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Abstract

Most enterprise systems operate in domains where business rules and requirements frequently

change. Managing the cost and impact of these changes has been a known challenge, and

the software maintenance community has been tackling it for more than two decades. The

traditional approach to impact analysis is by tracing dependencies in the design documents

and the source code. More recently the software maintenance history has been exploited for

impact analysis.

The problem is that these approaches are difficult to implement for hybrid systems that

consist of heterogeneous components. In today’s computer era, it is common to find systems

of systems where each system was developed in a different language. In such environments,

it is a challenge to estimate the change propagation between components that are developed

in different languages. There is often no direct code dependency between these components,

and they are maintained in different development environments by different developers. In

addition, it is the domain experts and consultants who raise the most of the enhancement

requests; however, using the existing change impact analysis methods, they cannot evaluate

the impact and cost of the proposed changes without the support of the developers.

This thesis seeks to address these problems by proposing a new approach to change impact

analysis based on software domain-level information. This approach is based on the assump-

tion that domain-level relationships are reflected in the software source code, and one can

predict software dependencies and change propagation by exploiting software domain-level

information. The proposed approach is independent of the software implementation, inex-

pensive to implement, and usable by domain experts with no requirement to access and

analyse the source code.

This thesis introduces domain-based coupling as a novel measure of the semantic similar-



ity between software user interface components. The hypothesis is that the domain-based

coupling between software components is correlated with the likelihood of the existence of

dependencies and change propagation between these components. This hypothesis has been

evaluated with two case studies:

• A study of one of the largest open source enterprise systems demonstrates that archi-

tectural dependencies can be identified with an accuracy of more than 70% solely based

on the domain-based coupling.

• A study of 12 years’ maintenance history of the five subsystems of a significant sized

proprietary enterprise system demonstrates that the co-change coupling derived from

over 75,000 change records can be predicted solely using domain-based coupling, with

average recall and precision of more than 60%, which is of comparable quality to other

state-of-the-art change impact analysis methods.

The results of these studies support our hypothesis that software dependencies and change

propagation can be predicted solely from software domain-level information. Although the

accuracy of such predictions are not sufficiently strong to completely replace the traditional

dependency analysis methods; nevertheless, the presented results suggest that the domain-

based coupling might be used as a complementary method or where analysis of dependencies

in the code and documents is not a viable option.

2 (May 27, 2013)



Chapter 1

Introduction

By 2020, more than 60% of software programmers will be

working on software maintenance.

Applied Software Measurement, Global Analysis of

Productivity And Quality [91]

Capers Jones

This thesis is a contribution to software evolution and maintenance. Software maintenance

is often considered as keeping a system functional without changing its design or any major

functionality. However, software does not deteriorate, wear, tear or break as a result of the

usage or passage of time. Software repair actually involves fixing errors of implementation

with respect to the design. Most enterprise software systems operate in domains such as

finance, human resource and administrations where business rules change all the time. For

these systems to function properly and avoid software ageing [146], it is required to change

their functionality in respect to changes in their environment.

Change in the software environment often leads to new software functionalities. The IEEE

standard 1219 [86] defines software maintenance as the correction of errors and modifications

needed to allow an existing system to perform new tasks, and to perform the old ones under

the new conditions. Therefore, “Software Maintenance” and “Software Evolution” are often

used interchangeably.

Frequent change in requirements is the nature of enterprise domains and challenge for soft-
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ware maintainers. The connections between software elements make this challenge even

harder as a change to a part of a system might lead to failure or inconsistency in other

parts. Such a phenomenon, known as change propagation [157], has been tackled by software

maintenance community for more than two decade. However, most approaches have been

targeting dependencies in software source code and design documents [35, 21, 80, 73, 66].

The problem is that dependency analysis is not a viable option in many enterprise software

environments. Large-scale enterprise systems often include heterogeneous source code (e.g

VB and Python) whilst most code analysis tools support C++ and Java. Also, in many

cases custom development is required to use these tools for analysing systems with hybrid

or complex architecture. These challenges make code analysis a costly method that requires

advanced skills beyond the knowledge of typical software developers. Dependency analysis

based on design documents for most software systems is even more difficult than code analysis,

since, missing or outdated documents are common problems.

For typical enterprise systems, there are domain experts who accumulated the knowledge

of system functionality. These experts are the primary requestors for the software new

features and changes in requirements. Without an understanding of costs and impacts of the

requested changes, these experts cannot effectively collaborate with software maintainers to

evaluate the trade off between the cost and the benefit of the prospective changes. This issue

potentially can increase the cost of changing software, and lead to unsatisfactory software

functionality.

Imagine a tool which enables domain experts to estimate change impact without requiring

technical knowledge of software engineering and without access to the source code. If such

estimations could be derived by domain experts, and were sufficiently accurate, then this

would assist software maintainers to save time and effort in making decisions about prospec-

tive changes.

This thesis introduces a new methodology for software change impact analysis based on only

software domain information. This work is based on the hypothesis that change propagation

results of additive or corrective changes can be predicted using only domain information

visible to software end users.

This research project focuses on data driven enterprise systems and management information

systems (MIS). The scope of this thesis is limited to domain related software changes such
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Figure 1.1: Percentage of Maintenance Programmers at Ten-year Intervals.

as changes to business constraints, and ignores software changes which do not change the

functional properties of the system such as refactoring.

The rest of this chapter is organised as follows: The next section discusses the rationale

behind this research. Section 1.2 presents the research questions, Section 1.3 shows the

contributions of this thesis, and Section 1.4 describes the organisation of this thesis.

1.1 Rationale

The more software intensive systems blend in day to day human life, the more difficult they

will be to replace or redevelop. Capers Jones in his well-known book “Applied Software

Measurement, Global Analysis of Productivity And Quality” suggests that by 2020, more

than 60% of software programmers will be working on software maintenance [91]. Figure 1.1

summarises the data presented by Jones about approximate percentage of world programmers

working on software maintenance between 1950 and 2020. He argues that there is evidence

of a critical phenomenon which occurs when an industry approaches 50 years of age, which is

more workers perform maintenance jobs than build new products. Figure 1.1 suggests that

in the software industry this turn over happened between 1980 to 1990.
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Change in the software environment and consequently in requirements is a vital aspect of the

software life cycle for most software systems [158, 12]. In order to keep a software application

functional, it must evolve with respect to changes in its environment. However, the cost of

change is often disproportionately high because of inadequate change impact analysis tools

and techniques. In addition, manual change impact analysis performed by searching the

source code or design artefacts is a tedious and labour intensive job.

During enterprise practices, it has been observed that users and domain experts are the main

requesters for software changes and enhancements. However, it is difficult for domain experts

to estimate potential side effects of requested software changes as existing change impact

analysis methodologies require in-depth knowledge of software source code and understanding

about software architecture. It is not even a trivial task for software engineers to recognise

the scope of change propagation. In the literature, there are three main approaches to change

impact analysis:

• Firstly there are document-based methods which rely on tracing dependencies in the

design artefacts [76, 196, 167, 27, 46]. This approach has been one of the earliest forms

of impact analysis, and provides great flexibility and accuracy in identifying where

and how a change would affect the system. However, it is not practical for systems

where the design artefacts are not accessible or reliable, such as legacy systems whose

documents do not reflect many enhancements and ad-hoc developments.

• Secondly there are code-based methods which trace dependencies between system ele-

ments in the source codes [61, 181, 35, 37, 139]. This approach can be automated, and

can be fairly accurate. However, it is often difficult to apply to hybrid systems with

heterogeneous source code (e.g. parts of the system are in C++ and parts in Perl), or

legacy systems with missing source code. In addition, these methods are complex and

rarely usable by domain experts. Consequently, code-based impact analysis discourages

any contribution from consultants, domain experts or managers.

• Finally there are history-based methods, which use maintenance history records to find

dependencies between system components [168, 194, 77, 200, 56]. These methods are

based on the assumption that if two components are frequently modified in a close

timeframe and by the same programmer, it is likely that there is a relationship be-

tween them, and changing one of them might require alteration of the other one. This
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approach is reasonably time efficient and simpler than source code analysis. However,

it is not as accurate as code-based or document-based methods, and not practical for

systems which are in the initial development stage, or where the maintenance history

is inaccessible.

The state of art research in the area of change impact analysis is focused on increasing the

accuracy of change propagation analysis in order to reduce the risk of software failure and

increase the reliability of systems. However, the provided methods usually require technical

expertise, understanding of the software source code, or even tools specified for different

architectures. Such factors make these approaches difficult to use for typical enterprise

systems. What is needed is a pragmatic and inexpensive methodology for change propagation

analysis, which conforms to the following criteria:

Simplicity and usability: The proposed methodology should be simple and usable by non-

technical domain experts who have limited understanding of software source code. Sim-

plicity of the proposed methodology reduces the required skills for change impact anal-

ysis, and might decrease the time spent by software maintainers on making decisions

about prospective changes.

Practicality: The proposed methodology should be applicable to typical enterprise systems.

It is common for such systems to have outdated design artefacts, heterogeneous source

code and inaccessible maintenance history. These factors have to be considered for

a change impact analysis methodology to make it usable for mainstream enterprise

systems.

Generality: In order to make the proposed methodology work for general enterprise sys-

tems, it should not require a specific tool that is dependent to a particular programming

language, software architecture, framework and implementation technology.

Efficiency: The proposed methodology should provide a sufficiently reliable estimation of

the change impact in an acceptable timeframe with respect to scale and complexity of

the system.

In order to achieve a pragmatic method, which conforms to these criteria, we need guidelines.

The next section provides the guidelines in the form of research questions which provide us

with goals for each stage of this research project, and assist us to evaluate the outcome.
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1.2 Research Questions

The following are the research questions that we investigate in this thesis. These questions

specify the requirements and expected outcomes of this research project:

RQ1. What kind of model can we derive from domain experts’ knowledge about relationships

between software elements?

What kind of information can be used to develop such a model?

What sources can be used to collect the required information?

This question is important because a model of the relationship between software ele-

ments is the prerequisite to many change propagation analysis methods.

RQ2. How accurately can we identify architectural dependencies using such a model?

It is a common understanding that change to one component might affect other ar-

chitecturally dependent components. Ability to identify these dependencies without

access to the source code is an important step towards the generality and practical-

ity of the proposed method. This is specifically vital for software environments where

conventional code analysis tools are not usable such as systems with hybrid source

codes.

RQ3. How accurately can we predict change propagation using such a model?

The answers to this question is important to evaluate efficiency of the proposed method.

RQ4. How does such a prediction compare with the well-established co-change coupling de-

rived from maintenance history?

It is essential to evaluate the efficiency of the propose method against the well estab-

lished methods in the literature.

RQ5. What is the required effort and cost of making the prediction?

How well can we reduce the cost using tool support?

What is the trade off between cost and accuracy?

These questions evaluate the usability and efficiency of the proposed methodology.
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The next section summarises the outcome and contributions of this thesis, derived from the

proposed research questions.

1.3 Research Contributions

The main achievement of this thesis is a pragmatic method for change impact analysis based

only on information visible and understandable to domain expert users. The benefit of this

method is to provide an adequate estimation of a change impact on software functionality

independent of software implementation. This method is applicable to software environments

where tracing dependency based on source code, design artefacts and maintenance history is

not accessible.

In this thesis, we answer the proposed research questions as follows:

• To answer RQ1 we propose a novel methodology for analysing software systems at the

domain level, creating a model of relations between software elements, and demonstrat-

ing how such a model can be used for predicting the change propagation. The benefits

of the proposed methodology are:

– This methodology is agnostic to software implementation; therefore, it is applica-

ble to software environments where source code analysis is not available such as

systems with heterogeneous source code.

– This methodology is not dependent on the software maintenance history; therefore,

it is applicable to systems with inaccessible maintenance logs such as systems at

their initial development stage.

– This methodology is usable by non-technical domain experts who do not have

access to software source code. As such this approach enables domain experts to

predict the impact of proposing software changes without the support of program-

mers or software engineers.

• To complete the proposed methodology, we introduce the domain-based coupling as

a novel metric for measuring the semantic similarity between software components at

the domain-level. This metric allows us to capture, analyse and visualise relationships

between these components.
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• We answer RQ2 by providing the results of a case study on ADempiere; a large scale

open source ERP1 system, where we demonstrate how domain information can be used

to predict source code dependencies and database relationships which might lead to

change propagation.

• We answer RQ3 and RQ4 by a case study on BEIMS2, a significant size enterprise

system. In this study, we examine the software maintenance history in comparison

to the domain-based coupling between software components. The results demonstrate

how the domain-based coupling is correlated with the well-established evolutionary

coupling derived from maintenance history. In addition, we will present how domain-

based coupling can assist programmers to avoid software bugs arising from imperfect

change propagation.

• We answer RQ5 by investigating the effort required for various tasks as part of domain-

based analysis. Then we discuss the opportunities for automating the process and how a

tool support can improve the speed and accuracy of the domain-based coupling analysis.

The enterprise case studies support the hypothesis that software dependencies and change

propagation can be predicted solely from software domain-level information. The results

suggest that the domain-based coupling can be used as a complementary method where

analysis of dependencies in the code and documents is not a viable option.

In addition, this thesis examines the cost and accuracy of the domain-based coupling analysis,

and it presents a semi-automated approach that provides an inexpensive analysis process with

an accuracy comparable to state of art change impact analysis methods.

1.4 Thesis Organisation

The rest of this thesis is structured as follows: Chapter 2 discusses the background and

related work. Chapter 3 addresses the first and second research questions by introducing

domain-based coupling and a methodology for domain-based analysis. Chapter 4 addresses

the third research question by a case study on an ERP system, where it is demonstrated

that how architectural dependencies could be derived from domain information. Chapter 5

1Enterprise Resource Planning
2Building and Engineering Information Management System.
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Domain-Based Coupling
(Chapter 3)

Semi-Automated Approach
(Chapter 6)

Predicting Change Propagation 
(Chapter 5)

Evaluation
(Chapter 7)

Conclusion 
(Chapter 8)

Predicting Architectural Dopendencies
(Chapter 4)

Background
(Chapter 2)

Introduction
(Chapter 1)

Figure 1.2: The logical sequence of the chapters of this thesis

addresses the fourth research question by providing the results of a case study on a large scale

enterprise system where the domain information is used to predict the change propagation.

Chapter 6 addresses the fifth research question by representing a semi-automated process

for domain-based coupling analysis. Chapter 7 evaluates the outcome and the contributions

of this thesis and discusses the limitations of the proposed methods. Finally, Chapter 8

summarises the research contributions, and presents the future areas of investigation. The

structure and logical sequence of the chapters of this thesis are illustrated in Figure 1.2.
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Background

Evolution requires expertise that is equivalent to or perhaps even greater than

the expertise required to create a program from scratch.

A staged model for the software life cycle [158]

Václav T. Rajlich and Keith H. Bennett

This thesis is a contribution to the field of software evolution and maintenance. In particular,

it provides a novel approach for predicting change propagation based on software domain

information. This chapter provides an overview of software maintenance, its relationship to

software evolution, and their role in the software life cycle (SLC). The phenomenon of change

propagation and the practice of change impact analysis are described. Furthermore, a survey

of various impact analysis methods is provided.

Figure 2.1 shows the logical sequence of this chapter’s sections. The rest of this chapter is

organised as follows: Section 2.7.3 provides an overview of software evolution and mainte-

nance. Section 2.2 discusses the taxonomies of maintenance activities. Section 2.3 introduces

a classification of software types based on evolutionary characteristics, and introduces the E-

Type systems as evolving software. Section 2.4 describes the laws of software evolution, and

Section 2.5 discusses how they impact the SLC. Section 2.6 introduces the phenomenon of

change propagation, and Section 2.7 describes the practice of impact analysis. Sections 2.7.1,

2.7.2 and Section 2.7.3 provide a survey of existing methods on impact analysis methods.

Section 2.8 provides an overview of domain engineering, and finally Section 2.9 summaries
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Software Evolution and 
Maintenance
(Section 2.1)

Software Types
(Section 2.3)

Laws of Software 
Evolution

(Section 2.4)

Staged Model for 
Software Life Cycle

(Section 2.5)

Change Propagation
(Section 2.6)

Impact Analysis
(Section 2.7)

History-Based Impact 
Analysis

(Section 2.7.3)

Document-Based Impact 
Analysis

(Section 2.7.1)

Code-Based Impact 
Analysis

(Section 2.7.2)

Domain Knowledge and 
Software Maintenance

(Section 2.8)

Software Maintenance 
Taxonomies
(Section 2.2)

Summary
(Section 2.9)

Figure 2.1: The logical sequence of sections of this chapter
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this chapter.

2.1 Software Evolution and Maintenance

This thesis is a contribution to software evolution and maintenance. Hence, this section

describes software maintenance, software evolution, and how they are related to the practice

of software engineering.

Software ageing is not a new phenomenon, and the practice of software maintenance is well

known as part of the SLC [146]. Maintenance is often considered as keeping a system func-

tional without changing its design or any major functionality. However, software does not

deteriorate, wear, tear or break as a result of the usage or passage of time. Software re-

pair actually involves fixing errors of implementation with respect to the design; in addition,

for most software, the environment is continuously changing, and for software to function

properly, it is required to change its functionality in respect to changes in its environment.

Hence, terms “Software Maintenance” and “Software Evolution” are often used interchange-

ably. However, to be more precise, in the literature these terms are defined as follows:

• Software Maintenance is defined by the IEEE standard of software maintenance, IEEE

1219 [86], as the correction of errors and modifications needed to allow an existing sys-

tem to perform new tasks, and to perform the old ones under the new conditions [100].

• Software Evolution is defined by Belady and Lehman [10] as the dynamic behaviour of

software systems as they are maintained and enhanced over time [100].

The above definitions indicate that software evolution is derived by maintenance activities

which are enforced by changes in the software environment. However, software evolution

can be affected by architectural properties and quality factors such as interoperability [87].

Godfrey and German compare software evolution with biological evolution [71]. They have

demonstrated how software source code and software systems can be compared respectively

with genotype and phenotype, two notions in biological evolution. They argue that despite

differences between software and biological systems, in the software world, we can observe

evolutionary mechanisms that encourage changes such as requests for new features, or to

create new platforms, and the desire to improve quality attributes. In addition, there are

14 (May 27, 2013)



CHAPTER 2. BACKGROUND

forces which limit the change such as system complexity and legal concerns. The balance

between the evolutionary mechanisms and the limiting forces, guides the SLC. The impact

of software evolution on software development and the SLC will be further discussed in

Section 2.4.

The cost of software evolution and maintenance has been one of the prime concerns in the

SLC. It is commonly accepted by the software community that 70% of software expenditure is

on software maintenance and 30% on new development. In the literature there are a number

of empirical studies which examine the cost and processes involved in maintaining open source

or proprietary systems [10, 100, 72]. These observations confirm that maintenance expenses

are 60-80% of the initial development. Lehman [114, 119] argues that the high ratio of effort

spent on maintenance to initial development does not necessarily have to be depreciated as

maintenance covers a wide range of activities, and also continuous change is intrinsic to the

nature of computer usage. However, programs should be more alterable, and the unit cost

of change must be made as low as possible.

Software maintenance includes a wide range of activities. These activities have been focus of

a number of studies, resulting in various software maintenance taxonomies. The next section

explains the taxonomies relevant to this research, and discusses various types of maintenance

activities.

2.2 Software Maintenance Taxonomies

In the literature, there are three well-known classifications for maintenance activities. These

classifications are based on maintainer intentions, evidence, and characteristics of the change.

This section presents these classifications and describes how they are related to the scope of

this thesis.

It was Swanson and Lientz [172, 118, 117] who categorised software maintenance changes

into four types :

Corrective are software changes in response to failure and software bugs such as perfor-

mance failure, and process failure.

Adaptive are software changes in response to changes in data and the process environ-
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ment. This includes all enhancements to make software function properly in a new

environment.

Perfective are software changes which are intended to improve the system such as elimi-

nating process inefficiency, enhancing performance and improving maintainability.

Preventive are software changes intended to avoid future maintenance problems, for exam-

ple, restructuring internal dependencies to improve cohesion and coupling.

In this view, perfective and preventive software changes are intended to not change the

functionality of the system whilst corrective and adoptive changes explicitly alter system

functions in response to new requirements. This thesis focuses on changes derived directly

by new environments or changes in existing requirements; hence, it only considers corrective

and adaptive changes, and ignores the perfective and preventive changes.

The proposed categorisation by Swanson and Lientz, considers maintenance activities from

perspective of software developerswhilst others proposed taxonomies from alternative per-

spectives. Chapin et al. [34] extended this categorisation in to twelve evidence-based classi-

fications. In this view, the types of maintenance activities are defined using a hierarchical

evidence of changes as follows.

• Changes to software:

Changes to source code:

Changes to software functions: Enhancive, Corrective and Reductive

Changes to properties: Adaptive, Performance, Preventive and Groomative

Changes to non-code artefacts: Updative and reformative

• Changes to software environment: Evaluative, consultive and training

This classification considers the observed activities and changes to software artefacts rather

than the intentions of maintainers. This thesis only focuses on maintenance activities which

lead to changes in software functions; hence, only considers enhancive, corrective and reduc-

tive activities.

Whilst the earlier research categorised maintenance activities based on their purpose, Buck-

ley et al. [31] propose a taxonomy for maintenance activities based on the mechanisms of

16 (May 27, 2013)



CHAPTER 2. BACKGROUND

the change and the factors that influence these mechanisms. This view focuses on technical

aspects, i.e., the how, when, what and where, of software changes, and derive a number of

dimensions of software change mechanisms: time of change, change type, change history, de-

gree of automation, activeness, change frequency, anticipation, artefact, granularity, impact,

change propagation, availability, openness, safety and degree of formality. This taxonomy

is an extension of prior work on software maintenance ontology by Kitchenham et al. [102].

They described ontology of software maintenance terms in the form of a UML model, aimed

to identify factors which might affect the empirical studies in software maintenance. In this

classification, this thesis only concerns change impact and change propagation.

The rules and dynamics of software evolution and maintenance activities are not the same for

all systems [114]. The next section discusses a software classification based on evolutionary

characteristics.

2.3 Software Types

The notion of software evolution is mainly associated with a specific software type known as

E-Type [111]. This section describes E-Type software, and describes how it is distinguished

from other software types.

It has been a view that software evolution is associated with large systems. In this view, a

system is considered large if it includes more than an arbitrary number of source code lines.

Lehman [113] was critical of this view on the grounds of its arbitrariness, and he believed

large systems should be identified by the ways in which they are designed, developed and

maintained. To address this concern, Lehman proposed a new classification [114] based on

the realisation that there is a fundamental distinction between the evolution of systems which

are implemented from a formal specification, and the ones that are developed to be part of

day to day activities. He proposed three software types1 as follows:

S-Type Programs: Lehman defined a program as Type S “if it can be shown that it sat-

isfies the necessary and sufficient condition that it is correct in the full mathematical

sense relative to a pre-stated formal specification” [111]. This definition assumes that

1Lehman [111] uses program and software interchangeably with more emphasis on programs. In this section,
we follow his definitions.
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the problem (requirement) can be formally specified prior to the implementation, the

problem can be solved using an algorithmic method, and it is feasible to prove that the

program is correct against the formal specification. These assumptions limit the domain

of S-Type programs to mathematical applications, or formally defined transformations

such as compilers.

E-Type Programs: Lehman initially defined a program as Type E if it mechanises a human

or societal activity [114]. This definition was subsequently amended to “all programs

that operate in or address a problem or activity of the real world” [111].

A characteristic of E-Type programs is their integration in a domain. Changes in their

domain raise new requirements for these programs and necessitate their evolution with

respect to their environment. Hence, software evolution is a direct consequence of the

nature of E-Type programs, and one can not expect them to remain static.

P-Type Programs: Lehman defined this class as an intermediate between S-Type and E-

Type [111]. The programs in this class address problems that can be fully specified,

but the users are concerned with the execution results rather than validating the im-

plementation against its specification.

An example of this type is a program that plays chess. The rules of the game can be

fully specified; however, the decision tree at any given stage of the game is too large

to be scanned by a personal computer, hence, the program must provide an optimum

approximation of a good decision given the limited resources. A chess program is valued

by its performance, not by validation against the specification.

Cook et al. refined this classification with an emphasis on the role of stakeholders in the

evolution of system requirements [41]. Their classification is derived from the Kuhn’s concept

of normal science [105] and the concept of paradigm [132]. Kuhn explains that development

of scientific knowledge consists of successive periods of what Kuhn called “normal science”

that each take place within a paradigm [41]. In this view, a paradigmatic domain contains a

stable and well structured body of knowledge. This implies that an analyst must use method-

ological hermeneutics2 and the baseline model of the domain to validate the requirements. In

contrast, non-paradigmatic domains lack such a rigid knowledge structure, and consequently

the requirements are open to objective interpretation.

