
Thank

Citatio

See th

Version

Copyri

Link to

you for do

on:

is record i

n:

ght Statem

o Published

wnloading

in the RMI

ment: ©

d Version:

 this docum

IT Researc

ment from

ch Reposit

the RMIT R

ory at:

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

Chen, T, Kuo, F, Liu, H and Wong, E 2013, 'Code coverage of adaptive random testing',
IEEE Transactions on Reliability, vol. 62, no. 1, pp. 226-237.

http://researchbank.rmit.edu.au/view/rmit:20993

Accepted Manuscript

2013 IEEE

http://dx.doi.org/10.1109/TR.2013.2240898

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/15629255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchbank.rmit.edu.au/

1

Code Coverage of Adaptive Random Testing

Tsong Yueh Chen, Member, IEEE, Fei-Ching Kuo, Member, IEEE,

Huai Liu, Member, IEEE, and W. Eric Wong, Member, IEEE

Abstract

Random testing is a basic software testing technique that can be used to assess the software reliability as

well as to detect software failures. Adaptive random testing has been proposed to enhance the failure-detection

capability of random testing. Previous studies have shown that adaptive random testing can use fewer test cases

than random testing to detect the �rst software failure. In this paper, we evaluate and compare the performance of

adaptive random testing and random testing from another perspective, that of code coverage. As shown in various

investigations, a higher code coverage not only brings a higher failure-detection capability, but also improves the

effectiveness of software reliability estimation. We conduct a series of experiments based on two categories of code

coverage criteria: structure-based coverage, and fault-based coverage. Adaptive random testing can achieve higher

code coverage than random testing with the same number of test cases. Our experimental results imply that, in

addition to having a better failure-detection capability than random testing, adaptive random testing also delivers

a higher effectiveness in assessing software reliability, and a higher con�dence in the reliability of the software

under test even when no failure is detected.

Index Terms

Failure-based testing, random testing, adaptive random testing, code coverage.

ACRONYMS

RT Random Testing

ART Adaptive Random Testing

FSCS-ART Fixed-Sized-Candidate-Set Adaptive Random Testing

CPM Category Partition Method

This research project is supported by an Australian Research Council Discovery Grant (DP0880295).
T. Y. Chen, F.-C. Kuo, and H. Liu are with the Faculty of Information and Communication Technologies, Swinburne University of

Technology, Hawthorn 3122 VIC, Australia (e-mail: tychen@swin.edu.au; dkuo@swin.edu.au; hliu@swin.edu.au). W. E. Wong is with the
Department of Computer Science, University of Texas at Dallas, Richardson TX 75083, USA (e-mail: ewong@utdallas.edu).

All correspondence should be addressed to H. Liu.

2

NOTATION

\ The set difference operator

|·| The size of a set

Axij
The jth category for a program input xi

O
xij

xi The choice of category Axij
for xi

A(xi) The list of categories associated with xi, that is,
{
Axi1

, Axi2
, · · · , Axiq

}
O(xi) The list of choices associated with xi, that is,

{
O
xi1
xi , O

xi2
xi , · · · , O

xiq

xi

}
Ô(x1, x2) The set of distinct choices for inputs x1 and x2, that is, (O(x1) ∪O(x2)) \ (O(x1) ∩O(x2))

Â(x1, x2) The set of distinct categories for inputs x1 and x2, that is,
{
Ah|Al, if ∃O

l
t ∈ Ô(x1, x2)

}
Ns The total number of certain elements in the program under test (such as statements,

decisions, c-uses, p-uses, etc.)

Ni The number of infeasible program elements

Nc The number of program elements covered by a test set

Mn The total number of mutants generated

Ma The number of mutants that are syntactically incorrect and thus cannot be compiled

Mt The number of mutants that can be compiled successfully, that is, Mn −Ma

Mq The number of equivalent mutants

Mk The number of killed mutants

I. INTRODUCTION

Software testing, a major approach to software quality assurance, is widely acknowledged as a vital

activity throughout the software development process. Many software testing methods are accomplished

by de�ning test objectives, selecting some inputs of the software under test as test cases, executing the

software with these test cases, and verifying testing results. Because software normally has an extremely

large input domain (that is, the set of all possible inputs for the software under test), testers are always

required to select a certain portion of the input domain as test cases such that software failures can be

effectively detected within the limited testing resources. A large number of software testing methods have

been proposed to guide the test case selection.

Random testing (RT) is a fundamental testing method which simply selects test cases in a random

manner from the whole input domain [33]. RT has been popularly applied to assess software reliability.

However, its effectiveness at detecting software failures is debatable. Myers [33] criticized that RT may

be the “least effective” testing method for using little or no information about the software under test.

Menzies and Cukic [29], based on a series of simulations, claimed that RT could “adequately probe the

software” under many situations. Duran and Ntafos [18] conducted some simulations to compare RT with

3

a particular class of testing methods, partition testing, which divides the whole input domain into disjoint

partitions, and then selects test cases from these partitions. They found that RT may be more cost-effective

than partition testing.

In spite of controversies about its effectiveness, RT has been successfully used in different areas for

detecting various failures. For example, Miller et al. [31], [32] have used RT to test UNIX utility programs,

and reported that a large number of UNIX programs have been crashed or hanged by test cases generated

using RT. Forrester and Miller [19] applied the RT technique to test Windows NT applications, and it was

observed that 21% of tested applications were crashed, and an additional 24% of applications were hanged.

RT has also been used in the testing of graphical user interfaces [15], Java Just-In-Time compilers [47],

and embedded software systems [36]. Moreover, RT has been adopted in many industrial automatic testing

tools, such as those developed by IBM [3], Microsoft [39], and Bell Labs [20].

