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Abstract 
Hydrogen sulfide (H2S), a gas long known for its smell and toxicity, is now increasingly 

recognised as a gasotransmitter, in addition to nitric oxide (NO) and carbon monoxide (CO). 

It is produced endogenously by several enzymes and has various biological effects, including 

neuromodulation, cardiovascular and antioxidant effects. In the peripheral cardiovascular 

system, H2S causes vasodilation and systemic administration of a H2S donor, sodium 

hydrogen sulfide (NaHS), reduces blood pressure in a dose dependent manner. H2S is also 

produced in the central nervous system, suggesting that it may have a role in the central 

regulation of the cardiovascular system, similar to NO.  There are few studies investigating 

the role of H2S in the brain in cardiovascular regulation or in cerebral artery tone.  The thesis 

has investigated: i) the effect of H2S in the brain on blood pressure (BP), heart rate (HR), and 

lumbar sympathetic nerve activity (LSNA); ii) the mechanism of H2S-induced vasodilation of 

middle cerebral arteries (MCA); iii) the influence of diabetes on the H2S-induced MCA 

response. 

 

Cardiovascular diseases, such as hypertension and heart failure, are associated with increased 

sympathetic nerve activity (SNA), the pathophysiology of which is incompletely understood. 

The rostral ventrolateral medulla (RVLM) and the hypothalamic paraventricular nucleus 

(PVN) are brain nuclei with key cardiovascular regulatory functions and demonstrated 

involvement in the increased SNA of cardiovascular pathologies.  The possible role of H2S as 

a central cardiovascular regulator via the RVLM and PVN was therefore investigated. The 

presence of the H2S producing enzyme, cystathionine β synthase (CBS) in the RVLM and 

PVN was demonstrated by western blotting and immunohistochemistry.  Nerve recording 

studies were performed on anaesthetised male Wistar Kyoto (WKY) and spontaneously 

hypertensive rats (SHR).  Bilateral microinjections of NaHS (0.2 – 2000 pmol/side), or 

inhibitors of CBS (hydroxylamine, HA, 0.2 – 2.0 nmol/side; or amino-oxyacetate, AOA, 0.1 – 
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1.0 nmol/side) into the RVLM did not significantly affect BP, HR or LSNA, compared to 

vehicle in WKY rats.  Microinjections into the PVN of NaHS, HA and AOA had no 

consistent significant effects on BP, HR or LSNA compared to vehicle in WKY rats. NaHS 

microinjected into the PVN or RVLM of SHR rats did not significantly affect BP, HR or 

LSNA compared to vehicle. Together, these results suggest that H2S may not have a major 

cardiovascular regulatory role in the RVLM and PVN.  

 

H2S is produced in peripheral blood vessels via the enzyme cystathionine-γ-lyase (CSE).  It is 

thought to be an important endogenous vaso-active mediator, since CSE gene deletion has 

resulted in increased blood pressure.  Although there are numerous studies investigating the 

mechanism of H2S-induced vasodilation in peripheral vessels, in cerebral blood vessels, the 

mechanism has not been extensively studied. Vasorelaxation studies were performed on 

middle cerebral arteries (MCA) from male Sprague-Dawley rats using wire myography. 

Immunofluorescence staining showed the H2S producing enzyme cystathionine-γ-lyase (CSE) 

was present in the smooth muscle layer of middle cerebral arteries.  Consistent with this, the 

CSE substrate L-cysteine (10 µM-100 mM) induced vasorelaxation in middle cerebral arteries 

that was independent of endothelium, suggesting conversion of L-cysteine to H2S via CSE 

occurred in the vascular smooth muscle. NaHS (0.1-3.0mM) produced concentration-

dependent relaxation of MCA, which was unaffected by endothelium removal. Inhibiting K+ 

conductance with KCl (50mM) significantly attenuated NaHS-induced relaxation, increasing 

the EC50 by 4 fold. 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS, 300µM) caused a 

significant 10-fold rightward shift of the NaHS concentration-response curve. Nifedipine 

(3µM), a blocker of L-type calcium channels, significantly reduced the maximum relaxation 

elicited by NaHS by 30%. These findings suggest that H2S mediated relaxation of middle 



 10 

cerebral arteries is DIDS sensitive and partly mediated by inhibition of L-type calcium 

channels with an additional contribution by potassium channels. 

 

Cardiovascular pathologies, including hypertension and diabetes, alter the structure and 

function of cerebral vessels, increasing the risk of stroke and dementia. The mechanisms 

inducing this dysfunction are incompletely understood, but are thought to involve reactive 

oxygen species (ROS) inducing endothelial dysfunction.  H2S has antioxidant effects and has 

been shown to protect against endothelial dysfunction. The effect of diabetes on the MCA 

response to H2S was therefore investigated. Cerebral vessels were harvested from 

streptozotocin (50mg/kg) induced diabetic rats 10 weeks after streptozotocin treatment, and 

their age-matched controls.  Diabetes induced an attenuation of bradykinin-induced 

vasorelaxation, suggesting endothelial dysfunction.  The response to NaHS was unchanged by 

diabetes, however, L-cysteine-induced relaxation was enhanced in diabetic vessels. The 

mechanism of H2S-induced vasodilation was investigated using DIDS (300µM), nifedipine 

(3µM) and KCl (50mM) – similar to in non-diabetic rats, DIDS induced a significant 

rightward shift of the dose-response curve, while nifedipine and KCl both significantly 

inhibited the maximum relaxation induced by NaHS.  The lucigenin assay, an in vitro assay 

for superoxide (O2
-) generation, demonstrated increased O2

- generation from both aorta and 

cerebral vessels of diabetic animals.  NaHS decreased O2
- generation from diabetic, but not 

control MCA. The results suggest that the mechanism and vascular response to H2S is 

unchanged in diabetic MCA, although production of H2S may be increased.  H2S appears to 

act as an antioxidant in diabetic MCA in vitro. 
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3-MST 3-mercaptopyruvate sulfurtransferase 
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AT1 angiotensin II type 1 
ATP adenosine triphosphate 
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BKCa large-conductance calcium-activated potassium channels 
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eNOS endothelial nitric oxide synthase 
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H2O2 hydrogen peroxide 
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HA hydroxylamine 
HHcy hyperhomocysteinaemia 
HR heart rate 
IKCa intermediate-conductance calcium-activated potassium channels 
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iNOS inducible nitric oxide synthase 
IP cell surface prostacyclin receptor 
KATP adenosine triphosphate-sensitive potassium channels 
KCa calcium-activated potassium channels 
KIR inwardly rectifying potassium channels 
KV voltage-gated potassium channels 
L-NAME L-NG-Nitroarginine methyl ester 
LSNA lumbar sympathetic nerve activity 
MCA middle cerebral artery 
MAP mean arterial pressure 
Na2S sodium sulfide 
NADH nicotinamide adenine dinucleotide 
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NADPH nicotinamide adenine dinucleotide phosphate 
NaHS sodium hydrogen sulfide 
NNDP N,N-dimethylphenyldiamine sulphate 
nNOS neuronal nitric oxide synthase 
NOS nitric oxide synthase 
NO nitric oxide 
NOD non-obese diabetic mice 
Nox nicotinamide adenine dinucleotide phosphate oxidase 
NTS nucleus tractus solitarius 
O2˙- superoxide 
OH˙ hydroxyl 
ONOO- peroxynitrite 
PH posterior hypothalamus 
pHi intracellular pH 
PLP pyridoxal 5’-phosphate 
PGI2 prostacyclin 
PPG propargylglycine 
PVN paraventricular nucleus of the hypothalamus 
ROS reactive oxygen species 
RSNA renal sympathetic nerve activity 
RT-PCR real-time quantitative polymerase chain reaction 
RVLM rostral ventrolateral medulla 
sGC soluble guanylate cyclase 
SHR spontaneously hypertensive rats 
SKCa small-conductance calcium-activated potassium channels 
SNA sympathetic nerve activity 
SOD superoxide dismutase 
STZ streptozotocin 
SUR sulphonylurea receptor 
VGCC voltage gated calcium channels 
VSM vascular smooth muscle 
WKY Wistar Kyoto 
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Chapter 1: Introduction 
 

Hydrogen sulfide (H2S) has a well-ingrained reputation as a toxic, malodorous gas.  However, 

it is now increasingly recognised as a gasotransmitter, in addition to nitric oxide (NO) and 

carbon monoxide (CO) as it is produced endogenously by several enzymes (Kimura, 2011; 

Shibuya et al., 2009b; Yang et al., 2008) and induces various biological effects. H2S displays 

anti-oxidant properties (Kimura et al., 2010) and several cardiovascular actions of H2S have 

been described, including vasorelaxation (Zhao et al., 2001), protection against ischaemia 

reperfusion injury (Calvert et al., 2009) and inhibition of high glucose-induced endothelial 

dysfunction (Suzuki et al., 2011).  This introductory chapter begins with an overview of the 

biochemistry of H2S, including how it is produced and pharmacological tools that are used to 

study H2S-induced effects. The biological effects of H2S are briefly overviewed in section 

1.1.3 (p.21), with pertinent effects being revisited in detail under sections 1.2-1.4 (p.22-62).  

Sections 1.2-1.4 (p.22-62) explain each of the physiological systems and pathological changes 

investigated in this research project with reference to the rationale for investigating each of 

these phenomena, and evidence of H2S-induced effects.  
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1.1 Hydrogen sulfide as an endogenous mediator 
1.1.1 Biochemistry 

Enzymatic production 
H2S is synthesised in bacteria by the reduction of sulphate or elemental sulfur (Escobar et al., 

2007). Since mammals lack the ability to reduce elemental sulfur, H2S is produced 

endogenously via the catabolism of sulfur containing amino acids, predominantly by the 

transsulfuration enzymes – cystathionine-β-synthase (CBS, EC 4.2.1.22) (Kimura, 2011); and 

cystathionine-γ-lyase (CSE, EC 4.4.1.1) (Yang et al., 2008).  For example, H2S is released 

during the conversion of cysteine to serine by CBS and cysteine to pyruvate by CSE (figure 

1.1). A recent study indicates that a third enzyme, 3-mercaptopyruvate sulfurtransferase (3-

MST, EC 2.8.1.2) can also generate H2S.  3-MST acts in concert with cysteine 

aminotransferase (CAT, EC 2.6.1.75) to catabolise cysteine, generating pyruvate and H2S 

(figure 1.1) (Shibuya et al., 2009a). CBS is a major contributor to H2S production in the brain, 

as CBS expression levels are relatively high, and inhibition of CBS using hydroxylamine and 

amino-oxyacetate suppresses the production of brain H2S (Abe et al., 1996).  CSE levels 

predominate in most peripheral tissues, and mice with genetic deletion of CSE have reduced 

endogenous H2S levels in aorta, heart, serum, and fail to generate H2S in liver (Mustafa et al., 

2009b; Yang et al., 2008). 3-MST appears to contribute to H2S production in both the 

periphery and central nervous system (Shibuya et al., 2009a) (Shibuya et al., 2009b). 
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Figure 1.1 Schematic illustrating pathways contributing to endogenous H2S production 

H2S can be produced via the enzymes CBS, CSE or 3-MST.  All three enzymes can utilise 

cysteine as a substrate for H2S production, with the 3-MST pathway requiring an intermediate 

step where cysteine is converted to 3-mercaptopyruvate via CAT. CBS can also use serine 

plus homocysteine or cysteine plus homocysteine as substrates, and CSE can use 

cystathionine or homocysteine as substrates.  The byproducts of cysteine metabolism other 

than H2S are dependent on the pathway and the substrate, and for reasons of clarity, have been 

omitted from this diagram pertaining to H2S production.  For example, the 3-MST pathway 

also releases pyruvate as a byproduct.  CBS, cystathionine-β-synthase; CSE, cystathionine-γ-

lyase; 3-MST, 3-mercaptopyruvate sulfurtransferase, CAT, cysteine amino transferase. 

Adapted from Shibuya et al. (Shibuya et al., 2009b). 
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Concentration of H2S in Tissues  
Free H2S is maintained at low levels in basal conditions through absorption and storage as 

bound sulfur, which cannot function as a gaseous messenger (Ishigami et al., 2009). Previous 

studies show very high concentrations of H2S (brain: 50-160 µM, (Goodwin et al., 1989; 

Savage et al., 1990); plasma: 40-300 µM (Kimura, 2002)) compared to recent studies (brain: 

15 nM (Furne et al., 2008); plasma:<15 nM (Whitfield et al., 2008).   The disparity is likely 

due to the harsh chemical treatment (either strong acid or strong base) required for the assays 

used in previous studies, which may have released sulfur from its stored forms.  Recent 

developments have allowed for more direct measurements of free H2S using either gas 

chromatography (Furne et al., 2008) or a polagraphic H2S sensor (Whitfield et al., 2008).  The 

actual concentration of H2S in mammalian tissues remains to be conclusively determined, but 

is likely to be much lower than original estimates.  

 

1.1.2 Pharmacological tools 
There are various pharmacological tools useful for investigating the potential functions of H2S.  

These include donors, precursors to H2S production, inhibitors of H2S producing enzymes and 

genetic knock-down of H2S producing enzymes.   

 

H2S donors 
H2S donors release or generate H2S upon addition to solution, and are therefore useful for 

determining whether exogenously administered H2S can produce biological effects.  Most 

studies investigating the biological effects of H2S have used one of two commonly available 

sulfide salts: sodium sulphide (Na2S) or sodium hydrogen sulphide (NaHS).  Both donors 

rapidly generate H2S upon addition to solution by first dissociating - Na2S dissociates to Na+ 

and S2-, and NaHS to Na+ and HS- - followed by formation of equilibrium according to: 

S2-    +    H+    ←→    HS-    +    H+     ←→      H2S 
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Since the pKa of HS- is greater than 12, only a trace amount of S2- exists at physiological pH 

(Olson, 2012).  The pKa of H2S is 6.77 at 37 oC, resulting in approximately 18.5% being 

present as H2S, with 81.5% existing as the HS- anion (Dombkowski et al., 2004).  It is not 

known which form of H2S (H2S, HS- or S2- ) is physiologically active, or whether all three 

forms are active to varying extents, however, the active component is commonly termed 

‘hydrogen sulfide’, and it will therefore be referred to throughout the present thesis as H2S. 

 

The formation of H2S from Na2S involves accepting two protons from the solution, whereas 

H2S formation from NaHS requires only one proton.  Thus, while solutions of both 

compounds are alkaline, Na2S forms considerably more alkaline solutions for the same 

amount of H2S produced.  This is likely the reason for a general preference among the 

literature for use of NaHS, as opposed to Na2S.  Since NaHS was the most commonly used 

H2S donor at the time of research, and does not cause significant alkalinisation of 

physiologically buffered solutions within the concentrations applied in the present studies 

(Al-Magableh et al., 2011), NaHS was used as a H2S donor for all studies in the present thesis.  

 

Recently, a number of slow-releasing H2S compounds have been developed, including 

GYY4137 (Li et al., 2008).  Due to the lack of knowledge regarding the efficacy and 

selectivity of such compounds in the time frame of the present studies, NaHS was the 

preferred donor here.  However, these slow-releasing compounds are proving useful 

pharmacological tools, particularly in studies observing chronic effects of H2S. 
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L-cysteine as a precursor to H2S production 
L-cysteine is commonly used to determine the effects of endogenously produced H2S 

(d'Emmanuele di Villa Bianca et al., 2009; Elsey et al., 2010).  It acts as a substrate for both 

CBS and CSE, resulting in the endogenous production of H2S (figure 1.1).  However, L-

cysteine also scavenges nitroxyl anion and has been used in studies investigating nitroxyl 

anion-induced vascular effects (Andrews et al., 2009).  

Inhibitors of CBS and CSE 
The tonic production of H2S can be inhibited using inhibitors of either of the H2S producing 

enzymes, CBS or CSE.  CBS and CSE are both dependent on pyridoxal 5’-phosphate (PLP), 

and like nitric oxide synthase, are regulated by calcium in the presence of calmodulin (Eto et 

al., 2002; Finkelstein et al., 1975) (Yang et al., 2008).  Several pharmacological tools are 

available for the manipulation of these enzymes.  The work described in the present thesis 

employed amino-oxyacetate (AOA) and hydroxylamine (HA) to inhibit CBS; and D,L-

propargylglycine (PPG) to inhibit CSE. 

AOA inhibits CBS by covalently binding to its cofactor, PLP (McMaster et al., 1991).  AOA 

is relatively non-specific, since it inhibits all enzymes which require PLP as a cofactor. Other 

PLP dependent enzymes include 3,4 dihydroxyphenylalanine (DOPA) decarboxylase and γ-

aminobutyric acid (GABA)-transaminase (Amadasi et al., 2007).   AOA inhibition of GABA-

transaminase results in increased brain GABA levels, which is thought to be partly 

responsible for the anticonvulsant properties of AOA (McMaster et al., 1991). HA is similarly 

non-specific, as it causes reversible dissociation of PLP from CBS and other PLP-dependent 

enzymes (Braunstein et al., 1971).  HA also acts as a nitric oxide donor (Taira et al., 1997). 

PPG covalently binds to the PLP binding site of the CSE enzyme, thus may also influence 

other PLP-dependent enzymes (Johnston et al., 1979).  A relatively poor cell-permeability of 

PPG (Marcotte et al., 1976) necessitates the use of fairly high concentrations (1-20mM) in 

biological experiments. 
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Genetic knock-down models: CSE-/- and CBS-/- 
CSE-/- mice have been developed and used by several studies to investigate the cardiovascular 

role of H2S (Mustafa et al., 2011; Yang et al., 2008).  Aside from reduced plasma H2S levels, 

these mice develop significant hyperhomocysteineamia, which is known to adversely affect 

cardiovascular function, decreasing NO availability (Weiss et al., 2002), and reducing 

endothelium derived hyperpolarising factor mediated responses (Cheng et al., 2011).  In 

contrast to CSE-/- mice, CBS-/- are not used in the study of H2S-induced effects. This is due to 

the severity of pathological consequences of the CBS-/- model, including 

hyperhomocysteinaemia, liver injury and death typically within 2-3 weeks of birth (Maclean 

et al., 2010). 

 

In summary, the currently available pharmacological tools used to investigate the biological 

effects of H2S suffer various limitations, such as non-specificity of enzyme inhibitors.  Newer 

methods, such as highly selective enzyme inhibitors, are yet to be developed.  At present, the 

tools described are the best at our disposal, and are therefore in common use to examine the 

biological effects of H2S. 
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1.1.3 Biological effects of H2S 
In 1996, Abe and Kimura were the first to attribute a physiological response to H2S. They 

showed that application of NaHS to hippocampal rat brain slices resulted in facilitation of 

long-term potentiation (Abe et al., 1996). Since then, a range of physiological effects of H2S 

have been observed, including: neuromodulation (Abe et al., 1996; Austgen et al., 2011; 

Dawe et al., 2008; Nagai et al., 2004), vasorelaxation (Zhao et al., 2001), attenuation of 

endothelial dysfunction and atherosclerosis (Suzuki et al., 2011; Wang et al., 2009; Zhao et 

al., 2011), antioxidant (Chai et al., 2012; Kimura et al., 2006; Kimura et al., 2010; Muzaffar 

et al., 2008) and anti- and pro-inflammatory actions (di Villa Bianca et al., 2010; Wallace et 

al., 2007) (for review see (Whiteman et al., 2011)). Several of these effects are reminiscent of 

NO, and both gaseous mediators are produced by calcium-calmodulin dependent enzymes 

(Eto et al., 2002; Yang et al., 2008). Such parallels have led to intensive research into the 

roles of H2S in physiology and pathophysiology, particularly in the cardiovascular system.   

 

To date there has been very little research on the role of H2S in the central regulation of the 

cardiovascular system or cerebrovascular tone.  The present research project has therefore 

investigated i) the role of H2S in central regulation of the cardiovascular system; ii) the role of 

H2S regulation of middle cerebral artery (MCA) tone and iii) diabetes induced changes to the 

MCA H2S-induced response.  The following sections shall review each of these physiological 

and pathophysiological processes in turn, emphasising the rationale for investigating each, 

and any known relevant effects of H2S. 
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1.2 Cardiovascular regulation by the brain 
 

The central nervous system plays a key role in regulating cardiovascular function, particularly 

via several nuclei within the brainstem and hypothalamus known as ‘premotor nuclei’ 

(Guyenet, 2006) (Dampney, 1994).  The premotor nuclei contain presympathetic neurons that 

project directly to the sympathetic preganglionic motor neurons in the intermediolateral 

column (IML) of the spinal cord. These motor regions send inputs to sympathetic post-

ganglionic nerves. These peripheral sympathetic nerves innervate the heart, blood vessels, 

kidneys and the adrenal medulla to regulate cardiovascular function (Guyenet, 2006) (figure 

1.2). Of the premotor nuclei, the present studies have focused on the rostral ventrolateral 

medulla (RVLM), as it has a profound influence on cardiovascular regulation (Dampney, 

1994), and the paraventricular nucleus of the hypothalamus (PVN), as it is an important 

integrative site for cardiovascular function (Badoer, 2001; Badoer, 2010; Deering et al., 2000). 
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Figure 1.2. Diagram illustrating sympathetic innervation via the RVLM and PVN 

Presympathetic neurons within the PVN and RVLM send projections to the IML of the spinal 

cord.  The motor neurons in the IML project to sympathetic post-ganglionic neurons to 

ultimately influence sympathetic effector organs including heart, kidney and resistance 

vessels.  IML, intermediolateral column; RVLM, rostral ventrolateral medulla; PVN, 

paraventricular nucleus. Modified from (Pyner, 2009). 
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Peripheral sympathetic nerve activity enhancement is observed in patients with hypertension, 

congestive heart failure, diabetes, obesity and chronic kidney diseases. The most common 

form of human hypertension is neurogenic hypertension – hypertension associated with 

sympathetic overdrive (Esler, 2010).  It is now well established that increased sympathetic 

nerve activity (SNA) contributes to the development of hypertension (Tsioufis et al., 2011), as 

well as a plethora of pathophysiological consequences independent of raised blood pressure, 

such as myocardial hypertrophy and vascular remodelling.  Sympathetic overactivity is 

associated with augmented neuronal activity in premotor nuclei including the RVLM 

(Kumagai et al., 2012) and PVN (Li et al., 2003; Takeda et al., 1991). The aetiology of this 

augmented neuronal activity in premotor nuclei is incompletely understood. However, 

accumulating evidence suggests the involvement of pathological changes within premotor 

nuclei, such as the RVLM (Kishi et al., 2004; Nishihara et al., 2012; Oliveira-Sales et al., 

2010) and PVN (Allen, 2002; Li et al., 2003; Takeda et al., 1991).  The importance of the 

RVLM and PVN in cardiovascular regulation, and their potential involvement in the 

pathogenesis of cardiovascular diseases are outlined below. 

1.2.1 The rostral ventrolateral medulla 

Role of the rostral ventrolateral medulla in cardiovascular regulation 

The pre-sympathetic neurons in the RVLM appear to play a pivotal role in the tonic and reflex 

control of sympathetic vasomotor activity, such that bilateral inhibition of neurons in the 

RVLM results in a dramatic decrease in both arterial pressure and sympathetic vasomotor 

activity (Dampney, 1994; Guyenet, 2006). The RVLM has a key role in regulating SNA. It 

integrates central and peripheral signals, for appropriate adjustment of sympathetic nerve 

output.  The arterial baroreflex is an example of a peripheral signal integrated by the RVLM, 

such that sudden elevation of blood pressure activates arterial baroreceptors which stimulate a 

neuronal pathway to suppress RVLM activity (Pilowsky et al., 2002). SNA is thus reduced, 

restoring blood pressure. The RVLM also mediates sympathoexcitatory reflexes, such as the 

chemoreflex (Koshiya et al., 1996) and the somatic pressor reflex (Kiely et al., 1994).  

Central inputs from other autonomic-related nuclei, such as the PVN (Badoer, 2001), 

dorsolateral periaqueductal grey (Lovick, 1993) and midline raphe nuclei (Bago et al., 2001), 

also influence the tonic activity of the RVLM. 
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Involvement of the rostral ventrolateral medulla in cardiovascular disease 
Mounting evidence indicates that within the RVLM, elevation of the renin-angiotensin system, 

as well as oxidative stress, contribute to several cardiovascular pathologies including 

spontaneous hypertension, heart failure and renovascular hypertension (Campos et al., 2011). 

The RVLM of spontaneously hypertensive rats (SHR) have an exaggerated response to 

stimulation with L-glutamate (Tsuchihashi et al., 1998), implicating the RVLM in the 

pathogenesis of hypertension.  This anomaly is partly normalised by oral treatment with an 

angiotensin II type 1 (AT1) receptor antagonist (Lin et al., 2005). Nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase, a major source of central reactive oxygen species 

(ROS), is upregulated by activation of AT1 receptors (Peterson et al., 2006).  The resultant 

oxidative stress in the RVLM contributes to spontaneous hypertension, since microinjection 

of a superoxide dismutase (SOD) mimetic into the RVLM, or over-expression of the SOD 

producing gene in the RVLM suppressed sympathetic neurogenic vasomotor tone in SHR, but 

not Wistar Kyoto (WKY) rats (Nishihara et al., 2012; Tai et al., 2005). 

 

Oxidative stress in the RVLM has also been shown to contribute to heart failure and 

renovascular hypertension.  ROS scavengers microinjected into the RVLM attenuated the 

cardiac sympathetic afferent reflex in rats (Zhong et al., 2009), a reflex which contributes to 

the enhanced sympathetic activity observed in congestive heart failure (CHF) (Zucker et al., 

2004). In 2 kidney-1 clip rats, a model of renovascular hypertension, over-expression of SOD 

in the RVLM using an adenoviral vector normalised RVLM superoxide levels and completely 

reversed hypertension (Oliveira-Sales et al., 2009).  The RVLM is evidently a key region for 

the development of pathological sequelae in cardiovascular disease, and therefore a potential 

target for the development of novel therapeutics. 
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1.2.2 The Paraventricular nucleus of the hypothalamus 

Role of the paraventricular nucleus in cardiovascular regulation 
Interest in the PVN was sparked by the observation that it has spinally projecting neurons, 

allowing it to influence SNA and thus the cardiovascular system (Swanson et al., 1983) 

(Badoer, 2001) (figure 1.2, p.23).  PVN neurons also project to several sites known to 

influence SNA such as the RVLM, the raphe nuclei and parabrachial nucleus (Coote et al., 

1998; Shafton et al., 1998). 

 

The PVN plays an important role in the regulation of the cardiovascular system, since 

activation of the PVN, either electrically or using excitatory neurotransmitters, produces 

changes in blood pressure and sympathetic nerve activity, which vary from increases to 

decreases (Kannan et al., 1989; Kannan et al., 1987). The effect of PVN stimulation is 

probably dependent on the precise location within the PVN which is stimulated (Deering et 

al., 2000).  The PVN plays a critical role in the regulation of physiological cardiovascular 

reflex functions. For example, neuronal projections from the parvocellular PVN mediate 

baroreflex regulation of lumbar sympathetic nerve activity (LSNA) (Patel et al., 1988) and 

contribute to reflex reduction in sympathetic nerve activity (Ng et al., 2004) and renal 

vasorelaxation (Chen et al., 2011; Lovick et al., 1993) in response to an acute volume load.  

Secretion of oxytocin and vasopressin from PVN magnocellular neurons is also involved in 

blood volume control (Petersson, 2002; Poulain et al., 1982).  These important cardiovascular 

regulatory functions have led to research into the involvement of the PVN in cardiovascular 

pathophysiology. 
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Involvement of the paraventricular nucleus in cardiovascular disease 
Abnormal functioning of the PVN appears to be involved the sympathetic overactivity which 

occurs in certain cardiovascular diseases, including CHF, arterial hypertension and 

myocardial ischaemia (Malliani et al., 2002) (Li et al., 2003). Notably, electrolytic lesions in 

the PVN prevented the development of hypertension (Takeda et al., 1991), and LSNA and 

blood pressure were dramatically reduced by inhibition of the PVN in SHR rats (Allen, 2002). 

One of the major complications of heart failure, excess sympathoexcitation, is associated with 

increased sympathetic drive from the PVN (Li et al., 2003; Patel et al., 2012; Xu et al., 2012).  

Changes within the PVN such as up-regulation of pro-inflammatory cytokines (Kang et al., 

2009) and neuronal nitric oxide synthase (nNOS) down-regulation (Zheng et al., 2011) 

associated with diminished GABA sensitivity of PVN neurons (Patel, 2000), contribute to 

increased sympathetic drive. ROS generation in the PVN also appears to play an important 

role in CHF-induced enhanced sympathetic drive, since PVN superoxide scavengers almost 

abolished CHF sympathetic overdrive (Han et al., 2007).  In aldosterone/salt-induced 

hypertension, gene silencing of NADPH oxidase isoforms 2 and 4 using siRNA injections 

into the PVN significantly attenuated hypertension, implicating involvement of NADPH 

oxidase generated ROS (Xue et al., 2012). 

1.2.3 Possible involvement of H2S in cardiovascular regulation by the brain 
H2S has been shown to perform several neuromodulatory roles, including facilitation of long 

term potentiation (Abe et al., 1996), induction of calcium waves in astrocytes (Nagai et al., 

2004) and regulation of release of corticotrophin releasing hormone from the hypothalamus 

(Dello Russo et al., 2000).  Peripherally, H2S has several cardiovascular effects, including 

vasorelaxation (Zhao et al., 2001) and protection against cardiac ischaemia reperfusion injury 

(Calvert et al., 2009).  It has been proposed that H2S may regulate resting blood pressure, 

since CSE knockout mice had elevated blood pressure in one study (Yang et al., 2008), 

although a more recent study showed no effect of CSE knockout on blood pressure (Ishii et 
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al., 2010).  Given its neuromodulatory effects and peripheral cardiovascular effects, the 

question arises as to whether or not H2S may function as a central cardiovascular regulator. 

 

Indeed, there is limited evidence that H2S may be important in cardiovascular regulation via 

the brain.  For example, a 60 minute infusion of NaHS (0.4 µmol) into the lateral cerebral 

ventricle resulted in an increase in blood pressure (Ufnal et al., 2008).  Conversely, a rapid 

cerebroventricular infusion of higher amounts of NaHS (3-303 µmol over 30 seconds) 

resulted in significant decreases in blood pressure and heart rate (Liu et al., 2011a).  Another 

study focused specifically on the posterior hypothalamus (PH) (Dawe et al., 2008). 

Microinjection of NaHS into the PH slightly reduced blood pressure (by approximately 

5mmHg), and the CBS inhibitors, AOA and HA, both slightly increased blood pressure 

(Dawe et al., 2008). The nucleus tractus solitarius (NTS) is an integratory site for visceral 

afferents such as baroreceptor and chemoreceptor fibres (Austgen et al., 2011). 

Administration of NaHS to brain stem slices augmented pre-synaptic transmission in the NTS, 

whereas AOA depressed synaptic activity (Austgen et al., 2011).  In a recent study, 

microinjection of NaHS into the RVLM induced reductions in LSNA, blood pressure and 

heart rate, while AOA induced elevations of these parameters (Guo et al., 2011).  However, at 

the time of this study, the role of H2S in cardiovascular regulation via the RVLM or PVN, 

regions with profound influences on cardiovascular regulation (see above 1.2.1, p.24 and 

1.2.2, p.26), had not been investigated.  
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1.3 Middle cerebral artery tone  
The brain has a minimal storage of energy sources, and thus relies on a steady delivery of 

adequate oxygen and glucose via blood flow through cerebral vessels.  Interruption of blood 

flow to the brain can result in irreversible neuronal damage within minutes (Pagnussat et al., 

2007).  The regulation of cerebrovascular tone is crucial for maintaining appropriate blood 

flow to the brain.  

  

1.3.1 Function of the middle cerebral artery 
The middle cerebral artery (MCA) is the largest cerebral artery and arises from a trifurcation 

of the internal carotid artery (figure 1.3).  It supplies most of the temporal lobe, anterolateral 

frontal lobe (and the majority of the primary motor cortex), parietal lobe (and the majority of 

the somatosensory cortex), nearly all of the basal ganglia, and the posterior and anterior 

internal capsules. In contrast to the peripheral vasculature, large cerebral arteries, such as the 

MCA, are important contributors to cerebral vascular resistance (Faraci et al., 1990).  Thus, 

the tone of the MCA is an important determinant of overall cerebral blood flow.  Aberrant 

MCA tone can be involved in the pathophysiology of certain conditions, such as Alzheimer’s 

disease and stroke. 
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Figure 1.3 Diagram illustrating position of middle cerebral artery 

Ventral view of a rat brain showing the position of the middle cerebral artery, among other 

major cerebral arteries.  The trifurcation of the internal carotid artery into middle cerebral 

artery, posterior communicating artery and anterior cerebral artery is also demonstrated.   The 

circle of Willis is also pictured – a circle of arteries formed by the junction of the posterior 

communicating arteries, posterior cerebral arteries and anterior cerebral arteries.  MCA, 

middle cerebral artery; ACA, anterior cerebral artery; ICA, internal carotid artery; PC, 

posterior communicating artery; PCA, posterior cerebral artery; ECA, external carotid artery; 

BA, basilar artery; CCA, common carotid artery.  Adapted from (O'Neill et al., 2001). 
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1.3.2 Implications of middle cerebral artery tone in pathophysiology of disease 

Alzheimer’s Disease 

Although the traditional hypothesis for the pathophysiology of Alzheimer’s disease involves 

the accumulation of β-amyloid resulting in neuronal dysfunction (Kelley et al., 2007), 

accumulating evidence suggests that cerebral vasculopathy plays an additional role (Iadecola, 

2004).  Notably, Alzheimer’s disease patients have an increased incidence of ischaemic brain 

lesions and atherosclerosis of cerebral vessels (Roher et al., 2003; Skoog et al., 2006).  

Several lines of evidence from animal models suggest that β-amyloid may be involved in the 

genesis of this vasculopathy, for example, β-amyloid attenuates endothelium dependent 

responses (Iadecola et al., 1999) and impairs cerebrovascular autoregulation (Niwa et al., 

2002).  It is well established that hypertension disrupts cerebrovascular tone regulation and 

causes atherosclerosis (Iadecola et al., 2008).  A growing body of evidence suggests that these 

hypertension-induced changes increase susceptibility to Alzheimer’s disease (Iadecola et al., 

2008). 

Haemorrhagic stroke 

After a subarachnoid haemorrhage, cerebral vasospasm occurs in vessels including the MCA 

(Kasprowicz et al., 2012).  This vasoconstriction contributes to delayed ischaemic 

neurological deficits and increases the risk of ischaemic stroke (Qi et al., 2011).  During the 

acute phase (1-5 days) after a haemorrhagic stroke, there is also an impairment of cerebral 

autoregulation, or the ability of cerebral vessels to respond to changes in transmural pressure 

(Diedler et al., 2009).   Since cerebral autoregulation normally protects the brain from 

fluctuations in perfusion, this impairment results in an increased risk of subsequent 

cerebrovascular events, such as haemorrhage or ischaemia.  Also during the acute phase after 

subarachnoid haemorrhage, upregulation of receptors for vasoconstrictor substances, such as 

endothelin and serotonin, has been observed (Edvinsson et al., 2011), yielding dramatic 

changes in the contractility of vessels, and compounding increased risk of subsequent 

cerebrovascular events.   
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Ischaemic stroke 
After ischaemic stroke, progressive damage to cerebral vessels occurs (Fagan et al., 2004). In 

the acute phase (hours post stroke) myogenic reactivity of the MCA is decreased (Cipolla et 

al., 1997), and endothelium dependent responses are abolished due to enhanced ROS 

production (Kontos, 2001). In the chronic phase (days to months post stroke) atherosclerosis 

occurs as a result of enhanced production of apoptotic and angiogenic factors in endothelial 

cells (Fagan et al., 2004).  Both acute and chronic effects may decrease brain tissue perfusion, 

causing further damage to the compromised, but salvageable, penumbra and increasing the 

risk of secondary stroke.  

 

A great number of neuroprotective agents have been trialled for protection against post-stroke 

neuronal cell death, without success (O'Collins et al., 2006).  Due to the anomalous 

cerebrovascular tone regulation post ischaemic and haemorrhagic stroke (Cipolla et al., 1997) 

((Kontos, 2001), there is increasing focus on the development of therapeutics which target 

vascular mechanisms (Moskowitz et al., 2010). 

Thrombotic stroke 
Inappropriate MCA tone may increase the risk of thrombotic stroke by reducing blood flow.  

Although thrombotic strokes often occur in smaller, penetrating arteries (Cho et al., 2007), 

they may also occur in MCA (Yoo et al., 1998). Reduced blood flow enhances the risk of clot 

formation in diseased cerebral vessels. For example, sleep apnoea has been demonstrated to 

reduce blood flow in the MCA and may be responsible for the increased risk of stroke 

observed in these patients (Franklin, 2002; Netzer et al., 1998).   

 

The maintenance of physiological tone of the MCA is crucial to maintain appropriate cerebral 

blood flow, and failure can result in severe pathological sequelae. Understanding the intricate 

mechanisms in place to regulate tone may allow for the development of therapeutic tools. 
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1.3.3 Control of middle cerebral artery tone 
There are marked differences between peripheral and cerebral artery tone regulation, notably 

since cerebral arteries must maintain adequate blood flow to the brain over a wide range of 

systemic pressure and internal demands.  In order to achieve a relatively constant blood flow, 

cerebral vessels respond to changes in perfusion pressure with a profound change in 

resistance (Faraci et al., 1998). Myogenic tone, whereby vessels constrict upon increased 

perfusion pressure, plays a particularly important role in cerebral blood flow autoregulation.   

 

This section reviews the influence of several relevant factors and their influence on 

cerebrovascular tone: ion channels, bicarbonate exchange, endothelial derived factors and 

ROS. 

 

Ion channels 
Ion channels play a crucial role in the regulation of vascular smooth muscle (VSM) tone by 

regulating intracellular calcium concentration via effects on membrane potential.  VSM cells 

express a variety of calcium, potassium, chloride and stretch-activated cation channels 

(Jackson, 2000).  The major channels which were investigated for their involvement in the 

H2S-induced response in the present thesis were potassium and calcium channels, because 

previous studies suggested that these are the most likely targets. Therefore, the role of 

potassium and calcium ion channels in VSM is outlined below, with reference to their 

influence on cerebrovascular tone.  
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Potassium Channels: Opening of potassium channels hyperpolarises the cell membrane 

through efflux of potassium ions, thus causing closure of voltage gated calcium channels 

(VGCC) and leading to vasorelaxation (Brayden, 2002) (figure 1.4, p.44).  The activity of 

potassium channels on smooth muscle membranes is a major determinant of vascular tone, 

since the change in activity of only a few K+ channels can alter membrane potential 

significantly, and affect vascular tone (Nelson et al., 1995b).   

 

Adenosine triphosphate-sensitive potassium channels (KATP) play an important role in 

regulating resting membrane potential of VSM, such that blockade of KATP causes 

depolarisation of VSM and subsequent increased tone (Nakashima et al., 1995; Nelson et al., 

1990). KATP contain two distinct types of protein subunits, the inwardly rectifying potassium 

channel subunits (of which there are two isoforms KIR6.1 or KIR6.2) and the sulphonylurea 

receptor (SUR, of which multiple isoforms exist: SUR1, SUR2A, SUR2B) (Brayden, 2002). 

In cerebral vessels, KATP channel subunits KIR6.1 and SUR2B are prominently expressed on 

smooth muscle cells (Adebiyi et al., 2011; Ploug et al., 2006) and opening of KATP induces 

pharmacological relaxation associated with hyperpolarisation (Faraci et al., 1998). 

 

KATP are coupled to cellular metabolic activity, such that a decrease in the ratio of 

intracellular adenosine triphosphate (ATP) to adenosine diphosphate concentration results in 

channel opening, and thus vasorelaxation.  This is suggestive of a mechanism to allow blood 

vessels to respond directly to inadequate oxygenation.  Indeed, blockade of KATP has been 

shown to inhibit hypoxic vasorelaxation in both peripheral and cerebral vessels (Liu et al., 

1998; Reid et al., 1993), although the role of KATP in hypoxic vasorelaxation remains 

controversial (Adebiyi et al., 2011).  Studies in VSM suggest that nucleoside concentration 

may not be the most important determinant of KATP opening or closure, and the ATP 
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concentration may serve only to set a low background open probability, while other factors, 

such as sulfhydration or phosphorylation, may be more likely to cause KATP opening (Quayle 

et al., 1997; Zhang et al., 2010).  Notably, it has been demonstrated that H2S sulfhydrates 

KATP in vitro, which reduces ATP binding to the KIR6.1 subunit, thus enhancing KATP open 

probability (Mustafa et al., 2011). 

 

Inwardly rectifying potassium channels (KIR) are channels which allow K+ to pass more 

readily into a cell than out (Quayle et al., 1993).  These channels are present in a diverse 

range of arteries and arterioles, including the rat middle cerebral artery (Johnson et al., 1998), 

and play a role in vasorelaxation induced by increased extracellular K+ (Quayle et al., 1993).  

Since neuronal activity stimulates K+ release, these channels play an important role in 

coupling neuronal function to cerebral blood flow in rats (Filosa et al., 2006).  The 

observation that barium chloride (BaCl), a KIR channel blocker, induces a dose dependent 

constriction of rat MCA (Johnson et al., 1998) indicates that these channels are also important 

in regulation of resting cerebrovascular tone.  

 

Three types of calcium-activated potassium channels (KCa) are present in cerebral vessels in 

various species: large, intermediate and small conductance (BKCa, IKCa and SKCa, 

respectively).  BKCa form an integral part of the response to ‘calcium sparks’- local, 

intracellular calcium transients caused by the release of Ca2+ from a cluster of ryanodine-

sensitive calcium channels on the sarcoplasmic reticulum (Jaggar et al., 2000).  Calcium 

sparks are initiated by the entry of calcium through voltage gated calcium channels, and the 

resultant Ca2+ release from the sarcoplasmic reticulum activates BKCa causing 

hyperpolarisation and thus vasorelaxation (Nelson et al., 1995a).  Blockade of BKCa results in 

vasoconstriction of large cerebral arteries, demonstrating their critical role in the regulation of 
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normal cerebrovascular tone (Nelson et al., 1995a). There is no evidence that BKCa are 

expressed in endothelial cells in intact vessels, except in some pathological states (Hughes et 

al., 2010). IKCa and SKCa are present in rat cerebrovascular endothelial cells, and are involved 

in the activity of EDHF (Zygmunt et al., 1996).   

 

Voltage-gated potassium channels (KV) open in response to depolarisation, and they are thus 

suggested to provide an important negative feed-back to arterial constriction (Nelson et al., 

1995b).  KV channels are a highly diverse family of potassium channels, composed of 4 pore-

forming subunits, which arise from at least 11 different gene families (KV1- KV11), each 

composed of several different members (Coetzee et al., 1999; Ottschytsch et al., 2002).  

Inhibitors of KV cause cerebral artery constriction, indicating that KV are involved in 

maintenance of cerebral artery tone (Knot et al., 1995; Zhong et al., 2010).  
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Voltage gated calcium channels: VGCC open in response to depolarisation, or close in 

response to hyperpolarisation of the cell membrane, thus regulating entry of extracellular 

calcium, and vascular tone.   There are 10 molecular sub-types of VGCC, which are assigned 

into three groups (CaV1, 2 and 3).  CaV1 (1.1-1.4) are all L-type channels, CaV2.1 are P/Q, 

CaV2.2 are N and CaV2.3 are R and all CaV3 (3.1-3.3) are T-type channels (Kuo et al., 2011).  

