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Abstract

This thesis proposes analytical models, algorithms and software engineering techniques

that enable web services to achieve execution times that arepredictable and consistent.

Their growth as the preferred middleware for communicationamong distributed sys-

tems in multitude of networks, demand better execution timeperformance.

Web services middleware are typically designed optimised for throughput. They ac-

cept every request receives and make no differentiation in processing them. Many use

the thread-poolpattern to execute requests in parallel using processor sharing scheme.

Clusters hosting web services dispatch requests to only balance out the load among the

executors. Such optimisations for throughput work out negatively on the predictability

of execution. Processor sharing results in the increase of execution time with the num-

ber of requests being processed in parallel. As a result, it becomes impossible to predict

or control the execution of any web service request.

Existing works on execution time quality of service fail to address the need for pre-

dictability in web service execution. Some of the work achieve a level of differentiated

processing, but fails to consider predictability as the main quality attribute. Some at-

tempts try to give a probabilistic guarantee of service levels as outlined in service agree-

ments. Nevertheless, from a predictability point-of-viewthey do not happen repeatedly

and consistently. A few attempts manage to achieve predictable execution times, how-

ever only in closed systems where request properties are known at design time. Web

services operate on the Internet, which is an open environment where request properties

are relatively unknown.

In this thesis we investigate the problem of achieving predictable times in web service



executions. We introduce the notion of aprocessing deadlinefor service execution, that

the web services engine must adhere to in completing the request in a repeatable and a

consistent manner. Reaching such execution deadlines by the services engine is made

possible by three main features. First a deadline based scheduling algorithm introduced,

ensures the processing deadlines are followed. A laxity based analytical model and an

admission control algorithm it is based on, selects requests for execution, resulting in a

wider range of laxities to enable more requests with overlapping executions to be sched-

uled together. Finally, a real-time scheduler component introduced in to the server uses

a priority model to schedule the execution of requests by controlling the execution of

individual worker threads in custom-made thread pools. Predictability of execution

in cluster based deployments is further facilitated by fourdispatching algorithms that

consider the request deadlines and laxity property in the dispatching process. All of

them follow the request selection process that maximises the range of laxities at each

cluster server, while the RT-Laxity algorithm further ensures widening of the range by

keeping track of the last two laxities assigned to each server and avoiding their succes-

sive assignment to the same servers. The implementation of these features are further

supported by development platforms and operating systems with real-time features. A

performance model derived for a similar system approximates the waiting time where

requests with smaller deadlines (considered to be higher priority) experience smaller

waiting times than requests with longer deadlines.

All these techniques are implemented in popular web services middleware as stand-

alone and cluster-based configurations. They are evaluatedagainst their unmodified ver-

sions and other algorithms such as round-robin and class based dispatching, to measure

the predictability gain achieved through the enhancements. Empirical evidence indicate

that our enhancements enable the middleware products to achieve more than 90% of the

deadlines, while accepting at least 20% of the requests in high traffic conditions. The en-

hancements additionally prevent the middleware from reaching overloaded conditions

in heavy traffic, and maintain comparable throughput rates to the unmodified versions of

the middleware. Analytical and simulation results for the performance model confirms

that deadline based preemptive scheduling results in a better balance of waiting times

where high priority requests experience lower waiting times and lower priority requests

are not over-starved compared to other techniques such as static priority ordering, First-

Come-First-Served, Round-Robin and non-preemptive deadline based scheduling.

Achieving such a level of predictability within web services middleware opens up var-

2



ious new application areas to the use of web services. Applications such as industrial

control systems, avionics systems, medical equipment control systems, capital market

trading systems and robotics mandate such stringent predictability in execution. Such

systems with real-time requirements would greatly benefit from the inherent advantages

Web services bring in, such as open protocols that would freecomponent designers and

developers from using proprietary methods of communication in such systems. This

research hopes to open up such new application avenues to theuse of Web services as a

viable middleware platform.

3



Chapter 1
Introduction

The Internet has evolved beyond its traditional role of being a large collection of in-

formation sources into the true form of a large collection ofdistributed systems. It

has been transformed from being user-centric to application-centric and is fast moving

towards being a completely automated web [Cerami and St Laurent, 2002], where ap-

plications automatically discover and communicate with each other without any user

intervention. This paradigm shift was possible only with the advent of web services

technology, currently considered to be thede-factostandard for communication in dis-

tributed systems [Gartner and Forrester, 2003]. At the inception of web services, other

distributed communication technologies such as Common Request Broker Architecture

(CORBA) [Vinoski, 1993], Microsoft Distributed Component Object Model (DCOM)

[Microsoft Corporation, 2012] and Java Remote Method Invocation (RMI) [Oracle,

2010] were widely in use. The quick adoption of Web services can beattributed to

their self-describing, loosely-coupled, platform-independent nature and their minimal

requirements for operation. The use of standard protocols such as Hypertext Trans-

fer Protocol (HTTP) for transport, by Simple Object Access Protocol (SOAP) which

is an Extensible Markup Language (XML) based data format, required no additional

software or changes to networking infrastructure, such as routers and firewalls for web

services communications to be supported.

Figure 1.1 illustrates an example of booking a holiday through a travelwebsite on

the Internet. Although the client interaction is limited tothe travel website, it uses a

reservation engine hosted somewhere on the Internet and exposed using web services.

The reservation engine in turn communicates with several other systems such as airline
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reservation, hotel reservation, car-rental and insurancewhere all of them are accessed

through web services. Given a single booking done through the travel website, there

maybe hundreds of web service invocations that take place tocomplete the operation,

among the systems involved. Therefore, the execution time performance of each service

invocations is critical for the completion of the task on-time, at the reservation engine

and in turn the travel website.

 

 

Figure 1.1: Example: Booking your next holiday on the Internet

With service providers moving towards multi-tenant architectures [Azeez et al., 2010;

Bezemer and Zaidman, 2010; Tsai et al., 2010] and applications such as portrayed in

the example being the norm, execution time predictability of web services demands an

increased importance. Although Quality of Service (QoS) aspects of web services (such

as scalability, availability, reliability and security) has been widely researched, few at-

tempts have been made on achieving execution time QoS in web services middleware.

Moreover, none of them would guarantee predictable execution times in a consistent

manner.
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1.1 The Problem

The execution of a service is managed by web services middleware (commonly referred

to as SOAP engines) it is hosted in. The engine handles all aspects of request processing

from listening for incoming requests, request processing,extracting parameters, invoca-

tion of service instances to the preparation of the response. Predictability of execution

(which is the guarantee that a service invocation completeswithin a perceived deadline)

is seldom considered a design goal in developing such web service engines. On the

contrary, they are designed to achieve high levels of throughput (the number of service

invocations handled within a given time) [Apache Software Foundation, 2009; Chapell,

2010; Sun Microsystems, 2009]. For instance, requests are accepted unconditionally

and executed in abest-effortmanner. Multiple requests are executed in parallel using

processor sharing, using theThread-poolconcurrency pattern [Graham et al., 2004].

Figure1.2shows the average execution time of a service as resulted by worker threads

in a thread pool, from a simple experiment we conducted.

The service we used has a linear execution time complexity (O(n)). We started off with

2 requests executing in parallel and increased the request count each time by five, until

47 requests were sharing the processor. The results obtained show that the average exe-

cution time increases proportionally with the number of requests executing in-parallel.

This phenomenon is common in any kind of application including web services middle-

ware, that conductbest-effortprocessing. This leads to longer and unpredictable waiting

times that make web services unsuitable for applications with stringent execution time

requirements. Furthermore, the development platforms andoperating systems (OS)

used to build and host such middleware, do not support execution level predictability.

For instance, priority levels available to middleware may not orthogonally map onto OS

level priorities. As a result, service execution maybe interrupted by other running pro-

cesses or by house keeping activities within the development platform, such as garbage

collection [Arnold et al., 2006].

Hosting web services in a cluster setup is a common way of improving response and

execution times of services. Nevertheless, clusters do improve availability and reliabil-

ity, but cannot guarantee predictability. Although distributing the request traffic among

many hosts does improve conditions, the aforementioned issues still remain intact in

the individual web service engines. Moreover, the dispatching algorithms used in them

do not consider any predictability attributes such as execution deadlines or laxity, in the
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decision making process that match requests to executors.
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Figure 1.2: Average execution times by multiple requests processed

Due to these shortcomings, existing web services middleware [Apache Software Foundation,

2008, 2009; RedHat Inc., 2009; Sun Microsystems, 2009] is unable to guarantee execu-

tion time predictability. Consistent adherence to execution deadlines are of utmost im-

portance for the use of web services for inter-application communication. Such short-

comings have hindered web services being adopted as a middleware for applications

with stringent execution time requirements, such as disaster management, financial trad-

ing systems, industrial control systems, avionics, manufacturing execution systems and

medical diagnostics systems. Such applications consider predictability of execution to

be more important than throughput rates they could achieve.Although achieving cer-

tain levels of throughput is important, they trade-off throughput to achieve higher levels

of execution time predictability. Therefore, such systemshave been unable to bene-

fit from the inherent features of web services, that has made it otherwise popular as a

middleware platform.
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Although there have been a few customised solutions that tryto ensure execution level

predictability [Helander and Sigurdsson, 2005; Mathes et al., 2009a,c], they are geared

towards closed environments where task properties and arrivals are known at design

time. They enable web services to be used with such applications with real-time prop-

erties, however the solutions are not applicable on the Internet, the open environment

web services operate in, where request properties and arrivals are not knowapriori.

Moreover, the existing solutions claim to succeed in those specific closed environments,

although important details such as the scheduling mechanism have been left out from

the discussion, welcoming improvements to their methods and solutions.

1.2 Research Questions

The lack of support for execution time predictability is seen as detrimental to the success

of web services being adopted as a middleware in applications with real-time require-

ments. Finding a solution to this problem needs to be tackledat multiple levels. As

part of this process, we address the following research questions. With the first research

question we introduce the notion of a deadline into the simplest form of web service

middleware to explicitly select and schedule requests based on their deadlines. The sec-

ond research question investigates the possibility of introducing this to a cluster setup

and incorporate predictability based decision making intoits request dispatching pro-

cess. Implementing these techniques require software engineering techniques and tools

that are generic and applicable to all types of web service middleware in use. Hence,

the third question investigates the system building aspectof the solution. With the final

research question we investigate the use deadline based scheduling for differentiation in

systems where tasks may miss their deadlines and analytically model a deadline based

scheduling system to obtain advanced performance metrics.

A) How can predictability of execution be achieved in stand-alone web services

middleware?

The simplest web services deployments are stand-alone servers. Ensuring predictabil-

ity on a single host would be the first step at achieving predictability in more complex

configurations. Predictability requires execution of a request be completed within a per-

ceived deadline. Such a feat could only be guaranteed by explicit scheduling of requests

to achieve their respective deadlines. Nevertheless, withthe open environment web ser-

vices operate in, achieving processing deadlines of requests with no prior knowledge of
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their properties, is a challenging proposition. Successfully accommodating a process-

ing deadlines of unknown requests is a significant achievement as existing solutions that

support such processing deadlines, are able to do so only with the knowledge of request

properties and in closed systems.

B) How can predictability of execution be achieved in cluster based web service

deployments

Web services deployments commonly use a cluster based setupto increase availabil-

ity, reliability and for better response times. It is commonfor all cluster servers to

have replicas of web services hosted. In such deployments, request dispatching takes

place using traditional deployment algorithms that balance the load among the execu-

tors. Supporting predictability of execution requires theindividual executors to ensure

the requested deadlines can be met. This question, investigates the possibility of in-

corporating predictability attributes such as the execution deadline and laxity in the

request dispatching decisions. The significance of the problem is incorporating the pre-

dictability attributes into the dispatching process and achieving the perceived level of

predictability in the open environments web services are used in.

C) How can web services middleware products be engineered tohave predictable

execution times

With the first and second research questions, we ascertain the need for purposeful

scheduling of requests and the requirement for selecting requests with guaranteed ex-

ecution to meet their deadlines. Putting these concepts into practice requires web ser-

vices middleware to be built for predictability. The challenges in building middleware

to achieve predictability of execution or enhancing existing middleware will be dif-

ferent from engineering information systems. For instance, the change of goals from

throughput to predictability requires a different school of thought and requires a more

sequential processing oriented designs. Nevertheless, given the amount of requests to

be processed, a certain amount of concurrent processing needs to be accommodated.

The challenge here is to have a balance between these two aspects and build a system

that achieves both the goals. Moreover, techniques and tools used in the development

process of conventional applications will not be applicable in building such systems.

With the third question, we investigate on such enhancements, software engineering

techniques, best practices and tools to use in building web services middleware with

predictable execution times.
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D) How can performance models for systems using deadline based preemptive

scheduling be derived and compared with other techniques

The performance of scheduling techniques are modelled and measured using perfor-

mance attributes such as waiting time of a request. Althoughthe main performance

attribute associated with deadline based scheduling is deadline miss rate, the possibil-

ity of deriving other performance attributes such as waiting time is investigated with

this question. Deriving such attributes require it to be modelled as a stochastic system.

Although a few such performance models for deadline based scheduling systems can

be found in literature, they consider the service times to beexponentially distributed

and consider the system to be non-preemptive. Modelling preemptive execution is a

challenging task on its own. When preemptions are made on deadline based decisions

at runtime, the complexity is further increased. This question investigates the possibil-

ity of deriving a performance model for such a deadline basedpreemptive scheduling

system.

1.3 Assumptions

For this research, our scope of achieving predictability islimited to request processing

and execution that happens within web services middleware,due to the limited time

frame. The execution of a web service may span across multiple application boundaries.

For instance, part of its execution might have to do with fetching data from a database

and as a result, a portion of the execution takes place withinthe database management

system. We consider the predictability of such applications outside of the middleware

as out of scope for this research. Indeed, achieving predictability on such applications

is a research area on their own, based on their design and architecture. Within the

scope of this research, we consider the execution time in such an external application as

subsumed within the overall execution time of the web service invocation. Furthermore,

we make the assumption that requests will experience any delays on the network. In this

thesis our use of the terms request, task and job are synonymous and is used to refer to

a web service request that is received by the middleware.
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1.4 Limitations of Existing Solutions

This section highlights some of the limitations in existingsolutions that ascertain the

requirement of the research questions mentioned earlier. Amore comprehensive dis-

cussion could be found in the respective related work sections within Chapters3 to

6.

Execution level QoS in stand-alone web services middleware

Many of the existing work on execution time QoS in stand-alone web services make

the assumption that the underlying middleware ensures the required QoS levels and

act as service brokers [Ran, 2003; Tian et al., 2003] or facilitate service compositions

[Zeng et al., 2003, 2004] based on QoS data. The few attempts that try to achieve dif-

ferentiated request processing [Ching-Ming Tien, 2005; Sharma et al., 2003] does not

consider an execution deadline as a QoS parameter. Some of the existing work em-

ploy admission control checks [Carlstrom and Rom, 2002; Dyachuk and Deters, 2007;

Elnikety et al., 2004] to control the execution of requests. However, they do not con-

sider predictability attributes such as execution deadlines and laxity of a request in the

decision making process. In summary existing work achieve alevel of differentiated

request processing based on functional and non-functionalattributes such as type of

task (request processing versus security processing), nature of client (paying versus

free) and type of devise used (mobile versus PC). Admission control mechanisms used

do not However none of them supports an execution deadline orconsiders the laxity

property of request in the differentiation criteria.

Execution level QoS in cluster based web services deployments

Out of the myriad of QoS attributes in web services, execution time is the most impor-

tant attribute for predictability. Existing work on achieving better execution times on

clusters have been mostly focused on improving response times by balancing or unbal-

ancing the loads among cluster servers. Many of them use highlevel request classifi-

cation schemes [Cardellini et al., 2003; Colajanni and Yu, 2002] to distribute requests

evenly among cluster members or to give preference to one type of traffic over another.

Similarly, others map requests to servers based on request properties such as the size of

a request [Ciardo et al., 2001; Harchol-Balter et al., 1999]. Some use admission control
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mechanisms and differentiated processing to achieve probability based measures of ex-

ecution times specified in service agreements [Garcı́a et al., 2009; Pacifici et al., 2005]

and a few use heuristic techniques [Cao et al., 2010; Gmach et al., 2008] to achieve the

same. Commonly, all work mentioned seem to achieve some differentiated processing

in request execution, yet fails to guarantee predictable execution times in a repeatable

and a consistent manner. Moreover, the decisions made in dispatching requests or in

admission control, do not consider an execution deadline orconsiders the laxity of a

task in the process.

Predictability of execution in existing web services middleware

To achieve execution level predictability in an open environment, three important steps

must be ensured. Requests must be selected with a guarantee on meeting their deadlines,

selected requests must be explicitly scheduled to meet the deadlines and finally the mid-

dleware must employ some method of differentiation in its request execution. Moreover,

all of its activities must be supported by development platforms and operating systems

that have real-time features. Existing specialised middleware solutions fail achieve one

or more of these these steps in ensuring predictability. wsBus [Erradi and Maheshwari,

2005] contains an admission control mechanism and claims to use priorities to differ-

entiate processing. However, there is no evidence of scheduling based on deadlines or

how the priorities are enforced. Some of the more specialised middleware solutions

[Helander and Sigurdsson, 2005; Mathes et al., 2009a,c] exhibit real-time features, in

supporting requests with processing deadlines. However, they are custom made for

closed environments and support periodic and aperiodic tasks with the assumption that

task properties are known at design time of the system. The techniques they employ

does not suit the open environment with unknown task properties.

Analytical models for deadline based scheduling systems

A few attempts at analytically modelling deadline based scheduling systems could be

found in literature. Work of [Li et al., 2007] considers a non-preemptive system us-

ing earliest deadline first scheduling and proposes grouping of requests with similar

deadlines together, to minimise the loss rate. Work of [Kargahi and Movaghar, 2006]

uses the same scheduling principle and presents a performance model for deadlines

at beginning and end of service forM/M/m andM/M/1 type of queues, respec-
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tively. [Lehoczky, 1996] attempts at incorporating the laxity property into a queue-

ing model. The model presented considers aM/M/1 system and tries to minimise

the loss rate by considering the laxity property when scheduling requests. A priority

based multi-class scheduling model based on earliest deadline first scheduling for a

non-preemptiveM/G/1 system is presented in [Chen and Decreusefond, 1996]. They

try to achieve differentiated waiting times for the different request classes based on

their priorities. Many of the related work in this area consider the target system to be

M/M/1 or having exponentially distributed service times. While this estimation may

hold true when requests properties are knownapriori, it misrepresents the unknown

request properties and the open environment web services are typically used within.

Moreover, the service time distribution will be based on thenature of tasks the ser-

vice performs, which can be different in each case. The performance model presented

in [Chen and Decreusefond, 1996] represents such an environment and considers the

scheduling to be non-preemptive. This can be highlighted asa limitation, as deadline

based scheduling could also be used with preemptive systems.

1.5 Research Contributions

In addressing the aforementioned research questions, we make the following contribu-

tions.

Predictability of execution in stand-alone web services middleware

We present an admission control mechanism and a deadline based scheduling method,

to be used in stand-alone web services middleware. We provide an analytical model

based on real-time scheduling principles that calculates the schedulability of a request

given its deadline requirement and the requests already accepted for execution. The

schedulability check considers the laxity property in accepting requests for execution

and gives a guarantee on meeting their deadlines. Real-timescheduling principles are

typically used in designing static schedules for closed systems. The uniqueness of the

proposed solution lies in the fact that they are used in a highly dynamic and open envi-

ronment, at run-time. A schedulability check algorithm based on the analytical model

selects request based on their laxity and only selects request with execution deadlines

that can be met given the current conditions. The selected requests are scheduled for
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execution using Earliest Deadline First (EDF) scheduling algorithm. Such purposeful

selection and scheduling of requests ensures that execution deadlines of requests can be

achieved by the system. With these techniques used for achieving predictability, there is

an unavoidable reduction of throughput. However, we ensurethe resultant throughput

levels to be within an acceptable range, when the nature of application is considered.

Predictability of execution in web service clusters

We present four request dispatching algorithms to be used incluster base web service

deployments that consider the processing deadline as a parameter in dispatching de-

cisions. Two of the algorithms dispatch requests in a content-blind manner and the

schedulability of a request with a chosen executor is considered prior to dispatch. The

remaining two algorithms carry out content-aware dispatching. One uses the task size

to match a request to an executor and the other distributes requests among executors

to increase the range of laxities at each executor. All four algorithms make use of the

laxity property when the dispatching decisions are made. The laxity based request se-

lection of the four algorithms ensure that the requests at each cluster server comprise of

a wide range of laxities. This enables more requests with overlapping deadlines to be

scheduled together by delaying or phasing out the requests of requests with larger laxi-

ties. Selected requests are executed at each server using EDF scheduling algorithm. The

four algorithms represent a majority of the widely used dispatching techniques that ei-

ther balance or unbalance the load of a cluster and thereforeare a good example of how

predictability attributes such as a laxity could be considered as part of the dispatching

decisions.

Building web services middleware with predictable execution

The software engineering aspect of the overall solution is also considered as a main

contribution of this thesis. A real-time scheduler component makes use of a priority

model and custom made real-time thread pools to achieve fine-grain control over the

execution of requests in the servers. Moreover, algorithmsand system designs to im-

plement the schedulability check and the deadline based scheduling algorithm at the

middleware level is also presented as contributions. As, guaranteeing execution level

predictability requires a more serialised approach to request execution, separate lanes

of execution has been introduced into the web services middleware. Real-time worker
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threads with elevated priority levels executing in these lanes gives better control of their

execution to the real-time scheduler. In memory logging anddebugging techniques that

minimises Input/Output activities are used to ensure priority inversions are kept to a

minimum. Such software engineering techniques, design patterns, algorithms and tools

for achieving predictability is considered to be the main contribution.

Advanced performance modelling of earliest deadline first scheduling in web ser-

vices

We present an analytical model based on queueing theory to measure the performance

of a priority based preemptiveM/G/1 system using earliest deadline first scheduling

technique. The model is an extension to the work of [Chen and Decreusefond, 1996],

where the referenced model is extended to a preemptive deadline based scheduling sys-

tem. The model approximates the mean waiting time of a request belonging to a par-

ticular priority class where the mean waiting time is based on the execution of higher

and lower priority requests already at the system, higher priority requests arriving at the

system subsequently and having prior service and the mean residual service time ex-

perienced by the priority class. The preemptions are approximated as part of the mean

completion time experienced by a request of the considered priority class and it is en-

capsulated in the definition presented for the mean residualservice time experienced by

the request. To our knowledge this is the first attempt at approximating the performance

of such a system using queueing theory. The significance of this model is that it is

independent of the service discipline and therefore is applicable to any scheduling tech-

nique. Moreover, the model and its approximations are validnot only for web services,

but any other system that uses a similar queue and earliest deadline first scheduling.

1.6 Thesis Structure

The remainder of this thesis is structured as follows

• Chapter2 presents a background on core concepts used in this thesis. This in-

cludes an introduction to web services, service oriented architecture and the ar-

chitecture of web services middleware. It is followed by an introduction to real-

time tasks, real-time scheduling principles and a discussion on deadline based
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scheduling in detail, parts of which are used by the analytical models presented

in this thesis.

• In Chapter3 we present an admission control mechanism and a deadline based

scheduling method to be used in stand-alone web services middleware. We use

real-time scheduling principles typically used at design time, to achieve pre-

dictability in real-time systems. They are used for admission control and request

scheduling, in an environment where task properties and their arrivals are un-

known. These techniques introduced into a middleware product and evaluated

with different traffic conditions by comparing with its unmodified version. Em-

pirical results show that more than 96% of the request deadlines could be met

while accepting more than 20% of the requests in very high traffic conditions.

• Chapter4extends the admission control mechanism and the deadline based schedul-

ing method into a cluster environment and incorporate the laxity property of a re-

quest in the dispatching process. We introduce four different request dispatching

algorithms that considers laxity, and dispatches requestsonly if their deadlines

could be met. We implement these in two middleware products and compare them

to popular techniques such as round-robin and class-based dispatching, evaluat-

ing them under different traffic conditions. Empirical results obtained confirm

that the proposed methods achieve 95% of the deadlines compared to less than

10% of the deadlines by others.

• Chapter5 discusses the engineering aspect of introducing predictability of execu-

tion in to actual middleware products. We present generic software engineering

techniques, algorithms and tools that can be used for this purpose. Moreover, we

provide a set of guidelines that can be followed in identifying and making the

changes in existing web services middleware products.

• Chapter6 provides details of an analytical model for a preemptiveM/G/1 sys-

tem which uses earliest deadline first scheduling principle. The system supports

arbitrary number of priority levels and the priority governs the waiting time and

loss rate experienced by requests in each class. Compared tosimilar systems with

non-preemptive scheduling, the proposed model achieves better waiting times and

loss rates. Analytical and empirical results show that deadline based scheduling in

such a configuration achieves a better balance in terms of higher priority requests
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experiencing less waiting time and loss rates, without lower priority requests be-

ing led into over-starvation.

• Chapter7 summarises the proposed approach for each research question and dis-

cuss potential directions for future work based on the solutions presented, before

the conclusion.
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Chapter 2
Background

This chapter provides the background information of technologies and techniques that

the proposed research is based on. A knowledge of these are a necessity to understand

the problem, questions addressed and the solutions presented as part of this research.

2.1 Web Services

Web Services are self-contained software components that are accessible over a network

and perform designated tasks for a user or an application [Papazoglou, 2008]. Their fea-

tures such as, being self-describing [Gurugé, 2004], loosely coupled [Weerawarana et al.,

2005], transport agnostic [Cerami and St Laurent, 2002], discoverable [Chappell and Jewell,

2002] and platform independent [Marks and Werrell, 2003] have made them the most

popular choice for communication in distributed systems.

Web Services use Web Service Description Language (WSDL) [Christensen et al., 2001;

Weerawarana et al., 2002] which is an XML based specification to describe themselves.

It contains information about the service, operations available, parameters that are

accepted by each operation, data types of the parameters, return values, messaging

schemes and protocols used. Although being human readable due to its XML nature,

the WSDL description is intended to be accessed programmatically by applications

[Gurugé, 2004]. Web services are considered to be loosely coupled as theirdefini-

tion or data exchange do not rely on any underlying platform,operating system or the

program language they are implemented in. This enables web services to be highly
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inter-operable [Weerawarana et al., 2005].

Earlier versions of web services only supported standardised XML-based documents

such as SOAP and XML based Remote Procedure Call (RPC) format, for data exchange

[Chappell and Jewell, 2002]. Over the years, the widened use have seen relatively

newer and lighter weight technologies such as Representative State Transfer (REST)

[Fielding, 2000; Richardson and Ruby, 2007] based services, description frameworks

such as JavaScript Object Notation (JSON) and binary based object representations

such as Message Transmission Optimisation Mechanism (MTOM) [Gudgin et al., 2005;

Jayasinghe and Azeez, 2011] being widely supported for data exchange. Similarly,

SOAP-based message exchange was facilitated by HTTP, whichenabled the data pack-

ets to easily get through firewalls and routers over the Internet. Since then, a myriad

of protocols such as Simple Mail Transport Protocol (SMTP),File Transfer Protocol

(FTP) and Java Message Service (JMS) support web services data exchange [Vogels,

2003].

Web Services are registered and discoverable through its own XML-based directory ser-

vice, named Universal Description Discovery and Integration (UDDI). Service providers

can register their services in the UDDI registry and clientscould look-up services using

different criteria both static and dynamic [Graham et al., 2004]. Static attributes queried

on are typically information such as network location and protocol, where the directory

will return the same web service information everytime. Dynamic attributes such as

response time, security specifications, price could also beused to query for services and

the registry would return services based on what is offered at the given time.

As its specification does not rely on any development platform, operating system or

hardware specification, web services are considered platform independent. As XML

implementations can be found on most platforms, web services can be hosted and ac-

cessed on most operating systems and devices used. Moreover, the text based nature of

XML, enables web services to be easily introduced on to newerplatforms and devices.

A web service in its functionality can take many forms. It could be implemented to

perform a specific task or it could represent a complete business process. Similarly, a

service could be an external representation to a resource such as a device or an applica-

tion. Whatever form it may take in terms of functionality, its architecture remains the

same [Papazoglou, 2008].
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2.1.1 Service Oriented Architecture

Service Oriented Architecture (SOA) is a design concept that enables software to ex-

pose part of their functionality as services to other applications or services [Erl, 2007].

Although this is a general concept that could be applied to any type of technology,

web services are the best example for following the message oriented delivery model

introduced by SOA.

Figure2.1 illustrates the different roles web services play in SOA, their relationships

and their operations. A service provider would publish descriptions of the services

they provide to a web services registry. A client would search for web services on

the registry using different parameters such as functionality and QoS attributes. The

service registry would return descriptions of services to the client, that matches the

search criteria specified. Finally, the client would use theinformation obtained from the

registry to invoke the desired web service at the service provider.

Service

Provider

Service

Registry
Client

Service

Service

Description

Service

Description

Publish

Find

Bind

Figure 2.1: Roles of Web Services in SOA (based on [Papazoglou, 2008])

Organisations started embracing web services technology easily due to the short learn-

ing curve and the opportunities the technology presented them with, in terms of inte-

gration and collaboration between applications and systems that were existing simply

as information silos. Moreover, its relatively minimal demand for infrastructure did not

incur a significant additional cost in using the technology.Web services also gives its

users flexibility, in terms of how they are implemented or deployed in an organisation.

Its non-monolithic implementation contains a collection of technologies and options

that could be picked depending on a user requirements.
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Figure2.2 illustrates the web services technology stack and how it fitsin with applica-

tions in terms of being a middleware. The Network layer at thebottom represents the

transport layer of the networking protocol stack. Transport protocols such as TCP are

used by the transfer protocols web services use for data exchange. The application layer

on top represents an application that makes use of web services as a middleware. The

labels on to the right depicts the role of each layer within the stack.
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Figure 2.2: Web Services Layers

As illustrated, the web services protocol stack is a collection of related technologies,

each playing a unique role in its operation. The bottom most layer in the web services

stack is the protocol that transfer data between two web services middleware systems.

There are numerous protocols that can be used here with HTTP being the most pop-

ular. A few technology choices such as XML, SOAP and JSON are available as data

exchange formats for messaging purposes.

The information about a service, its operations, endpoints, ports, data types of param-

eters and their order are described using WSDL which uses an XML based notation.

WSDL descriptions of a service can be found at the service provider and at a service reg-

istry. Service discovery is facilitated by UDDI, a public directory that service providers

could use to advertise their services on. As mentioned earlier, clients query the reg-

istry with various parameters and the registry locates the service based on the criteria

specified.
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SOAP, WSDL and UDDI are considered as the core standards in web services [Papazoglou,

2008]. However, over the years many other features have been introduced to web ser-

vices through other value added standards. Aspects such as Transactions, Coordina-

tion, Security and Reliable Messaging have been developed and accepted as standards

for applications to use, although being optional for web service operations. Similarly,

BPEL4WS (Business Process Execution Language for Web Services) [Khalaf and Nagy,

2002; Peltz, 2003; Weerawarana and Curbera, 2002] is an XML based language that fa-

cilitates the description of business processes as composite web services where the flow

of execution can be defined in terms of conditional, sequential and parallel executions

with supported exception handling. Complex business processes that many span across

multiple organisational boundaries can be described and and handled using BPEL4WS

and supporting middleware. Moreover, the description of collaborations that exists be-

tween different systems and organisations is facilitated by CDL4WS (Choreography

Description Language for Web Services) [Kavantzas et al., 2005] which is also an XML

based notation. CDL4WS describes the information exchangebetween composite ser-

vices in a business collaboration, while BPEL4WS defines thecomposite services.

2.1.2 Simple Object Access Protocol

SOAP was invented as a solution to the problem of proprietarysystems and proto-

cols being used on heterogeneous infrastructure. Middleware used in distributed sys-

tems, such as CORBA [Vinoski, 1993], DCOM [Microsoft Corporation, 2012] and Java

RMI [Oracle, 2010] mandate the use of binary based proprietary wire protocols, require

proper runtime environments installed, properly configured and administered apart from

the applications they facilitate in data exchange. SOAP wasdesigned to have interop-

erability and it achieves this due to the text based format that it inherited from XML.

Compared to protocols like Internet Inter-ORB Protocol (IIOP) which is the wire proto-

col of CORBA, SOAP is much more light weight, having only two fundamental proper-

ties in its operation. They included sending and receiving transport data packets (using

HTTP or other transfer protocols) and processing XML messages that are used for data

exchange [Scribner et al., 2000].

Since XML was widely adopted and supported by many platforms, SOAP had only

minimal requirements for setup and operation. Although mostly associated with HTTP,

SOAP can be used with many transfer protocols giving the flexibility for users. Its abil-
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ity to make use of many of the protocols used on the Internet, makes it much easier

for the messages to get through existing firewall configurations, requiring no additional

setup time. The SOAP specification [Gudgin et al., 2007a,b; Mitra and Lafon, 2007]

simply contains the basic structure of the message and the encoding mechanisms used.

It does not mandate any specific semantics for implementation, thereby giving the free-

dom for its use in many types of applications ranging from messaging systems to RPC.

In its simplest form, SOAP is a stateless one way message exchange paradigm. How-

ever, applications have the flexibility on using it to createmore complex interactions

such as request/response and request/multi-response by combining multiple one way

message exchanges facilitated by an underlying protocol orspecified by the application

that uses it. Figure2.3contains a sample listing of a SOAP message in the format found

on the wire.

POST /axis2/services/FactorPrimesService HTTP/1.1
Content-Type: text/xml; charset=UTF-8
SOAPAction: "urn:primeCount"
User-Agent: Axis2
Host: localhost:8080
Transfer-Encoding: chunked

<?xml version='1.0' encoding='UTF-8'?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header>
  <ns1:RealTimeParams xmlns:ns1="http://endpoint.testservice">
   <ns1:Deadline>70</ns1:Deadline>
   <ns1:Period>0</ns1:Period>
   <ns1:clientid>Client1</ns1:clientid>
   <ns1:ExecTime>28</ns1:ExecTime>
  </ns1:RealTimeParams>
 </soapenv:Header>
 <soapenv:Body>
  <ns1:primeCount xmlns:ns1="http://endpoint.testservice">
   <ns1:primeLimt>102155</ns1:primeLimt>
  </ns1:primeCount>
 </soapenv:Body>
</soapenv:Envelope>

Figure 2.3: Sample SOAP Message Listing

2.1.3 SOAP Message Structure

Figure2.4 shows the structure of a SOAP message with a sample listing. The basic

structure of a SOAP message constitutes of a header portion which is considered op-

tional and a body section that carries the payload or the message that is intended for the

remote application.
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SOAP Envelope

SOAP Body

Payload

SOAP Header

Header

Header

<?xml version='1.0' encoding='UTF-8'?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Header>

  <ns1:RealTimeParams xmlns:ns1="http://endpoint.testservice">

   <ns1:Deadline>70</ns1:Deadline>

   <ns1:Period>0</ns1:Period>

   <ns1:clientid>Client1</ns1:clientid>

   <ns1:ExecTime>28</ns1:ExecTime>

  </ns1:RealTimeParams>

 </soapenv:Header>

 <soapenv:Body>

  <ns1:primeCount xmlns:ns1="http://endpoint.testservice">

   <ns1:primeLimt>102155</ns1:primeLimt>

  </ns1:primeCount>

 </soapenv:Body>

</soapenv:Envelope>

Figure 2.4: SOAP Message Structure

The header element separates the metadata from the actual payload and may con-

tain data items from the optional SOAP extensions such as WebService Addressing

[Box et al., 2004], Realiable Messaging [Davis et al., 2006] and Web Service Security

[OASIS, 2006]. However, the use of the header elements are not limited to the stan-

dardised SOAP extensions, rather they could be used by programmers to transfer any

metadata independently to the payload contained in the SOAPbody. The payload can

be purely XML based textual data or have elements with binarycontent such as when

when SOAP with attachments (using MTOM) is used for transferring data in the form

of images and other document types.

2.1.4 Web Services Engine

Web Services are deployed in a server supported by a container application. Known

as a Web Services Engine or SOAP Engine, this container application facilitates the

processing and invocation of service instances. It has a broader role to play on the server

side than the client side. The architecture of a SOAP engine can be based on various

requirements. Some are optimized for performance and some have been designed with

extensibility in mind. Although there are such subtle differences in their design, it is

possible to identify parts of discrete functionality to do with the fundamental task of

message processing, as illustrated in Figure2.5.
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Figure 2.5: Architecture of a Generic SOAP Engine

At its core, the Web Service Engine has an executor componentthat handles the execu-

tion of a request through the modules. Typically an executorconsists of a pool of worker

threads that handle the execution of requests. Once a task isassigned to a thread, the

execution through each module is managed by the same worker thread. This happens

by default, in abest-effortmanner in every SOAP engine.

SOAP engines can be used both at the client and server ends. Although the processing

that takes place inside an engine is built around SOAP messages, it is a common prac-

tice to use an internal object or a data structure to represent and/or encapsulate SOAP

messages inside the engine. These will contain some additional information used by the

other modules within the SOAP engine.

Listener

The listener module is the gateway to the Web Services Engine. It continuously listens

for incoming requests and hands them over to a Transport module. Depending on the

network transport protocols supported by the web service engine, there maybe multiple

listeners (i.e HTTP, SMTP, JMS, etc.) active simultaneously on different ports of a

server.

Transport

Upon receiving a request, the transport module parses the packets and creates an internal

data structure that represents and/or encapsulates the SOAP message. Some of the

typical data that gets stored in the internal representation would be the transport protocol
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information and the SOAP action. The internal structure containing the message is

passed onto the other modules in the SOAP engine. When a message is sent out from the

SOAP engine. The completed SOAP message is handed over to themodule, contained

in the internal representation. The module processes it andprepares the data packets to

be sent to the network.

Message Processing Module

The Message Processing Module parses and carries out processing based on the headers

in the SOAP messages. The SOAP headers are used to exchange various meta-data

and can be used for various purposes such as enforcing authentication mechanisms and

achieving reliability. Several WS-* standards make use of the headers. Conformity to

such standards and related processing happens within this module.

Serialiser / Deserialiser

Serialisation refers to the process of transforming a SOAP message into a byte form that

could be transported over the network using a transport protocol. This process takes

place when either a client makes a request or a server sends a response to a service

invocation. When a server receives a request, the de-serialisation process takes place.

The data received from the network is extracted by the transport modules and is handed

over. The SOAP message is reconstructed from the data and passed onto the subsequent

modules in the SOAP engine.

Encoder / Decoder

Encoding refers to the process of transforming programminglanguage specific data

types and values to their ‘mapped’ XML representation. Thisprocess takes place when

a client makes a web service call and the parameters are marshalled. Furthermore, this

process also takes place when a server wants to send a result of a web service call back to

the client. Decoding refers to the reverse process of transforming XML representations

into data types and values of a particular programming language. This takes place on a

client, when a reply is received for a web service invocationor at a server when a client

request reaches the SOAP engine.
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Dispatcher

At the server end, the same SOAP engine is typically used to host more than one web

service, each identified by a different endpoint reference.When a request is received at

the server, the dispatcher module is responsible for deciding which of the deployed web

services is the recipient of the message. Once the service islocated, the dispatcher uses

the de-serialised and decoded content of the message to invoke the located service.

Executor

A SOAP engine is capable of handling multiple requests for SOAP message process-

ing. It is common for a server to have multiple web services deployed. Therefore,

receiving multiple requests for multiple services is commonality. SOAP engines use an

executor module with a pool of worker threads to internally handle each of the requests

separately. Once the request is received, a worker thread isassigned to it and it is re-

sponsible for coordinating the functionality across each of the modules until the task is

completed. A reply containing the result of the service invocation or details of an error

encountered being sent back to the client and housekeeping activities such as closing

the connections, signifies the completion of request processed. After completing the

request, the thread is either destroyed or included back into the pool to take on another

request, based on the SOAP engines design.

Client API

Most SOAP engines provide client side functionality through a set of Application Pro-

gramming Interfaces (API). These would include additionalfunctionality such as the

generation of local stubs using WSDL definitions available on a server. Client APIs

make use of serialisation and encoding modules to prepare the web service request at

the client end. Similarly, the reverse process happens whena reply is received from the

server.

2.2 Real-time Systems

Real-time systems consider the predictability of execution equally important as the cor-

rectness of an operation. Such systems mandate the completion of a task within a per-
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ceived deadline, where even a correct result obtained with adeadline miss is considered

useless [Buttazzo, 1997; Stankovic et al., 1998]. This area of computer science contains

scheduling principles and techniques that facilitate in achieving such deadlines, consis-

tently. In that light, we look at some of the principles and techniques used in real-time

systems prior to the discussion of our solution.

2.2.1 Real-time Tasks

A real-time task is the smallest processing entity in a real-time system. They are char-

acterised by certain timing properties [Buttazzo, 1997].
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Figure 2.6: Timing Properties of a Real-time Task

Figure 2.6 shows two real-time tasks with main timing properties highlighted. De-

pending on the type of scheduling used, a task may execute in apreemptive or a non-

preemptive manner. The first task in the Figure2.6 has a non-preemptive continuous

execution, whereas the second task has executed with one preemption.

• Arrival time (ri): The time a task appears at the system. At this time a task is

available for execution. Arrival time is also referred to asrelease time.

• Deadline (di): The ultimate time limit to complete the execution of a task. De-

pending on the type of task, completing the execution beyondthis limit may ren-

der the task useless to the system.

• Start Time (si): The time at which a task starts execution in the system.

• Finishing Time (fi): The time at which a task finishes execution in the system.

This signifies the completion of the work with our without preemption.
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• Computation time (Ci): The total time required to complete the execution of a

task. If preemptive execution is allowed, computation timedoes not include the

time a task spent being preempted.

• Laxity (Xi): Also referred to asslack time, Laxity is the maximum time the

execution of a task could be delayed without missing its deadline. Laxity can be

calculated either as time (Xi = di − ri−Ci) or as an indicator given by the ratio

between the deadline and computation time (
di
Ci

).

Types of Real-time Tasks

Real-time tasks could be classified according to the nature of their deadline [Arora,

1997; Buttazzo, 1997].

• Hard Real Timetasks- Deadlines cannot be missed. Missing it will make the

result unusable and could lead to fatal errors.

• Soft Real Timetasks - Missing a deadline will not result the task being unusable,

however there may be a penalty involved with it.

• Firm Real Timetasks - The value of the outcome of the task diminishes over time.

The sooner the tasks finish their computations, the higher the reward is.

Tasks could be further classified according to their frequency of occurrence [Arora,

1997; Mohammadi A. and Akl S. G., 2005; Stankovic et al., 1998].

• Periodic - Tasks that are released at regular intervals, based on a fixed rate. An

example would be periodically reading a value off a sensor.