Inputs that cause the program under test to exhibit failure behaviors are named as failure-causing

inputs. Researchers from various areas [2], [4], [42], [43] have made a common observation that failure-

causing inputs often cluster into contiguous failure regions. White and Cohen [43], for example, found

that contiguous failure regions often result from a common type of software fault, namely domain error,

which refers to an error located in a decision of a program. Ammann and Knight [2] studied some missile

launch decision programs, and observed that “particular failure regions are locally continuous.” Bishop [4]

observed “blob defects,” where all detected failure-causing inputs “occupied contiguous regions” in some

nuclear reactor trip programs, and theoretically justi�ed the existence of “blob defects.” Van der Meulen et

al. [42] collected a large number of faulty programs written in different languages by various programmers,

and observed that most failure regions are contiguous.

Given that failure regions are frequently contiguous, it should also be common for non-failure regions to

be contiguous. Under such situations, adjacent test cases often have similar behaviors in failure detection.

If a test case t does not reveal any failure, a test case that is away from t is more likely to detect a

failure than t’s “neighbors” [12]. Based on such an intuition, Chen et al. [13] proposed a novel method,

namely adaptive random testing (ART), to enhance the failure-detection capability of RT. In ART, test

cases are not only randomly generated, but also evenly spread over the whole input domain. Previous

studies have shown that ART is more effective than RT, not only because ART generally uses fewer test

cases to detect the �rst failure than RT [11], but also because the failure-detection capability of ART is

more reliable than that of RT [26]. As a consequence of a better failure-detection capability, ART can

save testing resources, and the saving will become more signi�cant when test case execution or test output

veri�cation is expensive. ART improves the performance of RT while keeping the randomness in the test

case selection process.

4

The even spread of test cases, the basic notion of ART, is essentially a form of test case diversity [10]

across the input domain of the software under test. The diversity of test cases is effectively the key

concept for many testing techniques. For example, some code coverage criteria [48] have been used to

guide the selection of diverse test cases such that certain program structures are covered1, or certain

types of faults are detected. Previous studies have shown that the coverage techniques not only enhance

the failure-detection capability [22], [44], [45], [46], but also improve the effectiveness in assessing the

software reliability [7]. Besides being used in the selection of test cases, these coverage criteria can also

be applied to measure the adequacy of a test set (that is, a set of test cases) [48].

In this paper, we attempt to answer the following research question: apart from a better failure-detection

capability than RT, does the test case diversity brought by ART across the input domain also result in higher

code coverage? We conduct experimental studies to evaluate and compare the code coverage achieved by

ART and RT. Our experimental results show that, given the same number of test cases, ART normally

achieves higher code coverage than RT. Such an observation con�rms that ART is a more effective testing

method than RT, not only because it enhances the failure-detection capability, but also because it delivers

a higher con�dence on the software reliability.

The paper is organized as follows. In Section II, we introduce some background information about

ART and code coverage criteria. In Sections III and IV, we report our experiments and the experimental

results. In Section V, we discuss the threats to validity of our study. In Section VI, we conclude the paper.

II. PRELIMINARIES

A. An ART algorithm

Generally speaking, test cases selected by ART have two essential attributes: (i) randomness, and (ii)

even spread. Most ART algorithms use two s-independent processes to ensure these attributes. One process

is to randomly generate program inputs as test case candidates, or brie�y candidates. The other process in

ART is to apply certain criteria to select test cases from candidates such that the executed test cases are

evenly spread over the input domain. One typical ART algorithm is called �xed-size-candidate-set ART

(FSCS-ART) [13]. It maintains two sets of test cases. One set is the executed set E = {e1, e2, · · · , en},

where e1, e2, · · · , en are all executed test cases; the other set is the candidate set, which contains k randomly

generated inputs, denoted by C = {c1, c2, · · · , ck}, where k is �xed throughout the testing process. A

candidate will be selected as the next test case if it has the longest distance to its nearest neighbor in E.

Fig. 1 gives the detailed algorithm of FSCS-ART.

In Fig. 1, the termination condition can be “when the testing resources are exhausted,” “when a certain

number of test cases have been executed,” “when the �rst failure is detected,” etc. In most previous studies
1In this paper, “a program structure is covered” and “a program structure is executed” are used interchangeably

5

1. Input an integer k, where k > 1.
2. Set n = 0, and E = {}.
3. Randomly generate a test case t from the input domain.
4. while (termination condition does not satisfy)
5. Add t into E, and increment n by 1.
6. Randomly generate k candidates c1, c2, · · · , ck from the input domain,

and construct C with these candidates.
7. for each candidate cj , where j = 1, 2, · · · , k.
8. Calculate the distance dj to its nearest neighbor in E.
9. end for
10. Find cb ∈ C such that ∀j = 1, 2, · · · , k, db ≥ dj .
11. Set t = cb.
12. end while
13. Exit.

Fig. 1: The algorithm of FSCS-ART

of ART, it was often assumed that the program under test only has numeric inputs, and the “distance” in

Statement 8 of Fig. 1 often referred to the Euclidean distance between two points.

The F-measure refers to the expected number of test cases required to detect the �rst software failure.

Previous studies [10], [11], [13], [26] often used F-measure to examine and compare the failure-detection

capabilities of ART and RT, and showed that ART normally has a smaller F-measure than RT. Liu and

Zhu [26] also found that the F-measure of ART has smaller variation than that of RT, that is, ART has a

more reliable failure-detection capability than RT.

Previous studies [12] on FSCS-ART have shown that, although the F-measure of FSCS-ART becomes

smaller with the increase of k, any k > 10 will only marginally reduce the F-measure. k = 10 is a fair

setting for balancing the trade-off between the failure-detection capability and the computation overhead

of FSCS-ART. In this paper, we use FSCS-ART with k = 10 to study ART.