2The hermeneutics tradition in philosophy studies the process of interpretation [41].
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Cook et al. [41] argue that E-Type programs are situated in non-paradigmatic domains. In

such domains, sources to derive domain knowledge are less extensive and less reliable, and

validation of requirements often wholly relies on interpretation of stakeholders’ statements.

This implies that stakeholders can define and redefine problems without any paradigmatic

constraints, and the scope of the system is open to reinterpretation.

Type-P has been redefined as “Paradigm-based” programs which address problems in paradig-

matic domains [41]. The evolution of these programs is restricted to changes in their

paradigms, and the change to the system is constrained by the stakeholders’ decision to

keep the system consistent with the domain.

Type S programs are somewhat different. Cook et al. [41] argue that these programs do not

evolve. Once the requirements are specified, then these programs should detach from the

paradigm, and they will no longer be affected by the changes in their domain.

This thesis does not consider S-Type and P-Type programs, and it focuses only on E-Type

programs where lack of rigorous specification makes the validation of software changes, a

challenge for software maintainers. In these systems, often the implemented program is

the only actual model which can provide reliable information about the potential impact

of software changes. The uncertainty in requirements for E-Type systems makes them the

default case of software evolution.

The laws of software evolution and how they are applied to E-Type systems will be further

discussed in the following section.

2.4 Laws of Software Evolution

Lehman observed that E-Type programs must evolve in respect to changes in software domain

or they risk an early death [114]. Based on an empirical study of IBM programming process

in late seventies, Lehman defined five laws of software evolution [114], later extended to

eight [112, 115] as presented in Table 2.1.

Lehman [113] explained how E-Type programs continuously adapt and grow (Law I and IV),

and how such changes can increase complexity (Law II) and lower the quality of the system

(Law VII). This phenomenon emphasises the challenge of evolution in the SLC and highlights
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Law Name Description
I Continuing Change E-Type programs must be continually adapted else

they become progressively less satisfactory.
II Increasing Complexity As an E-Type program evolves, its complexity in-

creases unless work is done to maintain or reduce it.
III Self Regulation E-Type program evolution process is self regulating

with distribution of product and process measures
close to normal.

IV Conservation of Organisational
Stability

The average effective global activity rate in an evolv-
ing E-Type program is invariant over product life-
time.

V Conservation of Familiarity As an E-Type program evolves all associated with
it, developers, sales personnel, users, for example,
must maintain mastery of its content and behaviour
to achieve satisfactory evolution.

VI Continuing Growth The functional content of E-Type program must be
continually increased to maintain user satisfaction
over their lifetime.

VII Declining Quality The quality of E-type systems will appear to be de-
clining unless they are rigorously maintained and
adapted to operational environment changes.

VIII Feedback System E-Type evolution processes constitute multi-level,
multi-loop, multi-agent feedback systems and must
be treated as such to achieve significant improvement
over any reasonable base.

Table 2.1: Lehman’s laws of Software Evolution [114]

the role of managing software changes in the longevity of E-Type programs.

The other four laws (Table 2.1) present the various aspects of the software evolution. Lehman

argues that the software evolution is based on a feedback process (Law VIII), and for E-Type

programs which are implemented in an organisation, the positive and negative feedback by

the corporate management regulates the evolution of the system (Law III). The ability of

the organisation to manage the software evolution is limited by forces such as availability

of skilled staff and limited resources. These limitations make the average activity rate for a

system constant over its lifetime (Law IV). In addition, the development team and all other

associates should maintain their knowledge about the system during the process (Law V).

Lehman’s laws laid a foundation for successful software maintenance and evolution, empha-

sising the necessity of continuing changes of E-Type programs. The next section describes

how continuing software changes can be modelled in the SLC.
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Figure 2.2: Staged model for the software life cycle [158]. Used with permission.

2.5 Staged Model For The Software Life Cycle

It is important to incorporate maintenance activities in the SLC. Mens et al. describe such

an integration as a challenge in software evolution and maintenance [134]. They proposed the

iterative and incremental software development (well-known as agile software development or

extreme programming [9]) as a typical way to incorporate continuous change in the traditional

software development process. The software maintenance activities can be integrated in

to the SLC as a set of tasks including determining the maintenance objective, program

understanding, maintenance planning and implementation [193]. This model considers any

work after initial development as software maintenance. However, given the rapid software

evolution, the traditional approach is no longer sufficient [12, 134]. Rajlich and Bennett [158]

proposed a staged model (Figure 2.2) for the SLC which supports evolution of software in

five distinct stages as follows:

• Initial development: The first stage of the SLC which aims to deliver the first version

of the program. During this stage the programming team acquire a great deal of

knowledge about the software domain such as requirements and business processes.

Two primary outcomes of this stage are software architecture and development team

knowledge.

• Evolution: The second stage of the SLC takes place once the first version of the software

is completed. The aim of this stage is to adopt the new requirements and changes in

the software environment.
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• Servicing: During this stage only small changes (patches) are possible. The primary

reason for moving from the evolution stage to the servicing stage is the loss of devel-

opment team knowledge, leading to loss of software architecture coherence.

• Phase-out: During this stage no more servicing will be performed, but the system is

still in production.

• Close-down: During this stage the system will be disconnected, and the users will be

directed to a new system.

This model can be extended (Figure 2.3) for multiple versions of the software system. The

developing team can create new branches of the system from existing source code leading to

major changes in functionality and architecture. After creating each branch, and its release

it will be stable (will not further evolve) and mostly serviced by minor enhancements and

bug fixes.

Initial Development

Evolution, version 1

Servicing, version 1

Phase-out, version 1

Close-down, version 1

Evolutionary Changes

Servicing Patches

Evolution, version 2

Servicing, version 2

Phase-out, version 2

Close-down, version 2

Evolutionary Changes

Servicing Patches

First running 
version

Evolution of 
new version

Evolution, version ...

Evolution of 
new version

Figure 2.3: Versioned Staged model for the software life cycle [158]. Used with permission.

The staged software life cycle conforms to Lehman’s laws of evolution by supporting continu-

ous changes (Law I) in evolution and servicing stages. The evolution stage often incorporates

major growth in software functionality (Law VI) which eventually leads to a new branch of

software, also the growth in the evolution stage often leads to increased complexity (Law II).
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Both the evolution and the servicing stages allow the feedback system where the development

process is influenced by external forces (Laws III, IV, V, and VIII). Finally the decline in

software quality (Law VII) happens in servicing and phase down stages before managers shut

the system down and move its users to a new version or alternative systems at close down

stage.

2.6 Change Propagation

As discussed in the previous section, E-Type software systems will be affected by continuous

changes in their life cycle. However, as typical software systems are composed of connected

parts, often change to one part of a system affects other parts, and leads to subsequent

changes. Such a phenomenon, known as change propagation or ripple effect3, can affect

software development projects and maintenance activities by leading to unforeseen extra

development costs. Thus, measuring the change propagation is of fundamental importance

for the SLC.

The first law of software evolution describes continuous changes in the life cycle of E-Type

systems. These changes and the potential change propagation can be used in various aspects

of software maintenance. Black [19] argues that given the progressive changes in a system,

change propagation measurements can be used to assess stability of the design and imple-

mentation. Also it can highlight highly volatile sections and candidate areas for restructuring

(refactoring).

The second law of software evolution explains that the system complexity will grow unless

a complexity control process is applied as part of the SLC. Complexity can be the result

of architectural dependencies, or logical relationships that may or may not be visible at the

source code level. These connections are often correlated with change propagation [179], and

measuring change propagation can lead to a better understanding of complexity [192, 18].

Maintainability is one aspect of software quality [87, 69], and complexity can be negatively

correlated with maintainability of a system [19]. Thus, complexity can lead to decrease in

software quality. Black [19] argues that complexity control in the software life cycle can make

a difference between survival or demise of the system.

3In the context of this thesis, for consistency we use the term change propagation instead of ripple effect.
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Software engineering and maintenance communities have tackled the change propagation and

growing software complexity for more than two decades. As a result, a number of design and

development methodologies have been introduced to mitigate change propagation such as ob-

ject oriented design [24], aspect oriented programming [101] and service oriented architecture

[52]. The key characteristics of these methodologies are reducing the number of software de-

pendencies, improving encapsulation and the separation of concerns [173]. However, even the

most well designed software systems will still face some degree of change propagation during

their evolution and maintenance. In the next section, we describe methods for measuring

and managing the change propagation phenomenon.

2.7 Impact Analysis

The interdependent nature of software system composition means that any change to one

software component often necessitates flow-on changes to other components. This effect is

known as change propagation or ripple effect [157]. Hassan and Holt [79] describe change

propagation as the central aspect of software development . When programmers change a

software element, like a function or a variable, they have to search for other related elements

and update them to avoid inconsistency. This is not a trivial task, and many software

bugs are created by programmers who failed to properly propagate the change. It has been

argued that the ill-effects of imperfect change propagation lead to the software ageing, and

cause software failures and unforeseen extra development costs [146]. Thus, measuring the

effects of change propagation plays an important role in the larger picture of the software

development life cycle [157, 193].

The activity of identifying what to modify to accomplish a change, or of identifying the po-

tential change propagation is impact analysis [3, 178, 153]. It is common to model change

propagation based on software dependencies. In the literature, several formal models of

change propagation and impact analysis have been explained. Luqi [125] presented a graph

model for impact analysis, based on components and evolutionary steps. The proposed model

uses a formal definition of indirect relationships between components. Rajlich [155, 156] in-

troduced a model for change propagation based on graph rewriting, which uses a sequence

of snapshots, with each snapshot representing a particular phase in the change propagation

process. Predicting change propagation using this model requires an understanding of de-
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Figure 2.4: Impact Analysis Cycle by Shawn Bohner and Robert Arnold [22]. Used with
permission.

pendencies between software elements such as classes and functions. Arnold and Bohner [22]

describe change impact analysis as a cycle (Figure 2.4) whereby a user, analyst, or program-

mer submits a change request for approval. If the change is approved, it will be passed for

impact analysis which might include analysis of the source code, design artefacts, or even test

materials. The result is a change map based on relationships between software elements. The

next stage is software change process where programmers change the software elements ac-

cording to the change map. This stage can lead to discovery of a new set of affected elements.

This cycle continues until the change requirements and the expected software quality [87] are

satisfied.

In the literature, we identified three major impact analysis approaches:

• Document-based approach: This approach relies on tracing dependencies in design arte-

facts. This approach is based on the assumption that a model of software dependencies

can be derived from design documents such as UML diagrams, and such a model can

be used for impact analysis.

• Code-based approach: This approach is based on tracing dependencies between system

25 (May 27, 2013)



CHAPTER 2. BACKGROUND

elements in the source codes.

• History-based approach: This approach uses the maintenance history to find the likeli-

hood of the change propagation between system elements.

In the next three sections we describe these approaches in detail, and provide a summary of

the related work.

2.7.1 Document-Based Impact Analysis

Tracing software dependencies based on the documented software model is a traditional

approach to impact analysis. Pioneer methodologies for impact analysis took the assumption

that the knowledge of software dependencies is available in the forms of design documents or

dependency graphs. They include the Prism’s process model of change management [126],

frameworks for impact analysis [3, 23, 21], formal models for impact analysis [125, 76, 155]

and a model for change propagation based on graph rewriting [155].

Model-Based Methods

It is common to model software systems using UML diagrams, and a number of impact

analysis methods focuses on tracing software dependencies based on UML diagrams. Change

propagation within UML models has been investigated in the areas of inconsistency resolu-

tion [122, 141, 20], automated impact analysis in UML models [28], and generating repair

plans for UML documents [46]. In addition, there is a direction of research in tracing de-

pendencies in design artefacts such as UML models using information retrieval techniques

[167, 123]. Another application of tracing dependencies in UML models is supporting change

propagation in agent-based systems [47, 45, 44].

Requirement-Based Methods

Tracing relationships between requirements, is another aspect of change propagation [74].

Hassine et al. [80] described a method for impact analysis at the requirement level. Goknil

et al. [73] proposed a change impact analysis method based on formalisation of relations
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in software requirements. Lee et al. [110] extended these methods to a goal-driven method

for managing requirements traceability and impact analysis. In addition, the traceability

between requirements, source code and other artefacts has been identified as a challenge in

software maintenance [38, 1]

Discussion

The document-based methods can perform well where there are recent and adequate design

documents. However, missing or outdated design documents is a common issue in enterprise

software environments. Often the initial design was not well documented, and the evolution

of the source code has not been reflected in the design documents, resulting in inadequate

documents about software dependencies. In such cases, the actual implemented software is

considered as the most reliable source of information about software functionalities. In the

next section, we discuss impact analysis methods based on the source code and software

implementation.

2.7.2 Code-Based Impact Analysis

In many software environments, the source code is the most reliable software artefact. Hence,

code-based analysis is one of the most investigated impact analysis approaches. In the liter-

ature, we identified five kinds of code-based analysis methods which can assist in identifying

the impact of software changes. These methods are classified as static dependency analysis,

program slicing, clone detection, coupling analysis and dynamic analysis.

Static Dependancy Analysis

Tracing dependencies in the source code has been part of software maintenance from the

early stages [185]. After the invention of object-oriented design, the code analysis methods

have been extended to incorporate the new relations such as inheritance and polymorphism.

Kung et al. [106] classified the different kinds of change types in object-oriented classes and

their impacts. Later researchers extended this classification to a comprehensive list of change

types and automatic methods for estimating change impact [120, 109, 171, 35]. Also there
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is a trend of research in detecting hidden dependencies in the source code based on abstract

system dependency graph (ASDG) [196, 179].

Program Slicing

One of the most well-known code analysis methods is program slicing, which has been ex-

haustively explored by many researchers, and extended to many programming paradigms

[16, 187, 190, 169]. Program slicing was initially introduced by Weiser [182, 183] with the

aim of assisting programmers in program understanding and debugging.

Program slicing has been defined as a decomposition technique that omits unrelated program

components to a select software element (referred to as a slicing criterion) [60]. This method

has been used for software maintenance [62], and there are number of empirical studies in

this area [15, 14, 17]

Clone Detection

It is common for developers copy and paste code fragments from one module to the other

one. As a result, there are sections of code that are similar. These sections are called code

clones. There are two kinds if similarity between code fragments: textual similarity (Type 1

to 3) [11], and functional similarity (Type 4) [55]. Roy and Cordy [165] describe these types

as follows:

Type 1 Identical code fragments except for variations in white space, layout and comments.

Type 2 Syntactically identical fragments except for variations in identifiers, literals, types,

white space, layout and comments.

Type 3 Copied fragments with further modifications such as changed, added or removed

statements.

Type 4 Code fragments that perform the same computation but are implemented syntac-

tically differently.

Previous research shows that a significant fraction (between 7% and 23%) of the code in a

software system has been cloned [164]. These clones can lead to problems in software main-
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tenance, as inconsistent change to the cloned codes results in unexpected software behaviour

[92]. Hence, detecting these code clones has an important role in impact analysis.

There are four categories of clone detection techniques [165]: textual, lexical, syntactic, and

semantic. Textual methods apply little transformation on the source code, and in most cases

use the raw source code for comparison [89, 90, 50, 129]. Lexical methods are based on trans-

forming the code to a set of tokens and applying lexical analysis [7, 98]. Syntactic methods

convert the source code to the abstract syntax tree and use tree matching or structural met-

rics to find the clones [8, 88]. Semantic methods use static program analysis or a dependency

graph, and find clones by searching for isomorphic subgraphs [103, 104]

Coupling Analysis

Coupling metrics show the degree of semantic or syntactic relationships between software

elements like classes. Structural coupling in object-oriented systems has received notable

attention in the literature. Briand et al. classified these metrics within the unified framework

for object-oriented systems [26]. Metrics like the Coupling Between Objects (CBO) or the

CBO′ [40] consider the inheritance between classes to measure the coupling among software

elements. Other metrics like the Response For Class (RFC) and the RFC∞ [39] consider

indirect relations among classes based on a level of indirection in the invocation chain of

the class methods. There are empirical studies which demonstrate the application of these

metrics in impact analysis [29, 186, 151, 68].

Dynamic Analysis

The static coupling between object-oriented elements has been extensively studied in the

literature. However, because of polymorphism, late binding and hidden dependencies the

static coupling metrics do not perfectly reflect the coupling between classes and objects.

Intially dynamic object-oriented coupling measures were proposed by Yacoub et al. [191].

Arisholm et al. [2] extended this approach to dynamic coupling metric based on analysis of

runtime objects’ interactions. They demonstrated that dynamic coupling captures different

properties to static coupling measurements.

There are automated tools and techniques for dynamic impact analysis including Cover-
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ageImpact [144], PathImpact [107, 108] and online impact analysis [25]. These methods

are based on counting the number of methods before and after execution of a method, and

slicing the execution trace to identify the impact of the change to the method. Orso et al.

[145] performed an empirical comparison between these methods and their results show that

PathImpact is more precise, while CoverageImpact is less computationally expensive.

A recent direction of research is focused on reducing the cost and improving the accuracy

of dynamic impact analysis by utilising the special object-oriented characteristics such as

inheritance [83, 84, 85].

Cornelissen et al. [42] provided a comprehensive survey of dynamic analysis methods and

their application in impact analysis and program comprehension.

Discussion

The code analysis methods can be automated, and in most cases, their outcome is a highly

accurate set of dependencies between code elements. However, there are three obstacles to

implement these methods in enterprise environments:

• Not all of these dependencies lead to change propagation [65]. Therefore, other com-

plementary methods [137, 197] are required to filter out irrelevant dependencies and

improve the precision of impact analysis results.

• These methods are difficult to apply to systems with hybrid source code (e.g., parts of

the system are in C++ and parts in Perl), or legacy systems with missing source code.

• These methods typically demand high level of technical skills and tools. Such require-

ments limit the users of these methods to software engineers and skilled developers, and

discourage collaboration of domain experts (e.g., consultants and managers) in impact

analysis.

In summary, code-based dependency analysis techniques are a strong part of software en-

gineering and development; however, complementary methods are required to achieve an

effective impact analysis approach in software maintenance. In the next section, we discuss

an alternative impact analysis method based on maintenance history, and independent from

tracing dependencies from code or design documents.
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2.7.3 History-based Impact Analysis

An alternative approach to dependency analysis is mining co-change coupling from software

repository. This approach is based on the hypothesis that the frequency of change propa-

gation between software elements in the past indicates the likelihood of change propagation

between them in future.

Several tools and methods have been proposed to assist programmers in maintenance activi-

ties by using maintenance history records. Mockus and Votta [138] designed a tool to classify

maintenance activities based on the description of changes, aiming to provide better under-

standing about why the changes were performed. Chen et al. [36] introduced CVSSearch, a

tool which enables programmers to search for code fragments based on comments recorded

in source code repository. Cubranic and Murphy [43] introduced Hipikat, a tool which uses

the maintenance history records to provide a group memory for newcomers to software de-

velopment projects. Hassan and Holt [78] proposed annotation of architectural dependencies

with information mined from source control system, aiming to provide better understanding

of architectural dependencies. German et al. [66] introduced a hybrid approach to identify

the impact of prior code changes and if they caused any software failure. Their method is

based on annotating the functions’ dependency graph using the history of code changes.

Kagdi et al. [93] provided a comprehensive survey of mining software repository (MSR) ap-

proaches, and introduced a multi dimensional taxonomy based on information sources, pur-

pose, methodology and evaluation methods. From their survey, we can identify the following

related approaches to change propagation and impact analysis: logical coupling, evolutionary

coupling, heuristics for predicting change propagation, and change patterns.

Logical Coupling

In a trilogy on software release history analysis Gall et al. [59, 57, 58] sought to discover

the semantic relationships between classes based on source code version history. They called

such relationships logical coupling. This approach is further extended based on using bug

tracking reports as a source of maintenance history [53].
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Evolutionary Coupling

Zimmerman et al. [198] demonstrated how to perform fine-grained analysis on CVS reposi-

tories, and discover co-change relationships between source code elements. They called such

a relationship “Evolutionary Coupling”, and presented a tool support called Rose [199, 200].

The aim of the provided tool is to assist programmers in predicting change propagation

between source code elements based on maintenance history. The Rose prototype was evalu-

ated against eight open source systems where it correctly predicted 26% of further files to be

changed, and 15% of the functions or variables. A similar approach has been taken by Ying

et al. [194, 195] for co-change coupling analysis. They evaluated their method against Eclipse

and Mozilla, and demonstrated that valuable dependencies can be derived from co-change

coupling which may not be derived from other analysis methods.

Heuristics for Predicting Change Propagation

Hassan and Holt [77] proposed a number of heuristics for predicting change propagation.

They proposed that change propagation can be predicted based on history-based co-change

records, code structure relations, code layout and developer data. The performance of these

heuristics is evaluated against five open source systems, and the outcome shows that the best

precision and recall could be derived from history-based co-change coupling4. They argue

that “Our results cast doubt on the effectiveness of code structures such as call graphs as

good indicators for change propagation” [77].

In more recent papers, heuristics have been used to visualise and understand development

stages [67], to create a meta-model for software evolution [70], and identify code owner-

ship [81].

Change Patterns

Kagdi et al. [96, 95] applied sequential-pattern mining to discover files that are frequently

changed together. Their method is distinguished from evolutionary coupling [198] by extend-

4In this thesis, the term “history-based co-change coupling” identifies a wide range of research on the coupling
metrics based on software maintenance history while “evolutionary coupling” specifically refers to the coupling
metric derived from fine-grained analysis of version control repositories (Zimmerman et al. [198] and Ying et
al. [194, 195]).
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ing the analysis of co-change coupling beyond source code elements. Their method discover

the links between source code and other types of artefacts using the ordering information in

which files were changed in a change-set (this might not recorded in source code repositories).

In other related directions of research, the sequential-pattern mining method has been used

to visualise the hierarchical order of changes in software elements [32, 184], report API-usage

patterns [189], identify code ownership [82] and detect patterns of user activities [51].

Discussion

The history-based analysis methods are typically well-automated and have low execution

costs. However, there are obstacles to implement these methods in typical software environ-

ments: Firstly, specific technical knowledge is required to implement these methods and tools.

This knowledge is not commonly available to developers of small to medium software systems

yet. Secondly, in some software environments, the maintenance history is inaccessible such

as in recently developed systems. Finally, the history-based methods are not as accurate as

document-based and code-based methods. There are recent research efforts in the area of

improving the accuracy of history-based impact analysis including blending conceptual and

evolutionary coupling [94] and using variable granularity [149].

In summary, software maintenance history is a valuable source of information about software

evolution and change propagation; however, given the state of the art in this area, the

history-based methods might be expensive or impractical to implement in some software

environments such as recently developed systems.

2.8 Domain Knowledge and Software Maintenance

This proposed approach in this thesis is based on using domain knowledge for change impact

analysis. This section discusses the related domain analysis approaches, and describes the

terminology in this area:

Domain Analysis has been defined as the activity of identifying the objects and operations

of similar systems in a particular domain [140]. Domain analysis is distinguished from

system analysis, in that it is not concerned with functions of a specific system. Instead,
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it is concerned with similar functions and behaviours which occur in all systems in a

domain.

Domain Model is defined as the definition of the functions, objects, data, and relationships

in a domain [99].

Domain Expert provides information about the domain model of a system, and supports

domain analysis [99, 135].

Knowledge of program structure and functionality is vital for modifying software systems

[133, 170]. All activities by which knowledge is gained about a program is called program

understanding, and reverse engineering is a systematic form of program understanding which

provides an abstract view of the system [166]. Such an abstract view can assist maintenance

activities such as impact analysis.

As we discussed in Section 2.3, the purpose of E-Type systems is to address a problem in a

domain, and domain knowledge is critical for understanding the design and implementation

of these systems. Most of the program understanding methods are based on source code

analysis; however, Brooks[30] connected the program understanding and domain knowledge

for the first time in 1983. Few years later, Letovsky et al. [116] elaborated this idea and

suggest that programmers must understand the intention behind code in order to carry out

maintenance on it. Such understanding can be acquired from code annotation and comments

[180], design artefacts [130], or from domain experts.

In 1994, Lindvall and Sandahl [121] conducted a study on an industrial software project to

describe how impact analysis is performed by professional software engineers. They observed

that in practice software engineers prefer to interview domain experts rather than consult

documentation in order to trace objects that need to be changed. Their findings suggest that

dependency analysis methods based on documentation, models and accompanying tools, are

not the preferred approaches to impact analysis. Since then, domain knowledge has been in-

corporated into reverse engineering and program understanding by a number of researchers.

