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Abstract 

The February 2009 ‘Black Saturday’ bushfires resulted in 173 fatalities, caused 

AUD$4 billion in damage and provided a stark reminder of the destructive potential 

of wildfire. Globally, wildfire-related destruction appears to be worsening with 

observed increases in fire occurrence and severity. Wildfire management is a difficult 

undertaking and involves a complex mix of interrelated components operating 

across varying temporal and spatial scales. This thesis explores how operations 

research methods may be employed to provide decision support to wildfire 

managers so as to reduce the harmful impacts of wildfires on people, communities 

and natural resources. Some defining challenges of wildfire management are 

identified, namely complexity, multiple conflicting objectives and uncertainty. A 

range of operations research methods that can resolve these difficulties are then 

presented together with illustrative examples from the wildfire and disaster 

literature. Three mixed integer programming models are then proposed to address 

specific real-world wildfire management problems. The first model incorporates fuel 

treatment and supression preparedness decisions within an integrated framework. 

The second model schedules fuel treatments across multiple time periods to maintain 

fire resistant landscape patterns while satisfying various ecological requirements. 

The third model aggregates fuel treatment units to minimise total perimeter 

requiring management. 
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1. Introduction 

 

The February 2009 ‘Black Saturday’ bushfires in Victoria, Australia provided a stark 

reminder of the destructive potential of wildfire. The fires resulted in 173 fatalities 

and damage to property, infrastructure and the natural environment with an 

estimated total cost of over A$4 billion (Teague, Mc Leod, & Pascoe, 2010). While fire 

is a natural component of many forest ecosystems, uncontrolled wildfires can cause 

loss of human life and destruction of property and natural resources (King, 

Bradstock, Cary, Chapman, & Marsden-Smedley, 2008).  

 

Globally, wildfire-related destruction is a problem that appears to be worsening. In 

the Mediterranean basin a sharp increase in wildfire events has been observed over 

the past several decades despite increased investment in fire prevention and 

suppression measures (Carmel, Paz, Jahashan, & Shoshany, 2009; Pappis & 

Rachaniotis, 2010a). In Canada there has been an observed rise in both fire 

occurrence and area burnt (Podur, Martell, & Knight, 2002). Increased fire activity 

has also been seen in U.S. forests with more frequent large fires, longer fire durations 

and longer fire seasons (Westerling, Hidalgo, Cayan, & Swetnam, 2006). Other 

countries to experience extreme fire seasons in recent years include Australia 

(Teague, et al., 2010) and Russia (Kharuk, Kasischke, & Yakubailik, 2007). This 

upward trend appears set to continue due to rising temperatures and changed 
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weather conditions associated with climate change (Westerling, et al., 2006; Wotton, 

Martell, & Logan, 2003).  

 

Wildfire management involves a complex mix of components and processes 

including: fire occurrence prediction, fuel management, fire prevention, fire 

detection and fire suppression (Martell, 2007). Wildfire managers operate in a 

difficult decision environment and are faced with limited time, constrained 

resources, extreme uncertainty and multiple objectives that may conflict (Martell, 

Gunn, & Weintraub, 1998).  As fire suppression expenditures continue to rise, 

governments seek wildfire management approaches that are economically efficient 

and that take into account both market and non-market benefits (Venn & Calkin, 

2011). However, there appears to be a large and growing gap between the decision 

support needs of wildfire managers and the decision support tools currently 

available (Martell, 2011). 

 

Operations research (OR) is the use of analytical techniques such as mathematical 

modelling to analyse complex interactions between people, resources and the 

environment to aid decision-making and the design and operation of systems (Altay 

& Green, 2006). As a discipline, OR has its origins in World War II Great Britain 

where it helped guide the allocation of scarce resources against the enemy (Larson, 

2005). OR methods have subsequently been applied to complex problems in a wide 

range of industries including: transportation, logistics, telecommunications, 
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manufacturing, mining, health care and forestry.  This thesis explores how OR 

methods might be applied in the wildfire management context. In particular, how 

OR methods can assist fire management agencies in assessing alternatives and 

making decisions that will reduce the impact of wildfires on people, communities 

and natural resources. 

 

In Chapter 2 some of the defining challenges of wildfire management are identified, 

namely complexity, multiple conflicting objectives and uncertainty. A range of OR 

methods that can resolve these difficulties are then presented, with illustrative 

examples drawn from the wildfire and disaster OR literature. The work presented in 

this chapter is the first detailed review of wildfire OR undertaken since 1998. A paper 

based on the contents of this chapter has been published in the International Journal of 

Wildland Fire (Minas, Hearne, & Handmer, 2012). 

 

In Chapter 3 a mixed integer programming model for fuel management and fire 

suppression preparedness planning is presented. The model makes fuel treatment 

and fire suppression resource allocation decisions simultaneously, so as to maximise 

the complementary effect of these two components of fire management. This is the 

first optimisation model to incorporate both fuel treatment and suppression 

preparedness planning decisions within an integrated framework. Despite the strong 

interrelation between these two elements of wildfire management, previous 

optimisation models have considered these components in isolation from one 
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another. A paper based on the contents of this chapter has been published in Annals 

of Operations Research (Minas, Hearne, & Martell, 2013). 

 

In Chapter 4 a mixed integer programming model for multi-period spatially explicit 

fuel treatment scheduling is presented. The model schedules fuel treatments over 

time to generate spatial patterns that fragment the landscape fuel complex with a 

view to moderating wildfire behavior. It is the first multi-period landscape-level fuel 

treatment model to be formulated and solved using exact optimisation methods. The 

model provides a flexible framework that allows for incorporation of landscape 

heterogeneity, as well as a range of ecological and operational constraints. A paper 

based on the contents of this chapter (Minas, Hearne, & Martell, 2012) was submitted 

to the European Journal of Operational Research in December 2012, a revised version of 

the paper addressing reviewer comments was resubmitted in May 2013. 

 

In Chapter 5 a mixed integer programming model is presented for aggregation of fuel 

treatment units. The model aggregates existing ‘fundamental’ fuel treatment units 

into larger units or ‘clusters’. The aim being to improve efficiency of prescribed 

burning activities through a reduction in the total perimeter requiring management. 

 

Finally in Chapter 6 we conclude with a summary of the research findings. 
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2. A review of operations research methods applicable 

to wildfire management 

 

2.1 Introduction 

 

Wildfire managers operate in a difficult decision environment. They are faced with 

limited time, constrained resources, extreme uncertainty and multiple objectives that 

may conflict (Martell, et al., 1998). In recent years, wildfire management has become 

increasingly complex with the advent of inter-agency resource sharing arrangements 

and the recognition of the beneficial effects of fire on ecosystems (Martell, 2011). 

Operations research (OR) is a discipline that is uniquely placed to assist managers 

operating in this challenging environment. Wildfire managers have access to a 

proliferation of data from a variety of sources including geospatial databases and fire 

behaviour and climatology models. OR methods can provide a framework to help 

wildfire managers make sense of this information and use it to guide decision-making.  

 

A large body of emergency OR work has been undertaken.  Most of this work has 

focused on the allocation, deployment and dispatch of police, fire and ambulance 

resources for routine emergencies in an urban context (Simpson & Hancock, 2009). 

However, wildfire agencies must cover much larger areas than urban fire departments 
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and wildfire occurrence and behaviour displays large spatial and temporal variation 

(Martell, et al., 1998). Due to these key differences, material from the urban emergency 

OR literature will not be considered here. There is a large body of disaster 

management OR work relating to non-routine emergency events such as: earthquakes, 

floods and hurricanes (Altay & Green, 2006). There is also a substantive literature on 

the application of OR to wildfire-specific management problems. Martell (1982) 

conducted a comprehensive review of wildfire OR work from 1961 to 1981 with 

elements of this review updated in 1998 (Martell, et al., 1998), as such this chapter will 

focus on post-1998 wildfire OR work. The remainder of the chapter is structured as 

follows. A range of OR methods will be discussed in terms of their ability to address 

some of the defining challenges of wildfire management, namely: complexity, multiple 

conflicting objectives and uncertainty. Illustrative examples and case studies drawn 

from the wildfire and disaster OR literature will be presented for each of the OR 

methods discussed.  
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2.2 Methods for handling complexity 

 

2.2.1 Mathematical programming  

 

Wildfire managers are often faced with complex problems consisting of a large 

number of inter-related decisions together with resourcing and other operational 

constraints. Mathematical programming (MP) is a field of OR that can assist with such 

problems. MP methods are concerned with the optimisation, that is maximisation or 

minimisation, of some explicit and quantifiable objective (Williams, 2009). In an MP 

model this objective is defined as a mathematical function of the decision variables in 

the form of an ‘objective function’ and is optimised subject to a series of related 

constraints (Hillier & Lieberman, 2005). Several categories of MP: linear programming 

(LP), integer programming (IP), nonlinear programming (NLP) and dynamic 

programming (DP ) are described in further detail below together with examples from 

the wildfire and disaster OR literature. 

 

Linear programming (LP) can be used when a problem’s objective function and 

constraints can be formulated as a linear combination of the decision variables 

(Ragsdale, 2008). Hof et al. (2000) developed a timing-oriented LP model for the spatial 

allocation of suppression effort for an existing fire. Their model’s objective was to 

delay the ignition of “protection areas” such as population centres. In an extension of 
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this work Hof and Omi (2003) described the application of a similar timing-oriented 

LP model to a fuel management scheduling problem. In their model, spatial 

application of fuel-reduction treatments were determined so as to mitigate the effects 

of a particular “target fire” with a known origin and spread behaviour. When a LP 

model is solved a “shadow price” is generated for each constraint as a standard model 

output. Shadow prices can be interpreted as the marginal effect that tightening or 

relaxing a constraint has on the objective value obtained (Williams, 2009). Armstrong 

and Cumming (2003) used shadow prices obtained from a timber-harvesting LP model 

to estimate the potential cost of land based changes due to wildfire. Spatially explicit 

values-at-risk information like this can be useful for fuel treatment and suppression 

preparedness planning. 

 

Integer programming (IP) models feature inputs or outputs that are required to take 

on discrete whole number values. IP can be useful for modelling problems that feature: 

indivisible resources, “yes or no” decisions or logical connections such as “if” and 

“then” (Wolsey, 1998). IP methods have been applied to a range of wildfire 

management problems. The maximal covering location model (MCLM) is a classic IP 

model that has been used extensively in emergency service deployment (Church & 

ReVelle, 1974). Dimopoulou and Giannikos (2001, 2004) described the use of an MCLM 

model for suppression resource deployment as part of a decision support system that 

also included a simulation module and a GIS interface. Kirsch and Rideout (2005) 

presented an IP model for initial attack preparedness planning. Their model deployed 
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initial attack resources across a user-defined set of fires with the objective being to 

maximise the weighted area protected (WAP) for a given level of budget funding, with 

weights assigned based on protection priorities. Donovan (2006) presented a model for 

determining the optimal mix of agency and contract fire crews to minimise costs and 

satisfy demand across a fire season. A multi-period transportation formulation was 

used with the fire season modelled as a series of discrete time periods with differing 

levels of demand. This approach leads to reduced computational complexity for this 

type of problem as compared to a standard IP formulation. Donovan and Rideout 

(2003) described an IP model for determining the optimal mix of fire-fighting resources 

to dispatch to a given fire to achieve containment with minimal resultant costs and 

damages. Wei et al. (2008) formulated an IP model for optimal allocation of fuel 

treatment across a landscape based on spatially explicit ignition risk, fire spread 

probability, fire intensity levels and values-at-risk. Higgins et al. (2011) used an IP 

approach to develop a seasonal resource allocation model for planning fuel reduction 

burning on public lands in Victoria, Australia. 

 

Nonlinear programming (NLP) methods are used when a problem features a nonlinear 

objective function or nonlinear constraints. The probability of containing a wildfire 

and the suppression time required to do so are nonlinear functions of fire size at the 

start of initial attack. This means small delays in dispatch of initial attack resources can 

result in dramatic fire loss increases (MacLellan & Martell, 1996).  Rachaniotis and 

Pappis sought to incorporate this element of fire behaviour in an NLP model via the 
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use of the “deteriorating jobs” concept. Their model tackled the problem of scheduling 

a single fire-fighting resource when there are several existing fires to be controlled 

(Pappis & Rachaniotis, 2010a; Rachaniotis & Pappis, 2006; Rachaniotis & Pappis, 2011). 

The model was subsequently extended to allow scheduling of multiple fire-fighting 

resources (Pappis & Rachaniotis, 2010b). Minciardi et al. (2009) formulated two related 

NLP models, one for deployment of wildfire suppression resources in the pre-

operational phase and the other for dispatch of resources to fires in the operational 

phase. 

 

Dynamic programming (DP) is an optimisation method that is particularly useful 

when sequences of interrelated decisions need to be made. In deterministic DP the 

state of the system at the next stage is completely determined by the current system 

state and the policy decision made (Hillier & Lieberman, 2005). Wiitala (1999) used a 

DP approach in his model for determining the most efficient mix of available initial 

attack resources to dispatch to a fire.  
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2.2.2 Problem structuring methods  

 

Traditional ‘OR’ methods such as mathematical programming are suited to well-

structured problems that can be clearly formulated in terms of performance measures, 

constraints and relations between action and consequence. However, many wildfire 

and disaster management problems lack structure and are typified by multiple 

perspectives, disagreement amongst experts and the presence of intangibles and 

uncertainties. Problem structuring methods (PSM) are a suite of techniques that can 

assist in resolving some of these difficulties. Compared to traditional ‘hard’ OR 

methods PSM typically employ rudimentary mathematical or statistical techniques 

(Mingers & Rosenhead, 2004). Two PSM methods, decision conferencing and expert 

judgment elicitation, are discussed in further detail below. 

 

Decision conferencing can be an effective method for assisting with longer-term 

collaborative decision making. A decision conference is typically a two-day event that 

brings together decision makers from various organisations to discuss issues and work 

out a way forward. A facilitator is present to keep the discussion focused. An analyst is 

also present to build a series of analytical decision models with a view to developing a 

shared understanding of the problem (French, 1996). A series of decision conferences 

were held in the USSR following the 1986 Chernobyl nuclear accident. The aim was to 

identify the major factors influencing decision-making on relocation and other long 

term protective measures. The decision conferences helped develop a common 
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understanding amongst participants including government ministers, policy-makers 

and scientists and successfully identified a number of key medical, socio-economic and 

political factors influencing protective measures undertaken (French, Kelly, & Morrey, 

1992). Decision conferencing could be similarly used following major wildfires to 

facilitate dialogue between stakeholders and aid recovery-phase planning.  