The basic intuition of ART is to evenly spread random test cases. Besides FSCS-ART, various

ART algorithms have been proposed to achieve the goal of even spread, such as ART by dynamic

partitioning [8], lattice-based ART [28], restricted random testing [6], etc. These ART algorithms have

different ways of evenly spreading test cases, different failure-detection effectiveness, and different

computation overheads. FSCS-ART requires O(n2) time to select n test cases. When the number of

test cases is very large, some techniques, such as forgetting [5], can be used to reduce the runtime of

FSCS-ART. By forgetting some executed test cases, the selection of a new test case may refer to a

�xed number of the most recently executed test cases instead of all previously executed test cases. As a

result, the test case selection time for FSCS-ART with forgetting can then be independent of n. Previous

studies [5] also showed that such a forgetting technique does not signi�cantly reduce the failure-detection

effectiveness. In the experiment of this study, the number of test cases is no more than 1,000 (as shown

6

in Section III), so we do not use the forgetting technique.

B. Application of ART into programs with non-numeric inputs

Most previous studies on ART have assumed that the program under test only has numeric inputs. In

these studies, the Euclidean distance is the metric for measuring the distance between inputs, and is used

by ART to evenly spread test cases. However, there exist a great number of non-numeric programs (that

is, programs with non-numeric inputs) in real life, and it is not so straightforward to measure the distance

between two non-numeric inputs. Recently, a new metric, namely category-partition-based metric, has been

proposed for non-numeric inputs [23], [30]. Some preliminary empirical studies have been conducted on

this new metric [23], and the experimental results showed that ART usually has a better failure-detection

capability than RT for programs with non-numeric inputs.

The basic intuition of such a metric is explained as follows. Intuitively speaking, if two program inputs

trigger the same functionalities, they are likely to cause the program under test to have similar test outcomes

(failure or pass). To effectively detect failures, successive test cases should differ from each other as much

as possible with respect to the functionalities that they trigger. Instead of the Euclidean distance, the new

metric attempts to measure the distance between two inputs in terms of the functionalities triggered by

them. Category partition method (CPM) [34] was adopted to facilitate the measurement of the distance

between two inputs.

Traditionally, CPM is used to generate test cases. In CPM, testers �rst identify a set of categories and

associated choices based on functionalities given in software speci�cations. Then they identify constraints

among choices, generate test frames, and �nally create one test case for each test frame.

Instead of using CPM to generate test cases, categories and choices are used to construct an input

classi�cation scheme. For example, an input xi is associated with a list of categories A(xi), and a list of

choices O(xi). Because these categories and choices are de�ned based on software functionalities, they

can re�ect the relationship between program inputs and their associated functionalities. Based on such

a scheme, the distance between two inputs x1 and x2 can be calculated as follows. First, we construct

the set of distinct choices Ô(x1, x2) for x1 and x2. Secondly, we construct the set of distinct categories

Â(x1, x2) for x1 and x2. Finally, we can calculate the distance between x1 and x2 as
∣∣∣Â(x1, x2)

∣∣∣.
C. Code coverage criteria

There are various code coverage criteria in the literature [48]. For example, structure-based criteria

require the selected test cases to thoroughly execute certain elements in the structure of the software

under test, while fault-based coverage criteria require the selected test cases to thoroughly detect various

faults injected in the program.

7

Control-�ow criteria and data-�ow criteria are two typical structure-based coverage criteria. Control-

�ow coverage criteria [21] consider some control constructs of the program under test. For example, in

statement testing strategy, test cases are selected such that all feasible statements2 in the program are

executed at least once. Condition coverage is another example of control-�ow testing strategy, which

subsumes statement testing. In condition coverage testing, test cases are required to exercise both the true

and false outcomes of each feasible condition in all feasible decisions. According to data-�ow coverage

criteria [24], test cases should thoroughly exercise certain patterns of data manipulation within the program

under test. Patterns of data manipulation include the de�nition of a datum (abbreviated as def), where

a value is allocated to the datum, and usage of a datum (abbreviated as use), where the datum’s value

is used by an operation. In addition, use can be further classi�ed into c-use, where a datum is used

in a computational expression or as an output; and p-use, where a datum appears in a predicate within

the program. Many data-�ow testing strategies have been proposed based on the above concepts, such as

all-defs, all-p-uses, all-c-uses, and all-def-use-pairs coverage. Readers may be interested to �nd details

of control-�ow and data-�ow coverage criteria from software testing literature [1], [27], [33], [35]. The

percentage of control-�ow or data-�ow coverage (referred to as coverage percentage in the rest of this

paper) that a test set can achieve is calculated as

Coverage percentage =
Nc

Ns −Ni

× 100%, (1)

Mutation analysis [17] is a popular approach for fault-based coverage. In code-based mutation analysis,

mutation operators are applied to inject a set of prede�ned faults into a program. As a result, a number of

variants, namely mutants, are generated based on the program under test. If a test case detects different

behaviors between a mutant and the program, this test case is said to “kill” the mutant, and thus detect the

fault seeded in the mutant. The performance of the constructed test set is measured based on its ability

to kill mutants. Mutation score, which is used to measure how thoroughly a test set can kill the mutants,

is de�ned as

Mutation score =
Mk

Mt −Mq

× 100%, (2)

Many previous studies have shown the advantages of code coverage criteria from various perspectives.

Hutchines et al. [22], for example, have used some coverage testing techniques to detect failures in “the

Siemens suite.” It was observed that the higher coverage a test set could achieve, the more failures would

be revealed. Wong et al. [44] pointed out that the coverage achieved by a test set is strongly correlated
2For a program element (such as statement, condition, etc.) to be feasible, the conditions along the path containing the element should

not be contradictory to one another; otherwise, it is called an infeasible element.