Petrenko et al. studied how programmers collect partial knowledge during software compre-

hension and later use it to guide the concept location process [150]. Michail [136] discussed

the possibilities of using the application GUI to guide browsing and searching of its source

code. Rugaber [166] showed how domain knowledge can be useful in program compression.

Riebisch [162] introduced feature models based on domain analysis to supporting software
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evolution. Feature modelling was initially developed to structure domain properties from

customers’ point of view [147].

Mapping domain concepts to source code has been recognised as an important task in software

maintenance by number of researchers [13, 154, 131]. There is a direction of research in

concept location by mapping the source code to the domain entities [160, 159, 161]. User

cognitive abilities and their understanding about a system has been used to develop reverse

engineering tools and methods [177, 175, 176], later this method has been proposed to support

software change processes [188].

These methods mainly aim to assist programmers in activities of understanding and chang-

ing the source code. Since, the primary objective of these methods is to incorporate domain

knowledge in to the development environment, they are difficult to use by consultants, man-

agers, or expert users who have little knowledge about the source code. In contrast, the

proposed method in this thesis is independent from software implementation, and aimed to

be usable by expert users who might have little or no skills in software engineering.

2.9 Summary

In this chapter, we described the background and the work related to this thesis. This thesis

contributes to the practice of impact analysis in software maintenance, and introduces a novel

impact analysis method based on domain information. As such, the first four sections pro-

vided an overview of software maintenance, described how software evolution is an inevitable

part of software maintenance, and how various software systems evolve. In addition, the laws

of software evolution have been described and how they relate to the software life cycle.

The phenomenon of change propagation is introduced, and we described how it challenges

software maintainers to estimate the cost and impact of software changes. We provided an

overview of impact analysis approaches including document-based, code-based and history-

based methods. Moreover, we discussed the significant impact analysis methods, their ad-

vantages and their drawbacks. Finally, an overview of domain analysis methods is presented,

and the role of domain knowledge in software maintenance is described. In summary, we de-

scribed the problem of change propagation that is addressed in this thesis, related approaches

in the literature, and how we distinguish our proposed method from the related work.
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Domain-Based Coupling

Any program is a model of a model within a theory of a model of an abstraction

of some portion of the world or of some universe of discourse.

Programs life cycles and laws of software evolution[114]

M.M. Lehman

This chapter introduces domain-based coupling as a measure of semantic similarity between

software user interface components. We hypothesise that such a coupling measure can ap-

proximate software dependencies in the source code and the database, and it can be used to

predict change propagation.

As we discussed in Section 2.3, the E-Type software systems (known as evolving type) are

derived from domains where requirements are uncertain, and are likely to change during

the software’s lifetime [114]. Most enterprise systems belong to this category. Therefore,

for these systems the domain experts are the primary source of information for evaluating

requirements [41]. These domain experts drive software evolution by continuously asking for

new functionality or requesting changes to existing ones. Unfortunately, domain experts are

in a poor position to estimate the impact of the changes they request since they typically do

not have inside knowledge of the internal dependencies of the software system.

Enterprise software systems are constructed to model business domains [114]. It is reasonable

to expect that real-world dependencies are therefore reflected in the software itself. This

chapter reports on two case studies which demonstrate the processes of domain analysis,
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measuring the domain-based coupling, and visualising such a coupling as weighted graphs.

In addition, these studies describe how the derived graphs approximate the dependencies in

the source code.

This approach is applicable to a subset of E-Type software which includes the data driven

information system that provides most of their functionality through a number of user inter-

face components, such as business applications, and management information systems (MIS).

We apply the term information systems to such systems. In Section 3.6, we will further dis-

cuss the applicability of this approach to different software categories and types of software

changes.

The rest of this chapter is organised as follows: Section Section 3.1 introduces a simple

web application that we use for the demonstration of the proposed methodology. Section

Section 3.2 provides the background on concepts and notations. We present the domain-

based coupling analysis process in section Section 3.3. In Section 3.4 we demonstrate how

this process might work on a simple web application, and we report on the results of a

case study on an enterprise web application in section Section 3.5. Section 3.6 discusses the

applicability of the proposed approach to various system types. Section 3.7 describes the

further topics of investigation, and finally Section 3.8 summarises this chapter.

3.1 Example Website

In order to demonstrate how our hypothesis might work, we looked for an example of a

software system where we could apply our approach (Figure 3.1). We wanted an example

which typifies enterprise applications, but is smaller and hence more easily understandable

and explainable. We chose a simple web application designed to promote a health club, and

allow members to join and book activities online.

In this thesis, we refer to this application as the example website, and use it to explain our

model, and describe the steps for deriving domain-based coupling between user interface

components.
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Figure 3.1: Example Website

3.2 Basic Concepts and Notation

In our work we use the following terminology:

• A domain variable is a variable unit of data which has a clear identity at the domain

level.

• A domain function provides proactive or reactive domain-level behaviour of the system

which includes at least one domain variable as an input or output.

• A user interface component (UIC) is a system component directly interacting with the

system domain user and containing one or more domain functions.

For example, in a business software system, UICs are the software data entry forms. Each

form provides one or more functions to the end user, and the data fields visible on the forms

are the domain variables.
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3.2.1 Notation

In this thesis, we use standard notation for binary relations. For R,Q ⊆ A × A, we denote

by R.Q their composition, i.e., xR.Qy iff ∃z : xRz ∧ zQy. R−1 denotes the inverse of R, and

ID indicates the identity relation. Moreover we abbreviate x.R = {y|xRy}.

We use graph theory in our work, denoting by G = (V,E, l) the graph G with vertices V ,

edges E ⊆ V × V and labelling l : E → L for some label set L. The edge set in a graph

obviously defines a binary relation. It is common in computer science that any finite set X of

pair-wise disjoint relations R : A×A on some set A can be equivalently represented by a graph

with vertices A and directed edges E =
⋃
R∈X R, the union of the given relations. This is

achieved by naming relations and labelling the edges of the graph with corresponding relation

names. More formally, let L be a finite set of relation labels and lR ∈ L the name of R for any

R ∈ X. Then we define REL(A,X) as the labelled directed graph REL(A,X) = (V,E, l)

with V = A,E =
⋃
R∈X R such that

(v, v′) ∈ E and l(v, v′) = lR iff vRv′ for some R ∈ X.

We also call REL(A,X) the relation graph of X over A. We note that relation application

(dot notation in x.R applying R to an object a ∈ A) and composition (dot notation R.Q)

corresponds to path chasing in the relation graph.

3.2.2 Basic Concepts

The three basic concepts of our work are modelled by binary relations as follows:

1. Domain variables are simply modelled by a finite set V , called variable symbols.

2. Domain functionalities are modelled by a finite set F , so-called function symbols. The

binary relations REF and USE ⊆ F × V represent elementary dependencies between

functions and variables. For convenience, we define REF ⊆ USE and interpret REF

as input variables (read set) and USE as the input-output variables (read and write

set). Because we are only interested in domain functionalities (interacting with an

external user or external software) we assume moreover that f.USE 6= ∅ for all f ∈ F ,

i.e., a domain function uses one or more variables.
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3. User Interface Components (UICs) are modeled by a finite set C called the component

symbols. The associated function symbols are represented by the relationHAS ⊆ C×F .

We require that c.HAS 6= ∅ for all c ∈ C, i.e., a component has one or more functions.

Example

In the example website, the LoginPage is a UIC, and it has the following functions: Login-

Page.HAS = {authenticate, accept, reject}. Informally, authenticate reads the name and

password combination and excludes pathological cases such as empty strings entered by the

user. The system then determines whether to accept or reject and produces the status Au-

thenticationStatus message. More formally:

authenticate.USE = authenticate.REF= accept.REF= reject.REF = {UserName, Password},
and accept.USE = reject.USE = accept.REF ∪ {AuthenticationStatus}.

Convention 1 For the rest of the thesis, and without loss of generality, we assume the

system under analysis (SUA) is fixed, that is, V , F and C are fixed and so are their REF ,

USE and HAS relations. We also call the graph REL(V ∪F ∪C, {REF,USE\REF,HAS})
the behavioural model for the given SUA.

Definition 1 We define the conceptual connection relation CNC ⊆ C × C by

CNC = HAS.USE.USE−1HAS−1

The CNC relations shows how user interface components are connected by sharing domain

variables. CNC is reflexive, and since functions have a non empty variable set, the following

corollary follows by definition.

Definition 2 We call REL(C, {CNC\ID}) the conceptual connection graph of the SUA.

Corollary 1 Two UICs c, c′ ∈ C are conceptually connected iff they are adjacent in the

conceptual connection graph.
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Identify Domain 
Variables Identify UICs

Create Weighted 
Graphs

Figure 3.2: Domain-based Coupling Analysis Process

Example

In the example website, two UICs ContactPage and LoginPage are conceptually connected.

LoginPage.HAS.USE = {UserName,Password}

ContactPage.HAS.USE = {UserName,Age,Query,Email}

ContactPage.HAS.USE ∩ LoginPage.HAS.USE = {UserName} 6= ∅

Definition 3 A weighted graph is a labelled graph G = (C,CNC\ID, f) where f is a

labelling function f : E → [0..1] assigning probabilities to edges.

We use the definition of the weighted graph in the next section to describe how to create

domain-based coupling graph for a SUA.

3.3 Methodology

In this section, we explain a process to analyse the behavioural model of an information

system, and create weighted graphs from CNC relations. Figure 3.2 illustrates the process
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including three stages: identifying domain variables, identifying UICs, and creating weighted

graphs. As illustrated in Figure 3.2 identifying domain variables and UICs are prerequisite

for creating the weighted graph. These stages are described as follows.

3.3.1 Identify Domain Variables

The aim of this stage is to identify the set of domain variables which are employed as part of

the user interaction with the system. As defined in section 3.2, domain variables are variable

units of data which have a clear identity at the domain level. In order to establish whether

or not a particular data element is a domain variable, the answers to the following questions

should be all true.

1. Is it variable data? An example of variable data in a business application might be

the content of a data field on a screen (form), which can change based on the state

of the application, business rules or constraints, e.g. Account Code, User Name, or

User Address. As opposed to this, a footnote or tool-tip on the screen might provide

non-variable data elements which do not change for a given version of the application.

2. Is the data understandable purely with domain knowledge? The answer to this question

will indicate whether a domain user who has no familiarity with the architecture and

source code of the given application can still understand the meaning and purpose of

the given data within the domain.

In the example website, the registration form (Figure 3.3) contains the following domain

variables: First Name, Second Name, Age, Gender, Email, Password, Address, Membership

Type, Credit Card Number, Credit Card Expiry Date, and Membership Duration. This

information is understandable without any knowledge of the specific software functionality

and architecture.

3.3.2 Identify UICs

The aim of this stage is to identify the system’s UICs. In order for a system component to

be a UIC, the answer to the following questions should be all true:
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Figure 3.3: Example Website: Registration Form in Join Page

1. Is this component visible to the domain user?

2. Does this component provide at least one domain function?

To identify UICs, knowledge of at least some of the system domain functionality is

required. For a system function to be a domain function, the answer to the following

questions should be true:

2.a Does the function/feature change the external behaviour or property of the system

at the domain level? This question helps to separate system functions from system

non-functional properties such as reliability and visual characteristics (e.g. static

background colour).

2.b Does the given system function have at least one domain variable as part of its

input or output? If the system function does not have any impact on domain

variables, or is not affected by their value, then it is not a domain function, e.g. a

software license control is not a domain function.
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In the example website, LoginPage (Figure 3.1) and Join Page (Figure 3.3) are UICs.

3.3.3 Create Weighted Graphs

The aim of this stage is to create weighted graphs (Definition 3) which represent the strength

of the relationship between UICs based on conceptual connections between UICs and domain

variables.

Creation of weighted graphs is achieved as follows. Firstly, the HAS and USE relations are

determined based on domain knowledge. The HAS and USE relations and the derived CNC

relations are all compactly capturable in a dependency matrix defined as follows. Secondly,

the weighted graphs is automatically derived from the captured dependency matrix.

Definition 4 The dependency matrix M of a SUA is a matrix Mc,v of true/false values

where for c ∈ C and v ∈ V ,

Mc,v = true : v ∈ c.HAS.USE

Mc,v = false : v /∈ c.HAS.USE

Domain variables are the inputs and outputs of the domain functions; hence, where two UICs

have common domain variables, this suggests the UICs have related domain functionality, and

there might be some dependencies at the source code level which lead to change propagation.

For example, two UICs with a lot of common domain variables may extend a common parent

class, and if a software change requires alteration of the parent class, it will automatically

alter the behaviour of other child classes.

The Domain-Based Coupling between two components is derived from shared domain vari-

ables, based on the following measurements:

Definition 5 Number of common variables among two UICs is modelled by the function

ϑ : C × C → R where

ϑ(c, c′) = |c.HAS .USE ∩ c′.HAS .USE |

Note that the definition of common domain variables is symmetric, i.e., ϑ(c, c′) = ϑ(c′, c).
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Based on the asymmetric and symmetric domain-based coupling and definition Definition 3,

we derive two weighted graphs as follows:

Definition 6 Asymmetric domain-based coupling graph of a SUA is the asymmetric weighted

graph Ga = (C,CNC\ID, ω) where coupling weight function ωa : C × C → [0..1] is

ωa(c, c
′) =

ϑ(c, c′)

|c.HAS .USE |

Definition 7 Symmetric domain-based coupling graph of a SUA is the symmetric weighted

graph G = (C,CNC\ID, ω) where coupling weight function ω : C × C → [0..1] is

ω(c, c′) =
ϑ(c, c′)

|c.HAS .USE ∪ c′.HAS .USE |

Note that by definition, (c, c′) is an edge in these graphs iff c CNC c′ and c 6= c′. We use

these graphs to visualise the conceptual connections between UICs.

Example

In the example website, the weight of the link between ContactPage and LoginPage is calcu-

lated as follows, where, as noted earlier, LoginPage.HAS.USE={UserName,Password}, the

intersection of ContactPage.HAS.USE and LoginPage.HAS.USE is just {UserName}, and the

union is {UserName, Password, Age, Query, Email}, therefore:

ωa(LoginPage,ContactPage) =
1

2
= 0.5 ω(LoginPage,ContactPage) =

1

5
= 0.2

For a large SUA, the number of variables and functions may be large, and so the number of

dependencies may not only be large but also dependencies between large-scale components

of similar size (number of function points) may vary significantly in the number of domain

variables shared. It turns out that it is practically very useful to weight dependencies by

their level of sharing. A threshold λ can then be used to select relevant dependencies by their

weight w > λ only.
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3.3.4 Visualisation

The aims of visualising the weighted graphs are: firstly to achieve a better understanding

of domain-based coupling between pairs of UICs, and secondly to identify clusters of UICs

based on domain-based coupling which can lead to change propagation.

We visualise the asymmetric graph using Dot, a utility tool, part of a well-known graph

visualisation toolset called Graphviz [75]. Dot uses a four stage hierarchical graph drawing

algorithm, based on the work of Gansner et al [64]. It breaks any cycles which occur in the

input graph by reversing certain edges, then it ranks nodes and orders nodes inside each

rank to avoid crossing, finally it positions nodes and routes edge splines [63]. The result is a

directed graph with a minimum number of crossed edges.

Whilst the asymmetric graph is informative about individual UIC pairs, we use the symmetric

graph to identify clusters of UICs paired by strong domain-based coupling. It is common to

visualise a weighted graph as a spring graph, by constructing a physical model and running

an iterative solver to find a low-energy layout. We use the Neato utility which is part of

Graphviz. Neato uses an approach proposed by Kamada and Kawai [97] by placing a spring

between each pair of vertices, and achieves a pleasing layout by minimising the energy of the

spring system [143]. In our model the distance between vertices in the graph is calculated as

follows:

Definition 8 The ideal distance between two vertices is

d(v, v′) =
k

w(v′, v)

where k is a constant for the given graph, and w is the symmetric domain-based coupling.

Example

In the example website, Join Page, Login Page and Membership Page are the three UICs and

the vertices of the weighted graphs, denoted by v1, v2, v3. Tables 3.1 shows the domain-based

coupling values between these vertices.

Figure 3.4 visualises the relations between these vertices based on asymmetric weight function
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v1 v2 v3

v1 0.1 0.1

v2 0.18 0.10

v3 0.91 0.50

(a) wa

v1 v2 v3

v1
v2 0.18

v3 0.91 0.09

(b) w

Legend: v1: Join Page , v2: Login Page, v3: Membership Page

Table 3.1: Example Domain-based Coupling Values

(Table 3.1a). In this graph the distances between vertices do not represent the weight of edges,

rather, they are aimed to improve graph presentation.

V1

V2

100%

V3

100%

18%

10%

91%

50%

v1

v2

v3

Legend: v1: Join Page , v2: Login Page, v3: Membership Page

Figure 3.4: Example Asymmetric Weighted Graph

Figure 3.5 visualises the symmetric weigh function (Table 3.1b) between these vertices where

the distance between them are measured as:

d(v1, v2) =
1

0.18
d(v1, v3) =

1

0.91
d(v2, v3) =

1

0.09

In the next section, we use the example website to demonstrate how our methodology can be

used to derived the asymmetric and symmetric weighted graphs from a web-based software

application.
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v1

v2

v3

Legend: v1: Join Page , v2: Login Page, v3: Membership Page

Figure 3.5: Symmetric Weighted Graph Sample

3.4 Case Study: Example Website

In this section, we use the example website (Section 3.1) to provide a detailed demonstration

of how the proposed methodology might work on an information system.1. Given the sim-

plicity of the SUA, we explain the processes in detail including identifying domain variables

and UICs, and creating the weighted graphs. Moreover, we compare the derived graphs with

the dependencies in the source code.

Title Description

UIC1 Activities Provides a list of current activities in the club.
UIC2 Contact us Provides a form for submit a request or a question.
UIC3 Delete Account Enable current users to delete their account.
UIC4 Join Provides a form for joining the club.
UIC5 Login Authenticate the user.
UIC6 Membership Provides account information.

Table 3.2: Example Website UICs

1 This is a limited study, and it does not aim to equate the accuracy of our approach. In chapters 4 & 5, we
will present large scale case studies which evaluate the efficiency and accuracy of the proposed methodology.
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Domain Variable UIC1 UIC2 UIC3 UIC4 UIC5 UIC6

ActivityDate true false false false false false
ActivityDay true false false false false false
ActivityInstructor true false false false false false
ActivityName true false false false false false
ActivityRemainedPlace true false false false false false
Address false false true true false true
Age false true true true false true
CreditCardExpiryDate false false true true false true
CreditCardNumber false false true true false true
Email false true true true true true
FirstName false false true true false true
Gender false false true true false true
MembershipDuration false false true true false true
MembershipType false false true true false true
Password false false true true true false
Query false true false false false false
SecondName false false true true false true
UserName true true false false false false

Table 3.3: Example Website: Dependency Matrix

3.4.1 Domain Analysis

We had three people2 independently analysing the web application based only on domain

information, primarily the user interfaces, i.e, the website architecture was not made available

to them. Two people had the role of typical domain users with a superficial understanding of

system functionality, and one had the role of a domain expert. The domain expert studied the

system specification document which describes system features and functionality (excluding

implementation data).

The domain expert and both domain users created a list of UICs, then listed domain variables

related to UICs by the HAS.USE relationship. The results suggest that the accuracy of

the derived relationship model is highly dependent on domain users’ knowledge about the

system functionality. We observed the following difficulties in the domain analysis: Firstly,

domain users did not identify all UICs, and they only reported on UICs which are listed

2People who participated this case study had the computer science background, but they have not seen this
website before the case study.
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UIC1 UIC2 UIC3 UIC4 UIC5 UIC6

UIC1

UIC2 11%

UIC3 0% 15%

UIC4 0% 15% 100%

UIC5 0% 20% 18% 18%

UIC6 0% 17% 91% 91% 9%

(a) Symmetric Graph

UIC1 UIC2 UIC3 UIC4 UIC5 UIC6

UIC1 25% 0% 0% 0% 0%

UIC2 17% 18% 18% 50% 20%

UIC3 0% 50% 100% 100% 100%

UIC4 0% 50% 100% 100% 100%

UIC5 0% 25% 18% 18% 10%

UIC6 0% 50% 91% 91% 50%

(b) Asymmetric Graph

Table 3.4: Example Website: Edge labels of weighted graphs

in the website main menu. However, there are some UICs in the system which could only

be accessed through a button on a specific page, such as the lookup screens. Secondly, the

website has two access modes: guest users and members. Some UICs and domain variables

are only visible to the members. The domain users ignored the member mode, and only

recorded the ones that were accessible to guest users. In comparison, the domain expert who

studied the software functional specification identified all UICs and related domain variables.

The website includes ten web pages. There are four web pages which did not qualify as

UICs: Home, About, Related Sites and Site Map. The first three web pages contain only

static contents, and the Site Map provides only non domain related data (addresses and

links to other websites). The six other web pages have domain variables, and provide the

functionalities of querying or editing domain information. Hence the domain expert identified

them as UICs. Table 3.2 shows the UICs in the example website. Table 3.3 shows the

dependency matrix derived by the domain expert. The rows are domain variables, and

columns are UICs. Each cell has a value of true or false that identifies whether there is a

relationship between the corresponding domain variable and the UIC.

In the next step, an automated script is used to create the asymmetric and symmetric
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UIC1

UIC2

17%25%

UIC3

50%

UIC4

50%

UIC5

25% UIC6

50%

18%

100%

18%

91%

18%

100%

18%

91%

50%

100%

100%

50%

20%

100%

100%

10%

(a) Asymmetric Graph

UIC1

UIC2

11%

UIC3

15%

UIC4

15%

UIC5

20%

UIC6

17%

100%

18%

91%

18%

91%

9%

(b) Symmetric Graph

Figure 3.6: Example Website: Weighted Graphs
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weighted graphs. Figure 3.6 illustrates the graphs. Each node represents a UIC, and each edge

shows a CNC relationship (Definition 1) between two UICs, labelled with ωa and ω (coupling

weight functions) for the asymmetric and symmetric graphs respectively. For improving

readability, the edge labels are listed in Table 3.4.

The asymmetric weighted graph (Figure 3.6a) includes six edges with strong coupling of

ωa =100%. This implies that all domain variables involved in the source UIC exist in the

contents of the target UIC. Such a strong coupling value suggests that the functionality of the

target UIC might be dependent upon the source UIC. In contrast, there are edges with weak

coupling values including nine edges which are labelled with ωa <30%. The weak coupling

value is an indication that the majority of domain variables in the source UIC do not exist

in the contents of the target UIC, hence we can not conclude that any dependency exists

between them based on domain-based coupling. Later in Chapter 5, we demonstrate how

the asymmetric coupling can be used to predict change propagation.

While the asymmetric weighted graph shows the detailed coupling values between pairs of

UICs, the symmetric weighted graph can be used to identify clusters of UICs based on their

domain-level commonality. These clusters can identify architectural dependencies which

might lead to change propagation. For example, in the symmetric graph presented in Fig-

ure 3.6b, three components UIC3, UIC4, and UIC6 are the most tightly coupled UICs which

formed a cluster. In contrast, UIC1 is loosely coupled to others and this might indicate that

there is no architectural dependency between their source code. In the next section, we will

demonstrate how these clusters in the graph represent source code dependencies.

3.4.2 Comparison with Architectural Dependencies

Now that we have completed domain-based coupling and created weighted graphs, we aim to

analyse website source code and discover if the weighted graphs can lead us to architectural

dependencies. Figure 3.7 shows the architecture of the website. Each component is marked

by its name, UICs are tagged by [UICi], code libraries are identified by white background,

and data sources are represented by the name of XML file which holds the data.

The website has been developed using PHP including both web pages and libraries. The

UICs recorded by the domain expert are pages that read and write some domain variables

into one of the three XML data files. In addition, there are four web pages which are not
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Home

Links.xml

Site Map

Delete
Account
[UIC3]

Users.xml
Join

[UIC4]

Login
[UIC5]

Validation
Library

Membership
Details
[UIC6]

WFT
Library

Contact us
[UIC2]

Activities
[UIC1]

Activities.xml

About us
Related

Sites

Legend:

Dependency
PHP

web page
LibraryStorage

Figure 3.7: Example Website Architecture

qualified as UICs including Home, Site Map, Related Sites and About us. Reviewing the

source code behind these web pages showed that they only contain static HTML contents

with no dependency or connections to any other files. Changing these four web pages highly

unlikely to affect other components.