• Sporadic- Tasks that are released at random intervals but with a knownbounded

rate. The bounded rate is characterized by a minimum inter-arrival period.

• Aperiodic - Tasks that are released at random intervals and with an unbounded

rate. An example would be a task that occurs due to human interaction with the

system.
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Most real-time systems can be found in closed environments such as in embedded sys-

tems [Buttazzo, 1997]. Due to the closed nature, tasks in such systems and their proper-

ties are known to system designers prior to the system being built. Having such informa-

tion at design time, enables them to plan for resource requirements of tasks, execution

precedence and design static schedules [Stankovic and Rajkumar, 2004; Stankovic et al.,

1998].

2.2.2 Real-time scheduling

There are several scheduling policies available in real-time scheduling and each of them

are better suited for different task types. We present two such widely used policies that

are proven optimal for certain scenarios [Liu and Layland, 1973].

Rate Monotonic

Rate Monotonic (RM) is an optimal fixed priority scheduling policy where priorities

are assigned to tasks based on the frequency of occurrence. Therefore, this scheduling

policy is ideal for recurring tasks where the frequency is knownapriori. Herein, priori-

ties are assigned (fixed) and order of execution is decided prior to the start of execution.

RM is considered as an optimal static algorithm, in a sense that no other fixed priority

algorithm can schedule a task set that cannot be scheduled byit. However, its schedu-

lable bound is less than 100%. Schedulable bound is the maximum Central Processing

Unit (CPU) utilisation level achieved by a set of tasks, up towhich deadlines of all tasks

is guaranteed to be met. While the policy works well with periodic tasks, it could be

disrupted by aperiodic and sporadic tasks in the system.

For a given Taskτi, with a worst case execution time is Ci, a period of Pi, the fraction

of CPU time spent in processingτi is Ci/Pi. The total CPU time spent in executingn

tasks is:

U =

n
∑

i=1

Ci/Pi

According to [Liu and Layland, 1973] the worst case schedulable bound Wi for n tasks

is:

Wn = n(21/n − 1)
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If
∑n

i=1 Ci/Pi ≤ n(21/n − 1), wheren is the number of tasks to be scheduled, then the

RM policy will schedule all the tasks to meet their respective deadlines. RM policy has

a complexity of O((N +α)2) in the worst case, whereN is the total number of requests

in the hyper period ofn periodic tasks in the system andα is the number of aperiodic

tasks in the system [Mohammadi A. and Akl S. G., 2005].

Earliest Deadline First

The EDF scheduling policy considers deadlines of tasks in assigning priorities. The

priorities of tasks are not decided at design time (as in the case of RM) and can change

dynamically at runtime. Priorities are typically assignedto tasks on their arrival at the

system. However the arrival of a task could result in a changeof priorities in the tasks

already in the system. The deadline based priority system means that a higher priority

task with an earlier deadline could preempt a lower prioritytask. As a result, the order of

execution may change at any time. This process results in a higher scheduling overhead

in EDF compared to a static policy such as RM. However, these characteristics also

make EDF a better choice for systems with aperiodic and sporadic tasks. Moreover,

such features enable EDF to achieve a schedulable bound of 100% for all tasks. EDF is

considered as an optimal dynamic algorithm, in a sense that no other dynamic priority

algorithm can schedule a task set that cannot be scheduled byit. However, one drawback

of EDF is that there is no guarantee of which task would fail inoverload conditions,

whereas with RM lower priority tasks will always fail in overload conditions.

For a given Taskτi, with a worst case execution time of Ci and a period of Ti, If

n
∑

i=1

(Ci/Ti) ≤ 1 (2.2.1)

wheren is the total number of tasks, it is feasible to schedule the set of tasks to success-

fully meet their deadlines. In other words, if the total CPU utilisation of the task set is

less than or equal to 100%, it is deemed feasible to use EDF to schedule the set of tasks.

EDF has a complexity of O((N +α)2) in the worst case, whereN is the total number

of requests in the hyper period ofn periodic tasks in the system andα is the number of

aperiodic tasks in the system [Mohammadi A. and Akl S. G., 2005].

Recall that our attempt is to use real-time scheduling principles in web services middle-

31



CHAPTER 2. BACKGROUND

ware to achieve predictability of service execution. Herein, the greater challenge is to

use scheduling policies typically used in closed systems where most task properties are

knownapriori, in a highly dynamic environment where task properties are not known.

The unknown nature of web service requests means that tasks will be aperiodic and the

best scheduling policy for such tasks will thus be EDF. Therefore, next we dwell further

into important concepts behind EDF scheduling.

On auni-processorsystem, assuming anon-idling and anon-preemptivesystem, if all

tasks are ready at timet=0,

Theorem 1 (Jackson’s Rule [Jackson, 1955]) Any sequence is optimal that puts the

jobs in order of non-decreasing deadlines.

For auni-processorsystem, having tasks witharbitrary release times, deadlines, exe-

cution times orunknownexecution times,

Theorem 2 ([Dertouzos, 1974]) The EDF algorithm is optimal in that if there exist

any algorithm that can build a valid (feasible) schedule on asingle processor, then

EDF algorithm also builds a valid (feasible) schedule.

Any valid schedule (a set of tasks that could be successfullyscheduled within a given

time period) can be converted into a valid EDF schedule by using a‘time slice swapping’

technique, where the order of tasks are interchange to arrive at an EDF schedule. Figure

2.7illustrates this with a simple example. The example contains 3 tasks executed within

a 20 time unit interval. This is assumed to be a synchronous schedule (i.e. all tasks share

the same start time oft=0). TaskT1 has a deadline of 20 time units and an execution

time of 8 time units,T2has a deadline of 18 time units and an execution time of 3 time

units andT3 a deadline of 17 time units and an execution time of 5 time units. In the

given schedule, the task with the earliest deadline (T3), gets the CPU last.

When converting this to an EDF based schedule, the time sliceof taskT1, is swapped

with the time slices of tasksT2 andT3. As T3 has the earliest deadline, it is executed

first, followed byT2 and then byT1. The schedule with 3 tasks is transformed into a

valid EDF based schedule, meeting the deadlines of all 3 tasks.
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Figure 2.7: Transformation of a valid schedule to an EDF based valid schedule

The optimality of a real-time deadline based scheduling algorithm such as EDF is en-

sured by schedulability analysis (depicted in equation2.2.1), a step carried out offline.

Taking execution time requirements of tasks into consideration, this aids in analysing

the feasibility of a schedule. As it is meant to be worked offline, it renders itself unsuit-

able in a web services scenario. However, certain principles it is based on can be used

in devising a suitable online feasibility analysis (which is discussed in Chapter3).

Two concepts considered in schedulability analysis, namely processor demandand

loading factor [Stankovic et al., 1998] are defined here. Henceforth, we use a given

taskTi, with release time ofri, a deadline ofdi and an execution time requirement of

Ci. Our proposed model for schedulability analysis (presented in Chapter3) is based

on the following definitions.

Definition 1 For a given set of real-time tasks and a semi-closed intervalof time[t1, t2),

the processor demand (h) for the set of tasks in the interval[t1, t2) is

h[t1,t2) =
∑

t1≤rk,dk≤t2

Ck. (2.2.2)

33



CHAPTER 2. BACKGROUND

Definition 2 For a given set of real-time tasks the fraction of the semi-closed interval

[t1, t2) needed to execute its tasks is considered as itsloading factor(u) that is,

u[t1,t2) =
h[t1,t2)

t2 − t1
. (2.2.3)

Definition 3 The loading factor of the maximum of all such intervals, is considered as

absolute loading factor, that is,

u = sup
0≤t1≤t2

u[t1,t2). (2.2.4)

As an example, applying these to the tasks in the EDF scheduleobtained in Figure2.7,

u[0,7) = 5
7

u[0,10) = 5+3
10 = 8

10
u[5,16) = 3+8

16 = 11
11

u[0,16) = 5+3+8
16 = 16

16
u[0,20) = 5+3+8

16 = 16
20

u = 16
16 = 1

Table 2.1: Loading factor computation for the job set of EDF schedule inFigure2.7

Theorem 3 ([Spuri, 1995]) Any set of real-time tasks is feasibly scheduled by EDF

algorithm only if

u ≤ 1. (2.2.5)

2.3 Summary

This chapter provided a background on Web Services and Web Services Middleware

which our research is mainly based on. We achieve predictability of execution in web

services by introducing real-time scheduling techniques into web services middleware.

Therefore, a detailed discussion on the basics of real-timescheduling principles was

also included in the chapter. In the next chapter, we investigate the first research ques-

tion of achieving predictability in stand-alone web service middleware.
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Chapter 3
Predictability of Execution in

Stand-Alone Web Services

Middleware∗

Web services are witnessing a tremendous growth in their usage on the Internet, with

many things being offered as services. Web services middleware contain many opti-

misations that enable them to achieve high rates of throughput with the increased de-

mand for services. For instance, they unconditionally accept any request sent to them

and make no differentiation in their execution. Requests are executed in abest-effort

manner, using processor sharing. However, such techniquesadversely affect the pre-

dictability of service execution, with service invocations returning highly unpredictable

execution times. In this chapter we present an analytical model and a deadline-based

scheduling technique that enable stand-alone web servicesmiddleware to guarantee

predictable service execution times. We introduce the notion of an execution deadline

which the middleware must adhere to in executing requests. Depending on the rate of

request arrival, it is unlikely that deadlines of every incoming request can be catered for,

given the unknown properties of requests in an open environment such as the Internet.

The proposed analytical model based on real-time scheduling principles calculates the

demand for processing resources, given the already accepted requests for execution. An

admission control algorithm based on the proposed model selects requests for execu-

∗ Preliminary versions of the work presented in this chapter have been previously published in
[Gamini Abhaya et al., 2009, 2010b, 2012].

35



CHAPTER 3. PREDICTABILITY OF EXECUTION IN STAND-ALONE
WS-MIDDLEWARE

tion based on their laxity property, considering the processor demand calculated. The

proposed algorithm accepts a request for execution if theirexecution deadline can be

met without compromising the deadlines of already acceptedrequests. Thereafter, se-

lected requests are executed using the earliest deadline first scheduling principle. The

predictability gain achieved by the proposed techniques are evaluated by implementing

them in Apache Axis2 and compared with its unmodified version. Empirical results

confirm that the enhancements allow the middleware to consistently achieve more than

96% of execution deadlines while withstanding high requestarrival rates and accepting

more than 18% of the requests for execution in the worst traffic conditions.

3.1 Motivation

Web services play an important role in the current distributed computing landscape.

They are transforming the Internet to a fully automated web of autonomous applications

that discover and communicate with each other without any user invention. However,

this increased usage of web services is also witnessing new deployment models such as

multi-tenancy [Azeez et al., 2010], where a single web services middleware is used to

cater many tenants and their requests.

With the use of composite services, operations on a single application may result in

hundreds of web services invocations to many other systems.However, the timely

completion of all these individual service invocations areof utmost importance for the

overall operation the application tries to complete. Web services middleware seldom

contain techniques to achieve execution time predictability. Many of the techniques

they employ in achieving higher throughput rates adverselyeffect the request execution

and result in unpredictable execution times. Achieving predictable execution times is

important for many reasons. Firstly, consistent and predictable execution times are vi-

tal for the successful adoption of web services as an efficient and reliable middleware.

Secondly, predictable execution times are important for QoS based service selections

in compositions, where composite services may choose between services depending on

the execution times they could guarantee. Thirdly, unpredictable execution times will

setup clients for failure. We firmly believe that it is betterto reject a request with an

execution deadline that cannot be guaranteed, rather than accepting the request with

the expectation of meeting the perceived execution deadline and being unable to meet

it. This would allow a client to look for another service thatcould meet the perceived
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deadline. Finally, predictability of execution is important to many applications that

have stringent execution time requirements [Buttazzo, 1997; Natarajan and Zhao, 1992;

Stankovic, 1988; Stankovic et al., 1998], such as financial trading systems , manufactur-

ing execution systems, industrial control systems, medical diagnostic systems, avionics

and robotics. As a result, such applications have been unable to benefit from the advan-

tages web services are famous for, such as being platform independent, uncomplicated

uniform access model and being loosely coupled.

3.2 Problem Statement

Predictability of execution is seldom considered as a design goal in developing web ser-

vices middleware. On the contrary, they are designed to achieve high levels of through-

put [Apache Software Foundation, 2009; Chapell, 2010; Sun Microsystems, 2009]. For

instance, requests are accepted for execution unconditionally and executed in abest-

effort manner. Multiple requests are executed in parallel using processor sharing fol-

lowing theThread-poolconcurrency pattern [Graham et al., 2004]. Moreover, execu-

tions of all requests are treated with equal priority. Although employing such techniques

yield a higher throughput, they become detrimental to the predictability of request exe-

cution. For instance, processor sharing leads to an increase in average execution time,

proportional to the number of requests being executed in parallel. The execution time of

a request becomes highly unpredictable as it varies with thenumber of requests being

executed concurrently at a given time, their execution times and request arrival rates.

Moreover, this leads to longer and unpredictable waiting times.

Achieving predictability of execution requires the invocation of a service to be com-

pleted within a perceived deadline in a repeatable and a consistent manner. Such a feat

is only possible if web services middleware supports execution deadlines for service

invocations and have mechanisms of achieving the deadlines. While QoS aspects of

service execution has been widely researched, only a few attempts have been made on

achieving execution time QoS in web service middleware. However, none of them sup-

port execution time deadlines and consider any predictability related parameters such

as laxity of a request in its operations.

Given the open environment of the Internet where web services operate in, there is no

knowledge about the properties of requests prior to their arrival at the system. Given

this unknown nature of requests, giving a guarantee on theirexecution times is quite a
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challenge. Such a feat will only be possible by using appropriate scheduling strategies

that has a focus on achieving such execution deadlines.

3.3 Overview of the Solution

Web services middleware can only achieve predictability ofexecution through purpose-

ful execution of requests with the aim of achieving their execution deadlines. As the

first step, we introduce the notion of an execution deadline to each service invocation

which will be communicated to the web services middleware bythe request, on its ar-

rival at the system. We use real-time scheduling principlesin a two step process to

achieve these execution deadlines. We assume that every service invocation request has

an associated hard real-time deadline that the execution must complete within.

Given the unknown nature of requests and their arrival times, there will be many re-

quests with overlapping deadlines and execution times. Depending on the processing

resources available, it will not be feasible to meet the deadlines of all such requests.

A proposed analytical model based on real-time scheduling principles, calculates the

required processing resources for a request, and confirms whether a deadline of a re-

quest could be successfully met. The proposed model contains three main components,

namely remaining execution time, processor demand and loading factor, that is used

for this purpose. It defines the remaining execution time to indicate the amount of

remaining work to be done on a request. The processor demand within a given time

period indicates the amount of processing resources required within that time period

by one or more active tasks. Finally a loading factor captures the remaining laxity of

requests within a time period, considers them together withthe processor demand for

the same period and calculates a single indicator of whetherone or more deadlines may

be missed.

An admission control algorithm based on this analytical model is used to decide on

the acceptance of every incoming request. The algorithm hastwo steps. The first step

checks whether the execution deadline of the newly arrived task could be met. This is

done by calculating the loading factor for the lifespan of the new task. The calcula-

tion takes into account already accepted requests that havecompletion deadlines within

the lifespan of the new request. On the assurance that its deadline could be met, the

algorithm continues onto the second step where it checks theloading factor between

the arrival time of the new request and the deadline of every request already accepted,
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completing execution after the lifespan of the new request.This step ensures that the

acceptance of the new request will not compromise the deadlines of already accepted

tasks. Positive results in both steps of the algorithm will result the new request being

accepted for execution and is otherwise rejected. The request selection process of the

analytical model and the schedulability check algorithm results in a large range of lax-

ities at the server. This mix of laxities mean that some requests are able to delay their

execution without missing their deadlines giving chances to other requests with over-

lapping lifespans and deadlines, thereby increasing the total number of requests that can

be scheduled to successfully meet their deadlines. The second step in using real-time

scheduling is in the form of using the earliest deadline firstscheduling to execute the

accepted requests in the increasing order of their deadlines.

The contributions in this chapter are the laxity based analytical model, admission con-

trol algorithm and the deadline based scheduling method that enables web services mid-

dleware to achieve predictability of service execution. The uniqueness of the solution

is in the use of real-time scheduling techniques that are typically used at design time

in closed environments where request properties are knownapriori. In the proposed

solution, they are used at runtime, in a highly dynamic and open environment where

request properties are relatively unknown.

The rest of this chapter is organised as follows. In the next section we discuss some

of the related work in this area. In Section3.5, we present the proposed mathematical

model and schedulability check algorithm. Next, we presentan analytical evaluation

of the proposed model and algorithms in Section3.6) which also gives a theoretical

view on how the schedulability check and deadline based scheduling works together in

achieving predictability of execution. An empirical evaluation of the solution is pro-

vided in Section6.8where we measure the predictability gain achieved by our method.

Finally we conclude in Section6.9.

3.4 Related Work

Many existing work related to web service execution could befound in the area of QoS.

A common feature that could be observed in many of them is service discovery or com-

position based on a QoS criteria. Many of them make the assumption that the web

services middleware and the underlying infrastructure used, will guarantee perceived

QoS levels within a probabilistic measure. Work by Ran S. [Ran, 2003] and Tian M. et
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al. [Tian et al., 2003] facilitate the discovery of services based on QoS parameters by in-

corporating information about QoS levels provided by services in modified web service

directories. QoS brokers facilitate the discovery by liaising with the directory service on

behalf of the clients, based on its QoS requirement. Liang Q.et al. [Liang et al., 2009]

proposes a unified service selection scheme that uses multiple QoS attributes such as

execution time, availability and user perceived QoS levels. It carries out the negotiation

process based on QoS parameters transparent to the users when services are selected.

The work assumes that services will adhere to a probability based guarantee of the QoS

parameters they support. Work of Zeng L. et al. [Zeng et al., 2003, 2004] extends this

to service compositions where the selection of services fora composite service is based

on QoS attributes each service is able to provide. Yet again the guarantee of QoS levels

by the middleware is assumed.

While the work mentioned assume QoS levels are guaranteed bythe middleware, there

are attempts at achieving different levels of quality in themiddleware. Work of Sharma

A. et al. [Sharma et al., 2003] introduces few methods of differentiation into the pro-

cessing of requests. Requests are classified into various service classes based on non-

functional attributes such as nature of application (i.e. astock trading service versus

a price lookup service), the device being used as a client (i.e. a Personal Computer

versus a mobile device) and nature of client (i.e. paying customer request versus a free

request). Priorities are assigned to each service class based on these attributes. The ar-

rival rate of each category is monitored and the priorities are dynamically adjusted using

a penalty function to reduce starvation. The penalty function penalises a priority on a

lower than normal arrival rate and enforces it positively onhigher than normal arrivals.

The solution achieves some level of differentiation in the throughput of the requests and

tries to maintain a pre-defined ratio between the service classes. Similarly, the work of

Tien C. M. et al. [Ching-Ming Tien, 2005] classifies requests into service classes based

on a pre-defined SLAs between the service provider and clients. Operations are profiled

offline and the information obtained is used to calculate theworkload required when a

service is invoked. A scheduler component in the middlewareevaluates the request ar-

rivals and ensures a pre-defined ratio of the service classes, in processing. Although the

operations considered in the approach are non-functional properties of the service such

as security processing, the same technique could be appliedfor functional attributes

as well. However, the scheduler simply maintains the ratio of the different classes in

the number of requests processed, rather than considering the actual execution times
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resulted.

The use of admission control in Web Services could also be found in literature. Work

of Dyachyuk D. et al. [Dyachuk and Deters, 2007] proposes the use of a proxy between

the client and the server with an admission control mechanism that can use different

types of scheduling techniques such as First-In-First-Out(FIFO) and Shortest Job First

(SJF) to schedule the execution of web service requests. Thegoal is to achieve control

over service execution and prevent the server from reachingoverloaded conditions. A

similar approach is found in [Elnikety et al., 2004] where a proxy based admission con-

trol is used in a three tier web application. The admission control is based yet again on

request scheduling although this work focuses more on requests between the applica-

tion server and the database. FIFO and SJF are techniques used for this purpose and the

gateway proxy they introduce prevents overload conditionsin the server. A more gen-

eral approach can be found in [Carlstrom and Rom, 2002] where admission control is

used to ensure low session delays by means of a reward function that works on weights

associated with different pre-defined stages of processingin the application. Stages rep-

resent the discrete functionalities the web application provides and weights are assigned

based on the importance of the operation to the user in terms of the delay experienced.

[Erradi and Maheshwari, 2005] proposes a QoS-aware middleware similar to an Enter-

prise Service Bus, which uses priority based differentiation of web services requests.

It contains an admission control mechanism as part of its functionality which decides

controls the incoming messages from different transport protocols. However, the paper

does not provide more details on the scheduling techniques used, except for the prioriti-

sation of messages. The paper also fails to mention the method of prioritisation. While

all these works use admission control to prevent overloadedconditions or to control

scheduling of requests, none of them uses predictability asthe goal for the selection of

requests.

Helander J. et al. [Helander and Sigurdsson, 2005] uses SOAP based web services

in an embedded real-time environment where web services areused for communica-

tion between the components in the system. Patterns of communication, sequence of

events, their resource requirements and execution times are knownapriori due to the

embedded nature of the system. Therefore, the execution sequences and the schedules

are planned out at design time of the system. A statistical model is used to plan for

any variations or possible jitter and resources are over reserved to counter such scenar-

ios. [Mathes et al., 2009a] presents a real-time SOAP engine for industrial automation
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which supports all three types of real-time tasks. While there is no clear mention of the

scheduling technique used, requests seem to be accepted without being subjected to an

admission control check. From these features and the type ofevaluation conducted, it

can be concluded that this is intended to be used with closed systems, where task prop-

erties are known at design time. They propose two methods forfinding task properties

and favours a profiling approach which is more empirical. Theclosed nature of these

two systems allows planning ahead, thereby reducing the variation in execution times.

However, such solutions would not work well with open systems, as in the use of web

services over the Internet where request characteristics,arrival patterns and sequences

are unknown and unpredictable at design time. Most of the discussed work, maintain a

certain ratio of processing between the request classes andachieve perceived execution

times in a probabilistic manner. While all attempts achievesome form of differentiation

in request processing, none of them can guarantee predictable execution times under any

traffic condition. Although [Helander and Sigurdsson, 2005] and [Mathes et al., 2009a]

uses real-time scheduling techniques in their solution, the requirement of having all in-

formation necessary for scheduling at design time makes it difficult to be used in open

systems such as on the Internet due to the unpredictable nature of requests.

3.5 The Proposed Analytical Model and Algorithm

In this section the proposed analytical model and algorithms for achieving predictable

execution times are presented. In describing them, we make the assumption that every

web service invocation request will specify a deadline thatthe execution must complete

within. It is used by the proposed model and algorithms in deciding on the acceptance

of a request and to schedule it for execution.

Real-time scheduling techniques focus on completing the execution of a task within

a perceived deadline. They are typically used at design timeof a real-time system to

work out a execution schedule for tasks that are known to be inthe system. Validity of

the execution schedule is confirmed through a step known as Schedulability Analysis

(discussed under Background in Chapter2), which is conducted once per schedule at

design time of a system. However, the proposed solution usesreal-time scheduling in

an open environment where request properties are not know prior to their arrival at the

system. Given these conditions, the proposed solution willhave a dynamic schedule that

changes every time a new requested is accepted for execution. As a result, validation of
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such a schedule has to be done every time a new request arrivesat the system. Similarly,

the unknown nature of requests will make it impossible for the system to achieve the

deadlines of every request that arrives at the system. Therefore, the proposed solution

accepts only requests with achievable deadlines. To cater both these issues, we propose

an analytical model for runtime schedulability analysis, that will be conducted for every

incoming request.

3.5.1 Analytical Model for Schedulability Analysis

The proposed analytical model aims to achieve two basic functions. Firstly, it defines

a set of system parameters that quantifies the required processing resources for a given

period of time, considering the active requests within thattime period. Secondly, it aims

to derive a single value representation that quantifies the possibility of accepting a web

service invocation request, that can be used in the decisionmaking process. This single

value must represent the possibility to meet the execution deadline of the request as well

as its effect on the deadlines of already accepted requests.

First, we define some system parameters to quantify the requirement for processing

resources within a given period of time. In a pre-emptive scheduling system, execution

of a given request could happen with several pre-emption cycles.

Definition 4 For a given requestTi havingn number of pre-emptions, where the start

time of each execution issn and the end time of each execution isen, Total time of the

task executionEi can be considered as,

Ei =

n
∑

j=1

(ej − sj). (3.5.1)

Definition 5 For a given request submitted to the system, with an execution time re-

quirement ofCi, at any given point of time the remaining execution timeRi can be

considered as,

Ri = Ci − Ei. (3.5.2)

When a newly submitted task arrives at the system, the schedulability check is done

to ensure it could successfully be scheduled together with the tasks already in the sys-

tem. The proposed schedulability check calculates the processing requirement of the
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new task against the tasks in the system, in a number of cycles. A segregation of al-

ready accepted tasks is done, on the basis of whether the deadline of a task lies within

the lifetime of the new task or thereafter. The first step is toensure that the deadline

requirement of the new task would be met. For this purpose, only the requests with

deadlines within the lifespan of the new request are considered in the calculation.

Let Tnew be a newly submitted task, with a release time ofrnew and a deadline ofdnew

and an execution time requirement ofCnew. Let P be the set of tasks already accepted

and active in the system, with their deadlines denoted asdp. We consider the semi-

closed interval denoted by thernew anddnew as the lifespan of the new request.

With reference to definition2.2.2, the processor demand within the duration of the

newly submitted task can be defined as,

h[rnew,dnew) =
∑

rnew≤dp≤dnew

Rp +Cnew. (3.5.3)

Processor demand (h[rnew ,dnew)) quantifies the processing time requirement within the

lifespan of the new task, which includes its own execution time requirement and the

remaining execution times of every task in the system that isscheduled to complete

within its lifespan. Next we define the term loading factor asa single value indicator of

whether the deadline of the new task can be achieved.

With reference to definition2.2.3, the loading factor within the duration of the newly

submitted task can be defined as,

u[rnew,dnew) =
h[rnew,dnew)

dnew − rnew
(3.5.4)

Loading factor considers the processor demand in its calculation, thereby quantifying

the impact of all requests scheduled to complete within the lifespan of the new task.

With condition3.5.4, if the following condition is satisfied, the new task is considered

schedulable together with tasks finishing on or before its deadline, with no impact on

their deadlines.

u[rnew,dnew) ≤ 1 (3.5.5)
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With the above condition3.5.5satisfied, the task is checked for schedulability with the

tasks finishing subsequently. unlike3.5.3, for this step the processor demand attribute

is defined again separately for each task scheduled to complete execution afterdnew.

Let Q be the set of tasks already accepted and active in the system,required to finish

after dnew (such that, with deadlines afterdnew). Let q be the member ofQ, with a

deadline ofdq up to which the processor demand is calculated for,

h[rnew,dq) = h[rnew ,dnew) +
∑

dnew≤di≤dq

Ri. (3.5.6)

The result of3.5.3is used as part of the equation. This represents the processor demand

of all tasks finishing on or prior todnew and can be treated as one big task with a release

time rnew and a deadline ofdnew respectively. Next, the loading factor for the same

duration is calculated.

u[rnew ,dq) =
h[rnew,dq)

dq − rnew
(3.5.7)

The loading factor is also calculated on a per task basis for each member ofQ. Subse-

quently, the calculated loading factor is compared to be less than or equal to 1, in order

for all tasks leading up toq, to be satisfied as schedulable.

u[rnew ,dq) ≤ 1 (3.5.8)

In summary, for a newly submitted task to be accepted to the system, condition3.5.5

needs to be satisfied for tasks with deadlines on or beforednew, subsequently condition

3.5.8needs to be satisfied, separately for each task with deadlines afterdnew.

3.5.2 Schedulability Check Algorithm

Using the proposed model for schedulability analysis presented in Section3.5.1, Algo-

rithm 1 forms the core of our solution. Every incoming web service request is accepted

for execution subjected to this schedulability check. Thisadmission control mechanism

primarily satisfies two main conditions when accepting a request. Firstly, a request is ac-

cepted only if its deadline requirement met. Herein, this isdecided by existing requests
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Algorithm 1 Schedulability Check
Require: New request N, Queue of Accepted Requests RQ
Ensure: N is accepted or rejected

1. PDW← 0; PDA← 0
2. withinTasksChecked← false
3. while RQ has moreand withinTasksChecked isfalse do
4. nextReq← RQ.getNextReq
5. if nextReq.startTime≥ N.startTimeand nextRequest.deadline≤ N.deadline

then
6. PDW← PDW + nextReq.getRemainingTime
7. else
8. if nextReq.deadline≥ N.deadlinethen
9. withinTasksChecked← true

10. end if
11. end if
12. end while
13. PDW← PDW + N.getRemainingTime
14. LoadingFactor← PDW

N.deadline−N.startT ime
15. if LoadingFactor> 1 then
16. return false
17. end if
18. PDA← PDW
19. while RQ has more requestsdo
20. nextReq← RQ.getNextReq
21. PDA← PDA + nextReq.getRemainingTime
22. LoadingFactor← PDA

nextReq.deadline−N.startT ime
23. if LoadingFactor> 1 then
24. return false
25. end if
26. end while
27. return true

in the system that finish within the lifespan of the new request, thereby having earlier

deadlines. Secondly, the acceptance of a request must not compromise the deadlines

of already accepted requests. The acceptance of a request may result in the delaying

or phasing out of the execution of requests with later deadlines than that of the new

request. This step ensures the operation would not result ina deadline. Functionality of

Algorithm 1 is summarised in Figure3.1.

We make the assumption that the list of requests already accepted are sorted in the

increasing order of their deadlines. At the arrival of a new request, the algorithm con-

siders the deadline requirement of the new arrival (N), the list of already accepted re-

quests (RQ) and returns whether the new request can be accepted for execution or has
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to be rejected. The analytical model will be referred to as (A.M.) and the corresponding

equations will be cited within the description where applicable.

The schedulability of the new requestN is checked in two parts. The first part checks

whether the deadline requirement of the new request can be fulfilled. Remaining execu-

tion times of already accepted requests, with deadlines earlier than that ofN is consid-

ered (Line 5). As the execution ofN would have to be delayed until their completion,

the laxity of N is checked against the total remaining execution times of the others

(Lines 6-13). This is done by calculating the processor demand within the lifespan of

N (A.M. - 3.5.3), where the remaining execution times of accepted requestsare totalled

(Line 6) and then the execution time requirement ofN (Line 13) is added to it. Next

the loading factor within the lifespan of the new request (A.M.3.5.4) is calculated (Line

14). The loading factor indicates the ratio between the amount of processing required

within a time period and the available processing time. A loading factor of more than 1

(A.M. - 3.5.5) will result in N being rejected (Lines 15-17). A successful loading factor

leads to the second part of the check.

Second part of the schedulability check ensures the acceptance of a new request will

not result in any deadline misses of already accepted requests. Hence requests with

Figure 3.1: Schedulability Check
Summarised

subsequent deadlines to that ofN, is considered

for this step (Lines 8-10). As there maybe mul-

tiple such requests accepted, the acceptance ofN

has a domino-effect on the start of their remain-

ing execution. As a result, the effect ofN’s exe-

cution time requirement on their individual laxi-

ties is checked incrementally (Lines 19-26). The

list of requests being sorted in the increasing or-

der of their deadlines, aids this process. Consid-

ering each request (nextReq) with a deadline later

than that ofN, the time period considered is be-

tween the start time ofN and the deadline ofnex-

tReq. The processor demand for this period is

calculated (A.M. - 3.5.6) by adding the already

calculated processor demand within the lifespan

of N (Line 18) and the remaining execution time

of nextReq(Line 21). The loading factor for the
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time period (A.M. - 3.5.7) is calculated next (Line 22) and a result of more than 1 (A.M.

- 3.5.8) will result in N being rejected (Lines 23-25). The check continues on till all

requests with subsequent deadlines to that ofN are considered individually with suc-

cessful loading factors. The processor demand used in each iteration of the calculation

is a cumulative figure carried forward through the algorithm. This ensures that if ac-

ceptance of a request results in a possible deadline miss in at least one of the requests

already accepted, it is detected as early as possible and further processing is terminated.

Requests that get accepted through the schedulability check result in a large range of

laxities, thereby enabling more requests to achieve their deadlines.

Complexity Analysis

Next we analyse the complexity of the schedulability check algorithm. We make the

assumption that the list of already accepted requests are ordered in the increasing order

of their deadlines and are stored in a data structure that allows constant time access to

the next request in line returned by the methodgetNextReq.

It can be observed that the algorithm has twowhile loops (Lines 3 and 19). All the

statements outside of the two loops (Lines 1-2,13-18 and 28)will be executed once.

The condition on the first while loop (Line 3) states the statements within it will be

executed as long as there are more requests inRQ to consider and the value ofwith-

inTasksCheckedis false. A conditional statement within the loop body compares the

deadlines ofN andnextReqand sets the value ofwithinTasksCheckedto true (Lines

8-10) which contributes to the termination of the loop. If this condition holds true, it

means any request inRQthereafter has a deadline later than that ofN. The secondwhile

loop is set to run untilRQ is exhausted (Line 19). Note that at this point of the algo-

rithm, RQ may have been partially traversed by the firstwhile loop, and the traversal

will continue on from that point onwards.

The best case execution scenario for the algorithm would be when there are no accepted

requests in the system. In this case, the execution of the twowhile loops will not take

place due toRQ being empty. However, the statements outside of the loops will still

get executed. The worst case execution scenario for the algorithm would be when both

the while loops are executed the maximum possible times. Given that each loop goes

through a portion of the already accepted requests, the maximum number of repetitions

both loops could achieve together would beN
2 each.
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Letn be the number of already accepted requests in the system. LetT (n) be the running

time of the algorithm. Lett1 be the total execution time of all statements within the first

while loop. Lett2 be the total execution time of all statements within the second while

loop. Lett3 be the total execution time of all statements outside of the two while loops.

The worst case running time of the algorithm can be estimatedas,

T (n) =
n

2
t1 +

n

2
t2 + t3

T (n) =
n

2
(t1 + t2) + t3 ≤ n(t1 + t2 + t3)

The above is valid for alln > 1. As such, it can be concluded thatT (n) has a linear

time complexity or isO(n) in the worst case. As the best case scenario would be when

there are no previously accepted requests in the system, only the statements outside of

the loops would be executed. Therefore it can be concluded thatT (n) is in Ω(1) in the

best case.

3.5.3 Deadline Based Scheduling

In the next step of the proposed solution, requests acceptedby the schedulability check

algorithm are scheduled for execution using the EDF scheduling policy. EDF schedul-

ing mandates the execution of the request with the earliest deadline at a given time.

Implementing this scheduling scheme requires the control of all request executions hap-

pening within a web services middleware.

Web services middleware achievebest-effortprocessing with the use of multiple worker

threads executing in parallel. In the proposed solution, wecontrol the execution of each

of these worker threads with the use of an overlaid priority model introduced as part of

the solution. A real-time scheduling component introducedinto the middleware decides

the order of execution based on the deadlines and manages thepriorities within the pool

of worker threads active at any given time. The proposed solution takes advantage of

server hardware with multiple CPU cores or multiple CPUs to increase the throughput

of the system. The solution executes multiple requests withthe earliest deadlines on

separate lanes of execution, equal to the available number of CPU cores or processors, in

parallel. Acceptance of a new request would result in a change of priorities and the order

of requests being processed in the system, as a whole. As thisis an implementation
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based feature, a comprehensive discussion on this entire process, implementations of

the necessary algorithms and techniques, is presented in Chapter5.

3.6 Analytical Evaluation

The objective of this section is to provide an analytical evaluation of the proposed model

and algorithms for achieving predictability. The evaluation uses a set of tasks arriving

at the system. The properties of the tasks have been chosen toevaluate every possi-

ble scenario and execution path in the algorithm. The evaluation validates each of the

equations in the proposed model (presented in Section3.5.1) and the corresponding

steps in Algorithm1, thereby confirming its correctness. Moreover, it will validate the

scheduling done using the EDF policy.

Each step identifies the arrival of a request at the system andthe schedulability check

performed on it. If the request is accepted, the real-time scheduler takes a decision

on when the request would be executed. Properties of the requests such as their arrival

times, execution requirements and Laxities are summarizedin the Table3.1, in the order

of arrival. The laxity of a requests is not used directly in the calculations. However,

it is considered (indirectly) when the workload (processordemand) that needs to be

completed between the lifetime of a task is considered. The corresponding equation in

the analytical model is specified as (A.M. - Eq.)

Request Start Time (ms) Execution Time (ms) Deadline (ms) Laxity
T1 0 5 25 20
T2 1 6 19 13
T3 3 3 7 4
T4 4 4 7 3
T5 7 2 3 1
T6 8 7 10 3
T7 9 2 6 4

Table 3.1: Properties of Requests

The example starts off with an empty system. The arrival of the first request T1 is

shown in Figure3.2. As per Table3.1, T1 has an execution time requirement of 5ms

that needs to finish within a deadline of 25ms. In Figure3.2, the remaining execution

time is illustrated using a dotted line while the deadline has been marked using a straight
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line. The schedulability check is not carried out for the first arrival.

Request T2 arrives in the system 1ms later (Figure3.3). By the time which, T1 has

executed for 1ms. With its arrival, the schedulability check is performed on T2. As

there are no requests in the system with deadlines prior to that of T2, the first part of the

schedulability check depicted in Algorithm1 (Lines 5 - 12) is not applicable. However,

rest of the check (Lines 13 - 27) is applied as follows.

Proc. Demand Within = (0 + 6)ms (A.M. - 3.5.3, Alg. 1: Line 13)

= 6ms

Proc. Demand After = (0 + 4)ms (A.M. - 3.5.6, Alg. 1: Line 21)

= 4ms

Total Proc. Demand = (6 + 4)ms

= 10ms

Loading Factor = 10
(25−1) (A.M. - 3.5.7, Alg. 1: Line 22)

= 0.4167

0.4167 > 1 (Evaluates tofalse- Accept request)

As visible in the calculation above, the processor demand between the arrival time of T2

and the deadline of T1 is calculated. This constitutes of theremaining execution time

of T1 and the execution time requirement of T2. The result is used in calculating the

loading factor for the time interval and T2 passes the schedulability check as the loading

factor is less than 1. Hence, T2 is accepted for execution. With T2 now being the request

Figure 3.2: Arrival of Request T1
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Figure 3.3: Arrival of Request T2

with the earliest deadline, T1 is preempted and T2 is scheduled for immediate execution.

The remaining execution of T1 is delayed till execution of T2finishes. It can clearly

be seen that due to its large laxity, T1 can finish within its deadline. In calculating the

loading factor the total processor demand is divided by the time period between the

arrival time of the new task and the deadline of the existing task under consideration

(in this case T1). The deadline of the existing task represents its laxity, which indicates

the possibility to accommodate the execution of other taskswith deadlines earlier than

it, within its lifespan. A higher laxity in the task considered, results in a lower loading

factor.

Figure 3.4: Arrival of Request T3

2ms into the execution of T2, T3 arrives at the system (Figure3.4) and the schedula-
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bility check is performed on it. Similarly to T2, there are norequests in the system

with deadlines prior to that of T3. Hence, lines 5 - 12 of the algorithm are skipped in

performing the schedulability check. For the remainder of the check, as requests T1 and

T2 both have deadlines after that of T3, the processor demandand loading factor are

calculated up to the deadlines of T1 and T2, separately.

Proc. Demand Within = (0 + 4)ms

= 4ms

Proc. Demand up to T2 = (0 + 4)ms

= 4ms

Total Proc. Demand = (4 + 4)ms (A.M. - 3.5.6, Alg. 1: Line 21)

= 8ms

Loading Factor = 8
(20−3) (A.M. - 3.5.7, Alg. 1: Line 22)

= 0.47

0.47 > 1 (Evaluates tofalse- Continue on to next check)

Proc. Demand up to T1 = (4 + 4)ms

= 8ms

Total Proc. Demand = (4 + 8)ms

= 12ms

Loading Factor = 12
(25−3) (A.M. - 3.5.7, Alg. 1: Line 22)

= 0.545

0.545 > 1 (Evaluates tofalse- Accept request)

We made the assumption that already accepted requests have been sorted in the increas-

ing order of their deadlines. As a result, the check is first performed on the time period

between current time and the deadline of T2 and subsequentlyon the deadline of T1. In

calculating the processor demand leading up to the deadlineof T2, only the remaining

execution time of T2 is considered. T2 having executed for 2ms, has 4ms of execution

time left. This results in a total processor demand of 8ms when the execution time re-

quirement of T3 is also considered. When the loading factor is calculated for the time

period, it resultant load is less than 1. With no deadline misses leading up to T2, the
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processor demand up to the deadline of T1 is calculated. The processor demand cal-

culates to 8ms, due to remaining execution times from both T1and T2. With a total

processor demand of 12ms, due to the execution time requirement of T3, the loading

factor leading up to the deadline of T1 builds up to a 0.545, hence the task is accepted

as illustrated in Figure3.4.

With its acceptance, T2 is preempted and T3 is allowed to claim the processor, as it is

the task with the earliest deadline. T2 will recommence execution after 4ms followed

by T1 recommencing execution after another 4ms. Although the execution of T2 is

staged and the re-commencement of T1 further delayed, the larger laxities of T1 and

T2, allows T3 to execute within their lifespans while ensuring all 3 requests meeting

their respective deadlines.

Figure 3.5: Arrival of Request T4

Request T4 arrives at the system 1ms into the execution of T3 (Figure3.5). The dead-

line of T4 is 1ms after that of T3 and prior to that of T2 and T1. Therefore, the entire

algorithm is applicable for the schedulability check of T4.The check is performed

in two parts. The first part calculates the processor demand and loading factor within

the duration of the newly arrived request. If the first part ofthe check is passed, sub-

sequently the processor demand and loading factor between each of the requests with

deadlines after T4 is calculated.
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Proc. Demand Within = (0 + 2)ms (Alg.1: Lines 5 - 12)

= 2ms

Total Proc. Demand up to T4 = (2 + 4)ms (A.M. - 3.5.3, Alg. 1: Line 13)

= 6ms

Loading Factor = 6
(11−4) (A.M. - 3.5.4, Alg. 1: Line 14)

= 0.86

0.86 > 1 (Evaluates tofalse)

As the first part of the check evaluates tofalse, the schedulability check continues on

to the second part.

