
Thank

Citatio

See th

Version

Copyri

Link to

you for do

on:

is record i

n:

ght Statem

o Published

wnloading

in the RMI

ment: ©

d Version:

 this docum

IT Researc

ment from

ch Reposit

the RMIT R

ory at:

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

Liu, H, Liu, X and Chen, T 2012, 'A new method for constructing metamorphic relations', in
Tang, A; Muccini, H (ed.) Proceedings of the 12th International Conference on Quality
Software (QSIC 2012), Los Alamitos, CA, USA, 27-29 August 2012, pp. 59-68.

http://researchbank.rmit.edu.au/view/rmit:20954

Accepted Manuscript

2012 IEEE.

http://dx.doi.org/10.1109/QSIC.2012.10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/15629216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchbank.rmit.edu.au/

A New Method for Constructing Metamorphic Relations

Huai Liu, Xuan Liu, and Tsong Yueh Chen
Faculty of Information and Communication Technologies

Swinburne University of Technology
Hawthorn 3122 VIC, Australia

{hliu, xuanliu, tychen}@swin.edu.au

Abstract

A fundamental problem for software testing is the oracle
problem, which means that in many practical situations, it
is extremely expensive, if not impossible, to verify the test
result given any possible program input. Metamorphic test-
ing is an approach to alleviating the oracle problem. The key
part of metamorphic testing is a set of necessary properties
of the software under test, namely metamorphic relations.
Metamorphic relations not only help generate test cases, but
also provide a mechanism to partially verify the test results
without the need of oracle. In most previous studies, meta-
morphic relations were identified manually by testers in an
ad hoc way. There is no systematic methodology that helps
us identify metamorphic relations. In this paper, we propose
a simple method, namely, the composition of metamorphic
relations, for systematically constructing new metamorphic
relations based on the already identified metamorphic rela-
tions. We conduct a case study and show that new meta-
morphic relations can be easily constructed by compositing
some existing metamorphic relations. It is also observed
that the new metamorphic relations are very likely to deliver
a higher cost-effectiveness of metamorphic testing than the
original metamorphic relations.

Key words: software testing, metamorphic testing,
metamorphic relation, composition of metamorphic rela-
tions.

1. Introduction

Currently, software is playing a critical role in all ar-
eas of the whole world, and has a profound impact on this
competitive society. However, failures universally exist in
software products, and have caused massive disasters [17].
Software quality assurance has been acknowledged as a cru-
cial activity in current software industry. Software testing, a
major approach to guaranteeing the software quality, aims at
revealing software failures as many as possible and as early
as possible.

Software testing is normally accomplished by selecting
some program inputs as test cases, executing the selected

test cases, and verifying the test results [16]. Many test-
ing techniques have been proposed to guide the selection of
test cases with the purpose of improving the effectiveness
in detecting software failures. Most of these test case selec-
tion techniques have implicitly assumed that there exists a
systematic mechanism (termed as oracle) that helps testers
verify the test result given any possible program input. Nev-
ertheless, in many practical situations, there does not exist an
oracle, or it is very expensive to apply the oracle [9]. Such
a problem, termed as oracle problem, is a fundamental chal-
lenge of software testing. When the oracle problem exists,
the applicability and effectiveness of many test case selec-
tion techniques will be greatly restrained, as it is very diffi-
cult, if not impossible, to check whether a failure has been
detected or not.

Metamorphic testing [4] is a simple yet effective ap-
proach to the oracle problem. In metamorphic testing, some
necessary properties of the software under test are identified
from the software specification. These properties are pre-
sented in the form of some relations, namely metamorphic
relations. Besides providing a test result verification mech-
anism when there is no oracle, metamorphic relations can
also be used in the test case selection process. The metamor-
phic testing technique has been applied into the testing of
various programs from different application domains, such
as bioinformatics [5], machine learning [21], telecommuni-
cations [7], etc. In addition, metamorphic testing has also
been used to alleviate the oracle problem for various soft-
ware engineering techniques, such as fault-based testing [9],
self-testing COTS components [3] symbolic execution [8],
program slicing [22], etc.

It is obvious that metamorphic relations are the core part
of the metamorphic testing, as they are not only used in test
case generation, but also provide a mechanism for test result
verification. Although it has been demonstrated that it is not
very difficult to come up with some metamorphic relations
for a program [13], metamorphic relations were often iden-
tified manually by testers in an ad hoc way [5, 7, 19, 21].
To date, no formal methodology has been proposed for sys-
tematically identifying metamorphic relations. Some re-
searchers [6, 14] proposed some guidelines on how to se-
lect “good” metamorphic relations that intuitively have high

failure-detection capabilities out of already identified meta-
morphic relations. Testers were recommended to consider
these selection guidelines when manually identifying meta-
morphic relations. However, these studies did not provide
any systematic methodology for generating metamorphic re-
lations.

As a matter of fact, the identification of metamorphic
relations involves much human intelligence for analyzing
specifications, finding necessary properties of the system
under test, etc. Therefore, it is extremely difficult, if not
impossible, to fully automate the identification process. In
this paper, we are not going to propose a methodology for
systematically identify metamorphic relations from scratch.
Instead, we attempt to construct new metamorphic relations
based on some already identified metamorphic relations.
Our method is named as composition of metamorphic re-
lations. Intuitively speaking, when several different meta-
morphic relations are composited into one single metamor-
phic relation, the resultant new metamorphic relation should
embed all properties of the original metamorphic relations,
and thus should not have a lower failure-detection capabil-
ities than any individual original metamorphic relation. By
compositing existing metamorphic relations, we may be able
to use fewer metamorphic relations to reveal most failures
that are detected when all original metamorphic relations are
used, and hence improve the cost-effectiveness of metamor-
phic testing.

