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Abstract—One major objective of software testing is to
reveal software failures such that program bugs can be
removed. Random testing is a basic and simple software
testing technique, but its failure-detection effectiveness is often
controversial. Based on the common observation that program
inputs causing software failures tend to cluster into contiguous
regions, some researchers have proposed that an even spread of
test cases should enhance the failure-detection effectiveness of
random testing. Adaptive random testing refers to a family of
algorithms to evenly spread random test cases based on various
notions. Restricted random testing, an algorithm to implement
adaptive random testing by the notion of exclusion, defines an
exclusion region around each previously executed test case, and
selects test cases only from outside all exclusion regions. Al-
though having a high failure-detection effectiveness, restricted
random testing has a very high computation overhead, and it
rigidly discards all test cases inside any exclusion region, some
of which may reveal software failures. In this paper, we propose
a new method to implement adaptive random testing by
exclusion, where test cases are simply selected based on a well-
designed test profile. The new method has a low computation
overhead and it does not omit any possible program inputs that
can detect failures. Our experimental results show that the new
method not only spreads test cases more evenly but also brings
a higher failure-detection effectiveness than random testing.

Keywords-Software testing, random testing, adaptive random
testing by exclusion, restricted random testing, test profile.

I. INTRODUCTION

Software testing is a main software engineering approach
to the software quality assurance. Random testing (RT) [19]
is a basic and simple software testing technique, which
randomly selects test cases from the whole input domain
(that is, the set of all possible program inputs). When used to
detect software failures, RT often selects test cases according
to a uniform distribution, that is, all program inputs have the
same probability to be chosen as test cases in order that no
program bug will be omitted. Although RT has been used
to reveal failures in various programs [13], [20], [21], it is
controversial whether it is an effective testing method or

not [19], as it does not make use of any information of the
program under test.

Many researchers [1], [3], [12] have independently ob-
served a common information of faulty programs, that is,
program inputs that cause software to exhibit failure be-
haviours, namely failure-causing inputs, tend to be clustered
into contiguous failure regions [1]. Given that failure regions
are contiguous, non-failure regions should also be contigu-
ous. Suppose that a test case t does not reveal a failure. Test
cases that are spread away from t may have a higher chance
to be failure-causing than t’s neighbours. Briefly speaking,
an even spread of test cases can help improve the failure-
detection effectiveness of RT. Based on such an intuition,
Chen et al. [10] proposed an innovative approach, namely
adaptive random testing (ART). Various ART algorithms [5],
[10], [22] have been developed to achieve an even spread of
test cases based on different notions, and ART has been used
in various areas [14], [15], [17]. One notion to implement
ART is by exclusion. Restricted random testing (RRT) [5]
is one algorithm of ART by exclusion. RRT defines an
exclusion region around each previously executed test case.
Test case candidates, or simply candidates, are continuously
generated (normally according to a uniform distribution)
until one candidate is picked from outside all the exclusion
regions, which is then used as the next test case.

Previous studies [5] have shown that RRT normally has
a higher failure-detection effectiveness than RT. However,
it is also known that RRT always requires a very high
computation overhead. It has been justified that the runtime
of RRT is in O(n2 log n) for generating n test cases [18].
Moreover, RRT’s scheme of discarding all points inside any
exclusion region is too rigid, because it is possible that
some points inside certain exclusion regions may be failure-
causing.

In this paper, we propose a new method that implements
ART by exclusion through simply generating test cases
based on a well-designed test profile. In our method, all



already executed test cases will be considered to construct a
probability distribution, which guides the random selection
of the next test case. The paper is organised as follows. In
Section II, we introduce some background information. In
Section III, we design a test profile and propose an algorithm
for ART by exclusion through the designed test profile. In
Section IV, we report some simulation studies, which ex-
amine the computation overhead, test case distribution, and
failure-detection effectiveness of our new method. Section V
summarises the paper.

