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ABSTRACT 

Endoplasmic reticulum (ER) stress is suggested to cause hepatic insulin resistance by increasing de 

novo lipogenesis (DNL) and/or directly interfering with insulin signaling via activation of the JNK 

and IKK pathway. The present study interrogated these two proposed mechanisms in a mouse 

model of hepatic insulin resistance induced by a high fructose (HFru) diet with the treatment of 

fenofibrate (FB, 100 mg/kg/day), a PPARα agonist known to reduce lipid accumulation while 

maintaining elevated DNL in the liver. FB administration completely corrected HFru-induced 

glucose intolerance, hepatic steatosis and the impaired hepatic insulin signaling (pAkt and 

pGSK3β). Intriguingly, both IRE1/XBP1 and PERK/eIF2α arms of the UPR signaling were 

activated. While retaining the elevated DNL (indicated by the upregulation of SREBP1c, ACC, 

FAS and SCD1 and 3H2O incorporation into lipids), FB treatment markedly increased FA oxidation 

(indicated by induction of ACOX1, pACC, β-HAD activity and 14C-palmitate oxidation) and 

eliminated the accumulation of diacylglycerols (DAGs) which is known to impact on insulin 

signaling. Despite the marked activation of UPR signaling, neither JNK nor IKK appeared to be 

activated. These findings suggest that lipid accumulation (mainly DAGs), rather than the activation 

of JNK or IKK is pivotal for ER stress to cause hepatic insulin resistance. Therefore, by reducing 

the accumulation of deleterious lipids, activation of PPARα is able to ameliorate hepatic insulin 

resistance against increased ER stress.  
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INTRODUCTION 

Liver is one of the most metabolically active and insulin responsive organs regulating glucose 

homeostasis, lipid metabolism and protein synthesis (1). Under normal conditions, insulin 

suppresses hepatic glucose production from glycogenolysis and gluconeogenesis while promotes 

glucose storage in the form of glycogen to help control postprandial glucose level. However, the 

ability of insulin to shut down glucose production from the liver is diminished under the state of 

hepatic insulin resistance which in turn leads to the manifestation of hyperglycaemia (2). Although 

the pathogenesis of hepatic insulin resistance is likely to be multi-factorial, increased endoplasmic 

reticulum (ER) stress and an accumulation of lipids within the liver have been demonstrated to be 

important mechanisms (3; 4).  

 

Lipid accumulation in the liver or hepatic steatosis can lead to insulin resistance by interfering with 

the insulin signal transduction through lipid metabolites such as diacylglycerols (DAGs) and 

ceramide (4). Hepatic steatosis can result from increased FA influx, elevated de novo lipogenesis 

(DNL) and/or reduced fatty acid (FA) oxidation (1; 4). In humans, elevated DNL from the increased 

consumption of sucrose is the predominant mechanism for the development of hepatic steatosis 

with fructose (breakdown product of sucrose) being the major culprit (5; 6).  

 

Recent studies in animal models (7; 8) have identified a possible role of ER stress in the 

development of hepatic insulin resistance during elevated DNL. When ER stress occurs, the ER 

mounts the unfolded protein response (UPR) which involves the activation of three major branches 

of signal transducers: inositol-requiring protein 1 (IRE1), protein kinase RNA-like ER kinase 

(PERK) and activating transcription factor 6 (ATF6) (9). Activation of these canonical mechanisms 

is crucial for cellular adaption and resolution of ER stress. However, chronic activation of UPR 

signaling has been demonstrated to activate c-jun N-terminal kinase (JNK) and IκB kinase (IKK). 



 

The IRE1 branch of the UPR can activate JNK (10) and IKK (11) by forming a complex with the 

tumor-necrosis factor-α-receptor-associated factor 2 (TRAF2). Meanwhile, the PERK/eIF2a branch 

has also been reported to be capable of activating JNK (12). As activated JNK (8; 13) and/or IKK 

(14) can directly serine/threonine phosphorylate insulin-receptor-substrate (IRS) leading to the 

inhibition of insulin signaling transduction, it has been suggested that JNK and IKK are the key 

molecules linking activated UPR and hepatic insulin resistance (15).  

 

More recently, we have found that elevated DNL and insulin resistance in the liver of high fructose 

(HFru) fed mice is coupled with activation of the IRE1 and PERK branches of the UPR (16). 

However, it is unclear whether hepatic insulin resistance results from lipid accumulation or 

activated JNK/IKK pathways during increased ER stress. Interestingly, hepatic DNL is increased by 

the activation of PPARα (17; 18) which has also been shown to reverse hepatic steatosis (19; 20). 