In this paper, we investigate the composition of meta-
morphic relations and the impact it may have on the cost-
effectiveness of metamorphic testing. The rest of the paper
is organized as follows. Section 2 introduces some prelimi-
nary information on metamorphic testing. Section 3 presents
the basic concepts of the composition of metamorphic rela-
tions. In Section 4, we report a case study on our method,
and investigate the cost-effectiveness of the metamorphic re-
lations constructed by our method. The threat to validity of
our study is discussed in Section 5. Section 6 compares our
study with the related work. Section 7 concludes the paper.

2. Metamorphic Testing

Metamorphic testing is normally conducted according
to the following steps.

1. Identify metamorphic relations from the specification
of the software under test.

2. Generate the source test case using some traditional test
case selection methods, and execute them.

3. Construct the follow-up test case from the source test
cases based on metamorphic relations, and execute
them.

4. Compare the results of source and follow-up test cases
against metamorphic relations.

In Step 1 (metamorphic relation identification), domain-
specific knowledge is required to fully understand the spec-
ification, so it is highly recommended that testers discuss
with software users or developers to make sure that the iden-
tified metamorphic relations are correct and necessary prop-
erties for the software under test. Normally, a metamorphic
relation is composed of two major parts. One part, namely
input relation, refers to the relation between the inputs of
source and follow-up test cases; while the other part, namely
output relation, reflects the relation that the outputs of source
and follow-up test cases are expected to hold. Theoretically,
any test case selection technique can be used in the source
test case generation (Step 2). Previous studies have used
special case [20] and random testing [19] techniques to gen-
erate source test cases. In our case study, we use random
testing [16] in Step 2, as it can generate a large number of
test cases at low cost and with little human bias. In Step 3
(follow-up test case construction), the input relation of each
metamorphic relation is used to construct the follow-up test
case from the source test case. In this paper, we define a
group of source and follow-up test cases as a metamorphic
test group. It should be noted that the number of source or
follow-up test cases in a metamorphic test group is not nec-
essarily restricted to one. One or more source test cases may
be associated with one or more follow-up test cases. In this
paper, for ease of illustration, we assume that a metamorphic
test group involves one source test case and one follow-up
test case, unless otherwise specified. In Step 4 (test results
verification), when the results of a metamorphic test group
violate the output relation of a metamorphic relation, a fail-
ure is said to be detected.

The following simple example illustrates the basic pro-
cess of metamorphic testing. Suppose that P is a program
calculating the shortest path between two nodes in an undi-
rected graph. Two metamorphic relations can be identified
for P as follows.

• MRA: If the starting and ending nodes are swapped, the
length of the shortest path should remain unchanged.

• MRB: If the graph is permutated, the length of the
shortest path should remain unchanged.

The input relations of MRA and MRB are “the swap-
ping of starting and ending nodes” and “the permutation of
graph”, respectively. MRA and MRB have the same output
relation, that is, “the length of the shortest path should re-
main unchanged”.

Suppose that the source test case is (G,a,b), where G
is an undirected graph, a and b are the starting and end-
ing nodes of the shortest path. Based on the first meta-
morphic relation (MRA), we can generate a follow-up test
case (G,b,a), where a and b are swapped. After executing
both test cases, we check whether the relation |P(G,a,b)|=
|P(G,b,a)| (that is, the shortest path from a to b should have
the same length as that from b to a) is satisfied or violated.
If |P(G,a,b)| 6= |P(G,b,a)|, a failure is detected. Similarly,
according to the second metamorphic relation (MRB), the

2

follow-up test case can be constructed as (G′,a′,b′), where
G′ is the permutation of G, a′ and b′ are the permutated
nodes of a and b, respectively. After the execution of the
metamorphic test group ((G,b,a) and (G′,a′,b′)), we check
whether the relation |P(G,a,b)| = |P(G′,a′,b′)| is satisfied
or violated. If violated, a failure is said to be detected.

As consistently shown in previous studies [14, 19, 20,
22], metamorphic testing has many advantages. First and
foremost, metamorphic testing provides a test result verifi-
cation mechanism when oracle does not exist. The test re-
sults are verified against metamorphic relations instead of
oracle. In addition, most metamorphic relations are simple
in concepts, so it is easy to automatically verify test results
by using some simple scripts.

3. Composition of Metamorphic Relations

The following presents several definitions related to the
composition of metamorphic relations. In these definitions,
we suppose that given a source test case T , a follow-up test
case Fx(T) can be constructed according to a metamorphic
relation MRx.

Definition 1. Let MRx and MRy be two metamorphic rela-
tions. MRy is compositable to MRx iff for any source test
case T for MRx, its corresponding follow-up test case Fx(T)
can always be used as the source test case for MRy.

Note that MRy being compositable to MRx does not
necessarily imply MRx being compositable to MRy.

Definition 2. Let MRx and MRy be two metamorphic rela-
tions such that MRy is compositable to MRx. A composite
metamorphic relation MRxy is said to be the composition of
MRx and MRy iff for any source test case T for MRxy, its
corresponding follow-up test case Fxy(T) = Fy(Fx(T)).

Note that even if both MRxy and MRyx exist, they are
not necessarily equivalent to each other. In other words, the
composition is sensitive to the order of the metamorphic re-
lations to be composited.

Definition 3. Let MR1, MR2, · · · , and MRn (n ≥ 2) be n
metamorphic relations, where MRi is compositable to MRi−1
(i = 2, · · · ,n). A composite metamorphic relation MR12···n is
said to be the composition of MR1, MR2, · · · , and MRn iff
for any source test case T for MR12···n, its corresponding
follow-up test case F12···n(T) = Fn(Fn−1(· · ·(F1(T)) · · ·)).

Let us consider the example given in Section 2. We can
define a new composite metamorphic relation MRAB through
the composition of MRA and MRB.