II. BACKGROUND

A. RRT: ART by exclusion

RRT [5] implements the notion of exclusion as follows.
The first test case is randomly selected from the whole input
domain according to a uniform distribution. When there are
n (n ≥ 1) executed test cases, RRT defines an exclusion
region around each executed test case. All exclusion regions
have the same size R · d/n, where d denotes the size of the
input domain, and R is referred to as the target exclusion
ratio that should be preset by testers. Random candidates
are generated from the input domain according to a uniform
distribution one by one until one candidate is outside all
exclusion regions, which will then be selected as the next
test case. Figure 1 illustrates RRT in an one-dimensional
input domain, where R is set as 0.5. Given the first test case
t1, the second test case can only be selected from outside
the region (t1−0.25 ·d/1, t1 +0.25 ·d/1) (Figure 1(a)), and
then the third test case from outside the regions (t1− 0.25 ·
d/2, t1 + 0.25 · d/2) and (t2 − 0.25 · d/2, t2 + 0.25 · d/2)
(Figure 1(b)).

Simulations and empirical studies [5] have shown that
RRT is more effective than RT in detecting software failures,
and its failure-detection effectiveness becomes higher with
the increase of R. Some guidelines have been identified for
the setting of R.

Mayer and Schneckenburger [18] conducted an experi-
ment to examine the computation overhead of RRT. They
found that for selecting the nth test case, RRT requires to
generate O(log n) candidates. RRT measures the distance
between each candidate and each executed test case to check
whether the candidate is inside the exclusion region or not.
As a result, RRT requires O(n log n) time to generate the
nth test case, and thus O(n2 log n) time to select n test
cases.

RRT can be considered from another perspective, that
is, it selects test cases according to a special test profile.
In this profile, the points outside the exclusion regions
follow a uniform distribution, while all the points inside any
exclusion region have no chance to be selected, as shown
in Figure 1. However, such a scheme is too rigid, and may
omit some failure-causing test cases. Since some program
inputs inside exclusion regions may be failure-causing, it is
necessary to allocate a non-zero probability to them.
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(a) n = 1
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(b) n = 2

Figure 1. Illustration of RRT with R = 0.5 in one-dimensional input
domain

B. F-measure: measurement of failure-detection effective-
ness

The failure-detection effectiveness of ART algorithms has
been evaluated by F-measure, which refers to the expected
number of test cases to detect the first failure. Previous
studies [8] have demonstrated that the F-measure is particu-
larly suitable for adaptive testing strategy (such as ART).
The F-measure of an ART algorithm can be measured
through simulation studies [5], [7], [9], as introduced in the
following.

Failure-causing inputs determine two basic features of a
faulty program. One feature is failure pattern, which refers
to the geometry and distribution of failure regions. The other
feature is failure rate, denoted by θ, which refers to the
ratio between the number of failure-causing inputs and the
total number of all program inputs. To simulate a faulty
program, the failure pattern and θ are pre-defined, based on
which, the size and shape of failure region will be decided.



Failure region is then randomly placed in the input domain.
A testing strategy is implemented to generate test cases
until a point inside the failure region is picked (that is, a
failure is detected). The number of test cases to detect the
first failure, referred to as the F-count, is recorded. Such a
process is repeatedly run for a sufficient number of times to
ensure that the mean value of F-counts can be regarded as
a statistically reliable estimate of F-measure. Chen et al. [9]
have conducted extensive simulations to study the F-measure
of ART under various failure patterns. It was found that
ART has a smaller F-measure when the dimension of input
domain is lower, the failure region is more compact, or the
number of failure regions is smaller.