Proc. Demand up to T2 = (0 + 4)ms

= 4ms

Total Proc. Demand = (6 + 4)ms (A.M. - 3.5.6, Alg. 1: Line 21)

= 10ms

Loading Factor = 10
(20−4) (A.M. - 3.5.7, Alg. 1: Line 22)

= 0.625

0.47 > 1 (Evaluates tofalse- continue to next

check)

Proc. Demand up to T1 = (4 + 4)ms

= 8ms

Total Proc. Demand = (6 + 8)ms

= 14ms

Loading Factor = 14
(25−4) (A.M. - 3.5.7, Alg. 1: Line 22)

= 0.737

0.737 > 1 (Evaluates tofalse- Accept request)

With T4 having its deadline later than that of T3, the first part of the schedulability

check is conducted as T3 finishes within the life span of T4. Incalculating the processor

demand for the lifespan of T4, the remaining 2ms of executiontime of T3 is considered

together with the execution time requirement of T4. T4 has a large enough laxity to

delay its execution until the remaining execution of T3 is completed within its lifespan.
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Therefore, the loading factor results to be less than 1 indicating no deadline misses and

the check continues to the second part where tasks finishing after T4 is considered.

Processor demand and loading factor for the time period between the deadline of T4 and

the deadline of T2 is first carried out. As the loading factor calculates to be less than 1

the same is calculated for the time period between deadline of T4 and the deadline of

T1. Both T2 and T1 has large enough laxities to delay their executions further allowing

T4 to finish execution within their lifespans, with no deadline misses.

As T3 still has the earliest deadline, it continues to have the CPU for execution. How-

ever, at the completion of T3, the request with the next earliest deadline (T4) will get the

CPU for execution. T3 finishes execution at the 6th millisecond since the system started

receiving tasks. Therefore, T4 would run from 6 to the 10th millisecond, followed by

T2 running from 10th to 14th and T1 running from 14th to the 18th millisecond since

its arrival at the system.

Figure 3.6: Arrival of Request T5

T5 is a relatively small task arriving at the system 1ms into the execution of T4 (Figure

3.6). Moreover, it also has a relatively small laxity. As T5 has adeadline earlier than

the rest of the requests, the first part of the schedulabilitycheck is skipped.
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Proc. Demand Within = (0 + 2)ms

= 2ms

Proc. Demand up to T4 = (0 + 3)ms

= 3ms

Total Proc. Demand = (2 + 3)ms (A.M. - 3.5.6, Alg. 1: Line 21)

= 5ms

Loading Factor = 5
(11−7) (A.M. - 3.5.7, Alg. 1: Line 22)

= 1.25

1.25 > 1 (Evaluates totrue - Reject Request)

Processor demand is first calculated for the time period between the deadline of T5

and the deadline of T4 as the sorted list has T4 being the first request with a deadline

after that of T5. The total processor demand calculates up tothe remaining execution

time of T4 (3ms) and the execution time requirement of T5 (2ms), resulting in 5ms.

However, the duration of the time period is just 4ms (11ms - 7ms) in length. As seen

above, T4 does not have a large enough laxity to contain the execution of both T5 and

its remaining execution time. This results in a loading factor of 1.25 which fails the test.

Hence, request T5 has to be rejected.

A loading factor of 1.25 means that if the task was accepted, the total amount of work

that needs to be done between the start time of T5 and the deadline of T4 is more

than the amount of CPU time that could be allocated for the requests. As T5 would

be the task with the earlier deadline, it would gain the CPU continuously till it finishes

execution. Thereafter, T4 would be given the CPU as the task with the next earliest

deadline. This results in T4 missing its deadline of 7ms fromits arrival into the system,

which is the 11th millisecond on the timeline. Rejecting T5 ensures that T4 which is

an already accepted request can meet its deadline requirement. After the schedulability

with T4 fails, the rest of the schedulability check is skipped.

After the rejection of T5, request T6 arrives at the system 2ms into the execution of

T4 (Figure3.7). As T6 has a deadline later than T4, the entire schedulability check is

carried out on it.
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Figure 3.7: Arrival of Request T6

Proc. Demand Within = (0 + 2)ms

= 2ms

Total Proc. Demand up to T6 = (2 + 7)ms

= 9ms

Loading Factor = 9
(18−8)

= 0.9

0.9 > 1 (Evaluates tofalse)

As the first part of the check evaluates tofalse, the schedulability check continues on to

the second part.

Proc. Demand up to T2 = (0 + 4)ms

= 4ms

Total Proc. Demand = (9 + 4)ms

= 13ms

Loading Factor = 13
(20−8)

= 1.083

1.083 > 1 (Evaluates totrue - Reject Request)

Unlike T5, T6 having a deadline later than T4 would need to have a laxity that could

make way for the remaining execution of T4, without missing its deadline. A loading

factor of 0.9 within the lifespan of T6 means that it could be successfully scheduled to
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meet its deadline while T4 is also completed within its deadline. In the second part of

the schedulability check, the processor demand for the timeperiod between the deadline

of T6 and that of T2 is calculated. At this point of time, the laxity of T2 is not adequate

to contain the execution of T6 within its lifespan as it already phased its execution

making way for T3 and T4. The resultant processor demand and loading factor results

in 1.08% of CPU utilization. This leads to request T6 being rejected.

Although T6 could be scheduled to meet its deadline while it makes way for the re-

maining execution time of T4, accepting it for execution would require the execution of

T2 and T1 being further delayed. However, this results in T2 missing its deadline by

1ms, although T1 would still be able to finish within its deadline due to having a larger

laxity. The rejection of T6 prevents already accepted tasksmissing their deadlines, if it

was accepted.

Figure 3.8: Arrival of Request T7

Request T7 arrives at the system, 3ms into the execution of T4(Figure3.8). Having a

deadline later than that of T4, the entire schedulability check is applicable.
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Proc. Demand Within = (0 + 1)ms

= 1ms

Total Proc. Demand up to T6 = (1 + 2)ms

= 3ms

Loading Factor = 3
(15−9)

= 0.5

0.5 > 1 (Evaluates tofalse)

As the first part of the check evaluates tofalse, the schedulability check continues on to

the second part.

Proc. Demand up to T2 = (0 + 4)ms

= 4ms

Total Proc. Demand = (3 + 4)ms

= 7ms

Loading Factor = 7
(20−9)

= 0.636

0.636 > 1 (Evaluates tofalse- continue to next check)

Proc. Demand up to T1 = (4 + 4)ms

= 8ms

Total Proc. Demand = (7 + 8)ms

= 15ms

Loading Factor = 15
(25−9)

= 0.9375

0.9375 > 1 (Evaluates tofalse- Request accepted)

With T4 having only 1ms of execution time remaining, the processor demand between

the lifespan of the newly arrived T7 accumulates up to a small3ms. T7 has a large

enough laxity to comfortably support the execution of T4 andits own within its lifes-

pan. Therefore, the first part of the schedulability check results positive. Next, the
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schedulability of T7 is checked with T2 and T1. Both these tasks have enough lax-

ity to further delay their execution making way for T7 to finish within their lifetimes.

The resultant loading factors of 0.636 and 0.9375, indicates that the request T7 can be

successfully scheduled with each of the already accepted tasks executing in the system.

Figure 3.9: Completed Schedule of all accepted Requests

Figure3.9 illustrates the completed schedule for all accepted requests. Although the

execution of some tasks were phased out, all accepted tasks were able to meet their

deadlines successfully. Furthermore, it is evident that laxity and the arrival time plays a

part in the acceptance of a request. Rejection of requests with deadlines and execution

time requirements that cannot be accommodated within the available CPU time, ensures

that already accepted requests in the system would not be penalised for their execution.

3.7 Implementation

To empirically evaluate the effectiveness of the proposed solution, aforementioned algo-

rithms and techniques are implemented in an existing web services middleware product,

namely Apache Axis2 [Apache Software Foundation, 2009]. The notion of a deadline

was introduced to each web service request. This property can be specified for each

service invocation. It is passed onto the middleware by using SOAP headers. The core

functionality of Axis2 was modified to retrieve the deadlinefrom the SOAP header and

conduct the schedulability check prior to the acceptance ofa request for execution.

The proposed functionality of these algorithms were facilitated by a few techniques
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introduced in the implementation process. The implementation of the EDF policy re-

quired a change to thebest-effortnature of execution in Axis2. Firstly, all thread-pools

used by Axis2 were replaced with custom built real-time thread-pools. A newly in-

troduced real-time scheduler component enforces the EDF policy on the executions in

Axis2 by having fine-grain control over the worker threads inevery pool. It uses a newly

introduced priority model to differentiate request processing and control the executions

by suspending and resuming execution of individual worker threads at will. These im-

plementation features were further facilitated at the system level by the use of real-time

development platforms and operating systems in the lower layers of the system.

The use of EDF scheduling mandates the sequential executionof requests. However, in

order to achieve an acceptable level of throughput, the real-time scheduler uses multiple

lanes of execution. The number of lanes are configured to be one less than the number

of CPU cores available on the server. Therefore on a server with n CPU cores, the

tasks with then− 1 earliest deadlines at any given time will be executed. An extensive

discussion on the implementation of RT-Axis2 is presented in chapter5.

3.8 Empirical Evaluation of the Proposed Solution

Next we evaluate the level of predictability achieved by theuse of the proposed schedu-

lability check and deadline based scheduling in web services middleware. For this, we

compare the predictability gain by the enhancements made toRT-Axis2 with an unmod-

ified Axis2 deployment. There were no other techniques or algorithms used for achiev-

ing predictability in web services that we could compare with. To measure the level of

predictability achieved by the proposed algorithms, the implemented system must be

compared with similar web services middleware implementedusing a similar develop-

ment platform. At the time of conducting this research therewas no other open source

web services middleware that was developed using Java development platform. There-

fore, the only feasible comparison was with an unmodified version of Axis2. Moreover,

to measure the predictability of execution or performance of web service middleware,

there is no widely accepted or used data set available. Therefore, the systems were ex-

posed to request streams created by us using a custom traffic generator, through which

the task size, inter arrival rates and deadlines can all be varied accordingly. To create a

worst-case scenario where the request properties are highly variable, we used uniformly

distributed task sizes, arrival rates and deadline rates and considered all requests to have
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hard real-time deadlines, in these experiments.

3.8.1 Experimental Setup

Due to the dynamic environment web services operate in, the solution must be eval-

uated in highly variable traffic conditions. Although in reality we could expect our

solution to be exposed to mixed stream of requests with only aportion of them having

hard deadlines, the evaluation is conducted for the extremecase of the entire request

stream having hard deadline requirements. To represent thehighly variable task sizes

and different arrival rates that exists in the real world, weuse uniformly distributed task

size and inter-arrival times in our experiments. We use a webservice that allows us to

create different sized workloads on the server with the input parameters used. To mea-

sure the effectiveness of the enhancements, the implementation is compared against an

unmodified version of Axis2. The metrics used for the comparison are the percentage

of requests accepted for execution and the percentage of deadlines met out of the ac-

cepted requests. Whilst the unmodified version does not employ any admission control

mechanisms, it rejects requests in overloaded conditions.

Figure3.10illustrates the experiment setup. The following hardware and software were

used as the test environment. Both the enhanced version and the unmodified version

of Axis2 were deployed on servers with dual Intel Core 2 Duo 3.4 GHz processors (4

cores in total) with 4 Gigabytes of RAM, Gigabit Ethernet port running Sun Solaris 10

update 05/08 with RTSJ version 2.2. RT-Axis2 is configured with 3 lanes of execution

with 100 worker threads for the stand alone deployment. Realistic values were used as

deadlines in the experimental evaluations. For this purpose, we profiled the web service

for a range of input parameters and derived a functional relationship between the input

values and the resultant execution time. The deadline for each task was calculated as a

multiplication of the execution time by a random value ranging from 1.5 to 10.

Five client machines are used to generate requests to the server. Ubuntu Linux ver-

sion 8.04 with the Linux Real-time kernel 2.6.21 was used as the operating system.

Although the performance measurements were done only on theserver side, it was de-

cided to make use of a real-time operating system and developthe request generating

software using real-time development libraries to ensure that the request generation pro-

cess happens in a timely and uninterrupted manner. This was primarily to ensure the

accuracy of the arrival rates the tasks are generated at. A controller machine with the
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Figure 3.10: Hardware and Software Setup

same hardware and software configuration is used additionally. It controls the entire ex-

periment by deciding the size of the task and the time a request is generated. Moreover,

it decides from which client the request is generated from.

3.8.2 Measurement of Predictability in Service Execution

Table3.2 and Figure3.11summarises the comparison between RT-Axis2 and the un-

modified version of Axis2. For each setup the first column shows the percentage of

requests accepted by the schedulability check and the next column contains the percent-

age of deadlines met off the percentage of accepted requests. Due to the unconditional

acceptance of requests, unmodified Axis2 surpasses RT-Axis2 in the percentage of re-

quests accepted for execution. The unmodified version accepts between 29% - 100%

of requests in the given scenarios, while RT-Axis2 accepts between 18% - 96.7% of

the requests.The schedulability check in RT-Axis2 finds less requests accepted due to

their laxity consideration and the deadline requirement. Request rejections in Axis2 is

caused by request time-outs after the system becomes unresponsive due to being over-

loaded with requests.

When the deadline achievement rate is considered, Axis2 is only able to achieve be-
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Unmod. Axis2 RT-Axis2
Inter-arrival
times (sec)

% Acc. % D. Met off % Acc. % Acc. % D. Met off % Acc.

0.25 - 2 100 36.2 96.7 100
0.25 - 1 62.4 18.3 58.6 100
0.1 - 0.5 55.1 9.1 30.7 99.7
0.1 - 0.25 28.7 8.8 18.1 96.7

Table 3.2: Performance Comparison of Unmodified Axis2 vs. RT-Axis2

Figure 3.11:Axis2 and RT-Axis2 - Deadline Achievement Rates

tween 9% to 36% of the deadlines from the requests accepted, under experimental con-

ditions. However, RT-Axis2 achieves more than 96% of the deadlines from the accepted

requests in all the experiment runs. Due to thebest-effortnature of request execution,

Axis2 results in unprecedented execution times. This can clearly be seen in the top two

graphs of Figure3.12which shows the median execution times resulting from both sys-

tems. This phenomenon leads to majority of the deadlines being missed in unmodified

Axis2. The schedulability check prevents RT-Axis2 from having such overload condi-

tions and thereby prevents any impact on the execution of accepted requests. Together

with deadline based scheduling, RT-Axis2 achieves more than 96% of the deadlines

being met at all times, outperforming Axis2 in the evaluations. Comparing resultant

execution times in Figure3.13, it can clearly be seen that the range of values achieved

by Axis2 is far greater compared to the range achieved by RT-Axis2. This is a clear

example of the unpredictable nature ofbest-effortexecution in such web services mid-

dleware. Furthermore, the two graphs in the second row showsthe resultant execution

times sorted by the task size, it can clearly be seen that the fluctuation of execution

times are far greater for large task sizes. Whilst some fluctuation exists even in RT-
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Axis2 execution times, they are smaller and are controlled delays based on the laxity of

a request.

RT−Axis2

Axis2

0 10000 20000 30000 40000 50000 60000 70000

0.25sec − 1sec (Uniform)

Execution Time (ms)

RT−Axis2

Axis2

0 50000 100000 150000 200000

0.1sec − 0.5sec (Uniform)

Execution Time (ms)

Figure 3.12: Range of Resultant Execution Times
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Figure 3.13: Execution Time Variability

3.8.3 Impact of Request Arrival Rate

As the experiment setup is exposed to decreasing inter-arrival times, requests arrive at

the system far more rapidly and a decrease can be observed in the percentage of re-

quests accepted. This leads to overloaded conditions in unmodified Axis2 that results

in requests being dropped. Moreover, due to thebest-effortnature of request execution,

unmodified Axis2 results in highly variable execution timesas seen in Figure3.13. The

saturation of processing resources in Axis2 leads to it reaching the maximum process-

ing capacity and the rejection of subsequent requests. RT-Axis2 is prevented in reaching

such conditions by the admission control mechanism we introduced. As this is a com-

mon phenomenon with such dynamic environments, having suchpreventive measures

is of paramount importance for achieving predictability ofexecution.
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Figure 3.14: CPU Utilisation Levels
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Figure 3.15: CPU Utilisation Levels

3.8.4 Request Processing

While Axis2 rejects requests due to the saturation of processing resources, RT-Axis2

rejects requests through the laxity based schedulability check. As this admission con-

trol mechanism prevents the system reaching overload conditions, it will be worth in-

vestigating the CPU utilisation at RT-Axis2. Figure3.14 and3.15 contains the CPU

utilisation for each of the runs. It can be observed that RT-Axis2 achieves nearly 90%

of utilisation with increased request rejections. Due to the laxity based selective accep-

tance of the schedulability check, the CPU is prevented fromreaching 100% utilisation

thereby possibly leading to overloaded conditions.

3.8.5 Laxity Based Request Selection

From the previous discussions it is evident that enhancements made to RT-Axis2 and

RT-Synapse results in conditional acceptance of requests,based on their laxities. The

introduced schedulability check works by trying to match the laxity of a target request

with the already accepted requests that overlaps with its lifespan in the system. A

request is accepted based on the compatibility of its laxitywith that of already accepted

requests, depending on the processor demand within its lifespan in the system. As

illustrated in the sample scenario (Section3.6), a request with a larger laxity will allow

many other requests to be scheduled within its lifespan and asmaller laxity will require

the request be scheduled together with other tasks with higher laxities. The nature of
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Figure 3.16: Comparison of Resultant Laxities

this selection process eventually results in a wider range of laxities at a server in any

given time period.

Recall that laxity indicates the ability to delay the execution of a request, while still

meeting its deadline requirement. It is usually indicated as a ratio between the deadline

and the execution time of a request. Figure3.16visualises the range of laxities resulted

at each server for Axis2 (A) and RT-Axis2 (RT). Recall that the best-effortnature of

Axis2 executes as many requests as possible in parallel and leads to overload conditions

and deadlines misses. These conditions gets worse with short inter-arrival times as

seen on Table3.2. In every run, many of the initial requests handled by Axis2 get

executed very quickly as the competition for CPU is less, till more requests arrive. This

results in lower execution times that contributes to higherlaxity values. However, as the

number of requests increase thebest-effortprocessing overloads the server and many

of the requests being executed sharing the processor resultin execution times past their

deadline requirement. With less than 36.2% of the requests meeting their deadlines,

majority of the requests in every Axis2 run results in laxityvalues less than 1. As

visible on the graph, the median laxity value gets lower withthe increasing arrival rate.

Similarly, the median laxity value decreases with higher arrival rates for RT-Axis2.
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However, the selection of requests by the schedulability check results in a range of

laxities at the server. Finding a request with a complementing laxity schedulable with

existing requests, results in this phenomenon which can clearly be observed in the fig-

ure above. The runs with slow request arrivals result in a higher median value, and it

decreases with increasing request arrivals although stillresulting in a large variety of

values. This contributes towards requests meeting their deadline requirement even in

conditions with high task arrivals.

3.8.6 Throughput Comparison

Next we compared the two systems on the throughput rates achieved. Axis2 is designed

to achieve good throughput rates in normal conditions. The enhancements made to RT-

Axis2 will have a negative impact on the throughput levels achieved by the middleware.

However, Axis2 has no mechanisms to prevent system overloads in high traffic condi-

tions, whereas the admission control mechanism in RT-Axis2prevents it from reaching

such a state.

For this discussion we define throughput to be the number of requests processed by a

server in a given unit of time. Herein, for the unmodified configurations we consider a

request that is executed successfully as a processed request, as there is no differentiation

enforced. However, for the enhanced configurations, any request rejected or executed

successfully are considered as a processed request. For a rejection, a request needs to

be processed by the server up to the completion of the schedulability check using the

deadline information fetched. Therefore, this processingqualifies the request to be con-

sidered for throughput calculations. Throughput of a server can be mainly affected by

three parameters. Firstly, the software by design may have certain features that max-

imises request processing. Secondly, the processing capability of the software maybe

limited by the hardware configuration it is hosted in. Thirdly, request arrivals will have

an effect on the resultant throughput of the server.

Unmod. Axis2 RT-Axis2
Mean inter-
arrival time

Throughput
(sec−1)

Throughput
(sec−1)

Throughput
(excl. rejected)

1.125s (Low) 0.98 0.91 0.88
0.625s 0.83 1.62 0.95
0.300s 0.72 3.40 1.04
0.175s (High) 0.69 5.64 1.02

Table 3.3: Throughput Comparison of Unmodified Axis2 vs. RT-Axis2
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Table3.3 contains throughput values measured (requests per second)for unmodified

Axis2 and RT-Axis2 under different request arrival rates, for each scenario discussed

earlier. Figure3.17 summarises the results graphically. The second column for RT-

Axis2 contains throughput measured without considering requests rejected. Axis2 is

configured by default with 25 worker threads pre-created at start-up and the ability to

create up to 150 worker threads when the request queue is filled up. Practically, it is

possible for all 150 threads to be in execution sharing the processor at any given time

as there are no differentiation or control over how threads execute. With the highest

mean inter-arrival time (1.125s), Axis2 records better throughput values compared to

RT-Axis2. With increasing arrival rates, Axis2 records decreasing throughput values.

The best-effortnature of Axis2 contributes to it being overloaded in quick-time and

the system being unresponsive, resulting long delays in request completions. More-

over, incoming requests drop out due to unresponsiveness ofthe system. This condition

increases with request arrival rates.

The enhancements made to RT-Axis2 enables control over the execution of worker

threads. The configuration of 3 execution lanes and the functionality of the real-time

scheduler component, restricts only 3 threads to be in execution at any given time. There

maybe up to 100 worker threads pre-created, ready to be used for request execution or

with assigned requests with later deadlines. Their use of the CPU is controlled by the

scheduler using lower priorities. In the lowest request arrival configuration, RT-Axis2

achieves a marginally lower throughput value. As request arrival rates are increased, the

throughput of the system also increases accordingly. Although request traffic increases,
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the schedulability check in RT-Axis2 prevents the system from being overloaded. How-

ever, a side-effect of this is the increased amount of rejections as observed in Table3.2.

The processing of a request up to the completion of the schedulability check, is compar-

atively quicker than the intended service execution. A rejected request will incur only

this portion of processing. As a result, the throughput recorded in high traffic condi-

tions comprise of a considerable amount of rejected requests. It is clearly observed in

the respective secondary throughput values calculated, excluding the rejections. At the

smallest mean inter-arrival time (0.175s), the ratio of accepted to rejected requests is

around 1:4.

3.8.7 Discussion

Through the empirical evaluation we tried to ascertain the validity of the guidelines pro-

vided and the enhancements made accordingly, to web services middleware for achiev-

ing predictability of service execution. The empirical results confirm that predictability

of execution could certainly be achieved with the suggestions made. The conditions

tested for were worst case scenarios of high request arrivalrates, all requests having hard

deadline requirements and highly variable task size distributions. Unmodified Axis2 the

enhanced system was tested against, unconditionally accepted requests for execution,

that resulted in higher acceptance rates. However, this ledit into overload conditions

which resulted in the rejection of requests, as non-responsiveness of the system led to

request time-outs. Moreover, this also led to high rates of deadline misses, 58.2% being

the highest achieved and at times being less than 10% . Although the RT-Axis2 resulted

in lower acceptance levels, it excelled in achieving more than 90% of the deadlines in

every scenario tested for.

With the empirical results obtained, it is clear that RT-Axis2 outperforms the unmodified

version securing at least 97% of the deadlines while maintaining comparable request

acceptance rates. The unconditional acceptance of requests in the unmodified version

together with thebest-effortnature of request execution, works well in scenarios where

completion time limit is of less importance. With the thread-pools in use executing as

many requests as possible in parallel, their completion times increase with the number

of requests being executed, where the maximum number of worker threads serve as an

upper bound. As seen on Figure3.12 and3.13, the resulting longer execution times

contribute to the number of deadlines missed. Moreover, this leads to very high utili-

73



CHAPTER 3. PREDICTABILITY OF EXECUTION IN STAND-ALONE
WS-MIDDLEWARE

sation levels, that could create overload conditions, which result in requests timing out

due to unresponsiveness of the server. Conditional acceptance of requests based on lax-

ity in RT-Axis2 ensures that a request can be scheduled together with already accepted

requests whilst ensuring all deadlines are met. This is further facilitated by the deadline

based scheduling used for request execution. Supported by the priority model intro-

duced, the features available in the development platform and the OS, predictability in

execution is achieved successfully. With increased arrival rates, more requests compete

for the same window of time. In such scenarios, the schedulability check may reject

more number of requests. The rejections could be reduced with the use of a cluster

based setup we present in chapter4 where more than one server is used for request

execution. Moreover, another approach would be to considera rejected requests after a

certain time window if its deadline has not been expired. This is discussed further under

future work in the conclusion chapter7.

The role of laxity in achieving predictability and its importance can be observed in the

results discussed in the laxity comparison. Whilebest-effortprocessor sharing execu-

tion is ideal for common processing tasks, ensuring predictability mandates a suitable

method of admission control that contributes towards the goal. Request selection based

on laxity gives an assurance of meeting a request deadline even prior to its acceptance

for execution. The wide range of laxities achieved by the selection process ensures that

requests with complementing laxities execute successfully within a given window of

time.

The throughput achieved by the RT-Axis2 indicates that its performance is compara-

ble with the unmodified version, in low traffic conditions. Although the RT-Axis2

outperforms Axis2 in high traffic conditions the higher throughput values are largely

contributed more by the request rejections. However, when throughput is calculated ex-

cluding the rejections both configurations still achieve acceptable throughput rates with

resilience to high traffic conditions, contributed by the admission control mechanism.

While Axis2 succumb to system overloads, it is bound to perform better than RT-Axis2

in favourable conditions. Therefore, RT-Axis2 can only be considered resilient to high

traffic conditions. Considering it to have better throughput values under normal condi-

tions would be an unfair assessment on unmodified Axis2.
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3.9 Summary

This chapter, presented means of using real-time scheduling principles to achieve pre-

dictability of execution in web services middleware. Due tothe highly dynamic and

unknown nature of web service requests, the need of an admission control mechanism

in selecting requests for execution was discussed. The presented mathematical model

enables schedulability analysis at run time using real-time scheduling principles. All

web service requests arriving at a web service middleware issubjected to a schedula-

bility check based on the model. Requests are selected for execution based on their

laxity property, which indicates the ability to delay or phase out their execution without

missing a designated deadline. By selecting complementinglaxities, the schedulability

check results in a large range of laxities at a server, thereby enabling more requests to

be scheduled together while meeting their execution deadlines.

Deadline based execution of requests by the middleware further ensures attaining the

deadlines. Requests are executed in the increasing order oftheir deadlines and due

to the aperiodic nature of web service requests, using EDF policy enables dynamic

changes to the schedule while achieving schedulable bound of 100%. The popular

Axis2 web services middleware is enhanced with these features and the resultant RT-

Axis2 is evaluated against the unmodified version to measurethe predictability gain.

With the enhancements, RT-Axis2 is able to achieve more than96% of the deadlines

while accepting comparable amount of requests as the unmodified version. Unlike in

Axis2, these enhancements protects the middleware from reaching overloaded condi-

tions high traffic conditions.

Nevertheless, the amount of requests rejected by the schedulability check is still a con-

cern. With the decreasing hardware costs, a way to reduce therejection of requests is to

have multiple servers hosting web services. In the next chapter we extend the techniques

presented to a cluster or servers hosting web services.
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Chapter 4
Predictability of Execution in Web

Services Clusters†

The use of cluster servers to host and deliver web services isan effective way of cater-

ing the growing demands of popular services. Clusters with replicated content are

equipped to achieve better response times, better handle ofincreased loads with the

added advantage of increased availability. Herein, the request dispatching algorithm

used, has a direct impact on the performance of the cluster. Depending on the ob-

jective of the dispatching technique, requests maybe distributed to balance the resul-

tant load among cluster members or be unbalanced to achieve some level of differ-

entiation for the clients. However, consistently achieving predictable execution times

for a service is seldom considered as a dispatching goal. This chapter presents four

request dispatching algorithms based on real-time scheduling principles (namely RT-

RoundRobin, RT-ClassBased, RT-LaxityBased and RT-Sequential) that enable clusters

hosting web services to achieve predictability in service execution. The proposed algo-

rithms achieve predictability of execution by incorporating properties such as execution

deadline and laxity of a request into the dispatching decisions. This is achieved by con-

ducting schedulability analysis as part of their functionality. Once a request is matched

with an executor based on the dispatching policy, the schedulability check considers the

laxity of the request and checks with the executor on the possibility of achieving the

requested deadline. This additional step of laxity based schedulability check results in a

† Preliminary versions of the work presented in this chapter have been previously published in
[Gamini Abhaya et al., 2010a,b, 2012].
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wider range of laxities at each executor in the cluster. By maximising the range, it allows

more requests with overlapping executions to be scheduled together. RT-LaxityBased

algorithm, takes this process further by further ensuring that requests with the same

laxity value do not get assigned to the same executor consecutively. This additional

step of using laxity enables it to achieve on average 4% more deadlines than the other

algorithms. The algorithms are compared with common dispatching techniques such

as Round-Robin and Class-based dispatching to measure the predictability gain they

achieve. The empirical results show the proposed algorithms outperform the others by

meeting at least 95% of the deadlines compared to less than 10% by the others, while

maintaining acceptable throughput rates in high traffic conditions.

4.1 Motivation

The Internet has witnessed a growth of web services usage in the recent years. To

alleviate performance bottlenecks that may arise from the growing demand, a common

solution is the use of clusters in hosting web services. Clusters work by spreading

out requests among replica servers based on some pre-definedscheme. This act of

balancing the load to gain performance is effective in achieving improved response

times and increasing availability of the services.

The most important aspect of a cluster of servers hosting anytype of content, is its

method of request distribution among the cluster members [Cardellini et al., 2002]. The

dispatching algorithm controls the nature of requests eachexecutor is faced with, in

terms of arrival rates and request properties. Each server in the cluster on its own, acts as

a stand-alone web services middleware instance for the requests it receives. Execution

time predictability can be successfully achieved in them with the proposed solution for

stand-alone middleware presented in Chapter3. However, given the prominent role a

dispatcher plays in the distribution of requests, it can play a significant role in further

ensuring predictability of execution within the cluster. However, this would require the

dispatching decisions to change from being throughput-oriented to being predictability

oriented.

Achieving predictability of execution in a web services cluster is important primary for

two reasons. Firstly, given the common usage of such clusters on the Internet, being able

to support execution deadlines, to ensure predictability of execution and to distribute

requests among the cluster based on their completion deadlines will make it possible
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for these clusters to be used with applications with such stringent quality requirements.

Secondly, such a cluster setup will serve as a solution to reduce the amount of request

rejections resulted with stand-alone web services middleware.

4.2 Problem Statement

Request dispatching techniques can be categorised in various ways [Cardellini et al.,

1999, 2002; Gilly et al., 2011]. In the scope of this research we consider them cate-

gorised broadly into the following two categories.

• Request-blind dispatching schemes - Dispatcher is unawareabout the incoming

request and dispatching decisions is based on a pre-defined criteria.

• Request-aware dispatching schemes - Dispatcher is aware ofthe request and dis-

patching decisions are made based on some property of the request.

Request blind dispatching [Cardellini et al., 2002] schemes work mostly on the network

or transport layer. They are typically used in balancing theworkload among the cluster

servers. By doing so, they try to achieve better overall response times and resource

usage in a cluster while increasing availability and scalability. For instance, simple

dispatching schemes such as Round-Robin dispatching was found to be effective in bal-

ancing the load among cluster servers [Gilly et al., 2011]. Request-aware dispatching

schemes typically work on the application layer and some aredesigned to balance the

load among cluster members. However, some of them are designed to unbalance the

load within a cluster and achieve differentiated service processing among requests. For

instance, many of such schemes follow some predefined schemesuch as task size or

customer category to differentiate service among several request classes [Garcı́a et al.,

2009; Pacifici et al., 2005]. A dispatcher using such a scheme may dispatch requests

belonging to these classes in a pre-defined ratio among the cluster members. Such a

technique will naturally result in each executor having a different workload.

While dispatching techniques make it possible to achieve better response times, scal-

ability, availability and service differentiation in suchclusters, none of the currently

available techniques consider predictability based attributes such as execution deadlines

or laxity of requests in their dispatching decisions. Moreover, none of the software com-

ponents that govern a cluster is designed for such a purpose.Therefore, research into
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such dispatching techniques and cluster architectures is of paramount importance to the

success of the cluster based web service deployments.

4.3 Overview of the Solution

Our contribution through this chapter are four request dispatching algorithms that are

designed to guarantee high levels of execution time predictability in web service clus-

ters. Dispatching decisions in two of the algorithms (namely RT-RoundRobin and

RT-Sequential) are done in a request-blind manner. In theirfunctionality they try to

balance the load among the cluster members and achieve the optimal scheduling and

resource usage, respectively. The remaining two algorithms (RT-ClassBased and RT-

LaxityBased) make dispatching decisions in a request-aware manner. RT-ClassBased

considers the size of a request and assigns them to pre-designated dispatchers while

RT-LaxityBased considers the laxity property of a request when requests are assigned

to executors.

Apart from their specialised dispatching decisions, all four algorithms carry out the

additional step of checking the schedulability of a requestprior to accepting it for exe-

cution. This is achieved by incorporating the schedulability check presented in chapter

3 in the algorithms. After matching a request to a dispatcher,each algorithm considers

the laxity of the request and checks with the chosen executoron whether the perceived

execution deadline of the request can be met.

RT-RoundRobin is proposed as an example of how a simple dispatching algorithm can

be modified to consider the deadline and laxity of a request inits functionality. Firstly,

it matches a request to an executor where the executors are picked in round-robin fash-

ion. As a second step the possibility of meeting the deadlineof the target request is

checked with the executor using the schedulability check. RT-ClassBased is proposed

as a representation of any class based dispatching algorithm that unbalances the load

in a cluster. Requests are classified into different classesbased on an attribute and

the mapping of these classes to executors is pre-defined. Forthis implementation, we

consider the request size as the classifying attribute and assign each executor with a

range of request sizes for execution. RT-ClassBased works by mapping a request to the

corresponding executor based on its size and then checking its schedulability on that

executor. RT-LaxityBased extends this process further by keeping track of the last two

laxities assigned to every executor and preventing requests with similar laxities being
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assigned to them consecutively. This process broadens the range of laxities further for

RT-LaxityBased algorithm. Every algorithm except RT-Sequential checks the schedu-

lability of a request only with a single executor. RT-Sequential takes this further by

checking the schedulability of a request with every executor in the cluster until a proper

fit is found or the list is exhausted. This allows RT-Sequential to achieve the best rates

of request acceptance among all algorithms.

The rest of the chapter is organised as follows. In the next Section we discuss some of

the related work in this area. Next, detailed descriptions of the four request dispatching

algorithms are presented. In Section4.6 an analytical evaluation of each algorithm is

presented. It is followed by a brief Section (5.6) describing how the algorithms were

implemented using actual middleware products. An empirical evaluation is presented in

Section6.8, where these algorithms are tested under various traffic conditions,their per-

formance and predictability gain compared with other dispatching algorithms. Finally

a conclusion to the chapter is provided in Section4.9.

4.4 Related Work

Many previous attempts at achieving better response times by using a cluster setup can

be found in literature. The simplest form tries to dispatch requests either equally among

cluster members (i.e. using Round-Robin or Random dispatching) so that the average

response times become better. Many approaches go a step forward in making the dis-

patching decision based on some attribute such as residual load of an executor, content

requested, geographical region, popularity of a domain, etc. A popular way of such

dispatching is to do it as Authoritative Dynamic Naming Service (A-DNS) level redi-

rection [Cardellini et al., 2003; Colajanni and Yu, 2002]. Many other attempts make

content-aware dispatching decisions with client or serverinformation. For instance, re-

quests for a particular object can be directed the same server until it reaches a particular

utilisation level. By doing so, the object is loaded into a cache and served from it for

subsequent requests. Similarly, requests could be classified into CPU bound or Disk

Bound and served at different servers [Casalicchio et al., 2002].

Many of the previous attempts are on clusters hosting staticweb content and follow the

premise of static web traffic taking a heavy tailed distribution. In [Mor Harchol-Balter,

2002], no prior knowledge of task sizes are assumed and requests are sent through

several executors assigned with increasing quanta until the request is completed in a
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non-work conserving manner. Requests are mapped to executors based on task sizes in

[Ciardo et al., 2001; Harchol-Balter et al., 1999] and as a result the dispatching trans-

forms the heavy tailed work load into that of type exponential. These work with the goal

of reducing the mean waiting time, mean slowdown of tasks andnot the predictability

of execution. Moreover, with the assumptions they make on static web content such

as the heavy-tailed nature of traffic, they seem unsuitable to be used with the highly

dynamic nature of web services.

Mechanisms of achieving perceived performance levels as outlined in SLAs can also

be seen in clusters hosting web services. The work of PacificiG. et al. [Pacifici et al.,

2005] uses a multi-level dispatching technique where a layer 4 switch acts as the first

level dispatcher which distributes requests among severalgateways in the cluster in

a content-blind manner. Pre-defined SLAs classify requestsin to several grades where

customers pay to be in a certain grade with a probabilistic guarantee on execution times.

Gateways dispatch requests among cluster servers hosting identical content and a global

dispatcher keeps track of the server resources used and currently available at each server.

A utility function is used by the resource manager to computethe resource consump-

tion and calculate the number of connections from each gradea server could handle in

a given window of time. This information is disseminated periodically among the gate-

ways, which make use of them for dispatching decisions. Garcı́a D. et al. [Garcı́a et al.,

2009] takes a similar approach where an SLA is used to specify the maximum response

times for each service delivered by the provider. Each customer is guaranteed a proba-

bilistic measure of the response times specified in the SLA. Cluster servers host iden-

tical content and a monitoring module in each server keeps track of the resource use

and request execution. This information is periodically updated at a controller module

which compares the information with the perceived responsetimes on the SLA. Us-

ing the calculated statistics, the controller decides on the acceptance of a request for

execution upon being queried by the load balancer. Continuation of this process leads

to dynamically adjusting the request acceptance to achievethe probabilistic measures

of execution times for each client. The work of Gmach D. et al.[Gmach et al., 2008]

takes a different adaptive approach by using fuzzy logic to optimise parameters such as

resource availability, execution times for each class of requests and performance levels

perceived in the SLA. A management module uses fuzzy logic tocalculate the optimal

parameters for the servers where requests of certain classes will have priority over oth-

ers. Similarly, Cao J. et al. [Cao et al., 2010] presents a Jini based self-configurable
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service process engine which dynamically balances the loadamong services hosted,

based on a predefined model. A heuristic technique is used to classify every request,

using a tag specifying the workload it would incur on execution. The workload tags

are intended for a controller module, which dynamically configures the engine based

on this information using a fuzzy control algorithm. The heuristic algorithm calculates

the workload incurred by a request, using a set of probability based values for each

function the engine must perform to complete the request. The fuzzy control function

maps this value into a generalised fuzzy number based on predefined functions that clas-

sify a request based on its resource requirement. Dependingon the projected workload

the control module dynamically increases or decreases the active service instances to

maintain the perceived level of performance. All these approaches discussed consid-

ers service execution time as a QoS parameter and try to achieve pre-determined levels

of performance. As it is a probabilistic measure, none of them can guarantee it in a

consistent manner.

Similar attempts at achieving different levels of performance through service differenti-

ation could be seen in serving simple web requests. Eggert L.et al. [Eggert and Heidemann,

1999], introduces an application level service differentiation to a web server with two

service classes. Processes that serve the web requests are grouped into one service class

named foreground processes and others such as cache managers that uses speculative

pull and push transactions are categorised into the anotheras background processes.

Foreground processes are comparatively more CPU bound while background processes

are more network bound. The work presents three different backgrounding mechanisms

that allocates processing resources between these two classes in different ratios, thereby

controlling the number of processes from both classes that use the CPU. Kihl M. et al.

[Kihl et al., 2008] presents an admission control mechanism for web servers which re-

jects requests based on load conditions at the server. Theirsolution uses a combination

of queueing theory and control theory to ensure the CPU utilisation is preserved at a

certain level. Queueing theory is used to model an Apache webserver as a GI/G/1 sys-

tem and the control theory is used to decide on the number of requests accepted. While

these attempts succeed at introducing service differentiation or selective request exe-

cution, none of them have all the components needed to ensureconsistent predictable

execution times. Moreover, being application level solutions they lack support from the

system level, that would ensure the required level of consistency.
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4.5 Proposed Real-time Dispatching Algorithms

The proposed four dispatching algorithms are presented in this section. Apart from

matching a request to an executor, all of them considers the execution deadline of the

request and its laxity to ensure that the perceived deadlinecan be met on the selected

executor. The schedulability check algorithm presented inchapter3 (section3.5.2) is

used for this purpose. The algorithms achieve three goals intheir functionality. Firstly,

the requests are distributed amongst the executors to either balance (RT-RoundRobin,

RT-Sequential, RT-LaxityBased) or unbalance the load in the cluster (RT-ClassBased)

depending on their dispatching technique. Secondly, a request is only dispatched to the

selected executor on he guarantee that its execution deadline could be met. Finally, apart

from the distribution of requests among executors, the selected requests result in a wider

range of laxities at each executor, allowing the requests with overlapping deadlines to

be scheduled together. Following is a detailed discussion on each algorithm.

4.5.1 RT-RoundRobin

RT-RoundRobin is an example of how a simple request dispatching algorithm could be

modified to consider execution deadlines and request laxities in its dispatching process.

It works by matching a request to an executor in round-robin fashion and then check-

ing the schedulability of the request on the selected executor. The additional step of

request selection by the schedulability check based on its laxity results in a large range

of laxities at each executor.

The functionality of RT-RoundRobin helps in achieving the deadlines of the selected re-

quests in two ways. Firstly, the wider range of laxities created by the selection process

ensures that a proper mix of larger and smaller laxities are selected, such that the exe-

cution of requests with larger laxities can be delayed or phased out to schedule requests

with overlapping deadlines and smaller laxities. Moreover, the round-robin nature of

the algorithm reduces the arrival rate of requests at each server (compared to the ar-

rival rate at the dispatcher) which contributes to requestsarriving further apart and less

number of requests vying for the execution window of time.

Algorithm 2 details the steps in RT-RoundRobin. The round robin nature of it is main-

tained by keeping track of the last executor a request was assigned to (L) and assigning

the new request to the next executor in the list. Upon exhausting the list of executors
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after a complete round of assignments the index used to keep track of the executors

(lastExecIndx) is reset to the beginning (Lines 2-4). Otherwise, the position of the next

executor is selected by simply increasing the index (Line 5). Using lastExecIndx, a

reference to the next executor is obtained (Line 7) and the schedulability of the new

request is checked on that executor (Line 8).