• MRAB. If the starting and ending nodes are swapped
and then the graph is permutated, the length of the
shortest path should remain unchanged.

For a source test case T = (G,a,b), we can have a
follow-up test case FAB(T) = (G′,b′,a′) according to the

new metamorphic relation MRAB. After executing the
source and follow-up test cases, we verify the test results by
checking whether the relation |P(G,a,b)|= |P(G′,b′,a′)| is
satisfied or violated.

Intuitively speaking, the new metamorphic relation de-
fined by the composition of metamorphic relations will em-
bed all properties associated with the original metamorphic
relations. For example, the above MRAB can help check the
properties related to “permutation” as well as “node swap-
ping”. Intuitively, the more properties a metamorphic rela-
tion can reflect, the more failures it may be able to detect,
provided that these properties do not cancel each other par-
tially or completely.

In addition, the composition of metamorphic relations
can reduce the number of test cases generated and executed
in metamorphic testing. For example, if we use MRA and
MRB for testing the program P, we generate and execute
at least three test cases (one common source test case plus
two follow-up test cases) in each run of testing. In iterative
metamorphic testing [20], there are also at least three test
cases (one initial source test case for MRA, the follow-up test
case of MRA used as the source test case for MRB, and the
follow-up test case for MRB, given that the order of usage is
MRA followed by MRB) in each run of testing. However, if
the composite metamorphic relation MRAB is used instead of
original MRA and MRB, only two test cases (one source and
one final follow-up for MRAB only) are executed for each
run of testing.

4. A Case Study

4.1. Subject program and its metamorphic rela-
tions

Currently, many bioinformatics programs have the or-
acle problem as they often involve sophisticated computa-
tions and large-scale complex datasets. Some studies [2, 5]
have been conducted for tackling the oracle problem in the
testing of bioinformatics programs. Chen et al. [5] have used
metamorphic testing technique to reveal a real-life bug in an
open-source bioinformatics program. In this study, we select
a bioinformatics program as the subject of the experiments.
The subject program, namely dnapars, is a phylogenetic
program, which is used to “infer evolutionary relationships
among taxa using aligned sequences of characters, typically
DNA or amino acids” [18]. The major input to dnapars
is a u× v matrix, which presents the DNA sequences with
u taxa and v nucleotides. dnapars constructs and outputs
the phylogenetic tree based on the input DNA sequences.
dnapars can also calculate the evolutionary steps for the
constructed tree, termed as total length.

Sadi et al. [18] have identified seven metamorphic rela-
tions for testing dnapars. All these metamorphic relations
will be used in our study, as listed in the following. In these
metamorphic relations, the inputs for source and follow-up
test cases are represented by X and X ′, respectively. T and

3

T ′ denote the output trees of X and X ′, respectively. The
total lengths of T and T ′ are t and t ′, respectively.

• MR1. X ′ is constructed by inserting a number of unin-
formative sites into X . Then, T = T ′ and t = t ′.

• MR2. X ′ is constructed by changing every alphabet in
every sequence of X according to the same transforma-
tion scheme. Then, T = T ′ and t = t ′.

• MR3. X ′ is constructed by swapping two sites in X .
Then, T = T ′ and t = t ′.

• MR4. X ′ is constructed by removing some uninforma-
tive sites from X . Then, T = T ′ and t = t ′.

• MR5. X ′ is constructed by inserting a number of hyper-
variable sites into X . Then, T = T ′.

• MR6. X ′ is constructed by concatenating each se-
quence with itself. Then, T = T ′ and 2t = t ′.

• MR7. X ′ is constructed by adding a duplicate sequence
into X . Then, T and T ′ only differ in the subtree of
the duplicate taxon having the same DNA sequence and
t = t ′.

4.2. Composite metamorphic relations

We name the composite metamorphic relations that are
constructed by the composition of k metamorphic relations
as k-composite metamorphic relations. We also name the
original metamorphic relations used in the composition as
component metamorphic relations. In our study, one compo-
nent metamorphic relation will be used at most once in con-
structing a composite metamorphic relation. In other words,
a composite metamorphic relation is composed of distinct
component metamorphic relations. For the subject program,
seven component metamorphic relations (MR1, MR2, · · · ,
MR7) have been identified, so we can have 2-, 3-, · · · , 7-
composite metamorphic relations. The following gives some
examples of the 2-composite metamorphic relations.

• MR12. X ′ is constructed by inserting a number of unin-
formative sites into X and then changing every alphabet
in every sequence according to the same transformation
scheme. Then, T = T ′ and t = t ′.

• MR63. X ′ is constructed by concatenating each se-
quence with itself and then swapping two sites in X .
Then, T = T ′ and 2t = t ′.

• MR24. X ′ is constructed by changing every alphabet in
every sequence according to the same transformation
scheme and removing some uninformative sites from
X . Then, T = T ′ and t = t ′.

• MR75. X ′ is constructed by adding a duplicate se-
quence into X and then inserting a number of hyper-
variable sites into X . Then, T and T ′ only differ in the
subtree of the duplicate taxon having the same DNA
sequence.

After an investigation, we found that MR7 is not com-
positable to MR5 (but MR5 is compositable to MR7). In
other words, there is no composite metamorphic relation as
MR···5···7 (but there are composite metamorphic relations as
MR···7···5). Except for this case, all metamorphic relations
are compositable to one another. Although there are only
seven component metamorphic relations, a huge number of
composite metamorphic relations can be constructed. The
numbers of 2-, 3-, 4-, 5-, 6-, and 7-composite metamorphic
relations are 41, 195, 720, 1,920, 4,680, 2,520, respectively.
In total, 7,076 composite metamorphic relations can be con-
structed based on the existing seven component metamor-
phic relations for the subject program. Since the composi-
tion of metamorphic relations is very simple in concept, it
can be easily automated. In other words, based on a few
already identified metamorphic relations, it is very likely to
automatically construct a huge amount of composite meta-
morphic relations at low cost.