 

Expert judgement elicitation (EJE) is the use of structured methods to elicit expert 

opinions in a planned, formal manner that attempts to minimise bias. EJE typically 

involves interviewing or surveying “subject experts” and then analysing their answers 

together with information about their background and experience. EJE methods can 

provide an understanding of the degree of and reasons for consensus or disagreement 

amongst experts and can be useful in facilitating learning and dialogue (Gregory, 

Failing, Ohlson, & Mcdaniels, 2006). Furthermore, EJE studies are often a cost-effective 

and practical means of obtaining valuable information. In the wildfire context, EJE 

methods have been used to estimate fire containment probabilities and fire-line 

construction rates. In these instances, alternate methods such as observation of actual 

or experimental fires are often deemed to be too expensive, time-consuming and 

dangerous (Hirsch, Corey, & Martell, 1998). One of the earliest applications of EJE 

methods to wildfire management involved eliciting information from experienced fire 

managers in Ontario to derive subjective probability assessments of daily forest fire 

occurrence (Cunningham & Martell, 1976). Hirsch et al. (1998) used an EJE approach to 

model the relationship between fire size, fire intensity and probability-of-containment 
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by a 5-7 person initial attack crew. In their study they interviewed crew leaders from 

four Canadian forest fire agencies and elicited probability-of-containment estimates for 

various fire scenarios (Hirsch, et al., 1998). Gilless and Fried (2000) surveyed California 

fire-fighters and used their responses to estimate probability distributions for fire-line 

construction rates for different fire-fighting resources under a range of conditions. 

These fire-line construction rate distributions were subsequently incorporated into the 

CFES2 simulation model used for initial attack planning in California. Similarly, 

Hirsch et al. (2004) interviewed crew leaders in Ontario and developed probability 

distributions for production rates of three and four person initial attack crews for a 

range of fuel types and fire intensities. Rideout et al. (2008) used EJE methods in their 

Marginal Attribute Rate of Substitution (MARS) approach to assessing values-at-risk 

for initial attack planning.  
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2.2.3 System dynamics 

 

In complex systems, components can interact with one another via a web of feedback 

loops meaning a small change to input parameters can produce a drastic change to the 

whole system (Anderson, 1999). These feedback effects can be modelled using system 

dynamics (SD). Unlike many traditional ‘hard’ OR approaches that are static and linear 

in character, SD can accept the nonlinearity and feedback loop structures of real world 

social and physical systems. Whilst SD uses a ‘soft’ PSM-like approach for information 

elicitation and problem structuring, it includes two additional ‘hard’ steps: model 

definition using rate and level equations and the running of model simulations. An SD 

model initially serves to demonstrate how the problem under consideration is being 

generated in the real world, it is subsequently used to test alternative policies and 

structures (Forrester, 1994). Hoard et al. (2005) discussed the application of SD 

methods to disaster preparedness planning in rural areas with a focus on hospital 

surge capacity for a variety of disaster types. A similar SD approach could be used in 

wildfire preparedness planning to explore surge capacity considerations in 

suppression resource deployment and rostering of fire-fighting personnel. 
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2.2.4 Hyper-projects  

 

Wildfire incident controllers are dealing with a problem that is emergent in nature. 

They are faced with a ‘moving target’ or a dynamic set of changing circumstances. The 

incident trajectory is influenced by actions taken such as fire suppression and external 

forces such as weather (Faraj & Xiao, 2006). Simpson (2006) defined a class of project, 

the ‘hyper-project’, that captures these emergent characteristics. Hyper-projects are 

characterised by the presence of a dynamic, external ‘pacing function’ and a set of 

defined tasks and resource requirements that interact with this pacing function. Time 

pressure is an inherent feature of hyper-projects with tasks measured in minutes or 

hours. Simpson (2006) used the hyper-project construct to model response to a 

residential structure fire, a similar approach could be used to model real-time wildfire 

suppression decision-making. In such a model various suppression resources would 

be dispatched and tactical fire-fighting decisions made relative to an external pacing 

function, which in this case would be the growth and lifecycle of the uncontained 

wildfire. The hyper-project approach can capture threshold effects, a key feature of 

complex biophysical systems. Thresholds are breakpoints that occur in systems with 

multiple stable states where crossing a threshold results in a shift from one state to 

another (Berkes, 2007). An example being when a wildfire crosses the 4000 kW/m 

threshold it can be said to have changed state from a controllable fire to a spot 

generating fire (Gill, 2005) thus requiring a different suppression response. The hyper-
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project provides a framework for responding to state changes via the execution of a 

flexible set of tasks that vary in a pre-defined manner relative to the pacing function. 
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2.3 Methods for handling multiple conflicting objectives 

 

2.3.1 Multi-objective optimisation  

 

Wildfire management involves various agencies and groups with different priorities 

and objectives including: reduction of impacts on public safety, private property and 

ecosystem processes as well as cost minimisation (Martell, 2007). Instances will often 

arise where multiple objectives conflict with one another, for example frequent 

planned burning can provide additional protection to built assets but may have a 

negative impact on biodiversity in some ecosystems (Driscoll et al., 2010). Where 

multiple objectives can be expressed in terms of market values they can be aggregated 

into a single cost minimisation objective. However wildfire managers are required to 

consider potential impacts on non-market values such as: ecosystem health, 

conservation of flora and fauna, air quality, water quality, recreational opportunities 

and cultural heritage (Venn & Calkin, 2011). In many cases ascribing a monetary value 

to these items would be an expensive, time-consuming and uncertain exercise. This 

lack of a common currency makes it difficult to evaluate and compare the outcomes of 

decisions or strategies. Multi-objective optimisation (MO) is a technique that is suited 

to these types of problems. MO models are formulated with more than one objective 

function to find a set of Pareto optimal solutions. A solution is Pareto optimal if none 

of the objectives can be improved without making another objective worse. Decision-
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makers can assess alternatives from this set of Pareto optimal solutions by examining 

trade-offs amongst the various objective values. This explicit identification and 

structured exploration of trade-offs provides a level of transparency in the decision 

process (Gregory, et al., 2006). Lehmkuhl et al. (2007) described FUELSOLVE a 

prototype decision support system that incorporates MO modelling into fuel 

management decision-making to consider both ecological and cost objectives. Kennedy 

et al. (2008) demonstrated the use of the FUELSOLVE MO model with a fuel treatment 

case study with trade-offs assessed between protection of endangered species habitat, 

preservation of old growth forest reserves and minimisation of area treated. 

 

Goal Programming (GP) is a branch of multi-objective optimisation in which each of 

the multiple objectives takes the form of a goal. Goals are formulated as ‘soft 

constraints’ each with a target value it is desirable to satisfy. A penalty function is then 

specified that seeks to minimise deviations from this set of target values. Adjustments 

to the penalty function parameters allows the exploration of trade-offs between 

objectives (Ragsdale, 2008). Calkin et al. (2005) used a GP approach to analyse trade-

offs between fire threat reduction and habitat preservation in silvicultural treatment 

scheduling. A goal programming module is currently under development as part of 

the United States Fire Program Analysis (FPA) project (Kumar, Carty, Parija, & Soni, 

2010). The FPA project has been undertaken by the US Forest Service and other federal 

land management agencies in an attempt to develop a wildfire management planning 
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and budgeting decision-support tool that will incorporate a full range of both market 

and non-market objectives (Venn & Calkin, 2011). 
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2.4 Methods for handling uncertainty 

 

2.4.1 Simulation 

 

Wildfire managers are required to make difficult decisions in conditions of 

uncertainty. Simulation is arguably the most robust and easily applied method for 

consideration of uncertainty in decision support systems (Mowrer, 2000). Simulation is 

an approach used to model real-life stochastic systems that evolve probabilistically 

over time. The real-life system’s performance is imitated by using probability 

distributions to generate various events that occur in the system (Hillier & Lieberman, 

2005). Prior to implementation, simulation models require validation to ensure they 

realistically represent the system being analysed and that the results they provide are 

reliable (Winston, 1994). Simulation models feature in a number of decision support 

systems used by wildfire agencies for strategic planning purposes. The California Fire 

Economics Simulator version 2 (CFES2) is a stochastic simulation model that simulates 

fire occurrence and suppression on a daily basis. Simulation of many years of "data” 

makes it possible to undertake “what if” analysis for changes to organisational 

components such as: resource stationing, dispatch rules and staff schedules (Fried, 

Gilless, & Spero, 2006). The Level of Protection Analysis System (LEOPARDS) is 

underpinned by a simulation model that is spatially conscious and incorporates 

temporal queuing conflicts. LEOPARDS has evolved from an initial attack simulation 
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model developed in the early 1980s by Martell et al. (1984). LEOPARDS can model 

daily fire suppression activities and is used in Ontario to assess initial attack 

performance under a range of policy and budget conditions (McAlpine & Hirsch, 

1999). The USDA Forest Service’s National Fire Management Analysis System 

(NFMAS) Interagency Initial Attack Assessment (IIAA) is a simulation model that has 

been used in the past to test alternative initial attack organisations and strategies at 

various budget levels with a view to determining the Most Efficient Level (MEL) of 

funding (Lundgren, 1999). Manipulation of simulation models can provide valuable 

insights into a problem, however the primary shortcoming of this approach is that it is 

only possible to find “the best” management alternative from those investigated. For 

large problems with many management alternatives it is unlikely that a near-optimal 

solution can be found in this manner. For this reason, mathematical programming 

(MP) methods that systemically explore the solution-space can add significant value to 

complex wildfire management problems (Hof & Haight, 2007). 
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2.4.2 Stochastic programming 

 

Stochastic programming (SP) is a method that combines mathematical programming 

methods with probability techniques to provide a constructive approach to tackling 

optimisation problems that feature uncertain data. SP can be used when there are 

uncertain model parameters with probability distributions that are known or can be 

estimated (Kall & Wallace, 1994). These parameter distributions can be either 

continuous or described by discrete scenarios and in some cases are generated using 

simulation techniques. The most common SP objective is optimisation of the mean 

outcome or expected value of the system. An alternate formulation incorporating 

decision maker risk preferences is the optimisation of a weighted sum of expected 

value and variance (Snyder, 2006). SP models generate solutions that are less sensitive 

to data uncertainty than deterministic MP models, however large SP models can prove 

difficult to solve.  

 

One of the earliest uses of SP methods in forest fire management was Boychuk and 

Martell’s (1996) multi-stage model for forest-level timber management that considered 

uncertain losses that could result from fires. A common SP formulation is the two-

stage model with recourse. In such models a first-stage decision is made after which a 

random event occurs, a recourse decision can then be made in the second-stage that 

compensates for any undesirable effects. Hu and Ntaimo (2009) modelled the wildfire 

initial attack dispatch problem as a two-stage SP model with recourse. In their model 



 

 24 

the first stage decisions related to dispatch of suppression resources to reported 

wildfires, with recourse decisions made on fire-fighting tactics in the second stage. 

Stochastic parameters in the model included: fire growth scenarios, fire-line 

production rates, arrival times to fires and suppression resource operating costs. 

Ntaimo (2010) described an alternate application of a two-stage SP approach with 

deployment of suppression resources to bases in the first-stage and dispatch of 

resources to wildfires in the second stage. Two-stage SP models have been applied to a 

range of disaster management problems including: transportation of first-aid 

commodities on a disaster effected road network (Barbarosoglu & Arda, 2004), pre-

positioning of emergency supplies in a hurricane-threatened region (Rawls & 

Turnquist, 2010) and locating storehouses and developing transportation plans for 

flood-relief logistics (Chang, Tseng, & Chen, 2007). 

 

Probabilistic SP approaches, such as chance-constrained programming, require the 

probability of a constraint holding to be above a specified threshold (Snyder, 2006). 

Bevers (2007) demonstrated the use of chance-constrained programming for a fire 

organisation budgeting problem. In his model formulation the probability of total fire 

costs exceeding the budget had to be less than a specified risk level. 

 

Stochastic dynamic programming (SDP) is a method used for problems with 

sequential decisions that are subject to uncertainty. SDP differs from deterministic DP 

in that state-to-state system transitions are governed by probability distributions 
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(Hillier & Lieberman, 2005). Konoshima et al. (2010; 2008) demonstrated the use of an 

SDP approach for determining optimal spatial patterns of fuel treatment and timber 

harvesting in a theoretical landscape subject to fire risk. Spring and Kennedy (2005) 

developed an SDP model with decisions made at the beginning of each stage as to 

which stands of trees are harvested and what level of fire protection is applied. 
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2.4.3 Robust optimisation 

 

Like stochastic programming (SP), robust optimisation (RO) provides a constructive 

approach to solving optimisation problems that feature uncertain data (Vladimirou & 

Zenios, 1997). However RO differs from SP in that probability distributions of 

uncertain parameters are not required. All that needs to be known about the uncertain 

parameters is that they belong to some ‘uncertainty set” which may be described as 

either a continuous interval or as set of discrete scenarios (Ben-Tal & Nemirovski, 

2002). RO models are a great deal less sensitive to data perturbations than 

deterministic MP methods but substantially more difficult to solve. RO models can be 

formulated in a number of ways. The Minimax formulation seeks to minimise the 

maximum cost or damage across all possible scenarios. This is a highly conservative 

approach that provides costly solutions that cater for worst-case outcomes (Snyder, 

2006). Unless a model has significant built-in redundancies a solution is unlikely to 

remain both feasible and optimal across all scenarios (Vladimirou & Zenios, 1997). 

Model and solution robustness approaches seek to balance optimality and feasibility 

based on the decision maker’s degree of risk aversion. Restricted scenario approaches 

minimise the maximum cost or damage across a restricted ‘reliability set’ of scenarios. 

This reliability set is specified by the decision maker based on risk preferences (Snyder, 

2006). Haight and Fried (2007) presented a scenario-optimisation IP model for 

suppression resource deployment based on the classical maximal covering model 

(MCLM). Their formulation included a binary “standard response” variable that 
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serves as a proxy for fire-line construction. The model’s objective was to minimise the 

number of fires not receiving a “standard response” across a defined set of scenarios. 