Because ER stress is tightly associated with DNL, we hypothesized treatment of HFru-fed mice 

with a PPARα agonist would activate both the IRE1 and PERK branches while                                                                                                                              

preventing hepatic steatosis. Under these conditions, we would then be able to interrogate the 

implication of these two mechanisms (lipid accumulation or activated JNK/IKK) in hepatic insulin 

resistance in the face of increased ER stress. Our results showed that accumulation of lipids namely 

DAGs, rather than the activation of JNK or IKK, is the key factor of hepatic insulin resistance 

during increased ER stress. Activation of PPARα with FB is able to eliminate hepatic insulin 

resistance during HFru feeding by reducing DAG levels despite the presence of ER stress evidenced 

by the dual activation of the IRE1/XBP1 and PERK/eIF2α pathways.  



 
 

 

MATERIAL AND METHODS 

Animals  

Male C57BL/6J mice (14 weeks) from the Animal Resources Centre (Perth, Australia) were kept at 

22±1°C on a 12-h light/dark cycle. After 1 week of acclimatization, mice were fed ad libitum for up 

to 15 days with either a chow (CH), fructose-rich (HFru) diet. CH diet consisted of 70% calories 

from starch, ~10% calories from fat, and ~20% calories from protein (Specialty Feeds, Glen 

Forrest, Western Australia), HFru diet (35% fructose, 35% starch, ~10% fat and ~17% protein). The 

detailed recipe for the HFru diet is described in our previous studies (16; 21). FB (Sigma-Aldrich, 

Australia) was supplemented to the animal by mixing into the diets at a concentration of 

100mg/kg/day. All experiments were approved by the Animal Ethics Committees of the RMIT 

University (#1012). 

 

Body weight and food intake were measured daily. The whole body metabolic rate was measured at 

22ºC using an indirect calorimeter (Comprehensive Laboratory Animal Monitoring System, 

Columbus Instruments, OH, USA) as described previously (22) between 5-8 days after the 

administration of FB. Mice were fasted for 5-7 hours before being killed, tissues of interest were 

collected and freeze-clamped immediately. Epididymal fat mass was weighed using an analytical 

balance. Liver triglycerides were extracted by the method of Folch and determined by a 

Peridochrom Triglyceride GPO-PAP kit (Roche Diagnostics, Australia) as previously described 

(16). In separate experiments, glucose tolerance tests (GTT; 2.5g glucose/kg BW, ip) were 

performed on the 5-7 hours fasted mice using a glucometer (AccuCheck Proforma Nano; Roche, 

Victoria, Australia) and blood samples were collected at 0, 30 and 60 min for plasma insulin 

measurement. For the assessment of insulin signaling in the liver, the mice were injected with 

insulin (2U/kg BW, ip) 20 min before tissue collection. 

 

 



 

Measurement of hepatic FA oxidation de novo lipogenesis (DNL)  

FA oxidation was measured in liver homogenates using methods described previously (23). Briefly, 

the liver homogenate (50 µl) was incubated at 30°C for 90 min in a reaction mixture (pH 7.4) 

containing (in mM) 0.2 [14C]-palmitate (0.5 µCi), 2 L-carnitine and 0.05 Coenzyme A ±0.02 

etomoxir, a specific inhibitor of FAs oxidation in mitochondria (24). The reaction was stopped by 

ice-cold 1 M perchloric acid. CO2 produced from the reaction was captured in 1 M NaOH. 14C 

counts in the acid-soluble fraction were combined with the CO2 values to give the total palmitate 

oxidation rate. Hepatic DNL was determined by measuring the incorporation of [3H]-H2O into 

triglyceride in the liver as described previously (16; 25). 

 

Citrate synthase and β3 – hydroxyacyl– CoA dehydrogenase (β-HAD) activity 

Approximately 20 mg of frozen liver tissue was homogenized in 175 mM KCl and 1.98 mM EDTA 

containing buffer (pH 7.4) with a glass homogenizer before being subjected to three freeze-thaw 

cycles. Citrate synthase and β-HAD activities were determined as described previously (16; 21), 

using a Flexstation 3 plate reader (Molecular Devices, Sunnyvale, CA). 

 

Western blotting 

Liver and red quadriceps muscle samples were homogenized in ice-cold lysis buffer at pH 7.5 

containing (in mM): 50 Tris, 150 NaCl, 1% Triton X-100, 10 NaP, 100 NaF, 2 Na3VO4, 1 EDTA, 

1 EGTA and 10% glycerol supplemented with protease inhibitor cocktail and phosphates inhibitor 

cocktail (Sigma Aldrich Pty Ltd, Australia) and DL-dithiothreitol. Protein samples were then 

denatured in SDS sample buffer (125 mM Tris-HCl, pH 6.8, 50% glycerol, 2% SDS, 5% β-

mercaptoethanol and 0.01% bromophenol blue). The insulin signal transduction was assessed by 

total- and phospho (Ser473)- Akt, total- and phospho (Ser219)- glycogen synthase kinase 3β (GSK-