4.3. Evaluation of cost-effectiveness

As discussed above, a composite metamorphic relation
should embed all properties associated with its correspond-
ing component metamorphic relations. Through the com-
position of metamorphic relations, we may be able to use
the composite metamorphic relation to detect most failures
that are revealed by its component relations. As a result, the
cost-effectiveness of metamorphic testing may be enhanced.
We conducted a series of experiments to demonstrate such
enhancement on the cost-effectiveness.

Mutation analysis technique [10] has been used in pre-
vious study [18] for evaluating the failure-detection effec-
tiveness of metamorphic testing on dnapars. Faults were
seeded into the original version of dnapars to generate
some faulty versions, namely mutants. In this study, we will
use 11 mutants of dnapars, as summarized in Table 1.

4.3.1. Failure-detection capabilities of metamorphic
relations.

We generated 500 test inputs using the random testing
techniques. These test inputs were used as the source test
cases, based on which, follow-up test cases are constructed
according to metamorphic relations. Therefore, totally 500
metamorphic test groups (each of which is composed of one
source test case and its corresponding follow-up test case,
as defined in Section 2) were executed for each metamor-
phic relation (component or composite). Table 2 reports the
number of failures detected by each component metamor-
phic relation on each mutant. For example, the “94” in the
rightmost bottom cell of the table means that out of all 500
metamorphic test group for MR7, 94 groups can detect fail-
ures in the mutant µ11.

It should be noted that our testing results of the compo-
nent metamorphic relations are slightly different from those
in previous study [18]. The difference is due to the use of
different random test inputs and different implementations

4

Table 1. Mutants of the subject program
mutant line# original statement faulty statement

µ1 738 ns = 1 << G ns = 1 << C
µ2 2807 if(i == j) if(i != j)
µ3 565 if(ally[alias[i-1]-1] != alias[i-1]) if(ally[alias[i-1]-1] >= alias[i-1])
µ4 1115 for(i = a; i < b; i++) for(i = a; i <= b; i++)
µ5 567 j = i + 1; j = i - 1;
µ6 992 for(i = (long)A; i <= (long)O; i++) for(i = (long)A; i > (long)O; i++)
µ7 575 itemp = alias[i-1]; itemp = alias[i+1];
µ8 1137 for(j = (long)A; j <= (long)O; j++) for(j = (long)A; j >= (long)O; j++)
µ9 1077 else p -> numsteps[i] += weight[i]; else p -> numsteps[i] -= weight[i];

µ10 1182 for(j = (long)A; j <= (long)O; j++) for(j = (long)A; j > (long)O; j++)
µ11 566 if(j <= i) if(j > i)

Note: all failures were seeded into the file seq.c.

Table 2. Failure-detection capabilities of component metamorphic relations in terms of the number of vio-
lations out of 500 random metamorphic test groups

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10 µ11
MR1 0 1 472 3 13 500 0 0 0 500 0
MR2 494 0 496 0 414 0 67 0 0 0 75
MR3 0 0 268 0 0 0 0 0 0 0 0
MR4 203 204 465 204 106 500 203 204 201 500 184
MR5 0 0 79 116 1 0 0 0 8 0 0
MR6 0 0 465 2 374 0 66 0 0 0 79
MR7 15 1 69 83 254 16 10 300 128 10 94

of metamorphic relations (such as different transformation
schemes for alphabet in MR2).

We have investigated the failure-detection capabilities
of all composite metamorphic relations. Due to page limit,
we only report the results of 2-composite metamorphic rela-
tions in Table 3. Each cell of Table 3 denotes the number of
failures detected by 500 metamorphic test groups for a pair
of 2-composite metamorphic relation and mutant.

The experimental results are analyzed based on the fol-
lowing two research questions.

4.3.2. One composite metamorphic relation vs. several
component metamorphic relations.
Research Question 1. Suppose that k component metamor-
phic relation are composited into one composite metamor-
phic relation. Will the composite metamorphic relation have
higher or at least similar failure-detection capability than
each of its component metamorphic relations?

It is obvious that the new composite metamorphic rela-
tion will involve fewer test executions than using all k com-
ponent metamorphic relations in each run of testing. There-
fore, even if the new metamorphic relation detects a similar
number of failures as the component metamorphic relations,
the cost-effectiveness is improved.

Binomial tests [15] were conducted to compare the ef-
fectiveness of the 2-composite metamorphic relations and

the component metamorphic relations. The null hypothesis
(H0) is that for a 2-composite metamorphic relations MRpq,
mpq < max{mp,mq}, where mpq, mp, and mq are the num-
bers of failures detected by MRpq, MRp, and MRq, respec-
tively. The significance level is set as 0.05. The results of
the comparisons based on mutants are given in Table 4. In
Table 4, NMR refers to the total number of 2-composite meta-
morphic relations used to test a mutant, and Ns refers to the
number of 2-composite metamorphic relations MRpq whose
corresponding mpq < max{mp,mq}.

In general, it is statistically significant that 2-composite
metamorphic relations have at least similar failure-detection
capabilities as the component metamorphic relations. Even
for the exceptional cases (that is, for mutants µ3 and µ5),
the difference between the performances of composite meta-
morphic relations and the best component metamorphic re-
lation is not very large, as shown in Table 3.