8

to the failure-detection capability, while the size reduction of a test set has almost no impact on the

failure-detection capability as long as the coverage remains unchanged [45], [46]. Rothermel et al. [37]

have used some coverage criteria as test case prioritization schemes. It was found that code coverage

criteria can signi�cantly enhance the failure-detection capability of the test case prioritization technique.

Chen et al. [7] also observed that the coverage technique can even be applied to improve the effectiveness

of software reliability estimation.

Code coverage criteria are very useful in the measurement of the quality of a test set [48]. If a test set

achieves 100% coverage on the program under test in terms of a certain coverage criterion C, this set is

regarded as adequate with respect to C. Given two testing strategies, each of which selects a test set of

the same size, one strategy is considered better than the other from the perspective of C if its selected

test set can achieve higher coverage.

III. EXPERIMENTAL SETTINGS

In our previous study [9], we investigated the performance of ART for programs with numeric inputs.

Five programs were used to measure the structure-based coverage of ART. Each of these programs only

accepts a �xed number of numeric inputs. However, in reality, there exist a large amount of programs that

accept non-numeric inputs. In this study, we further investigate the performance of ART beyond programs

with solely numeric inputs. We selected ten UNIX utility programs, namely Cal, Checkeq, Col, Comm,

Crypt, Look, Sort, Spline, Tr, and Uniq [45], as summarized in Table I. These subject programs

have various types of inputs, such as strings, data �les, etc.

TABLE I: Subject programs and their basic information

Program Functionality Lines of code
Cal Print a calendar for a speci�ed year or month 163
Checkeq Report missing or unbalanced delimiters and 90

.EQ/.EN pairs
Col Filter reverse paper motions for nroff output 274

for display on a terminal
Comm Select or reject lines common to two sorted 144

�les
Crypt Encrypt and decrypt a �le using a user 121

supplied password
Look Find words in the system dictionary or lines 135

in a sorted list
Sort Sort and merge �les 842
Spline Interpolate smooth curve based on given data 289
Tr Translate characters 127
Uniq Report or remove adjacent duplicate lines 125

9

In this study, we use the χSuds tool developed by Telcordia Technologies [40] to analyze the structure-

based coverage of a test set. χSuds can evaluate both the control-�ow and data-�ow coverage, and output

the coverage percentage that a test set can achieve. For control-�ow coverage, χSuds evaluates “block

coverage” and “decision coverage”. A block refers to a sequence of statements whose execution will

not be interrupted by any decision. Therefore, the block coverage in χSuds is effectively equivalent

to statement coverage. The “decision coverage” in χSuds requires test cases to exercise both the true

and false outcomes of all conditions in each decision of the program under test; that is, the “decision

coverage” in χSuds is effectively equivalent to simple condition coverage. χSuds also measures two

data-�ow coverage percentages, namely, “c-uses coverage,” and “p-uses coverage”. In this paper, we will

measure all these four coverage percentages for ART and RT. Table II reports the number of program

elements for each subject program. The values of Ns can be directly obtained from the χSuds tool.

It is an undecidable problem to automatically identify the program elements that are infeasible, that is,

there does not exist an algorithm which can identify the infeasible program elements. This study uses

the following method to calculate Ni. 100,000 test cases are randomly generated and executed for each

subject program. Ni is the number of the program elements that are not executed by any of these 100,000

test cases.

TABLE II: The number of program elements for each subject program

Program blocks decisions c-uses p-uses
Ns Ni Ns Ni Ns Ni Ns Ni

Cal 94 0 51 0 112 10 97 15
Checkeq 73 0 70 7 76 14 77 26
Col 153 17 108 10 209 20 202 55
Comm 97 10 69 24 67 7 69 29
Crypt 70 8 42 7 74 6 61 16
Look 84 3 52 2 57 1 67 7
Sort 503 58 384 65 941 212 852 241
Spline 188 2 123 8 258 39 189 35
Tr 100 5 82 12 118 25 156 63
Uniq 79 3 58 3 62 4 66 10

This study uses Proteum [16] to evaluate and compare the mutation scores of ART and RT. Given

a C program, Proteum can create a set of mutants, execute them against test cases, and report the

mutation score. Proteum provides 71 mutation operators which are classi�ed into four classes: statement,

operator, variable, and constant. All these operators are applied to create mutants of the subject programs,

as summarized in Table III. It is also an undecidable problem to automatically identify the equivalent

mutants. In this study, Mq is the number of mutants that are not killed by any of 100,000 randomly-

generated test cases.

10

TABLE III: Mutant statistics for subject programs

Program Mn Ma Mt Mq

Cal 304 1 303 26
Checkeq 235 1 234 65
Col 454 0 454 427
Comm 247 4 243 47
Crypt 248 2 246 206
Look 162 7 155 39
Sort 1396 8 1388 1315
Spline 497 1 496 423
Tr 243 0 243 182
Uniq 196 4 192 25

We evaluate the coverage percentages and mutation scores of ART and RT through the following four

step procedure.

1) Choose a subject program, and a test case selection strategy.

2) Generate a test set, with the number of test cases (that is, the size of the test set) being 1, 2, · · · ,

10, 20, · · · , 100, 200, · · · , 1000.

3) Use χSuds, and Proteum to evaluate four coverage percentages, and the mutation score,

respectively, of the test set generated in Step 2.

4) Repeat Steps 2 and 3 for a suf�cient number (S) of times such that the mean value of the coverage

percentages or mutation scores is statistically reliable within a certain con�dence level (1−α)×100%,

and accuracy range ±r%. According to the central limit theorem [41], we can get

S =

(
100 · Φ−1

(
2−α
2

)
· σ

r · μ

)2
, (3)

where μ, and σ are the mean value, and the standard deviation of coverage percentages or mutation

scores collected in Step 3, respectively; and Φ−1(·) denotes the inverse standard normal distribution

function. In this paper, we set the con�dence level, and the accuracy range as 95% (α = 0.05), and

±5% (r = 5), respectively.

