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Abstract

Random testing (RT) is a basic software testing
method. When used to detect software failures, RT usu-
ally generates random test cases according to a uniform
distribution. Adaptive random testing (ART) is an inno-
vative approach to enhancing the failure-detection ca-
pability of RT. Most ART algorithms are composed of
two independent processes, namely the candidate gen-
eration process and the test case identification process.
In these ART algorithms, some program inputs are first
randomly generated as the test case candidates; then
test cases are identified from these candidates in or-
der to ensure an even spread of test cases across the
input domain. Most previous studies on ART focused
on the enhancement of the test case identification pro-
cess, while using the uniform distribution in the candi-
date generation process. A recent study has shown that
using a dynamic test profile in the candidate generation
process can also improve the failure-detection capabil-
ity of ART. In this paper, we develop various test pro-
files and integrate them with the test case identification
process of a particular ART algorithm, namely fixed-
size-candidate-set ART. It is observed that all these test
profiles can significantly improve the failure-detection
capability of ART.

1. Introduction
Random testing (RT), a fundamental software test-

ing approach [13], can be used as both a reliability as-
sessment technique [15] and a debug testing method
(that is, a method aiming at detecting software failures
so that program bugs can be removed [11]). In the con-
text of debug testing, RT usually generates test cases
(that is, program inputs for testing) based on a uniform
distribution from the whole input domain (that is, the
set of all possible inputs). In other words, all program
inputs have the same probability to be generated as test
cases.
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Although RT has been used in various areas to de-
tect software failures [14, 16], some researchers consid-
ered RT as ineffective because RT simply detects fail-
ures by chance [13]. Many independent studies [1, 10]
have shown that failure-causing inputs (that is, in-
puts that cause the program under test to exhibit fail-
ure behaviors) tend to cluster into contiguous regions
(known as failure regions [1]) in the input domain.
Chen et al. [8] made use of such a common charac-
teristic of failure-causing inputs to improve the failure-
detection capability of RT. They proposed a novel ap-
proach, namely adaptive random testing (ART), where
test cases are not only randomly generated, but also
evenly spread over the input domain. The basic intuition
of ART, that is, the even spread of random test cases, is
essentially a form of test cases’ diversity across the in-
put domain [5]. In fact, the diversity of test cases is the
key concept for most test case selection strategies (such
as coverage-based testing methods [17]). ART has been
used for testing various programs, from software with
numeric inputs [2, 8] to that with complex non-numeric
inputs [9].

Various ART algorithms have been proposed to
achieve the goal of evenly spreading test cases, such
as fixed-sized-candidate-set ART (FSCS-ART) [8], re-
stricted random testing (RRT) [2] and lattice-based
ART [12]. Most ART algorithms consist of two inde-
pendent processes – (a) candidate generation process,
where some program inputs are randomly generated
as test case candidates, or briefly candidates, and (b)
test case identification process, where some test case
identification criteria are applied to identify test cases
amongst these candidates such that the identified test
cases are evenly spread over the input domain. Differ-
ent test case identification criteria lead to different ART
algorithms. Previous studies have shown that ART can
detect failures more effectively than RT in many cases.

Most studies on ART used the uniform distribution
as the test profile in the candidate generation process.
Recently, Chen et al. [4] proposed a new approach,
namely ART with dynamic non-uniform candidate dis-
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tribution (ART-DNC). In ART-DNC, the candidate gen-
eration process is no longer conducted based on a uni-
form distribution, but on a dynamic non-uniform test
profile. They selected one particular test profile and in-
tegrated such a profile with the test case identification
processes of FSCS-ART and RRT algorithms. Their
simulation studies showed that using the new test profile
can significantly improve the effectiveness of the origi-
nal ART algorithms.

In this paper, we further investigate into various
test profiles that may be suitable for ART, and com-
bine them with the test case identification process of
FSCS-ART. We attempt to see whether and to what ex-
tent these profiles can enhance the failure-detection ca-
pability of ART. The rest of the paper is organized as
follows. Section 2 introduces the background informa-
tion on FSCS-ART and ART-DNC. In Section 3, we
propose different test profiles, and investigate the ef-
fectiveness of ART that uses these test profiles in the
candidate generation process. Section 4 concludes the
paper.

2. Background
Fixed-size-candidate-set ART (FSCS-ART) [8] is a

typical ART algorithm. In FSCS-ART, two sets of test
cases are maintained, namely the executed set E and
the candidate set C. E is composed of all the previously
executed test cases, while C contains a fixed number
of test case candidates that are normally generated in
a random manner according to a uniform distribution.
A candidate in C is identified as the next test case if
its nearest neighbor distance to E is the longest. The
details of FSCS-ART algorithm can be found in [8]. In
our study, the size of the candidate set is set to 10, as
recommended in [8].