Of these channel subtypes, L-type calcium channels play a dominant role in the maintenance 

of VSM tone (Moosmang et al., 2003), and overactivity of L-type calcium channels is 

associated with hypertension (Pesic et al., 2004) and cerebrovascular disease (Koide et al., 

2011).  Pharmacological as well as histological evidence also point to a role for T-type 

calcium channels in the maintenance of cerebrovascular (Kuo et al., 2011; Lam et al., 1998; 

Navarro-Gonzalez et al., 2009) and peripheral vascular tone (Cribbs, 2001), although this 

remains controversial (Kuo et al., 2011).  P/Q, N and R type channels are largely confined to 

neurons (Catterall et al., 2005) and it is not known if these channels play a role in the 

maintenance of cerebrovascular tone. 

 

VSM tone is regulated by a large array of dilating and constricting substances, but the vast 

majority of these elicit their vasoactivity through a change in smooth muscle intracellular 

calcium concentration ([Ca2+]i) (Nelson et al., 1990). VGCC are important in regulating 

[Ca2+]i via changes in membrane potential (figure 1.4, p.44).  However, voltage-independent 

regulation of [Ca2+]i also occurs, via release of calcium from internal stores (Kuo et al., 2011).  

The contribution of each mechanism to vascular tone in peripheral vessels varies according to 

vessel type, with conduit arteries depending more on calcium release from internal stores, and 

resistance vessels depending more on VGCC (van Breemen et al., 1989).  In the middle 

cerebral artery, both mechanisms play an important role, although their relative contribution 

depends on species and age (Long et al., 2000; Skarby et al., 1985). 
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Bicarbonate exchange 
The major transport mechanisms that regulate intracellular pH (pHi) in smooth muscle cells 

are: Cl-/HCO3
- exchange (which functions to acidify the cell), Na+/H+ exchange and Na+ 

dependent Cl-/HCO3
- (which both function to alkalinise the cell) (Madden et al., 2001).  

Maintenance of physiological pHi is crucial to the function of VSM, since enzymes are pH 

sensitive, and modification of pHi may disrupt the activity of a vast array of enzymes and ion 

channels (Schulz et al., 2011).  For example, reduced pHi in endothelial cells disrupts 

endothelial nitric oxide synthase (eNOS) activity, thereby reducing NO bioavailability 

(Boedtkjer et al., 2011).  In smooth muscle cells, decreased pHi reduces opening probability 

of BKCa (Schubert et al., 2001) and L-type calcium channels (Klockner et al., 1994) (figure 

1.4, p.44), as well as reducing the sensitivity of the contractile machinery to calcium (Gardner 

et al., 1988; Peng et al., 1998). The overall effect of altered pHi on vascular tone depends on 

the vessel type, as well as the degree of tone present (Wray et al., 2004), although generally, 

decreased pHi causes vasorelaxation, while increased pHi causes vasoconstriction (Aalkjaer et 

al., 1997). 

 

Bicarbonate exchange is important in recovery from acid or base challenge, as demonstrated 

by experiments using 4,4’-diisothio-cyanostilbene-2,2’-disulfonicacid (DIDS), a general 

inhibitor of bicarbonate exchangers (Parks et al., 2009), although DIDS is recognised to have 

other actions (see section 1.3.4 Proposed mechanisms of H2S-induced vasorelaxation, 

bicarbonate exchange, p.48).  DIDS inhibits recovery from an acute acid (Carr et al., 1995) as 

well as base (Aickin, 1988) load in smooth muscle cells.  The influence of acid handling 

within cells of the cerebral vasculature is particularly important, since cerebral artery tone is 

acutely sensitive to plasma or extracellar pH via pCO2 (Brian et al., 1996).  Evidence suggests 

that Na+ dependent Cl-/HCO3
- exchange is involved in the recovery of cerebral microvascular 

endothelium from an acid load (Hsu et al., 1996).  There is also evidence that bicarbonate 
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exchange may be important in myogenic tone development, since DIDS and a bicarbonate 

free medium both inhibited myogenic tone in rabbit posterior cerebral artery (Henrion et al., 

1994). 

 

The endothelium 
The endothelium produces and releases potent relaxing and constricting factors that regulate 

the tone of underlying VSM. Three of the most influential endothelial derived vasoactive 

factors are NO, prostacyclin (PGI2) and endothelium derived hyperpolarising factor (EDHF).  

The influence of NO, PGI2 and EDHF on cerebrovascular tone are discussed below. 

 

Nitric Oxide: The vasoactivity of endothelium derived relaxing factor (EDRF) has been 

attributed to NO (Palmer et al., 1987).  NO is produced via a family of isoenzymes known as 

nitric oxide synthases (NOS).  Named according to the cell type in which they were initially 

discovered, NOS isoenzymes include endothelial NOS (eNOS), neuronal NOS (nNOS) and 

inducible NOS (iNOS, initially discovered in macrophages). Like H2S, NO is a small, gaseous 

molecule, and therefore, once produced in endothelial cells, NO freely diffuses to the adjacent 

smooth muscle cells. NO induces relaxation via stimulation of soluble guanylate cyclase 

(sGC), resulting in an increase in intracellular cyclic guanosine monophosphate (cGMP) 

concentration (figure 1.4, p.44), and this activates protein kinase G (Schmidt et al., 1994), 

which activates myosin light-chain phosphatase increasing the dephosphorylation of myosin 

regulatory light chain (Surks, 2007).  In MCA, two isoforms of NOS, eNOS and nNOS are 

constitutively expressed (Briones et al., 2002) and NO produces potent vasorelaxation of 

cerebral vessels (Salom et al., 1999; Salom et al., 1998).  It has been demonstrated that NO 

influences cerebrovascular tone under basal conditions, and plays a crucial role in the 

regulation of cerebral blood flow (Faraci, 1993; Toda et al., 2009).  
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Prostacyclin: Prostacyclin (PGI2) belongs to the family of prostanoids, bioactive lipid 

mediators formed from arachadonic acid via cyclooxygenase (COX). Arachadonic acid is 

formed mainly from cell membrane phospholipids by the action of phospholipase A2 

(Bogatcheva et al., 2005).  COX converts arachadonic acid to prostaglandin H2, the precursor 

to prostanoids, which is then converted to PGI2 via prostacyclin synthase.  Arachadonic acid 

may also be acted on by either lipoxygenases, or cytochrome P450 monooxygenases to 

produce vasoactive arachodonic acid metabolites (Bogatcheva et al., 2005). PGI2 is the major 

product of COX in endothelial cells (Moncada et al., 1976).  The actions of PGI2 are mediated 

mainly by its action on two receptor types: the cell surface prostacyclin receptor (IP), and the 

intracellular peroxisome proliferator-activated receptor β/δ (Mitchell et al., 2008). IP 

receptors are present on smooth muscle cells and their activation by PGI2 increases 3′-5′-

cyclic adenosine monophosphate (cAMP) formation resulting in vasorelaxation via cAMP-

dependent protein kinase A activation (figure 1.4, p.44)(Stitham et al., 2007). In MCA, COX 

and prostacyclin synthase expression (Ospina et al., 2002) as well as IP receptor expression, 

have been demonstrated and IP receptor activation induces vasorelaxation (Myren et al., 

2011). PGI2 plays an important role in cerebral vessel endothelium-mediated responses in 

neonates, although this role declines with maturation, such that in adulthood, PGI2 plays only 

a minor role, with responses mainly mediated by NO and EDHF (Zuckerman et al., 1996).   

Endothelium derived hyperpolarising factor (EDHF): After inhibition of production of NO 

and PGI2, a residual endothelium dependent relaxation exists, that is concurrent with VSM 

cell hyperpolarisation and activation of K+ channels (Feletou et al., 1988; Komori et al., 

1988).  This hyperpolarisation was initially attributed to a single entity, termed EDHF.  

However, more than 20 years of research have demonstrated that the EDHF response is 

attributable to multiple signaling pathways between endothelial cells and VSM, only some of 

which involve the release of factors (Edwards et al., 2010).  All EDHF pathways are 
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dependent on an initial increase in endothelial intracellular calcium (Fukao et al., 1995). The 

ensuing pathways causing VSM depolarisation can be divided into two broad categories.  The 

‘classical’ pathway involves subsequent activation of endothelial SKCa and IKCa, resulting in 

endothelial cell hyperpolarisation (Zygmunt et al., 1996) (figure 1.4, p.44).  But exactly how 

endothelial cell hyperpolarisation causes smooth muscle cell hyperpolarisation remains a 

topic of debate.  Mounting evidence implicates involvement of myoendothelial gap junctions 

in EDHF mediated relaxations in both peripheral and cerebral vessels (Ujiie et al., 2003; Xu 

et al., 2002) (figure 1.4, p.44).  There are also various lines of evidence that K+ escaping from 

endothelial cell KCa can hyperpolarise VSM via activation of Na+/K+-ATPases and/or KIR 

channels (Edwards et al., 2010).  The other EDHF pathway does not involve endothelial cell 

hyperpolarisation.  Instead, diffusible factors may be released from the endothelium upon 

increased intracellular calcium, causing activation of BKCa and KATP channels on VSM 

(Edwards et al., 2010) (figure 1.4 p.44).    Candidates for diffusible factors released via this 

second pathway include NO, nitroxyl anions, PGI2, epoxyeicosatrienoic acids, hydrogen 

peroxide, C-naturetic peptide (Luksha et al., 2009) and H2S (Mustafa et al., 2011; Yang et al., 

2008).  

The contribution of EDHF to endothelium dependent relaxation varies depending on the 

vessel type, generally increasing as the vessel size decreases (Tomioka et al., 1999).  

Evidence suggests that this is also the case in cerebral vessels, whereby EDHF mediated the 

majority of endothelium induced vasorelaxation in rat MCA branches, but nitric oxide was the 

dominant mediator of the response in MCAs (You et al., 1999).  
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Reactive oxygen species 
ROS can be divided into free radicals, such as superoxide (O2˙-) and hydroxyl (OH˙); non-

radicals, such as hydrogen peroxide (H2O2); and reactive nitrogen species, such as NO 

(technically, NO˙, since it is a radical gas, with an unpaired electron) and peroxynitrite 

(ONOO-).  In vascular cells, there are multiple sources for the generation of ROS, including 

mitochondria, cyclooxygenases and NADPH oxidases, indicating a physiological importance 

for ROS (Faraci, 2006).  Indeed, ROS are generated at low levels in cerebral vessels (Miller et 

al., 2005) and are essential for normal vascular cell physiology, having multiple functions, 

including regulation of tone.  O2˙- and H2O2 were examined for their possible involvement in 

H2S-induced vasorelaxation of MCA in the present research project, since O2˙- is the parent 

ROS molecule, and H2O2 is regarded a particularly important ROS molecule in regulation of 

vascular function, due to its stability and ability to diffuse across membranes (Miller et al., 

2006).  

O2˙- is formed from molecular oxygen via oxidases and is a precursor for H2O2 formation (via 

SOD), as well as reactive nitrogen species (Miller et al., 2006).  Due to its poor membrane 

permeability and short half-life, O2˙- itself is unlikely to play an important role in regulation 

of VSM tone under physiological conditions (Miller et al., 2006), although pathologically 

increased production may alter this.  In the cerebral vasculature, O2˙- generation from NADPH 

or nicotinamide adenine dinucleotide (NADH) causes relaxation of rabbit and mouse cerebral 

arteries at low substrate concentrations (Didion et al., 2002a; Park et al., 2004), which is 

blocked by tetraethylammonium, indicating involvement of K+ channels (Didion et al., 

2002a). Conversely, at higher substrate concentrations constriction of rabbit cerebral arteries 

was observed (Didion et al., 2002a).  In peripheral vessels, vasoconstriction by O2˙- is thought 

to be due to the rapid reaction of O2˙- with NO and subsequent loss of vasodilator influence of 

NO.  Evidence in cerebral vessels also indicates that O2˙- induced constriction occurs via 

decreasing basal vasodilator effects of NO (Demchenko et al., 2002).  
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Exogenous and endogenous H2O2 have been demonstrated to produce vasorelaxation of 

cerebral vessels (Wei et al., 1996; Yang et al., 1998). H2O2-induced relaxation of cerebral 

vessels has been variably attributed to endothelium-dependent (Yang et al., 1998) and -

independent (Fraile et al., 1994) mechanisms; opening of KCa (Sobey et al., 1997), and 

opening of KATP (Wei et al., 1996).   
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Figure 1.4 Diagram illustrating mechanisms contributing to vasorelaxation of smooth muscle 

cells 

In VSM, hyperpolarisation causes closure of VGCC, decreasing intracellular Ca2+ and 

eliciting vasorelaxation.  Various mechanisms lead to hyperpolarisation of VSM, including 

efflux of K+ through VSM K+ channels and EDHF. The EDHF pathway consists of an initial 

increase in intracellular calcium in endothelial cells which causes VSM hyperpolarisation via 

various pathways, including transfer of hyperpolarisation via gap junctions, or release of 

diffusible factors from endothelium which activate BKCa and KATP channels on VSM. NO and 

PGI2, are produced in endothelial cells before diffusing to adjacent smooth muscle cells to 

increase cGMP and cAMP levels, respectively, thus causing vasorelaxation.  Activation of Cl-

/HCO3
- exchange on VSM causes intracellular acidification, which reduces the open 

probability of VGCC, causing vasorelaxation. VSM, vascular smooth muscle; VGCC, 

voltage-gate calcium channels; EDHF, endothelial derived hyperpolarising factor; NO, nitric 

oxide; PGI2, prostacyclin; NOS, nitric oxide synthase; COX, cyclo-oxygenase; cAMP, cyclic 

adenosine monophosphate; cGMP, cyclic guanosine monophosphate; GTP, guanosine 

triphosphate; ATP, adenosine triphosphate. 
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1.3.4 Proposed mechanisms of H2S-induced vasorelaxation  

Paucity of data in cerebral vessels 
Apart from the present research, there are only three recent studies that have investigated the 

mechanism of H2S-induced vasorelaxation of cerebral vessels. The latest study demonstrated 

that H2S increased the frequency of Ca2+ sparks in piglet cerebral arteriole smooth muscle 

cells, causing an increase in the frequency of transient KCa current, and thus vasorelaxation 

(Liang et al., 2012).  In an in vivo study, using piglet pial arterioles (50 µm diameter), the 

vasorelaxation response to a H2S solution was found to be entirely mediated by KATP channels 

(Leffler et al., 2010).  In another study, using piglet cerebral arterioles (200µm diameter) in 

vitro, only 55% of the vasorelaxation could be attributed to KATP channels (Liang et al., 2011). 

Additionally, the latter study showed that the Na2S (a H2S donor) mediated vasorelaxation of 

cerebral vessels of SUR2 (a KATP subunit) knockout mice was only 50% of the wild type mice 

(Liang et al., 2011).  Thus, KATP channels play a variable role in the H2S-induced 

vasorelaxation of cerebral vessels. The mechanism of H2S-induced vasorelaxation of cerebral 

vessels is incompletely understood, and contributing mechanisms other than KATP and KCa 

channels have not been investigated.  In contrast, numerous studies have investigated H2S 

function in peripheral vessels. 
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Proposed mechanisms of H2S-induced vasorelaxation in peripheral vessels  
Evidence on the contribution of various mechanisms to the H2S-induced relaxation of 

peripheral vessels is reviewed below. 

Ion channels 
Ion channels which have been shown to be involved in the H2S-induced vasorelaxation of 

peripheral vessels include: potassium channels, specifically KATP, KCa, KIR and KV; and 

VGCC.  

 

Potassium channels: KATP channel opening has been reported as a key mechanism for H2S-

induced vasorelaxation in various studies in peripheral vessels (Cheng et al., 2004; Zhao et 

al., 2001). However, the role of KATP channels in the H2S-induced vasorelaxation in 

peripheral vessels remains controversial.  In some studies, using rat and mouse aorta, only 

partial inhibition of the relaxation induced by NaHS was demonstrated by blockade of KATP 

channels (Al-Magableh et al., 2011; Cheng et al., 2004; Zhao et al., 2001). By contrast, other 

studies using rat mesenteric arteries, and rat and mouse aorta, failed to demonstrate any role 

of KATP channels in the vasorelaxation mediated by H2S (Jackson-Weaver et al., 2011; Kiss et 

al., 2008; Kubo et al., 2007).  

 

One study suggests a role for KIR channels, since 30µM BaCl, a concentration which is 

relatively selective for KIR channels, inhibited H2S-induced vasorelaxation of mouse aorta 

(Al-Magableh et al., 2011).  A recent study suggests involvement of BKCa in the relaxation 

induced by H2S in rat small mesenteric arteries (Jackson-Weaver et al., 2011), although these 

channels were not involved in the H2S-induced relaxation of the chicken ductus arteriosis 

(van der Sterren et al., 2011). The role of IKCa and SKCa in H2S-induced vasorelaxation shall 

be discussed under section 1.3.4 The endothelium, EDHF (p.49). 
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The contribution of KV to H2S-induced vasorelaxation varies depending on the tissue and 

species studied. A KV channel blocker induced a small attenuation of the H2S-induced 

relaxation in rat coronary arteries (Cheang et al., 2010) and mouse aorta (Al-Magableh et al., 

2011), although it had no effect on H2S-induced relaxation of rat aorta or chicken ductus 

arteriosis (Kiss et al., 2008; van der Sterren et al., 2011; Zhao et al., 2001).    

 

The specific sub-type, KV7 may be involved in the vasorelaxation induced by H2S. This 

evidence comes from an investigation into the possible involvement of H2S in producing the 

anti-contractile effect of fat (Schleifenbaum et al., 2010). It has been shown previously that 

perivascular fat attenuates noradrenaline induced aortic vasoconstriction (Soltis et al., 1991), 

an effect that is mediated by a transferable ‘adipocyte-derived relaxing factor’ (ADRF) (Lohn 

et al., 2002).  A major mechanism of ADRF is via opening of KV (Verlohren et al., 2004).  

Schleifenbaum et al. show that the inhibition of contraction by ADRF is sensitive to selective 

inhibition of KV7 (Schleifenbaum et al., 2010).  Interestingly, the anti-contractile effect of fat 

was also sensitive to inhibition of H2S production.  These observations, taken together with 

the findings that H2S-induced relaxation is KV7 sensitive (Schleifenbaum et al., 2010), and 

CSE is expressed in perivascular adipose tissue (Fang et al., 2009), suggest that H2S is an 

ADRF.  Another line of evidence that H2S is an ADRF comes from a study where the 

vasoconstrictors, phenylephrine, serotonin and Angiotensin II, all increased the release of H2S 

from periadventitial adipose tissue (Fang et al., 2009).  Further investigations, perhaps using 

CSE gene-silencing techniques, will be required to confirm the interesting hypothesis that 

H2S is an ADRF. 
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Voltage gated calcium channels (VGCC): Among VGCC sub-types; L-type calcium channels 

have the most clearly defined role in the maintenance of VSM tone and have therefore been 

studied for their involvement in H2S-induced vasorelaxation.  Nifedipine is a dihydropyidine 

VGCC blocker with high selectivity towards L-type calcium channels (Furukawa et al., 1999).  

H2S-induced relaxation of rat aorta is inhibited by a calcium free bath solution (Zhao et al., 

2002), and nifedipine inhibited H2S relaxation of both rat and mouse aorta (Al-Magableh et 

al., 2011; Zhao et al., 2002).  In the study by Al-magableh et al., NaHS 10mM inhibited 

contraction to the replacement of calcium in the presence of 100mM KCl to depolarise VGCC, 

indicating that H2S blocks entry of extracellular calcium through VGCC.  It has also been 

demonstrated by patch clamp that H2S inhibits L-type calcium channel current, albeit in 

cardiomyocytes (Sun et al., 2008).  

Bicarbonate exchange 

Bicarbonate exchange is important in maintenance of smooth muscle pHi and thus vascular 

function (see section 1.3.3 Control of MCA tone, bicarbonate exchange, p.38). The 

bicarbonate exchange inhibitor, DIDS, abolished H2S-induced vasorelaxation of rat aorta 

(Kiss et al., 2008; Lee et al., 2007), and attenuated the relaxation in mouse aorta (Al-

Magableh et al., 2011). Both studies in the rat aorta attribute the vasorelaxant action of H2S to 

decreased smooth muscle pHi (Kiss et al., 2008; Lee et al., 2007).  One study attributes this 

decreased pHi to NaHS-induced enhancement of the Cl-/HCO3
- exchanger (Lee et al., 2007). 

In the study by Kiss et al, it is hypothesised that decreased pHi is due to metabolic inhibition 

(Kiss et al., 2008), since H2S is a known inhibitor of cytochrome c oxidase (Khan et al., 1990). 

In support of their hypothesis, they observed that a H2S solution decreased the ATP content of 

rat aortic rings and that H2S-induced vasorelaxation was enhanced in the absence of oxygen 

(Kiss et al., 2008). DIDS has several non-specific effects, including inhibition of sodium 

channels (Liu et al., 1998) and activation of ryanodine channels (Hill et al., 2002) 

confounding results of the aforementioned studies.  Further research will be required to 

interpret the implications of DIDS-sensitivity upon our understanding of the mechanism of 

H2S-induced vasorelaxation. 
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The endothelium 
H2S-induced vasorelaxation has been shown to be partially dependent on the endothelium in 

some studies in rat aorta and mesenteric artery (Cheng et al., 2004; Zhao et al., 2002; Zhao et 

al., 2001). However, not all studies are in agreement, some showing no effect of endothelium 

removal on the H2S-induced relaxation of rat and mouse aorta (Al-Magableh et al., 2011; 

Hosoki et al., 1997; Kubo et al., 2007).  Any influence of H2S on endothelial-induced 

relaxation may be mediated via altered production, release or action of endothelial-derived 

vasoactive factors.  For example, some studies indicate that H2S may act synergistically with 

NO to induce vasorelaxation (Liew et al., 2007; Zhao et al., 2002; Zhao et al., 2001).   

 

Evidence on the involvement of the endothelial derived factors, NO, PGI2 and EDHF in the 

mechanism of H2S-induced relaxation is discussed below. There is controversial evidence that 

H2S may be responsible for at least part of the EDHF response, which is also reviewed (see 

endothelial derived hyperpolarising factor, p.50).  

 

Nitric oxide: In rat aorta, H2S-induced relaxation was attenuated by inhibition of NO synthesis 

using L-NAME (Zhao et al., 2002; Zhao et al., 2001).  The relaxation induced by NaHS was 

greatly enhanced in the presence of the NO and vice-versa (Hosoki et al., 1997).  These 

observations suggest that H2S enhances either the action or production of NO. The hypothesis 

that H2S enhances the production of NO is supported by the observation that Na2S applied to 

bovine aortic endothelial cells resulted in a two-fold increase in NO production (Predmore et 

al., 2011).  However, the effect of H2S on NO production remains controversial, since several 

studies in rat and mouse aorta and rat mesenteric artery showed no effect of L-NG-

Nitroarginine methyl ester (L-NAME) on H2S-induced relaxation (Al-Magableh et al., 2011; 

d'Emmanuele di Villa Bianca et al., 2011; Kiss et al., 2008; Streeter et al., 2012).  
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Furthermore, several studies indicate that H2S actually decreases vascular NO levels, and 

current opinion leans more towards this hypothesis, than that of vascular synergy between the 

two gases (Ali et al., 2006; Geng et al., 2007; Kubo et al., 2007; Liu et al., 2010) (see 1.3.5 

biphasic effect: H2S-induced vasoconstriction, p.54). 

Prostacyclin: Studies in peripheral vessels generally report that COX blockade using 

indomethacin does not influence H2S-induced vasorelaxation (Cheang et al., 2010; Li et al., 

2008) (Al-Magableh et al., 2011; d'Emmanuele di Villa Bianca et al., 2011; Kiss et al., 2008; 

Zhao et al., 2001), suggesting a lack of involvement of PGI2 in the peripheral vasodilator H2S 

response.  However, two studies indicate that H2S-induced vasorelaxation may involve the 

release of arachidonic acid metabolites in rat mesenteric arteries (d'Emmanuele di Villa 

Bianca et al., 2011) and trout branchial arteries (Dombkowski et al., 2004). In the rat 

mesenteric arteries, it was concluded that H2S did not release PGI2, since relaxation was 

sensitive to inhibition of cytochrome P450 or phospholipase A2 but not COX. In trout 

branchial arteries, PGI2 was possibly involved, since indomethacin produced a similar 

attenuation of the H2S-induced vascular response to a cocktail of indomethacin, clotrimazole 

and esculetin (COX, cytochrome-p450, and lipooxygenase inhibitors, respectively).  

Endothelial derived hyperpolarising factor: Several observations have led to the assertion that 

H2S may be an EDHF (Mustafa et al., 2011; Yang et al., 2008).  Firstly, the channels 

involved in the ‘classical’ EDHF response, SKCa and IKCa (see section 1.3.3 Control of MCA 

tone, the endothelium, EDHF, p.39), have a demonstrated involvement in H2S-induced 

vasorelaxation (Al-Magableh et al., 2011; Cheng et al., 2004; d'Emmanuele di Villa Bianca et 

al., 2011; Zhao et al., 2001). Other lines of evidence supporting a role of H2S as an EDHF 

include: CSE is expressed in the endothelial cell layer of bovine aorta, human umbilical vein 

and rat mesenteric artery (Yang et al., 2008); cultured bovine aortic endothelial cells produce 

measurable H2S (Yang et al., 2008); stimulation of bovine aortic endothelial cells by 



 51 

acetylcholine produced a marked increase in H2S level that was blocked by a muscarinic 

antagonist (Yang et al., 2008) and CSE mutant mice had attenuated relaxation and virtually 

abolished hyperpolarisation to a muscarinic agonist (Mustafa et al., 2011; Yang et al., 2008). 

However, whether H2S is an EDHF remains to be conclusively determined, since not all 

laboratories show a sensitivity of H2S-induced vasorelaxation to SKCa and IKCa blockade (Li 

et al., 2008). In rat mesenteric arteries, while H2S-induced relaxation was sensitive to 

blockade of SKCa and IKCa channels, it was also attenuated by blockade of production of 

cytochrome p-450 derived prostanoids (d'Emmanuele di Villa Bianca et al., 2011). In light of 

evidence that EDHF could be a cytochrome p450 derivative of the arachidonic acid cascade 

(Campbell et al., 2007), the study by D’Emmanuel di Villa Bianca et al suggests that H2S, 

rather than itself being an EDHF, may induce the release of EDHF.  Furthermore, studies 

using the CSE knockout model may be confounded by the hyperhomocysteinaemia and 

resultant endothelial dysfunction induced by this model (Edwards et al., 2012).    

Reactive oxygen species 
One study observed that H2S-induced vasorelaxation was enhanced by a SOD mimetic in rat 

aortic rings (Liu et al., 2010). Despite repeated observations that H2S influences ROS (Chai et 

al., 2012; Kimura et al., 2006; Kimura et al., 2010; Muzaffar et al., 2008), the role of ROS in 

H2S-induced vasorelaxation has not been thoroughly investigated. 

Overview of possible mechanisms contributing to H2S-induced vasorelaxation 
In summary, there is evidence that H2S-induced vasorelaxation in peripheral vessels may be 

mediated by various mechanisms, including: opening of potassium channels, such as KATP, 

KCa, KIR KV; blockade of VGCC, enhanced production or activity of endothelial derived 

factors, such as NO, PGI2 and EDHF and decreased pHi (see table 1).  There is also 

controversial evidence that H2S may itself be an EDHF.  However, in cerebral vessels, only 

KATP and KCa channels have been examined for their contribution to the H2S-induced 

vasorelaxation. 
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Table 1.1 Summary of findings of studies investigating the mechanism of H2S-induced 

vasorelaxation 

Study Species Vessel Involvement of 
channel/pathway 

Additional findings 

       
K+ channels   KATP KV KCa  
Schleifenbaum, 
2011  

Rat Aorta - ↓ - Inhibition of H2S production 
inhibited the anti-contractile 
effect of fat 

Kiss, 2008 Rat Aorta No Δ No Δ -  
Zhao, 2001 Rat Aorta ↓ No Δ ↓S&I H2S increased KATP currents 
Li, 2008 Rat Aorta ↓ - No Δ 

S&I 
Used a compound which slowly 
releases H2S, GYY4137.  
GYY4137 also dilated renal 
vasculature and exhibited 
antihypertensive activity 

Zhao, 2002 Rat  Aorta - - ↓S&I H2S reduced the vasorelaxation to 
SNP 

Kubo, 2007 Rat Aorta ↓ - - NaHS reduced eNOS activity  
Kubo, 2007 Mouse Aorta No Δ - - 
Al-Magableh, 
2011 

Mouse Aorta ↓ ↓ ↓S&I KIR were also involved 

Jackson-weaver, 
2011 

Rat Mes-
enteric 

No Δ - ↓B Ischaemic hypoxia enhanced 
myogenic tone by decreasing H2S 
production 

D’Emmanuel, 
2011 

Rat Mes-
enteric 

- - ↓S&I NaHS caused migration of 
cytosolic PLA2 close to the 
nucleus, indicating PLA2 
activation 

Cheng, 2004 Rat  Mes-
enteric 

↓ - ↓S&I  

Mustaffa, 2011 Mouse Mes-
enteric 

↓ - ↓S&I Genetic CSE deletion abolished 
EDHF activity  

Cheang, 2010 Rat Coron-
ary 

No Δ ↓ No Δ 
B 

NaHS-induced hyperpolarisation 
also sensitive to 4-AP, but not 
glibenclamide 

Leffler, 2010 Piglet Pial  ↓ - - Hypercapnia increased H2S 
concentration in CSF, and 
relaxation to hypercapnia was 
inhibited by PPG 

Liang, 2011 Piglet Pial  ↓ - - Na2S activated K+ channel 
currents, that were sensitive to 
KATP channel blockade 

Liang, 2012 Piglet Pial  - - ↓ B Na2S increased Ca2+ spark 
frequency 

Dombkowski, 
2004 

Trout Bran-
chial 

↓ - - NaHS induced a triphasic 
response: relaxation, constriction, 
relaxation. Note: only effects on 
final relaxation are considered 
here  
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Table 1.1 Continued 

Ca2+ channels   VGCC  
 

 

Al-Magableh, 
2011 

Mouse Aorta ↓ NaHS also inhibited contraction to 
calcium replacement 

Zhao, 2002 Rat  Aorta ↓ A calcium-free medium also inhibited 
H2S-induced relaxation 

 
Bicarbonate 
exchange 

  Cl-/HCO3
- 

exchange 
 

Lee, 2007 Rat Aorta ↓ NaHS-induced intracellular acidification 
Kiss, 2008 Rat Aorta ↓ H2S relaxation via metabolic inhibition 
Al-Magableh, 
2011 

Mouse Aorta ↓  

 
Endothelium   Endo

remo
val 

NO sGC  

Zhao, 2001 Rat  Aorta ↓ ↓ -  
Zhao, 2002 Rat Aorta ↓ ↓ ↑ Inhibition of sGC potentiated 

H2S-induced relaxation 
Li, 2008 Rat Aorta ↓ ↓ ↓ Inhibition of PGI2 production 

had no effect 
Kubo, 2007 Rat Aorta ↓ ↑ ↑ A very small inhibition of 

maximum relaxation was 
observed upon endothelium 
removal.  

Kubo, 2007 Mouse Aorta No Δ No Δ ↑ Endothelium removal had no 
effect on NaHS-induced 
relaxation, but abolished 
constriction.  Constriction 
possibly due to reduced NO 
production, since NaHS reduced 
eNOS activity and reduced the 
relaxant effect of ACh, but not 
SNP 

Al-Magableh, 
2011 

Mouse  Aorta No Δ No Δ No Δ Inhibition of PGI2 production 
had no effect 

Cheng, 2004 Rat Mes-
enteric 

↓ - - Inhibition of EDHF (by blocking 
KCa) also inhibited H2S-induced 
relaxation 

Cheang, 2010 Rat Coron-
ary 

No Δ No Δ No Δ Inhibition of PGI2 production 
had no effect 

 
↓,↑ and ‘No Δ’ denote effects of inhibition of the relevant channel or pathway on H2S-induced 
relaxation. Symbols indicate that H2S-induced relaxation was:↓ attenuated (indicating an involvement 
of that channel or pathway in H2S-induced relaxation); ↑ potentiated; ‘No Δ’ no effect; or ‘–’ not 
investigated. S&I, small and intermediate conductance KCa; B, large conductance KCa; CSF, 
cerebrospinal fluid; SNP, sodium nitroprusside; PLA2, phospholipase A2; 4-AP, 4-aminopyridine; PPG, 
propargylglycine; sGC, soluble guanylate cyclase. 
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1.3.5 Biphasic effect of H2S: H2S-induced vasoconstriction 
The most well-reported vascular action of H2S is as a vasorelaxant (Liu et al., 2011b).  

However, several studies report a biphasic vascular action of H2S depending on its 

concentration: constriction at low NaHS concentrations (10-100 µM) and relaxation at higher 

NaHS concentrations (100-1600 µM) (Ali et al., 2006; Kubo et al., 2007; Lim et al., 2008).  

The following is a summary of the proposed mechanisms of vasoconstriction induced by H2S. 

 

H2S-induced vasoconstriction may involve the endothelium, since endothelium removal 

blocked the vasoconstrictor effect of H2S (Kubo et al., 2007).  This indicates that H2S may 

reduce the production or action of endothelial derived vasodilators.  Reduction of NO levels 

by H2S may be responsible for H2S-induced vasoconstriction, since L-NAME attenuates the 

vasoconstrictor effect of NaHS in rat aorta (Kubo et al., 2007; Lim et al., 2008), as well as the 

increase in blood pressure induced by an NaHS infusion (10 µmol kg-1 min-1) in rats (Ali et 

al., 2006).   Several studies indicate that H2S decreases vascular NO levels by various putative 

mechanisms, including: directly reacting with NO, forming a vaso-inactive nitrosothiol (Ali et 

al., 2006; Whiteman et al., 2006), extracellular transport of O2˙-, which then reacts with NO 

(Liu et al., 2010)(see below), inhibition of eNOS (Geng et al., 2007; Kubo et al., 2007) or 

reduced L-Arginine transport (Geng et al., 2007). Blockade of COX has been shown to inhibit 

the vasoconstrictor action of H2S in rat thoracic aorta, suggesting that PGI2 may be involved 

(Koenitzer et al., 2007).    

 

H2S-induced vasoconstriction may also involve O2˙-, since NaHS-induced vasoconstriction 

was attenuated by a SOD mimetic in rat aortic rings (Liu et al., 2010). Those authors also 

observed that the bicarbonate exchange inhibitor, DIDS, inhibited NaHS-induced 

vasoconstriction and that NaHS decreased NO production in aortic rings, but only in the 

presence of bicarbonate.  They hypothesised that H2S induces constriction by increasing the 
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transport of O2˙- out of the cell via the Cl-/HCO3
- exchanger, and O2˙- then reacts with NO to 

decrease NO levels. 

 

However, it has been shown that the constrictor effect of H2S is only partially inhibited by 

endothelium removal (Lim et al., 2008), indicating endothelium-independent mechanisms.  

One such mechanism appears to be by down-regulation of cyclic adenosine monophosphate 

(cAMP), since NaHS reversed the vasorelaxation caused by forskolin, a selective adenylyl 

cyclase activator, and reduced cAMP accumulation in VSM cells (Lim et al., 2008).  In 

mesenteric arteries, the constrictor effect of H2S was found to involve a constrictor effect of 

arachidonic acid itself, not its endothelial derived metabolites (d'Emmanuele di Villa Bianca 

et al., 2011).  As such, NaHS-induced constriction was inhibited by a PLA2 inhibitor, but 

remained unaffected by inhibition of COX, LOX or cytochrome p450 (d'Emmanuele di Villa 

Bianca et al., 2011). 

 

In summary, H2S induces vasoconstriction in peripheral vessels, which appears to involve 

decreased NO levels or production, reduced cAMP, or influences on arachidonic acid.  The 

vasoconstrictor effect has not yet been investigated in cerebral vessels.  The more thoroughly 

investigated vasorelaxation effect of H2S involves contributions from potassium channels, 

such as KATP, and from Ca2+ channels, bicarbonate exchange, and possibly the endothelium.  

In cerebral vessels, only three studies have investigated the mechanism of H2S-induced 

vasorelaxation, finding roles for KATP as well as KCa (Leffler et al., 2010; Liang et al., 2011; 

Liang et al., 2012).  The contribution of other mechanisms to the H2S-induced vasorelaxation 

response of cerebral vessels has not yet been investigated.   
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1.4 Diabetes induced pathophysiology of MCA 
H2S demonstrates antioxidant properties which confer protection of vascular tissues in 

conditions of oxidative stress, such as hyperglycaemia (see 1.4.4 Diabetic vascular disease 

and H2S, p.61).  This section provides an overview of diabetic cerebrovascular disease, and 

the possible involvement of altered H2S function in this condition. 

    

1.4.1 Diabetes: epidemiology 
Diabetes is a highly prevalent health problem, afflicting an estimated 6.4% of adults 

worldwide (Shaw et al., 2010). It is characterised by elevated blood glucose levels, which can 

be either diet-induced (Type 2 diabetes) or due to an autoimmune condition involving 

destruction of pancreatic beta cells (Type 1 diabetes). Type 2 diabetes occurs particularly as a 

result of western diet and lifestyle, and consequent obesity. Increased incidence is therefore 

occurring, particularly in developing countries where dietary and life-style habits have 

changed rapidly (Shaw et al., 2010).  

 

1.4.2 Involvement of cerebrovascular disease in the pathology of diabetes  
Insidious development of vascular disease is a feature of both types of diabetes. Vascular 

disease occurs in both peripheral and cerebral vessels, and entails abnormalities in 

endothelium and VSM.  Cerebrovascular disease is a major contributor to diabetic morbidity 

and mortality. For example, diabetes confers a 1.5 to 2-fold increased risk of ischaemic stroke 

(Quinn et al., 2011), a risk which is strongly associated with diabetic cerebrovascular disease 

(Gunarathne et al., 2009; Nazir et al., 2006; Roquer et al., 2009; Zimmermann et al., 2004).  

The mortality following stroke is also significantly higher in individuals with diabetes 

compared to non-diabetic stroke victims (Laing et al., 2003).  
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1.4.3 Aetiology of diabetic cerebrovascular disease 
Diabetes causes atherosclerotic vascular disease, which is associated with endothelial and 

smooth muscle dysfunction, and a tendency towards thrombosis.  A functional endothelium 

protects against the development of atherosclerosis. 

 

Endothelial dysfunction 
Endothelial dysfunction precedes ultrasonic evidence of atherosclerotic plaques, and is 

considered a fundamental step in atherosclerotic disease (Luscher et al., 1997).  NO is a key 

regulator of endothelial function.  In fact, endothelial dysfunction is defined as decreased NO 

bioavailability, and is determined experimentally by observation of impaired endothelial 

induced relaxation (Creager et al., 2003). In addition to its vasodilator action (see 1.3.3, 

Biological effects of H2S, p.21), NO protects blood vessels from atherosclerosis by prevention 

of platelet and leukocyte interaction with the vascular wall (Radomski et al., 1987), inhibition 

of VSM cell proliferation and reduction of pro-inflammatory gene expression (Forstermann, 

2010). The reduced NO bioavailability of endothelial dysfunction alters the phenotype of the 

endothelium, resulting in pro-inflammatory and pro-thrombotic actions (Roquer et al., 2009), 

as well as promotion of migration of VSM into the intima (Creager et al., 2003).  Endothelial 

dysfunction occurs earlier and is of greater severity in cerebral vessels in several models, 

including diabetes (Kitayama et al., 2006), aging (Brown et al., 2007) and hypertension 

(Didion et al., 2002b).  
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Role of ROS in endothelial dysfunction 
Studies in cerebral pial arterioles provided the first evidence that ROS impair endothelial 

dependent vasorelaxation (Wei et al., 1985).  There is now a wealth of evidence implicating 

increased ROS in the development of endothelial dysfunction. Diabetes causes increased 

production of ROS in the vascular wall (Hink et al., 2001).  A major mechanism of ROS-

dependent impairment of endothelial function is the rapid inactivation of NO to ONOO- by 

O2˙- (Gryglewski et al., 1986) (figure 1.5). Apart from the influence of ROS on NO 

bioavailability, ROS may also cause vascular inflammation and remodelling via increased 

expression of growth factors (Kaneto et al., 2010) and oxidation of proteins such as the redox-

activated, pro-inflammatory NF-κB (Anrather et al., 2006) (figure 1.5).  

 

There are several sources of vascular ROS, including NADPH oxidase (Nox), mitochondrial 

electron transport chain and xanthine oxidase.   There is also evidence that persistently 

elevated ROS, such as in diabetes, uncouples eNOS, resulting in increased O2˙- production in 

place of NO (Forstermann et al., 2006). Mitochondrial production of O2˙- is enhanced by 

hyperglycaemia (Naudi et al., 2012), although a causal role between mitochondrial derived 

O2˙- and endothelial dysfunction has not been established in vivo. Nox catalyse the reduction 

of molecular oxygen to O2˙- and/or H2O2 (figure 1.5) and are poised as important mediators of 

endothelial dysfunction, as their primary function is to produce ROS, they are a major source 

of ROS in the vasculature (Csanyi et al., 2009), and are activated by stimuli that are known to 

cause endothelial dysfunction. One homologue of Nox, Nox1, is upregulated in diabetes (San 

Martin et al., 2007) and by substances which are known to be elevated in diabetes, such as 

low density lipoproteins and pro-inflammatory cytokines (Lassegue et al., 2010). The effects 

of ROS are prominent in the cerebral circulation (Faraci, 2011) and the activity and function 

of Nox is profoundly larger in cerebral compared to peripheral vessels (Miller et al., 2005). 
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Figure 1.5 Diagram illustrating vascular sources of ROS (top) and consequences of vascular 

oxidative stress (bottom).  Vascular oxidative stress causes endothelial dysfunction by 

reducing the bioavailability of NO.  Oxidative stress also causes vascular remodelling via 

increased expression of growth factors and adhesion molecules.  O2, oxygen; e-, electron; O2˙-, 

superoxide; H2O2, hydrogen peroxide; OH˙, hydroxyl; NO, nitric oxide; ONOO-, 

peroxynitrite; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells. Adapted 

from (Forstermann, 2010). 
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Vascular smooth muscle dysfunction 
The diabetic state is associated with an increase in vascular tone, which is a major contributor 

to increased vascular risk factors (NHBPEP, 1994). The cellular and molecular mechanisms 

contributing to this increased tone remain to be fully elucidated. The reduced NO 

bioavailability in endothelial dysfunction provide part of the puzzle, however, there is also 

evidence for impaired VSM relaxation. For example, in diabetic humans, impaired 

endothelium-independent vasorelaxation responses have been demonstrated repeatedly using 

NO donors (McVeigh et al., 1992; Sivitz et al., 2007).  Diabetes can also enhance 

(Zimmermann et al., 1997) or reduce myogenic tone (Kelly-Cobbs et al., 2011), depending on 

the age of the animal studied. 

 

Hyperpolarisation-mediated vasorelaxation is also altered by diabetes, due to effects of ROS 

on VSM K+ channel function (Liu et al., 2002).  Streptozotocin (STZ) treatment, a model of 

the diabetic state (see 2.4.1 Induction of a diabetic model: streptozotocin treatment, 

background, p.81) impaired dilator responses to KATP channel openers in aorta (Kamata et al., 

1989) and cerebral arteries (Mayhan et al., 1993), and high glucose impaired Kv channel 

currents (Liu et al., 2001).  This altered function is linked to O2˙- production, since VSM 

responsiveness to KATP
 and KV channel openers is reduced by O2˙- (Liu et al., 2002).  The 

effect of diabetes on KATP channel function has also been associated with reduced NO 

bioavailability and the subsequent membrane depolarisation, since an NO donor restored both 

membrane potential and sensitivity to a KATP channel opener (Zimmermann et al., 1997).  

Moreover, STZ-induced diabetes is associated with impaired activity of vascular KCa channels 

(Dong et al., 2008; Leo et al., 2011a; Leo et al., 2011b; McGahon et al., 2007). 