Mercer et al.(2008) modified Haight and Fried’s standard-response model to 

incorporate the effects of fuel treatment. Other problems with relevance to wildfire 

and disaster management that RO methods have been applied to include evacuation 

transportation planning (Yao, Mandala, & Chung, 2009) and facility location under 

uncertainty (Snyder, 2006).  
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2.4.4 Fuzzy models 

 

Stochastic programming and robust optimisation methods are appropriate for 

problems where uncertainty is mostly due to randomness, however uncertainty is 

sometimes due to other factors such as imprecision and ambiguity (Verderame, Elia, 

Li, & Floudas, 2010). Fuzzy set theory is an approach that can tackle problems that 

feature fuzzy predicates such as ‘small’ or ‘safe’, fuzzy quantifiers such as ‘most’ or 

‘often’, and fuzzy probabilities such as ‘likely’ or ‘unlikely’ (Smithson, 1991). In 

classical set theory membership of a set is assessed in binary terms, that is an element 

either belongs to a set or it doesn’t. In fuzzy set theory ‘degrees of membership’ 

ranging from 0 to 1 are permitted based on a fuzzy membership function (Dubois & 

Prade, 1988). Models based on fuzzy set theory have been used to classify areas into 

risk-zones for both fire prevention planning (Iliadis, Papastavrou, & Lefakis, 2002;  

Iliadis, Papastavrou, & Lefakis, 2002b; Iliadis, 2005;  Iliadis & Spartalis, 2005; Kaloudis, 

Tocatlidou, Lorentzos, Sideridis, & Karteris, 2005; Kaloudis, Costopoulou, Lorentzos, 

Sideridis, & Karteris, 2008; Tsataltzinos, Iliadis, & Stefanos, 2009; Iliadis, Vangeloudh, 

& Spartalis, 2010) and disaster relief purposes (Sheu, 2007;  Tan, Huang, Wu, Cai, & 

Yan, 2009;  Sheu, 2010). 
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2.5  Summary and discussion 

 

In this chapter we have presented a range of OR methods and discussed their ability to 

address some of the major challenges of wildfire management including: complexity, 

multiple conflicting objectives and uncertainty. Many of these OR methods are 

complementary and can be used in conjunction with one another. Problem structuring 

methods (PSM) can be used to elicit objectives and opinions and to help develop a 

common understanding. Simulation and system dynamics (SD) methods can be used 

to model the dynamics of complex systems to gain insights into the problem structure 

and possible management prescriptions through the use of “what-if” analysis. Whilst 

optimisation methods such as mathematical programming (MP) can be used to explore 

the decision space and seek good solutions from the many alternatives.  

 

The many wildfire OR examples discussed in this chapter range from those that are 

largely theoretical in nature to those that have been successfully implemented, such as 

the LEOPARDS model (McAlpine & Hirsch, 1999). The Victorian Bushfires Royal 

Commission investigated the catastrophic 2009 bushfires and made a series of 

recommendations aimed at reducing the risk and impacts of fire and minimising fire-

related loss of life (Teague et al. 2010).  Of the 67 recommendations made, fifteen could 

be addressed with the use OR methods, including: consideration of multiple objectives 

in fuel treatment planning, pre-emptive risk-based deployment of aerial resources and 

the location of refuges and shelters. 
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With wildfire related destruction a worsening global problem and wildfire 

management becoming increasing complicated. There nonetheless exists a concerning 

and sizeable gap between the decision support needs of wildfire managers and the 

decision support tools currently available (Martell, 2011. We have demonstrated with 

the use of examples from the literature the role OR techniques can play in bridging this 

gap. However it is apt to recall Martell’s (1982) reminder that OR specialists can 

develop decision-making aids that will enhance but not replace the experience and 

intuition of wildfire managers, and that the successful application of OR methods will 

require the OR analyst to work closely with wildfire agency personnel.  

 

 

 



 

 31 

3. An integrated optimisation model for fuel 

management and fire suppression preparedness 

planning 

 

3.1    Introduction 

 

Wildfire management involves a complex mix of components and processes including: 

fire occurrence prediction, fuel management, fire prevention, fire detection and fire 

suppression (Martell, 2007). Despite many of these components being interrelated 

previous wildfire management decision support models have tended to consider these 

components in isolation from one another, often in the interest of model tractability. In 

this chapter we present a modelling approach that considers elements of fuel 

management and fire suppression planning in an integrated manner. 

 

Fire and land management agencies establish fire suppression systems to control and 

extinguish destructive forest fires. Fire suppression activities can be divided into two 

distinct subsystems: initial attack and extended attack (also referred to as large fire 

management).  Initial attack refers to the early phase of suppression action during 

which fire agencies try to contain fires while they are still small (Martell, 1982). When a 
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fire’s size and intensity grows such that it is beyond the capabilities of initial attack 

resources it is called an escaped fire.  

 

The goal of the initial attack subsystem is to prevent fires from escaping. Escaped fires 

can grow to hundreds of thousands of hectares in size and cause significant damage, 

the goal of the extended attack subsystem is to mitigate the impact of these large fires. 

Management of escaped fires is resource intensive and can tie up large numbers of fire 

agency personnel and equipment for weeks on end (Martell, 2007). The model 

presented in this chapter is concerned with improving initial attack subsystem 

effectiveness with a view to reducing the number of escaped fires. Consideration of the 

spread and suppression of large escaped fires is beyond the scope of the model. 

 

To make initial attack success possible, fire authorities must look ahead and make 

preparedness planning decisions. These decisions include determining what type and 

amount of suppression resources to acquire and where to base these resources in order 

to best satisfy demand (Martell 1982). Optimisation methods have been applied to a 

range of initial attack preparedness planning problems.  MacLellan & Martell (1996) 

developed an integer programming model for evaluating airtanker home-basing 

strategies in Ontario. Their model minimised the average annual cost of meeting daily 

airtanker demands, based on subjective daily deployment rules and historic fire 

weather data. Dimopoulou & Giannikos (2001 & 2004) determined the optimal location 

of fire-fighting resources for a region near Athens using a variant of the maximal 
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covering location model (Church & ReVelle, 1974). In their approach a GIS application 

was used to classify sub-regions based on vegetation and slope, with different classes 

needing different levels of coverage. Kirsch & Rideout (2005) formulated an integer 

programming model for determining the optimal set of initial attack resources for an 

upcoming fire season. Their model optimised the weighted area protected for a user-

defined set of fires, with weights assigned based on protection priorities. Haight & 

Fried (2007) developed a scenario-based integer programming model for exploring 

optimal initial attack resource deployment levels and locations. Their model 

minimised the weighted sum of suppression resources deployed and the expected 

number of fires not receiving a “standard response”, with a standard response defined 

as the desired number of resources that can reach a fire within a specified response 

time. 

 

Fire behaviour is influenced by three factors: fuel, weather and topography. Of these 

factors only fuel can be actively managed. In many locations the continued successful 

containment of fires by initial attack resources has led to fuel build-ups resulting in 

highly flammable forest landscapes (Schmidt, Taylor, & Skinner, 2008). Fire managers 

are tasked with reducing the flammability of these landscapes by applying fuel 

treatments to modify fuel patches (Martell, 2007).  A number of optimisation models 

have been developed to aid in spatial allocation of fuel treatment across a landscape. 

Hof, et al. (2000) formulated a linear programming model to schedule fuel treatments 

to mitigate the effects of a defined “target fire” with a known origin and spread 
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behaviour. Wei, et al. (2008) developed an integer programming model for efficiently 

locating fuel treatments across a landscape based on spatially explicit ignition risk, fire 

spread probability, fire intensity levels and values-at-risk. Konoshima, et al. (2008 & 

2010) used a stochastic dynamic programming model to explore optimal fuel treatment 

and timber harvesting spatial patterns across a hypothetical landscape subject to fire 

risk.  

 

The optimisation models discussed above consider fire suppression and fuel treatment 

planning in isolation from one another. However, these two elements of forest fire 

management are strongly interrelated. They are implicitly interrelated in a budgetary 

sense in that funding allocated to one element often reduces funding available to the 

other. But perhaps more importantly, they are interrelated in a productivity sense in 

that fuel treatment positively affects suppression efforts by reducing fire spread rates 

and fire intensity (Rideout, Wei, Kirsch, & Botti, 2008). In this way fuel treatment can 

enhance the effectiveness of both the initial and extended attack subsystems, by 

increasing the likelihood of initial attack success and making large fires easier to 

control. Our model is concerned with the effect fuel treatment has on the efficacy of the 

initial attack subsystem. That is if a forest patch has been modified by fuel treatment, 

containment of a fire will generally require less suppression resources and these 

resources will have more time to get there before the fire escapes. In this way the 
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spatial allocation of fuel treatment has implications for initial attack preparedness 

planning, and vice versa.   

 

Some recent models have considered elements of both fire suppression and fuel 

treatment. Mercer, et al. (2008) presented a framework for assessing trade-offs between 

investments in fuel treatment and fire suppression resources using an integer 

programming model. However their approach was not fully integrated, in that one-at-

a-time adjustment of model parameters was used to incorporate the effect of alternate 

fuel treatment locations and levels into an initial attack deployment and dispatch 

model. Wei (2012) developed an integer programming model for selecting fuel 

treatment locations with a view to providing control opportunities for future fires. 

However while the fuel treatment patterns generated by the model are intended to be 

complementary to suppression efforts, the model does not contain explicit 

consideration of suppression decisions. 

  

Here we present an integrated integer programming model for fire suppression 

preparedness and fuel management planning. Our model is fully integrated, so that 

fuel treatment and suppression resource allocation decisions are made simultaneously 

so as to maximise the complementary effect these two fire management components 

have on initial attack effectiveness. The motivation for the development of this model 

came from the Australian bushfire context, where large fuel build-ups in the vicinity of 
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heavily populated urban areas are characteristic. In this environment, some fire and 

land management agencies are seeking to prioritise short-term fuel management 

activities in the wildland-urban interface with the aim of increasing initial attack 

effectiveness so as to protect human life and assets. So with this motivation in mind, a 

single-period model for planning year-ahead fuel treatment and initial attack resource 

deployment was deemed most appropriate. We appreciate that in the broader context 

fuel management is an activity that is typically planned over many years, 

consideration of the multi-period case is discussed in Section 3.4 – Summary and 

discussion and is modelled in Chapter 4. 

 

The remainder of the chapter is structured as follows. The mathematical formulation of 

the model is presented and explained. The model’s functionality is then demonstrated 

using a series of hypothetical test landscapes. We then conclude by discussing possible 

extensions where the model could be used as the basis for analysing more complex 

problem instances. 
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3.2    Model formulation 

 

Our formulation of an integer programming model for year-ahead suppression 

preparedness and fuel management planning appears below. We consider a landscape 

divided into a number of cells representing potential fire locations and candidate 

locations for fuel treatment. These cells need not be uniform in shape or size. Rather 

this partitioning would be done based on logical fuel treatment units for the specific 

landscape in question. We also define a set of potential bases for suppression resource 

deployment. This set could include existing permanent and temporary bases, as well 

as locations deemed suitable for “forward deployment” of suppression resources. The 

main decisions to be considered are: where to base suppression resources and where to 

undertake fuel treatment. The model is formulated with the following notation. 
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3.2.1 Indices and sets 

 

i, I   =   index, set of cells (demand points and candidate locations for fuel treatment); 

j, J   =   index, set of potential base locations where suppression resources can be 

deployed; 

  I  =   set of cells where fuel treatment is not permitted; 

Ji     =   set of potential base locations capable of covering cell i if untreated; 

Ji     = set of potential base locations capable of covering cell i if treated; 

 

3.2.2 Parameters 

 

iw  =    cells weights; 

X

jc  =  seasonal cost of deploying a suppression resource to base j; 

Y

ic  =  cost of treating cell i; 

Xb  =  seasonal budget for suppression deployment; 

Yb  =  seasonal budget for fuel treatment; 

u

ir  =   suppression resources needed to contain a fire originating in cell i if 

untreated; 

Y

ir  =   suppression resources needed to contain a fire originating in cell i if treated; 

jm  =  maximum number of suppression resources that can be deployed to base j; 
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3.2.3 Variables 

 

jX  =  number of suppression resources deployed to base j.  

 iY  =  1 if cell i is treated,  

0 otherwise; 

iZ   =  1 if cell i is suitably covered by deployed resources,  

0 otherwise;  

u

iZ   =  1 if an untreated cell i is suitably covered by deployed resources,  

0 otherwise;  

Y

iZ  =  1 if a treated cell i is suitably covered by deployed resources, 

 0 otherwise;  
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3.2.4 Model 

 

Maximise z  =  i

Ii

i Zw


 (3.1) 
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 (3.9) 

   0,1 u

iZ  Ii  (3.10) 

   0,1 Y

iZ  Ii   (3.11) 
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   0,1 iZ  Ii  (3.12) 

   INTEGERX j   Jj  (3.13) 

   0,1 iY  Ii   (3.14) 

 

The objective function (3.1) maximises the weighted number of cells covered. 

Assignation of cell weights could be based upon factors such as: “ignition probability” 

and “values threatened” if a fire originating in that cell is not contained by initial 

attack resources.  

 

Constraints (3.2) – (3.5) define whether or not a cell i is covered. Constraint (3.2) 

defines the coverage criteria for untreated cells based upon sufficiency and proximity 

of suppression resources. That is, an untreated cell i is considered covered if the sum of 

suppression resources deployed to bases j i  meets or exceeds the resource 

requirement u

ir  needed to contain a fire originating in cell i. A base j is a member of set

i if the response time from base j is less the than escape time for a fire originating in 

cell i. With response time defined as the time taken for resources from base j to 

mobilise and travel from to cell i and undertake line construction activities. While 

escape time is defined as the time taken for a fire to reach a pre-defined escaped fire 

threshold size (e.g. five hectares), the implication being that fires larger than this are 

considered beyond the capabilities of initial attack resources.  
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Constraint (3.3) defines the coverage criteria for treated cells in an analogous manner. 

However the expression includes a different suppression resources required parameter 

Y

ir and a different set of proximate bases j i . Since fuel treatment tends to reduce 

fire intensity, for any given cell the resources required post treatment ( t

ir ) are typically 

lower than those required pre-treatment ( u

ir ). Similarly as fuel treatment tends to 

increase fire escape time, the post-treatment set of proximate bases j i  is typically 

larger than the pre-treatment set j i .  Constraint (3.4) ensures that only treated cells 

are assessed against the treated cell coverage criteria. Finally, constraint (3.5) defines a 

cell i as covered if it meets either the untreated or treated coverage criteria.  

 

Constraint (3.6) identifies a set of cells where fuel treatment is not permitted. This type 

of restriction could apply for a range of reasons, for example fuel reduction burning 

may not be permitted in localities close to airports due to smoke hazard. Constraint 

(3.7) specifies maximum resource deployment levels for each base. In practical terms 

this type of restriction would relate to a base’s size or capacity, for example a large 

base may have the capacity to accommodate four fire crews while a small base may 

only be able to house two crews.  
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Constraint (3.8) imposes a budget on suppression resource deployment expenditures 

that cannot be exceeded. The model allows deployment costs to vary on a cell-by-cell 

basis. In practice this cost variability could be due to factors such as whether it is a 

permanent or temporary base and how remote its location is. Constraint (3.9) imposes 

a budget on fuel treatment expenditures that cannot be exceeded. The model allows 

fuel treatment costs to vary on a cell-by-cell basis. In practice this cost variability could 

be due to a range of factors such as: site accessibility, fuel type, fuel load and proximity 

to human settlements.  