Algorithm 2 RT-RoundRobin
Require: New request R, List of Executors E, Last Executor L
Ensure: R assigned to an executor or rejected

1. lastExecIndx← L.getIndex
2. if lastExecIndx = E.size-1then
3. lastExecIndx = 0
4. else
5. lastExecIndx← lastExecIndx + 1
6. end if
7. nextExec← E.getExec(lastExecIndx)
8. S← IsSchedulable(R,nextExec)
9. if S = truethen

10. L ← nextExec
11. Assign R to nextExec
12. else
13. Reject R
14. end if

If the request is schedulable, it is assigned to the executor(Lines 9-11) and a reference

to the executor is kept track of as the last one to be successfully assigned a request (Line

10). A failure in the schedulability check results in the request being rejected (Line 13).

Objects representing executors are kept in a data structurewith constant time access

when an index is used. Coupled with the schedulability checkthat creates a large range

of laxities at each executor and deadline based scheduling,the cluster is able to achieve

predictable execution times for requests accepted. Moreover, RT-RoundRobin is the

simplest of the algorithms with the possible processing overhead kept to a minimum.

Complexity Analysis of RT-RoundRobin

We assume that the list of executors (E) are kept in a data structure with constant access

time when an index is used. We also consider the dispatching of request R to the selected

executor as an activity outside the scope of the algorithm and considers the assignment
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to be done (Line 11) in constant time. Similarly, the notification to the client about the

rejection of R (Line 13) is also considered as out of the scopeof this algorithm and is

assumed to take constant time.

Given the condition in Line 2, either outcome results an operation that executes in con-

stant time. Similarly, the condition in Line 9 also results either way in an operation in

constant time. Letn be the number of requests already assigned to the selected executor.

Let A(n) be the running time of Algorithm2. Let t1 be the total time taken to execute

lines 1-6. Lett2 be the constant time taken to retrieve the next executor using the index

(lastExecIndx) from the list of executors. Lett3 be the total time required to execute

lines 9-14. Lett4 be the time taken for the schedulability check on the selected executor

with only a single request assigned to it already. The running time of Algorithm2 could

be defined as,

A(n) = t1 + t2 + t3 + n(t4)

= t1 + t2 + t3 + n(t4) ≤ n(t1 + t2 + t3 + t4)

We could conclude that the algorithm results in a worst case time complexity ofO(n),

due to the complexity of the schedulability check. Recall that the schedulability check

has a best case time complexity ofΩ(1) when there are no already accepted requests

at the server. Given this, we could conclude that Algorithm2 also has a best case time

complexity ofΩ(1).

4.5.2 RT-ClassBased

RT-ClassBased algorithm represents all algorithms that divide requests into different

classes based on a pre-defined classification and uses a static request class to dispatcher

assignment. We used task size as the classification criteriafor this research. The task

size range was equally divided into two or more classes and each server is assigned

with the execution of requests belonging to a single class. This mapping is worked out

at design time of the system. The size-based classification makes RT-ClassBased an

example of of a dispatching technique that favours certain classes of requests (in this

case the small sized tasks) by unbalancing the load of the cluster.
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RT-ClassBased works by considering the size of a task upon its arrival and obtaining

the designated executor by using a simple calculation whichwill be described below.

As a second step, it checks the schedulability of the task with the designated executor

using the execution deadline and laxity of the request. The algorithm achieves three

main outcomes. Firstly, by conducting size-based dispatching it achieves better waiting

times and slowdown for smaller sized tasks. The task based segregation between the

executors ensure that the small requests are not made to waitfor the completion of large

sized tasks. Secondly, the use of schedulability analysis ensures that the designated

executor could indeed achieve the perceived deadline of requests. Finally, the range of

laxities at each executor resulted by the schedulability check maximises the chances of

executing requests with overlapping deadlines, together.

Algorithm 3 contains the steps of RT-ClassBased. Recall that we equallydivide the task

size range amongst the executors. Firstly, the limit L that decides the size of the range

is calculated by dividing the total of the smallest and largest task sizes, by the number

of classes or executors in the cluster (Line 1). Secondly, the task size is obtained from

the new request R (Line 2) and the request class is obtained byan integer division of

the size of R by limit L (Line 3). The resulting integer value corresponds to the index

of the respective executor that size is assigned to. Therefore the result is used to lookup

the executor for the list of executors (Line 4).

Algorithm 3 RT-ClassBased
Require: New request R, List of Executors E, Number of Classes N, Smallest Size SM,

Largest Size LG
Ensure: R assigned to an executor or rejected

1. L ←
(

SM + LG
N

)

2. SZ← R.getSize
3. C←

(

SZ
L

)

4. nextExec← E.getExec(C)
5. S← IsSchedulable(R,nextExec)
6. if S = truethen
7. Assign R to nextExec
8. else
9. Reject R

10. end if

Thereafter, the request is directly checked for schedulability with the selected executor

(Line 5) and assigned to it on a successful outcome (Line 7). If the schedulability check
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fails, the request is rejected (Line 9). Line 2 shows the sizeof the request being retrieved

from itself for brevity. As there is no knowledge of a requestprior to its arrival, the size

of the request has to be inferred from information at hand. Profiled execution times or

execution time history can be used for this purpose.

Complexity Analysis of RT-ClassBased

We make the assumption that the list of executors are kept in adata structure with

constant access time when accessed using an index. We also assume that the dispatching

of request R to the selected executor as an activity outside the scope of the algorithm and

considers the assignment to be done (Line 7) in constant time. Similarly, the rejection

of R (Line 9) is also considered as out of the scope of this algorithm and assumed to

take constant time. Furthermore, we assume that the method of obtaining the task size

of the new request will also result in constant time access.

Each statement leading up to line 5 takes constant executiontime. Similarly, either out-

come of the conditional statement in line 6, also result in constant execution time. Recall

from the complexity analysis presented in Chapter3, that the schedulability check has

a worst case linear time complexity and a best case constant time complexity.

Let n be the number of requests already assigned to the selected executor. LetB(n)

be the running time of Algorithm3. Let t1 be the total time taken to execute lines 1-4.

Let t2 be the total time required to execute lines 6-10. Lett3 be the time taken for the

schedulability check on the selected executor with only a single request assigned to it

already. The running time of Algorithm3 could be defined as,

B(n) = t1 + t2 + n(t3)

= t1 + t2 + n(t3) ≤ n(t1 + t2 + t3)

Therefore we could conclude that the worst case time complexity of Algorithm 3 is

linear (O(n)) due to the worst case time complexity of the schedulabilitycheck. Fur-

thermore, with the best case time complexity of the schedulability check being constant

access time, Algorithm3 also has a best case complexity ofΩ(1).
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4.5.3 RT-LaxityBased

RT-LaxityBased algorithm is a request-aware dispatching scheme where requests are

mapped to executors based on the laxity property of a request. The other three proposed

algorithms only make use of the laxity in the schedulabilitycheck when the possibility

of achieving the execution deadline of a request is checked with the selected executor.

RT-LaxityBased uses the laxity property furthermore in itsselection of an executor for

a request.

One outcome of the schedulability check is the range of laxities it results in at each ex-

ecutor. Having such a mix of laxities paves the way for more requests with overlapping

lifespans to be scheduled together. This is achieved by delaying or phasing out the exe-

cution of requests with higher laxity values, making way forrequests with lower laxities

to be scheduled within their time frame. RT-LaxityBased aims to better this process by

keeping track of the laxities assigned to each executor. It works by storing the last two

laxity values assigned to each executor and preventing requests with the same laxity

values being assigned to the same executor consecutively. Moreover, it keeps track of

the last executor to have a request assigned to and considersa different executor for the

next request. This process leads to an increased range of laxities at an executor and

enables more requests to be scheduled together.

Algorithm 4, describes the steps in RT-LaxityBased. Upon the arrival ofa request, its

laxity is calculated (Line 1). It is checked to ensure not to be one of the last two laxities

assigned to the executor (Line 3-4). If the laxity is not one of the immediate previous

values assigned, the request is checked for schedulabilitywith the last executor (Line

5). If the request could be scheduled successfully (Line 6) it is assigned to the executor

(Line 8) after the laxity value is recorded as one of the two values to be successfully

assigned (Line 7). If the schedulability check fails, the request is rejected (Lines 9-11).

In the case of the calculated laxity being in the last two laxities assigned to the last

executor, next executor in the list is considered (Lines 13-14). The last two laxities

assigned to that particular executor is obtained and the calculated laxity is checked

against them (Lines 16-17). If it is found to be one of them as well, the process continues

on to consider subsequent executors in the list until a matchis found (Line 13). If the

laxity is not one of them, the schedulability check is done onthe selected executor (Line

18-19) and the request is either assigned to it or rejected based on the result (Lines 19-

24). The first time a request is scheduled through the algorithm, there is no last executor
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Algorithm 4 RT-LaxityBased
Require: New request R, List of Executors E, Laxity Map LM, Last Executor L
Ensure: R assigned to an endpoint or rejected

1. Laxity← ( R.getDeadline
R.getExecutionT ime)

2. if lastExec is not∅ then
3. LL ← lastExec.LastLaxities
4. if Laxity is not in LL then
5. S← IsSchedulable(R,lastExec)
6. if S = truethen
7. lastExec.setLastLaxities(Laxity)
8. Assign R to lastExec
9. else

10. Reject R
11. end if
12. else
13. while E.hasMore() and R is not assigned and R is not rejecteddo
14. nextExec← E.getNextExec
15. if nextExec is not lastExecthen
16. LL ← nextExec.LastLaxities
17. if Laxity not in LL then
18. S← IsSchedulable(R,nextExec)
19. if S = truethen
20. nextEx.setLastLaxities(Lax)
21. lastExec← nextExec
22. Assign R to nextExec
23. else
24. Reject R
25. end if
26. end if
27. end if
28. end while
29. end if
30. else
31. nextExec← E.getfirstExec
32. S← IsSchedulable(R,nextExec)
33. if S = truethen
34. nextExec.setLastLaxities(Laxity)
35. lastExec← nextExec
36. Assign R to nextExec
37. else
38. Reject R
39. end if
40. end if
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information available. In such a scenario the request is checked for schedulability with

the first executor in the list (Lines 30-40). The calculated laxity is recorded as the first

laxity to be assigned to that executor (Line 34).

Complexity Analysis of RT-LaxityBased

We assume that executor information and details of last laxities assigned to executors

are kept in data structures with linear and constant access time complexities respec-

tively. We also assume that dispatching R to the selected executor and confirming the

rejection of R to the client is outside of the scope of this algorithm and consider the

execution time taken of those steps to be constant.

The best case execution for Algorithm4 would be on the arrival of the first request at the

system. In which case the condition on line 2 evaluates to befalseand the statements 31

to 40 gets executed. As line 32 contains a schedulability check, of which the execution

time complexity is known to beO(n) andΩ(1). The rest of the statements within lines

31 to 40 have constant time execution. Therefore the worst case time complexity of

lines 31 to 40 can be concluded asO(n). If the condition on line 2 evaluates totrue,

the execution can again take two paths at line 4. If it evaluates totrue, Line 5 contains

a schedulability check and rest of the statements in lines 6 -11 result in constant time.

If the condition on line 4 evaluates tofalse, line 13 has awhile loop that iterates at

most equal to the number of executors in the cluster. Note that although there are two

conditions at lines 15 and 17, either one of them evaluating to false will result in a

loop iteration or a loop exit (when the list of executors has been exhausted). If both

conditions evaluate to betrue, statements on lines 18-25 will be executed. In which

case every statement except for the schedulability check online 18 would have constant

time execution. Note that although the schedulability check on line 18 is within the

while loop, it will only be executed once as the condition on line 17evaluating totrue

will result in the termination of thewhile loop (due to lines 22 and 24).

Letm be the number of executors in the cluster. Letn be the number of already assigned

requests at the selected executor. LetC(n) be the running time of Algorithm4. Let t1

be the execution time of the laxity calculation on line 1 and the condition on line 2. Let

t2 be the execution time of lines 3-4. Lett3 be the execution time taken for statements

6-11. Lett4 be the time taken for execution of statements 13-17. Lett5 be the execution

time of statements 19-25. Lett6 be the execution time for statements 31 and 33-40. Let
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ts be the time taken for the schedulability check on the selected executor with only a

single request assigned to it already. The running time of Algorithm 4 can be defined

as,

C(n) = t1 + t6 + n(ts) | t1 + t2 + n(ts) + t3 | t1 + t2 +m(t4) | t1 + t2 + n(ts) + t5

= t1 + t6 + n(ts) ≤ n(t1 + t6 + ts) | t1 + t2 + n(ts) + t3 ≤ n(t1 + t2 + ts + t3) |

t1 + t2 +m(t4) ≤ m(t1 + t2 + t4) | t1 + t2 + n(ts) + t5 ≤ n(t1 + t2 + ts + t5)

Given the definition above,C(n) can be considered to be linear. However, it is fair to

assume that the number of executors (m) can be considered∀m,m < n. Therefore,

the worst case time complexity of Algorithm4 isO(n) due to the schedulability check.

Furthermore, its best case time complexity can be conclude asΩ(1).

4.5.4 RT-Sequential

All three of the previous algorithms had the common feature of checking the schedula-

bility of a request at most with one executor in the cluster. RT-Sequential algorithm on

the other hand, checks the possibility of achieving the execution deadline of a request

with multiple executors. In turn it tries to make best possible use of the server resources

available on the cluster. If the schedulability check for a request fails with one execu-

tor, RT-Sequential continues to exhaustively check its schedulability with the rest of the

executors in the cluster until it is schedulable on one of them or the list exhausted. Al-

though this is somewhat a request-blind dispatching scheme, like RT-LaxityBased this

achieves a larger range of laxity at an executor due to fittinga request ultimately to the

best executor. However,it does this with the additional cost of multiple schedulability

checks per request. The other algorithms keeps it to a minimum to prevent this cost

being too significant, as the lifetime of a request starts from the moment it enters the

system.

Algorithm 5 details the steps in RT-Sequential. To prevent RT-Sequential always start-

ing with the same executor, the successful executor from thelast run is kept track of

and is considered first (Lines 1,11,22). Requests are repeatedly checked for schedula-

bility on it until the check fails (Lines 1-4), in which case another executor is considered

91



CHAPTER 4. PREDICTABILITY OF EXECUTION IN WEB SERVICES CLUSTERS

(Lines 6-16). This process continues on until one of two outcomes. A request may ul-

timately be found to be schedulable in a subsequent executor(Lines 20-23). The other

being the entire list of executors being exhausted with the inability to find an execu-

tor having already accepted requests with complementing laxities. In which case the

request is ultimately rejected (Lines 27-29).

Algorithm 5 RT-Sequential
Require: New request R, List of Executors E, Last executor
Ensure: R assigned to an executor or rejected

1. if lastExec is not∅ then
2. S← IsSchedulable(R,lastExec)
3. if S = truethen
4. Assign R to lastExec
5. else
6. while E.hasMore() AND R not assigneddo
7. nextExec← E.getNextExec
8. if nextExec is not lastExecthen
9. S← IsSchedulable(R,nextExec)

10. if S = truethen
11. lastExec← nextExec
12. Assign R to nextExec
13. end if
14. end if
15. end while
16. end if
17. else
18. while E.hasMore() AND R not assigneddo
19. nextExec← E.getNextExec
20. S← IsSchedulable(R,nextExec)
21. if S = truethen
22. lastExec← nextExec
23. Assign R to nextExec
24. end if
25. end while
26. end if
27. if R is not assignedthen
28. Reject R
29. end if
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Complexity Analysis of RT-Sequential

We assume that executor information is kept in a data structure with linear access time

when accessed sequentially. As in the previous algorithms we assume the actual dis-

patching of the request and any request rejections to be out of scope of the algorithm

and considers the corresponding statements to be executingin constant time.

The execution of Algorithm5 can take one of three paths. The first of the three is when

the condition on line 1 evaluates to betrue and the request is schedulable on the last

executor considered. The second execution path is when the request is not able to meet

its deadline on the last executor, therefore the algorithm checks its schedulability with

other executors in the cluster until a match is found or the list is exhausted (Lines 6-

15). The third and final execution path is when condition on line 1 evaluates to befalse

where the request is checked for schedulability with the next available executor on the

list. Herein, the same process of exhausting checking continues similar to the second

execution path until a match is found or the list is exhausted. A noteworthy observation

is that a schedulability check happens in every execution path and all other statements

execute in constant time. The best case scenario for this algorithm is when there no

requests already assigned at the selected executor. In which case the schedulability

check is only done once and in its best case execution in constant time.

Let m be the number of executors in the cluster. Letn be the maximum number of

already assigned requests found in any of the executor. LetD(n) be the running time of

the algorithm. Letts be the execution time taken for the schedulability check with only

a single request already assigned to the selected executor.Let t1 be the maximum time

taken for execution of statements 1 and 27-29. Lett2 be the maximum time taken for the

execution of statements 3-5. Lett3 be the worst case time taken to execute statements

6-8 and 10-15. Lett4 be the worst case execution time of statements 18-19 and 21-26.

The running time of Algorithm5 can be defined as,

D(n) = t1 + n(ts) + t2 | t1 +m(t3) +m(n(ts)) | t1 +m(t4) +m(n(ts))

= t1 + n(ts) + t2 ≤ n(t1 + ts + t2) | t1 +m(t3) +m(n(ts)) ≤ mn(t1 + t3 + ts) |

t1 +m(t4) +m(n(ts)) ≤ mn(t1 + t4 + ts)
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With this definition, it can be concluded that the worst case time complexity of Algo-

rithm 5 is linear and in the order ofO(mn) due to the schedulability check being done

multiple times. Furthermore, the best case execution scenario for the algorithm is when

the schedulability check is done only ones and there are no already accepted requests

assigned to the selected executor, which gives the algorithm a best case time complexity

of Ω(1) equal to that of the schedulability check.

Except for RT-Sequential algorithm, the other three algorithms checks the schedulabil-

ity of a request only with one executor. If the schedulability check fails, the request is

rejected outright. Due to the worst case time complexity of the schedulability check, it

was decided to keep the number of checks per request to a minimum where possible.

This would prevent the additional time required by the schedulability check becoming

and overhead when a request is scheduled. Due to the algorithms being designed to

distribute the requests among cluster members, the amount of requests directed to an

executor is lower compared to a single host scenario. The algorithms presented in this

section have been modelled to abstract the configuration of the executors in terms of

number of processors or cores available.

4.6 Analytical Evaluation of the Dispatching Algorithms

The objective of this section is to provide an analytical evaluation of the functionality of

the proposed algorithms. We use a created sample data set forthis purpose for each al-

gorithm separately. Note that an analytical evaluation of the schedulability analysis, the

associated model and the algorithm used by these algorithmswere presented in Section

3.6 of Chapter3, Therefore, analytical evaluation of laxity based schedulability check

and deadline based scheduling is not repeated in this section. However, where appropri-

ate (for instance in RT-LaxityBased) we illustrate how theywork in order to gain more

clarity in the evaluation process. Note that in the evaluation of RT-RoundRobin, RT-

ClassBased and RT-LaxityBased we consider the schedulability of the sample requests

to be a success on the selected executors, for brevity.

Analytical Evaluation of RT-RoundRobin

To evaluate RT-RoundRobin we consider five request arrivalsand consider the cluster

to have three executors. Table4.0b represents the data structure that stores the list of
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executor where each executor instance is identified by the index, providing constant

time access to their instances. ThelastExecIndexkeeps track of the last executor a

request was assigned to and is responsible for preserving the round-robin nature of the

algorithm.

lastExecIndex
Request 1 0
Request 2 1
Request 3 2
Request 4 0
Request 5 1

(a) Value of lastExecIndex

Index Executor Instance
0 Executor 1
1 Executor 2
2 Executor 3

(b) List of Executors

Table 4.1: Overview of RT-RoundRobin Properties

lastExecIndexstarts off with 0 and as a result first request is assigned to Executor 1

which is at position 0 of the list. On the arrival of the secondrequest thelastExecIndex

is increased by one and Request 2 is assigned to Executor 2 which is at position 1 of the

list. Request 3 arriving next is assigned to Executor 3 whichis at position 2 of the list,

following the same process. At the arrival of Request 4 the condition on line 3 holds

to betrue and as a result, thelastExecIndexis reset to 0 demonstrating the round-robin

nature of the dispatching. Therefore, Request 4 is assignedto Executor 1 at position 0.

The process continues on from there onwards as Request 5 is assigned to Executor 2 at

position 1.

Note that the additional step of schedulability analysis was omitted in this analysis due

to aforementioned reasons. While we considered all requests to be schedulable on the

assigned executor, a failure of the schedulability check would result in the request being

rejected and the subsequent request being assigned and checked for schedulability with

the same executor.

Analytical Evaluation of RT-ClassBased

We evaluate RT-ClassBased with the attributes listed in Table 4.1a. We consider a clus-

ter setup of three executors and divide the task size range equally between them. This

is done by calculating a limiting value which is also used in Algorithm 3 for its cal-
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culations. The task size range assigned to each executor canbe seen in Table4.1b.

Moreover, it also contains the Executor instances identified by the index used in the

data structure. We use five requests for this evaluation and their properties are listed in

Table4.1c.

Property Value
Smallest Task Size 1 ms
Largest Task Size 3000 ms
Limiting Value 1+3000

3
= 1000

(a) Size-based Attributes

Index Executor Instance Start Size End Size
0 Executor 1 1 ms 1000 ms
1 Executor 2 1001 ms 2000 ms
2 Executor 3 2001 ms 3000 ms

(b) List of Executors

Task Size Calc. of Index on Arrival
Req. 1 682 ms 682

1000
= 0

Req. 2 2300 ms 2300

1000
= 2

Req. 3 850 ms 850

1000
= 0

Req. 4 1780ms 1780

1000
= 1

Req. 5 2580ms 2580

1000
= 2

(c) Request Properties

Table 4.2: Overview of RT-ClassBased Properties

At the arrival of each request, the algorithm considers the task size of the request and

calculates the designated executor by conducting an integer division of the task size

by the limiting value. The resulting value corresponds to the index of the Executor

instance. For instance, Request 1 is 682 ms in its size and therefore, will be assigned

to Executor 1 identified by index 0. Similarly, Request 2 has the size of 2300 ms and

therefore will be assigned to Executor 3 identified by index 2. Request 3 which falls

into the range of 1 - 1000 ms gets ends up with an index of 0, therefore being properly

assigned to Executor 1. This process continues on for every executor and as illustrated

the integer division method can easily identify the proper executor by the use of the task

size.

Herein, the schedulability check is conducted as the next step after a request is matched

to an executor. A failure in it will result in the request being rejected.
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Analytical Evaluation of RT-LaxityBased

RT-LaxityBased is evaluated using the requests listed in Table4.2a. Table4.2bcontains

the list of executors identified by the index of the data structure. The last two laxities

assigned to each executor is also kept track of. Table4.2clists out the request arrivals

and the value oflastExecandnextExecat the arrival and at the end of the dispatching

operation respectively.

Size Deadline Laxity
Req. 1 100 ms 1000 ms 10
Req. 2 200 ms 1000 ms 5
Req. 3 1500 ms 7500 ms 5
Req. 4 2700 ms 7100 ms 3
Req. 5 500 ms 5000 ms 10
Req. 6 3000 ms 9000 ms 3

(a) Request Properties

Index Executor Instance Last 2 Laxities
0 Executor 1 10 5
1 Executor 2 10← x5 3
2 Executor 3 3

(b) List of Executors

Arrival lastExec nextExec
1 - 0
2 0 0
3 0 1
4 1 1
5 1 1
6 1 2

(c) Task Arrivals

Table 4.3: Overview of RT-LaxityBased Properties

Table4.2acontains the size, deadline and the laxity of each request. Since Request 1

arrives first at the system it is straightaway assigned to Executor 1 and its laxity is kept

track of against the executor. The index of Executor 1 which is in nextExecis copied

to lastExecat the end of the assignment. At the arrival of Request 2,lastExechas that

value and since Request 2 has a different laxity it is assigned to the same executor and

the laxity value recorded. Request 3 has the same laxity as Request 2, as a result the

algorithm assigns it to the next executor in the list which isExecutor 2. This changes

the values ofnextReqand lastExecfor the next request arrival. Request 4 having is

also assigned to Executor 2 for having a different laxity. Request 5 has the laxity of 10

which is not in the last two laxities assigned to Executor 2 therefore, it is assigned to

the same executor and the oldest laxity out of the two (which is 5) is replaced by 10.

Subsequently, Request 6 with a laxity value of 3 is assigned to Executor 3 as the laxity

is one of the last two values assigned to Executor 2. This process continues similarly
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for all requests.

Similar to the other algorithms the schedulability of a request is checked as the second

step once it is matched to an executor. If it cannot be scheduled in the selected executor,

it is rejected.

Analytical Evaluation of RT-Sequential

RT-Sequential is evaluated using the requests in Table4.3awhich contains their sizes,

deadlines and arrival times at the system (in elapsed time).The lastExecandnextExec

attributes for each at each arrival is displayed in Table4.3c. lastExecgets updated at

the end of a task assignment therefore its effect is on the next arrival, whereasnextExec

is used for the current task being dispatched.

Size Deadline Arrival Time
Req. 1 6s 10s 0s
Req. 2 3s 7s 1s
Req. 3 3s 7s 2s
Req. 4 8s 10s 3s
Req. 5 3s 8s 4s
Req. 6 5s 8s 6s

(a) Request Properties

Index Executor Instance
0 Executor 1
1 Executor 2
2 Executor 3

(b) List of Ex-
ecutors

Arrival lastExec nextExec
1 - -
2 0 -
3 0 1
4 1 1
5 1 2
6 2 2

(c) Task Arrivals

Table 4.4: Overview of RT-Sequential Properties

The complete scenario under evaluation is also illustratedusing Figure4.1. On its

arrival, Request 1 is directly assigned to the first executorin the list as it is the first task

to arrive at the system. On the arrival of Request 2, it is checked for schedulability with

Executor 1 and Request 1 is able to phase out its execution without missing its deadline

to let successfully schedule Request 2, which has an overlapping and earlier deadline.

Request 3 that arrives 3s into the arrival of the first requestalso has an overlapping

deadline. However, the schedulability check fails on it as accepting it will result in

Request 1 missing its deadline. Therefore, the algorithm checks its schedulability with
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Executor 2, which is the next in the list. As Executor 2 has no tasks, Request 3 is

scheduled on it successfully.

Request 4 has a later deadline than Request 3, however, it canbe successfully scheduled

on Executor 2 to meet it. A second later, Request 5 arrives at the system and is checked

for schedulability with Executor 2. The check results in a failure as accepting and it

is then checked for schedulability with a currently free Executor 3, and successfully

dispatched to it. Request 6 that arrives at the 2s later, is also be successfully scheduled

on Executor 3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Req. 1

Req. 2

Req. 3

Req. 3

Executor 1

Executor 2

Req. 4

Req. 5

Executor 3

Req. 5

Req. 6

Figure 4.1: Analytical Evaluation - RT-Sequential

4.7 Implementation

The predictability gain achieved by the proposed algorithms were empirically evaluated

by implementing them in a cluster based web services setup. The implementation con-

tains two main aspects. The proposed algorithms are implemented in the dispatcher,

while each executor must also ensure execution deadlines are honoured and predictabil-

ity of execution is achieved.
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Figure4.2 illustrates the different components in the implementation. In chapter3, we

presented techniques for achieving predictability of execution on stand-alone web ser-

vices middleware. The proposed techniques were implemented in Apache Axis2 mak-

ing RT-Axis2. Detailed information about this implementation is presented in chapter

5.

Figure 4.2: Overview of the Implementation

In implementing the cluster, we use a modified version of RT-Axis2 instances for the

executors. The modification made is to free it from conducting the schedulability check

and task it only with request scheduling and execution basedon execution deadlines.

The schedulability check is made part of the dispatchers functionality. Another open

source product in Apache Synapse [Apache Software Foundation, 2008] which is a

lightweight ESB implementation is enhanced to act as the dispatcher. Synapse by de-

fault has simple request dispatching capabilities. These capabilities are enhanced to

implement the four proposed dispatching algorithms.

With dispatching decisions being done considering execution deadlines and request lax-

ity, the following implementation level enhancements weremade in Synapse to en-

sure predictability of execution is supported throughout its functionality. The execution

deadline is conveyed to the dispatcher using SOAP headers and it is fetched and made

available to the algorithms by modifying internal data structures of Synapse. The de-

fault best-effortnature of Synapse was replaced with a priority mode that can be used

by an introduced real-time scheduler component to control the execution of worker
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threads by the change of their priorities. The default thread-pools in Synapse were

replaced with custom made real-time thread pools to manage the execution of the re-

quests. The introduced real-time scheduler component usesmultiple lanes of execution

within Synapse to control the number of concurrent executions. This allows the sched-

uler to guarantee predictability while achieving an accepted level of throughput when

processing requests. The implementation of the proposed dispatching algorithms were

done using the sequence and endpoint extension framework built into Synapse. Finally,

the functionality of the enhanced Synapse version (RT-Synapse) is supported by devel-

opment platforms and operating systems with real-time features. A detailed discussion

on the implementation aspects of the solution, software engineering techniques, designs

patterns, tools used and challenges faced is presented in chapter5.

4.8 Empirical Evaluation of the Dispatching Algorithms

4.8.1 Experimental Setup

The real-life implementation of the system using RT-Synapse and RT-Axis2 is evaluated

to measure the predictability gain by the enhancements made. The implementation was

hosted in a production level setup that represents a real-world deployment. Figure4.3

illustrates the hardware and software setup used for the test environment.

The envisioned solution relies on precision of time and the implementation devised

requires support for predictability at the development platform and operating system

level. Thus, in setting up the web server cluster, the dispatcher was hosted on a server

with a hardware configuration of 2 Intel Core 2 Duo processorsrunning at 3.4 GHz with

4 Gigabytes of RAM. As the real-time operating system Solaris 10 update 08/05 was

used with Apache web server as additional software installed. As the implementation

was done in Java, Sun Java Real-Time Specification version 2.1 was installed as the

platform for the real-time aware Apache Synapse version to run on. Each executor had

similar hardware and software configuration. The executorswere installed with a mod-

ified version of RT-Axis2 (relieved of conducting the schedulability check and tasked

only with deadline based scheduling) with the web service used for the experiments de-

ployed. The request generation was done using 5 client machines, each with an AMD

Duron Processors running at 1.7 GHz speed with 1 Gigabyte of RAM. For precision

of time requirements these were installed with Ubuntu Linux8.04 running Linux real-
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Figure 4.3: RT-Synapse Experiment Setup

time kernel version 2.6.21. The software configuration consisted of Sun Real-time Java

Specification 2.1 and Apache Axis2 client libraries. A controller machine to manage the

experiments, was used with a similar hardware and software configuration. The request

generation software was developed using Java real-time version in order to ensure ac-

curacy in the request inter-arrival times. Similar to the stand-alone scenario, RT-Axis2

instances were configured to have 3 lanes of execution with 30worker threads in each

lane. RT-Synapse was also configured to have 3 execution lanes with 30 threads per

lane.

The web service cluster was exposed to request streams with various task size, arrival

rate and deadline combinations. A particular configurationis setup at the controller

and the experiment started. The controller decides on the size of a request, inter-arrival

times, deadlines of a request and delegates creating the specific request to a designated

client by communicating the necessary parameters. Each client is assigned a range of

task sizes and requests for those sizes will only be done by the specific client. This

process continues on until the specified total number of requests is reached.

As there is no evidence on a widely accepted data-set that includes web service requests

with specified execution deadlines, evaluating our solution becomes a challenging task.
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Figure 4.4: RoundRobin vs. RT-RoundRobin Deadline Achievement Rates

Therefore, as in the previous chapter, the implementation is tested for different request

streams with varying properties. Generation of requests isdone by using a custom

made request generator where task sizes, arrival rates and deadlines are all uniformly

distributed.

Evaluating the cluster based setup, the performance of the enhanced cluster is compared

with a unmodified cluster for the performance of all four dispatching algorithms. The

unmodified cluster consists of regular Synapse as the dispatcher which would use dif-

ferent algorithms for each test scenario and regular Axis2 as executors hosting the web

services. The unmodified cluster dispatches and executes requests in abest-effortman-

ner. The evaluation is done for various arrival rates, gradually increasing the number of

executors in a cluster starting from 2 up to a maximum of 4.

4.8.2 Round-Robin Dispatching

The round-robin dispatching scenario is a fair evaluator for the predictability in execu-

tion, that could be achieved by enhancements made to a cluster based middleware setup.

We compare the performance of RT-RobinRobin and simple round-robin dispatching

using the same cluster based setup while increasing the request arrival rates and the

cluster configurations. With the latter, there is no conditional acceptance of requests

and execution happens in abest-effortmanner. RT-RoundRobin uses the schedulability
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Figure 4.5: RoundRobin vs. RT-RoundRobin Execution Time Ranges

check to select requests for execution based on their laxityand selected requests get

executed in the order of their deadlines. Table4.5summarises the results for the round-

robin runs and Figure4.4summarises the results graphically (Note that thex-axisof the

graph contains the mean value for the respective inter-arrival time period mentioned in

Table4.5). Due to the unconditional acceptance of requests, simple round-robin results

in higher request acceptance rates. The rejection of requests when using simple round-

robin dispatching, was caused by overloaded conditions resulted in the cluster. In such

circumstances, the middleware and becomes unresponsive torequests and requests time

out at the dispatcher as well as at the client after retrying transmissions.

While RT-RoundRobin results in lower acceptance percentages comparatively, it clearly

outperforms simple round-robin in the resultant percentage of deadlines met. The best

performance simple round-robin could achieve is 51.5% of the deadlines with almost all

requests being accepted for execution, when 4 executors were used in the cluster. How-

ever, RT-RoundRobin, consistently achieve more than 90% ofthe deadlines in all the

runs conducted, while maintaining decent acceptance rates. Although a higher number

of requests are accepted for execution with simple round-robin scheduling, the execu-

tors get overloaded as a result ofbest-effortexecution of requests. The overloading

leads to the system being stalled and the overall execution of requests being delayed

while other requests ready for execution are made to wait at the dispatcher. Figure4.6
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Figure 4.6: RoundRobin vs. RT-RoundRobin Resultant Execution Times
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Round Robin (Non real-time)
2 Executors 3 Executors 4 Executors

Inter arrival times
(sec)

% Accept. % Dead. Met % Accept. % Dead. Met % Accept. % Dead. Met

0.25 - 1 99.5 28.8 99.8 37.2 99.9 51.5
0.1 - 0.5 62.3 20.3 89.0 28.4 98.0 39.7
0.1 - 0.25 49.0 15.0 67.3 20.0 74.1 33.2
0.05 - 1 38.8 6.3 52.6 9.1 68.0 13.6

RT-RoundRobin
2 Executors 3 Executors 4 Executors

Inter arrival times
(sec)

% Accept. % Dead. Met % Accept. % Dead. Met % Accept. % Dead. Met

0.25 - 1 88.0 99.0 99.0 100 99.9 100
0.1 - 0.5 52.0 96.4 74.0 99.0 99.4 99.9
0.1 - 0.25 28.0 96.0 47.0 97.6 78.0 99.0
0.05 - 1 20.5 90.0 37.5 95.0 46.3 99.0

Table 4.5: Performance Comparison of Round Robin vs. RT-RoundRobin
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Figure 4.7: Class Based vs. RT-ClassBased Deadline Achievement Rates

contains 3 plots of resulting overall execution times by thetwo systems in three differ-

ent cluster configurations and traffic conditions. It is clearly visible that thebest-effort

processing results in longer execution times often surpassing the deadline requirement

of requests in the simple round-robin scenarios.

4.8.3 Class-Based Dispatching

Many of the request-aware dispatching schemes map requeststo servers based on a pre-

defined conditions using some property of the request. As such, requests are divided
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Figure 4.8: Task Size Distribution at Executors - RT-RoundRobin
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Figure 4.9: Task Size Distribution at Executors - RT-ClassBased
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Figure 4.10: CPU Utilisation at Executors - RT-RoundRobin
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Figure 4.11: CPU Utilisation at Executors - RT-ClassBased

110



CHAPTER 4. PREDICTABILITY OF EXECUTION IN WEB SERVICES CLUSTERS

Class Based (Non real-time)
2 Executors 3 Executors 4 Executors

Inter arrival times
(sec)

% Accept. % Dead. Met % Accept. % Dead. Met % Accept. % Dead. Met

0.25 - 1 100 27.8 99.2 40.8 99.9 58.2
0.1 - 0.5 82.0 26.0 98.6 36.6 99.4 42.4
0.1 - 0.25 74.8 18.0 83.3 30.0 86.9 30.2
0.05 - 0.1 52.7 7.8 75.6 13.5 78.0 20.5

RT-ClassBased
2 Executors 3 Executors 4 Executors

Inter arrival times
(sec)

% Accept. % Dead. Met % Accept. % Dead. Met % Accept. % Dead. Met

0.25 - 1 99.2 99.0 100.0 99.0 100 100
0.1 - 0.5 62.2 95.4 76.7 94.8 90.9 100
0.1 - 0.25 45.4 94.6 66.0 99.0 74.4 97.7
0.05 - 0.1 28.6 98.9 44.7 91.4 55.1 99.0

Table 4.6: Performance Comparisons of Class based vs. RT-ClassBased

into classes based on such a condition. Such schemes try to achieve differentiated pro-

cessing among these classes, where one might be favoured more than the others. As

a result, many of such schemes may also result in unbalancingthe load among clus-

ter members. The feasibility of introducing the additionalstep of predictability based

decision making into such schemes is investigated by RT-ClassBased algorithm.

In RT-ClassBased, we use request size to be the criteria for classification. Herein, seg-

regation of requests based on size is a widely used techniquethat reduces the overall

waiting time of the system. RT-ClassBased makes use of this feature whilst introducing

the additional steps of selecting requests for execution based on their laxity and exe-

cution of requests based on their deadlines. In this evaluation, it is compared with a

trivial class-based scheduling algorithm where each executor is assigned with a request

size range. Table4.6contains the results while Figure4.7summarises them graphically

(Note that thex-axisof the graph contains the mean value for the respective inter-arrival

time period mentioned in Table4.6).

The size based segregation of requests prevents scenarios where requests with a large

size disparity compete for the same processing resource. Such scenarios would have

requests with shorter execution times being queued behind requests with longer ex-

ecution times. As observed from the results obtained, class-based scheduling perform

better than round-robin scheduling due to this reason. Figure4.8contains plots for three

different cluster configurations (2 to 4 executors) and arrival rates for RT-RoundRobin

algorithm, illustrating distribution of task sizes among the executors. Figure4.9 con-
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RT-LaxityBased
2 Executors 3 Executors 4 Executors

Inter arrival times
(sec)

% Accept. % Dead. Met % Accept. % Dead. Met % Accept. % Dead. Met

0.25 - 1 99.2 99.9 100.0 99.9 100 100
0.1 - 0.5 89.0 99.8 80.5 99.8 99.8 100
0.1 - 0.25 47.4 99.2 66.0 99.6 75.2 100
0.05 - 0.1 38.5 99.0 50.7 99.2 54.3 100

Table 4.7: Performance of RT-LaxityBased

tains the plots for RT-ClassBased for the same configurations and task arrival rates. The

difference in task size segregation among the cluster members by each scheduling tech-

nique is clearly visible. The dispersion of the execution times around each task size is

less in class-based scheduling, as a result of the lower tasksize variance at each execu-

tor. Moreover, the dispersion of smaller sized requests aremuch lower in class-based

scheduling (compared to round-robin) also due to the aforementioned reason.

Similarly, Figure4.10illustrates the resultant CPU utilisation levels for the same exper-

imental runs when RT-RoundRobin is used. All three graphs for round-robin schedul-

ing has all executors being utilised at similar levels. Figure 4.11 contains the CPU

utilisation resulted by RT-ClassBased for the same experimental runs. In them, the dif-

ferent levels of utilisation at each executor due to the sizebased request segregation is

clearly visible. Whilst simple class-based scheduling achieves better results than sim-

ple round-robin scheduling, RT-ClassBased performs even better when the percentage

of deadlines met, are considered. Irrespective of scheduling decisions being made based

on the size of requests, unconditional acceptance of requests andbest-effortnature of

execution may lead to overloaded conditions and requests being rejected. Moreover,

the sharing of the CPU inbest-effortprocessing prolongs the execution of all requests

executing in parallel, thereby resulting in deadline misses. The schedulability check

in RT-ClassBased coupled with deadline based scheduling, achieves more than 94% of

the deadlines in any given scenario. Although acceptance rates are lower than simple

class-based, the resultant deadline achievement rates clearly confirms RT-ClassBased

outperforming its unmodified counterpart, in terms of predictability.

4.8.4 Laxity Based Dispatching

As discussed earlier, incorporating the schedulability check together with dispatching of

requests, ensures requests are selected for execution based on their laxity property, after
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Figure 4.12: Deadline Achievement Rate Comparison of all Dispatching Algorithms

matching a request to an executor. The mapping of a request toan executor is decided

by the dispatching algorithm used. In RT-RoundRobin the decision was to ensure equal

distribution of requests among the cluster members and in RT-ClassBased it was to

group similar sized requests together at each executor. RT-LaxityBased algorithm is a

further step towards achieving better predictability by using the Laxity property even

in the dispatching decision. Therefore, it demonstrates the predictability gain further

achieved by using laxity based dispatching decisions.

RT-LaxityBased ensures the equal distribution of laxitiesamong cluster members. This

is an additional step to further ensure the larger range of laxities at each executor thereby

enabling more requests to be scheduled together. Table4.7contains the results and Fig-

ure 4.12 compares the results with the other three dispatching techniques introduced.

The selection of requests based on laxity and the additionalstep of distributing requests

among executors based on laxity enables RT-LaxityBased to achieve better deadline

achievement rates than the other three algorithms. Its features enables RT-Laxity to

make use of the processing resources the best possible way. Compared to other poli-

cies such as RT-RoundRobin and RT-ClassBased, Figure4.13shows RT-LaxityBased

resulting in equal utilisation levels for all executors in the cluster.
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Figure 4.13:CPU Utilisation at Executors - RT-LaxityBased
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RT-Sequential
2 Executors 3 Executors 4 Executors

Inter arrival times
(sec)

% Accept. % Dead. Met % Accept. % Dead. Met % Accept. % Dead. Met

0.25 - 1 99.0 96.8 100 97.0 100 97.2
0.1 - 0.5 86.0 91.0 96.1 96.3 100 95.0
0.1 - 0.25 38.6 87.4 76.5 95.0 84.6 96.2
0.05 - 0.1 29.1 90.0 57.2 95.3 66.7 95.8

Table 4.8: Performance of RT-Sequential

4.8.5 Exhaustive Dispatching

A common feature of the three dispatching algorithms presented earlier is the schedula-

bility check with only the selected executor. While the single check was done to ensure

the overhead by the schedulability check is kept to a minimum, checking schedulabil-

ity of a request with more than one executor would increase the chances of the request

being accepted. RT-Sequential algorithm is such an attemptto ensure a request is given

the maximum chances of being scheduled on the cluster. Herein, a request is checked

for schedulability with more than one executor until it is schedulable on one of them, or

the list of executors are exhausted.