 



 61 

Despite the wealth of knowledge regarding diabetic vascular disease, the full picture of this 

complex and multi-factorial disease state remains to be completed.  The possible involvement 

of H2S shall now be explored. 

1.4.4 Diabetic vascular disease and H2S 

Protective effects of H2S in the vasculature 
 H2S is a chemical reductant (Kim et al., 2007), and has been shown to directly scavenge 

H2O2 and O2˙- in the myocardium in a model of myocardial ischaemia (Geng et al., 2004). 

Studies have demonstrated protective antioxidant effects of H2S in VSM and endothelial cells.  

For example, in A-10 VSM cells, H2S protected against homocysteine-induced cytotoxicity, 

and reduced the production of O2˙-, H2O2 and ONOO- (Yan et al., 2006). Mechanisms of H2S-

induced protection are not limited to its chemical reductant properties.  In human VSM cells, 

H2S blocked U46619 (a thromboxane A2 analogue) induced enhancement of Nox1 expression 

and inhibited O2˙- formation (Muzaffar et al., 2008).  In STZ diabetic rats, four weeks of daily 

subcutaneous NaHS injections normalised upregulated expression of the Nox subunit, p22phox 

(Zheng et al., 2010).  H2S has also been shown to protect against high glucose-induced 

endothelial dysfunction (Suzuki et al., 2011) and apoptosis (Guan et al., 2012).  High glucose 

induced a switch from oxidative phosphorylation to glycolysis and enhanced production of 

ROS by mitochondria in an endothelial cell culture, both of which were attenuated by H2S 

(Suzuki et al., 2011).  In human umbilical vein endothelial cells, high glucose increased ROS 

and reduced SOD activity, both of which were attenuated by H2S (Guan et al., 2012). 

 

Alteration of vascular response to H2S and production of H2S in diabetes 
The H2S producing enzyme, CSE, is expressed in vascular tissue throughout the circulatory 

system (Fiorucci et al., 2005; Ghasemi et al., 2012; Leffler et al., 2010; Meng et al., 2007; 

Olson et al., 2010; Yang et al., 2008; Zhao et al., 2001) and endogenous H2S generation has 

been demonstrated from aorta homogenates (Brancaleone et al., 2008). These observations, 
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taken together with the protective effects of H2S in the vasculature, suggest that an alteration 

in H2S signalling may be involved in the development of diabetic vascular disease.  Indeed, 

alterations in H2S production, and the vasorelaxation induced by H2S, have been observed in 

several diabetic studies. Limited evidence suggests that diabetes enhances the response of 

peripheral vessels to H2S: vasorelaxation to exogenously applied H2S was enhanced in the 

aortas of both non-obese diabetic mice (NOD) (Brancaleone et al., 2008) and STZ-treated rats 

(Denizalti et al., 2011). However, the effect of diabetes on the vascular production of H2S 

remains unclear.  In NOD, CSE expression in the aorta was enhanced, although plasma H2S 

levels were reduced (Brancaleone et al., 2008). STZ rats had double the expression of CSE in 

aorta compared to control rats, although this was not significant (Denizalti et al., 2011), and 

plasma H2S levels were unaltered by STZ treatment in another study (Yusuf et al., 2005). The 

effect of diabetes on the cerebrovascular H2S response has not yet been examined.  

Understanding the effect of diabetes on the MCA response to and production of H2S will 

broaden our understanding of diabetic cerebrovascular disease, perhaps paving the way for 

the development of novel therapeutics.  
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1.5 Hypotheses and Aims of Thesis 
1.5.1 The role of H2S in the brain in cardiovascular regulation 
The PVN and RVLM are brain regions with profound influences on cardiovascular regulation 

(Badoer, 2001; Badoer, 2010; Dampney, 1994; Deering et al., 2000). H2S has both 

neuromodulatory roles (Abe et al., 1996) and peripheral cardiovascular effects (Zhao et al., 

2001), however, its effect on the cardiovascular system via the RVLM or PVN had not been 

investigated at the time of research.  

Hypotheses 

• The H2S producing enzyme, CBS, is present in both the RVLM and PVN 

• H2S is involved in the central regulation of the cardiovascular system 

• Abnormal function or production of H2S is involved in hypertension 

Specific Aims 

The aims of the study investigating the role of H2S in the brain in cardiovascular regulation 

were to: 

• investigate the effect of H2S, or inhibition of endogenous H2S production in the 

RVLM and PVN on mean arterial pressure (MAP), heart rate (HR) and LSNA   

• determine whether these regions contained either of the H2S producing enzymes, CBS 

or CSE 

• determine whether a modification of the H2S response may be responsible for the 

development of hypertension by investigating the effect of H2S in the RVLM and 

PVN on MAP, HR and LSNA in SHR rats 
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1.5.2 Regulation of middle cerebral artery tone by H2S 
H2S induces vasorelaxation of peripheral vessels, and systemic administration of a saturated 

solution of H2S dose-dependently reduces blood pressure (Zhao et al., 2001).  The mechanism 

of this vasorelaxation in peripheral vessels has been investigated for over a decade, but 

remains incompletely understood.  Only three studies have investigated this mechanism in 

cerebral vessels, finding roles for KATP and KCa channels (Leffler et al., 2010; Liang et al., 

2011; Liang et al., 2012).  Mechanisms contributing to the H2S-induced vasodilator response, 

other than KATP and KCa channels, remain to be investigated.  Several studies report a biphasic 

vascular effect of H2S in peripheral vessels: constriction at low concentrations, and relaxation 

at higher concentrations (Ali et al., 2006; Geng et al., 2007; Kubo et al., 2007; Lim et al., 

2008; Liu et al., 2010).   The constrictor effect of H2S in cerebral vessels has not, to date, 

been investigated.  

Hypotheses 

• The H2S-producing enzyme, CSE is present in MCA endothelium and/or VSM  

• Exogenous and endogenous H2S can dilate MCA 

• The mechanism of H2S-induced vasorelaxation of MCA involves: endothelium, K+ 

and Ca2+ channels, chloride/bicarbonate exchange or ROS  

• The mechanism of H2S-induced vasoconstriction of MCA involves: endothelium, K+ 

and Ca2+ channels, chloride/bicarbonate exchange or ROS 

Specific Aims 

The study investigating regulation of MCA tone by H2S aimed to  

• examine MCA for the presence of the H2S producing enzyme, CSE 

• determine the cell type in which CSE is localised within MCA 

• investigate the mechanism of H2S-induced vasorelaxation and vasoconstriction of 

MCA 
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1.5.3 The effect of diabetes on the production and vascular effect of H2S in MCA  
Vascular overproduction of ROS is a major contributor to the pathogenesis of diabetic 

vascular disease (Creager et al., 2003).   H2S has antioxidant effects in VSM (Muzaffar et al., 

2008; Yan et al., 2006) as well as endothelial cells (Suzuki et al., 2011) and has recently been 

shown to attenuate the decline in endothelial cell viability caused by high glucose (Suzuki et 

al., 2011).  Several studies have shown that H2S production and vasodilator capacity are 

altered in peripheral vessels in rat diabetic models (Brancaleone et al., 2008; Denizalti et al., 

2011; Yusuf et al., 2005) although the effect of diabetes on the response to and production of 

H2S in cerebral vessels has not yet been investigated.   

Hypotheses 

• The MCA response to H2S is altered by diabetes 

• The mechanism of H2S-induced relaxation is altered by diabetes 

•  MCA and tissue production of H2S is altered by diabetes 

• Exogenous H2S can reduce MCA production of ROS 

Specific Aims 

The aims of the study investigating the possible involvement of H2S in diabetic 

cerebrovascular disease were to: 

• determine the effect of STZ treatment on the MCA response to H2S  

• investigate the mechanisms mediating H2S-induced vasorelaxation in MCA from STZ 

rats 

• examine the effect of STZ treatment on  MCA CSE expression, serum sulfide levels, 

and liver H2S production 

• Examine the effect of exogenous H2S on ROS production from STZ and control MCA 
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Chapter 2: General Methods 
All procedures were performed to conform to the guidelines set out by the National Health 

and Medical Research Council of Australia and were approved by the RMIT University 

Animal Ethics committee. 

2.1 Animals  
Male WKY and SHR rats weighing 300-350g, aged approximately 8-10 weeks were used in 

the LSNA recording studies. These animals were housed for a minimum period of one week 

before undergoing any experimental procedure.  Male Sprague Dawley rats weighing 300-

350g, aged approximately 8-10 weeks were used in the mechanistic studies on H2S-induced 

cerebral vasodilation.  For the diabetic studies, Sprague Dawley rats were obtained at either 5 

weeks or 15 weeks and kept until 16 weeks of age before study.  All animals were obtained 

from the Animal Resources Centre (ARC, Canning Vale, Western Australia) and then housed 

in a temperature-controlled room on a 12:12 hour light/dark cycle (lights on at 7:00 AM), in 

the RMIT Animal Facility (RMIT University, Bundoora West campus, Victoria, Australia).  
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2.2 Brain injection and LSNA recording studies 
2.2.1 Surgical Procedures 

Anaesthetics and monitoring 
Rats were anaesthetised initially with inhaled isofluorane (1-3% in air), by placing the animal 

into a sealed container which was subsequently filled with the gas.  Once anaesthesia was 

induced, isofluorane was continually administered via a mask while the femoral vein and 

artery were cannulated.  For cannulation, the right femoral vein and artery were exposed by 

blunt dissection and blood flow was temporarily obstructed using sutures.  A small incision 

was then made in both the femoral vein and artery for insertion of a separate catheter into 

both vein and artery.  Catheters consisted of polyvinyl chloride tubing (internal diameter 0.28 

mm) inserted into a larger bore tubing (internal diameter 0.80 mm), attached using Araldite ® 

Epoxy Resin (Selleys Pty Ltd; NSW, Australia) glue and filled with heparinised saline 

(50U/mL).  Anaesthesia was maintained using urethane (1-1.5 g/kg IV) with supplemental 

doses as required (0.1-0.3 g/kg IV), administered through the cannulated vein. The depth of 

anaesthesia was maintained to ensure the absence of corneal and pedal reflexes, which were 

tested every 15 minutes.  The distal end of the arterial cannula was attached to a blood 

pressure transducer for direct monitoring of MAP and HR.  
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Preparation for lumbar sympathetic nerve recording 
Following a midline abdominal incision, the left lumbar postganglionic sympathetic nerve 

trunk was identified and dissected free of surrounding tissue.  With the aid of an operating 

microscope the nerve was placed onto the bared tips of two Teflon – coated silver wire 

electrodes and the nerve-electrode junction insulated electrically from surrounding tissue with 

a sealant (Kwik-Cast Sealant, WPI, USA). The nerve activity was amplified using a low-noise 

differential amplifier (ENG Models 187B and 133, Baker Institute, Victoria, Australia), 

filtered (bandpass 100-1000Hz), rectified and integrated at 0.5-second intervals.  The signal 

was recorded using a MacLab data acquisition system (ADInstruments, NSW, Australia).  

The set-up for recording LSNA, HR and MAP is illustrated diagrammatically in figure 2.1, 

p.70. The signal recorded at the end of the experiment after the injection of phenylephrine (5 

µg/kg, IV) was deemed background noise. The LSNA was calculated by subtraction of 

background noise from the recorded nerve activity.  The average integrated LSNA was 

calculated over a period of 1-2 minutes and expressed as a percentage of the resting period 

prior to the intracerebral administration of drugs. 

 

Preparation for RVLM and PVN microinjections 
For microinjections into the RVLM, each animal was placed prone and the head was mounted 

in a Stoelting® stereotaxic frame such that both bregma and lambda were positioned on the 

same horizontal plane.  Burr holes were drilled bilaterally into the occipital bone of the skull 

approximately 2mm lateral of the mid-sagittal suture and 3.8 mm caudal of the lambdoid 

suture.  The pressor region of the RVLM was identified functionally by microinjection of 50 

nl of L-glutamate (0.1M) which elicited a pressor response of at least 20mm Hg in arterial 

pressure (Kantzides et al., 2005).  RVLM microinjections were made using the following 

coordinates; 3.7-4.0 mm caudal to lambdoid suture, 2 mm lateral to the midline, and 8.0 mm 

ventral to the surface of the dura. 
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For microinjections into the hypothalamic PVN, a midline reference point was marked 2 mm 

rostral to bregma. This was necessary because bregma was removed in some instances during 

the subsequent bone drilling procedure. Holes (approximately 4 mm in diameter) were drilled 

bilaterally into the skull centred 4.0 mm caudal from the reference point to allow 

microinjections of drugs into the PVN (stereotaxic coordinates: 3.8-4.1 mm caudal to the 

reference point, 0.5 mm lateral to midline, and 8.0 mm ventral to the surface of the dura). 

All microinjections were made using a fine glass micropipette (Accu-fill 90®, supplied by 

Clay Adams, Becton, Dickson and Co., NJ, USA) which had been pulled on a P-97 

Flaming/Brown micropipette puller (Sutter Instrument Company, CA, USA).  The puller was 

programmed (Program details: Heat 740, Pull 40, Velocity 50, Time duration 110) to produce 

pipettes with an external tip diameter of 50 – 70 µm. 

Microinjections of volume 100 nl were performed bilaterally, and after each microinjection, 

the micropipette was left in place for approximately 1 min. MAP, HR and LSNA were 

recorded before, during and after microinjections, as illustrated in figure 2.1.  To mark the 

injection sites, a small amount of rhodamine-tagged fluorescent microspheres was included in 

the microinjected solution (LumaFluor, NC, USA). The precise location of the 

microinjections was verified histologically at the end of each experiment. 
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Figure 2.1 Microinjections and recording of MAP, HR and LSNA  

MAP, HR and LSNA were recorded before, during and after micro-injection into the RVLM 

or PVN.  MAP and HR were recorded via a blood pressure transducer connected to the 

cannulated right femoral artery.   LSNA was recorded via two wire electrodes hooked under 

the exposed lumbar sympathetic nerve.  MAP, mean arterial pressure; HR, heart rate and 

LSNA, lumbar sympathetic nerve activity. 
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2.2.2 Histology 
At the end of each experiment, rats were killed using an overdose of pentobarbital sodium 

(325 mg/kg; Lethabarb, Virbac, NSW, Australia).  The brain of each rat was then carefully 

removed and placed in a solution of 4% paraformaldehyde and 20% sucrose for one week.  

The medulla (for brains which had been microinjected into the RVLM) or the hypothalamus 

(for brains which had been microinjected into the PVN) were cut on a cryostat into 40 µm-

thick sections and mounted onto gelatin-subbed slides.  The sections were then viewed wet 

under fluorescence microscopy to determine the position of the rhodamine beads which 

indicated the microinjection site.  For the medulla, the caudal end of the facial nucleus, the 

nucleus ambiguous and the inferior olivary nuclei were identified in the wet sections and the 

microinjection sites were mapped in relation to those structures. For the hypothalamus, after 

the centre of the microinjections site was identified, the sections were dried before being 

stained with cresyl violet and cover-slipped with Depex mounting medium (BDH Lab 

Supplies, Poole, UK). Light microscopy was then used to re-examine the stained 

hypothalamic sections to determine the extent of the PVN and adjacent anatomical structures.  

The microinjection sites were subsequently mapped in relation to the PVN and the anatomical 

structures. 

2.2.3 Data Analysis 
The data from the in vivo studies were expressed as the change between the level immediately 

prior to each microinjection and the average of the level observed over a period of 1 min, 

beginning at 1 and 5 min after drug or vehicle administration. These time points corresponded 

to those used by others (Dawe et al., 2008), and were therefore considered to be the times at 

which an effect was most likely to be observed.  The average value of the changes was 

calculated and was subsequently compared between groups using one-way ANOVA, 

followed by comparisons between the individual doses of drugs and control using Dunnett’s 

post hoc test for multiple comparisons.  P<0.05 was considered statistically significant. 
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2.3 Myograph Studies 
 

2.3.1 Cerebral artery collection 
Rats were killed humanely by CO2 inhalation (95% CO2, 5% O2), followed by decapitation. 

The brains were collected into ice-cold Krebs’ solution (composition (mM): NaCl, 119; KCl, 

4.7; MgSO4 1.2; CaCl2, 2.5; KH2PO4, 1.2; NaHCO3, 25; Glucose 11.1; EDTA 0.26, pH 7.4 

and gassed with 95% O2, 5% CO2).  Proximal lengths of the middle cerebral arteries 

(approximately 250 µm in diameter) were dissected in ice-cold Krebs' and cleaned of 

connective tissue.   

 

2.3.2 Isolated cerebral artery preparation 
MCA were cut into 2mm segments and each was threaded with two 25 µm diameter gold-

plated wires (Goodfellow, Huntington, England) of 2.5 cm in length.  The segments were then 

mounted into a 610M 4-chamber wire myograph (Danish Myotechnology, DMT, Aarhus, 

Denmark), by attaching one wire to the force transducer, and the other to the micrometer of 

the myograph chamber (figure 2.2).  Each myograph chamber contained 5mL Krebs’ solution, 

maintained at 37 oC and bubbled with a mixture of 95% O2 and 5% CO2.  Changes in 

isometric tension were recorded via Myodaq software (DMT, Aarhus, Denmark).  The vessel 

segments were allowed to rest in the myograph chamber for at least 5 minutes without any 

tension before a contraction protocol was commenced.  
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Figure 2.2 Isolated cerebral artery preparation 
Segments of middle cerebral artery were mounted into a myograph chamber, in 5mL Krebs 

solution maintained at 37 oC and continuously supplied with 95% O2 and 5% CO2.  The 

segments were mounted on two wires, one attached to the force transducer, the other to a 

micrometer for adjustment of tension.  Changes in tension were measured throughout the 

experiment. 
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Spontaneous developed contraction protocol 
Rat middle cerebral arteries possess marked levels of spontaneous myogenic tone.  The 

following protocol was adopted to standardise the level of passive force applied to each vessel 

(Favaloro et al., 2003).  Firstly, a 4 mN force was applied to each segment over a 30 minute 

period to allow spontaneous tone to develop.  During this time, the force was adjusted back to 

4 mN, to standardise the amount of tone on the vessels.  Subsequently, Krebs’ solution was 

replaced with a calcium free Krebs’ solution (composition as above, excluding the CaCl2, and 

replacing EDTA with EGTA 2mM), causing the vessels to fully relax.  The passive force was 

reset to 4mN, before reintroducing normal Krebs’ solution to allow spontaneous 

redevelopment of tone.  The viability of the VSM was confirmed by the redevelopment of 

spontaneous tone.  An increase of at least 2.5 mN in tone was required to deem the VSM 

viable.  Bradykinin (100nM) was then applied to assess the viability of the endothelium.  

Segments which had a dilation response of >70% of the spontaneous tone development were 

regarded as having intact endothelium.  In some experiments the endothelium was 

deliberately removed by rubbing the lumen with a wire. Segments which had a dilation 

response of <20% of the spontaneous tone development were regarded as being denuded of 

endothelium.  The vessels were subsequently washed thoroughly and left until spontaneous 

tone redeveloped.  In experiments where inhibitors or antagonists were used, these agents 

were added after spontaneous redevelopment of tone to allow observation of any effect of 

these agents on baseline tone.  Concentration-response curves to NaHS were obtained 20 

minutes after any inhibitors or antagonists were applied.  At the end of each experiment, 

calcium free Krebs’ was administered to define 100% relaxation.  Figure 2.3 is a schematic 

illustrating the spontaneously developed tone protocol. 
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Figure 2.3 Spontaneous tone protocol 

Segments of MCA were allowed to equilibrate for 5 min without any tension applied, before 

adjusting the passive force to 4mN using the micrometer.  Spontaneous tone was allowed to 

develop over 30 min, during which time the force was readjusted to 4 mN.  The Krebs’ 

bathing solution was then replaced with calcium free Krebs’, allowing the vessels to fully 

relax.  The force was reset to 4mN before re-introducing Krebs’ (containing calcium), which 

resulted in spontaneous development of tone of magnitude ‘a’.  The viability of VSM was 

confirmed by a development of tone ‘a’ > 2.5 mN.  The viability of endothelium was then 

assessed using bradykinin (BK, 100nM).  Vessels were deemed as having intact endothelium 

if the dilation induced by BK, ‘b’ was greater than 70% of the spontaneous tone ‘a’.  Vessel 

segments were then washed, and allowed to redevelop spontaneous tone before application of 

any inhibitor or agonist. 



 76 

U46619 induced tone protocol 

In some experiments, a different protocol was used for pre-contraction of the vessels.  This is 

because two of the inhibitors used (nifedipine and bicarbonate free Krebs’) caused full 

relaxation of the vessels, so they could not be constricted using the spontaneous tone protocol.  

For experiments using these inhibitors, a 2 mN force was applied for 30 minutes before the 

segments were contracted maximally using 125 mM potassium. The vessels were then 

washed, and titrated concentrations of the thromboxane A2 mimetic, U46619 (1nM-1µM), 

were used to constrict the vessels to approximately 50% of the maximal contraction.  

Endothelial function was assessed using bradykinin (100nM). Vessels were then washed 

thoroughly, followed by pre-contraction to approximately 50% of the maximal contraction 

using U46619 (1 nM-1 µM).  Incremental doses of U46619 were used to achieve 

approximately 50% of the maximal contraction, without over or under contracting the vessels.  

In experiments where inhibitors or antagonists were used, these agents were added prior to the 

second U46619 contraction, so that this precontraction could be matched between the groups, 

by adjusting U46619 concentration. Concentration-response curves to NaHS were obtained 

20 minutes after any inhibitors or antagonists were applied.  At the end of each experiment, 

calcium free Krebs’ was administered to define 100% relaxation.  Figure 2.4 is a schematic 

illustrating the U46619 induced tone protocol. 
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Figure 2.4 U46619 induced tone protocol 
Segments were equilibrated at a tension of 2 mN for 30 min before application of 125 mM K+ 

to maximally contract the vessels. They were then washed, followed by addition of 

incremental concentrations of U46619 to contract the vessels to approximately 50% of the 

maximal contraction.  To assess the viability of the endothelium, bradykinin (BK, 100 nM) 

was applied.  Vessels attaining a dilation ‘b’ of greater than 70% of the U46619 induced 

contraction (a), were regarded as having intact endothelium.  Any inhibitor or antagonist was 

applied prior to the second U46619 induced contraction. 



 78 

Constriction to calcium replacement 
In a separate set of experiments, the ability of NaHS to influence vascular tone via Ca2+ influx 

through VGCC was assessed.  In these experiments a 2mN force was applied to the vessels 

and the tone was allowed to stabilise for 10 minutes before application of 125mM KCl to 

assess viability and maximum contractile capacity.  The vessels were washed and then 

incubated in calcium-free Krebs’ in the presence of 100 mM KCl (to depolarise the smooth 

muscle cells, and thus open the VGCCs) for 30 minutes.  A concentration response curve to 

the replacement of CaCl2 in half log unit increments (10 µM-100 mM) was then obtained.  

The curves were constructed in the presence or absence of nifedipine (3 µM, as a positive 

control) or NaHS (100 µM-10 mM).  Nifedipine was added 20 min prior to construction of 

the CaCl2 concentration-response curve, whereas NaHS was applied 5 min before the CaCl2 

concentration response curve, to minimise the possibility of loss of H2S as gas from the bath.  

Each vessel segment was used to obtain only one concentration-response curve. Figure 2.5 is 

a schematic illustrating the protocol for constriction to calcium replacement. 
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Figure 2.5 Constriction to calcium replacement 

After 5 min equilibration, a 2 mN force was applied to the vessels and the tone was allowed to 

stabilise for 10 minutes. 125 mM KCl was then applied, and vessels were subsequently 

washed.  The vessels were then incubated in calcium-free Krebs’ in the presence of 100 mM 

KCl for 30 minutes.  Nifedipine (20 min prior) or NaHS (5 min prior) was applied before a 

concentration response curve to the replacement of CaCl2 in half log unit increments (10 µM-

100 mM) was constructed.   
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2.3.3 Analysis 
Relaxation was expressed as a percentage reversal of the baseline tone prior to NaHS 

administration, with the final response to calcium free Krebs’ defined as 100%. The initial 

increase in tone caused by each addition of NaHS was also analysed.  This increase in tone 

was expressed as a percentage of the change in tone induced by the relevant preconstriction 

protocol.  For constriction to calcium replacement experiments, the increase in tone was 

calculated as a percentage of the 125 mM KCl-induced tone.  

 

Average Emax (maximum relaxation) and average maximum constriction (caused by calcium 

replacement, or NaHS addition) were calculated and compared between the groups using the 

Student’s t-test or one-way ANOVA, followed by comparison between individual groups and 

control using Dunnett’s test for multiple comparisons, where appropriate.  Individual 

concentration response curves were each fitted to a sigmoidal curve, and each logEC50 (log of 

concentration of agonist causing 50% relaxation) was calculated.  LogEC50 values were 

compared and analysed for differences using the Student’s T-test or one-way ANOVA, 

followed by comparison between individual groups and control using Dunnett’s test for 

multiple comparisons, where appropriate.  

 

All statistical analyses were carried out using Graphpad Prism®, version 5.  Results are 

expressed as mean ± SEM, and statistical significance was accepted at the P<0.05 level. n 

values refer to the number of artery segments from separate animals. 
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2.4 Diabetic Studies 
2.4.1 Induction of a diabetic model: streptozotocin treatment 

Backgound 
Streptozotocin (STZ), derived from the mould, Streptomyces griseus, is a glucose analogue, 

comprised of a glucose moiety attached to a highly reactive nitrosourea group (Bolzan et al., 

2002).  It selectively accumulates in pancreatic beta cells via the GLUT2 glucose transporter 

(Tjalve et al., 1976), followed by a splitting of the molecule into its composite moieties.  The 

nitrosourea group then alkylates DNA (Bennett et al., 1981), resulting in cytotoxicity to the 

pancreatic beta cells.  STZ doses of 50-60 mg/kg intravenously lead to hyperglycaemia (20-

30mM) (Wei et al., 2003).  After 8-10 weeks, the model induces many of the signs and 

symptoms characteristic of chronic Type 1 diabetes, including micro- (Maric-Bilkan et al., 

2012) and macrovascular pathology (Mavrikakis et al., 1998; Searls et al., 2012).   

Protocol  
Male Sprague Dawley rats were obtained at 5 weeks of age for the diabetic group. A period of 

1 week was allowed for animals to acclimatise before any experimental manipulations were 

undertaken. Animals were then fasted for 12 hours followed by administration of STZ (50 

mg/kg) in sodium citrate buffer (10 mM, pH 4.5) via tail vein injection.  Development of 

diabetes was confirmed one week after STZ injection and again on the day of experiment by a 

non-fasting blood glucose of  > 15 mmol/L, read using an Accu-Check Performa® blood 

glucose meter (Roche diagnostic, Castle Hill, NSW).  Diabetic animals were housed until 16 

weeks of age before experiment, to allow for development of vascular disease.  Animals for 

the control group were obtained at 15 weeks and housed until 16 weeks before exsanguination. 
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2.4.2 Lucigenin Assay 

Background 
The lucigenin assay is an assay for O2˙- production using lucigenin-enhanced 

chemiluminescence.  Lucigenin is a di-acridium compound which emits light upon reaction 

with superoxide.  This reaction involves an initial reduction of lucigenin (Luc2+) to form a 

radical anion Luc.+, followed by a radical-radical coupling of Luc.+ to O2˙-.   This coupling 

leads to the formation of an unstable dioxetane intermediate, which emits light upon return to 

the ground state (Okajima et al., 2003).   The emitted light is measured using a microplate 

reader.  The lucigenin assay is a reliable method of O2˙- detection, since it is highly selective 

and sensitive to O2˙- production, and is also able to detect intracellular O2˙-, due to the cell 

permeability of lucigenin (Afanasev, 2009). 

Tissue collection 
MCA were utilised in the wire myogaphy experiments.  In the interest of animal ethics, 

alternate cerebral arteries were utilised in the lucigenin assay.  Cerebral arteries utilised for 

the lucigenin assay were the basilar artery and the arteries forming the circle of Willis - the 

posterior communicating arteries, posterior cerebral arteries and anterior cerebral arteries (see 

figure 1.3, p.30).  The basilar artery, circle of Willis and thoracic aorta from diabetic male 

Sprague Dawley rats and their age-matched controls were dissected and cleaned of connective 

tissue.  Arteries from the circle of Willis and the basilar artery were pooled and divided in half 

for separate treatments in the lucigenin assay (one rat had only enough cerebral vascular 

tissue for 2 separate treatments).  The thoracic aorta was cut into several 2mm segments for 

analysis using the lucigenin assay. 
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Detection of vascular superoxide by lucigenin enhanced chemiluminescence 
Reagent preparation: On the day of experiment, HEPES buffered Krebs’ solution 

(composition (mM): HEPES, 20; NaCl, 2.5; KCl, 2.5; CaCl2, 2.7; MgCl2, 1; glucose, 16; pH 

adjusted to 7.4 using HCl) was prepared for use as a vehicle and incubation solution.  

Solutions of lucigenin, NADPH and diethyldithio-carbamic acid (DETCA) were prepared on 

the day and NaHS was prepared immediately before use.  All were dissolved in HEPES buffer.  

Aliquots of diphenyleneiodonium (DPI) dissolved in dimethylsulfoxide (DMSO) were 

prepared prior to the experimental day and stored at -20˚C.   

  

Stimulation and measurement of superoxide production: The following protocol was used to 

observe the effects of a prior incubation of H2S on NADPH oxidase stimulated superoxide 

production.  All segments underwent three treatments in separate 2 mL wells, before reading 

in a 96-well Optiplate (PerkinElmer, Waltham, USA).  The treatments comprised of an initial 

30 min incubation, followed by a 45 min incubation and finally a 2 min wash, all at 37 ˚C. 

The initial 30 min incubation wells contained either: HEPES buffer alone (control), or in the 

presence of DPI 5 µM, as a positive control to inhibit NADPH oxidase stimulated O2˙- 

production, or NaHS 100 µM.  DPI is a flavoprotein inhibitor (Selemidis et al., 2008), and 

will therefore inhibit NADPH oxidase.  For DPI treated vessels, all subsequent treatments, as 

well as the Optiplate, contained DPI 5 µM, whereas NaHS treated vessels were treated with 

NaHS 100 µM only during the initial 30 min incubation. The subsequent 45 min incubation 

contained NADPH 100 µM to stimulate O2˙- production and DETCA (3 mM) to inhibit 

breakdown of O2˙- by SOD. Vessels were then transferred to the 2 min wash, containing 

NADPH 100 µM plus or minus DPI 5 µM, to wash off DETCA.  Finally, vessels were 

transferred to the appropriate well of a 96-well Optiplate containing 300 µL of a solution of 

NADPH 100 µM plus lucigenin 5 µM and the plate was read in the Polar star microplate 

reader (POLAR star OPTIMA (BMG LABTECH)) for 12 cycles.  A background fluorescence 
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reading had been previously performed on the vessel-free solution in the Optiplate.  At the 

end of the experiment, tissues were transferred to foil and dried in an oven at 50˚C overnight, 

before weighing.  Figure 2.6 illustrates the protocol for stimulation and measurement of O2˙- 

production diagrammatically.  

 

Data Analysis 

To calculate the amount of superoxide generated by each vessel segment, the background 

reading was subtracted from the average of the 12-cycle reading performed in the presence of 

tissue.  Superoxide generation was then normalised to tissue weight, by dividing by the 

weight of the dried sample.  
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Figure 2.6 Lucigenin assay for superoxide production 

Segments of cerebral vessels (a and b) and aorta (c, d and e) each underwent three treatments in 2 

mL wells before reading in a 96 well Optiplate.  The treatments for cerebral vessels and aorta 

were identical, except that there was only one treated cerebral vessel (b) for each animal, as 

compared to two treated aortas (d and e) for each animal.  First, segments were incubated in either: 

HEPES buffer alone (control, a and c); DPI 5µM (b and e); or NaHS 100µM (b and d).  For DPI 

treated vessels (e ± b) all subsequent treatments, as well as the Optiplate, contained DPI 5 µM. 

Secondly, vessels underwent a 45 minute incubation in NADPH 100µM and DETCA 3 mM.  A 

96-well Optiplate was prepared by pipetting 300µL of a solution of NADPH 100 µM plus 

lucigenin 5µM into several wells (one well for each vessel preparation) and a background reading 

for luminescence was performed.  Meanwhile, segments were transferred to their third treatment, 

a wash containing NADPH.  Finally, segments were transferred to the appropriate wells of the 

Optiplate, and a 12-cycle reading for luminescence was performed.  Note: since one rat had only 

enough cerebral vascular tissue for 2 separate assays (a and b), the NaHS and DPI treatments were 

performed in separate animals (b= NaHS OR DPI treated). 
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2.5 Assays for H2S producing enzymes 

2.5.1 Detection of H2S-producing enzymes via SDS-PAGE and western blotting 
WKY rat brains were used for western blot analysis of CSE and CBS.  The RVLM (n = 3) or 

hypothalamic PVN (n = 3) were punched out from frozen sections encompassing the entire 

rostral – caudal extent of each nucleus, using a blunted 20G needle.  For the PVN, the tissues 

from three animals were combined, as were those from the RVLM. The tissues were 

homogenised and suspended in sample buffer (sample buffer composition: 5% v/v Glycerine, 

2.5% v/v mercaptoethanol, 1.5% w/v SDS, 0.05 M TRIS/HCl pH 8, 0.05mg/ml bromophenol 

blue).  Samples were then heated to 65 °C for 10 minutes. Protein concentration was 

determined from each sample and the samples were loaded onto 10% gels and separated by 

SDS-PAGE. After transfer to poly-vilidene difluoride membranes the blots were incubated 

with primary antibodies suspended in blocking buffer overnight (rabbit anti-CSE antibody, 

(Proteintech Group Inc, USA) and mouse anti-CBS antibody (Abnova corporation, Taiwan)). 

The blots were then incubated with the appropriate secondary antibody (goat anti-Rabbit, goat 

anti-mouse) conjugated to horseradish peroxidase for 1 hr then developed by enhanced 

chemiluminescence (Millipore Kit). Dual colour marker (Bio-Rad) was used for molecular 

weight determination. Recombinant protein of CSE and CBS (GST tagged) (Abnova, Taiwan) 

were loaded on the gel to identify the band of interest.  
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2.5.2 Detection of H2S-producing enzymes via immunohistochemistry 

Preparation of PVN sections 
WKY brains which had been microinjected into the RVLM (in the hind brain) were retained 

in their entirety, so that the hypothalamus (in the mid brain) could be investigated by 

immunohistochemical analysis.  After fixing in a solution of 4% w/v paraformaldehyde and 

20% w/v sucrose for one week, the hypothalamus was cut on a cryostat into 40 µm-thick 

sections and mounted onto gelatin-subbed slides. The sections were then viewed wet by 

microscopy, and sections containing the PVN were identified by the proximity of the fornix to 

the third ventricle.  The PVN was then identified as the region around the third ventricle 

which appeared darker due to the density of neurons in the PVN.  The PVN-containing 

sections were outlined using an ImmEdge® hydrophobic barrier pen (Vector Laboratories, 

Burlingame, UK) and allowed to dry for 1.5 hours.  

 

Preparation of MCA  
MCA from Sprague Dawley rats were dissected and carefully cleaned of connective tissue.  

They were then placed in 4% w/v paraformaldehyde in phosphate buffered saline 

(composition (mM): Na2HPO4 203; KCl 53.6; KH2PO4 35.3; NaCl 2.74) for 10 min. 

 

Antigen retrieval, blocking and permeabilisation 
Hypothalamic sections and MCA were transferred to citrate buffer (citric acid 10mM, Triton 

X 0.05% v/v, adjusted to pH 6 using sodium hydroxide) and microwaved in a 200 W 

microwave oven for 30 sec for antigen retrieval.  For blocking and permeabilisation, the tissue 

was incubated in 2% v/v rabbit serum and 0.5% v/v Triton X in citrate buffer for 1 hr.  
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Antibody incubation 
Several sections from one brain were then incubated in a mouse monoclonal CBS primary 

antibody (1:50, M01, ABNOVA), prepared in a solution of phosphate buffer plus 2% v/v 

rabbit serum, for 18hr at room temperature.  Several other sections from the same brain were 

incubated in the solution alone for 18 hr at room temperature.  Similarly for the MCA, several 

segments were incubated with a mouse monoclonal anti- CSE primary antibody (1:50, 

ABNOVA) in a solution of citrate buffer plus 2% v/v rabbit serum, whilst other segments 

were incubated in the solution alone, both for 18 hr at 4˚C.  All tissues were then incubated 

with TRITC-conjugated rabbit anti-mouse secondary antibody (1:50, Dako Cytomation) for 2 

hr at room temperature.  Finally a Hoechst fluorescent nuclear stain (1:500 (25µg/mL), 

Thermo Scientific) was applied for 10 min at room temperature. Fluorescent mounting 

medium (Dako Cytomation) was used to mount the vessels onto slides which were 

coverslipped then imaged using a C1 confocal mounted on a Nikon Eclipse 90i laser-scanning 

microscope. 

2.5.3 Detection of CSE via RT-PCR 

RNA Extraction and Quantification 
MCA were collected as described earlier (section 2.3.1) and stored in RNAlater® solution 

(Invitrogen, Australia) at -20 ˚C.  For RNA extraction, MCA were removed from RNAlater® 

solution and placed in 1 ml of TRIzol® (Invitrogen, Australia) and homogenised with a 

handheld, motorised Teflon pestle.  Samples were allowed to stand for several minutes, after 

which 200 µl chloroform was added and the sample vigorously shaken. Samples were allowed 

to stand for 5 min and spun at 12,000 g for 15 min at 4 ˚C after which the upper aqueous 

phase was transferred to a new tube. The aqueous phase was precipitated by mixing with 

500µl ice-cold isopropanol alcohol. Samples were incubated at -20˚C for 1 hr and then 

centrifuged at 13,200 g for 15 min at room temperature. The supernatant was removed and the 

resulting pellet was washed with 200 µl of 75% ethanol in RNase-free water. After 
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centrifugation at 13,200 g for 10 min at room temperature, the ethanol supernatant was 

removed and the RNA pellets were left to air-dry for 5–10 min before being re-dissolved in 

40 µl of RNase-free water by mixing and then incubating at 55˚C for 10 min.  The quality and 

quantity of extracted RNA was determined on a NanoDrop 1000 spectrophotometer 

(Nanodrop Technologies, Wilmington, USA) by measuring absorbance at 260 nm and 280 nm 

with a 260/280 ratio of ~ 1.7 recorded for all samples. The RNA samples were diluted as 

appropriate to equalise concentrations, and stored at -80˚C for subsequent reverse 

transcription. 

Reverse Transcription and Real-Time PCR 
First-strand complementary DNA (cDNA) synthesis was performed using commercially 

available TaqMan Reverse Transcription Reagents (Invitrogen, Melbourne, Australia) in a 

final reaction volume of 20 µL. A negative sample containing a randomly chosen sample with 

no Reverse Transcriptase (Superscript®) was prepared to demonstrate an absence of PCR 

products in amplifications of cDNA during the real-time PCR cycling. A serially diluted 

pooled RNA sample from the control group was produced and also included to ensure 

efficiency of reverse transcription and for calculation of a standard curve for real-time 

quantitative polymerase chain reaction (RT-PCR).  All RNA, negative control and standard 

samples were reverse transcribed to cDNA in a single run from the same reverse transcription 

master mix. Quantification of mRNA (in duplicate) was performed on a 72-well Rotor-Gene 

3000 Centrifugal Real-Time Cycler (Corbett Research, Mortlake, Australia). Taqman-FAM-

labelled primer/probe for cystathionine gamma-lyase (Cat No. Rn00567128_m1) was used in 

a final reaction volume of 20 µL.  PCR conditions were 2 min at 50 ºC for UNG activation, 

10 min at 95 ºC then 40 cycles of 95 ºC for 15 s and 60 ºC for 60 s.  18S ribosomal RNA (18S 

rRNA) (Cat No. Hs99999901_s1) was used as a housekeeping gene to normalise threshold 

cycle (CT) values. The relative amounts of mRNAs were calculated using the relative 

quantification (∆∆CT) method (Livak et al., 2001).  
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2.5.4 Measurement of plasma and liver H2S  
Background 

In the present thesis, H2S generation from liver samples was used to determine CSE activity, 

via a method developed by Stipanuk and Beck (Stipanuk et al., 1982).  The Stipanuk and 

Beck assay involves the generation of H2S from tissue by addition of substrate, L-cysteine 

(for exact details, see below), trapping of H2S using zinc in solution, and subsequent 

measurement of the H2S formed using a colourimetric assay.  The colourimetric assay 

involves the addition of N,N-dimethylphenyldiamine sulphate (NNDP) followed by ferric 

chloride (FeCl3). Under acidic conditions, NNDP is oxidised by Fe(III), forming an 

intermediate compound which is then reduced by H2S to form the phenothiazinium dye, 

methylene blue (Boltz, 1978).  To date, this remains a commonly used method for 

determination of CSE activity (Brancaleone et al., 2008; Dal-Secco et al., 2008; Li et al., 

2011; Yang et al., 2011), since the methylene blue assay allows for specific detection of low 

micromolar concentrations of H2S in multiple samples (Siegel, 1965).   

In the present thesis, the methylene blue assay was also used to detect H2S in plasma samples.  

Application of the methylene blue assay to measurement of free H2S levels in biological 

samples has been criticised, since the acidic conditions likely release H2S from acid labile 

sulfur stores (Furne et al., 2008).  Despite the multiple analytical techniques which have been 

developed for measurement of H2S levels, all have limitations to application in biological 

samples, and most cannot be performed in physiological conditions (for review, see (Olson, 

2012)).  The present thesis acknowledges the limitation of the methylene blue assay to 

applications measuring free H2S in biological samples, and refers to the H2S measured in 

plasma as ‘sulfide’, as it is likely a reflection of both free H2S and H2S liberated from acid 

labile stores.  It is noteworthy that acid labile sulfur is unlikely to have contributed to 

measured H2S levels in the CSE activity assay, since negative control samples (lacking the 

substrate, L-cysteine) produced negligible H2S, which was undetectable using the methylene 

blue assay (data not shown). 
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Assay of liver H2S synthesis: measurement of CSE activity  
CSE activity was measured in liver, since it has been demonstrated that CSE expression is 

relatively high in hepatic tissue (Bao et al., 1998). Liver H2S synthesising activity was 

measured using the assay developed by Stipanuk and Beck (Stipanuk et al., 1982), with 

modifications.  Briefly, liver tissue was weighed and homogenised using a Pro Scientific 200 

electric homogeniser, then diluted 1 in 10 w/v in ice-cold phosphate buffer (composition 

(mM): K2HPO4, 77.6; KH2PO4 22.4).  Protein concentration was determined using the 

Bradford assay (Bio-Rad Laboratories, Milano, Italy).  Each liver homogenate was then 

assayed in triplicate for H2S synthesising capacity, by adding L-cysteine (1 M, 5 µL), PLP 

(200 mM, 5 µL) and phosphate buffer 10 µL to 480 µL of homogenate, in 1.5mL eppendorfs.  

To confirm that H2S production was due to CSE, a positive control was prepared for each 

liver homogenate, contents as above, except phosphate buffer was replaced with PPG (0.5 M, 

10 µL).  Negative controls containing PLP (200 mM, 5 µL) and phosphate buffer 15 µL 

(without L-cysteine substrate) in 480 µL of homogenate were prepared for n = 3 liver 

homogenates in each group.  Eppendorfs were sealed using parafilm and the reaction was 

initiated by transferring to a shaking water bath at 37 ºC.  After incubation for 30 min, zinc 

acetate (1% w/v, 250 µL) was injected into each eppendorf to trap the generated H2S.  