 

Constraints (3.10) – (3.12) restrict coverage variables to binary values. Constraint (3.13) 

restricts the number of resources deployed to a base to integer values, this  reflects the 

fact that suppression resources usually take the form of indivisible quantities.  

Constraint (3.14) restricts treatment to binary values, such that cell i is either treated or 

it is not. 

 

In defining Constraints (3.2 and 3.3) with differing “suppression resources required” 

and “sets of potential base locations capable of covering a cell”, we are assuming that 

the application of fuel treatment has a measurable effect on both fire intensity and rate 

of spread. The model allows for this effect to vary on a cell by cell basis to take into 

account local factors such as fuel type, fuel load and topography. In practice both 

suppression resources required and potential base locations capable of covering a cell 
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will be fire-weather dependent. Thus, the model would need to be parameterised 

based on a target fire weather scenario. Consideration of multiple fire weather 

scenarios is discussed further in Section 3.4 – Summary and discussion. 

 

This formulation of the model also contains an implicit “no-congestion” assumption as 

resources deployed at a base j are permitted to help cover more than one cell. That is, 

we assume there will be no concurrent fires in cells that are covered by resources from 

a common base. For implementation purposes, the validity of this “no-congestion” 

assumption would need to be verified for the landscape being modelled, this is 

discussed further in Section 3.4 – Summary and discussion. 

 

The model has been formulated with separate deployment and fuel treatment budgets 

as this reflects operating conditions for most fire agencies. However the model could 

be reformulated with a “pooled budget” to allow decision makers to explore optimal 

expenditure levels for fuel treatment and suppression deployment programs. This 

could be done by replacing Constraints (3.8) & (3.9) with Constraint (3.15), in which b = 

total pooled budget for both suppression deployment and fuel treatment. 

 

bYcXc
Jj Ii

i

Y

ij

X

j  
 

    (3.15) 
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Similarly we could consider a more constrained but more realistic case, where there is a 

suppression deployment budget, a fuel treatment budget as well as a discretionary 

budget ( db ) that can be spent on either. In this case, Constraints (3.8) & (3.9) would be 

replaced by Constraints (3.15), (3.16) & (3.17) with total budget (b) equal to

dYX bbb  . 

 

dX

Jj

j

X

j bbXc 


    (3.16) 

dY

Ii

i

Y

i bbYc 


 (3.17) 

The use of these different levels of budget flexibility to allow decision makers to 

explore optimal expenditure levels is demonstrated in in Section 3.3 – Model 

demonstration. 

 

In order to determine the minimum resources required to cover the entire landscape 

the model could be reformulated as a set covering model. In such a formulation the 

“maximise coverage” objective function (1) would be replaced with a “cost 

minimisation” objective function (3.18).  

 

Minimise  
 


Jj Ii

i

Y

ij

X

j YcXc  (3.18) 
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While budget constraints (3.8) and (3.9) would be replaced by a constraint that requires 

all cells are covered (3.19), where n is the total number of cells in the landscape. 

 





Ii

i nZ  (3.19) 

 

In practice, covering the entire landscape may not be cost effective. For example, the 

cost of covering a geographically remote or difficult to access cell may exceed the 

expected damage or loss that would result if this cell was left uncovered. If this 

expected loss ( il ) was known, the model could be reformulated as a “minimisation of 

cost plus loss” problem with the following objective function (3.20). 

 

Minimise  
 


Ii

ii

Jj Ii

i

Y

ij

X

j ZlYcXc )1(  (3.20) 

 

In such a formulation, no budget or level-of-coverage constraints need to be specified. 

Rather, solving the model to minimise “cost plus loss” will determine the optimal (i.e. 

most cost effective) budget and resultant level-of-coverage for the landscape in 

question. 
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3.3    Model demonstration  

In order to demonstrate the functionality of the model 20 hypothetical 100-cell test 

landscapes were created. The parameter values for the test landscapes are summarised 

in Table 3.1 below. 

 

Parameters Values 

Set of cells: I 100 cells (10 x 10 grid) 

Set of potential base locations: J Corresponds to the set of cells I 

Set of cells where fuel treatment is not 

permitted: Ψ   
Empty set 

Set of potential base locations capable of 

covering cell i if untreated: i  
Bases within one-cell distance 

Set of potential base locations capable of 

covering cell i if treated:  i  
Bases within two-cell distance 

Cell weights: iw  Between 1 and 9 (random integer) 

Seasonal cost of deploying a suppression 

resource (crew) to base j: 
X

jc  
$20,000  

Cost of treating cell i: 
Y

ic  $10,000  

Budget for suppression deployment: 
Xb  $500,000 

Budget for fuel treatment: 
Yb  $100,000 

Suppression resources needed to contain a 

fire originating in cell i if untreated: 
u

ir  

Between 2 and 6 crews (random 

integer) 

Suppression resources needed to contain a 

fire originating in cell i if treated: 
Y

ir  
2 crews 

Maximum number of suppression resources 

that can be deployed to base j: jm  
25 crews  

Table 3.1: Test landscape parameter values 
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For all test cases the set of bases J corresponded with the set of cells I, meaning 

suppression resource deployment was permitted at all locations in the landscape. 

Similarly, there were no restrictions applied as to permissible fuel treatment locations. 

For each cell i two parameters: cell weight and suppression resources required if 

untreated were independent random variables. For simplicity it was assumed that 

post-treatment suppression resources required were common across all cells 

irrespective of the cell’s pre-treatment condition. In another simplifying assumption, 

relative positions of cells in the landscape were used to determine the set of base 

locations capable of covering a cell such that an untreated cell could be covered by a 

base located one cell away, while a treated cell could be covered by a base located two 

cells away. With the fuel treatment budget set at $100,000 and with a common fuel 

treatment cost of $10,000 applied to all cells, the fuel treatment component of the 

problem amounts to deciding which ten of the 100 cells to treat. Likewise, with the 

suppression deployment budget set at $500,000  and with a common deployment cost 

of $25,000 per crew applied to all potential base locations, the suppression 

preparedness component of the problem amounts to deciding where to locate 25 crews 

amongst the 100 potential base locations. 

 

In our initial testing the performance of the integrated model was compared to two 

alternate non-integrated approaches. In the first “independent” approach, fuel 

treatment and suppression resource deployment decisions were made in a rational 
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manner but independently from one another. Cells were selected for fuel treatment 

based on largest cell weight values, while suppression resource deployment was 

optimised with no consideration given to fuel treatment. In the second “coordinated” 

approach, cells were selected for fuel treatment based on largest cell weight values. 

Suppression resource deployment was then optimised with the cells selected for fuel 

treatment treated as an input parameter. The “independent”, “coordinated” and 

“integrated” approaches were applied to each of the 20 test landscapes. In addition to 

these three approaches, suppression resource deployment was also optimised with no 

fuel treatment permitted. This provided a baseline measure of the level of coverage the 

25 crews were able to deliver in the absence of fuel treatment. Test results appear 

below in Table 3.2, results are presented in terms of percentage of total cell weights 

covered. 
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Landscape No. No Treatment Independent Coordinated Integrated 

1 51.2% 56.9% 59.5% 67.0% 

2 56.4% 59.7% 63.7% 71.5% 

3 57.6% 61.0% 65.0% 72.5% 

4 54.9% 61.6% 64.1% 70.2% 

5 52.5% 57.9% 61.8% 68.2% 

6 59.8% 61.6% 66.9% 73.5% 

7 56.5% 61.9% 65.7% 71.7% 

8 55.5% 59.2% 65.2% 71.4% 

9 54.8% 60.1% 62.6% 70.7% 

10 55.1% 60.6% 66.0% 70.6% 

11 54.4% 56.2% 63.5% 70.6% 

12 51.9% 53.5% 60.7% 67.0% 

13 53.2% 56.9% 62.2% 69.5% 

14 57.1% 60.8% 64.0% 72.0% 

15 59.3% 64.8% 69.1% 76.4% 

16 54.8% 61.8% 64.1% 71.2% 

17 53.6% 53.6% 65.7% 69.5% 

18 60.7% 62.5% 68.4% 75.5% 

19 61.1% 63.0% 67.9% 75.7% 

20 57.1% 58.9% 64.0% 72.8% 

Average 55.9% 59.6% 64.5% 71.4% 

Table 3.2: Test results – performance of integrated model vs. non-integrated approaches in 

terms of percentage of total cell weights covered 

 

As mentioned previously, the “no treatment” results provide a baseline measure of the 

level of coverage available in the absence of fuel treatment. In the “independent”, 
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“coordinated” and “integrated” approaches fuel treatment was applied to ten of the 

100 cells or 10% of the landscape. Since fuel treatment has a complementary effect on 

initial attack effectiveness, it is not surprising that the “independent”, “coordinated” 

and “integrated” approaches provided a higher level of coverage than the “no 

treatment” baseline. 

 

The same amount of fuel treatment and deployment resources were available in the 

“independent” and “coordinated” approaches and the same method was used to select 

fuel treatment locations. However in the “coordinated” approach, suppression 

resource deployment optimisation incorporated previously selected fuel treatment 

locations, this resulted in the “coordinated” approach outperforming the 

“independent” approach by 8.2% on average. The “integrated” approach also had the 

same amount of fuel treatment and deployment resources available as both the 

“independent” and “coordinated” approaches. However the “integrated” model’s 

ability to make fuel treatment and suppression resource deployment decisions 

simultaneously to maximise initial attack effectiveness led to it on average 

outperforming the “coordinated” approach by 10.7% and the “independent” approach 

by 19.7%.  While numerical results will dependent on landscape configurations and on 

the costs and effects of fuel treatment and suppression deployment actions as specified 

by model parameters, in general the “integrated” model will always provide a level of 

coverage greater than or equal to the “independent” and “coordinated” approaches. 
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This is because in the “integrated” approach we are simultaneously optimising two 

related sets of decisions as compared to the “coordinated” approach where these 

decisions are made sequentially, and the “independent” approach where these are 

made independently. An illustrative example was selected from amongst the twenty 

test cases to demonstrate how the “integrated” model outperforms the “coordinated” 

approach. 
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Figure 3.1: Cells selected for fuel treatment (test landscape 3)  
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In the test instance in Figure 3.1 it is can be seen that two of the cells selected for 

treatment are common for both modelling approaches while the other eight cells 

selected differ. The cells selected for fuel treatment using the “coordinated” approach 

have higher cell weight values than those selected using the “integrated” approach. 

Despite this, as seen in Figure 3.2 below, the combination of treatment and deployment 

decisions employed by the “integrated” model provided a higher level of coverage 

than the sequential approach. In this test case the use of the “integrated” model 

resulted in an additional two cells receiving coverage and an 11.5% higher objective 

value than the “coordinated” approach. 
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Figure 3.2 : Deployment locations and cells covered (test landscape 3)  
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Our next set of testing demonstrates how the integrated model can be used to allow 

decision makers to explore optimal expenditure levels for fuel treatment and 

suppression deployment programs. With this in mind, the integrated model was run 

with three different levels of budget flexibility. In the “fixed” budget case there was a 

fuel treatment budget of $100,000 and a suppression deployment budget of $500,000 as 

per the previous round of testing reported in Table 3.2. In the “discretionary” budget 

case there was a fixed fuel treatment budget of $50,000, a suppression deployment 

budget of $450,000 and a discretionary budget of $100,000 that could spent on either 

suppression deployment or fuel treatment. In the “pooled” case there was a total 

budget of $600,000 that could be spent on suppression deployment or fuel treatment 

with no restrictions. We tested these varying degrees of budget flexibility using the 

same 20 test landscapes employed in the previous round of testing. Other than the 

budget differences described above all other parameter values were as per Table 3.1. 

Test results appear below in Table 3.3, results are presented in terms of percentage of 

total cell weights covered and proportion of the budget spent on fuel treatment.  
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Landscape 

No. 

Fixed Discretionary Pooled 

Coverage Proportion 

spent on fuel 

treatment 

Coverage Proportion 

spent on fuel 

treatment 

Coverage Proportion 

spent on fuel 

treatment 

1 67.0% 16.7% 68.0% 25.0% 70.15% 60.0% 

2 71.5% 16.7% 74.2% 23.3% 78.77% 46.7% 

3 72.5% 16.7% 73.6% 23.3% 75.53% 40.0% 

4 70.2% 16.7% 71.9% 23.3% 74.67% 46.7% 

5 68.2% 16.7% 69.6% 23.3% 73.36% 60.0% 

6 73.5% 16.7% 75.1% 23.3% 75.90% 40.0% 

7 71.7% 16.7% 72.1% 23.3% 74.15% 53.3% 

8 71.4% 16.7% 73.0% 23.3% 74.25% 53.3% 

9 70.7% 16.7% 71.5% 25.0% 75.00% 56.7% 

10 70.6% 16.7% 72.4% 23.3% 73.24% 46.7% 

11 70.6% 16.7% 71.8% 23.3% 73.77% 40.0% 

12 67.0% 16.7% 69.6% 23.3% 73.52% 56.7% 

13 69.5% 16.7% 72.0% 23.3% 74.23% 36.7% 

14 72.0% 16.7% 73.2% 23.3% 74.59% 50.0% 

15 76.4% 16.7% 78.0% 23.3% 80.89% 56.7% 

16 71.2% 16.7% 72.7% 23.3% 75.05% 40.0% 

17 69.5% 16.7% 71.5% 23.3% 75.97% 60.0% 

18 75.5% 16.7% 76.2% 23.3% 77.78% 40.0% 

19 75.7% 16.7% 77.0% 23.3% 78.72% 43.3% 

20 72.8% 16.7% 74.4% 23.3% 78.35% 53.3% 

Average 71.4% 16.7% 72.9% 23.5% 75.4% 49.0% 

 

Table 3.3: Test results – integrated model performance with varying amounts of budget 

flexibility in terms of percentage of total cell weights covered and proportion of the budget 

spent on fuel treatment 

 

Unsurprisingly as the level of budget flexibility increased so did the level of coverage 

achieved, with the least constrained “pooled” budget case on average outperforming 
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the “fixed” budget case by 5.7% and the “discretionary” budget case by 3.5%. Similarly 

the “discretionary” budget case outperformed the “fixed” budget case by 2.1% on 

average.   In the “pooled” budget case the lowest proportion spent on fuel treatment 

was 36.7% or $220,000, this means there would be 22 cells treated and 19 crews 

deployed. While the highest proportion spent on fuel treatment was 60% or $360,000 

equating be 36 cells treated and only 12 crews deployed.  The level of fuel treatment 

expenditure observed in the “pooled” budget case suggests that in the “discretionary” 

case the maximum allowable 25% of expenditure would be allocated to fuel treatment. 