ART aims to evenly spread random test cases over
the whole input domain, but no ART algorithm is guar-
anteed to achieve such a goal under all possible sce-
narios [3]. Most previous studies on ART focused on
the enhancement of test case identification process, but
kept using the uniform distribution in the candidate
generation process. Chen et al. [4] recently proposed
ART with dynamic non-uniform candidate distribution
(ART-DNC), which uses a test profile different from
the uniform distribution in the candidate generation pro-
cess. The aim of the new test profile in ART-DNC is to
improve the evenness of test case distribution, and thus
enhance the failure-detection capability.

FSCS-ART algorithm normally has a bias of iden-
tifying test cases from the edge part of the input do-
main rather than from the centre, and such an edge bias
results in a certain degree of uneven test case distribu-
tion. FSCS-ART-DNC [4] was developed to integrate
a new test profile with the test case identification crite-

rion of FSCS-ART algorithm. It has been suggested that
the test profile used in FSCS-ART-DNC should (i) be
dynamic along the testing process, (ii) assign a higher
probability to the candidates from the central part of the
input domain than those from the edge part (namely, the
centre bias); and (iii) have a symmetric probability dis-
tribution with respect to the centre of the input domain.
Readers who are interested may refer to [4] for the de-
tails of how to implement FSCS-ART-DNC algorithm.

The failure-detection capability of ART is normally
measured by F-measure, which refers to the expected
number of test cases required to detect the first soft-
ware failure. Most previous studies of ART [2, 6, 8]
estimated the F-measure of ART (denoted by FART in
the rest of the paper) via simulations. In order to sim-
ulate faulty programs, these simulations first predefine
two basic features of a faulty program, namely failure
rate (denoted by θ , which refers to the ratio between the
number of failure-causing inputs and the number of all
possible inputs) and failure pattern (which refers to the
failure regions together with their distribution over the
input domain). The size and shape of the failure region
can then be decided based on θ and the failure pattern,
and the location of the failure region is randomly chosen
inside the input domain. After setting up these param-
eters, ART is applied until the first failure is detected
(that is, a point is picked from the failure region), and
the number of test cases that ART has generated will be
recorded. Such a process is repeated until we can get a
statistically reliable value of FART . The details of how to
conduct simulations can be found in [6]. The improve-
ment of ART over RT is always evaluated by the ART
F-ratio = FART /FRT , where FRT denotes the F-measure
of RT that is theoretically equal to 1/θ .

3. Effectiveness of FSCS-ART-DNC with
various dynamic test profiles
There exist many distributions that have the fea-

tures mentioned in Section 2 (that is, features (i) to (iii)).
Chen et al. only selected one dynamic distribution pro-
file to illustrate the new ART-DNC approach. In this
study, we propose three other test profiles, namely tri-
angle, cosine and semicircle profiles, for FSCS-ART-
DNC. These profiles are named after the basic shapes of
the curves of their probability density functions (pdf),
which are given in Formulas (1), (2), and (3). Obvi-
ously, the probability distributions of these profiles can
be adjusted by changing the value of the parameter α .

Triangle profile:

fX (x) =


4αx+(1−α) , 0≤ x < 0.5

−4αx+(1+3α), 0.5≤ x < 1

0 , x < 0 or x≥ 1

(1)
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where 0≤ α ≤ 1.
Cosine profile:

fX (x) =

 α sinπx+
(

1− 2α

π

)
, 0≤ x < 1

0 , x < 0 or x≥ 1
(2)

where 0≤ α ≤ π

2
.

Semicircle profile:

fX (x)=

 α

√
1− (2x−1)2 +

(
1− απ

4

)
, 0≤ x < 1

0 , x < 0 or x≥ 1
(3)

where 0≤ α ≤ 4
π

.
We attempted to integrate the above-mentioned

three test profiles with the test case identification pro-
cess of FSCS-ART, and then get three new ART algo-
rithms, namely FSCS-ART-DNC with triangle, cosine
and semicircle profiles. In these algorithms, α in For-
mulas (1), (2), and (3) is dynamically adjusted along
the testing process. In this paper, we use triangle pro-
file to illustrate how to adjust the value of α . For ease
of illustration, assume that each dimension of input do-
main has the value range [0,1), and is equally divided
into two subranges, namely the centre subrange con-
sisting of [0.25,0.75); and the edge subrange consisting
of [0,0.25) and [0.75,1). For each dimension, succes-
sively after each new test case is identified, the follow-
ing three steps are conducted to adjust α . First, we mea-
sure the ratio (r) of the number of executed test cases
from the edge subrange over the total number of exe-
cuted test cases. Second, we calculate the probability
(p) of an element being generated from the centre sub-
range. From Formula (1), we can get

p = 0.25α +0.5 (4)

Since 0≤ α ≤ 1, p is within the value range [0.5, 0.75].
If 0.5 ≤ r ≤ 0.75, we set p = r; otherwise, we set p =
0.75 (if r > 0.75) or 0.5 (if r < 0.5). Finally, α can be
determined from Formula 4.