Subsequently, trichloroacetic acid (10% w/v, 250 µL) was injected into each eppendorf, to 

precipitate the protein, thus stopping the reaction.  80 µL of each sample was then added to 

560 µL of water, followed by addition of NNDP (20 mM, 80 µL) in 7.2 M HCl then FeCl3 (30 

mM, 80 µL) in 1.2 M HCl.  Standard concentrations of NaHS were prepared (0-5000 µM, 

n=14), and 80 µL of each was again added to 560 µL of water, followed by addition of NNDP 

(20 mM, 80 µL) in 7.2 M HCl then FeCl3 (30 mM, 80 µL) in 1.2 M HCl.   The sample 

solutions were vortexed at 9,000 g for 1 min, and 250 µL of each sample and standard was 

pipetted into a 96-well plate (Sarstedt, Newton, NC, USA).  20 min after the addition of FeCl3, 
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the absorbance was measured at 670 nm in a Multiskan® Spectrum spectrophotometer 

(Thermo Scientific).   

Determination of plasma sulfide content  
Determination of sulfide in plasma was performed without addition of L-cysteine or PLP.  

Plasma samples (80 µL) were added to zinc acetate (1% w/v, 80 µL), followed by addition of 

trichloroacetic acid (10% w/v, 80 µL). Standard concentrations of NaHS were prepared (0-

200 µM, n = 12), and 80 µL of each was also added to zinc acetate (1% w/v, 80 µL), followed 

by addition of trichloroacetic acid (10% w/v, 80 µL).  Subsequently, NNDP (20 mM, 80 µL) 

in 7.2 M HCl was added to each of the samples and standards, followed by FeCl3 (30mM, 80 

µL) in 1.2 M HCl.  The sample solutions were vortexed at 9,000 g for 1 min, and 250 µL of 

each sample and standard was pipetted into a 96-well plate (Sarstedt).  20 min after the 

addition of FeCl3, the absorbance was measured at 670 nm in a Multiskan® Spectrum 

spectrophotometer. 

Analysis of plasma sulfide content, and liver CSE activity 
The final H2S concentration in treated plasma and liver samples was calculated against the 

calibration curve of the appropriate NaHS standards.  For plasma, the calculated value was 

referred to as plasma sulfide concentration (as discussed above, under background p.90) and 

expressed in µM. The difference between diabetic and control plasma sulfide concentration 

was compared using the Student’s t-test.  For liver samples (CSE activity), the amount of H2S 

was calculated by multiplying by the volume of homogenate (0.048 L).  Results were then 

divided by the number of minutes of reaction (30 min) and normalised to protein content (mg).  

For CSE activity, results were thus expressed as amount of H2S produced per mg of protein 

per minute (nmol per mg per min), and the difference between diabetic and control H2S 

production rate was compared using the Student’s t-test. 
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2.6 Materials 
 

2.6.1 Chemicals 
9-Amino-5-imino-5H-benzo[a]-phenoxazine salt, (cresyl violet) (Sigma Chemical CO, MO, 
USA) 
4-aminopyridine (Sigma, A0152) 
Apamin (Sigma, A9459) 
Barium chloride-dihydrate (Merck, A749419 719) 
Catalase (Simga, C-10) 
Charybdotoxin (Sigma, C7802) 
Diethyldithio-carbamic acid (DETCA) sodium salt (Sigma, D-3506) 
Dimethylsulfoxide (Sigma-Aldrich, 472301) 
D-glucose anhydrous (APS Finechem, 50-99-7) 
4,4’-Diisothiocyanatostilbene-2,2’-disulfonic acid disodium salt hydrate (Sigma, D3514) 
Diphenylene iodonium (Sigma, D-2926) 
DL-Propargylglycine (Sigma, P7888) 
Ferric chloride, anhydrous (Merck, S4976445807)Glibenclamide (Sigma, G-0639) 
heparin (5000IU/5mL vials, Pharmacia Australia, Rydalmere, NSW, SIN5192P) 
Hydroxylamine hydrochloride (Sigma, 159417) 
Indomethacin (Sigma I-7378) 
L-glutamic acid (glutamate) (Sigma G-1626) 
L-NG-Nitroarginine methyl ester (L-NAME) (Sigma, N5751) 
HEPES, Free acid, ULTROL Grade (EMD chemicals, Inc. San Diego, CA, cat#391998) 
HEPES sodium salt (Sigma, H3784) 
4-hydroxy-TEMPO (tempol) (Aldrich, 17, 614-1) 
Hypoxanthine (Sigma, H9377)  
β-nicotinamide adenine dinucleotide 2’-phosphate reduced tetrasodium salt hydrate (Sigma, 
N1630) 
Nifedipine (Sigma, N7634) 
Niflumic acid (Sigma, N0630) 
N,N’-dimethyl-9,9’-biacridium dinitrate, (lucigenin) (Sigma, M8010) 
N,N-Dimethyl-p-pheylenediamine sulfate salt (Sigma, D-4790) 
O-(Carboxymethyl)hydroxylamine hemihydrochloride (amino-oxyacetate) (Aldrich, C13408) 
Paraformaldehyde (Sigma, P6148) 
Phenylephrine (Sigma, P6125) 
Pyridoxal 5’- phosphate hydrate (Sigma, P9255) 
Sodium hydrogen carbonate (APS Finechem, 144-55-8) 
Sodium hydrosulfide hydrate (sodium hydrogen sulfide) (Sigma, 161527) 
Streptozotocin (Sigma, S01030) 
Sucrose (Merck, 10274.7E) 
Superoxide Dismutase (Sigma, S7571) 
Trichloroacetic acid (BDH chemicals, 10286) 
urethane (Sigma, U2500) 
Xanthine oxidase, from bovine milk (Sigma, X4376-25UN) 
Zinc acetate dihydrate (Sigma, Z0625) 
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2.6.2 Products 
Antifoam (Sigma, A5758) 
Depex mounting medium (BDH Lab Supplies, Poole, UK) 
Delvet isoflurane inhalation anaesthetic (Delvet Pty Ltd, Seven Hills, NSW, 
AP/DRUGS/220/96) 
ImmEdge® hydrophobic barrier pen (Vector Laboratories, Burlingame, UK) 
Kwik-Cast Sealant (WPI, USA) 
Lethabarb (pentobarbitone 325mg/mL,Virbac animal health, 1P064 3-2) 
Rhodamine (LumaFluor, NC, USA) 
RNAlater® Soln (Ambion, AM7024)  
Triton X-100 (BDH, 30632) 
TRIzol® (Invitrogen, 15596-026) 
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Chapter 3: The role of hydrogen sulfide in the 
RVLM and PVN in cardiovascular regulation  
3.1 Introduction 
H2S has several neuromodulatory effects, as well as peripheral cardiovascular actions 

(Gadalla et al., 2010; Kimura, 2002; Mustafa et al., 2009a).  The first demonstration that H2S 

could act as an endogenous biological mediator was by Kimura et al. in 1996, and showed 

that H2S facilitated long-term potentiation in the rat hippocampus (Abe et al., 1996). H2S has 

also been shown to induce calcium waves in rat astrocytes (Nagai et al., 2004) and protect 

against neurodegenerative diseases including Alzheimer’s Disease, vascular dementia and 

Parkinson’s Disease, by attenuating oxidative stress and hypoxia induced neuronal cell death 

in rats (Zhou et al., 2011).  In the cardiovascular system, H2S has been reported to have 

protective effects against cardiac ischemia-reperfusion injury in mice (Calvert et al., 2009).  

H2S donors, such as NaHS, have been shown to relax rat blood vessels in vitro (Zhao et al., 

2002) (Cheang et al., 2010) and systemic administration of NaHS reduces rat blood pressure 

in a dose dependent manner (Zhao et al., 2001) indicating H2S can influence blood pressure in 

vivo.  

 

H2S is also produced in the central nervous system, suggesting it may have central 

cardiovascular actions, in addition to its peripheral effects (Gadalla et al., 2010; Kimura, 2002; 

Mustafa et al., 2009a), as is the case for the gaseous transmitter, nitric oxide.  Thus, the 

question arises as to whether H2S can regulate the cardiovascular system via actions in the 

central nervous system as well as systemically. It has been reported that H2S acts within the 

posterior hypothalamus of rats to produce a small reduction in blood pressure (Dawe et al., 

2008).  However, in another study, an infusion of NaHS into the lateral cerebral ventricle 

increased blood pressure in rats (Ufnal et al., 2008).  More recent studies indicate that H2S 

can augment pre-synaptic transmission in the NTS (Austgen et al., 2011), and reduces renal 

sympathetic nerve activity via action in the RVLM of rats (Guo et al., 2011).  Thus, it appears 

unclear as to the central cardiovascular action of H2S.  Furthermore, at the time of research, 
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brain regions with key regulatory cardiovascular actions, such as the RVLM and PVN, had 

not been investigated. 

 

Regulating the activity of the sympathetic nervous system is a key mechanism through which 

the brain can influence the level of blood pressure.  There are several areas in the brain that 

are known to influence sympathetic nerve activity via projections to the intermediolateral cell 

column of the spinal cord, where sympathetic preganglionic motor neurons are located.  

These key autonomic regions have important cardiovascular regulatory functions and include 

the RVLM and the PVN (Guyenet, 2006; Shafton et al., 1998).  The RVLM plays a pivotal 

role in the tonic and reflex control of sympathetic vasomotor activity, such that bilateral 

inhibition or destruction of neurons in the RVLM results in dramatic decreases in both arterial 

pressure and sympathetic vasomotor activity (Guyenet, 2006).  The PVN is a major 

integrative nucleus that can markedly influence blood pressure, sympathetic nerve activity 

and the haemodynamic sequelae (Badoer, 2001; Badoer, 2010). Activation of the PVN can 

elicit increases or decreases in sympathetic nerve activity and blood flow (Badoer, 2001; 

Deering et al., 2000), suggesting both sympatho-inhibitory and sympatho-excitatory outflows 

may emanate from the PVN.   

 

Nitric oxide can influence neuronal function in the RVLM and PVN, and contributes to the 

regulation of sympathetic nerve activity in normal and pathophysiological conditions (Patel et 

al., 2001).  Whether H2S microinjected into the RVLM can influence SNA to vascular organs 

other than the kidney and whether it can act in the PVN to influence SNA is unclear. 

Additionally, there is no data available on whether H2S acting in those brain regions has 

different effects in normotensive and hypertensive conditions. Therefore, the aims of the 

present study were: to determine whether H2S could alter LSNA, MAP or HR by acting 

within the RVLM or PVN in normotensive as well as hypertensive rats; to determine whether 

CBS inhibitors could alter LSNA, MAP or HR by acting within the RVLM or PVN and to 

establish whether CBS and CSE were present in the RVLM or PVN of rats.   
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3.2 Methods 
3.2.1 Preparation for recording of MAP, HR and LSNA and intracerebral micro-injections 
Animals were anaesthetised initially with inhaled isoflurane, and the right femoral vein was 

cannulated for maintenance of anaesthesia using intravenous urethane (1-1.5 g/kg IV).  The 

right femoral artery was cannulated for recording of MAP and HR.  The left lumbar 

sympathetic nerve was then exposed and placed onto a probe for recording of nerve activity 

using a MacLab data acquisition system (ADInstruments, NSW, Australia).  Animals were 

then placed prone and the head was mounted into a Stoelting stereotaxic frame.  The skull 

was exposed, and burr holes were drilled in the appropriate positions for either RVLM or 

PVN micro-injections.  See 2.2.1 for a detailed description of these surgical procedures.   

 

3.2.2 Experimental Protocol 
In WKY rats, bilateral microinjections were made into the RVLM (n = 16), PVN (n = 19) and 

into the area adjacent to the PVN (n = 8).  Animals receiving microinjections into the RVLM 

were given vehicle (artificial cerebrospinal fluid (aCSF) containing NaCl 124mM, KCl 

3.0mM, NaH2PO4.2H2O 1.3mM, MgCl2.6H2O 2.0mM, NaHCO3 26mM, glucose 10mM, 

CaCl2 2.0mM in Milli-Q water, buffered with carbogen), followed by either (i) five sequential 

doses of NaHS (0.2, 2, 20, 200 and 2000 pmol/side) or (ii) HA (0.2, and 2 nmol/side, 

sequentially) and AOA (0.1 and 1 nmol/side, sequentially) the order of HA and AOA was 

randomised.  For microinjections into or out of the PVN the same protocol was followed 

except only three sequential doses of NaHS were administered (20, 200 and 2000 pmol/side).  

In SHR rats, NaHS (20-2000 pmol/side) was microinjected into the RVLM (n = 3) and PVN 

(n = 5). For all experiments, 10 - 15 minutes were allowed between each microinjection of 

drug. MAP, HR and LSNA were monitored continuously.  Resting levels prior to drug 

administration were recorded at 20 minutes before and immediately prior to the first 

intracerebral microinjection.  At 1, 5 and 10 min after the administration of each dose of drug, 
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MAP, HR and LSNA were recorded for a duration of 1-2 min.  For a description of the data 

analysis, see 2.2.3 Data Analysis, p.71.  Briefly, the average value of changes in MAP, HR 

and LSNA were calculated. For each parameter, the average value was subsequently 

compared between groups using one-way ANOVA, followed by comparisons between the 

individual doses of drugs and control (vehicle administration) using Dunnett’s post hoc test 

for multiple comparisons.  P<0.05 was considered statistically significant. 

 

 

3.2.3 Histology 
To mark the injection sites, a small amount of rhodamine-tagged fluorescent microspheres 

was included in the microinjected solution (LumaFluor, NC, USA). Brain slices from 

experimental animals were subsequently viewed under fluorescence microscopy to determine 

the exact position of injection sites (see 2.2.2 for a detailed description of histology). 

 

3.2.4 Detection of H2S-producing enzymes via western blotting and immunohistochemistry 
Samples of PVN tissue (n = 3) from WKY rats were dissected and pooled, as were those from 

the RVLM (n = 3).  The pooled samples were then analysed for CSE and CBS content using 

western blotting (see 2.5.1).  The brains of several WKY rats were fixed using 4% w/v 

paraformaldehyde and 20% w/v sucrose for one week before sectioning the hypothalamus 

into 40 µm-thick sections using a cryostat.  These sections were then analysed for the 

presence of CBS using immunohistochemistry (see 2.5.2). 
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3.3 Results 

WKY Rats 
3.3.1 Presence of CBS and CSE in RVLM and PVN 
Figure 3.1a shows examples of the western blots used to determine the presence of CSE and 

CBS in the RVLM and PVN.  The results show that the PVN and RVLM contain CBS protein.  

By contrast, in neither region was CSE protein detectable, despite being detected in liver and 

aorta (figure 3.1b).  The control proteins eluted out at the expected size.   

Immunohistochemical analysis showed staining for CBS within the PVN (figure 3.2). 

Combined staining using Hoescht nuclear stain and immunohistochemistry for CBS 

demonstrated that CBS was localised specifically within cells of the PVN (figure 3.2). 

 

3.3.2 Effect of NaHS microinjected into the rostral ventrolateral medulla 
NaHS (0.2 – 2000 pmol / side) microinjected into the RVLM had no significant effect on 

MAP, HR and LSNA compared to control (figure 3.3).  This indicates that exogenous 

hydrogen sulfide in the RVLM did not have any major effect on MAP, HR or LSNA.   

 

3.3.3 Effect of HA and AOA microinjected into the rostral ventrolateral medulla 
The CBS inhibitors, AOA (0.1 – 1.0 nmol / side) and HA (0.2 – 2.0 nmol / side) 

microinjected into the RVLM did not significantly change any of the cardiovascular variables 

measured compared to control (figure 3.4).  Thus, inhibition of the production of endogenous 

hydrogen sulfide in the RVLM did not have any major influence on MAP, HR or LSNA. 
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Figure 3.1 Western blots for CBS and CSE in RVLM and PVN 

Typical western blots of cystathionine β lyase (CBS) and cystathionine γ lyase (CSE) in 

punched out homogenates of rostral ventrolateral medulla (RVLM) and hypothalamic 

paraventricular nucleus (PVN) (a).  The native CBS protein (63 kDa) was labelled in both 

PVN and RVLM samples.   No bands for native CSE protein (44kDa) were observed in the 

PVN or RVLM, despite being observed in liver and aorta homogenates (b).   The third lanes 

in ‘a’ and first lane in ‘b’ show the GST-tagged human recombinant CBS (86kDa) or CSE 

(70kDa) protein. 
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Figure 3.2 CBS staining in the PVN 

(a) Immunohistochemistry images demonstrating presence of CBS within the PVN 

(paraventricular nucleus).  Top panel is in the presence of the primary antibody for CBS, 

bottom panel is a negative control processed in the absence of the primary antibody for CBS. 

Both images show a merge of CBS (red) and Hoescht nuclei (blue) staining. No specific 

staining for CBS was observed in the negative control. Calibration scale bar = 20 µm (b) 

Schematic demonstrating the region of the PVN where the images in ‘a’ were taken (pink 

square).  Calibration scale bar = 500 µm.  Fx, fornix; AHA, anterior hypothalamic area, 3V, 

third ventricle. 
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Figure 3.3 Effect of NaHS in the RVLM  

Changes in mean arterial pressure (MAP), heart rate (HR) and lumbar sympathetic nerve 

activity (LSNA) following vehicle (n = 13 for MAP and HR and n = 6 for LSNA) and the H2S 

donor, (NaHS, 0.2 – 2000 pmol/side) (n = 8 for MAP and HR and n = 5 for LSNA) 

microinjected into the rostral ventrolateral medulla (RVLM) of WKY rats.  
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Figure 3.4 Effect of CBS inhibitors in the RVLM 

Changes in mean arterial pressure (MAP), heart rate (HR) and lumbar sympathetic nerve 

activity (LSNA) following vehicle (n = 13 for MAP and HR and n = 6 for LSNA) and amino-

oxyacetate (AOA) (0.1 – 1.0 nmol/side) and hydroxylamine (HA)  (0.2 – 2.0 nmol/side) (n = 

8 for MAP and HR and n = 5 for LSNA) microinjected into the rostral ventrolateral medulla 

(RVLM) in WKY rats. AOA and HA are inhibitors of the enzyme cystathionine β synthase. 
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3.3.4 Effect of NaHS microinjected into the paraventricular nucleus 
The average changes in MAP, HR and LSNA following NaHS (20 – 2000 pmol) were not 

significantly different from control (Figure 3.5).  These data indicate that exogenous 

hydrogen sulfide microinjected into the PVN has no significant effect on MAP, HR or LSNA.  

NaHS microinjected into the area surrounding the PVN also had no significant effect on MAP, 

HR or LSNA (figure 3.6).   

 

3.3.5 Effect of HA and AOA microinjected into the paraventricular nucleus 
Microinjection of AOA (0.1 – 1.0 nmol / side) into the PVN produced no significant change 

in MAP, HR or LSNA compared to control (figure 3.7).  Microinjection of HA (0.2 nmol / 

side) into the PVN resulted in a small but significant decrease in MAP and HR compared to 

the control group (figure 3.7).  Microinjection of the higher dose of HA (2.0 nmol / side) into 

the PVN, however, did not elicit any significant effect on MAP and HR compared to control 

(figure 3.7). Neither dose of HA had any significant effect on LSNA compared to control.  

Additionally, AOA and HA microinjected into the area surrounding the PVN also had no 

significant effect on MAP, HR or LSNA (figure 3.8).   
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Figure 3.5 Effect of NaHS in the PVN 

Changes in mean arterial pressure (MAP), heart rate (HR) and lumbar sympathetic nerve 

activity (LSNA) following vehicle (n = 14 for MAP and HR and n = 7 for LSNA) and the H2S 

donor, NaHS, (20 – 2000 pmol/side) (n = 6 for MAP and HR and n = 5 for LSNA) 

microinjected into the hypothalamic paraventricular nucleus (PVN) in WKY rats. 
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Figure 3.6 Effect of NaHS in the area surrounding the PVN,  

Changes in mean arterial pressure (MAP), heart rate (HR) and lumbar sympathetic nerve 

activity (LSNA) following vehicle (n = 9 for MAP and HR and n = 3 for LSNA) and the H2S 

donor, NaHS, (20 – 2000 pmol/side) (n = 5 for MAP, HR and LSNA) microinjected into the 

area surrounding the hypothalamic paraventricular nucleus (PVN) in WKY rats. 
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Figure 3.7 Effect of CBS inhibitors in the PVN 

Changes in mean arterial pressure (MAP), heart rate (HR) and lumbar sympathetic nerve 

activity (LSNA) following vehicle (n = 14 for MAP and HR and n = 6 for LSNA) and amino-

oxyacetate (AOA) (0.1 – 1.0 nmol/side) and hydroxylamine (HA) (0.2 – 2.0 nmol/side) (n = 

13 for MAP and HR and n = 6 for LSNA) microinjected into the paraventricular nucleus 

(PVN) in WKY rats. AOA and HA are inhibitors of the enzyme cystathionine β synthase.  

*P<0.05 compared to vehicle. 
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Figure 3.8 Effect of CBS inhibitors in the area surrounding the PVN 

Changes in mean arterial pressure (MAP), heart rate (HR) and lumbar sympathetic nerve 

activity (LSNA) following vehicle (n = 9 for MAP and HR and n=3 for LSNA) and amino-

oxyacetate (AOA) (0.1 – 1.0 nmol/side) and hydroxylamine (HA) (0.2 – 2.0 nmol/side) (n = 7 

for MAP and HR and n = 3 for LSNA) microinjected into the area surrounding the 

paraventricular nucleus in WKY rats. AOA and HA are inhibitors of the enzyme 

cystathionine β synthase.   



109 

SHR Rats 
3.3.6 Effect of NaHS microinjected into the rostral ventrolateral medulla or 
paraventricular nucleus in SHR rats 
When NaHS (20-2000pmol / side) was microinjected into the RVLM, there was no 

significant effect on MAP, HR and LSNA compared to vehicle (n = 3) (figure 3.9).  Similarly, 

microinjections of NaHS into the PVN of SHR rats did not significantly affect the 

cardiovascular variables monitored (n = 5) (figure 3.9). 
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Figure 3.9 Effect of NaHS in the RVLM and PVN of SHR rats 

(a) Changes in mean arterial pressure (MAP), heart rate (HR) and lumbar sympathetic nerve 

activity (LSNA) following vehicle and the H2S donor, (NaHS, 20– 2000 pmol/side) (n = 3) 

microinjected into the rostral ventrolateral medulla (RVLM) of SHR rats. (b) Changes in 

mean arterial pressure (MAP), heart rate (HR) and lumbar sympathetic nerve activity (LSNA) 

following vehicle and the H2S donor, NaHS, (20 – 2000 pmol/side) (n = 5) microinjected into 

the hypothalamic paraventricular nucleus (PVN) in SHR rats. 
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3.3.7 Microinjection sites in the rostral ventrolateral medulla 

The sites of microinjection into the RVLM (defined as within 0.0 – 0.6 mm caudal of the 

facial nucleus) are shown in figure 3.10.  The microinjection sites were mainly located 

towards the rostral end of the RVLM predominantly within 0.0 to 0.2 mm caudal of the 

caudal pole of the facial nucleus. The distribution of the microinjection sites for NaHS, AOA 

and HA were similar. 

 

3.3.8 Microinjection sites in the paraventricular nucleus 
The sites of microinjection into the PVN are shown in figure 3.11.  The centre of the injection 

sites were found to be within 1.4 to 2.1mm caudal of the bregma and covered the rostral-

caudal extent of the PVN.  The distribution of the microinjection sites with NaHS and that of 

the inhibitors of the enzyme that produces H2S, were similar.  Microinjections made adjacent 

to the PVN were centred dorsal to the PVN, in the ventral portion of the nucleus reunions, at 

levels 1.3 - 2.3 mm caudal to bregma (figure 3.12). 
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Figure 3.10 Injection sites into RVLM of SHR and WKY rats 

Schematic illustration showing the centre of the microinjection sites within the rostral 

ventrolateral medulla (RVLM). Microinjections were made bilaterally but only unilateral sites 

are shown. Closed circles represent microinjection sites of NaHS in WKY rats, open triangles 

represent microinjection sites of NaHS in SHR rats and open circles represent microinjection 

sites of amino-oxyacetate and hydroxylamine in WKY rats. Sol, nucleus tractus solitarius; 

NAmb, nucleus ambiguus; Sp5, spinal trigeminal tract; Rob, raphe obscurus; ION inferior 

olivary nucleus. 
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Figure 3.11 Injection sites into the PVN of SHR and WKY rats 

Schematic illustration showing the centre of the microinjection sites within the hypothalamic 

paraventricular nucleus (PVN). Microinjections were made bilaterally but only unilateral sites 

are shown.  Closed circles represent microinjection sites of NaHS into WKY rats, open 

triangles represent microinjection sites of NaHS into SHR rats and open circles represent 

microinjection sites of amino-oxyacetate and hydroxylamine into WKY rats. 3V, third 

ventricle; AHA, anterior hypothalamic area; VMH ventromedial hypothalamus; OT, optic 

tract; Fx, fornix. 
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Figure 3.12 Injection sites into the area surrounding the PVN of WKY rats 

Schematic illustration showing the centre of the microinjection sites in the region surrounding 

hypothalamic paraventricular nucleus (PVN). Microinjections were made bilaterally but only 

unilateral sites are shown.  Closed circles represent microinjection sites of NaHS and open 

circles represent microinjection sites of amino-oxyacetate and hydroxylamine. Re, reunions 

thalamus nucleus; Vre, ventral reunions nucleus; Xi, xiphoid thalamus nucleus; Fx, fornix; 

DMD, dorsomedial hypothalamic nucleus; AHP, anterior hypothalamic area; VMH, 

ventromedial hypothalamus. 
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3.4 Discussion 
In the present study, the enzyme CBS, but not CSE, was demonstrated in the RVLM and PVN, 

suggesting H2S may be endogenously produced in these regions.  Microinjection of the H2S 

donor, NaHS, directly into these brain regions, however, did not significantly alter blood 

pressure, heart rate or lumbar sympathetic nerve activity in WKY and SHR rats. In WKY rats, 

inhibition of the production of H2S, using inhibitors of CBS, in those brain regions also had 

no marked effects on the cardiovascular variables.  The results suggest that hydrogen sulfide 

in the RVLM and PVN may not have a significant role in cardiovascular regulation. 

The present work, using western blot analysis, is the first to report that CBS is present 

specifically in the RVLM and PVN, two important autonomic brain regions involved in the 

regulation of sympathetic nerve activity and the cardiovascular system.  Previous studies have 

found that the activity of CBS varies with the brain area examined, and that the hypothalamus 

of rats had the highest activity (Kohl et al., 1979).  Changes in CBS expression have also 

been observed in mice during development; the levels of CBS increased postnatally, 

particularly in the hippocampus and cerebellum (Robert et al., 2003). In the present study a 

second band was observed in the western blots for CBS at approximately 70kDa the reason 

for this band is not clear, but is possibly due to proteolysis, splice variation or non-specificity 

of the antibody.  There have been several reports demonstrating weak expression of CSE in 

whole brain tissues of rats and mice (Abe et al., 1996; Ishii et al., 2004), however, the present 

results indicate that CSE is absent in the specific areas of the RVLM and PVN.  Bands for 

CSE were none-the-less detected in tissues known to express CSE, including aorta and liver.   

 

The RVLM is a key brain region involved in generating tonic sympathetic outflow (Guyenet, 

2006).  In the RVLM, microinjection of NaHS did not cause significant changes in MAP, HR 

or LSNA compared to control. This was observed in WKY as well as SHR rats. This contrasts 
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with the marked influence of another gaseous transmitter, nitric oxide, on blood pressure and 

sympathetic nerve regulation (Kimura et al., 2009; Patel et al., 2001; Zanzinger, 1999).  The 

present results suggest that H2S may not be a key player in cardiovascular regulation in the 

RVLM in normotensive or hypertensive conditions. 

 

In order to observe the effects of endogenous H2S, two inhibitors of CBS were employed, HA 

and AOA.  Since both inhibitors affect the association of CBS with its co-factor, PLP 

(Braunstein et al., 1971; McMaster et al., 1991), the effects could be attributable to inhibition 

of PLP-dependent enzymes other than CBS.  However, neither inhibitor microinjected into 

the RVLM significantly affected MAP, HR or LSNA.  These results indicate that, although 

CBS is present in the RVLM, H2S in the RVLM does not have a major influence on BP, HR 

or LSNA. Since the present study found no evidence to suggest a role for endogenous H2S in 

WKY rats nor for exogenous H2S in WKY and SHR rats, the effects of HA or AOA were not 

further investigated in the SHR rats. 

  

In contrast to the present work, a recent study reported that NaHS microinjected into the 

RVLM of anaesthetised rats induced dose-dependent, and relatively large, reductions in MAP, 

HR and renal sympathetic nerve activity (RSNA), and HA elicited opposite cardiovascular 

effects (Guo et al., 2011).  It is noteworthy that the researchers omitted to buffer any of their 

drugs in solution.  In the present experiments, artificial CSF, buffered with carbogen and 

25mM NaHCO3, was used as the vehicle for all drugs.   The concentrations of NaHS used by 

Guo et al. (2, 4 and 8mM) would be expected to cause a significant increase in the pH when 

dissolved in unbuffered saline, since it has been observed that NaHS dissolved in a low 

capacity buffer (containing 2.4mM NaHCO3) increased the pH by approximately 0.6 and 3 

pH units at concentrations of 1mM and 10mM, respectively, at 22 oC (Dombkowski et al., 
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2005).  Given the proximity of the RVLM to regions with chemosensitive neurons that 

participate in the central sympathetic chemoreflex (Guyenet et al., 2010), a drastic change in 

pH in this area might have significant influences on blood pressure.  

  

The study by Guo et al. also observed that HA can increase MAP, HR and RSNA via the 

RVLM (Guo et al., 2011), which contrasts with the lack of effect of HA observed in the 

present study.  HA is a weak base, and therefore may also cause pH-induced haemodynamic 

effects. Although unbuffered solutions of NaHS and HA are both basic, NaHS and HA 

induced opposite haemodynamic effects in the study by Guo et al, indicating that HA may 

have acted by mechanisms other than altered pH. Another possible explanation for the 

discrepancies between the present study and the study by Guo et al. lies in the difference in 

methodological approach (Guo et al., 2011). In the present study, rats were placed in the 

prone position for a dorsal approach to the RVLM, the pressor region was functionally 

identified, and the rats breathed spontaneously, whereas in the work by Guo and colleagues, 

rats were placed supine for a ventral approach and visual identification of the RVLM, and the 

rats were ventilated.  Stretching the chest wall during ventilation is known to enhance the 

excitatory drive arising from the RVLM and this can alter the responses to drugs administered 

into the RVLM (Cox et al., 1988).  Functional identification of the pressor region of the 

RVLM was important in the present study to indicate (i) the correct placement of the 

microinjection and (ii) the RVLM was functional under the present experimental conditions 

and cardiovascular responses were clearly obtainable.  It has been demonstrated previously 

that body positional changes influence haemodynamic parameters in rats, and inconsistent 

body position can lead to conflicting results (Siepe et al., 2005). 

 

The PVN can influence the cardiovascular system via hormonal and neural mechanisms, and 
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it contains neurons that project to the spinal cord and directly influence sympathetic nerve 

activity (Badoer, 2001; Shafton et al., 1998). Since the present study found CBS was present 

in the PVN and its activity was reportedly high in the hypothalamus (Kohl et al., 1979), we 

investigated whether exogenously administered or endogenously produced H2S could 

influence MAP, HR and LSNA.  As there was no effect with any of the five doses of NaHS in 

the RVLM, only the three higher doses of NaHS were used in the PVN.  NaHS microinjected 

into the PVN of WKY rats did not significantly influence MAP, HR or LSNA compared to 

the microinjection of vehicle.  Similarly micro-injection of NaHS into the area surrounding 

the PVN, mainly in the ventral reunions nucleus, did not significantly influence MAP, HR or 

LSNA.   These findings suggest that exogenous administration of H2S into the PVN, or 

closely surrounding region, cannot influence the cardiovascular variables.   

 

After microinjection of HA into the PVN, there was no effect on LSNA and there were 

minimal effects on MAP and HR which gained statistical significance, compared to control, 

only with the lowest dose of HA used.  Given there was no consistent significant effect of HA 

on MAP and HR between the two doses of HA, the physiological relevance of the statistical 

differences observed is questionable.  This view is supported by the fact that AOA 

microinjected into the PVN did not significantly alter MAP, HR or LSNA.  Thus, we 

conclude that endogenous H2S within the PVN does not appear to play a major role in the 

regulation of BP, HR or LSNA in the normotensive state.  In SHR rats we investigated the 

effects of NaHS microinjected into the PVN.  As in the WKY rats, we could not find any 

evidence suggesting H2S in the PVN contributed to the regulation of the MAP, HR and LSNA 

in the hypertensive state. Given the negative findings in the WKY rats, we did not pursue 

further investigations with HA and AOA in the PVN of SHR rats.  
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In a previous study, exogenous as well as endogenous H2S in the posterior hypothalamus 

produced a small, but significant, reduction in blood pressure suggesting that H2S has some 

depressor activity within the posterior hypothalamus (Dawe et al., 2008).  Bolus 

intracerebroventricular injections of NaHS (3-303 µmol) also resulted in significant 

reductions of blood pressure (Liu et al., 2011a). In contrast, a 60 min intracerebroventricular 

infusion of NaHS resulted in a small, significant increase in blood pressure (Ufnal et al., 

2008). However, intracerebroventricular AOA did not affect blood pressure in the latter study 

(Ufnal et al., 2008).  The effects on sympathetic nerve activity were not examined in any of 

these reports. Therefore, H2S may act in brain regions other than key areas like the RVLM 

and PVN, to influence cardiovascular regulation. 

 

Opening of KATP channels is believed to contribute to the effects of H2S, including 

vasodilation and cardioprotection (Bian et al., 2006; Zhao et al., 2001). Opening KATP 

channels could decrease cell firing as a result of hyperpolarisation.  Indeed, a reduced 

discharge rate in spontaneously firing units in the RVLM after administration of a KATP 

channel opener, adenosine, has been reported but there was no effect on blood pressure or 

heart rate (Chen et al., 1998).  A study on hypothalamic slices showed that the spontaneous 

firing of PVN neurons with projections to the spinal cord was reduced by adenosine; an effect 

mediated by opening of KATP channels (Li et al., 2010).  The effect on sympathetic outflow, 

blood pressure or heart rate, however, could not be examined in that in vitro study. The 

present findings suggest that if H2S opens KATP channels in the RVLM or PVN, then KATP 

channels in those brain regions have little influence in the regulation of MAP, HR or LSNA. 

 

In the brain KATP channels are distributed widely.  In the PVN, relatively high mRNA levels 

of the Kir6.2 subtype of the KATP channel have been demonstrated (Dunn-Meynell et al., 
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1998).  These channels are involved in altering firing rates of glucose and may couple 

metabolic activity with neuronal excitability (Ashford et al., 1990).  The expression of these 

channels in the PVN can be influenced by peripheral glucose administration and may be 

involved in the predisposition to obesity (Levin et al., 1997).  Thus, although our studies 

suggest H2S in the PVN has no major role in MAP, HR and LSNA, H2S in the PVN may 

perform other functions, which require further investigation. 

 

 

Methodological Aspects 
Exogenously applied free H2S is sequestered and stored as bound sulfane within minutes, 

therefore, an effect of exogenously applied H2S would be expected to be quite short-lived 

(Ishigami et al., 2009).  This is unlikely to explain the lack of any significant effect of NaHS 

on the cardiovascular variables measured in the present study since previous studies in which 

100 nl of NaHS was infused into the posterior hypothalamus over 4 minutes reported 

significant changes (Dawe et al., 2008) In the present study we used 100 nl injected over a 

shorter time frame (i.e. less than a minute).  

 

In the course of completing these studies, another enzyme, 3-MST, in addition to CBS, was 

reported to contribute to the production of endogenous H2S in the brain (Shibuya et al., 

2009a). However, the role of 3-MST in the production of H2S remains to be fully elucidated, 

in light of studies using astrocytic, microglial and neuroblastoma SH-SY5Y cell lines in 

which H2S production was drastically reduced by inhibition of CBS using hydroxylamine 

(Lee et al., 2009). 
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Conclusion 
The present study demonstrates for the first time the presence of the enzyme CBS in two 

important cardiovascular regulatory areas, the RVLM and PVN.  By contrast CSE was not 

observed in those brain regions.  This is consistent with the current view that, of those two 

enzymes, CBS is the main enzyme in the brain involved in the production of H2S.  The 

present work also showed there was no significant effect on MAP, HR and LSNA upon 

administration of the H2S donor, NaHS, into the RVLM and PVN of WKY and SHR rats, or 

following inhibition of CBS in the RVLM and PVN in WKY.  Thus, we suspect that H2S in 

those regions is not playing a critical role in the regulation of MAP, HR and LSNA, at least in 

the short term.   
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Chapter 4: Regulation of middle cerebral artery 
tone by hydrogen sulfide 
4.1 Introduction  
H2S possesses important cardiovascular effects, including protection against cardiac 

ischaemia-reperfusion injury, inhibition of VSM hypertrophy and attenuation of ROS or 

inflammatory mediator-induced endothelial dysfunction (Calvert et al., 2009; Muzaffar et al., 

2008; Pan et al., 2011).   H2S is also well established as a vasodilator.  The H2S donor, NaHS, 

induces concentration-dependent vasorelaxation in conduit arteries (Al-Magableh et al., 2011; 

Kiss et al., 2008; Kubo et al., 2007; Lee et al., 2007; Schleifenbaum et al., 2010; Zhao et al., 

2001), as well as in resistance artery beds, (Cheng et al., 2004; d'Emmanuele di Villa Bianca 

et al., 2011; Jackson-Weaver et al., 2011).  H2S may be an important physiological 

vasodilator, given that lowered plasma H2S levels have been observed in SHR (Ahmad et al., 

2012) as well as hypertensive humans (Sun et al., 2007).  Furthermore, in one study, mice 

deficient in CSE had pronounced hypertension (Yang et al., 2008), although CSE deletion did 

not influence blood pressure in another study (Ishii et al., 2010).  

 

H2S-induced vasorelaxation in peripheral blood vessels has been attributed to various 

mechanisms, both endothelium dependent (Cheng et al., 2004; Zhao et al., 2001) and 

independent (Al-Magableh et al., 2011; Hosoki et al., 1997).  In particular, opening of 

potassium channels, such as KATP (Al-Magableh et al., 2011; Cheng et al., 2004; Mustafa et 

al., 2011; Zhao et al., 2001), KCNQ-type voltage-dependent (Schleifenbaum et al., 2010) and 

KCa (Jackson-Weaver et al., 2011), has been reported to play a role. There is also evidence for 

a role of the Cl-/HCO3
- exchanger (Kiss et al., 2008; Lee et al., 2007, Al-Magableh, 2011 #73) 

and Ca2+ channels (Al-Magableh et al., 2011; Zhao et al., 2002).  Even within the same vessel 

type, controversy about the responsible mechanism exists; for example, in the rat aorta, the 
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KATP channel blocker, glibenclamide, strongly inhibited the H2S-induced vasorelaxation in 

one study (Zhao et al., 2001), had no effect in another report (Kiss et al., 2008), and caused 

partial blockade in another (Al-Magableh et al., 2011).  The size and origin of the blood 

vessel, as well as species, seem to influence the degree to which each mechanism contributes 

to the vasorelaxation mediated by H2S.  To date, studies on the effects of H2S on 

cerebrovascular tone have been few, but have demonstrated a vasorelaxant action (Leffler et 

al., 2010; Liang et al., 2011; Liang et al., 2012; Liu et al., 2012). 

 

In peripheral vessels, several studies have reported that the vascular action of H2S is biphasic, 

depending on its concentration: NaHS causes constriction at low concentrations (10-100 µM) 

and dilation at higher concentrations (100-1600 µM) (Ali et al., 2006; Kubo et al., 2007; Lim 

et al., 2008).  The vasoconstrictor effects have been attributed to endothelium-dependent 

mechanisms, including reduction of NO levels by direct reaction with NO (Ali et al., 2006; 

Whiteman et al., 2006), or inhibition of eNOS (Kubo et al., 2007). There is also evidence for 

an endothelium independent mechanism – down-regulation of cAMP in smooth muscle cells 

(Lim et al., 2008).  The contractile effect of H2S in cerebral vessels has not been investigated.    

H2S has been reported to have cerebroprotective effects in certain pathophysiological 

conditions, including attenuating cerebral ischemia-reperfusion injury (Ren et al., 2010) and 

decreasing the risk of delayed cerebral ischaemia following subarachnoid haemorrhage 

(Grobelny et al., 2011).  Neuroprotection by H2S has been reported in models of brain 

diseases that are associated with dysfunctional cerebral blood flow, such as Parkinson’s 

disease and vascular dementia (Hu et al., 2010; Zhang et al., 2009).  However, little is known 

about the mechanism of H2S-induced cerebral vasodilation or vasoconstriction. Determining 

these aspects of H2S biology may provide new insights into the regulation of cerebral blood 
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flow. Exploiting any cerebroprotective therapeutic potential of H2S will undoubtedly require 

further understanding of its mechanism.  

 

The aim of this study was to undertake a detailed analysis of the mechanisms potentially 

mediating the vasorelaxant and vasoconstrictor effects of H2S in rat isolated MCA.  The 

localisation of the H2S producing enzyme, CSE, was also examined in these cerebral vessels 

using immunohistochemistry.  
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4.2 Methods 
4.2.1 Wire myography 
MCA were collected (see 2.3.1) and cut into 2mm segments, which were mounted into a wire 

myograph (see 2.3.2 and figure 2.2).  The vessels were then constricted via one of two pre-

constriction protocols, depending which inhibitor was subsequently applied. The 

‘spontaneous tone protocol’ (see 2.3.2 and figure 2.3) was used in all vessel segments, except 

those using nifedipine or bicarbonate free Krebs’, for which the ‘U46619 protocol’ (see 2.3.2 

and figure 2.4) was used.  After pre-constriction, the viability of the endothelium was 

assessed using bradykinin 100 nM, vessel segments were washed and an inhibitor (or vehicle 

as control) was applied 20 minutes prior to constructing a concentration-response curve.  

 

Mechanism of H2S-induced vasorelaxation and vasoconstriction  
The vascular response to cumulative concentrations of the H2S donor, NaHS (10 µM-3 mM), 

was examined in the presence or absence of one (or more) of the following: glibenclamide (10 

µM), a KATP channel blocker; charybdotoxin (100 nM), an inhibitor of large and intermediate 

conductance KCa channels together with apamin (1 µM), an inhibitor of small conductance 

KCa channels; 4-aminopyridine (4-AP, 1 mM), a KV channel blocker; barium (Ba2+, 30 µM), a 

blocker of KIR channels; potassium chloride (KCl, 50 mM), to inhibit K+ conductance; L-

NAME (100 µM), an inhibitor of nitric oxide synthase; indomethacin (10 µM), an inhibitor of 

cyclo-oxygenase; DIDS (300 µM), an inhibitor of chloride channels and chloride-bicarbonate 

(Cl-/HCO3
-) exchange; bicarbonate free Krebs’ (composition same as Krebs’ solution, except 

NaHCO3 was replaced with HEPES free acid 10 mM as a buffer, NaCl concentration was 

increased to 238mM to maintain the osmolarity, and pH was adjusted to 7.4 using NaOH) to 

inhibit bicarbonate exchange; niflumic acid (30 µM), a chloride ion channel blocker; 

nifedipine (3 µM), an L-type voltage-gated calcium channel blocker; catalase (1000 U/mL),  

an enzyme that selectively decomposes hydrogen peroxide;  diphenylene iodonium (DPI, 1 
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µM), an Nox inhibitor; or tempol (1 mM), a SOD mimetic. Each was added 20 minutes prior 

to construction of the NaHS concentration-response curve.  At the completion of each 

experiment, maximal relaxation was recorded using calcium free Krebs’. Each vessel segment 

was used to obtain only one concentration-response curve. 

The effect of H2S on VGCC was also assessed in a separate set of experiments, by examining 

the constriction to calcium replacement in the presence of NaHS or nifedipine, as described in 

detail in section 2.3.2 (influence of VGCC) (see also figure 2.5).   