However, interestingly this only occurs in two of the 20 test instances. In the other18 

instances $90,000 of the discretionary budget is spent on fuel treatment and the 

remaining $10,000 is added to the suppression deployment budget. This somewhat 

counter-intuitive result is due to the interactive effect of fuel treatment and 

suppression deployment decisions. Whereby, application of fuel treatment to a single 

additional cell is of no benefit in the absence of sufficient and proximal suppression 

resources. 

 

In general the proportion of the budget spent on fuel treatment versus suppression 

deployment will depend on the relative costs and effects of these fire management 

components as specified by model parameters, as well as the attributes and spatial 

arrangement of the landscape the model is applied to. However the less constrained 

“pooled” budget model will always provide a level of coverage greater than or equal 
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to the “discretionary” budget model and likewise the “discretionary” budget model 

will always perform as well or better than the more constrained “fixed” budget model.  

 

The integrated model was solved to optimality for test landscapes of various sizes with 

differing levels of fuel treatment on a regular PC (Intel 2Duo 3.6 GHz processor and 

3.49 GB RAM) using CPLEX 12.2 OPL-IDE with standard settings. Computation times 

are reported below in Table 3.4. 

 

Landscape 
 Percentage of landscape treated 

 2% 5% 10% 

100 cells (10 by 10) 

25 crews deployed 
computing time (s) 31 56 71 

144 cells (12 by 12) 

36 crews deployed 
computing time (s) 126 242 430 

196 cells (14 by 14) 

49 crews deployed 
computing time (s) 519 1099 >3000 

Table 3.4: Computational test results 
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3.4    Summary and discussion 

 

In this chapter we have presented the first optimisation model that incorporates both 

fuel treatment and suppression preparedness planning decisions. In the preceding 

section we demonstrated the use of this model on a set of hypothetical landscapes. 

While further testing is required on more realistic landscapes, the initial test results 

suggest that an integrated approach to fuel management and suppression 

preparedness planning can lead to improved initial attack coverage outcomes. Given 

the link between fuel treatment, fire behaviour and resultant suppression effort 

required, it makes sense intuitively that a modelling approach that captures this 

interrelation would outperform approaches that treat these elements in isolation from 

one another. We have also demonstrated how an integrated model can be used by 

decision makers to explore optimal expenditure levels in fuel treatment and 

suppression deployment programs. 

 

Implementation of the model on real landscapes will require model parameterisation. 

The model has been designed to incorporate inputs that are currently available to 

Australian fire and land management agencies from a range of sources including 

geospatial databases, fire behavior models and meteorological data. Good estimates 

are generally available for fuel treatment and suppression deployment costs. Location-

specific fire escape times can be readily estimated for target fire weather conditions 
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using fire spread models and geospatial fuel data. Similarly, response times can be 

generated by combining geospatial travel time data with mobilisation and line-

construction time estimates based on historic data. Escape and response time estimates 

can then be used to calculate potential base locations capable of covering a locality. 

Suppression resources required will be more difficult to estimate and will likely 

require the development of rules-of-thumb based on expert judgment elicitation. 

While designation of cell weights could be aided by fire simulation modelling and 

analysis of spatially explicit historic ignition and values-at-risk data.  

 

In this chapter, the integrated model has been presented in a very simple and general 

form. However the model could be readily adapted without significantly altering its 

structure to consider several different suppression resource types with varying costs, 

travel speeds and levels of suppression effectiveness. Similarly, a number of different 

fuel treatment types with varying costs and levels of effectiveness could be included. 

There are a number of ways the model could be extended to cater for special features 

arising in specific implementation instances, a few of these possible extensions are 

discussed briefly here. With the exception of the multi-year formulation, all the model 

extensions discussed below have the same fundamental mathematical structure as the 

general integrated model.  
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In some implementation instances congestion may be identified as an issue. That is, the 

occurrence of concurrent fires in cells that are covered by a single base. To allow for 

congestion a probabilistic reliability level formulation could be employed (Marianov & 

ReVelle, 1992). In such an approach, a "busy fraction" is estimated for each suppression 

resource and then used to determine the number of resources required at a base to 

cover demand points with a given reliability level ( ). These calculations are done 

exogenously with the resultant parameter values then incorporated into an adapted 

model that maximises the level of " -reliable" coverage.  

 

In addition to fire occurrence, other model elements that could be treated as stochastic 

variables include location specific fire escape times and suppression resources needed 

to contain a fire. Both of these elements will be dependent on fire-weather conditions. 

That is, as conditions become increasingly hot, dry and windy, fire escape time will 

tend to decrease and suppression resources required will tend to increase. Where 

decision makers are interested in system performance across a range of defined fire-

weather scenarios, the problem could be formulated as a two-stage stochastic 

programming model with recourse. In such an approach, integrated fuel treatment and 

suppression resource deployment decisions would be made in the first stage taking 

into account the full range of defined fire-weather scenarios, with the opportunity for 

adjustments to deployment of suppression resources in the second stage based on 

observed fire-weather outcomes.  
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A multi-year model formulation could be developed for instances where decision 

makers wish to consider longer time horizons. Such a model would need to track 

“time since fire” on a cell-by-cell basis so as to incorporate “diminishing returns” on 

fuel treatment effect over time due to vegetation regrowth.  A multi-year model would 

lend itself to consideration of ecological considerations such as restrictions on burn 

frequency and desired spatio-temporal post fire seral stage landscape composition.  
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4. A spatial optimisation model for multi-period 

landscape level fuel management to mitigate 

wildfire impacts 

4.1    Introduction 

Fire is a natural component of many terrestrial ecosystems. However, uncontrolled 

wildfires can cause loss of human life and destruction of property and natural 

resources (King, et al., 2008). This is of special concern in localities such as southern 

Australia, California and Mediterranean Europe where major cities are situated in 

close proximity to highly flammable vegetation (Bradstock et al., 2012). Wildfire 

incidence requires the co-occurrence in time and space of three factors: fire-conducive 

weather, an ignition source and fuel (i.e. flammable vegetation) (Parisien, Junor, & 

Kafka, 2007).  In recent decades an increase in wildfire extent and severity has been 

observed in many countries including the USA, Canada, Australia and southern 

Europe (Boer, Sadler, Wittkuhn, McCaw, & Grierson, 2009; McCaw, 2013).  This is due 

in part to uncharacteristically high fuel loads arising from suppression focused 20th 

century fire management practices (Loehle, 2004; Reinhardt, Keane, Calkin, & Cohen, 

2008; Schmidt, et al., 2008; Hessburg, Reynolds, Keane, James, & Salter, 2007).    
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In an attempt to reduce the risk posed by wildfires, land management agencies in 

Australia and the USA have implemented extensive fuel management programs (Ager, 

Vaillant, & Finney, 2010; Boer, et al., 2009; Collins, Stephens, Moghaddas, & Battles, 

2010; McCaw, 2012). Fuel management is defined as the process of altering the amount 

and structure of forest fuels through the application of treatments such as prescribed 

fire and mechanical thinning (Finney, 2001; King, et al., 2008). Fuel management 

programs typically aim to reduce risk in two ways: (1) by forming fuel-breaks adjacent 

to communities to facilitate the establishment of fire-lines by suppression forces such 

as fire crews or air tankers, or (2) by altering fuels in the surrounding landscape to 

modify fire behaviour and lessen the potential for severe fires (Bevers, Omi, & Hof, 

2004; Kim, Bettinger, & Finney, 2009). Large destructive wildfires typically occur in 

hot, dry and windy weather conditions and tend to be resistant to suppression efforts 

due to their rapid growth, sheer size, and crown fire and spotting behaviours. Under 

such conditions a program of the second type that manages fuel in the wider 

landscape is thought to offer the best possible means for resisting fire growth (Finney, 

2007; Reinhardt, et al., 2008).  

 

Large wildfires cover an area greater than a treated forest stand, meaning a single 

large fire could encounter several fuel treatments before extinguishment. Hence, a 

landscape-level fuel management strategy that considers the layout of all fuel 

treatments in relation to one another is likely to be more effective than a ‘greedy’ 
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selection of treatment locations (Rytwinski & Crowe, 2010). The potential benefits of 

landscape-level fuel treatment has been recognised in wilderness areas of the western 

United States where free-burning fires have generated mosaics of differing fuel ages 

and this pattern of historic burns has been seen to delay and detour large fires in 

subsequent years (Finney, 2007). This type of landscape-level effect was observed in a 

study of two large Arizona wildfires, where the fires circumvented treated areas 

resulting in fire-shadows on the lee-side of fuel treatments and an overall reduction in 

fire severity (Finney, McHugh, & Grenfell, 2005). In the eucalypt forests of south-

western Australia prescribed burning has been practised at large spatial scales over the 

past five decades. Analysis of historic data in this region has revealed that the 

connectedness of ‘old’ untreated fuel patches is the strongest contributing variable to 

wildfire extent,  highlighting the need to consider spatial arrangement of fuels when 

planning fuel treatment regimes (Boer, et al., 2009). This finding is consistent with 

observations made in the USA’s Sierra Nevada forests that indicate spatial 

fragmentation of fuels can modify wildfire size and behavior (van Wagtendonk 1995, 

Parsons and van Wagtendonk 1996). 

 

Despite this small but growing body of field evidence, current understanding of fire 

behaviour responses to landscape-level fuel treatment is largely based upon 

simulation studies. Probabilistic models based on percolation theory and cellular 

automata have demonstrated the importance of fuel connectivity for landscape-level 

fire spread dynamics (Miller & Urban, 2000), with fragmentation of the fuel complex 
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by treatment resulting in a reduction in average fire size (Loehle, 2004). Simulation 

studies indicate that fire spread is affected by the amount of fuel treatments as a 

proportion of the landscape and their spatial configuration (Gonzalez, Palahi, & 

Pukkala, 2005; Parisien, et al., 2007; Schmidt, et al., 2008; King, et al., 2008). Nonlinear 

relationships have been identified between area treated and fire behaviour outputs 

(Ager, et al., 2010), including ‘threshold’ effects where if fuel treatment exceeds some 

critical level a marked reduction in fire propagation is realised (King, et al., 2008). 

Geometrically derived fuel treatment patterns have been shown to reduce fire spread 

rate and fire-line intensity (Finney, 2001). However, real-life application of such 

patterns is complicated by the heterogeneity of landscapes with respect to fuels, 

weather and topography (Finney, 2007).   

 

While findings from empirical and simulation studies can inform strategies for spatial 

fuel treatment configurations, in practice the performance of such strategies can be 

significantly degraded by operational constraints that restrict treatment extent and 

location (Ager, et al., 2010). These restrictions arise due to factors such as: land 

ownership, funding limitations, inadequate road access, habitat preservation 

regulations and prescribed burning weather requirements (M. A. Finney, 2001; 

Fernandes & Botelho, 2003; Collins, et al., 2010; McCaw, 2013). Such constraints make 

fuel management a problem amenable to optimisation (Finney, 2007) and accordingly 

a number of models for spatial allocation of treatment effort have been proposed. Hof, 

et al. (2000) formulated a linear programming model to delay a defined target fire’s 
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spread to nominated “protection areas”. Finney (2007) developed an iterative 

procedure incorporating the minimum travel time algorithm for locating fuel 

treatments in major fire flow paths. Palma, Cui, Martell, Robak, & Weintraub (2007) 

proposed a heuristic approach using shortest path methods to select individual harvest 

blocks to disrupt critical paths between potential ignition points and values at risk. 

Wei, et al. (2008) formulated a mixed integer programming model for locating fuel 

treatments that reduce fire intensity so as to minimise the expected loss incurred on a 

flammable landscape. Rytwinski & Crowe (2010) used an iterative procedure that 

paired a fire spread simulator with a metaheuristic scatter-search algorithm to select 

fuel break location. Wei (2012) developed a mixed integer programming model to 

locate fuel treatments to set up potential control locations for future fires.  

 

A limitation of the models described above is that they handle spatial allocation of fuel 

treatments as a single period problem. However, in practice treatment effects are 

transient because most vegetation eventually recovers and begins to re-grow after it 

has been treated. This means that the generation and maintenance of desirable 

landscape-level fuel configurations requires a multi-period schedule that takes 

longevity of individual treatments into account ( Finney, 2001; Reinhardt, et al., 2008). 

Spatially explicit multi-period fuel treatment scheduling is a complicated problem and 

most of the modelling efforts to date have either employed heuristic approaches or 

considered very small landscapes. Gonzalez, et al. (2005) used a heuristic procedure to 

schedule harvesting activities to optimise a number of landscape metrics and 
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combinations thereof. Konoshima, et al. (2008 & 2010) formulated a stochastic dynamic 

programming model to explore optimal fuel treatment and timber harvesting spatial 

patterns across a small hypothetical landscape. Kim et al. (2009) explored the use of a 

heuristic for multi-period scheduling of fuel management activities across a large 

landscape in north-eastern Oregon. Their model was used to generate both dispersed 

and clustered fuel treatment patterns in an attempt to mitigate the effects of wildfires 

whilst maintaining evenly distributed annual harvest volumes. A follow-up paper 

examined the effects of these spatial fuel treatment patterns on simulated, human-

caused fires in the same study area in north-eastern Oregon (Kim and Bettinger 2008). 

González-Olabarria & Pukkala (2011) developed an iterative procedure that used a 

simulated annealing algorithm and a fire spread simulator to generate fuel treatment 

schedules with a view to stabilising fire risk over time. Longer term fuel management 

planning often involves the consideration of a number of ecological considerations  

(Ager, et al., 2010), these can include burn frequency constraints based on vital 

attributes of ecosystems and species and requirements to maintain post-fire seral stage 

heterogeneity to support biodiversity (Burrows, 2008).  Calkin, et al. (2005) used a 

simulated annealing algorithm to solve a goal programming model for reducing 

wildfire threat while maintaining late seral forest for faunal habitat. Lehmkuhl, et al. 

