understanding of the mechanisms by which flavonols inhibit platelet function 

and provide the first evidence of platelet inhibition by DiOHF, a synthetic flavonol. 

Differences in the mechanism of platelet inhibition by these two structurally related 

molecules was demonstrated. Furthermore, the data provided the first evidence that 

flavonols inhibit thrombus formation following arterial injury with both IV and IP dosage 

regimens. Finally, the results presented in this thesis demonstrate the antiplatelet and 

antithrombotic potential of flavonols in the setting of diabetes, a disease condition 

associated with a propensity for platelet mediated thrombosis which is poorly responsive to 

current antiplatelet therapy. 

Flavonols are well documented antioxidants with well-established cardiovascular benefits 

[241, 242]. Studies have shown that flavonols exert their antioxidant activity by inhibiting 

the formation of ROS, and by scavenging these reactive particles [154]. Through this 

antioxidant activity, Que or DiOHF are able to restore / preserve endothelial function in 

conditions of oxidative stress [229, 357, 358].  

In addition to their antioxidant activity, flavonols were investigated for their antiplatelet 

properties, which may contribute to the overall beneficial effects. There is a growing body 
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of evidence indicating that flavonols, particularly Que, have anti-aggregatory activity [219-

221]. Considerable attention has therefore been paid to determine the mechanism/s and the 

optimal concentration to produce this inhibitory effect. There have been several 

mechanisms put forward with different concentrations that produce inhibitory effects. 

These have been discussed at length in section 1.6.2.1 of this thesis. 

The results of investigations presented in Chapter 3 of this thesis have extended the 

understanding of these mechanisms, and for the first time demonstrated antiplatelet 

effectiveness of DiOHF. Chapter 3 provided additional data to better define the effective 

concentrations of Que and DiOHF for an antiplatelet effect. It also demonstrated that both 

Que and DiOHF inhibited platelet aggregation induced by chemical stimulation with 

collagen, ADP and AA in a concentration dependent manner. It is also worth mentioning 

that DiOHF was more effective in inhibiting AA-induced platelet aggregation at lower 

concentrations than Que. Indeed, DiOHF achieved complete inhibition at 200 µM, whereas 

Que achieved the same effect at 500 µM. This is an interesting finding in that at lower 

concentrations these flavonols are capable of completely inhibiting aggregation induced by 

AA. As was previously shown Que inhibits the TxA2 receptor [280-282], therefore it is 

likely that inhibition of TP receptor in synergy with other effects on platelets produced a 

marked inhibition of the AA pathway. This data suggests that enhanced TP receptor 

inhibition by DiOHF compared to Que, might be due to enhanced antioxidant potential of 

DiOHF. However, further studies are warranted to fully elucidate the association between 

TP receptor inhibition and antioxidant activity. 

Dense granule exocytosis plays a critical role in platelet aggregation and thrombus 

propagation, as dense granules release their contents such as ADP, initiating platelet 

secondary platelet aggregation following agonist stimulation. Both Que and DiOHF 

inhibited dense granule exocytosis at concentrations corresponding to those inhibiting 

agonist induced platelet aggregation. This suggested that the antiaggregatory effects of 

these flavonols are at least in part mediated by the inhibition of dense granule exocytosis. 

Furthermore, DiOHF showed significantly greater inhibition of dense granule exocytosis 

across a range of agonists as measured by ATP release, measured by chemiluminescent 

aggregometry and by thrombin-induced fluorescent quinacrine uptake and release, 

measured by flow cytometry. These data suggest that the inhibition of dense granules in 

response to physiological agonist stimulation may be instrumental in reducing platelet 
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aggregation. Platelets are unable to propagate the initial activation process by the release of 

chemical agonists from the dense granules. 

While dense granule exocytosis is important for the amplification of platelet activation and 

thrombus growth, alpha granule exocytosis is necessary for platelet adhesion and the 

release of adhesion molecules such as P-selectin and GPIIb, and coagulation and growth 

factors at the site of injury. It was found that 1 mM of Que significantly inhibited alpha 

granule exocytosis as measured by P-selectin expression, and alpha granule GPIIb release 

in response to a range of agonists. In contrast while P-selectin expression was lower with 1 

mM DiOHF, it was not significantly different to the vehicle control. This observed 

difference in the capacity of DiOHF to inhibit dense granule exocytosis compared to alpha 

granule exocytosis was supported by our finding of no difference on agonist induced 

release of GPIIIb from alpha granules. This data suggests that Que is able to produce a 

wider antiplatelet activity affecting multiple platelet proteins and receptors, while the 

antiplatelet effects of DiOHF are exerted on a limited number of proteins and receptors 

with greater ability to inhibit dense granule exocytosis. Studies have shown that aspirin, at 

certain concentrations, is capable of inhibiting ADP-induced serotonin release from the 

dense granules, whilst P-selectin expression is unaffected [287]. This suggests potential for 

selective inhibition of exocytosis of the different granule types. The results obtained in 

Chapter 3 of this thesis show enhanced inhibition of dense granule exocytosis with DiOHF, 

while greater inhibition of alpha granule exocytosis with Que. This supports the concept 

that release of dense and alpha granules may be independently regulated, and therefore 

potentially independently inhibitible. This represents a potentially interesting therapeutic 

strategy, as most of the current antiplatelet therapy is associated with increased risk of 

bleeding. 