Table4.8 contains the results when RT-Sequential was exposed to different request ar-

rival rates at different in different cluster configurations. Figure4.12summarises these

results and compares its performance with the other three algorithms presented. The

persistent and exhaustive schedulability check in RT-Sequential results in highest ac-

ceptance rates of all algorithms. However, the total time taken for carrying out mul-

tiple checks can become significant for certain requests. Time accumulated by con-

ducting multiple checks may lead to some requests missing their deadline. Therefore,

RT-Sequential results in the lowest values for percentage of deadlines met out of all

algorithms. However, given the better acceptance rates, the overall number of requests

meeting their deadlines is only second to RT-Laxity Based. Nevertheless, the accep-

tance rates and deadline rates achieved were still better than the non-real-time algo-

rithms we compared them with.

4.8.6 Laxity Based Request Selection

As previously discussed, laxity based request selection largely contributes to the suc-

cess of achieving predictability through the algorithms outlined. Figure4.14 depicts

the resultant laxities by the admission control check when the cluster is running RT-
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Figure 4.14: Comparison of Resultant Laxities from Admission Control

RoundRobin algorithm. Herein, resultant laxities for meaninter-arrival rate of 0.3 sec-

onds when the requests are dispatched using RT-RoundRobin (RT) and Round-Robin

(RR) are compared. Each plot corresponds to the average laxities achieved at the servers

for each algorithm with 2, 3 and 4 executors respectively. Recall that request selection

by the schedulability check results in a larger range of laxities at a server. Although sim-

ilar patterns to the stand-alone results could be observed,the unmodified cluster running

Synapse with Axis2 comparatively achieves a higher requestacceptance and deadline

rates due to the use of multiple executors, despite higher request arrival rates being used

for the experiments. The two executor setup achieves the lowest median laxities due to

the higher number of deadline misses of all runs. As the number of executors increase

the miss rate decreases and the median laxity value increases. Moreover, the upper

bounds achieved by the cluster setup is higher than the single server setup for obvious

reasons.

The enhanced cluster setup with RT-Synapse and RT-Axis2 combination demonstrates

a similar pattern in the resultant laxity values. Naturally, the selection process achieves

a larger range of laxities as the median value decreases withhigh request arrivals. Al-

though the increase of executors in the cluster does not result in a major change to the

median laxity value, a shift in values from the lower quartile to the upper quartile is vis-
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Round Robin (Non real-time)
2 Executors 3 Executors. 4 Executors

Mean inter-
arrival time

Reqs. sec−1 Reqs. sec−1 Reqs. sec−1

0.625s (Low) 1.50 1.51 1.51
0.300s 0.81 2.91 2.92
0.175s 0.98 1.67 2.30
0.075s (High) 1.06 1.40 1.87

RT-RoundRobin
2 Executors 3 Executors 4 Executors

Mean inter-
arrival time

Reqs.
sec−1

Reqs. sec−1

(excl.
rejects.)

Reqs.
sec−1

Reqs. sec−1

(excl.
rejects.)

Reqs.
sec−1

Reqs. sec−1

(excl.
rejects.)

0.625s (Low) 1.62 1.42 1.62 1.61 1.62 1.62
0.300s 3.31 1.72 3.30 2.44 3.37 3.36
0.175s 5.54 1.55 5.46 2.56 5.43 4.24
0.075s (High) 10.3 2.11 10.8 4.05 11.1 5.13

Table 4.9: Throughput Comparison of Round Robin vs. RT-RoundRobin

ible. This is due to the constant rate of deadlines achieved by the setup (̃96%) and the

increasing number of accepted requests being distributed to multiple executors in the

cluster. From both configurations, it is clearly visible that such a purposeful selection

of requests is a necessity for achieving predictability in execution.

4.8.7 Throughput Comparison

Next, we compare the unmodified and the enhanced versions of cluster configurations

on their throughput. The unmodified cluster consists of Synapse and Axis2 where

Synapse is configured to dispatch requests using simple round robin algorithm that it

ships it by default. Note that both these products process requests in abest-effortman-

ner and tries to execute all requests sent to it. The Axis2 executors are configured by

default with 25 worker threads pre-created and to create up to 150 worker threads on

demand. Similarly, Synapse is configured with 20 worker threads pre-created and can

create up to a 100 as the queue fills up. Therefore, it is possible for the cluster to have

150 requests executing in parallel at each server. Similarly, dispatcher could process

100 requests in parallel.

Table4.9contains the results for the cluster running the two round-robin based scenarios

for different executor configurations and the second graph of Figure 4.15summarises

them graphically. At the highest mean inter-arrival time (0.625s), both the unmodified

and the enhanced cluster achieve similar throughput levels. As the mean inter-arrival
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times decrease, requests arrive rapidly at the cluster. Theunconditional acceptance

of requests andbest-effortprocessing results in the executors being overloaded. This

makes them stall and be unresponsive to subsequent requestsbeing directed at them.

This makes requests time out and be rejected from processing. As the actual service

execution takes place in the executors, they are the most affected by such conditions.

As a request spends only a short time at the dispatcher, it is unaffected by such condi-

tions and continues to dispatch requests to the overloaded executors. This unfavourable

conditions in the unmodified cluster increases with the arrival rates of requests.

Figure 4.15: Comparison of Throughput Rates

The enhanced cluster setup with RT-Synapse and RT-Axis2 behaves differently to the

unmodified cluster. The enhancements made to these productsprevents the cluster from

reaching overloaded conditions. As the mean inter-arrivaltimes of requests decrease,

the cluster shows increasing levels of throughput. However, the enhanced cluster com-

pletes processing of a request in two ways. Requests that areselected for execution, are

completed at the executors and the result of the service invocation is channelled back to

the client through the dispatcher. Moreover, a request thatis rejected from the schedu-

lability check is also considered as a completed request. These requests don’t reach an

executor as their processing completes at the dispatcher itself. Compared to the service

invocation of a request, the time these requests spend at thedispatcher is very short.

Therefore, the second column under each configuration for RT-RoundRobin contains

a secondary throughput value calculated excluding the rejected requests. As expected,
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the secondary throughput rate increases with the arrival rates. However, for the run with

the highest arrivals, it can clearly be seen that nearly 50% of the requests processed are

rejected requests. However, the system still achieves acceptable throughput rates while

preventing it from reaching overloaded conditions. For a particular arrival-rate, observe

that throughput does not change with the addition of executors into the cluster. While

this adds more processing power to the back-end and leads to more deadlines being

achieved, the throughput rate achieved by the dispatcher (be it Synapse or RT-Synapse)

remains the same for the given mean inter-arrival time.

As RT-Synapse and RT-Axis2 is configured to have 3 lanes of execution, the real-time

scheduler controls the number of threads in execution at a given time to just a single

thread per lane at a given time. When processing workloads that are CPU bound using

concurrency techniques, the optimum number of threads thatwill give the best perfor-

mance would be equal to the number of cores available for processing [Subramaniam V.,

2011]. Therefore, the enhanced cluster is configured for the processing resources at

hand in an optimal manner. Despite having a lot more worker threads in the unmodified

versions, it becomes inefficient due to the overloaded conditions it could lead to, when

processing CPU intensive tasks.

4.8.8 Discussion

With the RT-RoundRobin evaluation, the benefits of the predictability enhancements

in a cluster are directly visible as round-robin dispatching is a simple technique in its

pure form. Moreover, it is also a perfect example of how a simple dispatching technique

could be enhanced to achieve predictable execution. Similar to the stand-alone scenario,

RT-RoundRobin clearly outperformed its unmodified counterpart. The effectiveness of

round-robin scheduling is in the even distribution of requests it results in throughout the

cluster. However, the same reason makes it unsuitable when predictability of execution

has a higher importance. Even distribution of requests create a high variability of re-

quest sizes at each executor. Yet, this being a content blinddispatching technique, may

result in higher loads and longer execution times due to the variability of request sizes.

As the request execution happens in abest-effortmanner with thread-pools executing

as many requests as possible in parallel, all requests will complete with longer execu-

tion times albeit the throughput achieved (Figure4.6). With RT-RoundRobin, the high

variability of request sizes is circumvented due to the laxity based request selection in
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the schedulability check. Irrespective of the size of the request, a request is selected for

execution only if its laxity enables the deadline to be met while being scheduled with

already accepted requests. Moreover, this also acts as an admission control mechanism

that prevents server overloads. The high variability of laxities resulted by the schedula-

bility check theoretically ensures deadlines of all requests accepted could be met, while

deadline based scheduling ensures it practically.

RT-ClassBased algorithm serves as an example of how a request-aware scheduling pol-

icy could be enhanced to achieve predictable execution times. As with the other sce-

narios the RT-ClassBased algorithm outperformed the simple class-based version when

deadline achievement rates are considered. As the size of a request was the criteria in

matching a request to an executor, size based scheduling ensures that each executor is

only faced with requests of similar sizes irrespective of the original task size distribution

(Figure4.9). This prevents chances of smaller sized tasks having longer waiting times

due to the processing of a large sized request. Clearly, task-based scheduling in its pure

form had better results compared to round-robin scheduling. RT-ClassBased combines

this phenomenon with the additional guarantee of deadline requirement of requests be-

ing met. Yet again the difference is in the selection of requests based on laxity by the

schedulability check and the purposeful scheduling of requests based on their deadlines.

However, class-based scheduling in its pure form performs badly when percentage of

deadlines met is considered. Similarly to earlier discussions, unconditional acceptance

of requests andbest-effortscheduling results in unpredictable execution times and dead-

lines being lost. RT-ClassBased is better suited for request streams with comparatively

more smaller sized requests.

Experimental results confirm that RT-Sequential makes the best use of processing re-

sources. It achieved the highest acceptance rates out of allalgorithms. Trying to sched-

ule a request repeatedly on different executors ensures that, a request will be scheduled

on the cluster if required processing time is available on any one of the executors. This

effectively fills the gaps on processor time lines making themaximum use of their pro-

cessing resources. However, conducting multiple checks may incur a significant over-

head depending on the size of the request. The life of a request, starts on its arrival

at the cluster. Therefore, the time spent on being dispatched and being checked for

schedulability, has to be subsumed within the execution time requirement of a request.

For small sized requests, the overhead incurred by multiplechecks may result in them

missing their deadlines. As a result, RT-Sequential is not suitable for request streams
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predominantly containing smaller sized requests.

The distribution of requests based on laxity, ensures that requests with large and small

laxities are evenly distributed. If an executor gets too many requests with small laxi-

ties, eventually some of them will end up being rejected, as they compete for the same

window of time. Requests with large laxities are able to shift or stagger their execution

within a larger time window enabling more requests to be scheduled within their lifes-

pan. This principle results in RT-LaxityBased meeting the highest number of deadlines,

with more than 50% acceptance rate in most cases (second row of Figure 4.12). All

algorithms show that they could achieve higher performancewith the cluster scaling up

with more executors. With cost of hardware becoming cheaperby the day, the accep-

tance rates could be increased with more executors being added to the cluster. In such

a setup RT-LaxityBased will be the best algorithm to use witha good mixture of task

sizes and laxities in the request stream.

From the results presented, it can be observed that the inter-arrival times of tasks af-

fect the request acceptance rates and deadlines met. When arrival rates are increased,

requests arrive far more rapidly at the cluster. Due to more requests competing for the

same window of time, the schedulability check results in a higher rejection rate. Simi-

larly, the number of executors in the cluster affects the request acceptance and deadline

achievement rate. More executors in a cluster would mean having more processing re-

sources for request execution. The distribution of requests among a larger number of

executors would create reduced arrival rates at each executor. This allows more requests

to be scheduled within the cluster, resulting in higher acceptance rates. Though having

additional executors would seem to be more processing for the dispatcher, the impact is

not significant when the worst case time complexities of the scheduling algorithms are

considered. Moreover, this enables the cluster to scale without a cost on the processing

at the dispatcher.

The role of laxity in achieving predictability and its importance can be observed in the

results discussed in the laxity comparison. Whilebest-effortprocessor sharing execu-

tion is ideal for common processing tasks, ensuring predictability mandates a suitable

method of admission control that contributes towards the goal. Request selection based

on laxity gives an assurance of meeting a request deadline even prior to its acceptance

for execution. The wide range of laxities achieved by the selection process ensures that

requests with complementing laxities execute successfully within a given window of
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time.

The throughput achieved by the enhancements indicates thatits performance is compa-

rable with the unmodified version, in low traffic conditions.Although the enhanced ver-

sion outperforms the unmodified versions in high traffic conditions the higher through-

put values are largely contributed more by the request rejections. However, when

throughput is calculated excluding the rejections both configurations still achieve ac-

ceptable throughput rates with resilience to high traffic conditions, contributed by the

admission control mechanism. While the unmodified versionssuccumb to system over-

loads, they are bound to perform better than the enhanced versions in favourable con-

ditions. Another aspect considered is the nature of tasks handled by the two system. In

order to have control over the task sizes of requests the web services used for testing

created CPU bound work for the servers. However, for services that is more I/O bound,

the configuration of the unmodified middleware maybe more suitable. Therefore, the

enhanced versions can only be considered resilient to high traffic conditions. Consid-

ering them to have better throughput values under normal conditions is unfair on the

unmodified versions of the products.

4.9 Summary

In this chapter we presented four request dispatching algorithms intended to be used

in clusters hosting web services, to achieve predictability of service execution. The

mathematical model and the schedulability check presentedin chapter3 is incorporated

into these scheduling algorithms to choose requests for execution based on their laxity

property. The algorithms match a request to a dispatcher in different ways and would

check for schedulability with one or more executors. This laxity based selection process

ensures that selected requests have complementing laxities to that of already accepted.

Through this process the dispatcher ensures the required deadline of the request can be

met while ensuring deadlines of already accepted requests are not compromised. The

selected requests are executed by the servers using EDF scheduling principle.

With RT-RoundRobin we presented how a simple request agnostic algorithm could eas-

ily be enhanced to support predictability. Similarly, RT-ClassBased was presented as an

example of an enhanced request-aware dispatching algorithm. Moreover, RT-Sequential

algorithm was designed to make best use of cluster resourceswhere it gives the best

guarantee of scheduling a request on the cluster. Finally, RT-LaxityBased algorithm
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was presented as a method of extending the laxity based request selection into laxity

based dispatching of requests, by which it tries to maximisethe range of laxities at a

server. These algorithms were implemented in a real-life cluster using Apache Synapse

and Axis2. These middleware products were enhanced to include the dispatching algo-

rithms to support request deadlines and real-time scheduling. The predictability gain by

the enhancements were measured by comparing the enhanced cluster to a cluster using

unmodified versions of Synapse and Axis2 in their default configurations.

The empirical results indicated that the cluster is able to achieve acceptable levels of pre-

dictability of service execution while maintaining satisfactory throughput rates. More-

over, the enhancements make it resilient to high traffic conditions and prevents the sys-

tem from reaching overloaded conditions. Apart from the algorithms introduced, the

implementation level enhancements made to RT-Synapse and RT-Axis2 played a major

part in the predictability achieved by the cluster. A detailed discussion on the software

engineering techniques used in the implementation is presented in chapter5.

While the predictability gain was measured in terms of the number of deadlines achieved,

an important aspect introduced to the middleware as part of the enhancements were the

differentiated service processing. This was primarily achieved through the deadline

based scheduling done by the real-time scheduler. In RT-ClassBased we saw a typi-

cal class based request classification being followed and supported by deadline based

scheduling. In the next chapter we investigate deadline based scheduling further and try

to obtain an advanced model using queuing theory that allowsus to analyse and predict

the behaviour of a system using EDF scheduling policy.
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Chapter 5
Building Web Services Middleware

with Predictable Execution§

This chapter presents software engineering techniques, algorithms, designs and tools

that are geared towards achieving predictability of execution in web services middle-

ware. Conventional designs and development techniques canhave a negative impact

on predictability of execution. For instance, throughput is considered as a major design

goal in engineering web services middleware. Techniques employed to achieve through-

put such as unconditional acceptance andbest-effortprocessor sharing execution of re-

quests result in unpredictable execution times. Moreover,conventional debugging tech-

niques can lead to priority inversion scenarios. Engineering systems for predictability

requires a different way of thinking in building systems. Completion of requests within

a perceived deadline require them to be explicitly scheduled, and the middleware must

have better control over their execution. As such, the proposed designs change the

execution within web services middleware to be more serialised, while achieving con-

trolled level of throughput by limiting the number of concurrent executions, based on

the number of processor cores available. This is made possible by a few techniques

introduced. Firstly, the conventional thread-pools in webservices middleware are re-

placed with custom designed ones using real-time threads. The best-effort processing

of the middleware is replaced by a priority model that gives more control over the ex-

ecution and suspension of worker threads. A newly introduced real-time scheduler

§ Preliminary versions of the work presented in this chapter have been previously published in
[Gamini Abhaya et al., 2010b, 2012].
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component uses the priority model to control the execution of worker threads. The use

of development libraries and operating systems with predictability features, empower

them with increased control over execution. Specialised debugging techniques such as

in-memory logging, delayed writes and the use of specialised tools such as the Ora-

cle Thread Scheduling Visualiser used for offline debugging, are introduced to prevent

unnecessary priority inversions by debugging the system. The successful application

of these techniques and tools, are presented using two case studies, in which the func-

tionality of Apache Axis2 and Apache Synapse are enhanced torepresent stand-alone

and cluster-based web service deployments. Moreover, the four dispatching algorithms

presented in the previous chapter are implemented using thesequence and endpoint

framework in Apache Synapse. A detailed discussion on the designs, techniques and

tools used is provided as part of this chapter. Furthermore,a generic set of guidelines

that summarise the important milestones in achieving predictability of execution is also

presented, to be used in identifying predictability features in existing middleware and

to decide on the enhancements necessary.

5.1 Motivation

The design and architecture of web services middleware plays an important part in

the performance of web services it hosts. In service management and invocation, the

middleware carries out the house-keeping tasks required, such as request processing,

request execution, metadata management and error handling. Such middleware are

designed with the intention of achieving high levels of throughput to maximise the

processing of requests. The level of throughput achieved bythese middleware comes

at the cost of unpredictable execution times for service invocations. Typically, service

received by the tasks are inversely proportional to the number of jobs present in the mid-

dleware [Coffman Jr et al., 1970; Stantchev, 2009; Subramaniam V., 2011]. While non-

critical operations such as a WSDL request may not be affected by this phenomenon,

it is of concern for achieving perceived levels of executiontime predictability in web

services middleware.

The concepts, algorithms and scheduling techniques discussed in the previous two chap-

ters can only be put to use by implementing them in web services middleware. In doing

so, they needs to be supported by many implementation decisions. For instance, the

execution deadline needs to be conveyed to the middleware insome manner and be
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available for the admission control check. Similarly, the deadline and laxity informa-

tion need to be made available to the dispatching algorithms. The implementation of

EDF scheduling would require the ability to control the execution of worker threads at

runtime. As such, the decisions made in implementation is equally important as the

techniques and algorithms presented in the earlier chapters.

Previous successful attempts at achieving predictabilityof execution in other distributed

communications technologies can be seen in the work of Schmidt et al. in their work

on Real-time CORBA [Pyarali et al., 2003; Schmidt and Kuhns, 2000; Schmidt et al.,

1997; Wang et al., 2000]. They used real-time scheduling algorithms, custom made

networking protocol stacks, customised request executors, an end-to-end priority model

that is used by the executors, that enable more control over executions that happen

through the CORBA middleware. Compared to web services, CORBA is used within

a comparatively static environment (typically on a Local Area Network) where request

properties and communication flows are knownapriori. While the work on CORBA

signifies achieving predictability is possible even in web services, the environment they

operate in is far more challenging.

While the best possible solution would be to build a middleware from ground-up op-

timised for predictability, it was not the most suitable given the time constraints, this

research had to be conducted within. As developing a complete middleware ensuring

predictability requires both time and effort, it was deemedtoo much for a single re-

searcher to complete within four years allowed for the degree. Therefore, an alternate

solution (despite being sub-optimal) was sought for, by enhancing existing web services

middleware to have predictability features. Such an attempt not only makes it feasible

to achieve a working solution within the time frame, but ensures existing web service

deployments can benefit from it.

5.2 Problem Statement

Web services middleware contain many techniques to maximise service invocations.

To achieve better rates of throughput they are designed to accept all incoming requests

and execute as many requests as possible usingbest-effortprocessing. Concurrent ex-

ecution of requests is facilitated by employing thread pools [Graham et al., 2004] us-

ing processor-sharing execution. From a predictability standpoint this method does

not scale-up well as the increasing number of requests handled by the middleware
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results in inversely proportional execution times [Coffman Jr et al., 1970; Stantchev,

2009; Subramaniam V., 2011]. Moreover, the mean execution time of a task varies with

the number of requests handled by the middleware. As a result, the execution of two ser-

vice invocations, despite using the same input parameters may result in vastly different

execution times.

Unconditional acceptance of requests ensures the middleware handles as many requests

as possible. Concurrent execution of requests are only limited by the number of worker

threads active in the thread pool and processor sharing execution ensures that every re-

quest is attended to as soon as they arrive at the system. Similarly, best-effort processing

means that there is no differentiation between the requestsbeing executed. While em-

ploying all these techniques maximises the throughput ratethe middleware achieves, it

leaves the middleware with no control over the execution of requests which results in

unpredictable execution times.

Predictability of execution cannot be guaranteed by the middleware merely from its

functionality. It needs adequate support from the development platform, libraries used

and the operating system. For instance, standard Java has 10priority levels and they are

not strictly enforced as they do not map directly onto operating system level priorities

[Bruno and Bollella, 2009; Dibble, 2002; Oracle Corporation, 2009a]. Therefore, the

execution of a standard Java thread assigned with the highest priority available, can be

interrupted by a thread or process outside the Java virtual machine running at a higher

operating system level priority. Moreover, languages suchas Java have specialised pro-

cesses (called garbage collectors) to reclaim memory from expired objects. They oper-

ate on special priorities that could interrupt the execution of any priority level available

in standard Java [Bruno and Bollella, 2009]. Such instances would add unwarranted

delays to the execution of tasks in web services middleware.

Based on the above, the research question addressed in this chapter is“How to build

web services middleware with predictable service execution?” In finding solutions to

this question, we identify three main problem areas in existing web services middleware

that contribute towards unpredictable execution times, weaddress in this chapter.

1. Design strategies used for achieving throughput having anegative impact on pre-

dictability of execution.

2. Unsuitability of trivial development and debugging techniques.
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3. Lack of development platform and system level support forpredictability.

5.3 Outline of the Solution

Engineering web services middleware for predictability requires a different approach to

engineering for throughput. The overall aim is for the middleware to have more control

over the execution of requests. To enable this, the execution of requests is serialised

by scheduling requests for execution one after the other in the order of their increasing

deadlines. However, a controlled level of throughput is still achieved by implement-

ing several lanes of execution where multiple worker threads are be active at a given

time, depending on the number of processor cores available for execution. The con-

ventional thread-pools in the middleware are replaced by custom designed thread pools

that employ real-time threads. More control over their execution is further facilitated

by introducing a multiple priority model, containing priority levels that cannot be inter-

rupted by housekeeping activities and other processes. Such priorities ensure that the

execution of a thread happens uninterrupted. The priority model is used by a real-time

scheduler component to execute and suspend worker threads at will.

Moreover, EDF scheduling is implemented within the real-time scheduler in the form

of a thread scheduling algorithm. Such fine grain control over thread execution requires

the introduction of proper concurrency control using critical sections and semaphores,

over the implementation of the admission control check, EDFscheduling and request

dispatching in the clusters. The execution deadlines are conveyed to the server using

SOAP message headers, and they are conveyed to the admissioncontrol check through

an internal data structure. These implementation decisions are supported by the use of

development platforms, libraries and operating systems that contain real-time features.

The proposed solution involved implementing these techniques in two web services

middleware products, namely Apache Axis2 and Apache Synapse. Axis2 is a stand-

alone middleware and Synapse is an ESB product that can be used to implement dis-

patcher functionality in a cluster. Two case studies based on the enhancements carried

out on these products are presented in this chapter as practical examples for achiev-

ing predictability of execution. One case study representsa stand-alone web service

middleware configuration using Apache Axis2 and the other discusses a web services

cluster deployment using Apache Synapse as the dispatcher and Axis2 instances as ex-

ecutors. Three possible cluster configurations are presented and their pros and cons are
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discussed. The four dispatching algorithms are implemented in Apache Synapse using

its sequence and endpoint extension framework.

The contribution through this chapter are the specialised software engineering tech-

niques, algorithms, designs and tools that can be used for achieving predictable execu-

tion times. The two case studies are examples on how they could be used in enhancing

existing web services middleware. Although specific products were chosen for these

case studies the techniques, algorithms and designs are generic enough to be applied

for any other web services middleware.

The rest of the chapter is organised as follows. First, we discuss some of the related

work found in this area. Next, we present the set of guidelines to follow to achieve pre-

dictability of service execution, when enhancing existingmiddleware products or new

ones being built. Thereafter, in Section5.6we give an overview of the implementation

and discuss items common to both implementations. Following that in Section (5.7),

we present the first case study of enhancing Apache Axis2. It is followed by the case

study of the cluster-based implementation and then we conclude in Section6.9.

5.4 Related Work

There has been only a few attempts at introducing predictability into service execution

or making it a feature in the middleware. As mentioned earlier, many of the exist-

ing middleware products optimise for throughput rather than predictability and thereby

introduce features that makes it impossible to achieve predictability of execution. A

few of the existing work we found that were purposefully built to differentiate request

processing or to have real-time features, are discussed here.

wsBus [Erradi and Maheshwari, 2005] is a custom built QoS-aware middleware based

on a bus architecture. It has many components that facilitate the use of different trans-

ports, request dispatching, service selection and QoS monitoring and has the design

of a customised ESB product. It supports the use of priorities for differentiating re-

quests and contains an admission control mechanism that controls requests accepted.

However, the criteria of admission nor the prioritisation has been explicitly mentioned.

Similarly, the way differentiation happens and any evaluation of its performance has not

been presented.

The attempt by [Helander and Sigurdsson, 2005] to use SOAP based web services in an
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embedded real-time environment is the first attempt we foundin literature of such mid-

dleware. Web Services are used for communication between different components in

the embedded environment. They achieve this by defining behavioural patterns among

the components that represent interactions between components and tasks that need ex-

ecution as a result. The timing properties, worst case resource requirements of these

patterns are figured out at design time of the system. At runtime, these patterns are

used to predict and reserve resources for the incumbent tasks. The worst case resource

requirements planned at design time ensures that variations in execution and jitter are

catered for, by over reserving resources at run-time. However, neither an architecture,

implementation nor an evaluation has been presented in the paper.

[Mathes et al., 2009a] presents SOAP4IPC: a real-time SOAP engine designed for in-

dustrial automation. It contains general components as found in a typical SOAP engine

that takes care of processing and execution of web services and also components that

are designed to represent tasks typically found in real-time systems (as presented in

chapter2). The execution engine honours a deadline and caters for both periodic and

aperiodic tasks. Given the support for periodic tasks and the not having an admission

control check means the middleware is intended to be used with tasks, that properties

are known at design time. An approach suggested by the authors is to use a profiling ap-

proach of measuring the worst-case execution times of each service. However, there is

no mention of the actual scheduling algorithm used or a comprehensive evaluation with

realistic services and traffic types. The SOAP4IPC engine isa part of a broader frame-

work named TiCS [Mathes et al., 2009c] which stands for Time-Constrained Services

framework that is presented as a complete manufacturing execution system that uses

web services for industrial automation. The SOAP4IPC engine is at its core handling

the execution of services and another layer which is detailed in [Mathes et al., 2009b]

works as a service façade for programmable logic controllers that make up the manu-

facturing layer or the overall manufacturing execution system. The TiCS framework is

described in detail in terms of its components and their intended functionality, however

there is no mention of the actual scheduling algorithm is used or how the deadlines are

ensured by the system.

While [Helander and Sigurdsson, 2005; Mathes et al., 2009a] and [Mathes et al., 2009c]

are mentioned as working solutions in real-time environments they lack important de-

tails such as how the requests are scheduled and a comprehensive evaluation of their

performance compared against other products and approaches, to make a proper deci-
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sion on their effectiveness. Moreover, both these solutions are intended to be used in

closed environments where there is a good understanding of task properties and their re-

source requirements. Without having proper admission control and precise scheduling,

it is difficult to use their techniques to introduce predictability into web service execu-

tion in open systems. The challenge of selecting tasks basedon resource availability

and making that decision at runtime is an important aspect that has to be met with such

open systems.

5.5 Guidelines for Achieving Predictability of Execution

Complex software follow modularised designs aimed at maintainability and reuse through

shared libraries. Similarly, web services middleware consist of a collection of software

components that make use of functionality provided by various development platform

libraries and OS level services.

As illustrated in Figure5.1, web services deployed within a server are exposed through

the middleware to the outside world. The middleware handlesall requests (SOAP and

REST) with the aid of many development platform libraries that handle message pro-

cessing and network level communication. The functionality provided by the devel-

opment libraries are facilitated by the underlying OS. The OS handles the execution

of threads, processes and manages system level resources such as CPU time, memory,

sockets for network communication, access to Input/Outputdevices and other peripher-

als. For managing resource allocations, execution of processes and threads, the OS uses

system level priorities for differentiation. These priorities, can be requested by the de-

velopment platform or defaulted to OS preferences. The OS decides on the precedence

of execution and resource allocation based on such priorities. Therefore, any form of

predictability at the upper layers of a software stack, is only achieved with the support

of all underlying layers.

From our research into the design of real-time systems, we present the following guide-

lines that would enable web services middleware to achieve predictability of execution.

At a high level, these cover functional as well as aspects of software engineering as-

pects that could be used to enhance existing web services middleware, or when they are

newly developed.
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Figure 5.1: Default Software
Stack

Figure 5.2: Required Software
Stack

G1. Use of an operating system, development platform and libraries with pre-

dictability features.

Predictability of execution in a server can only be achievedif such features are

provided by the lower layers of software being used. Most widely used de-

velopment platforms and operating systems are intended forgeneral use, thus

have no support for predictable execution. For instance, thread priority lev-

els used in the standard and enterprise versions of the Java development plat-

form do not directly map to the range of priorities availableat the OS level

[Oracle Corporation, 2009a]. As a result, the execution of a Java thread running

at the highest priority available in Java, can be interrupted by other processes

running with higher OS level priorities. Similarly, it could also be interrupted

within the platform itself, by housekeeping activities such as garbage collection

[Arnold et al., 2006]. The use of specialised real-time development platforms and

OSs ensure predictability by having features such as high precision clocks, fast

context switches with minimum overhead, guaranteed priority levels, fast mem-

ory based I/O, faster responses to interrupts and priority inheritance mechanisms

[Stankovic and Rajkumar, 2004]. Figure5.2 depicts such a setup with the soft-

ware required in all levels.
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G2. Support deadlines for service execution and decisively schedule requests to

meet them.

The invocation of a web service typically happens semantically equivalent to a

method call of an object, where input parameters are specified and a result is

returned. For the invocation to always complete within a target, web services

middleware must be specified with a time limit. Therefore, middleware sup-

porting predictability of execution must introduce means of specifying a user

perceived deadline. Subsequently, the middleware must explicitly schedule the

service invocation to meet the specified deadline. However,in the event of multi-

ple invocations having overlapping executions, the middleware must ensure that

scheduling of a request based on its deadline does not compromise the others with

overlapping lifetimes.

Figure5.3depicts a schedule of tasks based on their deadlines. Herein, tasks are

executed in the increasing order of their deadlines and completes execution in

the order of T3,T4,T5,T2 and T1. On its arrival, each task hasan overlapping

lifespan with one or more tasks already in execution. However, tasks with earlier

deadlines have been able to finish their execution within therequired time limit,

as a result of being explicitly scheduled on this basis. Although having arrived at

the system later, tasks T3, T4 and T5 have been explicitly scheduled to complete

prior to T1 and T2 by preempting them from execution. Subsequently, T1 and T2

also achieve their deadlines despite being executed in a staggered manner due to

their large deadlines.

Figure 5.3: Deadline based task schedule
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G3. Conditionally accept requests for execution based on theirlaxity property.

The lifetime of a task arriving at a system is determined by its arrival time (as-

suming it is ready for execution) and the perceived deadline, before which it must

complete execution. Depending on arrival rates of requests, it is quite common

for them to have overlapping lifespans with each other. While scheduling these

tasks with a deadline guarantee, maybe possible by delayingthe execution of

unfinished tasks with longer deadlines, there will be instances where staggered

execution of tasks would not be possible without a deadline miss. However, the

deadline of an already accepted task should not be compromised for a new task

even though it maybe having an earlier deadline. Therefore,it is imperative that

requests must be accepted for execution conditionally, ensuring deadlines of other

requests are not compromised.

The laxity property of a request is a measurement on the possible delay of exe-

cution while meeting the deadline requirement. A larger laxity enables the ex-

ecution of a request to be delayed safely, thereby allowing more requests to be

scheduled together. Scheduling a given set of requests ensuring their deadlines,

is only possible with a greater range of laxities within them. For instance, the

deadlines of tasks T3, T4 and T5 in Figure5.3, have been achieved due to the

larger laxities that resulted in the delayed and phased out execution of tasks T1

and T2. Similarly, the shorter laxities of T3, T4 and T5 enabled them to achieve

their deadlines within the lifespan of T1 and T2. Conversely, T5 may not have

been able to achieve its deadline executing together with T3and T5, if it had a

smaller laxity. Therefore, requests must be consciously selected for execution,

resulting in a large range of laxities at the server.

G4. Achieve differentiated request processing at system level.

The invocation of a web service has many steps to be fulfilled by different com-

ponents inside the web services middleware. Common to any such middleware,

the execution of a request is typically handled by one or moreworker threads (the

smallest unit of execution) throughout its entire lifetimewithin the middleware.

While the execution times at each component may vary depending on the nature

of processing, the individual times are subsumed within theoverall execution

time of a request. Widely used web services middleware treats all threads equal

and makes no differentiation in their processing. This results in the middleware
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having no control over the completion time of a request.

However, achieving predictability in execution is only possible, if some differ-

entiation in request processing is achieved within the middleware. For instance,

when a new task with an earlier deadline arrives at the systemin Figure5.3, the

execution of the current task has to be suspended and resumedat a later point of

time. It must be possible for the server to suspend the execution of one task (e.g.

T2 or T1) and let another start execution (e.g. T3). Therefore, at any given time

the middleware must be able to control which thread is in execution and which is

suspended. This fine-grain control will allow the middleware to decide on how

the processing resources are consumed by the smallest unitsof execution. Such

control will enable the middleware to avoid deadlocks and unnecessary delays

on execution due to resource unavailability. A properly managed set of priorities

makes it possible to achieve such fine grain control over the execution of threads.

G5. Reduce instances of possible priority inversions.

Contention for system resources is often encountered in task execution. Another

form of delay that maybe added to the execution of a request isthe possibility

of a priority inversion. This refers to the scenario where a resource required by

a higher priority process or a thread is held by a lower priority process or thread

[Stankovic et al., 1998]. As depicted in Figure5.4, this could take place when the

lower priority thread in execution that was consuming resource X is preempted

by a higher priority thread. The higher priority thread alsowishes to consume

resource X to complete its execution. However, this becomesimpossible as the

resource is currently held by the lower priority thread which has been preempted

from execution; and a deadlock arises. The hold on the resource by the lower

priority thread may finally be released by a time-out, if sucha mechanism is used

by the OS to free unreleased resources. In which case, the high priority thread

maybe able to resume execution, albeit the delay incurred bythe wait.

Real-time OS design often solve such problems using priority inheritance algo-

rithms [Stankovic et al., 1998]. Consumption of resource X is a necessity for the

higher priority thread to complete its execution. Since itsexecution cannot be re-

sumed till resource X is released, the OS makes the lower priority thread ‘inherit’

the higher priority temporarily, to resume its execution and release the resource.

Once the resource is released, the priorities are inverted back to their original
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Figure 5.4: Priority Inversion

state and the execution is resumed. Although this mechanismsolves the problem,

it adds an unwarranted delay (equal to the execution of the priority inheritance

algorithm and the controlled execution of the lower priority thread) to the overall

completion time of the high priority thread. Such priority inversions may happen

with simple I/O operations such as writing to a file or displaying a message to

the console. Moreover, they would not only create delays in the actual execu-

tion, but be responsible for unexpected results and behaviour in activities such

as debugging such applications. For instance, common debugging practices such

as the use of log files and trace messages can result in unexpected priority inver-

sions. Prevention of such phenomenon is only possible by avoiding such trivial

techniques and using specialised ones instead.

Adhering to these guidelines specified above, will enable web services middleware to

function with predictable execution and be successfully built accordingly. While these

are valid for both SOAP and REST based web services, the way they are implemented

in various middleware, may differ from each other. In the case studies presented in

the next section, enhancements made to two widely used web services middleware are

presented. Although these were used as examples, the enhancements are generic enough

to be applied for any other middleware product available.

5.6 Implementation Overview

This section presents the preliminaries for the enhancements made to the stand-alone

and cluster-based web services middleware. Enhancements made to the selected mid-

dleware follow the guidelines presented in Section5.5. Features introduced to Apache

Axis2 [Apache Software Foundation, 2009] are presented as an example of how these
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guidelines could be used in enhancing a stand-alone web services middleware server.

The second case study is an example of how the guidelines willhelp in achieving pre-

dictability of execution in a cluster setup hosting web services. We enhanced Apache

Synapse [Apache Software Foundation, 2008], an ESB product to act as the dispatcher

of the cluster and use the enhanced version of Axis2 as the executors hosting the web

services. The case studies are presented as follows. For each case study, the enhance-

ments that are generic in nature are presented first without any product specific imple-

mentation details. These are generic enough to be directly implemented on any web

services middleware. It is followed by specialised changesmade to each product with

specific implementation details. Conceptually the techniques are still applicable to any

web services middleware product.

5.6.1 Development Platform and OS

Apache Axis2 and Apache Synapse have been developed using Java as the develop-

ment platform. Whilst versions of Axis2 are available also in C, the fully featured

Java version is preferred by developers. Moreover, Apache Synapse also uses parts of

Axis2 in its core. Therefore, the Java versions of Apache Axis2 and Synapse were se-

lected for this implementation. Java is known to be a platform that lacks predictable

execution times due to its design features such as the garbage collection mechanism

[Wang and Baglodi, 2002]. Conforming with the guideline G1 in Section5.5, we use

Java Real-time Specification (RTSJ) [Oracle Corporation, 2009a] as the supporting de-

velopment environment. RTSJ introduces several features (not available in standard

Java releases) that support predictability of execution required for applications with

stringent time requirements. For instance, it introduces several new strictly enforced

priority levels that directly map on to proper OS level counterparts. Moreover, it also

contains a new real-time thread class that can be empowered with the aforementioned

priorities to ensure uninterrupted execution even from thegarbage collector mechanism.

RTSJ also provides high precision clocks that could be used for timing in such applica-

tions upto a nanosecond accuracy.

For RTSJ to function properly, it needs to be deployed upon anOS with real-time fea-

tures. Conforming with guideline G1, we use Sun Solaris 10 (SunOS) with real-time

kernel modules as the underlying OS for the solution. SunOS provides RTSJ with di-

rect mapping onto available priorities and prioritised resource allocations, in order to
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maintain the level of predictability required.

5.6.2 Introduction of a Deadline

Predictability of execution is all about ensuring the completion of request execution

within a perceived time period. Following guideline G2, a deadline is introduced into

each web service invocation. A client of a particular web service hosted on middleware

supporting predictability, can decide on a suitable deadline and specify it at service

invocation.

While this could be done in multiple ways for both SOAP based and RESTful services,

for this implementation we communicate the deadline to the server using SOAP headers.

However, it could also be conveyed as part of the payload for RESTful services. By

using the SOAP headers, the syntax of the service invocationnor the payload is modified

and the deadline which can be considered as metadata is accessed separately from the

service parameters.

<?xml version='1.0' encoding='UTF-8'?>

<soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

 <soapenv:Header>

  <edu.rmit.cs.rt:RealTimeParams xmlns:edu.rmit.cs.rt="http://www.RealtimeSOAP.org">

   <edu.rmit.cs.rt:Deadline>

    1500

   </edu.rmit.cs.rt:Deadline>

  </edu.rmit.cs.rt:RealTimeParams>

 </soapenv:Header>

 <soapenv:Body>

  <ns1:calculatePrimesService xmlns:ns1="http://endpoint.testservice">

   <ns1:primeLimit>100000</ns1:primeLimit>

  <ns1:calculatePrimesService>

 </soapenv:Body>

</soapenv:Envelope>

Figure 5.5: Sample SOAP message with deadline

Figure5.5contains a listing of a sample SOAP message with the newly added deadline

information highlighted. The deadline specified in milliseconds, is the ultimate time

limit the service invocation is requested to complete within.
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5.7 Stand-Alone Implementation

In this section, we present the enhancements made to Axis2, the stand-alone web ser-

vices middleware product we chose for the implementation. Note that although we

present Axis2 for the case study, the enhancements are generic enough to be applied to

any other middleware product available.

Apache Axis2 is a highly modular web services middleware that is widely used. Inher-

ently it supports both SOAP based and RESTful web services and has been designed

with maximising throughput in mind. It provides a frameworkto customise the process-

ing of a web service request throughhandlerobjects, while keeping the core functional-

ity unchanged. The processing of a web service request goes through multiple modules

in Axis2. Request execution happens in abest-effortmanner, through a thread pool

where each worker thread is tasked with the complete execution of a request. A similar

thread pool with a single worker thread is used as a listener for incoming requests. A

web service request is represented within Axis2 using a hierarchical and self contained

Information Model which is available to any of the functional modules. Therefore, it

also acts as a message, carrying the necessary information throughout each stage of

execution.