(2007) used fire spread models and an evolutionary algorithm to simultaneously 

minimise potential fire behaviour and loss of faunal habitat. 
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In this chapter we present a spatially explicit mixed integer programming model for 

fuel treatment scheduling. The model accounts for the transient nature of fuel by 

keeping track of the age of the age of both treated and untreated patches of fuel or 

vegetation. It is, we believe, the first multi-period landscape-level fuel treatment model 

to be formulated and solved using exact optimisation methods. The model provides a 

flexible framework that allows for incorporation of landscape heterogeneity, as well as 

a range of ecological and operational constraints.  

 

The integrated model presented in Chapter 3 considered the complementary effect of 

fuel management on the effectiveness of initial attack activities undertaken by 

suppression resources. As such, the model’s focus was short-term fuel management in 

the wildland-urban interface. In contrast, the focus of the model presented in this 

chapter is longer term fuel treatment scheduling so as to modify fuel structure in the 

wider landscape with a view to mitigating large fire behavior.  The remainder of the 

chapter is structured as follows. The mathematical formulation of the model is 

presented and explained. The model’s functionality is then demonstrated on a series of 

hypothetical test landscapes. This is followed by some computational testing and 

discussion of implementation issues. 
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4.2    Model formulation 

 

Our formulation of a mixed integer programming model for multi-year landscape 

level fuel treatment planning appears below. We consider a landscape divided into a 

number of cells representing candidate locations for fuel treatment. . In Section 4.5 the 

model is implemented on a series of landscapes composed of regular grid cells. 

However, cells need not be uniform in shape or size and in practice this partitioning 

would be done based on what constitutes suitable management units for the specific 

landscape in question. In practical implementations these cells are likely to be irregular 

polygons of various sizes. The key decision to be made is - which cells should be 

treated in each time period (i.e. each year). In order to account for the transience of fuel 

treatment effect, fuel age (years) or time since treatment is tracked. Each cell’s fuel age 

is a discrete-time step function, where at annual intervals a cell’s fuel age increases by 

one year if untreated and resets to zero if treated. It is assumed that fuel treatment has 

an inhibitory effect that lasts for a defined period of time. A cell is classified as an ‘old 

fuel cell’ if its fuel age exceeds this inhibition period (Boer, et al., 2009). Since the 

spatial nature of fire origin is difficult to predict and as fire behaviour is complex we 

have not tried to explicitly capture fire dynamics within our model. Instead we have 

chosen to focus our efforts on generating desirable spatial fuel patterns (Hof & Omi, 

2003). Our model therefore schedules fuel treatments so as to reduce the connectivity 

of ‘old fuel cells’ in the belief that fragmentation of the landscape fuel complex will 

inhibit fire spread. The model is formulated with the following notation.  
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4.2.1 Sets 

 

I   is the set of all cells in the landscape; 

 I   is the set of cells where fuel treatment is not permitted; 

 I   is the set of cells where fuel treatment is permitted (where )  I ; 

 i I    is the set of cells connected to cell i; 

T  is the number of time periods in the planning horizon; 

 

 

4.2.2 Parameters 

 

ia  =   initial fuel age of cell i; 

tb  =  fuel treatment budget for time period t; 

tic  =  cost of treating cell i in time period t; 

tiu  =   fuel age upper bound of cell i at time period t (where tau iti  ); 

io  =  fuel age threshold for ‘old fuel cell’ classification of cell i; 
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4.2.3 Variables 

tiX  =  1 if cell i is treated in time period t,  

0 otherwise; 

tiA  =  fuel age of cell i in time period t; 

tiO  =  1 if cell i is classified as an ‘old fuel cell’ in time period t, 0 otherwise; 

tijQ  =  1 if cell i and connected cell j are both classified as ‘old fuel cells’ in 

time period t, 

 0 otherwise; 

 

 

4.2.4 Model 

Minimise *z  =  
  

T

t Ii j

tij

i

Q
1

  (4.1) 

 

Subject to: 

t

i

titi bXc  


 Tt ....1    (4.2) 

iti aA       0t   Ii   (4.3) 

1)1(   itti AA  Tt ....1   i    (4.4) 
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titiitti XuAA   1)1(  Tt ....1  i  (4.5) 

itititi oOuA  *     Tt ....1   Ii  (4.6) 

1 tijtjti QOO  Tt ....1   Ii   ij   (4.7) 

   0,1 ti X  Tt ....1   Ii  (4.8) 

   0,1 ti O  Tt ....1   Ii  (4.9) 

   0,1tijQ  Tt ....1   Ii   ij   (4.10) 

0 tiA  Tt ....1   Ii  (4.11) 
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The objective function (4.1) minimises the number of ‘connected old fuel cells’ across 

all time periods. A set of connected cells is defined for each cell in the landscape. In the 

simplest case each set would be composed of all immediately adjacent cells. An 

alternative case is where these sets are constructed to take into account heterogeneous 

landscape features such as the prevailing wind direction associated with severe 

burning conditions. In addition to prevailing wind direction, other considerations in 

defining connectivity sets in practical implementations may include topographic 

features and anticipation of spotting behaviour. If a cell contains a fuel type conducive 

to spotting, it may be considered functionally connected to other cells with which it 

does not share a common boundary. At any rate, the specification of connectivity sets 

on a cell-by-cell basis provides a flexible means for these various locality specific 

connectivity requirements to be included in the model as required. 

 

Constraint (4.2) imposes a fuel treatment budget for each time period. The model 

allows fuel treatment costs to vary on a cell-by-cell basis. In practice this cost 

variability could be due to a range of factors such as site accessibility, fuel type and 

proximity to the wildland urban interface. 

 

Constraints (4.3) – (4.5) track the fuel age of each cell. Constraint (4.3) initialises each 

cell’s fuel age. Constraint (4.4) applies to the set of cells where fuel treatment is not 

permitted and ensures that the fuel age of these cells increments by one each year. This 
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treatment restriction could apply for a range of reasons for example: the land may be 

privately owned by individuals that do not wish their land to be treated or proximity 

to an airport or busy highway may preclude prescribed burning due to smoke hazard. 

It should be noted that these cells can still be classified as ‘old fuel cells’ and as such 

can contribute to the connectivity of the fuel complex. Constraint (4.5) applies to the 

set of cells where fuel treatment is permitted. Here the choice between treating and not 

treating a cell in a given time period and the resultant fuel age is modelled as a 

disjunctive constraint (Hooker 2009). In the absence of fuel treatment this constraint 

ensures that a cell’s fuel age increments by one. The fuel age upper bound (
tiu ) acts as 

a Big-M and has a sufficiently large value so that when a cell is treated the disjunct is 

not constraining and consequently the cell’s fuel age resets to zero. A fuel age upper 

bound (
tiu ), calculated for each cell i at each time period t, is used rather than an 

arbitrarily large Big-M in the interests of formulation strength and pursuant solvability 

(Williams 2013). 

 

Constraint (4.6) uses a binary indicator variable ( tiO ) to classify a cell as an ‘old fuel 

cell’ if its fuel age exceeds a threshold value based on the fuel treatment inhibition 

period (Williams 2013). The model allows this threshold to vary on a cell-by-cell basis 

to take into account, different fuel types. Fuel types with a shorter inhibition period 

will regain their fuel load more quickly.  
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When two connected cells i and j are both are classified as ‘old fuel cells’ we can 

express this as the product of two binary variables (i.e. tjti OO * ). In constraint (4.7) we 

replace this product with a new binary variable ( tijQ ) that takes the value one when a 

connected pair of cells i and j are both classified as ‘old fuel cells’ in time period t 

(Williams 2009). As mentioned earlier, the specification of a connectivity set on a cell-

by-cell basis allows for directional connectivity to be included in the model as 

required. 

 

Constraints (4.8), (4.9) and (4.10) restrict ‘fuel treatment’, ‘old fuel cell’ and ‘connected 

old fuel cell’ variables to binary values. Constraint (4.11) restricts ‘fuel age’ to positive 

values. 
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4.3    Ecological model extensions 

 

In the preceding section the model was presented in its basic form. This formulation 

can however be extended to include a number of ecological considerations. One such 

consideration is treatment frequency or tolerable fire interval (TFI) (Burrows, 2008; 

Cheal, 2010). Minimum and maximum TFIs are assigned to treatment units according 

to ecological vegetation classes. The minimum TFI refers to the minimum time 

required between successive fire events at a site and is often based upon the juvenile 

period(s) of sensitive species in the vegetation class. While the maximum TFI is the 

maximum time required between fire events and takes into account the requisite fire 

interval for rejuvenation of fire adapted species. Tolerable fire interval restrictions can 

be incorporated into the model with the following constraints. 

 

tiiti XrA               Tt ....1   Ii  (4.12) 

titiiti XusA   Tt ....1   Ii  (4.13) 

Constraint (4.12) precludes a cell from being treated if its fuel age is less than the 

minimum TFI ( ir ). Constraint (4.13) ensures that all cells are treated before their fuel 

age exceeds the maximum TFI ( is ). Both minimum TFI and maximum TFI are 

specified on a cell specific basis, thus allowing the modelling of landscapes with 

multiple vegetation classes or even site specific TFI requirements. 
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Another ecological consideration is the desire to maintain the correct proportion of 

vegetation in different stages of maturity so as to support biodiversity (Burrows 2008, 

Cheal 2010). Distinct ‘habitat growth’ or ‘seral’ stages are identified for each ecological 

vegetation class based on fuel age. Cells can be classified into ecological vegetation 

classes in the following manner. A set ( ) of all ecological vegetation classes (k) is 

specified, with any cell i permitted to be a member of strictly one vegetation class (i.e. 

ki   for some k). Constraints (4.14) – (4.21) classify individual cells into one of three 

seral stages based on fuel age using binary indicator variables and thresholds 

(Williams 2013). In this case three indicator variables are required, one for each seral 

stage: ‘early’ ( tiE ), ‘mid’ ( tiF ) and ‘late’ ( tiG ). With seral stage classification based on 

two thresholds, one used to indicate the upper limit of the ‘early’ ( ie ) stage and one 

used to indicate the upper limit of the ‘mid’ ( if ) stage.  

 

ktikti eEeA  *  Tt ....1   ki   k  (4.14) 

1)(*  ktitititi eGFuA  Tt ....1   ki   k  (4.15) 

ktitikti fFEfA  )(*  Tt ....1   ki   k  (4.16) 

1)(*  ktititi fGuA  Tt ....1   ki   k  (4.17) 

1 tititi GFE  Tt ....1   Ii  (4.18) 
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 0,1tiE  Tt ....1   Ii  (4.19) 

 0,1tiF  Tt ....1   Ii  (4.20) 

 0,1tiG  Tt ....1   Ii  (4.21) 

 

The following numerical example illustrates how these constraints function. Consider 

a set of cells belonging to an ecological vegetation class that has an ‘early’ seral stage 

threshold of five years and a ‘mid’ seral stage threshold of ten years. In this case, cells 

with a fuel age between zero and five years will be classified as ‘early’ seral stage, cells 

with a fuel age between six and ten years will be classified as ‘mid’ seral stage, and 

cells with a fuel age of eleven years or greater will be classified as ‘late’ seral stage. 

While three ‘seral stages’ have been defined here, the same approach can be used to 

formulate constraints to define any number of ‘seral stage’ categories. 

 

With a mechanism for classifying individual cells into seral stages we can now 

formulate constraints to maintain a desired proportion of the landscape in any of the 

various seral stages.  

 





kk i

ik

i

iti zpzG **  Tt ....1  k  (4.22) 
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Constraint (4.22) ensures that for a given ecological vegetation class (k) the summation 

of the area of each cell ( iz ) of ‘late seral stage’ classification ( tiG ) is greater than some 

target proportion ( kp ).  

 

In some instances it may be preferable to formulate desired ‘seral stage’ proportions as 

goal constraints.  If, for example initial landscape conditions are such that ‘late seral 

stage’ vegetation is well below the desired proportion. In this case, a hard ‘late seral 

stage’ constraint could not be satisfied and would result in infeasibility. A goal 

constraint, on the other hand, would guide subsequent treatment decisions and over 

time redress this shortage of ‘late seral stage’ vegetation. 

 





kk i

ikt

i

iti zpDzG **  Tt ....1  k   (4.23) 

 

In constraint (4.23) the ‘late seral stage’ proportion requirement has been reformulated 

as a goal constraint with the inclusion of a deficit variable ( tD ). A penalty function 

composed of the weighted sum of this deficit variable over all time periods would then 

be added to the objective function (Tamiz et al. 1998).  
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4.4    Other model extensions 

In addition to the ecological considerations discussed in the preceding section, there 

are a number of other straightforward extensions to the basic formulation that can 

augment the model’s flexibility and usefulness. One such extension relates to the 

concept of leverage, which is the idea that a single hectare of fuel treatment can protect 

additional hectares of land. In heterogeneous landscapes fire may spread farther than 

usual due to spotting in locations with topographic features such as ridge lines or 

canyons, or those with fuel types with loose, combustible bark. These locations can be 

described as high leverage points and there is likely to be a benefit in focusing fuel 

treatment here (Loehle, 2004). Leverage can be incorporated into the model 

formulation through the application of a weight iw  to each cell based on relative 

leverage values. 

 

Minimise z  =  
  

T

t Ii j

tiji

i

Qw
1

*  (4.24) 

 

The objective function (4.24) has been reformulated so that it now minimises the 

weighted number of ‘connected old fuel cells’ across all time periods. This will result 

in high leverage cells being prioritised for treatment. 
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It is possible to partition a landscape into a number of zones with differing treatment 

emphases. In wildland urban interface areas the priority may be reduction and 

fragmentation of the fuel complex for asset protection purposes and as such ecological 

constraints may be relaxed. While in wilderness areas the primary concern may be 

satisfaction of ecological constraints and it may be appropriate for these cells in these 

zones to be given a lower weighting or excluded from the objective function. This 

partitioning into zones is done by defining a number of disjoint sets such that each cell 

is an element of one such set. 

0

titii AXr  Tt ....1   i  (4.25) 

0

titii AXr  Tt ....1   i  (4.26) 

 

In constraints (4.25) & (4.26) the minimum TFI constraint has been split so that there 

are different TFI requirements for the urban interface zone, denoted by , and the 

wilderness zone, denoted by . 