For the six UICs in the website, we compared the dependencies in the source code and

the domain-based coupling graphs. Table 3.5 presents a comparison between source code

dependencies (Figure 3.7) and the symmetric domain-based coupling graph (Figure 3.6b).

The third column indicates the architectural dependencies, if any, between two UICs and the

forth column shows the coupling weight between them.

The weighted graph shows eleven CNC relationships between UICs, but only nine of them

match the architecture connections, i.e., there were two false positives and two false negatives.

In the false positive cases, web pages share domain variables which have the same name on
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the screen but are implemented as different data fields. This is a discrepancy between the

system specification and the actual implementation in the source code. In both false negative

cases, the web site pages are connected by referencing a utility library, although there is no

common functionality or domain variable visible to the domain user. Both false positive

results are located on the light edges (w < 16%) which suggests a rough correlation between

the weight of the graph edge and whether there is an architecture connection in the source

code. In addition there are three edges with (w > 80%) between UICs which are related in

the source code as they read and write all fields of the same data source (User.XML).

Component 1 Component 2 Architecture Graph False
dependency edge labels results

UIC1 (Activities) UIC3 (DeleteAccount) 0.00
UIC1 (Activities) UIC4 (Join) Yes [W] 0.00 FN
UIC1 (Activities) UIC5 (Login) 0.00
UIC1 (Activities) UIC6 (Membership Details) Yes [W] 0.00 FN
UIC1 (Activities) UIC2 (Contact us) 0.08 FP
UIC5 (Login) UIC6 (Membership Details) Yes [X] 0.09
UIC2 (Contact us) UIC3 (DeleteAccount) 0.15 FP
UIC2 (Contact us) UIC4 (Join) Yes [V] 0.15
UIC2 (Contact us) UIC6 (Membership Details) Yes [V] 0.16
UIC3 (DeleteAccount) UIC5 (Login) Yes [U] 0.18
UIC4 (Join) UIC5 (Login) Yes [X] 0.18
UIC2 (Contact us) UIC5 (Login) Yes [V] 0.20
UIC3 (DeleteAccount) UIC6 (Membership Details) Yes [U] 0.90
UIC4 (Join) UIC6 (Membership Details) Yes [Z] 0.90
UIC3 (DeleteAccount) UIC4 (Join) Yes [U] 1.00

Legend: Pages are connected via [V]:Validation library, [W]: WFT library, [U]: User.xml, [X]: Valida-
tion library and User.xml, [Z]:Validation and WPF libraries and User.xml. False results: FN: False
Negarive, FP: False Positive

Table 3.5: Weighted connection graph compared to architectural dependencies

3.4.3 Discussion

In this section, we demonstrated how the proposed methodology can be applied to a web ap-

plication. Moreover, we describe how a domain expert can derive the domain-based coupling

graphs, and how the source code dependencies can be compared to such graphs.

The presented results demonstrate that the highly coupled components with ω > 0.8 are

architecturally connected by reading and writing to the same data source, whilst compo-
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nents with weak coupling are less likely to be connected in the source code. However, this

was a study on a simple website for the main purpose of demonstrating the details of the

methodology. Thus, we can not draw a strong conclusion from these results.

In the next section, we perform a comprehensive study on a web-based enterprise system

with a significant sized source code and multi-tier architecture. The aim of the next study

is to evaluate if similar results can be achieved when we apply our methodology to a system

with the complex architecture.

3.5 Case Study: An Enterprise Web Application

This section reports on a result of a case study on a web-based enterprise system. The

purpose of this case study is to evaluate the efforts and challenges of domain analysis of a

real life enterprise system. In addition, we examine to what extent the derived domain-based

coupling graphs can assist to discover architectural dependencies in the source code.

The system under analysis is Building Condition Assessment (BCA), a web-based software

application designed to manage a large volume3 of building condition audit data. BCA

is developed based on multi-tiered architecture. It has three distinctive layers including

presentation layer, business and data layers which manifest the clear separation of concerns.

These layers are implemented based on Microsoft .Net technology which takes advantage of

AJAX for the presentation layer, Component-based Scalable Logical Architecture (CSLA)

for the business layer and Microsoft Enterprise Library for the data layer. In general, it has

an object oriented design, and consists of classes, organised in different namespaces.

In the presentation layer each UIC is composed of a webpage (ASPX file) and a class which

contains the source code of the page. Later in Section 3.5.2, we analyse the dependencies

between these classes and how they match the domain-based coupling value.

3Regression testing for BCA is passed by more than two million records in reports with response time less
than four seconds.
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3.5.1 Domain Analysis

We invited a domain user of BCA to use our proposed methodology to derive the dependency

matrix and create the weighed graphs. He was not a software engineer, nor had access to

system source code; however, he has worked with the system for more than three years,

entering and maintaining the data pertaining to his business.

He completed the domain analysis with a manual procedure using only a generic Excel work-

sheet to record the domain information and create the dependency matrix. Then we com-

pared the derived domain variables for each UIC with the defined fields in system functional

specification4. The qualitative assessment of the results and the feedback of the domain user

suggest the following challenges:

• There are dynamic behaviours in the system which hides some information or alter their

presentation based on the user profile, or system settings. Such behaviours made some

domain variables hidden for our domain user, causing false negative results. We used

functional specification document to find and understand such dynamic behaviours.

• Some domain variables have very generic names on the screens such as Status and De-

scription. These generic names for domain variables make them difficult to be uniquely

identified in the weighted connection graph. We changed the name of these domain

variables to a unique identifier by adding associative prefix such as WorkOrderStatus

instead of Status.

• Some domain variables have different names in different parts of the system. This is a

problem of inconsistency in naming conventions for different domains, for example Job

Number and Work Order Number refer to the same entity although named differently

in two separate sub domains of the system. We referred to the functional specification

to clarify some of these ambiguities.

• Some domain variables are named inconsistently in screens. It is not uncommon to

see synonyms or arbitrary prefixes/suffixes added to the name of entities. These in-

consistencies can mislead the domain user to record false positive domain variables,

4The functional specification used in this case study describes the system behaviour with no information
about software source code.
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e.g., Inspection Contact, Contact Name, and Inspector refer to the same entity in

BCA.

• Some data fields on UICs show calculated values derived from other domain variables,

e.g., Total Cost and Summary Cost are derived from the domain variable Cost. These

calculative fields can hide underneath domain variables, and affect the domain analysis

result of the SUA.

We observed that the domain user spent a noticeable part of the analysis time in consolidating

the results, removing duplicated domain variables and leaving comments on ambiguous parts.

The observed challenges, and the effort by the domain user suggest the need for tool support,

and raise the question that how this process can be automated. We address this question in

Chapter 6, where we discuss various possibilities for automating the domain-based coupling

analysis, and present a design for tool support.

3.5.2 Comparison with Architectural Dependencies

In the next step, we use the derived domain relationships to approximate the dependencies in

the source code. The aim is to perform a qualitative analysis on the source code dependencies,

and demonstrate how they match the domain-based coupling between UICs.

We use the symmetric weighted graph to achieve this goal. The graph is generated using the

derived dependency matrix by the domain user. However, the resulting graph is very dense

(unreadable), and we changed the threshold to w ≥ 0.3 where the graph is more readable.

The outcome is illustrated in Figure 3.8. It turns out that the density of the graph is a

potential problem for complex systems. Figure 3.9 is an alternative presentation for the

weighted graph. It is a cross table which shows all domain-based coupling values between

UICs.

We used .Net Code Model to extract the list of all classes and references between them. The

result shows that the BCA architecture consists of 154 classes including 18 classes for UICs.

Comparison between these results and the domain-analysis results shows that each of these

18 classes match one and only one UIC at the domain level.

When a member of a class calls another class member then there is a reference between them.
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Figure 3.8: BCA Symmetric Weighted Graph

If there is at least one reference between members of two classes then they are architecturally

dependent. In BCA, there are 1270 individual references between different classes yielding

403 dependencies between pair of classes.

We found 45 classes related to domain functionalities, covering majority of classes in the

presentation layer and non-utility classes in the business and data layers. These classes have

169 (far less than 1270) individual source code references between them, yielding 121 pairs

of dependent classes. In order to compare these dependencies with edges of the weighted

graph, we searched for transitive dependencies between classes related to UICs (18 classes

out of 45). For example two UICs Room Assess and Floor Assess are both architecturally

dependent on Assessment Edit class in the business layer, so there is a transitive dependency

between Room Assess and Floor Assess.

The result shows 107 pairs of connected UICs, each pair connected by at least one transitive

architectural dependency. Comparing these pairs with the weighted graph shows only 101

pairs match edges in the graph (graph has 116 edges), i.e., 15 false positive results where the

edges did not match any transitive dependency in the source code. Also we found 6 false
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Figure 3.9: Cross Table Presentation of the BCA Symmetric Weighted Graph

negative results where there is a transitive dependency between two UICs in the source code

but the graph does not include an edge between them. The reason for these false negatives

is a specific functionality in BCA which is not visible to domain users. It is a function which

protect the data integration, and as part of each transaction it checks the related data tables

to avoid deleting a parent record while there is a child record in another table. All false

negative results are related to this functionality. Figure 3.9 shows these false results in the

weighted graph.

Figure 3.10 illustrates the distribution of graph edges based on their weight. The majority

of edges in the graph have less than 0.33 weight and few edges have weight higher than 0.9.

Also all the false positive results are in low strength edges, which suggests for stronger edges

we can be more certain in an architectural dependency between the two UICs. Comparing

the architectural dependencies with these edges shows all the UIC pairs connected by an

strong weighted edge (w > 0.8) are reading and writing to the same data table.
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Figure 3.10: Distribution of edges in BCA Symmetric Weighted Graph

To avoid false positives in the graph we changed the threshold to w > 0.3 (see figure 3.8).

Also it turns out to be practically useful to change the threshold where the UICs are grouped

by strong edges in the weighted graph with a spring layout.

3.5.3 Discussion

In this section, we presented an application of domain analysis on an enterprise web-based

system, where we reported on challenges and issues in the domain analysis of the system,

and the process of creating the domain-based coupling graph. In addition, we provided a

comparison between the derived graph and the source code dependencies between software

components. The result shows that all UIC pairs with strong domain-based coupling are
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connected in the source code. In addition, a limited number of false results are identified

which are mainly located between UICs with weak domain-based coupling. Thus, these false

results can be filtered out by applying a threshold to the domain-based coupling graph.

The source code analysis which is performed in this study was limited, and mainly aimed at

qualitatively examining how domain-based coupling between UICs can correspond to depen-

dencies in the source code. Later in Chapter 4, we will provide a more formal and automated

approach to the analysis of architectural dependencies.

3.6 Applicability

In this chapter we introduced a novel methodology for analysis of domain-based coupling

between UICs, in order to answer the question of what kinds of software can take the most

benefit from the proposed methodology.

In Section 2.3, we described the E-Type software as the group of programs that have been de-

signed to mechanise human or societal activities. Most systems of this software type can take

benefit from domain analysis. However, in a more detailed classification, Pressman organ-

ised computer software under seven categories: system, application, engineering/scientific,

embedded, product-line, artificial intelligence, and web applications [152]. Our approach is

applicable to subsets of application software, product-line software and web applications,

which are data driven and provide their functionality through a number of user interface

components.

Our approach is not applicable to software where the functionality of the system is not visible

to the domain users, such as system software or embedded software. Also, domain analysis

may not be suitable where systems are not data driven or have few user interface components,

such as engineering/scientific or artificial intelligence software.

3.7 Open Issues

This chapter aimed to provide a pragmatic methodology for analysis of the software behaviour

at the domain level; however, the case studies identify a number of outstanding issues in this

area:
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• The weighted graphs can be complex and dense for large scale systems. This will

prevent us from reading the details in the graph, and it is a disadvantage in the analysis

of systems where the clusters are not clearly separated. This issue might be answered

using a better graph visualisation tool support.

• We addressed the issue of density of the graph by applying a threshold and filtering

out edges with a coupling value less than the given threshold. In the case study, we

have achieved the optimum threshold using a heuristic method and a manual process.

However, finding the threshold automatically is still an outstanding issue. In the next

chapter, we propose an alternative approach using an automated clustering technique.

• We examined the relationship between domain-based coupling and architectural con-

nections in two case studies on web-based systems; however, given the limitations of

these studies, extended experiments are required to evaluate the impact of domain-

based coupling on dependencies in the source code and other architectural characteris-

tics such as software modularisation.

• As we only examined web-based systems, similar case studies are needed to understand

the application of domain-based coupling on different system types such as mobile

applications, service-based systems, and embedded systems. Also such studies can in-

vestigate that how the process can be improved based on characteristics of different

software types, for example, service-based systems which have XML-based documented

interfaces that can be used for mining domain-variables and the HAS.USE relation-

ships.

• The case studies in this chapter were performed by a few domain users; hence, extended

usability studies are needed to understand and address the challenges of domain analysis

by non technical domain users.

3.8 Summary

In this chapter, we introduced domain-based coupling as a measure of semantic similarity

between software components, and we described how to visualise such a coupling as symmetric

and asymmetric weighted graphs.

We demonstrated the details of the domain analysis process for a web application, where we
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derived relationships between domain variables and components, and measured the domain-

based coupling based on these relationships. In addition, we reported on a qualitative analysis

on an enterprise web application where we compared the dependencies in the source code

with the derived domain-based coupling. The results show that all component pairs with

strong domain-based coupling are connected at the source code level. Although our results

are positive, we cannot draw a strong conclusion from these limited studies.

In the next two chapters, we report on case studies on large-scale enterprise systems where

we use domain-based coupling measure to predict architectural dependencies and change

propagation.
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Predicting Architectural

Dependencies

Design and programming are human activities;

forget that and all is lost.

The C++ Programming Language. pp. 693.

Bjarne Stroustrup

Software dependencies play a vital role in program understanding, reverse engineering, change

impact analysis and other software maintenance activities. Traditionally, these activities

are supported by source code analysis; however, source code analysis sometimes is difficult

to achieve such as hybrid systems with heterogeneous source code. In addition, not all

stakeholders have adequate knowledge about the source code. Non-technical domain experts

and consultants raise most maintenance requests; however, they cannot predict the cost and

impact of the requested changes without the support of developers.

Enterprise software systems are constructed to model business domains [114]. It is reasonable

to expect that real-world dependencies are therefore reflected in the software itself. This

chapter addresses the second research question of this thesis: how accurately can we identify

architectural dependencies using domain-based coupling? In particular, we examine the

following scenarios:

64 (May 27, 2013)



CHAPTER 4. PREDICTING ARCHITECTURAL DEPENDENCIES

• Searching for source code dependencies: Suppose a software maintainer has no

access to source code analysis tools. Using software domain information, how accurately

can she predict existence of source code dependencies between UICs?

• Searching for database relationships: Some business constraints and relationships

are defined and managed at the data layer. These relationships may or may not be

visible at the source code level [179, 196], or can be difficult to analyse such as legacy

databases. How accurately can a domain expert predict such relationships without

analysing the database?

• Searching for architectural dependencies: When domain experts propose changes

to UICs, how accurately can they identify other connected UICs which might be related

to the propose changes?

In order to evaluate these scenarios, a case study is presented on a large-scale enterprise sys-

tem, called ADempiere, where we demonstrated how the introduced domain-based coupling

(Chapter 3) can be used to identify dependencies in the source code and database layers.

The contribution of this chapter are:

• to demonstrate the process of capturing domain information, measuring domain-based

coupling, and clustering the results for a large-scale enterprise system,

• to provide a formal approach for modelling architectural dependencies across the code

and the database layers,

• to report on an empirical study of one of the largest open source enterprise systems,

and demonstrate how domain-based coupling can be used to predict the source code

and database dependencies.

The rest of this chapter is organised as follows: Section 4.1 introduces the system under

analysis. Section 4.2 describes the formal model for architectural dependencies. Section 4.3

shows how to derive domain-based coupling. Section 4.4 evaluates how accurately domain-

based coupling identifies dependencies at the source code and the database layers. Section 4.5

discusses the threats to the validity of our findings. Section 4.6 describes the further areas

of investigation, and finally Section 4.7 summarises this chapter.
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ADempiere

Compiere

Figure 4.1: A high level view of ADempiere’s architecture

4.1 Case Study: ADempiere

The system under analysis in this chapter is ADempiere1; a large-scale Enterprise Resource

Planning (ERP) software package. An ERP system integrates internal and external manage-

ment information across an entire organisation, embracing accounting, manufacturing, sales

and services, etc. The business rules and process in such domains are identifiable at the

system level and independent from the software package e.g., accounting terms and rules are

defined beyond accounting software. This is the type of software which benefits mostly from

domain-based coupling analysis.

The other qualities of ADempiere are tiered architecture and complex design which man-

ifests a commonly used enterprise software package. The system architecture composed of

multiple tiers. It has a rich set of UI components and four distinct front-ends from which the

user can choose including a Java GUI and three web interfaces. Also it heavily uses relational

database management systems (e.g., PostgreSQL and Oracle) for data storage as well as for

storing business logic.

ADempiere represents cutting edge open-source software technology. It is a multi-language

system that includes more than two million lines of code. The core part is written in Java and

contains more than 3,000 classes with more than half a million lines of code. The ADempiere

project traces its evolution back more than a decade. Created in September 2006 as a fork

of the Compiere open-source ERP, itself founded in 1999. At the time of writing this thesis,

1http://www.adempiere.com
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ADempiere is in the top five of the SourceForge.net enterprise software rankings. This is a

measure of both the size of its community and its impact on the ERP software market.

Figure 4.1 presents a high-level architectural view of the Java core of ADempiere. The

view is obtained by an architecture recovery tool called Softwarenaut2. It shows the result of

aggregating direct relationships in the system along the package hierarchy [124]. The area of

every visible module is proportional to its number of lines of code. Every visible dependency

is directed and has its width proportional to the number of abstracted low-level dependencies.

Every module is represented as a modified tree-map, with the sizes of the contained classes

and modules proportional to their size in lines of code.

In addition, ADempiere has a very active community. The mailing list has more than

800 messages per month, and it is downloaded more than 15,000 times per month from

SourceForge.net. This system is used by a large number of companies around the world.

For all these reasons, ADempiere is considered to be relevant, and represents a suitable case

study for application of domain-based coupling in predicting architectural dependencies. The

next section describes architecture dependencies in the scope of this study, and explains how

they can be identified in ADempiere.

4.2 Dependency Analysis

ADempiere has been designed in such a way that a developer can extend the system by

touching as little code as possible. Whenever a new table is added to the database, the

required Java code is automatically generated. Most business rules and domain-level relations

are managed at the data layer. As a consequence, traditional code-based coupling metrics fail

to capture all relationships between user interface components of ADempiere. Moreover,

the database contains important information about the architectural dependencies in the

system. Therefore for this study, a new model is required to express dependencies both at

the source code and at the database layers.

2http://scg.unibe.ch/softwarenaut
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4.2.1 Source Code Dependencies

Source code is the core of software architecture. At the source code level, there are three

key entities. These entities are independent of the programming language, as long as it is

object-oriented:

• Classes are represented by a finite set CLS .

• Attributes are represented by a finite set ATT . The binary relation F ⊆ CLS × ATT

maps attributes to the containing classes.

• Methods are represented by the finite set MET . The binary relation M ⊆ CLS ×MET

maps methods to the classes that contain them.

MET

ATT

CLS

R

A

F

I

1

1

1

1

*

*

*

*

*

*

M

CLS: classes, ATT: attributes, MET: methods

Figure 4.2: Source code elements and relations among them.

In addition, the relation R ⊆ MET × CLS expresses the return types of methods 3, I ⊆
MET ×MET represents method invocations, and A ⊆ MET ×ATT represents the accesses

of methods to attributes. Two classes cls, cls ′ ∈ CLS can have following relationships:

cls.M−1.R−1.cls ′ (4.1)

cls.M.I.M−1.cls ′ (4.2)

cls.M.A.F−1.cls ′ (4.3)

3In order to model methods which return void, it has been considered that Void ∈ CLS
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where Equation 4.1 shows cls is the return type of cls ′, Equation 4.2 shows a method of

cls invokes a method of cls ′, and Equation 4.3 shows a method of cls accesses an attribute

of cls ′. These relationships are illustrated in Figure 4.2. The binary relationship D ⊆
CLS×CLS connects classes to classes based on the one or more of the relationships described

by Equations 4.1, 4.2 and 4.3.

Definition 9 For two classes cls, cls ′ ∈ CLS, cls is directly dependent on cls ′ if and only if

cls.D.cls ′

Definition 10 For two classes cls, cls ′ ∈ CLS, cls is indirectly dependent on cls ′ if and only

if cls.D.D−1cls ′

For example, for three classes cls, cls ′, cls ′′ ∈ CLS , cls is the return type of cls ′ (Equation 4.1)

and a method of cls ′ invokes a method of cls ′′ (Equation 4.2); therefore, cls is directly

dependent on cls ′ and indirectly dependent on cls ′′.

4.2.2 Database Relationships

A significant part of a system’s business logic is incorporated in the database relationships,

and these relationships complement the ones which are visible at the source code level.

TBL FK

1

*

Figure 4.3: Database table with the foreign key relation

The main entity at the database level is the table, and in this analysis the set of all tables

for a software system is denoted by TBL. The binary relation FK ⊆ TBL × TBL connects

tables to tables based on the foreign keys. Figure 4.3 illustrates this relationship. As in the

case of source code, for two tables t , t ′ ∈ TBL, the direct and indirect relationships in the

database can be defined as follows:

Definition 11 t has a direct relation to t ′ if and only if t.FK .t′.
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Definition 12 t has indirect relation to t ′ if and only if t.FK .FK−1.t′

While foreign key relations among tables are there to model a specific aspect of the domain,

indirect relations between tables should suggest how different concepts are bound together.

4.2.3 Architectural Dependencies

Two components are considered to be architecturally connected either by direct or indirect

dependencies between the classes behind them, or by direct or indirect relationships between

the tables accessed by these classes.

Figure 4.4 shows the relations between the components (C), classes (CLS ) and tables (TBL)

of ADempiere. These elements are related by DEP ⊆ C × CLS which represents classes

that a component depends on, and REF ⊆ CLS ×TBL which represents tables that a class

reads or writes to.

TBLCLSC REFDEP
* ** *

C: components, CLS: classes, TBL:tables

Figure 4.4: Relationships between software elements

Definition 13 For two components c, c′ ∈ C, they are architecturally connected if and only

if one or more of the following relationships exists between them:

c.DEP .DEP−1.c′ (4.4)

c.DEP .D.DEP−1.c′ (4.5)

c.DEP .D.D−1.DEP−1.c′ (4.6)

c.DEP .REF .REF−1.DEP−1.c′ (4.7)

c.DEP .REF .FK .REF−1.DEP−1.c′ (4.8)

c.DEP .REF .FK .FK−1.REF−1.DEP−1.c′ (4.9)

This definition describes all direct and indirect dependencies through classes or tables behind

components. Equation 4.4 defines a connection between two components based on shared
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classes. Equation 4.5 connects two components considering direct dependencies between

their shared classes. Equation 4.6 considers indirect dependencies between classes to con-

nect two components. Equation 4.7 defines a connection between two components based on

their shared database tables. Equation 4.8 and Equation 4.9 consider direct and indirect

dependencies between database tables which connect two components.

4.2.4 Tracing Dependencies in ADempiere

ADempiere is large scale systems with more than two million lines of code and a multi-

tire architecture. For a system at this scale the reverse engineering of its source code and

database is too big to perform by manual analysis of the system, and necessitate a proper

tool support.

At the time of writing this thesis, Moose [142] is one of the most equipped platforms for

analysis of object oriented systems. Moose uses a language independent meta model called

FAMIX [174]. For the purpose of this study, the meta-model is extended to describe the static

structure of code entities with information about database relationships [5]. The extended

entities are highlighted in bold in Figure 4.5 with the following relationships: The relation

maps associate a table to a class where the class represents the table, for example, a table

might be mapped to a class at the data layer. The same happens to the class attributes that

map table columns. The relation Access represents class methods accessing database tables.

The relation Reference represents connections among table columns achieved using a foreign

key constraint.

For ADempiere, the entities and the relationships between them are derived in two data

sources: Firstly, Classes, Methods, Attributes and relationships between them are derived

from the source code. Secondly, tables and columns are mapped to classes and attributes

by analysis of the application dictionary which is a meta-data collection for user interface

elements such as windows, forms, fields and validation rules4. In ADempiere, the application

dictionary is stored inside the database, and can be accessed by SQL queries.