C. Discrepancy and dispersion: measurement of test case
distribution

Discrepancy and dispersion are two commonly used
metrics to measure the equidistribution of sample points.
Discrepancy intuitively indicates whether different regions
inside the input domain have similar points’ densities. One
popular definition of discrepancy is the maximal difference
of point densities for various regions. Dispersion intuitively
indicates whether there is a large empty spherical region
(containing no point) inside the input domain. Dispersion is
often measured by the maximal distance that any point has
from its nearest neighbour. Lower discrepancy and lower
dispersion imply a better equidistribution of sample points.
Chen et al. [6] have used discrepancy and dispersion to
measure the test case distribution of various ART algorithms,
and found that there is a strong correlation between the even
spread of test cases and the failure-detection effectiveness.

III. A NEW METHOD FOR ART BY EXCLUSION

In this paper, we propose a new method to implement
ART by exclusion. In the method, test cases are simply
selected according to a test profile which is different from
the uniform distribution. The design of such a profile is
introduced in the following section.

A. Design of a test profile for ART by exclusion

In order to implement the notion of exclusion, a test
profile should have the following features.
• The more adjacent a point is to the already executed

test cases, the less likely it should be selected as a test
case.

• The farther away a point is from the already executed
test cases, the more likely it should be selected as a test
case.

• The probability distribution should be dynamically ad-
justed to preserve the above two characteristics.

To illustrate our method, we design a test profile as
follows.

Suppose that inside a one-dimensional input domain
[0, 1), there are n executed test cases, t1, t2, · · · , tn. We

reorder these test cases in ascending order, and then get
e1, e2, · · · , en, where 0 ≤ e1 ≤ e2 ≤ · · · ≤ en < 1. To
select the next test case tn+1, we construct the probability
distribution fn+1(x) (where x ∈ [0, 1) is a random variable)
as follows.

• When ei ≤ x < ei+1 (i = 1, 2, · · · , n− 1), fn+1(x) =
Cn+1(x − ei)(ei+1 − x), where Cn+1 is a constant
whose value will be given later. As shown in Figure 2,
the probability of x = ei or x = ei+1 is 0, and the
probability increases as x is approaching (ei +ei+1)/2.
In other words, the points that are close to ei or ei+1

have low probability to be selected as test cases; while
the points that are far from ei and ei+1 have high
probability to be selected.

0 0.3 0.6 0.9 1.2

Figure 2. fn+1(x) when ei ≤ x < ei+1 (i = 1, 2, · · · , n− 1)

• When 0 ≤ x < e1, fn+1(x) = Cn+1(x−an+1)(e1−x),
where an+1 is a random variable uniformly distributed
in [0 − e1, 0]. The reason behind the setting of an+1

is explained as follows. If an+1 is fixed rather than
randomly selected, there would be a certain degree of
bias on the points inside [0, e1). For example, if an+1 ≡
0 (Figure 3(a)), the probability of x = 0 is always 0,
that is, there would be a bias of not selecting 0 as
test case; while if an+1 ≡ 0 − e1 (Figure 3(b)), the
probability of x = 0 would be very high, that is, there
would be a bias of selecting 0 as test case. Therefore, in
order to avoid any possible bias on test case selection,
the value of an+1 is randomly decided.

• When en ≤ x < 1, fn+1(x) = Cn+1(x−en)(bn+1−x),
where bn+1 is a random variable uniformly distributed
in [1, 2− en]. The reason behind the setting of bn+1 is
similar to that for an+1.

• According to the definition of probability, we should

have
∫ 1

0

fn+1(x)dx = 1, that is,
∫ e1

0

Cn+1(x −



0 1

(a) an+1 ≡ 0

0 1

(b) an+1 ≡ 0− e1

Figure 3. fn+1(x) when 0 ≤ x < e1

an+1)(e1 − x)dx +
n−1∑
i=1

∫ ei+1

ei

Cn+1(x − ei)(ei+1 −

x)dx+
∫ 1

en

Cn+1(x−en)(bn+1−x)dx = 1. Therefore,

we can calculate Cn+1 = 1/(
∫ e1

0

(x − an+1)(e1 −

x)dx +
n−1∑
i=1

∫ ei+1

ei

(x − ei)(ei+1 − x)dx +
∫ 1

en

(x −

en)(bn+1 − x)dx).
It should be noted that in ART algorithms, the first test

case is always generated according to a uniform distribution,
that is, f1(x) = 1 when 0 ≤ x < 1. Some examples of
fn+1(x) are illustrated in Figure 4.