 

There can be significant benefits in incorporating non-flammable features such as lakes 

into landscape-level patterns (Parisien et al. 2007). This can be done by considering 

these features as cells and ascribing them an ‘old fuel cell’ threshold ik  greater than 

the maximum possible fuel age upper bound.  
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4.5    Model demonstration 

4.5.1 Homogenous landscape 

In order to demonstrate its functionality we applied the model to a number of 

hypothetical landscapes with different attributes. We first consider a homogenous 100 

cell landscape. The landscape is composed of a single fuel type with an ‘old fuel cell’ 

classification threshold of four years. The initial fuel age of all cells is greater than this 

threshold, meaning all 100 cells are classified as ‘old’. For every cell the ‘set of 

connected cells’ is defined as the neighbourhood of immediately adjacent cells. For 

simplicity the treatment cost is set at a constant value of one unit per cell across the 

entire landscape and the annual treatment budget is set at fifteen units. No treatment 

restrictions or ecological constraints are imposed. As can be seen in Figure 4.3 below, 

after five years 75 cells have been treated and the landscape has been completely 

fragmented with all old fuel cells disconnected. In the sixth year, the cells treated in the 

first year have exceeded the treatment inhibition period and they are reselected for 

treatment. Similarly the cells treated in the second year are retreated in the seventh 

year and so forth. It is apparent that in this homogenous landscape with no ecological 

constraints or treatment restrictions, the optimal solution amounts to the creation of an 

initial pattern and then the maintenance of this pattern through a recurring treatment 

cycle. Indeed, this generation of a stationary pattern that is maintained by a recurring 

cycle is a general result that would apply to homogenous landscapes of any size. 
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Figure 4.3: Fuel treatment schedule for a homogenous landscape with no ecological constraints 
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4.5.2 Heterogeneous landscape 

In practice most landscapes will have some degree of heterogeneity. To demonstrate 

how the model handles this, we introduce a second fuel type with an ‘old fuel cell’ 

classification threshold of five years. One of the two fuel types is randomly assigned to 

each cell in our next landscape. We also introduce a maximum tolerable fire interval 

(TFI) constraint, the maximum TFI for the first fuel type is seven years and for second 

fuel type is nine years. The initial fuel age of each cell is a randomly assigned value 

between two and six, meaning at time period zero not all cells are classified as ‘old’. 

The treatment costs, annual budget and ‘set of connected cells’ definition remain the 

same as in the previous example. With the homogenous landscape we were able to 

generate and then maintain a static landscape pattern by treating cells in a five year 

cycle. However when we consider more complex heterogeneous landscapes instead of 

a static pattern we tend to see a dynamic mosaic, this is illustrated in Figure 4.4 below. 

Indeed it appears that as the landscapes under consideration become increasingly 

complicated, determining optimal treatment schedules becomes less intuitive and a 

model like ours starts to prove its worth. 
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Figure 4.4 : Fuel treatment schedule for a heterogeneous landscape with ecological constraints 
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4.5.3 Heterogeneous landscape with different land use zones 

In the next example we take the initial heterogeneous landscape from the previous 

example and partition it into two zones. The bottom half of the landscape is designated 

an urban interface zone and the maximum TFI constraint is specified such that it does 

not apply here. The top half of the landscape is designated a wilderness zone and the 

objective function is formulated to exclude cells from this zone. All other parameters 

remain the same as in the previous example. As can be seen in Figure 4.5, from the 

third year onward the lower half of the landscape is completely fragmented with all 

old fuel cells disconnected. While in the upper half of the landscape treatment is only 

undertaken when required to satisfy the maximum TFI constraint. This example 

provides an illustration of how the model might be used to manage a single budget to 

simultaneously achieve various management aims that vary spatially across a 

landscape. 
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Figure 4.5:  Fuel treatment schedule for a heterogeneous landscape with ecological constraints 

and different land use zones 
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4.5.4 Computational Testing 

 

Some computational testing was undertaken on a series of randomly generated test 

landscapes with a couple of aims in mind. The first of these aims being, to provide 

some indication of the size of problems that the model can solve. The second aim 

being, to gain some insight into the ease (or difficulty) of implementing the ecological 

and other model extensions detailed in Sections 4.3 and 4.4. 

 

In our initial testing, the model was implemented in its ‘basic’ form including 

expressions (4.1) – (4.11) from Section 4.2-Model Formulation. The model was run on a 

series of test landscapes of six sizes (25, 100, 225, 400, 900 and 1225 cells). In each 

landscape, cells were randomly assigned to one of three fuel types with differing ‘old 

fuel cell’ classification thresholds of four, eight and twelve years, with the initial fuel 

age of each cell an independent random integer value between one and twelve years. 

Connectivity was defined based on a north-westerly prevailing wind direction, with 

each cell connected to three neighbouring cells. The ‘set of cells where fuel treatment is 

not permitted’ was defined as the ‘the empty set’, meaning no restrictions were placed 

on permissible fuel treatment locations. The budget was adjusted to allow for three 

different annual treatment levels (5%, 10% and 15%) across a ten year time horizon. 

The model was solved for ten instances for each of the six landscape sizes and three 
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treatment levels, meaning there were 180 model runs in this phase of testing. The 

model was implemented in the OPL modelling language and solved with CPLEX 12.5. 

All tests were performed on a Lenovo E530 notebook with a single quad-core Intel i7-

3612QM processor at 2.10GHz and with 16 GB RAM memory. Computation results 

appear below in Table 4.1 these are reported as either solution time to optimality in 

wall-clock time (based on a relative MIP gap tolerance of 0.01%) or optimality gap at 

1800 seconds. 
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Table 4.5: Computational test results – basic model formulation 
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The results in Table 4.1 indicate that as landscape size increases and the percentage of 

landscape treated decreases the model becomes more difficult to solve. For all 

landscapes up to 400 cells in size, solutions within 2% of optimal were obtained within 

1800 seconds. For landscapes larger than 900 cells there were typically sizable 

optimality gaps at 1800 seconds at the 5% treatment level. A small number of these 

larger landscape instances were allotted a longer run time of 6 hours and in all cases 

solutions within 1% of optimal were obtained. In discussions held during model 

development, fire agency personnel indicated that landscapes divided into several 

hundred to a thousand management units were of practical interest. The indicative 

computational testing undertaken here suggests that with modest computing power it 

is possible to model landscapes in this size range.  

 

In our next phase of testing, we wished to consider the ecological and other model 

extensions detailed in Sections 4.3 and 4.4 and their effect on model tractability and 

computation times. Pursuant to this aim, the model was implemented in three 

different configurations.  In the first configuration, the ‘basic’ formulation was 

implemented including expressions (4.1) – (4.11) from Section 4.2-Model Formulation. In 

the second ‘TFI’ configuration, minimum and maximum tolerable fire interval 

constraints were added using expressions (4.12) and (4.13).With minimum (3, 7 and 11 

years) and maximum (18, 22 and 26 years) tolerable fire intervals defined according to 

fuel type. In the third ‘PFSS’ configuration, cells were classified into three post fire 
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seral stages (early, mid and late) using expressions (4.14) – (4.21). With ‘early’ (4, 8 and 

12 years) and ‘mid’ (9, 13 and 17 years) seral stage thresholds defined according to fuel 

type. Expressions (4.23), (4.25) and (4.26) were then used to partition the landscape 

into two zones with differing objectives. In the upper half of each landscape the 

objective was to maintain target ‘mid’ (20%) and ‘late’ (20%) seral stage proportions. 

While in the lower half of each landscape the objective was to minimise the number of 

‘connected old fuel’ with no heed paid to ecological considerations. 

 

 

Table 4.2: Computational comparison by model configuration – 5% treatment level  

 

The three model configurations were implemented at a 5% annual treatment levels on 

the 900 and 1225 cell test landscapes used in the first phase of testing. Computation 

results appear above in Table 4.2, with either solution time to optimality or optimality 
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gap at 1800 seconds reported. The results in Table 4.2 suggest that the additional 

expressions that appear in the ‘TFI’ and ‘PFSS’ configurations have served to further 

constrain these problems and accordingly have led to reduced  solution times when 

compared to the ‘basic’ formulation. 
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4.6    Summary and discussion 

Scheduling fuel treatment activities to maintain the landscape in a fire resistant state is 

a challenging problem with important societal implications. In this chapter we have 

presented a spatially explicit optimisation model for multi-period scheduling of fuel 

treatments. The model tracks treatment decisions and fuel age over time and thus is 

able to capture the transience of treatment effect due to vegetation regrowth. The 

mixed integer programming formulation allows for heterogeneity of landscape 

features such as: fuel type, topography and prevalent wind direction. The model also 

allows for the incorporation of ecological considerations such as: tolerable fire intervals 

and seral stage landscape composition required to support biodiversity. A number of 

mechanisms for adapting the model to specific features of a given implementation 

environment have been presented. These include the use of zones to accommodate 

spatially variable land uses and management aims, as well as the use of weights to 

prioritise treatment of high leverage locations. Some of features of the model were 

demonstrated in the previous section and computational testing suggests that the 

model is able to handle problem sizes of practical interest. 

 

It is important to note that though we have formulated this problem deterministically 

there are in fact a number of stochastic elements, the most important of these being the 

effects of ‘unplanned’ wildfires. Probability of fire ignition and escalation modelling 

based on historic fire data and knowledge of physical fire processes could be used to 
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ascertain localities with a higher likelihood of fire occurrence. While simulation 

models that incorporate both fire spread and fire suppression components could shed 

some light on the potential impacts on human life, property and other values arising 

from fires in various localities in a range of weather conditions. Insights gained from 

probability and simulation modelling could then be used to assist in parameterising 

the optimisation model. For example, spatially-explicit probability of fire occurrence 

and consequence of fire escape could form the basis for partitioning a landscape into 

zones with differing treatment emphases.  

 

While wildfires can have undesirable destructive effects in the immediate term, they 

also result in additional ‘unscheduled’ fuel reduction that can be beneficial in future 

periods. In the advent of a significant wildfire event it would be desirable to take the 

resultant fuel reduction effect into account when scheduling treatments for subsequent 

years.  Indeed, even scheduled fuel treatment is stochastic since more or less than the 

planned amount may be achieved in a given year due to weather and various 

operational issues. Thus in a practical setting, fuel treatment scheduling would be 

treated as a rolling horizon problem with the model re-run annually with updated 

information on the current state of the landscape. More problematic is the effect that 

‘unplanned’ wildfire can have on the proportion of late seral stage vegetation in the 

landscape. Stochastic optimisation methods could be employed here. Though for 

landscapes with a low annual burn fraction, a simpler and more computationally 
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tractable mean-value approach may be sufficient. A straightforward way to implement 

such an approach would be to strengthen the late seral stage constraint by adjusting 

the right hand side based on predicted or historic burn fractions (Savage, Martell, & 

Wotton, 2011). 

 

It has been noted that scientists and managers often overlook the need to translate 

complex science into practical fire management prescriptions and that this can result in 

a gap between the state of knowledge and current management practices (Burrows, 

2008). In this research we have applied integer programming methods to the 

combinatorially complex problem of fuel treatment scheduling. Our hope is that the 

modelling approach developed here can assist in closing this knowledge-practice gap.  
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5. An integer programming model for aggregation of 

fuel treatment units  

 

5.1    Introduction 

 

In Chapter 3 a mixed integer programming model was proposed for integrated fire 

suppression preparedness and fuel management decision making. In Chapter 4 a mixed 

integer programming model for multi-period fuel treatment scheduling was 

presented. Both of these models are designed for implementation on a landscape that 

has been divided into a number of fuel treatment units that need not be uniform in 

shape or size. This partitioning is typically a division of the landscape into 

‘fundamental’ units based on features including topography, fuel type and presence of 

barriers such as roads and creeks. 

 

In Victoria, Australia in recent years there has been a three-fold increase in the annual 

statewide fuel treatment target as a result of recommendations arising from the 

Victorian Bushfires Royal Commission (Teague, et al., 2010). Meeting this revised 

target is made difficult by operational constraints including limited numbers of: 

personnel, equipment and suitable burn days (Higgins, et al., 2011). This has 
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motivated fire authorities in Victoria to start exploring the idea of aggregating existing 

‘fundamental’ fuel treatment units into larger units or ‘clusters’. The rationale being 

that managing or patrolling the burn unit perimeter is one of the most costly and 

labour intensive elements of prescribed burning. As such, aggregation of burn units 

into larger clusters will reduce the total perimeter requiring management and 

therefore enable more burning to be done with the same resources. However, this 

efficiency improvement needs to be balanced against the heightened risk of an escaped 

fire that can result from conducting larger prescribed burns (Fogarty 2012, pers. comm 

19 December).  

 

The aggregation of basic spatial units (areas) into larger units (regions) has been 

identified as a general problem class referred to as ‘supervised regionalisation’ 

(Duque, Ramos, & Suriñach, 2007) or the ‘p-Regions problem’ (Duque, Church, & 

Middleton, 2011). In such problems one is typically trying to aggregate geographical 

areas into a smaller number of contiguous spatial regions while optimising some 

aggregation criterion. Problems of this type have been solved using both heuristic and 

exact optimisation methods. The main challenge apparent in using an exact approach 

is finding an efficient means for ensuring contiguity of regions (Duque, Ramos, & 

Suriñach, 2007). In the burn unit problem presented here, in order to minimise total 

perimeter we seek to aggregate burn units that share a common boundary. As such 

there is no incentive for aggregation of disjoint units and thus our optimality criterion 
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ensures contiguity of clusters. This feature allows for quite a compact mixed integer 

programming assignment problem formulation. 

 

The remainder of the chapter is structured as follows. The mathematical formulation of 

the model is presented and explained. The model’s functionality is then demonstrated 

on a 35 cell test landscape. This is followed by some computational testing and 

discussion of implementation issues. 
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5.2    Model formulation 

The formulation of a mixed integer programming model for aggregation of prescribed 

burning fuel treatment units appears below. We consider a landscape divided into a 

number of cells representing fuel treatment units. These cells need not be uniform in 

shape or size. Rather this initial partitioning would be done based on what constitutes 

practical management units for the specific landscape in question. The key decision to 

be made is how to aggregate these fuel treatment units into larger units or clusters. 

Our primary motivation for aggregating fuel treatment units into clusters is to reduce 

the amount of perimeter to be managed when conducting prescribed burning. 