In this study, a window of ADempiere is considered as a user interface component (UIC).

Table 4.6 shows the number of dependencies between UICs at multiple layers of the code and

the database. The results shows that there are 16,968 architectural dependencies between

4http://www.adempiere.com/Application Dictionary
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Inheritance
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subclass superclass
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Figure 4.5: FAMIX meta-model including extended entities for relational databases.

Number of Dependencies

Source Code Dependencies 14,898
Direct Database Relationships 8,132
Indirect Database Relationships 12,178
Architectural Dependencies 16,968

Figure 4.6: Number of dependencies between ADempiere windows at multiple layers of the
source code, the database, and the aggregated results at the architecture level .

UICs derived based on Definition 13.

The next section describes the domain-level relationships in ADempiere, and Section 4.4

shows how well these relationships can reflect architectural dependencies.

4.3 Domain Analysis

In this section, we describe the domain model of ADempiere, how to process this model to

identify domain-based coupling between UICs, and how to create a domain-based coupling

graph from this model.

In the last chapter, we described three elements of the domain model: domain variable, data

field and user interface component (UIC). At the presentation layer, ADempiere composed

of number of windows, where each window includes one or more tabs, and each tab has

multiple data fields. In ADempiere, data fields mostly represent domain variables, tabs
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Figure 4.7: ADempiere : Vendor Details

represent domain functions, and windows represent UICs.

The following examples demonstrate how to measure the domain-based coupling between

UICs, and how to predict the architectural dependencies using the domain-based coupling.

4.3.1 Example 1: Measuring Domain-Based Coupling

This example demonstrates how to measure the domain-based coupling between UICs. In

ADempiere, Vendor Details (Figure 4.7) and Import Product are two UICs which we use

in this example to demonstrate how derive domain relationships. Vendor Details (c1) has 2

domain functions, and in total 25 domain variables, as follows:

c1.HAS = { Edit Vendor, Edit ProductDetails }.

c1.HAS .USE = { DeliveryTime, BusinessPartner, CostPerOrder, Currency, Vendor,

Manufacturer, ListPrice,... }.

Import Product (c2) contains one domain function and 42 domain variables as follows:

c2.HAS = { Import Products }.

c2.HAS .USE = { CostPerOrder, PriceEffective, Weight, BusinessPartner, SKU, UOM,

Processed, Royalty,... }.
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There are 18 common domain variables between these UICs as follows:

c1.HAS .USE ∩ c2.HAS .USE = { BusinessPartner, CostPerOrder, Currency, Discontinued,

DiscontinuedAt, ListPrice, Manufacturer, MinOrderQty, OrderPackQty, PartnerCategory,

PartnerProductKey, POPrice, PriceEffective, Product, PromisedDeliveryTime, Royalty, UOM,

UPC/EAN }.

and in total 49 (42+25-18) variables used by either of these UICs; thus:

• Common domain variables (Definition 5): ϑ(c1, c2) = 18

• Symmetric coupling weight (Definition 7): ω(c1, c2) = 18/49 = 0.37

Note: Architectural dependency (Definition 13) is a symmetric relationship; hence, in this

study we only focuses on symmetric domain-based coupling, and ignores asymmetric domain-

based coupling.

4.3.2 Example 2: Predicting Dependencies

Now that we have explained the domain definitions, let’s demonstrate how to use them for

predicting dependencies. Imagine if a domain expert considers asking for an enhancement

to Vendor Details (c1), then given the domain information of ADempiere, she can derive

common domain variables (ϑ) among c1 and other UICs similar to what was described in the

previous example.

Figure 4.8 shows there are 33 UICs for which the coupling weight with c1 is greater than a

given threshold ω ≥ 0.5. The selected threshold is applied to avoid weak results which do

not likely lead to any architectural dependencies. This also reduces the density of the result-

ing domain-based coupling graph and makes it more readable. The results are illustrated

(Figure 4.8) as a weighted graph where the edge width is proportional to ω, and edge length

is proportional to 1/ω, i.e., the stronger the coupling weight, the thicker is the edge and the

closer the node to the center (c1).

The top 3 closest UICs are: Import Products (c2), Spare parts, (c3) and Product Planning

(c4), with the domain-based coupling values of 0.37, 0.32 and 0.25 respectively. Investigating
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3
41

2

Nodes represent UICs and edges represent domain-based coupling. The tagged nodes
are (1) Vendor Details, (2) Import Products, (3) Spare Parts and (4) Product Planning.
Node size has no implication, but edge width is proportional to ω and edge length is
proportional to 1/ω. For readability, the graph only contains c1.CNC , excluding edges
between other nodes.

Figure 4.8: Domain-Based Coupling Graph of Vendor Details

the source code shows that all three UICs are connected to Vendor Details by source code

dependencies.

This two examples demonstrated how a domain expert can analyse ADempiere, and derive

the domain-based coupling graph. In Section 4.4, we will present the comprehensive evalua-

tion on how accurate such a graph identifies architectural dependencies in ADempiere.

4.3.3 Expectation Maximisation Clustering

In the last example, a threshold value for domain-based coupling was used to identify highly

coupled components. The threshold value can be selected manually based on the system

characteristics like distribution of the coupling values, or by graph visualisation [4]. However,

the manual approach is subject to human errors and not scalable for large datasets. In order

to address this limitation, in this study, we use a clustering technique to identify highly

coupled components automatically.

The aim of clustering is to group a given set of objects so that similar objects are grouped

together and dissimilar objects are kept apart. There are many different multi-dimensional

clustering techniques [127]. We use a statistical clustering technique called Expectation

Maximization (EM) since it can automatically find the optimum number of clusters [49].
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The main idea behind EM is fitting the parameters of a distribution model by using training

data. The EM algorithm assigns a probability distribution to each instance of the number of

common variables (ϑ), which indicates the probability of the instance belonging to each of

the generated clusters. In Section 4.4, we discuss how EM clustering improves the precision

of identifying dependencies.

4.4 Evaluation

Now that both architectural dependencies and domain-based coupling between UICs in

ADempiere have been discussed, let’s evaluate how accurately domain-based coupling can

approximate architectural dependencies.

4.4.1 Evaluation Setup

For a given UIC, c ∈ C, we test the query AN = q(c, E) where the expected outcome E ⊆ C
is the set of UICs which have architectural dependencies to c, and the returned answer

AN = {ci|ci ∈ C, ϑ(c, ci) > 0}

is the set of UICs which are coupled with c at the domain level. We describe the outcome of

such a query as follows:

TP =|E ∩AN | shows the number of correctly identified dependent components.

TN =|C\{AN ∪ E}| shows the number of correctly identified independent components.

FP =|AN\E| shows the number of incorrectly predicted dependent components.

FN =|E\AN |, shows the number of incorrectly predicted independent components.

We use the well-known definitions of precision (Pq) and recall(Rq) to evaluate the outcomes

of a given query:

Pq =
TPq

TPq + FPq
Rq =

TPq
TPq + FNq
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Precision and recall only evaluate TP . In order to describe both TP and TN , we measure

accuracy (Aq) which is the degree of closeness of results to the preferable values where all

dependent and independent components are correctly identified. Accuracy [128] is defined as

follows:

Aq =
TP + TN

TP + FP + FN + TN

The higher the accuracy, the closer the prediction outcomes to the perfect results where both

FP and FN are equal to zero.

4.4.2 Macro Evaluation

In order to evaluate the results for all UICs in ADempiere, we take the mean value of

measurements of all queries as

fM =
1

n

n∑
i=1

fqi

where f is one of these measurement functions: TP , TN , FP , FN , R, P or A.

4.4.3 Likelihood

One application of domain-based coupling might be notifying software maintainers of possible

dependent components when they browse a list of UICs. To assess the usefulness of such

notifications, we measure the likelihood (L) whether at least one of the top three, five or ten

returned results have architectural dependencies. More formally if ANc,n shows the top n

results for a component c, then

Ln =
|{c|c ∈ C,ANc,n ∩ Ec 6= ∅}|
|{c|c ∈ C,Ec 6= ∅}|

The likelihood function distinguishes between the topmost results and the entire returned

result set.
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#Dep. TPM FNM TNM FPM RM PM AM L3 L5 L10

COD 14,898 28 15 226 78 0.68 0.27 0.73 0.69 0.74 0.78
DDR 8,132 19 4 237 87 0.77 0.20 0.74 0.59 0.66 0.75
IDR 12,178 22 13 227 85 0.71 0.23 0.72 0.51 0.56 0.62
ARC 16,968 31 18 223 76 0.64 0.30 0.73 0.72 0.78 0.84

Legend: #Dep.: Number of dependencies, COD: Source code dependencies, DDR: Direct database relation-
ships, IDR: Indirect database relationships, ARC: Architectural dependencies .

Table 4.1: Prediction Results

4.4.4 Results: Searching For Source Code Dependencies

ADempiere contains 347 UICs. The source code analysis revealed 14, 898 indirect depen-

dencies and no direct dependencies among classes behind these UICs. We compared these

dependencies with the domain-based coupling graph to evaluate how accurately source code

dependencies can be derived from domain information.

The results are presented in Table 4.1. On average for a given UIC, 28 connected UICs by

source code dependencies identified correctly whilst 15 UICs with source code dependencies

are incorrectly described as independent components, and 78 independent UICs are falsely

called to have source code dependencies. These results lead to average recall equal to 0.68

and average precision equal to 0.27.

Also the accuracy of the dependency prediction is equal to 0.73, implying that for more than

7 out of 10 UICs, our prediction method correctly identified if two UICs are dependent or

independent at the source code level.

The likelihood of discovering source code dependencies in the top three coupled UICs is 69%,

and it will increases to 78% for the top ten UICs.

Summary: On average 68% of UICs connected by source code dependencies are discovered

correctly, while for 78% of queries the top ten results contains one or more source code

dependencies.
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4.4.5 Results: Searching For Database Relationships

The database analysis of ADempiere showed that there are 8,132 direct and 12,178 indirect

relationships among data tables behind UICs.

We queried these relationships using the domain-based coupling, and the results are presented

in Table 4.1. On average for a given UIC, 19 directly related UICs and 22 indirectly related

UICs are identified correctly. The results show only 4 false negatives for direct relationships

which is more than three times lower than 13 false negatives for indirect relationships. How-

ever, the number of false positives are similar: 87 and 85 for direct and indirect relationships

respectively.

Comparing the results between direct and indirect relationships shows that for direct rela-

tionships the recall is slightly higher (0.77 vs 0.71) whilst the precision is slightly lower (0.2

vs 0.23). The accuracy values for both relationship types are more than 0.7, suggesting that

for 7 in 10 UIC pairs, their relationship state is identified correctly.

In addition, validating the topmost results shows that the likelihood of database relationships

in the top three results is 51% for direct and 59% for indirect relationships. Also the likelihood

of indirect relationships increases to 75% for the top ten results.

Summary: On average up to 77% of database relationships can be derived from domain

information, and for 75% of queries, the top ten results contain at least one database rela-

tionship.

4.4.6 Results: Searching For Architectural Dependencies

The analysis of the source code and the database of ADempiere shows 16, 968 architectural

dependencies (Definition 13).

We evaluated how accurately a domain expert can predict if there is at least one architec-

tural dependency between any given pair of UICs. The results are presented in Table 4.1.

On average for a given UIC, 31 dependent UICs, and 223 independent UICs are identified

correctly using domain information. However, 18 dependent and 76 independent UICs are

incorrectly placed in the opposite dependency state. These results lead to an average recall

of 0.64 and precision of 0.30. The mean accuracy of the predictions is 0.73, suggesting that
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for 7 in 10 UIC pairs, their dependency state is identified correctly.

In addition, the likelihood of discovering an architecturally dependent UIC pair in the top

three results is 72%. This likelihood will increase to 84% for the top ten results.

Summary: On average 64% of architecturally dependent UICs are discovered using domain

information, and the likelihood of discovering a correct architectural dependency in the top

ten predictions is 84%.

4.4.7 Improving Precision

The prediction results for architectural dependencies (Table 4.1) show that the average pre-

cision is 0.30. In order to improve the precision, we utilised the expectation maximisation

technique (Section 4.3.3) to filter out weakly coupled pairs, with the assumption that UICs

with strong domain-based coupling are more likely to have architectural dependencies.

RM PM AM
Source Code Dependencies 0.29 0.68 0.88
Direct Database Relationships 0.40 0.57 0.89
Indirect Database Relationships 0.27 0.61 0.93
Architectural Dependencies 0.23 0.70 0.87

Table 4.2: Prediction Results Using EM Clustering

Table 4.2 shows the improved results. The mean precision for architectural dependencies is

increase from 0.30 to 0.7, and the mean accuracy is increased from 0.73 to 0.87.

However, these improvements are achieved at the expense of the reduction in recall. While

the value of precision is more than doubled, the value of recall decreased almost three times

(from 0.64 to 0.23). This implies that there are a number of architectural dependencies

between UICs which have no strong coupling at the domain level.

Summary: By using expectation maximisation technique, precision can be improved up to

0.7. However, it is a trade-off between precision and recall.
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A

B

C

D

(a) Domain-based coupling graph

A

B
C

D

(b) Architectural dependency graph

Legend: Nodes are the UICs of ADempiere in both graphs. Left: Edges are domain-based
coupling (Definition 7) which are selected by Expectation Maximisation (Section 4.3.3).
Right: Edges are architectural dependencies (Section 4.2). Tags (A, B, C and D) are
concentration areas.

Figure 4.9: Domain-based coupling vs architectural dependencies

4.4.8 Visual Comparison

The domain-based coupling graph (Figure 4.9a) is visualised using Fruchterman and Rein-

gold’s [54] force-based graph layout in three steps: first, the graph is created based on

Definition 7; second, the exception maximisation (EM) technique (Section 4.3.3) is applied;

third, the derived graph is visualised by the force-based layout algorithm.

In order to compare the domain-based coupling graph with the architectural dependencies,

the edges from Figure 4.9a are replaced with the architectural dependencies without changing

the location of nodes. The resulting graph (Figure 4.9b) illustrates the distribution of the

architectural dependencies in compare to the domain-based coupling.

The comparison between Figure 4.9a and Figure 4.9b shows that the most populated cluster

(tagged by A) in the domain-based coupling graph has the biggest number of architectural

dependencies. However, the number of architectural dependencies decreases in the clusters

with poor domain-based coupling (B, C and D). In addition, there are a number of ar-
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chitectural dependencies where there is no domain-based coupling, illustrating that not all

dependencies can be derived from the domain-based coupling graph.

4.4.9 Discussion

In this evaluation, we reported that on average 64% of architectural dependencies could be

derived from domain-based coupling graph. The accuracy of the prediction is on average

0.73 while the precision is 0.30. The precision can be increased up to 0.7 using expectation

maximisation technique. Trading off precision for recall would be a good approach if one

would build a tool that would be used by maintainers: having too many false positives might

deter the users of such a tool.

In addition, we demonstrated how domain-based coupling could be used to inform software

maintainers while they browse software UICs. The results show the likelihood of discovering

architectural dependencies among the top ten coupled UICs is 84%. Given that these results

are obtained without looking at the source code or the database, they are quite promising.

On the other hand in the current form, domain-based coupling analysis cannot completely

replace the source code analysis.

4.5 Threats to Validity

In this section, we discuss the threats to validity of our findings, and how we addressed them.

Threats to external validity are concerned with generalisation of our findings. Although we

performed our evaluation on a large-scale enterprise system which is representative of the

state of the art enterprise systems developed in Java, we are aware that more studies are

required to be able to generalise our findings.

Threats to construct validity are concerned with the quality of the data we analysed, and the

degree of manual analysis that was involved. The domain information typically is provided

by the domain experts using a manual data collection process. To minimise the risk of human

error, we extracted the relationship between domain variables and UICs from user manuals

and help documents. In ADempiere, this information is stored in the database. We only

used manual inputs from domain experts to confirm this information and kept the manual
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additions and alterations to a minimum.

One other factor that could affect the validity of the results is the granularity used to look

at the selected UICs. We chose windows as UICs. Each window contains multiple tabs and

each tab provides one or more functions. Different results could be achieved if the evaluation

was performed at the tab level, or module level.

4.6 Open Issues

This chapter aimed to provide an empirical study on how domain-based coupling can be used

to predict architectural dependencies. Given the limitations of the performed case study, we

propose the following open questions to be addressed in the future studies:

• In this study, we have only examined the dependencies between application windows;

however, there are finer-grained UICs (e.g., tabs) in ADempiere. The research ques-

tions to be answered are: What is the efficient granularity level? What properties of

UICs affect the results (e.g., size and complexity)?

• The other area of future investigation is the impact of different domains on the results.

ADempiere contains various modules which provide functions of different domains like

ERP, CRM and Asset Management. Some of the research questions to be answered

are: What are the factors in these domains (e.g., complexity) that affect the predic-

tion results? Does distinguishing between these domains make the predictions more

accurate?

4.7 Summary

In this chapter, we demonstrated how domain information could be used to predict architec-

tural dependencies, and assist software maintainers in searching for connected components at

the source code or the database layers. Our proposed approach for predicting dependencies

promises independence from software implementation and simplicity and usability for non-

technical domain experts. Hence, it can assist managers and consultants to take decisions

about software changes without the support of the developers.
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The proposed dependency analysis method is based on relationships between software do-

main information and user interface components (UIC), modelled as a weighted graph. We

demonstrated how such a model could assist predicting dependencies with a case study on a

large-scale enterprise system, called ADempiere. We derived architectural dependencies as

a set of source code and database dependencies, and compared them with the domain-based

coupling between UICs. The results show that on average 68% of the source code and up to

77% of the database dependencies could be derived from the domain-based coupling. The

accuracy of such predictions is on average more than 70%, implying that for 7 out of 10

component pairs their dependency state is identified correctly.

The results promise that domain information might be used to predict the existence of

architectural dependencies, and the accuracy of these predictions could support maintenance

activities such as change impact analysis. However, at the current stage, this approach cannot

replace the source code analysis or the database analysis.
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Predicting Change Propagation

The real world is of primary importance in any software system. It is,

ultimately, the originating point of the system. The first attempts to

introduce specific software systems are usually those systems that

imitate what already exists in the real world. This imitation is the

starting point from which the system evolves.

A Nontraditional View of the Dimensions of Software Evolution [148]

Dewayne E. Perry

Change propagation is the phenomenon whereby a change to one part of a system affects

other parts and leads to subsequent changes (Section 2.6). Such propagation poses a major

risk to software maintenance by leading to code decay, bugs and unforeseen extra devel-

opment costs. In Chapter 2, we described the three major approaches to change impact

analysis including document-based, source-based and history-based impact analysis meth-

ods. Although these methods can accurately identify change propagation based on tracking

dependencies or co-change coupling among software elements, they are less efficient for hy-

brid systems which are composed of multiple programming languages or include subsystems

based on different technologies. In Chapter 4, we demonstrated that domain information can

be used to approximate software dependencies independent from software implementation

and even without access to the software source code, design documents and maintenance

history. In this chapter, we will explore the application of domain information in predicting
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change propagation. Specifically, we aim to answer the third and fourth research questions1

of this thesis: (RQ3) How accurately can we predict change propagation using domain-based

coupling? (RQ4) How does such a prediction compare with the well-established co-change

coupling metric derived from maintenance history?

We report on a case study of a significant enterprise system where we perform both domain

analysis and history-based analysis, and we compare the results. In addition, we demonstrate

how domain-based coupling, like the history-based approach, can support maintenance tasks

by avoiding bugs resulting from imperfect change propagation. We examine the following

experimental questions in this study :

• Correlation. To what extent can the domain-based coupling between pairs of UICs

be correlated with the history-based change coupling?

• Error prevention. Given a single transaction involving modification of multiple UICs,

if a single UIC is missing from the transaction, how reliably can the domain-based

coupling be used to find the missing component?

• Estimating change scope. Given a change to a single component, how reliably does

domain-based coupling determine what other components will most likely be affected

by the change?

The rest of this chapter is organised as follows: Section 5.1 introduces the system under anal-

ysis. Section 5.2 describes the evolutionary coupling approach and the analysis results. Sec-

tion 5.3 shows the derived domain-based coupling for the system under analysis. Section 5.4

explains how we measure change propagation, and Section 5.5 evaluates how accurately

the domain-based coupling approximates the change propagation. Section 5.6 discusses the

threats to the validity of our findings. Section 5.7 describes the further areas of investigation,

and finally Section 5.8 summarises this chapter.

1The complete list of research questions is provided in Section 1.2.
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5.1 Case Study: BEIMS

The system under analysis in this case study is a facility management system called BEIMS2.

At the time of this study (January 2009), BEIMS has more than a third of the market share

for facility management systems used by Australian and New Zealand universities, hospitals

and casinos. Mercury Computer Systems (Australia) Pty Ltd designed and developed the

first version of BEIMS (Figure 5.1a) in 1989 using a 4GL. In 1998 the fifth generation of

BEIMS was redeveloped for Windows platforms and extended with more than 100 individual

subsystems and custom developed programs.

Subsystem name ID Source code lines
Asset Management System AMS 15,700
Cost Control System CCS 10,959
Information Setup System ISS 29,330
Planned Maintenance System PMS 13,857
Work Order System WOS 34,164

104,010

Table 5.1: BEIMS Core Subsystems

For our case study we chose the five core subsystems of BEIMS that are installed and used by

all BEIMS clients. As demonstrated in Table 5.1, these together contain more than 100,000

lines of code. We looked at the 12 years maintenance history of these programs and studied

how they have evolved over their life cycle. Given the rich maintenance history of BEIMS, we

can evaluate to what extent the domain-based coupling between UICs correlates with what

can be predicted from the change history of the software.

5.2 History-Based Analysis

The history of source code changes can reveal patterns in modifying software components

as part of maintenance activities. In Section 2.7.3, we described that the evolutionary cou-

pling [200] measures the co-change relationships between software elements based on their

maintenance history. In this study, we will use the evolutionary coupling to identify change

propagation in the recorded maintenance history of BEIMS.

2Building and Engineering Information Management System.
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(a) Generation 1 (1989)

(b) Generation 5 (2009)

Figure 5.1: BEIMS from 1989 to 2009

Let T ⊆ 2UIC be a set of transactions where each transaction is defined by a set (of changed

components). Following standard data mining approaches [200, 6], define an (association)

rule x1 ⇒ x2 for two disjoint sets x1 and x2 (interpretation: if a programmer changes x1 then

she has also changed x2). The frequency of a (changed component) set x in T is defined as

freq(T, x) := |{t|t ∈ T, x ⊆ t}|
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and the confidence of a rule x1 ⇒ x2 (interpreted as the strength of the rule) is defined as

conf(T, x1 ⇒ x2) :=
freq(T, x1 ∪ x2)

freq(T, x1)
.

For BEIMS, Microsoft Source Safe is used as the source code version control. We use the

sliding window technique proposed by Zimmermann and Weißgerber to recover transactions

from Source Safe [198], since it does not track which files have been modified in a transaction

(committed changes in conjunction). The history of changes to a given file can be derived

from Source Safe as a set of change log records whereby each record represents a single check in

(commit) command and contains user name, comment (message) and the differences between

two subsequent revision of a file.

At the time of analysis there were 78,632 change log records for the five subsystems of BEIMS.

Some of these records are the result of a labelling action in Source Safe. Labels have been

used to tag all files with a given time (typically a released version of BEIMS) for the purpose

of creating branches. Labelling records are not related to any modification to file contents,

and the transactions derived from them do not imply any code change coupling between

files. We are only interested in the coupling between source code files result of conjunction

maintenance, therefore we removed the labelling records to avoid false positive results. The

remainder is 10,912 records, yielding 4,456 transactions.

5.3 Domain Analysis

We analysed the behaviour of all UICs for the five BEIMS’ subsystems, based on information

provided in the software functional specification. The BEIMS’ functional specification de-

scribes its subsystems from the perspective of a domain user including the behaviour of each

screen at the domain level, that is, actions, interactions and provided information. The func-

tional specification is derived from existing user manuals and expert user knowledge about

system behaviour, as described earlier [4]. The analysis result is collected in the form of a

dependency matrix (Definition 4) consisting of 68 UICs and 381 domain variables whereby

for 731 elements Mc,v = 1. From the dependency matrix, we derived symmetric and asym-

metric weights (Definitions 7 and 6) for pairs of UICs in each subsystem as summarised in

Table 5.2 with the aggregated statistical information for each subsystem.
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Min Max Mean Std. Dev.