B. Generation of multidimensional test cases

In the previous section, we design a test profile that is suit-
able for one-dimensional input domain. In many situations,
a program under test can have multiple input parameters,

and thus the input domain can be multidimensional. One
straightforward method for generating one m-dimensional
(m > 1) test case is to simply combine m one-dimensional
points, each of which is independently selected based on
the test profile designed in Section III-A. However, an even
spread on each coordinate does not necessarily imply the
even spread over the whole input domain. Figure 5 gives an
example of such a combination method. {x1, x2, · · · , x10}
(Figure 5(a)) and {y1, y2, · · · , y10} (Figure 5(b)) are two
sequences, each of which contains 10 test cases evenly
spread inside the one-dimensional input domain [0, 1). We
simply combine them to a sequence of two-dimensional test
cases, that is, {(x1, y1), (x2, y2), · · · , (x10, y10)}. As shown
in Figure 5(c), the generated test cases are not evenly spread
in the two-dimensional input domain. Therefore, we do not
adopt such a combination method.

In this study, we construct multidimensional test cases us-
ing Hilbert space-filling curve function [16]. Hilbert space-
filling curve can map the points on a one-dimensional line to
points on a multidimensional curve. Figure 6 illustrates how
to map one-dimensional points to two-dimensional points. A
first-order Hilbert curve is plotted in Figure 6(a), where four
one-dimensional points 0, 0.25, 0.5, and 0.75 are mapped
to four two-dimensional points (0.25, 0.25), (0.25, 0.75),
(0.75, 0.75), and (0.75, 0.25), respectively. The accuracy of
such mapping will be improved as the order of the curve
increases. Figure 6(b) depicts a second-order Hilbert curve,
which is more precise than the first-order curve.

The Hilbert spacing-filling curve function used in this
study is defined as Hm

k : I → Im, where I = [0, 1),
m > 1 is the dimension, and k is the order of Hilbert
curve. Given a binary representation of one-dimensional
point P 1 = 0.u1

1u
1
2 · · ·u1

mu
2
1u

2
2 · · ·u2

m · · ·uk
1u

k
2 · · ·uk

m,
the m-dimensional point Pm is derived as follows. Each
m bits uj

1u
j
2 · · ·uj

m(j = 1, 2, · · · , k) is converted to
vj
1v

j
2 · · · vj

m. Such conversion is run for k times. Finally,
Pm = (0.v1

1v
2
1 · · · vk

1 , 0.v
1
2v

2
2 · · · vk

2 , · · · , 0.v1
mv

2
m · · · vk

m).
For example, given m = 3, k = 4, and a one-dimensional
point P 1 = (0.247314453125)10 = (0.001111110101)2,
where (·)10 and (·)2 denote the decimal and the
binary representations of the point, respectively. We
get u1

1u
1
2u

1
3 = 001, u2

1u
2
2u

2
3 = 111, u3

1u
3
2u

3
3 = 110,

and u4
1u

4
2u

4
3 = 101. According to the transformation

rule of the Hilbert curve [16], u1
1u

1
2u

1
3, u2

1u
2
2u

2
3,

u3
1u

3
2u

3
3, and u4

1u
4
2u

4
3 are converted to v1

1v
1
2v

1
3 = 001,

v2
1v

2
2v

2
3 = 010, v3

1v
3
2v

3
3 = 011, and v4

1v
4
2v

4
3 = 111,

respectively. Therefore, the three-dimensional point
P 3 = (0.v1

1v
2
1v

3
1v

4
1 , 0.v

1
2v

2
2v

3
2v

4
2 , 0.v

1
3v

2
3v

3
3v

4
3) =

(0.0001, 0.0111, 0.1011)2 = (0.0625, 0.4375, 0.6875)10.
Details of the conversion can be found in [16].