3β) (Cell Signaling, USA). Key lipogenic enzymes were by Western blotting using specific 

antibodies including sterol regulatory element-binding protein (SREBP-1c, Santa Cruz, USA), 



 
 

 

phospho and total acetyl-CoA carboxylase (ACC, Cell Signalling, USA), fatty acid synthase (FAS, 

Cell Signalling, USA), stearoyl-CoA desaturase 1 (SCD-1, Cell signaling, USA). Oxidative 

capacity: acyl-coenzyme A oxidase 1 (ACOX1, Santa Cruz). ER stress: phospho (Thr980)- protein 

kinase RNA-like endoplasmic reticulum kinase (p-PERK, Cell signaling, USA), total- and phospho 

(Ser51)- eukaryotic translation initiation factor 2α (eIF2α, Cell signaling, USA), growth arrest and 

DNA damage-inducible protein 34 (GADD34, Cell signaling, USA), C/EBP homologous protein 

(CHOP, Santa Cruz, USA), and phospho (Ser724)- inositol-requiring kinase 1 (IRE1, Abcam, 

USA), X-box binding protein 1 (XBP1, Santa Cruz, USA), Activating transcription factor 6 α 

(ATF6α, Santa Cruz, USA). Serine/theronine kinases: phospho- (Ser176/177) IκB kinase α/β 

(IKK α/IKK β, Cell Signalling, USA), IκB alpha (IκBα), phospho- (Thr183/Tyr185) c-jun N-

terminal kinase (JNK, Cell Signalling, USA). Immunolabeled bands were quantified by 

densitometry and representative blots are shown. 

 

Analyses of hepatic lipids 

Diacylglycerol (DAG) and ceramide were extracted and quantified according to the methods of 

Preiss et al. (26). Lipids were extracted from liver homogenates using chloroform: methanol: 

PBS+0.2% SDS (1:2:0.8). Diacylglycerol kinase and 32P-labelled ATP (0.55 GBq/mmol cold ATP) 

were added to the lysates preincubated with cardiolipin/octylglucoside, and the reaction was 

stopped after 2.5 h by the addition of chloroform: methanol (2:1). Samples were spotted onto thin-

layer chromatography plates and developed. 32P-labelled phosphatidic acid and ceramide-1-

phosphate were identified by autoradiography, dried, scraped from the thin-layer chromatography 

plate and counted in a liquid scintillation analyser (LS6500, Beckman Coulter Inc, USA). 

 

Statistical analyses  



 

Data are presented as means ± SE. One-way analysis of variance was used for comparison of the 

relevant groups. When significant differences were found, the Turkey-Kramer multiple 

comparisons test was applied. Differences at p<0.05 were considered to be statistically significant. 

 

 

RESULTS 

FB treatment normalises HFru feeding induced adiposity and improved glucose intolerance.   

HFru-feeding resulted in significant increases in calorie intake (~38%), the whole body oxygen 

consumption (VO2, ~ 8%) and the respiratory exchange ratio (RER), body weight gain (1.2 g) and 

adiposity (67% in epididymal fat mass, p<0.05) compared to untreated CH-fed animal (CH-Veh) 

(Table 1). In CH-fed mice, FB treatment had no significant effects on body weight gain, adiposity, 

caloric intake or RER except for a 14% increase in VO2 (p<0.05 vs CH-Veh). In HFru-FB-fed mice, 

FB significantly (p<0.05 for all) increased VO2 (8%), reduced the RER and completely diminished 

HFru-induced body weight gain and adiposity. FB lowered blood glucose and insulin levels in the 

HFru-fed mice (both p<0.01 HFru-FB), hence an improved HOMA-IR index. The untreated HFru-

fed mice displayed glucose intolerance (Figure 1A) compared to CH-Veh (Figure 1A and B). FB 

treatment completely normalized the glucose tolerance seen in the HFru-fed mice to the levels of 

the CH-fed mice and reduced the requirement for plasma insulin level (Figure 1C). 

 

FB treatment restored hepatic insulin signal transduction in HFru-fed mice. 

In skeletal muscle, the insulin stimulated phosphorylation of Akt (all p<0.001 vs corresponding 

basal) was unaltered by diet or FB treatment (Figure S1). In contrast, HFru feeding blunted the 

insulin-stimulated phosphorylation of Akt (by 53%, p<0.01 vs CH) and its downstream target 

GSK3β (by 60%, p<0.001 vs CH) in the liver which were fully restored by the treatment of FB 

(Figure 2A and Figure 2B). This indicated HFru feeding resulted in impairment of hepatic insulin 



 
 

 

signaling and that treatment of FB was effective in restoring hepatic insulin sensitivity. 

 

FB treatment normalised hepatic lipid accumulation. 