5.7.1 Schedulability Check Based Admission Control

A major change required to achieve predictability in web services middleware, is the

conditional acceptance of requests. Herein, requests mustbe selected based on their

laxity property. Following guideline G3, every request is subjected to a schedulability

check that follows Algorithm1, presented in Chapter3. However, when incorporating

this algorithm into the middleware, care was taken to prevent any issues with concur-

rency. Algorithm6 lists out the modified algorithm with the concurrency constructs in

place. Algorithm1, Line 6 contains the calculation of processor demand using Equa-

tion 3.5.3. The remaining execution time of an already accepted request is defined in

Equation5 as the difference between its execution time requirement and the time al-

ready spent in executions. In its actual implementation a two pronged approach was

taken. Given the unknown nature of request properties, it isimpossible to know the

execution time requirement of a request. However, this can be facilitated by keeping

execution time history information. It can be kept as an average for the operation, for
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Algorithm 6 Schedulability check algorithm with concurrency constructs
Require: New request N, Queue of Accepted Requests RQ
Ensure: N is accepted or rejected

1. Enter Critical Section
2. PDW← 0; PDA← 0; withinTasksChecked← false
3. withinTasksChecked← false
4. RQ.acquire
5. while RQ has moreand withinTasksChecked isfalse do
6. nextReq← RQ.getNextReq
7. if nextReq.startTime≥ N.startTimeand nextRequest.deadline≤ N.deadlinethen
8. if Exec. Info. for nextReq.Operation existsthen
9. PDW← PDW + nextReq.getRemainingTime

10. else
11. PDW← PDW + getGlobalAverageExecTime
12. end if
13. else
14. if nextReq.deadline≥ N.deadlinethen
15. withinTasksChecked← true
16. end if
17. end if
18. end while
19. if Exec. Info. for N.Operation existsthen
20. PDW← PDW + N.getRemainingTime
21. else
22. PDW← PDW + getGlobalAverageExecTime
23. end if
24. LoadingFactor← PDW

N.deadline−N.startT ime

25. if LoadingFactor> 1 then
26. RQ.release
27. return false
28. end if
29. PDA← PDW
30. while RQ has more requestsdo
31. nextReq← RQ.getNextReq
32. if Exec. Info. for nextReq.Operation existsthen
33. PDA← PDA + nextReq.getRemainingTime
34. else
35. PDA← PDA + getGlobalAverageExTime
36. end if
37. LoadingFactor← PDA

nextReq.deadline−N.startT ime

38. if LoadingFactor> 1 then
39. RQ.release
40. return false
41. end if
42. end while
43. RQ.insert(N)
44. RQ.release
45. return true
46. Exit Critical Section
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the combination of its input parameters. Similarly, a global average can also be kept for

the service. Both averages could be updated at the end of a service invocation. When

history information exists for a particular operation, theaverage for the set of inputs can

be used in the calculation (Algorithm6 : Lines 9, 20 and 33). In the case of using the

set of input for the first time, the global average could be used instead (Algorithm6 :

Lines 11, 22 and 35).

In implementing the schedulability check, efficiency is further achieved by using an

ordered queue (RQ) for accepted requests which automatically inserts a request to the

proper position in the queue based on its deadline. This process prevents the sorting

of requests happening on each execution of the algorithm thereby reducing the time

complexity toO(n) amortized. Given time complexity of Algorithm1 presented in

Chapter3 to be alsoO(n)and the additional steps in Algorithm6 not having a different

effect on its execution, the complexity analysis presentedin Chapter3 remains valid for

Algorithm 6 as well.

Recall from chapter3 that the schedulability check works by considering the laxities of

requests already accepted at the server. Therefore, the acceptance of a request will be

decided on how compatible its laxity is with already accepted requests. If the acceptance

of new requests by the middleware takes place while the schedulability check is carried

out for others, it results in race conditions. Preventing such phenomenon the entire

schedulability check is marked as a critical section (Lines1 and 44). Moreover, the

list of accepted requests (RQ) would be modified when a request completes execution

or when a request is accepted for execution. These events would also turn into race

conditions if access to the list is not controlled. Concurrent access to the list is controlled

through the use of a binary semaphore and the schedulabilitycheck secures a lock on it

prior to it being read (Line 4). In the event of accepting a request for execution the lock

is released (Line 44) after queueing the request for execution (Line 43). If the request

is not schedulable the lock is released prior to exiting fromthe algorithm (Lines 26 and

39).

5.7.2 Priority Model

Typical web services middleware contain no mechanisms to differentiate request pro-

cessing. Therefore, all requests are executed at the same priority level. Guideline G4,

mandates fine-grain differentiation in request processing, for achieving execution time
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predictability. Axis2 by default, does not use different priority levels in processing

requests. Following this guideline, we introduce three priority levels to achieve differ-

entiation in the functionality of the middleware.

Priority Purpose Mapping
Lowest Used for metadata exchange such as

WSDL or Schema requests
Set to the highest priority avail-
able on standard Java. Can be in-
terrupted by the GC

Mid-Level Execution prevention priority. Used
on worker threads to preempt and
suspend them from execution. All
threads assigned with a request but
currently not in execution will have
this priority assigned to them

Set to the mid level of the RTSJ
priorities. Can be interrupted by
the GC

Highest Execution granting priority. Used
on a worker thread to grant the
CPU for execution. At most, only
one thread per execution lane is as-
signed with this priority

Set to the highest priority level
available on RTSJ. Cannot be in-
terrupted by the GC

Table 5.1: Priority Levels Introduced

The extended priority levels available in RTSJ provides a better mapping of thread level

priorities to OS level priorities. Moreover, theHighestpriority level introduced to the

system is guaranteed to be uninterrupted by the GC as well as any process outside

the Java Virtual Machine. These priority levels are used by anewly introduced real-

time scheduler component at runtime, to achieve fine-grain differentiation in request

processing. By using these priority levels on worker threads, the real-time scheduler is

able to control their execution and the order of completion of requests.

5.7.3 Real-time Scheduler and Thread Pools

The discussed priority model is used by a real-time scheduler component newly intro-

duced to web services middleware. The scheduler ensures theordered execution of

requests based on a pre-defined scheduling algorithm. The algorithm used for schedul-

ing can be configured and for the proposed solution, EDF scheduling is implemented,

following guideline G2. As the execution in web services middleware is carried out by

one or more thread pools, the introduced real-time scheduler is designed to use a custom
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made real-time thread pool to manage execution. The scheduler manages execution by

enforcing the priority model on worker threads in the pool.

EDF Based Scheduling

The scheduler uses Algorithm7 to reschedule the execution of threads upon the assign-

ing of a new request (N) for execution. All threads with requests currently in execution,

are kept track of using a list of references (LT) by the real-time scheduler. The num-

ber of requests executing concurrently can be configured andis usually decided on the

number of processors available on the server. The worker thread assigned with the re-

quest having the earliest deadline at a given time, would be in execution while the others

will be queued on TQ, waiting for their turn to re-claim the CPU in the order of their

deadlines. The deadline of N is compared sequentially with requests referenced by the

members of LT (Lines 4-21). If any of the references do not have a request already

assigned for execution, the new request is assigned to it immediately and the priority of

the worker thread is set toHigh, for it to claim the processor (Lines 5-7). If all refer-

ences have assigned requests, the deadline of N is compared with each of them (Line

12). If N has an earlier deadline than any one of them, the worker thread with the lat-

est deadline is preempted by setting the priority toMid (Line 13) and subsequently it

is queued in TQ for resumption later (Line 14). Thereafter, the reference is set to the

worker thread of N and it is allowed to claim the processor by increasing its priority

to High (Lines 15,17). However, if the deadline of N is later than that of all requests

currently in execution, N is prevented from further execution and is queued for resump-

tion later (Lines 23-26). While the rescheduling takes place and tasks with the earliest

deadlines are selected, the number of threads must remain unchanged. Access to LT

is controlled using a semaphore, to prevent any changes while a scheduling run is in

process. The algorithm acquires a lock on the object (Line 3)and releases it as soon as

the operations are completed (Line 22). Furthermore, the entire Algorithm 7 is marked

as a critical section (Lines 1 and 27), to prevent any race conditions.

Given the number of processors on the server, there could be arequest in execution at

each one of them. However, the requests that are being executed are guaranteed to be the

ones with the earliest deadlines of all requests accepted. When a newly accepted request

needs to be executed immediately due to an earlier deadline,the request preempted must

be the one with the latest deadline out of the ones executing (it may not be the one N
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Algorithm 7 EDF Implementation - Scheduling of Threads
Require: Thread Queue TQ, Ordered active thread pointer list LT, New request N
Ensure: Execution of Threads assigned with earliest deadlines

1. Enter Critical Section
2. found← false
3. LT.acquire
4. while found is false and LT.hasMoredo
5. if LT.ptrNextThread is not assignedthen
6. LT.ptrNextThread← N.getThread
7. N.getThread.priority← High
8. LT.resetLatestThread
9. found← true

10. else
11. R← LT.ptrNextThread.getRequest
12. if N.deadline< R.deadlinethen
13. LT.ptrLastThread.priority← Mid
14. TQ.queue(LT.ptrLastThread)
15. LT.ptrLastThread← N.getThread
16. LT.resetLatestThread
17. LT.ptrLastThread.priority← High
18. found← true
19. end if
20. end if
21. end while
22. LT.release
23. if found is falsethen
24. N.getThread.priority←Mid
25. TQ.queue(N)
26. end if
27. Exit Critical Section

was last compared with). To make this selection efficient, the scheduler keeps a special

pointer (ptrLastThread) directly referencing the thread with the latest deadline,out of

all that is in execution. This ensures a quick preemption between N and the target

request with the latest deadline. Once the preemption is complete theptrLastThread

needs to be reset to reference the worker thread with the latest deadline. In Algorithm

7, this step is carried out after N starts execution (Lines 8 and 16). Algorithm8 carries

this out by a sequential comparison of deadlines. At the end of the comparison process,

ptrLastThreadcontains a reference to the thread with the latest deadline.

144



CHAPTER 5. BUILDING WS MIDDLEWARE WITH PREDICTABLE EXECUTION

Algorithm 8 LT.resetLatestThread Implementation
Require: Ordered active thread pointer list LT
Ensure: ptrLastThread points at the thread having the request with the latest deadline

1. if LT is not emptythen
2. ptrLastThread← LT.first
3. for all thread ∈ LT do
4. req← thread.getRequest
5. if req.deadline> ptrLastThread.deadlinethen
6. ptrLastThread← thread
7. end if
8. end for
9. end if

Complexity Analysis of EDF Algorithms

As Algorithm7uses Algorithm8 in its functionality, we first look at the time complexity

of Algorithm 8.

Letn be the number of active thread pointers in list LT. LetT (n) be the running time of

the algorithm. LT allows constant time access to the first element in the list irrespective

of its length. It can be observed in line 3 of the algorithm that all members of the list LT

would be accessed individually. Therefore, lines 3-8 will executen number of times.

Consider time taken for execution of line 2 isc1, to access the current element in LT

is cLT , for execution of line 4 isc2 and for execution of lines 5-7 isc3 at maximum.

Therefore, running time of Algorithm8 can be calculated as,

T (n) = c1 + ncLT + nc2 + nc3

Then,c1+ncLT +nc2+nc3 ≤ n(c1+cLT +c2+c3) for all n > 1. Therefore it can be

concluded that T(n) is in O(n) in the worst case. Care must be taken in implementation

to use a technique such as using the Iterator pattern [Gamma et al., 1995], that allows

constant time access to each element in LT.

Next we analyse the time complexity of Algorithm7. Let n be the number of active

thread pointers in list LT. LetP (n) be the running time of the algorithm. Statement

in line 4 repeats the statements within lines 5-20, untilfound is set totrue or until all

members of LT has been accessed. The best case scenario is that none of the thread

pointers (accessed throughLT.ptrNextThread) in LT has threads assigned. In which

case the condition in line 5 results in being true and lines 5-20 is executed just once. On
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the contrary, the worst case is when either the last thread pointer in RT is not assigned

or when the new request has a deadline later than all requestscurrently in execution. In

both instances lines 5-20 are repeatedn times. However, in the earlier case lines 6-9

gets executed and in the latter lines 11-18 gets executed. Moreover, lines 24 and 25 also

executes in the second instance.

With the previous analysis it was concluded that the operation LT.resetLatestThread

detailed by Algorithm8 is in O(n) in the worst case. Although this operation is used

in lines 8 and 16, they will get executed at most once. Therefore, within lines 4-21, the

only statements that gets executedn times would be lines 5,11 and 12. Lett1 be the

time taken for execution of lines 5,11 and 12. Lett2 be the total execution time of lines

6,7 and 9. Lett3 be the total execution time of lines 13-15 and 17-18. Lett4 be the total

execution time of lines 23-26. The running time of the algorithm can be calculated as,

P (n) = nt1 + t2 + T (n) | nt1 + t3 + t4 + T (n)

P (n) = nt1 + t2 + n(cLT + c2 + c3) + c1 | nt1 + t3 + t4 + n(cLT + c2 + c3) + c1

P (n) = nt1 + t2 + n(cLT + c2 + c3) + c1 ≤ n(t1 + t2 + cLT + c2 + c3 + c1) |

nt1 + t3 + t4 + n(cLT + c2 + c3) + c1 ≤ n(t1 + t3 + t4 + cLT + c2 + c3 + c1)

With the above, it can be concluded that P(n) is in O(n) in the worst case. Similarly,

for the best case scenario, the execution passes through thealgorithm only once and all

pointers in LT contains empty references. Therefore, it canbe concluded that P(n) is in

Ω(1) in the best case.

Real-time Thread Pool Design

Figure5.6 illustrates the design of the real-time thread pool and the real-time scheduler

component. The thread pool, which is an instance of theRTThreadPoolExecutorclass

contains worker threads which are objects of theRTWorkerThreadclass that inherits

from the RTSJRealtimeThreadclass.RTThreadPoolExecutoralso contains an instance

of the scheduling algorithmRTScheduling, used for scheduling the execution of worker

threads. For the case study presented, we used an instance ofRTEDFScheduler. The

scheduler controls the execution of worker threads throughtheRTThreadPoolExecutor,
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Figure 5.6: Real-time Thread Pool Class Diagram

by enforcing the aforementioned priority model. Requests are internally represented as

instances ofRTTask, which are assigned to aRTWorkerThreadon creation.RTExecu-

tionInfo instances store summarised execution time history that is used for the schedu-

lability checks done by the scheduler. The level of summaries can be configured and

RTExecutionInfoinstances are stored in a hashtable allowing constant time access and

storage. TheRTThreadPoolExecutorusesthreadListto keep track of all worker threads

and taskListto keep track of all request (represented byRTTask) instances in the sys-

tem. Requests are handed over to the threads using a blockingqueue (requestQueue).

All three of these data structures are made thread safe, and accessing them is managed

using concurrency constructs.

Integration into Axis2 Functionality

Figure5.7summarises the specialised enhancements made to Axis2. Both thread pools

were replaced with real-time thread pools. To take advantage of multi-core / multi-

processor hardware, the executor thread pool was configuredto haven-1 execution

lanes (wheren is the number of cores / processors on the server). Therefore, at a given

time the requests with then-1 earliest deadlines will get executed. This number was

decided based on the optimality principles discussed in [Subramaniam V., 2011] and

the recommendations made in the RTSJ documentation [Oracle Corporation, 2009a].

Moreover, this allows other active components such as the listener to operate freely

without being interrupted by higher priority worker threads used for execution.
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Figure 5.7: RT-Axis2

For illustration purposes, Figure5.7contains 3 execution lanes, each with the currently

active thread highlighted. Both thread pools were set to pre-create the worker threads

at system start-up to avoid the overhead in thread creation.The functionality of the

thread pools are managed by the newly introduced real-time scheduler component. As

observed, it manages the execution of all worker threads across all functional mod-

ules within the enhanced version of Axis2 (RT-Axis2), usingan EDF based scheduling

algorithm. The sequence of events inside RT-Axis2 when a request is received, un-

til the completion of its execution is presented in two sequence diagrams. Figure5.8

summarises the events that take place in the scheduling phase and Figure5.9 the post

scheduling phase.

As mentioned previously, the deadline for each service invocation is conveyed to the

server using SOAP headers. Thus, extracting this information was done by implement-

ing additional functionality in the XML processing module.Upon extraction, this in-

formation is stored and passed through to other modules withuse of an extended Axis2
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Figure 5.8: RT-Axis2 Execution - Sequence of Events - Scheduling Phase

Information Model. When the execution continues onto the SOAP processing mod-

ule, identification of the request is done and any metadata requests such as for WSDL

documents would have the real-time scheduler demote the worker thread to aLow pri-

ority. If the request is identified to be a service invocation, the schedulability check is

carried out immediately using the deadline information nowavailable in the informa-

tion model. Furthermore, execution time history information available through a newly

introduced Execution Statistics Collector module is internally used by the real-time

scheduler to conduct the check. The schedulability check takes place within the SOAP

processing module. If the check fails, further processing of the request is suspended im-

mediately and the client is notified using the already built-in fault mechanism of Axis2.

Conversely, if the new request can be scheduled, the scheduler immediately conducts
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Figure 5.9: RT-Axis2 Execution - Sequence of Events - Post Scheduling Phase

a rescheduling of threads, upon which at most only the execution of a single request

out of all active will be interrupted (following aforementioned Algorithm8). The exe-

cution continues onto a normal service invocation process where the results would be

conveyed back to the client. Once entire processing of the request is completed, house-

keeping activities such as updating execution time historyrecords with times obtained

from the current invocation, takes place in the Statistics Collector Module, prior to the

worker thread returning back to the pool. Once a worker thread completes the assigned

request, the scheduler would re-assign it with the next request at the head of the queue

for execution.

While it is possible to influence the request processing in Axis2 through thehandler

framework rather than making any modifications to the modules themselves, doing so

does not allow complete control over the execution in core modules. As handlers sit

outside the core of Axis2, they have no means of influencing the internal fine-grain

execution of requests. Moreover, the overhead created by the enhancements required for

predictability was kept to a minimum by changing the core modules themselves, which

enabled decision making (i.e. schedulability check) as soon as the required information

is available. Therefore, the required enhancements were made to the core of Axis2.
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5.8 Cluster-Based Implementation

In this section, we present the implementation details of the cluster setup, hosting web

services. A cluster constitutes of a dispatcher and a set of servers that host the services.

With the single server implementation, request processingand execution happened on

the same host. Herein, we refer to all the necessary processing prior to being ready for

service invocation as request processing. This includes but not limited to, obtaining the

SOAP or XML message structure, obtaining the SOAP headers and service parameters

and conducting the schedulability check on a new request. One of the main goals in

the cluster implementation is to free the servers as much as possible of the request

processing overhead, and allocate more processing resources to request execution.

5.8.1 Implementation Choices

A cluster can be implemented in many ways. Here we consider three possible im-

plementations, to choose the one with greatest ability for achieving predictability of

execution. Figure5.10illustrates the three cluster models described below.

A. Dispatching is done in a content-blind manner without the use of any content-

based dispatching algorithm. Request processing and execution both happens at

a cluster server. Direct communication between cluster servers and client.

B. Content-aware or content-blind request dispatching. Dispatching is transparent to

the client and subsequent communication happens between a cluster server and a

client directly. Request processing happens both at the dispatcher and the cluster

server. However, schedulability check is conducted by eachserver individually.

C. Dispatching decisions are made only based on the request content. Dispatching is

transparent to the client and all communication happens between dispatcher and

cluster server directly. Schedulability check happens only at the dispatcher and

so does the majority of the request processing. The request processing happening

at each cluster server is just to fetch the request assigned by the dispatcher.

Cluster Model Ais the simplest cluster implementation with dispatching decisions being

content-blind. As in the case of the stand-alone implementation, the servers hosting the

web services content performs both request processing and request execution. In fact,
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Figure 5.10: Cluster Implementation Models

the enhanced version of Axis2 could be used for the servers with a simple load balancer

or an ESB with request routing capabilities acting as the dispatcher, to implement this

model. While the advantage of this model is its simplicity toimplement, there are many

disadvantages that makes it the least preferred for our implementation. Firstly, there is

no separation of request processing and schedulability check, from service execution.

The servers hosting the services are the servers hosting theservices are not free from the

overhead of the request processing. While the time and resources spent on this maybe

relatively lower compared to the invocation of a CPU bound service, it still demands of

processing resources and will share the processor with the service invocations, making

it an overhead. Secondly, content-blind dispatching does not consider the priority of a

request as a parameter in making dispatching decisions. Lastly, once the request is dis-
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patched to a server, direct communication takes place between the server and the client,

making the cluster server visible to the client. Therefore,a client could directly send

subsequent requests to the particular server by passing thedispatcher. Nevertheless, this

model will result in an increased level of schedulability compared to the single server

implementation, as the requests are distributed multiple servers.

Cluster Model Bcontains a dispatcher which could dispatch requests eitherin content-

aware or content-blind manner. When the latter is used, the cluster performs identically

to Cluster Model A. If the dispatching decisions made are content-aware, request pro-

cessing at the dispatcher ensures the necessary parametersare available to make the

dispatching decisions. Once a request is assigned to a server, subsequent communica-

tion between the server and the client happens directly. Therefore, the dispatcher does

not keep any information about the request dispatched to theserver. As a result, the

request processing at the dispatcher does not involve the schedulability check. As in the

case of a single server implementation, each server in the cluster is required to carry out

request processing that includes the schedulability check. Acceptance or rejection of

a request is conveyed directly to the client and the dispatcher has no knowledge of the

result. Thus, the enhanced version of Axis2 used in the single server implementation

can be directly used as cluster servers in this implementation. This model enables the

dispatching decisions to be content-aware and be made usinga property of a request

such as the deadline or laxity. However, the direct communication with clients pre-

vents the server from keeping any state about the requests. As the servers are required

to conduct the schedulability check, request processing cannot be isolated from request

execution, as intended. Similar to Model A, the servers are directly visible to the clients.

Clients could bypass the dispatcher and send subsequent requests directly to the server,

not being subject to some of the predictability features of the cluster

In Cluster Model C, the cluster is visible to the clients as a single system. Allcom-

munications with the cluster happens through the dispatcher. The dispatcher functions

in a content-aware manner. The request processing that takes place in the dispatcher

includes the additional step of the schedulability check. The intended order of func-

tionality is that a request is first mapped onto a server usingthe dispatching algorithm.

Thereafter the request is checked for schedulability on theselected server. The request

is physically dispatched to the assigned server only upon the success of the schedulabil-

ity check. For the dispatcher to conduct the check for every server in the cluster, it must

have up-to-date information about the requests at each server. This is made possible by
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the design where the dispatcher is the central node of communication in and out of the

cluster. Upon the completion of a service invocation, the results are sent back to the

client through the dispatcher. This enables the dispatcherto update its records about the

request just completed. Moreover, this also enables the dispatcher to queue the requests

assigned to an executor until the server is ready for execution. These steps free the

servers from the overhead of the schedulability check, mostof the request processing

and enables them to use all their processing resources for service execution. The re-

quest processing that happens at each server consumes much less resources compared

to the activities at the dispatcher. Moreover, this would happen only when a request is

dispatched to the server, when it is to be executed. In a predictability standpoint it is

a further guarantee on uninterrupted service execution, which increases the chances of

meeting a requested deadline.

Due to these reasons,Cluster Model Cis chosen as one that would achieve the best

predictability results. The cluster is implemented using aslightly modified version of

the enhanced Axis2 used for the single server implementation, as cluster servers and an

enhanced version of Apache Synapse as the dispatcher. Whilethe enhancements made

are for these specific products, conceptually they could be applied for any cluster setup

hosting web services. The concepts are most suitable for a locally distributed cluster as

the dispatcher is the central point of communication with clients.

5.8.2 Executor Implementation

While Synapse has the ability to support any server hosting web services as executors

in a cluster, we use Axis2 due to our familiarity with the product. Moreover, as the

executors need to ensure predictability of execution, the enhancements presented in

the stand-alone implementation are directly applicable here with minor modifications.

Recall that in a stand-alone web services middleware, request processing, admission

control and request execution all happen within the same middleware instance. This

arrangement at times leads to request execution being interrupted by processing and

admission control of other requests.

With the chosen cluster-based implementation, admission control takes place at the

dispatcher. As a result, request processing is required to take place at the dispatcher,

prior to the admission control mechanism. This allows the executors to be relieved from

admission control and request processing tasks, to be dedicated request executors. To
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minimise the interruption to service execution, requests will only arrive at the executor

when it is scheduled to be executed. Until such time, requests ready for execution

are queued at the dispatcher separately for each executor inthe cluster. Interruptions

to service execution at an executor would only happen when the dispatcher assigns a

request with an earlier deadline than that to the on in execution.

In preparing RT-Axis2 to act just as an executor, the schedulability check is removed

from the request processing. Requests directed to it are directly accepted. If a request

is in execution when the server receives a request from the dispatcher, the new request

will always be having an earlier deadline. After confirmation by the real-time scheduler,

the request currently in execution will be preempted and kept in a queue for resumption

later. The scheduler allows the new request to gain the processor for execution. Another

modification done to the server is for the server to check the preempted queue for re-

quests, at the completion of an invocation. Upon finding requests in the queue the real-

time scheduler will resume their execution in the increasing order of their deadlines.

Moreover,the result of a service invocation is also conveyed back to the dispatcher.

5.8.3 Dispatcher Implementation

The dispatcher functionality is implemented in the clustersetup, using Apache Synapse.

Synapse is a lightweight ESB product widely used for enterprise integration in service

oriented computing. Designed for message mediation, it is optimised for throughput and

processes requests in abest-effortmanner. ESBs differ from the typical web services

middleware where services are hosted, as they mainly function as message exchanges

and gateways where transformations between multiple protocols are supported. The

architecture of Synapse is based on Axis2 and contains the Axis2 engine in its core.

In processing messages, services such as XML processing andSOAP processing are

facilitated by the Axis2 core. Similar to the design of Axis2, Synapse has an exten-

sible architecture. In and out flows of messages through Synapse could be influenced

by programmers using this framework which are modelled asSequenceandEndpoint

objects. Due to such message mediation features, Synapse was an ideal candidate as a

dispatcher in a cluster hosting web services.

Synapse employs several thread pools for its operations. Asillustrated in Figure5.11,

all thread pools were replaced with our real-time thread pools presented earlier as part

of the enhancements. All real-time thread pools pre-createworker threads to avoid
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Figure 5.11: RT-Synapse

any delays in object creation. The listener thread pool and the executor pool were

configured withn-1 execution lanes wheren is the number of cores/processors within

the server. The sender pool is configured to have a single worker thread, which is

the default in Synapse. Replacing the Axis2 core used by Synapse, with a RT-Axis2

core automatically enables Synapse to have the capabilities such as access to deadline

information conveyed through SOAP headers, extraction of deadline information in the

XML processing modules and differentiation of request types. A newly introduced real-

time scheduler component manages the execution of all worker threads throughout the

lifetime of a request inside Synapse. Synapse uses the same information model used in

Axis2 and as a result it was easily replaced with the modified version used in RT-Axis2.

Event

Mediator 1 Mediator 2 Mediator n

Event

Endpoint

Figure 5.12: Synapse In-Sequence

Mediation of messages in Synapse is carried out using an extensible event driven frame-

work which allows programmers to customise the order and type of mediators used

(following the chain of responsibility design pattern [Gamma et al., 1995]). This medi-
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ator sequencing starts with an event, goes through an arbitrary number of mediators and

ends with an endpoint which results in another event. As seenon Figure5.12, an incom-

ing message is sent through a sequence of mediators (in-sequence), chained together,

before being dispatched to the URL given by an endpoint in thesequence. Following

this design pattern, we implemented a custom mediator (RT-LoadBalance Endpoint)

and a sequence (Figure5.13), that can be configured to use one of the aforementioned

dispatching algorithms. It makes use of a standard SynapseAddressing Endpointto

dispatch the request to the URL of the executor at the completion of the sequence.

Message

Context

Sequence

Mediator

In

Mediator

Send

Mediator
RT-LoadBalance

Endpoint

Addressing

Endpoint
Request

Figure 5.13: RT-Synapse In Sequence

In the stand-alone implementation, the server did a multitude of tasks prior to the actual

service invocation. An important design decision made for our cluster implementation

was to keep the interruptions to the processing that happensat an executor, to a min-

imum. By design, all the necessary pre-invocation processing (such as schedulability

checks and rescheduling of request execution on arrival of anew request) is done at the

dispatcher. Thus, the state at each executor and the overallcluster is kept track of at the

dispatcher. As illustrated in Figure5.14, state of an executor is stored in anExecutor-

Contextinstance. State of the overall cluster is kept in aClusterContextinstance. Three

ordered queues (based on increasing deadlines) are used to queue requests assigned to

an executor. Requests are represented in the system as RTTask instances. Requests

waiting to be executed are queued inWaitingQueuewithin theExecutorContext. Once

a request is dispatched for execution, its representation is queued in aSubmittedQueue.

Finally, requests that are preempted from execution are queued in aPreemptedQueueat

the executor.

Any accepted requests with deadlines later than that of the request currently at the ex-

ecutor, are queued inWaitingQueueuntil their turn for execution. At the completion of

a service invocation at the executor, the result is returnedto the client via the dispatcher,
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where the head of theSubmittedQueuewill be removed at the same time. Moreover,

the execution of any requests waiting in thePreemptedQueueis resumed and completed

in the order of their deadline. Similarly, if theSubmittedQueuebecomes empty at the

completion of a request, the request at the head of theWaitingQueueis removed and
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Figure 5.16: Real-time Cluster Class Diagram

dispatched for execution, while its representation (the RTTask instance) is queued in

SubmittedQueue. Using this design ensures, the processing of a request at anexecutor

is only interrupted by the acceptance of a request with an earlier deadline. Figure5.15

summaries the sequence of events when a request is dispatched.

Figure5.16contains the classes used in the cluster implementation. Requests are repre-

sented within the system asRTTaskinstances. By implementing thejava.lang.Comparable

interface, requests can be naturally ordered based on the increasing order of their dead-

lines by the system automatically. This enables the use of priority queues where re-

quests are automatically sorted in their natural ordering at insertion. Using such self

organising priority queues in the implementation results in efficiency in the schedula-

bility check and in dispatching requests. Overall cluster level information is represented

in an instance ofClusterContextwhich would have severalExecutorContextinstances
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equal to the number of servers in the cluster, contained within it. EachExecutorCon-

text instance contains awaitingQueueand asubmittedQueue, two priority queues used

to keep acceptedRTTaskinstances ready for execution and already in execution at the

server, respectively.

RTLoadBalancingEndpointrefers to the endpoint implementation that acts as a custom

mediator in the sequence. It contains the references to aClusterContextinstance and

anRTLoadBalanceAlgorithminstance which stores dispatching algorithm used by the

cluster. State information used y the dispatching algorithm is stored inDistributedAlgo-

rithmContextinstance. Supplementary classes act as factories in creating the hierarchy

of objects used.

5.8.4 Minimising Priority Inversions

Although the techniques we used to minimise priority inversions are product indepen-

dent, we chose to discuss them separately as they are common to both products used.

Priority inversions could impact the execution of a requestin two ways. Firstly. a sce-

nario leading to a priority inversion would naturally incuran unwarranted delay in the

execution of a request. Following G5, activities that may lead to priority inversion sce-

narios such as on-screen reporting of operation statuses, recording of output into log

files were delayed until the actual request execution is completed. Recording or logging

such messages were made using an in-memory model with delayed write, where buffers

corresponding to such activities records the output as and when it happens and direct

it only to the intended physical medium such as a file on disk atthe end of a complete

request execution cycle. This successfully prevented any delays being incurred by such

activities on the request execution.

Secondly, priority inversions may result in an unexpected sequence of process execution

which portrays a different view of the system activities than actually intended. For

instance, a common debugging technique is the use of trace messages either on screen or

written to a log file. When debugging the application, such trace messages will result in

priority inversions where the sequence of events logged, will not be the actual sequence

if not for the trace message itself. Therefore, such trivialdebugging techniques cannot

be used in the development phase of these systems. Instead, specialised tools such as the

Thread Scheduling Visualiser [Oracle Corporation, 2009b] and memory based logging

techniques that do not result in priority inversions have tobe employed.
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The memory based logging technique used, uses an in-memory buffer to store all log-

ging information recorded at each modules along different points of execution of a

request. At the end of an execution cycle, prior to a worker thread returning back to

the thread pool, the logging information is written to a file.The system uses a single

file per server and it is opened for writing at the initialisation of the logging module.

This prevents any priority inversions at file creation. In our implementation the log-

ging information was mostly data stored as strings. In the event of more complex data

types needing to be stored and persisted, it is advised to usedata structures with effi-

cient constant time access to minimise the time spent on updating the log file with the

information.

5.9 Summary

In this chapter, we presented a comprehensive discussion onhow predictability of exe-

cution can be achieved in engineering web services middleware. We provided a set of

guidelines that summarise the most important features suchmiddleware must posses.

These guidelines can be used to build web services middleware from ground-up or to

enhance existing middleware to achieve predictability of execution. The guidelines

mandate that web service requests be explicitly scheduled to meet a processing dead-

line and differentiation to be introduced by giving a higherpriority to early deadlines.

Moreover, they also highlight the importance of conditional acceptance of requests on

the guarantee of meeting the processing deadline. Such specialised admission control

and processing policies must be empowered by proper development libraries, devel-

opment platforms and operating systems that could enforce required priority models in

resource reservations and execution. Finally, the required changes and supporting activ-

ities around their integration into the middleware must ensure that such activities would

not result in unexpected changes of priority, as in the case of priority inversion.

Several design principles and software engineering techniques that guarantees predictabil-

ity of execution were presented and examples of how they wereput to practice in exist-

ing middleware products were discussed as case studies. In applying these techniques,

product specific implementation details were highlighted and generic steps pertaining

to implementing such a feature were separated out for them tobe directly applicable

to any existing middleware product. Most web services middleware exhibit common

core design features such as employing multiple thread pools for request execution.
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Our approach for achieving predictability in such middleware was formed around such

common features making this approach applicable to any web service middleware prod-

uct.

The aforementioned techniques were firstly applied to an existing stand-alone web ser-

vices middleware product. Next, the techniques were used inenhancing a cluster setup

with the stand-alone middleware acting as the executors in the cluster. The functionality

of the dispatcher was modified using the techniques described. Moreover, the change

in its functionality considers predictability when dispatching decisions are made. Apart

from the techniques that could be used in enhancing the middleware products, changes

in supporting activities such as debugging is also requiredin ensuring predictability of

execution. Few techniques that could be used for this purpose were also discussed in

this chapter.
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Chapter 6
Performance Modelling of EDF

Scheduling in Web Services

Middleware‡

This chapter presents a queueing theoretic performance model for a priority based

multi-class preemptiveM/G/1 system using EDF scheduling. A preemptiveM/G/1

queueing model is the best representation for a stand-aloneweb services middleware

using deadline based scheduling. Deriving a performance model allows an analytical

study of its behaviour and facilitates optimisations without the need of an a real system.

Additional performance attributes such as the mean waitingtime of a request allows

the comparison of EDF to other techniques that do not consider execution deadlines

or laxity. Existing models of EDF scheduling systems consider it to be anM/M/1

queue or to be a non-preemptiveM/G/1 queue. While, assuming the service times

to be exponentially distributed results in simpler models,it is deemed unsuitable for

web services workloads as a service could represent any typeof processing. Supporting

general service times allows a model to be valid for any type of workload. The model

approximates the waiting time for a given priority class to be based on four parame-

ters. Higher priority requests already present in the system, being executed prior to a

request from the target class, lower priority requests already present in the system be-

ing executed prior to a request from the target class, higherpriority requests arriving at

‡ Preliminary versions of the work presented in this chapter will be published in [Gamini Abhaya et al.,
2013].
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the system after the target request and being serviced priorto it and the mean residual

service time experienced by the priority class. Approximating additional time caused

by preemptions that may happen in execution is a challengingtask. This is achieved by

estimating it as part of mean time for request completion fora given priority class and

defining it as part of the mean time delay experienced due to jobs in execution, on an ar-

rival. The model is evaluated for accuracy by obtaining analytical results and comparing

them against results obtained by simulation. Results confirm that the model is indeed an

accurate representation of the behaviour in such system with the difference between the

results being a factor of 2 on average in high load conditions. Comparison of the model

to other popular algorithms such as First-Come-First-Served, Round-Robin, Preemp-

tive Priority Ordered and Non-Preemptive Priority Orderedreveal that EDF achieves

a better balance of waiting times among priority classes where it favours high priority

requests while preventing lower priority requests from over starvation. EDF achieves

best waiting times for higher priority classes in lower to moderate loads (0.2 - 0.6) and

records waiting times 6.5 times more than a static priority algorithm in high loads (0.9).

However for the lowest priority classes it achieves comparable waiting times to Round-

Robin and First-Come-First-Served in low to moderate loadsand achieves waiting times

only twice the amount of Round-Robin in high system loads.

6.1 Motivation

With the solutions presented in the previous chapters, algorithms and techniques that

aid in achieving predictability of execution were discussed and evaluated using actual

implementations. The attributes used for the evaluation were the percentage of requests

accepted and the percentage of deadlines met by the systems.However, such attributes

are not common in techniques that do not consider predictability as a performance goal.

Instead, other common performance related attributes suchas the waiting time experi-

enced by a request, are considered.

This chapter presents a performance model for a EDF preemptive scheduling system

that considers mean waiting time of a request as its primary performance attribute. De-

riving such a performance model for a system has many benefits. Firstly, it is an analyt-

ical representation that can be used for studying the systembehaviour, without the need

of its physical presence. Secondly, it saves time and effortby allowing the evaluation

of changes and optimisations to a system prior to its actual implementation. Finally, it
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gives an overview of the behaviour of each task within the system, the effect of other

requests on its execution and allows the estimation of the time it spends at each stage of

the system, such as approximation of the mean waiting time experienced by a request

from a particular priority class.

Existing work on performance models for EDF based systems has been based on queue-

ing theory. [Kargahi and Movaghar, 2006] presents a non-preemptiveM/M/m/EDF

and a preemptiveM/M/1/EDF model. The assumption they make on exponentially

distributed service time may not be a suitable representation for web services work-

loads, as services could be used in exposing any type of system. [Chen and Decreusefond,

1996] present a non-preemptiveM/G/1/./EDF model which can be considered as a

better representation of such workloads due to its validityfor general workloads. The

assumption of Poisson arrivals is an acceptable representation of the bursty nature of

traffic on the Internet [Clark, 2000; Kresch and Kulkarni, 2011]. However, the system

we thrive to model uses preemptive EDF scheduling.

6.2 Problem Statement

Deriving a queueing theory based performance model for a preemptive EDF scheduling

system poses many challenges. The system considered must have stochastic properties.

Therefore deterministic elements in the system such as the schedulability check cannot

be represented in the model. Moreover, for a better representation of tasks and their

deadlines, requests are considered to be grouped into priority classes. The priority of

each class is determined by a static deadline offset assigned to every request of that class

upon its arrival at the system. However, when priority orderof requests are compared

at runtime, the absolute deadlines of the requests are considered. Therefore, the system

enforces the priorities dynamically and unlike static priority systems, a task from a

priority class deemed to be lower priority may get executionpreference over another

due to its earlier deadline (despite the deadline offset being longer). Therefore, on a

new task arrival, lower priority requests present in the system may receive service prior

to the new arrival. The portion of lower priority requests that receive such service needs

to be accounted for in the model. Similarly, not all higher priority requests arriving at

the system after the target task may receive service prior toit. The portion of such higher

priority requests needs to be estimated separately and accounted for in the performance

model.
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In a preemptive system, the execution of a task may be interrupted by the arrival of

higher priority requests. Estimating the waiting time incurred by such preemptions is a

complex task and the use of deadline based scheduling makes it even more challenging.

Unlike with static priority based models, using EDF scheduling means that the estimates

must consider preemptions based on dynamic priority enforcements at runtime, which

means only a portion of the higher priority requests arriving while the target request

is in execution maybe able to preempt it. This portion from each higher priority class

needs to be estimated and accounted for in the model.

Addressing these important concerns, the research question attempted by this chapter

is “How can a performance model be derived for a preemptive EDF scheduling system

?”. In attempting a solution, the following main areas of concern are addressed.

• What are the dependant attributes on the execution of of a task to completion on

a preemptive EDF based system?

• How can the completion time of a request be estimated considering preemptions,

when using EDF scheduling where priorities are enforced dynamically?

• How can these different attributes be used together to derive a performance model

for the overall system?

6.3 Outline of the Solution

The core contribution of this chapter is a performance modelfor an EDF based pre-

emptive scheduling system with Poisson arrivals and a general service time distribu-

tion. [Chen and Decreusefond, 1996] is the only work of its kind that we found at the

time of this research which considers anM/G/1 type system where EDF is used for

non-preemptive scheduling of requests. The proposed modelbuilds on their work to

derive a system for a preemptive resume system (work-conserving). To the best of our

knowledge, such a model has not been previously attempted atthe time of this research.

The significance of the model is supporting arbitrary service times, which makes it ap-

plicable to any type of workload as long as preemptive EDF scheduling is used in a

work-conserving manner.

The model supports arbitrary number of request classes where their priorities are gov-

erned by the deadline offset assigned. A lower deadline offset signifies a higher priority.
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The model is an approximation of the mean waiting time experienced by a request be-

longing to a particular priority class. The mean waiting time is defined based on four

estimates. The time resulted by the execution of the portionof higher priority requests

already found in the system by a newly arrived request belonging to the target priority

class, and receive service prior to the target, the portion of lower priority requests al-

ready found in the system by the target request and receive service prior to the target,

the portion of higher priority requests arriving at the system after the target request and

receive service prior to the target and the mean time delay experienced by the target

request as a result of jobs in execution at the time of arrival. The portions of requests

for the first three parameters mentioned for every priority class are estimated based on

the deadline difference between each of the priority classes and the target class.

The preemptions and their effect on the waiting time are estimated by defining it to be

part of the mean delay incurred by the jobs in execution, at anarrival. This is done by in-

troducing a definition for the mean completion time of a request which is defined as the

sum of its mean service time and the time incurred by any preemptions. The additional

time incurred by the preemptions are estimated using Little’s law [Kleinrock, 1976] and

two cases are considered based on how the deadline differences compare against the

mean completion time. The mean completion time of the systemis incorporated into

the mean delay incurred by the executions at an arrival. It isestimated based on the

probability of a request from a particular priority, be found in service by an arrival.

With this performance model, the goal is to achieve shorter waiting times for higher

priority request classes and longer waiting times for lowerpriority classes. Given the

general service times it supports, the proposed model is notonly valid in the context of

web services but in other systems where priority based preemptive EDF scheduling is

used.

The rest of the chapter is organised as follows. First, a discussion on some of the related

work in this area is presented. Next, Section6.5 presents background information on

the reference model the proposed model is based on. Thereafter, Section6.6 presents

the proposed model for a preemptiveM/G/1/./EDF system. It is followed by a the-

oretical proof of the model in Section6.7. Following that in Section6.8comprehensive

evaluation of the model is presented and compared with others. Section6.9provides a

summary of the contribution.
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6.4 Related Work

Previous attempts at using deadline based scheduling to differentiate service process-

ing can be found in literature. In [Dag and Gokgol, 2006] EDF is used for scheduling

packets for transmission where the deadline is used as the QoS parameter. The transmis-

sion buffer gets sorted according to the deadline and empirical results reveal that EDF

minimises loss rates of packets due to deadline violations.[Li et al., 2007] proposes a

non-preemptive EDF based algorithm that groups tasks with deadlines closer together

and use Shortest Job First scheduling within the group, while using EDF among the

different groups. By grouping tasks with similar deadlines, they try to minimize the

loss rate under various workloads. Similar to the proposed solutions discussed in the

previous chapters, both these works considers the deadlineloss rate as the performance

attribute.