In this study, we first generate one-dimensional points
according to the test profile designed in Section III-A, and
then use the Hilbert space-filling curve function [16] to
covert them into m-dimensional test cases.
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Figure 4. fn+1(x): the probability distribution to generate the (n + 1)th test case
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(a) {x1, x2, · · · , x10}
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(b) {y1, y2, · · · , y10}

(x 8, y 8)

(x 1, y 1)
(x 3, y 3)

(x 6, y 6)

(x 7, y 7)

(x 4, y 4)

(x 10, y 10)

(x 2, y 2)
(x 9, y 9)

(x 5, y 5)

0

1

0 1

(c) {(x1, y1), (x2, y2), · · · , (x10, y10)}

Figure 5. An example of generating two-dimensional test cases by simply
combining one-dimensional test cases

C. Algorithm

Detailed algorithm of ART by exclusion through test
profile (abbreviated as ART-ETP in this paper) is shown
in Figure 7, where the termination condition can be “a
certain number of test cases have been executed”, or “the
first software failure is detected”, etc. For convenience of
illustration, it is assumed in Figure 7 that the program under
test only accepts numeric inputs. Readers can refer to [2],
[11] for the application of ART into non-numeric programs.

From Figure 4, we can see that the test profile in ART-
ETP only allocates zero probability to executed test cases,
while all other points have certain probabilities to be selected
as test cases. In other words, ART-ETP does not omit any
program input that may be failure-causing.

IV. EXPERIMENTS

We conducted some simulations to study the execution
time, test case distribution, and failure-detection effective-
ness of ART-ETP. The experimental results are reported as
follows.
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Figure 6. Illustration of Hilbert space-filling curve

A. Execution time of ART-ETP

In ART-ETP (Figure 7), test cases are generated through
three steps, (i) generating random number x according to the
probability distribution fn+1(x) (Figure 4), (ii) converting
x to an m-dimensional point p, and (iii) mapping p to a
test case tc. Obviously, the last two steps require constant
time. In this study, we implemented the first step in a naive
way. First, we calculate the cumulative distribution function



/* m is the dimension of input domain.*/
/* The value range of ith (i = 1, 2, · · · , m) coordinate of the
input domain is from Oi

start to Oi
end. */

1. Set n = 0 and T = {}.
2. while (termination condition does not meet)
3. Randomly generate a real number x from input domain,

according to probability distribution fn+1(x) (Figure 4).
4. if (m = 1)
5. Set a one-dimensional point p = (p1), where p1 = x.
6. else
7. Convert x to an m-dimensional point p = (p1, p2, · · · ,

pm) using Hilbert space-filling curve function.
8. end if
9. Map p to a test case tc = (tc1, tc2, · · · , tcm), where tci

= pi × (Oi
end −Oi

start) + Oi
start.

10. Execute the test case tc.
11. Set tn+1 = x, and add tn+1 into T .
12. Increment n by 1.
13. Update the probability distribution fn+1(x).
14. end while
15. Exit.

Figure 7. The algorithm of ART-ETP

Fn+1(x) =
∫ x

−∞ fn+1(τ)dτ . Since fn+1(x) is a piecewise
function composed of n + 1 segments, the calculation of
Fn+1(x) requires O(n) time at the worst case. Second, a
random number ρ is generated according to the uniform
distribution, which only needs constant time. Finally, we
calculate the solution of Fn+1(x) = ρ. Fn+1(x) is also a
piecewise function composed of n+ 1 segments, so it also
requires O(n) time to find the solution. In summary, the
execution time for generating the nth test case is O(n),
and ART-ETP requires O(n2) to generate n test cases.
Obviously, ART-ETP has a lower computation overhead than
RRT (whose execution time is O(n2 log n)).