Lipid accumulation in the liver (ie. hepatic steatosis) is believed to be closely linked to insulin 

resistance (1), we hence examined the effects of FB treatment on hepatic lipid content. As expected, 

the HFru feeding induced a marked increase in hepatic triglycerides (TG) levels (2.7-fold, p<0.01 

vs CH) which was ameliorated by the treatment of FB (Figure 3A), while the fasting plasma TG 

levels were unaffected between the HFru-Veh and HFru-FB group (Table 1). In agreement with an 

increased TG level, hepatic DAG content of the HFru-fed mice was also elevated by 53% (p<0.05 

vs CH) which was normalised by the treatment of FB (Figure 3B). The total content of ceramide 

was attenuated by 57% (p<0.001 vs CH) by HFru-feeding, but was restored (ns. vs CH and CH-FB) 

by the treatment of FB (Figure 3C). These data suggested the implication of DAG in the apparent 

hepatic insulin resistance resulting from HFru feeding.  

 

FB treatment increases hepatic fat oxidation under HFru-feeding 

As enhanced FA oxidation is one of the key events resulting from the activation of PPARα by FB in 

the liver (27-29), we measured molecular markers of oxidative capacity in the livers of mice. The 

expression of peroxisomal acyl-Coenzyme A oxidase-1 (ACOX1), a direct downstream effector of 

PPARα activation, which catalyses the first step of peroxisomal β-oxidation of FAs (30), was 

markedly up-regulated in response to the treatment of FB (Figure 4A). Moreover, the 

phosphorylation of ACC which regulates the mitochondrial β-oxidation of FAs was markedly 

elevated (8-fold, p<0.001 vs CH-Veh and HFru-Veh) in response to FB treatment in the liver of the 

HFru-fed mice (Figure 4B). In line with an increased oxidative capacity, the activity of β-HAD, 

which catalyses the third step of mitochondrial β-oxidation, was augmented by 2.4-fold (p<0.01 vs 

CH-Veh and HFru-Veh) with FB treatment in the HFru-fed mice (Figure 4C). The activity of citrate 



 

synthase was significantly enhanced (by 19%, p<0.01 vs CH) under HFru feeding independent of 

PPARα activation (Figure 4D), indicating PPARα activation specifically enhances the oxidative 

capacity of the liver without affecting mitochondrial content under HFru feeding. Hepatic FA 

oxidation was increased (~60%) by the treatment of FB in the HFru-fed mice and this was due to an 

increase in the component resistant to the inhibition by etomoxir (Figure 4E). 

 

FB treatment triggered the activation of UPR pathways in the liver 

Having established that treatment of FB was effective in eliminating hepatic lipid accumulation and 

restoring insulin signaling, we next sought to examine its effects on the three major UPR pathways.  

The phosphorylation of IRE1 (Figure 5A), spliced form of XBP1 (sXBP1; Figure 5B), 

phosphorylation of PERK and eIF2α (Figure 5C and D), as well as the expression CHOP (Figure 

5E) were markedly enhanced by PPARα activation regardless of the feeding conditions. In addition, 

the expression of GADD34, a well-characterized phosphatase of eIF2α (9) was concomitantly 

down-regulated in response to PPARα activation (Figure 5F). As expected, HFru feeding 

significantly increased the phosphorylated form of IRE1 (Figure 5A, p<0.05 vs CH) and eIF2α 

(Figure 5D, p<0.01 vs CH). No changes were detected in the maturation of activating transcription 

factor 6 (ATF6) as a result of HFru-feeding or FB treatment (Figure S2).  

 

FB -induced UPR signaling was accompanied by an enhanced DNL  

As both activation of PPARα (28) and UPR signaling (7) can promote DNL in the liver via the 

action of sterol regulatory element-binding protein-1c (SREBP1c) (31), we hence examined the 

expression of SREBP1c and key enzymes involve in this process. Our western blotting analysis 

revealed up-regulations of the mature form of SREBP1c (mSREBP1c, 3-fold, p<0.05 vs CH-Veh), 

ACC (3.5-fold, p<0.01 vs CH-Veh), FAS (2.5-fold, p<0.001 vs CH) and SCD1 (14.5-fold, p<0.01 

vs CH-Veh) in the liver of the HFru-fed mice (Figure 6A-D). PPARα activation in the CH-fed mice 

stimulated the expression of mSREBP1c, ACC, FAS and SCD1 to levels comparable to that of the 



 
 

 

HFru-fed mice. PPARα activation in conjunction with HFru-feeding elicited a further increase in 

the expression of mSREBP1c (6-fold) and SCD1 (38-fold, both p<0.001 vs HFru-Veh), but not 

ACC (2.8-fold, p<0.01 vs CH) nor FAS (2.9-fold, p<0.001 vs CH, both not different vs HFru-Veh). 

In keeping with the up-regulated lipogenic enzymes, hepatic DNL was significantly increased (~38 

%) by PPARα activation in CH-fed mice and this increase was maintained in FB treated HFru-fed 

mice (Figure 6E). These data suggested the FB-induced UPR signaling may enhance the lipogenic 

capacity of liver independent of the effects of dietary fructose.  

