
Integration of Multidimensional Data in

Heterogeneous Data Marts

A thesis submitted for the degree of

Doctor of Philosophy

Dariush Riazati B.Comp., M.Sc, M.Tech.

School of Computer Science and Information Technology

College of Science, Engineering and Health,

RMIT University,

Melbourne, Victoria, Australia.

August, 2012

Declaration

I certify that except where due acknowledgment has been made, the work is that of the

author alone; the work has not been submitted previously, in whole or in part, to qualify

for any other academic award; the content of the thesis is the result of work which has been

carried out since the official commencement date of the approved research program; any

editorial work, paid or unpaid, carried out by a third party is acknowledged; and, ethics

procedures and guidelines have been followed.

Dariush Riazati

School of Computer Science and Information Technology

RMIT University

August, 2012

ii

Acknowledgments

In the Name of God, the Most Exalted, the Most Holy

”Heaven in every being is its utmost perfection within its limits.”

Bayan (Unity II, Chapter XVI)

This is the most significant milestone in my academic career in which I invested most of my

after-work time for seven years. This would not have been possible without the sacrifices

that my wife, my best friend Minoo has made, and the support she has given to me during

these years. I am always grateful to her.

I also thank my parents who supported me with more than everything that they had in

their possession, and were capable of. I would also like to thank my dearest sister Azar Mah

to whom I had to say farewell recently, in the saddest moment of my life. She is and will for

ever be in my heart and my mind; I miss very much your warm and heartfelt support.

I would like to thank my primary supervisor Associate Professor James Thom for count-

less long review sessions and for his extraordinary support and many useful ideas and

suggestions for improvement. I have been extremely fortunate to have Professor Thom as

my supervisor. I would also like to thank Dr. Xiuzhen Zhang my secondary supervisor for

her many feedbacks. Dr Zhang’s insight into data warehousing was critical in improving

the quality of this thesis.

iii

Credits

Parts of the material in this thesis have previously appeared in the following publications:

• D. Riazati and J. A. Thom. Matching star schemas. In Proceedings of the 22nd interna-

tional conference on Database and expert systems applications - Volume Part II [Riazati and

Thom, 2011].

• D. Riazati, J. A. Thom, and X. Zhang. Inferring aggregation hierarchies for integration

of data marts. In Proceedings of the 21st international conference on Database and expert

systems applications: Part II [Riazati et al., 2010].

• D. Riazati, J. A. Thom, and X. Zhang. Enforcing strictness in integration of dimensions:

Beyond instance matching. In Proceedings of the ACM 14th international workshop on

Data Warehousing and OLAP [Riazati et al., 2011].

• D. Riazati, J. A. Thom, and X. Zhang. Drill across and visualization of cubes with

non-conformed dimensions. In Proceedings of the nineteenth conference on Australasian

database [Riazati et al., 2008].

The thesis was written in the WinShell editor on Windows 7, and typeset using the LATEX 2ε doc-

ument preparation system.

All trademarks are the property of their respective owners.

iv

Note

Unless otherwise stated, all fractional results have been rounded to the displayed number

of decimal figures.

Contents

Abstract 2

1 Introduction 3

1.1 Multidimensional Databases and OLAP . 5

1.1.1 Data Cubes . 6

1.2 Data Warehouses . 8

1.2.1 Star Schemas . 9

1.2.2 Building Data Warehouses . 10

1.3 Statement of Problems . 11

1.4 Contributions . 13

1.5 Organization of the Thesis . 16

2 Integration of Multidimensional Databases - Literature Review 17

2.1 Schema Matching . 18

2.1.1 Representing Schemas as Graphs . 19

2.1.2 Similarity Flooding . 19

v

CONTENTS vi

2.1.3 COMA++ . 22

2.1.4 Inferring Star Schema Properties . 22

2.1.5 Representation of Star Schemas . 24

2.1.6 Matching Star Schemas . 25

2.1.7 Measuring the Quality of Match Results 26

2.1.8 Schema Matching: Case Studies . 27

2.2 Structure of Multidimensional Data . 28

2.2.1 Dimension Hierarchies . 28

2.2.2 Summarizability . 30

2.2.3 Levels . 31

2.2.4 Members . 32

2.2.5 Dimension Table . 32

2.2.6 Data Mart . 32

2.3 Inferring Dimension Hierarchies . 33

2.3.1 Schema Based Hierarchies . 33

2.3.2 Inferred Hierarchies . 34

2.3.3 Inferring Functional Dependencies . 34

2.3.4 Inferred Dimension Hierarchies . 35

2.4 Matching Requirements for Integration of Dimensions 36

2.4.1 Conformed Dimensions . 36

2.4.2 Compatible Dimensions . 37

2.5 Instance Matching and Enforcing Strictness . 40

CONTENTS vii

2.5.1 Duplicate Detection . 40

2.5.2 Consistent Query Answering . 43

2.5.3 Enforcing Strictness . 44

2.5.4 Resolving Inconsistency Across Multiple Sources 45

2.6 Extending the Scope of Integration . 46

2.7 Drill Across and Data Visualization: Case Study 48

2.8 Discussion . 49

3 Matching Star Schemas 52

3.1 Motivations for Automated Matching of Star Schemas 53

3.2 Why StarMod? . 55

3.3 StarMod Properties and their Application in Schema Matching 56

3.3.1 OWL Description of StarMod . 60

3.3.2 Inferring StarMod Properties from Relational Schemas 63

3.3.3 Implementation of StarMod and Matching of Star Schemas 65

3.4 Evaluation of StarMod in Schema Matching . 68

3.4.1 Discussion of Match Results for Example Schemas 69

3.4.2 Evaluation of Using StarMod in Matching Schemas on a Larger Scale . 71

3.5 Discussion . 75

4 Inferring Aggregation Hierarchies 77

4.1 Relational Representation of Multidimensional Databases 78

4.2 Inferring the Partial Order Attributes . 81

CONTENTS viii

4.2.1 Inferring the Partial Order of Attributes 82

4.2.2 Cover for Partial Order of Attributes . 84

4.2.3 The Levels and the Inferred Aggregation Hierarchy 84

4.3 Inferred Hierarchies Subsume Schema-Defined Hierarchies 86

4.4 Integration of Matching Dimension Tables using Inferred Aggregation Hier-

archies . 88

4.4.1 Properties of Compatible Dimension Tables 88

4.4.2 The Coherence of Inferred Matchings 91

4.4.3 The Consistency of Inferred Matchings 93

4.5 Experiments . 96

4.6 Dealing with Imprecision and Uncertainty of Data 99

4.7 Discussion . 101

5 Enforcing Strictness: Beyond Instance Matching For Dimensions 103

5.1 Case Analysis . 104

5.2 Motivating Example . 106

5.3 Exploiting Hierarchies for Instance Matching 108

5.4 Enforcing Strictness . 109

5.5 The Effect of Enforcing Strictness on Match Quality 113

5.6 Reducing False Strictness . 115

5.7 Experiments . 118

5.7.1 Using A Single Hierarchy . 120

5.7.2 Using Multiple Hierarchies . 124

CONTENTS ix

5.8 Discussion . 125

6 Extending the Scope of Integration 127

6.1 Motivation . 130

6.2 Non-Compatible but Combinable Dimension Tables 133

6.3 Absolute Loss Ratio . 135

6.4 Relative Loss Ratio . 136

6.5 Constrained Loss Ratio . 138

6.6 Exploiting Dimension Hierarchies for Calculation of Loss Ratios 139

6.7 Extending Drill-Across to Non-Combinable Levels 141

6.8 Visualizing the Extended Drill-Across . 143

6.8.1 Inclusion of Loss Ratio in Visualization of Multidimensional Data . . . 145

6.9 Discussion . 146

7 Conclusions and Future Work 148

7.1 Representation and Matching of Star Schemas 149

7.2 Inferring Aggregation Hierarchies . 150

7.3 Instance Matching . 152

7.4 Extending the Scope of Integration . 154

A Instructions to Participants for Matching Schemas 156

B Schemas for Evaluation of StarMod 159

C Schema Match Results 207

CONTENTS x

D StarMod Specification in OWL 235

Bibliography 241

List of Figures

1.1 Dimensions and facts in multidimensional data 6

1.2 Visualization of slicing and dicing of an OLAP data cube. 7

1.3 Lattice formation of cuboids in a data cube. 8

1.4 An example of a Star schema. 10

1.5 Data warehouse life cycle. 11

2.1 Graph representation of dimension table DIMENSION FISCAL CAL. 20

2.2 An example of a connectivity graph. 20

2.3 ER representation of a hierarchy. 29

2.4 An example of a non-strict instance. 31

2.5 Incoherent mapping between Shop and Store dimensions. 38

2.6 Inconsistency between Store and Shop dimensions. 39

2.7 Extending the drill across to exclusive dimensions. 49

3.1 UML diagram for relational model. 56

3.2 UML representation of StarMod. 60

xi

LIST OF FIGURES xii

3.3 Specialization of relational objects in StarMod. 61

3.4 Specialization of relationships in relational model in StarMod. 61

3.5 Automation of the schema matching process. 66

3.6 The Star schema (identified as PP2) matched against the schema in Figure 3.7. 66

3.7 Star schema for our running example (identified as PP1). 69

4.1 The partial order of attributes. 83

4.2 The partial order of attributes with no transitive relationship. 84

4.3 The inferred aggregation hierarchy. 85

4.4 Matchings levels in Store and Shop dimension tables. 89

4.5 A false coherent matching that uses inferred hierarchies. 92

4.6 False incoherent inferred matching. 93

4.7 Visual representation of the inferred hierarchy from the second experiment. . 98

5.1 An instance of dimension table Product. 107

5.2 An instance of dimension table Item. 107

5.3 Ideal matchings between Product and Item. 108

5.4 Suggested matchings between Product and Item. 110

5.5 Matching pairs from Figure 5.4 after Algorithm 5.1. 113

5.6 Matching pairs from Figure 5.5 after Algorithm 5.2. 119

6.1 Star schema for Sales data mart. 131

6.2 Star schema for Transaction data mart. 131

6.3 Absolute loss ratios for levels of Product and Item dimension tables. 136

LIST OF FIGURES xiii

6.4 Relative loss ratios for some combinable levels from Sales and Transaction

data marts. 137

6.5 Extending drill-across. 142

6.6 Nesting pivot tables. 144

6.7 Exploiting loss ratios during the data visualization. 145

List of Tables

3.1 Comparison of match results for the example schemas. 70

3.2 Accuracy measures for schemas used in the evaluation. 73

3.3 Probability values for the null hypotheses. 74

4.1 Sample data for a Store dimension table. 82

4.2 Sample data for a Shop dimension table. 89

4.3 True inconsistency: sample instance for Store dimension table. 94

4.4 True inconsistency: sample instance for Shop dimension table. 94

4.5 False inconsistency: sample data for Store dimension table. 95

4.6 False inconsistency: sample data for Shop dimension table. 95

5.1 Impact of Algorithm 5.1 on ideal match results. 114

5.2 Precision values for different degrees of noise and missing members. 122

5.3 Recall values for different degrees of noise and missing members. 123

5.4 F-Measure results for different degrees of noise and missing members. 124

6.1 An instance of dimension table Product in Sales data mart. 132

xiv

LIST OF TABLES xv

6.2 An instance of dimension table Item in Transaction data mart. 132

6.3 Sales data mart, an instance of the schema in Figure 6.1. 138

6.4 Transaction data mart, an instance of the schema in Figure 6.1. 138

6.5 Data related to combinable levels. 143

6.6 Data related to non-combinable levels. 143

Abstract

Data analysts often require access to integrated multidimensional data from local and ex-

ternal data warehouses. The integration process is often undertaken by expert database

practitioners who will need to analyze the structure of the data, and match schemas and

data before creating an integrated view of the data for visualization and analysis. Such a

manual process may be acceptable for databases used in transaction processing applica-

tions but does not help decision makers who need access to the information quickly and

cost effective in a constantly changing environment.

This thesis addresses several challenges towards automating the integration of data

warehouses based on a dimensional model known as Star schema. We recognize that the

structure of multidimensional data, namely dimension hierarchies, is critical to the accu-

racy of the integration but is not always available or accessible. To address this problem, we

infer dimension hierarchies from their instances, and demonstrate that they are sufficient

to ensure the accuracy of the integration even though they may vary from the intended

hierarchies.

To improve the accuracy of matching Star schemas, we propose a more precise represen-

tation of Star schemas and demonstrate its effectiveness by comparing it against the existing

approaches that treat Star schemas as relational models.

To match instances of dimensions, we demonstrate that a graph matching algorithm is

effective and performs with a high level of accuracy. We propose algorithms which enforce

the tree structure of integrated data which is necessary for correct aggregation, and reduce

false positive cases occurring during the instance matching. The effectiveness of our algo-

rithms is shown through experiments with real life data.

Despite perfectly matching schemas and hierarchies, there are often dimensions with

mismatching data which restrict the scope of the integration. We propose to relax the re-

quirement for dimension compatibility, and introduce measures that quantify the loss of

data resulting from the less strict requirement. These measures enable data analysts to iden-

tify lossless fragments of data, and thereby, extend the scope of the integrated data. To pro-

vide a more comprehensive view of data for analysis, we link the integrated data with the

data exclusive to each source by extending the navigation operation for multidimensional

data.

These contributions help towards shifting the integration problem away from expert

database practitioners to empowered data analysts in combining multidimensional data

from multiple sources in real time, and in a cost effective manner.

2 (March 10, 2013)

Chapter 1

Introduction

”Powerful is he, who is knowledgeable,

Young is the heart of the old from knowledge.”

Ferdowsi (940 - 1020)

If Ferdowsi, the most famous Persian poet, could travel in time to the year 2012, the

advice he would give to the decision makers of today would be the same as that he gave to

the kings one thousand years ago. Knowledge is the most effective tool in problem solving

and decision making. The more accessible and comprehensive, the more effective it is. By

implication Ferdowsi tells us that it is by ”knowing” that we can gain confidence, feel secure

and empowered. Problems that we face today are much more complex than in his time but

the tool being knowledge remains the same. Knowledge is the concise and appropriate col-

lection of information in a way that makes it useful [Satama, 2012]. Dispersed information

is difficult to use effectively and therefore is not high value knowledge. This thesis concerns

CHAPTER 1. INTRODUCTION

integration of analytical data empowering decision makers.

After the global financial crisis in 2008, most believed it could be prevented if the in-

formation gathered on the vehicle market, housing market, lenders performance and em-

ployment figures were shared and analyzed together [Shefrin, 2009]. Similarly, subsequent

investigations into the tragic September 11 terrorist attacks revealed that the main cause

of failure was not the absence of the information but that they were not shared for more

effective cross analysis [Best, 2007].

Companies invest millions of dollars in producing hundreds of reports, yet, in many

cases, they need to rely on experts to combine the information from multiple but existing

sources. These accounts point to a challenge beyond information gathering: how to combine

the information gathered on related topics to provide a more complete picture quickly and

cost effectively.

Classic business intelligence applications have been developed using an approach simi-

lar to transaction processing applications. An iterative process that starts with identifying a

set of questions users regularly need to have answers for and ends with a set of reports with

answers to those questions. However, data analysts are no longer satisfied with prepack-

aged reports and find it restrictive to specify precisely what their questions are.

They usually know the first question but their subsequent questions depend entirely

on the answers they get from the previous questions, a process that could be shown using

a cause and effect diagram. Adding to the complexity of the integration process, external

unfamiliar data such as past weather reports and statistical data collected by the Bureau of

Statistics and others often need to be integrated with the local data.

4 (March 10, 2013)

CHAPTER 1. INTRODUCTION

Many autonomous data marts in large enterprises are developed over years. The in-

tegration of these data marts into an enterprise warehouse for enterprise-wide large scale

analysis is a strategic business objective [Business Objects and Teradata, 2007]. Therefore,

a different approach is needed to meet these challenges. Business intelligence applications

are now entering into a new generation whereby greater emphasis is made on empowering

data analysts to navigate through, integrate and analyze data from multiple sources.

The objective of this thesis is to address the main issues in integration of data marts

specifically. In the remainder of this section, the background is first introduced, then the

research problems and our proposed solutions are described.

1.1 Multidimensional Databases and OLAP

Multidimensional databases are structured along dimensions and facts [Torlone, 2008] and used

for data analysis. Facts are measures such as Sales Amount that can be summarized, and

dimensions determine the groupings by which facts are summarized. Using the example

in Figure 1.1(a) we could consider Location, Product and Manager as dimensions of a fact

measure called Sales Amount.

The model for multidimensional data should support fast aggregation of data according

to the hierarchical structure of dimensions. Figure 1.1(b) shows the dimension hierarchy

for Location. For example, the summarized sales amount for each state is obtained by

summing the measure for their cities, and the summarized data for cities is obtained by

summing the same measure for their stores.

5 (March 10, 2013)

CHAPTER 1. INTRODUCTION

Manager

Product Location

(a) Dimensions of Sales

Amount.

Store

State

City

(b) Dimension hierarchy for Location.

Figure 1.1: Dimensions and facts in multidimensional data

1.1.1 Data Cubes

A data cube is a visualization of multidimensional data where its axes are represented by

dimensions and its cells are represented by facts. It is often referred to as a hypercube since

it cannot be visualized once the number of dimensions exceeds three.

OLAP Operations: Online Analytical Processing (OLAP) and its related technologies

enable data analysts gain insight into multidimensional data through a set of OLAP opera-

tions against (OLAP) data cubes. OLAP operations transform raw data so that it reflects the

real dimensionality of the enterprise as understood by users [OLAP Council, 1997]. Slicing

is selecting data using one of the dimensions [Han and Kamber, 2006]. Figure 1.2 shows

visualization of a data cube with three dimensions: Location, Product and Manager. It also

shows all slices of cubes for each of the three dimensions.

Dicing is selection of data using two or more dimensions and applying some constraint

on the remaining dimensions [Han and Kamber, 2006]. Figure 1.2 shows dicing of the data

cube using different combinations of dimensions.

Obtaining the aggregated data at a higher level such as State, by summing the values

at a lower level such as City, is done using an operation that is referred to as roll-up. Con-

6 (March 10, 2013)

CHAPTER 1. INTRODUCTION

Lo
ca

tio
n

Product

Product

Lo
ca

tio
n

Lo
ca

tio
n

Product

Lo
ca

tio
n

Product All

Lo
ca

tio
n

Product Category

Product Category

Lo
ca

tio
n

Lo
ca

tio
n

Product Category

Lo
ca

tio
n

Product Category All

Lo
ca

tio
n

Product Category

Product Category

Lo
ca

tio
n

Lo
ca

tio
n

Product Category

Lo
ca

tio
n

Product Category All

Lo
ca

tio
n

Product

Product

Lo
ca

tio
n

Lo
ca

tio
n

Product

Lo
ca

tio
n

Product All

Lo
ca

tio
n

Product

Product

Lo
ca

tio
n

Lo
ca

tio
n

Product

Lo
ca

tio
n

Product All

Lo
ca

tio
n

Product

Product

Lo
ca

tio
n

Lo
ca

tio
n

Product

Lo
ca

tio
n

Product All

All

Figure 1.2: Visualization of slicing and dicing of an OLAP data cube.

versely, obtaining the data at a lower level is done using an operation that is referred to as

drill-in.

In the remainder of this section, OLAP objects and operations to which we refer in this

thesis are described. ROLAP (Relational OLAP) and MOLAP (Multidimensional OLAP)

are the two main implementations of OLAP. MOLAP servers directly store multidimen-

sional data in an array structure and implement OLAP operations over these data structure,

whereas, ROLAP servers store data in relational databases and use SQL and its extensions

to implement the OLAP operations [Chaudhuri and Dayal, 1997].

Cube Lattice: A data cube is often represented using smaller cubes called cuboid, where

each cuboid represents a different level of aggregation [Han and Kamber, 2006]. Figure 1.3

shows a lattice of cuboids and their relationships using none, 1, 2, and 3 dimensions. The

data cube in Figure 1.2 is only one of the cuboids which sits at the base of the lattice.

7 (March 10, 2013)

CHAPTER 1. INTRODUCTION

Product Location Manager

Product, Location
Manager, LocationProduct , Manager

Product, Manager, Location

All

Figure 1.3: Lattice formation of cuboids in a data cube.

1.2 Data Warehouses

A data warehouse is a large collection of historical data used for analytical reporting [Hurtado

et al., 1999] where related data is organized into subject areas such as Sales, Inventory, and

Orders which form the basis for reporting.

There are two approaches to build data warehouses: (i) Kimball and Ross [2002] consider

a data warehouse as a union of smaller data warehouses (also called data marts) for each

subject area, modeled based on Star schema and sourced directly from data sources; (ii)

Inmon [2005] defines a data warehouse as a subject oriented, integrated and time variant

collection of data.

Data warehouses are sourced from Online Transaction Processing (OLTP), or the opera-

tional databases, using the ETL process described in Section 1.2.2. There are several reasons

why OLTP databases are not directly used for the purpose of reporting. Some of the more

important reasons are as follows [Chaudhuri and Dayal, 1997; Kimball and Ross, 2002]:

• Accessing replicated records from the warehouse shields the operational database

8 (March 10, 2013)

CHAPTER 1. INTRODUCTION

from deadlocks resulting from concurrent access, degradation of query performance,

unauthorized access and database corruption.

• The data warehouse provides an integrated view of data from multiple sources.

• The model for data warehouse is designed specifically for enhanced query perfor-

mance.

• The data warehouse contains historical records, whereas, the OLTP database may only

include the most recent changes.

1.2.1 Star Schemas

A data model that describes multidimensional data using relational tables is called a di-

mensional model. Star schema is a relational model for describing dimensional models. It

consists of two types of tables, dimension and fact tables.

Dimension is a concept which when implemented in the context of Relational OLAP,

is called dimension table. It represents the scheme of a dimension, a relation over a set

of attributes one of which represents a unique key. The relation D(A1, ..., An) represents a

dimension table D of n attributes. An instance of a dimension table is the data with which

it is populated at some point in time.

A fact table is the relational implementation of cube cells each of which is at the inter-

section of multiple dimensions. It is a relation over a set of fact elements, and a set of key

attributes each uniquely identifying a tuple in an instance of a dimension tables it refers to.

Therefore, each tuple in the fact table is uniquely identified by joining the fact table to its

9 (March 10, 2013)

CHAPTER 1. INTRODUCTION

dimension tables. Fact elements include additive measures (i.e. measures that can be aggre-

gated), whereas, dimension tables include categories by which measures are aggregated.

The topology of a dimensional model based on Star schema resembles a star at the center

of which is a single fact table and all around it are the dimension tables. The relationship

from the dimension table to fact tables is of 1:M (i.e. one-to-many). That is for each tuple in a

dimension table there may be multiple tuples in the fact table, and each tuple in a fact table

may refer to no more than one tuple in any dimension table. Relationships are enforced

using foreign key constraints. Figure 1.4 shows a Star schema for reporting on car sales

using dimensions MAKE, MODEL, FISCAL CAL and DEALER.

MAKE

MAKE_ID: CHAR(10)

MAKE_NAME: VARCHAR(40)

MODEL

MODEL_ID: CHAR(8)

MODEL_NAME: VARCHAR(40)

FISCAL_CAL

YEAR_MONTH: DECIMAL(6)

FISCAL_YEAR: SMALLINT

FISCAL_MONTH: SMALLINT

DEALER

DEALER_ID: INTEGER

DEALER_NAME: VARCHAR(40)

DELIVERY_FINAL_COST: INTEGER

MONTHLY_SALES

YEAR_MONTH: DECIMAL(6) (FK)

DEALER_ID: INTEGER (FK)

MAKE_ID: CHAR(10) (FK)

MODEL_ID: CHAR(8) (FK)

SALES_QTY: INTEGER

SALES_AMT: INTEGER

GST_STATUS_CODE: CHAR(2)

EXT_ACC_NO: INTEGER

MONTHLY_ADS_COST: INTEGER

Figure 1.4: An example of a Star schema.

1.2.2 Building Data Warehouses

Using Inmon’s approach, data marts are created from the integrated (or enterprise-wide)

data warehouse (EDW) as opposed to being directly from the original sources of data.

Choosing between the two approaches depends on the number of original data sources

and complexity of their transformations into a unified data warehouse. Inmon’s approach

is more flexible and reduces the risk of non-performing queries but is more costly to build.

Figure 1.5 shows the life cycle of data from sources to cubes. Representing Kimball’s

10 (March 10, 2013)

CHAPTER 1. INTRODUCTION

Source A

Source B

Integrated
Data

Warehouse

Star Schema Based Data Marts OLAP Cubes

Load ETL

Extract

Extract

Load

Load

Load

T
ran

sfo
rm

Figure 1.5: Data warehouse life cycle.

approach, dashed lines represent the option to bypass the EDW and update the data marts

directly. In this case the collection of data marts is the data warehouse.

Changes to the source data known as delta are incrementally extracted through a change

data capture technology. Following Inmon’s approach, given the target data model in

EDW and consistent mapping definitions from multiple sources into EDW, delta changes

go through a set of transformations and are finally loaded into the EDW. This process is

known as Extract, Transform, Load (or ETL). A second round of ETL processes transforms

the data from the EDW into the data marts. Following Kimball’s approach, delta changes

are transformed directly into the data marts. At this time the data in the data marts is in a

multidimensional structure and can be loaded into data cubes.

1.3 Statement of Problems

Integrating existing data marts into a single data mart is also done using the ETL process. It

requires mapping between Star schemas for each data mart, identifying dimension hierar-

chies, and the matching and integration of their data. These functions are usually done by

expert database practitioners and are, therefore, expensive and time consuming. This thesis

11 (March 10, 2013)

CHAPTER 1. INTRODUCTION

is concerned with automating these tasks. It aims to shift the integration problem away

from database practitioners to the business analysts. To achieve this objective, the following

challenges are met:

1. Schema matching: Can we improve the quality of matching between Star schemas if

we describe them more precisely than standard description of relational schemas?

There has been significant research invested in matching relational schemas using

schema, semantic and data properties. However, very little study has been made on

taking advantage of the simplicity and the predictable topology of multidimensional

data based on the Star Schema model. The main drawbacks of these studies are that

they are concerned with a limited set of Star Schema properties, and do not provide a

necessary precursor process which discovers these properties.

2. Inferring aggregation hierarchies: Dimension hierarchies are not always known or ac-

cessible for multidimensional data on heterogeneous data sources. In these scenarios,

how do we infer hierarchies in such a way that they ensure the accuracy of the inte-

gration of multidimensional data?

Existing work on inferring aggregation hierarchies using ontologies and dictionaries

do not guarantee a fitting hierarchy for the data. The existing literature proposes a

method for inferring relationships between dimension attributes based on the data,

but it does not determine hierarchy levels and distinct hierarchical paths.

3. Enforcing strictness: A dimension whose instance conforms to the tree structure of

its hierarchy is said to be strict. What are the issues that cause non-strictness when

12 (March 10, 2013)

CHAPTER 1. INTRODUCTION

integrating strict dimensions and how do we overcome them?

Much of the existing work on enforcing strictness is based on the premise that the

data matching has produced perfect match results. They are mostly concerned with

managing the non-strict cases. In fact many of the non-strict cases resulting from

integration of originally strict data are caused by false positive matching cases, and

the presence of homonym data values. This condition has been overlooked in the

current literature.

4. Extending the scope of integration: Integrating dimensions must be compatible, that is

they must share similarity between their levels, hierarchies and instances. How do we

get the most out of the data integration in the presence of non-compatible dimensions?

How do we extend the analysis space for the integrated data to include the related but

non-compatible dimensions?

There is considerable literature on using various data operations to maximize the ex-

tent of the data integration. What they lack is that they do not help identify segments

of data that benefit from such operations. Moreover, the integration and visualization

of multidimensional data has been limited to common data, making cumbersome the

navigation from the integrated data to the data that is not common in the original

sources.

1.4 Contributions

In this thesis, the following contributions are made:

13 (March 10, 2013)

CHAPTER 1. INTRODUCTION

1. We propose a more precise description of Star schemas (StarMod) and represent that

using UML and OWL languages. This representation describes multidimensional data

in terms of properties of Star schema model. StarMod is a more expressive and rich

representation of Star schemas than their relational representation. To measure the

effectiveness of StarMod in improving matching Star schemas, we perform an eval-

uation of the approach using two well cited matching algorithms against 18 pairs of

Star and non-Star schemas described using relational and StarMod properties. Our

experiments show that StarMod improves matching results for Star schemas and can

be also effectively used for arbitrary relational schemas.

Our proposed approach to matching Star schemas has several advantages over the

existing related work: (i) it provides an extensible ontology for Star schemas; (ii) it

takes advantage of a more comprehensive set of Star Schema properties; (iii) it can be

extended to include semantic properties.

2. We propose algorithms to infer dimension hierarchies from instances of dimension

tables. We establish that where dimension hierarchies are not available as part of

the schema definition, inferred hierarchies are sufficient to ensure the accuracy of the

integration.

Our proposed method does not stop at calculating the cardinality between dimension

attributes. Its advantage over the existing work is that it derives hierarchy levels as

well as distinct hierarchy paths.

3. False positive cases resulting from instance matching are the likely causes of inconsis-

14 (March 10, 2013)

CHAPTER 1. INTRODUCTION

tencies in the integrated data leading to non-strict cases. We propose algorithms that

reduce false positive cases and enforce the strictness at the same time. The effective-

ness of our approach and algorithms are demonstrated using experiments with real

life data.

To the best of our knowledge, none of the existing work has taken advantage of en-

forcing strictness to enhance the quality of matching results between instances of di-

mensions.

4. We relax the requirement for compatibility by excluding the requirement to have fully

matching instances of dimensions. We propose measures that quantify the loss result-

ing from integration of dimensions with partially matching instances, and use these

measures to identify lossless fragments of data. The operation to navigate between

data marts is extended to include data related to non-compatible dimensions. We also

propose an extension to Pivot tables, used to visualize multidimensional data, to sup-

port the extended navigation operation.

Our contribution in this area complements existing work aimed at extending the scope

of data integration by performing operations that provide better mapping between

otherwise mismatching data. We have offered several methods to measure the loss

of data resulting from the integration of data using two or more dimensions. Our

proposed extension to the drill across operation enables the user to remain in the same

analysis space despite the presence of non-compatible dimensions. A working model

of this extension is future work.

15 (March 10, 2013)

CHAPTER 1. INTRODUCTION

1.5 Organization of the Thesis

In Chapter 2, the evolution and basic concepts in data warehousing are described. The

review of literature concerns the four areas of schema matching, dimension hierarchies,

instance matching, and extending the scope of integration.

Chapter 3 concerns the schema matching for Star schemas which is a key aspect of inte-

grating multidimensional data.

To set the necessary ground for instance matching, Chapter 4 describes the algorithms

used to infer aggregation hierarchies.

Chapter 5, addresses instance matching for dimension tables and resolves non-strict

cases in the integrated data.

Chapter 6, explains methods to quantify the loss during the integration of non-compatible

dimensions and describes an approach to extending the navigation operation and Pivot ta-

bles to include non-compatible dimensions.

Finally, Chapter 7 concludes the thesis and describes directions for future work.

16 (March 10, 2013)

Chapter 2

Integration of Multidimensional

Databases - Literature Review

”If the word integration means anything, this is what it means: that we, with

love, shall force our brothers to see themselves as they are, to cease fleeing from

reality and begin to change it.”

James Arthur Baldwin (1924 - 1987)

The earliest work on data warehousing originates from a joint research project con-

ducted by General Mills and Dartmouth University in the 1960s from which the concepts of

dimensions and facts originate. Later, during the 1970s, multidimensional data marts were

first introduced by AC Nielsen for the purpose of reporting [Kimball and Ross, 2002]. In

1992, Inmon described in detail the concept of the data warehousing architecture in a classic

17 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

text book called Building the Data Warehouse [Inmon, 2005]. In 1996, Kimball described his

view of how a data warehouse should be built in his book Data Warehouse Toolkit [Kimball

and Ross, 2002]. Whilst, the merits of the approaches introduced by Inmon and Kimball

have been widely debated amongst data warehouse practitioners, these concepts continue

to be employed today in most data warehousing projects.

Data vault is a hybrid approach that encompasses Third Normal Form (3NF) (introduced

by Inmon) and Star schema (introduced by Kimball) [Linstedt et al., 2011], but is not opti-

mized for query performance [O’Neil, 2004]. It was introduced by Linestedt in 1990 [Linest-

edt, 2011]. The first book on data vaults [Linstedt et al., 2011] was released in 2011. The

concept of Data Vaults is a variation of approaches proposed by Kimball and Inmon, but

has not been widely received by the industry or research community.

In this chapter, we present from the existing literature, those most relevant to our con-

tributions. In Section 2.1, we describe the state of the art methods in representation and

matching of Star schemas. In Sections 2.2 to 2.4, we present an overview of works related to

inferring dimension hierarchies. In Section 2.5, we review the existing literature concerned

with matching instances of hierarchical data, and finally, in Section 2.6 we describe ap-

proaches to extending the scope of integration and visualization of multidimensional data.

2.1 Schema Matching

Schema matching for relational databases is a difficult process to automate, and has been

the subject of research in last decades. Batini et al. [1986], Pavel and Euzenat [2004] and Gal

[2006] have completed major surveys of research in this area.

18 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

Schema matching is a process that uses one or more matchers to find mappings be-

tween elements of the two schemas with the motivation to integrate schemas [Rahm and

Bernstein, 2001]. The approach used in schema matching depends on how the schemas are

represented. Examples are data definition language (DDL), entity-relationship (ER) model,

Unified Modeling Language (UML), XML, document type definition (DTD), or ontology

web language (OWL) [Rahm and Bernstein, 2001].