In order to further examine the impact of individual
component metamorphic relations on the effectiveness of
composite metamorphic relations, we also conducted the
binomial test based on each component metamorphic rela-
tion. The results are given in Table 5. In Table 5, for each
column corresponding to MRi, Nc refers to the total num-
ber of 2-composite metamorphic relations (MRi j or MR ji)
that are composed of MRi and another metamorphic rela-
tion MR j, Nµ refers to the number of mutants (in this study,

5

Table 3. Failure-detection capabilities of all 2-composite metamorphic relations in terms of the number of
violations out of 500 random metamorphic test groups

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10 µ11
MR12 494 1 496 6 414 500 67 0 0 500 75
MR13 0 1 468 5 13 500 0 0 0 500 0
MR14 203 204 484 206 94 500 203 204 204 500 184
MR15 0 1 74 120 0 0 0 0 8 0 0
MR16 0 1 479 4 374 500 66 0 0 500 79
MR17 15 2 98 86 255 16 10 300 128 10 94
MR21 494 1 498 4 414 500 67 0 0 500 75
MR23 494 0 497 1 414 0 67 0 0 0 75
MR24 495 204 492 204 425 500 243 204 204 500 248
MR25 31 0 96 117 72 0 0 0 8 0 60
MR26 494 0 494 2 430 0 71 0 0 0 79
MR27 45 1 130 83 289 16 10 300 128 10 123
MR31 0 1 465 4 13 500 0 0 0 500 0
MR32 494 0 497 1 414 0 67 0 0 0 75
MR34 203 204 479 204 106 500 203 204 204 500 184
MR35 0 0 73 117 1 0 0 0 8 0 0
MR36 1 1 482 3 375 1 67 1 1 1 80
MR37 15 1 88 83 254 16 10 300 128 10 94
MR41 193 194 469 195 92 500 194 194 194 500 173
MR42 495 204 492 203 425 500 242 202 202 500 246
MR43 203 204 478 205 101 500 203 204 204 500 184
MR45 2 0 73 128 5 0 0 0 10 0 3
MR46 203 204 477 206 383 500 245 204 204 500 261
MR47 17 1 100 119 257 16 10 301 129 10 95
MR51 0 1 77 120 0 0 0 0 8 0 0
MR52 31 0 98 114 72 0 0 0 8 0 60
MR53 0 0 77 115 1 0 0 0 8 0 0
MR54 2 0 73 128 5 0 0 0 10 0 3
MR56 1 1 79 117 118 1 1 1 9 1 66
MR61 0 1 482 3 374 500 66 0 0 500 79
MR62 494 0 494 3 430 0 71 0 0 0 79
MR63 0 0 483 2 374 0 66 0 0 0 79
MR64 207 207 484 207 383 500 248 207 207 500 264
MR65 0 0 84 117 117 0 0 0 8 0 65
MR67 15 1 131 83 371 16 10 300 128 10 94
MR71 15 2 98 85 255 16 10 300 128 10 94
MR72 45 1 130 83 289 16 10 300 128 10 123
MR73 15 1 88 83 254 16 10 300 128 10 94
MR74 17 1 100 119 257 16 10 301 129 10 95
MR75 5 0 104 83 255 15 10 300 128 10 94
MR76 15 1 131 83 371 16 10 300 128 10 94

6

Table 4. Binomial test on the failure-detection
capabilities of 2-composite metamorphic relations
based on mutants

Ns NMR p-value decision
µ1 9 41 0.0002 reject H0

µ2 6 41 2.44×10−6 reject H0
µ3 28 41 0.9942 accept H0
µ4 9 41 0.0002 reject H0
µ5 16 41 0.1055 accept H0
µ6 9 41 0.0002 reject H0
µ7 14 41 0.0298 reject H0
µ8 5 41 3.92×10−7 reject H0
µ9 5 41 3.92×10−7 reject H0

µ10 8 41 5.61×10−5 reject H0
µ11 11 41 0.0022 reject H0
Total 120 451 3.36×10−24 reject H0

Table 5. Binomial test on the failure-detection
capabilities of 2-composite metamorphic relations
based on each component metamorphic relation

Ns Nc×Nµ p-value decision
MR1 26 132 5.84×10−13 reject H0
MR2 26 132 5.84×10−13 reject H0
MR3 12 132 7.11×10−24 reject H0
MR4 55 132 0.0336 reject H0
MR5 56 121 0.2336 accept H0
MR6 20 132 5.18×10−17 reject H0
MR7 45 121 0.0031 reject H0

Nµ = 11), and Ns refers to the number of 2-composite meta-
morphic relations (MRi j or MR ji) whose corresponding mi j
or m ji < max{mi,m j}.

Table 5 shows that except MR5, all other metamorphic
relations have positive impacts on the failure-detection capa-
bilities of the composite metamorphic relations. We further
investigated why MR5 has a negative impact on the com-
posite metamorphic relations under some situations. Differ-
ent from all other metamorphic relations, MR5 only involves
the phylogenetic trees (T = T ′). All other metamorphic re-
lations additionally involve total lengths (t = t ′ for MR1 to
MR4 and MR7; 2t = t ′ for MR6). In other words, MR5 has a
“looser” output relation, which may also explain why MR5
has a lower failure-detection capability than other compo-
nent metamorphic relations. The following MR15 gives an
example of the composition of MR5 with another metamor-
phic relation.

• MR15. X ′ is constructed by inserting a number of un-
informative sites as well as a number of hypervariable
sites into X . Then, T = T ′.

In order for the resultant composite metamorphic rela-
tions to be valid, when MR5 is composited with other meta-

morphic relations, the output relation between total lengths
in other component metamorphic relations could not be
used. In the above example, as MR5 does not have a cer-
tain relation between t and t ′, the relation t = t ′ from MR1
should not appear in MR15. Such an observation implies
that when compositing metamorphic relations, their output
relations should have similar “tightness”. Once there is one
metamorphic relation that involves a “loose” output relation,
the failure-detection capabilities of the composite metamor-
phic relations may be deteriorated.