We applied RT and ART to all ten subject programs. Because each of these programs reads in a list of

arguments via the command prompt, a random test case can be generated by constructing a list of random

arguments. Details of such a random generator can be found in the work of Wong et al. [45].

For all subject programs, our experiments use the category-partition-based metric introduced in

Section II-B to measure the distance between two test inputs. To implement ART, we identi�ed the

categories and associated choices by examining the speci�cation of each program. Some speci�cations

are too brief, so we need to inspect the source code of some programs to get a full picture of the

11

input-output relations.

In this study, the computation overhead of generating n test cases for RT, and ART are in O(n), and

O(n2), respectively. In our experiments, the number of test cases is not very large (maximum of 1000).

Moreover, the time for collecting data on coverage percentages and mutation scores is much longer than

the test case generation time. Therefore, there is no signi�cant difference in testing time between ART

and RT. As a reminder, we use the FSCS-ART algorithm (which requires O(n2) time to generate n

test cases) to study ART in this paper. As discussed in Section II-A, there are other ART algorithms

that have different computation overheads. For example, the algorithm of Random Border Centroidal

Voronoi Tessellations [38] has the runtime in O(n) for generating n test cases. Also note that extra

efforts are required when applying RT and ART in real-life situations. For example, proper random test

case generators should be used when RT is employed. In addition, categories and choices ought to be

identi�ed when implementing ART on programs with inputs of arbitrary types (as shown in Section II-B).

IV. CODE COVERAGE OF ADAPTIVE RANDOM TESTING

A. Comparison of ART and RT based on structure-based coverage

Figs. 2 to 11 compare the structure-based coverage percentages of ART and RT. In these �gures, the

x-axis represents the number of test cases in the logarithmic scale, and y-axis denotes the average coverage

percentages achieved by ART and RT.

Based on the experimental data, we have the following observations.

• For programs Cal, Checkeq, Col, Crypt, Look, Sort, Spline, Tr, and Uniq:

– When the size of the test set is small, ART has higher coverage percentages than RT.

– Under other situations, ART and RT have similar coverage percentages.

• For program Comm:

– On block, decision, and p-uses criteria, when the number of test cases is very small or large,

ART and RT have similar coverage percentages. Under other situations, ART has higher coverage

percentages than RT.

– On c-uses criterion, when the number of test cases is small, the coverage percentages of RT are

marginally higher than those of ART. Under other situations, ART and RT have similar coverage

percentages.

In summary, we observe that, other than one exception (c-uses for program Comm), ART has noticeable

coverage improvement over RT starting from a small test set. On one hand, ART uses fewer test cases

than RT to achieve the same coverage; on the other hand, ART attains a higher coverage than RT with

the same number of test cases. When the size of the test set is large enough, most elements (such as

12

70

80

90

100
a
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(a) Block coverage on Cal

70

80

90

100

e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(b) Decision coverage on Cal

70

80

90

100

g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(c) C-uses coverage on Cal

60

70

80

90

100

g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(d) P-uses coverage on Cal

Fig. 2: Coverage percentages of ART and RT on the program Cal

70

80

90

100

a
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(a) Block coverage on Checkeq

70

80

90

100

e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(b) Decision coverage on Checkeq

60

70

80

90

100

g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(c) C-uses coverage on Checkeq

60

70

80

90

100

g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(d) P-uses coverage on Checkeq

Fig. 3: Coverage percentages of ART and RT on the program Checkeq

13

80

90

100
a
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(a) Block coverage on Col

80

90

100

e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(b) Decision coverage on Col

80

90

100

g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(c) C-uses coverage on Col

80

90

100

g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(d) P-uses coverage on Col

Fig. 4: Coverage percentages of ART and RT on the program Col

70

80

90

100

a
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(a) Block coverage on Comm

70

80

90

100

e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(b) Decision coverage on Comm

70

80

90

100

g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(c) C-uses coverage on Comm

60

70

80

90

100

g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(d) P-uses coverage on Comm

Fig. 5: Coverage percentages of ART and RT on the program Comm

14

90

100
a
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

80

90

100

1 10 100 1000

A
v
e
ra
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(a) Block coverage on Crypt

80

90

e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

70

80

90

1 10 100 1000

A
v
e
ra
g
e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(b) Decision coverage on Crypt

90

100

g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

80

90

100

1 10 100 1000

A
v
e
ra
g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(c) C-uses coverage on Crypt

90

100

g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

80

90

100

1 10 100 1000

A
v
e
ra
g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(d) P-uses coverage on Crypt

Fig. 6: Coverage percentages of ART and RT on the program Crypt

70

80

90

100

a
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(a) Block coverage on Look

60

70

80

90

100

e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(b) Decision coverage on Look

70

80

90

100

g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(c) C-uses coverage on Look

50

60

70

80

90

100

g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

30

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(d) P-uses coverage on Look

Fig. 7: Coverage percentages of ART and RT on the program Look

15

60

70

80

90

100
a
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(a) Block coverage on Sort

50

60

70

80

90

100

e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

20

30

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(b) Decision coverage on Sort

50

60

70

80

90

100

g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

20

30

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(c) C-uses coverage on Sort

40

50

60

70

80

90

g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

20

30

40

50

60

70

80

90

1 10 100 1000

A
v
e
ra
g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(d) P-uses coverage on Sort

Fig. 8: Coverage percentages of ART and RT on the program Sort

50

60

70

80

90

100

a
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

20

30

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(a) Block coverage on Spline

40

50

60

70

80

90

100

e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(b) Decision coverage on Spline

40

50

60

70

80

90

100

g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(c) C-uses coverage on Spline

40

50

60

70

80

90

100

g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(d) P-uses coverage on Spline