Rahm and Bernstein [2001] classify approaches to automate schema matching as being

at either the level of element or structure. The advantage of the structure level approach is

that in addition to element-level properties such as name, data type and constraints, it also

considers the similarity between related elements within the same structures.

2.1.1 Representing Schemas as Graphs

The structure and properties of relational databases can be described using graphs. Each

relational object, such as instances of tables, columns, keys and datas type is represented as

a node of a graph. The edges in the graph simply relate each pair of nodes using role names.

Figure 2.1 is a graph representation of the table DIMENSION FISCAL CAL which appeared

in Figure 1.4. It follows a similar representation used by Melnik et al. [2002b].

2.1.2 Similarity Flooding

Similarity Flooding [Melnik et al., 2002b] is a versatile graph matching algorithm. It calcu-

lates similarity between nodes of two graphs A and B. For propagation purpose, it forms

a pairwise connectivity graph PCG from A × B connecting nodes of the graphs (x, p, x′)

19 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

&1Dim_Fiscal_Cal
name &2

Fiscal_Year
name

&3

SQLtype

Fiscal_Month

column

column

SQLtype

&5

key

length

type

on

ty
pe

&4

colum
n

Year_Month
name

name

6

type

type

C
o

lu
m

n

Table

Decimal

Smallint

SQLtype

Figure 2.1: Graph representation of dimension table DIMENSION FISCAL CAL.

and (y, p, y′) and is defined by Melnik et al. [2002b] as: ((x, y), p, (x′, y′)) ⊆ PCG(A, B)⇐⇒

(x, p, x′) ⊆ A and (y, py′) ⊆ B. Figure 2.2 shows the connectivity graph between two graphs

each representing a column of a table.

Fiscal_Year

Dim_Fiscal_Cal

column

Fiscal_Month

column

(a) Column 1.

Fin_Year

Dim_Financial_Cal

Fin_Month

column column

(b) Column 2.

Employee,Personnel

column

Fiscal_Year,

Fin_Year

Fiscal_Year,

Fin_Month

Fiscal_Month,

Fin_Year
Fiscal_Month,

Fin_Month

(c) Connectivity graph of columns 1 and 2.

Figure 2.2: An example of a connectivity graph.

At each level of the connectivity graph, the similarity score for each node in PCG is

calculated as follows:

20 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

• Each node in PCG receives an initial similarity value which indicates the string simi-

larity between the labels of the nodes from A and B.

• Each edge in PCG is represented using a forward link (from parent to the child node)

and a backward link (from the child to the parent node).

• The weight of the forward link is calculated as 1 divided over the number of child

nodes for the same parent.

• The weight of the backward link is calculated as 1 divided over the number of parent

nodes for the same child; in a tree structure, this is always 1.

• The similarity score for the parent node is incremented by the sum of the score for

each child node multiplied by the weight of its backward link.

• The similarity score for each child node is incremented by the similarity score of its

parent node multiplied by the weight of its forward link.

• The scores are normalized in each iteration by being divided over the largest score in

the iteration.

• In each iteration, the algorithm calculates the similarity scores for all nodes. The al-

gorithm stops when the change in the scores becomes insignificant. Finally, the best

match candidates are selected through some filters.

21 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

2.1.3 COMA++

COMA [Do and Rahm, 2002] is another well known schema matching approach. As demon-

strated by Duchateau et al. 2008, the quality of match results from COMA++ is generally

higher than that of Similarity Flooding. The approach used by COMA++ also turns the

schema into an internal graph representation where each element is represented using a

path or a sequence of nodes following the containment links from the root to each node.

COMA++ uses a library of matchers which can be plugged into COMA and configured.

COMA++ has three types of matchers: Simple, Hybrid and Reuse-oriented. Simple matchers

benefit from syntactical similarities between the element names. Hybrid matchers exploit

the structure of graphs.

COMA++ also learns from feedbacks obtained from user. At the end of the matching

process, COMA++ combines match results returned from its matchers. This process consists

of an aggregation of scores and a selection from match candidates.

In the remainder of this section we review the literature related to specifically matching

of Star schemas. Precursors to the matching of Star schemas are discovery and representa-

tion of their properties. Next, we survey the literature related to these two problems.

2.1.4 Inferring Star Schema Properties

Various sources of information have been used to identify properties of Star schemas. The

earliest work goes back to when Pokorny [2001] used elements and sub-elements of Doc-

ument Type Definition (DTD) to describe dimensional data. Similarly, Jensen et al. [2001;

2003] use a DTD as a source of information. They identify the multidimensional structure by

22 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

following elements with ID/IDREFS attributes and suggest UML diagrams for snowflake

dimensions, and facts. DTDs are superseded by XML Schema which has a much richer syn-

tax. A more fundamental shortcoming of these approaches is that they do not go beyond

dimensions and their hierarchies.

Song et al. [2007] produce Star schema from Entity Relationship Diagram (ERD) by

analyzing their structure and by measuring the number of direct and indirect M:1 (many-

to-one) relationships for each entity. ERD is a rich source of information on the structure

and semantic information such as the relationships, but it is seldom available. Moreover,

their algorithm stops at identifying the dimensions and fact tables.

Jensen et al. [2004] use the metadata model and data to discover dimensions and their

hierarchies. Their proposed approach appears to include transitive relationships and also

uses SQL queries which makes the approach less practical.

Golfarelli et al. [2001] use DTDs as well as key/keyref elements in XML schemas relating

to web pages to construct a graph from which attribute trees are constructed, but the user is

expected to use the graph to identify facts.

Romero et al. [2009] discover functional dependencies to identify the multidimensional

structures only as far as dimension hierarchies. They use domain ontologies as the source of

information which is seldom available. Cabibbo et al. [1998] identify dimensions and facts

by following the foreign key relationships.

Carmè et al. [2010] have a focus on identifying fact tables and their measures only. Their

approach is based on heuristics that take advantage of relationships, the volume of data,

and clusters of numeric data. Similar to Song et al. [2007], Carmè et al. use the number of

23 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

foreign keys to identify fact tables. Using the volume of tables as a measure to detect fact

tables is not reliable since fact tables in each data mart may refer to only a subset of data in

each dimension.

2.1.5 Representation of Star Schemas

Representation of multidimensional data using ER diagrams has received considerable at-

tention in the past decade [Chen and Hsu, 2007; Franconi and Sattler, 1999; Kamble, 2008].

These works suffer from similar problems as those concerned with discovery of Star schema

properties, that is, they leave out properties such as surrogate keys, degenerate facts, and

degenerate dimensions.

More recent works have benefited from UML to describe multidimensional data. Akoka

et al. [2001] present a meta model for dimension hierarchies using UML operations such as

generalization and aggregation but only focus on describing aggregation hierarchies.

Abelló et al. [2005] present a meta model called YAM2 for multidimensional data by

extending UML stereotypes. Their model captures facts, dimensions, levels, measures and

summarizations. The Star schema described using this model is, however, designed from

the user requirements and is, hence, more suitable for designing new models. They also

omit representation of important properties such as snowflaked dimensions, degenerate

dimensions and facts.

Luján-Mora et al. [2006] propose a conceptual model using UML with a wider coverage

of properties of multidimensional data than YAM2. It covers a comprehensive set of prop-

erties including hierarchies, degenerate dimensions and degenerate facts. It is, however,

24 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

aligned with the logical or conceptual model and as such it excludes physical properties

such as keys, foreign key relationships and snowflaked dimensions, and therefore, it is not

considered suitable for schema matching.

2.1.6 Matching Star Schemas

Matching relational schemas is a well researched area, a summary of different approaches

is provided by Pavel and Euzenat [2004]. Many of the concepts used in matching relational

schemas are also applicable to Star schemas, we are however, concerned with the research

that exploits Star schema properties.

Li and Yang [2004] discuss matching Star schemas specifically. Their approach converts

schemas to a binary schema tree with the fact table as the root of the tree and dimensions

forming child paths to the root node. The proposed matching uses linguistic properties and

fixed similarity values for different combinations of data types. It recognizes properties of

multidimensional data but only as far as dimensions, dimension hierarchies and facts.

The matching algorithm used by Banek et al. [2008] recognizes the value in matching

dimensions, facts, levels, measures and attributes. They do not describe the model they use

and how the Star properties used in the matching process were obtained. Moreover, the

matching process excludes properties such as keys, degenerate dimensions and degenerate

facts. The distinction with their approach is said to be the treatment of aggregation hierar-

chies. To the best of our knowledge, none of the works above was available to be used in

our evaluation.

25 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

2.1.7 Measuring the Quality of Match Results

Measuring the quality of matching in Information Retrieval is based on Precision and Recall.

Precision (P) is the ratio of the number of correct matchings (C) over the number of sug-

gested matchings (N). Recall (R) is the ratio of the number of correct matchings (C) over the

number of expected matchings (M). A measure that combines these two is known as the

F-Measure and calculated as follows:

F-Measure =
2PR

P + R
(2.1)

Melnik et al. [2002b] calculate the quality of match results differently to the calculation

of accuracy using F-Measure. They calculate accuracy in terms of the cost of modifying the

proposed matching results to the expected match results. The cost is a ratio of the sum of the

number of false positives (N − C) and false negatives (M− C) over the number of expected

matchings. Subtracting this cost from 1 returns what they refer to as a measure of accuracy

of match results. We refer to this as the A-Measure.

The value of A-Measure is always less than, or equal to F-Measure since it penalizes the

measure of match quality for false positives and false negatives. It returns a negative value

when the precision is less than 0.5, that is, more than half of the matches are wrong. This

is where the cost of correcting the false positives and false negatives outweigh the cost of

manual matching.

A-Measure = 1− (N − C) + (M− C)
M

=
C
M

(
2− N

C

)
= R×

(
2− 1

P

)
(2.2)

26 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

2.1.8 Schema Matching: Case Studies

In this section we look at two real life cases in the insurance industry, where there is a

need to use an automated schema matching tool to perform the initial matching before the

integration of data marts.

The first case concerns an insurance company which has over the years acquired other

insurance companies offering similar products for cars, boats, home, third party, and life.

Each of these companies has developed their own data marts.

Whilst, the integration of the source systems remains a long term objective, the short

and medium term objective is however to be able to make a combined analysis of data

across these data marts. What helps is that all of the acquired insurers have a similar busi-

ness model, and the data marts cover similar subject areas such as Policy Renewals, Policy

Cancellations, and New Policies.

A business analyst is able to identify data marts from similar subject areas. An auto-

mated schema matching can provide the first draft of the match between dimensions and

measures. This process will save time and leaves the analyst with accepting or reject the

matches.

The second case concerns a large insurance company with a large number of data marts

extracted from a third normal form data warehouse. The company has decided that the

existing strategy to transform data using ETL into a data warehouse and then into data

marts is time consuming and expensive. Instead, they use high performance appliances

based on massive parallel processing to create data marts directly from the source systems

using database views.

27 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

Whilst, the existing data marts are yet to be replaced, there is a large overlap between the

new and existing data marts. Again, to save time and cost, an automated schema matching

process can be used to perform the initial matching followed by a review of the match results

by the analyst.

2.2 Structure of Multidimensional Data

2.2.1 Dimension Hierarchies

There are many but consistent definitions of dimension hierarchy. Hurtado and Mendelzon

[2001] consider a hierarchy as being a directed acyclic graph (DAG) of levels (each corre-

sponding to a node of the graph) where each roll-up relationship is an edge connecting a

pair of nodes.

A commonly understood definition is that, it contains several related levels, and that the

relationships are used for roll-up and drill-down operations [Malinowski and Zimányi, 2006].

Dimension hierarchies are also critical to storage optimization, summarizability and accu-

rate integration of multidimensional data. They can be also used as the basis for data clus-

tering which can significantly improve performance of queries against data marts [Samet,

1990; IBM DB2, 2009]. Assuming two levels l1 and l2, we need to know the roll-up relation-

ship between these two levels to establish if the data is summarizable as far as these two

levels are concerned.

Dimension hierarchies are designed after comprehensive analysis of real life data in its

fullness and in respect to its domain rules. They are then ideally defined as part of the

schema and enforced by the database management system.

28 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

A dimension hierarchy can be mapped to ER (Entity Relationship) where each relation-

ship can be shown using (0,M) on the (child) level and (1,1) at the other (parent) level [Mali-

nowski and Zimányi, 2006]. Figure 2.3 shows ER representation of the levels of a hierarchy

of a Store dimension.

Australia

Melbourne

Cheltenham Heighet

Store_A Store_B Store_C

Country

City

Store

Locality

Figure 2.3: ER representation of a hierarchy.

Hacid and Sattler [1997] define a dimension hierarchy as a finite, partially ordered set

(H,�), where � is a strict ordering and each level is a subset l ∈ H. Similarly, Torlone

[2008] defines a dimension hierarchy as a partial order � on a finite set of levels L where

each partial order relationship li � lj corresponds to a roll-up.

Another way to describe hierarchies is to consider them as constraints applied against

their instances. Hurtado and Mendelzon [2002] consider hierarchies as constraints that aug-

ment schemas to model dimension instances. They consider a dimension constraint as a

Boolean combination of two sorts of atoms: path atoms and equality atoms. Path atoms start

from a unique category called the root of the constraint. For example, if Store rolls up to

City then the root of the location dimension is Store and the constraint consists of a single

path atom Store City.

29 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

There may be multiple hierarchies in a dimension in which case each hierarchy is a Direct

Acyclic Graph (DAG) or a tree. Each hierarchy consists of a number of levels, and each level

is associated with a category or grouping on which measures are aggregated. For example,

levels of a location hierarchy are Country, State and City. The hierarchy is defined using

partial order relationships (that is M:1) between levels, e.g. Town � City � Country. Each

partial order relationship corresponds to a roll-up. The partial order relationships between

levels determine the expected order in which measures are aggregated.

2.2.2 Summarizability

Earlier in this section, we said that the roll-up relationship between levels of the hierarchy

is a M:1 relationship. According to Rafanelli et al. [1990], data is summarizable when every

measure m at any level li can be computed by summing m at the level li−1 where li−1 � li. It

is a property of summarizable data Strictness preventing double counting. It requires that

when aggregating at the higher levels, the tree structures implied by roll-up relationships

are maintained in respect to the data. Where this holds true, the dimension is said to be

strict [Rafanelli, 2003].

For example, given the hierarchy in Figure 2.3, the instance of the hierarchy shown in

Figure 2.4 is not strict and, hence, the data is not summarizable. The sales amount in store

Store B is double counted as it is attributed to two cities. Rafanelli and Shoshani [1990] refer

to this case as a multi-valued mapping. Non-strictness in dimensions may occur during

updates and can be prevented using data integrity constraints [Hurtado et al., 1999].

It is possible that members of a parent level with the same label, refer to different

30 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

Australia

Melbourne

Cheltenham Highett

Store_A Store_B Store_C

Figure 2.4: An example of a non-strict instance.

real world entities i.e. homonym members 1. For example, the two cities Melbourne and

Melbourne relate to two different states Victoria and Florida. Although this case does not

result in double counting, it can lead to some other aggregation problems. For example, if

we aggregate the sales amount based on City only, we will have an over-estimated measure

of sales amount for an ambiguous city. Rafanelli and Shoshani [1990] refer to this as a spe-

cial case of single-valued mapping. As a solution, they recommend that the member of the

child level also includes the member at the parent level.

2.2.3 Levels

Torlone conceptually defines a dimension D as a finite set L = {l1, ..., ln} of levels where each

level is a distinct grouping of data [Torlone, 2008]. Levels are synonymous to aggregation

levels. The partial order or roll-up relationships between levels determine the dimension

hierarchies. The lowest level of the hierarchy, called the base level, determines the data at its

finest granular level and is denoted by⊥. The top level denoted by> represents the highest

level of grouping of data.

1The correct term is in fact homograph, we use homonym because it is more widely known as such.

31 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

2.2.4 Members

Members are distinct values in each level. In the context of the relational implementation,

attribute values correspond to members of levels. Torlone [2008] classifies members into

those that refer to real world entities belonging to the base levels, and the rest being groups

of members. For example, in Figure 2.4, the member Store A of the level Store refers to a

distinct real world entity and the member Melbourne of the level City is a group of stores.

2.2.5 Dimension Table

Dimension table is the relational implementation of a dimension (as an abstract concept). It

is a relation over a set of columns referred to as dimension attributes. A level in a dimen-

sion table is associated with a unique set of dimension attributes and determines a distinct

grouping of data. Distinct values of dimension attributes correspond to members of the

level to which the attributes belong to. Dimension hierarchies are defined over levels of a

dimension table.

2.2.6 Data Mart

An instance of a Star schema is a data mart. Torlone [2008] formally defines data mart f

over a set D of dimensions composed of a scheme (Star schema) and an instance of it. The

scheme f [Ai : l1, ..., An : ln] →
〈

M1 : τ1, ..., Mm : τ :m
〉
, where each Ai is a distinct attribute,

li is a level of some dimension in D, each Mj is a distinct measure, and each τj is some base

type.

An instance is defined as a partial function mapping coordinates for f to facts for F,

32 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

where a coordinate is a tuple over the attributes of f mapping each attribute name Ai to a

member of li, and a fact is a tuple over the measures of f mapping each measure mi to a

value in the domain of type τj.

2.3 Inferring Dimension Hierarchies

2.3.1 Schema Based Hierarchies

Schema Based Hierarchies are explicitly defined as part of the schema and enforced by the

database management system, or defined and enforced as part of the application. The fol-

lowing is an example of how dimension hierarchies such as those of the StoreDimension

are defined on an Oracle database [Oracle, 2005].

CREATE DIMENSION StoreDimension

LEVEL Region IS (Region_Name)

LEVEL Country IS (Country_Name)

LEVEL City IS (City_Name)

LEVEL Locality IS (Locality_Name)

LEVEL Store IS (Store_Name)

LEVEL Division IS (Division_Name)

HIERARCHY StoreRollup_1 (

Store CHILD OF

Locality CHILD OF

City CHILD OF

Country CHILD OF

Region)

HIERARCHY StoreRollup_2 (

Store CHILD OF

Division CHILD OF

Country CHILD OF

Region)

This is, however, a proprietary description of hierarchies provided by a specific vendor.

Other database management systems either do not have a provision for describing hierar-

33 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

chies, or describe them differently.

2.3.2 Inferred Hierarchies

Schema based aggregation hierarchies may not be available in the following circumstances:

(i) when accessing unfamiliar data sources from external sources, (ii) where the database

management system does not support inclusion of the dimension hierarchy as part of the

schema, (iii) no documentation is available to describe the hierarchy.

A dimension hierarchy that is inferred by any mean other than from the schema or the

application, is an inferred hierarchy. In Chapter 3, we propose to infer aggregation hierarchies

from their instances. In what follows next in this chapter, we describe the related work on

this problem.

2.3.3 Inferring Functional Dependencies

In Section 2.2.1, we explained that aggregation hierarchies could be defined in terms of

partial order relationship between levels. It happens that partial order corresponds to func-

tional dependency. For example, in Figure 2.5, the roll-up Store � Locality corresponds

to the functional dependency Store→ Locality. That is, Store determines the Locality

and Locality is determined by Store.

Inferring functional dependencies has been studied by several authors [Carpineto et al.,

2009; Kantola et al., 1992; Mannila and Räihä, 1994; Romero et al., 2009] against relational

databases for a wide range of applications including data clustering, database design and

query optimization.

34 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

Functional dependencies over a number of attributes is a set of unique combinations of

those attributes on the left and right hand side of the dependency. As such, the complexity

of the algorithms to infer these dependencies is significant.

Mannila and Räihä [1994] suggest several algorithms for inferring functional dependen-

cies from example data in relational databases. Their improved sort-based algorithm has a

complexity of O(mnp log p + n22n) where n is the number of attributes, p is the number of

tuples, and m is the number of sorts.

2.3.4 Inferred Dimension Hierarchies

Jensen et al. [2004] discover multidimensional structures in relational databases using phys-

ical metadata from the schema. They also propose a method for discovery of dimension

hierarchies. They consider attribute values as being single members of each level.

Akoka et al. [2001] derive dimension hierarchies from UML schemas. They do so by

mapping M:1 (i.e. many-to-1) aggregation into a dimension hierarchy. This approach can

work well only if the (UML) schema information on dimension hierarchies is available.

Romero et al. [2009] have suggested using conceptual representations of the domain

ontology in discovering functional dependencies. This approach relies on analysis of as-

sertions concerning functional dependencies in ontologies. It uses an ontology reasoner

to discover the closure of asserted functional dependencies. Similar to the problem with

unavailability of schema defined hierarchies, it is even less likely for domain ontologies to

be available and, hence, the approach has limited application. Nevertheless, subject to the

availability of the domain ontologies, accuracy and the completeness of the rules, the hier-

35 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

archies inferred using this method can be closer to the intended hierarchies than using data

which may not reflect the real world population of the dimension.

Mazón et al. [2006] explore semantic relations by using lexical repositories such as Word-

Net [Fellbaum et al., 2011] to identify levels of aggregations. WordNet is an electronic lexi-

con which captures hypernym (i.e. superordinate) and meronym (i.e. subordinate) relations

for nouns. This work does not rely on schema information, however, the accuracy of deriva-

tion depends largely on whether the members can be successfully looked up in the lexicon.

Unfortunately, in more cases than otherwise, members are codes and abbreviated names.

2.4 Matching Requirements for Integration of Dimensions

2.4.1 Conformed Dimensions

Several people have investigated the pre-integration requirements for dimensions. Confor-

mity between dimension tables is a well known set of such requirements and is also widely

used in the industry. Kimball and Ross [2002] define two dimension tables as being con-

formed if they have identical keys, and identical attributes, and that matching attributes

must have identical values, or one must be a subset of the other. They also add that con-

formed dimension tables must mean the same thing. Similarly, Mundy et al. [2006] define

two dimension tables as being conformed if they have the same name and contents. Giov-

inazzo [2000] requires the same instance of a conformed dimension table to be joined to

multiple fact tables. These very similar descriptions of conformity concern relational imple-

mentation of dimensions and are fairly strict since their scope concerns all attributes of a

dimension table.

36 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

2.4.2 Compatible Dimensions

Torlone [2008] acknowledges that Kimball’s definition of conformed dimension tables is not

suitable to autonomous data marts and defines dimension compatibility as an alternative.

He offers a comprehensive analysis of the requirements for compatible dimensions in terms

of three properties of the matching between dimensions, but only against their matching

levels. These are coherence, consistency and soundness defined as constraints against matching

levels of a pair of dimensions. In what follows next, we explain Torlone’s requirements for

compatible dimensions.

The mapping µ between the integrating dimensions (d1 and d2) is said to be coherent if

every partial order between each pair of levels l and l′ of d1 also exists between those levels

of d2 that match with l and l′. This property ensures that the hierarchies involving matching

levels in d1 and d2 are identical:

Definition 2.1. Coherence: the matching µ between dimensions d1 and d2 is coherent if, for each

pair of levels l, l′ of d1 on which µ is defined, l � l′ if and only if µ(l) � µ(l′) [Torlone, 2008].

Figure 2.5 shows the mapping between the matching levels of Store and Shop dimen-

sions. For example, Country � Region appears in Store dimension only and City �

Division appears in Shop dimension only. Also, the roll-up Locality � Division exists

in Shop dimension but not in Store dimension. Therefore, the mapping between the two

dimensions is not coherent.

The second property is consistency and involves hierarchies and their instances. This

property requires that integrated instances conform to the original hierarchies.

37 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

Store

Division

City

Locality

Country

Region

Store

Division

City

Locality

Country Region

Figure 2.5: Incoherent mapping between Shop and Store dimensions.

Definition 2.2. Consistency: The matching µ is consistent if, for each pair of levels l � l′ of d1 on

which µ is defined, ρl→l′
1 = ρ

µ(l)→µ(l′)
2 [Torlone, 2008].

Figure 2.6 shows instances of the two Store and Shop dimensions using levels which

make the matching between their hierarchies (Store ≡ Shop) � (Locality ≡ Locality)

� (Country ≡ Country) � (Region ≡ Region) coherent. However, the matching be-

tween the Store and Shop dimensions is not consistent because the partial order relation-

ship (Store ≡ Shop) � (Locality ≡ Locality) will not hold after the integration of

their dimensions. The reason is that the member St3 belonging to the level (Store ≡ Shop)

rolls up to two different localities Loc2 and Loc5.

If the test for coherence fails, then there is no need to continue with the test for con-

sistency. To pass the test for coherence, it is possible to exclude from the hierarchies (and

consequently from the integration) those levels that are the cause of the incoherence. By

removing Division and (Country or Region) the test for consistency would pass using the

remaining levels and, hence, we could achieve partial integration.

38 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

Asia Pacific

Australia New Zealand

Loc1 Loc2 Loc3 Loc4

St1 St2 St3 St4 St5 St6 St7 St8

(a) An instance of Store dimension

Asia Pacific

Australia New Zealand

Loc1 Loc5 Loc3 Loc6

St9 St2 St3 St10 St5 St6 St11 St12

(b) An instance of Shop dimension

Figure 2.6: Inconsistency between Store and Shop dimensions.

Failing to satisfy the requirements for consistency results in the violation of the M:1

relationships in the integrated result, as it no longer conforms to the hierarchy in the original

dimensions. Therefore, consistency ensures the strictness (a property of summarizability)

in the integrated data.

The third property is soundness. The matching between two dimensions is sound if for

every member of every level in one dimension there is a matching member in the corre-

sponding matching level of the matching dimension:

Definition 2.3. Soundness: The matching µ is sound if, for each level l ⊆ L1 on which µ is

defined, every member of level l must have a matching member in the level with which l matches,

that is m1(l) = m2(µ(l) [Torlone, 2008].

In Figure 2.6, the matching between the two dimensions is not sound since there are

mismatching members Loc2, Loc3, Loc4, Loc5, Loc6 in Locality, and St1, St4, St7,

St8, St9, St10, St11, St12 in Store/Shop levels.

Definition 2.4. µ is called a perfect matching if all of the matchings are coherent, sound and consis-

tent [Torlone, 2008].

39 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

Acknowledging that soundness is difficult to achieve in particular with heterogeneous

dimensions, Torlone defines a less strict variation of perfect matching:

Definition 2.5. Two dimensions d1 and d2 are µ-compatible if there exists two lossless expressions

E1 and E2 such that µ is perfect matching between E1(d1) and E2(d2) [Torlone, 2008].

For brevity, this thesis will use the term ’compatible’ to refer to ’µ-compatible’.

Although Torlone’s definitions of compatibility is at a conceptual level, and conformity

concerns relational implementation of dimensions, we can say that compatibility is less

strict than conformity, because (i) it is not applied against all levels of dimensions, and

(ii) if there are some lossless expressions applied against dimensions, then the soundness is

only applied against a subset of members. Therefore, every pair of conformed dimension

tables is also compatible but the reverse may not be true.

A similar set of requirements to compatibility by Grossmann and Moshner [2007] ver-

ify for three types of conflicts due to: (i) mismatch in one-to-many relationships, (ii) mis-

matches in hierarchies caused by coarse requirements, and (iii) conflicts according to non-

corresponding value domains. These are, in effect, very similar to the requirements for

compatible dimensions.

2.5 Instance Matching and Enforcing Strictness

2.5.1 Duplicate Detection

Generally, the literature classifies the instance or data matching problem as duplicate de-

tection. That is, finding two or more rows in the same table that are likely to refer to the

40 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

same entity. We divide the approaches for solving this problem into hierarchical and non-

hierarchical. Approaches taken for non-hierarchical data exploit string similarity, super-

vised and unsupervised learning, and data clustering [Elmagarmid et al., 2007]. Hierarchy

based approaches also look at the relationship between attributes, and between tuples (i.e.

the hierarchies).

Dimensional data conform to their hierarchy and are, hence, classified as hierarchical

data. Hierarchies can be effectively used in instance matching. For example, matching child

members are expected to have matching parents, and if child members mostly mismatch,

then their parents must be also different. As such, we are interested in methods that exploit

the hierarchical structure of data. In the remainder of this section, we review the literature

related to duplicate detection in hierarchical data and enforcing strictness.

The first work that exploited hierarchies in detecting duplicates in hierarchical data was

DELPHI [Ananthakrishna et al., 2002]. DELPHI uses a measure called Foreign Key Con-

tainment Metric (fkcm) which measures the similarity between the children of two parent

objects. The problem addressed by the authors is detecting duplicate rows in dimension

tables with foreign key constraint between them (i.e. snowflaked dimensions). The main

issue with DELPHI as noted by Weis and Naumann [2005] is that the similarity measures

are not symmetric, that is member m may be a match to m′ but the reverse may not be true.

Inspired by DELPHI, Weis and Naumann [2002] use a similar intuition. They measure

the similarity between XML elements using the similarity between parent members, the

similarity of data, and the hierarchy of their children. The similarity measure between two

sets of tokens is the Inverse Document Frequency (IDF) value of their common tokens to the

41 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

IDF value of all non-common tokens. Similar to Ananthakrishna et al. [2002], their work

also follows a top down approach.

Weis and Naumann [2004] later extended their work by development of Dogmatix [Weis

and Naumann, 2005], which provides a framework for detecting duplicate entities in XML

documents. There are two main heuristics used in the pair wise comparison of objects.

These are r-distant ancestors and r-distant descendants. They are based on the intuition that

the closer the information are to the element, the more related they are. For example, the

city ‘LA’ is more related to the state ‘CAL’ than the suburb ‘Beverly Hills’. All elements

whose depth in the document is within a given radius are used in creating the description

of the object. In this respect Dogmatix benefits from similarities at the child as well as at the

parent levels.

Calado et al. [2010] review recent approaches in XML duplicate detection. The review

makes two important findings: (i) Dogmatix is a more effective method; (ii) missing data

affects similarity measures more than typographical errors and duplicate erroneous data.

The algorithms used in the above works are not designed to identify matchings between

two instances.

Milano et al. [2006] and Kailing et al. [2004] use the structure of XML documents to

calculate tree edit distance. The algorithm suggested by Milano et al. [2006] attempts to find

similarity between tree structures by finding the most optimal overlays.

Other hierarchy based approaches include additional instance matcher added to COMA++

[Engmann and Massmann, 2007] for matching ontologies. It does not, however, provide for

defining relationship between matching levels and, hence, it matches members from mis-

42 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

matching levels, and therefore, increases the false positives.

Similarity flooding has been used to identify similar structures and concepts. Marshall

et al. [2006] use this algorithm for matching concept maps. They have introduced a ”node

anchoring” mechanism by which key terms and common abbreviations are identified as

anchor points. Whenever these terms are found, they are locked as best matches. Pan et al.

[2010] use key terms and abbreviations in place of string matching to improve the recall.

2.5.2 Consistent Query Answering

Where integrity constraints are violated (due to non-strict data), the database instance is said

to be inconsistent as query results will not be consistent with the constraints. This problem

was first investigated by Arenas et al. [1999].

Consistent query answering aims to return consistent answers where the data itself is

not. This is usually done by obtaining a minimal repair, that is a variation of the instance

that satisfies the integrity constraints and its variation is minimal relative to other repairs.

This problem differs to the problem we are concerned with in the sense that it deals with

inconsistencies within a single source.

Various approaches have been suggested to obtain consistent query results. They in-

clude deletion of inconsistent tuples, computing all possible repairs [Wijsen, 2006], return-

ing a range of values for each set of consistent data [Arenas et al., 2001; Betrossi et al., 2009;

Sismanis et al., 2009], and nullifying inconsistent data at the attribute level [Chomicki, 2006;

Liu et al., 2008].

43 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

2.5.3 Enforcing Strictness

A different approach to deal with inconsistent data is to view it as a summarizability issue

resulting from non-strictness [Horner and Song, 2005; Horner et al., 2004]. These approaches

are concerned with modifying the instance such that it becomes consistent with its hierarchy.

These approaches are, however, concerned with resolving non-strictness inherent within a

single source. They cannot, however, guarantee consistency after the integration. In the

following we briefly review the major works in this area.

Considerable research has been invested into solving this issue in the past decade. Ped-

ersen et al. [1999] suggested creating a new parent by fusing the old parent values and

linking it to what the old parents linked to, but cut the old members from their original

parents.

Bertossi et al. [2009] create a canonical dimension that isolates inconsistent members.

In the canonical dimension, inconsistent parent members are fused together and a range of

values for fused members are returned.

A different approach by Luján-Mora et al. [2001] suggests reducing inconsistency by

resolving string differences resulting from the use of different case letters, omission and

inclusion of accents which can be useful before the matching.

Mazón et al. [2009] provide a comprehensive summary of the approaches to deal with

non-strictness and other causes of unsummarizable data. These approaches are only effec-

tive if we have prior knowledge of intended match results.

To prevent inconsistency, specific operators such as addInstance are introduced to ensure

that the added element reaches the same element in the levels above it [Hurtado et al., 1999;

44 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

Letz et al., 2002].

Another approach to resolve inconsistency in a single source is to somehow merge the

tuples involved. However, this approach assumes that the match is correct and inconsistent

tuples are in fact the same which may not be the case. For example, resolution strategy

by Anokhin and Morto [2001] suggests reducing inconsistent tuples into one by choosing

each attribute value from one of the merging tuples based on some predetermined rules.

A similar method used by Wisjen et al. [2006] chooses the more up to date tuple. Greco

and Molinaro [2008] suggest updating the inconsistent members with a domain (for an un-

known set of values) which contains the inconsistent members.

2.5.4 Resolving Inconsistency Across Multiple Sources

The problem of resolving inconsistencies across multiple sources has received little atten-

tion. Agrawal et al. [1995] investigate integration of multiple databases that may be mu-

tually inconsistent. Their approach is not concerned with discovery of the actual incon-

sistencies but rather extends each relation by attributes that would allow operations such

as merge, equivalence, selection, and union to resolve the inconsistencies. Extended rela-

tions enable the definition of integrated Views over relations that may be inconsistent. They

provide a model and a set of operations that enable resolve inconsistencies.