We have conducted some simulations to evaluate the exe-
cution time of ART-ETP. The simulations were conducted on
a machine with an Intel Pentium(R) Dual-Core CPU T4300
running at 2.10 GHz and 2048 megabytes of RAM. We
recorded the time taken to generate n two-dimensional test
cases, where n = 500, 1000, 1500, 2000, 2500, and 3000.
The simulation results are given in Figure 8, in which, x-
and y-axes denote n and the time required to generate n test
cases, respectively. It is clearly shown that the execution
time of ART-ETP and RRT is O(n2) and O(n2 log n),
respectively, that is, the experimental data is consistent with
the above analysis.

B. Test case distribution of ART-ETP

A series of simulations were conducted to examine the
discrepancy and dispersion of ART-ETP. The dimension
of input domain is 1, 2, 3, 4, or 5, the order of Hilbert
curve (k) is set as 32, and the number of test cases
are set as 100, 1000, or 10000. Discrepancy is calculated

0

2

4

6

8

10

12

14

16

500 1000 1500 2000 2500 3000
n

Ex
ec

ut
io

n 
tim

e 
(s

)

ART-Etp RRT O(n²) O(n²logn)

Figure 8. comparison of execution time between ART-ETP and RRT

as max
i=1,2,··· ,1000

∣∣∣∣ni

n
− |Di|

d

∣∣∣∣, where d denotes the size of

the input domain, D1, D2, · · · , D1000 are 1000 randomly
defined subdomains of the input domain, |Di| is the size
of Di, n denotes the total number of test cases, and ni

is the number of test cases in Di. Dispersion is calcu-
lated as max

i=1,2,··· ,n
dist(ti, η(ti, T\{ti})), where dist(p, q)

denotes the Euclidean distance between two points p and
q, η(p, S) refers to p’s nearest neighbour in set S, and
T = {t1, t2, · · · , tn} is the set of all test cases. The
experimental results are shown in Tables I and II. For ease of
comparison, Tables I and II also include the previous results
on RT.

Table I
COMPARISON OF ART-ETP AND RT BASED ON DISCREPANCY

Dimension Number of RT ART-ETPtest cases

1
100 0.105615 0.054880
1000 0.033989 0.016212

10000 0.010514 0.004686

2
100 0.109297 0.082950
1000 0.034987 0.021528

10000 0.010599 0.005744

3
100 0.092499 0.104634
1000 0.029106 0.028244

10000 0.009178 0.008254

4
100 0.078544 0.118603
1000 0.024617 0.034776

10000 0.007688 0.015676

5
100 0.054966 0.121893
1000 0.016942 0.049458

10000 0.005150 0.047343

Based on the experimental data, we have the following
observations. First, ART-ETP has lower dispersion than RT.



Table II
COMPARISON OF ART-ETP AND RT BASED ON DISPERSION

Dimension Number of RT ART-ETPtest cases

1
100 0.027164 0.017770
1000 0.003754 0.002100

10000 0.000489 0.000217

2
100 0.148775 0.134675
1000 0.053355 0.046886

10000 0.018926 0.015734

3
100 0.285127 0.277940
1000 0.144302 0.136340

10000 0.071440 0.069181

4
100 0.413756 0.409610
1000 0.244758 0.239933

10000 0.146141 0.141043

5
100 0.526723 0.523930
1000 0.346172 0.345200

10000 0.226781 0.223155

Second, ART-ETP has lower discrepancy than RT in one-
and two-dimensional input domains. Third, the discrepancy
of ART-ETP increases with the increase of dimension, and
becomes higher than that of RT in four- and five-dimensional
input domains. Similar observation was also made for many
other ART algorithms [6]. In summary, in terms of disper-
sion, ART-ETP spreads test cases more evenly than RT, but
with respect to discrepancy, ART-ETP spreads test cases less
evenly when the dimension of input domain is higher.