Platelet activation and release reaction stimulated by agonists induces conformational 

change in the GPIIbIIIa receptor, resulting in a high affinity and activated GPIIbIIIa 

receptor. Activated GPIIbIIIa receptor binds to fibrinogen, and in turn fibrinogen 

crosslinks activated platelets. Consistent with inhibition of aggregation and dense granules, 

both 1 mM Que and DiOHF inhibited GPIIbIIIa receptor activation, as demonstrated by 

flow cytometric analysis of PAC-1 binding. Furthermore, Que significantly inhibited 

fluorescently labelled fibrinogen binding, whereas inhibition with DiOHF was less and did 

not achieve statistical significance. Inhibition of fluorescently labelled fibrinogen binding 

by Que only suggested that these flavonols inhibit platelet aggregation via multiple and 
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different mechanisms, therefore further studies are warranted to fully elucidate all possible 

mechanisms. 

It is widely accepted that platelets play a vital role in the development of cardiovascular 

disease and the formation of arterial thrombosis, and as demonstrated in Chapter 3 that 

both Que and DiOHF inhibit platelet aggregation and dense granule exocytosis. In addition 

to that, Que and DiOHF have been shown to restore NO production and bioavailability and 

to improve endothelial function in conditions of oxidative stress [305, 310, 311]. DiOHF 

was also found to reduce vascular damage due to ischaemia and reperfusion injury in 

animal models [227, 277]. It is not clear, however, whether the antiplatelet potential of 

these flavonols contribute to the improved cardiovascular outcomes. This was explored in 

Chapter 4 where the effect of Que and DiOHF on the formation of arterial thrombosis and 

platelet function in a mouse model of platelet medicated arterial thrombosis following 

acute arterial injury was investigated. The study involved a single intravenous treatment 

for the assessment of acute effect, and seven IP treatments for the chronic effect of the 

flavonols with a washout period of 24 h following the last IP treatment, this was to 

investigate the duration of the antiplatelet activity.  

The data obtained from this study as described in Chapter 4 showed a significant delay in 

thrombus formation. This resulted in improved blood flow through the carotid artery in 

mice treated with Que or DiOHF, following FeCl3-induced damage. A significant delay in 

thrombus formation and improved blood flow was achieved with both treatment regimes. 

This improvement in vessel patency following injury corresponded to a significant 

inhibition of platelet aggregation and dense granule exocytosis when induced by PAR 4 

agonist peptide. This also concurred with the study described in Chapter 3; that inhibition 

of dense granule release corresponded to concentrations similar to those inhibiting 

aggregation, suggesting that the inhibition of dense granule exocytosis is instrumental in 

inhibiting aggregation. Therefore this data suggests that at doses achievable in vivo these 

flavonols are able to produce inhibitory effect and also suggest that these flavonols behave 

differently in vivo, but more importantly this chapter demonstrates that inhibition of dense 

granules may play an essential role in inhibiting thrombus formation. To the best of our 

knowledge this data demonstrates for the first time a delay in thrombus formation and 

improved carotid artery blood flow, in a well-established mouse model of acute platelet 

mediated arterial thrombosis. These improvements occurred with both IV administration 

just prior to, or with multiple IP doses over 7 days with the last dose 24 hours before 
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arterial injury. As seen in chapter 3, the inhibition there was a greater inhibition of dense 

granule exocytosis with both flavonols with less degree of inhibition towards alpha granule 

exocytosis particularly with DiOHF when treated in vitro, however, when these flavonols 

were administered in vivo no effect on alpha granule exocytosis was achieved, this 

suggests that the flavonol-platelet interactions may be different in vivo, this is an 

interesting finding and requires further investigations. A limitation of this study, however, 

was that the delay in thrombus formation and improved carotid artery blood flow was only 

demonstrated in a healthy model of acute platelet mediated arterial thrombosis. It is not 

clear whether these flavonols could produce similar effects in a disease state.  

Accordingly, in light of these findings, the next study as described in Chapter 5, was 

designed to assess the effect of Que or DiOHF on arterial thrombus formation and platelet 

function in a disease model. We chose diabetes as it is associated with vascular 

complications resulting from oxidative stress and platelet hyperactivity [254]. Furthermore, 

Que had been reported to reduce pancreatic β-cell injury [127], plasma lipids and plasma 

glucose levels [226, 341] in diabetic models. Similarly, DiOHF has been reported to 

prevent diabetes-induced endothelial dysfunction [246] as well as to increase nitric oxide 

activity [244] and restore endothelium dependent relaxation [245]. Therefore, it was 

appropriate to test the antithrombotic effects of these flavonols in diabetes.  