Another notable work is by Torlone [2008]. The author exploits hierarchies to recover

a null parent member in one source by looking at the parent of the same member in an-

other source. For any pair of matching child members where one of the parents member is

null, Torlone proposes to replace the null parent member with the parent of the correspond-

45 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

ing child member. The main concern with this approach is that it assumes that the match

between the child members is a true positive.

2.6 Extending the Scope of Integration

Earlier in this chapter, we described conformity and compatibility between dimensions for

accurate integration and maintaining summarizability. We also said that compatibility was

less strict than conformity and therefore, it allows for greater segments of data to be inte-

grated. The main operation used for integrating data marts is drill-across. In this section,

we review the literature in respect to extending the drill-across operation to maximize the

scope of the integration. We also review the related work on visualization of integrated

multidimensional data from multiple data cubes or marts.

Drill-across is an OLAP operation used to navigate from an origin data cube to a tar-

get data cube using some common coordinates (in other words compatible dimensions).

Cabibbo and Torlone [2004] define drill-across as an extension to the natural join where the

intersection of the two dimensions is aggregated at the finest grain of the dimensions.

Abello et al. [2002; 2003] define the operation drill-across as changing subject (facts) in

the same analysis space. They also find the strict requirement of dimension conformity to

be restrictive for the purpose of drill-across. This operation, according to them, requires

that selected instances in dimensions of the origin source to determine instances in the di-

mensions of the target source, and that the domains are related in some way. They have

identified semantic relationships: Derivation, Generalization, Association and Flow to extend

possibilities to perform drill-across by using these operations to map what would be other-

46 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

wise mismatching members and, thereby, improve soundness. These relationships can be

compared with lossless expressions used by Torlone [2008] for defining compatible dimen-

sions. In Chapter 6, we further relax the requirements for compatible dimensions to allow

for greater scope of integration.

In the following, we briefly review major works on visualization of multiple data cubes.

Various methods have been proposed to visualize multiple but related data cubes and pro-

vide flexible representation of dimension structure using graphical representations of data.

Vinnik and Mansmann [2006] show a tree like structure of dimensions as an effective

method in visualizing dimension structures. Polaris [Stolte et al., 2008] achieves visual-

ization of multiple data cubes by partitioning data into groups and allocating them into

independent panes.

ADVIZOR introduced by Eick [2000] uses a set of linked views displayed on the same

screen where each view is used to show a number of measures. There is, however, no

evidence that ADVIZOR can visualize multiple related data cubes.

Visual Pivot, introduced by Conklin et al. [2002], aims at visualization of data structures

composed of multiple intersecting hierarchies called Polyarchies sharing at least one node.

The aim of Visual Pivot is to track similar information in multiple hierarchies.

CoDecide introduced by Gebhardt et al. [1998] is an OLAP data visualization tool that

enables multiple users to have different views of one or multiple data cubes, and allows

users participate in a cooperative analysis of the subject.

47 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

2.7 Drill Across and Data Visualization: Case Study

Case studies described in Section 2.1.8 require integration of data marts which may share

only some dimensions and measures. For example, one may be concerned with car in-

surance policies and another with home. They both include common dimensions such as

policy number, inception date, due date, payment frequency, and common measures such

as number of risks, and premium amount. Whilst the user can query each one of the data

marts separately through a visualization device that supports ROLAP data cubes, the user

needs to know how many risks come up for renewal on any day regardless of whether the

type of the risk being insured is a car or a home.

From those risks that are up for a renewal for a given day, users require to re-group

the home policies by construction age and the car policies by driver age. Naturally, these

dimensions are only exclusive to the original data marts. The conventional approach is to

navigate back to each one of the original data marts and re-apply the same constraints to the

dimensions to obtain the remaining exclusive information. This approach is cumbersome

as the user will have to repeat the same process each time a new renewal date is chosen.

Figure 2.7 shows two data cubes sharing two dimensions Renewal Date and Payment

Frequency, and exclusive dimensions Construction Age and Driver Age. The drill-across

forms a cartesian join of the two cubes which needs to be related back to the dimensions that

are not common in the original data cubes.

48 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

Construction Age, Renewal
Date, Payment Frequency

Driver Age, Renewal Date,
Payment Frequency

Renewal Date,
Payment Frequency

Construction Age
Driver Age

Figure 2.7: Extending the drill across to exclusive dimensions.

2.8 Discussion

In this chapter, we described data warehousing concepts to which we refer to in this thesis,

and discussed the literature relevant to four related areas namely schema matching, infer-

ring aggregation hierarchies, instance matching, and extending the scope of integration.

Schema matching: We described several existing approaches for discovery and repre-

sentation multidimensional structures from various sources such as XML, DDL, DTD, UML,

and ER diagrams. The main shortcomings of these approaches which we aim to address in

Chapter 3 are that they omit some important properties of Star schemas and that the infor-

mation they use to infer Star schemas from may not be available.

We discussed several approaches for matching data warehouse schemas. Whilst, these

approaches benefit from some properties of multidimensional structures, they fall short of

taking advantage of some of their important physical properties. They also do not follow

any specific model and do not demonstrate how their approach compares with others.

Inferring aggregation hierarchies: We highlighted the absence of aggregation hierar-

chies as the main motivation to infer them, and described several approaches in the litera-

ture on inferring hierarchies. These approaches use various sources of information includ-

ing metadata, UML schemas, domain ontologies and lexical repositories. One approach

49 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

inferred hierarchies from data but it also used SQL queries and did not eliminate transitive

relationships.

The main problem with using metadata, domain ontologies and lexical repositories is

that these they cannot prevent a false positive case. That is, where the relation between

two levels is M:1, these approaches may return what is in fact a M:M (i.e. many-to-many),

because the information they use may be insufficient and imprecise. This problem cannot

occur when using data. Moreover, information such as UML schemas and ontologies may

not be available. Since instances of dimensions need to conform to their hierarchies, they

can provide a solid clue to their hierarchies. For this reason, in Chapter 4, we use data to

infer aggregation hierarchies.

Instance matching and enforcing strictness: We explained the significance of exploiting

the hierarchical structure of multidimensional data and focused on methods for instance

matching. Except for DELPHI which is aimed at relational data, the majority of such ap-

proaches are in fact aimed at matching XML data which is highly structured and hierarchi-

cal. To the best of our knowledge there is no algorithm specifically for matching multidi-

mensional data. However, with some difficulty this problem can be mapped to the problem

of duplicate detection in XML data. Unfortunately, implementations of these approaches

were not available to us to compare their effectiveness.

Similarity flooding is an approach that we use to perform schema matching (discussed

in Chapter 3) but, as we will demonstrate in Chapter 5, is even more effective and suitable

for matching multidimensional data.

One side effect of using algorithms which exploit hierarchies is that the number of false

50 (March 10, 2013)

CHAPTER 2. INTEGRATION OF MULTIDIMENSIONAL DATABASES - LITERATURE REVIEW

positives can increase when there is a high volume of missing data in either or both in-

stances. This problem highlighted by Calado et al. [2010] was also experienced during our

experiments with similarity flooding described in Chapter 5.

Extending The Scope of Integration: We discussed the requirements for integration of

dimensions and that compatibility was less strict than conformity. Although, the defini-

tion for compatible dimensions does take into consideration the use of lossless expressions

to extend the scope of the integration, assuming a single pair of such expressions is also

restrictive. In Chapter 6, we further relax the requirements for soundness by considering

multiple expressions applied to different fragments of data. What is is useful to discovery

of expressions is to identify which fragments of data, and to what extent is the problem of

mismatching members. We address this problem when we extend the scope of integration

in Chapter 6 by providing several metrics to measure the extent of mismatching members.

Another notable work on extending the integration is by Abello et al. [2002; 2003] who

propose certain operations that would improve the match between members. These oper-

ations play a similar role to lossless expression. A shortcoming of the drill-across is that

it makes no provision to link the common data to the non-conformed or non-compatible

dimensions.

We reviewed some of the main advances made in visualization of multiple data cubes.

What is however lacking is that, where coordinates of data change in one analysis space, the

same to also occur in related spaces of data sharing some common dimensions. In Chapter 6,

we discuss a conceptual representation of data from multiple data marts which also includes

the related non-compatible dimensions.

51 (March 10, 2013)

Chapter 3

Matching Star Schemas

”We are all in the gutter, but some of us are looking at the stars.”

Oscar Wilde (1854 - 1900)

Star schema is a relational model, and therefore, existing approaches for matching rela-

tional schemas also apply to Star schemas. As we discussed in Chapter 2, Star schemas have

distinct and predictable properties and relationships. Consequently, a customized and more

precise representation of the relational model that is designed to include specific properties

and relationships of Star schemas could be considered.

In this chapter, we propose StarMod as a more precise representation of Star schemas.

The immediate benefit of StarMod is that Star schemas described using StarMod would be

more expressive and would be defined consistently. But, more importantly we demonstrate

that when compared to using the relational model, using StarMod improves the quality of

match results between Star schemas. We also demonstrate that StarMod can be also effective

52 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

for matching arbitrary relational schemas.

Our representation of Star schemas covers similar concepts to those suggested in the lit-

erature but, it includes additional properties to improve their match results and expressive-

ness. Star schemas described as instances of StarMod (i.e. those that use StarMod properties

for their representation) will, therefore, be standardized, and can be used in an automated

process. We also present a set of heuristics to infer instances of StarMod (used in the match-

ing process) from XML schemas corresponding to their relational schemas.

In our evaluation, we use Similarity Flooding (SF) [Melnik et al., 2002b] to perform

matching between a number of Star and non-star schemas described using the relational

model and StarMod, and compare their results. All results are then compared against those

obtained from COMA++ [Do and Rahm, 2002] for the same schemas.

3.1 Motivations for Automated Matching of Star Schemas

Schema matching is a prerequisite to the integration of data marts. Automation of this pro-

cess is critical to reducing reliance on database experts and making the integration process

fast and cost effective. This problem is more acute for unseen heterogeneous data marts.

Despite attempts to provide industrial strength solutions to automate the matching of

relational schemas [Bernstein et al., 2004; Haas et al., 2005], most organizations prefer to

employ experts to perform the matching and integration of their relational databases. This

is tolerated as organizational changes that necessitate the integration of their data sources do

not occur frequently. Moreover, the integrated schema must be designed in such a way that

it is flexible enough to accommodate future business requirements and supports transaction

53 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

processing operations.

However, there are different considerations in a business intelligence environment where

the emphasis is on the agility of the integration process as there is always a need to integrate

data from multiple sources at short notice. In many cases, the resulting schema from the in-

tegration has a short life span.

A common application of a semi-automated Star schema matching is where a data ana-

lyst wishes to have a combined view of data marts for related subject areas. Other motivat-

ing scenarios are:

• where a business enterprise with disparate data warehouses for different lines of busi-

ness such as banking, insurance and wealth needs to combine some of its data marts

around customer and address information for marketing campaigns; and

• the need to integrate local data marts with externally sourced data marts such as those

sourced from Bureau of Statistics and market surveys.

Furthermore, organizations with large data warehouses develop many data marts over-

time, many of which overlap [Business Objects and Teradata, 2007]. Matching and integra-

tion of these data marts using a semi-automated process guided by a domain analyst will

improve the agility and reduces costs for providing new reports from combining existing

data marts.

Star schemas conforming to principles specified by Kimball and Ross [2002] have a cer-

tain topology and, hence, are more restricted than arbitrary relational schemas which makes

them to be more predictable. This allows us to anticipate their model and identify their dis-

54 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

tinct properties.

Schema matching relies on the classification of database properties such as tables, columns,

data types, integrity constraints, keys and even data. Intuitively, the specialization of these

properties can improve the quality of the matching process. Incidentally, relational proper-

ties in Star schemas can be defined more granularly. Generic relational properties such as

table and column fail to describe properties of Star schemas precisely. This motivates us to

consider whether a more precise representation of Star schemas can improve the matching

for Star schemas.

3.2 Why StarMod?

The motivation for StarMod is multi-fold and related:

• to provide a more expressive, precise, rich and consistent description of multidimen-

sional data,

• to use the schemas in an automated matching process, and

• to improve schema matching results.

It will also make it easier for data modelers to standardize schemas by following what

is, essentially, a template for describing these schemas. By exposing the properties of Star

schemas through StarMod, designers can potentially improve the model by reducing or

eliminating degenerate dimensions and degenerate facts which can also improve the quality

of match results because they are no longer incorrectly matched with facts and dimensions.

55 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

Given that Star schema model is a specialized form of relational model, we define prop-

erty classes in StarMod as subclasses of three main classes Table, Column and Key in the

relational model. This allows simplification of the StarMod since properties such as name,

data type, length, etc. can be inherited from the relational model. Figure 3.1 shows the UML

representation of the relational model corresponding to Relational.owl, an OWL repre-

sentation of relational model by de Laborda and Conrad [2005]. The highlighted classes are

added by the author of this thesis.

Database

Table

Column

Key

UniqueKeyPrimaryKey

isuniquelyIdentifiedBy

1

1..*

1..*

1

1..*

0..*

hasColumn

hasColumn

hasTable

Figure 3.1: UML diagram for relational model.

3.3 StarMod Properties and their Application in Schema Matching

StarMod includes a predefined set of concepts, relationships and constraints for describing

multidimensional data modelled on Star schema. It can be used as a template to define Star

schemas for any domain. In this section, we describe StarMod properties corresponding to

the classes shown in UML presentation of StarMod in Figure 3.2, and their applications in

matching Star schemas.

A Star represents a single Star schema and is defined as an aggregation of a number of

56 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

dimension and fact tables. Each Star may have none, or more dimension tables but must

have precisely one fact table. Conversely, a fact table may belong to one Star only. Dimen-

sion tables may be in one or more Stars. These rules, together with the fact that Elements

of FactTables may refer to Attributes of DimensionTables only, ensures that Stars are only con-

stellated through the shared or conformed dimension tables [Giovinazzo, 2000]. Each di-

mension table is a subtype of a relational table and is an aggregate of one or more Attributes

being a subtype of the relational column. Dimension and fact tables are related through

keys. Making distinction between dimension and fact tables improves the similarity be-

tween matching dimension and fact tables as well as their respective columns.

There are three types of Attributes:

i. A SurrogatekeyAttribute is a unique sequential number that is generated for every new

row. Use of surrogate primary keys is very common in dimension tables [Imhoff et al.,

2003]. A surrogate key value is generated at the time the row is inserted. Its definition

is vendor specific, for example in an IBM DB2 database, the following statement is used

to define a Surrogate key to have its value starting from 1 and incremented by one each

time a new row is inserted:

ALTER COLUMN "DEALER KEY" GENERATED ALWAYS AS IDENTITY START WITH 1, INCREMENT BY 1

It is important to distinguish surrogate keys from other types of attributes, as they do

not participate in any aggregation function, and their classification, as such, reduces

their similarity with natural keys and other attributes. For example, customer key may

be a customer number in one dimension and a surrogate key in another.

57 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

ii. A DegenerateFact is an additive attribute to which data functions such as Sum or Aver-

age can be applied. For example, Number of Claims as an attribute of dimension table

Claimant is classified as a DegenerateFact, whereas, Claim Number as an attribute of di-

mension table Claim is not, even though they have identical data types and similar

labels. Degenerate facts are matched with measures and degenerate facts. They are,

however, rare and are not considered part of the model introduced for Star schemas by

Kimball and Ross [2002], and as such are not recommended. They are best placed in

fact tables and classified as measures.

iii. DataAttributes are generally used as categories by which measures are summarized.

Their classification as such allows them to be matched with data attributes and degen-

erate dimensions (described later in this section).

A FactTable is also a subtype of Table and is an aggregate of one or more Elements being

subtypes of Column. There are four types of Elements:

i. SurrogateKeyReference is a foreign key that refers to a SurrogateKeyAttribute of a di-

mension table. By classifying surrogate key references as such, they are better distin-

guished from surrogate keys in dimension tables.

ii. The role of SurrogateKeyElement in a fact table is similar to that of SurrogateKeyAt-

tribute in a dimension table.

iii. A Measure is an additive (or quantitative) element such as Number of Claims in fact

tables [Giovinazzo, 2000]. Additive elements are those to which aggregate functions

58 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

such as Sum or Avg can be applied. Classifying elements as measures allows them to

have stronger matching with measures than with other properties.

iv. A DegenerateDimension is a dimension attribute for which no dimension exists [Imhoff

et al., 2003]. Use of degenerate dimensions is common in Star schemas. By classifying

degenerate dimensions as such, we are able to separate them from measures and in-

crease their similarity with other data attributes. For example, Account Number in a fact

table is classified as a degenerate dimension and is distinguished from a measure such

as Number of Accounts.

Hierarchy and Level: Each dimension hierarchy consists of a set of levels between which

there exists a partial order named rollsUpTo. For example, given levels l1 and l2 where

l1 � l2, we say that l1 rollsUpTo l2. Each level has one or more DataAttributes that uniquely

identify it. Aggregation of measures occurs alongside levels of hierarchies.

We represent hierarchies as part of StarMod for completeness of the representation, but

do not use them in the schema matching process for several reasons:

• Matching attributes may belong to mismatching hierarchies. Rejecting these match-

ings as early as the schema matching can be restrictive.

• In many cases, as we will see in Chapters 5 and 6, it is possible to enforce coherence

between hierarchies by applying some constraints against the data.

• Even if hierarchies are found to be matching, the data after integration may not con-

form to the original hierarchies [Torlone, 2008], that is, the matching is not consistent.

This is discussed in Chapter 5.

59 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

• As discussed in Section 2.3.2 dimension hierarchies are not always readily available

and, where inferred, may not be the same as their intended hierarchies. Inference of

hierarchies is discussed in Chapter 4.

1

DimensionTable FactTable

Measure

Level

SurrogateKey

Attribute

Degenerate

Dimension

Surrogate

Key Element
DataAttribute

1..*

1..* 1

1

refersTo

hasFacthasDimension

SurrogateKey

Refrence

Key

refersTo

dimUniquelyIdentifiedBy factUniquelyIdentifiedBy

1..*

re
fe

rs
T

o

hasData

Attribute

ro
lls

U
p
T

o

0..1

0..1 1..*1..*0..*

0..*

Attribute Element
hasAttribute hasElementhasAttribute

hasElement

1..*

1

1..* 1..*1..*
1..*1..*

1

1 1..*

1..* 1..*

Degenerate

Fact

label

label

1..*

re
fe

rs
T

o

0..1

Hierarchy

1..*

label

1..*

hasLevel

1..* 1..*

Star

Figure 3.2: UML representation of StarMod.

3.3.1 OWL Description of StarMod

We use UML (Unified Modeling Language) to provide a visual representation of StarMod

and implement it using RDFS (Resource Description Framework Specification), and OWL

(Web Ontology Language) with their constructs corresponding to the UML representation.

An instance of StarMod for a given domain could be also described using UML. How-

ever, it is necessary to implement it in some language for the purpose of automated schema

matching. We have defined a corresponding version of StarMod in OWL which allows us

to define its instances also in OWL. The properties in the OWL description are extensions of

Relational.owl introduced by de Laborda and Conrad 2005.

60 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

Figures 3.3 and 3.4 show the specialization of relational properties into StarMod proper-

ties. Highlighted in gray are the relational properties from Relational.owl.

dbs:Column

star:SurrogateKeyAttribute star:DataAttribute

star:AttributeReference star:Measure

dbs:Table

star:FactTablestar:DimensionTable

dbs:PrimaryKey

star:Key

star:DegenerateFact

star:DegenerateDimension

star:Attribute

star:Element

star:DimUniqueKeystar:DimRegularKey

star:FactUniqueKeystar:FactRegularKey

Figure 3.3: Specialization of relational objects in StarMod.

dbs:Has

dbs:HasTable

star:HasDimension star:HasFact

dbs:HasColumn

star:HasAttribute

star:HasElement

star:isIdentifiedBy

star:dimUniquelyIdentifiedBy

star:dimIdentifiedBy star:factIdentifiedBy

star:factUniquelyIdentifiedBy

Figure 3.4: Specialization of relationships in relational model in StarMod.

Although, the potentials of an OWL representation are realized when used for its rea-

soning capability, there are several reasons why the use of OWL is advantageous to writing

code in a language such as Java as proposed by Luján-Mora et al. [2006]:

• UML has a formal equivalence with OWL [W3C, 2009].

• UML is also suggested for visual representation of OWL ontologies [Brockmans et al.,

61 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

2004].

• There are readily available tools that can convert UML to OWL [Eclipse, 2010].

• RDF statements can be easily extracted from OWL for machine processing.

• The OWL version provides the flexibility for the model to include additional semantic

information such as domain ontologies.

The following shows a fragment of StarMod. A complete listing of StarMod is presented

in Appendix D.

<owl:Class rdf:ID="Star">

<rdfs:subClassOf rdf:resource="&rdf;Bag"/>

<rdfs:label xml:lang="en">Star Schema</rdfs:label>

</owl:Class>

<owl:ObjectProperty rdf:ID="hasDimension">

<rdfs:label xml:lang="en">Has Dimension</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#has"/>

<rdfs:domain rdf:resource="#Star"/>

<rdfs:range rdf:resource="#DimensionTable"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="DimensionTable">

<rdfs:subClassOf rdf:resource="&rdf;Seq"/>

<rdfs:label xml:lang="en">Dimension Table</rdfs:label>

</owl:Class>

<owl:ObjectProperty rdf:ID="hasAttribute">

<rdfs:label xml:lang="en">Has Attribute</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#has"/>

62 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

<rdfs:domain rdf:resource="#DimensionTable"/>

<rdfs:range rdf:resource="#Attribute"/>

</owl:ObjectProperty>

3.3.2 Inferring StarMod Properties from Relational Schemas

In this section, we describe a set of heuristics that we use to infer Star properties described

earlier in this section. These heuristics use a combination of data types, keys (which also

include indexes), and foreign keys. The result is an OWL description of the schema that

conforms to StarMod.

FactTable and DimensionTable: Similar to Golfarelli et al. [2001] where xsd:key and

xsd: keyref elements are used to establish dimension hierarchies, we say that if the primary

key of a table does not appear as foreign key in any table, then we classify the table as a

FactTable, otherwise it is classified as a DimensionTable.

SurrogateKeyAttribute: A column whose owning table is a DimensionTable is classified

as a SurrogateKeyAttribute, if it is defined as a primary key and has a constraint for having

its value generated.

DegenerateFact: Identifying degenerate facts is a difficult task as it requires domain

information on the meaning and purpose of the column. In absence of such information,

we safely classify a column as a DegenerateFact only if its owning table is classified as a

DimensionTable and its data type is xsd:decimal with a restriction defined as xsd:fractionDigits.

DataAttribute: A column whose owning table is a DimensionTable and is not a Surro-

gateKeyAttribute or DegenerateFact is classified as DataAttribute.

SurrogateKeyElement: A column whose owning table is a FactTable is classified as a

63 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

SurrogateKeyElement, if it is defined as part of a key, and has a constraint for having its value

generated (similar to the SurrogateKeyAttribute).

SurrogateKeyReference: A column whose owning table is a FactTable is classified as a

SurrogateKeyReference, if it refers to a SurrogateKeyAttribute.

DegenerateDimension: Similar to DegenerateFacts, accurate classification of degenerate

dimensions requires additional semantic information. We safely classify a column as a De-

generateDimension, if its owning table is a FactTable, and one of the following is true: i) its

data type is xsd:string, ii) its data type is xsd:integer or xsd:short or xsd:decimal, and is defined

as part of a key or a foreign key. A miss-classification is possible where, for example, a col-

umn such as POSTCODE defined as a xsd:short is not part of a key or foreign key, which is still

a degenerate dimension, but by default is classified as a measure (described next). This can

result in a mismatch if one column is included in the key or the foreign key but its matching

column is not. Although degenerate dimensions are used frequently, it is considered to be

a good practice to minimize their use and define them as string.

Measure: A column whose owning table is a FactTable is classified a Measure, if one of

the following is true: i) it has a data type xsd:decimal with the restriction xsd:fractionDigits,

ii) it has one of the data types xsd:short, xsd:integer or xsd:decimal and is not defined as part

of a key or a foreign key. Miss-classification of measures is possible but to a lesser extent,

e.g. no of cylinders which does not appear in a key or foreign key and has a data type

xsd:short is not a measure. Presence of such elements highlight a design shortcoming where

non-metric data items are more accurately defined as string.

Key: Similar to de Laborda [2005], every attribute or element that appears in a key is also

64 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

made an attribute or element of a Key for the respective dimension or fact table.

Hierarchies: As described in Section 2.3.4, dimension hierarchies are not always avail-

able and may need to be inferred. For reasons described earlier in Section 3.3, they are not

used in the matching process.

Snowflaked dimensions exist where a column is classified as DataAttribute or Surro-

gateKeyAttribute and refers to a DataAttribute or SurrogateKeyAttribute. The relationship

refersTo between surrogate key attributes, and between data attributes indicate that their

dimension tables are snowflaked.

3.3.3 Implementation of StarMod and Matching of Star Schemas

The input to the process of inferring StarMod from relational schemas is XML schema ob-

tained from an existing relational databases through a tool such as IBM WebSphere [IBM,

2012]. Programs written in XSLT language use heuristics described in Section 3.3.2, to trans-

form the XML schemas (corresponding to the relational schema) to instances of StarMod

and Relational.owl described in OWL. Additional XSLT programs are used to transform the

OWL predicates into RDF statements which are then directly used by the similarity flood-

ing algorithm. Additional programs were written in Java to fully automate the matching

process. Figure 3.5 shows the sequence of processes starting with acquiring schemas to the

matching process.

Figure 3.6 shows a Star schema which we will use in as one of the two schemas for our

discussion on schema matching.

The following shows an OWL fragment of a StarMod instance inferred using the rules

65 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

SF Match

Source

Databases

XML

Schemas

Acquire

Schemas

Relational.owl

Infer Schemas

StarMod.owl

Infer Schemas

Instance of Relational.owl /

StarMod.owl
Instance of Relational.owl /

StarMod.owl

Extract RDFExtract RDF

RDF Statements RDF Statements

Relational.owl StarMod.owl

Figure 3.5: Automation of the schema matching process.

CAR_MAKE

CAR_MAKE: CHAR(10)

CAR_MAKE_DESC: VARCHAR(40)

CAR_MODE

CAR_MODEL: CHAR(8)

CAR_MODEL_DESC: VARCHAR(40)

CAR_DEALER

DEALER_KEY: INTEGER

DEALER_NM: VARCHAR(40)

SALES_RNK: SMALLINT

FISCAL_CAL

FIN_YEAR_MONTH: INTEGER

FIN_YEAR: INTEGER

FIN_MONTH: INTEGER

CAR_SALES

FIN_YEAR_MONTH: INTEGER (FK)

CAR_MAKE: CHAR(10) (FK)

CAR_MODEL: CHAR(8) (FK)

DEALER_KEY: INTEGER (FK)

FIN_COST: INTEGER

SALES_AMOUNT: INTEGER

SOLD_QTY: SMALLINT

MTH_AD: INTEGER

Figure 3.6: The Star schema (identified as PP2) matched against the schema in Figure 3.7.

above for the Star schema shown in Figure 3.6.

<rdf:type rdf:resource="&star;Star"/>

<star:hasDimension rdf:resource="#Dimension__FINANCIAL_CAL"/>

<star:hasDimension rdf:resource="#Dimension__CAR_DEALER"/>

<star:hasDimension rdf:resource="#Dimension__CAR_MODEL"/>

<star:hasDimension rdf:resource="#Dimension__CAR_MAKE"/>

<star:hasFact rdf:resource="#Fact__CAR_SALES"/>

</owl:Class>

66 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

<owl:Class rdf:ID="Dimension__FINANCIAL_CAL">

<rdf:type rdf:resource="&star;Dimension"/>

<star:name rdf:resource="FINANCIAL_CAL"/>

<star:hasAttribute rdf:resource="#Att__FINANCIAL_CAL__FIN_YEAR_MONTH"/>

<star:hasAttribute rdf:resource="#Att__FINANCIAL_CAL__FIN_YEAR"/>

<star:hasAttribute rdf:resource="#Att__FINANCIAL_CAL__FIN_MONTH"/>

<star:dimUniquelyIdentifiedBy>

<star:PrimaryKey>

<star:hasAttribute rdf:resource="#Att__FINANCIAL_CAL__FIN_YEAR_MONTH"/>

</star:PrimaryKey>

</star:dimUniquelyIdentifiedBy>

</owl:Class>

<owl:DataTypeProperty rdf:ID="Att__FINANCIAL_CAL__FIN_YEAR_MONTH">

<rdfs:domain rdf:resource="#Dimension__FINANCIAL_CAL"/>

<star:dataFormatType rdf:resource="#DataType__integer"/>

<star:key rdf:resource="YES"/>

<star:name rdf:resource="FIN_YEAR_MONTH"/>

<rdf:type rdf:resource="&star;DataAttribute"/>

</owl:DataTypeProperty>

The following shows a subset of RDF statements produced for the above instance of

StarMod. Each statement consists of a source, predicate and target.

SF, rdf_type, Star

SF, star_hasDimension, Dimension__FINANCIAL_CAL

SF, star_hasDimension, Dimension__CAR_DEALER

SF, star_hasDimension, Dimension__CAR_MODEL

SF, star_hasDimension, Dimension__CAR_MAKE

67 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

SF, star_hasFact, Fact__CAR_SALES

Dimension__FINANCIAL_CAL, rdf_type, Dimension

Dimension__FINANCIAL_CAL, star_name, FINANCIAL_CAL

Dimension__FINANCIAL_CAL, star_hasAttribute, Att__FINANCIAL_CAL__FIN_YEAR_MONTH

Dimension__FINANCIAL_CAL, star_hasAttribute, Att__FINANCIAL_CAL__FIN_YEAR

Dimension__FINANCIAL_CAL, star_hasAttribute, Att__FINANCIAL_CAL__FIN_MONTH

Dimension__FINANCIAL_CAL, star_dimUniquelyIdentifiedBy, PK__Dimension__FINANCIAL_CAL

PK__Dimension__FINANCIAL_CAL, star_type, PrimaryKey

PK__Dimension__FINANCIAL_CAL, star_keyedOn, PrimaryKey_on__Att__FINANCIAL_CAL__FIN_YEAR_MONTH

PrimaryKey_on__Att__FINANCIAL_CAL__FIN_YEAR_MONTH, star_includesAttribute,

Att__FINANCIAL_CAL__FIN_YEAR_MONTH

Att__FINANCIAL_CAL__FIN_YEAR, rdfs_domain, Dimension__FINANCIAL_CAL

Att__FINANCIAL_CAL__FIN_YEAR, star_dataFormatType, DataType__integer

Att__FINANCIAL_CAL__FIN_YEAR, star_name, FIN_YEAR

Att__FINANCIAL_CAL__FIN_YEAR, rdf_type, DataAttribute

3.4 Evaluation of StarMod in Schema Matching

Our objective is to establish that when compared to using a relational model, using a more

precise representation of Star schemas can help improve their match results. We use two of

the well known schema matching approaches for which there are readily available imple-

mentations. We used two types of schemas in our evaluation: schemas that are based on the

Star schema model and those that are based on non-Star relational model.

We used Similarity Flooding (described in Section 2.1.2) for the evaluation because it

was flexible and adaptable since it uses RDF statements which can be easily obtained from

OWL instances of StarMod.

68 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

We also compared the results against those obtained from using COMA++ version (2008c)

for the same schemas. This helps us establish how SF using both relational model and Star-

Mod compares with COMA (i.e. COMA++), and whether there is a potential for improving

COMA results by using more granular relational properties such as those defined in Star-

Mod.

3.4.1 Discussion of Match Results for Example Schemas

Using the two schemas in Figures 3.7 which also appeared in Figure 1.4, and 3.6 as our

running example, we compare and discuss their match results suggested by SF, SF* and

COMA. For brevity we refer to SF* where we use the StarMod, and SF where we use the

relational model to describe the schemas. To measure the quality of match results returned

from SF, SF* and COMA, we use the same measure used by Melnik et al. [2002b] to which

we referred to as A-measure as described in Section 2.1.7. Table 3.1 shows the match results

suggested by SF, SF* and COMA.

MAKE

MAKE_ID: CHAR(10)

MAKE_NAME: VARCHAR(40)

MODEL

MODEL_ID: CHAR(8)

MODEL_NAME: VARCHAR(40)

FISCAL_CAL

YEAR_MONTH: DECIMAL(6)

FISCAL_YEAR: SMALLINT

FISCAL_MONTH: SMALLINT

DEALER

DEALER_ID: INTEGER

DEALER_NAME: VARCHAR(40)

DELIVERY_FINAL_COST: INTEGER

MONTHLY_SALES

YEAR_MONTH: DECIMAL(6) (FK)

DEALER_ID: INTEGER (FK)

MAKE_ID: CHAR(10) (FK)

MODEL_ID: CHAR(8) (FK)

SALES_QTY: INTEGER

SALES_AMT: INTEGER

GST_STATUS_CODE: CHAR(2)

EXT_ACC_NO: INTEGER

MONTHLY_ADS_COST: INTEGER

Figure 3.7: Star schema for our running example (identified as PP1).