C. Failure-detection effectiveness of ART-ETP

We also conducted some simulations to evaluate the F-
measures of ART-ETP, as reported in the following.

First, we set the failure pattern as a single hypercube
failure region randomly placed inside the input domain, θ
was set as 0.01, 0.005, 0.002, 0.001, or 0.0005, and the
dimension of the input domain is 1, 2, 3, 4, or 5. The exper-
imental results are summarised in Table III. Theoretically,
the F-measure of RT with replacement is equal to 1/θ, so
Table III does not include the F-measure of RT, but gives
the improvement percentage of ART-ETP over RT.

From Table III, we can observe that ART-ETP always
outperforms RT, but the failure-detection effectiveness of
ART-ETP differs for different dimensions of input domain.
ART-ETP can save almost 40% test cases than RT to detect
the first failure for one-dimensional input domain, while the
improvement become around 23%, 15%, 9%, and 6% for
two-, three-, four-, and five-dimension, respectively. Briefly
speaking, similar to other ART algorithms, the failure-
detection effectiveness of ART-ETP also depends on the
dimension.

Based on the experimental results in Tables I, II, and III,
we can observe that there is a correlation between the even

Table III
F-MEASURES OF ART-ETP ON SINGLE HYPERCUBE FAILURE REGION

Dimension θ F-measure Improvement
over RT

1

0.01 62.55 37.45%
0.005 122.61 38.70%
0.002 311.12 37.78%
0.001 620.98 37.90%

0.0005 1261.35 36.93%

2

0.01 76.29 23.71%
0.005 154.36 22.82%
0.002 381.66 23.67%
0.001 754.17 24.58%

0.0005 1523.81 23.81%

3

0.01 86.64 13.36%
0.005 169.31 15.34%
0.002 422.93 15.41%
0.001 830.44 16.96%

0.0005 1705.47 14.73%

4

0.01 93.20 6.80%
0.005 182.89 8.56%
0.002 449.26 10.15%
0.001 908.16 9.18%

0.0005 1815.57 9.22%

5

0.01 94.58 5.42%
0.005 186.11 6.95%
0.002 470.57 5.89%
0.001 959.09 4.09%

0.0005 1845.51 7.72%

spread of test cases and the failure-detection effectiveness.
When the dimension of input domain is low, ART-ETP not
only achieves an even spread of test cases but also has
a very small F-measure. With the increase of dimension,
test cases selected by ART-ETP show a certain degree of
uneven distribution (that is, a high discrepancy), while the
F-measure of ART-ETP becomes larger. Such an observation
is not surprising, as it is consistent with the basic notion of
ART-ETP, that is, an even spread of test cases can bring a
high failure-detection effectiveness.

Second, we set the failure pattern as a single rectangular
failure region randomly placed inside a two-dimensional
input domain. The edge length ratio of the rectangular region
is 1 : α, where α = 1, 4, 7, 10, 40, 70, 100. Obviously, the
rectangular region becomes less compact with the increase
of α. θ was set as 0.005. Table IV reports the experimental
results.

It can be observed from Table IV that similar to other
ART algorithms, ART-ETP has larger F-measures when the
failure region is less compact.

Third, the failure pattern was set as multiple equal-sized
square regions randomly placed inside a two-dimensional



Table IV
F-MEASURES OF ART-ETP ON SINGLE RECTANGULAR FAILURE

REGION

α F-measure Improvement
over RT

1 154.36 22.82%
4 162.12 18.94%
7 166.10 16.95%

10 182.49 8.75%
40 183.18 8.41%
70 186.41 6.80%

100 192.43 3.78%

input domain. The number of failure regions β is set as 1,
4, 7, 10, 40, 70, 100, and θ = 0.005. The experimental
results are given in Table V.