Diabetic mice treated with vehicle showed accelerated thrombus formation when compared 

to vehicle treated control mice. This finding supports previous studies suggesting that 

diabetes is associated with rapid thrombus formation [346]. When diabetic mice were 

treated with Que or DiOHF significant improvement to blood flow was achieved, when 

compared to diabetic mice treated with vehicle only. To investigate whether the delay in 

thrombus formation is in part mediated by the inhibition of platelet function, platelet 

aggregation was investigated. Platelets from diabetic mice were found to be significantly 

sensitive to platelet PAR 4 agonist peptide as demonstrated by platelet aggregation, 

confirming the observations made by other studies that diabetic platelets are 

hyperaggregable in response to stimulation by platelet agonists [162, 198, 200]. Treatment 

of diabetic mice with the flavonols significantly reduced platelet aggregation when 

compared to diabetic mice treated with vehicle alone. Dense and alpha granule exocytosis 

was also investigated. Flavonol treatment significantly inhibited dense, but had no effect 

on alpha granule exocytosis as measured by P-selectin expression at the dose tested. This is 

an unexpected and yet interesting finding. Platelet alpha granule secretion occurs more 
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readily than dense granule secretion, however the mechanisms leading to membrane fusion 

and exocytosis of the two granule types have generally been assumed to be similar [286, 

287]. As mentioned above aspirin is able to inhibit dense but not alpha granule exocytosis, 

thus it is possible that Que and DiOHF at doses capable of inhibiting platelet aggregation 

and dense granule exocytosis, do not affect alpha granule exocytosis. Further 

investigations of this finding are warranted. 

Observations reported in Chapters 4 and 5 suggest that flavonol treatments delay thrombus 

formation in a model of platelet mediated arterial thrombosis, which corresponds to the 

inhibition of platelet function. This data also supports the finding of Jasuja et al. [359], it 

was shown that quercetin-3-rutinoside inhibits thrombus formation in vivo. 

It is likely that delay in thrombus formation observed could have resulted from the 

synergistic effects of these flavonol on platelets and the endothelial lining of the vessel 

wall. Improvement in the function of the endothelial lining restores the production of NO 

and other vasorelaxant mediators leading to reduced vascular tone. NO is also a key 

regulator of platelet function as it inhibits platelet activation and aggregation. In addition, 

improved endothelial cell function results in the production of the thromboresistant factors 

and reduced secretion of inflammatory agents leading to reduced thrombus formation.  

Conclusions 

This thesis provides the first evidence of the antiplatelet potential of DiOHF, with greater 

inhibition potency against dense granule exocytosis. This interesting finding supports the 

concept that release of dense and alpha granules may be independently regulated, and 

therefore potentially independently modulated, representing an interesting therapeutic 

strategy. Furthermore, this thesis demonstrates delayed thrombus formation in both healthy 

and diabetic animal models using a well establish model of platelet mediated arterial 

thrombosis, and the ability to overcome platelet hyper-sensitivity in diabetes, suggesting a 

potential clinical use of Que and DiOHF.  
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 6.2 Future directions 

Studies undertaken in this thesis demonstrate that the synthetic flavonol DiOHF inhibits 

platelet aggregation and confirms previous studies showing the antiplatelet potential of 

Que. In addition, this thesis identified an important potential mechanism of action by 

DiOHF, that is greater inhibition of dense granule exocytosis in comparison to the effect 

on alpha granule exocytosis. Therefore, further studies are warranted to examine the effects 

of these flavonols on the platelet exocytosis mechanisms, specifically in regards to their 

effects on v-SNAREs and t-SNAREs.  

This thesis also shows that Que and DiOHF administered as either single IV bolus or 

multiple IP doses are capable of producing antiplatelet activity in vivo. Therefore, human 

studies in both healthy, and more importantly disease conditions at clinically achievable 

doses, are required to demonstrate antiplatelet activity of these flavonols. Delay in 

thrombus formation and reduced hyper-sensitivity was demonstrated in type-1 diabetes, 

and although the complications in type-1 and -2 diabetes are similar the pathology of type-

1 and type-2 diabetes is not similar. Therefore, the antithrombotic effects of flavonols 

should also be investigated in type-2 two diabetes. Furthermore, reduced platelet 

aggregation might be associated with increased bleeding risks; therefore appropriate 

studies investigating the effect of these flavonols on bleeding times are warranted. Finally, 

selective inhibition of dense granule exocytosis could be used as the basis for the 

development of a new of antiplatelet therapy.  
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