The first two columns show the elements from the source and target schemas. Columns

SF, SF* and COMA indicate if they considered the pair to be a match when using the StarMod

and the relational model respectively. The column Experts shows the match results agreed

69 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

Match Results - Formula ’C’

Schema: PP1.xsd Schema:PP2.xsd SF* SF COMA Experts

DEALER.DEALER ID CAR DEALER.DEALER KEY 3 3 3
DEALER.DEALER NAME CAR DEALER.DEALER NM 3 3 3
FISCAL CAL.FISCAL MONTH FINANCIAL CAL.FIN MONTH 3 3 3 3
FISCAL CAL.FISCAL YEAR FINANCIAL CAL.FIN YEAR 3 3 3 3
FISCAL CAL.YEAR MONTH FINANCIAL CAL.FIN YEAR MONTH 3 3 3 3
MAKE.MAKE NAME CAR MAKE.CAR MAKE DESC 3 3
MAKE.MAKE NAME CAR MAKE.CAR MAKE 3
MAKE.MAKE ID CAR MAKE.CAR MAKE 3 3 3
MODEL.MODEL ID CAR MODEL.CAR MODEL 3 3 3
MODEL.MODEL NAME CAR MODEL.CAR MODEL DESC 3 3
MONTHLY SALES.DEALER ID CAR SALES.DEALER KEY 3 3 3
MONTHLY SALES.MAKE ID CAR SALES.CAR MAKE 3 3 3
MONTHLY SALES.MODEL ID CAR SALES.CAR MODEL 3 3 3
MONTHLY SALES.MONTHLY ADS COST CAR SALES.FIN COST 3
MONTHLY SALES.SALES AMT CAR SALES.SALES AMOUNT 3 3 3 3
MONTHLY SALES.SALES QTY CAR SALES.SOLD QTY 3 3 3
MONTHLY SALES.YEAR MONTH CAR SALES.FIN YEAR MONTH 3 3 3
DEALER CAR DEALER 3 3 3 3
FISCAL CAL FINANCIAL CAL 3 3 3 3
MAKE CAR MAKE 3 3 3 3
MODEL CAR MODEL 3 3 3 3
MONTHLY SALES CAR SALES 3 3 3 3
DEALER.DELIVERY FINAL COST CAR SALES.FIN COST 3 3
MONTHLY SALES.SALES QTY CAR DEALER.SALES RNK 3
MONTHLY SALES.MONTHLY ADS CST CAR SALES.MONTH AD 3

Number of correct matches 20 9 18

Total number of matches 21 11 20 21

A-Measure 0.90 0.33 0.76

Table 3.1: Comparison of match results for the example schemas.

by at least 2 of the 3 experts who manually matched the two schemas. The results from this

example show higher values of A-measure for SF* over SF and COMA. Next, we compare

the results of the three approaches.

SF versus SF*: SF benefits from relatively limited information such as data type, col-

umn name and table name and, hence, it is not able to make sufficient distinction between

columns with strong similarity of their names. This has led to significantly lower precision

for SF and is particularly visible where columns with identical names appear in dimension

and fact tables. On the other hand, stronger classification of tables, columns and relation-

ships by SF* has resulted in higher values of A-measure.

COMA versus SF and SF*: COMA, benefiting from a combination of matchers outper-

70 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

forms SF by a significant margin. When however, comparing its results with SF*, we find

that the improved SF* result competes well with COMA’s result. The false positive match

between MONTHLY SALES.MONTHLY ADS COST and CAR SALES.FIN COST returned by SF* is ex-

plained by two factors: (i) Their similarity is increased by the fact that they are both classi-

fied as measures this prevented a false positive match between CAR SALES.FIN COST a mea-

sure, and DEALER.DELIVERY FINAL COST a DataAttribute. (ii) Both, CAR SALES.FIN COST and

CAR SALES.MTH AD competing to match against MONTHLY SALES.MONTHLY ADS COST are mea-

sures but the former has a much stronger similarity of name with that of the target column.

We also observe that SF* has better recall and precision than COMA, however, there are

instances where COMA’s result could be improved by using specialized properties, e.g. the

false negative match between MONTHLY SALES.MONTHLY ADS COST and CAR SALES.FIN COST

could be prevented if these were classified as Measures, and DEALER.DELIVERY FINAL COST

which has a false positive match with MONTHLY SALES.MONTHLY ADS COST was classified as

a DataAttribute. In the next section, we validate our findings by using a larger collection of

Star and non-Star schemas.

3.4.2 Evaluation of Using StarMod in Matching Schemas on a Larger Scale

We used 18 pairs of schemas, 14 of which were based on those collected from text books,

industry and internet resources of which 8 pairs were Star schemas, and 6 pairs were non-

Star schemas. We also included our running example and the 3 less complex relational

schemas used by Melnik et al. [2002b] in their experiment.

The 18 pairs of schemas were divided into 3 subsets, each of which included 3 pairs

71 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

of Star schemas and 3 pairs of non-Star schemas. We used 9 experts from the industry

and academics to participate in the manual matching of schemas. Appendix A includes

instructions given to the participants for performing this task.

These experts were also divided into 3 equal groups. Each group was allocated a subset

of schema pairs. All members of each group were asked to match all schema pairs allocated

to their groups. Schema diagrams and DDLs were provided for each schema, however,

participants were not given any indication as to whether the schemas were Star or not. Ap-

pendix B includes diagrams of the models and their DDLs as provided to the participants.

We ran SF and SF* against the 18 pairs of schemas.

To have confidence in our implementation, we also used the OIM model used by Melnik

et al. [2002b] and made sure that results returned by SF were identical to those returned

when using the OIM model and matched with the results of the three pairs of schemas used

by Melnik.

Table 3.2 includes two sub-tables showing the results of our experiments against non-

Star and Star schemas 1. The equal or higher scores are highlighted in bold. In each sub-

table, the first column shows the schema pair. The next three columns show the A-measure

returned from SF, SF* and COMA. The explanation for negative A-measure scores is given

in Section 2.1.7. Please see Appendix C for detailed results on the suggested matchings and

expected results.

We now compare the three approaches for Star and non-Star based schemas.

SF versus SF*: In respect to the schema pairs involving Star schemas, the match results

1Minor variations compared to the published results at DEXA2011 are due to rounding and review of the
calculations.

72 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

Non-Star schemas
Schema Pair SF SF* COMA
M7L, M7R 1.0000 1.0000 0.8000
M8L, M9R 0.3000 0.3000 0.5000
R05, R05A 0.3750 0.1250 0.6250
M8L, M8R 0.5294 0.7059 0.4706
R01, R02 0.2381 0.5238 0.4286
R03, R06 0.2308 0.4615 0.2308
R06, R07 0.2857 0.2143 0.0714
R07, R03 0.6667 0.7222 0.8889
R08A, R08B 0.3529 0.2353 0.5294
Mean 0.4421 0.4764 0.505

Star schemas
Schema Pair SF SF* COMA
PP1, PP2 0.3333 0.9048 0.7143
T01A, T01B 0.6250 0.8333 0.8333
T07A, T09A 0.0000 0.3333 -0.1667
A01, A02 0.3548 0.6774 0.6129
T02A, T02B -0.3077 0.0769 0.000
T10, T11 0.3500 0.4500 0.4500
T05A, T05B 0.0476 0.0952 0.0000
T06B, T04 -0.5556 -0.2222 -0.3333
T07B, T11B 0.2727 0.4091 0.2273
Mean 0.1139 0.3953 0.2597

Table 3.2: Accuracy measures for schemas used in the evaluation.

show consistent improvement for SF* over the SF. The results are also consistent with our

observations during the running example. In respect to the schema pairs involving non-Star

schemas, the results are mixed with an overall similar performance for using SF or SF*. A

closer examination of the schemas shows that SF performs better than SF* where the topol-

ogy of tables are very different between the two schemas. This difference (as expected) re-

sults in a mismatch between how properties are classified. Conversely, SF* performs better

than SF where there are reference tables (resembling Star models), and where the structure

of tables across the two schemas are similar.

SF* versus COMA: In respect to the schema pairs involving Star schemas, we find that

A-measure for SF* is higher (by a smaller margin) or the same as COMA. The results are

consistent with our findings from the running example showing that COMA’s relatively

higher number of false positive cases can be reduced by using a more precise classification

of relational properties for Star schemas. In respect to the schema pairs involving non-

Star schemas, as with SF versus SF*, the results are again mixed with an overall similar

performance for both.

73 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

SF versus COMA: For Star and non-Star schemas, COMA has an overall better results

than SF because of higher number of true positive cases for COMA which is even stronger

for Star schemas. This indicates that COMA’s matchers appear to make good use of the

structural similarity.

The results in Table 3.2 support our hypothesis that using a more precise description of

Star schemas improves their match results and can be also effective for arbitrary relational

schemas. They also indicate that COMA could benefit from StarMod properties.

Table 3.3 shows the probability values for the corresponding null hypotheses based on

the paired 2-tailed t-test with 8 degrees of freedom. It shows that results in Table 3.2 are

statistically significant in supporting our hypotheses in respect to the performance of SF*

against Star schemas with the probability values being less than 0.05. As for non-Star

schemas, the results are not statistically significant enough for the performance of any of

the methods over the others.

Non-Star schemas
Hypothesis P-Value
SF* performing better over SF 0.5679
COMA performing better over SF 0.3370
COMA performing better over SF* 0.7579

Star schemas
Hypothesis P-Value
SF* performing better over SF 0.0005
COMA performing better over SF 0.0383
SF* performing better over COMA 0.0283

Table 3.3: Probability values for the null hypotheses.

Complexity:

The complexity for using StarMod is similar to the complexity of the Similarity Flooding

algorithm as described by Melnik et al. [2002a]. In Section 3.3, we described properties of

StarMod. These properties are different classifications of the same properties in the rela-

tional model. Similarly, the relationships introduced for StarMod and shown in Figure 3.4

74 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

are specializations of relationships that exist in the relational model. Therefore the compu-

tational complexity for using StarMod is similar to that of the relational model.

3.5 Discussion

Considerable research has been done on matching relational schemas. However, the pre-

dictable topology and properties of Star schemas motivates us to consider a more precise

representation of them for matching purpose.

We proposed StarMod as such a representation and described it using UML and OWL

languages. We used the UML version to visualize StarMod and the OWL version to auto-

mate the schema matching process.

Our proposed UML version is similar to the one suggested by Luján-Mora et al. [2006]

which is aimed at physical properties of Star schemas, and includes additional properties

such as degenerates and keys. Our OWL representation of StarMod corresponds to the

UML representation and is an extension of Relational.owl by de Laborda and Conrad

[2005]. It provides the flexibility to include additional domain ontologies for even a more

precise description and accurate matching.

We described the inference of Star properties and their applications in matching Star

schemas. The main distinction between our approach and previous work is that our app-

roach is model driven and exploits a more comprehensive set of properties. We also de-

scribed our approach in using Similarity Flooding to match Star schemas represented using

StarMod. Existing works do not compare the effectiveness of their approach with others.

We used two well known schema matching algorithms in the evaluation of our app-

75 (March 10, 2013)

CHAPTER 3. MATCHING STAR SCHEMAS

roach. Using Similarity Flooding, we demonstrated that a more precise model such as Star-

Mod can improve the quality of match results for Star schemas, and that it could be also

effective against arbitrary non-Star relational schemas. Comparing the results with those

obtained from COMA++, demonstrates that even though COMA++ performs more accu-

rately than Similarity Flooding when using basic relational properties, it fails to outperform

Similarity Flooding when using StarMod.

As we saw in Section 3.3.2, inference of Star properties from relational schemas may

not be guaranteed to be accurate for some properties. This problem was more visible in re-

lational schemas than Star schemas, and concerned measures, degenerate dimensions and

degenerate facts. Our experiments show that the gained true positives substantially out-

weigh the side effect resulting in more false positive and false negative cases. The fact that

Star schemas described using StarMod properties are implemented in OWL provides the

opportunity to augment the schemas with additional domain ontologies to help with the

inference of those properties using an OWL reasoner.

In the next chapter, we propose algorithms to infer aggregation hierarchies which we

will require for instance matching discussed in Chapter 5.

76 (March 10, 2013)

Chapter 4

Inferring Aggregation Hierarchies

”The top entrusts the understanding of detail to the lower levels, whilst the

lower levels credit the top with understanding of the general, and so all are

mutually deceived.”

Karl Marx (1818 - 1883)

Compatibility between dimensions is the key to accurate integration of multidimen-

sional data. It ensures that the integrated data is lossless, summarizable and conforms to the

common hierarchy using the matching levels. As discussed in Chapter 2, Torlone describes

coherence, consistency and soundness as conditions necessary for compatibility between di-

mensions. We explained in Section 2.3.2 that schema based aggregation hierarchies are not

often available for heterogeneous and external data marts, or even local data marts. In their

absence, we propose to infer the aggregation hierarchies for dimension tables from their in-

stances. We formulate the problem of inferring aggregation hierarchies as computing from

77 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

data, a minimal directed graph for the roll-up relationships between levels, and propose

algorithms to this end.

In Section 4.1, we define multidimensional properties in terms of their relational imple-

mentation and describe how they map to their definitions at a conceptual level. In Section

4.2, we introduce algorithms to infer aggregation hierarchies from instances of dimension

tables. In Section 4.3, we establish the relationship between the intended hierarchies and

the inferred hierarchies. We prove that inferred hierarchies are sufficient for establishing

compatibility and summarizability of integrated data. Finally, in Section 4.5, we discuss our

experiments and findings.

4.1 Relational Representation of Multidimensional Databases

The relational implementation of OLAP databases are based on the Star schema model

described in Section 1.2.1. In Section 2.4.2, we explained properties of multidimensional

databases at a conceptual level. In this section, we define concepts such as dimension, level,

member and aggregation hierarchy in the context of their physical implementation in rela-

tional multidimensional databases.

As seen in Sections 2.2.1 and 2.4.2, Torlone [2008] defines dimensions in terms of levels

and members. A dimension table is the relational implementation of a dimension, and is

defined in terms of attributes as opposed to levels.

For simplicity, we assume that each level is associated with a single attribute of a dimen-

sion table and, therefore, in this thesis we refer to levels as being dimension attributes. In

this case, values of dimension attributes correspond to members of levels. We will infer ag-

78 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

gregation hierarchies as being the partial order relationship between dimension attributes.

We name each level the same as its attribute. In some cases, multiple attributes could

have the same partial order relationship with every other attribute of the dimension. We

refer to these as co-level attributes. In such cases, we use a combination of the names of

co-level attributes (separated using ’/’) as the name of the level.

Having mapped the definition of dimension to that of dimension table, we are able to ap-

ply Torlone’s definition of compatibility and its requirements being coherence, consistency

and soundness to ensure the accuracy of integration.

Definition 4.1 below draws from definitions of dimension and hierarchy in [Rafanelli

and Shoshani, 1990], [Shoshani, 1997], and [Cabibbo and Torlone, 2005].

Definition 4.1. A dimension table D has an aggregation hierarchy H of levels. Given two levels

l and l′ of a dimension table D, we say level l rolls-up to level l′ (which we denote as l � l′) if

we can compute aggregated facts at level l′ from facts at level l. The roll-up relationship � forms a

partial order over the levels. The aggregation hierarchy H is a directed acyclic graph (DAG) with no

(explicit) transitive edge, where the nodes of the graph are the levels and the edges are those roll-up

relationships in the covering relation of the partial order between the levels.

A dimension table may have multiple hierarchies, although, our proposed algorithm

infers all hierarchies, for simplicity in our definitions, we assume a single hierarchy for a

dimension table.

Definition 4.2. Given the dimension table D, its instance I(D) is a set of tuple {t1, ..., ts} where

each tuple ta = 〈va1 , ..., van〉 contains n values, and each value vai is an element from the correspond-

ing domain of attribute Ai.

79 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

We can define a partial order over the attributes in a dimension table.

Definition 4.3. Given an instance I(D) of a dimension table D(A1, ..., An), we say Ai ≤ Aj if for

every pair of tuples ta = 〈va1 , ..., van〉 and tb = 〈vb1 , ..., vbn〉 in I(D), vai = vbi implies vaj = vbj .

The ≤ relationship forms a partial order P over the set of dimension attributes.

If there is a functional dependency Ai → Aj between two attributes of the relation

D(A1, ..., An) representing the dimension table, then it follows that Ai ≤ Aj must hold in

every instance I(D). Furthermore, if two attributes Ai and Aj correspond to different levels

l and l′ such that l � l′, then we require Ai ≤ Aj. Likewise, if two attributes Ai and Aj

correspond to the same level, then we require Ai ≤ Aj and Aj ≤ Ai.

Where I(D) conforms to the hierarchy of its dimension table, it also forms a DAG or

tree in which each member is a node and the edges are the same as those that connect the

members’ respective levels.

Definition 4.4. A Schema-defined (or schema based) Aggregation Hierarchy (SAH) is an aggrega-

tion hierarchy that is defined as part of the schema of D and constitutes a constraint on the tuples in

any instance I(D).

SAH describes roll-up relationships between levels as intended during the design phase

to fit all possible instances. Ideally, an aggregation hierarchy must be defined as part of the

schema definition and then implemented as constraints enforced by the DBMS (Database

Management System), or by the application that populates the dimension to ensure that

these constraints are not violated. For example, Oracle’s syntax for creating a dimension

table allows specifying the aggregation hierarchy through explicit description of each level,

80 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

attributes for each level and the relationship between the levels [Oracle, 2005].

This syntax is not, however, part of the standard SQL syntax and is not supported by

all database vendors. Other reasons for dimension hierarchies not being available include

absence of design artifacts, and access to heterogeneous dimension tables or those external

to the organization. In the following section, we describe algorithms to infer the levels and

hierarchies from instances of dimension tables.

4.2 Inferring the Partial Order Attributes

There are two major motivating factors for inferring hierarchies from instances of dimension

tables: (i) An instance of a dimension table is constrained by its SAH, and (ii) The instance

does not need to be interpreted in any way. There is, however, a drawback, that is, the pop-

ulation of a dimension table may be partial. Therefore, the resulting inferred aggregation

hierarchies (IAH) may vary from the intended SAH. How similar is the IAH for a dimen-

sion table to the SAH for the same dimension table depends on how closely the instance

represents the SAH. Whilst, partial population of dimension tables can occur, it is, however,

rare in the real world. We will discuss this issue when we establish the viability of IAHs in

testing for dimension compatibility in Section 4.4.

Definition 4.5. Given an instance I(D) of dimension table D, the inferred partial order of attributes

for D is the set of partial order relationships (P) inferred from the partial order relationships between

attributes of D and inferred from I(D).

In line with the definitions in Section 4.1, and in this section, we obtain the IAH in three

steps. In the first step, we obtain the partial order between dimension attributes. In the

81 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

second step, we remove the transitive partial order relationships and, finally, we obtain the

levels and the inferred aggregation hierarchy or hierarchies.

4.2.1 Inferring the Partial Order of Attributes

We propose Algorithm 4.1 for inferring the partial order of attributes. We explain this algor-

ithm using the following example: Let us suppose we wish to determine if Country≤ City.

The algorithm first sorts the tuples in I(D) on Country. It then scans the values of Country

and City. As long as the value in Country remains the same from one tuple to the next, the

value in City must also remain the same on the same tuples. If this holds true for the entire

I(D) then the roll-up relationship will hold. Given the sample data for Store in Table 4.1,

this roll-up relationship does not hold. By scanning I(D) for Country against the remaining

attributes we can see that only Country ≤ Region holds true. This process is applied for

each attributes. The scan of I(D) for each pair of pair of attributes can, however, stop as

soon as it is established that the partial order relationship does not hold.

Figure 4.1 shows the partial order of attributes inferred from the sample data for Store

in Table 4.1, where dashed lines represent transitive relationships.

Region Country Division City Locality Store
Asia Pacific Australia Div1 Sydney Ryde st1
Asia Pacific Australia Div1 Sydney Ryde st2
Asia Pacific Australia Div1 Melbourne Epping st3
Asia Pacific Australia Div1 Melbourne Morang st4
Asia Pacific Australia Div1 Melbourne Brighton st5
Asia Pacific Australia Div2 Geelong Hill st6

Table 4.1: Sample data for a Store dimension table.

The complexity of inferring partial order of attributes: The algorithm performs a sort

for each dimension attribute with the complexity in the order of n p log p where n is the

82 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

Algorithm 4.1 Inferring the partial order relationships.
Input Tuples I(D) = {t1, t2, ..., tp} in the instance of a dimension table D(A1, A2, ..., An),
and
p is the number of tuples.
Output Partial order P of attributes.

P := {}
for each attribute Ai do

Sort I(D) on Ai
for each attribute Aj do

for each tuple do
if Ai on current tuple equals Ai on the previous tuple then

if Aj on current tuple does not equal Aj on the previous tuple then
exit this loop

end if
end if

end for
if end of tuples was reached then

P := P ∪ {(Ai, Aj)}
end if

end for
end for

Store

Locality

Division City

Country

Region

Figure 4.1: The partial order of attributes.

number of attributes and p is the number of tuples. We also scan I(D) for every pair of

attributes (n2− 1) with the complexity in the order of n2 p, though in some cases only a sub-

set of I(D) is scanned. Therefore, the complexity of the Algorithm 4.1 is O(n2 p + n p log p).

83 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

Observe that Algorithm 4.1 obviously computes all partial order relationships between each

pair of levels.

4.2.2 Cover for Partial Order of Attributes

Definition of aggregation hierarchy does not include transitive roll-up relationships as val-

ues at each level can be computed from the next immediate child level. In order to remove

transitive partial order relationships, we can use existing algorithms [Aho et al., 1972] that

remove transitive edges from a directed graph. Figure 4.2 shows the partial order of at-

tributes after removing transitive partial order relationships.

Store

Locality

Division City

Country

Region

Figure 4.2: The partial order of attributes with no transitive relationship.

4.2.3 The Levels and the Inferred Aggregation Hierarchy

Based on Definition 4.3, the two attributes Country and Region in Figure 4.2 correspond

to the same level. We propose Algorithm 4.2 to obtain the levels being disjoint subsets of

attributes (L), and then associate each attribute with its corresponding level. The result is

the inferred aggregation hierarchy over a set of levels with roll-up relationship between

84 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

them. The resulting IAH is also an acyclic directed graph.

We assume that q = |P| and r = |L|. Statements 2 to 8 of Algorithm 4.2 with complexity

of q2, add to L, each attribute of any partial order (pm) as a level, unless there is another

partial order (pn) which makes their attributes to correspond to the same level in which

case the added level will include both attributes. Statements 9 to 13 with the complexity

of r2 combine those subsets of L that have at least one common attribute. At this point, L

contains disjoint subsets of attributes that correspond to the same level. Statements 14 to 16

with the complexity of q r revisit the partial orders (copied into HL as roll-ups) and assign

to each level, a name that is derived from names of attributes that the level represents.

Finally, duplicate roll-ups are removed. The complexity of statement 17 is q2. The overall

complexity for Algorithm 4.2 is O(2 q2 + r2 + q r).

Figure 4.3 shows the final inferred aggregation hierarchy after grouping co-level at-

tributes and assigning distinct levels.

Store

Locality

Division City

Region/Country

Figure 4.3: The inferred aggregation hierarchy.

85 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

Algorithm 4.2 Identifying levels and roll-ups.
Input P is the partial order of attributes with no transitive relationship.
Output HL is the inferred aggregation hierarchy.

L is a set of levels corresponding to disjoint subsets of attributes.

1: HL := P, L = {}
2: for each pair of partial order relationships ρm and ρn in P do
3: if ρm = Ai ≤ Aj and ρn = Aj ≤ Ai then
4: L := L ∪ {Ai, Aj}, HL := HL − ρm, ρn
5: else
6: L := L ∪ {Ai}, {Aj}
7: end if
8: end for
9: for all x ∈ L and y ∈ L where x 6= y do

10: if x ∩ y 6= ∅ then
11: L := L− {x}, L := L− {y}, L := L ∪ {(x ∪ y)}
12: end if
13: end for
14: for each partial-order pm = (Ai, Aj) in HL and each subset of levels ls in L do
15: Replace any Ai and Aj that appear in ls with a level name that is a combination of

attribute names in ls (separated by a ’/’).
16: end for
17: Remove any duplicate roll-up relationship from HL.

4.3 Inferred Hierarchies Subsume Schema-Defined Hierarchies

Based on the inferred partial order relationships obtained from Algorithm 4.1 and shown

in Figure 4.1, we have Country ≤ Region which is a valid partial order relationship, and

Region ≤ Country which may, indeed, be spurious due to the incomplete instance of Store

in Table 4.1. If a tuple 〈Asia Pacific,New Zealand,Div3,Wellington,Brooklyn,st7〉 is

added to the instance of the Store in Table 4.1, the second partial order will not hold true.

Other spurious partial orders are Locality ≤ Division and City ≤ Division. This ex-

ample indicates that as the population of the dimension table grows, the partial order rela-

tionships in IAH converge towards those in the SAH. This is formulated in the following

86 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

theorem.

Theorem 4.1. Given an instance I(D) of a dimension table D and the inferred partial order of its

attributes P derived using Algorithm 4.1, the partial order of attributes P′, and its covering relation,

for the schema-defined aggregation hierarchy for D must be subgraph of P.

Proof. It is possible to obtain a covering relation of the partial order over the attributes from

the schema-defined hierarchy. We can also obtain the transitive closure of the partial order

over the attributes from its covering relation.

If all domain members of each base level of each schema-defined hierarchy are included

in a given instance of a dimension table, since all partial order relationships of attributes are

captured in Algorithm 4.1, then P′ is equivalent to P.

Otherwise, suppose that some members of the base levels are missing. While some

spurious roll-ups are added, none of the partial orders from P is removed. The latter point

can be proved easily by the fact that the data from which the inferred partial order is derived

is constrained by the schema-defined aggregation hierarchy.

From the above proof we have the following corollary.

Corollary 4.1. If all domain members of each base level of each schema-defined hierarchy are included

in a given instance of a dimension table, the inferred aggregation hierarchy H′ also exists as a schema-

defined aggregation hierarchy H.

Proof. If there is a partial order relationship pi in H but not in H′, it means that the instance

did not conform to the constraint implied by pi. If there is a partial order relationship pi in

H′ but not in H, it means that the instance lacked the data that supports pi.

87 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

If not all members of base levels are present in a given dimension table, all roll-up rela-

tionships in the schema-defined hierarchy are present or implied (by transitive roll-ups) in

the inferred aggregation hierarchy.

Definition 4.6. Given two levels l1 and l2, and summary values for l1, the roll-up ρ = l1 � l2 is

summarizable if using ρ yields correct summary values for l2.

Using either type of the aggregation hierarchies, summary values for each level can be

computed by summing the values at the lower level. This is due to the fact that the roll-up

relationships either constrain the data, or they are inferred from data. Consequently, using

either of them guarantees the summarizability.

4.4 Integration of Matching Dimension Tables using Inferred Aggregation Hierarchies

In this section, we consider the properties of the matching between dimension tables us-

ing their SAHs and compare them with the same properties established using their IAHs.

Each property may be true or false for either type of hierarchy, resulting in 4 different cases

for each property. We examine each case and show that use of inferred aggregation hier-

archies is sufficient for establishing compatibility and ensuring that the integrated data is

summarizable.

4.4.1 Properties of Compatible Dimension Tables

As discussed in Section 2.4.2, for accurate integration of data marts, the matching between

dimensions over their matching levels must be compatible. That is, the matching between

88 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

Store

Division

City

Locality

Country

Region

Shop

City

Suburb

Country

Area

(a) Schema-defined matching.

Shop

City

Suburb

Country

Area

Store

Locality

Division City

Region/Country

(b) Inferred matching.

Figure 4.4: Matchings levels in Store and Shop dimension tables.

each pair of matching levels must be coherent, consistent and sound. Similarly, as discussed

in Section 4.1, we can apply the requirements of compatibility to dimension tables.

Example 4.1. Figure 4.4(a) shows a schema-defined matching between levels of dimension tables

Store(Region,Country,Division,City,Locality,Store) , and Shop(Country,Area,City,

Suburb,Shop). Suppose that the instance for the Store, and Shop are as shown in Tables 4.1 and

4.2. The matching is sound, coherent and consistent.

Country City Area Suburb Shop
Australia Sydney NE Ryde st1
Australia Sydney NE Ryde st2
Australia Melbourne NT Epping st3
Australia Melbourne NT Morang st4
Australia Melbourne SW Brighton st5
Australia Geelong NW Hill st6

Table 4.2: Sample data for a Shop dimension table.

It is important to ensure that the data remains summarizable after the integration. We

make the following observation.

Theorem 4.2. Integration based on sound, coherent and consistent matchings ensures summariz-

ability.

89 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

Proof. We assume that before the integration, instances of dimension tables conform to their

hierarchies and are summarizable. The coherence and consistency ensure that the integrat-

ing hierarchies are identical and that the data after the integration satisfies roll-up rela-

tionships in the original hierarchies. Therefore, for the result of the integration not to be

summarizable, it can only be that the instance of least one of the dimension tables is not

summarizable.

Integration based on the matching levels of the Store and Shop will ensure the cor-

rectness of summarization for drill-across queries. When using inferred aggregation hier-

archies for integration, the summarizability of facts after integration relies on that, testing

for soundness, coherence and consistency between matching levels of inferred aggregation

hierarchies succeed.

Let a matching defined using inferred hierarchies be called an inferred matching. Simi-

lar to a matching defined using schema-defined hierarchies, an inferred matching between

dimension tables comprises a set of one-to-one mappings between their matching levels.

Soundness of inferred matchings: Sound matching between (schema-defined or in-

ferred) dimension tables requires that for all matching levels, their members match. For

example, all members of Locality in Store and those of Suburb in Shop must match.

Since soundness does not depend on the roll-up relationship between levels, obviously

testing for soundness using inferred aggregation hierarchies is the same as that using schema-

defined aggregation hierarchies.

In the next two sections, we show that testing for coherence and consistency is feasible

using inferred aggregation hierarchies.

90 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

4.4.2 The Coherence of Inferred Matchings

When inferred aggregation hierarchies are the same as the schema defined hierarchies,

matchings defined for inferred hierarchies are the same as those defined for schema de-

fined hierarchies. However, due to the partial population of the dimension tables, the in-

ferred aggregation hierarchy may contain spurious roll-up relationships that are not present

in the schema-defined hierarchy. As a result, a matching defined for inferred aggregation

hierarchies may be different to the matching defined for schema-defined hierarchies. The

following scenarios may arise:

True coherence: The coherence of an inferred matching defined on a set of levels is true

coherence if the matching on these levels for the schema-defined matching is also coherent.

This occurs when the non-spurious as well as the spurious roll-ups (if any) over matching

levels are the same between inferred hierarchies.

Example 4.2. Based on the sample data for Store and Shop, their inferred aggregation hierarchies

and their matching is shown in Figure 4.4(b). The matching is sound and coherent. In compari-

son with the matching for schema-defined hierarchies shown in Figure 4.4(a), this matching using

inferred hierarchies is truly sound and coherent.

True incoherence: The incoherence of an inferred matching defined on a set of levels

is true incoherence if the matching on these levels for the schema-defined matching is also

incoherent. This occurs when the inferred hierarchies are the same as schema-defined hier-

archies and/or the spurious roll-ups are different between the inferred hierarchies.

False coherence: The coherence of an inferred matching on a set of levels is false co-

91 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

Store

Locality

City

Shop

Suburb

Area

(a) Incoherent schema defined matching

Store

Locality

City

Shop

Suburb

Area

(b) A coherent inferred matching

Figure 4.5: A false coherent matching that uses inferred hierarchies.

herence if the matching defined on these levels for the schema-defined hierarchies is not

coherent. False coherence occurs when there are some spurious roll-up relationships in one

of the inferred hierarchies that are also present in the other inferred hierarchy but as non-

spurious roll-ups. In this case the matching is, indeed, coherent for instances from which

the hierarchies are inferred.

Example 4.3. The matching on the schema-defined hierarchies shown in Figure 4.5(a) is incoher-

ent, but the inferred matching shown in Figure 4.5(b) is coherent. The inferred matching is a false

coherent matching. This is made possible because of the spurious roll-up Suburb � Area.

False incoherence: The incoherence of an inferred matching on a set of levels is false

incoherence if the matching defined on these levels for the schema-defined hierarchies is

indeed coherent.

False incoherence occurs when the spurious roll-up relationships relate the matching

levels differently or some spurious roll-up relationships are missing in only one of the in-

ferred hierarchies.

Example 4.4. Suppose that Division and Area were matching levels in Figure 4.4(a). In this case,

the schema-defined matching between Store and Shop remains coherent. However, the inferred

92 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

Shop

City

Suburb

Country

Area

Store

Locality

Division City

Region/Country

Figure 4.6: False incoherent inferred matching.

matching is incoherent. Figure 4.6 shows spurious roll-ups (denoted by 9) relating matching levels

differently.

4.4.3 The Consistency of Inferred Matchings

True consistency: The consistency of an inferred matching on a set of levels is true con-

sistency if the matching defined on these levels for the schema-defined hierarchies is also

consistent.

Example 4.5. Based on Tables 4.1 and 4.2, the result of the integration of the two sample data for

Store and Shop satisfy the constraints in the schema-defined and inferred hierarchies for these two

dimension tables.

True inconsistency: The inconsistency of an inferred matching on a set of levels is true

inconsistency if the matching defined on these levels for the schema-defined hierarchies is

also inconsistent.

Example 4.6. Given the schema-defined matchings for Store and Shop dimension tables (as shown

in Figure 4.4(a)), if we considered updating the Store with the tuple <Asia Pacific,Australia,

Div3,Melbourne,Chelsea,st8>, and include the tuple <UK,London,WC,Chelsea, st9> in the

93 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

dimension Shop, then based on their schema-defined hierarchies, the two dimension tables would be

coherent but not consistent. The reason is that the data after integration does not reflect the roll-ups

Locality � City and Suburb � City present in the original hierarchies of Store and Shop

respectively. The matching using inferred hierarchies would be also inconsistent, if the two tuples

were also present in the instance of Store (Table 4.3) and Shop (Table 4.4) dimension tables.