Vasorelaxation to endogenous H2S 
For these studies, the spontaneous developed tone protocol was used.  Vasorelaxation to 

cumulative (0.5 log-unit) concentrations of L-cysteine (10 µM-100 mM), a precursor to H2S, 

in the presence of the cofactor PLP (1 mM), was examined.  Concentration response curves to 

L-cysteine were obtained in the presence and absence of PPG (20 mM), a CSE inhibitor, 

applied 20 minutes prior to L-cysteine.  

 

For a detailed description of the data analysis, see 2.3.3 Data Analysis, p.80. Briefly, 

comparisons were made between average Emax, maximum constriction, and logEC50 values 

using T-tests for comparisons between two data sets, and one-way ANOVA with a post-hoc 

Dunnett’s test for comparisons between multiple data sets. 

 

4.2.2 Immunohistochemistry for CSE 
Immunohistochemistry was performed on whole MCA using standard protocols (Dan et al., 

2003), as detailed in chapter 2, section 2.5.2. Briefly, MCA were incubated in either mouse 

monoclonal CBS primary antibody (1:50, M01, ABNOVA), or vehicle alone as a negative 

control.  Vessels were then incubated separately in TRITC-conjugated rabbit anti-mouse 

secondary antibody (1:50, Dako Cytomation), followed by application of a Hoechst 

fluorescent nuclear stain (1:500).   
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4.3 Results 
4.3.1 Immunofluorescence for CSE in endothelium and smooth muscle 
 
Immunohistochemical analysis of MCA showed staining for CSE in endothelial (figure 4.1a) 

and smooth muscle cells (figure 4.1b).  Immunohistochemical analysis of mesenteric artery 

and aorta both also show staining for CSE in endothelial (figure 4.2a) and smooth muscle 

cells (figure 4.2b). 
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Figure 4.1 a CSE staining in MCA endothelium. 

Top panels are in the presence of the primary antibody for CSE, bottom panels are negative 

controls processed in the absence of the primary antibody for CSE (red). Left panels highlight 

the presence of nuclei as identified by Hoechst nuclear staining (blue).  Middle top panels 

highlight presence of CSE and right panel shows the merged images. These Images are 

focused for observation of endothelial cell layer. Arrows demonstrate examples of co-staining, 

where CSE is clearly staining endothelial cells. No specific staining for CSE was observed in 

the negative control.  
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Figure 4.1 b CSE staining in MCA smooth muscle.  

Top panels are in the presence of the primary antibody for CSE, bottom panels are negative 

controls processed in the absence of the primary antibody for CSE (red). Left panels highlight 

the presence of nuclei as identified by Hoechst nuclear staining (blue).  Middle top panels 

highlight presence of CSE and right panel shows the merged images.  These images are 

focused for observation of smooth muscle cell layer. Arrows demonstrate examples of co-

staining, where CSE is clearly staining vascular smooth muscle cells. No specific staining for 

CSE was observed in the negative control.  Calibration scale bar = 20 µm.  
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Figure 4.2 CSE staining in mesenteric artery and aorta. 
Left panels are images taken of the mesenteric artery and right panels are of aorta.  Top panels 

in ‘a’ and ‘b’ are in the presence of the primary antibody for CSE, bottom panels in ‘a’ and ‘b’ 

are negative controls processed in the absence of the primary antibody for CSE. All images 

show a merge of CSE (red) and Hoescht nuclei (blue) staining.  The green in ‘a’ is inherent 

fluorescence of the internal elastic lamina.  Images are focused for observation of the 

endothelial cell layer (a) or smooth muscle cell layer (b). No specific staining for CSE was 

observed in any negative control.  Calibration scale bar = 20µm. 



131 

4.3.2 Vasorelaxation response to exogenous  H2S 
The hydrogen sulfide donor, NaHS, (10 µM-3 mM) produced a full, concentration-dependent 

vasorelaxation of MCA that was unaffected by the preconstriction protocol - spontaneous 

tone or U46619. The threshold for the response was 72±11 µM and the pEC50=4.00±0.02 in 

vessels preconstricted using the spontaneous tone protocol (figure 4.3a, table 4.1). 

4.3.3 Vasorelaxation response to endogenous H2S 
The precursor for endogenous H2S formation, L-cysteine (10 µM-100 mM), caused 

concentration dependent vasorelaxation of MCA (Emax= 83±3%, pEC50= 2.28±0.04, n=6), 

which was not affected by the removal of endothelium (figure 4.3b).  The CSE inhibitor, PPG 

(20mM) significantly attenuated the maximum vasorelaxation response to L-cysteine (Emax= 

69±5%, P<0.05, n=5) and induced a rightward shift of the L-cysteine concentration-response 

curve, significantly increasing the EC50 (pEC50= 2.02±0.06, P<0.05, n=5, figure 4.3b) by 

approximately two fold.  The absence of endothelium did not significantly influence the 

response to L-cysteine in the presence of PPG (Emax= 69±2%, pEC50= 1.91±0.04, n=7, figure 

4.3b). 
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Figure 4.3 MCA vasorelaxation response to exogenous and endogenous H2S. 
(a) Cumulative concentration response curves to (i) NaHS in the presence (+E, closed circles, n=13) or 

absence of endothelium (-E, open circles, n=7) and (ii) NaHS in endothelium-intact middle cerebral 

artery segments preconstricted with U46619 (closed triangles, n=4) (b) Cumulative concentration 

response curves to (i) L-cysteine in the presence (closed squares, n=6) or absence of endothelium 

(open squares, n=6) and (ii) L-cysteine with propargylglycine (PPG, 20mM) to block cystathionine 

gamma lyase in the presence (closed triangles, n=5) or absence of endothelium (open triangles, n=7). 

*P<0.05 EC50 L-cysteine in the presence of PPG versus L-cysteine alone, in both the presence and 

absence of endothelium, †P<0.05 Emax L-cysteine in the presence of PPG versus L-cysteine alone, in 

both the presence and absence of endothelium. n = the number of middle cerebral artery segments 

from separate rats. 
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4.3.4 Mechanism of H2S-induced vasorelaxation 
Role of the endothelium: NaHS-induced vasorelaxation was not affected by the removal of 

endothelium (figure 4.3a, table 4.1).  Accordingly, inhibition of the production of nitric oxide 

using the NOS inhibitor, L-NAME (100µM) or the production of prostanoids with the cyclo-

oxygenase inhibitor, indomethacin (10µM) did not significantly alter the NaHS concentration-

response curve (figure 4.4, table 4.1). Blockade of COX did not have any significant effect on 

the level of spontaneously generated tone in these vessels (table 4.2).  Blockade of NOS and 

removal of endothelium both produced a significant increase in the baseline tone (table 4.2). 

 

Role of Potassium channels: Reduction of K+ conductance using 50mM KCl significantly 

decreased the pEC50 (figure 4.5a, table 4.1) and attenuated the Emax of NaHS-induced 

vasorelaxation, suggesting involvement of K+ channels.  However, selective individual 

blockade of KATP, (with glibenclamide), SKCa and IKCa (with charybdotoxin/apamin), KV 

(with 4-aminopyridine) or KIR (with barium) channels did not significantly alter pEC50 or Emax 

(figure 4.5b, table 4.1). Similarly, the combination of glibenclamide, charybdotoxin, apamin 

and 4-aminopyridine did not affect the response to NaHS (table 4.1).  The basal tone was not 

affected by the presence of glibenclamide or 4-aminopyridine, but the addition of 50mM KCl 

produced a significant increase in the baseline tone, similar to that produced by L-NAME 

(table 4.2).  Application of charybdotoxin/apamin and barium both also significantly 

increased baseline tone (table 4.2). 
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Figure 4.4 Effect of inhibition of the synthesis of endothelial-derived factors on NaHS-

induced vasorelaxation. 

Cumulative concentration response curves to NaHS in endothelium-intact MCA segments in 

the absence (control, closed circles, n=13), or presence of indomethacin (10 µM, closed 

squares, n=5), or L-NAME (100 µM, closed triangles, n=9). n = the number of middle 

cerebral artery segments from separate rats.  
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Figure 4.5 Effect of potassium channel inhibition on NaHS-induced vasorelaxation. 

Cumulative concentration response curves to NaHS in endothelium intact MCA segments in 

the absence (control, closed circles, n = 13), or presence of (a) KCl (50mM, closed squares, n 

= 7), *P<0.05 EC50, †††P<0.001 Emax compared to control, or (b) 4-AP (1 mM, closed squares, 

n = 7); charybdotoxin (100 nM) together with apamin (1 µM, closed triangles, n = 7); 

glibenclamide (10 µM, closed upside-down triangles n = 7) or Ba2+ (30 µM, closed diamonds, 

n = 5). n = the number of middle cerebral artery segments from separate rats.  
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Efficacy of glibenclamide: Since KATP channel opening is reported as a key mechanism for 

H2S-mediated vasodilation in the periphery, we investigated the efficacy of our KATP channel 

blocker, glibenclamide, in MCA.  Levcromakalim (10 nM-100 µM), a KATP channel opener, 

induced concentration-dependent vasorelaxation of MCA (figure 4.6).  Glibenclamide (10 µM) 

induced a large rightward shift of the levcromakalim concentration response curve, 

significantly increasing the EC50 by nearly 100 fold (figure 4.6). 

 

Role of reactive oxygen species: Inhibiting the formation of reactive oxygen species (ROS) 

using the NADPH oxidase inhibitor, DPI (1 µM), did not significantly alter the vasorelaxation 

to NaHS (figure 4.7, table 4.1).  Scavenging ROS using the superoxide dismutase mimetic, 

tempol (1 mM), also failed to alter NaHS-induced vasorelaxation (figure 4.7, table 4.1).  The 

possibility of involvement of hydrogen peroxide was also investigated using catalase, an 

enzyme that selectively decomposes hydrogen peroxide.  Catalase (1000 U/mL) had no effect 

on the vasorelaxation induced by NaHS (figure 4.7, table 4.1). None of the agents used to 

manipulate ROS had any significant influence on basal tone (table 4.2). 

 

Role of chloride channels and bicarbonate exchange: Application of DIDS (300 µM), an 

inhibitor of both chloride channels and chloride-bicarbonate exchange, produced a significant 

rightward shift of the NaHS concentration-response curve (figure 4.8, table 4.1).  Whether the 

effect of DIDS was due to chloride channels was investigated using the chloride channel 

blocker, niflumic acid.  Niflumic acid (30 µM) did not produce any significant shift of the 

NaHS concentration-response curve (figure 4.8, table 4.1).  Bicarbonate free Krebs’ was used 

to inhibit the bicarbonate exchanger, however this also failed to alter the NaHS concentration-

response curve (figure 4.8, table 4.1). Basal tone was significantly reduced by niflumic acid, 

but not influenced by DIDS or bicarbonate free Krebs’ (table 4.2).   
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Figure 4.6 Effect of glibenclaminde on levcromakalim induced vasorelaxation. 

Cumulative concentration response curves to levcromakalim in endothelium intact MCA 

segments in the absence (control, closed circles, n=4), or presence of glibenclamide (10µM, 

closed squares, n = 4). ***P<0.001 EC50 compared to control. n = the number of middle 

cerebral artery segments from separate rats. 
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Figure 4.7 Effect of ROS manipulation on NaHS-induced vasorelaxation. 

Cumulative concentration response curves to NaHS in endothelium intact MCA segments in 

the absence (control, closed circles, n = 4), or presence of catalase (1000 U/mL, closed 

squared, n = 4), tempol (1 mM, closed triangles, n = 3) or DPI (1 µM, closed upside-down 

triangles, n = 4).  n = the number of middle cerebral artery segments from separate rats. 
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Figure 4.8 Effect of inhibition of chloride channels or chloride-bicarbonate exchange on 

NaHS-induced vasorelaxation. 

Cumulative concentration response curves to NaHS in endothelium intact MCA segments in 

the absence (control, closed circles, n = 13), or presence of DIDS (300µM, closed squares, n 

= 5), niflumic acid (30µM, closed triangles, n = 3) or HCO3
- free Krebs’ (closed upside down 

triangles, n = 4), ***P<0.001 EC50 DIDS compared to control. n = the number of middle 

cerebral artery segments from separate rats. 
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Role of voltage-gated calcium channels: Nifedipine (3 µM) significantly attenuated the 

maximum relaxation to NaHS in MCA, although the pEC50 was not significantly affected 

(figure 4.9a).  Application of nifedipine produced a significant reduction of basal tone, similar 

to that induced by niflumic acid (supplementary table 1). The ability of NaHS to inhibit 

voltage-gated calcium channels was investigated using calcium free Krebs’ plus 100 mM KCl 

to depolarise VSM cells.  Concentration response curves to calcium replacement were 

unaffected by NaHS (100 µM and 1 mM), however, NaHS 10mM significantly attenuated the 

maximum constriction to calcium by approximately 80% (figure 4.9b), without significantly 

influencing the pEC50.  Nifedipine (3 µM), as a positive control, also significantly reduced the 

maximum constriction to calcium replacement by approximately 80% (figure 4.9b).  
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Figure 4.9 Role of voltage-gated calcium channels 

Cumulative concentration response curves to NaHS in endothelium intact MCA segments in the 

absence (control, closed circles, n = 5), or presence of nifedipine (3µM, closed triangles, n = 6). 
††P<0.01 Emax compared to control. n = the number of middle cerebral artery segments from separate 

rats. These vessels were preconstricted with U46619 (b) Cumulative concentration response curves to 

CaCl2 in endothelium intact MCA incubated in the Ca2+-free Krebs in the absence (control, closed 

diamonds, n = 5), or presence of NaHS 100µM (closed squares, n=3), 1mM (closed triangles, n = 4), 

10mM (closed upside down triangles, n = 5) and nifedipine (3µM, open diamonds, n = 5). †††P<0.001 

Emax compared to control.  n = the number of middle cerebral artery segments from separate rats.  
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Table 4.1  pEC50 and Emax of NaHS-induced vasorelaxation the presence or absence of 

pharmacological inhibitors. 

 

Drug n pEC50 Emax (%) 

    

Control (spontaneous tone) 13 4.00±0.02 98±0.7 

Control (U46619) 4 3.79±0.04 96±1 

    

KCl (50mM) 7 3.56±0.04* 87±1††† 

glibenclamide (10µM) 7 3.81±0.08 98±0.5 

4-aminopyridine (1mM) 7 3.82±0.07 98±0.7 

charybdotoxin/apamin 

(100nM/1µM) 

7 3.85±0.05 

99±0.2 

barium (30µM) 6 4.05±0.09 92±3 

cocktail  (glibenclamide+ 

4-AP+chtx/apa) 

3 3.74±0.09 99±0.6 

    

NaHS  (-E) 7 3.80±0.03 98±1 

indomethacin (10µM) 5 3.79±0.05 99±0.3 

L-NAME (100µM) 9 3.94±0.08 99±0.4 

    

DIDS (300µM) 5 3.24±-0.05*** 99± 0.6 

HCO3
- free  4 3.92±0.05 96± 2 

niflumic acid (30µM) 3 4.10±0.07 97±2 

    

nifedipine (3µM) 6 3.54±0.09 69±7†† 

    

catalase (1000U/mL) 4 3.95±0.05 97±1 

tempol (1mM) 3 3.95±0.05 98±2 

DPI (1µM) 4 3.82±0.1 96±3 

 

n = the number of middle cerebral artery segments from separate rats. Values are expressed as 

mean ± standard error of the mean. *P<0.05, ***P<0.001 EC50; ††P<0.01, †††P<0.001 Emax. 

 
 



143 

 
Table 4.2.  Influence of drugs on basal tone. 

Drug Tone (pre inhibitor) (mN) Baseline tone (pre NaHS) 

(mN) 

   

Control (spontaneous tone) 6.8±0.3 7.2±0.3 

Control (U46619) N/A 6.6±0.5 

   

KCl (50mM) 5.6±0.6 9.5±0.5*** 

glibenclamide (10µM) 7.2±0.6 7.6±0.6 

4-aminopyridine (1mM) 6.6±0.5 7.1±0.7 

charybdotoxin/apamin 

(100nM/1µM) 

6.9±0.5 8.2±0.4** 

barium (30µM) 7.4±0.8 7.9±0.9* 

   

NaHS (-E) N/A 9.1±0.5*** 

indomethacin (10µM) 7.7±0.6 7.7±0.8 

L-NAME (100µM) 6.8±0.6 9.6±0.7*** 

   

DIDS (300µM) 7.0 7.7±1 

HCO3
- free N/A 6.7±0.8 

niflumic acid (30µM) 8.0 5.8±0.7* 

   

Nifedipine (3µM) N/A 5.1±0.7* 

   

catalase (1000U/mL) 6.1±0.5 7.7±1 

tempol (1mM) 6.0±0.6 7.3±1 

DPI (1µM) 7.3±1 7.0±1 

‘Tone (pre inhibitor)’ is the average tone on vessel segments immediately prior to addition of any 

pharmacological inhibitor.  ‘Baseline tone’ is the average tone on vessel segments immediately prior 

to the NaHS dose response curve (approximately 20 minutes after addition of any pharmacological 

inhibitor). Values are expressed as mean ± standard error of the mean. *P<0.05, **P<0.01, 

***P<0.001 ‘baseline tone’ compared to ‘tone (pre-inhibitor)’.  In vessel segments where an inhibitor 

was not applied (endothelium denuded), or that were pre-constricted using the U46619 protocol, the 

tone ‘pre-inhibitor’ is not applicable.  In these groups, ‘baseline tone’ was compared to the control 

‘tone (pre-inhibitor)’. mN, milliNewtons 
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4.3.5 Mechanism of H2S-induced vasoconstriction 
NaHS induced a biphasic effect on MCA tone, consisting of constriction, followed quickly by 

a robust relaxation (figure 4.10).  This biphasic effect was observed after each addition of 

NaHS at concentrations greater than 30-100 µM (threshold for constriction response = 84 ± 

23 µM).  The magnitude of constriction caused by NaHS was concentration-dependent.  

Concentration-response curves to the constriction caused by NaHS in the presence and 

absence of all inhibitors were also analysed. Reduction of K+ conductance using 50mM KCl 

almost abolished constriction to NaHS (P<0.001, figure 4.11a, table 4.3). Application of the 

chloride channel and anion exchange inhibitor, DIDS (300 µM), produced a significant 

rightward shift of the NaHS concentration-response curve (P<0.05, figure 4.11b, table 4.3b).   

Blockade of L-type Ca2+ channels using nifedipine (3µM) significantly decreased maximum 

constriction (P<0.05) and induced a rightward shifted the NaHS concentration-response curve 

(P<0.01, figure 4.11c, table 4.3).  Selective decomposition of H2O2 using catalase (1000U/mL) 

significantly decreased the maximum constriction to NaHS (P<0.05, figure 4.11d, table 4.3).  

None of the other inhibitors used significantly influenced the constriction to NaHS (table 4.3). 
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Figure 4.10 Example of original trace showing effects of NaHS on MCA vascular tone 

Original trace of tone on an MCA during a concentration-response curve to NaHS, as 

recorded by Myodaq® software.  The MCA had been preconstricted using the spontaneous 

tone protocol.  Arrows indicate the time at which each concentration was administered into 

the myograph chamber.  
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Figure 4.11 Effect of various inhibitors on NaHS-induced vasoconstriction 
Cumulative concentration response curves pertaining to NaHS-induced vasoconstriction of 

endothelium intact MCA segments in the absence (control, closed circles, n = 12), or presence 

of (a) KCl (100mM, closed squares, n = 7); (b) DIDS (300 µM, closed upside-down triangles, 

n = 5); (c) nifedipine (3µM, closed triangles, n = 6) or (d) catalase (1000U/mL, closed 

diamonds, n = 4). *P<0.05 pEC50 DIDS compared to control; **P<0.01 pEC50 nifedipine 

compared to control; †††P<0.001 maximum constriction (%) KCl compared to control; 

†P<0.05 maximum constriction (%) nifedipine and catalase compared to control. n = the 

number of middle cerebral artery segments from separate rats.   
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Table 4.3  pEC50 of NaHS-induced vasoconstriction and maximum constriction to NaHS in 

the presence or absence of pharmacological inhibitors. 

Drug 

n pEC50 Max 

constriction (%) 

    

Control (spontaneous tone) 12 3.79±0.13 56±8 

Control (U46619) 4 3.43±0.22 62±12 

    

KCl (50mM) 7 - 5.7±1††† 

glibenclamide (10µM) 4 3.60±0.29 47±8 

4-aminopyridine (1mM) 6 3.60±0.08 61±15 

charybdotoxin/apamin (100nM/1µM) 7 3.60±0.13 62±7 

barium (30µM) 3 3.86±0.17 65±20 

    

NaHS  (-E) 6 3.82±0.23 55±8 

indomethacin (10µM) 5 3.78±0.17 54±9 

L-NAME (100µM) 7 3.53±0.13 68±8 

    

DIDS (300µM) 5 2.66±0.08* 59± 12 

HCO3
- free  4 3.98±0.33 50± 9 

niflumic acid (30µM) 3 4.10±0.18 79±10 

    

nifedipine (3µM) 6 2.58±0.11** 29±4† 

    

catalase (1000U/mL) 4 4.09±0.28 27±8† 

tempol (1mM) 3 3.64±0.43 44±11 

DPI (1µM) 3 3.54±1.1 58±24 

 
n = the number of middle cerebral artery segments from separate rats. Values are expressed 

as mean ± standard error of the mean. *P<0.05, **P<0.01 EC50; †P<0.05, †††P<0.001 Emax. 

Note that the pEC50 for NaHS in the presence of KCl (50mM) could not be calculated, due to 

the almost complete abolishment of the response by KCl (50mM), resulting in a lack of 

concentration-response curve (see figure 4.11a). 
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4.4 Discussion 
  
The present study is the first to demonstrate the presence of CSE specifically within 

endothelial cells and smooth muscle cells of MCA, and to examine in detail the mechanism 

of NaHS-mediated vasorelaxation in rat middle cerebral arteries. The CSE substrate, L-

cysteine caused a PPG-sensitive vasorelaxation, suggesting a role for endogenous H2S in the 

regulation of cerebral vascular function. Each addition of the H2S donor, NaHS, (above a 

threshold concentration of 84±24µM) caused an initial constriction response, which was 

followed quickly by a robust relaxation (above a threshold concentration of 72±11 µM).  

Both constriction and relaxation were concentration dependent.  Application of nifedipine 

produced a significant attenuation of the maximum vasorelaxation elicited by NaHS, 

suggesting that NaHS may block L-type VGCC.  The data also show that relaxation of MCA 

elicited by NaHS is not endothelium dependent and that NaHS-induced vasorelaxation is 

only partially due to potassium channel opening, as reducing K+ conductance produced a 

modest inhibition of the NaHS-induced relaxation.  This role for potassium channels could 

not be attributed to KATP, KCa, KV or KIR channels as selective blockade of those channels did 

not have any effect.  NaHS relaxation was DIDS sensitive, although the effect could not be 

explained by inhibition of chloride channels or Cl-/HCO3
- exchange, as selective blockade of 

these mechanisms had no effect.   Maximal NaHS-induced constriction was inhibited by KCl, 

nifedipine and catalase.  DIDS induced a rightward shift of the concentration-response curve 

for NaHS-induced constriction. 

 

This study demonstrates, for the first time, the presence of CSE within endothelial cells and 

VSM in MCA, confirming a previous report of the presence of CSE in cerebral arterioles 

(Leffler et al., 2010).  The immunohistochemistry data also demonstrates the presence of 

CSE in endothelial cells and VSM of both mesenteric artery and aorta.  The presence of CSE 
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in endothelium of peripheral vessels remains controversial (Jackson-Weaver et al., 2011; 

Mustafa et al., 2011; Shibuya et al., 2009a; Yang et al., 2008; Zhao et al., 2001).  However, 

the present findings are in agreement with a study demonstrating the presence of CSE in 

mouse mesenteric artery endothelium and human umbilical vein endothelial cells by 

immunohistochemistry and western blotting, respectively (Yang et al., 2008).  Furthermore, 

cultured bovine aortic endothelial cells could generate H2S, and CSE gene silencing inhibited 

this H2S production (Yang et al., 2008).  In support of the present findings in VSM, CSE has 

been demonstrated in rat and mouse aorta smooth muscle cells, by immunohistochemistry or 

real-time PCR (Al-Magableh et al., 2011; Hosoki et al., 1997; Zhao et al., 2001).  

 

Given that CSE was shown to be present in MCA, the ability of the vessels to relax to 

endogenously generated H2S was examined.  L-cysteine elicited concentration-dependent 

relaxation, which was attenuated by the CSE inhibitor, PPG, indicating that the relaxation 

involved endogenous production of H2S. The effect of PPG was relatively small suggesting 

that either (i) only a small proportion of the vasorelaxation induced by L-cysteine was due to 

H2S production, (ii) L-cysteine was being converted to H2S via an alternate enzyme, for 

example 3-MST (the presence of which has been demonstrated in vascular tissues (Shibuya et 

al., 2009a) or (iii) there was incomplete inhibition of CSE by PPG.  The latter could be due to 

the relatively poor cell permeability of PPG (Marcotte et al., 1976). It should also be noted 

that PPG acts by covalently binding to the pyridoxal 5’-phosphate (PLP) (co-factor) binding 

site of the CSE enzyme, thus may also influence other PLP-dependent enzymes (Johnston et 

al., 1979). Despite these limitations, PPG is a widely used inhibitor of endogenous H2S 

production and is the best available pharmacological tool at this time.  L-cysteine-induced 

relaxation in MCA was independent of endothelium, suggesting that conversion of L-cysteine 

to H2S occurs mainly in the sub-endothelial tissue, for example, in smooth muscle cells.  



 150 

Thus, although our immunohistochemistry data demonstrate the presence of CSE in the 

endothelium, the vasorelaxation studies indicate that the production of H2S from the 

endothelial layer does not make a major contribution to the vasorelaxation mediated by 

endogenous H2S in MCA.  

 

In rat mesenteric arteries L-cysteine-induced relaxation was attenuated by endothelium 

removal (Jackson-Weaver et al., 2011), suggesting that the contribution of endothelial 

derived H2S to vasorelaxation is tissue-type specific.  Furthermore, there is evidence to 

suggest that H2S may be a candidate for endothelium-derived hyperpolarizing factor (EDHF), 

such that CSE-/- mice have attenuated cholinergic vasorelaxation (Yang et al., 2008) and 

hyperpolarisation (Mustafa et al., 2011) in mesenteric artery and aorta.  The present findings 

are not supportive of a role for H2S as an EDHF in MCA.  The discrepancy may be due to an 

anomaly introduced by the CSE-/- model: this model has been shown to induce 

hyperhomocysteinaemia (HHcy), thus, the findings of the aforementioned studies may have 

been confounded by endothelial dysfunction induced by HHcy generated ROS (Edwards et 

al., 2012).  However, it is possible that H2S acts as an EDHF in mesenteric, but not cerebral 

vessels, given evidence that the candidate for EDHF is different in cerebral and mesenteric 

arteries (Dong et al., 2000). 

 

In the present study, the maximum relaxation induced by NaHS was significantly reduced by 

nifedipine, a highly selective L-type calcium channel blocker (Furukawa et al., 1999), 

suggesting a role for voltage-gated calcium channels. To investigate this further, the effect of 

NaHS on calcium-mediated vasoconstriction was determined.  NaHS significantly inhibited 

the ability of calcium to constrict rat middle cerebral arteries, supporting the view that 

vasorelaxation induced by NaHS involved inhibition of voltage-gated calcium channels. 
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NaHS inhibition of L-type calcium channel conductance has also been demonstrated in rat 

cardiac myocytes (Sun et al., 2008).  In the present study, the concentration of NaHS required 

to significantly block the calcium-induced constriction was at least 10 fold higher than that 

which produced maximum vasorelaxation. This difference has been observed previously (Al-

Magableh et al., 2011) and is probably due to the different methodological conditions used to 

examine the vasorelaxation compared to the vasoconstriction responses.  In these latter 

experiments it is necessary to depolarise the VSM cells, so that the VGCC are open. The 

level of depolarisation achieved with 100mM K+ would be expected to be greater than either 

that of a spontaneously contracted artery, or an artery sub-maximally contracted with U46619.  

Therefore a higher concentration of NaHS may be required to counteract this depolarisation.   

 

The present work indicates an endothelium independent mechanism for H2S-induced 

vasorelaxation, since removal of endothelium had no effect on the NaHS-induced relaxation 

of MCA. This is in agreement with our data showing that inhibition of the synthesis of the 

endothelium derived vasodilators, nitric oxide and prostacyclin, had no effect. In a recent 

report, removal of the endothelium attenuated the effect of NaHS (Liu et al., 2012), however, 

that report examined the effect of NaHS on myogenic tone development, as opposed to the 

present study investigating the vasorelaxant mechanisms.  The discrepancy is likely due to a 

difference in mechanism of H2S between the two models: inhibition of myogenic tone 

development compared to vasorelaxation.  The role of the endothelium in the vasorelaxation 

mediated by H2S in peripheral vessels also remains controversial.  Several studies using 

mouse and rat aorta report that removal of endothelium had no effect on H2S-mediated 

vasorelaxation (Al-Magableh et al., 2011; Hosoki et al., 1997; Kubo et al., 2007).  In contrast, 

other studies, using rat aorta and mesenteric vessels, have reported an attenuation of H2S-
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mediated relaxation when the endothelium was removed (Cheng et al., 2004; Zhao et al., 

2001).  

 

The present data suggests only a partial role for potassium channels in mediating 

vasorelaxation to NaHS, as 50mM KCl significantly reduced the maximum relaxation by 

approximately 10% and sensitivity by 4 fold.  The contribution of specific potassium 

channels to the H2S-mediated vasorelaxation was also investigated. Using glibenclamide to 

block KATP channels had no effect on the vasorelaxation to NaHS, but effectively blocked the 

vasorelaxation elicited by the specific KATP channel opener, levcromakalim.  Similarly, 

blockade of KV, KCa and KIR channels had no effect.  The role of two-pore domain K+ 

channels was not investigated and it is conceivable that the observed minor role for K+ 

channels in the H2S-induced vasorelaxation may be attributable to this potassium channel 

subtype. An alternative explanation for the ability of 50mM K+ to attenuate the H2S-mediated 

vasorelaxation is that the strong depolarisation induced by the high concentration of K+ may 

influence voltage operated mechanisms, for example, opening voltage-gated calcium 

channels (see later in discussion). This view would not support a role for K+ channels in the 

H2S-mediated vasorelaxation in MCA.  

 

A very recent study demonstrates that H2S increases the frequency of Ca2+ sparks in piglet 

cerebral arteriole smooth muscle cells, causing an increase in the frequency of transient KCa 

current, and thus vasorelaxation (Liang et al., 2012).  In the present study, combined BKCa 

and SKCa blockade did not influence H2S-mediated vasorelaxation, indicating that this 

mechanism does not contribute to H2S-mediated vasorelaxation of rat MCA.  This may be 

due to a difference in the contribution of KCa to resting tone.  Inhibition of BKCa and SKCa 

resulted in a significant increase in resting tone on adult rat MCA in the present study 
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(supplemental table 1) in agreement with previous work (Gollasch et al., 1998), but in 

newborn rats or newborn pigs the increased tone is not observed (Gollasch et al., 1998; Liang 

et al., 2012).  These observations suggest the influence of H2S on KCa may be age dependent.  

In peripheral vessels, age also influences the effect of H2S on KCa (d'Emmanuele di Villa 

Bianca et al., 2011; van der Sterren et al., 2011). 

 

The present study finds no role for KATP channels in H2S-mediated relaxation of MCA.  

Three other studies have investigated the role of KATP channels in cerebral vessels. In an in 

vivo study, using piglet pial arterioles (50 µm), the vasorelaxation response to H2S solution 

was found to be entirely mediated by KATP channels (Leffler et al., 2010).  In a separate study, 

using piglet cerebral arterioles (200µm) in vitro, only 55% of the vasorelaxation could be 

attributed to KATP channels (Liang et al., 2011). Additionally, the latter study showed that the 

Na2S (a H2S donor) -mediated vasorelaxation of cerebral vessels of SUR2 (a KATP subunit) 

knockout mice was only 50% of the wild type mice (Liang et al., 2011). In a more recent 

study, glibenclamide reportedly reduced the NaHS-induced reduction in myogenic tone at 

intraluminal pressures between 20-60mmHg, but not between 80-120mmHg (Liu et al., 

2012). While these studies show that KATP channels play a role, the data strongly suggests 

that other mechanisms are also involved.  The disparity between the present study and these 

previous reports on the role of KATP channels, may be due to different vessel types, species, 

and age of the animals.  Indeed it is known that the sensitivity of lemakalim-induced cerebral 

vasorelaxation is different in newborn compared to adult cerebral arteries in vitro (Pearce et 

al., 1994). Additionally, in the present study, the vessels were investigated under isometric 

compared to isobaric conditions (Liang et al., 2011), or pressure-induced myogenic tone (Liu 

et al., 2012).  Although these different conditions can influence the reactivity of vessels, the 

influence is not dramatic (McPherson, 1992), and it is unlikely to account for the marked 
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differences between the studies in the contribution of KATP channels in the vasorelaxation 

mediated by H2S.  The role of KATP channels in the H2S-mediated vasorelaxation in 

peripheral vessels is also controversial.  In some studies, using rat and mouse aorta, only 

partial inhibition of the relaxation induced by NaHS was demonstrated by blockade of KATP 

channels (Al-Magableh et al., 2011; Cheng et al., 2004; Zhao et al., 2001). By contrast, other 

studies using rat mesenteric arteries, and rat and mouse aorta, failed to demonstrate any role 

of KATP channels in the vasorelaxation mediated by H2S (Jackson-Weaver et al., 2011; Kiss 

et al., 2008; Kubo et al., 2007).    

 

Since the present findings suggested only a partial role for K+ channels in the H2S-mediated 

vasorelaxation, other potential mechanisms that could contribute were investigated.  DIDS 

was used to explore the role of Cl- channels and Cl-/HCO3
- exchange and was found to 

significantly attenuate the vasorelaxation induced by NaHS.  However, the more selective Cl- 

channel blocker, niflumic acid, did not affect the response to NaHS, suggesting Cl- channels 

were not involved.  To investigate the role of Cl-/HCO3
- exchange, HCO3

- free solution was 

used but also had no effect on the NaHS vasorelaxation response. Thus, Cl-/HCO3
- exchange 

does not appear to play a role in the vasorelaxation mediated by H2S. Since DIDS is known 

to be non-specific in its actions, the ability of DIDS to attenuate the NaHS response may 

involve some other action(s) of this drug, for example, inhibition of Na+ current or influences 

on the ryanodine receptor (Hill et al., 2002; Liu et al., 1998; Lu et al., 2007). This requires 

further investigation. 

 

ROS are generated at low levels in cerebral vessels and are essential for normal vascular cell 

physiology, having multiple functions, including regulation of tone (Miller et al., 2005).  

Under basal conditions, ROS are maintained at low levels by production of NO, which 
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rapidly reacts with superoxide (Rubanyi et al., 1986). H2S has also been shown to directly 

scavenge ROS (Whiteman et al., 2005) and to influence ROS production (Samhan-Arias et 

al., 2009).  It was therefore examined whether the vascular effects of H2S were due to an 

influence on ROS. Since tempol, DPI and catalase had no effect on the vasorelaxation 

induced by NaHS, the present findings do not support a role for ROS in the vasorelaxation 

mediated by H2S.   This is in contrast with a finding that Tiron, a superoxide dismutase 

mimetic, enhanced the vasorelaxant action of H2S in aortic rings (Liu et al., 2010).  The 

difference is probably due to a marked difference between the reaction of cerebral and 

peripheral vessels to ROS (Faraci, 2006).  There is evidence that K+ channels, such as KATP 

and KCa, mediate vasodilator effects of ROS in cerebral vessels (Faraci, 2006). Our findings 

that selective KATP and KCa blockade had no effect on the vasorelaxation induced by NaHS 

therefore also support the view that ROS are not involved in H2S-induced vasorelaxation of 

MCA. 

 

In peripheral vessels, several studies demonstrate that H2S has a biphasic effect on vascular 

tone, consisting of constriction at low concentrations, followed by dilation at high 

concentrations (Ali et al., 2006; Kubo et al., 2007; Lim et al., 2008; Liu et al., 2010).  The 

present study is the first to investigate the constrictor action of H2S in cerebral vessels and 

demonstrates a ‘dual vascular response’ of cerebral vessels to H2S, consisting of a transient 

vasoconstriction, followed by a robust vasorelaxation. The response is referred to as ‘dual’ as 

opposed to ‘biphasic’, since both constriction and relaxation were observed after 

administration of a single concentration of NaHS (compared to the biphasic response to 

NaHS which consists of constriction at low concentrations, and dilation at high 

concentrations, with only one of these responses occurring after a single addition of NaHS).  

A similar dual vascular response to H2S has also been observed in mesenteric arteries 
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(d'Emmanuele di Villa Bianca et al., 2011). In the present study, the magnitude of NaHS-

induced constriction was concentration-dependent.  While the subsequent robust 

vasorelaxation has been the main subject of this study, as an aside, it was also possible to 

observe the effect of each of the treatments on the constriction response.    

 

The maximum constriction to NaHS was nearly completely abolished by 50 mM K+, 

indicating a possible involvement of K+ channels, although this could not be attributed 

specifically to any of KATP, KV, KCa or KIR, since selective blockade of each of these 

pathways had no effect.  Similarly in rat aorta, although KATP channels do not appear to be 

involved in the H2S-induced constrictor response (Kubo et al., 2007; Lim et al., 2008), the 

response was inhibited by 50mM KCl (Kubo et al., 2007).  The lack of efficacy of the 

selective K+ channel blockers indicates that 50mM K+ may block the constrictor action of 

H2S via inhibition of K+ channels other than those targeted in the present study, for example, 

two-pore-domain K+ channels, or a subtype of KV, KV7, which are insensitive to the KV 

blocker 4-aminopyridine (Mackie et al., 2008).  Alternatively, the constrictor action of H2S 

may be due to opening of VGCC, and thus the depolarising effect of 50mM K+, and ensuing 

increased open probability of VGCC, would reduce the population of VGCC upon which H2S 

could act. In support of this view, blockade of L-type calcium channels using nifedipine 

significantly inhibited NaHS-induced constriction in the present study, and also in a study 

using rainbow trout branchial arteries (Dombkowski et al., 2004).   

 

DIDS caused a significant rightward shift of the constriction concentration-response curve, 

although this could not be specifically attributed to either bicarbonate exchange or inhibition 

of chloride channels, as selective blockade of each of these pathways had no effect.  DIDS 

has also been shown to attenuate H2S-induced constriction of rat aortic rings (Liu et al., 
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2010), however, this effect was attributed to DIDS’ inhibition of bicarbonate exchange, since 

a bicarbonate-free medium also blocked the constriction.  The authors concluded that H2S 

stimulates the anion exchanger to transport bicarbonate for intracellular O2
-, which 

inactivates NO to induce vasoconstriction.  Thus the difference observed in terms of efficacy 

of the bicarbonate-free medium may be attributed to a difference in reactivity of the two 

vessel types to O2
-.  Selective decomposition of H2O2 using catalase also significantly 

inhibited H2S- induced vasoconstriction in the present study.  Since H2O2 generally acts to 

dilate VSM (Wolin, 2009) including MCA (Faraci, 2006), the efficacy of catalase is 

suggestive that H2S induces constriction via reducing H2O2 levels, although this hypothesis 

requires further investigation.  

 

A striking similarity is observed when comparing the agents that inhibited vasodilation to 

those that inhibited constriction. Of the 14 agents investigated in this study, only three – 

50mM KCl, nifedipine and DIDS - significantly inhibited vasorelaxant effects of H2S, and all 

three also inhibited vasoconstriction.   Only one agent, catalase, was effective at blocking 

vasoconstriction but not vasorelaxation.  Although speculative, the similarity in mechanism 

between constriction and relaxation could be taken to indicate that both constriction and 

relaxation are a consequence of one initiating effect of H2S.  For example, H2S may induce a 

hypoxia-like state, by its inhibition of cytochrome c oxidase (Groeger et al., 2012), leading to 

influences on vascular tone.  Observations of various other studies support the hypothesis that 

the vascular actions of H2S are due to inhibition of cytochrome c oxidase.  Firstly, cyanide, a 

cytochrome c oxidase inhibitor, also induces constriction followed by relaxation (Mathew et 

al., 1991).  Secondly, vascular responses to H2S and hypoxia have been compared, and found 

temporally and quantitatively identical in a range of vessel types (Olson et al., 2006; Olson et 

al., 2008; Olson et al., 2001).  Finally, similar mechanisms contribute to H2S-induced and 
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hypoxia-induced vasodilation, including KATP (Adebiyi et al., 2011), BKCa (Armstead, 1998) 

and generation of NO (Pearce, 1995).  Interestingly, the precise mechanism of hypoxic 

vasodilation remains unresolved, and similar controversies exist regarding the contribution of 

various mechanisms, for example KATP channels (Adebiyi et al., 2011). However, whether 

the dual vascular effect of H2S in MCA observed in the present study was due to metabolic 

inhibition requires further investigation. 

 

Methodological Aspects 

 In the present study the EC50 of NaHS (100±5 µM) to induce vasorelaxation was similar to 

that observed in other studies using mouse and rat aorta (Al-Magableh et al., 2011; Kiss et al., 

2008; Lee et al., 2007; Zhao et al., 2001). However, a study in cerebral vessels observed a 

higher potency of Na2S at relaxing piglet pial arterioles (EC50 (Na2S)= 30±5 µM) (Liang et 

al., 2011).  The discrepancy between this and the present study may be due to any number of 

differences, including; i) vessel type and species – H2S is more potent at relaxing mesenteric 

vessels than aorta (EC50= 25±4 µM; 125±14 µM in mesenteric and aorta, respectively, 

(Cheng et al., 2004; Zhao et al., 2001)) so a similar variation between cerebral vessel types is 

possible; ii) H2S donor used – the NaHS used in the present study may have different H2S 

releasing properties to the Na2S used by Liang et al.  This could account for the observation 

that double the concentration of NaHS was required to produce a similar response to Na2S 

(Liang et al., 2011); iii) method used to observe vasorelaxant response – although vessels 

treated with isometric compared to isobaric conditions may show different reactivity, the 

difference is not great (McPherson, 1992).  Even within vessels under isometric conditions, 

the present study indicates that the preconstriction protocol does not influence the reactivity 

of the vessels to H2S - NaHS produced a similar concentration-response curve in MCA 

preconstricted with either U46619 or the spontaneous tone protocol. We therefore used the 

spontaneous tone method to preconstrict MCA whilst avoiding confounding influences of 

preconstriction drugs.   
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Plasma concentrations of H2S have been reported to be between 40-300 µM, which places the 

vasorelaxant responses observed in our study within the physiological range (Kimura, 2002). 

However, more recent studies suggest that these are overestimations, and the actual 

concentration may, in fact, be in the nanomolar range (Furne et al., 2008; Whitfield et al., 

2008).  It should be noted that the amount of H2S actually reaching the target vascular tissue 

is probably much lower than the concentration of NaHS applied to the bath for several 

reasons.  Firstly, a previous report indicates that the final concentration of H2S in solution is 

less than 10% of the concentration of NaHS used, (Al-Magableh et al., 2011), probably due 

to volatility and equilibrium with HS- (see 1.1.2, Pharmacological tools, H2S donors, p.17).  

Secondly, free H2S applied to various tissue types is promptly sequestered and stored as 

bound sulfur (Ishigami et al., 2009). Furthermore, as a small molecule of gas, H2S diffuses 

rapidly, making it difficult, if not impossible, to measure local concentrations of H2S at the 

site of action and production: the smooth muscle cell.  It is, therefore, entirely plausible that 

H2S acts as a physiological vasorelaxant in MCA, despite the relatively low potency of NaHS 

observed in this study. 