Fig. 9: Coverage percentages of ART and RT on the program Spline

16

80

90

100
a
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(a) Block coverage on Tr

80

90

100

e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(b) Decision coverage on Tr

80

90

100

g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(c) C-uses coverage on Tr

70

80

90

100

g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(d) P-uses coverage on Tr

Fig. 10: Coverage percentages of ART and RT on the program Tr

70

80

90

100

a
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
b
lo
ck

co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(a) Block coverage on Uniq

60

70

80

90

100

e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
d
e
ci
si
o
n
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(b) Decision coverage on Uniq

50

60

70

80

90

100

g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

20

30

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
c
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(c) C-uses coverage on Uniq

50

60

70

80

90

100

g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

30

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
p
u
se
s
co
v
e
ra
g
e
(%

)

Number of test cases

RT ART

(d) P-uses coverage on Uniq

Fig. 11: Coverage percentages of ART and RT on the program Uniq

17

blocks, decisions, c-uses, and p-uses) in the program have already been covered. Therefore, it is also

understandable that the coverage percentages of RT are approaching those of ART with the increase of

the number of test cases. Generally speaking, with the same number of test cases, ART is likely to cover

the program under test more thoroughly than RT. In other words, ART is a better testing method than RT

in terms of structure-based coverage. Thus, diversity across the input domain somehow incurs a higher

structure-based coverage.

B. Comparison of ART and RT based on fault-based coverage

The experimental results on mutation scores of ART and RT are reported in Fig. 12, where the x-axis

represents the size of test set in the logarithmic scale, and y-axis denotes the average mutation scores.

From Fig. 12, the following can be observed.

• When the number of test cases is small, ART has higher mutation scores than RT.

• The mutation scores of RT are approaching those of ART with an increase of the number of test

cases.

• When the number of test cases is large, ART and RT have similar mutation scores.

Similar to the results of structure-based coverage, ART is likely to kill more mutants than RT with the

same number of test cases, which implies that ART usually has higher fault-based coverage than RT. As

the size of the test set increases, most mutants can be killed sooner or later. Thus, it is not surprising that

RT has similar fault-based coverage as ART when there are a large number of test cases. In a word, ART

is better than RT with respect to the fault-based coverage.

V. THREATS TO VALIDITY

There are some potential threats to the validity of our study, as discussed in the following.

One major concern about internal validity is the implementations of the testing strategies. There might

exist some errors when we implemented RT and ART. However, it should be pointed out that the size,

and complexity of the implementations were very small, and low, respectively. The same implementations

have been extensively used in the authors’ previous studies [9], [11], [45], and we have carefully reviewed

the code for its correctness. Another threat is that we identi�ed the infeasible program elements and the

equivalent mutants by executing 100,000 randomly-generated test cases. It is possible that some program

elements or mutants were mistakenly classi�ed.

There are also several threats to the external validity of this study. First, we selected ten UNIX utility

programs as the subjects of our experiments. Although these programs have various characteristics, we

should be careful when making a general statement that similar observations also apply to other types of

18

60

70

80

90

100
a
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

Number of test cases

RT ART

(a) Mutation scores on Cal

50

60

70

80

90

100

a
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

20

30

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

Number of test cases

RT ART

(b) Mutation scores on Checkeq

80

90

100

a
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

Number of test cases

RT ART

(c) Mutation scores on Col

30

40

50

60

70

80

90

100

a
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

Number of test cases

RT ART

(d) Mutation scores on Comm

98

99

100

a
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

96

97

98

99

100

1 10 100 1000

A
v
e
ra
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

Number of test cases

RT ART

(e) Mutation scores on Crypt

40

50

60

70

80

90

100

a
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

Number of test cases

RT ART

(f) Mutation scores on Look

60

70

80

90

100

a
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

Number of test cases

RT ART

(g) Mutation scores on Sort

40

50

60

70

80

90

100

a
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

Number of test cases

RT ART

(h) Mutation scores on Spline

19

70

80

90

100
a
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

Number of test cases

RT ART

(i) Mutation scores on Tr

40

50

60

70

80

90

100

a
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

A
v
e
ra
g
e
m
u
ta
ti
o
n
sc
o
re

(%
)

Number of test cases

RT ART

(j) Mutation scores on Uniq

Fig. 12: Mutation scores of ART and RT

programs. Secondly, the test case selection process depends on the knowledge and experience of the tester.

For example, to measure the distance, a tester needs to identify appropriate categories and choices for the

program under test. Such an identi�cation process is somewhat subjective, and may not be straightforward.

The threats to the construct validity are related to the measurement. In this study, we measured the code

coverage of ART and RT based on �ve criteria. There are various coverage criteria in the literature [48].

For a test set that is regarded as adequate with respect to one coverage criterion, it may not be adequate

in terms of another criterion. Having said that, the coverage criteria used in this study are representative,

and commonly used in practice. Thus, our analysis is broad-ranged.

VI. CONCLUSIONS, AND FUTURE WORK

RT is a popularly used technique for assessing software reliability. Its effectiveness in detecting software

failures can be enhanced if test cases are evenly spread over the input domain. Such an intuition of “even

spread” is the core of ART. Previous studies mainly focused on evaluating and comparing ART and

RT in terms of their failure-detection capabilities, and it has been shown that ART usually has smaller

F-measures than RT; that is, ART can detect the �rst software failure with fewer test cases than RT.