We conducted a series of simulations to evaluate
the failure-detection capabilities of these new FSCS-
ART-DNC algorithms. In these simulations, the dimen-
sion of the input domain is one, two, three or four;
the shape of the input domain is set as hyper-cube; the
failure pattern is one hyper-cube randomly placed in-
side the input domain; and θ is set from 1 to 0.00005.
The simulation results are given in Figure 1, which
also includes the previous results of the original FSCS-
ART algorithm with uniform candidate distribution (de-
noted by “FSCS-ART” in the figure). The results of

three new FSCS-ART-DNC algorithms are represented
by “FSCS-ART-DNC-tri”, “FSCS-ART-DNC-cos” and
“FSCS-ART-DNC-sem”. In the figure, the x- and y-
axes denote θ and the ART F-ratio, respectively.

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00
θ

A
R

T 
F-

ra
tio

FSCS-ART FSCS-ART-DNC-tri
FSCS-ART-DNC-cos FSCS-ART-DNC-sem

(a) One-dimension

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00
θ

A
R

T 
F-

ra
tio

FSCS-ART FSCS-ART-DNC-tri
FSCS-ART-DNC-cos FSCS-ART-DNC-sem

(b) Two-dimension

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00
θ

A
R

T 
F-

ra
tio

FSCS-ART FSCS-ART-DNC-tri
FSCS-ART-DNC-cos FSCS-ART-DNC-sem
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(d) Four-dimension

Figure 1. Failure-detection capabilities of
FSCS-ART-DNC with various test profiles

Based on the simulation results, we can observe
that all three FSCS-ART-DNC algorithms outperform
the original FSCS-ART algorithm when the dimension
of the input domain is high or θ is high, and the perfor-
mance improvement increases with the increase in di-
mension or θ . For the cases of low dimension and low
θ , the failure-detection capability of the original FSCS-
ART algorithm is very close to the theoretical bound
that can be reached by an optimal testing method with-
out prior information about the failure region’s loca-
tion [7]. Therefore, it is expected that these FSCS-ART-
DNC algorithms cannot significantly improve the per-
formance of ART when dimension or θ is low. Briefly
speaking, using some proper dynamic test profiles in the
candidate generation process does help to improve the
failure-detection capability of ART, especially for the
cases of high dimension and high θ .

It can also be observed that there are some dif-
ferences in the effectiveness of the three FSCS-ART-
DNC algorithms. FSCS-ART-DNC-tri and FSCS-ART-
DNC-cos always have similar failure-detection capa-
bilities, but FSCS-ART-DNC-sem does not perform as
well as the other two under the conditions of high di-
mension and high θ . For example, when θ = 0.25 and
the dimension is 4, the ART F-ratios of FSCS-ART-
DNC-tri, FSCS-ART-DNC-cos, and FSCS-ART-DNC-
sem are 1.07, 1.10, and 1.23, respectively. Such a phe-
nomenon can be explained as follows. As shown in [3],
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the original FSCS-ART algorithm has an edge bias,
which becomes higher with the increase in dimension
or θ . The test profiles used in FSCS-ART-DNC all have
a centre bias. From Formulas (1), (2), and (3), we can
calculate that the triangle profile has the highest cen-
tre bias, followed by the cosine and semicircle profiles
in descending order. When the dimension or θ is low,
the test case identification process of the original FSCS-
ART algorithm does not deliver a very high degree of
edge bias. In such a situation, all three test profiles can
provide a sufficient degree of centre bias in the candi-
date generation process to offset the edge bias in the test
case identification process. On the other hand, when the
dimension and θ are high, the low centre bias offered by
the semicircle profile may not fully offset the extraor-
dinary edge bias caused by the test case identification
process. Therefore, it is intuitively expected that FSCS-
ART-DNC-sem does not perform very well under the
conditions of high dimension and high θ . The similar
performances of FSCS-ART-DNC-cos and FSCS-ART-
DNC-tri imply that although the centre bias of the co-
sine profile is lower than that of the triangle profile, the
former is sufficient to offset the edge bias in the test case
identification process.

4. Conclusions
Adaptive random testing (ART) was proposed to

enhance the failure-detection capability of random test-
ing as a debug testing method. Most previous studies
have used the uniform distribution as the test profile for
ART. A recent study has shown that using a dynamic
test profile can further improve the failure-detection ca-
pability of ART. In this paper, we conducted some case
studies on the application of three dynamic test profiles
into ART algorithms. Simulation studies showed that
all these three test profiles help to improve the failure-
detection capability of ART.

Our experimental results also showed that different
test profiles may bring out different failure-detection ca-
pabilities of ART. In the future work, we will analyze
the statistical features of a variety of dynamic profiles
and their impacts on the effectiveness of ART with var-
ious test case identification criteria. These investiga-
tions will provide new guidelines for how to develop
and apply appropriate test profiles for different ART al-
gorithms.
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