Due to the page limit, we will not present the de-
tailed results of 3-, 4-, · · · , 7-composite metamorphic re-
lations. In brief, as the number of component metamor-
phic relations becomes higher, the failure-detection capa-
bilities of composite metamorphic relations become worse.
For example, only 52.7% of all 3-composite metamorphic
relations MRuvw can detect muvw failures such that muvw ≥
maxmu,mv,mw, where mu, mv, and mw are the numbers
of failures revealed by MRu, MRv, and MRw, which com-
posed MRuvw. In the case of 7-composition, all 7-composite
metamorphic relations cannot outperform the best compo-
nent metamorphic relation. As discussed above, MR5 has a
negative impact on the failure-detection capabilities of com-
posite metamtorphic relations. As the number of compo-
nent metamorphic relations becomes higher, it is more likely
to use MR5 in the construction of the composite metamor-
phic relations (probabilities involving MR5 in the composi-
tion are 26.8%, 38.5%, 50.0%, 62.5%, 84.6%, and 100% for
2-, 3-, 4-, 5, 6-, and 7-composite metamorphic relations, re-
spectively). Therefore, it is not surprising that the failure-
detection capabilities of composite metamorphic relations
deteriorate with the increase of the number of used com-
ponent metamorphic relations.

We also analyzed the composite metamorphic relations
that do not involve MR5. These metamorphic relations con-
sistently show higher failure-detection capabilities than each
of the component metamorphic relations. Such an observa-
tion, from another perspective, confirms our conjecture on
MR5, that is, MR5 has a negative impact on the failure-
detection capabilities of composite metamorphic relations.

Based on the above results, we can answer our first re-
search question as follows.

Answer to Research Question 1. The composition of k
(k > 1) metamorphic relations can produce a composite
metamorphic relation that normally has higher (or at least
similar) failure-detection capability than each component
metamorphic relation, as long as the output relations of the k
component metamorphic relations have similar “tightness”.
Since the composite metamorphic relation always involves
fewer test executions, it normally can deliver a higher cost-
effectiveness in testing than aggregatively using the k com-
ponent metamorphic relations whose output relations have
similar “tightness”. On the other hand, if one component
metamorphic relation involves a “loose” output relation, it
is not guaranteed that the composite metamorphic relation
will still have a high failure-detection capability.

7

4.4. A set of composite metamorphic relations vs. a
set of component metamorphic relations

Research Question 2. Suppose that there are totally h
metamorphic relations (MR1, MR2, · · · , MRh) that are orig-
inally identified for one program. l composite metamorphic
relations (MR′1, MR′2, · · · , MR′l) are constructed as follows.
Each MR′i (i = 1,2, · · · , l) is the composition of Ni > 1 com-
ponent metamorphic relations. Each component metamor-
phic relation MR j (j = 1,2, · · · ,h) is used once and only
once to construct the set of l composite metamorphic rela-
tions. Will the new l composite metamorphic relations have
higher cost-effectiveness than the h component metamorphic
relations?

In this study, we name the set of l composite metamor-
phic relations as the complete set of composite metamorphic
relations, because all h component metamorphic relations
have been considered in the set. For the subject program
dnapars, we have h = 7 component metamorphic rela-
tions. A complete set of composite metamorphic relations
can be constructed according to one of the following four
schemes.

• l = 3: two 2-composite metamorphic relations and one
3-composite metamorphic relation.

• l = 2: one 3-composite metamorphic relation and one
4-composite metamorphic relation.

• l = 2: one 2-composite metamorphic relation and one
5-composite metamorphic relation.

• l = 1: only one 7-composite metamorphic relation.

We constructed 100 complete sets of composite meta-
morphic relations in the following way.

• For one and only one set, l = 1. We found that all
7-composite metamorphic relations have very similar
failure-detection capabilities. However, the failure-
detection capabilities of 2-, 3-, 4-, and 5-composite
metamorphic relations are significantly different to one
another. The experimental scenarios should be as di-
versified as possible such that the conclusion could be
made in a general sense. Therefore, we only used one
complete set with l = 1.

• We randomly selected the first three schemes for con-
structing the other 99 complete sets.

In our study, 500 metamorphic test groups were gener-
ated and executed for each metamorphic relation. For the 7
component metamorphic relations, totally 7× 500 = 3,500
metamorphic test groups were used in testing 11 mutants.
Based on the data shown in Table 2, we can calculate that the
average failure-detection ratio of these 3,500 metamorphic
test groups on the 11 mutants is 0.2194. Here, the failure-
detection ratio refers to the ratio between the number of de-
tected failures and the number of metamorphic test groups.

We used the l × 500 metamorphic test groups gener-
ated based on each of 100 complete sets of composite meta-
morphic relations to test 11 mutants. The average failure-
detection ratio of each set was compared to that of the 7
component metamorphic relations. Binomial test was con-
ducted on such comparisons. The null hypothesis (H0) is
that the average failure-detection ratio of a complete set
of composite metamorphic relations is not larger than that
of the component metamorphic relations. The significance
level is 0.05. We observed that among all 100 complete
sets of composite metamorphic relations, 68 sets have the
average failure-detection ratios larger than 0.2194. The p-
value of the binomial test is 0.0002. Therefore, the null hy-
pothesis is rejected. In other words, it is statistically sig-
nificant that l composite metamorphic relations have higher
cost-effectiveness than h component metamorphic relations.
Based on the above results, we can answer our second re-
search question as follows.

Answer to Research Question 2. Suppose that h metamor-
phic relations are originally identified for the program un-
der test. A complete set of l < h composite metamorphic
relations can be constructed through the compositions of
the h component metamorphic relations, where each com-
ponent metamorphic relation is used once and only once for
constructing a composite metamorphic relation. The cost-
effectiveness of l composite metamorphic relations is nor-
mally higher than that of h component metamorphic rela-
tions.

5. Threats to Validity

The threats to validity of our study are discussed as fol-
lows.