Region Country Division City Locality Store
Asia Pacific Australia Div1 Sydney Ryde st1
Asia Pacific Australia Div1 Sydney Ryde st2
Asia Pacific Australia Div1 Melbourne Epping st3
Asia Pacific Australia Div1 Melbourne Morang st4
Asia Pacific Australia Div1 Melbourne Brighton st5
Asia Pacific Australia Div2 Geelong Hill st6
Asia Pacific Australia Div3 Melbourne Chelsea st8

Table 4.3: True inconsistency: sample instance for Store dimension table.

Country City Area Suburb Shop
Australia Sydney NE Ryde st1
Australia Sydney NE Ryde st2
Australia Melbourne NT Epping st3
Australia Melbourne NT Morang st4
Australia Melbourne SW Brighton st5
Australia Geelong NW Hill st6

UK London WC Chelsea st9

Table 4.4: True inconsistency: sample instance for Shop dimension table.

False consistency: The consistency of an inferred matching on a set of levels is false

consistency if the matching defined on these levels for the schema-defined hierarchies is not

consistent. This case implies that instances of a pair of dimension tables are not consistent

using the schema-defined hierarchies for some roll-up relationships, but they are consistent

using the inferred hierarchies. Similar to false coherence, this occurs when for example, the

inferred hierarchy for one dimension is the same as the schema-defined hierarchy, but the

inferred hierarchy for the other dimension includes spurious roll-ups which makes them to

94 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

have a consistent matching. Again, the matching is, indeed, consistent for the purpose of

integrating the instances from which the hierarchies are inferred.

False inconsistency: The inconsistency of an inferred matching on a set of levels is false

inconsistency if the matching defined on these levels for the schema-defined hierarchies is

consistent.

Example 4.7. Suppose that the roll-up relationships Locality � City and Suburb � City

were not defined as part of the schema-defined hierarchies for Store and Shop respectively. If the sam-

ple data for dimension table Shop in Table 4.2 included the tuple <Australia,Sydney,NT,Epping

,st3> in place of <Australia,Melbourne,NT,Epping,st3> (resulting in Table 4.6), then the in-

tegrated data would conform to the schema-defined hierarchies but not to the inferred hierarchies

which do include these roll-ups and are now violated since Epping rolls-up to different members in

City.

Region Country Division City Locality Store
Asia Pacific Australia Div1 Sydney Ryde st1
Asia Pacific Australia Div1 Sydney Ryde st2
Asia Pacific Australia Div1 Melbourne Epping st3
Asia Pacific Australia Div1 Melbourne Morang st4
Asia Pacific Australia Div1 Melbourne Brighton st5
Asia Pacific Australia Div2 Geelong Hill st6

Table 4.5: False inconsistency: sample data for Store dimension table.

Country City Area Suburb Shop
Australia Sydney NE Ryde st1
Australia Sydney NE Ryde st2
Australia Sydney NT Epping st3
Australia Melbourne NT Morang st4
Australia Melbourne SW Brighton st5
Australia Geelong NW Hill st6

Table 4.6: False inconsistency: sample data for Shop dimension table.

Although, false incoherence and false inconsistency may prevent the integration, what

95 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

is critical is that where we do proceed with the integration, the result of the integration

will be correct and summarizable. Based on the above, use of IAHs to test for compatibility

guarantees the summarizability of data after integration, and therefore, and IAHs are viable

for testing compatibility for instances from which the aggregation hierarchies are inferred.

Compared to the situation where we are unable to ensure the accuracy of the integration due

to the absence of SAHs, this is a significant outcome and a viable solution to the problem.

This is summarized in the theorem below.

Theorem 4.3. A sound, coherent and consistent inferred matching is sufficient but not necessary

for the summarizability of integration.

Proof. A summarizable integration on the matching levels must have sound, coherent and

consistent inferred matching. But, from the above discussions, it can be seen that an in-

ferred matching may present as incoherent or inconsistent based on the current dimension

instances, but they are indeed, coherent and consistent and, thus, can be integrated and the

result is summarizable.

4.5 Experiments

The purpose of our experiments is to measure the effectiveness of our algorithms for infer-

ring aggregation hierarchies from dimension tables with real life data. For each one of our

two experiments, the expected hierarchies are obtained from the business operations man-

uals. All algorithms are implemented in Java and run on PC with dual core and 2.5 GHz

CPU and 3 GB memory.

In each experiment, all data from each dimension table was retrieved into a comma

96 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

separated text file. The output from running the first algorithm is a set of pairs of attributes

between which there is a partial order relationship. This partial order is then used in the

second algorithm which removes the transitive partial order relationships and also infers

the paths in the hierarchy. Finally, co-level attributes are grouped into a single level.

The first experiment involves a dimension table with 9 attributes for insurance products

from 25 sub-companies with an instance that includes 8,614 rows. The runtime to infer all

partial order relationships was 356 milliseconds.

By experimenting with the data related to each company separately, we were able to

get the expected hierarchy. In some cases, co-level attributes were not correctly classified

as belonging to the same level. For example, PRODUCT CLASS CODE and PRODUCT CLASS DESC

must actually belong to the same level. However, varying synonymous values appearing

in PRODUCT CLASS DESC prevented this expected grouping. Our first observation was that

information on false negative roll-ups could be used for data cleansing.

The second experiment concerns a dimension table called OCCUPATION which is based

on the ANZSIC standard for occupation codes. This dimension table has also 9 attributes

and its instance includes 16,208 rows; the run time for inferring partial orders was 469 mil-

liseconds. The hierarchies in this dimension table were also enforced by the application

but separately across different companies. The expected hierarchies were returned after

running the algorithm separately against the data for each company.

The following shows the information returned by our algorithms in inferring the hier-

archies for only one of the companies. The first segment shows co-level attributes being

re-grouped and assigned a new label such as X0. The second segment shows the inferred

97 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

hierarchies from the instance of the dimension table.

Co-Level Attributes:

X0 : REPORTING CODE, REPORTING CODE DESC

The unique paths in the hierarchy are:

ANZSIC OCCUPATION CODE, ANZISC CODE DESC, COMPANY NO

ANZSIC OCCUPATION CODE, ANZSIC OCCUPATION FLAG, COMPANY NO

ANZSIC OCCUPATION CODE, X0, STRUCT LEVEL 3, STRUCT LEVEL 2, STRUCT LEVEL 1, COMPANY NO

The inferred hierarchies are shown in Figure 4.7.

ANZSIC_OCCUPATION_CODE

COMPANY_NO

ANZSIC_OCCUPATION_FLAG ANZISC_CODE_DESCREPORTING_CODE,

REPORTING_CODE_DESC

STRUCT_LEVEL_3

STRUCT_LEVEL_2

STRUCT_LEVEL_1

Figure 4.7: Visual representation of the inferred hierarchy from the second experiment.

As we can see from this example, there is a similar problem with ANZSIC CODE DESC since

it should have same partial order relationships as ANZSIC OCCUPATION CODE, and therefore,

these two attributes should have been grouped into a single level. It can be seen that the

main hierarchy used for aggregation of data in this experiment is the one with the longest

path with the remaining paths being in fact spurious.

When inferring hierarchies using data from other companies, the result includes some

variations of spurious paths but they share the main path. This leads to our second obser-

vation that inferred hierarchies can be compared by a domain expert to identify spurious

98 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

hierarchies to be excluded them from the integration as they can be restrictive in establishing

compatibility. The following shows the output of our algorithms for a different company in

dimension table OCCUPATION.

Co-Level Attributes:

X0 : COMPANY NO, ANZSIC OCCUPATION FLAG

X1 : REPORTING CODE, REPORTING CODE DESC

The unique paths in the hierarchy are:

ANZSIC OCCUPATION CODE, X0

ANZSIC OCCUPATION CODE, ANZISC CODE DESC, X0

ANZSIC OCCUPATION CODE, X1, STRUCT LEVEL 3, STRUCT LEVEL 2, STRUCT LEVEL 1, X0

We also learn from this experiment that when integrating these dimension tables with

their matching dimension tables, their instances may need to be restricted to have a fitting

hierarchy for different fragments of data. A less attractive alternative option is to exclude

some levels from the integration.

These experiments establish that our algorithms are not only effective in inferring hier-

archies, they provide additional information that can be used to enforce compatibility. An-

other application of inferring hierarchies is to establish if correct indexes and data clusters

are defined for the dimension table to improve query performance.

4.6 Dealing with Imprecision and Uncertainty of Data

Imprecision in the context of dimensions occurs when null value is used as members of

levels of dimension hierarchies to represent the unknown or not applicable. For example,

we may not know the ISBN of a book, or the ISBN may be not applicable, because the

book may be sold electronically. When inferring aggregation hierarchies, null values can

99 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

be ignored. Consequently the roll-up relationships are only determined using the non-null

values in attribute values.

Uncertainty is however, where probability values are assigned to possible values of an

attribute (Burdick et al. 2007). Uncertainty may occur in the fact tables, where for example,

members of levels in a StoreLocation dimension are clearly defined but the store name is not

recorded at the time of capturing the sales transaction. In such case, members of a higher

level such as City are used in place of Store (Burdick et al. 2007). In this case, the store could

be any of the stores in that city.

It is not however an effective method to construct a dimension whose members have

some degree of uncertainty associated with them. This is best managed by capturing the

uncertainty in the fact table. For example, if the diagnosis of a particular illness is uncertain

and could be one of many, then the hierarchy of the members between the two levels Di-

agnosis and Illness is designed such that it describes all possible cases, but when capturing

the diagnosis for a given patient, then the value of the diagnosis in the fact table is set to

the name of the illness instead (Burdick et al. 2007). Extending OLAP functions to support

imprecision and uncertainty is not in the scope of this thesis.

A special form of uncertainty in the context of dimensions could be the presence of

multi-valued mappings which may cause double counting. For example, the Country (such

as Turkey) may not always have a clear relationship with the Continent. In this case, our

proposed Algorithm discards the partial order relationship between Country and Conti-

nent. There has been some work on preventing double counting resulting from multi-

valued mapping (Burdick et al. 2007).

100 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

4.7 Discussion

In this chapter, we provided formal definitions of a dimension, level and aggregation hier-

archy in the context of relational multidimensional databases. We proposed for the aggre-

gation hierarchies to be inferred from instances of dimension tables in three steps. In the

first step, the partial order of attributes is computed using the cardinality of every pair of

attributes. In the second step, transitive partial order relationships are identified and re-

moved. Finally, attributes with bidirectional partial order relationship are grouped into a

single level with each remaining attribute being also assigned to a single level. The result

may include multiple hierarchies.

Inferring dimension hierarchies can be compared with discovering functional depen-

dencies used to discover key attributes. Our proposed algorithm is less complex as it dis-

covers relationships between single dimension attributes. This is because levels with com-

posite attributes are rare, and using data only to identify such levels potentially increases

the number of false positive partial order relationships. Future work is required to use both

domain ontologies and data to infer levels with composite attributes.

Existing works use physical metadata, domain ontologies, and UML schemas as sources

of information to infer dimension hierarchies. The problem with these approaches is that

these may not be available either. Moreover, they are likely to produce false negative partial

order relationships. That is, we may find that there is no partial order relationship between

some levels when in fact there is such relationship. Using lexical repositories is even more

problematic because members are often labeled in abbreviated forms and may include num-

bers.

101 (March 10, 2013)

CHAPTER 4. INFERRING AGGREGATION HIERARCHIES

Jensen et al. [2004] discover dimension hierarchies from data. This approach requires

some SQL test and does not eliminate transitive relationships.

The more representative is the population of a dimension table of its domain, the closer

is the inferred hierarchy to the intended schema based hierarchy. Therefore, the inferred

hierarchy may not be the same as the schema defined hierarchy. We established the rela-

tionship between the two hierarchies as the former subsuming the latter. This implies that

there are the same or more roll-up relationships that would need to match between the

inferred hierarchies to satisfy the requirements for coherence and consistency.

We explained that using our approach to infer hierarchies will not lead to any false neg-

ative partial order relationship, but some discovered partial order relationships may well

be false positive. This may result in the test for coherence and consistency to be false negative

which would restrict the integration, that is, only levels involved in the mismatching roll-up

relationships would be excluded from the integration. We emphasized, however, that the

accurate integration of dimension tables if we decide to do so, is more critical.

As a result, there are two important characteristics of the inferred hierarchies: (i) They

can guarantee the summarizability of the integrated data, and (ii) they ensure that the

matching between the integrating dimension tables is coherent and consistent.

We used two real life dimension tables for inferring their hierarchies. These experiments

showed effectiveness of our algorithms and that they can provide useful information for

data cleansing and enforcing compatibility.

Having inferred aggregation hierarchies, in the next chapter, we use the hierarchies to

match instances of dimension tables and enforce strictness.

102 (March 10, 2013)

Chapter 5

Enforcing Strictness: Beyond Instance

Matching For Dimensions

”Man’s mind, once stretched by a new idea, never regains its original dimen-

sions.”

Oliver Wendell Holmes (1841 - 1935)

In the previous chapters, we addressed inferring dimension hierarchies and schema

matching as precursors to automate the integration of data marts. The next step is the

matching of instances of dimension tables and relies on the results of the previous steps.

Many approaches have been proposed in the literature for matching instances of rela-

tional tables, but they do not address the problem of matching instances of dimension tables

specifically. Furthermore, the relationship between inaccurate results from instance match-

ing and the non-strictness problem in the integrated data has been overlooked.

103 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

We assume that our original instances of dimension tables are strict, in other words, any

case of multi-valued mapping or any special case of single-valued mapping is resolved in

each instance before the integration. Having made this assumption, we may still have the

problem where the integrated data is not strict. We show in this chapter that in most cases,

this problem is related to incorrect cases during the instance matching, and that by enforcing

strictness we also reduce false positive cases.

In Section 5.1, we identify cases where non-strictness occurs during the integration of

dimension tables resulting in inconsistency in data. In Section 5.2, we motivate the need to

resolve inconsistencies after the integration. In Section 5.3, we discuss suitability of match-

ing algorithms that exploit hierarchies for the purpose of matching instances of dimension

tables. In Sections 5.4 and 5.6, we propose algorithms to enforce strictness against the in-

tegrated result. Experiments described in Section 5.7 on real life data demonstrates the

effectiveness of our proposed approach.

5.1 Case Analysis

In this section, we discuss scenarios that result in non-strictness when integrating dimension

tables with strict instances. We consider the following cases:

• This case concerns the presence of a multi-valued mapping (which we refer to as m-

mapping) across integrating dimension tables. This is a true non-strict case. For ex-

ample, there is only one river called ’Rhine’ as a member of a level which contains

rivers in Germany, but when integrated with a similar dimension table with a match-

ing level whose members include rivers in Netherlands, the result is no longer strict.

104 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

Given that the two matching levels are from the same domain, such cases are in fact

rare and mostly occur when the population of at least one of the dimension tables is

not fully representative of its domain, in other words they are partially populated.

One suggested solution is to discard such tuples [Wijsen, 2006]. In Section 2.5.3, we

discussed other approaches to address this problem. The algorithm we propose to

enforce strictness results in excluding such tuples.

• There is a variation of m-mapping which involves synonym members (i.e. same mem-

bers labeled differently) being related to different parent members. This is a special

case of m-mapping, where the data is not strict, even though the roll-up constraints

appear to be satisfied. Where such synonym cases are identified correctly, same so-

lution as for multi-valued mapping is applicable. Discovery of false positive match

between synonym members must be resolved during instance matching and is out-

side the scope of this chapter.

• There are homonym members relating to different parent members. As we explained in

Section 2.2.2, this case does not result in double counting but results in over-estimation

of measures for ambiguous members. This is of course, if there is no (false) positive

match between them. Where there is a false positive match between them, we treat

this case in a similar way to the multi-valued mapping case. An example is where

the product category Keyboard in an Electronic department is falsely matched with

Keyboard in a Musical department. This case in fact accounts for most of the non-strict

cases. Discarding such matchings enforces the strictness and reduces false positive

105 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

cases.

• This is where the perceived non-strict case is in fact caused by false negative match

pairs at the parent level. This is a false non-strict case. In this case, the instance match-

ing algorithm fails to identify the matching pair and the integrated result appears to

be strict. For example, let us suppose that a product Prod x relates to product cate-

gories Keyboard and KBD, and that the two product categories are in fact the same but

the matching algorithm has identified them as being different. Improving the match

results to recover missing matching pairs is not in the scope of our work. Discovery

of false negative matchings must be resolved during instance matching and is outside

the scope of this chapter. Our proposed algorithm to enforce strictness also discards

the true positive match between these members (i.e. products labeled prod a). This

side effect has a negative impact on the recall. In Section 5.7, we discuss the extent of

this side effect.

5.2 Motivating Example

In this section we describe our motivating example used throughout this chapter. It con-

cerns a hypothetical departmental store that sells run out model products it buys from other

stores. The store needs to regularly integrate its dimension table Product with purchased

items in the dimension table Item. Manual matching of large dimension tables such as

Product and Item which potentially contain thousands of members with inconsistent labels

is not feasible. Figures 5.1 and 5.2 show sample instances of those dimension tables. Each

instance conforms to its hierarchy, and therefore, is strict.

106 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

ElectricalsMusical

Piano Keyboard Cables White Goods TV

YAMA
MLAB

CS-A
RL-TX

MZ-XZ
BS-C

KLV-AA
WST-S

PAN-AA

PAN-Z

Computers

PC Key Pads

IBM

HP-X

LG-KB

MISF

T

SONP

Furniture

Lounge Recliner

IKEA

IKEB

YRKD

BLAIR

Figure 5.1: An instance of dimension table Product.

ElectricalsDigital

PC Keyboard
White
Goods Television

HP-X

TOS-A

LOG-A

LOG-TX

KLV-AA

BSH-FZ PAN-AA

Cables

MZ-XA

BS-C

PAN-Z

T

Office Furniture

Office

Chair
Cabinet

CABA

CABB

GUEST

IKEAS

Figure 5.2: An instance of dimension table Item.

Figure 5.3 represents the ideal matchings between the two instances as determined by a

domain expert. For simplicity, we omit non-matching leaf nodes and sub-trees containing

mismatching nodes. Members of levels of dimension table Item appear in italicized font.

The followings illustrate examples of non-strict cases which we address:

• A product identified as BS-C is an electrical cable as well as a musical (audio) cable.

This is a case of m-mapping and illustrates that a perfect match does not necessarily

guarantee strictness. As part of enforcing strictness we will discard such matching.

Where the integration is by intersection, this would amount to deletion of inconsistent

tuples from the integrated result.

• There are two different product categories both labeled Keyboard, one of them is a

107 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

musical keyboard and the other is a computer keyboard. We will be also discarding

the match between these two categories during the enforcing of strictness.

Electricals
Electricals Musical

Cables
White Goods
White Goods TV Television

KLV-AA

KLV-AA

PAN-AA

PAN-AA

PAN-Z

PAN-Z

Computers Digital

PC PC
Keyboard
Key Pads

HP-X

HP-X

LG-KB

LOG-TX

Cables

BS-C

T




  

     

E1

E2

E3

BS-C

Figure 5.3: Ideal matchings between Product and Item.

5.3 Exploiting Hierarchies for Instance Matching

Apart from the similarity between labels, roll-up relationships between levels provide the

most significant clue in finding matching members. For example, if the cities in United

States and US are more similar to one another than to the cities of any other country, then

United States and US are likely to be the same country even though they have very dif-

ferent labels. If majority of cities in the US and AUS are different, then the two countries are

likely to be different and in return, their two Melbourne cities are also likely to be different

cities, even though, they have the same label and their two countries have similar labels.

Therefore, it is intuitive that the similarity between members of the child levels influences

the similarity of the members at the parent levels and the similarity between members of

the parent levels to influence the similarity of the members at the child levels.

As discussed in Chapter 2, similarity flooding (SF) calculates similarity scores between

108 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

nodes of two graphs G and G′. The result is the connectivity graph Ĝ whose nodes represent

pairs of matching members. We represent each node in Ĝ as (m ∈ l, m′ ∈ l′) with an

associated similarity score σ. m and m′ are suggested matching members and σ is a relative

measure of similarity between m and m′. l and l′ are matching levels in G and G′.

Similarity flooding is an iterative fixed point computation algorithm that propagates

similarity scores between nodes of G and G′ through the common edges. It is based on

the intuition that nodes of two graphs are similar when their adjacent (i.e. parent and child)

nodes are similar. The similarity scores are relative to all other match candidates in the range

of 0 to 1. The algorithm stops when the change in similarity scores becomes insignificant.

Finally, the best match candidates are selected.

We name the edges (i.e. roll-ups) in G and G′ the same to enable the creation of the

connectivity graph and to also limit the calculation of the initial string matching to members

of matching levels. The suggested matching pairs for our motivating example, as shown in

Figure 5.4, are obtained using this algorithm. Members of levels of dimension table Item

appear in italicized font. Solid rectangles and dashed ovals indicate true positive (TP) and

false positive (FP) matches respectively. Rounded scores outside of each node are σ values

returned from SF. Note, that with the matching results from similarity flooding, the result is

not strict, e.g. Keyboard ≡ Keyboard rolls-up to Digital and Keyboard.

5.4 Enforcing Strictness

Instance matching algorithms, in general, can produce false positive matching cases and do

not enforce strictness. In this section, we describe the causes of non-strictness with respect

109 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

Electricals
Electricals Musical

Cables
White Goods
White Goods TV Television

KLV-AA

KLV-AA

PAN-AA

PAN-AA

PAN-Z

PAN-Z

Computers

PC PC

HP-X

HP-X

Cables

BS-C

BS-C

T



 

 





Digital

Keyboard
Keyboard



CS-A

LOG-A


RL-TX

LOG-TX


WST-S

BSH-FZ


IBM

TOS-A


MZ-XZ

MZ-XA


Furniture
Office Furniture



Lounge
Office Chair



IKEA

IKEAS


M1=1 M2=0.08

M3=0.27 M4=0.32 M5= 0.18 M6 =0.16 M7=0.05

M8=

0.52

M9=0.51

M10=

0.42

M11=0.42

M12=

0.37

M13=0.04

M14=

0.34

M15=0.34

M16=

0.33

M17=0.04

M18=0.01

Figure 5.4: Suggested matchings between Product and Item.

to inaccurate matchings and inconsistent data. To illustrate the causes of non-strictness, let

us compare the ideal match results in Figure 5.3 with the suggested match results in Figure

5.4:

• The suggested match Keyboard ≡ Keyboard (i.e. the node labeled as M6), a homonym

case, is false and leads to non-strictness. Similarly, if one of the members in this sug-

gested match was instead labeled Key Board, then it would be a false synonym case

and it would also lead to non-strictness.

• The suggested match BS-C ≡ BS-C (M14) is true positive and leads to non-strictness.

• The suggested match WST-S ≡ BSH-FZ (M9) is a false positive but does not lead to non-

strictness.

• The suggested match PC≡ PC (M5) is a true positive match, but the false negative match

between their respective parent members makes it to be perceived as non-strict.

• The suggested match TV≡ Television (M4) is a true positive match involving synonym

110 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

members and does not lead to non-strictness.

• The matching pair Cables≡ Cables is a true negative match involving homonym mem-

bers. It is a special case of single-valued mapping which is discussed in Section 2.2.2.

The approach we take is to re-label the members to resolve the ambiguity and address

the apparent non-strictness.

In summary, the causes of non-strictness are due to m-mapping, or false positive matchings

at the parent or child levels.

Next, we explain our main idea of enforcing strictness. We said in the previous section

that similarity scores propagate through the levels. The matching pairs at the higher lev-

els are less likely to be false positive than pairs at the lower levels because the number of

members in levels decreases as we move up the hierarchy, and the similarity scores at the

lower levels propagate to the higher levels. Therefore, the matching pairs at the root level

are likely to be more accurate than at any other level.

For these reasons, we start at the root level and assume that the match results at this

level are correct. At every level lower and for each matching (child) pair, we expect that their

parent members also match, otherwise, we discard the matching child pair. This will discard

those matchings that result in s-mapping and m-mapping cases. This amounts to deletion of

inconsistent tuples when integration is by intersection and nullifying of the corresponding

attributes when integrating by union.

Algorithm 5.1 follows a top-down iterative process. The input to the algorithm is the

connectivity graph Ĝ (e.g. Figure 5.4) returned from some instance matching algorithm that

exploits the (common) hierarchy H = {l1 ≡ l′1 � l2 ≡ l′2, l2 ≡ l′2, ...} between matching lev-

111 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

els. For simplicity we will use the levels in one of the hierarchies to refer to both matching

levels. The output T̂ a subgraph of Ĝ is strict. Lines 8-9 include in T̂ a pair of matching

members only if their parent members are determined to be matching in the previous itera-

tion. Figure 5.5 shows the matching pairs after applying this algorithm. The scores outside

of each node will be described in Section 5.6.

Algorithm 5.1 Enforcing strictness on match results.

Input: Association graph Ĝ, hierarchy H
Output: Strict connectivity graph T̂ a subgraph of Ĝ.

1: Insert into T̂ nodes in Ĝ relating to the root level of H
2: for each roll-up relationship lα � lβ in H do
3: C = matching child pairs in Ĝ relating to the level lα

4: P = matching parent pairs in T̂ relating to the level lβ

5: for each matching pair ni = (m1 ∈ lα, m′1 ∈ l′α) in C do
6: m2 = the parent member for m1
7: m′2 = the parent member for m′1
8: if the pair (m2 ∈ lβ, m′2 ∈ l′β) is in P then
9: Insert ni into T̂ connecting it to its parent.

10: end if
11: end for
12: end for
13: Remove childless nodes from T̂.

If we have perfect matching between two dimension tables and the result of the inte-

gration is not strict, then Algorithm 5.1 would eliminate the m-mapping cases as the only

possible cases of non-strictness. However, m-mapping is not common in the context of inte-

grating strict dimension tables, as it would indicate that the data was not originally strict

with the inconsistencies hidden in separate instances.

112 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

Electricals
Electricals

White Goods
White Goods TV Television

KLV-AA

KLV-AA

PAN-AA

PAN-AA

PAN-Z

PAN-Z

T





  
WST-S

BSH-FZ


Furniture
Office Furniture



Lounge

Office Chair


IKEA

IKEAS


2.53)(d 8.52)(d 8.8)(d 8.8)(d 123)(d

9.3)(d
4.4)(d 1.0)(d

1.7)(d

0.0)(d
8.11)(d

3.4)(d 3.4)(d

Figure 5.5: Matching pairs from Figure 5.4 after Algorithm 5.1.

5.5 The Effect of Enforcing Strictness on Match Quality

Table 5.1 summarizes the effects of Algorithm 5.1 on the ideal match results. The effects

will show in the precision and recall which we will use to measure the performance of our

algorithms. Columns 2 and 3 indicate the truth or falsehood of the (mis) matching parent

and child pairs. Column 4 describes the effect of the algorithm on the ideal match results.

Column 5 gives an example of the case by referring to the nodes in Figures 5.3 and 5.4, where

applicable. There is no example applicable to cases involving FN and TN at the parent or

child level (except for where both are FN), as they do not appear in the suggested or ideal

match results.

Cases 5, 8 and 9 are highlighted with * to indicate a m-mapping case. In cases 5, 8 and 12

strictness is not enforced due to a false positive or true negative match at the parent level.

These represent false strict cases. In Section 5.6 we propose an algorithm to reduce these

cases. In case 6, we are unable to remove the mismatching child pair because strictness is

not enforced, again due to the incorrect match at the parent level. In case 9, a m-mapping

113 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

Parent Child

Pair Pair Effect Example

1 TP TP Nil M3 � M1

2 FP Nil M13 � M5

3 TN Nil Not applicable

4 FN Nil Not applicable

5* FP TP Nil See section 5.6

6 FP Mismatching child pair not removed M18 � M2

7 TN Nil Not applicable

8* FN Nil See section 5.6

9* TN TP True matching child pair removed Not applicable

10 FP False matching child pair removed Not applicable

11 TN Nil Not applicable

12 FN Nil See section 5.6

13 FN TP True matching child pair removed Not applicable

14 FP False matching child pair removed Not applicable

15 TN Nil Not applicable

16 FN Nil E3 � E2

Table 5.1: Impact of Algorithm 5.1 on ideal match results.

case, strictness is enforced at the expense of removing a true matching child pair which

reduces the recall. In case 10, strictness is enforced and as a positive side effect, a false

positive match is also removed which improves the precision. In case 13, although, the

algorithm removes a true positive match, the result becomes strict. This also reduces the

recall but also alerts a human expert to a possible false negative match at the parent level.

Case 14 is interesting because although the application of the algorithm is not warranted,

the net effect is the removal of a false positive match.

To summarize the effects of Algorithm 5.1: (i) strictness is guaranteed, (ii) the precision

is improved by reducing the false positives, and (iii) the recall may be reduced. Given the

intuition behind the algorithm supported by our findings from experiments in Section 5.7,

the improved precision clearly outweighs possible reduction in the recall.

114 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

5.6 Reducing False Strictness

In Section 5.5, we saw the three cases (5, 8 and 12) where child members form seemingly

strict M:1 roll-up relationships. Matching algorithms tend to be greedy in finding match-

ings. An example of this case is the pair Lounge≡ Office Chair in Figure 5.5. The similarity

score for this pair (as shown in Figure 5.4) is very low in comparison with other pairs at the

same level and yet the pair is selected as a match. The following explains this match: (i) The

matching score for this pair is not incremented by the string similarity between the labels of

its members but rather by the similarity score of its (only) child pair IKEA ≡ IKEAS; (ii) The

string similarity between labels of the pair IKEA ≡ IKEAS, and the missing correct match-

ing member to IKEA in Item, or the missing correct matching member to IKEAS in Product

helps the pair to be a winning match; (iii) The missing correct match to Lounge in Item, or

the correct match to Office Chair in Product helps the pair to be a winning match.

Moreover, the pair Furniture ≡ Office Furniture is the root of a leaner branch with

fewer descendants when compared to other pairs at the Department level. This is indicative

of the lower degree of match between the descendants of the members of this pair.

Given the above observations, our aim is to identify pairs that are selected as matching

but more due to the missing correct matching members in the other instance. This problem

is more apparent where only a small percentage of members from each instance match. It

occurs in SF and is also reported to occur in state of the art duplicate detection algorithms

in XML documents in the context of missing data [Pavel and Euzenat, 2004].

These false positive cases can potentially result in false strict cases (5 and 8 in Table

5.1). In Figure 5.5, even if the pair IKEA ≡ IKEAS were truly matching, we would still want

115 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

to remove the pair as it would be a m-mapping case. However, the false positive match

between the parent members would not allow this to occur and, hence, the result would be

falsely strict.

In this section, we propose an algorithm to discard matching pairs such as Lounge ≡

Office Chair described above. Reducing these false positive matchings can potentially re-

duce occurrences of false strict cases. The algorithm is based on the observations described

above, and hence, our heuristic, that if a matching pair has a very low similarity score σ and

also its parent pair has a very low match factor (described next), then it is likely to be a false

positive match.

Match factor measures the strength of a matching pair (m, m′) in respect to both, the match

degrees for the child and leaf members of m and m′. It is based on the intuition that members

of false positive matching pairs are less likely to succeed in having as many number of their

descendant members matching.

For a given pair of matching members m and m′, the child match degree (ϕ1) measures

the degree of the child members of m having a match with child members of m′. T̂ is the

connectivity graph after applying Algorithm 5.1.

ϕ1(m, m′) = | Child nodes of (m,m′) in T̂ | ×2

| Child nodes of m1 in G |+| Child nodes of m′1 in G′ |

Similarly, for a given pair of matching members m and m′, the leaf match degree (ϕ2)

measures the degree of the leaf members of m having a match with leaf members of m′.

ϕ2(m, m′) = |Leaf nodes of (m,m′) in T̂ | ×2

| Leaf nodes of m1 in G |+| Leaf nodes of m′1 in G′ |

The match factor is ϕ = ϕ1 × ϕ2. The intuition is to reward/penalize the match degree

116 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

for the child nodes by how successful they are in having their leaf nodes have a match.

For example, ϕ(Electricals ≡ Electricals) = 4/5× 8/11 = 0.58 and ϕ(Furniture ≡

Office Furniture) = 0.5× 0.25 = 0.125.

Following from the observations above, matching pairs involving missing matching

members have a much lower σ and ϕ than other matching pairs at the same level. To de-

termine the threshold for these values, we use the outlier detection method and borrow the

method introduced by Knorr and Ng [1998]. They consider a value to be an outlier if its

distances (d) from normal distribution is equal to, or more than 3 standard deviations from

the mean. For our purpose, where we want to identify much weaker matching pairs, we

consider a value to be an outlier, if its distances (d) from normal distribution is 3 standard

deviations below the mean. In Figure 5.5, d(σ) and d(ϕ) are shown for each pair of matching

members.

Algorithm 5.2 follows a bottom-up approach. Again, the input to this algorithms is the

connectivity graph T̂ returned from Algorithm 5.1. At each level, we remove those matching

pairs whose similarity score is an outlier and whose parent pair has a match factor that also

happens to be an outlier. Similar to Algorithm 5.1, the order of complexity for Algorithm 5.2

is L×N where L is the number of levels and N is the number of matching pairs at each level.

Again, for simplicity we use the levels in one of the hierarchies to refer to both matching

levels.

Applying Algorithm 5.2 to our example in Figure 5.5, the matching pair Lounge ≡

Office Chair is discarded as a false positive match since its matching score, as well as

the match factor of its parent pair, are both considered outliers. This will first result in re-

117 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

Algorithm 5.2 Reducing weak matching pairs.