In this study, we conducted a series of experiments to compare the effectiveness of ART and RT from

another perspective, the code coverage that they can achieve. We selected a particular ART algorithm,

namely FSCS-ART, and measured its structure-based and fault-based coverage on ten UNIX utility

programs. Because the subject programs have various types of inputs, a category-partition-based metric

was applied to measure the distance among test cases. Aligning with our previous study [9], this paper

shows that ART can achieve higher coverage on program structures, not only for programs with numeric

inputs, but also for those with non-numeric inputs. Besides the higher structure-based coverage, this study

also shows that ART normally kills more mutants than RT with the same number of test cases. In summary,

ART is a more effective software testing method than RT, not only because of its smaller F-measures,

20

but also because of its higher structured-based and fault-based coverage. By achieving higher coverage

than RT with the same number of test cases, ART also improves the effectiveness of software reliability

estimation, and increases our con�dence in the reliability of the program under test even when no failure

is detected.

In this paper, we investigated the code coverage of one ART algorithm, FSCS-ART. There are various

ART algorithms in the literature, which evenly spread random test cases in different ways. It is interesting

to measure and compare the code coverage achieved by different ART algorithms. It is also worthwhile to

select more programs, especially those with a larger scale, and to conduct more extensive studies. Finally,

there exist various metrics to measure the distance among test cases [14], [25]. Further work could be

conducted to investigate to what extent various distance metrics can improve the code coverage of ART.

REFERENCES

[1] P. Ammann and J. Offutt, Introduction to Software Testing, Cambridge University Press, 2008.

[2] P. E. Ammann and J. C. Knight, “Data diversity: An approach to software fault tolerance,” IEEE Transactions on Computers, vol. 37,

no. 4, pp. 418–425, 1988.

[3] D. L. Bird and C. U. Munoz, “Automatic generation of random self-checking test cases,” IBM Systems Journal, vol. 22, no. 3, pp.

229–245, 1983.

[4] P. G. Bishop, “The variation of software survival times for different operational input pro�les,” Proceedings of the 23rd International

Symposium on Fault-Tolerant Computing (FTCS-23), 1993, pp. 98–107.

[5] K. P. Chan, T. Y. Chen, and D. Towey, “Forgetting test cases,” Proceedings of the 30th Annual International Computer Software and

Applications Conference (COMPSAC 2006), 2006, pp. 485–492.

[6] K. P. Chan, T. Y. Chen, and D. Towey, “Restricted random testing: Adaptive random testing by exclusion,” International Journal of

Software Engineering and Knowledge Engineering, vol. 16, no. 4, pp. 553–584, 2006.

[7] M.-H. Chen, M. R. Lyu, and W. E. Wong, “Effect of code coverage on software reliability measurement,” IEEE Transactions on

Reliability, vol. 50, no. 2, pp. 165–170, 2001.

[8] T. Y. Chen, G. Eddy, R. G. Merkel, and P. K. Wong, “Adaptive random testing through dynamic partitioning,” Proceedings of the 4th

International Conference on Quality Software (QSIC 2004), 2004, pp. 79–86.

[9] T. Y. Chen, F.-C. Kuo, H. Liu, and W. E. Wong, “Does adaptive random testing deliver a higher con�dence than random testing?”

Proceedings of the 8th International Conference on Quality Software (QSIC 2008), 2008, pp. 145–154.

[10] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, “Adaptive random testing: The ART of test case diversity,” The Journal of Systems

and Software, vol. 83, no. 1, pp. 60–66, 2010.

[11] T. Y. Chen, F.-C. Kuo, and Z. Q. Zhou, “On favorable conditions for adaptive random testing,” International Journal of Software

Engineering and Knowledge Engineering, vol. 17, no. 6, pp. 805–825, 2007.

[12] T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive random testing,” Proceedings of the 9th Asian Computing Science Conference, 2004,

pp. 320–329.

[13] T. Y. Chen, T. H. Tse, and Y. T. Yu, “Proportional sampling strategy: A compendium and some insights,” The Journal of Systems and

Software, vol. 58, no. 1, pp. 65–81, 2001.

[14] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “ARTOO: Adaptive random testing for object-oriented software,” Proceedings of the

30th International Conference on Software Engineering (ICSE 2008), 2008, pp. 71–80.

[15] T. Dabóczi, I. Kollár, G. Simon, and T. Megyeri, “Automatic testing of graphical user interfaces,” Proceedings of the 20th IEEE

Instrumentation and Measurement Technology Conference 2003 (IMTC 2003), 2003, pp. 441–445.

21

[16] M. E. Delamaro and J. C. Maldonado, “Proteum: A tool for the assessment of test adequacy for C programs,” Proceedings of the

Conference on Performability in Computing Systems (PCS 1996), 1996, pp. 79–95.

[17] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: Help for the practicing programmer,” IEEE Computer,

vol. 11, no. 4, pp. 31–41, 1978.

[18] J. W. Duran and S. C. Ntafos, “An evaluation of random testing,” IEEE Transactions on Software Engineering, vol. 10, no. 4, pp.

438–444, 1984.

[19] J. E. Forrester and B. P. Miller, “An empirical study of the robustness of Windows NT applications using random testing,” Proceedings

of the 4th USENIX Windows Systems Symposium, 2000, pp. 59–68.

[20] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated random testing,” Proceedings of ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI 2005), 2005, pp. 213–223.

[21] J. C. Huang, “An approach to program testing,” ACM computing surveys, vol. 7, no. 3, pp. 144–128, 1975.

[22] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments on the effectiveness of data�ow- and control�ow-based test adequacy

criteria,” Proceedings of the 16th International Conference on Software Engineering (ICSE 1994), 1994, pp. 191–200.

[23] F.-C. Kuo, “On adaptive random testing,” PhD thesis, Faculty of Information and Communications Technologies, Swinburne University

of Technology, 2006.

[24] J. W. Laski and B. Korel, “A data �ow oriented program testing strategy,” IEEE Transactions on Software Engineering, vol. 9, no. 3,

pp. 347–354, 1983.