AMS
ωa 0.00 1.00 0.11 0.18
ω 0.00 0.38 0.06 0.09

CCS
ωa 0.05 0.45 0.23 0.14
ω 0.04 0.27 0.11 0.09

ISS
ωa 0.00 1.00 0.04 0.12
ω 0.00 0.25 0.01 0.04

PMS
ωa 0.00 1.00 0.44 0.30
ω 0.00 0.88 0.23 0.20

WOS
ωa 0.00 1.00 0.24 0.25
ω 0.00 0.77 0.12 0.13

Table 5.2: BEIMS: Domain Analysis Results

5.4 Change Propagation

Given a change request for modifying (fixing a bug or an enhancement) a UIC, we query

other UICs which most likely will be affected by the given change. When changing a given

user interface component c ∈ C, we define a function

AFC : (C × C → R)× R→ (C × C)

which generates a relation between a component c and other components which will be most

likely affected by a change to c. That is c.AFC(f, λ) represents the set of most likely affected

components by a change to component c, defined as

AFC(f, λ) = {(c, c′)|c, c′ ∈ C ∧ c 6= c′ ∧ f(c, c′) > λ}

where f is a function measuring the level of coupling between two components and the λ is

a given threshold.

Using Definitions 6 and 7, c.AFC(ωa, λ) and c.AFC(ω, λ) functions predict the set of com-

ponents that most likely will be affected by a change to the component c.
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5.5 Evaluation

In this section, we evaluate how accurately domain-based coupling can approximate evolu-

tionary coupling that is derived from BEIMS maintenance history.

5.5.1 Evaluation Setup

For assessment of results we follow standard definitions of precision (Pq), the percentage of a

returned answer which was expected, and recall (Rq), the percentage of an expected answer

which was returned [77]:

Pq =
|Aq ∩ Eq|
|Aq|

Rq =
|Aq ∩ Eq|
|Eq|

In order to calculate the precision and recall for all queries for a given subsystem, we take

the mean value of the precision and recall of individual queries:

PM =
1

n

n∑
i=1

Pqi RM =
1

n

n∑
i=1

Rqi

5.5.2 Results: Correlation

The experimental hypothesis is that there is a correlation between evolutionary and domain-

based coupling. We evaluate this hypothesis in two stages. Firstly we examine the trend of

evolutionary coupling among UIC pairs with respect to the domain-based coupling. Secondly

we measure the correlation coefficent between the asymmetric/symmetric weight functions

and the conf function (Section 5.2).

Average Trend

In the first stage, we grouped the UIC pairs in all BEIMS subsystems by domain-based

coupling— first asymmetric weight, then symmetric weight—and measured the average con-

fidence (conf ) for association rules between all pairs in each group.
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Legend: Gn = Group of pairs where (a) n− 1 ≤ wa ∗ 10 < n and (b) n− 1 ≤ w ∗ 10 < n.

Figure 5.2: Trend of evolutionary vs domain-based coupling

Figure 5.2a illustrates the relationship between conf and asymmetric weight. Each group

Gn consist of pairs 〈c, c′〉 where n− 1 < wa(c, c
′) ∗ 10 ≤ n.

Figure 5.2b illustrates the relationship between conf and symmetric weight. Each group Gn

consists of pairs 〈c, c′〉 where n− 1 < w(c, c′) ∗ 10 ≤ n.

In general average conf increases with respect to asymmetric or symmetric weight, i.e., pairs

with stronger domain-based coupling have greater confidence levels for evolutionary coupling.

There are exceptions to this trend that we will discuss later in this section.

Table 5.3 shows the number of pairs in each group. In general the number of pairs decreases

as domain-based coupling increases, i.e., most pairs are weakly coupled at the domain-level,

and only few pairs have strong domain-based coupling.

As illustrated in Figure 5.2, the first exception in the trend of average conf increasing with

domain-based coupling is at G0. In comparison to nearby groups (G1, G2) the expected

average conf for G0 is a value close to zero; however, the actual value is 0.17 (true in

both Figures 5.2a and 5.2b). That there are 414 asymmetric pairs (Figure 5.2a) in this

group, suggests that not all change couplings can be derived from domain-based coupling.

Change logs show some changes to the code are motivated by refactoring, and initiated by

programmers where there are no bug reports or enhancement requests.
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G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

414 124 103 80 33 15 36 15 8 5 13

(a) Group size (asymmetric weight)

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

207 123 54 26 7 2 2 0 1 1 0

(b) Group size (symmetric weight)

Legend: Gn = Group of pairs where (a) n− 1 ≤ wa ∗ 10 < n and (b) n− 1 ≤ w ∗ 10 < n.

Table 5.3: Size of groups of UIC pairs

The second exception is visible in Figure 5.2b, which shows a correlation between the sym-

metric weight and average conf maximised at w ≤ 0.6 (G6). The exceptions to this trend

are in G8 and G9, each with a single pair (Table 5.3b) and lower confidence than G6.

The first pair is 〈WorkOrderCompletion (WO), BarcodeWorkOrderCompletion (BWO)〉. BWO

provides the same functionality as WO but instead of typing the work order information, a

barcode scanner is used to read the work order and fetch the data. BWO and WO have a clear

overlap in their functionality and a lot of duplicated source code. However, WO has been

much used by BEIMS users, and subjected to more refinement and minor enhancements.

Change logs show that BWO is more often ignored for minor BEIMS revisions, and more

subject to changes in major revisions.

The second pair is 〈MaintenancePlan, AssignTaskToAssets〉. Both these UICs enable users to

add and manage jobs related to assets. However, these UICs provide two different presenta-

tions of similar information: the first UIC allows the user to review and manage the jobs in

bulk using a calendar view; the second UIC is more focused at the detailed level of individual

tasks. The behavioural difference between these components is the main cause of disjoint

sets of changes to their source code.

Correlation Coefficient

In the next stage, we examined each subsystem individually, and measured the correlation be-

tween conf and weights. We used Pearson’s correlation coefficient rx,y as a measure of linear
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dependence between two variables x and y, giving a value between +1 and −1 inclusive [163].

Table 5.4 shows on average there is a positive correlation between weights and conf, how-

ever the correlation is not the same for all subsystems. The behavioural and architectural

characteristics of these subsystems affect the pattern which in their source code is changed.

For example, Information Setup System (ISS) is in charge of defining primary data entities

in BEIMS, leading to individual UICs containing detailed information unique to each UIC.

Also there are number of cases where two UICs hold information about master-detail data

entities. Such cases reduce the symmetric weight between UICs; however, the asymmetric

weight function can reflect such relationship where one component holds the superset of

another component’s domain variables.

The other example is Planned Maintenance System (PMS), where there is a negative correla-

tion of −0.04 between the symmetric weight and conf, suggesting that evolutionary couplings

can not be derived from the symmetric weight function. However, the asymmetric weight

function for the same UIC pairs has a correlation of 0.42.

Subsystem r(w, conf) r(wa, conf)

AMS 0.341 0.392
CCS 0.703 0.45
ISS 0.199 0.534

PMS -0.042 0.422
WOS 0.481 0.61

Average 0.3364 0.4816

Table 5.4: Correlation coefficient

Summary: For all five subsystems, confidence level of evolutionary coupling and asymmetric

weight are correlated with average Pearson’s correlation coefficent of 0.48. Notably, the level

of correlation is not the same for all subsystems, and the variation is greater for symmetric

weight.

5.5.3 Results: Error Prevention

In this section, we evaluate to what extent domain-based coupling can be used to prevent

software bugs where a programmer changes multiple UICs but misses a single component.
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λ 0.9 0.7 0.5 0.4 0.3 0.2 0.1 0

RM PM RM PM RM PM RM PM RM PM RM PM RM PM RM PM
CROSS 0.07 0.57 0.09 0.45 0.23 0.35 0.39 0.28 0.47 0.14 0.78 0.09 0.84 0.04 0.95 0.02
AMS 0.05 0.76 0.05 0.76 0.14 0.58 0.26 0.56 0.36 0.54 0.66 0.36 0.79 0.21 0.90 0.17
CCS 0 1.00 0 1.00 0 1.00 0.55 0.64 0.58 0.62 0.58 0.62 0.98 0.36 1.00 0.27
ISS 0.05 0.56 0.05 0.56 0.06 0.40 0.12 0.25 0.17 0.23 0.33 0.16 0.46 0.08 0.67 0.07
PMS 0.19 0.35 0.24 0.34 0.53 0.34 0.71 0.25 0.76 0.17 0.84 0.17 0.84 0.16 0.97 0.15
WOS 0.16 0.69 0.40 0.45 0.66 0.29 0.75 0.25 0.81 0.20 0.86 0.16 0.92 0.10 0.97 0.09
Average 0.09 0.66 0.14 0.59 0.27 0.49 0.46 0.37 0.52 0.32 0.67 0.26 0.80 0.16 0.91 0.13

Legend: λ=Threshold; CROSS= Cross program transactions; PM= Precision; RM= Recall

Table 5.5: Error prevention using asymmetric weight function

If Ψ ⊂ UIC represents a set of UICs modified in a given transaction, for each component

c ∈ C we test a query as

Q = Ψ− {c}

For a givenQ (and some suitable f and λ), the prediction derived from domain-based coupling

is:

A =
⋃
x∈Q

x.AFC(f, λ)

Our experimental hypothesis is that for some suitable f and λ, A = {c} always.

In order to evaluate this hypothesis, we tested queries for five subsystems of BEIMS using

f = w and f = wa (Definitions 7 and 6). As a benchmark for evaluation, we compared

the effectiveness of domain-based coupling to evolutionary coupling with respect to error

prevention, repeating the experiment above using f = conf.

In addition, we found cross-program transactions containing changes to multiple subsystems.

Such transactions are the result of logical coupling [57] between different BEIMS subsystems.

The logical coupling between these pairs is not visible at the source code level as there is

no code dependency between these subsystems, but, more abstractly, these subsystems are

connected at the domain level [57]. As all these subsystems are maintained by a single

programming team, it is often the case that programmers are aware of such coupling.

In the first stage, we tested the queries using the asymmetric weight function (f = wa),

Table 5.5 shows the results for the five systems. To avoid many false positive results (false

warning), we set λ = 0.9, yielding an average recall of 0.09 and precision of 0.66. This means

that only one in 11 queries the AFC(wa, 0.9) warns the programmer about the missing UIC,

and more than half of the results are valid warnings. However, the detailed results show
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λ 0.7 0.5 0.3 0.2 0.1 0

RM PM RM PM RM PM RM PM RM PM RM PM
CROSS 0.02 0.62 0.04 0.58 0.14 0.43 0.40 0.20 0.76 0.06 0.95 0.02
AMS 0 1.00 0 1.00 0.18 0.63 0.28 0.57 0.53 0.23 0.90 0.17
CCS 0 1.00 0 1.00 0 1.00 0.55 0.64 0.98 0.36 1.00 0.27
ISS 0 1.00 0 1.00 0 1.00 0.05 0.33 0.19 0.12 0.67 0.07
PMS 0.16 0.52 0.19 0.48 0.35 0.22 0.80 0.17 0.80 0.16 0.97 0.15
WOS 0.12 0.66 0.38 0.60 0.53 0.40 0.70 0.20 0.85 0.11 0.97 0.09
Average 0.05 0.80 0.10 0.78 0.20 0.61 0.46 0.35 0.69 0.17 0.91 0.13

Legend: λ = Threshold; CROSS= Cross program transactions; PM= Precision; RM= Recall

Table 5.6: Error prevention using symmetric weight function

λ 0.9 0.7 0.5 0.4 0.3 0.2 0.1 0

Subsystem RM PM RM PM RM PM RM PM RM PM RM PM RM PM RM PM
CROSS 0.01 0.96 0.02 0.96 0.07 0.69 0.12 0.59 0.25 0.42 0.37 0.35 0.63 0.21 1.00 0.04
AMS 0 1.00 0 1.00 0 1.00 0 1.00 0.04 0.96 0.26 0.58 0.90 0.22 1.00 0.12
CCS 0 1.00 0 1.00 0.62 0.41 0.98 0.36 0.98 0.36 0.98 0.36 0.98 0.36 1.00 0.27
ISS 0.02 0.80 0.14 0.67 0.34 0.35 0.60 0.32 0.77 0.24 0.81 0.20 0.86 0.11 0.96 0.06
PMS 0 1.00 0 1.00 0.05 0.92 0.08 0.91 0.36 0.62 0.63 0.45 0.93 0.21 0.97 0.15
WOS 0.13 0.81 0.26 0.81 0.31 0.80 0.37 0.72 0.47 0.61 0.65 0.47 0.81 0.23 0.98 0.10
Average 0.03 0.93 0.07 0.91 0.23 0.70 0.36 0.65 0.48 0.54 0.62 0.40 0.85 0.22 0.99 0.12

Legend: λ=Threshold; CROSS= Cross program transactions; PM= Precision; RM= Recall

Table 5.7: Error prevention using evolutionary coupling ( conf)

that for the threshold of 0.9, no results were returned for the CCS subsystem. The highest

threshold that we can get to cover all subsystems is λ = 0.3, with the average recall of 0.52

and precision 0.32.

In the second stage, we tested the queries using AFC(w, λ) (i.e. based on the symmetric

weight function). Notably the maximum value for w in all subsystems is 0.88 (Table 5.6), so

we selected the maximum threshold as λ = 0.7, yielding average recall of 0.05 and precision

of 0.8. This means for only one in 20 queries AFC(w, 0.7) returns at least one missing UIC,

and 80% of the raised warnings to the programmer are true missing UICs. However, as

represented in Table 5.6 there are no results for three subsystems (AMS, CCS, ISS). The

highest threshold that can be achieved to cover all subsystems is λ = 0.2, with average recall

of 0.46 and precision 0.35.

Finally, as a benchmark for evaluation, we tested the queries based on AFC(conf, λ). The

results are represented in Table 5.7. For a strong threshold of 0.9, AFC(conf, 0.9) returns

one out of 34 missing UICs with the precision of 0.93, however, the results only include the

WOS, ISS and cross-program queries. To achieve a result for all subsystems the maximum

threshold of 0.3 yields recall of 0.48 and precision 0.54.
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Aa: Asymmetric function A: Symmetric function

λ 0.7 0.4 0.1 0.4 0.1

Subsystem RM PM Fb RM PM Fb RM PM Fb RM PM Fb RM PM Fb
AMS 0.48 0.68 0.89 0.33 0.82 0.67
CCS 0.33 1.00 0.67 1.00 0.92 1.00 0.00 1.00 0.00 0.75 1.00 0.75
ISS 0.07 0.25 1.00 0.04 0.44 0.67 0.12 0.45 0.94 0.00 1.00 0.00 0.07 0.57 0.67
PMS 0.75 0.25 1.00 0.84 0.72 1.00 0.00 0.00 1.00 0.67 0.65 1.00
WOS 0.50 0.63 0.50 1.00 0.41 1.00 0.92 0.52 1.00 0.60 0.90 0.60 0.68 0.50 1.00
Average 0.29 0.44 0.75 0.53 0.53 0.83 0.67 0.66 0.97 0.15 0.73 0.40 0.50 0.71 0.82

Table 5.8: Result: Estimating the scope of change propagation

Summary: For all five subsystems, on average 46% of errors arising from imperfect change

propagation can be avoided using only domain-level information. This is a promising result

in compare with the 48% average error prevention using evolutionary coupling. In addition,

comparison between results for asymmetric and symmetric weight functions suggests that the

asymmetric weight function provides better recall; however, more precision can be achieved

at the expense of recall using the symmetric weight function.

5.5.4 Results: Estimating Change Scope

In this section, we evaluate to what extent change propagation can be estimated using

domain-based coupling. Based on evolutionary couplings a set of components can be de-

rived which are coupled to a given UIC with the confidence greater that a given threshold.

The hypothesis is that such a set can be derived from the domain-based coupling.

For c ∈ C, we define a query as a tuple q = 〈c, λ〉 where λ is the minimum required level of

confidence. The expected set of affected components by a change to c defined as

E = c.AFC(conf, λ)

We used asymmetric and symmetric weight functions (Definitions 6 and 7) with the same

threshold as conf to derive the following answers:

A = c.AFC(w, λ), Aa = c.AFC(wa, λ)

Where Q is the set of queries for a system, we measured the percentage of the queries where

our approach can give at least one recommendation Q∗ as feedback = |Q∗|/|Q|.
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Table 5.8 shows the results for the five subsystems of BEIMS with three threshold levels 0.7,

0.4, and 0.1, each resulting in a different level of conf for change propagation.

A strong threshold of λ = 0.7 yields empty query sets for three subsystems AMS, CCS and

PMS, where the maximum conf values are 0.33, 0.60, 0.66 respectively. For the two other

subsystems AFC(wa, λ) returns at least one UIC for three out of four queries (feedback=0.75),

and on average for each query 29% of answers were correct with precision of 44%.

For a threshold of λ = 0.1, there are queries derived from all subsystems. Using the asym-

metric weight function, 97% of these queries have been answered with an average recall of

67% and precision of 66%, meaning more than half of the expected answers been returned.

Using symmetric weight function with λ = 0.1 precision improves to 71% at the cost of

reducing both feedback and recall. The results suggest that the asymmetric weight function

is more effective for high and midrange thresholds, and the symmetric function can be used

with lower thresholds. This is a tradeoff between precision and recall in favor of precision.

PM

λ
0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a) Precision

RM

λ
0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1 Query Threshold 0.1

Query Threshold 0.4

Query Threshold 0.7

(b) Recall

Figure 5.3: Prediction results for change propagation in WOS

The predictive power of domain-based coupling is affected by the confidence level and the

given threshold to the weight functions. Figure 5.3 shows the comparison between recall

and precision for confidence levels 0.1, 0.4 and 0.7. In order to find the impact of the

different thresholds on the results, the queries have been answered using the asymmetric

weight function with a range of answer thresholds from 0 to 1 exclusive (horizontal axis).

For all query thresholds, increasing the answer threshold reduces the recall and increases the
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precision. For queries with stronger confidence levels, the recall suddenly drops after some

given threshold; however, for the queries created from low confidence levels this change is

gradual.

Summary:Using the asymmetric weight and a threshold of 0.1, we achieved up to 92%

correct estimations of change propagation in WOS, and on average 67% correct estimation

for all five subsystems. Using the symmetric weight for estimating the change propagation

on average improves the precision in cost of recall, making the symmetric weight a more

preferable choice where a high level of accuracy is required.

5.5.5 Discussion

The results of this case study show how change propagation between software components can

be predicted based on domain-based coupling. Also we demonstrated that such prediction

could assist in avoiding bugs arising from imperfect software alteration.

We measured the correlation between domain-based and evolutionary coupling. The results

suggest that there is a positive correlation between domain-based and evolutionary coupling

for all five subsystems. The results in sections 5.5.3 and 5.5.4 show that the asymmetric

weight function is more suitable for predicting change propagation at higher confidence levels,

whereas in contrast the symmetric weight function is more suitable at lower confidence levels

where it yields higher precision.

The effectiveness of this approach depends on the type of queries, and the behavioural char-

acteristics of the system, and even though we used only domain information for change

propagation analysis, the results are seemingly close to evolutionary coupling, suggesting

that a domain-based approach is a plausible alternative.

5.6 Threats to Validity

This section discusses the main threats to the validity of our study.

Internal validity concerns factors that can influence our observations. We examined the

evolutionary coupling at the coarse-grained level of individual source files. However, co-

changes among files can be the result of modifying two unrelated functions. Hence there
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will be some false co-changes which leads to false increases in evolutionary coupling. The

granularity level of UICs is the other factor which can affect our results. In this study a UIC

is a screen that is accessible directly in the menu of the system. However, one can choose

more fine-grained UICs such as individual panels and tabs in each screen. This might affect

the domain-based coupling, and its correlation with evolutionary coupling. Also it might

affect the result of the error prevention.

Construct validity concerns the relationship between theory and observations. The evolution-

ary coupling derived from the source code repository and the domain-based coupling derived

from software functionalities. In the presented case study, we observed the correlation be-

tween these coupling metrics, but this observation does not provide any support to claim

about any cause-effect relationship between the domain-based coupling and the co-changes

which happen among files.

In our study, the examined system has been developed and maintained by a single company.

The development culture and practices in the company might influence the way that indi-

vidual developers manage and implement change propagation. This factor can affect the

pattern with which developers commit the changes to the source code repository, and so

derived evolutionary coupling between UICs. Hence, this factor can affect the correlation

(Section 5.5.2) and error prevention (Section 5.5.3) results.

External validity concerns generalisation of our findings. In this study, we examined five

subsystems of an enterprise application which is situated in the domain of facility manage-

ment. These subsystems have been developed based on similar architecture and by the same

company. This similarities limit the generalisation of our results to different domains, and

other systems with different architectures.

5.7 Open Issues

The presented cases study in this chapter provides an insight into how domain-based coupling

can be compared to evolutionary coupling. It also highlights the following future area of

investigation:

• We envisage that the domain-based approach can be used to complement the history-

based techniques and source code analysis methods, in a hybrid approach. Our case
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study shows that although overall evolutionary coupling and domain-based coupling are

correlated, there are some exceptions. In such cases, each coupling measurement may

reveal different aspects of a system’s behavioural or architectural characteristics. In

this work we did not investigate these cases qualitatively looking for complementarity,

although we believe complementarity may well exist. A study evaluating complemen-

tarity is a clear candidate for future work.

• We applied asymmetric and symmetric weight functions to different tasks and com-

pared the results, demonstrating that asymmetric weight has higher recall (providing

more results) whereas symmetric weight has better precision. However, whether these

functions can be used in conjunction to achieve even better efficiency is a subject for

further work.

• We also propose to extend this work using information mined from bug reports and

support records, leading to yet other forms of coupling with further potential bene-

fits. Descriptive information recorded by users about application bugs, and required

enhancements, may reveal complementary couplings between software components.

• We have shown that on average there is a positive correlation between predictions

derived from domain-based and history-based analyses. However the variation in the

quality of individual predictions is noticeable. A qualitative evaluation would yield

insight into the underling causes of these variations.

The open issues which are discussed in this section are beyond the scope of this thesis. In

Chapter 7, we will discuss the future direction of this research, and how these open questions

form the possible road map of the future work.

5.8 Summary

In this chapter, we reported on a case study on a significant enterprise system, called BEIMS

in order to address the third and fourth research questions of this thesis.

The third research question asks how accurately can we predict change propagation using

domain-based coupling?, and the fourth research question asks how does such a prediction

compare with the well established co-change coupling derived from maintenance history?
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The results of the BEIMS case study show that the domain-based coupling can estimate

up to 92% of change propagation derived from more than 12 years maintenance history of

BEIMS. We applied both evolutionary coupling and domain-based coupling to detect missing

components from change propagation. This exercise aimed to evaluate the efficiency of these

metrics to avoid software bugs results of imperfect change propagation. The results shows

the close performance of these methods with 46% to 48% recall and 37% to 54% precision

for domain-based coupling and evolutionary coupling respectively.

Although domain-based coupling does not outperform evolutionary coupling, given its inde-

pendence from software implementation and maintenance history, it can support maintenance

of hybrid systems or legacy applications whose maintenance history is not easily traceable.
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Chapter 6

Semi-Automated Approach

Make everything as simple as possible,

but not simpler.

Albert Einstein

This chapter introduces a semi-automated approach to domain-based coupling analysis. The

case studies in Chapter 3 demonstrated how domain-based coupling can be derived by ob-

serving the working software and manually recording the relations between domain variables

and UICs. Although this approach can be implemented without any specific tool and sup-

port of developers, the required labour by the domain experts is a drawback to the manual

approach. The semi-automated approach in this chapter addresses this issue by reducing the

effort from the domain experts in collecting the domain information. This approach is based

on the assumption that the system database stores the domain information, and one can

exploit the database to derive the domain-level relationships. The semi-automated approach

is applicable to information systems which use some form of relational database management

system (RDBMS) to store domain information, and provide this information to the domain

users via graphical interfaces (i.e., forms or screens).

Though this approach is based on automated steps, the domain expert’s input is still required

to verify the results. We examine the cost and benefit of the domain expert’s input with a

study on a subsystem of BEIMS1.

1BEIMS is the enterprise system that we studied in Chapter 5 for change impact analysis.
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This chapter is organised as follows: In Section 6.1, we explore the opportunities for automat-

ing the process of domain-based coupling analysis. Section 6.2 describes the semi-automated

approach, and Section 6.3 presents the tool support. Section 6.4 shows the evaluation of the

semi-automated approach. Section 6.5 discusses the future area of investigation, and finally,

we summarise this chapter in Section 6.6.