   

The downstream effects of the FB -induced UPR signaling 

Production of deleterious lipids (lipotoxicity) via DNL and activation of serine/threonine kinases 

are key consequences of UPR signaling which interferes with insulin signal transduction at various 

points (15). As shown in Figure 3B, treatment of FB was able to correct the elevated DAG content 

induced by HFru-feeding. Meanwhile, activation of JNK and IKK are well-demonstrated 

consequences of UPR signaling resulting in the impairment of insulin signal transduction (3). HFru 

feeding did not result in a significant induction of JNK (Figure 7A) or IKK (Figure 7B), and the 

expression of IκBα (Figure 7C), the downstream target of IKK (32), remained unaffected which is 

consistent with our previous observation (16). Despite the significant induction of the two specific 

arms of UPR pathways, the phosphorylation status of these kinases remained unaffected in response 

to FB treatment (Figure 7A to C). These data suggested PPARα activation is effective in eliminating 

lipotoxicity and that the FB-induced UPR signaling did not result in the activation of these stress 

kinases.  



 

DISCUSSION 

The present study has established a hepatic ER stress model independent of lipid accumulation in 

the liver with the use of PPARα activator fennofibrate (FB) in HFru-fed mice. This model enabled 

us to examine the effects of ER stress on hepatic insulin sensitivity devoid of the influence of 

hepatic steatosis. Our data showed that PPARα activation completely eliminate HFru-induced 

hepatic steatosis and insulin resistance without altering JNK and IKK in the face of marked dual 

activation of the IRE1/XBP1 and PERK/eIF2α branches of the UPR pathways. These findings 

indicate that hepatic steatosis, but not JNK, is required for ER stress to cause insulin resistance. To 

the best of our knowledge, this is the first report to demonstrate that PPARα activation induces UPR 

signaling while ameliorating hepatic insulin resistance.     

 

PPARα is a key transcriptional regulator for lipid metabolism and it can be endogenously activated 

by FAs, as well as pharmacologically by agonists like FB (17). FB is a specific agonist of PPARα 

commonly used to treat dyslipidaemia and hypercholesterolemia in humans (33). These beneficial 

effects are attributed to the PPARα-driven peroxisomal and mitochondrial β-oxidation and 

microsomal ω-oxidation of FA with the liver being a major site of action (34). Our data showed that 

FB treatment was effective in activating PPARα in vivo as evidenced by the increased expression of 

ACOX1 (also known as palmitoyl-CoA oxidase) (35) which is a direct target of PPARα. The 

concomitant increase in VO2 and the induction of the phosphorylated form of ACC and β-HAD 

activity along with the augmented FA oxidation in the liver are indicative of an enhanced oxidative 

capacity and energy expenditure which are consistent with the reported effects of PPARα activation 

(34; 36). In line with the upregulation of ACOX1 expression, FB-induced increase in hepatic FA 

oxidation can be attributed to the enhanced peroxisomal oxidation that is not inhabitable by 

etomoxir which blocks the entry of long-chain FAs into mitochondria for oxidation.  It has been 

reported that peroxisomal oxidation break down (very) long-chain FAs into medium and short chain 

FAs further oxidation in mitochondria (36). Unlike long chain FAs, the short- and medium-chain 



 
 

 

FAs do not rely on CPT1 to enter the mitochondria (36) which may explain, at least in part, the 

increased oxygen consumption as observed at the whole body level. It is likely that the reduced 

body weight and adiposity observed only in FB treated HFru-fed mice is due to the enhanced 

peroxisomal oxidation which was not evident in treated CH-fed mice. 

 

The restored HOMA-IR resulting from the lowered fasting blood glucose and insulin levels, 

together with the restored hepatic insulin signal transduction in the HFru-fed mice by FB are 

suggestive of improved insulin sensitivity in these mice. This interpretation is also supported by the 

striking reduction in insulin secretion in FB treated chow fed mice while maintaining unaltered 

glucose clearance. The insulin-sensitising effect of FB observed in the present study is consistent 

with our previous report of the insulin sensitizing effect of PPARα activation in high fat fed insulin 

resistant rats as determined by the hyperinsulinemic-euglycemic clamp (37). 

 

The ER plays a pivotal role in protein processing to maintain cellular homeostasis under 

physiological conditions through the three canonical branches of UPR signaling pathways: 

PERK/elF2α, IRE1/XBP1 and ATF6. The initialling proteins PERK, IRE and ATF6 all have sensors 

facing the ER lumen and they can be activated under ER stress such as the accumulation of 

misfolded proteins (9; 15). Activated IRE1/XBP1 pathway has been suggested to promote DNL in 

the liver leading to the production of lipids (4; 7). In addition, both IRE1 (10) and PERK (38) have 

been suggested to activate JNK and IKK. These mechanisms, acting in concert or alone, are 

sufficient to impair insulin signaling in the liver. However, it has been difficult to separate the effect 

of activated UPR pathways on hepatic insulin signaling in vivo from the influence of lipid 

accumulation. Moreover, FB is a lipid-lowering drug commonly used in humans and fructose 

consumption is closely related to the epidemic of obesity and fatty liver (6; 39). Thus, the approach 

of administration of FB to insulin resistant mice induced by HFru feeding would not only allow us 

to dissect such integral relationship, but also provide new insight into the mechanism relevant to 



 

conditions in humans. 