Input: Association graph T̂, hierarchy H
Output: Ŝ a subgraph of T̂

1: Ŝ = T̂
2: for each roll-up relationship li � li+1 in H do
3: C = matching pairs from T̂ relating to level = li
4: Calculate d(σ) for m and m′ for each pair of C.
5: P = matching pairs from T̂ relating to level = li+1
6: Calculate d(ϕ) for m and m′ for each node of P.
7: for each node nj of C do
8: if d(σ) for nj is ≤ Threshold then
9: n′′ = parent node of nj in P

10: if d(ϕ) for n′′ is ≤ Threshold then
11: Remove descendants of nj from Ŝ.
12: Remove nj from Ŝ.
13: end if
14: end if
15: end for
16: end for
17: Remove childless nodes from Ŝ.

moval of its only child pair Lounge ≡ Office Chair followed by the removal of the pair

itself (i.e. Lounge≡ Office Chair). Finally, its parent pair Furniture≡ Office Furniture

is removed since it has no other child. Figure 5.6 shows the result of applying Algorithm 5.2

to the result of Algorithm 5.1 shown in Figure 5.5.

5.7 Experiments

The purpose of this set of experiments is to:

i. measure the performance of SF in matching instances of dimensions with different de-

grees of noise;

ii. measure the performance of SF in matching instances of dimensions with different de-

118 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

Electricals
Electricals

White Goods
White Goods TV Television

KLV-AA

KLV-AA

PAN-AA

PAN-AA

PAN-Z

PAN-Z

T





  
WST-S

BSH-FZ


Figure 5.6: Matching pairs from Figure 5.5 after Algorithm 5.2.

grees of missing matching members;

iii. demonstrate that integration of strict (instances of) dimension tables can result in non-

strictness;

iv. demonstrate that Algorithm 5.1 can effectively enforce strictness and reduce false posi-

tive matches;

v. demonstrate that using instances of dimensions with high volume of mismatching mem-

bers can increase the number of false positive cases;

vi. demonstrate that where instances of dimensions have a high volume of mismatching

members, Algorithm 5.2 can help identify false positive matching cases that could not

be identified using Algorithm 5.1;

vii. determine the strength of SF in dealing with multiple and ragged hierarchies.

119 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

Source of data: We used the Mondial geographical web data base [May, 1999] with

about 4600 distinct members. There are three hierarchies in this data set: (i) City � Province �

Country � Continent, (ii) City � Province � Country � GovernmentStyle, (iii) City � Sea.

Some cities do not belong to any province but do belong to some countries making the first

two hierarchies to be ragged. This condition is present where a member of a level does not

have a parent member in its immediate parent level but in an ancestor level.

Target: We used the source as the basis to create an instance of the target dimension table.

DirtyXML [Puhlman, 2004] is a tool that is primarily used to produce duplicate elements in

XML files for the purpose of duplicate detection. Unfortunately, it could not be used for our

purpose because it provided no mechanism to track changes to labels. This is necessary to

facilitate the calculation of precision and recall. We used this tool for the purpose of reducing

members but developed a program to introduce noise into labels. Similar to DirtyXML,

our program randomly applies insertion, deletion, duplication and swapping of characters.

More importantly, it tracks changes by recording the labels before and after the changes.

In Section 5.7.1, we measure the performance of SF, and our proposed Algorithms 5.1

and 5.2 when using a single hierarchy. In Section 5.7.2, we measure the performance of SF

when using multiple hierarchies.

5.7.1 Using A Single Hierarchy

To avoid the bias that the use of multiple hierarchies may introduce, we use the same single

hierarchy (City � Province � Country � GovernmentStyle) for all experiments described

in this section. Tables 5.2 and 5.3 show precision and recall values obtained from the initial

120 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

matching (by SF), after applying Algorithm 5.1, and after applying both Algorithms 5.1 and

5.2. Table 5.4 shows F-measure values calculated using the precision and recall values. The

highest value for each case is shown in bold.

Each case uses a different degree of reduction resulting in missing matching members,

and noise. The larger the reduction, the higher is the degree of missing matching members

between the two instances. The experiments are designed to measure the performance of

these 3 algorithms in respect to different amounts of noise and missing matching members.

Performance measures for SF: We can see that in cases 1 to 12, where there is a low

to medium degree of missing matching members, the precision is impressively high above

0.94. These cases indicate that SF performs extremely well in matching instances even with

a large level of noise.

In cases 13 to 16, where the degree of missing matching members is increased to 75%,

the precision drops to below 0.84. In cases 13 and 14, the precision remains relatively lower

even though there is no or little noise introduced. Nevertheless, precision, and in particular

the recall is generally higher where there is less noise. These cases also support our initial

finding that instance matching algorithms tend to produce more false positives where there

is a high degree of missing matching members between the two instances.

Performance measures for SF + Algorithm 5.1: In all cases, Algorithm 5.1 has con-

sistently reduced the number of false positive cases resulting in higher precision (when

compared to before applying the algorithm) except for cases 1 and 2 where the precision

has remained almost unchanged. The increase in the precision is a positive side effect of

enforcing strictness which is the primary objective of Algorithm 5.1.

121 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

Precision

C
a
s
e
N
o

R
e
d
u
c
t
i
o
n

N
o
i
s
e

S
F

S
F
+
A
L
G
1

S
F
+
A
L
G
1
+
A
L
G
2

1 00% 00% 0.9879 0.9878 0.9884
2 00% 25% 0.9825 0.9813 0.9836
3 00% 50% 0.9751 0.9831 0.9831
4 00% 75% 0.9693 0.9696 0.9688

5 25% 00% 0.9820 0.9820 0.9827
6 25% 25% 0.9740 0.9798 0.9805
7 25% 50% 0.9622 0.9770 0.9779
8 25% 75% 0.9519 0.9864 0.9951
9 50% 00% 0.9530 0.9585 0.9589
10 50% 25% 0.9492 0.9564 0.9597
11 50% 50% 0.9718 0.9913 0.9932
12 50% 75% 0.9415 0.9488 0.9520
13 75% 00% 0.8248 0.8577 0.9151
14 75% 25% 0.8333 0.8726 0.9485
15 75% 50% 0.8102 0.8774 0.9022
16 75% 75% 0.7976 0.8522 0.8950

Table 5.2: Precision values for different degrees of noise and missing members.

The recall is slightly reduced in most cases. The main reason for this is that some true

positive matchings at the child level are discarded due to false negative matchings at their

parent levels. For each pair of tuples across the two instances, a pair of tuples will not

match unless all of their attribute values match. Therefore, discarding the match at the

child level, when there is no match at the parent level, will not reduce the extent of the

data integration any further. Moreover, the report on missing matching parents can provide

valuable information to review what could be false negative cases.

The overall F-measure, a reflection of both precision and recall is not greatly impacted.

These cases demonstrate that whilst, Algorithm 5.1 enforces the strictness, it can improve

the precision by reducing the number of false positive cases. These two important benefits

come with the cost of a slight reduction in the recall.

122 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

Recall

C
a
s
e
N
o

R
e
d
u
c
t
i
o
n

N
o
i
s
e

S
F

S
F
+
A
L
G
1

S
F
+
A
L
G
1
+
A
L
G
2

1 00% 00% 0.8510 0.8475 0.8405

2 00% 25% 0.7606 0.7606 0.7424

3 00% 50% 0.8651 0.8476 0.8453

4 00% 75% 0.6221 0.5923 0.5514

5 25% 00% 0.7496 0.7455 0.7289

6 25% 25% 0.9197 0.9057 0.8926

7 25% 50% 0.8538 0.8339 0.8261

8 25% 75% 0.7603 0.7221 0.5650

9 50% 00% 0.8908 0.8881 0.8806

10 50% 25% 0.8376 0.8349 0.8091

11 50% 50% 0.8000 0.7782 0.6975

12 50% 75% 0.7156 0.6719 0.6650

13 75% 00% 0.9648 0.9606 0.9586

14 75% 25% 0.9420 0.9359 0.9228

15 75% 50% 0.8822 0.8719 0.8574

16 75% 75% 0.7976 0.8057 0.7591

Table 5.3: Recall values for different degrees of noise and missing members.

Performance measures for SF + Algorithm 5.1 + Algorithm 5.2: The precision has con-

sistently improved for the vast majority of cases. As for recall, there are slight reductions,

largely where there is a greater level of noise. This is also visible from the F measures in

Table 5.4.

Cases 13 to 16 involve a high degree of missing match candidates between the two in-

stances. A good sign for the presence of such a condition is that we have a relatively lower

precision to start with. In these cases, where the precision resulting from the previous two

methods were around 0.80, the precision has significantly improved to around 0.90.

Therefore, consistent with our hypothesis, Algorithm 5.2 improves the precision by re-

ducing even further, the number of false positive cases which Algorithm 5.1 fails to identify.

Again, there is a slight reduction in the recall value.

123 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

F-Measure

C
a
s
e
N
o

R
e
d
u
c
t
i
o
n

N
o
i
s
e

S
F

S
F
+
A
L
G
1

S
F
+
A
L
G
1
+
A
L
G
2

1 00% 00% 0.9144 0.9123 0.9085

2 00% 25% 0.8574 0.8570 0.8461

3 00% 50% 0.9168 0.9103 0.9090

4 00% 75% 0.7578 0.7354 0.7028

5 25% 00% 0.8502 0.8476 0.8370

6 25% 25% 0.9461 0.9413 0.9345

7 25% 50% 0.9048 0.9779 0.8956

8 25% 75% 0.8454 0.8338 0.7208

9 50% 00% 0.9209 0.9220 0.9181

10 50% 25% 0.8899 0.8915 0.8780

11 50% 50% 0.8776 0.8719 0.8195

12 50% 75% 0.8132 0.7867 0.7830

13 75% 00% 0.8893 0.9062 0.9363
14 75% 25% 0.8843 0.9031 0.9355
15 75% 50% 0.8447 0.8595 0.8792
16 75% 75% 0.7976 0.8282 0.8215

Table 5.4: F-Measure results for different degrees of noise and missing members.

5.7.2 Using Multiple Hierarchies

In this part of the experiment, we use all three hierarchies listed earlier in Section 5.7, but

use the SF algorithm only. This is because Algorithms 5.1 and 5.2 use a single hierarchy;

however, both algorithms can be applied in multiple iterations, each time, using a different

hierarchy.

With respect to Algorithm 5.1, to ensure that the instance of the dimension table is strict

for all hierarchies, in each iteration, the input Ĝ is set to the output T̂ from the previous iter-

ation. With respect to Algorithm 5.2, it is possible that the same matching pair is removed

when using one hierarchy but, not when using another. A simple approach to unify the

result is to finalize the removal of a match between a pair of members, only if it is removed

by using every hierarchy in which the owning level appears.

124 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

Performance measures for SF: The sample we used to measure SF’s strength in dealing

with multiple hierarchies included 25% reduction and noise in both instances. The pre-

cision, recall and F-measures were 0.9790, 0.7031 and 0.8409 respectively. The precision

returned from SF is very close to being perfect, but not the recall. The reason for the poor

recall in this case can be explained by the fact that the similarity score for a matching child

pair is much more likely to be distributed into more than one parent pair and, hence, the

number of true positives is lower.

We then tried the same sample, but using a single hierarchy (City � Province � Country �

GovernmentStyle). The precision, recall and F-measures using a single hierarchy are 0.9740,

0.9197 and 0.9461 respectively. Whilst, the precision remains the same, the recall has im-

proved significantly. The comparison indicates that SF does not perform as well with mul-

tiple and ragged hierarchies as with single hierarchies.

5.8 Discussion

In this chapter we addressed the problem of enforcing strictness in integration of originally

strict dimension tables, and also thereby, reduce the number of false positive cases dur-

ing the instance matching. To the best of our knowledge, there is no previous algorithm

specifically for matching instances of dimension tables that exploits dimension hierarchies.

Moreover, current research has overlooked enforcing strictness against the integrated re-

sult and the relation between non-strictness and the accuracy of instance matching results.

Through our experiment, we have shown the effectiveness of similarity flooding in match-

ing instances of dimension tables and its weakness in dealing with multiple hierarchies.

125 (March 10, 2013)

CHAPTER 5. ENFORCING STRICTNESS: BEYOND INSTANCE MATCHING FOR DIMENSIONS

We proposed an algorithm which enforces strictness against the integrated data from

strict dimension tables and also reduces the number of false positive cases. It discards any

matching child pair with more than one parent matching pair in the connectivity graph that

is created from the graph representation of the two instances. This algorithm exploits the

fact that the inconsistencies resulting from integration of strict dimension tables are more

likely to be the result of false positive cases during the initial instance matching.

We proposed a second algorithm that can help discard false positive matchings that

could not be discarded using the first algorithm. This algorithm is designed to address the

problem associated with instances that have high degree of missing matching members.

In our experiments, we used a real life geographical web database to show the effective-

ness of our approach and algorithms. We showed that in presence of noise in data, our first

algorithm is effective in improving the precision with very limited impact on recall.

We also showed that our second algorithm is also effective in improving the precision

where there is a large volume of missing matching members from either of instances. A side

effect of this algorithm is, however, that the recall value is mildly reduced where there is a

low level volume of missing matching members with some noise introduced. Future work

is required to improve the match factor used in this algorithm to reduce the impact on the

recall value. Moreover, the similarity flooding algorithm could be also enhanced to improve

its match quality where the instances include multiple hierarchies.

126 (March 10, 2013)

Chapter 6

Extending the Scope of Integration

”What counts in making a happy marriage is not so much how compatible you

are, but how you deal with incompatibility.”

Leo Nikolaevich Tolstoy (1828 - 1910)

One of the problems we face with integrating heterogeneous data marts is that they

have some common but not identical information. In Section 2.4, we described conformity

as well as compatibility as the requirements for the integration of dimensions. These require

dimensions to be similar in terms of their schemas, hierarchies and instances. In Chapters 3,

4, and 5, we described our approach for matching data mart schemas, inferring aggregation

hierarchies and matching instances of dimensions.

The schema matching approach discussed in Chapter 3 returns matching dimension

attributes irrespective of their hierarchies or their data. The starting maximal subset of com-

patible dimensions (X) to be integrated is limited to these matching dimension attributes.

127 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

In the next step, aggregation hierarchies are inferred using the approach described in this

chapter from matching dimensions identified during the schema matching process. Match-

ing hierarchies are those with matching levels consisting of matching dimension attributes

(X). Any dimension attribute not included in the matching levels are excluded from X.

During the next and final step, using the hierarchies inferred, we match instances of

the corresponding dimensions using the approach described in this chapter. We then apply

Algorithm 5.1 to enforce the strictness, and Algorithm 5.2, if there is a prior knowledge that

there is a large volume of mismatching members between the two instances.

By this time, we have a final maximal subset of compatible dimension attributes to form

the basis of the integration in terms of schema and data. During the course of these steps,

we had to however, exclude some dimension attributes. The purpose of this chapter is

to maximize the scope of the integration by salvaging as many dimension attributes that

were excluded because they did not fit into the common hierarchy. We see two challenges

in meeting this objective: (i) to enforce compatibility between some of dimension attributes

that do not fit into the common hierarchy and thereby extend X; (ii) relate X to the exclusive

non compatible dimension attributes in each of the original data marts.

Next, we re-visit the requirements for dimension compatibility explained in Section 4.1:

• The matching between some levels may be coherent and consistent but not sound.

It is more difficult to have soundness in particular when dealing with heterogeneous

dimension tables. This is where the requirement for soundness can be restrictive.

• The existing drill-across operation returns the common data only. It ignores the data

related to levels that have no match, or their matchings are not coherent and con-

128 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

sistent. This is not effective when users need to link the common data back to the

exclusive data in each data mart.

In this chapter, the problems above are investigated, and the following contributions are

made:

• In order to maximize the scope of the integration, we relax the requirements for com-

patible dimension tables by excluding the requirement for soundness.

• We introduce measures to quantify the loss of data in respect to levels which do not

have a sound matching. These are used in identifying lossless fragments of the com-

bined data by applying OLAP operations such as slicing, dicing and roll-up guided

by those measures.

• We extend the navigation operation drill-across to return the data related to exclusive

levels in original data marts.

• We propose an extension to pivot tables to support the extended result of drill-across.

In Section 6.1, the problems addressed in this chapter are further elaborated. In Section

6.2, a less restrictive requirement for integrating dimension tables is proposed. In Sections

6.3, 6.4, and 6.5, we introduce methods for measuring the loss of data. In Section 6.7, we

describe the extension to drill-across. In Section 6.8, we discuss extending pivot tables (at a

conceptual level) to support the extended drill-across.

129 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

6.1 Motivation

Organizations often end up with a large number of data marts over similar subject areas

which need to be consolidated [Business Objects and Teradata, 2007]. Their consolidation

enables users to benefit from combined related information and also reduces the need for

building new data marts. Moreover, there are data marts from external sources, for instance,

the Bureau of Statistics and agencies collecting marketing information, which are of interest

and when combined, can add value to local data marts.

Consider the Star schemas in Figures 6.1 and 6.2. The matching between the two Time

dimension tables as well as the matching between Product and Item dimension tables are

coherent and consistent over all of their levels, whereas, Invoice and Accessory are exclu-

sive to their data marts. The two fact tables have their own exclusive measures.

The first problem highlighted in the preamble to this chapter is that even though the

matching between the two Product and Item dimension tables is coherent and consistent,

it is not considered a perfect matching since the matchings between their levels are not

sound. This can be seen from their instances in Tables 6.1 and 6.2, where for example, the

member Musical in the level Department in dimension table Product, does not appear in

its matching level Area in dimension table Item.

Table 6.1 shows the same instance of the Product dimension table as in Figure 5.1 after

re-labeling of some members to resolve the ambiguities for synonym and homonym mem-

bers. Similarly, Table 6.2 shows the same instance of the Item dimension table as in Figure

5.2 after making similar changes.

We assume that there is a coherent and consistent matching between all matching lev-

130 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

Figure 6.1: Star schema for Sales data mart.

Figure 6.2: Star schema for Transaction data mart.

els of Product and Item, between Time and Time, and between Location and Location

dimension tables.

Absence of soundness results in loss of data during the integration. The loss is not,

however, uniform with respect to each data mart. In order to maximize the scope of the

integrated data, we propose to relax the requirement for compatibility by excluding sound-

ness. At the same time, several measures are provided to quantify the loss resulting from the

absence of soundness. By quantifying the loss for all levels and their combinations, a user is

able to benefit from partial integration by locating lossless fragments of data through OLAP

operations. For example, if a user is interested in combined data from Figures 6.1 and 6.2 for

all Product Category/Item Category but only only for the member Computers/Digital of

131 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

Department Product Category Product Id

Musical Piano YAMA

Musical Piano MLAB

Musical Musical Keyboard CS-A

Musical Musical Keyboard RL-TX

Musical Musical Cables MZ-XZ

Musical Musical Cables Musical BS-C

Electricals White Goods KLV-AA

Electricals White Goods WST-S

Electricals Television/TV PAN-AA

Electricals Television/TV PAN-Z

Electricals Television/TV SONP

Computers/Digital PC IBM

Computers/Digital PC HP-X

Computers/Digital Digital Keyboard LOG-TX/LG-KB

Computers/Digital Digital Keyboard MISF

Furniture Lounge IKEA

Furniture Lounge IKEB

Furniture Recliner YRKD

Furniture Recliner BLAIR

Table 6.1: An instance of dimension table Product in Sales data mart.

Department Item Category Item Id

Computers/Digital PC HP-X

Computers/Digital PC TOS-A

Computers/Digital Digital Keyboard LOG-A

Computers/Digital Digital Keyboard LOG-TX/LG-KB

Electricals Electrical Cables MZ-XA

Electricals Electrical Cables BS-C

Electricals White Goods KLV-AA

Electricals White Goods BSH-FZ

Electricals Television/TV PAN-Z

Electricals Television/TV PAN-AA

Office Furniture Office Chair GUEST

Office Furniture Office Chair IKEAS

Office Furniture Cabinet CABA

Office Furniture Cabinet CABB

Table 6.2: An instance of dimension table Item in Transaction data mart.

the level Department/Area, then there is no loss.

As for the second problem, it is often necessary to relate the common data back to the

data related to non-compatible dimensions in the original data marts. For example, once we

know the total Invoice Amt and Accessory Cost for all matching states and product/items,

132 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

then we would have to refer to the original sources when we need to know their respective

invoice and accessory details. This is obviously a tedious manual task. To overcome this

problem, the existing operation of drill-across is extended to also return the data related to

levels that have no matching, or their matchings are not coherent or consistent. We also

propose to extend pivot tables to support the extended operation of drill-across.

6.2 Non-Compatible but Combinable Dimension Tables

Definitions for perfect matching dimensions, and µ-compatible dimensions were explained

in Section 2.4.2. Once again, Torlone [2008] defines two dimensions d1 and d2 as being µ-

compatible, if there are lossless expressions E1 and E2 over dimensions d1 and d2 such that µ

is a perfect matching. This up-front use of a single pair of expressions to enforce soundness

as Torlone suggests, is not however, sufficient to effectively exploit the common data.

It is important to note that the loss resulting from the absence of soundness may occur

with respect to only one of the data marts or both. A user may wish to continue with the

integration despite the loss in another data mart, and therefore a perfect matching may not

be necessary. Also, it is possible that the data marts use factless facts (i.e. fact tables that

have no measure) [Kimball and Ross, 2002], in which case, there would be no need for

aggregated measures. But more importantly, there may be many different expressions that

make the matching between levels of two dimensions to be sound.

We propose to remove soundness from the requirements of compatibility, and at the

same time introduce measures to quantify the loss and, thereby, allow users decide where

the integration is meaningful. By providing the loss measures to users, they are able to

133 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

discover lossless expressions which may vary for different fragments of data.

To be able to use compatibility in the context of relational implementation of multidi-

mensional data, we make the same assumptions as in Section 4.1. Again, for simplicity but

without loss of generality, it is assumed that each level of any dimension table is associated

with a single attribute, and therefor, we can use levels to refer to attributes.

Definition 6.1. Two levels l1 and l2 are combinable if, and only if, they match and their matching is

coherent and consistent.

Definition 6.2. Two dimension tables D1 and D2 are combinable if the matching µ over their match-

ing levels is combinable.

This requirement does not require the matching levels to have identical members. There-

fore, every pair of compatible dimension tables is also combinable. However, not every pair

of combinable dimension tables is compatible.

Relaxing the requirement for compatibility means that we need to identify where the

loss of data occurs. In the next section, several measures are introduced to calculate the loss

resulting from integration of combinable (but not compatible) levels.

In the next section, several measures are introduced to calculate the loss resulting from

integration of combinable (but not compatible) levels. The methods defined in the next

section rely on the following information obtained during the instance matching in Chapter

5: (i) the number of distinct instances of each dimension attribute from each dimension, and

(ii) the number of matching distinct instances between each pair of dimension attributes.

134 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

6.3 Absolute Loss Ratio

The absolute loss ratio is calculated for a pair of combinable levels. It measures the degree

of mismatch between members of two such levels. It is applicable to where there is a need

to minimize the loss regardless of whether members have any corresponding fact. For ex-

ample, inclusion of all employees from an Employee dimension table which represent the

organization hierarchy is required for browsing of the complete employee hierarchy regard-

less of whether some employees have made any sales or not.

It is calculated by dividing the number of distinct matching members of the two levels

divided over the number of distinct members of the level belonging to the data mart for

which the loss is calculated. The loss measures are not symmetrical, they are relative to

each data mart. The intuition is that the user may be concerned with the loss in only one of

the data marts.

The following calculates the absolute loss ratio ∆DM for a pair of combinable levels li in

D and l′j in D′, with respect to data mart DM.

∆DM(D(Ai : li), D′(A′j : l′j)) = 1−

∣∣∣πAi(D) ∩ πA′j
(D′)

∣∣∣
|πAi(D)| (6.1)

Based on the instances in Tables 6.1 and 6.2, ∆Sales(Department,Area) is 0.5 (i.e. 1−

2/4), and 0.33 (i.e. 1− 2/3) for ∆Transaction(Department,Area). In other words, 33% of

the members of Department in the Sales data mart have no match in the level Area of

Transaction.

Pre-calculation of loss ratios for all levels and their combinations is useful for considera-

135 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

tion during the integration. Figure 6.3 shows the absolute ratios calculated for all combina-

tions of levels with respect to the Sales data mart shown in Figure 6.3(a), and with respect

to Transaction data mart shown in Figure 6.3(b), and based on their instances in Tables 6.1

and 6.2.

Department

Product_Category

Product_Id

(0.5)

(0.56)

(0.74)

(0.56)

(0.21)

(0.21)

(0.74)

Product Dimension

(a) Loss ratios for Product dimension
in Sales data mart.

Department

Product_Category

Product_Id

(0.33)

(0.43)

(0.64)

(0.43)

(0.33)

(0.33)

(0.64)

Item Dimension

(b) Loss ratios for Item dimension
in Transaction data mart.

Figure 6.3: Absolute loss ratios for levels of Product and Item dimension tables.

6.4 Relative Loss Ratio

Not all members of levels have a corresponding fact in their fact table. The relative loss ratio

excludes those tuples of a dimension table that do not refer to any tuple in the fact table.

Therefore, this ratio is either the same or less than the absolute loss ratio for the same pair

of levels.

Unlike absolute loss ratio where users are interested in the complete set of members, rel-

ative loss ratio is applicable to where we are more interested in the measures than matching

members of levels. The following relational algebra shows calculation of relative loss ratio

(δDM) with respect to a data mart (DM). F and F′ are fact tables to which D and D′ refer to

136 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

respectively.

δDM(D(Ai : li), D′(A′ : l′j)) = 1−

∣∣∣πAi(D ./ F) ∩ πA′j
(D′ ./ F′)

∣∣∣
|πAi(D ./ F)|

Consider Tables 6.3 and 6.4 as some instances of the two schemas in Figures 6.1 and 6.2.

For simplicity, Sales data mart (represented as data cube C1) is summarized over State,

Product Category and Invoice No, and Transaction data mart (represented as data cube

C2) is summarized over State, Item Category and Accessory Code. It is assumed that

there were no sales made for products in the state of Vic and, hence, they do not appear in

Sales data mart. The relative loss ratios calculated for the two combinable levels (State,

Area) and (Product Category,Item Category), and their combinations are shown below in

Figure 6.4. No partial order relationship is assumed between these two levels.

State

Product_Category

(0.0)

(0.33)

(0.33)

Sales Data Mart

(a) Relative Loss ratios for some combinable levels
in Sales data mart.

Teritory

Item_Category

(0.0)

(0.43)

(0.43)

Transaction Data Mart

(b) Relative Loss ratios for some combin-
able levels in Transaction data mart.

Figure 6.4: Relative loss ratios for some combinable levels from Sales and Transaction data marts.

Compared to absolute loss ratio (shown in Figure 6.3), the relative loss for (Product

Category,Item Category) is less for the same levels, and there is no loss for (State,Area)

with respect to either of the two data marts.

137 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

State Product Category Invoice No Invoice Amt

NSW White Goods INV0077 800

NSW White Goods INV0088 900

NSW Television/TV INV0099 1200

NSW Television/TV INV0012 1400

NSW Television/TV INV0014 2100

SA PC INV0016 1100

SA PC INV0018 1200

SA Digital Keyboard INV0032 1300

SA Digital Keyboard INV0034 3100

NT Lounge INV0036 4200

NT Lounge INV0038 1900

NT Recliner INV0042 1800

NT Recliner INV0044 600

Table 6.3: Sales data mart, an instance of the schema in Figure 6.1.

State Item Category Accessory Code Accessory Cost

SA PC A#0010 150

SA PC A#0022 50

SA PC A#0023 55

SA Digital Keyboard A#0044 70

SA Digital Keyboard A#0056 60

NSW Electrical Cables A#0060 10

NSW Electrical Cables A#0025 100

NSW White Goods A#0035 50

NSW White Goods A#0015 20

NSW Television/TV A#0040 60

NSW Television/TV A#0090 70

WA Office Chair A#0011 10

WA Office Chair A#0012 10

NT Cabinet A#0019 20

NT Cabinet A#0077 30

Table 6.4: Transaction data mart, an instance of the schema in Figure 6.1.

6.5 Constrained Loss Ratio

If there is still unacceptable loss using the relative loss ratios, then we can consider cus-

tomized lossless expressions for different levels. The loss ratio calculated after applying

such expressions is a constrained loss ratio (denoted by χDM), and can be based on the abso-

lute or relative loss ratio. For example, members of Quarter in Sales may be Q1,Q2,Q3,Q4,

but 1 2,3,4 as members of the same level in Transaction data mart. In this case, a con-

138 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

straint such as σ
(substring(Sales.Time.Quarter,2,1))(Sales.Time) can eliminate the loss.

A similar application of the constrained loss ratio is to use expressions that align the do-

mains of levels and, thereby, reduce their loss ratio. For example, given the level PostCode,

and the level Locality which includes a combinations of city and post code, we can have

an expression that derives PostCode from Locality making the two levels to have a sound

matching.

6.6 Exploiting Dimension Hierarchies for Calculation of Loss Ratios

In calculating the loss ratio for all levels and dimensions, we can exploit dimension hierar-

chies to save in calculations.

Lemma 6.1. Given the coherent and consistent matching µ between the two dimension tables D1

and D2 over their matching levels L = l1, l2, ..., ln and L′ = l′1, l′2, ..., l′n, the loss ratios for the two

dimension tables using all of their combinable levels from the root of their hierarchies down to the

matching levels li and lj is equal to the loss ratios for li and lj.

Proof. There are two scenarios to consider:

• There are members of li and lj that do not match, but their parent members at some

levels of L and L′ do match. This case will not affect the result since the mismatch

between li and lj is taken into consideration anyhow.

• There are members of li and lj that do match but their parent members at some levels

of L and L′ do not match. This case is not possible, otherwise, the matching between

the two levels will not be consistent.

139 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

The two levels li and lj may be base levels in which case the loss for these levels is the

same as the loss for their respective dimension tables. If we roll-up measures to a higher

level, then it is considered the new base level. This will give us a loss ratio that is bound to

be less than or equal to the loss ratio at a lower level. This can be easily seen by the proof of

Lemma 6.1. By doing so, we raise the granularity of data, but we are more likely to have a

lossless integration.

It is also possible to calculate loss ratio for a combination of levels between which there

may or may not be a partial order relationship. For example, levels from Product/Item and

Location dimension tables do not necessarily have a partial order relationship between

them. In this case, where in the formula, we calculate the number of common values of

attributes, we require that all of the values of matching attributes match. For example,

using Department, Product Category and Product Id, the absolute loss ratio is 0.74 (that is

1− 5/19) for the Sales data mart and 0.64 (that is 1− 5/14) for the Transaction data mart.

The above is also applicable to situations where the levels in the source or target data

marts belong to different dimension tables. Calculation of loss ratios at each level of a hi-

erarchy as well as, for different combination of levels, provides users with the information

they need to perform the slice, dice and roll-up operations to have a potentially lossless

integration.

Whilst, absolute and relative loss ratios can be used before and during the integration

and visualization, the expressions used to calculate constrained loss ratios are more easily

discovered by using OLAP operations during the visualization. In Section 6.8.1, it is shown

how loss ratios can be included in the visualization of the integrated data to guide these

140 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

operations.

6.7 Extending Drill-Across to Non-Combinable Levels

The main motivation for extending drill-across is to extend the data analysis space by in-

cluding the data corresponding to the non-combinable levels and linking them to the com-

mon data. The non-compatible levels are those whose attributes were found to be mis-

matching during the schema matching, or were found to be causing incoherence for the

inferred hierarchies. Consider C1, tuples of a fact table F that refers to p dimension tables

and is summarized over s levels, with its first k attributes corresponding to combinable lev-

els. F has i measures (m):

C1 = γ(A1,...,Ak ,Ak+1,...,As),Sum(m1,...,mi)(D1 ./ F, ...Dp ./ F).

The symbol γ denotes summarization. Similarly, C2 represents tuples of a fact table F′

with q dimension tables summarized over t levels, with its first k attributes corresponding

to combinable levels. F′ has j measures (n):

C2 = γ(A′1,...,A′k ,A′k+1,...,A′t),Sum(n1,...,nj)(D′1 ./ F, ...D′q ./ F′).

Resulting from drill-across between the two data marts owning F and F′, is the inte-

grated fact table X whose tuples are obtained through a natural join using the combinable

levels: X = πA1,...,Ak ,Sum(m1,...,mi ,n1,...,nj)σA1=A′1,...,Ak=A′k
(C1 ./ C2).

We propose to extend drill-across to also return C1′ and C2′ which are subsets of C1 and

C2, being restricted to matching members of combinable levels, and summarized over their

non-combinable levels: C1′ = γ(Ak+1,...,As),Sum(m1,...,mi) and C2′ = γ(A′k+1,...,A′t),Sum(n1,...,nj).

Figure 6.5 is a visualization of drill-across between the two data marts represented as

141 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

data cubes C1 and C2. The result X includes the combined measures summarized over the

combinable levels (State /Area) and (Product Category /Item Category).

NSW

SA

NT

NSW

SA

W
hi

te
 G

oo
ds

Te
le

vi
si

on
/T

V

D
ig

ita
l K

ey
bo

ar
d

PC

C2’

C2
C1

C1’

X

Figure 6.5: Extending drill-across.