Table V
F-MEASURES OF ART-ETP ON MULTIPLE SQUARE FAILURE REGIONS

β F-measure Improvement
over RT

1 154.36 22.82%
4 174.58 12.71%
7 184.11 7.94%

10 189.21 5.39%
40 193.32 3.34%
70 194.02 2.99%

100 195.86 2.07%

Based on the data in Table V, we observe that the F-
measure of ART-ETP becomes larger with the increase of
the number of failure regions.

Briefly speaking, similar to other ART algorithms, ART-
ETP performs best when the failure-causing inputs are
clustered into a compact region, but the failure-detection
effectiveness of ART-ETP depends on many factors, such as
the dimension of input domain, the compactness of failure
region, and the number of failure regions.

V. DISCUSSION AND CONCLUSION

Adaptive random testing (ART) [10] enhances the failure-
detection effectiveness of random testing (RT) by evenly
spreading test cases all over the input domain. One notion
to achieve an even spread of test cases is by exclusion.
The existing algorithm to implement ART by exclusion,
namely restricted random testing (RRT) [5], has a very
high computation overhead and has a very rigid exclusion
scheme that may prevent some failure-causing inputs from
being selected. In this paper, we proposed a new and simple
method to implement ART by exclusion, which directly
selects test cases according to a well-designed test profile.
Compared with RRT, ART by exclusion through test profile

(ART-ETP) does not require a large number of random
candidates for selecting each test case, and thus has a low
computation overhead. The test profile used in ART-ETP

allocates certain probabilities to all possible program inputs
except executed test cases, and thus does not omit any
failure-causing input. Our experimental results showed that
ART-ETP not only brings lower dispersion, but also has a
higher failure-detection effectiveness than RT.

ART with dynamic non-uniform candidate distribution
(ART-DNC) [7] also uses a test profile that is dynamically
adjusted during the testing process, but the profile is only
used for the generation of candidates from which additional
criteria must be applied to select one as the test case. How-
ever, the test profile in ART-ETP is used to directly generate
test cases from the input domain, without a preprocessing
procedure of constructing test case candidates.

Cai et al. [4] recently proposed a technique namely
dynamic random testing (DRT), where a dynamically up-
dated test profile is used to randomly select test cases. In
DRT, the input domain is first partitioned into k subdo-
mains (D1, D2, · · · , Dk), each of which has a probability
(p1, p2, · · · , pk) to be selected. Program inputs in the same
subdomain have the same chance to be chosen as test
cases (that is, uniform distribution). When a test case from
one subdomain Di detects a failure, pi will be increased;
otherwise, pi will be decreased. A uniform profile is still
used for the program inputs in the same subdomain. Our
ART-ETP method does not partition the input domain; and
the test profile in ART-ETP was designed according to the
intuition of evenly spreading test cases, which is not the
principle of DRT.

The designs of ART-ETP and ART-DNC [7] have the
same objective, that is, to reveal the first failure as quickly
as possible, while DRT aims at detecting software failures
as many as possible. However, all these studies make use
of dynamic adjustment of test profiles during the testing
process to achieve their goals.

As a pilot study, this paper only demonstrated the new
method based on one test profile. Apparently, various test
profiles can be designed for ART by exclusion. It is
worthwhile to further study the applicability of different
adaptive test profiles, and examine to what extent these
profiles can improve the failure-detection effectiveness. The
F-measure of the algorithm demonstrated in the paper is not
as small as those of some ART algorithms [7], [10]. There
should be many rooms to further improve the effectiveness
of ART-ETP. Similar to other ART algorithms, ART-ETP

shows a certain degree of uneven test case distribution
especially when the dimension of input domain is high.
Spreading test cases more evenly may significantly improve
the failure-detection effectiveness of ART-ETP. In this paper,
we generated multidimensional test cases by converting
one-dimensional test cases by Hilbert space-filling curve
function. It is interesting to study the effectiveness of other



multidimensional space-filling curve functions. It is also
quite promising to construct some multidimensional test
profiles and directly use these profiles into ART-ETP.
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