 

Both DAG and ceramide are key lipid intermediates linking hepatic steatosis to insulin resistance 

(4). Our results showed that liver DAG content was higher in HFru-fed mice (as a result of 

increased DNL) and this is consistent with a previous report in HFru-fed mice (46). DAG can 

activate protein kinases C ε (PKCε) which in turn phosphorylates the insulin receptor substrate 1 

(IRS1) at serine 307 to disrupt tyrosine phosphorylation of IRS1 (40). This could blunt IRS-

mediated phosphorylation of its downstream signaling target such as Akt (41). While maintaining 

elevated DNL (as indicated by mSREBP1c, ACC, FAS, SCD1, and the incorporation of [3H]-H2O 

into triglyceride) induced by HFru diet, FB was able to outpace DNL by a much greater effect to 

accelerate FA oxidation (as indicated by the 14-16% increase in VO2, 3.9-fold, 8-fold and 2.1-fold 

increases in ACOX1, pACC and β-HAD, respectively), hence eliminating the accumulation of TG 

and DAG. This may offer an explanation towards the improved insulin signaling by FB. In HFru-

fed rat, hepatic ceramide has been reported to be increased (45) and this lipid metabolite can 

suppress the phosphorylation of Akt via protein phosphatase 2A (42; 43). In the present study 

ceramide is unlikely to be a contributor for the blunted insulin signaling because its level in HFru-

FB mice was similar to the level in chow-fed mice. However, the precise role of ceramide requires 

further investigation as the cellular location may be a key determinant of its effect on insulin 

sensitivity (44). 

 

The other key mechanism for ER stress induced insulin resistance is the activation of JNK and 

associated stress kinases. Sustained ER stress has been shown to cause hepatic insulin resistance via 

the induction of JNK and IKK (8; 13) and all three canonical arms of the UPR pathways are capable 

of activating JNK and IKK signaling under conditions of severe ER stress (3). Consistent with our 

previous finding (16) HFru feeding was accompanied by the presence of ER stress. Despite further 

activation of the IRE1/XBP1 and PERK/eIF2α signaling by the activation of PPARα with FB, the 



 
 

 

unaltered phosphorylation of JNK and IKK or IκBα content argues against their role in the 

improved insulin signaling properties in the liver.  In addition, cellular ceramide is also known to be 

implicated in the up-regulation of IKK and JNK (42). The fact that neither ceramide nor these 

stress-related kinases were up-regulated by FB is also consistent with our interpretation of the 

reduction in DAGs as a more likely mechanism for the alleviation of hepatic insulin resistance by 

the activation of PPARα. Of interest, Jurczak et al. (46) has recently demonstrated alleviation of 

hepatic DAG accumulation in mice with conditional knockout of XBP1. The absence of XBP1 can 

reverse fructose-induced insulin resistance despite the presence of ER stress and JNK activation 

which supports the notion of DAGs being the major culprit for hepatic insulin resistance induced by 

HFru feeding. 

 

It has been suggested that mild ER stress may enhance hepatic insulin signaling and protect against 

lipotoxicity via the induction of an adaptive UPR (47). Mice carrying liver specific deletion of IRE1 

displayed overt steatosis when challenged with ER stress inducers (48), while genetic ablation of 

either ER stress-sensing or ER quality control molecules also resulted in the development of hepatic 

steatosis (49). Furthermore, IRE1 has been reported capable of repressing the expression of key 

metabolic transcriptional regulators, including CCAAT/enhancer-binding protein (C/EBP) β, 

C/EBPδ, PPARγ, and enzymes involved in triglyceride biosynthesis (49), which suggests that UPR 

might be an important mechanism for mitigating steatosis. Our results in the present study highlight 

the need for further investigation to examine whether specific UPR signaling may in fact contribute 

to the PPARα-mediated effects on insulin sensitivity.  

 

Although attenuated body weight gain in the HFru-fed mice induced by FB may cloud our 

interpretation at the first glance, the pivotal role of lipids (but not the activated UPR per se) in ER 

stress associated insulin resistance is also demonstrated in CH-FB fed mice without body weight 

change (compared to CH-fed mice). Despite similar dual activation of both IRE1/XBP1 and 



 

PERK/eIF2α pathways in the FB-treated CH-fed mice, insulin-mediated phosphorylation of Akt and 

GSK3β remained intact in the absence of lipid accumulation. This interpretation is consistent with a 

previous study showing reduced liver lipids as the underlying mechanism of improved hepatic 

insulin sensitivity during body weight loss in patients with type 2 diabetes (50).  