 

It is also important to note that some of the treatments used in the present study altered basal 

tone, however, such changes cannot account for the effects of the treatments which 

influenced the H2S-mediated relaxation, because similar changes to basal tone were observed 

with other treatments that had no effect on the H2S-mediated relaxation. In the case of 50 mM 

K+, the increase in basal tone was similar to those observed with L-NAME, which had no 

effect on the H2S-mediated vasorelaxation. In the case of nifedipine, the reduction in basal 

tone observed was similar in amplitude to that observed with niflumic acid, which had no 

influence on H2S-mediated vasorelaxation.  Taken together, these observations suggest that 

effects of 50 mM K+ and nifedipine on H2S-mediated relaxation were independent of their 

effects on basal tone. 
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Conclusion 
The presence of the H2S producing enzyme, CSE, was demonstrated in endothelium and 

smooth muscle cells of MCA, thus, endogenously generated H2S may play a role in 

regulating cerebrovascular tone.  Vasorelaxation mediated by H2S in rat middle cerebral 

arteries was found to be endothelium independent and involved a contribution from voltage-

gated calcium channels as well as from K+ channels. There was no contribution from reactive 

oxygen species. The response was sensitive to DIDS, but inhibition of chloride channels or 

the anion exchanger had no effect.  H2S-induced vasoconstriction also involved contributions 

from voltage gated calcium channels, potassium channels and was DIDS-sensitive.  The 

vasoconstriction was inhibited by catalase, indicating this effect is partly due to an influence 

of H2S on H2O2.   
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Chapter 5: Effect of STZ-induced diabetes on 
the vascular response to H2S in rat middle 
cerebral arteries 
 

5.1 Introduction 
 
H2S is well established as a vasodilator in the periphery (d'Emmanuele di Villa Bianca et al., 

2011; Hart, 2011; Hosoki et al., 1997; Jackson-Weaver et al., 2011; Liu et al., 2011b; 

Schleifenbaum et al., 2010; Zhao et al., 2001) and there are now several lines of evidence 

that it also dilates cerebral vessels (Leffler et al., 2010; Liang et al., 2011; Liang et al., 2012; 

Streeter et al., 2012). Genetic deletion of CSE results in pronounced hypertension, as well as 

reduced endothelium dependent vasorelaxation (Yang et al., 2008). There is a growing body 

of evidence that H2S also protects against endothelial dysfunction via anti-inflammatory (Pan 

et al., 2011) and antioxidant effects (Guan et al., 2012; Suzuki et al., 2011) (see 1.4.4, 

Diabetic vascular disease and H2S, p.61).  H2S protects against atherosclerosis in animal 

models, for example, NaHS significantly inhibited neointima formation after balloon injury 

in rats (Meng et al., 2007) and reduced the size of atherosclerotic plaques in apolipoprotein E 

knockout mice (Wang et al., 2009).  

 

Diabetes causes peripheral and cerebrovascular disease, the hallmarks of which are 

endothelial dysfunction and atherosclerosis.  Diabetes increases the risk of ischaemic stroke 

by one and a half to two-fold (Quinn et al., 2011), and this increased risk has been associated 

with diabetic cerebrovascular disease (Gunarathne et al., 2009; Nazir et al., 2006).  

Furthermore, diabetes is associated with cognitive decline and impairment, Alzheimer’s 

disease and vascular dementia, and there is mounting evidence linking all of these conditions 

with cerebrovascular disease (Humpel, 2011; Steffens et al., 2007; Wakefield et al., 2010).  
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Despite the severe risks associated with diabetic vascular disease, it remains incompletely 

understood. There is a general consensus in the literature that excessive vascular production 

of ROS and resulting decreased availability of nitric oxide are major contributors to diabetic 

endothelial dysfunction (Creager et al., 2003) (see 1.4.3 Aetiology of diabetic 

cerebrovascular disease, Role of ROS in endothelial dysfunction, p.58).  Interestingly, H2S 

has been shown to decrease mitochondrial membrane potential and decrease overproduction 

of ROS in PC12 cells (Tang et al., 2008).  In a recent study, elevated glucose was found to 

reduce H2S levels in the supernatant of endothelial cells in vitro, an effect which was 

attributed to consumption of H2S by mitochondrial ROS (Suzuki et al., 2011). Furthermore, 

administration of H2S attenuated the decline in endothelial cell viability and reduced ROS 

production in vitro, as well as protecting against endothelial dysfunction in STZ-induced 

diabetic rats ex vivo (Suzuki et al., 2011).  

 

There is evidence that H2S production and vasodilation capacity are altered in diabetic 

peripheral vessels, further suggesting that H2S may be involved in diabetic vascular disease.  

In aorta, mesenteric and pulmonary arteries, STZ-induced diabetes has been shown to 

enhance the vasodilator action of H2S (Denizalti et al., 2011). Aorta from non-obese diabetic 

mice have enhanced vasodilation by H2S, as well as increased CSE mRNA expression 

(Brancaleone et al., 2008).  In cerebral vessels, the effect of diabetes on the vasodilator 

response or production of H2S has not, to date, been studied.  To further our understanding of 

the cerebrovascular pathological changes induced by diabetes, we have investigated whether 

diabetes alters the middle cerebral artery’s vascular response to H2S or tissue production of 

H2S.   
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5.2 Methods 
5.2.1 Streptozocin treatment 

Induction of the diabetic model is described in detail in section 2.4.1.  Animals were fasted 

for 12 hours followed by administration of STZ (50 mg/kg) in sodium citrate buffer (10 mM, 

pH 4.5) via tail vein injection. Development of diabetes was confirmed one week after STZ 

injection and again on the day of experiment by a non-fasting blood glucose of >15 mmol/L. 

5.2.2 Wire myography 

Middle cerebral arteries were collected (see 2.3.1) and cut into 2mm segments, which were 

mounted into a wire myograph (see 2.3.2 and figure 2.2).  The vessels were then constricted 

using the ‘spontaneous tone protocol’ (see 2.3.2 and figure 2.3), except vessels to be treated 

with nifedipine, for which the ‘U46619 protocol’ (see 2.3.2 and figure 2.4) was used.   

Assessment of endothelial function 

A single dose of bradykinin (BK, 100nM) was applied to control and diabetic vessel 

segments to assess the function of endothelium. 

Mechanism of H2S-induced vasorelaxation and vasoconstriction  
The vascular response to cumulative concentrations of the H2S donor, NaHS (10 µM-3 mM), 

was examined in the presence or absence of one (or more) of the following: KCl (50 mM), to 

inhibit K+ conductance; DIDS (300 µM), an inhibitor of chloride channels and Cl-/HCO3
- 

exchange; nifedipine (3 µM), an L-type voltage-gated calcium channel blocker. Each was 

added 20 minutes prior to construction of the NaHS concentration-response curve.  At the 

completion of each experiment, maximal relaxation was recorded using calcium free Krebs’. 

Each vessel segment was used to obtain only one concentration-response curve. 

Vasorelaxation to endogenous H2S 
For these studies, the spontaneous developed tone protocol was used.  The relaxation 

response of vessel segments from diabetic and control rats to cumulative (0.5 log unit) 

concentrations of L-cysteine (10µM-100mM) was assessed in the presence and absence of 

PPG (20mM). 
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For a detailed description of the data analysis, see 2.3.3 Data Analysis, p.80. Briefly, 

comparisons were made between average Emax and logEC50 values using T-tests for 

comparisons between two data sets, and one-way ANOVA with a post-hoc Dunnett’s test for 

comparisons between multiple data sets. 

 

5.2.3 Lucigenin Assay 
The methods for the lucigenin assay are described in detail in section 2.4.2 and figure 2.6. 

Briefly, the circle of Willis, basilar artery and thoracic aorta from control and diabetic rats 

were dissected and cleaned of connective tissue.  The aorta was cut into several 2mm 

segments and the cerebral arteries were pooled, before being divided in half for separate 

treatments.  Once prepared, the arteries were immediately transferred to a 24-well plate for a 

series of two incubations followed by a wash. Artery segments were then transferred into 

separate wells of an Optiplate containing a solution with lucigenin (5 µM).  O2˙- production 

was subsequently measured by reading for luminescence using a Polar star microplate reader.    

5.2.4 Detection of CSE via RT-PCR 
Since MCA from the present study were utilised in the myograph experiments, MCA for the 

PCR experiments were obtained from additional diabetic and control groups.   MCA were 

dissected and placed into RNAlater® and stored at -20 ˚C until assay for CSE expression (see 

2.5.3).   

5.2.5 Measurement of plasma sulfide and liver CSE activity 
The liver of diabetic and control animals was snap frozen using liquid nitrogen and stored at -

80 ˚C, for later analysis of CSE activity using the assay developed by Stipanuk and Beck 

(Stipanuk et al., 1982) (see 2.5.4).  Whole blood was collected and spun at 1,300 g for 10 

minutes for separation of plasma, which was drawn off and stored at -20 ˚C until assay for 

sulfide content (see 2.5.4).   
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5.3 Results 

5.3.1 STZ rats had high blood glucose and endothelial dysfunction in MCA   
STZ rats had significantly higher blood glucose than controls, as measured on the day of 

experiment, confirming induction of the diabetic model (table 5.1).  The level of tone 

developed in MCA segments using the spontaneous tone protocol was not significantly 

different between vessels from control and STZ treated animals (table 5.2).  The maximal 

contractile capacity (to 125mM KCl) was not significantly different in MCA from STZ 

treated, compared to control animals (table 5.2).  However, relaxation of MCAs to BK 

100nM was significantly reduced in STZ treated animals, indicating endothelial dysfunction 

(figure 5.1). 

5.3.2 Vasorelaxation response to exogenous  H2S 
The hydrogen sulfide donor, NaHS, (10 µM-3 mM) produced a full, concentration-dependent 

vasorelaxation of MCA which was not altered by the STZ diabetic model (figure 5.2).  The 

pEC50 for NaHS-induced relaxation of MCA was 3.94±0.06 in control compared to 4.03±0.07 

in diabetic MCA. 

5.3.3 Mechanisms of H2S-induced vasorelaxation of diabetic MCA 
The contribution of K+ conductance, chloride-bicarbonate exchange and L-type Ca2+ 

channels to H2S-induced vasorelaxation in diabetic MCA were investigated. Application of 

DIDS (300 µM), an inhibitor of both chloride channels and chloride-bicarbonate exchange, 

produced a significant rightward shift of the NaHS concentration-response curve (figure 5.3a).  

Reduction of K+ conductance using 50mM KCl significantly decreased the pEC50 and 

attenuated the Emax of NaHS-induced vasorelaxation (figure 5.3b).  Nifedipine (3 µM) 

significantly attenuated the maximum relaxation to NaHS in MCA, although the pEC50 was 

not significantly affected (figure 5.3c). 
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Table 5.1 Blood glucose levels 
 
 Control Diabetic  

Blood glucose (mmol) 8.7±0.5 30.9±0.8 
 

Blood glucose levels as measured on the day of experiment using an Accu-Check Performa® 

blood glucose monitor of control (n = 17) and diabetic (n = 13) rats.  Values are expressed as 

average ± standard error.  

 

 

 

Table 5.2 Vascular parameters 

 Control  Diabetic  
Tone induced by 
preconstriction (mN) 
 

7.7±0.5 8.0±0.3 

Tone induced by 125 mM 
KCl (mN) 
 

8.7±0.4 8.9±0.6 

 

Tone induced by the spontaneous-preconstriction protocol (middle column) and maximal 

contractile capacity, as measured by application of 125 mM KCl, in control (n = 9) and 

diabetic (n = 9) middle cerebral artery (MCA) segments. Values are expressed as average ± 

standard error.  n = the number of MCA segments from separate rats.  
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Figure 5.1 Relaxation of MCA to bradykinin 

Relaxation induced by the endothelium-dependent vasorelaxant, bradykinin (100nM), in 

control (blue, n = 5) and diabetic (red, n = 6) MCA.  * P<0.05, n = the number of middle 

cerebral artery segments from separate rats.  
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Figure 5.2 Vasorelaxation of diabetic and control MCA to exogenous H2S 

Cumulative concentration-response curves to NaHS in control (closed circles, n=7) or 

diabetic (closed squares, n = 9) MCA. n = the number of middle cerebral artery segments 

from separate rats.  
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Figure 5.3 Mechanisms contributing to H2S-induced vasorelaxation of diabetic MCA 

Cumulative concentration response curves to NaHS in diabetic MCA segments in the absence 

(control, closed circles, n=9), or presence of (a) DIDS (300µM, closed squares, n = 5); (b) 

KCl (50mM, closed triangles, n=5); or (c) nifedipine (3 µM, closed upside-down triangles 

n=9). Note: the vessels in ‘c’ were preconstricted with U46619.  ***P<0.001 EC50 DIDS and 

KCl compared to control; ††† P<0.001 Emax nifedipine compared to control.   n = the number of 

middle cerebral artery segments from separate rats. DIDS, 4,4-diisothiocyanatostilbene-2,2-

disulfonic acid 
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5.3.4 Effect of diabetes on the vasorelaxation response to endogenous H2S 
The precursor for endogenous H2S formation, L-cysteine (10 µM-100 mM), caused 

concentration-dependent vasorelaxation of control MCA (Emax= 82±3%, pEC50= 2.30±0.06, 

n=8, figure 5.4) which was significantly enhanced by the diabetic model (Emax= 92±1%, 

pEC50= 2.63±0.08, P<0.05 pEC50, p<0.01 Emax, n=6, figure 5.4). The CSE inhibitor, PPG 

(20mM) attenuated vasorelaxation to L-cysteine in control (Emax= 78±5%; pEC50= 1.95±0.07, 

P<0.05 pEC50, n=6) and diabetic (Emax= 75±5%, P<0.05 Emax; pEC50= 2.10±0.08, P<0.01 

pEC50, n=8) MCA to a similar level, indicating that the enhanced L-cysteine-induced 

vasorelaxation observed in diabetic MCA was due to enhanced conversion of L-cysteine to 

H2S via CSE (figure 5.4). 

5.3.5 Effect of diabetes on the ability of tissues to produce hydrogen sulfide 
Liver CSE activity was significantly greater in diabetics compared to control animals 

(P<0.001, figure 5.5).  The mRNA expression of the H2S producing enzyme, CSE, as 

detected by real-time PCR, was increased in diabetic compared to control MCA, although the 

increase did not attain statistical significance (figure 5.6).  Serum sulfide levels were not 

significantly altered by the diabetic model (figure 5.7).  Although the assay determines the 

final concentration of H2S in each sample, it is referred to here as ‘sulfide’ levels, since the 

assay process is likely to release H2S from acid labile sulfide stores. 
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Figure 5.4 Vasorelaxation response of diabetic and control MCA to endogenous H2S 

Cumulative concentration-response curves to i) L-cysteine in control (closed circles, n=8) or 

diabetic MCA (closed squares, n=6) and ii) L-cysteine with propargylglycine (PPG, 20mM) 

in control (closed triangles, n=7) or diabetic MCA (closed upside-down triangles, n=8).  

*P<0.05 pEC50 L-cysteine in diabetic compared to control MCA; *P<0.05 pEC50 L-cysteine 

compared to L-cysteine with PPG in control MCA; **P<0.01 pEC50 L-cysteine compared to 

L-cysteine with PPG in diabetic MCA;  †† P<0.01 Emax L-cysteine in diabetic compared to 

control MCA; † P<0.05 L-cysteine compared to L-cysteine with PPG in diabetic MCA. n = 

the number of middle cerebral artery segments from separate rats.  
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Figure 5.5 CSE activity in control and diabetic liver  

L-cysteine-induced H2S production in control (n=6) and diabetic (n=8) liver homogenates in 

the absence (purple) and presence (blue) of the CSE inhibitor, PPG (10mM).  ***P<0.001 L-

cysteine-induced H2S production in control compared to diabetic rats, in the absence of PPG. 

PPG, propargylglycine. 
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Figure 5.6 CSE mRNA expression in control and diabetic MCA 

Level of mRNA expression of the H2S producing enzyme, cystathionine gamma lyase (CSE) 

in control (n=7) and diabetic (n=4) MCA, normalised to 18S ribosomal RNA.  
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Figure 5.7 Sulfide levels in control and diabetic serum 

Sulfide levels in control (n = 7) and diabetic (n = 9) serum. 
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5.3.6 Effect of exogenous hydrogen sulfide on vascular superoxide production 
For O2˙- detection in cerebral arteries, the basilar artery was pooled with circle of Willis 

arteries.  NADPH-stimulated O2˙- production was 22 fold higher in cerebral arteries than 

aorta.  The diabetic model significantly enhanced NADPH-stimulated O2˙- production in both 

cerebral arteries and aorta (P<0.05 diabetic compared to control in both cerebral vessels and 

aorta, figure 5.8a and b).    DPI (5 µM), a flavoprotein inhibitor, which inhibits NADPH 

oxidase (Selemidis et al., 2008), almost abolished O2˙- production in cerebral arteries and 

aorta from both diabetic and control animals (figure 5.8a and b).  A prior incubation of 

arteries in hydrogen sulfide using the donor, NaHS (100 µM), significantly reduced O2˙- 

production in diabetic cerebral arteries (figure 5.8a), but had no influence on control cerebral 

arteries (figure5.8b).  This prior incubation in NaHS had no influence on aortic superoxide 

production in aorta from either control or diabetic animals (figure 5.8a and b).   
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Figure 5.8 NADPH stimulated O2˙- production in cerebral vessels and aorta 

NADPH stimulated O2˙- production as detected by lucigenin-enhanced chemiluminescence in 

(a) cerebral vessels (basilar artery pooled with circle of Willis arteries) of control (n = 9) and 

diabetic (n = 9) animals and (b) aorta of control (n = 3) and diabetic (n = 4) animals.  In both 

(a) and (b) NADPH was applied either: alone (black); after an incubation in NaHS  (100 µM) 

(green); or in the presence of DPI (5 µM) (white). #P<0.05, control compared to diabetic 

NADPH stimulated O2˙- production in both cerebral vessels and aorta; *P<0.05 diabetic 

NADPH stimulated O2˙- production compared to that with prior incubation in NaHS in 

cerebral vessels. 
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5.4 Discussion 
The present study is the first to investigate the influence of diabetes on the cerebrovascular 

response to H2S.  The findings demonstrate that diabetic MCA display endothelial 

dysfunction, as the response to bradykinin (which relaxes via EDHF, not NO (Smeda et al., 

2010)) were significantly attenuated, however smooth muscle cell function was retained.  The 

vasorelaxation response of MCA to exogenous H2S was unaffected by diabetes.  However, 

CSE-dependent vasorelaxation elicited by L-cysteine was significantly enhanced by diabetes.  

This suggests that diabetes upregulates the endogenous production of H2S in MCA.  Indeed, 

there was a trend toward increased CSE expression in diabetic compared to control MCA, 

which was supported by the finding that liver tissue of diabetic animals had significantly 

enhanced CSE activity.  The effect of exogenous H2S on vascular O2˙- production was also 

examined.  In control animals, NADPH-stimulated O2˙- production was 40 times higher in 

MCA compared to aorta.  In addition, diabetes caused a doubling of MCA O2˙- production.  

This increase was significantly reduced by acute exogenous H2S treatment, but only in 

diabetic, not control MCA. The reduction is likely due to H2S inhibition of Nox, since 

NADPH-stimulated O2˙- production would be expected to be catalysed mainly by Nox. 

 

In the present study, NaHS caused full relaxation of control MCA. In several studies using rat 

and mouse aorta, the maximal relaxation to NaHS in control aorta was approximately 70% 

(Brancaleone et al., 2008; Denizalti et al., 2011).  This difference in reactivity is unlikely to 

be explained by the different protocols used for precontraction of the vessels in the separate 

studies, since similar concentration-response curves, obtaining full relaxation to NaHS, were 

observed in U46619-precontracted MCA (figure 5.3c).  Thus, the present findings highlight a 

stark difference in the reactivity of peripheral and cerebral vessels to H2S. 
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The present study demonstrates that STZ-induced diabetes does not alter the sensitivity or 

maximum vasorelaxation of MCA to exogenous H2S.  Interestingly, peripheral vessels 

demonstrate an enhanced maximal relaxation to exogenously applied H2S in aorta of STZ-

treated rats (Denizalti et al., 2011) and NOD mice, but only those with severe disease 

(Brancaleone et al., 2008). The discrepancy is likely due to the already high sensitivity of 

healthy MCA to the vasodilator effects of H2S, which relax fully to H2S, meaning that the 

maximum response cannot be enhanced by the diabetic state.  In line with the observation 

that the vasorelaxant efficacy of H2S was not altered, the mechanisms contributing to the 

H2S-induced vasorelaxation in diabetic MCA were similar to those observed in chapter 4.  As 

such, NaHS-induced vasorelaxation was again sensitive to inhibition by nifedipine and 

50mM KCl, indicating involvement of L-type calcium channels and potassium channels.  

NaHS-induced vasorelaxation was also sensitive to DIDS in the diabetic animals, although, 

based on the previous chapter, it is not entirely clear as to the mechanism behind the DIDS-

sensitivity, which probably involves pathways other than Cl- channels or Cl-/HCO3
- exchange. 

 

The ability of MCA to relax to endogenously generated H2S was assessed using the H2S 

precursor, L-cysteine.  L-cysteine induced a relaxation of MCA that was attenuated by the 

CSE inhibitor, PPG, indicating that the relaxation involved endogenous production of H2S.  

Possible reasons for the incomplete blocking of L-cysteine-induced vasorelaxation by PPG 

are discussed in detail in section 4.4, p.149.  Diabetic MCA were more sensitive to the 

vasorelaxant effects of L-cysteine, and PPG attenuated the vasorelaxation to levels similar to 

those seen in control (i.e. non-diabetic) MCA.  These results indicate an enhanced conversion 

of L-cysteine to H2S via CSE in diabetic MCA.  In contrast, the biosynthesis of H2S was 

impaired in the aorta of NOD mice, as evidenced by attenuated relaxation to L-cysteine, and 

reduced CSE activity (Brancaleone et al., 2008). The discrepancy may be due to the different 
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models of diabetes, or may highlight a difference between the response of peripheral and 

cerebral vessels to the diabetic state.   

 

The enhanced vasorelaxant efficacy of L-cysteine in diabetic MCA suggests enhanced 

generation of H2S via either enhanced activity or expression of CSE.  Although there was a 

trend towards increased CSE mRNA expression in diabetic compared to control MCA, the 

difference did not attain statistical significance (n = 4 in the diabetic group).  Previous 

observations suggest that diabetes may indeed upregulate vascular CSE expression - in the 

aorta of NOD mice, CSE mRNA and protein expression were enhanced in a manner that 

correlated with disease severity (Brancaleone et al., 2008). However, in another study, CSE 

mRNA and protein expression in aorta of STZ treated diabetic rats were not significantly 

different from control, as determined by RT-PCR and western blotting (Denizalti et al., 2011).  

It is possible that enhanced MCA synthesis of H2S in diabetes occurs via enhanced CSE 

activity, rather than expression.  

 

Although little is known about the regulation of CSE activity, a very recent study 

demonstrated that platelet derived growth factor upregulates CSE mRNA, protein levels and 

activity, with concurrent increased formation of ROS (Hassan et al., 2012).  Antioxidants, 

including DPI, a flavoprotein inhibitor, which inhibits NADPH oxidase (Selemidis et al., 

2008), attenuated the enhanced CSE expression, suggesting that CSE gene expression, and 

possibly activity, is redox-regulated (Hassan et al., 2012).  It should be noted, however, that 

DPI also inhibits flavin-containing enzymes (Selemidis et al., 2008), NOS (Stuehr et al., 

1991), reversibly blocks K+ and Ca2+ currents in type I carotid body cells (Selemidis et al., 

2008) and has inhibitory effects on mitochondrial respiration, albeit at higher concentrations 

than those required to inhibit NADPH oxidase (Hancock et al., 1987).  Whether diabetes 
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induced vascular ROS generation may similarly result in upregulation of CSE activity 

remains to be investigated. 

 

CSE expression is relatively high in hepatic tissue (Bao et al., 1998), thus the CSE activity of 

hepatic tissue was determined.  The liver of diabetic animals had an increased propensity to 

generate H2S from L-cysteine, which was nearly abolished by PPG, demonstrating enhanced 

CSE activity.  Enhanced tissue H2S synthesis (Yusuf et al., 2005), as well as increased CSE 

expression have previously been demonstrated in liver (Jacobs et al., 1998) and pancreas of 

STZ diabetic rats (Yusuf et al., 2005).  Altered transsulfuration rates in diabetic humans are 

indicative that a similar upregulation may occur in the livers of human diabetic patients 

(Abu-Lebdeh et al., 2006).  In the present study, upregulated tissue H2S production was not 

correlated with plasma sulfide levels, which were unaltered by STZ-induced diabetes.  This is 

in agreement with a study in STZ rats showing no change in plasma H2S concentration, 

despite upregulation of tissue CSE (Yusuf et al., 2005).  In contrast, decreased plasma H2S 

levels have been observed in NOD mice (Brancaleone et al., 2008) and diabetic humans (Jain 

et al., 2010).  One reason for the observed discrepancy between tissue CSE activity and 

plasma H2S levels is that CSE may only influence local H2S levels.  An alternate hypothesis 

is that the reductant H2S may react with excess ROS generated from diabetic vascular tissue.  

This is supported by an observation that exposure of endothelial cells to elevated glucose 

decreased H2S concentration, an effect which was rescued by incubation with the ROS 

scavenger, Tempol (Suzuki et al., 2011). 

 

H2S is not only a direct ROS scavenger (Geng et al., 2004), it can also perturb upregulated 

Nox expression in diabetes (Zheng et al., 2010).  It has been suggested that upregulated H2S 

production in diabetes may thus form part of a self-protecting mechanism against excessive 
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ROS generation (Hassan et al., 2012; Kaneko et al., 2009; Yusuf et al., 2005).  The effects of 

exogenous H2S on vascular NADPH-stimulated O2˙- generation were therefore assessed in 

diabetic compared to control MCA and aorta.  Diabetes enhanced NADPH-stimulated O2˙- 

generation in both aorta and MCA, indicating that Nox expression or activity is upregulated 

by diabetes in the vasculature, in line with the literature (Shen, 2010). A prior incubation of 

vessels in H2S (using the donor, NaHS) attenuated O2˙- production in diabetic MCA back to 

control levels, but did not influence O2˙- production in control MCA, indicating that H2S can 

selectively normalise O2˙- production in MCA from diabetic animals.  The design of the 

experiment was such that the effects of H2S could not be due to its direct scavenging effect, 

since it was washed off before NADPH-stimulated O2˙- production, suggesting that H2S acted 

by inhibition of O2˙- generating enzymes, such as Nox. 

 

 In peripheral vessels there is, indeed, evidence that H2S can normalise enhanced Nox 

expression caused by either U46619 in VSM in vitro (Muzaffar et al., 2008) or STZ 

treatment in aorta in vivo (Zheng et al., 2010).  However, H2S was not effective at inhibiting 

O2˙- production from either control or diseased aorta in the present study.  The discrepancy 

may be due to differences in experimental approach: in the present study NaHS was applied 

for only 30 minutes in vitro, compared to 6 weeks’ worth of daily subcutaneous NaHS 

injections in the study by Zheng et al. (Zheng et al., 2010).  The findings of the present study 

that a short-term in vitro application of H2S can normalise O2˙- production in diabetic MCA, 

but not aorta, suggest that diabetic MCA are more sensitive to the effects of H2S on ROS 

production than diabetic aorta. 

 

The findings of this and other studies (Kaneko et al., 2009; Yusuf et al., 2005) are suggestive 

that H2S may form part of an important adaptive response to oxidative stress in diabetes.  
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Given the vasodilator action of H2S, such an adaptive response could also counteract the 

enhanced level of tone in diabetic cerebral vessels associated with reduced NO bioavailability 

and enhanced myogenic reactivity (see 1.4.3 Aetiology of diabetic cerebrovascular disease, 

p.57).  Despite the wealth of knowledge regarding the damaging effects of oxidative stress in 

diabetic vascular disease, antioxidants have so far failed as therapeutics in the clinical setting 

(Bjelakovic et al., 2012).  A frequently sited possible reason for this failure is the requirement 

of low levels of ROS for normal physiological function in the vasculature (Droge, 2002), 

which would be upset by powerful antioxidants.  The suggestion that H2S may play part in 

the endogenous homeostatic control of redox signalling is therefore promising in terms of its 

potential efficacy as a therapeutic tool.  However, more research will be required to confirm 

whether the CSE-H2S pathway forms part of a regulatory response to diabetic oxidative stress, 

and whether manipulation of this system can be applied to therapeutics. 

 

Conclusion 
The key findings of the present study were that STZ-induced diabetes increased the 

vasorelaxant efficacy of endogenous H2S in MCA and enhanced tissue biosynthesis of H2S.  

Vasorelaxation responses mediated by exogenous H2S were retained under diabetic 

conditions.  A selective attenuation of pathologically increased O2˙- by exogenous H2S was 

also observed in diabetic MCA.  The study implicates the CSE-H2S pathway as a possible 

new avenue for research into the therapy of diabetic cerebrovascular disease. 
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Chapter 6: General discussion 
The present thesis initially examined the central cardiovascular role of H2S in the important 

cardiovascular regulatory brain regions, the RVLM and PVN. It was found that H2S in the 

RVLM or PVN was not crucial in central cardiovascular regulation, thus changing the 

direction of the original study.  Since H2S is a known peripheral vasodilator, and there have 

been no detailed analyses of the mechanism of H2S-induced relaxation of cerebral vessels, 

studies moved to investigation of the mechanism of H2S in vasorelaxation of MCA.  H2S 

caused vasorelaxation of MCA that was DIDS-sensitive and involved closure of VGCC, plus 

a small contribution from K+ channel opening.  Additional evidence was obtained to support 

the role of endogenous H2S in the regulation of the cerebral blood vessels. The final study 

investigated the possible involvement of H2S in diabetic cerebrovascular disease by 

examining the effect of diabetes on the cerebrovascular response to H2S.  Although the 

vasorelaxant efficacy of exogenous H2S was not altered by diabetes, diabetic MCA had an 

enhanced response to a precursor for endogenous generation of H2S, indicating an enhanced 

ability to generate H2S in diabetic cerebral vessels.  It was also demonstrated that H2S 

effectively inhibited excessive O2˙- production from diabetic cerebral vessels, which suggests 

a role for H2S in vasoprotection. 

The possibility that H2S may be involved in central cardiovascular regulation via the RVLM 

and PVN was investigated by first examining the potential of these regions to produce H2S.  

The presence of the H2S producing enzyme, CBS, was demonstrated in both the RVLM and 

PVN.  The effect of H2S on MAP, HR and LSNA via each of these regions was therefore 

examined by microinjection of the H2S donor, NaHS, or inhibitors of CBS specifically into 

either the RVLM or PVN of rats.  In the RVLM, neither exogenous H2S, nor inhibition of 

endogenous H2S formation had any influence on MAP, HR or LSNA.  This is in direct 

contrast to a study in rats showing that exogenous H2S significantly decreased MAP, HR and 
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RSNA,  while the CBS inhibitor, HA, elicited the opposite cardiovascular effects (Guo et al., 

2011).  The discrepancy between the studies could be due to the omission of Guo et al. to 

buffer their NaHS, despite their use of concentrations known to increase pH (Dombkowski et 

al., 2004). Chemosensitive neurons, which can influence sympathetic nerve activity upon 

sensing alterations in pH, exist in close proximity to the RVLM (Guyenet et al., 2010).  Thus 

it is possible that the effects observed by Guo et al. are pH induced.  Alternatively, the 

discrepancy may be due to differences in methodological approach between the studies, for 

example, rats were ventilated in the study by Guo et al. but breathed spontaneously in the 

present study.  Ventilation is known to influence cardiovascular responses (Cox et al., 1988).  

The present work is the first to investigate the haemodynamic effect of H2S via the PVN.  

Micro-injection of NaHS, or the CBS inhibitor, AOA, into the PVN did not significantly 

influence MAP, HR or LSNA, indicating that H2S does not regulate the cardiovascular 

system via the PVN.  Although there are currently no other studies investigating the effect of 

H2S in the PVN, several studies indicate that H2S may be involved in central cardiovascular 

regulation via alternate brain regions.  In the posterior hypothalamus, NaHS caused a small, 

but apparently significant reduction in MAP and HR, whereas both AOA and HA increased 

MAP (Dawe et al., 2008).  In the NTS, H2S augmented synaptic transmission and caused 

increased presynaptic Ca2+ concentration, whereas AOA decreased synaptic transmission.  

Thus, endogenous H2S may be involved in central cardiovascular regulation via specific 

regions in the brain, such as the NTS and posterior hypothalamus, but not the PVN.  Two 

studies have observed a central cardiovascular response following intracerebroventricular 

administration of a H2S donor.  A rapid bolus injection of high doses of NaHS (3-303 µmol 

over 30 seconds) significantly reduced MAP and HR, (Liu et al., 2011a), whereas a slow 

infusion of a lower NaHS dose (0.4 µmol over 60 min) significantly increased MAP and HR 

(Ufnal et al., 2008).  It appears that the effect of exogenous H2S administered 
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intracerebroventricularly is dependent on dose and/or infusion rate.  These studies did not 

determine which brain region(s) were involved in these responses to H2S.  The infusion of 

inhibitors of CBS was not supportive of a role for endogenous H2S in central cardiovascular 

regulation in either study (Liu et al., 2011a; Ufnal et al., 2008), in line with the present 

findings that endogenous H2S does not influence cardiovascular parameters via the PVN or 

RVLM.    

The present thesis found no role for H2S in the short-term central control of the 

cardiovascular system via the RVLM or PVN.  However, this does not rule out the hypothesis 

that long-term manipulation of H2S or its production could protect against cardiovascular 

disease, such as hypertension.  In support of this hypothesis, upregulated Nox in both the 

RVLM and PVN is involved in the pathogenesis of hypertension (Peterson et al., 2006; Xue 

et al., 2012), and although short-term application of NaHS (30 minute in vitro) had no 

influence on Nox stimulated O2
- production in aorta (present thesis, chapter 5), repeated long 

term administration of NaHS (6 weeks, daily IP injections) attenuated enhanced Nox subunit 

expression in diabetic aorta (Zheng et al., 2010).  It is apparent that this hypothesis warrants 

further investigation.   

Numerous studies have shown that H2S causes relaxation of peripheral vessels.  In light of 

this, the present studies shifted focus to the cerebrovascular action of H2S, specifically in 

MCA.  NaHS-induced relaxation of MCA with an EC50 of 100±5µM, which is similar to that 

observed in the aorta reported in several studies (Al-Magableh et al., 2011; Kiss et al., 2008; 

Lee et al., 2007; Zhao et al., 2001).  This is well outside the physiological range of H2S 

concentrations in plasma and tissues, according to recent reports (Furne et al., 2008; 

Whitfield et al., 2008).  However, despite the development of various methods to measure 

H2S levels, all have limitations, and none are able to measure intracellular production of H2S 

in real-time and under physiological conditions (for review, see (Olson, 2012)). Furthermore, 
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the amount of H2S reaching a putative intracellular target in SMC is likely considerably 

lower than the amount of NaHS applied, due to the equilibrium between H2S and HS- 

favouring HS- production (see 1.1.2 Pharmacological tools, H2S donors, p.17-18), as well as 

the rapid loss of H2S which has been observed in biological experiments including 

myography (DeLeon et al., 2012).  Thus it is feasible that physiologically produced H2S 

could relax MCA. This is supported by the observation from the present study that a 

precursor to H2S production, L-cysteine induced relaxation of MCA that was sensitive to the 

CSE inhibitor, PPG. The presence of the H2S producing enzyme, CSE, was also 

demonstrated in endothelial and smooth muscle cells of MCA.   

Endogenously produced H2S (from addition of L-cysteine) caused vasorelaxation of MCA 

that was insensitive to the removal of endothelium. Thus, although the presence of CSE was 

demonstrated in endothelium of MCA, it appears that endothelial derived H2S is not 

important in endogenous H2S-induced vasorelaxation of MCA. Taken together with the 

observation that H2S-induced relaxation was insensitive to blockade of IKCa and SKCa 

channels, this suggests that H2S does not act as an EDHF in MCA.  Two studies have 

provided evidence that H2S acts as an EDHF in mouse mesenteric artery and aorta (Mustafa 

et al., 2011; Yang et al., 2008).  Numerous studies show that H2S-induced relaxation is 

sensitive to blockade of IKCa and SKCa in rat aorta (Zhao et al., 2002; Zhao et al., 2001), rat 

mesenteric artery (Cheng et al., 2004; d'Emmanuele di Villa Bianca et al., 2009) and mouse 

mesenteric artery (Al-Magableh et al., 2011; Mustafa et al., 2011), however this is not 

without contention, as one study shows blockade of these channels had no influence on H2S-

induced relaxation of rat aorta (Li et al., 2008).  Indeed, whether H2S is an EDHF in 

peripheral vessels remains a topic of debate.  A recent study demonstrated that cholinergic 

VSM hyperpolarisation is virtually abolished in mesenteric arteries of CSE-/- mice, and the 

KATP channel blocker, glibenclamide, attenuated cholinergic VSM hyperpolarisation in wild-
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type mice in the presence of NOS and COX inhibitors (Mustafa et al., 2011).  The study was 

criticised because over 20 years of accumulated evidence from various groups suggests 

strongly that, after NOX and COX blockade, the remaining EDHF-dependent relaxation is 

independent of KATP channels (Edwards et al., 2012).  One possible reason for the 

discrepancy is that, although glibenclamide is routinely used as a KATP blocker, it does have 

alternate effects, such as blockade of a non-selective stretch-activated cation channel (Simard 

et al., 2006).  Regardless, the observations of Mustaffa et al. do not conflict with the present 

studies, given the lack of consistent dilator effect of ACh in rat MCA (Gorlach et al., 1998).   

H2S-induced vasorelaxation was sensitive to DIDS, 50mM KCl and nifedipine in MCA.  

However, the mechanism was insensitive to blockade of selective potassium channels, 

including KATP, KV, KCa and KIR.  The lack of involvement of KATP and KCa channels in the 

present study contrasts with several studies in peripheral vessels (see table 1.1, p.52-53), as 

well as three recent studies in cerebral vessels (Leffler et al., 2010; Liang et al., 2011; Liang 

et al., 2012). The discrepancy between the present study and other cerebrovascular studies 

may be due to differences in species, age, or the specific vessels studied (pial compared to 

MCA) (Leffler et al., 2010; Liang et al., 2011; Streeter et al., 2012).  It should be noted that 

in peripheral vessels, controversy exists regarding the contribution of KATP and KCa channels 

even within the same species and vessel type (see table 1.1, p.52-53).  Interestingly, 

Dombkowski et al. observed that KATP channel blockade attenuated H2S-induced vasodilation, 

despite repeated observations that KATP channel opening was ineffective at relaxing the same 

vessel type (Dombkowski et al., 2004).  This suggests that the KATP sensitivity does not 

necessarily implicate KATP channel opening in H2S-induced vasodilation, and instead the 

KATP channel blocker may be acting as a functional antagonist to the H2S-induced response.  

Such functional antagonism could be caused by downstream effects of KATP channel 

blockade (or indeed other K+ channel blockade), for example, membrane depolarisation.  
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These downstream effects might vary with minor differences in methodology between 

laboratories, providing a possible explanation for the observed controversy regarding the 

contribution of KATP and KCa channels within a single species and vessel type.  Such 

downstream effects might also explain the contentious observations of Mustafa et al., 2011, 

regarding inhibition of cholinergic VSM hyperpolarisation with glibenclamide in the 

presence of NOS and COX inhibitors (Mustafa et al., 2011)(see above).   

The present study is the first to investigate the role of KV channels or the endothelium in 

cerebral H2S-induced vasodilation, demonstrating no role for either pathway in MCA.  

Controversy also exists regarding the contribution of KV channels or endothelium to H2S-

induced vasorelaxation of peripheral vessels (see table 1.1 p.52-53).   

In the present study, a dual vascular response to H2S was observed in MCA.  A similar 

vascular response to H2S has been reported in mesenteric arteries (d'Emmanuele di Villa 

Bianca et al., 2011), although this is the first report of such a response in cerebral vessels.  

Interestingly, of the 14 agents used to examine the mechanism of H2S-induced vascular 

effects, the same three agents - DIDS, 50mM KCl and nifedipine – inhibited both the initial 

constriction, and the ensuing relaxation induced by H2S.  Constriction was additionally 

sensitive to catalase, which had no influence on relaxation. As speculated in the chapter 4 

discussion, this similarity in mechanism for constriction and relaxation could be taken to 

indicate that one effect of H2S results in both vascular actions.  Observations of various 

studies are supportive of a hypothesis that the H2S-induced vascular effects are due to its 

inhibition of cytochrome c oxidase (see 4.4 p.157).  Exactly how inhibition of cytochrome c 

oxidase might result in constriction followed by relaxation was not determined by the present 

studies.  One hypothesis is that the constriction involves increased intracellular Ca2+ ([Ca2+]i) 

due to decreased extrusion via ATP-dependent pumps, with an additional contribution from 
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lowered mitochondrial generation of O2˙-, thus lowered levels of the vasodilator, H2O2. The 

ensuing relaxation may be due to decreased pHi as a result of accumulated lactic acid from 

the reliance of the cell on anaerobic glycolysis for energy production.  However, this 

hypothesis remains entirely speculative, and investigation would require substantial amounts 

of further experimentation, which was beyond the scope of the present thesis.     

The final study of this thesis investigated whether diabetes alters the function or production 

of H2S in the cerebral vasculature.  It was shown that the vasorelaxation to exogenous H2S 

was not altered in diabetic MCA, but the precursor to endogenous H2S production, L-cysteine, 

induced greater relaxation in diabetic MCA.  This suggests that diabetic MCA have an 

enhanced ability to generate H2S via CSE, however, there was no significant difference in 

CSE mRNA expression between control and diabetic MCA.  The discrepancy may be due to 

the low numbers available for PCR in the diabetic group (n=4), meaning that the difference in 

mRNA expression did not obtain significance.  Alternatively, it is possible that CSE activity 

is enhanced, without enhancement of mRNA expression (see 5.4 p.179).  In the present study 

it was indeed observed that CSE activity was enhanced in the liver of diabetic rats.  This is 

supported by observations of enhanced CSE expression in liver of STZ-diabetic rats (Jacobs 

et al., 1998) and aorta of NOD mice (Brancaleone et al., 2008) and higher transsulfuration 

rates, reflecting enhanced activity of the transsulfuration enzymes, CSE and CBS, in diabetic 

humans without renal complications (Abu-Lebdeh et al., 2006).  However, the aorta of the 

NOD mice had lowered relaxation to L-cysteine, and had lower CSE activity (Brancaleone et 

al., 2008).  This deviates from the present results, which suggest enhanced tissue CSE 

activity, a discrepancy which may be due to the different model of diabetes. 

The transsulfuration pathway has been of some interest in diabetic research, due to its 

involvement in the breakdown of homocysteine.  Hypohomocysteineamia is observed in 

diabetes without renal complications and is partly due to enhanced CBS and CSE activity 
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(Abu-Lebdeh et al., 2006; Jacobs et al., 1998), while hyperhomocysteinaemia (HHcy) occurs 

in the advanced stages of diabetic disease where renal dysfunction is present, and is an 

independent risk-factor for both cardiovascular disease (Refsum et al., 1998) and 

cerebrovascular disease (Hogervorst et al., 2002).  This suggests that the flux of 

homocysteine through the transsulfuration pathway, and thus subsequent H2S generation, 

alters according to the stage and severity of the diabetic state, which may explain the 

differences in CSE activity and L-cysteine response between the present study and that of 

Brancaleone et al. (Brancaleone et al., 2008).  Despite the known association between HHcy 

and cardiovascular disease, large-scale trials using folic acid and vitamin B6 and B12 have 

achieved lowered homocysteine levels, without any concomitant change in cardiovascular 

outcomes (Albert et al., 2008; Bonaa et al., 2006).  One possible explanation is that the 

cardiovascular disease observed in HHcy is due to reduced generation of one or more of the 

bi-products of homocysteine catabolism, for example, H2S.   