[Kargahi and Movaghar, 2006] presents a method for performance analysis of EDF

scheduling with deadlines at the beginning of service and deadlines at the end of ser-

vice. They consider a non-preemptiveM/M/m/EDF + G system with deadlines at

the beginning of service and a preemptiveM/M/1/EDF +G system for their analy-

sis. They make the assumption that service times are exponentially distributed, arrivals

happen according to a Poisson process and consider generally distributed deadlines in

each system. The system is modelled as a Markov chain and the loss rate is considered

to be the main quality of service measure. The optimality of EDF and the known results

for FCFS are considered as the upper and lower bound respectively for the loss rate.

These two are combined using a multiplier and the fraction ofjobs missed in each case

is obtained through simulation and analytical results.

Work of [Lehoczky, 1996] tries to incorporate the laxity property of a task into a queue-

ing model. The system is modelled as anM/M/1 system and the loss rate is considered

as the main QoS attribute. The state of the system is represented by the laxities or lead

times of the tasks in the system. The devised model is a Markovprocess on the tran-

sitions of lead times in the system upon arrivals and completions of tasks. The model

has been evaluated in heavy traffic conditions by the loss rate the system results in. The

evaluations confirms the importance the scheduling or the queueing discipline in meet-

ing the task deadlines. The main aim of this work has been to bridge the gap between

real-time systems and queueing theory where the former is often associated with task

sets that are more deterministic, while the latter deals with stochastic systems. This
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work is further extended toGI/M/1 systems in [Lehoczky, 1997]. Their assumption

of exponentially distributed service times may not be a proper representation of some of

the web service workloads. Web services can have arbitrary service times as they could

be used to expose any type of system.

The work of [Chen and Decreusefond, 1996] considers a multi-classM/G/1/ system

where EDF is used to schedule requests among an arbitrary number of classes with

soft deadlines. They consider the system to be non-preemptive and base their model

on the non-preemptiveM/G/1 definition found in [Kleinrock, 1976]. They derive

an analytical model based on it to approximate the waiting time of such a system. The

model results in a series of equations that approximate the waiting time for each priority

class. It is proven to be valid using an iterative process andfurther proof is provided

by comparing analytical results with results obtained fromsimulation. This particular

model is the only of its kind that we found to be using EDF basedscheduling with a

M/G/1 queue. Its significance is the fact that the model does not depend on the service

time distribution of the requests. Therefore, it is valid for any type of traffic when

scheduled with EDF within conditions mentioned. Given the model is valid for only

a non-preemptive system, it is not a complete representation of the system we thrive

to model. However, the proposed solution is built on the basics of their model and

extended for a preemptive scheduling system.

6.5 Background

We consider a preemptive-resumeM/G/1 queueing system that is work conserving,

which receives multiple Poisson traffic streams. This system shares some common

characteristics with a non-preemptive version. [Kleinrock, 1976] contains a generic

framework, which helps in calculating mean waiting times for a non-preemptive, work

conservingM/G/1 systems, with multiple request streams. This framework is intro-

duced in this section and used subsequently, in our analytical model.

We consider a system of multiple (N number of) Poisson request streams and study the

system in the point of view of a newly arrived task. We refer tothis newly arrived task

as thetaggedtask. Let us consider the tagged task to be from request stream i where

i = (1, 2, 3..N). The request streams have a priority ordering, such thati has a higher

priority thanj if i < j. Upon its arrival at the system, the tagged task may find a task

already in execution and tasks that have arrived before, queued, waiting for its turn for
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execution. Due to the enforced priorities, some of the existing tasks may be executed

prior to the tagged. Similarly, tasks that arrive at the system after the tagged task, may

also be executed prior to it. Considering these the following notations are used for the

system,

• W0 represents the mean residual service time, or the mean time required to com-

plete the execution of the task currently in service at the time of the arrival of the

tagged task from streami.

• Nj,i represents the mean number of tasks from streamj which arrived at the

systemprior to our tagged task from streami and starts executionprior to our

tagged task.

• Mj,i represents the mean number of tasks from streamj which arrive at the sys-

tem while our tagged task from streami is waiting in the queue (i.e.after our

tagged task), but starts executionprior to the tagged task.

• λi represents the arrival rate for streami.

• ρ represents the total load experienced by the system.

• E(xi) represents the mean of the service time distribution.

• E(x2i ) represents the second moment of the service time distribution.

For aM/G/1 system,W0 is defined by the following formula,

W0 =
N
∑

i=1

ρ
E(x2i )

2E(xi)

=

N
∑

i=1

λiE(x2i )

2
(6.5.1)

Consequently, the mean waiting time for the tagged task fromstreami can be defined

as,

Wi = W0 +

N
∑

j=1

E(xj)(Nj,i +Mj,i) (6.5.2)
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This method of calculating the mean waiting time is valid across all priority queue-

ing disciplines that support general service times. The solution procedure contains two

steps, in which firstly the estimation ofNj,i andMj,i will depend on the service dis-

ciplines. Subsequently, the solution can be achieved with aresulting set of equations

from (6.5.2).

6.6 The Proposed Model

This section presents the proposed model to evaluate the performance of a multi-class

M/G/1 deadline based scheduling system. The evaluation focuses on mean waiting

time of multiple streams of requests being serviced by a single server. As the proposed

model is based on the work by [Chen and Decreusefond, 1996], the same system con-

figuration is followed. Each request stream has its own deadline and the requests are

serviced and queued in the order of their increasing deadlines. We use the terms job and

task synonymously to refer to a request that needs to be serviced and the term class and

stream synonymously to refer to a request stream.

The system hasN number of independent streams through which requests arrive at the

system following a Poisson process, where each stream is identified byi, i = 1, 2, ...N .

Each stream is associated with a different deadline and all requests from the same stream

gets assigned a constant deadline offset. For instance, a request from streami arriving at

the system at timet will have a deadline offset oft+di wheredi is a constant for stream

i. The priority of a stream is decided by the associated deadline offset where streamj,

if i < j ⇒ di ≤ dj . Moreover the difference between deadline offsets of two streams

are denoted byDj,i = dj − di. Scheduling of jobs among different input streams uses

EDF and jobs originating from the same stream are treated in aFirst-Come-First-Served

basis.

The following symbols and notations are used in the text in describing the proposed

model.
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Symbol Description
λi Arrival rate of streami jobs (Poisson arrivals).
Xi Mean of the service time of the distribution for classi.

X2
i Second moment of the service time distribution.

ρi Utilisation of the server by jobs belonging to stream / priority i.
[ρi = λiXi]

Wi Mean waiting time for a request of stream / priorityi.
Ci Mean time required to complete service, for a request of stream / priority

i including preemptions, i.e. Time between starting serviceand finishing
service including preemptions.

W0
i

Mean time delay experienced by an arrival from streami, from the jobs
already in progress.

Ri Mean residual service time for a request of stream / priorityi.

[Ri =
X2

i

2Xi
] for aM/G/1 system.

Nj,i Mean number of jobs from streamj which arrivebeforetagged request
from streami and receive serviceprior to the tagged request.

Mj,i Mean number of jobs from streamj which arriveafter tagged request
from streami and receive serviceprior to the tagged request.

Dj,i Difference in the deadline offsets of streamsi andj. [Dj,i = dj − di].
Table 6.1: Symbols and Notations used in the proposed model

The mean waiting time experienced by a given priority class is considered to be the

main performance attribute approximated by the proposed model. Only waiting time

is considered in this model as it is the most commonly used metric to describe the

performance of a system. As such, the performance of EDF could be compared with

a multitude of algorithms and techniques in used in similar systems. The aim of the

model is to approximate the waiting time of any given priority class and define it, based

on the impact of other tasks either queued for service or executing in the system.

We derive the proposed model in two parts. Firstly, we followthe method presented

in [Chen and Decreusefond, 1996] to derive an initial overall equation for the system

that identifies the parameters based on the generic equationgiven by6.5.2. Secondly,

we approximate the time incurred by preemptions as part of the definition for mean

time delay experienced by a priority class, due to the jobs currently in execution and it

is presented separately. Since EDF is used for scheduling requests, the decision made

by the server in selecting the next request to be executed is independent of its service

time. Therefore, to arrive at the initial overall equation that estimates waiting time of a

request stream, we follow the equation6.5.2. We estimate the parametersNj,i andMj,i
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based on absolute deadlines considered by EDF scheduling.

6.6.1 Deriving equations for caseN = 2

We consider the simplest scenario of having two request streams whereN = 2 and ob-

serve the following on its behaviour. We consider stream 1 tohave a higher priority than

stream 2 as requests from stream 1 have shorter deadlines than requests from stream 2

t + d1 < t + d2. In a typical priority based system that uses Head-of-line queueing

discipline [Kleinrock, 1976] higher priority tasks are always serviced ahead of lower

priority tasks. Given that the priority is determined by theabsolute deadline in the sys-

tem under consideration, EDF scheme allows the processing of a portion of requests

from stream 2 ahead of a newly arrived request from stream 1. Requests belonging to

the same stream albeit being deadline ordered exhibits a service order of FCFS due to

the absolute deadlines being considered (due to the same deadline offset used for all

stream members).

Firstly, we consider the viewpoint of a tagged request belonging to stream 1:

• All requests belonging to stream 1 found in the queue by the tagged request upon

its arrival at the system, will be serviced prior to the tagged request. Requests

from stream 1 arriving at the system after the tagged requestwill be served later.

Therefore,N1,1 = λ1W1 andM1,1 = 0.

• Requests from stream 2 that are already present in the queue may have absolute

deadlines that are prior to the absolute deadline of the tagged request. While there

will be on averageλ2W2 requests from stream 2 already present in the queue,

only requests arrivingat leastD2,1 time before and still in the queue afterD2,1

time, will receive service prior to the tagged request. Figure 6.1 illustrates this

scenario. ConsiderI to be the tagged request from stream 1. Out of all stream 2

requests already in the queue, requestJ is the one with the latest absolute deadline

that gets service prior to the tagged request. Therefore, a request from stream 2

to be serviced prior to tagged must have arrived at the systemat leastD2,1 time

units before the tagged request and have waited in the queueD2,1 amount of time.

Considering this,N2,1 = max(0, λ2(W2 −D2,1)) can be estimated.

• Due to the difference in the deadline offsetsd1 < d2 requests from stream 2

arriving at the system after the tagged request will be executed after the tagged.
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t1 t1+ d1

t2 t + d2 2

( d - d )2 1

J

I

Figure 6.1: Deadline difference between requests

Hence,M2,1 = 0.

Next we consider the viewpoint of the tagged request from stream 2:

• Due to the difference in the deadline offsetsd1 < d2 stream 1 requests already

present in the queue when the tagged request arrives at the system, will be ser-

viced prior to the tagged. Therefore,N1,2 = λ1W1.

• Once the tagged request arrives at the system, a portion of the stream 1 requests

arriving subsequently at the system will have deadlines earlier than the tagged

request. With reference to Figure6.1, if the requestJ is the tagged request,I

can be considered as the last stream 1 request that arrive thereafter and receive

service prior to the tagged. It is such that any stream 1 request that arrive at the

system after the tagged requestno laterthanD2,1, will receive service prior to the

tagged. However, given the waiting time of stream 2, the tagged request maybe

in the queue for a time period less thanD2,1, given thatW2 < D2,1. Considering

these, it can be estimated thatM1,2 = λ1min(W2,D2,1).

• Due to the constant deadline offset of a request stream, all of the already queued

requests from stream 2 will be executed prior to the tagged requests. Similarly,

requests from the same stream arriving at the system after the tagged request will

have an absolute deadline that is later than the tagged. Hence, all such requests

will only be serviced after the tagged request. Therefore, it can be easily con-

cluded thatN2,2 = λ2W2 andM2,2 = 0.

Next, we substitute these estimates directly in Equation6.5.2and receive the following
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two equations that estimates the waiting times for streams 1and 2:

W1 = W0 +X1λ1W1 +X1 max(0, λ2(W2 −D2,1))

= W0 + ρ1W1 + ρ2 max(0, (W2 −D2,1))

W2 = W0 +X1λ1W1 +X2λ2W2 +X1λ1 min(W2,D2,1)

= W0 + ρ1W1 + ρ2W2 + ρ1 min(W2,D2,1)

6.6.2 Deriving the generic equation

Parts of the two equations we achieved above can be generalised for the case of more

than two streams. The reasoning provided for obtaining the two equations stands the

same for any number of levels or equations. The equation for the waiting time of each

request stream is made up of four distinct parts. The mean residual service time rep-

resented byW0 is common to all request streams. The remaining three parts can be

generalised for the rest of request streams, from the view point of a tagged request from

streami.

From the earlier discussion we can conclude that all requests from higher priority

streams that arrive prior to the tagged request will receiveservice before the tagged

request. We could generalise the number of such requests as follows,

Nk,i = λkWk 1 ≤ k ≤ i

A portion of requests from lower priority streams that arrive at the system prior to the

tagged request, will receive service prior to the tagged dueto the earlier deadlines they

posses. The number of such requests can be estimated for any request stream with the

following,

Nk,i = λk max(0,Wk −Dk,i) i < k ≤ N

The remaining part of the equation is the representation of requests from higher priority

streams that arrive at the system after the tagged request and receive service before the

tagged request, due to the earlier deadlines they posses. This number could be estimated
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with the following,

Mk,i = λk min(Wi,Di,k) 1 ≤ k < i

In turn these generic terms could be used in Equation6.5.2 to arrive at the generic

equation for the waiting time of any streami.

Wi = W0
i
+

i
∑

k=1

ρkWk+

N
∑

k=i+1

ρkmax(0,Wk−Dk,i)+

i−1
∑

k=1

ρkmin(Wi,Di,k) (6.6.1)

The termW0 has been replaced byW0
i

as the system under consideration is a preemp-

tive resume system.W0
i

is the mean residual service time of the system for thei th

priority. Herein, only residual service times of streams 1 to i are considered as only a

higher priority request (k where1 ≤ k < i) may preempt a request (of streami) in

execution.

6.6.3 Estimation of the mean delay incurred by jobs in execution

In Equation6.6.1,W0
i
represents the mean delay incurred by the jobs in execution,at an

arrival. While this estimation is straightforward [Kleinrock, 1976] in a non-preemptive

system, a preemptive scheduling system tends to be more complex. Herein, we consider

the system to be preemptive resume where a request of lower priority in execution may

be preempted by a newly arrived request with a higher priority and resumes execution

later. With EDF scheduling, the priority of a request is decided at runtime by its absolute

deadline, such that the request with the highest priority isthe one with the earliest

deadline, at any given time.

For such aM/G/1/./EDF system we derive the mean residual service time as follows.

We define the random variableCi as the mean time required to complete service for a

request from streami, including the time the request is preempted. During an average

service completion interval of a streami request, the mean number of streamj jobs

(where streamj is of higher priority and can preempt a classi job in execution) that
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Ci

s

Figure 6.2: Request completing execution withinDi,j

arrive at the system can be estimated asλjCi. If all such classj requests preempt the

classi request in service and execute until completion,Ci could be defined as,

Ci = Xi +
i−1
∑

j=1

(λjCiXj) (6.6.2)

The execution of a request may happen in a staggered manner due to preemptions that

take place. Recall that the use of EDF scheduling enforces the priorities dynamically at

runtime based on absolute deadlines. As such, only a portionof classj requests are able

to preempt an already executing classi request. Therefore, a request from streamj will

be faced with the following two conditions for a preemption to happen. As illustrated in

Figure6.2, it is possible for a request to complete execution with preemptions within the

time periodDi,j = (di − dj). In this instance, tasks with earlier deadlines (compared

to the streami task in execution) that arrive within the time period(Di,j −Ci) will not

result in the preemption of requesti, as it has already completed execution.

Figure 6.3 illustrates a scenario where the staggered execution of therequest from

streami continuing beyond the time periodDi,j. In this instance, tasks from stream

j arriving within the periodCi, but beyondDi,j would not result in the preemption, as

their absolute deadlines would be later than that of the taskin execution at the time.

Therefore, we could assume that the preemption of a request in execution from stream
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Ci

si

Figure 6.3: Request completing execution beyondDi,j

i would only take place within the least ofCi andDi,j for any giveni andj.

Considering the mentioned scenario, Equation6.6.2for the completion time for a class

i request, could be modified as follows:

Ci = Xi +
i−1
∑

j=1

(λj min(Di,j, Ci)Xj)

Ci = Xi +

i−1
∑

j=1

(ρj min(Di,j, Ci)) (6.6.3)

Let j∗ = subscriptj = 1, 2, ..i − 1 such thatDi,j ≤ Ci

Let j
′
= subscriptj = 1, 2, ..i − 1 such thatDi,j > Ci
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Ci = Xi +
∑

j∗

(ρj∗Di,j∗) +
∑

j
′

(ρj′Ci)

Ci(1−
∑

j
′

ρj′ ) = Xi +
∑

j∗

(ρj∗Di,j∗)

Ci =
Xi +

∑

j∗(ρj∗Di,j∗)

(1−
∑

j′ ρj′ )
(6.6.4)

LetPi be the probably of a request from streami being in service at an arrival.Pi could

be defined as:

Pi = λiCi (6.6.5)

Substituting6.6.4in 6.6.5,

Pi = λi

(

Xi +
∑

j∗(ρj′Di,j∗)

(1−
∑

j
′ ρj′ )

)

=
ρi +

∑

j∗(ρj′Di,j∗)λi

(1−
∑

j
′ ρj′ )

. (6.6.6)

The mean delay experienced by a new arrival from the jobs already in execution, can be

defined as the sum of all probabilities of a job of a given classis in service, times the

mean residual service time for the given class [Kleinrock, 1976]. Therefore, we could

defineW0
i
,

W0
i
=

i
∑

k=1

(

PkRk

)

(6.6.7)

Substituting6.6.6in 6.6.7,

W0
i
=

i
∑

k=1

Rk

(

ρi +
∑

j∗(ρj′Di,j∗)λi

(1−
∑

j′ ρj′ )

)

(6.6.8)

whereRi = Xi
2

2Xi
for anM/G/1 system [Kleinrock, 1976]. Note that when the two
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extreme cases are considered,

If Ci ≤ Di,j ∀j, thenW0
i
=
∑i

k=1Ri

(

ρi
(1−

∑
j ρj)

)

and ifCi > Di,j ∀j, thenW0
i
=
∑i

k=1Ri

(

ρi +
∑

j(ρjDi,j)λi

)

In conclusion, the following generic expression estimatesthe mean waiting time for a

given classi in aM/G/1/./EDF system.

Wi = W0
i
+

i
∑

k=1

ρkWk+
N
∑

k=i+1

ρkmax(0,Wk−Dk,i)+
i−1
∑

k=1

ρkmin(Wi,Di,k) (6.6.9)

Given the preemptive resume scheduling discipline considered, the mean waiting times

must satisfy the conservation law for preemptive resumeM/G/1 queues [Bolch et al.,

2006; Kleinrock, 1976].

i
∑

k=1

ρkWk =
σiW0

i

1− σi
(6.6.10)

whereσi =
∑i

k=1 ρk. The waiting time for each priority level could be estimated

by using equation6.6.9and solving the resultant set of non-linear equations underthe

constraint given by equation6.6.10.

6.7 Theoretical Analysis

This section presents a theoretical analysis of the proposed model presented in the ear-

lier section. We prove that the system ofN non-linear equations given by6.6.9has

exactly one solution, following the solution strategy usedby [Chen and Decreusefond,

1996]. First, we transform equation6.6.9in to the following form using the conserva-

tion law specified in equation6.6.10.
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Wi = W0
i
+

i
∑

k=1

ρkWk +

N
∑

k=i+1

ρk max(0,Wk −Dk,i) +

i−1
∑

k=1

ρk min(Wi,Di,k)

=

[

W0
i
+

σiW0
i

1− σi
+

N
∑

k=i+1

ρk max(0,Wk −Dk,i)

]

+

i−1
∑

k=1

ρk min(Wi,Di,k)

=

[

W0
i

1− σi
+

N
∑

k=i+1

ρk max(0,Wk −Dk,i)

]

+

i−1
∑

k=1

ρk min(Wi,Di,k)

(6.7.1)

It can be observed that the waiting time calculation using the above equation requires an

iterative process. We consider a particular classI, 1 < I ≤ N and make the assumption

that Wk, I < k ≤ N are known. With this assumption, all the terms bracketed in

equation6.7.1are known and can be considered constant. Mean waiting timeWI can

be estimated by solving the equation in the form of,

X = C +
∑

1≤j<I

aj min(X, bj) (6.7.2)

whereaj, bj andC are known to be positive constants. Moreover, it is also known that
∑I−1

j=1 aj < 1 (as
∑I−1

j=1 ρj < ρ < 1 is known). By transforming the equation to the

above form, which is the starting point for the proof presented in [Chen and Decreusefond,

1996], it can be concluded that the same proof holds equally true for equation6.7.1and

it has only a single solution. Similarly, the most direct wayof solving the set of equa-

tions is also to following the iterative process as outlinedin [Chen and Decreusefond,

1996].

6.8 Evaluation

We evaluate the proposed model for accuracy of estimation, using analytical and sim-

ulation results. The analytical evaluation is done by manually calculating the waiting

times using equation6.6.9.
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6.8.1 Theoretical Evaluation

The model is evaluated for the following scenario. The computations demonstrate the

iterative process involved with solving the set of equations. The system considered for

the evaluation has three priority levels.

Deadlines
d1 1500 ms
d2 4000 ms
d3 6000 ms

Deadline differences
D2,1 2500 ms
D3,1 4500 ms
D3,2 2000 ms

Arrival Rates
λ1 0.0005 ms−1 (5 tasks per second)
λ2 0.0002 ms−1 (2 tasks per second)
λ3 0.0001 ms−1 (1 tasks per second)

Service Times
X1 502.5 ms

X2 1502.5 ms

X3 2502.5 ms

System Load
ρ1 0.25125
ρ2 0.3005
ρ3 0.25025

Second Moments

X2
1 335673

X2
2 2340673

X2
3 6345673

Table 6.2: Sample parameters

We initiate the process by calculating the components needed to find the mean delay

incurred by tasks in execution, at an arrival (W0
i
). Using equation6.6.4,

For i = 1,

C1 = X1 = 502.5

For i = 2,

C2 = X2 + ρ1 min(2500, C2)

The iterative process to calculateC2 is started by considering it to be0 on the right side

of the equation. The resultant value forC2 is used thereafter for the right side of the

equation in the subsequent iterations until the results converge on a single value.
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1st iter. C2 = 1502.5

2nd iter. C2 = 1502.5 + 0.25125 × 1502.5 = 1880

3rd iter. C2 = 1502.5 + 0.25125 × 1880 = 1974.85

...

9th iter. C2 = 1502.5 + 0.25125 × 2006.64 = 2006.66

10th iter. C2 = 1502.5 + 0.25125 × 2006.66 = 2006.67

Similarly for i = 3,

C3 = X3 + ρ1 min(4500, C3) + ρ2 min(2000, C3)

1st iter. C3 = 2502.5

2nd iter. C3 = 2502.5 + 0.25125 × 2502.5 + 0.3005 × 2000 = 3732.25

3rd iter. C3 = 2502.5 + 0.25125 × 3732.25 + 0.3005 × 2000 = 4041.23

...

9th iter. C3 = 2502.5 + 0.25125 × 4144.8 + 0.3005 × 2000 = 4144.88

10th iter. C3 = 2502.5 + 0.25125 × 4144.88 + 0.3005 × 2000 = 4144.9

Next, we substitute these values in equation6.6.5,

P1 = 0.0005 × 502.5

= 0.25125

P2 = 0.0002 × 2006.67

= 0.40133

P3 = 0.0001 × 4144.9

= 0.41449

With these values, we can calculate the mean delay incurred by tasks in execution, for

each stream using equation6.6.7,
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W0
1

= P1R1

= 0.25125 × 335673
2×502.5

= 83.918

W0
2

= P1R1 + P2R2

= 0.25125 × 335673
2×502.5 + 0.40133 × 2340673

2×1502.5

= 396.518

W0
3

= P1R1 + P2R2 + P3R3

= 0.25125 × 335673
2×502.5 + 0.40133 × 2340673

2×1502.5 + 0.41449 × 6345673
2×2502.5

= 922.036

Next we calculate the following,

W0
1

1−σ1
= 83.918

0.74875

= 112.08

W0
2

1−σ2
= 396.518

0.44825

= 884.59

W0
3

1−σ3
= 922.036

0.198

= 4656.747

These values can be directly used for the final step of calculating the individual waiting

time. We choose equation6.7.1in place of equation6.6.9, as it contains more constants.

Herein, the calculation is an iterative process which must be done in the reverse order

of priorities i.e. starting from the priority 3, then backwards.

For i = 3,

W3 = 4656.747 + ρ1 min(W3, 4500) + ρ2 min(W3, 2000)

As done in the iterative process earlier, we start the process with 0 for the value ofW3

on the right side of the equation.

1st iter. W3 = 4656.747

2nd iter. W3 = 4656.747 + 0.25125 × 4500 + 0.3005 × 2000 = 6388.372

3rd iter. W3 = 4656.747 + 0.25125 × 4500 + 0.3005 × 2000 = 6388.372

With the estimation forW3, we proceed to calculateW2,

For i = 2,

W2 = 884.59 + ρ3 max(0, 6388.372 − 2000) + ρ1 min(W2, 2500)
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1st iter. W2 = 884.59 + 0.25025 × 4388.372 = 1982.78

2nd iter. W2 = 884.59 + 0.25025 × 4388.372 + 0.25125 × 1982.78 = 2480.95

3rd iter. W2 = 884.59 + 0.25025 × 4388.372 + 0.25125 × 2480.95 = 2606.12

4th iter. W2 = 884.59 + 0.25025 × 4388.372 + 0.25125 × 2500 = 2610.91

5th iter. W2 = 884.59 + 0.25025 × 4388.372 + 0.25125 × 2500 = 2610.91

All terms known,W1 could be calculated,

For i = 1,

W1 = 112.08 + ρ2 max(0, 2610.91 − 2500) + ρ3 max(0, 6388.372 − 4500)

W1 = 112.08 + 0.3005 × 110.91 + 0.25025 × 1888.372

= 112.08 + 33.33 + 472.565

= 617.975

Results

W1 = 617.98 ms

W2 = 2610.91 ms

W3 = 6388.37 ms

With the results obtained, it can be observed that priority class 1 which has the highest

priority, receives the best service with the lowest waitingtime among the classes. As

intended, priority classes 2 and 3 have the higher waiting times with class 3 having the

longest. This is due to requests from class 2 and 3 in execution being preempted by

higher priority classes arriving at the system due to their earlier deadlines.

6.8.2 Empirical Evaluation

The evaluation of the proposed model was carried out using direct substitution (ana-

lytical) and comparing it with a simulated version of the scenario. The waiting times

obtained in the analytical evaluation, by value substitution in the proposed model were

compared against waiting times measured by simulations using Omnett++ [Varga, 2001,

2010], a discrete event simulator.

The main metric measured and used for comparisons between the two methods is the

mean waiting time for each priority class and for the overallsystem. As a secondary

parameter, we also measured the deadline miss rate reportedfor each priority class. We
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consider systems with 2 priority classes up to a maximum of 5 priorities for brevity.

Each system was tested for five load conditions. We considered the system loadρ < 1

to be 0.3 for lowest and 0.9 as the highest. The total load is divided amongst the priority

classes in the reverse order so that the lowest numbered priority class is responsible for

the highest load and in turn has the highest priority in the system. For instance, a 3

priority level system with 0.6 as the system load will have load distributed in a 3:2:1

ratio ρ1 = 0.3, ρ2 = 0.2 andρ3 = 0.1. As our estimate is independent of the service

distribution, we use uniformly distributed service times for most cases. Furthermore, we

also use exponentially distributed service times for some of the simulations to analyse

the estimates for different service time distributions.

Arrival rates are calculated based on the load and mean service times
(

λi =
ρi
Xi

)

. Dead-

lines were picked considering the maximum service time values possible for each prior-

ity class. Performance measures on each simulation were a data set of 50,000 requests.

Simulations involved a warm-up period of 10,000 to let the system arrive at a steady

state prior to collection of data and a cool-down period of 5000 requests to ensure the

measurements were not influenced by such phenomenon [Heidelberger, 1995].

6.8.3 Analytical Results

As the system is modelled as a priority based preemptive resume M/G/1/./EDF

system, the following characteristics were expected from the waiting time estimates ob-

tained from the model. The system represented by the proposed model favours shorter

deadlines and considers them to be higher priority enablingthem to have shorter wait-

ing times over other requests in the system. However, with deadlines being the deciding

factor ensures that lower priority classes does not starve,as in the case of traditional

static priority based preemptive systems.

Figures6.4contains plots of the estimated waiting times for 4 systems with the number

of priority classes ranging from 2 to 5. Tables6.3, 6.4 and6.5 contains the detailed

waiting times estimated. The estimates for each class follows the intended behaviour

of shorter waiting times for higher priority and longer waiting times for lower priority

classes. Moreover, the difference in waiting times betweenpriorities gets larger with

the total load in the system. At higher loads, lower priorityrequests have to wait longer

for processing resources. The difference in arrival rates between the classes is the cause

for this behaviour.
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Figure 6.4: Analytical Results - Uniformly Distributed Service Times
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2 Priorities 3 Priorities
Load P1 P2 Overall P1 P2 P3 Overall
0.3 125.104 436.729 169.335 59.039 223.425 424.866 106.527
0.45 214.464 1029.76 331.685 97.0203 466.997 1058.17 210.917
0.6 333.61 2327.19 619.325 143.141 972.925 2450.24 406.316
0.75 861.652 4442.95 1373.93 354.148 2211.5 4807.55 906.113
0.9 3177.39 11087.2 4307.37 2101.32 4405.02 11376 2981.27

Table 6.3: Analytical Results - Uniformly Distributed Service Times

Load P1 P2 P3 P4 Overall
0.3 34.1952 129.461 276.767 409.01 78.4277
0.45 55.0459 252.051 631.519 1051.94 158.155
0.6 79.1888 451.273 1492.4 2486.77 311.752
0.75 147.913 1320.77 3027.1 4985.03 696.086
0.9 1631.16 2924.13 5693 11398.4 2410.48

Table 6.4: Analytical Results - 4 Priorities - Uniformly Distributed Service Times

Load P1 P2 P3 P4 P5 Overall
0.3 22.3253 83.7994 186.012 308.476 401.435 63.7025
0.45 35.4221 154.99 395.207 740.459 1050.01 130.204
0.6 50.156 260.815 859.015 1708.48 2506 258.034
0.75 80.7494 829.822 1982.04 3529.36 5077.9 588.488
0.9 1381.02 2296.32 3812.73 6774.68 11410.4 2110.85

Table 6.5: Analytical Results - 5 Priorities - Uniformly Distributed Service Times

6.8.4 Distribution Independence Evaluation

Modelling a system as anM/G/1 queue allows the performance model to support

arbitrary service times. The expectation is the system exhibits similar behaviour for

any type of service time distribution. As such the proposed model is evaluated next for

exponentially distributed service times. Figure6.5 illustrates the estimates arrived at,

using the model.
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Figure 6.5: Analytical Results - Exponentially Distributed Service Times
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As depicted in Figure6.5, the higher priority classes (with shorter deadlines) having

lower waiting times compared to the lower priority classes (with longer deadlines).

Moreover, it can be observed that lower priority classes areestimated to have longer

waiting times and be penalised more as the load increase. Comparing these trends with

Figure6.4, it can be concluded that the model predicts similar patterns for both service

time distributions, thereby confirming the validity of the model.

6.8.5 Analytical vs. Simulation Results Comparison

Next the proposed model is evaluated for its accuracy of estimation of a real priority

based preemptive scheduling system withM/G/1/./EDF properties. For this, we

compare the analytical results we obtained from value substitution, with the results

obtained from simulation runs using Omnet++. Figures6.6, 6.7, 6.8 and6.9 contain

comparisons of waiting times for scenarios from 2 - 5 priority classes. Both analytical

and simulation results exhibit the same trends in waiting times for each priority class,

which confirms that the model is indeed valid for any service time distribution.

With the priority based model, the goal is to favour higher priority requests thereby

reducing their waiting times for processing resources. As the proposed model follows

the conservation laws for a priority based preemptive scheduling system [Bolch et al.,

2006; Kleinrock, 1976], work is neither created nor lost. Accordingly, favouringhigher

priority classes end up increasing the waiting times of lower priority classes. This is

clearly visible from both analytical and simulation results obtained.

Considering the values obtained from the two, it can clearlybe seen that the difference

between analytical and simulation results are smaller in lower load conditions and the

difference increases over higher loads. Simulation results suggest that lower priority

classes are penalised less than the estimate given by the model. This is noticed in the

actual waiting times in Table6.6 for 3 priority classes and follows a similar trend with

higher number priorities.
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Analytical Simulation
Load P1 P2 P3 Overall P1 P2 P3 Overall
0.3 59.039 223.425 424.866 106.527 74.2711 234.884 358.496 116.985
0.45 97.0203 466.997 1058.17 210.917 169.644 509.101 767.608 260.318
0.6 143.141 972.925 2450.24 406.316 429.908 1026.92 1546.4 593.317
0.75 354.148 2211.5 4807.55 906.113 1193.14 2120.22 3029.9 1452.07
0.9 2101.32 4405.02 11376 2981.27 5077.55 6581.77 8135.78 5494.81

Table 6.6: Waiting Times - 3 Priority Classes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

W
ai

tin
g 

T
im

es
 (

m
s)

Overall Load

Comparison of Anlytical and Simulation Waiting Times - Uniform, 2 Priorities

Analytical P1
Analytical P2

Simulation P1
Simulation P2

Figure 6.6: Comparison of Analytical and Simulation Results - 2 Priority Classes
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Figure 6.8: Comparison of Analytical and Simulation Results - 4 Priority Classes
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Figure 6.9: Comparison of Analytical and Simulation Results - 5 Priority Classes

6.8.6 Comparison with Non-PreemptiveM/G/1/./EDF system

The theoretical proof of the proposed model was based on the work of [Chen and Decreusefond,

1996], in which a model for estimation of waiting times for a Non-preemptiveM/G/1/./EDF

system is discussed in detail. While modelling a preemptiveM/G/1/./EDF is quite
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complex due to the preemptions, using such a model would ensure that higher prior-

ity classes receive better waiting times. Moreover, a preemptive scheduling system

using EDF as the algorithm is a better representation of the middleware supporting pre-

dictability that we have discussed in previous chapters.

Figures6.10 - 6.13 contains the comparison of analytical results obtained from the

proposed model and the model discussed in [Chen and Decreusefond, 1996].
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Figure 6.10: Comparison of Analytical Results - 2 Priority Classes
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Figure 6.11: Comparison of Analytical Results - 3 Priority Classes
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Figure 6.12: Comparison of Analytical Results - 4 Priority Classes
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Figure 6.13: Comparison of Analytical Results - 5 Priority Classes

As expected, the proposed model favours the higher priorityclasses and estimates lower

waiting times for those classes compared to the non-preemptive model. Estimates from

the non-preemptive model results in shorter waiting times for lower priority classes

compared to the preemptive estimates. Moreover, the differences in waiting times be-

tween priority classes for a given load tends to be more uniform with the non-preemptive
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estimates, while in the preemptive scenario the differences get larger as the priority be-

comes lower.

Non preemptive scheduling ensures that a task in execution is never interrupted by

newly arriving tasks, irrespective of their priority. The request queue in such a system

only grows with request that are yet to be executed. The queuein a preemptive schedul-

ing system contains tasks that are yet to be executed as well as tasks that have been

partially executed and were preempted by incoming higher priority tasks. This results

in non-preemptive systems having comparatively better waiting times for lower prior-

ity requests. Conversely, preemptive systems favour high priority requests by letting

them use the processing resources at the earliest possible by suspending the execution

of lower priority requests and resuming them later when there are no higher priority

requests. Hence, the proposed model returns better waitingtimes for higher priority

requests.

6.8.7 Comparison with simpleM/G/1 priority systems

Next we compare the analytical results obtained from the proposed model with that of

a simple priority basedM/G/1 queueing system. Herein, the priority is enforced as a

static property where they are assignedapriori and enforced in a manner where a higher

priority request will always preempt a lower priority request. As a result the default

behaviour would be for a request with a higher priority to always preempt a request of a

lower priority, upon its arrival at the system. We also include the non-preemptive EDF

based model by [Chen and Decreusefond, 1996] as well as a simpleM/G/1 queue for

this comparison.

Figures6.14- 6.17contain the comparison of waiting times for each priority class for

different priority scenarios with 2 - 5 priorities. In each scenario the simpleM/G/1

models result in lower waiting times than the two EDF based models for higher priority

classes. This observation is valid for all load conditions.Moreover, the two simple

M/G/1 models exhibit an almost linear increase in waiting times with system load for

higher priority classes, whereas the two EDF based models show an exponential type

increase.
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Figure 6.14: Comparison with simpleM/G/1 priority systems
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Figure 6.15: Comparison with simpleM/G/1 priority systems
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Figure 6.16: Comparison with simpleM/G/1 priority systems
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Figure 6.17: Comparison with simpleM/G/1 priority systems

When lesser priority classes are considered, this effect isreversed with simpleM/G/1

models resulting in higher waiting times for lower priorityclasses than the EDF based

models. It can be observed that the simple models result in waiting times that are a

couple of times than the EDF models for the lowest priority inthe system and the

difference becomes larger with the number of priorities in the system. Moreover, note

that both preemptive and non-preemptive simpleM/G/1 systems record the same mean

waiting time for the lowest priority class. This phenomenonis due to the waiting times

the lowest priority class experience and the mean residual service time calculation in

each model being calculated the same way for the lowest priority.

The fixed priorities used in simpleM/G/1 systems result in comparatively shorter

waiting times for higher priority requests. Herein, a request from a higher priority class

can preempt a request from a lower priority class any time in its execution. Similarly,

this also leads to lower priority requests being penalised heavily especially in high load
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conditions due to the larger number of higher priority requests.

With the absolute deadlines deciding the priority of a request at a given time in the

EDF based scenarios, there are instances where a request from a lower priority class

in execution will have the higher priority at a given time than a newly arrived request

from a higher priority class due to its absolute deadline being earlier than that of the

newly arrived. While this behaviour results in slightly longer waiting times for higher

priority classes than simpleM/G/1 models, this method prevents lower priorities from

starvation and tries to achieve a better balance between classes. However, the intended

priority levels and service differentiation is maintainedas intended. Such a balancing

techniques that reduce starvation of lower priority requests are considered as important

strategies and favoured in priority based systems.

6.8.8 Comparisons with Other Algorithms

Next, we compare the EDF based preemptive scheduling algorithm implemented with

the characteristics of anM/G/1 queue with First-Come-First-Served (FCFS), Round-

Robin (RR) and Non-Preemptive Priority Ordered (PRO), three popular algorithms that

are widely used in distributed and web systems. Herein, eachalgorithm is implemented

using Omnet++ and are exposed to different simulated trafficconditions. We measure

the waiting times for each priority class and the overall waiting time of the system,

over five, low to high system load conditions. The FCFS systemqueues requests in the

order of their arrival and does not consider the deadline requirement in any part of the

scheduling process. Moreover, it does not differentiate between the priority classes in

request processing or execution. The RR system uses separate queues for each priority

class and selects requests among them for execution in a round-robin manner. The PRO

system is non-preemptive and enforces priorities in a static way where a class designated

to be a higher priority is always given the preference over another.

Figures6.18to 6.22contain the comparisons for each priority class as well as the overall

waiting time comparison between the systems. The PRO algorithm achieves the lowest

waiting times for the highest priorities in every configuration.

200



CHAPTER 6. PERFORMANCE MODELLING OF EDF SCHEDULING IN WEB
SERVICES MIDDLEWARE

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

W
ai

tin
g 

T
im

es
 (

m
s)

Overall Load

Comparison of Simulation Waiting Times - Uniform, 2 Priorities - P1

EDF-P1
FCFS-P1

RR-P1
PRO-P1

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

W
ai

tin
g 

T
im

es
 (

m
s)

Overall Load

Comparison of Simulation Waiting Times - Uniform, 2 Priorities - P2

EDF-P2
FCFS-P2

RR-P2
PRO-P2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

W
ai

tin
g 

T
im

es
 (

m
s)

Overall Load

Comparison of Simulation Waiting Times - Uniform, 2 Priorities - Overall Load

EDF
FCFS

RR
PRO

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

W
ai

tin
g 

T
im

es
 (

m
s)

Overall Load

Comparison of Simulation Waiting Times - Uniform, 3 Priorities - P1

EDF-P1
FCFS-P1

RR-P1
PRO-P1

Figure 6.18: Comparison of Simulation Results - All Algorithms
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Figure 6.19: Comparison of Simulation Results - All Algorithms
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Figure 6.20: Comparison of Simulation Results - All Algorithms
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Figure 6.21: Comparison of Simulation Results - All Algorithms
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Figure 6.22: Comparison of Simulation Results - All Algorithms

As the load increases the waiting times recorded by EDF, FCFSand RR algorithms

show an exponential increase, while the PRO algorithm records a near linear increase

in waiting times as predicted by the analytical results. TheFCFS system records the

longest waiting time for the highest priority of all the algorithms. With lower priority

classes, FCFS and RR systems record comparatively shorter waiting times. The PRO

system records the highest waiting times out of all algorithms. Another observation is

that the waiting times recorded by FCFS and RR algorithms aresimilar across the dif-

ferent priority classes. The EDF algorithm neither recordsthe shortest nor the longest

waiting times for any of the priority classes and exhibits balanced behaviour through-

out the priorities. However, the intended differentiationof processing is clearly visible,

where higher priority classes have preference, yet withoutover starving the lower pri-

ority classes.

The FCFS and RR algorithms, in their functionality treat allclasses with equal priority.
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This behaviour is confirmed by the similar mean waiting timesthey record across all

priority classes. The PRO algorithm is designed to favour higher priority requests. This

is confirmed by it achieving the shortest waiting times for higher priority requests and

longest waiting times for the lower priority requests out ofall the algorithms. Its non-

preemptive nature favours higher priority requests than the EDF based system, while

penalising the lower priority classes more. In terms of the waiting times recorded by

each algorithm, RR algorithm seems to be better at recordinglower waiting times than

the others. However, we associate a soft processing deadline for each request which is

an indicator of the appropriate time the processing would beexpected to be completed

within. Although some of these deadlines would be missed in processing and such

requests are still deemed to be valid, the deadline miss ratewould also be an indicator

of the performance of an algorithm. Tables6.7and6.8contains miss rates recorded by

the four algorithms for 3 priority classes and 4 priority classes respectively.