 

In summary, our data together indicated that lipid (particularly DAG) accumulation, but not the 

activation of JNK or IKK, is required for ER stress to cause hepatic insulin resistance and glucose 

intolerance during HFru consumption. Increased peroxisomal oxidation of FAs and energy 

expenditure are likely to underpin the observed reduction in hepatosteatosis and insulin resistance in 

FB-treated HFru-fed mice despite marked increases in UPR signalling and de novo lipogenesis. 

Therefore, activation of PPARα with FB ameliorates HFru-induced hepatic insulin resistance by 

eliminating lipid deposition by blocking its link with ER (Figure 8). Our findings also suggest a 

need for further investigation as to whether activation of specific UPR pathways may in fact 

contribute to the therapeutic effects of fibrate drugs which are commonly used in humans.  
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TABLE 1.  Basal metabolic parameters of HFru-fed mice 

 CH-Veh CH-FB  HFru-Veh  HFru-FB  

Body mass (g) 

   Day 0 

   Day 14 

 

27.0±0.4 

28.0±0.4 

 

27.5±0.4 

27.9±0.4 

 

28.0±0.5 

29.2±0.4b 

 

26.8±0.4 

22.2±0.6b,d,e 

EPI/BW 1.2±0.1 1.0±0.1 2.0±0.3b 0.7±0.1a,d 

Caloric intake (Kcal/kg.day) 411±6.6 436±12.3 571±9.7b.f 567±13.6b.f 

VO2 (l/kg.h) 3.23±0.07 3.70±0.14a 3.50±0.03a  3.78±0.13a,c,e  

RER 0.93±0.01 0.92±0.01 0.97±0.01a 0.93±0.02 c 

Blood glucose (mM) 8.4±0.3 10.5±0.4b 10.2±0.5b 6.6±0.4b,d 

Plasma insulin (pg/ml)  203±23 91±16b 208±26 82±6d,b 

HOMA-IR  77.4±9.0 40.9±6.7a 96.3±16.8 23.3±2.2b,d 

Plasma triglyceride (µM) 354±20 176±10b 264±16b 260±32b 

Male C57BL/6J male mice were fed either a CH or fructose-rich diet (HFru) for 2 weeks with or 

without the supplementation of a PPARα agonist, fenofibrate (FB, 100 mg/kg/day). The data for 

whole body oxygen consumption (VO2) and respiratory exchange ratio (RER) were the average 

values of 24 hours of measurement after 1 week of FB administration. HOMA-IR was calculated 

using the fasting blood glucose (mmol/L) multiplying by the fasting Insulin (mU/L) divided by 

22.5. Data are means ± SE of 8–12 mice per group. a p<0.05, b p<0.01 vs untreated CH-fed mice 

(CH-Veh); c p<0.05, d p<0.001 vs untreated HFru-fed mice (HFru-Veh); e p<0.001 vs FB treated 

chow-fed mice (CH-FB). 

 

 



 

FIGURE LEGENDS 

 

Figure 1. Effects of FB treatment on glucose tolerance.   

Male C57BL/6J mice were fed a high fructose (HFru) diet with or without the supplementation of 

fenofibrate (FB, 100 mg/kg/day) as compared to a standard laboratory chow diet (CH). The 

experiments were performed after two weeks of chow (CH, ●), chow with FB (CH-FB, ○), high 

fructose (HFru, ■) or high fructose with FB (HFru-FB, □) feeding. (A) Glucose tolerance test 

(GTT) was performed with an injection of glucose (2.5 g/kg, ip) after 5-7 hours of fasting. (B) 

iAUC, incremental area under the curve for blood glucose level. (C) Plasma insulin level between 

30-60 min of GTT. Data are means ± SE, 8-12 mice per group. * p < 0.05; †† p < 0.01 of the 

compared groups. 

 

Figure 2. Effects of FB treatment on hepatic insulin signal transduction.  

After two weeks of feeding, animals were fasted for 5-7 hours before tissue collection. Liver 

homogenate were prepared for immunoblotting (detail methods can be found in the supplementary 

information): (A) representative blots of phosphorylated- and total-Akt (Ser473) with densitometry 

in the liver, (B) representative blots of phosphorylated- and total- GSK3β (Ser219) with 

densitometry in the liver in response to a bolus of insulin stimulation (2U/kg, ip). Each lane 

represents a single mouse. Data are mean ± SE of 8 mice per group. All insulin stimulated groups 

reached statistical significance of p < 0.01 compared to their corresponding basal groups unless 

otherwise indicated. ** p < 0.01; †† p < 0.001 of the compared groups. 