It is possible that upregulated CSE activity, and accompanying hypohomocysteinaemia and 

enhanced H2S generation, which occurs in early diabetic disease forms part of a regulatory 

mechanism to protect the vasculature against oxidative stress.  In chapter 4 of the present 

thesis, immunohistochemistry demonstrated staining for the H2S producing enzyme, CSE.  

However, the endothelium was not required for endogenously produced H2S to induce 

vasorelaxation, suggesting that endothelium-derived H2S may have regulatory functions 

independent of vasorelaxation.  There are various lines of evidence that H2S can protect both 

VSM and endothelium against oxidative insults, including that induced by high glucose (see 

1.4.4 Diabetic vascular disease and H2S, p.61).  In the final study of this thesis, it was 

demonstrated that exogenous H2S could normalise excessive ROS production in diabetic 

MCA, but did not influence ROS production in control MCA.  Thus, the hypothesis that 
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upregulated CSE activity in early diabetes forms part of a self-protecting mechanism 

warrants further investigation. 

The limitations of pharmacological and analytical tools have often hindered attainment of 

quality evidence regarding the effect of exogenous and endogenous H2S in this field.  At the 

outset, the sulfide salt donors were exclusively used to deliver H2S (apart from H2S gas 

solutions).  These salts release a bolus dose of H2S, which has been shown to be rapidly lost 

from solutions in in vitro biological experiments (DeLeon et al., 2012).  However, the recent 

development of sustained release donors which are now becoming readily available will 

undoubtedly help progress in the field immensely.  There are still no specific inhibitors of 

CSE, CBS or 3-MST available for use.  Methods for reliable measurement of tissue levels of 

H2S are still in development. Improvements in tools will assist in clarifying many of the 

lingering questions regarding H2S production and function in physiology and 

pathophysiology. 

Finally, there is now a vast array of physiological and pathophysiological effects attributed to 

H2S. The present thesis shows that H2S has no role in acute central regulation of blood 

pressure, but that H2S does contribute to endogenous cerebral vasoregulation. Importantly, 

exogenous H2S normalised the enhanced ROS production in diabetic cerebral blood vessels.  

Furthermore, cerebrovascular H2S production is enhanced in diabetes, which suggests that 

this molecule may have a role as a vasoprotective factor. 

 

 

  



 192 

References  
Aalkjaer C, Peng HL (1997). pH and smooth muscle. Acta Physiologica Scandinavica 161(4): 557-
566. 
 
Abe K, Kimura H (1996). The possible role of hydrogen sulfide as an endogenous neuromodulator. 
The Journal of Neuroscience 16(3): 1066-1071. 
 
Abu-Lebdeh HS, Barazzoni R, Meek SE, Bigelow ML, Persson XM, Nair KS (2006). Effects of 
insulin deprivation and treatment on homocysteine metabolism in people with type 1 diabetes. The 
Journal of Clinical Endocrinology and Metabolism 91(9): 3344-3348. 
 
Adebiyi A, McNally EM, Jaggar JH (2011). Vasodilation induced by oxygen/glucose deprivation is 
attenuated in cerebral arteries of SUR2 null mice. American Journal of Physiology. Heart and 
Circulatory Physiology 301(4): H1360-1368. 
 
Afanasev I (2009). Detection of superoxide in cells, tissues and whole organisms.Frontiers in 
Bioscience (Elite Edition) 1: 153-160. 
 
Ahmad FU, Sattar MA, Rathore HA, Abdullah MH, Tan S, Abdullah NA, et al. (2012). Exogenous 
hydrogen sulfide (H2S) reduces blood pressure and prevents the progression of diabetic nephropathy 
in spontaneously hypertensive rats. Renal Failure 34(2): 203-210. 
 
Aickin CC (1988). Movement of acid equivalents across the mammalian smooth muscle cell 
membrane. Ciba Foundation Symposium 139: 3-22. 
 
Al-Magableh MR, Hart JL (2011). Mechanism of vasorelaxation and role of endogenous hydrogen 
sulfide production in mouse aorta. Naunyn-Schmiedeberg's Archives of Pharmacology 383(4): 403-
413. 
 
Albert CM, Cook NR, Gaziano JM, Zaharris E, MacFadyen J, Danielson E, et al. (2008). Effect of 
folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high 
risk for cardiovascular disease: a randomized trial. JAMA : The Journal of the American Medical 
Association 299(17): 2027-2036. 
 
Ali MY, Ping CY, Mok YY, Ling L, Whiteman M, Bhatia M, et al. (2006). Regulation of vascular 
nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide? British Jounal of 
Pharmacology 149(6): 625-634. 
 
Allen AM (2002). Inhibition of the hypothalamic paraventricular nucleus in spontaneously 
hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension 39(2): 275-280. 
 
Amadasi A, Bertoldi M, Contestabile R, Bettati S, Cellini B, di Salvo ML, et al. (2007). Pyridoxal 5'-
phosphate enzymes as targets for therapeutic agents. Current Medicinal Chemistry 14(12): 1291-
1324. 
 
Andrews KL, Irvine JC, Tare M, Apostolopoulos J, Favaloro JL, Triggle CR, et al. (2009). A role for 
nitroxyl (HNO) as an endothelium-derived relaxing and hyperpolarizing factor in resistance arteries. 
British Jounal of Pharmacology 157(4): 540-550. 
 
Anrather J, Racchumi G, Iadecola C (2006). NF-kappaB regulates phagocytic NADPH oxidase by 
inducing the expression of gp91phox. The Journal of Biological Chemistry 281(9): 5657-5667. 
 
Armstead WM (1998). Contribution of kca channel activation to hypoxic cerebrovasodilation does 
not involve NO. Brain Research 799(1): 44-48. 



 193 

 
Ashford ML, Boden PR, Treherne JM (1990). Glucose-induced excitation of hypothalamic neurones 
is mediated by ATP-sensitive K+ channels. Pflugers Archiv 415(4): 479-483. 
 
Austgen JR, Hermann GE, Dantzler HA, Rogers RC, Kline DD (2011). Hydrogen sulfide augments 
synaptic neurotransmission in the nucleus of the solitary tract. Journal of Neurophysiology 106(4): 
1822-1832. 
 
Badoer E (2001). Hypothalamic paraventricular nucleus and cardiovascular regulation. Clinical and 
Experimental Pharmacology and Physiology 28(1-2): 95-99. 
 
Badoer E (2010). Role of the hypothalamic PVN in the regulation of renal sympathetic nerve activity 
and blood flow during hyperthermia and in heart failure. American Journal of Physiology. Renal 
Physiology 298(4): F839-846. 
 
Bago M, Dean C (2001). Sympathoinhibition from ventrolateral periaqueductal gray mediated by 5-
HT(1A) receptors in the RVLM. American Journal of Physiology.  Regulatory Integrative and 
Comparative Physiology 280(4): R976-984. 
 
Bao L, Vlcek C, Paces V, Kraus JP (1998). Identification and tissue distribution of human 
cystathionine beta-synthase mRNA isoforms. Archives of Biochemistry and Biophysics 350(1): 95-
103. 
 
Bennett RA, Pegg AE (1981). Alkylation of DNA in rat tissues following administration of 
streptozotocin. Cancer Research 41(7): 2786-2790. 
 
Bian JS, Yong QC, Pan TT, Feng ZN, Ali MY, Zhou S, et al. (2006). Role of hydrogen sulfide in the 
cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. The 
Journal of Pharmacology and Experimental Therapeutics 316(2): 670-678. 
 
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2012). Antioxidant supplements for 
prevention of mortality in healthy participants and patients with various diseases. Cochrane Database 
of Systematic Reviews (Online) 3: CD007176. 
 
Boedtkjer E, Praetorius J, Matchkov VV, Stankevicius E, Mogensen S, Fuchtbauer AC, et al. (2011). 
Disruption of Na+,HCO(3)(-) cotransporter NBCn1 (slc4a7) inhibits NO-mediated vasorelaxation, 
smooth muscle Ca(2)(+) sensitivity, and hypertension development in mice. Circulation 124(17): 
1819-1829. 
 
Bogatcheva NV, Sergeeva MG, Dudek SM, Verin AD (2005). Arachidonic acid cascade in 
endothelial pathobiology. Microvascular Research 69(3): 107-127. 
 
Boltz H (1978). Colorimetric determination of nonmetals. Wiley, New York: 474-477. 
 
Bolzan AD, Bianchi MS (2002). Genotoxicity of streptozotocin. Mutation Research 512(2-3): 121-
134. 
 
Bonaa KH, Njolstad I, Ueland PM, Schirmer H, Tverdal A, Steigen T, et al. (2006). Homocysteine 
lowering and cardiovascular events after acute myocardial infarction. The New England Journal of 
Medicine 354(15): 1578-1588. 
 
Brancaleone V, Roviezzo F, Vellecco V, De Gruttola L, Bucci M, Cirino G (2008). Biosynthesis of 
H2S is impaired in non-obese diabetic (NOD) mice. British Journal Pharmacology 155(5): 673-680. 
 



 194 

Braunstein AE, Goryachenkova EV, Tolosa EA, Willhardt IH, Yefremova LL (1971). Specificity and 
some other properties of liver serine sulphhydrase: evidence for its identity with cystathionine -
synthase. Biochimica et Biophysica Acta 242(1): 247-260. 
 
Brayden JE (2002). Functional roles of KATP channels in vascular smooth muscle. Clinical and 
Experimental Pharmacology Physiology 29(4): 312-316. 
 
Brian JE, Jr., Faraci FM, Heistad DD (1996). Recent insights into the regulation of cerebral 
circulation. Clinical and Experimental Pharmacology Physiology 23(6-7): 449-457. 
 
Briones AM, Alonso MJ, Hernanz R, Miguel M, Salaices M (2002). Alterations of the nitric oxide 
pathway in cerebral arteries from spontaneously hypertensive rats. Journal of Cardiovascular 
Pharmacology 39(3): 378-388. 
 
Brown KA, Didion SP, Andresen JJ, Faraci FM (2007). Effect of aging, MnSOD deficiency, and 
genetic background on endothelial function: evidence for MnSOD haploinsufficiency. 
Arteriosclerosis, Thrombosis, and Vascular Biology 27(9): 1941-1946. 
 
Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, et al. (2009). Hydrogen 
sulfide mediates cardioprotection through Nrf2 signaling. Circulatory Research 105(4): 365-374. 
 
Campbell WB, Falck JR (2007). Arachidonic acid metabolites as endothelium-derived 
hyperpolarizing factors. Hypertension 49(3): 590-596. 
 
Campos RR, Oliveira-Sales EB, Nishi EE, Boim MA, Dolnikoff MS, Bergamaschi CT (2011). The 
role of oxidative stress in renovascular hypertension. Clinical and Experimental Pharmacology 
Physiology 38(2): 144-152. 
 
Carr P, McKinnon W, Poston L (1995). Mechanisms of pHi control and relationships between tension 
and pHi in human subcutaneous small arteries. American Journal of Physiology 268(3 Pt 1): C580-
589. 
 
Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005). International Union of Pharmacology. 
XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. 
Pharmacological Reviews 57(4): 411-425. 
 
Chai W, Wang Y, Lin JY, Sun XD, Yao LN, Yang YH, et al. (2012). Exogenous hydrogen sulfide 
protects against traumatic hemorrhagic shock via attenuation of oxidative stress. The Journal of 
Surgical Research 176(1): 210-219. 
 
Cheang WS, Wong WT, Shen B, Lau CW, Tian XY, Tsang SY, et al. (2010). 4-Aminopyridine-
sensitive K(+) channels contributes to NaHS-induced membrane hyperpolarization and relaxation in 
the rat coronary artery. Vascular Pharmacology 53(3-4): 94-98. 
 
Chen F, Liu F, Badoer E (2011). AT1 receptors in the paraventricular nucleus mediate the 
hyperthermia-induced reflex reduction of renal blood flow in rats. American Journal of Physiology. 
Regulatory Integrative and Comparative Physiology 300(2): R479-485. 
 
Chen S, He RR (1998). Effect of intracarotid injection of adenosine on the activity of RVLM neurons 
in barodenervated rats. Sheng Li Xue Bao 50(6): 629-635. 
 
Cheng Y, Ndisang J, Tang G, Cao K, Wang R (2004). Hydrogen sulfide-induced relaxation of 
resistance mesenteric artery beds of rats. American Journal of Physiology - Heart and Circulatory 
Physiology 287: 2316-2323. 
 



 195 

Cheng Z, Jiang X, Kruger WD, Pratico D, Gupta S, Mallilankaraman K, et al. (2011). 
Hyperhomocysteinemia impairs endothelium-derived hyperpolarizing factor-mediated vasorelaxation 
in transgenic cystathionine beta synthase-deficient mice. Blood 118(7): 1998-2006. 
 
Cho AH, Kang DW, Kwon SU, Kim JS (2007). Is 15 mm size criterion for lacunar infarction still 
valid? A study on strictly subcortical middle cerebral artery territory infarction using diffusion-
weighted MRI. Cerebrovascular diseases (Basel, Switzerland) 23(1): 14-19. 
 
Cipolla MJ, McCall AL, Lessov N, Porter JM (1997). Reperfusion decreases myogenic reactivity and 
alters middle cerebral artery function after focal cerebral ischemia in rats. Stroke  28(1): 176-180. 
 
Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, et al. (1999). Molecular diversity 
of K+ channels. Annals of the New York Academy of Sciences 868: 233-285. 
 
Coote JH, Yang Z, Pyner S, Deering J (1998). Control of sympathetic outflows by the hypothalamic 
paraventricular nucleus. Clinical and Experimental Pharmacology and Physiology 25(6): 461-463. 
 
Cox BF, Brody MJ (1988). Tidal volume affects the response to inactivation of the rostral 
ventrolateral medulla. Hypertension 11(2 Pt 2): I186-189. 
 
Creager MA, Luscher TF, Cosentino F, Beckman JA (2003). Diabetes and vascular disease: 
pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 108(12): 1527-1532. 
 
Cribbs LL (2001). Vascular smooth muscle calcium channels: could "T" be a target? Circulation 
Research 89(7): 560-562. 
 
Csanyi G, Taylor WR, Pagano PJ (2009). NOX and inflammation in the vascular adventitia. Free 
Radical Biology & Medicine 47(9): 1254-1266. 
 
d'Emmanuele di Villa Bianca R, Sorrentino R, Coletta C, Mitidieri E, Rossi A, Vellecco V, et al. 
(2011). Hydrogen sulfide-induced dual vascular effect involves arachidonic acid cascade in rat 
mesenteric arterial bed. The Journal of Pharmacology and Experimental Therapeutics 337(1): 59-64. 
 
d'Emmanuele di Villa Bianca R, Sorrentino R, Maffia P, Mirone V, Imbimbo C, Fusco F, et al. 
(2009). Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. 
Proceedings of the National Academy of Sciences of the United States of America 106(11): 4513-
4518. 
 
Dal-Secco D, Cunha TM, Freitas A, Alves-Filho JC, Souto FO, Fukada SY, et al. (2008). Hydrogen 
sulfide augments neutrophil migration through enhancement of adhesion molecule expression and 
prevention of CXCR2 internalization: role of ATP-sensitive potassium channels. Journal of 
Immunology (Baltimore, Md. : 1950) 181(6): 4287-4298. 
 
Dampney RA (1994). Functional organization of central pathways regulating the cardiovascular 
system. Physiological Reviews 74(2): 323-364. 
 
Dan P, Cheung JC, Scriven DR, Moore ED (2003). Epitope-dependent localization of estrogen 
receptor-alpha, but not -beta, in en face arterial endothelium. American Journal of Physiology. Heart 
and Circulatory Physiology 284(4): H1295-1306. 
 
Dawe GS, Han SP, Bian JS, Moore PK (2008). Hydrogen sulphide in the hypothalamus causes an 
ATP-sensitive K+ channel-dependent decrease in blood pressure in freely moving rats. Neuroscience 
152(1): 169-177. 
 



 196 

Deering J, Coote JH (2000). Paraventricular neurones elicit a volume expansion-like change of 
activity in sympathetic nerves to the heart and kidney in the rabbit. Experimental Physiology 85(2): 
177-186. 
 
DeLeon ER, Stoy GF, Olson KR (2012). Passive loss of hydrogen sulfide in biological experiments. 
Analytical Biochemistry 421(1): 203-207. 
 
Dello Russo C, Tringali G, Ragazzoni E, Maggiano N, Menini E, Vairano M, et al. (2000). Evidence 
that hydrogen sulphide can modulate hypothalamo-pituitary-adrenal axis function: in vitro and in vivo 
studies in the rat. Journal of Neuroendocrinology 12(3): 225-233. 
 
Demchenko IT, Oury TD, Crapo JD, Piantadosi CA (2002). Regulation of the brain's vascular 
responses to oxygen. Circulatory Research 91(11): 1031-1037. 
 
Denizalti M, Bozkurt TE, Akpulat U, Sahin-Erdemli I, Abacioglu N (2011). The vasorelaxant effect 
of hydrogen sulfide is enhanced in streptozotocin-induced diabetic rats. Naunyn-Schmiedeberg's 
Archives of Pharmacology 383(5): 509-517. 
 
di Villa Bianca R, Coletta C, Mitidieri E, De Dominicis G, Rossi A, Sautebin L, et al. (2010). 
Hydrogen sulphide induces mouse paw oedema through activation of phospholipase A2. British 
Journal of Pharmacology 161(8): 1835-1842. 
 
Didion SP, Faraci FM (2002a). Effects of NADH and NADPH on superoxide levels and cerebral 
vascular tone. American Journal of Physiology. Heart and Circulatory Physiology 282(2): H688-695. 
 
Didion SP, Ryan MJ, Baumbach GL, Sigmund CD, Faraci FM (2002b). Superoxide contributes to 
vascular dysfunction in mice that express human renin and angiotensinogen. American Journal of 
Physiology. Heart and Circulatory Physiology 283(4): H1569-1576. 
 
Diedler J, Sykora M, Rupp A, Poli S, Karpel-Massler G, Sakowitz O, et al. (2009). Impaired cerebral 
vasomotor activity in spontaneous intracerebral hemorrhage. Stroke 40(3): 815-819. 
 
Dombkowski RA, Russell MJ, Olson KR (2004). Hydrogen sulfide as an endogenous regulator of 
vascular smooth muscle tone in trout. American Journal of Physiology. Regulatory Integrative and 
Comparative Physiology 286(4): R678-685. 
 
Dombkowski RA, Russell MJ, Schulman AA, Doellman MM, Olson KR (2005). Vertebrate 
phylogeny of hydrogen sulfide vasoactivity. American Journal of Physiology. Regulatory Integrative 
and Comparative Physiology  288(1): R243-252. 
 
Dong H, Jiang Y, Cole WC, Triggle CR (2000). Comparison of the pharmacological properties of 
EDHF-mediated vasorelaxation in guinea-pig cerebral and mesenteric resistance vessels. British 
Journal of Pharmacology 130(8): 1983-1991. 
 
Dong L, Zheng YM, Van Riper D, Rathore R, Liu QH, Singer HA, et al. (2008). Functional and 
molecular evidence for impairment of calcium-activated potassium channels in type-1 diabetic 
cerebral artery smooth muscle cells. Journal of Cerebral Blood Flow and Metabolism 28(2): 377-386. 
 
Droge W (2002). Free radicals in the physiological control of cell function. Physiological Reviews 
82(1): 47-95. 
 
Dunn-Meynell AA, Rawson NE, Levin BE (1998). Distribution and phenotype of neurons containing 
the ATP-sensitive K+ channel in rat brain. Brain Research 814(1-2): 41-54. 
 



 197 

Edvinsson LI, Povlsen GK (2011). Vascular plasticity in cerebrovascular disorders. Journal of 
Cerebral Blood Flow and Metabolism 31(7): 1554-1571. 
 
Edwards G, Feletou M, Weston AH (2010). Endothelium-derived hyperpolarising factors and 
associated pathways: a synopsis. Pflugers Archiv 459(6): 863-879. 
 
Edwards G, Feletou M, Weston AH (2012). Hydrogen sulfide as an endothelium-derived 
hyperpolarizing factor in rodent mesenteric arteries. Circulation Research 110(1): e13-14. 
 
Elsey DJ, Fowkes RC, Baxter GF (2010). L-cysteine stimulates hydrogen sulfide synthesis in 
myocardium associated with attenuation of ischemia-reperfusion injury. Journal of Cardiovascular 
Pharmacology and Therapeutics 15(1): 53-59. 
 
Escobar C, Bravo L, Hernandez J, Herrera L (2007). Hydrogen sulfide production from elemental 
sulfur by Desulfovibrio desulfuricans in an anaerobic bioreactor. Biotechnology and Bioengineering 
98(3): 569-577. 
 
Esler M (2010). The 2009 Carl Ludwig Lecture: Pathophysiology of the human sympathetic nervous 
system in cardiovascular diseases: the transition from mechanisms to medical management. Journal 
of Applied Physiology (Bethesda, Md. : 1985) 108(2): 227-237. 
 
Eto K, Kimura H (2002). A novel enhancing mechanism for hydrogen sulfide-producing activity of 
cystathionine beta-synthase. Journal of Biological Chemistry 277(45): 42680-42685. 
 
Fagan SC, Hess DC, Hohnadel EJ, Pollock DM, Ergul A (2004). Targets for vascular protection after 
acute ischemic stroke. Stroke 35(9): 2220-2225. 
 
Fang L, Zhao J, Chen Y, Ma T, Xu G, Tang C, et al. (2009). Hydrogen sulfide derived from 
periadventitial adipose tissue is a vasodilator. Journal of Hypertension 27(11): 2174-2185. 
 
Faraci FM (1993). Endothelium-derived vasoactive factors and regulation of the cerebral circulation. 
Neurosurgery 33(4): 648-658; discussion 658-649. 
 
Faraci FM (2011). Protecting against vascular disease in brain. American Journal of Physiology. 
Heart and Circulatory Physiology 300(5): H1566-1582. 
 
Faraci FM (2006). Reactive oxygen species: influence on cerebral vascular tone. Journal of Applied 
Physiology 100(2): 739-743. 
 
Faraci FM, Heistad DD (1990). Regulation of large cerebral arteries and cerebral microvascular 
pressure. Circulation Research 66(1): 8-17. 
 
Faraci FM, Heistad DD (1998). Regulation of the cerebral circulation: role of endothelium and 
potassium channels. Physiological Reviews 78(1): 53-97. 
 
Favaloro JL, Andrews KL, McPherson GA (2003). Novel imidazoline compounds that inhibit Kir-
mediated vasorelaxation in rat middle cerebral artery. Naunyn-Schmiedeberg's Archives of 
Pharmacology 367(4): 397-405. 
 
Feletou M, Vanhoutte PM (1988). Endothelium-dependent hyperpolarization of canine coronary 
smooth muscle. British Journal of Pharmacology 93(3): 515-524. 
 
Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK, Aldrich RW, et al. (2006). Local 
potassium signaling couples neuronal activity to vasodilation in the brain. Nature Neuroscience 9(11): 
1397-1403. 



 198 

 
Finkelstein JD, Kyle WE, Martin JL, Pick AM (1975). Activation of cystathionine synthase by 
adenosylmethionine and adenosylethionine. Biochemical and Biophysical Research Communications 
66(1): 81-87. 
 
Fiorucci S, Antonelli E, Mencarelli A, Orlandi S, Renga B, Rizzo G, et al. (2005). The third gas: H2S 
regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. 
Hepatology 42(3): 539-548. 
 
Forstermann U (2010). Nitric oxide and oxidative stress in vascular disease. Pflugers Archiv 459(6): 
923-939. 
 
Forstermann U, Munzel T (2006). Endothelial nitric oxide synthase in vascular disease: from marvel 
to menace. Circulation 113(13): 1708-1714. 
 
Fraile ML, Conde MV, Sanz L, Moreno MJ, Marco EJ, Lopez de Pablo AL (1994). Different 
influence of superoxide anions and hydrogen peroxide on endothelial function of isolated cat cerebral 
and pulmonary arteries. General Pharmacology 25(6): 1197-1205. 
 
Franklin KA (2002). Cerebral haemodynamics in obstructive sleep apnoea and Cheyne-Stokes 
respiration. Sleep Medicine Reviews 6(6): 429-441. 
 
Fukao M, Hattori Y, Kanno M, Sakuma I, Kitabatake A (1995). Thapsigargin- and cyclopiazonic 
acid-induced endothelium-dependent hyperpolarization in rat mesenteric artery. British Journal 
Pharmacology 115(6): 987-992. 
 
Furne J, Saeed A, Levitt MD (2008). Whole tissue hydrogen sulfide concentrations are orders of 
magnitude lower than presently accepted values. American Journal of Physiology. Regulatory 
Integrative and Comparative Physiology 295(5): R1479-1485. 
 
Furukawa T, Yamakawa T, Midera T, Sagawa T, Mori Y, Nukada T (1999). Selectivities of 
dihydropyridine derivatives in blocking Ca(2+) channel subtypes expressed in Xenopus oocytes. The 
Journal of Pharmacology and Experimental Therapeutics 291(2): 464-473. 
 
Gadalla MM, Snyder SH (2010). Hydrogen sulfide as a gasotransmitter. Journal of Neurochemistry 
113(1): 14-26. 
 
Gardner JP, Diecke FP (1988). Influence of pH on isometric force development and relaxation in 
skinned vascular smooth muscle. Pflugers Archiv 412(3): 231-239. 
 
Geng B, Chang L, Pan C, Qi Y, Zhao J, Pang Y, et al. (2004). Endogenous hydrogen sulfide 
regulation of myocardial injury induced by isoproterenol. Biochemical and Biophysical Research 
Communications 318(3): 756-763. 
 
Geng B, Cui Y, Zhao J, Yu F, Zhu Y, Xu G, et al. (2007). Hydrogen sulfide downregulates the aortic 
L-arginine/nitric oxide pathway in rats. American Journal of Physiology. Regulatory Integrative and 
Comparative Physiology 293(4): R1608-1618. 
 
Ghasemi M, Dehpour AR, Moore KP, Mani AR (2012). Role of endogenous hydrogen sulfide in 
neurogenic relaxation of rat corpus cavernosum. Biochemical Pharmacology 83(9): 1261-1268. 
 
Gollasch M, Wellman GC, Knot HJ, Jaggar JH, Damon DH, Bonev AD, et al. (1998). Ontogeny of 
local sarcoplasmic reticulum Ca2+ signals in cerebral arteries: Ca2+ sparks as elementary 
physiological events. Circulation Research 83(11): 1104-1114. 
 



 199 

Goodwin LR, Francom D, Dieken FP, Taylor JD, Warenycia MW, Reiffenstein RJ, et al. (1989). 
Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and 
two case reports. Journal of Analytical Toxicology 13(2): 105-109. 
 
Gorlach C, Benyo Z, Wahl M (1998). Dilator effect of bradykinin and acetylcholine in cerebral 
vessels after brain lesion. Kidney International. Supplement 67: S226-227. 
 
Grobelny BT, Ducruet AF, Derosa PA, Kotchetkov IS, Zacharia BE, Hickman ZL, et al. (2011). 
Gain-of-function polymorphisms of cystathionine beta-synthase and delayed cerebral ischemia 
following aneurysmal subarachnoid hemorrhage. Journal of Neurosurgery 115(1): 101-107. 
 
Groeger M, Matallo J, McCook O, Wagner F, Wachter U, Bastian O, et al. (2012). Temperature and 
Cell-type Dependency of Sulfide-Effects on Mitochondrial Respiration. Shock (Augusta, Ga.). 
 
Gryglewski RJ, Palmer RM, Moncada S (1986). Superoxide anion is involved in the breakdown of 
endothelium-derived vascular relaxing factor. Nature 320(6061): 454-456. 
 
Guan Q, Zhang Y, Yu C, Liu Y, Gao L, Zhao J (2012). Hydrogen sulfide protects against high-
glucose-induced apoptosis in endothelial cells. Journal of Cardiovascular Pharmacology 59(2): 188-
193. 
 
Gunarathne A, Patel JV, Kausar S, Gammon B, Hughes EA, Lip GY (2009). Glycemic status 
underlies increased arterial stiffness and impaired endothelial function in migrant South Asian stroke 
survivors compared to European Caucasians: pathophysiological insights from the West Birmingham 
Stroke Project. Stroke 40(7): 2298-2306. 
 
Guo Q, Jin S, Wang XL, Wang R, Xiao L, He RR, et al. (2011). Hydrogen sulfide in the rostral 
ventrolateral medulla inhibits sympathetic vasomotor tone through ATP-sensitive K+ channels. The 
Journal of Pharmacology and Experimental Therapeutics 338(2): 458-465. 
 
Guyenet PG (2006). The sympathetic control of blood pressure. Nature Reviews Neuroscience 7(5): 
335-346. 
 
Guyenet PG, Stornetta RL, Abbott SB, Depuy SD, Fortuna MG, Kanbar R (2010). Central CO2 
chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. Journal 
of Applied Physiology (Bethesda, Md. : 1985) 108(4): 995-1002. 
 
Han Y, Shi Z, Zhang F, Yu Y, Zhong MK, Gao XY, et al. (2007). Reactive oxygen species in the 
paraventricular nucleus mediate the cardiac sympathetic afferent reflex in chronic heart failure rats. 
European Journal of Heart Failure 9(10): 967-973. 
 
Hancock JT, Jones OT (1987). The inhibition by diphenyleneiodonium and its analogues of 
superoxide generation by macrophages. The Biochemical Journal 242(1): 103-107. 
 
Hart JL (2011). Role of sulfur-containing gaseous substances in the cardiovascular system. Frontiers 
in Bioscience (Elite Edition) 3: 736-749. 
 
Hassan MI, Boosen M, Schaefer L, Kozlowska J, Eisel F, von Knethen A, et al. (2012). Platelet-
derived growth factor-BB induces cystathionine gamma-lyase expression in rat mesangial cells via a 
redox-dependent mechanism. British Journal of Pharmacology 166(8):2231-42.  
  
 
Henrion D, Laher I, Klaasen A, Bevan JA (1994). Myogenic tone of rabbit facial vein and posterior 
cerebral artery is influenced by changes in extracellular sodium. American Journal of Physiology 
266(2 Pt 2): H377-383. 



 200 

 
Hill AP, Sitsapesan R (2002). DIDS modifies the conductance, gating, and inactivation mechanisms 
of the cardiac ryanodine receptor. Biophysical Journal 82(6): 3037-3047. 
 
Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, et al. (2001). Mechanisms underlying 
endothelial dysfunction in diabetes mellitus. Circulation Research 88(2): E14-22. 
 
Hogervorst E, Ribeiro HM, Molyneux A, Budge M, Smith AD (2002). Plasma homocysteine levels, 
cerebrovascular risk factors, and cerebral white matter changes (leukoaraiosis) in patients with 
Alzheimer disease. Archives of Neurology 59(5): 787-793. 
 
Hosoki R, Matsuki N, Kimura H (1997). The possible role of hydrogen sulfide as an endogenous 
smooth muscle relaxant in synergy with nitric oxide. Biochemical and Biophysical Research 
Communications 237(3): 527-531. 
 
Hsu P, Haffner J, Albuquerque ML, Leffler CW (1996). pHi in piglet cerebral microvascular 
endothelial cells: recovery from an acid load. Proceedings of the Society for Experimental Biology 
and Medicine 212(3): 256-262. 
 
Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS (2010). Neuroprotective effects of hydrogen 
sulfide on Parkinson's disease rat models. Aging Cell 9(2): 135-146. 
 
Hughes JM, Riddle MA, Paffett ML, Gonzalez Bosc LV, Walker BR (2010). Novel role of 
endothelial BKCa channels in altered vasoreactivity following hypoxia. American Journal of 
Physiology. Heart and Circulatory Physiology 299(5): H1439-1450. 
 
Humpel C (2011). Chronic mild cerebrovascular dysfunction as a cause for Alzheimer's disease? 
Experimental Gerontology 46(4): 225-232. 
 
Iadecola C (2004). Neurovascular regulation in the normal brain and in Alzheimer's disease. Nature 
Reviews Neuroscience 5(5): 347-360. 
 
Iadecola C, Davisson RL (2008). Hypertension and cerebrovascular dysfunction. Cell Metabolism 
7(6): 476-484. 
 
Iadecola C, Zhang F, Niwa K, Eckman C, Turner SK, Fischer E, et al. (1999). SOD1 rescues cerebral 
endothelial dysfunction in mice overexpressing amyloid precursor protein. Nature Neuroscience 2(2): 
157-161. 
 
Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H (2009). A source of hydrogen 
sulfide and a mechanism of its release in the brain. Antioxidants and Redox Signalling 11(2): 205-
214. 
 
Ishii I, Akahoshi N, Yamada H, Nakano S, Izumi T, Suematsu M (2010). Cystathionine gamma-
Lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative 
injury. The Journal of Biological Chemistry 285(34): 26358-26368. 
 
Ishii I, Akahoshi N, Yu XN, Kobayashi Y, Namekata K, Komaki G, et al. (2004). Murine 
cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue 
distribution and developmental expression. The Biochemical Journal 381(Pt 1): 113-123. 
 
Jackson WF (2000). Ion channels and vascular tone. Hypertension 35(1 Pt 2): 173-178. 
 



 201 

Jackson-Weaver O, Paredes DA, Bosc LV, Walker BR, Kanagy NL (2011). Intermittent hypoxia in 
rats increases myogenic tone through loss of hydrogen sulfide activation of large-conductance Ca2+-
activated potassium channels. Circulation Research 108(12): 1439-1447. 
 
Jacobs RL, House JD, Brosnan ME, Brosnan JT (1998). Effects of streptozotocin-induced diabetes 
and of insulin treatment on homocysteine metabolism in the rat. Diabetes 47(12): 1967-1970. 
 
Jaggar JH, Porter VA, Lederer WJ, Nelson MT (2000). Calcium sparks in smooth muscle. American 
Journal of Physiology. Cell Physiology 278(2): C235-256. 
 
Jain SK, Bull R, Rains JL, Bass PF, Levine SN, Reddy S, et al. (2010). Low levels of hydrogen 
sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? 
Antioxidants and Redox Signalling 12(11): 1333-1337. 
 
Johnson TD, Marrelli SP, Steenberg ML, Childres WF, Bryan RM, Jr. (1998). Inward rectifier 
potassium channels in the rat middle cerebral artery. American Journal of Physiology  274(2 Pt 2): 
R541-547. 
 
Johnston M, Jankowski D, Marcotte P, Tanaka H, Esaki N, Soda K, et al. (1979). Suicide inactivation 
of bacterial cystathionine gamma-synthase and methionine gamma-lyase during processing of L-
propargylglycine. Biochemistry 18(21): 4690-4701. 
 
Kamata K, Miyata N, Kasuya Y (1989). Functional changes in potassium channels in aortas from rats 
with streptozotocin-induced diabetes. European journal of Pharmacology 166(2): 319-323. 
 
Kaneko Y, Kimura T, Taniguchi S, Souma M, Kojima Y, Kimura Y, et al. (2009). Glucose-induced 
production of hydrogen sulfide may protect the pancreatic beta-cells from apoptotic cell death by high 
glucose. FEBS letters 583(2): 377-382. 
 
Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA (2010). Role of reactive oxygen species in the 
progression of type 2 diabetes and atherosclerosis. Mediators of Inflammation 2010: 453892. 
 
Kang YM, He RL, Yang LM, Qin DN, Guggilam A, Elks C, et al. (2009). Brain tumour necrosis 
factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. 
Cardiovascular Research 83(4): 737-746. 
 
Kannan H, Hayashida Y, Yamashita H (1989). Increase in sympathetic outflow by paraventricular 
nucleus stimulation in awake rats. American Journal of Physiology 256(6 Pt 2): R1325-1330. 
 
Kannan H, Niijima A, Yamashita H (1987). Inhibition of renal sympathetic nerve activity by 
electrical stimulation of the hypothalamic paraventricular nucleus in anesthetized rats. Journal of the 
Autonomic Nervous System 21(1): 83-86. 
 
Kantzides A, Badoer E (2005). nNOS-containing neurons in the hypothalamus and medulla project to 
the RVLM. Brain Research 1037(1-2): 25-34. 
 
Kasprowicz M, Czosnyka M, Soehle M, Smielewski P, Kirkpatrick PJ, Pickard JD, et al. (2012). 
Vasospasm shortens cerebral arterial time constant. Neurocritical Care 16(2): 213-218. 
 
Kelley BJ, Petersen RC (2007). Alzheimer's disease and mild cognitive impairment. Neurologic 
Clinics 25(3): 577-609, v. 
 
Kelly-Cobbs A, Elgebaly MM, Li W, Ergul A (2011). Pressure-independent cerebrovascular 
remodelling and changes in myogenic reactivity in diabetic Goto-Kakizaki rat in response to 
glycaemic control. Acta physiologica (Oxford, England) 203(1): 245-251. 



 202 

 
Khan AA, Schuler MM, Prior MG, Yong S, Coppock RW, Florence LZ, et al. (1990). Effects of 
hydrogen sulfide exposure on lung mitochondrial respiratory chain enzymes in rats. Toxicology and 
Applied Pharmacology 103(3): 482-490. 
 
Kiely JM, Gordon FJ (1994). Role of rostral ventrolateral medulla in centrally mediated pressor 
responses. American Journal of Physiology 267(4 Pt 2): H1549-1556. 
 
Kim C, Lan Y, Deng B (2007). Kinetic study of hexavalent Cr(VI) reduction by hydrogen sulfide 
through goethite surface catalytic reaction. Geochemical Journal 41: 397-405. 
 
Kimura H (2002). Hydrogen sulfide as a neuromodulator. Molecular Neurobiology 26(1): 13-19. 
 
Kimura H (2011). Hydrogen sulfide: its production, release and functions. Amino Acids 41(1): 113-
121. 
 
Kimura Y, Dargusch R, Schubert D, Kimura H (2006). Hydrogen sulfide protects HT22 neuronal 
cells from oxidative stress. Antioxidants and Redox Signalling 8(3-4): 661-670. 
 
Kimura Y, Goto Y, Kimura H (2010). Hydrogen sulfide increases glutathione production and 
suppresses oxidative stress in mitochondria. Antioxidants and Redox Signalling 12(1): 1-13. 
 
Kimura Y, Hirooka Y, Kishi T, Ito K, Sagara Y, Sunagawa K (2009). Role of inducible nitric oxide 
synthase in rostral ventrolateral medulla in blood pressure regulation in spontaneously hypertensive 
rats. Clinical and Experimental Hypertension (New York, N.Y. : 1993) 31(3): 281-286. 
 
Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A (2004). Increased reactive oxygen 
species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-
prone spontaneously hypertensive rats. Circulation 109(19): 2357-2362. 
 
Kiss L, Deitch EA, Szabo C (2008). Hydrogen sulfide decreases adenosine triphosphate levels in 
aortic rings and leads to vasorelaxation via metabolic inhibition. Life Sciences 83(17-18): 589-594. 
 
Kitayama J, Faraci FM, Gunnett CA, Heistad DD (2006). Impairment of dilator responses of cerebral 
arterioles during diabetes mellitus: role of inducible NO synthase. Stroke; a Journal of Cerebral 
Circulation 37(8): 2129-2133. 
 
Klockner U, Isenberg G (1994). Intracellular pH modulates the availability of vascular L-type Ca2+ 
channels. The Journal of General Physiology 103(4): 647-663. 
 
Knot HJ, Nelson MT (1995). Regulation of membrane potential and diameter by voltage-dependent 
K+ channels in rabbit myogenic cerebral arteries. American Journal of Physiology  269(1 Pt 2): 
H348-355. 
 
Koenitzer JR, Isbell TS, Patel HD, Benavides GA, Dickinson DA, Patel RP, et al. (2007). Hydrogen 
sulfide mediates vasoactivity in an O2-dependent manner. American Journal of Physiology. Heart 
and Circulatory Physiology 292(4): H1953-1960. 
 
Kohl RL, Quay WB (1979). Cystathionine synthase in rat brain: regional and time-of-day differences 
and their metabolic implications. Journal of Neuroscience Research 4(3): 189-196. 
 
Koide M, Nystoriak MA, Brayden JE, Wellman GC (2011). Impact of subarachnoid hemorrhage on 
local and global calcium signaling in cerebral artery myocytes. Acta Neurochirurgica. Supplement 
110(Pt 1): 145-150. 
 



 203 

Komori K, Lorenz RR, Vanhoutte PM (1988). Nitric oxide, ACh, and electrical and mechanical 
properties of canine arterial smooth muscle. American Journal of Physiology. 255(1 Pt 2): H207-212. 
 
Kontos HA (2001). Oxygen radicals in cerebral ischemia: the 2001 Willis lecture. Stroke 32(11): 
2712-2716. 
 
Koshiya N, Guyenet PG (1996). Tonic sympathetic chemoreflex after blockade of respiratory 
rhythmogenesis in the rat. Journal of Physiology 491 ( Pt 3): 859-869. 
 
Kubo S, Doe I, Kurokawa Y, Nishikawa H, Kawabata A (2007). Direct inhibition of endothelial nitric 
oxide synthase by hydrogen sulfide: contribution to dual modulation of vascular tension. Toxicology 
232(1-2): 138-146. 
 
Kumagai H, Oshima N, Matsuura T, Iigaya K, Imai M, Onimaru H, et al. (2012). Importance of 
rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood 
pressure. Hypertension Research 35(2): 132-141. 
 
Kuo IY, Wolfle SE, Hill CE (2011). T-type calcium channels and vascular function: the new kid on 
the block? Journal of Physiology 589(Pt 4): 783-795. 
 
Laing SP, Swerdlow AJ, Carpenter LM, Slater SD, Burden AC, Botha JL, et al. (2003). Mortality 
from cerebrovascular disease in a cohort of 23 000 patients with insulin-treated diabetes. Stroke 
34(2): 418-421. 
 
Lam E, Skarsgard P, Laher I (1998). Inhibition of myogenic tone by mibefradil in rat cerebral arteries. 
European Journal of Pharmacology 358(2): 165-168. 
 
Lassegue B, Griendling KK (2010). NADPH oxidases: functions and pathologies in the vasculature. 
Arteriosclerosis, Rhrombosis, and Vascular Biology 30(4): 653-661. 
 
Lee M, Schwab C, Yu S, McGeer E, McGeer PL (2009). Astrocytes produce the antiinflammatory 
and neuroprotective agent hydrogen sulfide. Neurobiology and Aging 30(10): 1523-1534. 
 
Lee SW, Cheng Y, Moore PK, Bian JS (2007). Hydrogen sulphide regulates intracellular pH in 
vascular smooth muscle cells. Biochemical and Biophysical Research Communications 358(4): 1142-
1147. 
 
Leffler CW, Parfenova H, Basuroy S, Jaggar JH, Umstot ES, Fedinec AL (2010). Hydrogen sulfide 
and cerebral microvascular tone in newborn pigs. American Journal of Physiology. Heart and 
Circulatory Physiology 300(2): H440-447. 
 
Leo CH, Hart JL, Woodman OL (2011a). 3',4'-Dihydroxyflavonol reduces superoxide and improves 
nitric oxide function in diabetic rat mesenteric arteries. PloS one 6(6): e20813. 
 
Leo CH, Hart JL, Woodman OL (2011b). Impairment of both nitric oxide-mediated and EDHF-type 
relaxation in small mesenteric arteries from rats with streptozotocin-induced diabetes. British Journal 
Pharmacology 162(2): 365-377. 
 
Levin BE, Dunn-Meynell AA (1997). In vivo and in vitro regulation of [3H]glyburide binding to 
brain sulfonylurea receptors in obesity-prone and resistant rats by glucose. Brain Research 776(1-2): 
146-153. 
 