Accordingly the model assigns units to clusters in a way that leads to the greatest 

reduction in perimeter for a given cluster size constraint. The model is formulated with 

the following notation. 
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5.2.1 Indices and sets 

 

i, I    = index, set of all cells in the landscape; 

j,  i  I = index, set of cells adjacent to cell i; 

k, K    = index, number of clusters; 

 

5.2.2 Parameters 

 

ia  =    area of cell i; 

ijb  =    length of shared boundary between cell i and adjacent cell j; 

m  =  maximum permissible cluster area; 

 

5.2.3 Variables 

 

ikX  =  1 if cell i is assigned to cluster k, 

 0 otherwise; 

ijkY  =  1 if cell i and adjacent cell j are both assigned to cluster k,  

0 otherwise; 
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5.2.4 Model 

Maximise z  =  
  

K

k

ijk

Ii j

ijYb
i1

  (5.1) 

Subject to: 

mXa
Ii

iki  


 Kk ....1    (5.2) 





K

k

ikx
1

1 Ii     (5.3) 

0 ijkik YX  Kk ....1   Ii   ij   (5.4) 

0 ijkjk YX  Kk ....1   Ii   ij   (5.5) 

   0,1 ikX  Kk ....1   Ii    (5.6) 

   0,1 ijkY  Kk ....1   Ii   ij   (5.7) 
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The objective function (5.1) maximises the length of shared boundary for cells assigned 

to the same cluster. When cells are aggregated together their shared boundary is 

subtracted from the perimeter of the newly formed, larger treatment unit. Therefore 

the objective function is effectively minimising the total length of treatment unit 

perimeter that needs to be managed across the entire landscape. 

 

Constraint (5.2) imposes a size limit for each cluster that cannot be exceeded.  

 

Constraint (5.3) ensures each cell is assigned to a single cluster. 

 

Constraints (5.4) and (5.5) classify a pair of adjacent cells i and j as a ‘clustered pair’ if 

they are both assigned to the same cluster k. 

 

Constraints (5.6) and (5.7) restrict cluster assignment and ‘clustered pair membership’ 

variables to binary values.  
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In the formulation above we are required to specify the number of clusters (K). 

However since there is no constraint forcing each cluster k to be used, this means we 

can have empty clusters with no cells allocated to them. This suits our purposes for the 

application at hand, as our interest is in minimising the total amount of perimeter to be 

managed across the landscape irrespective of the number of clusters employed. So 

long as K is set to a sufficiently large value, an optimal solution will be obtained with 

only the necessary number of clusters used. A K value that is too small will result in 

infeasibility or a sub optimal solution. The simplest way to deal with this is to set K 

equal to the number of cells in the landscape (n). However model size is a function of 

the number of cells (n), the cardinality of the set of adjacent cells  i
 
and the number 

of clusters (K). With the number of variables equal to Kn* + K
Ii

i *



  
and the 

number of constraints equal to Kn
Ii

i 


*2  . Thus for implementation of large 

problem instances setting K equal to n is likely to be too computationally costly and 

more care will be required in specifying an appropriate K value. 

 

If aggregation of cells into a predetermined fixed number of clusters K is desired, this 

can be handled with the following constraint.  





Ii

ikx 1  Kk ....1    (5.8) 

Constraint (5.8) ensures that all clusters k have at least one cell allocated to them. 
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The model has been presented here in a very simple, general form. This formulation 

can however be extended in a number of ways. For example, as discussed in Section 4.3 

in the preceding chapter, tolerable fire intervals will differ according to ecological 

vegetation class (EVC). Thus it may be desirable to preclude cells from EVCs that 

require different fire intervals from being assigned to the same cluster. This is done by 

assigning each cell to an EVC (e) by defining a number of disjoint sets  e  such that 

each cell is an element of one such set. 

 

1 jkik XX  Kk ....1   ei    ej   (5.9) 

 

Constraint (5.9) precludes a cell i belonging to ecological vegetation class e from being 

assigned to the same cluster as a cell j from the set of cells belonging to a non-

complementary EVC denoted by e  .  
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5.3    Model demonstration 

 

In order to demonstrate the model’s functionality we implemented it on a 32,579 

hectare test landscape composed of 35 irregular shaped burn units ranging in size from 

29 to 2211 hectares. The test landscape is based on a real landscape in southwestern 

Victoria, Australia. A visual representation of the test landscape appears below in 

Figure 5.7 with each burn unit labeled with a unique identifying number between 0 

and 34. 

 

 

Figure 5.6: Test landscape 
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The area and perimeter of each burn unit in the landscape is listed below in Table 5.5.  

Burn Unit No. Area (Ha) Perimeter (m) 

0 29 3100 

1 559 13912 

2 66 6064 

3 547 13722 

4 1656 23450 

5 851 15319 

6 443 10438 

7 116 5762 

8 595 14726 

9 1697 23991 

10 764 15088 

11 601 13901 

12 476 11200 

13 961 14615 

14 738 15291 

15 1568 19270 

16 1868 23933 

17 1875 30768 

18 1239 16629 

19 1489 37317 

20 763 14082 

21 272 7777 

22 2026 23127 

23 191 9089 

24 2211 24088 

25 935 19718 

26 1374 22702 

27 1165 18951 

28 143 6073 

29 697 15060 

30 764 12857 

31 1592 23379 

32 1530 19965 

33 366 9182 

34 413 11854 

 

32579 566403 

Table 5.6: Initial burn unit areas and perimeters 
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A table detailing the length of shared boundary between all adjacent burn units 

appears in Appendix A. These lengths of shared boundary range in value from 222 to 

6958 meters. 

 

The model was run for various maximum permissible cluster area values with results 

reported below in Table 5.6. Other than permissible cluster area there were no further 

restrictions placed on assignment of burn units to clusters. The model was 

implemented in the OPL modelling language and solved with CPLEX 12.2 on a 

Lenovo E530 notebook with a single quad-core Intel i7-3612QM processor at 2.10GHz 

and with 16 GB RAM memory. With some tuning of settings solution times ranging 

from a fraction of a second to 30 seconds were obtained. 
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Permissible Cluster Area (Ha) No. of Clusters 
Perimeter 

Eliminated (m) 

Perimeter 

Remaining (m) 

33000 1 387164 179240 

17000 2 371070 195333 

12000 3 336506 229898 

9000 4 321128 245275 

8000 5 308309 258094 

6000 6 275182 291221 

5000 8 260686 305718 

4000 10 233084 333320 

3500 12 200087 366316 

3000 14 168058 398345 

2500 17 147803 418600 

Table 5.7: Test results - for various permissible cluster area values 

 

The objective value reported in the third column of Table 5.6 represents the total 

amount of perimeter eliminated as a result of aggregation of burn units into clusters. 

The total remaining perimeter post-aggregation is reported in the fourth column of the 

table. For example, a permissible cluster area of 33,000 Ha allows the burn units to be 

aggregated into one single 32,579 Ha cluster that encompasses the entire landscape. 

Thus the objective value obtained in this case, 387,164 m, is equal to the total shared 

boundary between all neighbouring burn units in the landscape. The 179,240m of 

remaining perimeter is just the difference between the 566,403 m of pre-aggregation 
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perimeter and the eliminated perimeter expressed in the objective value. It is apparent 

that as the permissible cluster area is reduced the number of clusters that can be 

formed decreases and the amount of perimeter to be managed increases. Figures 5.8 – 

5.14 below illustrate the clusters formed for various maximum permissible cluster area 

values.  

 

 

Figure 5.7: Test landscape – 17,000 Ha maximum permissible cluster area 
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Figure 5.8: Test landscape – 12,000 Ha maximum permissible cluster area 

 

 

Figure 5.9: Test landscape – 9,000 Ha maximum permissible cluster area 
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Figure 5.10: Test landscape – 6,000 Ha maximum permissible cluster area 

 

 

Figure 5.11: Test landscape – 4,000 Ha maximum permissible cluster area 
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Figure 5.12: Test landscape – 2,500 Ha maximum permissible cluster area 

 

In Figure 5.14 below, the perimeter-to-area ratio of clusters is plotted against the 

maximum permissible cluster area. It can be seen that perimeter-to-area ratio decreases 

as maximum permissible cluster area increases. The gradient of the curve is quite steep 

at first and then proceeds to flatten out. As discussed in Section 5.1 the potential 

problem with larger burn unit sizes is an increased risk of an escaped fire during 

prescribed burning. Fire authorities must balance this risk against efficiency gains 

when deciding on what maximum permissible cluster area to implement. This decision 

may be influenced by fuel type and proximity to values at risk. For example, highly 

flammable fuel types close to the urban interface may require smaller burn units. 
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Whereas for less flammable fuels in more remote localities larger units may be 

appropriate. 

 

 

Figure 5.13: Cluster perimeter to area ratio as a function of maximum permissible cluster area 
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5.4 Summary and discussion 

 

In this chapter we have presented a mixed integer programming model for 

aggregating ‘fundamental’ burn units into larger burn units or clusters. Features of the 

problem structure have been exploited to produce a compact model formulation. 

Firstly, aggregation of burn units to maximise shared boundary means that only 

adjacent burn units need be considered in the objective function (5.1) and in the 

clustered pair constraints (5.4) & (5.5). Secondly, the optimality criterion obviates the 

need for additional constraints to ensure contiguity of clusters. This results in a 

tractable model that can be solved to optimality, as seen with the model demonstration 

undertaken in Section 5.3. 

 

In this chapter, the burn unit aggregation model has been presented in a very simple, 

general form. This formulation can however be extended to include various ecological 

considerations. One such ecological consideration explained in Section 4.3 is tolerable 

fire intervals (TFIs). As discussed in Section 5.3 it is quite straightforward to add a 

constraint such as (5.9) to preclude burn units with non-complementary TFIs from 

being included in the same cluster. Another ecological consideration discussed in 

Section 4.3 is the desire to maintain the correct proportion of each ecological vegetation 

classes (EVC) in the various habitat growth or post fire seral stages (PFSS). To achieve 

this PFSS balance is may be necessary to include constraints to limit the allowable 
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proportion of land of any given EVC that can be included in a single cluster. Finally, as 

discussed in Section 4.3 constraints to partition a landscape into zones with spatially 

variant treatment emphases. This would allow permissible burn unit sizes and 

application of ecological constraints to vary according to zone. For example in urban 

interface areas where community and asset protection is a priority permissible burn 

units may be smaller and some ecological constraints may be relaxed. 
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6. Conclusion 

While fire is a natural component of many ecosystems, uncontrolled wildfires can 

cause large scale devastation in the form of loss of life and destruction of private 

property, infrastructure and natural resources. Over the past several decades, an 

increase in wildfire occurrence and severity has been observed across the globe. 

Changed weather conditions associated with climate change suggest this upward 

trend is set to continue. Wildfire management is an expensive and difficult 

undertaking and involves a complex mix of interrelated components operating across 

varying temporal and spatial scales. There currently exists a concerning and sizeable 

gap between the decision support needs of wildfire managers and the decision support 

tools currently available (Martell, 2011).  The detailed review undertaken in Chapter 2 

suggests there is considerable scope for the use of OR methods in bridging this gap. 

 

In this thesis, three models were developed to address a series of wildfire management 

challenges. The three proposed models all used mixed integer programming methods 

to tackle combinatorially complex spatial optimisation problems. The first initial attack 

coverage model incorporated two types of decision variables, fuel treatment and 

suppression resource deployment within a single integrated framework. The second 

model scheduled fuel treatments across multiple time periods to maintain fire resistant 

landscape patterns while satisfying various ecological requirements. The third model 

aggregated fuel treatment units to minimise total perimeter requiring management.  



 

 120 

The proposed models have all been presented in a very simple and general form. 

There is however plenty of opportunity for future research to extend these models in 

various ways. All three models could be adapted using a multi-objective optimisation 

approach to consider a range of land use requirements such as: ecosystem function, 

water catchment integrity and tourism values. While the models have been formulated 

deterministically, parameter uncertainty could be considered in various ways. The 

integrated fuel treatment and suppression preparedness model presented in Chapter 3 

could be reformulated as a two-stage stochastic programming model with recourse to 

account for various fire-weather scenarios. Similarly, congestion resulting from 

concurrent fires could be accounted for in a probabilistic reliability formulation. For 

the multi-period fuel treatment model presented in Chapter 4, the effects of unplanned 

fire on habitat could also be explored through a comparison of rolling horizon and 

stochastic programming approaches.   

 

In this thesis we’ve demonstrated the use of OR methods to generate insights into the 

management of complicated systems that require the consideration of a host of diverse 

factors.  While we have applied these methods in the realm of wildfire management, 

the insights gained in this research could be applied to a broader range of disciplines. 

For example, we have demonstrated the performance benefits that result from 

integrating interrelated management decisions within a single model, in our case fuel 

treatment and suppression resource deployment decisions. Further, we have 

developed an approach for the extremely complicated task of determining 
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management strategies that link across space and time, in our case to generate fire 

resistant landscape mosaics. As more frequent and destructive wildfire events threaten 

lives and homes in an expanding wildland-urban interface, now more than ever we 

need to apply best practice analytical methods to assist wildfire managers in assessing 

alternatives and making decisions.  Here we have demonstrated how OR methods can 

be used to formulate challenging real-world problems into coherent and solvable 

models. As OR formulation methods and algorithms continue to improve and greater 

computing power become available, it will be possible to tackle increasingly complex 

wildfire problems using OR methods.  
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Appendix A – Initial burn unit shared boundaries 

Burn Unit No. Adjacent Burn Unit Shared Boundary (m) 

0 8 1513.7 

0 31 1363.2 

0 32 223.2 

1 26 6279.6 

1 32 4492.5 

2 3 2231.6 

2 18 1837.1 

2 31 1848.0 

3 18 4270.3 

4 5 2104.5 

4 6 3925.6 

4 17 2797.5 

4 18 6179.0 

4 19 1894.3 

4 26 4510.6 

4 27 1421.9 

4 32 614.8 

5 10 221.7 

5 17 1399.7 

5 24 5312.9 

5 27 3352.1 

5 28 1975.3 

6 17 2731.0 

6 19 3780.6 

7 11 3105.9 

7 12 2654.9 

8 31 5789.6 

8 32 5341.0 
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Burn Unit No. Adjacent Burn Unit Shared Boundary (m) 

9 15 2765.9 

9 22 3130.5 

9 23 4206.4 

9 24 2045.7 

9 33 4027.3 

9 34 2817.3 

10 27 4830.7 

10 28 1347.4 

10 29 2506.5 

11 12 2045.4 

11 13 855.6 

11 20 4192.5 

11 22 1878.9 

12 13 3266.7 

13 14 4852.4 

13 22 2125.0 

14 15 5384.2 

14 22 1446.3 

15 22 584.4 

16 17 862.1 

16 24 5069.2 

17 19 4073.4 

17 24 1871.7 

18 19 2248.1 

18 31 541.0 

18 32 979.1 

20 22 2621.2 

21 23 2855.8 

21 24 2279.0 

21 30 2640.8 
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Burn Unit No. Adjacent Burn Unit Shared Boundary (m) 

22 33 3609.7 

23 24 788.7 

23 34 1236.1 

24 25 1696.4 

25 30 5458.2 

26 27 6957.9 

26 32 2979.3 

28 29 1418.4 

30 34 4350.8 

31 32 1563.5 

  193581.8 

 