The threat to internal validity is mainly related to the
implementation of metamorphic testing based on the meta-
morphic relations. The programming work was fulfilled in-
dependently by one author of the paper. All the source code
was carefully reviewed by another author. The involved
programs were also cross-checked with those in a previous
study [18]. We are confident that the metamorphic testing
has been correctly implemented in our experiments.

The major threat to external validity is about the subject
program and its associated metamorphic relations. In this
pilot study, we selected the subject program that has been
used in a previous study [18]. Though the subject is a typ-
ical program with oracle problem, we cannot say that our
method will work for any other type of programs. The orig-
inal/component metamorphic relations used in our study are
extracted from a previous study [18], but the identification
of these metamorphic relations were manually conducted in
an ad hoc way, and thus is somewhat subjective.

The main concern about the threat to construct validity
is the measurement. In our study, we measured the failure-
detection capabilities of metamorphic relations on some mu-
tants of the subject program. The mutation analysis tech-
nique has been acknowledged as the major method for fairly

8

evaluating the effectiveness of a testing method [1]. In ad-
dition, we evaluated the cost-effectiveness of metamorphic
testing using the ratio between the number of revealed fail-
ures and the number of executed test cases. Such a metric is
straightforward for showing the testing cost-effectiveness.

There is little threat to conclusion validity to our study,
because a large number of test cases have been used for the
implementation of each metamorphic relation. Our experi-
ments resulted in a huge amount of data, which could help
us reach a statistically reliable conclusion. A formal statisti-
cal technique has also been conducted to verify the statistical
significance of the experimental results.

6. Related Work

Some studies have been conducted on how to select
“good” metamorphic relations. Chen et al. [6] compared
various metamorphic relations identified for programs of
shortest path and critical path, and attempted to distinguish
metamorphic relations that are effective in detecting soft-
ware failures. Their study showed that theoretically under-
standing the application domain is not sufficient for identi-
fying good metamorphic relations. It was further suggested
that testers should understand the algorithm structure before
identifying metamorphic relations. It was also observed that
there is a common characteristic of good metamorphic rela-
tions, that is, the execution behaviors of source and follow-
up test cases should be quite different from each other.
Mayer and Guderlei [14] examined some metamorphic rela-
tions for several Java programs of determinant computation.
They observed that metamorphic relations that have rich se-
mantic properties normally have high failure-detection ca-
pabilities. It was also suggested that testers should avoid
the metamorphic relations that involve similar computations
as the implemented algorithm. All the studies on selecting
“good” metamorphic relations only provided some guide-
lines that help testers identify metamorphic relations that in-
tuitively have high failure-detection capabilities. No system-
atic methodology has been proposed for constructing meta-
morphic relations, and testers still need to identify metamor-
phic relations in an ad hoc way. In this paper, we proposed
a simple yet effective method of defining new metamorphic
relations through the composition of existing metamorphic
relations. To our best knowledge, this study is the first at-
tempt to systematically construct metamorphic relations (al-
though not from scratch).

Gotlieb and Botella [12], in their automated metamor-
phic testing framework, proposed some “general” forms of
metamorphic relations. Based on these general forms, some
concrete metamorphic relations could be constructed for a
given program. For example, for the programs GetMid
(which selects the median of three integers) and TriType
(which outputs the type of a triangle given three integers as
the side lengths of the triangle), one general form of meta-
morphic relation was proposed based on the permutation of
the inputs. Both programs can have the metamorphic re-

lation that the permutation of inputs should not change the
output. However, there is neither a systematic method for
identifying the “general” forms of metamorphic relations,
nor a systematic approach for deciding whether and how a
general form can be used to construct a metamorphic re-
lation for a concrete program. In other words, this frame-
work still requires lots of human effort in the construction of
metamorphic relations. Although our method also requires
human intelligence in identifying original metamorphic re-
lations, the composition of metamorphic relations is very
straightforward and thus can be automatically conducted at
low cost.

Iterative metamorphic testing [11, 20] and our method
have a commonality that both make use of multiple com-
ponent metamorphic relations aggregatively. However, it-
erative metamorphic testing does not involve the concept
of new composite metamorphic relations. Basically, they
generate test cases relation by relation successively. Once a
follow-up test case is generated based on one metamorphic
relation, this test case will be used as the source test case for
another metamorphic relation. In our work, multiple compo-
nent metamorphic relations are first composited into a new
composite metamorphic relation, which is then used to gen-
erate test cases as well as verify test results. Our method
involves fewer test executions than iterative metamorphic
testing. In addition, there exist some situations where the
follow-up test cases for one metamorphic relation cannot be
used as the source test cases for another metamorphic re-
lation. Such cases were not fully discussed in the studies
of iterative metamorphic testing [11, 20]. In this paper, we
presented some definitions for the composition of metamor-
phic relations. These definitions can also be used in iterative
metamorphic testing for guiding the aggregative usages of
metamorphic relations.

7. Conclusion and Future Work

Metamorphic testing is an approach to the oracle prob-
lem in software testing. Metamorphic testing makes use
of metamorphic relations for verifying test results as well
as generating test cases. To date, there is no systematic
method for identifying metamorphic relations, and testers
often identified metamorphic relations in an ad hoc way. In
this paper, we proposed a simple yet effective method for
the construction of metamorphic relations, namely the com-
position of metamorphic relations. Although our method
still needs some metamorphic relations as its inputs, it can
systematically construct much more new metamorphic rela-
tions from the given metamorphic relations. An experimen-
tal study also showed that the composition of metamorphic
relations can improve the cost-effectiveness of metamorphic
testing.