For simplicity, let us assume that the matching members of the k combinable levels are

in the first g tuples of X = {x1, ..., xg} being x1 =< v1,1, ..., v1,k >, ..., xg =< vn,1, ..., vg,k >,

where v denotes value of the dimension attribute, with its first subscript referring to the

attribute, and its second subscript referring to the value of the attribute. Each tuple in X

relates to some tuples in C1′, and some tuples in C2′, that is:

x1 : πAk+1,...,As , Sum(m1, ..., mi) σA1=v1,1,...,Ak=v1,k , ...,

xg : πAk+1,...,As , Sum(m1, ..., mi) σA1=vg,1,...,Ak=vg,k and

x1 : πA′k+1,...,A′t , Sum(n1, ..., nj) σA′1=v1,1,...,A′k=v1,k
, ...,

xg : πA′k+1,...,A′t , Sum(n1, ..., nj) σA′1=vg,1,...,A′k=vg,k

142 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

The symbol ”:” is means ”relates to”.

Example 6.1. Given the sample data in Tables 6.1,6.2, the common data X is:

State/Area Product Category/Item Category Invoice Amt Accessory Cost

NSW Television/TV 4700 130

NSW White Goods 1700 70

SA PC 2300 255

SA Digital Keyboard 4400 130

Table 6.5: Data related to combinable levels.

A given tuple < SA, PC > in the combined data area (X) relates to the following tuples from C1′

representing the data related to a non-combinable level Invoice No from the Sales data mart, and

to C2′ the data related to a non-combinable level Accessory Code in the Transaction data mart:

Invoice No Invoice Amt
INV0016 1100
INV0018 1200

Accessory Code Accessory Cost
A#0010 150
A#0022 50
A#0023 55

Table 6.6: Data related to non-combinable levels.

6.8 Visualizing the Extended Drill-Across

The benefit of extending drill-across is only realized if the device for visualizing multidi-

mensional data can support it. In this section, we describe at a conceptual level how these

three related data, namely the common data X and the data related to the non-combinable

levels (i.e. C1′ and C2′), can be shown using pivot tables.

A pivot table is a tabular representation of multidimensional data. Although, more flex-

ible data structures such as trees would be more suitable to visualize multidimensional data

[Vinnik and Mansmann, 2006], for simplicity, we use pivot tables to show X, C1′ and C2′.

143 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

We propose that the visualization of multidimensional data using pivot tables includes a

Parent Pivot Table (PPT) corresponding to X, and multiple Child Pivot Tables corresponding

to sub-cubes of C1′ and C2′. For each tuple in the PPT, there are one, or more tuples in each

of the CPTs. In this respect, there is a nested relation between the tuples represented by the

parent and child pivot tables.

Figure 6.6 shows a conceptual layout of nested pivot tables related to the three areas of

data. Highlighted areas show one tuple from the common data (X) linked to some tuples

from C1′ and C2′.

PPT (X)
State
/Area

Product Category
/Item Category Invoice Amt Accessory Cost CPTs () CPTs ()

Invoice No Invoice Amt Accessory Code Accessory Cost
INV0077 800 A#0035 50
INV0088 900 A#0015 20
Total 1700 Total 70

Invoice No Invoice Amt Accessory Code Accessory Cost
INV0099 1200 A#0040 60
INV0012 1400 A#0090 70
INV0014 2100 Total 130
Total 4700

Total 6400 200 6400 200

Invoice No Invoice Amt Accessory Code Accessory Cost
INV0016 1100 A#0010 150
INV0018 1200 A#0022 50
Total 2300 A#0023 55

Total 255

Invoice No Invoice Amt Accessory Code Accessory Cost
INV0032 1300 A#0044 70
INV0034 3100 A#0056 60
Total 4400 Total 130

Total 6700 385 6700 385
Total 13100 585 13100 585

Digital Keyboard 4400 130

NSW

SA

White Goods

Television - TV

1700 70

4700 130

PC 2300 255

,...12′C,...11′C

Figure 6.6: Nesting pivot tables.

OLAP operations such as slicing, dicing, roll-up, and roll-in against the PPT will require

re-grouping of data in CPTs. Any OLAP operation against the CPT does not affect the PPT,

144 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

however, the same operation has to be applied against the remaining sibling CPTs.

6.8.1 Inclusion of Loss Ratio in Visualization of Multidimensional Data

Inclusion of loss ratio during the visualization of integrated results enables users to interac-

tively select lossless fragments of data through OLAP operations roll-up, slice and dice.

For example, Figure 6.7 shows relative loss ratios for State and Product Category in-

dividually, and also for both of them. It also shows the constrained loss ratios where

State/Area is restricted to a certain member.

State/Area Product Category/Item Category

Invoice Amt Accessory Cost
White Goods 1700 70

4700 130

Total 6400 200

Total 6700 385
Total 13100 585

2300 255

4400 130

NSW
Television - TV

SA PC

Digital Keyboard

43.0))_,_(Pr),,((
,33.0))_,_(Pr),,((

=
=

CategoryItemCategoryoductAreaState
CategoryItemCategoryoductAreaState

nTransactio

Sales

δ
δ

25.0),(
,0),(
=

=
AreaState

AreaState

nTransactio

Sales

δ
δ

43.0)_,_(
,33.0)_,_(

=
=

CategoryItemCategoryroductP
CategoryItemCategoryroductP

nTransactio

Sales

δ
δ

33.0)_,_(
,0)_,_(
=

=
CategoryItemCategoryroductP

CategoryItemCategoryroductP

nTransactio

Sales

χ
χ

0)_,_(
,0)_,_(
=

=
CategoryItemCategoryroductP

CategoryItemCategoryroductP

nTransactio

Sales

χ
χ

Figure 6.7: Exploiting loss ratios during the data visualization.

The example shows that there is no loss related to the Sales data mart when using both

levels. Also, if we we restrict the State/Area to SA, then there is no loss related to either

data marts for the level Product Category/Item Category.

145 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

6.9 Discussion

In this chapter, the concept of combinable dimension tables was introduced. It has similar

requirements to dimension compatibility, but does not require soundness, and therefore,

extends the scope of integrating data marts. The main motivation is to empower users to

manage the soundness and maximize the scope of the integrated data.

As discussed in Section 2.4.2, Torlone’s definition of µ-compatible dimensions provides

limited flexibility for extending the scope of the integration, but remains restrictive and dif-

ficult to use because: (i) it still makes soundness (in some limited way) to be a pre-condition

for compatibility as a requirement for accurate integration; (ii) it is difficult to find and

formulate lossless expressions before the integration; (iii) there may be many lossless ex-

pressions for different levels with coherent and consistent matchings; (iv) the concern for

loss of data may be limited to only one of the data marts; (v) the loss may have no impact

on the accuracy of aggregated measures.

Therefore, upfront application of a single pair of expressions cannot be effective. In-

stead, combinable levels and methods for calculating the loss ratio were introduced. These

measures are used to calculate three types of measures of loss resulting from integration

of non-combinable levels. They guide the user determine where lossless integration can be

achieved using roll-up, slice, dice or a combination of these operations.

Whilst, expressions that correspond to these operations can be applied before the inte-

gration, they are more effectively exploited when applied interactively during the visual-

ization of the integrated data. This is particularly true with constrained loss ratio which

requires discovery of lossless expressions.

146 (March 10, 2013)

CHAPTER 6. EXTENDING THE SCOPE OF INTEGRATION

The operation drill-across was extended to return the data related to non-combinable

levels to relate them to the common data. The motivation for this extension is to be able

to analyze the common and related exclusive data together. The extended operation for

relational tables was described using relational algebra, future work is required to define

the extended drill-across for MOLAP databases.

A conceptual view of how pivot tables could be extended to support the extended drill-

across was discussed. Future work is however, required to apply the extension to more

suitable visualization techniques.

Beyond the use of loss ratio to maximize the scope of the integration, they could be

also effective if used in matching Star schemas. In Section 2.1.2, we explained that in simi-

larity flooding algorithm, the initial similarity values for each pair of nodes (that is tables,

columns, indexes, etc.) is obtained using the similarity between their labels. A more attrac-

tive alternative is to include the use of similarity ratio (that is 1− ∆) for the initial similarity

value between dimension attributes. Future work is required to investigate the effectiveness

of this approach.

147 (March 10, 2013)

Chapter 7

Conclusions and Future Work

”Be yourself and think for yourself; and while your conclusions may not be in-

fallible, they will be nearer right than the conclusions forced upon you.”

Elbert Hubbard (1856 - 1915)

In this thesis, we have taken several key steps towards automating the integration of

multidimensional databases. The proposed solutions empower data analysts to reduce their

reliance on experts such as database practitioners and developers, and therefore, reduce

costs, and shorten the time required to deliver integrated data to data analysts. In this

section, we summarize our key findings and contributions, and discuss directions for future

work.

148 (March 10, 2013)

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1 Representation and Matching of Star Schemas

We started with schema matching for Star schemas in Chapter 3. We emphasized that al-

though Star schemas are in fact relational schemas, their distinct and predictable properties

allow us describe them more precisely. The immediate benefits of a more precise descrip-

tion of Star schemas are that it makes them more understandable by humans and provides

a more clear mapping to the structure of multidimensional data.

A more significant benefit is that we are able to get improved results with matching of

Star schemas. We extended the relational properties with properties of Star schemas, and

provided a description of Star schemas using UML diagram as well as OWL language. We

referred to this extended representation as StarMod. We used the UML version for visual

description of StarMod and the OWL version for automating the schema matching process.

We described a set of rules which we use to infer instances of the OWL version of Star-

Mod from relational schemas. For this purpose, we have implemented the inference rules in

XML transformation language (XSLT). OWL schemas are then further transformed to RDF

statements used by similarity flooding algorithm for matching.

To demonstrate that using instances of StarMod improves the match results of Star

schemas, we ran experiments using 18 pairs of Star and non-Star schemas. We repeated

our experiments against both specifications of the same schemas (i.e. using the relational

properties as well as StarMod). We used similarity flooding, a well known graph matching

algorithm because it provided flexible representation of the schemas using RDF, and a basic

implementation of it was available to use.

Our experiments show consistently higher accuracy when using StarMod compared

149 (March 10, 2013)

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

with using basic relational properties. They also show that StarMod can be effective in

matching arbitrary relational schemas.

We then compared the match results obtained from using relational as well as StarMod

against those of COMA++ which is also a well known schema matching algorithm for re-

lational schemas. We found that although COMA outperforms similarity flooding when

using relational properties, it fails to outperform similarity flooding using StarMod. This

raises the opportunity for future work to examine improving COMA++ by using StarMod

properties.

Increase in the number of distinct properties resulting from the specialization of the

properties adds to the computation time, future work is required to measure the impact.

Discovery of StarMod properties such as degenerate dimensions and facts using physical

properties is imprecise and requires additional semantic information. This would reduce

the number of false positive and false negative cases. At the same time, instances of StarMod

implemented using OWL language have the potential to be augmented with additional

domain ontologies to help infer those properties more accurately and precisely.

7.2 Inferring Aggregation Hierarchies

A precursor to instance matching is the availability of aggregation hierarchies. The absence

of a standard representation of these hierarchies as part of schema definition is the main rea-

son why they may not be available. It is even less likely for these hierarchies to be available

for heterogeneous dimensions.

In Chapter 4, we introduced algorithms to infer aggregation hierarchies from data. The

150 (March 10, 2013)

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

problem with other sources of information such as domain ontologies, UML schemas and

ER diagrams is that they may not be available either, or may return false negative partial

order relationships. The fact that hierarchies are enforced either by the application or the

data base management system (DBMS) makes the data to be indicative of its structure.

The first part of our proposed process to infer hierarchies is the identification of the par-

tial order relationships between every pair of dimension attributes. The result will include

redundant transitive relationships which we eliminate in the second phase of the process.

Some dimension attributes have identical relationship with all other attributes. As part of

the final phase, we group such attributes into a single level and assign distinct levels to the

remaining dimension attributes.

If a dimension is only partially populated, we may find partial order relationships that

are, in fact false and, hence, the partial order relationships in intended hierarchies are always

subsets of those in inferred hierarchies. Consequently, inferred aggregation hierarchies sub-

sume the intended hierarchies.

This leads us to the conclusion that if the matching is compatible using the inferred

hierarchies, then it must be also compatible using the intended hierarchies. Therefore, using

the inferred hierarchies would be sufficient to validate the matching between dimensions in

terms of coherence and consistency.

Presence of false spurious partial order relationships may falsely result in the match-

ings to be found incoherent and/or inconsistent. What is however critical is that where we

do proceed with the integration based on the inferred hierarchies, the integrated result is

accurate.

151 (March 10, 2013)

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

A limitation of our approach is that it does not cover rare cases where a level is a com-

position of multiple dimension attributes. For example, there may be no partial order re-

lationship between dimension attributes State, Locality and Postcode, but there may be

one between State and {Locality, Postcode}. Using data alone to discover such levels

is not sufficient because we may group unrelated attributes into a level. Future work could

consider using both, domain information as well as data to identify such levels.

7.3 Instance Matching

The schema match results and dimension hierarchies are keys to identifying matching mem-

bers in matching levels. In Chapter 5, we addressed the problem of instance matching for

dimension tables. We explained that the hierarchical structure of multidimensional data

provides significant clues to identifying matching members and, hence, we are interested in

algorithms that exploit hierarchies.

We demonstrated through experiments with real life data that similarity flooding algor-

ithm was very effective in matching instances of dimensions because the algorithm effec-

tively exploits the hierarchical relationship between levels. In fact, compared with our ex-

perience with using similarity flooding for schema matching, we found that this algorithm

is far more effective in matching instances of dimensions.

We argued that where original dimensions are strict, any non-strict case resulting from

the integration is more likely to be due to incorrect instance matching results. This meant

that we could enforce strictness and reduce the number of false positive cases at the same

time. Our first algorithm in this section was designed to achieve this objective.

152 (March 10, 2013)

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

A side effect of using algorithms that exploit hierarchies is that the number of false

positive cases increases with the increase in missing matching members in either of the

instances. Our second algorithm addresses this problem by discarding those suggested

matchings whose similarity scores as well as match factors of their parent matching pairs

(in the connectivity graph) are outlier values. To calculate the match factor, we take into

consideration, the number of matching pairs at the child and at the leaf levels. This is based

on the intuition that accidental matching pairs contribute much less to the similarity scores

of their descendants and ascendants.

Our experiments show that where the volume of missing data is not significant, the

first algorithm is able to improve the precision with little impact on the recall despite SF

performing well with very high precision and recall values. They also show that where the

problem of missing data is significant, similarity flooding does not perform as well. This is

where our second algorithm is able to improve the result significantly.

Our experiments also show that similarity flooding does not perform as well where there

are multiple hierarchies in a dimension. Future work is required to investigate instance

matching algorithms that recognize and exploit multiple hierarchies.

It was shown that our second algorithm can have a negative impact on the recall value.

This occurs where the problem associated with missing data is not significant. Future work

is required to improve the calculation of the match factor and identify possible relation-

ship(s) between the threshold we use in the second algorithm, and the values of precision

and recall.

153 (March 10, 2013)

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.4 Extending the Scope of Integration

In the previous chapters, we proposed methods for matching Star schemas and their in-

stances, and for inferring aggregation hierarchies. These methods provide the necessary

information to establish what is compatible between dimensions and what is not. The com-

patible dimensions form the basis for the integration of data marts using the drill-across

operation. In this chapter, we have taken further steps towards the extending the scope of

the integration beyond the compatible dimensions.

First, we relaxed the requirements for compatibility, and introduced combinable levels

and dimensions. For the matching between levels to be combinable we require that the

matching between them is coherent and consistent only. The definition of µ-compatible

dimensions offers some relief for soundness, but is not sufficient as it considers a single pair

of lossless expressions for the integration to be accurate.

Second, to exploit lossless fragments of integrated data, we proposed several methods

for measuring the loss resulting from the absence of soundness. These measures are used

to guide the user in performing OLAP operations such as roll-up, slice and dice to identify

lossless fragments of data.

As for levels that are not combinable or have no match, they are still valuable data that

need to be linked to the common data. Existing navigation (or integration) operator drill-

across only returns data related to combinable levels. Third, we extend the operation drill-

across to also return the data related to non-combinable levels.

The benefit of the extended drill-across is only realized if the visualization of multidi-

mensional data supports it. It was shown in Chapter 6 (at a conceptual level), that this could

154 (March 10, 2013)

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

be achieved by nesting pivot tables which include a parent pivot table for the common data

and multiple child pivot tables for the data related to non-combinable levels.

We described the extended operation of drill-across in relational algebra for ROLAP

databases. Future work is required to provide a formal framework for MOLAP databases,

and to consider more sophisticated graphical techniques to show the data related to com-

binable and non-combinable levels in separate panes (or windows), and at the same time

enable OLAP operations against one pane to be cascaded to other dependent panes.

Future direction would include a framework that brings these solutions together, and

use a web service enabled discovery and retrieval of heterogeneous data marts.

In summary, our contributions help shift the problem of integrating heterogeneous data

marts away from experts to data analysts. This will reduce costs and significantly saves

time to deliver the integrated data to data analysts which will in turn allow the business to

react to events promptly.

155 (March 10, 2013)

Appendix A

Instructions to Participants for

Matching Schemas

This appendix contains instructions to the participants in the manual matching of schemas.

156 (March 10, 2013)

APPENDIX A. INSTRUCTIONS TO PARTICIPANNTS for MATCHING SCHEMAS

 157 (August 11, 2012)

Dear Participant,

Thank you for participating in this experiment. Please refer to the document entitled

“Plain Language Statement”, if you wish to read again what is expected from you and

what your rights are.

This document contains the following pages:

 Page 1 (This page): instructions and Introduction

 Page 2: A sample schema matching task to help you fill in the match results

table

Instructions:

By now you have signed and returned the consent form. Following is a summary of

steps you need to take:

1. There are six tasks in your package. Each task has two parts:

a. The first part requires you to study the two schemas appearing in page 1

of every task. You are then required to fill in a table that appears on page

2 of every task. You will use this table to record the best match

candidates.

b. The second part also appears on page 2. It requires you to respond to 3

multiple choice questions about the task itself.

2. Return the answer sheet to the principal investigator using the envelope provided

to you.

Important: Please note the following concerning the schema matching tasks:

 Your match results must cover columns as well as tables.

 A column/table in the schema on the left hand side may not match with any

column/table from the schema on the right hand side, in which case no entry is

required in the match results table.

 A column/table in the schema on the left hand side may match with none, one or

more column or table in the schema on the right hand side.

 If a column/table in the schema on the left hand side matches with more than

one column/table from the schema on the right hand side, then they must be

listed separately in the match result table. Please refer to the sample schema

matching task on next page.

APPENDIX A. INSTRUCTIONS TO PARTICIPANNTS for MATCHING SCHEMAS

 158 (August 11, 2012)

Explanation of the notations used for the relationships in the models:

Parent

Table

Child

Table

For every row in the parent table there may be zero, one or more rows in the child table.

The foreign key column in the child table is part of the primary key (i.e. identifying

relationship).

Parent

Table

Child

Table

 For every row in the parent table there may be zero, one or more rows in the child

table. The foreign key column in the child table is not part of the primary key (i.e. non-

identifying relationship).

Appendix B

Schemas for Evaluation of StarMod

This appendix contains details of the schemas provided to the participants to match manu-

ally. Each of the 18 pairs of the schemas are identified using a reference name also used in

chapter 3 for reference purpose. The visual representation and the DDL of each schema is

provided.

159 (March 10, 2013)

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

160 (August 11, 2012)

Pair 1

Left Hand Schema Id: M7L

Model:

DDL:

1 CREATE TABLE M07L.PERSONNEL (

2 PNO INTEGER NOT NULL PRIMARY

KEY,

3 PNAME CHAR(40),

4 DEPT CHAR(40),

5 BORN DATE,

6 PRIMARY KEY (PNO)

);

Right Hand Schema Id: M7R

Model:

DDL:

a CREATE TABLE M7R.DEPARTMENT (

b DEPTNO INTEGER NOT NULL ,

c DEPTNAME VARCHAR(70),

d PRIMARY KEY (DEPTNO));

e CREATE TABLE M7R.EMPLOYEE (

f EMPNO INTEGER NOT NULL ,

g EMPNAME VARCHAR(50) ,

h DEPTNO INTEGER ,

i SALARY DECIMAL(15,2) ,

j BIRTHDATE DATE,

 PRIMARY KEY (EMPNO),

 FOREIGN KEY (DEPTNO)

 REFERENCES M7R.DEPARTMENT

);

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

161 (August 11, 2012)

Pair 2

Left Hand Schema Id: M8L

Model:

DDL:

1 CREATE TABLE M8L.ADDRESS (

2 ID INTEGER NOT NULL PRIMARY

KEY,

3 STREET CHAR(40),

4 CITY CHAR(40),

5 POSTALCODE INTEGER);

6 CREATE TABLE M8L.PROFESSOR (

7 ID INTEGER NOT NULL PRIMARY

KEY,

8 NAME CHAR(40),

9 SAL DOUBLE,

10 ADDR INT ,

 FOREIGN KEY (ADDR) REFERENCES

 M8L.ADDRESS(ID));

11 CREATE TABLE M8L.STUDENT (

12 NAME CHAR(40),

13 GPA DOUBLE,

14 YR INTEGER);

15 CREATE TABLE M8L.PAYRATE (

16 RANK INTEGER NOT NULL PRIMARY

KEY,

17 HRRATE DOUBLE);

18 CREATE TABLE M8L.WORKSON (

19 NAME CHAR(40),

20 PROJ CHAR(40),

21 HRS INTEGER,

22 PROJRANK INT,

FOREIGN KEY (PROJRANK) REFERENCES

M8L.PAYRATE(RANK));

Right Hand Schema Id: M9R

Model:

DDL:

a CREATE TABLE M9R.PERSONNEL (

b ID INTEGER NOT NULL PRIMARY

KEY,

c NAME CHAR(40),

d SAL DOUBLE,

e ADDR CHAR(40)

);

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

162 (August 11, 2012)

Pair 3

Left Hand Schema Id: R05

Model:

DDL:

1 CREATE TABLE R05.REF_ACCOUNT_TYPES (

2 ACCOUNT_TYPE_CODE CHAR(4) NOT NULL,

3 ACCOUNT_DESCRIPTION VARCHAR(40),

 PRIMARY KEY (ACCOUNT_TYPE_CODE));

4 CREATE TABLE R05.ACCOUNT (

5 ACCOUNT_ID INTEGER NOT NULL,

6 ACCOUNT_TYPE_CODE CHAR(4) NOT NULL,

7 ACCOUNT_NAME VARCHAR(50),

8 DATE_OPENED DATE,

9 DATE_CLOSED DATE,

 PRIMARY KEY (ACCOUNT_ID),

 FOREIGN KEY (ACCOUNT_TYPE_CODE) REFERENCES

 R05.REF_ACCOUNT_TYPES);

10 CREATE TABLE R05.ACCOUNT_BALANCE (

11 ACCOUNT_ID INTEGER NOT NULL,

12 DATE_BALANCE DATE NOT NULL,

13 AMT_BALANCE_HOLDS DOUBLE PRECISION,

14 BALANCE_AVAILABLE DOUBLE PRECISION,

15 BALANCE_ADJUSTED DOUBLE PRECISION,

16 BALANCE_CLOSING DOUBLE PRECISION,

 PRIMARY KEY (ACCOUNT_ID, DATE_BALANCE),

 FOREIGN KEY (ACCOUNT_ID) REFERENCES R05.ACCOUNT);

17 CREATE TABLE R05.ACCOUNT_TRANSACTIONS (

18 ACCOUNT_ID INTEGER NOT NULL,

19 DATE_BALANCE DATE NOT NULL,

20 TRANSACTION_NUMBER INTEGER NOT NULL,

21 CREDIT_DEBIT_FLAG CHAR(1),

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

163 (August 11, 2012)

22 TX_AMOUNT DOUBLE PRECISION,

 PRIMARY KEY (ACCOUNT_ID, DATE_BALANCE, TRANSACTION_NUMBER),

 FOREIGN KEY (ACCOUNT_ID, DATE_BALANCE) REFERENCES

 R05.ACCOUNT_BALANCE);

Pair 3

Right Hand Schema Id: R05A

Model:

DDL:

a CREATE TABLE R05A.ACCOUNT_HIST (

b ACC_ID INTEGER NOT NULL,

c BALANCE_DATE DATE NOT NULL,

d ACC_BALANCE_AMT DOUBLE PRECISION,

e CLOSING_BAL_AMT DOUBLE PRECISION,

f ADJ_BAL_AMT DOUBLE PRECISION,

g ACCOUNT_TYPE_CODE CHAR(4),

 PRIMARY KEY (ACC_ID, BALANCE_DATE));

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

164 (August 11, 2012)

Pair 4

Left Hand Schema Id: M8L

As per left hand schema of pair 2.

Right Hand Schema Id: M8R

Model:

DDL:

a CREATE TABLE M8R.PROFESSOR (

b ID INTEGER NOT NULL PRIMARY KEY,

c NAME CHAR(40),

d SALARY DOUBLE,

e ADDRESS CHAR(40)

);

f CREATE TABLE M8R.STUDENT (

g NAME CHAR(40),

h GRADEPOINTAVERAGE DOUBLE,

i YEAR INTEGER

);

j CREATE TABLE M8R.WORKSON (

k STUDENTNAME CHAR(40),

l PROJECT CHAR(40),

m EXPENSES DOUBLE

);

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

165 (August 11, 2012)

Pair 5

Left Hand Schema Id: R01

Model:

DDL:

1 CREATE TABLE R01.CUSTOMER (

2 CUSTOMER_ID INTEGER NOT NULL,

3 FIRST_NAME VARCHAR(30),

4 LAST_NAME VARCHAR(40),

5 TITLE CHAR(4),

6 EMAIL_ADDRESS VARCHAR(40),

7 PHONE_NUMBER VARCHAR(20),

8 ADDRESS_LINE_1 VARCHAR(60),

9 CITY VARCHAR(30),

10 STATE VARCHAR(30),

 PRIMARY KEY (CUSTOMER_ID));

11 CREATE TABLE R01.MODEL (

12 MODEL_CODE CHAR(5) NOT NULL,

13 DAILY_HIRE_RATE DECIMAL(5,2),

14 MODEL_NAME VARCHAR(40),

 PRIMARY KEY (MODEL_CODE));

15 CREATE TABLE R01.MANUFACTURER (

16 MANUFACTURER_CODE CHAR(5) NOT NULL,

17 MANUFACTURER_NAME VARCHAR(40),

18 PRIMARY KEY (MANUFACTURER_CODE));

19 CREATE TABLE R01.CAR (

20 LICENCE_NUMBER VARCHAR(15) NOT NULL,

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

166 (August 11, 2012)

21 CUSTOMER_ID INTEGER,

22 MODEL_CODE CHAR(5),

23 CURRENT_MILEAGE INTEGER,

24 ENGINE_SIZE DECIMAL(3,2),

25 MANUFACTURER_CODE CHAR(5),

 PRIMARY KEY (LICENCE_NUMBER),

 FOREIGN KEY (CUSTOMER_ID) REFERENCES R01.CUSTOMER,

 FOREIGN KEY (MODEL_CODE) REFERENCES R01.MODEL,

 FOREIGN KEY (MANUFACTURER_CODE) REFERENCES R01.MANUFACTURER);

26 CREATE TABLE R01.BOOKING (

27 BOOKING_ID INTEGER NOT NULL,

28 CUSTOMER_ID INTEGER,

29 LICENCE_NUMBER VARCHAR(15),

30 DATE_OF_SERVICE DATE,

31 PAYMENT_RECEIVED DOUBLE,

 PRIMARY KEY (BOOKING_ID),

 FOREIGN KEY (LICENCE_NUMBER) REFERENCES R01.CAR,

 FOREIGN KEY (CUSTOMER_ID) REFERENCES R01.CUSTOMER);

Pair 5

Right Hand Schema Id: R02

Model:

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

167 (August 11, 2012)

DDL:

a CREATE TABLE R02.CAR_MODELS (

b MODEL_CODE CHAR(4) NOT NULL,

c MODEL_NAME VARCHAR(30),

d MANUFACTURE_YEAR SMALLINT,

 PRIMARY KEY (MODEL_CODE));

e CREATE TABLE R02.CAR_MANUFACTURERS (

f MANUFACTURER_SHORT_NAME VARCHAR(10) NOT NULL,

g MANUFACTURER_FULL_NAME VARCHAR(40),

 PRIMARY KEY (MANUFACTURER_SHORT_NAME));

h CREATE TABLE R02.CARS_FOR_SALE (

i CAR_FOR_SALE_ID INTEGER NOT NULL,

j ASKING_PRICE DOUBLE PRECISION,

k MODEL_CODE CHAR(4),

l CURRENT_MILEAGE INTEGER,

m MANUFACTURER_SHORT_NAME VARCHAR(10),

n DATE_ACQUIRED DATE,

o REGISTRATION_YEAR SMALLINT,

 PRIMARY KEY (CAR_FOR_SALE_ID),

 FOREIGN KEY (MODEL_CODE) REFERENCES R02.CAR_MODELS,

 FOREIGN KEY (MANUFACTURER_SHORT_NAME) REFERENCES

 R02.CAR_MANUFACTURERS);

p CREATE TABLE R02.CUSTOMERS (

q CUSTOMER_ID INTEGER NOT NULL,

r CAR_MOBILE_PHONE VARCHAR(20),

s EMAIL_ADDRESS VARCHAR(40),

 PRIMARY KEY (CUSTOMER_ID));

t CREATE TABLE R02.CARS_SOLD (

u CAR_FOR_SALE_ID INTEGER,

v CUSTOMER_ID INTEGER NOT NULL,

w AGREED_PRICE DOUBLE PRECISION,

x DATE_SOLD DATE,

y MONTHLY_PAYMENT_AMOUNT DOUBLE PRECISION,

 PRIMARY KEY (CUSTOMER_ID),

 FOREIGN KEY (CAR_FOR_SALE_ID) REFERENCES R02.CARS_FOR_SALE,

 FOREIGN KEY (CUSTOMER_ID) REFERENCES R02.CUSTOMERS);

z CREATE TABLE R02.ADDRESS (

aa ADDRESS_ID INTEGER NOT NULL,

bb CUSTOMER_ID INTEGER NOT NULL,

cc ADDRESS_LINE_1 VARCHAR(60),

dd TOWN_CITY VARCHAR(30),

ee STATE_COUNTY_PROVINCE VARCHAR(40),

ff COUNTRY VARCHAR(40),

gg POSTAL_ZIP_CODE VARCHAR(15),

 PRIMARY KEY (CUSTOMER_ID, ADDRESS_ID),

 FOREIGN KEY (CUSTOMER_ID) REFERENCES R02.CUSTOMERS);

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

168 (August 11, 2012)

Pair 6

Left Hand Schema Id: R03

Physical Model:

DDL:

1 CREATE TABLE R03.BOOKS (

2 BOOK_ID INTEGER NOT NULL,

3 ISBN VARCHAR(30),

4 TITLE VARCHAR(40),

5 BOOK_PUBLICATION_DATE DATE,

 PRIMARY KEY (BOOK_ID));

6 CREATE TABLE R03.CUSTOMERS (

7 CUSTOMER_ID INTEGER NOT NULL,

8 CUSTOMER_CODE CHAR(3),

9 CUSTOMER_NAME VARCHAR(30),

10 CUSTOMER_ADDRESS VARCHAR(80),

11 CUSTOMER_PHONE VARCHAR(20),

12 CUSTOMER_EMAIL VARCHAR(20),

 PRIMARY KEY (CUSTOMER_ID));

13 CREATE TABLE R03.ORDER_ITEMS (

14 ITEM_NUMBER SMALLINT NOT NULL,

15 BOOK_ID INTEGER NOT NULL,

16 CUSTOMER_ID INTEGER NOT NULL,

17 AGREED_PRICE DOUBLE PRECISION,

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

169 (August 11, 2012)

 PRIMARY KEY (ITEM_NUMBER),

 FOREIGN KEY (BOOK_ID) REFERENCES

 R03.BOOKS,

 FOREIGN KEY (CUSTOMER_ID) REFERENCES

 R03.CUSTOMERS);

18 CREATE TABLE R03.CONTACTS (

19 CONTACT_ID INTEGER NOT NULL,

20 CONTACT_FIRST_NAME VARCHAR(30),

21 CONTACT_LAST_NAME VARCHAR(30),

22 CONTACT_WORK_PHONE_NUMBER VARCHAR(20),

23 CONTACT_CELL_PHONE_NUMBER VARCHAR(20),

 PRIMARY KEY (CONTACT_ID));

24 CREATE TABLE R03.AUTHORS (

25 AUTHOR_ID INTEGER NOT NULL,

26 AUTHOR_FIRST_NAME VARCHAR(40),

27 AUTHOR_INITALS CHAR(2),

28 AUTHOR_LAST_NAME VARCHAR(40),

 PRIMARY KEY (AUTHOR_ID));

Pair 6

Right Hand Schema Id: R06

Physical Model:

DDL:

a CREATE TABLE R06.PRODUCTS (

b PRODUCT_ID INTEGER NOT NULL,

c PRODUCT_PRICE DOUBLE PRECISION,

d BOOK_ISBN VARCHAR(30),

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

170 (August 11, 2012)

e BOOK_AUTHOR VARCHAR(40),

f PUBLICATION_DATE DATE,

g BOOK_TITLE VARCHAR(40),

h FOOD_NAME VARCHAR(30),

i FOOD_DESCRIPTION VARCHAR(60),

j FOOD_FLAVOR VARCHAR(20),

 PRIMARY KEY (PRODUCT_ID));

k CREATE TABLE R06.CUSTOMERS (

l CUSTOMER_ID INTEGER NOT NULL,

m FIRST_NAME VARCHAR(30),

n LAST_NAME VARCHAR(30),

o CUSTOMER_PHONE VARCHAR(20),

p CUSTOMER_EMAIL VARCHAR(30),

 PRIMARY KEY (CUSTOMER_ID));

q CREATE TABLE R06.CUSTOMER_ORDER (

r CUSTOMER_ID INTEGER NOT NULL,

s ORDER_ID CHAR(10) NOT NULL,

t DATE_ORDER_PAID DATE,

u ORDER_PRICE DOUBLE PRECISION,

 PRIMARY KEY (ORDER_ID),

 FOREIGN KEY (CUSTOMER_ID) REFERENCES

 R06.CUSTOMERS);

v CREATE TABLE R06.CUSTOMER_ORDERS_PRODUCT (

w ORDER_ID CHAR(10) NOT NULL,

x PRODUCT_ID INTEGER NOT NULL,

y QUANTITY SMALLINT,

 PRIMARY KEY (ORDER_ID, PRODUCT_ID),

 FOREIGN KEY (PRODUCT_ID) REFERENCES

 R06.PRODUCTS,

 FOREIGN KEY (ORDER_ID) REFERENCES

 R06.CUSTOMER_ORDER);

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

171 (August 11, 2012)

Pair 7

Left Hand Schema Id: R06

As pair right hand schema of pair 6.