[25] Y. Lin, X. Tang, Y. Chen, and J. Zhao, “A divergence-oriented approach to adaptive random testing of Java programs,” Proceedings

of the 24th IEEE/ACM International Conference on Automated Software Engineering (ASE 2009), 2009, pp. 221–232.

[26] Y. Liu and H. Zhu, “An experimental evaluation of the reliability of adaptive random testing methods,” Proceedings of The 2nd

International Conference on Secure System Integration and Reliability Improvement (SSIRI 2008), 2008, pp. 24–31.

[27] A. P. Mathur, Foundations of Software Testing, Addison-Wesley Professional, 2008.

[28] J. Mayer, “Lattice-based adaptive random testing,” Proceedings of the 20th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2005), 2005, pp. 333–336.

[29] T. Menzies and B. Cukic, “When to test less,” IEEE Software, vol. 17, no. 5, pp. 107–112, 2000.

[30] R. G. Merkel, “Analysis and Enhancements of Adaptive Random Testing,” PhD thesis, School of Information Technology, Swinburne

University of Technology, 2005.

[31] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of UNIX utilities,” Communications of the ACM, vol. 33,

no. 12, pp. 32–44, 1990.

[32] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natarajan, and J. Steidl, “Fuzz revisited: A re-examination of the reliability

of UNIX utilities and services,” Technical Report CS-TR-1995-1268, University of Wisconsin, 1995.

[33] G. J. Myers, The Art of Software Testing, second ed. John Wiley and Sons, 2004, Revised and updated by T. Badgett and T. M. Thomas

with C. Sandler.

[34] T. J. Ostrand and M. J. Balcer, “The category-partition method for specifying and generating functional tests,” Communications of the

ACM, vol. 31, no. 6, pp. 676–686, 1988.

[35] M. Pezze and M. Young, Software Testing and Analysis: Process, Principles and Techniques, Wiley, 2007.

[36] J. Regehr, “Random testing of interrupt-driven software,” Proceedings of the 5th ACM International Conference on Embedded Software

(EMSOFT 2005), 2005, pp. 290–298.

[37] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test cases for regression testing,” IEEE Transactions on Software

Engineering, vol. 27, no. 10, pp. 929–948, 2001.

[38] A. Shahbazi, A. F. Tappenden, and J. Miller, “Centroidal voronoi tessellations - a new approach to random testing,” IEEE Transactions

on Software Engineering. in press.

[39] D. Slutz, “Massive stochastic testing of SQL,” Proceedings of the 24th International Conference on Very Large Databases (VLDB

1998), 1998, pp. 618–622.

22

[40] Telcordia Technologies, “Telcordia software visualization and analysis toolsuite (χSuds),” 2001.

[41] H. Tijms, Understanding Probability: Chance Rules in Everyday Life, Cambridge University Press, 2004.

[42] M. van der Meulen, P. Bishop, and M. Revilla, “An exploration of software faults and failure behaviour in a large population of

programs,” Proceedings of the 15th International Symposium on Software Reliability Engineering (ISSRE 2004), 2004, pp. 101–112.

[43] L. J. White and E. I. Cohen, “A domain strategy for computer program testing,” IEEE Transactions on Software Engineering, vol. 6,

no. 3, pp. 247–257, 1980.

[44] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of test set size and block coverage on the fault detection effectiveness,”

Proceedings of the 5th International Symposium on Software Reliability Engineering (ISSRE 1994), 1994, pp. 230–238.

[45] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of test set minimization on fault detection effectiveness,” Software-

Practice and Experience, vol. 28, no. 4, pp. 347–369, 1998.

[46] W. E. Wong, J. R. Horgan, S. London, and A. Pasquini, “Test set size minimization and fault detection effectiveness: A case study in

a space application,” The Journal of Systems and Software, vol. 48, no. 2, pp. 79–89, 1999.

[47] T. Yoshikawa, K. Shimura, and T. Ozawa, “Random program generator for Java JIT compiler test system,” Proceedings of the 3rd

International Conference on Quality Software (QSIC 2003), 2003, pp. 20–24.

[48] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage and adequacy,” ACM computing surveys, vol. 29, no. 4, pp.

366–427, 1997.

Tsong Yueh Chen is a Chair Professor of Software Engineering at the Faculty of Information and
Communication Technologies in Swinburne University of Technology. He received his PhD degree in
Computer Science from The University of Melbourne; MSc, and DIC in Computer Science from Imperial
College of Science and Technology; and BSc, and MPhil. from The University of Hong Kong. His current
research interests include software testing and debugging, software maintenance, and software design.

Fei-Ching Kuo is a Senior Lecturer at the Faculty of Information and Communication Technologies
in Swinburne University of Technology. She received her PhD degree in Software Engineering, and BSc.
(Honors) in Computer Science, both from the Swinburne University of Technology, Australia. Her current
research interests include software analysis, testing, debugging, and project management.

Huai Liu is a Research Associate at the Faculty of Information and Communication Technologies at
Swinburne University of Technology. He received his PhD degree in Software Engineering from Swinburne
University of Technology, Australia; and M.Eng. in Communications and Information Systems, and B.Eng.
in Physioelectronic Technology from Nankai University, China. His current research interests include
software testing, web services, software architecture design, and end-user software engineering.

W. Eric Wong received his Ph.D. in Computer Science from Purdue University. He is a Professor and
Director of International Outreach in Computer Science at the University of Texas at Dallas. He is also
a Guest Researcher at the National Institute of Standards and Technology (NIST). Before joining UTD,
he was with Telcordia Technologies (formerly Bellcore) as a Senior Research Scientist, and a project
manager. Dr. Wong received the Quality Assurance Special Achievement Award from Johnson Space
Center, NASA, in 1997. His research focus is on software testing, debugging, safety, and reliability. He
is a Vice President of the IEEE Reliability Society, and the Secretary of the ACM SIGAPP.