PreemptiveM/G/1/./EDF Non-Preemptive PRO
Load P1 P2 P3 Overall P1 P2 P3 Overall
0.3 0.44 1.69 3.01 0.79 4.27 2.48 1.80 3.83
0.45 2.32 6.25 11.23 3.47 7.39 6.76 7.48 7.28
0.6 8.81 17.32 26.05 11.21 12.26 15.81 19.22 13.25
0.75 24.36 36.17 48.15 27.68 32.50 36.19 38.24 33.45
0.9 59.03 69.28 77.95 61.77 63.95 69.17 70.28 65.17

Round-Robin FCFS
Load P1 P2 P3 Overall P1 P2 P3 Overall
0.3 3.00 4.89 5.38 3.45 6.29 1.79 0.56 5.21
0.45 8.22 14.42 18.43 9.84 13.08 5.07 1.88 11.09
0.6 18.20 30.26 36.46 21.28 25.04 13.13 7.74 22.04
0.75 35.66 51.46 59.54 39.69 43.49 28.71 18.89 39.61
0.9 66.91 79.40 85.15 70.01 72.32 62.85 53.89 69.74

Table 6.7: Miss Rates - All Algorithms - 3 Priorities

PreemptiveM/G/1/./EDF Non-Preemptive PRO
Load P1 P2 P3 P4 Overall P1 P2 P3 P4 Overall
0.3 0.51 1.61 2.92 5.16 1.00 6.60 3.98 2.61 2.62 5.73
0.45 2.17 5.02 9.47 14.64 3.55 11.74 8.64 7.71 7.06 10.76
0.6 8.01 14.67 22.20 27.90 10.73 20.28 18.69 18.39 15.75 19.74
0.75 24.27 35.39 44.77 53.57 28.51 36.42 39.29 38.15 39.21 37.14
0.9 62.13 70.19 76.88 80.63 65.17 68.82 71.71 72.69 72.89 69.74

Round-Robin FCFS
Load P1 P2 P3 P4 Overall P1 P2 P3 P4 Overall
0.3 4.44 5.42 6.56 7.63 4.85 8.58 3.74 1.39 0.40 6.98
0.45 10.31 13.16 18.83 19.12 11.68 16.82 8.13 3.46 1.67 13.88
0.6 19.98 27.54 34.84 36.91 22.83 28.92 16.90 10.01 6.43 24.83
0.75 38.64 50.08 58.38 62.50 42.76 48.20 36.14 25.74 18.72 43.64
0.9 72.11 79.38 85.27 85.89 74.77 77.69 70.24 60.97 56.13 74.52

Table 6.8: Miss Rates - All Algorithms - 4 Priorities
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From the miss rates recorded, it is clearly visible that the EDF based system achieves

the lowest miss rates in all priority levels. EDF, being an algorithm that considers the

processing deadline as its main parameter for making request selections or schedul-

ing decisions, is by design optimised to achieve such processing deadlines and such

behaviour is expected. Out of the three algorithms that do not consider a deadline,

PRO achieves the lowest miss rates. Such behaviour is yet again expected as it favours

higher priority requests, in this case the majority of requests in the system and having

the shorter deadlines compared to the other classes.

As FCFS executes requests in the order of their arrivals, comparatively more higher

priority requests will still be executed due to their shorter inter-arrival times. However,

a lower priority request with a long processing time will still be executed when its at

the head of the queue. This will lead to higher priority requests queueing behind and

waiting a long time till the lower priority request completes execution. Thus, it leads

to majority of the higher priority requests missing their deadlines. However, this non-

differentiation will lead to a lower miss rate for the lower priority requests due to their

comparatively smaller number in the system. As the RR systemuses different queues

for the priority classes, there is no chance of requests withmixed priorities to queue

behind each other. However, the round-robin selection of requests among these queues

ensures that requests in each queue has an equal chance of being the next request to

get at the processor. Given this condition, the miss rates from the RR system follow

the pattern of being smaller for higher priority classes andlarger for lower priority

classes. However, as there are separate queues being used, the waiting times recorded

are comparatively longer for higher priority requests (second only to FCFS). Due to the

similar reasons, arrival rate differences between the priority classes are directly reflected

in the waiting times recorded by the RR system.

6.8.9 Discussion

The evaluation of the proposed priority based preemptiveM/G/1/./EDF model was

evaluated in many categories. The theoretical evaluation we provided confirms that the

proposed model could be used to derive a set of equations thatsolve in an iterative

manner to estimate the waiting times of the intended system.The mean waiting times

obtained through substitution as part of the evaluation confirms our understanding and

expected behaviour of such a system. Therefore, we could conclude that the proposed
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model is valid and can be used to estimate the mean waiting times of the target system.

The model was further evaluated using configurations with different priority levels and

the evaluation confirmed that irrespective of the number of priorities present in the sys-

tem, the resultant mean waiting times follow a similar pattern thus far confirming the

validity of the model for any number of priority classes.

The proposed model considers the method of scheduling to be independent of the ser-

vice times used. To evaluate this aspect, we used a configuration with exponentially

distributed service times on the model and measured the meanwaiting times for dif-

ferent load conditions and priority class counts. However,the mean waiting times

obtained followed a similar pattern for both uniformly and exponentially distributed

service times, thereby confirming that the model certainly supports any service time

distribution.

Thereafter we compared the analytical results obtained with the actual waiting times

recorded by a simulated system under various traffic and loadconditions. These eval-

uations were conducted with the view of measuring the accuracy of the waiting times

given by the model. In these evaluations, it was observed that there was a difference be-

tween the analytical and simulation results and the difference becomes significant with

increasing system load. Moreover, the increase of waiting times with load, for each

priority class is much higher in high load conditions. Note that the proposed model

is a mathematical approximation of the actual system and it provides estimates based

on statistical parameters. Therefore, differences in the estimates and the actual times

recorded, are to be expected.

In the next set of evaluations we compared the proposed modelwith the non-preemptive

M/G/1/./EDF model we based our theoretical proof on. These were conducted to

justify the performance gain we achieve by using preemptivescheduling instead of be-

ing non-preemptive. Our comparisons revealed that a preemptive model favours higher

priority requests, thereby achieving comparatively shorter waiting times than the non-

preemptive model. The ability for a higher priority requestto immediately seize the

processing resources upon its arrival at the system and by preemption even when a

lower priority task is in execution, confirms this behaviour. However, due to the conser-

vative nature of the proposed model, lower priority requests experience comparatively

longer waiting times than in a non-preemptive model.

Thereafter, a detailed comparison of the proposed model with two preemptive and non-
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preemptiveM/G/1 priority systems was carried out. The comparison also included the

non-preemptive EDF based model we based our proof on. The simpleM/G/1 models

favour higher priority requests more than the EDF model due to their static priority

enforcements. With the deadline based scheduling, although the general priorities of

request classes are decided at design time of a system, a request of a lower priority

class could at a given time be the highest priority request inthe system for having the

earliest deadline of all requests present. While this may seem as if having a negative

impact on higher priority classes, on the contrary it results in a better balance in the

system together with the lower priorities. This better waiting times recorded by the

EDF models for the lower priorities, confirms this phenomenon. Herein, the better

balance we thrive to achieve is favouring the higher priority requests while not over

starving requests of the lower priority classes.

To evaluate the performance of the EDF based scheduling implemented with aM/G/1/

queue on a system with soft deadlines, we compared it with FCFS, RR and Non-

preemptive PRO algorithms. The non-differentiating nature of the FCFS and RR al-

gorithms, were demonstrated in the similar waiting times they achieve for all priority

classes. The PRO algorithm follows the priority scheme by design, thus favours the

higher priority request classes resulting the better waiting times for higher priority re-

quests and offers the best waiting times for high load conditions for such requests.

However, given the static priority model it follows and its non-preemptive nature, it

records the longest waiting times for the lower priority classes and penalises them more

on higher load conditions. While theM/G/1/./EDF system also follows the prior-

ity model, it enforced them dynamically based on absolute deadlines where a request

from a lower priority class can be the request with the earliest deadline thereby having

the highest priority at a given time. Such behaviour favoursthe higher priority classes

with comparatively shorter deadlines while giving the lower priority classes a chance

and preventing them from over starvation. Moreover, the deadline miss rates recorded

by each algorithm indicates that algorithms such as FCFS andRR result in a high per-

centage of deadline misses, despite the lower waiting timesthey record at times. From

the results, we could conclude that explicitly scheduling based on a deadline will give

systems a better chance of meeting their processing and QoS guarantees.

For a system that uses a priority model and differentiated processing, such behaviour

could be considered optimal depending on the requirements.In web services and cloud

middleware that are increasingly moving towards multi-tenancy, it is a must to achieve
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the right balance between the different tenants, their clients and request types and. From

the evaluations presented, it can be concluded that deadline based scheduling could be

used in them to achieve the right balance between such parameters. As shown by our

model, the service time independent nature of the scheduling technique makes it usable

with any type of requests. Moreover, the use of deadlines enable the modifying the

priority levels of requests on-the-fly, thereby enabling more control on how requests are

executed at runtime. Such features will enable service providers with zero downtime

changes to their system’s scheduling discipline.

6.8.10 Difference Between Analytical and Simulation Results

A possibility for the discrepancy of analytical and simulation results is in the estimation

of mean delay incurred by tasks in execution at an arrival, given by equation6.6.7. In

the estimation, the calculation was based on the probability of finding a task belonging

to class 1 toi in execution. This is considered due to classesi + 1 to N having larger

deadline offsets, being treated as low priority. Although this condition holds true theo-

retically, a newly arrived task from streami in an actual system using EDF scheduling,

could find a task belonging to classj = (i + 1)..N in execution and not preempt it

due to absolute deadline considerations in preemptive tasks. A task belonging to stream

j = (i + 1)..N that arrives at leastDj,i time units prior to the aforementioned request

from streami will be in execution at its arrival and will not be preempted by it.

An observation made in Figures6.6 to 6.9, is the difference between the two results

increasing with the system load. The differences become quite significant in the high-

est load conditions. Upon analysing the simulations it was found that many tasks

miss their deadlines in the high load conditions. This is clearly visible from the miss

rates for the simulations that were presented in Tables6.7 and6.8 under Preemptive

M/G/1/./EDF . Deadline misses lead to execution of requests getting longer, thereby

having an impact on the mean service completion timeCi and in turn the mean delay

incurred by the requests in executionW i
0. For instance, a streami request arriving at

the system may find a task from streamj = (i+1)..N already in execution. The newly

arrived streami request may not be able to preempt the streamj request due to it having

an earlier deadline despite having missed it. Although the proposed model has this as a

parameter, it does not contain a representation for deadline misses or the impact it may

have onCi and onW i
0.
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Each of these observations contributes to the discrepancy between analytical and simu-

lation results. Given the complex nature of the system, it isdifficult to modify the model

and consolidate these differences to get the values closer.However, both group of re-

sults display the same characteristics despite the differences in actual values. There-

fore, we could conclude that the model presented is an acceptable approximation of a

M/G/1/./EDF system.

6.9 Summary

In this chapter we presented a performance model for web services middleware that uses

EDF scheduling. The proposed model was based on queueing theory and modelled the

system as a multi-priority based preemptive resumeM/G/1/./EDF queue where the

priority ordering is governed by the execution deadlines. The performance metric of

concern was the mean waiting time experienced by requests belong to each priority

class.

We provided analytical proof that the proposed model represents such a system with

reasonable accuracy and evaluated the model against non-preemptive representations

of similar queues and several other algorithms for various load conditions and priority

configurations. Next, the accuracy of the proposed model wasevaluated by comparing

the analytical results obtained, with waiting times recorded through simulation of ac-

tual traffic conditions. Both sets of results exhibit the same characteristics of favouring

higher priority request classes and resulting in higher waiting times for lower priority

classes. While there are minor differences between analytical and simulation results, we

provided reasoning for such a discrepancy and concluded that the approximations made

by the model were valid given the reasons for the difference.When compared to other

algorithms, EDF based scheduling seem to follow the intended behaviour of favouring

the higher priority request classes whilst preventing the lower priority requests being

over starved. Therefore, we concluded that EDF would be a better choice for systems

where differentiated request processing between multipleclasses is required, yet a bal-

anced approach where lower priority requests are preventedfrom over-starvation, is

considered important. Moreover, being a solution that is valid for any service time dis-

tribution, the model is valid for any system that uses EDF scheduling, not being limited

to web services middleware.
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Chapter 7
Discussion and Conclusion

This thesis investigated an important aspect of web services performance, namely pre-

dictability of execution. Existing web services middleware fail to achieve predictable

execution times due to their inherent designs and optimisations. Our work was moti-

vated by the growth of web services usage and the growing popularity of cloud comput-

ing, the new computing paradigm web services have made possible. With everything

being offered as a service on the Internet, execution time QoS mandates increased at-

tention.

Many of the existing work in execution time QoS either make the assumption that the

underlying middleware would ensure the QoS levels are met, or they manage to only

achieve some level of differentiated request processing. This holds true for both stand-

alone web services middleware and cluster based web services deployments. However,

most of the existing solutions do not consider predictability of execution or fail to com-

plete the execution of a service within a perceived deadlinein a repeatable and consis-

tent manner. A few of them that support a processing deadlineachieve this in closed

systems where properties of tasks are known at design time ofthe system.

At a high level, the proposed research shows that consistentexecution of web service

requests within a given deadline in open systems where task properties are unknown,

can only be achieved by satisfying three important factors.Firstly, requests must be

explicitly scheduled for execution based on their deadline. Secondly, requests must be

selected for execution based on the ability to meet the deadline requirement and the pos-

sibility to delay their execution without missing the deadline. Finally, some method of
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differentiation must be employed to have control over theirexecution. Moreover, their

execution must be supported by proper development platforms, libraries and operating

systems that ensure predictable execution times in all levels of the software stack.

Satisfying these factors, Chapter3addressed the problem in its simplest form, of achiev-

ing predictability of execution in stand-alone web services middleware. We introduced

the notion of a processing deadline, presented means of admission control and request

scheduling based on real-time scheduling principles. In Chapter4 we extended our so-

lution to a cluster based deployment of web services where the techniques presented in

Chapter3 was supported by four dispatching algorithms that ensure the deadline of a

request can be met at the executor it is assigned to.

Chapter5 presented the practical aspects of building web services middleware (or en-

hancing the ones available) to support processing deadlines and ensure they will be

met consistently. The software engineering techniques, designs, algorithms and tools

presented are generic enough to be used with any product in use. Moreover, we pre-

sented concise guidelines to help in identifying predictability features existing middle-

ware already possess and what enhancements are required. Inchapter6 we present an

analytical model for a system using deadline based scheduling and derive advanced per-

formance metrics that enable us to analyse the effects of such deadline based scheduling

on the overall performance of the system.

7.1 Summary of Contributions

In this section we summarise the contributions made in relation to the research questions

specified in section1.2.

How can predictability of execution be achieved in stand-alone web services mid-

dleware?

In addressing this question we presented a mathematical model and a supporting algo-

rithm based on real-time scheduling principles, for an admission control mechanism that

selects requests for execution based on their laxity. It notonly guaranteed the deadline

of a request upon selection but also ensured that deadlines of already accepted requests

would not be compromised. The selected requests were scheduled for execution using

earliest deadline first scheduling principle. Real-time scheduling principles are typi-
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cally used at design time in closed systems to schedule taskswith known properties.

The uniqueness of the proposed solution was the use of such scheduling techniques at

run-time in an open system where task properties are unknown.

How can predictability of execution be achieved in cluster based web service de-

ployments?

The contributions made for the second question were four request dispatching algo-

rithms that work together with the techniques introduced into stand-alone web services

middleware (hosted in each executor on the cluster). Each algorithm maps a request to

an executor in a different way and takes the additional step of ensuring that the process-

ing deadline of the request can be met with the selected executor. Two of the algorithms

perform dispatching in a content-blind manner and the remaining two were content-

aware dispatching algorithms. Three of these algorithms ensure the schedulability of a

request prior to being dispatched while the laxity-based algorithm considers the laxity

property even for the matching of a request to an executor. The laxity of a request being

considered in two steps gives the best chance for a request toachieve its processing

deadline.

How can web services middleware products be engineered to have predictable ex-

ecution times?

Addressing this question, the contribution made was the practical aspects of building

middleware products to support predictability of execution. The concepts and algo-

rithms introduced as contributions to the first two questions needed to be implemented

properly, supported by the middleware. For this purpose, wepresented software engi-

neering techniques, designs, algorithms and tools that canbe used in the development

process. We also discussed the possible challenges faced inthe development process

and how to overcome them. Moreover, we provided a set of guidelines that can be used

as a reference in the process, as well as to be used in identifying the capabilities of

existing middleware and enhancements they require.
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How can advanced performance metrics be obtained from deadline based schedul-

ing systems?

The contribution made in addressing this question is an analytical model of the system

as a preemptiveM/G/1 queue using EDF scheduling policy. Its uniqueness stems

from the fact that this is the first time an analytical model has been defined for this

type of queue being used with EDF policy in a preemptive scheduling system. With

this performance model, we were able to approximate the waiting times for a multiple

priority system with any number of priority classes. The uniqueness of the solution

lies in the fact that while priorities of the different classes are decided beforehand, it is

enforced dynamically at runtime, as the priority is ultimately decided on the absolute

deadline of a request. This phenomenon enabled the performance model to achieve a

more balanced performance where higher priority classes get more preference (thereby

smaller waiting times), while the lower priority requests do not reach over-starvation.

7.2 Discussion

In this section we summarise the findings from the evaluations conducted and reflect on

their importance for the research questions in section1.2.

Execution time predictability in stand-alone web servicesmiddleware

We evaluated the admission control mechanism and deadline based scheduling method

introduced into stand-alone web services middleware, by implementing them in Apache

Axis2 middleware product. We measured the predictability gain it achieved with the

enhancements made, by comparing it with an unmodified version of the product. Both

systems were exposed to different traffic conditions and theresultant loads. The em-

pirical evaluation concluded that the enhancements made tothe middleware enabled it

to achieve at least 96% of the requested deadlines while accepting at least 18% of the

requests from the schedulability check, in very high trafficconditions. The unmodified

version only manages to meet at most 36% of the deadlines (in low traffic conditions)

while accepting at least 28% of the requests. The results also confirmed our claim that

best-effortprocessing results in a large range of execution times due toprocessor shar-

ing. Moreover, the results confirmed that the laxity based schedulability check prevents

the system getting overloaded and enabled it to maintain a good throughput rate even
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when faced with high system loads. While a portion of requests were rejected in the

process of achieving predictability for others, the CPU utilisation levels indicated that

the processor was kept fully utilised throughout the experiment, justifying the rejec-

tions or the possible overloading of the server if a higher percentage of requests were

accepted.

Execution time predictability in web service clusters

The predictability gain achieved by introducing attributes of predictability into request

dispatching was evaluated by comparing the performance of the algorithms with others.

The comparison of the predictability gain by RT-RoundRobinagainst simple Round-

Robin was a clear example of the predictability gain in its simplest form. RT-RoundRobin

was able to meet at least 90% of the deadlines with just 2 executors while accepting at

least 20% of the requests in high traffic conditions. In similar conditions, a simple

round-robin algorithm resulted in 39% of accepted requests(due to the servers being

overloaded and requests timing out) while only managing to meet 6.3% of the dead-

lines. The large range of execution times that result (due tobest-effortprocessing) with

simple round-robin scheduling was evident from the results.

RT-ClassBased is an example of predictability attributes being considered in an algo-

rithm that unbalances the load. Its comparison to class-based dispatching which simply

uses the request size as the deciding parameter of a class. With the predictability en-

hancements, RT-ClassBased was able to achieve at least 95% of the deadlines while

accepting 29% of the requests, while class-based was able toachieve just 8% of the

deadlines when accepting at least 52% of the requests with the most task arrivals. There-

fore the predictability gain by the changes were noticeable. With RT-ClassBased, the

utilisation level at each executor corresponded to the amount of work each executor was

assigned with (i.e. executors assigned with large tasks were utilised more than the ones

executing the smaller sized tasks, due to uniformly distributed task sizes).

RT-LaxityBased algorithm incorporates the laxity property with the decision making

process of matching a request to an executor. It was designedto ensure a larger range

of laxities at each server. This controlled distribution oflaxities was expected to yield

better results than the other algorithms as predictabilitybased attributes are considered

twice in the dispatching decision. Confirming our expectations, the empirical results in-

dicated that RT-LaxityBased indeed achieves best deadlineachievement rates of all four
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algorithms. RT-Sequential takes an exhaustive approach todispatching by checking the

schedulability of a request with every executor prior to rejection. Given its exhaustive

approach, it records the lowest deadline achievement rate of all four algorithms. How-

ever due to similar reasons, it achieves the second best acceptance rates out of the four

algorithms.

All four of our dispatching algorithms clearly outperformed the algorithms they were

compared against. This validates our attempt at incorporating predictability based de-

cision making into the request dispatching process in a cluster. Moreover, it is clear

that even a simple dispatching technique could be enhanced to consider predictability

based attributes in dispatching, as we have demonstrated with RT-RoundRobin. They

demonstrated that both content-blind or content-aware algorithms can be enhanced to

incorporate predictability based attributes. The four algorithms have their own merits

and limits, which makes them suitable for different types ofrequest streams. As the em-

pirical evidence suggest, predictability focused dispatching of requests results in a large

range of laxities at each executor. This allows the server toaccommodate the deadlines

of many requests, in turn an increased request acceptance rate. The schedulability check

that is part of all algorithms prevented the system from being overloaded with requests.

This was evident from the throughput comparison conducted.Moreover, while being

resilient to high traffic conditions, the enhanced cluster achieves comparable throughput

rates with the unmodified cluster in low traffic conditions.

Advanced performance modelling of EDF scheduling in web services

The mathematical model presented for a priority based preemptive M/G/1/./EDF

system was intended to have better waiting times for higher priority requests without

leading lower priority requests into over-starvation. Thetheoretical evaluation con-

firmed that the resultant set of equations from the proposed model can indeed be solved

using an iterative process. Subsequently the analytical and simulation results obtained,

confirmed our intention that the model indeed is a valid approximation of waiting times

for such a system and the intended behaviour is represented in the results. Compared

to a non-preemptive model for a similar queue, our preemptive model achieves better

waiting times for higher priority request classes. The comparison with both preemptive

and non-preemptive simpleM/G/1 queues confirmed that EDF based scheduling is

indeed a more balanced approach where higher priority requests are favoured without
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over penalising lower priority requests.M/G/1 queues with EDF scheduling achieved

better waiting times for lower priority requests, comparedto simpleM/G/1 queues.

Comparing EDF based scheduling to other popular schedulingtechniques implemented

in aM/G/1 system reveals that EDF, while achieving such service differentiation still

manages to record an acceptable deadline loss rate. Non-differentiating algorithms such

as FCFS and round-robin scheduling achieve better waiting times overall, as they do

not favour a particular class of requests. However, this results in a higher deadline

loss rate. Moreover, compared to an algorithm with a static priority ordering, EDF

being a dynamic priority model achieved a better balance between shorter waiting times

for higher priority requests and waiting times with no indication of over-starvation,

for lower priority requests. Moreover, the evaluation confirmed our claim that explicit

scheduling of requests based on a deadline will give the system a chance of achieving

better execution time predictability and QoS.

WhileM/G/1/./EDF model was presented within the context of web services, it can

be used for any system or application that uses EDF scheduling as deadlines could be

used in applications for any time related activity, not limiting to execution. The result

of the evaluation presented, will hold true for any such system.

Overall, the evaluations confirmed that the research goals of achieving predictability

of execution in stand-alone and cluster based web service deployments, were fulfilled.

Moreover, they confirm that the development platforms and operating systems we chose

to support our solutions indeed provide the proper featuresrequired for predictability.

The intended behaviour of differentiated request processing could be observed in the

empirical results. While there are task rejections that happen especially in high traffic

conditions, empirical results show that they could be decreased by adding more server

resources. Due to operational constraints, the conducted evaluations were limited up to

just 4 server machines that had desktop grade hardware. However, with the empirical

data it can be concluded that adding more resources would guarantee the reduction of

task rejections while maintaining the high deadline achievement rates by the solutions

presented.

Within the related-work discussed for both stand-alone andcluster based web services,

a commonality is the consideration of execution time as a QoSparameter. Various ap-

proaches are taken to achieve some level of differentiationin request processing in all
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of them and many try to achieve a probability based measure ofexecution time among

different classes of requests. Many of the try to dynamically adjust the ratio of request

processing to meet the pre-defined levels of processing outlined in an SLA. While,

these techniques may be successful in meeting the overall perceived levels of perfor-

mance when requests being processed over a period of time is considered, none of them

can guarantee the same execution times in a consistent manner for every service invo-

cation. Therefore, by design all of them fail to achieve predictable execution times in a

repeatable and a consistent manner. Such levels of predictability can only be achieved

if requests are purposely scheduled to ensure a deadline in adefinitive manner. More-

over, the middleware must be designed ground-up with the support required to achieve

this level of predictability, from the libraries, development platform and the operating

system being used. Additionally, the acceptance of a request for execution must be

validated for schedulability ensuring both its deadline and that of the others executing

within the same server.

Req. Sharma et al. [1] Pacifici et al. [3] Gmach et al. [4] Cao J. et al. [5] Garcı́a et al. [6] Helander et al. [7] Our Method

Tien et al. [2] Mathes et al. [8]

G1 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗  

G2 ⊗ ⊗ G# ⊗ G#   

G3 ⊗ G# ⊗ ⊗ G# G#  

G4      G#  

G5 ⊗ ⊗ ⊗ ⊗ ⊗ G#  

⊗ Not Compliant,G# Partially, Fully
[1] [Sharma et al., 2003] [2] [ Ching-Ming Tien, 2005] [3] [ Pacifici et al., 2005] [4] [ Gmach et al., 2008]
[5] [Cao et al., 2010] [6] [ Garcı́a et al., 2009] [7] [ Helander and Sigurdsson, 2005] [8] [ Mathes et al., 2009a]

Table 7.1: Compliance of related work to predictability requirements

With Table 7.1, some of the related work on web services are validated against the

predictability requirements presented in Chapter5. As discussed previously, many of

them satisfy guideline G4, having some method of service differentiation. Some of

them making conscious selection of requests for execution based on statistics, partially

meet with guideline G3. Conscious scheduling of requests based on a perceived end

result partially meets with guideline G2. However, none of them are compliant with

guideline G1 nor fully compliant with all guidelines identified.

219



CHAPTER 7. DISCUSSION AND CONCLUSION

7.3 Future Work

This section outlines the potential paths for future work that stems from our research.

Predictability in the network layer

The proposed approach for achieving predictability of execution in stand-alone middle-

ware included the deadline based scheduling of requests andthe laxity based schedula-

bility check. We made the assumption that web service requests experience no delays

on the network. However, data travelling within an active network is bound to expe-

rience some delay. Depending on the type of network web services are used on, the

delay experienced by requests maybe quite significant (for instance on the Internet).

Moreover, the time spent on the network transmission maybe significant compared to

the execution time of a service.

Given these circumstances, an area of future work would be toachieve differentiated

request transmission and in turn predictability on the network. Current network in-

frastructure and protocols may have features that support this purpose. Specialised

network architectures such as IntServ [Braden et al., 1994; TACS, 2012a] and DiffServ

[Blake et al., 1998; Cisco Systems, 2005; TACS, 2012b] that enable QoS based band-

width reservation, are already in place. Moreover, the possibility of using protocols

such as Resource Reservation Protocol (RSVP) [Metz, 1999; White, 1997] and Multi-

Protocol Label Switching (MPLS) [Awduche, 1999; Davie and Rekhter, 2000] can be

investigated further on. One possible way of moving towardsnetwork level predictabil-

ity is to use routers that support such protocols and implement a priority structure on top

of them. The middleware and the client components could be given the ability to nego-

tiate the deadlines with the router and receive prioritiseddata transfer. This may require

web services middleware to reside on routing nodes in order to negotiate priorities at

the application layer of the network protocol stack.

Extending predictability of execution across applicationboundaries

One of the assumptions made in Chapter1 is the focus of this research being only on the

execution of service invocations within the boundary of theweb services middleware.

As mentioned, service invocations may result in executionsgoing beyond application
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boundaries. A database query, the use of business objects through an application server

and composite services are some examples for such execution.

Achieving predictability of execution in these software layers are potential areas for fu-

ture work. The architecture of each application will be unique and there may not be a

generic solution that is applicable to all. However, the guidelines we provided in chapter

5 can be used to identify the changes required and as a check-list thereafter, in the en-

hancement process. Achieving predictability in these applications would require them

to use a priority structure. A service invocation that spansacross multiple application

boundaries will have to be priority negotiated and the different applications must coor-

dinate to have the processing resources available in order to meet the overall deadline

requirement. Given the different architectures in each of them, achieving predictability

in each type of application will be research areas on their own.

Reducing request rejections through selective re-transmission

The laxity based schedulability check we use for the admission control, rejects requests

based on potential deadline misses. In the scope of this research, they were simply

rejected and reported back to the client applications. It may be worth investigating the

possibility of re-transmission of some of these requests that may have a chance if re-

checked for schedulability, with the same or a different executor after a period of time.

Within this period, there is a chance that processing resources may free-up at the server

and therefore the target requests maybe accommodated.

Dispatching algorithms in the likes of RT-Sequential is a potential area of research.

Identifying potential requests for retransmission (without considering every rejected

request) and supporting multiple servers are useful aspects to research further on.

Custom-built web services middleware

The implementations we presented in chapter5 were enhancements made to existing

middleware products widely in use. Given our goal of achieving predictability of exe-

cution or support for it in all levels of software in a bottom-up manner, a custom built

web services middleware will achieve the best level of performance.

While we achieved acceptable levels of performance with ourimplementations, they

contain code that maybe sub-optimal given request processing and execution. An in-
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teresting extension to our research would be building web services middleware from

scratch with purposefully designed code in all layers and components of the applica-

tion. Given the limited time period for this research and theeffort involved, it was

difficult for us to achieve this in the time period available.However, such a middleware

is bound to have better performance levels than our enhancedversions and will result in

better design patterns and software engineering techniques that could become useful in

achieving predictability in other types of applications.

Improved performance model for preemptiveM/G/1/./EDF

We identified deadline misses that took place in the simulation runs to be the main con-

tributing factor for the difference between analytical andsimulation results. This phe-

nomenon is not accounted for by any of the variables used in our performance model.

An interesting research area would be to have a representation of a deadline miss in our

performance model.

In the related work section of chapter6, we discuss a few attempts by other researchers

in quantifying the loss rate for aM/G/1 type queues. Although their models are only

focused on loss rate minimisation, it may be possible to build on their work and define

the loss rate and quantify its effect on the waiting time of requests. This is another

interesting area for future work.

Performance models for preemptiveG/G/1

The analytical model we presented in chapter6 allowed a general service time distribu-

tion. However, we made the assumption that request arrivalswere following a Poisson

process. As a result, we were able to build on existing definitions [Kleinrock, 1975,

1976] for the type of system we envisioned.

While, Poisson arrivals are a better representation for bursty requests, an interesting

research avenue would be to define a similar performance model considering request

arrivals to be general. Such a performance model can be used to approximate the per-

formance of EDF in various different environments, not being limited to web services

or Internet traffic.

222



Bibliography

Apache Software Foundation. Apache Synapse. http://synapse.apache.org/, 9 June

2008. Last Accessed - 13/07/2012.7, 100, 137

Apache Software Foundation. Apache Axis2. http://ws.apache.org/axis2/, 8 June

2009. Last Accessed - 13/07/2012.6, 7, 37, 61, 136

K. Arnold, J. Gosling, and D. Holmes.The Java programming language.

Addison-Wesley Professional, 2006.6, 132

G. Arora. Automated Analysis and Prediction of Timing Parameters in Embedded

Real-Time Systems Using Measured Data. Master’s thesis, Electrical Engineering

Dept., University of Maryland, College Park, June 1997.29

D. Awduche. MPLS and Traffic Engineering in IP Networks.Communications

Magazine, IEEE, 37(12):42–47, 1999.220

A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwardana, D.Leelaratne,

S. Weerawarana, and P. Fremantle. Multi-tenant SOA middleware for cloud

computing. InCloud Computing (CLOUD), 2010 IEEE 3rd International

Conference on, pages 458–465. IEEE, 2010.5, 36

C.-P. Bezemer and A. Zaidman. Multi-tenant SaaS applications: maintenance dream

or nightmare? InProceedings of the Joint ERCIM Workshop on Software Evolution

(EVOL) and International Workshop on Principles of Software Evolution (IWPSE),

IWPSE-EVOL ’10, pages 88–92, New York, NY, USA, 2010. ACM.5

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and Weiss W. An Architecture for

223



BIBLIOGRAPHY

Differentiated Services. http://tools.ietf.org/html/rfc2475, Dec. 1998. Last Accessed

- 03/06/2012.220

G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi.Queueing networks and Markov

chains: modeling and performance evaluation with computerscience applications.

Wiley-Blackwell, 2006.180, 190

D. Box, E. Christensen, F. Curbera, D. Ferguson, J. Frey, M. Hadley, C. Kaler,

D. Langworthy, F. Leymann, B. Lovering, S. Lucco, S. Millet,N. Mukhi,

M. Nottingham, D. Orchard, J. Shewchuk, E. Sindambiwe, T. Storey,

S. Weerawarana, and S. Winkler. Web Services Addressing (WS-Addressing).

http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/, 10 Aug.

2004. Last Accessed - 18/05/2012.24

R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture:

An Overview. http://tools.ietf.org/html/rfc1633, June 1994. Last Accessed -

03/06/2012.220

E. Bruno and G. Bollella.Real-time Java programming: with Java RTS. Prentice Hall

PTR, 2009.127

G. C. Buttazzo.Hard real-time computing systems : Predictable Scheduling

Algorithms and Applications. Kluwer Academic Publishers, 1997.28, 29, 30, 37

J. Cao, H. Zhao, M. Li, and J. Wang. A dynamically self-configurable service process

engine.World Wide Web, 13(4):475–495, 2010.12, 81, 219

V. Cardellini, M. Colajanni, and P. Yu. Dynamic load balancing on web-server

systems.IEEE Internet Computing, 3(3):28–39, 1999.78

V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yu. The state of the art in locally

distributed Web-server systems.ACM Computing Surveys (CSUR), 34(2):263–311,

2002.77, 78

V. Cardellini, M. Colajanni, and P. Yu. Request redirectionalgorithms for distributed

web systems.IEEE Transactions on Parallel and Distributed Systems, 14(4):

355–368, 2003.11, 80

J. Carlstrom and R. Rom. Application-aware admission control and scheduling in web

servers. InINFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE

224



BIBLIOGRAPHY

Computer and Communications Societies. Proceedings. IEEE, volume 2, pages

506–515. IEEE, 2002.11, 41

E. Casalicchio, V. Cardellini, and M. Colajanni. Content-Aware Dispatching

Algorithms for Cluster-Based Web Servers.Cluster Computing, 5(1):65–74, 2002.

80

E. Cerami and S. St Laurent.Web services essentials. O’Reilly & Associates, Inc.,

2002.4, 18

D. Chapell. Windows Communications Foundation.

http://msdn.microsoft.com/library/ee958158.aspx, Mar. 2010. Last Accessed -

06/07/2012.6, 37

D. Chappell and T. Jewell. Java web services: using Java in service-oriented

architectures, 2002.18, 19

K. Chen and L. Decreusefond. An approximate analysis of waiting time in multi-class

m/g/1/./edf queues. InSIGMETRICS ’96: Proceedings of the 1996 ACM

SIGMETRICS international conference on Measurement and modeling of computer

systems, pages 190–199, New York, NY, USA, 1996. ACM.13, 15, 165, 166, 169,

171, 172, 180, 181, 192, 193, 195

P. Ching-Ming Tien, Cho-Jun Lee. SOAP Request Scheduling for Differentiated

Quality of Service. InWeb Information Systems Engineering - WISE Workshops,

pages 63–72. Springer Berlin / Heidelberg, Oct. 2005.11, 40, 219

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services

Description Language (WSDL) 1.1.

http://www.w3.org/TR/2001/NOTE-wsdl-20010315, 15 Mar.2001. Last Accessed -

13/05/2012.18

G. Ciardo, A. Riska, and E. Smirni. EquiLoad: a load balancing policy for clustered

web servers.Performance Evaluation, 46(2-3):101–124, 2001.11, 81

Cisco Systems. DiffServ – The Scalable End-to-End QoS Model.

http://www.cisco.com/en/US/technologies/tk543/tk766/technologieswhite paper

09186a00800a3e2f.html, Aug. 2005. Last Accessed - 03/06/2012. 220

225



BIBLIOGRAPHY

D. Clark. Fiber-based metropolitan access networks for internet traffic. InOptical

Fiber Communication Conference, 2000, volume 2, pages 44–46. IEEE, 2000.165

E. Coffman Jr, R. Muntz, and H. Trotter. Waiting time distributions for

processor-sharing systems.Journal of the ACM (JACM), 17(1):123–130, 1970.125,

127

M. Colajanni and P. Yu. A performance study of robust load sharing strategies

fordistributed heterogeneous Web server systems.Knowledge and Data

Engineering, IEEE Transactions on, 14(2):398–414, 2002.11, 80

T. Dag and O. Gokgol. A priority based packet scheduler with deadline considerations.

In Communication Networks and Services Research Conference,2006. CNSR 2006.

Proceedings of the 4th Annual, pages 8–pp. IEEE, 2006.168

B. Davie and Y. Rekhter. MPLS: technology and applications.2000.220

D. Davis, A. Karmarkar, G. Pilz, S. Winkler, and U. Yalcinalp. OASIS Web Services

Reliable Messaging Protocol.

http://docs.oasis-open.org/ws-rx/wsrm/200608/wsrm-1.1-spec-cd-04.pdf, 7 Aug.

2006. Last Accessed - 18/05/2012.24

M. Dertouzos. Control robotics: The procedural control of physical processes.

Information Processing, 74:807–813, 1974.32

P. Dibble.Real-time Java platform programming. Prentice Hall PTR, 2002.127

D. Dyachuk and R. Deters. Transparent scheduling of web services. In3rd

International Conference on Web Information Systems and Technologies, 2007.11,

41

L. Eggert and J. Heidemann. Application-level differentiated services for Web servers.

World Wide Web, 2(3):133–142, 1999.82

S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel. A methodfor transparent

admission control and request scheduling in e-commerce websites. InProceedings

of the 13th International Conference on World Wide Web, pages 276–286. ACM,

2004.11, 41

T. Erl. SOA: Principles of Service Design. Prentice Hall Press, 2007.20

226



BIBLIOGRAPHY

A. Erradi and P. Maheshwari. wsBus: QoS-aware middleware for reliable web services

interactions.e-Technology, e-Commerce and e-Service, 2005. EEE ’05.

Proceedings. The 2005 IEEE International Conference on, pages 634–639, March-1

April 2005. 12, 41, 129

R. Fielding.Architectural Styles and the Design of Network-based Software

Architectures. PhD thesis, University of California, 2000.19

V. Gamini Abhaya, Z. Tari, and P. Bertok. Achieving Predictability and Service

Differentiation in Web Services. InICSOC-ServiceWave ’09: Proceedings of the

7th International Conference on Service-Oriented Computing, pages 364–372.

Springer, 2009.35

V. Gamini Abhaya, Z. Tari, and P. Bertok. Using Real-Time Scheduling Principles in

Web Service Clusters to Achieve Predictability of Service Execution. In

Service-Oriented Computing: 8th International Conference, ICSOC 2010, San

Francisco, CA, USA, December 7-10, 2010. Proceedings, pages 197–212. Springer,

2010a. ISBN 3642173578.76

V. Gamini Abhaya, Z. Tari, and P. Bertok. Building web services middleware with

predictable service execution. InWeb information systems engineering-WISE 2010:

11th international conference, hong kong, china, december12-14, 2010,

proceedings, volume 6488, page 23. Springer-Verlag New York Inc, 2010b.35, 76,

124

V. Gamini Abhaya, Z. Tari, and P. Bertok. Building web services middleware with

predictable execution times.World Wide Web, pages 1–60, 2012.35, 76, 124

V. Gamini Abhaya, Z. Tari, P. Bertok, and P. Zeephongsekul. Waiting Time Analysis

for a Multi-class Preemptive M/G/1/./EDF queue.Journal of Parallel and

Distributed Computing, 2013. (In Submission).163

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design patterns: elements of

reusable object-oriented software. Addison-Wesley Professional, 1995.145, 156

D. F. Garcı́a, J. Garcı́a, J. Entrialgo, M. Garcı́a, P. Valledor, R. Garcı́a, and A. M.

Campos. A qos control mechanism to provide service differentiation and overload

protection to internet scalable servers.IEEE Transactions on Services Computing, 2

227



BIBLIOGRAPHY

(1):3–16, 2009. ISSN 1939-1374. doi:

http://doi.ieeecomputersociety.org/10.1109/TSC.2009.3. 12, 78, 81, 219

Gartner and Forrester. Use of Web services skyrocketing.

http://utilitycomputing.com/news/404.asp, 30 Sept. 2003. 4

K. Gilly, C. Juiz, and R. Puigjaner. An up-to-date survey in web load balancing.World

Wide Web, pages 1–27, 2011.78

D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and A. Kemper. Adaptive quality of

service management for enterprise services.ACM Transactions on the Web (TWEB),

2(1):1–46, 2008.12, 81, 219

S. Graham, D. Davis, S. Simeonov, Daniels G., Brittenham P.,Y. Nakamura,

Fremantle P., Konig D., and Zentner C.Building Web Services with Java: Making

Sense of XML, SOAP, WSDL and UDDI. Sams Publishing, Indianapolis IN USA,

2nd edition, 8 July 2004.6, 19, 37, 126

M. Gudgin, N. Mendelsohn, M. Nottingham, and H. Ruellan. SOAP Message

Transmission Optimization Mechanism.

http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/, 25 Jan. 2005. Last

Accessed - 14/05/2012.19

M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, H. F. Nielsen, A. Karmarkar, and

Y. Lafon. SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/, 27 May 2007a. Last

Accessed - 17/05/2012.23

M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, H. F. Nielsen, A. Karmarkar, and

Y. Lafon. SOAP Version 1.2 Part 2: Adjuncts (Second Edition).

http://www.w3.org/TR/2007/REC-soap12-part2-20070427/, 27 May 2007b. Last

Accessed - 17/05/2012.23
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