 

Figure 3. Effects of FB treatment on hepatic lipid content. 

After two weeks of feeding, animals were fasted for 5-7 hours before tissue collection. Liver 

homogenate were extracted for the assessment of total TG (A), DAG (B) and ceramide (C) content. 

Data are mean ± SE of 8 mice per group. ** p < 0.01; †† p < 0.001 of the compared groups. 



 
 

 

  

Figure 4. Effects of FB treatment on key enzymes of FA oxidation 

After two weeks of feeding, animals were fasted for 5-7 hours before tissue collection and liver 

homogenates were immunoblotted for key enzymes related to oxidative capacity: representative 

blots of ACOX1 (A), phosphorylated-ACC (Ser79) (B), the specific activities of β-HAD (C), and 

citrate synthase (D). Each lane represents a single mouse. Data are mean ± SE of 10 mice per group. 

(E) Hepatic fatty acid (FA) oxidation was measured in separate liver homogenates using 14C-

palmitate as a substrate in the presence or absence of 0.02 mM etomoxir (detail methods can be 

found in the supplementary information). Data are mean ± SE of 6-8 mice per group. * p < 0.05; ** 

p < 0.01 vs CH; † p < 0.05, †† p < 0.001 of the compared groups. 

 

Figure 5. Effects of FB treatment on hepatic UPR signaling.  

After two weeks of feeding, animals were fasted for 5-7 hours before tissue collection and liver 

homogenates were immunoblotted for markers of ER stress: representative blots of phosphorylated-

IRE1 (Ser724) (A), spliced form of XBP1 (B), phosphorylated-PERK (Thr980) (C), 

phosphorylated-eIF2α (Ser51) (D), CHOP (E), and GADD34 (F) with densitometry. Each lane 

represents a single mouse. Data are mean ± SE from 8 to 10 mice per group. * p < 0.01 vs CH, ††  p 

< 0.01 of the compared groups.  

 

Figure 6. Effects of FB treatment on hepatic DNL.  

After two weeks of feeding, animals were fasted for 5-7 hours before tissue collection and liver 

homogenates were immunoblotted for key enzymes related to lipogenic capacity: representative 

blots of the matured form of SREBP1c (mSREBP1c) (A), tACC (B), FAS (C) and SCD1 (D) with 

densitometry. Data are mean ± SE of 10 mice per group. (E) Hepatic DNL was measured by the 

incorporation of [3H]-H2O into hepatic triglyceride (detail methods can be found in the 

supplementary information). Data are mean ± SE of 6 to 8 mice per group. * p < 0.05 vs CH; ** p 



 

< 0.01; †† p < 0.001 of the compared groups.  

 

Figure 7. Effects of FB treatment on JNK and IKK activation.  

After two weeks of feeding, animals were fasted for 5-7 hours before tissue collection and liver 

homogenates were immunoblotted for evidence of JNK and IKK activation:  representative blots of 

phosphorylated-JNK (A), phosphorylated-IKK (B), IκBα (C). Data are mean ± SE of 8 mice per 

group. n.s. denotes no statistical differences. 

 

Figure 8. Illustration of PPARα–mediated effects on ER stress, lipid metabolism and insulin 

sensitivity in the liver.  

High fructose feeding accentuates the accumulation of triglyceride (TG) and diacylglyerol (DAG) 

in the liver via the induction of de novo lipogenesis. The accumulation of these lipid metabolites 

attenuates normal insulin signal transduction leading to hepatic insulin resistance, resulting in the 

reduction of glucose tolerance. PPARα activation by FB may also directly stimulate lipogenesis 

which may involve the signaling of specific arms of the unfolded protein response (UPR) pathways. 

However, the predominant effect of potentiated oxidative capacity (primarily peroxisomal 

oxidation) driven by PPARα is capable of eliminating lipid accumulation, thus overcoming 

fructose-induced hepatic insulin resistance (IR) and glucose intolerance.  

 

Figure S1. Densitometry of insulin-stimulated Akt phosphorylation in muscle.  

After two weeks of feeding, animals were fasted for 5-7 hours before tissue collection and red 

quadriceps muscle homogenates were immunoblotted for phosphorylated-Akt (Ser473) in response 

to a bolus of insulin stimulation (2U/kg, ip). Data are mean ± SE from 8 to 10 mice per group. All 

insulin stimulated samples reached statistical significance of p < 0.01 compared to that of the non-

stimulated. No significant difference was observed among the stimulated groups. 



 
 

 

 

Figure S2. Effects of FB treatment on ATF6. 

After two weeks of feeding, animals were fasted for 5-7 hours before tissue collection and liver 

homogenates were immunoblotted for ATF6. Representative blot is shown with densitometry. Each 

lane represents a single mouse. Data are mean ± SE from 8 to 10 mice per group. n.s. denotes no 

statistical differences. 

 

 

 

 

 