6.1 Toward Automation

In Chapter 3, we described how the domain-based coupling between UICs can be modelled

using the weighted graph. To construct such a model the domain experts will need to collect

the following information: domain variables, UICs and their relationships. In a typical

enterprise environment, domain elements can be derived from the following data sources:

• Software artefacts: Documents such as user manuals are valuable information sources

about system features (domain functions), screens (UICs) and data fields (domain

variables). This information can be derived using an automated tool. Although without

formal documentation such a process cannot be fully automated, the domain experts

can supervise the analysis process and improve the results.

• Data schema: In most information systems the domain variables are modelled as the

table structure in a database. If the data schema of the database is accessible, then

some or all of the domain variables can be mined from the schema.

• Domain experts’ knowledge: Domain experts can provide valuable information about a

system such as data fields (domain variables), relations between data fields and screens

(UICs), and features (domain functions) of each screen. This information can be col-

lected using questionnaires. However, filling in questionnaires is time consuming, in-

stead, domain expert knowledge can correct or complete the data automatically de-

rived from other sources like data schema. In Section 6.2, we will describe such a

semi-automated process.

• Working software: The actual working software is a rich source of information about

system elements. For most information systems a list of system screens (forms) is

available through the software menu, or the site map for web applications. Also for these

systems typically there is a security module which manages user access permissions to
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system functions and screens. These resources can be used to derive a list of system

UICs. Then an automated method can be used to observe user interaction with the

system, record changes in UICs and discover related domain variables.

V C HAS.USE

Software artefacts X X X
Data schema X
Domain experts’ knowledge X X X
Working software X X

Legend: V represents the domain variables, C represents the system UICs and HAS.USE is the relationship
between the UICs and the domain variables (Section 3.2).

Table 6.1: Sources of Domain Information

Table 6.1 summarises the available sources for domain information. As presented in this

table, the system domain variables can be derived from software artefacts, data schema, or

domain experts’ knowledge. However, data schema might be the most cost effective data

source. The list of system UICs and their relations with domain variables can be derived

from software artefacts, domain experts’ knowledge, and the working software.

For information systems the working software is a rich source of information about the UICs

and their contents. In the next section, we describe a semi-automated process based on the

analysis of the working software and the system data schema. This process reduces the effort

required for domain experts to create the domain-based coupling graphs.

6.2 Semi-Automated Process

The semi-automated process refines the domain analysis process (Section 3.3) utilising the

system data schema and analysis of the working software. The new approach derives the

system domain variables from the data schema, and analyses the working software to derive

the dependency matrix (Definition 4).

The domain experts supervise the various steps in the process and provide their input by

verifying the output of automated steps. The aim of this verification is to correct false positive

and false negative results arising from imperfectly automated activities. In Section 6.4, we

will evaluate the effect of the effort of the domain experts on cost and quality of the process.
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Analyse Data Schema

<< Manual Task >>
Verify Domain Variables

<< Manual Task >>
Verify Queries

Generate Queries

Extract List of UICs

Extract Textual
Contents of UICs

Search Domain Variables

<< Manual Task >>
Validate Search Results

Create Weighted Graphs

Figure 6.1: Semi-Automated Process

We assume that the information system incorporates some form of relational database (e.g

Oracle or SQL server), and its data schema is accessible. The data schema can be au-

tomatically extracted from the database, or in some systems, it is published in a form of

data dictionary. However, software artefacts tend to become outdated during the software

evolution, thus, it is preferable to extract the schema from the live database.

Figure 6.1 illustrates the semi-automated process that includes the following activities:

• Analyse Data Schema: The aim of this activity is to discover domain variables based

on the structure of the system data schema. An automated tool reads the system data

schema and extracts a set of tuples of the form 〈table, field〉 where table is the name
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of a data table, and field is the name of a data field in the table. For most relational

database management systems (RDBMS) this can be achieved using an SQL script.

There may be redundancy between data fields for two primary reasons: (1) a foreign

key in a table contains the same value as the primary key in the master table, (2) not

all databases may be fully normalised, leading to duplicate fields in multiple tables.

To address these issues, the automated script ignores all fields which have foreign keys.

Also it generates warnings when two data fields have the same name. These warnings

will be reviewed by the domain expert (see below).

• Verify Domain Variables: The aim of this activity is to verify that all tuples present

the domain variables. This is a manual process where domain experts audit the gen-

erated tuples and remove those which are not domain-related. For example, systems

often record application settings in the database which contain screen dimensions, user

preferences, fonts or colours. In addition, domain experts review the warnings for fields

with the similar names (raised in the last activity) to avoid multiple tuples for the same

domain variable.

The tuples which are retained by the domain experts are interpreted as the system

domain variables, and hereafter we refer to them simply as domain variables.

• Generate Queries: The aim of this activity is to create queries for searching the

domain variables.

We extend the derived domain variables to 4-tuples 〈table, field, TableQuery, F ieldQuery〉

where TableQuery and FieldQuery are two sets of terms2 which will be searched to

identify if a domain variable is related to a UIC.

We use the binary information retrieval method [128] in our work. The queries are

generated via the following steps:

– Tokenisation: To account for compound names we segment the table and field

string representations into tokens. Since meaningful names are usually made by

compounding terms, and spaces are usually disallowed in identifiers, it is common

to create compound names by delimiting multiple words with separators (‘-’,‘ ’,‘.’,

2By term we mean an individual word which is considered atomic, i.e. indivisible and meaningful in the
system’s language locale. Some techniques described may work best for European languages.
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etc.) or by using CamelCase3. We segment the table and field from these delim-

iters into terms which can then be checked against the domain vocabulary4. The

TableQuery and FieldQuery are two sets of terms which represent the tokens for

the table and field respectively.

– Stemming and Case-folding: For grammatical reasons different variants of a word

might be used in UICs (e.g. code, codes, coding) which usually correspond to the

same domain concept, but do not match using ordinary string comparisons. There

are two strategies for resolving this issue; stemming and lemmatization [128].

Stemming is a heuristic process which removes word endings to eliminate in-

flectional parts and derive a base form, and lemmatization is the method which

achieves this by using a form of dictionary and morphological analysis of words.

Stemming is simpler to implement than lemmatization, and given that the labels

on UICs and the field names in the database often are very similar, stemming

should provide sufficient accuracy.

There are a number of well known stemming algorithms such as Lovins, Porter,

and Paice [128]. As various stemming methods produce different outputs, for

the optimum results, the same stemming method should be used on both the

query and search areas (UICs contents). In a following activity (Extract Textual

Content of UICs), we will discuss the tokenisation and stemming of UIC contents.

We assume that most terms in the domain vocabulary are case-insensitive, thus,

we convert all tokens to lowercase before searching the domain variables.

• Verify Queries: The aim of this activity is to verify the generated queries using

domain knowledge. In this activity, domain experts review the generated queries and

perform the following tasks:

1. Drop common tokens: Extremely common tokens, or terms such as articles or

prepositions do not help in finding domain variables, and might cause false posi-

tive results. There are two strategies to identify these tokens: (1) Sort the terms

by collection frequency (total number of times a token is derived from a database),

3CamelCase is a practice of writing compound names in such a way that each element’s initial letter is
capitalised within the compound, the first letter is either lower or upper case, and the rest of the letters are
lower case. E.g. HomeAddress, userName
4A domain vocabulary is a set of terms which are common in a domain and have domain-specific meaning.
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and then remove the most frequent tokens. (2) Use a stop list which contains pre-

defined terms. Such a list may be derived from the the system language dictionary.

2. Add alternative queries: The aim is to reduce false negative results. Domain

experts review the tokens in the TableQuery and FieldQuery and add new tokens

in two cases: First, not all possible terms (synonyms) for a domain variable can be

derived from the table and field. Second, there are composite variables which are

calculated from multiple domain variables (e.g., key performance indicators (KPI),

subtotals). The presence of these on a UIC indicates a relationship between the

finer domain variables and the UIC. For example, a KPI called ConditionIndex

(C.I.) is derived from maintenance cost and asset value. For every UIC that

contains C.I., we conclude that it is related to maintenance cost and asset value.

• Extract list of UICs: The aim of this activity is to derive a list of system UICs.

For multi-user systems, it is common to have a central permission management module

which controls user-access to different UICs. These modules typically store and read

user permissions from a data source such as a database table, and an automated method

can be used to read a UIC list from this table.

Another data source for UICs is the site-map for many web applications and software

menus for desktop clients. It is reasonable to assume that an automated tool will

be able to read this information from the working software and generate a list of the

system’s UICs.

• Extract Textual Content of UICs: The aim of this activity is to extract the text

from the UICs, and prepare the text to be searched for domain variables. This activity

includes the following tasks:

1. Extract the textual content of UICs. This can be done using optical character

recognition techniques for desktop applications or an HTML parser for web-based

applications. It is more likely that this task needs to be customised for individual

applications.

2. Tokenise the text derived from UICs using the same method which was used to

search for the domain variables.

3. Apply the same stemming method as used on the queries.

4. Convert the tokens to lowercase.
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The outcome is a set of tuples 〈c, UicContent〉 where c is a UIC and UicContent is a

set of tokens.

• Search Domain Variables: In this activity we use a boolean information retrieval

function SEARCH : A × A → {false, true} where A denotes the set of tokens. If Q

and T are two sets of tokens representing a query and the search target respectively,

then SEARCH(Q,T ) returns whether Q and T have common elements, that is:

SEARCH(Q,T ) ≡ (Q ∩ T 6= ∅)

For a domain variable 〈table, field, TableQuery, F ieldQuery〉 to exist in a UIC 〈c, T 〉,
both SEARCH(TableQuery, T ) and SEARCH(FieldQuery, T ) should be true.

Example 1 Imagine a report screen represented by the tuple 〈c, T 〉 where T is the

set of tokens from the screen contents. For the domain variable Job-Number repre-

sented by 〈“Work Orders”,“No”, TableQuery , FieldQuery〉 where “Work Orders” is

the table name, “No” is the field name, TableQuery = {“work”, “job”, “wo”}, and

FieldQuery = {“no”, “number”, ”id”}, the search results shows that “job”∈ T and

“number”∈ T therefore we can conclude that Job Number exists in the report screen.

• Validate Search Results: In this activity, domain experts review the results, and

resolve the following issues:

– False positives: The automated search may return some false positive results

where domain variables do not exist in the content of a UIC, but they have been

returned because of similarity in labels and an imperfect search method. The

domain experts compare the search outcomes with the UIC screen-shots, and

remove these false positive variables from the set of domain variables for the UIC.

– False negatives: Not all domain variables are recorded directly in the database;

moreover, queries for domain variables may be imperfect. Domain experts review

the search results for individual UICs and add any missing domain variables.

• Create Weighted Graphs: This is the last activity in the process where the domain

information is combined to give the domain-based coupling graphs. This step can be

achieved using an automated script that transforms the domain variables and their

relationship with UICs to the weighted graphs based on Definition 6 and Definition 7.
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In Section 6.4, we will evaluate the semi-automated approach, the required effort for the

manual activities and their impact on the accuracy of the derived domain-based coupling.

6.3 Tool Support

In order to evaluate the semi-automated approach, we designed and developed a Java-based

tool that supports collecting the domain information and performing the activities of the

semi-automated process. The tool called Camros [33] is composed of a number of Java

libraries that supports the semi-automated activities. We released the software package under

the (BSD) license [48]. This allows for free use of the package by users and researchers. In

addition, this license allows developers to incorporate their own services into the software

and redistribute the applications.

The tool has three principle stakeholders: Subject Matter Expert, Requirements Analyst,

Software Engineering Researcher.

It is important to make clear the difference between these stakeholders and the domain

experts. While the label of domain expert can be applied to a broad range of expertise in

a domain, the subject matter expert is more specifically experienced in the software system

being analysed. In addition, the role of requirements analyst is not concerned with the domain

but with the process of eliciting and assessing the impact of changes to the system. However,

these stakeholder roles are often subsets of the responsibilities of a domain expert, and are

commonly found as part of the following job titles associated with the software development

life-cycle; Business Analyst, Expert User, Product Manager, System Analyst, and System

Consultant. In contrast, the software engineering researcher role is not commonly associated

with the domain expert, but with researchers in the specific areas of software evolution and

maintenance.

6.4 Evaluation

The semi-automated approach aims to reduce the effort required by domain experts to predict

change propagation based on the software domain information. In this section, we evaluate

this approach by a case study where we use the semi-automated approach to predict the
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change propagation in the maintenance history of an enterprise system. In particular, we

aim to answer these questions:

Q1: How much effort is required on the part of the domain experts to perform the manual

activities? The answer to this question indicates the cost of the semi-automated process

for predicting the change propagation.

Q2: To what extent will the recall and precision be affected if the domain-experts do not

verify queries and search results? The answer of this question identifies the value of

the domain experts’ input to the process.

The system under analysis (SUA) is the Work Order System; one of the core subsystems

of BEIMS5 that has been introduced in Chapter 5. Two domain experts6 performed the

semi-automated process on SUA. Their process outcomes were cross checked to reduce the

mistakes introduced through imperfect domain knowledge or human error.

6.4.1 Evaluation Setup

We perform the domain-based coupling analysis on SUA and use the derived domain-based

coupling graph to predict the change propagation in the maintenance history of SUA.

In Section 5.4, we introduced c.AFC(f, λ) which represents the relation between c ∈ C and

other components based on the function f and the given threshold λ.

We measure the likelihood of change propagation based on the frequency of the co-changes

in the software maintenance history as presented in Section 5.2. Given a change request for

a component c ∈ C, we query q = (c, λ) other components which might be affected by the

change with the confidence greater than λ. The expected answer to the query is the set of

components derived from

Eq = c.AFC(conf, λ)

where conf is the confidence function that returns the likelihood of change propagation based

on the maintenance history and λ is the minimum acceptable value for conf .

5Building and Engineering Information Management System (BEIMS) is the enterprise systems that we used
in Chapter 5 for change impact analysis.
6One of the domain experts had computer science background, and worked for Mercury Computer Systems,

the software vendor for BEIMS.
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We answer these queries using the asymmetric7 domain-based coupling (Definition 6). We

predict the set of affected components as

Aq = c.AFC(wa, γ)

where γ is the threshold for the asymmetric domain-based coupling between the components.

The queries are answered with range γ between [0.1, .., 0.9].

The results are assessed using definitions of precision and recall as follows:

Pq =
|Aq ∩ Eq|
|Aq|

Rq =
|Aq ∩ Eq|
|Eq|

We measure the mean value of the precision and recall for the SUA as

PM =
1

n

n∑
i=1

Pqi RM =
1

n

n∑
i=1

Rqi

which is derived from the individual queries for all components in the system.

6.4.2 Results: Required Effort by Domain Experts

In order to answer the first question (Q1) in this study “How much effort is required on

the part of the domain experts to perform the manual activities?” we report on the results

derived from the manual activities as part of the semi-automated process:

Verifying Domain Variables: The analysis output of the data schema shows 182 data

tables that yields 1,790 tuples 〈table, field〉. Since the SUA is a subsystem of a large

scale enterprise system, only a subset of these data tables contains information related

to the SUA. The domain experts individually reviewed the analysis output and both

agreed to remove 77 tables because of non related domain information. In addition,

domain experts reviewed the warnings issued by the tool support for similar field names

and removed duplicated fields. They left 701 tuples as related domain variables for the

7The asymmetric coupling provides better recall and lower precision, while symmetric coupling provides
higher precision and lower recall (Chapter 5). In this study, we report only on the results from asymmetric
domain-based coupling, aiming to improve recall.
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SUA.

In order to reduce the time spent on this activity. The domain experts verified the do-

main variables only based on their knowledge about the system without consulting any

system document or access the working software. This is a tradeoff between accuracy

and productivity in favour of productivity, as the extended analysis time can discourage

domain experts to use this method. For this study the domain experts completed this

activity in less than an hour.

Verifying Queries: The domain experts reviewed the frequency list of tokens, and derived

a set of 10 common tokens to drop from the queries. The removal of tokens from

the queries was performed automatically using the tool support. In the next step they

reviewed the derived queries and added alternative queries to 79 domain variables. The

domain experts performed both these stages in less than forty minutes.

Verifying Search Results: The domain experts reviewed the generated search results for

each UIC, added the missing domain variables (false negatives), and removed unrelated

domain variables (false positive). On average for each UIC, 142±74 false positive

domain variables were removed, and 2±3 false negatives domain variables were added.

The time spent by domain experts on this activity was, on average, less than 10 minutes

per UIC.

In summary, all the manual activities were performed in less than 3 hours.

6.4.3 Results: Precision and Recall

In this section, we answer the second question (Q2) of this study “To what extent will the

recall and precision be affected if the domain-experts do not verify queries and search results?”

We evaluated the precision and recall of the change propagation prediction by the domain-

based coupling using two different thresholds. The first threshold γ identifies the strength of

the domain-based coupling. Table 6.2 shows that increasing γ provides more precise results at

the expense of recall. This threshold is useful if someone wants to build a tool that provides

limited and precise information about change propagation to the domain experts.

The second threshold λ identifies the minimum confidence for the change propagation. The
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γ 0.1 0.2 0.3 0.4 0.5 0.7 0.9

PM RM PM RM PM RM PM RM PM RM PM RM PM RM
λ=0.1 0.59 0.82 0.73 0.8 0.85 0.61 0.92 0.57 0.99 0.39 1.00 0.15 1.00 0.04
λ=0.2 0.47 0.75 0.54 0.75 0.66 0.56 0.71 0.56 0.78 0.54 0.91 0.39 1.00 0.21
λ=0.3 0.37 0.71 0.4 0.71 0.42 0.57 0.46 0.57 0.52 0.57 0.7 0.43 1.00 0.29

Legend: γ=Threshold for domain-based coupling; λ=Threshold for co-change coupling

Table 6.2: Semi-Automated Process Results

co-changes derived from the maintenance history represent the confidence of change prop-

agation. Thus, the stronger λ the more significant is the likelihood of change propagation.

This threshold can be used to focus the evaluation on components with strong evidence of

change propagation in their maintenance history.

Table 6.2 shows the results of the change propagation analysis on the SUA using the semi-

automated process. The domain-based coupling with the minimum threshold γ=0.1 returns

82% of components with likelihood of change propagation greater than 0.1, and the precision

of the result is 0.59 implying that more than one in two returned components have are

correct results. The precision will improve by increasing the threshold for the domain-based

coupling. For γ=0.7 the precision increases to 0.99 while the recall decreases to 0.39.

Both precision and recall decrease for the queries which require stronger confidence levels.

For λ=0.3, the domain-based coupling returns 37% of the expected results with the precision

of 0.71 and we can increase the precision to 1.00 with γ=0.9 at the expense of reducing recall

to 0.29.

Figure 6.2 shows the comparison between two different test cases. Case 1 is the result

derived from the complete manual process that is the same as Table 6.2. In Case 2 we omit

two activities in the process including Verify Queries and Validate Search Results. Hence,

domain experts only provide input of verifying domain variables, and this significantly reduces

their effort required to perform the analysis. The comparison between these two cases shows

that the verification of queries and search results by domain experts has a positive impact

on precision especially for stronger thresholds. For λ=0.1 and γ=0.1 the precision has been

increased by almost 20% while for λ=0.3 and γ=0.9 the precision has been improved by

100% as a result of the domain expert input.

The other effect of the manual validation process is reducing the number of components in
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Legend: Case 1 Case 2

Case 1: The complete process includes all manual and automated activities , Case 2: This case omits two

manual activities: Verify Queries and Validate Search Results.

Figure 6.2: Impact of Manual Activities
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the results. This has a negative impact on recall, but the comparison between the changes

in the precision and recall for these cases shows that the improvement in precision is more

significant than the reduction in recall.

6.4.4 Discussion

The evaluation result shows that the semi-automated process derived up to 82% of change

propagation with the precision of 0.59. The precision can be improved to 1.00 at the expense

of reduction in recall by increasing the threshold for the domain-based coupling. We evaluated

our approach against three confidence levels which represent the strength of likelihood for

change propagation. The result shows that an increase in the required confidence level for

the change propagation reduces our precision and recall. At the strongest level with the

minimum threshold for the domain-based coupling the recall is 0.29 and 100% precision.

The results derived from this case study suggest that the manual activities performed by

the domain experts improve the precision of predicting change propagation. For the SUA,

the domain experts performed these activities in less than 3 hours. The first two activities

were each performed once only for the entire database, and the verified queries that they

generated can be reused for the analysis of other subsystems of BEIMS as all subsystems of

BEIMS use the central RDBMS, and the data schema used for this case study includes all

data tables.

6.4.5 Threats to Validity

This section discusses the main threats to the validity of the case study:

Internal validity threats concern factors that may influence our observation. The time

recorded for manual activities is affected by external variables including the time spent on

conversation between domain experts, taking notes, and reading domain documents. In ad-

dition, the domain experts had previous experience with the domain-based coupling analysis,

and so could be considered to be method experts.

The variation in domain knowledge and expertise of the domain experts who performed the

study was not measured. This could affect the time taken for the analysis and the accuracy
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of the verification results.

The effect of prior learning on the accuracy and the effort spent on the later activities has

also not been measured. This may have impacted the results because the domain experts,

who performed all three manual activities, would have learned about the data schema and

domain variables in the early activities.

External validity threats are concerned with the generalisation of the results. The system

under study is a subsystem of an enterprise system. Given that the system is focused on a

single domain (facility management), the case study results might not be applicable to other

domains.

In addition, the system under study is a legacy system developed in a two-tier architecture.

The location of the domain related source code can affect the change propagation results,

thus more study is required to examine this method on different architecture types.

This is a limited case study with only two domain experts performing the process. We believe

that challenges and patterns observed in this case study can assist in the application of the

semi-automated process to other enterprise systems; however, we can not draw a strong

conclusion from a limited case study.

6.5 Open Issues

This section presents the open issues and outstanding questions related to the presented

process and the tool support.

In this chapter, we introduced four data sources for domain information. In extending the

semi-automated approach, further studies can reveal new ways of driving domain concepts,

and might assist in further reduction in required effort by domain experts. Specifically, we

proposed to investigate the following questions:

• We derived the domain variables from data schema. What are the other sources that

can be used to find domain variables, or confirm the ones which are derived from the

data schema?

• We used the working software, and generated queries to match domain variables and
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UICs. What are the other sources that can be used to investigate these relationships?

For example, data mining from system design artefacts can be used to discover such

relationships?

In the semi-automated method, we had a basic approach to enquiry domain experts by asking

them directly about individual verifications. More work is required to study how domain

experts’ input in the process can be collected with their minimum effort. For example, for

open source systems, there are social networks and public forums available which might be

used to collect such information.

As it has been discussed in Section 6.2, there are two different methods for addressing the

issue of words’ various forms: stemming and lemmatization. In our approach we took the

assumption that there is a similarity between UIC design and field names in the database

so we chose the less expensive approach, stemming. A further study is required to evaluate

if such an assumption is valid in most enterprise systems, or if there is any improvement in

results by using a lemmatization method.

We evaluated the semi-automated approach against one individual system, and no strong

conclusion can be drawn from a single case study. Extended studies are required to eval-

uate the efficiency of the proposed approach and the tool support against various software

architectures and different domains.

In Chapter 8 we discuss the future direction of this research, and how the open issues pre-

sented in this section form the road map of the future work.

6.6 Summary

In this chapter, we answered the fifth research question by examining the various information

sources which can be used for automating the domain-based coupling analysis. We introduced

a semi-automated method which derives domain variables from system data schema, and

reduces the effort for searching the domain variables in content of the system’s UICs, and

creating the domain-based coupling graphs.

We evaluated the proposed method with an enterprise case study, and the results show that

the semi-automated method notably reduces the effort required to analyse and create the list
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of domain variables, analyse UICs and create the domain-based coupling graphs. However,

the results suggest that the domain expert verification and input in two stages of this process

are required to improve both precision and recall.
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Evaluation

Science can only ascertain what is,

but not what should be.

Albert Einstein

Managing the cost and impact of software changes is a constant challenge in software main-

tenance. These days, it is common to find large scale enterprise systems that consist of

subsystems developed in different languages; in addition, more than ever the software main-

tenance community is meeting the challenge of maintaining legacy systems with missing

source code and outdated design documents.

In Chapter 2, we have identified three main approaches to change impact analysis, including

document-based, code-based and history-based methods. The problem is that while domain

experts have an important role in software evolution, they often find the existing change

impact analysis methods difficult to use without the support of developers; as such, the

existing methods limit the contribution of the domain experts in the process of evaluating

and making decisions about software changes.

This thesis has addressed this problem by providing a methodology for change impact analysis

that conforms to the following criteria:

• Simplicity and usability: This thesis aimed to provide a pragmatic methodology for

change impact analysis that is simple and usable by non-technical domain experts.
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• Practicality: This thesis aimed to provide a methodology that is applicable to typical

enterprise systems with outdated design artefacts, heterogeneous source code and an

inaccessible maintenance history.