As a pilot study, we only investigated the composition
of metamorphic relations on one bioinformatics program. It
is important to further study this topic on various subject
programs to avoid any potential threat to validity. For ease of

9

illustration, this pilot study only involved metamorphic rela-
tions of simple forms. There exist metamorphic relations
of more complicated forms in the literature. Some meta-
morphic relations involve multiple source test cases and/or
multiple follow-up test cases. For some metamorphic re-
lations, the outputs of the source test cases should also be
considered in the construction of follow-up test cases. It
will be much more challenging to composite such metamor-
phic relations. Another future work on the composition of
metamorphic relations is to investigate the basic reason why
some metamorphic relations have negative impacts on the
failure-detection capabilities of the composite metamorphic
relations. It is necessary to formally define the notion of
“tightness” of the output relation in a metamorphic relation.
It is also crucial to propose some principles or guidelines for
judging whether a metamorphic relation has a “loose” output
relation and thus should be isolated from the composition
such that the constructed composite metamorphic relations
will definitely bring higher cost-effectiveness than original
metamorphic relations. It is also worthwhile to integrate the
research on the selection of “good” metamorphic relations
and our study on the composition of metamorphic relations.
On one hand, the composition of “good” metamorphic re-
lations may further improve the cost-effectiveness of meta-
morphic testing. On the other hand, the criteria for evaluat-
ing “good” metamorphic relations can also be used to guide
the composition of metamorphic relations.

Acknowledgment

This research project is supported by an Australian Re-
search Council Discovery Grant.

References

[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In Proceedings of
the 27th International Conference on Software Engineering
(ICSE05), pages 402–411, 2005.

[2] F. T. Bergmann and H. M. Sauro. Comparing simula-
tion results of SBML capable simulators. Bioinformatics,
24(17):1963–1965, 2008.

[3] S. Beydeda. Self-metamorphic-testing components. In Pro-
ceedings of the 30th Annual International Computer Software
and Applications Conference (COMPSAC06), pages 265–
272, 2006.

[4] T. Y. Chen, S. C. Cheung, and S. M. Yiu. Metamorphic test-
ing: A new approach for generating next test cases. Technical
Report HKUSTCS98-01, Department of Computer Science,
Hong Kong University of Science and Technology, 1998.

[5] T. Y. Chen, J. W. K. Ho, H. Liu, and X. Xie. An innovative
approach for testing bioinformatics programs using metamor-
phic testing. BMC Bioinformatics, 10:24, 2009.

[6] T. Y. Chen, D. H. Huang, T. H. Tse, and Z. Q. Zhou. Case
studies on the selection of useful relations in metamorphic
testing. In Proceedings of the 4th Ibero-American Sympo-
sium on Software Engineering and Knowledge Engineering
(JIISIC04), pages 569–583, 2004.

[7] T. Y. Chen, F.-C. Kuo, H. Liu, and S. Wang. Conformance
testing of network simulators based on metamorphic testing
technique. In Proceedings of the 29th IFIP International
Conference on Formal Techniques for Networked and Dis-
tributed Systems (FORTE09), pages 243–248, 2009.

[8] T. Y. Chen, T. H. Tse, and Z. Zhou. Semi-proving: An inte-
grated method for program proving, testing, and debugging.
IEEE Transactions on Software Engineering, 37(1):109–125,
2011.

[9] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Fault-based testing
without the need of oracles. Information and Software Tech-
nology, 45:1–9, 2003.

[10] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmer. IEEE
Computer, 11(4):31–41, 1978.

[11] G. Dong, C. Nie, B. Xu, and L. Wang. An effective iterative
metamorphic testing algorithm based on program path anal-
ysis. In Proceedings of the 7th International Conference on
Quality Software (QSIC07), pages 292–297, 2007.

[12] A. Gotlieb and B. Botella. Automated metamorphic test-
ing. In Proceedings of the 27th Annual International Com-
puter Software and Applications Conference (COMPSAC03),
pages 34–40, 2003.

[13] P. Hu, Z. Zhang, W. K. Chan, and T. H. Tse. An empirical
comparison between direct and indirect test result checking
approaches. In Proceedings of the 3rd International Work-
shop on Software Quality Assurance (SOQUA06), pages 6–
13, 2006.

[14] J. Mayer and R. Guderlei. An empirical study on the selec-
tion of good metamorphic relations. In Proceedings of the
30th Annual International Computer Software and Applica-
tions Conference (COMPSAC06), pages 475–484, 2006.

[15] H. Motulsky. Intuitive Biostatistics. Oxford University Press,
1995.

[16] G. J. Myers. The Art of Software Testing. John Wiley and
Sons, second edition, 2004.

[17] National Institute of Standards and Technology. The
economic impacts of inadequate infrastructure for soft-
ware testing. http://www.nist.gov/director/
prog-ofc/report02-3.pdf, Gaithersburg, Maryland,
USA, 2002.

[18] M. S. Sadi, F.-C. Kuo, J. W. K. Ho, M. A. Charleston, and
T. Y. Chen. Verification of phylogenetic inference programs
using metamorphic testing. Journal of Bioinformatics and
Computational Biology, 9(6):729–747, 2011.

[19] C.-A. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and T. Y. Chen.
Metamorphic testing for web services: Framework and a case
study. In Proceedings of the 9th International Conference on
Web Services (ICWS10), pages 283–290, 2011.

[20] P. Wu. Iterative metamorphic testing. In Proceedings of the
29th Annual International Computer Software and Applica-
tions Conference (COMPSAC05), pages 19–24, 2005.

[21] X. Xie, J. W. K. Ho, C. Murphy, G. E. Kaiser, B. Xu, and
T. Y. Chen. Testing and validating machine learning classi-
fiers by metamorphic testing. Journal of Systems and Soft-
ware, 84(4):544–558, 2011.

[22] X. Xie, W. E. Wong, T. Y. Chen, and B. Xu. Spectrum-based
fault localization: Testing oracles are no longer mandatory. In
Proceedings of the 11th International Conference On Quality
Software (QSIC11), pages 1–10, 2011.

10