Li DP, Chen SR, Pan HL (2010). Adenosine inhibits paraventricular pre-sympathetic neurons through 
ATP-dependent potassium channels. Journal of Neurochemistry 113(2): 530-542. 
 



 204 

Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, et al. (2008). Characterization of a novel, 
water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of 
hydrogen sulfide. Circulation 117(18): 2351-2360. 
 
Li W, Tang C, Jin H, Du J (2011). Regulatory effects of sulfur dioxide on the development of 
atherosclerotic lesions and vascular hydrogen sulfide in atherosclerotic rats. Atherosclerosis 215(2): 
323-330. 
 
Li YF, Patel KP (2003). Paraventricular nucleus of the hypothalamus and elevated sympathetic 
activity in heart failure: the altered inhibitory mechanisms. Acta Physiologica Scandinavica 177(1): 
17-26. 
 
Liang GH, Adebiyi A, Leo MD, McNally EM, Leffler CW, Jaggar JH (2011). Hydrogen sulfide 
dilates cerebral arterioles by activating smooth muscle cell plasma membrane KATP channels. 
American Journal of Physiology. Heart and Circulatory Physiology 300(6): H2088-2095. 
 
Liang GH, Xi Q, Leffler CW, Jaggar JH (2012). Hydrogen sulfide activates Ca2+ sparks to induce 
cerebral arteriole dilation. Journal Physiology 590: 2709-2720. 
 
Liew HC, Khoo HE, Moore PK, Bhatia M, Lu J, Moochhala SM (2007). Synergism between 
hydrogen sulfide (H(2)S) and nitric oxide (NO) in vasorelaxation induced by stonustoxin (SNTX), a 
lethal and hypotensive protein factor isolated from stonefish Synanceja horrida venom. Life Sciences 
80(18): 1664-1668. 
 
Lim JJ, Liu YH, Khin ES, Bian JS (2008). Vasoconstrictive effect of hydrogen sulfide involves 
downregulation of cAMP in vascular smooth muscle cells. American Journal of Physiology. Cell 
Physiology 295(5): C1261-1270. 
 
Lin Y, Matsumura K, Kagiyama S, Fukuhara M, Fujii K, Iida M (2005). Chronic administration of 
olmesartan attenuates the exaggerated pressor response to glutamate in the rostral ventrolateral 
medulla of SHR. Brain Research 1058(1-2): 161-166. 
 
Liu J, Lai ZF, Wang XD, Tokutomi N, Nishi K (1998). Inhibition of sodium current by chloride 
channel blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) in guinea pig cardiac 
ventricular cells. Journal of Cardiovascular Pharmacology 31(4): 558-567. 
 
Liu L, Liu H, Sun D, Qiao W, Qi Y, Sun H, et al. (2012). Effects of h(2)s on myogenic responses in 
rat cerebral arterioles. Circulatory Journal 76(4): 1012-1019. 
 
Liu WQ, Chai C, Li XY, Yuan WJ, Wang WZ, Lu Y (2011a). The cardiovascular effects of central 
hydrogen sulfide are related to K(ATP) channels activation. Physiological Research / Academia 
Scientiarum Bohemoslovaca 60(5): 729-738. 
 
Liu Y, Gutterman DD (2002). The coronary circulation in diabetes: influence of reactive oxygen 
species on K+ channel-mediated vasodilation. Vascular Pharmacology 38(1): 43-49. 
 
Liu Y, Terata K, Rusch NJ, Gutterman DD (2001). High glucose impairs voltage-gated K(+) channel 
current in rat small coronary arteries. Circulation Research 89(2): 146-152. 
 
Liu YH, Bian JS (2010). Bicarbonate-dependent effect of hydrogen sulfide on vascular contractility in 
rat aortic rings. American journal of physiology. Cell Physiology 299(4): C866-872. 
 
Liu YH, Yan CD, Bian JS (2011b). Hydrogen sulfide: a novel signaling molecule in the vascular 
system. Journal of Cardiovascular Pharmacology 58(6): 560-569. 
 



 205 

Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time 
quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.) 25(4): 402-408. 
 
Lohn M, Dubrovska G, Lauterbach B, Luft FC, Gollasch M, Sharma AM (2002). Periadventitial fat 
releases a vascular relaxing factor. FASEB Journal 16(9): 1057-1063. 
 
Long W, Zhang L, Longo LD (2000). Cerebral artery sarcoplasmic reticulum Ca(2+) stores and 
contractility: changes with development. American Journal of Physiology. Regulatory Integrative and 
Comparative Physiology 279(3): R860-873. 
 
Lovick TA (1993). The periaqueductal gray-rostral medulla connection in the defence reaction: 
efferent pathways and descending control mechanisms. Behavioural Brain Research 58(1-2): 19-25. 
 
Lovick TA, Malpas S, Mahony MT (1993). Renal vasodilatation in response to acute volume load is 
attenuated following lesions of parvocellular neurones in the paraventricular nucleus in rats. Journal 
of the  Autonomic Nervous System 43(3): 247-255. 
 
Lu J, Boron WF (2007). Reversible and irreversible interactions of DIDS with the human electrogenic 
Na/HCO3 cotransporter NBCe1-A: role of lysines in the KKMIK motif of TM5. American journal of 
physiology. Cell Physiology 292(5): C1787-1798. 
 
Luksha L, Agewall S, Kublickiene K (2009). Endothelium-derived hyperpolarizing factor in vascular 
physiology and cardiovascular disease. Atherosclerosis 202(2): 330-344. 
 
Luscher TF, Barton M (1997). Biology of the endothelium. Clinical Cardiology 20(11 Suppl 2): II-3-
10. 
 
Mackie AR, Byron KL (2008). Cardiovascular KCNQ (Kv7) potassium channels: physiological 
regulators and new targets for therapeutic intervention. Molecular Pharmacology 74(5): 1171-1179. 
 
Maclean KN, Sikora J, Kozich V, Jiang H, Greiner LS, Kraus E, et al. (2010). Cystathionine beta-
synthase null homocystinuric mice fail to exhibit altered hemostasis or lowering of plasma 
homocysteine in response to betaine treatment. Molecular Genetics and Metabolism 101(2-3): 163-
171. 
 
Madden JA, Ray DE, Keller PA, Kleinman JG (2001). Ion exchange activity in pulmonary artery 
smooth muscle cells: the response to hypoxia. American Journal of Physiology. Lung Cellular and 
Molecular Physiology 280(2): L264-271. 
 
Malliani A, Montano N (2002). Emerging excitatory role of cardiovascular sympathetic afferents in 
pathophysiological conditions. Hypertension 39(1): 63-68. 
 
Marcotte P, Walsh C (1976). Vinylglycine and proparglyglycine: complementary suicide substrates 
for L-amino acid oxidase and D-amino acid oxidase. Biochemistry 15(14): 3070-3076. 
 
Maric-Bilkan C, Flynn ER, Chade AR (2012). Microvascular disease precedes the decline in renal 
function in the streptozotocin-induced diabetic rat. American Journal of Physiology.l Renal 
Physiology 302(3): F308-315. 
 
Mathew R, Burke-Wolin T, Gewitz MH, Wolin MS (1991). O2 and rat pulmonary artery tone: effects 
of endothelium, Ca2+, cyanide, and monocrotaline. Journal of Applied Physiology (Bethesda, Md. : 
1985) 71(1): 30-36. 
 
Mavrikakis ME, Sfikakis PP, Kontoyannis D, Horti M, Kittas C, Koutras DA, et al. (1998). 
Macrovascular disease of coronaries and cerebral arteries in streptozotocin-induced diabetic rats. A 



 206 

controlled, comparative study. Experimental and Clinical Endocrinology & Diabetes : Official 
Journal 106(1): 35-40. 
 
Mayhan WG, Faraci FM (1993). Responses of cerebral arterioles in diabetic rats to activation of ATP-
sensitive potassium channels. American Journal of Physiology 265(1 Pt 2): H152-157. 
 
McGahon MK, Dash DP, Arora A, Wall N, Dawicki J, Simpson DA, et al. (2007). Diabetes 
downregulates large-conductance Ca2+-activated potassium beta 1 channel subunit in retinal 
arteriolar smooth muscle. Circulation Research 100(5): 703-711. 
 
McMaster OG, Du F, French ED, Schwarcz R (1991). Focal injection of aminooxyacetic acid 
produces seizures and lesions in rat hippocampus: evidence for mediation by NMDA receptors. 
Experimental Neurology 113(3): 378-385. 
 
McPherson GA (1992). Assessing vascular reactivity of arteries in the small vessel myograph. 
Clinical and Experimental Pharmacology & Physiology 19(12): 815-825. 
 
McVeigh GE, Brennan GM, Johnston GD, McDermott BJ, McGrath LT, Henry WR, et al. (1992). 
Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-
dependent) diabetes mellitus. Diabetologia 35(8): 771-776. 
 
Meng QH, Yang G, Yang W, Jiang B, Wu L, Wang R (2007). Protective effect of hydrogen sulfide on 
balloon injury-induced neointima hyperplasia in rat carotid arteries. The American Journal of 
Pathology 170(4): 1406-1414. 
 
Miller AA, Drummond GR, Schmidt HH, Sobey CG (2005). NADPH oxidase activity and function 
are profoundly greater in cerebral versus systemic arteries. Circulation Research 97(10): 1055-1062. 
 
Miller AA, Drummond GR, Sobey CG (2006). Novel isoforms of NADPH-oxidase in cerebral 
vascular control. Pharmacology & Therapeutics 111(3): 928-948. 
 
Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS (2008). Role of nitric oxide and prostacyclin 
as vasoactive hormones released by the endothelium. Experimental Physiology 93(1): 141-147. 
 
Moncada S, Gryglewski R, Bunting S, Vane JR (1976). An enzyme isolated from arteries transforms 
prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 
263(5579): 663-665. 
 
Moosmang S, Schulla V, Welling A, Feil R, Feil S, Wegener JW, et al. (2003). Dominant role of 
smooth muscle L-type calcium channel Cav1.2 for blood pressure regulation. EMBO Journal 22(22): 
6027-6034. 
 
Moskowitz MA, Lo EH, Iadecola C (2010). The science of stroke: mechanisms in search of 
treatments. Neuron 67(2): 181-198. 
 
Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, et al. (2009a). H2S signals through 
protein S-sulfhydration. Science Signaling 2(96): ra72. 
 
Mustafa AK, Gadalla MM, Snyder SH (2009b). Signaling by gasotransmitters. Science Signaling 
2(68): re2. 
 
Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, et al. (2011). Hydrogen sulfide as 
endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circulation Research 
109(11): 1259-1268. 
 



 207 

Muzaffar S, Shukla N, Bond M, Newby AC, Angelini GD, Sparatore A, et al. (2008). Exogenous 
hydrogen sulfide inhibits superoxide formation, NOX-1 expression and Rac1 activity in human 
vascular smooth muscle cells. Journal of Vascular Research 45(6): 521-528. 
 
Myren M, Olesen J, Gupta S (2011). Pharmacological and expression profile of the prostaglandin I(2) 
receptor in the rat craniovascular system. Vascular Pharmacoogyl 55(1-3): 50-58. 
 
Nagai Y, Tsugane M, Oka J, Kimura H (2004). Hydrogen sulfide induces calcium waves in 
astrocytes. FASEB Journal 18(3): 557-559. 
 
Nakashima M, Vanhoutte PM (1995). Isoproterenol causes hyperpolarization through opening of 
ATP-sensitive potassium channels in vascular smooth muscle of the canine saphenous vein. The 
Journal of Pharmacology and Experimental Therapeutics 272(1): 379-384. 
 
Naudi A, Jove M, Ayala V, Cassanye A, Serrano J, Gonzalo H, et al. (2012). Cellular dysfunction in 
diabetes as maladaptive response to mitochondrial oxidative stress. Experimental Diabetes Research 
2012: 696215. 
 
Navarro-Gonzalez MF, Grayson TH, Meaney KR, Cribbs LL, Hill CE (2009). Non-L-type voltage-
dependent calcium channels control vascular tone of the rat basilar artery. Clinical and Experimental 
Pharmacology and Physiology 36(1): 55-66. 
 
Nazir FS, Alem M, Small M, Connell JM, Lees KR, Walters MR, et al. (2006). Blunted response to 
systemic nitric oxide synthase inhibition in the cerebral circulation of patients with Type 2 diabetes. 
Diabetic Medicine 23(4): 398-402. 
 
Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, et al. (1995a). Relaxation of 
arterial smooth muscle by calcium sparks. Science 270(5236): 633-637. 
 
Nelson MT, Patlak JB, Worley JF, Standen NB (1990). Calcium channels, potassium channels, and 
voltage dependence of arterial smooth muscle tone. American Journal of Physiology 259(1 Pt 1): C3-
18. 
 
Nelson MT, Quayle JM (1995b). Physiological roles and properties of potassium channels in arterial 
smooth muscle. American Journal of Physiology  268(4 Pt 1): C799-822. 
 
Netzer N, Werner P, Jochums I, Lehmann M, Strohl KP (1998). Blood flow of the middle cerebral 
artery with sleep-disordered breathing: correlation with obstructive hypopneas. Stroke 29(1): 87-93. 
 
Ng CW, De Matteo R, Badoer E (2004). Effect of muscimol and L-NAME in the PVN on the RSNA 
response to volume expansion in conscious rabbits. American Journal of Physiology. Renal 
Physiology 287(4): F739-746. 
 
NHBPEP wg (1994). National High Blood Pressure Education Program Working Group report on 
hypertension in diabetes. Hypertension 23(2): 145-158; discussion 159-160. 
 
Nishihara M, Hirooka Y, Matsukawa R, Kishi T, Sunagawa K (2012). Oxidative stress in the rostral 
ventrolateral medulla modulates excitatory and inhibitory inputs in spontaneously hypertensive rats. 
Journal of Hypertension 30(1): 97-106. 
 
Niwa K, Kazama K, Younkin L, Younkin SG, Carlson GA, Iadecola C (2002). Cerebrovascular 
autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. American 
Journal of Physiology. Heart and Circulatory Physiology 283(1): H315-323. 
 



 208 

O'Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW (2006). 1,026 
experimental treatments in acute stroke. Annals of Neurology 59(3): 467-477. 
 
O'Neill MJ, Clemens JA (2001). Rodent models of focal cerebral ischemia. Current Protocols in 
Neuroscience Chapter 9: Unit9 6. 
 
Okajima T, Ohsaka T (2003). Chemiluminescence of lucigenin by electrogenerated superoxide ions in 
aqueous solutions. Luminescence 18(1): 49-57. 
 
Oliveira-Sales EB, Colombari DS, Davisson RL, Kasparov S, Hirata AE, Campos RR, et al. (2010). 
Kidney-induced hypertension depends on superoxide signaling in the rostral ventrolateral medulla. 
Hypertension 56(2): 290-296. 
 
Oliveira-Sales EB, Nishi EE, Carillo BA, Boim MA, Dolnikoff MS, Bergamaschi CT, et al. (2009). 
Oxidative stress in the sympathetic premotor neurons contributes to sympathetic activation in 
renovascular hypertension. American Journal of Hypertension 22(5): 484-492. 
 
Olson KR (2012). A practical look at the chemistry and biology of hydrogen sulfide. Antioxidants and 
Redox Signalling 17(1): 32-44. 
 
Olson KR, Dombkowski RA, Russell MJ, Doellman MM, Head SK, Whitfield NL, et al. (2006). 
Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic 
vasodilation. The Journal of Experimental Biology 209(Pt 20): 4011-4023. 
 
Olson KR, Forgan LG, Dombkowski RA, Forster ME (2008). Oxygen dependency of hydrogen 
sulfide-mediated vasoconstriction in cyclostome aortas. The Journal of Experimental Biology 211(Pt 
14): 2205-2213. 
 
Olson KR, Russell MJ, Forster ME (2001). Hypoxic vasoconstriction of cyclostome systemic vessels: 
the antecedent of hypoxic pulmonary vasoconstriction? American Journal of Physiology. Regulatory 
Integrative and Comparative Physiology 280(1): R198-206. 
 
Olson KR, Whitfield NL, Bearden SE, St Leger J, Nilson E, Gao Y, et al. (2010). Hypoxic pulmonary 
vasodilation: a paradigm shift with a hydrogen sulfide mechanism. American Journal of Physiology. 
Regulatory Integrative and Comparative Physiology 298(1): R51-60. 
 
Ospina JA, Krause DN, Duckles SP (2002). 17beta-estradiol increases rat cerebrovascular 
prostacyclin synthesis by elevating cyclooxygenase-1 and prostacyclin synthase. Stroke  33(2): 600-
605. 
 
Ottschytsch N, Raes A, Van Hoorick D, Snyders DJ (2002). Obligatory heterotetramerization of three 
previously uncharacterized Kv channel alpha-subunits identified in the human genome. Proceedings 
of the National Academy of Sciences of the United States of America 99(12): 7986-7991. 
 
Pagnussat AS, Faccioni-Heuser MC, Netto CA, Achaval M (2007). An ultrastructural study of cell 
death in the CA1 pyramidal field of the hippocapmus in rats submitted to transient global ischemia 
followed by reperfusion. Journal of Anatomy 211(5): 589-599. 
 
Palmer RM, Ferrige AG, Moncada S (1987). Nitric oxide release accounts for the biological activity 
of endothelium-derived relaxing factor. Nature 327(6122): 524-526. 
 
Pan LL, Liu XH, Gong QH, Wu D, Zhu YZ (2011). Hydrogen sulfide attenuated tumor necrosis 
factor-alpha-induced inflammatory signaling and dysfunction in vascular endothelial cells. PloS one 
6(5): e19766. 
 



 209 

Park L, Anrather J, Zhou P, Frys K, Wang G, Iadecola C (2004). Exogenous NADPH increases 
cerebral blood flow through NADPH oxidase-dependent and -independent mechanisms. 
Arteriosclerosis, Thrombosis, and Vascular Biology 24(10): 1860-1865. 
 
Parks SK, Tresguerres M, Goss GG (2009). Cellular mechanisms of chloride transport in trout gill 
mitochondrion-rich cells. American Journal of Physiology. Regulatory Integrative and Comparative 
Physiology 296(4): R1161-1169. 
 
Patel KP (2000). Role of paraventricular nucleus in mediating sympathetic outflow in heart failure. 
Heart Failure Reviews 5(1): 73-86. 
 
Patel KP, Li YF, Hirooka Y (2001). Role of nitric oxide in central sympathetic outflow. Experimental 
Biology and Medicine (Maywood, N.J.) 226(9): 814-824. 
 
Patel KP, Schmid PG (1988). Role of paraventricular nucleus (PVH) in baroreflex-mediated changes 
in lumbar sympathetic nerve activity and heart rate. Journal of the Autonomic Nervous System 22(3): 
211-219. 
 
Patel KP, Zheng H (2012). Central neural control of sympathetic nerve activity in heart failure 
following exercise training. American Journal of Physiology. Heart and Circulatory Physiology 
302(3): H527-537. 
 
Pearce WJ (1995). Mechanisms of hypoxic cerebral vasodilatation. Pharmacology & Therapeutics 
65(1): 75-91. 
 
Pearce WJ, Elliott SR (1994). Maturation enhances the sensitivity of ovine cerebral arteries to the 
ATP-sensitive potassium channel activator lemakalim. Pediatric Research 35(6): 729-732. 
 
Peng HL, Jensen PE, Nilsson H, Aalkjaer C (1998). Effect of acidosis on tension and [Ca2+]i in rat 
cerebral arteries: is there a role for membrane potential? American Journal of Physiology 274(2 Pt 2): 
H655-662. 
 
Pesic A, Madden JA, Pesic M, Rusch NJ (2004). High blood pressure upregulates arterial L-type 
Ca2+ channels: is membrane depolarization the signal? Circulation Research 94(10): e97-104. 
 
Peterson JR, Sharma RV, Davisson RL (2006). Reactive oxygen species in the neuropathogenesis of 
hypertension. Current Hypertension Reports 8(3): 232-241. 
 
Petersson M (2002). Cardiovascular effects of oxytocin. Progress in Brain Research 139: 281-288. 
 
Pilowsky PM, Goodchild AK (2002). Baroreceptor reflex pathways and neurotransmitters: 10 years 
on. Journal of Hypertension 20(9): 1675-1688. 
 
Ploug KB, Edvinsson L, Olesen J, Jansen-Olesen I (2006). Pharmacological and molecular 
comparison of K(ATP) channels in rat basilar and middle cerebral arteries. European Journal of 
Pharmacology 553(1-3): 254-262. 
 
Poulain DA, Wakerley JB (1982). Electrophysiology of hypothalamic magnocellular neurones 
secreting oxytocin and vasopressin. Neuroscience 7(4): 773-808. 
 
Predmore BL, Julian D, Cardounel AJ (2011). Hydrogen sulfide increases nitric oxide production 
from endothelial cells by an akt-dependent mechanism. Frontiers in Physiology 2: 104. 
 
Pyner S (2009). Neurochemistry of the paraventricular nucleus of the hypothalamus: implications for 
cardiovascular regulation. Journal of Chemical Neuroanatomy 38(3): 197-208. 



 210 

 
Qi M, Hang C, Zhu L, Shi J (2011). Involvement of endothelial-derived relaxing factors in the 
regulation of cerebral blood flow. Neurological Sciences 32(4): 551-557. 
 
Quayle JM, McCarron JG, Brayden JE, Nelson MT (1993). Inward rectifier K+ currents in smooth 
muscle cells from rat resistance-sized cerebral arteries. American Journal of Physiology 265(5 Pt 1): 
C1363-1370. 
 
Quayle JM, Nelson MT, Standen NB (1997). ATP-sensitive and inwardly rectifying potassium 
channels in smooth muscle. Physiological Reviews 77(4): 1165-1232. 
 
Quinn TJ, Dawson J, Walters MR (2011). Sugar and stroke: cerebrovascular disease and blood 
glucose control. Cardiovascular Therapeutics 29(6): e31-42. 
 
Radomski MW, Palmer RM, Moncada S (1987). The role of nitric oxide and cGMP in platelet 
adhesion to vascular endothelium. Biochemical and Biophysical Research Communications 148(3): 
1482-1489. 
 
Refsum H, Ueland PM, Nygard O, Vollset SE (1998). Homocysteine and cardiovascular disease. 
Annual Review of Medicine 49: 31-62. 
 
Reid JM, Paterson DJ, Ashcroft FM, Bergel DH (1993). The effect of tolbutamide on cerebral blood 
flow during hypoxia and hypercapnia in the anaesthetized rat. Pflugers Archiv 425(3-4): 362-364. 
 
Ren C, Du A, Li D, Sui J, Mayhan WG, Zhao H (2010). Dynamic change of hydrogen sulfide during 
global cerebral ischemia-reperfusion and its effect in rats. Brain Research 1345: 197-205. 
 
Robert K, Vialard F, Thiery E, Toyama K, Sinet PM, Janel N, et al. (2003). Expression of the 
cystathionine beta synthase (CBS) gene during mouse development and immunolocalization in adult 
brain. Journal of Histochemistry and Cytochemistry 51(3): 363-371. 
 
Roher AE, Esh C, Kokjohn TA, Kalback W, Luehrs DC, Seward JD, et al. (2003). Circle of willis 
atherosclerosis is a risk factor for sporadic Alzheimer's disease. Arteriosclerosis, Thrombosis, and 
Vascular Biology 23(11): 2055-2062. 
 
Roquer J, Segura T, Serena J, Castillo J (2009). Endothelial dysfunction, vascular disease and stroke: 
the ARTICO study. Cerebrovascular Diseases (Basel, Switzerland) 27 Suppl 1: 25-37. 
 
Rubanyi GM, Vanhoutte PM (1986). Superoxide anions and hyperoxia inactivate endothelium-
derived relaxing factor. American Journal of Physiology 250(5 Pt 2): H822-827. 
 
Salom JB, Barbera MD, Centeno JM, Orti M, Torregrosa G, Alborch E (1999). Relaxant effects of 
sodium nitroprusside and NONOates in goat middle cerebral artery: delayed impairment by global 
ischemia-reperfusion. Nitric Oxide : Biology and Chemistry 3(1): 85-93. 
 
Salom JB, Barbera MD, Centeno JM, Orti M, Torregrosa G, Alborch E (1998). Relaxant effects of 
sodium nitroprusside and NONOates in rabbit basilar artery. Pharmacology 57(2): 79-87. 
 
Samhan-Arias AK, Garcia-Bereguiain MA, Gutierrez-Merino C (2009). Hydrogen sulfide is a 
reversible inhibitor of the NADH oxidase activity of synaptic plasma membranes. Biochemical and 
Biophysical Research Communications 388(4): 718-722. 
 
San Martin A, Du P, Dikalova A, Lassegue B, Aleman M, Gongora MC, et al. (2007). Reactive 
oxygen species-selective regulation of aortic inflammatory gene expression in Type 2 diabetes.  
American Journal of Physiology. Heart and Circulatory Physiology 292(5): H2073-2082. 



 211 

 
Savage JC, Gould DH (1990). Determination of sulfide in brain tissue and rumen fluid by ion-
interaction reversed-phase high-performance liquid chromatography. Journal of Chromatography 
526(2): 540-545. 
 
Schleifenbaum J, Kohn C, Voblova N, Dubrovska G, Zavarirskaya O, Gloe T, et al. (2010). Systemic 
peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide. Journal of Hypertension 
28(9): 1875-1882. 
 
Schmidt HH, Walter U (1994). NO at work. Cell 78(6): 919-925. 
 
Schubert R, Krien U, Gagov H (2001). Protons inhibit the BK(Ca) channel of rat small artery smooth 
muscle cells. Journal of Vascular Research 38(1): 30-38. 
 
Schulz E, Munzel T (2011). Intracellular pH: a fundamental modulator of vascular function. 
Circulation 124(17): 1806-1807. 
 
Searls Y, Smirnova IV, Vanhoose L, Fegley B, Loganathan R, Stehno-Bittel L (2012). Time-
dependent alterations in rat macrovessels with type 1 diabetes. Experimental Diabetes Research 2012: 
278620. 
 
Selemidis S, Sobey CG, Wingler K, Schmidt HH, Drummond GR (2008). NADPH oxidases in the 
vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacology & 
Therapeutics 120(3): 254-291. 
 
Shafton AD, Ryan A, Badoer E (1998). Neurons in the hypothalamic paraventricular nucleus send 
collaterals to the spinal cord and to the rostral ventrolateral medulla in the rat. Brain Research 801(1-
2): 239-243. 
 
Shaw JE, Sicree RA, Zimmet PZ (2010). Global estimates of the prevalence of diabetes for 2010 and 
2030. Diabetes Research and Clinical Practice 87(1): 4-14. 
 
Shen GX (2010). Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and 
NADPH oxidase. Canadian Journal of Physiology and Pharmacology 88(3): 241-248. 
 
Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H (2009a). Vascular endothelium expresses 
3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. Journal of Biochemistry 146(5): 
623-626. 
 
Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, et al. (2009b). 3-
Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. 
Antioxidants and Redox Signalling 11(4): 703-714. 
 
Siegel LM (1965). A direct microdetermination for sulfide. Analytical Biochemistry 11: 126-132. 
 
Siepe M, Ruegg DM, Giraud MN, Python J, Carrel T, Tevaearai HT (2005). Effect of acute body 
positional changes on the haemodynamics of rats with and without myocardial infarction. 
Experimental Physiology 90(4): 627-634. 
 
Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, et al. (2006). Newly 
expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. 
Nature Medicine 12(4): 433-440. 
 



 212 

Sivitz WI, Wayson SM, Bayless ML, Sinkey CA, Haynes WG (2007). Obesity impairs vascular 
relaxation in human subjects: hyperglycemia exaggerates adrenergic vasoconstriction arterial 
dysfunction in obesity and diabetes. Journal of Diabetes and its Complications 21(3): 149-157. 
 
Skarby T, Hogestatt ED, Andersson KE (1985). Influence of extracellular calcium and nifedipine on 
alpha 1- and alpha 2-adrenoceptor-mediated contractile responses in isolated rat and cat cerebral and 
mesenteric arteries. Acta Physiologica Scandinavica 123(4): 445-456. 
 
Skoog I, Gustafson D (2006). Update on hypertension and Alzheimer's disease. Neurological 
Research 28(6): 605-611. 
 
Smeda JS, McGuire JJ, Daneshtalab N (2010). Protease-activated receptor 2 and bradykinin-mediated 
vasodilation in the cerebral arteries of stroke-prone rats. Peptides 31(2): 227-237. 
 
Sobey CG, Heistad DD, Faraci FM (1997). Mechanisms of bradykinin-induced cerebral 
vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels. Stroke  28(11): 
2290-2294; discussion 2295. 
 
Soltis EE, Cassis LA (1991). Influence of perivascular adipose tissue on rat aortic smooth muscle 
responsiveness. Clinical and Experimental Hypertension. Part A, Theory and Practice 13(2): 277-
296. 
 
Steffens DC, Potter GG, McQuoid DR, MacFall JR, Payne ME, Burke JR, et al. (2007). Longitudinal 
magnetic resonance imaging vascular changes, apolipoprotein E genotype, and development of 
dementia in the neurocognitive outcomes of depression in the elderly study. The American Journal of 
Geriatric Psychiatry 15(10): 839-849. 
 
Stipanuk MH, Beck PW (1982). Characterization of the enzymic capacity for cysteine 
desulphhydration in liver and kidney of the rat. The Biochemical Journal 206(2): 267-277. 
 
Stitham J, Arehart EJ, Gleim SR, Douville KL, Hwa J (2007). Human prostacyclin receptor structure 
and function from naturally-occurring and synthetic mutations. Prostaglandins & other Lipid 
Mediators 82(1-4): 95-108. 
 
Streeter E, Hart J, Badoer E (2012). An investigation of the mechanisms of hydrogen sulfide-induced 
vasorelaxation in rat middle cerebral arteries. Naunyn-Schmiedeberg's Archives of Pharmacology. 
 
Stuehr DJ, Fasehun OA, Kwon NS, Gross SS, Gonzalez JA, Levi R, et al. (1991). Inhibition of 
macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. 
FASEB Journal 5(1): 98-103. 
 
Sun NL, Xi Y, Yang SN, Ma Z, Tang CS (2007). [Plasma hydrogen sulfide and homocysteine levels 
in hypertensive patients with different blood pressure levels and complications]. Zhonghua xin xue 
guan bing za zhi 35(12): 1145-1148. 
 
Sun YG, Cao YX, Wang WW, Ma SF, Yao T, Zhu YC (2008). Hydrogen sulphide is an inhibitor of 
L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovascular Research 
79(4): 632-641. 
 
Surks HK (2007). cGMP-dependent protein kinase I and smooth muscle relaxation: a tale of two 
isoforms. Circulation Research 101(11): 1078-1080. 
 
Suzuki K, Olah G, Modis K, Coletta C, Kulp G, Gero D, et al. (2011). Hydrogen sulfide replacement 
therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. 



 213 

Proceedings of the National Academy of Sciences of the United States of America 108(33): 13829-
13834. 
 
Swanson LW, Sawchenko PE (1983). Hypothalamic integration: organization of the paraventricular 
and supraoptic nuclei. Annual Review of Neuroscience 6: 269-324. 
 
Tai MH, Wang LL, Wu KL, Chan JY (2005). Increased superoxide anion in rostral ventrolateral 
medulla contributes to hypertension in spontaneously hypertensive rats via interactions with nitric 
oxide. Free Radical Biology & Medicine 38(4): 450-462. 
 
Taira J, Misik V, Riesz P (1997). Nitric oxide formation from hydroxylamine by myoglobin and 
hydrogen peroxide. Biochimica et Biophysica Acta 1336(3): 502-508. 
 
Takeda K, Nakata T, Takesako T, Itoh H, Hirata M, Kawasaki S, et al. (1991). Sympathetic inhibition 
and attenuation of spontaneous hypertension by PVN lesions in rats. Brain Research 543(2): 296-300. 
 
Tang XQ, Yang CT, Chen J, Yin WL, Tian SW, Hu B, et al. (2008). Effect of hydrogen sulphide on 
beta-amyloid-induced damage in PC12 cells. Clinical and Experimental Pharmacology and 
Physiology 35(2): 180-186. 
 
Tjalve H, Wilander E, Johansson EB (1976). Distribution of labelled streptozotocin in mice: uptake 
and retention in pancreatic islets. The Journal of Endocrinology 69(3): 455-456. 
 
Toda N, Ayajiki K, Okamura T (2009). Cerebral blood flow regulation by nitric oxide: recent 
advances. Pharmacological Reviews 61(1): 62-97. 
 
Tomioka H, Hattori Y, Fukao M, Sato A, Liu M, Sakuma I, et al. (1999). Relaxation in different-sized 
rat blood vessels mediated by endothelium-derived hyperpolarizing factor: importance of processes 
mediating precontractions. Journal of Vascular Research 36(4): 311-320. 
 
Tsioufis C, Kordalis A, Flessas D, Anastasopoulos I, Tsiachris D, Papademetriou V, et al. (2011). 
Pathophysiology of resistant hypertension: the role of sympathetic nervous system. International 
Journal of Hypertension 2011: 642416. 
 
Tsuchihashi T, Kagiyama S, Ohya Y, Abe I, Fujishima M (1998). Antihypertensive treatment and the 
responsiveness to glutamate in ventrolateral medulla. Hypertension 31(1): 73-76. 
 
Ufnal M, Sikora M, Dudek M (2008). Exogenous hydrogen sulfide produces hemodynamic effects by 
triggering central neuroregulatory mechanisms. Acta Neurobiologiae Experimentalis 68(3): 382-388. 
 
Ujiie H, Chaytor AT, Bakker LM, Griffith TM (2003). Essential role of Gap junctions in NO- and 
prostanoid-independent relaxations evoked by acetylcholine in rabbit intracerebral arteries. Stroke 
34(2): 544-550. 
 
van Breemen C, Saida K (1989). Cellular mechanisms regulating [Ca2+]i smooth muscle. Annual 
Review of Physiology 51: 315-329. 
 
van der Sterren S, Kleikers P, Zimmermann LJ, Villamor E (2011). Vasoactivity of the 
gasotransmitters hydrogen sulfide and carbon monoxide in the chicken ductus arteriosus. American 
Journal of Physiology. Regulatory Integrative and Comparative Physiology 301(4): R1186-1198. 
 
Verlohren S, Dubrovska G, Tsang SY, Essin K, Luft FC, Huang Y, et al. (2004). Visceral 
periadventitial adipose tissue regulates arterial tone of mesenteric arteries. Hypertension 44(3): 271-
276. 
 



 214 

Wakefield DB, Moscufo N, Guttmann CR, Kuchel GA, Kaplan RF, Pearlson G, et al. (2010). White 
matter hyperintensities predict functional decline in voiding, mobility, and cognition in older adults. 
Journal of the American Geriatrics Society 58(2): 275-281. 
 
Wallace JL, Caliendo G, Santagada V, Cirino G, Fiorucci S (2007). Gastrointestinal safety and anti-
inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. 
Gastroenterology 132(1): 261-271. 
 
Wang Y, Zhao X, Jin H, Wei H, Li W, Bu D, et al. (2009). Role of hydrogen sulfide in the 
development of atherosclerotic lesions in apolipoprotein E knockout mice. Arteriosclerosis, 
Thrombosis, and Vascular Biology 29(2): 173-179. 
 
Wei EP, Kontos HA, Beckman JS (1996). Mechanisms of cerebral vasodilation by superoxide, 
hydrogen peroxide, and peroxynitrite. American Journal of Physiology 271(3 Pt 2): H1262-1266. 
 
Wei EP, Kontos HA, Christman CW, DeWitt DS, Povlishock JT (1985). Superoxide generation and 
reversal of acetylcholine-induced cerebral arteriolar dilation after acute hypertension. Circulation 
Research 57(5): 781-787. 
 
Wei M, Ong L, Smith MT, Ross FB, Schmid K, Hoey AJ, et al. (2003). The streptozotocin-diabetic 
rat as a model of the chronic complications of human diabetes. Heart, Lung & Circulation 12(1): 44-
50. 
 
Weiss N, Heydrick S, Zhang YY, Bierl C, Cap A, Loscalzo J (2002). Cellular redox state and 
endothelial dysfunction in mildly hyperhomocysteinemic cystathionine beta-synthase-deficient mice. 
Arteriosclerosis, Thrombosis, and Vascular Biology 22(1): 34-41. 
 
Whiteman M, Cheung NS, Zhu YZ, Chu SH, Siau JL, Wong BS, et al. (2005). Hydrogen sulphide: a 
novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochemical and 
Biophysical Research Communications 326(4): 794-798. 
 
Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, et al. (2006). Evidence for the formation 
of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochemical 
and Biophysical Research Communications 343(1): 303-310. 
 
Whiteman M, Winyard PG (2011). Hydrogen sulfide and inflammation: the good, the bad, the ugly 
and the promising. Expert Review of Clinical Pharmacology 4(1): 13-32. 
 
Whitfield NL, Kreimier EL, Verdial FC, Skovgaard N, Olson KR (2008). Reappraisal of H2S/sulfide 
concentration in vertebrate blood and its potential significance in ischemic preconditioning and 
vascular signaling. American Journal of Physiology. Regulatory Integrative and Comparative 
Physiology 294(6): R1930-1937. 
 
Wolin MS (2009). Reactive oxygen species and the control of vascular function. American Journal of 
Physiology. Heart and Circulatory Physiology 296(3): H539-549. 
 
Wray S, Smith RD (2004). Mechanisms of action of pH-induced effects on vascular smooth muscle. 
Molecular and Cellular Biochemistry 263(1-2): 163-172. 
 
Xu B, Zheng H, Patel KP (2012). Enhanced activation of RVLM-projecting PVN neurons in rats with 
chronic heart failure. American Journal of Physiology. Heart and Circulatory Physiology 302(8): 
H1700-1711. 
 



 215 

Xu HL, Santizo RA, Baughman VL, Pelligrino DA (2002). ADP-induced pial arteriolar dilation in 
ovariectomized rats involves gap junctional communication. American Journal of Physiology. Heart 
and Circulatory Physiology 283(3): H1082-1091. 
 
Xue B, Beltz TG, Johnson RF, Guo F, Hay M, Johnson AK (2012). PVN adenovirus-siRNA 
injections silencing either NOX2 or NOX4 attenuate aldosterone/NaCl-induced hypertension in mice. 
American Journal of Physiology. Heart and Circulatory Physiology 302(3): H733-741. 
 
Yan SK, Chang T, Wang H, Wu L, Wang R, Meng QH (2006). Effects of hydrogen sulfide on 
homocysteine-induced oxidative stress in vascular smooth muscle cells. Biochemical and Biophysical 
Research Communications 351(2): 485-491. 
 
Yang G, Pei Y, Teng H, Cao Q, Wang R (2011). Specificity protein-1 as a critical regulator of human 
cystathionine gamma-lyase in smooth muscle cells. Journal of Biological Chemistry 286(30): 26450-
26460. 
 
Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. (2008). H2S as a physiologic vasorelaxant: 
hypertension in mice with deletion of cystathionine gamma-lyase. Science 322(5901): 587-590. 
 
Yang ZW, Zhang A, Altura BT, Altura BM (1998). Endothelium-dependent relaxation to hydrogen 
peroxide in canine basilar artery: a potential new cerebral dilator mechanism. Brain Research Bulletin 
47(3): 257-263. 
 
Yoo KM, Shin HK, Chang HM, Caplan LR (1998). Middle cerebral artery occlusive disease: the New 
England Medical Center Stroke Registry. Journal of Stroke and Cerebrovascular Diseases 7(5): 344-
351. 
 
You J, Johnson TD, Marrelli SP, Bryan RM, Jr. (1999). Functional heterogeneity of endothelial P2 
purinoceptors in the cerebrovascular tree of the rat.  American Journal of Physiology  277(3 Pt 2): 
H893-900. 
 
Yusuf M, Kwong Huat BT, Hsu A, Whiteman M, Bhatia M, Moore PK (2005). Streptozotocin-
induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis. 
Biochemical and Biophysical Research Communications 333(4): 1146-1152. 
 
Zanzinger J (1999). Role of nitric oxide in the neural control of cardiovascular function. 
Cardiovascular Research 43(3): 639-649. 
 
Zhang H, Flagg TP, Nichols CG (2010). Cardiac sarcolemmal K(ATP) channels: Latest twists in a 
questing tale! Journal of Molecular and Cellular Cardiology 48(1): 71-75. 
 
Zhang LM, Jiang CX, Liu DW (2009). Hydrogen sulfide attenuates neuronal injury induced by 
vascular dementia via inhibiting apoptosis in rats. Neurochemical Research 34(11): 1984-1992. 
 
Zhao W, Wang R (2002). H(2)S-induced vasorelaxation and underlying cellular and molecular 
mechanisms. American Journal of Physiology. Heart and Circulatory Physiology 283(2): H474-480. 
 
Zhao W, Zhang J, Lu Y, Wang R (2001). The vasorelaxant effect of H(2)S as a novel endogenous 
gaseous K(ATP) channel opener. EMBO Journal 20(21): 6008-6016. 
 
Zhao ZZ, Wang Z, Li GH, Wang R, Tan JM, Cao X, et al. (2011). Hydrogen sulfide inhibits 
macrophage-derived foam cell formation. Experimental Biology and Medicine (Maywood, N.J.) 
236(2): 169-176. 
 



 216 

Zheng H, Liu X, Li Y, Sharma NM, Patel KP (2011). Gene transfer of neuronal nitric oxide synthase 
to the paraventricular nucleus reduces the enhanced glutamatergic tone in rats with chronic heart 
failure. Hypertension 58(5): 966-973. 
 
Zheng YF, Dai DZ, Dai Y (2010). NaHS ameliorates diabetic vascular injury by correcting depressed 
connexin 43 and 40 in the vasculature in streptozotocin-injected rats. The Journal of Pharmacy and 
Pharmacology 62(5): 615-621. 
 
Zhong MK, Gao J, Zhang F, Xu B, Fan ZD, Wang W, et al. (2009). Reactive oxygen species in 
rostral ventrolateral medulla modulate cardiac sympathetic afferent reflex in rats. Acta Physiologica 
(Oxford, England) 197(4): 297-304. 
 
Zhong XZ, Harhun MI, Olesen SP, Ohya S, Moffatt JD, Cole WC, et al. (2010). Participation of 
KCNQ (Kv7) potassium channels in myogenic control of cerebral arterial diameter. Journal of 
Physiology 588(Pt 17): 3277-3293. 
 
Zhou CF, Tang XQ (2011). Hydrogen sulfide and nervous system regulation. Chinese Medical 
Journal 124(21): 3576-3582. 
 
Zimmermann C, Wimmer M, Haberl RL (2004). L-arginine-mediated vasoreactivity in patients with a 
risk of stroke. Cerebrovascular Diseases (Basel, Switzerland) 17(2-3): 128-133. 
 
Zimmermann PA, Knot HJ, Stevenson AS, Nelson MT (1997). Increased myogenic tone and 
diminished responsiveness to ATP-sensitive K+ channel openers in cerebral arteries from diabetic 
rats. Circulation Research 81(6): 996-1004. 
 
Zucker IH, Schultz HD, Li YF, Wang Y, Wang W, Patel KP (2004). The origin of sympathetic 
outflow in heart failure: the roles of angiotensin II and nitric oxide. Progress in Biophysics and 
Molecular Biology 84(2-3): 217-232. 
 
Zuckerman SL, Armstead WM, Hsu P, Shibata M, Leffler CW (1996). Age dependence of 
cerebrovascular response mechanisms in domestic pigs. American Journal of Physiology 271(2 Pt 2): 
H535-540. 
 
Zygmunt PM, Hogestatt ED (1996). Role of potassium channels in endothelium-dependent relaxation 
resistant to nitroarginine in the rat hepatic artery. British Journal of Pharmacology 117(7): 1600-
1606. 
 
 
 