• Generality: This thesis aimed to provide a methodology that works for general en-

terprise systems without any requirements to specific tools which are dependent on a

particular programming language, software architecture, framework or implementation

technology.

• Efficiency: This thesis aimed to enable domain experts to reliably estimate the change

propagation in an acceptable timeframe with respect to the scale and complexity of the

system.

A large group of software systems are constructed to model business domains (Section 2.3),

and it is reasonable to expect that real-world dependencies should be reflected in their source

code. In this thesis, we hypothesised that software dependencies can be predicted by exploit-

ing domain information, and we investigated the following research questions:

• RQ1: What kind of model can we derive from domain experts’ knowledge about

relationships between software elements?

• RQ2: How accurately can we identify architectural dependencies using such a model?

• RQ3: How accurately can we predict change propagation using such a model?

• RQ4: How does such a prediction compare to the well-established co-change coupling

derived from maintenance history?

• RQ5: What is the required effort and the cost of making the prediction?

In this chapter, we evaluate how the proposed methodology addresses the research questions

and how it satisfies the described criteria. Moreover, we investigate the questions about how

scalable is this methodology? How transferable are our results to different software types?

What are the open issues and the threats to the validity to our findings?

The rest of this chapter is organised as follows: Section 7.1 shows the research contributions

and findings. Section 7.2 discusses how the proposed research questions in this research are
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answered. Section 7.3 evaluates the proposed methodology against the criteria. Section 7.4

describes the transferability and scalability of the proposed method. Section 7.5 discusses

the validity of the performed case studies in this thesis and we finally summarise this chapter

in Section 7.7.

7.1 Research Contributions and Findings

This thesis has made the following contributions to the field of software evolution and main-

tenance:

• Methodology: This thesis introduced a novel methodology for change impact anal-

ysis based on only the software domain information. The benefits of the introduced

methodology are: it is independent of the software implementation; therefore, it is ap-

plicable to software environments where source code analysis is not easily achievable,

such as systems with heterogeneous source code. It is independent of the software

maintenance history; therefore, it is applicable to systems with inaccessible mainte-

nance logs, such as systems in their initial development stage. In addition, it is usable

by non-technical domain experts who do not have access to software source code. The

introduced methodology addresses RQ1.

• Domain-based coupling: In Chapter 3, this thesis introduced the domain-based

coupling as a novel metric for measuring the semantic similarity between software

domain level components. The domain-based coupling metric is the key element for

predicting the change propagation based on software domain information and, as such,

it is the core of this thesis.

• ADempiere case study: In Chapter 4, this thesis presented a case study of a large-

scale open source ERP1 system, called ADempiere. The result of this study demon-

strates that the domain-based coupling can approximate the architectural dependencies

among software components with an accuracy of more than 70%.

• BEIMS case study: In Chapter 5, this thesis presented on a case study of a significant-

sized enterprise system, called BEIMS2. The result of the this study shows our proposed

1Enterprise resource planning
2Building and Engineering Information Management System
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method can predict an average of more than 67% of the change propagation derived

from more than 12 years maintenance history of BEIMS.

• Semi-automated process: In Chapter 6, this thesis provided a semi-automated pro-

cess that reduces the efforts of the domain experts to measure the domain-based cou-

pling and predict change propagation.

The next section describes how these contributions and findings answer the five research

questions in this thesis.

7.2 Answers to Research Questions

This thesis investigates the five research questions as follows:

• RQ 1: What kind of model can we derive from domain experts’ knowledge

about the relationships between the software elements? In Chapter 3, we

described the three main software domain-level elements: user interface components

(UICs), domain functions and domain variables. These elements and their relationships

are visible to the domain experts, and we showed how these experts can measure the

level of the coupling between the UICs using the proposed domain-based coupling

metric. As discussed in the background (Section 2.8), the proposed model in this thesis

is not the only software domain model; however, the existing research in this area mainly

aims to incorporate the domain information into the development environments that

are mostly usable by programmers. In comparison the proposed model in this thesis is

intended for use by domain experts.

• RQ2: How accurately can we identify architectural dependencies using such

a model? In Chapter 3, we reported on a qualitative analysis of an enterprise web-

based system where we described how domain-based coupling between the UICs cor-

responded to the dependencies in the source code. Furthermore, in the ADempiere

case study (Chapter 4), we analysed the dependencies across the multiple tiers of the

software architecture, and demonstrated that domain-based coupling can be used to

predict the probability of finding architectural dependencies between the UICs. In this

study, the accuracy of such a prediction is, on average more than 70%.
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• RQ3: How accurately can we predict change propagation using such a

model? The results of the case study on the subsystems of BEIMS (Chapter 5)

show that an average of 67% of the change propagation derived from the 12 years of

the BEIMS maintenance history can be predicted by the domain-based coupling be-

tween the UICs. Although such a prediction is not sufficiently accurate to replace the

existing code-based impact analysis methods, it can support the software maintainers

where traditional code analysis tools do not work, such as hybrid systems or a legacy

application with missing source code and design documents.

• RQ4: How does such a prediction compare with the well-established co-

change coupling derived from maintenance history? In the BEIMS case study

(Chapter 5) we compared the domain-based coupling with the well-established evolu-

tionary coupling derived from the maintenance history; the result showed a positive

correlation between these metrics. In addition, we applied both these metrics to pre-

dict software bugs resulting from imperfect maintenance activities. The results show

the close performance of these methods, 46% to 48% recall and 37% to 54% precision

for the domain-based coupling and evolutionary coupling, respectively.

• RQ5: What is the required effort and cost of making the prediction? In

the presented case studies in Chapters 3 and 5, we described how the relationships

between the domain elements can be derived from observing the working software and

manually recording the related domain variables to the UICs. This approach requires

only a functional knowledge of the system and the domain users can perform it without

the support of developers . Therefore, the cost of the analysis is the time spent by the

domain users. Although this is a usable method for small software packages, it is not

scalable to large enterprise systems.

To improve the scalability of this approach, we examined the data sources that can

be used to automate the process of measuring the domain-based coupling (Chapter 6).

We identified the system data schema as a source of information that can be used to

derive the domain variables, and we developed an open source tool that reduced the

effort by the domain experts by providing information about the potentially-related

domain variables to the UICs. The evaluation results show that, when using this tool,

the time spent by the domain expert is an average of eight minutes per UIC.
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7.3 Evaluating the Methodology Against the Criteria

The domain-based approach to change impact analysis conforms to the pragmatic method-

ology criteria as follows:

7.3.1 Simplicity and usability

In Chapter 1, we described how domain experts can collect and transform domain infor-

mation into a dependency matrix. From the dependency matrix, an automated tool can

measure the domain-based coupling between the UICs and generate the weighted graphs.

As demonstrated in the ADempiere and BEIMS case studies (Chapter 4 and Chapter 5),

domain experts can identify highly-coupled components based on the domain-based coupling

graphs and predict the dependencies and change propagations in the system.

Neither the domain-based coupling analysis nor the domain-based change impact analysis

require any knowledge of software engineering or the software source code. However, the

required labour by the domain experts can be a drawback in this approach. In Chapter 6,

we addressed this issue by providing a semi-automated approach that reduces the efforts of

the domain experts to measure the domain-based coupling.

In summary, our results show that domain-based change impact analysis is adequately sim-

ple and usable by domain experts without any need for technical knowledge of software

engineering or access to the source code.

7.3.2 Practicality

The proposed approach in this thesis for change impact analysis is based on the information

derived from the software behaviour at the domain-level. This information is independent

of the software implementation and software source code. In the presented case studies

(Chapter 4 and Chapter 5), the only documents that have been used for the domain analysis

were the functional specifications of the system, user manuals and help documents, without

a need to access any design artefacts or the technical specifications of the system.

In Chapter 5, we compared our method with evolutionary coupling derived from the main-
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tenance history. However, our approach has no dependency on the maintenance history.

Therefore, it is applicable to software systems with inaccessible version controls or brand

new systems with few maintenance records. We will further discuss the scope of the appli-

cability of this approach in Section 7.4.

In summary, our approach is practical for typical business applications and information

systems with no requirement for source code analysis, access to design artefacts or data

mining from the source code version control. Hence, it can be applied to hybrid systems

(e.g., C++ and Python) or recently-developed systems with little or no maintenance history.

This approach is also applicable to legacy systems or systems where their design documents

or source code are not available.

7.3.3 Generality

The introduced domain analysis method is based on software functionality, and independent

of the software non-functional properties. Hence, the proposed method is not dependent

on any specific programming language, architecture type (e.g., SOA) or design specification

(e.g., UML diagrams).

The case studies in Chapter 3 demonstrate that the domain analysis can be performed

using generic tools such as spreadsheets (e.g., Excel) and a generic script for creating the

weighted graphs from the collected data by the domain experts. The proposed tool support in

Chapter 6 is introduced to facilitate the process; yet, it is not a requirement for the domain-

based change impact analysis. The assumptions for the tool are access to the system data

schema, access to the system UICs list, and the ability to take screen shots from the UICs.

These assumptions are acceptable for the majority of business applications and enterprise

systems.

The requirement for the introduced method is access to the system domain information,

including the relationship between the UICs, domain functions and domain variables. This

requirement limits the applicability of this method to systems where the majority of their

functionality is related to storing and analysing data, and include a number of UICs. Hence,

this approach is not applicable to systems where most of their functions are hidden to the

end-users, such as an operating system.
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In summary, the domain-based change impact analysis is applicable to general business ap-

plications and typical enterprise systems, regardless of their implementation.

7.3.4 Efficiency

In Chapter 5, we demonstrated the application of the domain-based coupling for predicting

software bugs, and we compared its performance with the evolutionary coupling. The pre-

diction result derived from domain-based coupling is close and, in some cases, even better

than the evolutionary coupling.

The domain-based change impact analysis requires domain expert effort for domain-based

coupling analysis and for creating the weighted graphs. The provided tool support in Chap-

ter 6 reduces the effort by the domain expert; however, a once-off data preparation effort is

still required by the domain experts. There is a linear correlation between the number of

the UICs and the required effort by the domain experts, i.e., the more screens and fields the

enterprise system has, the more costly it is to create the weighted graphs.

However, after creating the weighted graphs, the process of the change impact analysis re-

quires very little effort by the domain experts and, in most cases, it can be automated.

In summary, the domain-based change impact analysis is sufficiently efficient to predict the

impact of the maintenance requirements for typical enterprise systems. This method requires

neither expensive tools nor special technical knowledge; hence, it can be used by domain

experts for typical enterprise systems to guide software maintenance and to facilitate planning

for software enhancements.

7.4 Transferability and Scalability

In this section, we discuss the transferability and scalability of the domain-based change

impact analysis. We describe its applicability to various software categories and different

kinds of software changes.

First, to what categories of software systems do these methods apply? Pressman [152] organ-

ised computer software under seven categories: system, application, engineering/scientific,

embedded, product-line, artificial intelligence and web applications. Our approach is appli-
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cable to subsets of the application software, product-line software and web applications that

are data driven and provide their functionality through a number of user-interface compo-

nents. Our approach is not applicable to software where its functionality is not visible to

the domain users, such as the system software or embedded software. Also, domain-based

change impact analysis may not be suitable where systems are not data driven or have few

user-interface components, such as engineering/scientific or artificial intelligence software.

Second, for what kinds of software changes can we use these methods? Lientz and Swan-

son [118] classified software changes as perfective, adaptive, corrective and preventative. Pre-

ventative changes are typically initiated by programmers/developers or software engineers

who are concerned with the non-functional properties of the system, such as the maintain-

ability of the source code. Such changes might be difficult to map to domain functions;

therefore, domain-based change impact analysis would not be a suitable approach for this

kind of change. However, perfective, adaptive and corrective changes are typically performed

in response to a request from the system users or in response to changes in the software

environment. Such software changes, if related to changes in the software domain functions,

can be assessed using domain-based change impact analysis.

Pressman [152] suggests four fundamental sources of software changes in relation to the

business environment: (1) changes of business conditions, (2) changes in customer demands,

(3) growth/downsizing of the business, and (4) budgetary or scheduling constraints. All

of these changes might be defined as changes to the domain functions or user interface

components or both; hence, their impact can be estimated using domain-based change impact

analysis.

Finally, how scalable are these methods? Domain-based change impact analysis requires the

domain experts’ knowledge about user interface components. In Chapter 6, we described how

domain information can be derived automatically from various sources, such as the actual

working software, but we still rely on the domain experts’ feedback in the final stage of the

process. There is a linear relationship between the required effort for the analysis process by

the domain experts and the number of user-interface components and domain variables.
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7.5 Threats to Validity

We believe that the presented case studies in this thesis can be helpful for other researchers

and practitioners. They demonstrate how the domain-based coupling can be derived from

information systems, and how it can be used to predict the architectural dependencies and

the impact of the software changes. Nevertheless, our results should not be generalised too

hastily without first considering the following possible threats to the validity.

Internal validity concerns uncontrolled factors that can be responsible for the results. In

ADempiere and BEIMS case studies (Chapters 4 and 5), we identified the following threats

to the internal validity:

• The domain information is collected by the domain experts and human error is a factor

that can affect the results. To minimise the risk of human error, we extracted the

relationship between the domain variables and the UICs from user manuals and help

documents. In ADempiere , this information is stored in the database. We used

only manual inputs from the domain experts to confirm this information and kept the

manual additions and alterations to a minimum.

• One other factor that could affect the results is the granularity of the UICs. In both

ADempiere and BEIMS studies, we chose windows as the UICs. Each window con-

tains multiple tabs and each tab provides one or more functions. Different results

could be achieved if the evaluation were performed on the fine-grained tabs or the

coarse-grained modules.

• In the BEIMS case study, we derived evolutionary coupling from the co-changes at the

file level. However, a developer can apply unrelated changes to two files in a close time

frame. For example, a developer can work on two unrelated bugs in the same time

frame and send the changes to the repository as part of the same transaction. Such

co-changes can lead to false positive evolutionary coupling and reduce the recall of the

prediction results by the domain-based coupling.

• BEIMS is a proprietary software system developed by a single company. The company

standard practices and development cultures might influence both the software archi-

tecture and the maintenance activities, including the way the developers fix bugs and

enhance the system. To reduce this impact, we examined more than 12 years of the
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maintenance history of the system. The longevity of this maintenance history reduces

the influence of the individual developers by including more developers and different

software versions.

External validity concerns the generalisation of our findings. In ADempiere and BEIMS

case studies, we evaluated our approach against the large-scale enterprise systems. Although

the maturity of the data about these systems provided an insight into the relationships

among the architectural dependencies, change propagation and the domain-based coupling,

the following limitations in our studies should be considered before generalising our findings:

• ADempiere is developed in JAVA and based on the multi-tier architecture. The

architecture of this system is designed to enhance the maintainability and extendibility

of the system; it reduces the code coupling and code clones, as such ADempiere

manifests the state of the art open source enterprise systems. However, one might get

a different result for a system with much code coupling or a legacy system with a flat

architecture.

• In BEIMS case study, we examined the five subsystems that operate in the domain

of facility management. Although these systems have separate functionalities, they

have been developed based on a similar architecture and by the same company. This

similarities limit the generalisation of our results to different domains and other systems

with different architectures.

Construct validity concerns the relationship between the theory and the observations. In

BEIMS case study, we reported on a case study that compared the domain-based coupling

with the evolutionary coupling. In these studies, we demonstrated the correlation between

the two coupling metrics; domain-based coupling from the system behaviour and evolutionary

coupling from the co-changes in the source code repository. However, our observation did

not provide support to claim a cause-and-effect relationship between these coupling metrics.

The correlation only suggests that one coupling metric can be used as a proxy for the other.
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7.6 Roadmap for Future Work

In this section, we summarise the open issues in our work and describe a roadmap for the

future areas of investigation. We have identified the following open issues in the prior chapters

of this thesis:

• In Chapter 3, we reported on two issues concerning the density of the domain-based

coupling graph: first, the graph can be too complex and not readable for the large-

scale systems with many components. Second, although applying a threshold to edges’

weight improves the readability of the graph, finding an optimum threshold value is

a challenge. We proposed a solution to these issues in Chapter 4, where we used the

Expectation Maximisation (EM) clustering technique to reduce the number of edges

in the graph. However, we have evaluated only this clustering method with a single

case study, and more studies are required for examining the efficiency of the clustering

method for identifying highly-coupled components.

In addition, we have identified the following limitations of the performed case studies

in Chapter 3: the performed case studies reported only the overall architectural de-

pendencies and did not distinguish the relationships between the dependencies in the

source code and the other application layers. Moreover, both these studies report on

web-based systems; thus, the observations are difficult to relate to other application

types. We addressed these issues in Chapter 4 where we compared the domain-based

coupling with the dependencies in the source code and database layers of a hetero-

geneous open source system. In addition, the case studies in both Chapter 4 and

Chapter 5 include the analysis of the desktop applications that typify the majority of

the enterprise systems and legacy applications.

• In Chapter 4, we reported two open issues with the ADempiere case study: first, the

observations provide only limited information about the impact of the granularity of

the UICs on the results. In this study, we reported only on the course-grained UICs;

however, one can get different results for the analysis of the dependencies between the

fine-grained UICs. Second, the evaluation does not include the impact of the domain

characteristics (e.g., complexity) on the prediction accuracy. For example, extended

case studies might reveal the prediction is more accurate for systems composed of more

independent components.
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• In Chapter 5, we have envisaged that the domain-based coupling and the evolution-

ary coupling can be combined to provide a more accurate prediction about the change

propagation. A similar hybrid approach can be implemented based on both the sym-

metric and asymmetric domain-based coupling. In addition, we have examined only the

recorded change propagation in the source code version control, but other sources such

as bug reports and support records can be explored for identifying the change prop-

agations. Finally, we have demonstrated that there is a positive correlation between

the domain-based coupling and the evolutionary coupling. However, the variation in

the quality of the individual predictions is noticeable. Hence, a qualitative evaluation

might yield insights into the underling causes of these variations.

• In Chapter 6, we have identified these future areas of investigations: the proposed

tool support derives the domain variables from the system data schema, but one can

investigate other sources that can be used to find domain variables or confirm those

that are derived from the data schema. In addition, the proposed tool uses the working

software and optical character recognition to identify the relationships between the

domain variables and the UICs. One can extend this method to other dynamic analysis

methods and identify other sources that can be used to investigate these relationships.

• The case studies in this thesis have involved only a few domain users because these were

the only ones who knew the systems and had time to evaluate our research. However,

future work could involve other domains and provide a more thorough evaluation of

the challenges in domain analysis faced by non-technical domain users.

Given the described open issues, contributions and findings of this thesis, we envisage the

following road map for the future work:

• Extended case studies: we envisage that further case studies can extend the findings of

this thesis by:

– providing information about the impact of the granularity of the UICs on the

prediction of the change propagation and the dependencies between the UICs

– identifying the properties of the UICs that can affect the prediction results (e.g.,

size and complexity)
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– assessing the potential impact of the domain characteristics (e.g., complexity) on

the prediction result

– qualitatively comparing the change propagation and the domain-based coupling

to identify the other factors that can affect the prediction result

– increasing the information about the usability of the domain-based coupling by

non-technical domain users and introducing new methods for collecting domain

information.

• Exploring other sources of domain information: we envisage that other aspects of soft-

ware systems can be exploited to:

– identify the domain variables, e.g., domain ontology and system documents

– identify the relationships between the domain variables and the UICs, e.g., dy-

namic analysis.

• Exploring hybrid approaches: the observations in ADempiere and BEIMS case studies

suggest that the following hybrid approaches might lead to a better prediction of the

software dependencies and change propagations:

– combining the domain-based coupling and the evolutionary coupling derived from

the software maintenance history

– combining the domain-based coupling and a coupling metric derived from the

source code analysis

– combining the symmetric and asymmetric domain-based couplings.

We envisage that the domain analysis can complement many of the existing code analy-

ses and reverse engineering methods and we hope this work will encourage researchers and

practitioners to explore other applications of the domain-based coupling.

7.7 Summary

In summary, this thesis has described how to model the domain-level coupling between

the software user-interface components and how such a model can be used to discover the

architectural dependencies and change propagation.
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In this chapter, we discussed how the derived model from domain information and the pro-

posed methodology conforms to the criteria for a pragmatic change impact analysis method-

ology. In addition, we described the contributions of this thesis, the outcomes and research

findings of the presented case studies and the threats to the validity of our findings.
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Conclusion

In this thesis, we introduced a novel methodology for change impact analysis based on the

domain information. The introduced approach is independent of the software implementa-

tion, inexpensive to implement and is usable by domain experts without the requirement to

access and analyse the source code. As part of this methodology, we introduced the domain-

based coupling as a novel metric for measuring the semantic similarity between the software

domain level components. This metric enables domain experts to assess the likelihood of the

dependencies and the change propagation between the software components. This approach

is based on the assumption that domain-level relationships are reflected in the software source

code, and one can predict software dependencies and change propagation by exploiting the

software domain-level information.

This thesis evaluated the proposed methodology with two large-scale enterprise case studies.

In the first case study, we compared the domain-based coupling with the architectural de-

pendencies in a large-scale open-source enterprise system, called ADempiere. The results

show that the domain-based coupling can approximate the architectural dependencies among

the software components with an accuracy of more than 70%. In the second case study, we

compared the domain-based coupling with more than 12 years of maintenance history for a

significant-sized proprietary enterprise system, called BEIMS. The analysis of the mainte-

nance history of the five core subsystems of BEIMS shows that the domain-based coupling

predicts more than 67% of the change propagations.

The results of these studies support our hypothesis that the domain-based coupling can
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approximate the software dependencies and change propagation. Although the accuracy of

such predictions is not sufficiently strong to replace the existing code analysis and reverse

engineering techniques, it can be used where conventional code analysis methods are not

easily applicable. For example, the domain-based coupling can predict dependencies and

change propagation in hybrid systems with heterogeneous source code or legacy systems

with missing source code and outdated design documents. In addition, the proposed method

can be used by domain experts to evaluate the impact of prospective software changes without

the support of the developers. Such an evaluation by domain experts can reduce the cost of

managing software maintenance and assist software development teams to more efficiently

plan for minor or major software changes.

We envisage that the contributions and findings of this thesis can be extended in the following

areas1: (1) extended case studies that investigate the functional and non-functional properties

of the system that affect the accuracy of the prediction results, (2) exploring other sources of

domain information, and (3) exploring the hybrid approaches that combine the domain-based

coupling with the existing coupling metrics.

We hope this work will encourage researchers to explore further applications of domain

analysis in software maintenance and software engineering, and entice practitioners to take

advantage of domain-based analysis as part of their software development practices and

discover software properties that are difficult to derive from the source code.

1The roadmap for future work is described in detail in Section 7.6.
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ADempiere An Enterprise Resource Planning or ERP software package released under an

open source software license. 130

BEIMS Building and Engineering Information Management System, an enterprise system

designed and developed by Mercury Computer Systems (Australia) Pty Ltd. 87

Change Propagation The phenomenon whereby a change to a software component lead

to changes to other components. 23

Domain Analysis The activity of identifying the objects and operations of similar systems

in a particular domain. 33

Domain Expert The expert who provides information about the domain model of a system,

and supports domain analysis. 34

Domain Function Proactive or reactive domain-level behaviour of the system which in-

cludes at least one domain variable as an input or output. 38

Domain Model The definition of the functions, objects, data, and relationships in a do-

main. 33

Domain Variable A variable unit of data with a clear identity at the domain level. 38

Domain-Based Coupling A coupling measurement between components based on soft-

ware domain-level behaviour. 44

Expectation Maximization A clustering technique that groups a given set of objects so

that similar objects are grouped together and dissimilar objects are kept apart. 75
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Impact Analysis The activity of identifying what to modify to accomplish a change, or of

identifying the potential change propagation. 24

Logical Coupling The semantic relationships between classes based on source code version

history. 31

MSR Mining Software Repository. 31

Precision The percentage of a returned answer which was expected. 76

RDBMS Relational Database Management System abbreviation. 103

Recall The percentage of an expected answer which was returned. 76

SLC Software Life Cycle. 12, 14, 15, 19–23

Software Evolution The dynamic behaviour of software systems as they are maintained

and enhanced over time. 14

Software Maintenance The correction of errors and modifications needed to allow an ex-

isting system to perform new tasks and to perform the old ones under the new condi-

tions. 14

SUA System Under Analysis abbreviation. 40

UIC User Interface Components abbreviation. 38
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