Pair 7

Right Hand Schema Id: R07

Physical Model:

DDL:

a CREATE TABLE R07.CLIENT (

b CUSTOMER_ID INTEGER NOT NULL,

c CUSTOMER_CODE CHAR(4),

d CUSTOMER_NAME CHARACTER(30),

e CUSTOMER_ADDRESS VARCHAR(120),

f CUSTOMER_PHONE CHAR(10),

g CUSTOMER_EMAIL VARCHAR(15),

 PRIMARY KEY (CUSTOMER_ID));

h CREATE TABLE R07.PUBLISHER (

i PUBLISHER_CODE CHAR(4) NOT NULL,

j PUBLISHER_NAME VARCHAR(40),

 PRIMARY KEY (PUBLISHER_CODE));

k CREATE TABLE R07.PUBLISHER_ADDRESS (

l PUBLISHER_CODE CHAR(4) NOT NULL,

m DATE_ADDRESS_FROM DATE NOT NULL,

n DATE_ADDRESS_TO DATE,

o ADDRESS_LINE_1 VARCHAR(80)

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

172 (August 11, 2012)

 PRIMARY KEY (PUBLISHER_CODE, DATE_ADDRESS_FROM),

 FOREIGN KEY (PUBLISHER_CODE) REFERENCES R07.PUBLISHER);

p CREATE TABLE R07.BOOK (

q BOOK_ID INTEGER NOT NULL,

r PUBLISHER_CODE CHAR(4),

s BOOK_TITLE VARCHAR(40),

t BOOK_PRICE DECIMAL(6,2),

u PUBLICATION_DATE DATE,

 PRIMARY KEY (BOOK_ID),

 FOREIGN KEY (PUBLISHER_CODE) REFERENCES R07.PUBLISHER);

v CREATE TABLE R07.AUTHOR (

w AUTHOR_ID INTEGER NOT NULL,

x AUTHOR_FIRST_NAME VARCHAR(30),

y AUTHOR_INITIALS CHAR(3),

z AUTHOR_LAST_NAME CHARACTER(30),

 PRIMARY KEY (AUTHOR_ID));

aa CREATE TABLE R07.BOOK_AUTHOR (

bb BOOK_ID INTEGER NOT NULL,

cc AUTHOR_ID INTEGER NOT NULL,

dd SEQ_NO SMALLINT,

 PRIMARY KEY (BOOK_ID, AUTHOR_ID, SEQ_NO),

 FOREIGN KEY (BOOK_ID) REFERENCES R07.BOOK,

 FOREIGN KEY (AUTHOR_ID) REFERENCES R07.AUTHOR);

Pair 8

Left Hand Schema Id: R07

AS per right hand schema of pair 7.

Pair 8

Right Hand Schema Id: R03

As per left hand schema of pair 6.

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

173 (August 11, 2012)

Pair 9

Left Hand Schema Id: R08A

Physical Model:

DDL:

1 CREATE TABLE R08A.REF_CARD_TYPE (

2 CARD_TYPE_CODE CHAR(1) NOT NULL,

3 CARD_TYPE_DESCRIPTION VARCHAR(40),

4 DEBIT_AMOUNT DOUBLE PRECISION,

 PRIMARY KEY (CARD_TYPE_CODE));

5 CREATE TABLE R08A.CUSTOMER (

6 CUSTOMER_ID INTEGER NOT NULL,

7 CUSTOMER_NAME CHARACTER(40),

8 CUSTOMER_PHONE CHAR(10),

9 CUSTOMER_EMAIL VARCHAR(30),

10 CUSTOMER_ADDRESS VARCHAR(80),

 PRIMARY KEY (CUSTOMER_ID));

11 CREATE TABLE R08A.CUSTOMER_CARD (

12 CARD_ID INTEGER NOT NULL,

13 CUSTOMER_ID INTEGER NOT NULL,

14 CARD_NUMBER CHARACTER(28),

15 DATE_VALID_FROM DATE,

16 DATE_VALID_TO DATE,

17 CARD_TYPE_CODE CHAR(1) NOT NULL,

 PRIMARY KEY (CARD_ID),

 FOREIGN KEY (CARD_TYPE_CODE) REFERENCES R08A.REF_CARD_TYPE,

 FOREIGN KEY (CUSTOMER_ID) REFERENCES R08A.CUSTOMER);

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

174 (August 11, 2012)

18 CREATE TABLE R08A.ACCOUNT (

19 ACCOUNT_ID INTEGER NOT NULL,

20 ACCOUNT_NAME VARCHAR(40),

21 CUSTOMER_ID INTEGER NOT NULL,

 PRIMARY KEY (ACCOUNT_ID),

 FOREIGN KEY (CUSTOMER_ID) REFERENCES R08A.CUSTOMER);

22 CREATE TABLE R08A.FINANCIAL_TRANSACTION (

23 TRANSACTION_ID VARCHAR(20) NOT NULL,

24 CARD_ID INTEGER NOT NULL,

25 TRANSACTION_AMOUNT DOUBLE PRECISION,

26 ACCOUNT_ID INTEGER NOT NULL,

27 TRANSACTION_DATE DATE,

 PRIMARY KEY (TRANSACTION_ID),

 FOREIGN KEY (CARD_ID) REFERENCES R08A.CUSTOMER_CARD,

 FOREIGN KEY (ACCOUNT_ID) REFERENCES R08A.ACCOUNT);

Pair 9

Right Hand Schema Id: R08B

Physical Model:

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

175 (August 11, 2012)

DDL:

a CREATE TABLE R08B.APPLICANT (

b APPLICANT_ID INTEGER NOT NULL,

c APPLICANT_NAME VARCHAR(40),

d APPLICANT_SEX CHAR(1),

e APPLICANT_PHONE VARCHAR(15),

f APPLICANT_ADDRESS VARCHAR(80),

 PRIMARY KEY (APPLICANT_ID));

g CREATE TABLE R08B.CARD_TYPE (

h CARD_TYPE CHAR(1) NOT NULL,

i CARDTYPE_LIMIT DOUBLE PRECISION,

 PRIMARY KEY (CARD_TYPE));

j CREATE TABLE R08B.CARD (

k CARD_NUMBER VARCHAR(28) NOT NULL,

l CARD_EXPIRE_DATE DATE,

m APPLICANT_ID INTEGER NOT NULL,

n CARD_DEBT DOUBLE PRECISION,

o CARD_TYPE CHAR(1) NOT NULL,

p CARD_CASH_DOLLAR DOUBLE PRECISION,

 PRIMARY KEY (CARD_NUMBER),

 FOREIGN KEY (APPLICANT_ID) REFERENCES R08B.APPLICANT,

 FOREIGN KEY (CARD_TYPE) REFERENCES R08B.CARD_TYPE);

q CREATE TABLE R08B.PAYMENT (

r PAYMENT_TYPE CHAR(1) NOT NULL,

s PAYMENT_DESCRIPTION VARCHAR(40),

 PRIMARY KEY (PAYMENT_TYPE));

t CREATE TABLE R08B.TRANSACTION (

u TRANSACTION_ID VARCHAR(20) NOT NULL,

v CARD_NUMBER VARCHAR(28) NOT NULL,

w TRANSACTION_DATE DATE,

x TRANSACTION_AMOUNT DOUBLE PRECISION,

 PAYMENT_TYPE CHAR(1) NOT NULL,

 PRIMARY KEY (TRANSACTION_ID),

 FOREIGN KEY (CARD_NUMBER) REFERENCES R08B.CARD,

 FOREIGN KEY (PAYMENT_TYPE) REFERENCES R08B.PAYMENT);

y CREATE TABLE R08B.STATEMENT (

z STATEMENT_NUMBER INTEGER NOT NULL,

aa CARD_NUMBER VARCHAR(28) NOT NULL,

bb STATEMENT_DATE DATE,

cc TRANSACTION_ID VARCHAR(20) NOT NULL,

dd STATEMENT_PAYMENT DOUBLE PRECISION,

 PRIMARY KEY (STATEMENT_NUMBER),

 FOREIGN KEY (CARD_NUMBER) REFERENCES R08B.CARD);

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

176 (August 11, 2012)

Pair 10

Left Hand Schema Id: PP1

MAKE

MAKE_ID: CHAR(10)

MAKE_NAME: VARCHAR(40)

MODEL

MODEL_ID: CHAR(8)

MODEL_NAME: VARCHAR(40)

FISCAL_CAL

YEAR_MONTH: DECIMAL(6)

FISCAL_YEAR: SMALLINT

FISCAL_MONTH: SMALLINT

DEALER

DEALER_ID: INTEGER

DEALER_NAME: VARCHAR(40)

DELIVERY_FINAL_COST: INTEGER

MONTHLY_SALES

YEAR_MONTH: DECIMAL(6) (FK)

DEALER_ID: INTEGER (FK)

MAKE_ID: CHAR(10) (FK)

MODEL_ID: CHAR(8) (FK)

SALES_QTY: INTEGER

SALES_AMT: INTEGER

GST_STATUS_CODE: CHAR(2)

EXT_ACC_NO: INTEGER

MONTHLY_ADS_COST: INTEGER

DDL

1 CREATE TABLE PP1.FISCAL_CAL (

2 YEAR_MONTH DECIMAL(6,0) NOT NULL ,

3 FISCAL_YEAR SMALLINT ,

4 FISCAL_MONTH SMALLINT),

 PRIMARY KEY (YEAR_MONTH);

5 CREATE TABLE PP1.MAKE (

6 MAKE_ID CHAR(10) NOT NULL ,

7 MAKE_NAME VARCHAR(40),

 PRIMARY KEY (MAKE_ID));

8 CREATE TABLE PP1.MODEL (

9 MODEL_ID CHAR(8) NOT NULL ,

10 MODEL_NAME VARCHAR(40),

 PRIMARY KEY (MODEL_ID));

11 CREATE TABLE PP1.DEALER (

12 DEALER_ID SMALLINT NOT NULL ,

13 DEALER_NAME VARCHAR(40) ,

14 DELIVERY_FINAL_COST INTEGER,

 PRIMARY KEY (DEALER_ID));

-- The key values for the DEALER_ID are generated by the Database Manager

-- sequentially starting from 1 and incremented by 1 for each row.

 ALTER COLUMN DEALER_ID

 GENERATED ALWAYS AS IDENTITY START WITH 1, INCREMENT BY 1

15 CREATE TABLE PP1.MONTHLY_SALES (

16 YEAR_MONTH DECIMAL(6,0) NOT NULL ,

17 MAKE_ID CHAR(10) NOT NULL ,

18 MODEL_ID CHAR(8) NOT NULL ,

19 DEALER_ID SMALLINT NOT NULL ,

20 SALES_QTY SMALLINT ,

21 SALES_AMT INTEGER ,

22 MONTHLY_ADS_CST INTEGER ,

23 GST_STATUS_CODE CHAR(2) ,

24 EXT_ACC_NO INTEGER,

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

177 (August 11, 2012)

 PRIMARY KEY (YEAR_MONTH, DEALER_ID, MODEL_ID, MAKE_ID),

 FOREIGN KEY (YEAR_MONTH) REFERENCES PP1.FISCAL_CAL (YEAR_MONTH),

 FOREIGN KEY (MAKE_ID) REFERENCES PP1.MAKE (MAKE_ID),

 FOREIGN KEY (MODEL_ID) REFERENCES PP1.MODEL (MODEL_ID),

 FOREIGN KEY (DEALER_ID) REFERENCES PP1.DEALER (DEALER_ID));

Pair 10

Right Hand Schema Id: PP2

CAR_MAKE

CAR_MAKE: CHAR(10)

CAR_MAKE_DESC: VARCHAR(40)

CAR_MODE

CAR_MODEL: CHAR(8)

CAR_MODEL_DESC: VARCHAR(40)

CAR_DEALER

DEALER_KEY: INTEGER

DEALER_NM: VARCHAR(40)

SALES_RNK: SMALLINT

FISCAL_CAL

FIN_YEAR_MONTH: INTEGER

FIN_YEAR: INTEGER

FIN_MONTH: INTEGER

CAR_SALES

FIN_YEAR_MONTH: INTEGER (FK)

CAR_MAKE: CHAR(10) (FK)

CAR_MODEL: CHAR(8) (FK)

DEALER_KEY: INTEGER (FK)

FIN_COST: INTEGER

SALES_AMOUNT: INTEGER

SOLD_QTY: SMALLINT

MTH_AD: INTEGER

DDL

a CREATE TABLE PP2.FINANCIAL_CAL (

b FIN_YEAR_MONTH INTEGER NOT NULL ,

c FIN_YEAR INTEGER ,

d FIN_MONTH SMALLINT,

 PRIMARY KEY (FIN_YEAR_MONTH)

);

e CREATE TABLE PP2.CAR_DEALER (

f DEALER_KEY SMALLINT NOT NULL ,

g DEALER_NM VARCHAR(40) ,

h SALES_RNK SMALLINT,

 PRIMARY KEY (DEALER_KEY)

);

-- The key values for the DEALER_KEY are generated by the Database

-- Manager and sequentially starting from 1 and incremented by 1 for

-- each row.

 ALTER COLUMN DEALER_KEY

 GENERATED ALWAYS AS IDENTITY START WITH 1, INCREMENT BY 1

i CREATE TABLE PP2.CAR_MAKE (

j CAR_MAKE CHAR(10) NOT NULL ,

k CAR_MAKE_DESC VARCHAR(40),

 PRIMARY KEY (CAR_MAKE)

);

l CREATE TABLE PP2.CAR_MODEL (

m CAR_MODEL CHAR(8) NOT NULL ,

n CAR_MODEL_DESC VARCHAR(40),

 PRIMARY KEY(CAR_MODEL)

);

o CREATE TABLE PP2.CAR_SALES (

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

178 (August 11, 2012)

p FIN_YEAR_MONTH INTEGER NOT NULL,

q DEALER_KEY SMALLINT NOT NULL,

r CAR_MODEL CHAR(8) NOT NULL,

s CAR_MAKE CHAR(10) NOT NULL,

t FIN_COST INTEGER NOT NULL,

u SALES_AMOUNT INTEGER NOT NULL,

v MONTH_AD INTEGER NOT NULL,

w SOLD_QTY SMALLINT NOT NULL,

 FOREIGN KEY (DEALER_KEY) REFERENCES PP2.CAR_DEALER (DEALER_KEY),

 FOREIGN KEY (CAR_MODEL) REFERENCES PP2.CAR_MODEL(CAR_MODEL),

 FOREIGN KEY (CAR_MAKE) REFERENCES PP2.CAR_MAKE (CAR_MAKE),

 FOREIGN KEY (FIN_YEAR_MONTH) REFERENCES

 PP2.FINANCIAL_CAL(FIN_YEAR_MONTH)

);

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

179 (August 11, 2012)

Pair 11

Left Hand Schema Id: T01A:

DDL

1 CREATE TABLE T01A.AUTO_DEALER (

2 DEALER_ID INTEGER NOT NULL,

3 DEALER_INFORMATION VARCHAR(100) NOT NULL,

 PRIMARY KEY (DEALER_ID));

4 CREATE TABLE T01A.AUTO_MAKE (

5 MAKE_ID CHAR(8) NOT NULL,

6 MAKE_NAME VARCHAR(20),

 PRIMARY KEY (MAKE_ID);

7 CREATE TABLE T01A.AUTO_MODEL (

8 MODEL_ID CHAR(8) NOT NULL,

9 MODEL_NAME VARCHAR(30),

10 PRIMARY KEY (MODEL_ID));

11 CREATE TABLE T01A.DATE (

12 MONTH_YEAR DECIMAL(6) NOT NULL,

13 FISCAL_YEAR SMALLINT NOT NULL,

14 CALENDAR_YEAR SMALLINT NOT NULL,

15 MONTH_NAME CHARACTER(10) NOT NULL,

 PRIMARY KEY (MONTH_YEAR));

16 CREATE TABLE T01A.MONTHLY_AUTO_SALES (

17 MONTH_YEAR DECIMAL(6) NOT NULL,

18 DEALER_ID INTEGER NOT NULL,

19 MAKE_ID CHAR(8) NOT NULL,

20 MODEL_ID CHAR(8) NOT NULL,

21 AUTO_SALES_QUANTITY INTEGER NOT NULL,

22 AUTO_SALES_AMOUNT INTEGER NOT NULL,

23 OBJECTIVE_SALES_AMOUNT INTEGER,

24 OBJECTIVE_SALES_QUANTITY INTEGER,

 PRIMARY KEY (MAKE_ID, MONTH_YEAR, DEALER_ID, MODEL_ID),

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

180 (August 11, 2012)

 FOREIGN KEY (MODEL_ID) REFERENCES T01A.AUTO_MODEL,

 FOREIGN KEY (DEALER_ID) REFERENCES T01A.AUTO_DEALER,

 FOREIGN KEY (MONTH_YEAR) REFERENCES T01A.DATE,

 FOREIGN KEY (MAKE_ID) REFERENCES T01A.AUTO_MAKE);

Pair 11

Right Hand Schema Id: T01B:

DDL

a CREATE TABLE T01B.DATE (

b MONTH_YEAR INTEGER NOT NULL,

c FISCAL_YEAR SMALLINT,

d CALENDAR_YEAR SMALLINT,

e MONTH_NAME CHAR(10),

 PRIMARY KEY (MONTH_YEAR));

f CREATE TABLE T01B.DEALER (

g DEALER_ID SMALLINT NOT NULL,

h DEALER_NAME VARCHAR(40),

i DEALER_CITY VARCHAR(40),

j DEALER_STATE VARCHAR(40),

k CLIENT_HOLD_INDICATOR CHAR(1),

l WHOLSESALE_RETAIL_INDICATOR CHAR(1),

 PRIMARY KEY (DEALER_ID));

m CREATE TABLE T01B.MMSC (

n MAKE_ID CHAR(6) NOT NULL,

o MODEL_ID CHAR(6) NOT NULL,

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

181 (August 11, 2012)

p SERIES_ID CHAR(10) NOT NULL,

q COLOR_ID CHAR(10) NOT NULL,

r MAKE_NAME VARCHAR(40),

s MODEL_NAME VARCHAR(40),

t SERIES_NAME VARCHAR(40),

u COLOR_NAME VARCHAR(40),

v MONTH_YEAR DECIMAL(6),

 PRIMARY KEY (MAKE_ID, MODEL_ID, SERIES_ID, COLOR_ID));

w CREATE TABLE T01B.MONTHLY_AUTO_SALES (

x MAKE_ID CHAR(6) NOT NULL,

y MODEL_ID CHAR(6) NOT NULL,

z SERIES_ID CHAR(10) NOT NULL,

aa COLOR_ID CHAR(10) NOT NULL,

bb MONTH_YEAR INTEGER NOT NULL,

cc DEALER_ID SMALLINT NOT NULL,

dd AUTO_SALES_AMOUNT DECIMAL(11,2),

ee OBJECTIVE_SALES_QUANTITY SMALLINT,

ff INVENTORY_VALUE_AMOUNT DECIMAL(11,2),

gg OBJECTIVE_SALES_AMOUNT DECIMAL(11,2),

hh CREDIT_HOLD_DAYS INTEGER,

ii INVENTORY_QUANTITY SMALLINT,

 PRIMARY KEY (MONTH_YEAR, DEALER_ID, MAKE_ID, MODEL_ID,

 SERIES_ID, COLOR_ID),

 FOREIGN KEY (MAKE_ID, MODEL_ID, SERIES_ID, COLOR_ID)

 REFERENCES MMSC,

 FOREIGN KEY (DEALER_ID) REFERENCES T01B.DEALER,

 FOREIGN KEY (MONTH_YEAR) REFERENCES T01B.DATE);

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

182 (August 11, 2012)

Pair 12

Left Hand Schema Id: T07A

DDL
1 CREATE TABLE T07A.CUSTOMER (

2 CUSTOMER_ID INTEGER NOT NULL,

3 ACCOUNT_NUM DOUBLE NOT NULL,

4 LNAME VARCHAR(100) ,

5 FNAME VARCHAR(50) ,

6 MI VARCHAR(20) ,

7 ADDRESS1 VARCHAR(100) NOT NULL,

8 ADDRESS2 VARCHAR(100) ,

9 ADDRESS3 VARCHAR(100) ,

10 ADDRESS4 VARCHAR(100) NOT NULL,

11 CITY VARCHAR(50) NOT NULL,

12 STATE_PROVINCE VARCHAR(50) NOT NULL,

13 POSTAL_CODE CHAR(6) NOT NULL,

14 COUNTRY VARCHAR(50) NOT NULL,

15 CUSTOMER_REGION_ID INTEGER NOT NULL,

16 PHONE1 VARCHAR(16) NOT NULL,

17 PHONE2 VARCHAR(16) NOT NULL,

18 BIRTHDATE DATE NOT NULL,

19 MARITAL_STATUS CHAR(1) NOT NULL,

20 TOTAL_CHILDREN SMALLINT NOT NULL,

21 NUM_CHILDREN_AT_HOME SMALLINT NOT NULL,

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

183 (August 11, 2012)

22 EDUCATION VARCHAR(30) NOT NULL,

23 DATE_ACNT_OPENED DATE NOT NULL,

24 MEMBER_CARD VARCHAR(50) NOT NULL,

25 OCCUPATION VARCHAR(50) NOT NULL,

26 HOUSEOWNER CHAR(1) NOT NULL,

27 NUM_CARS_OWNED SMALLINT NOT NULL,

 PRIMARY KEY (CUSTOMER_ID)) ;

28 CREATE TABLE T07A.PRODUCT (

29 PRODUCT_ID INTEGER NOT NULL,

30 PRODUCT_CLASS_ID INTEGER NOT NULL,

31 BRAND_NAME VARCHAR(40) NOT NULL,

32 PRODUCT_NAME VARCHAR(40) NOT NULL,

33 SKU DOUBLE NOT NULL,

34 SRP DOUBLE NOT NULL,

35 GROSS_WEIGHT DOUBLE NOT NULL,

36 NET_WEIGHT DOUBLE ,

37 RECYCLANLE_PACKAGE CHAR(1) ,

38 LOW_FAT CHAR(1) ,

39 UNITS_PER_CASE SMALLINT NOT NULL,

40 CASES_PER_PALLET SMALLINT NOT NULL,

41 SHELF_WIDTH FLOAT ,

42 SHELF_HEIGHT SMALLINT NOT NULL,

43 SHELF_DEPTH SMALLINT NOT NULL,

 PRIMARY KEY (PRODUCT_ID)) ;

44 CREATE TABLE T07A.PROMOTION (

45 PROMOTION_ID INTEGER NOT NULL,

46 PROMOTION_DISTRICT_ID INTEGER NOT NULL,

47 PROMOTION_NAME VARCHAR(40) NOT NULL,

48 MEDIA_TYPE VARCHAR(2) NOT NULL,

49 COST DOUBLE NOT NULL,

50 START_DATE DATE NOT NULL,

51 END_DATE DATE NOT NULL ,

 PRIMARY KEY (PROMOTION_ID)) ;

52 CREATE TABLE T07A.STORE (

53 STORE_ID INTEGER NOT NULL,

54 STORE_TYPE CHAR(4) ,

55 REGION_ID INTEGER NOT NULL,

56 STORE_NAME VARCHAR(40) ,

57 STORE_NUMBER NAME VARCHAR(10) NOT NULL,

58 STORE_STREET_ADDRESS VARCHAR(120) NOT NULL,

59 STORE_CITY VARCHAR(50) ,

60 STORE_STATE VARCHAR(50) ,

61 STORE_POSTAL_CODE CHAR(6) ,

62 STORE_COUNTRY VARCHAR(50) ,

63 STORE_MANAGER VARCHAR(16) ,

64 STORE_PHONE VARCHAR(16) ,

65 STORE_FAX VARCHAR(16) ,

66 FIRST_OPENED_DATE DATE ,

67 LAST_REMODEL_DATE DATE ,

68 LEASE_SQFT DOUBLE ,

69 STORE_SQFT DOUBLE NOT NULL,

70 GROCERY_SQFT DOUBLE,

71 FROZEN_SQFT DOUBLD ,

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

184 (August 11, 2012)

72 MEAT_SQFT DOUBLE ,

73 COFFEE_BAR CHAR(1) ,

74 VIDEO_STORE CHAR(1) ,

75 SALAD_BAR CHAR(1) ,

76 PREPARED_FOOD CHAR(1) ,

77 FLORIST CHAR(1) ,

 PRIMARY KEY (STORE_ID)) ;

78 CREATE TABLE T07A.TIME_BY_DAY (

79 TIME_ID INTEGER NOT NULL,

80 THE_DATE DATE NOT NULL,

81 THE_DAY VARCHAR(15) ,

82 THE_MONTH VARCHAR(15) ,

83 THE_YEAR SMALLINT NOT NULL,

84 DAY_OF_MONTH SMALLINT ,

85 WEEK_OF_YEAR SMALLINT NOT NULL,

86 MONTH_OF_YEAR SMALLINT NOT NULL,

87 QUARTER CHAR(2) NOT NULL,

88 FISCAL_PERIOD DATE NOT NULL ,

 PRIMARY KEY (TIME_ID)) ;

89 CREATE TABLE T07A.SALES (

90 STORE_SALES DOUBLE NOT NULL,

91 STORE_COST DOUBLE NOT NULL,

92 UNIT_SALES DOUBLE NOT NULL,

93 STORE_ID INTEGER ,

94 PRODUCT_ID INTEGER ,

95 PROMOTION_ID INTEGER ,

96 CUSTOMER_ID INTEGER ,

97 TIME_ID INTEGER ,

 FOREIGN KEY (STORE_ID) REFERENCES T07A.STORE(STORE_ID) ,

 FOREIGN KEY (PRODUCT_ID) REFERENCES T07A.PRODUCT(PRODUCT_ID) ,

 FOREIGN KEY (PROMOTION_ID) REFERENCES T07A.PROMOTION(PROMOTION_ID),

 FOREIGN KEY (CUSTOMER_ID) REFERENCES T07A.CUSTOMER(CUSTOMER_ID) ,

 FOREIGN KEY (TIME_ID) REFERENCES T07A.TIME_BY_DAY(TIME_ID));

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

185 (August 11, 2012)

Pair 12

Right Hand Schema Id: T09A

DDL

a CREATE TABLE T09A.ON_SALE (

b PRODUCT_KEY INTEGER NOT NULL,

c SKU_NUMBER INTEGER,

d DESCRIPTION VARCHAR(80),

e BRAND VARCHAR(20),

f CATEGORY VARCHAR(30),

g PACKAGE_TYPE CHAR(3),

 PRIMARY KEY (PRODUCT_KEY));

h CREATE TABLE T09A.PRODUCT_SALES (

i QTY_RECEIVED SMALLINT,

j PRODUCT_KEY INTEGER,

k QTY_LOST SMALLINT,

l QTY_DAMAGED SMALLINT,

m UNIT_COST DECIMAL(11,2),

n UNIT_LIST_PRICE DECIMAL(11,2),

 FOREIGN KEY (PRODUCT_KEY) REFERENCES T09A.ON_SALE);

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

186 (August 11, 2012)

Pair 13

Left Hand Schema Id: A01

DDL

1 CREATE TABLE A01.DEMAND_TYPE (

2 DEMAND_ID CHAR(4) NOT NULL,

3 DEMAND_DESCRIPTION VARCHAR(40),

 PRIMARY KEY (DEMAND_ID));

4 CREATE TABLE A01.CLAIM_STAT (

5 STATUS_KEY SMALLINT NOT NULL,

6 STATUS_CODE CHAR(4),

7 STATUS_DESCRIPTTION VARCHAR(40),

8 STATUS_DATE_FROM DATE,

9 STATUS_DATE_TO DATE,

 PRIMARY KEY (STATUS_KEY));

10 CREATE TABLE A01.PRODUCT (

11 PRODUCT_KEY SMALLINT NOT NULL,

12 PRODUCT_CAT CHAR(5),

13 PRODUCT_SUB_CAT CHAR(5),

14 PRODUCT_NAME VARCHAR(40),

 PRIMARY KEY (PRODUCT_KEY));

15 CREATE TABLE A01.LOCATION (

16 LOCATION_KEY SMALLINT NOT NULL,

17 STATE_NO SMALLINT,

18 STATE_NAME VARCHAR(20),

 PRIMARY KEY (LOCATION_KEY));

19 CREATE TABLE A01.CALENDAR (

20 CALENDAR_KEY DATE NOT NULL,

21 CALENDAR_YEAR SMALLINT,

22 CALENDAR_MONTH SMALLINT,

23 CALENDAR_DAY SMALLINT,

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

187 (August 11, 2012)

24 WEEK_OF_MONTH SMALLINT,

25 QUARTER_NUMBER SMALLINT,

 PRIMARY KEY (CALENDAR_KEY));

26 CREATE TABLE A01.CLAIM (

27 PRODUCT_KEY SMALLINT NOT NULL,

28 LOCATION_KEY SMALLINT NOT NULL,

29 CALENDAR_KEY DATE NOT NULL,

30 CLAIM_NO integer NOT NULL,

31 DEMAND_ID CHAR(4) NOT NULL,

32 STATUS_KEY SMALLINT NOT NULL,

33 SETTLEMENT_AMT DECIMAL(11,2),

34 DEMANDED_AMT DECIMAL(11,2),

35 RECEIVED_AMT DECIMAL(11,2),

36 RECOVERED_AMT DECIMAL(11,2),

37 INSERT_TIMESTAMP TIMESTAMP,

 PRIMARY KEY (PRODUCT_KEY, LOCATION_KEY, CALENDAR_KEY,

 CLAIM_NO),

 FOREIGN KEY (DEMAND_ID) REFERENCES A01.DEMAND_TYPE,

 FOREIGN KEY (STATUS_KEY) REFERENCES A01.CLAIM_STAT,

 FOREIGN KEY (PRODUCT_KEY) REFERENCES A01.PRODUCT,

 FOREIGN KEY (LOCATION_KEY) REFERENCES A01.LOCATION,

 FOREIGN KEY (CALENDAR_KEY) REFERENCES A01.CALENDAR);

Pair 13

Right Hand Schema Id: A02

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

188 (August 11, 2012)

DDL

a CREATE TABLE A02.CLAIM_HIST (

b CLAIM_HIST_KEY INTEGER NOT NULL,

c SETTLEMENT_DTE DATE,

d RECEIVED_DTE DATE,

e RECOVERED_DTE DATE,

f DEMANDED_DTE DATE,

 PRIMARY KEY (CLAIM_HIST_KEY));

g CREATE TABLE A02.PRODUCT_REFERENCE (

h PRODUCT_HIERARCHY_KEY SMALLINT NOT NULL,

i PRODUCT_CLASS CHAR(4),

j PRODUCT_SUBCLASS CHAR(5),

k PRODUCT_DESCRIPTIVE_NAME VARCHAR(40),

 RIMARY KEY (PRODUCT_HIERARCHY_KEY));

l CREATE TABLE A02.CLAIM_ITEM_STATUS (

m CLAIM_ITEM_STATUS_KEY SMALLINT NOT NULL,

n CLAIM_ITEM_STATUS_CODE CHAR(4),

o CLAIM_ITEM_STATUS_DESC VARCHAR(40),

p DATE_VALID_FROM DATE,

q DATE_VALID_TO DATE,

 PRIMARY KEY (CLAIM_ITEM_STATUS_KEY));

r CREATE TABLE A02.LOCALITY (

s LOCALITY_KEY SMALLINT NOT NULL,

t STATE_NBR SMALLINT,

u STATE_NAME VARCHAR(20),

v BRANCH_NAME VARCHAR(30),

 PRIMARY KEY (LOCALITY_KEY));

w CREATE TABLE A02.DATES (

x DATE_KEY DATE NOT NULL,

y YEAR SMALLINT,

z MONTH SMALLINT,

aa DAY SMALLINT,

bb MONTH_COUNT SMALLINT,

cc QUARTER SMALLINT,

 PRIMARY KEY (DATE_KEY));

dd CREATE TABLE A02.CLM_DEMAND (

ee PRODUCT_HIERARCHY_KEY SMALLINT NOT NULL,

ff LOCALITY_KEY SMALLINT NOT NULL,

gg DEMAND_SENT_DATE DATE NOT NULL,

hh CLAIM_NUM INTEGER NOT NULL,

ii CLAIM_HIST_KEY INTEGER,

jj CLAIM_ITEM_STATUS_KEY SMALLINT NOT NULL,

kk DEMAND_SETTLED_AMOUNT DECIMAL(11,2),

ll DEMAND_RECEIVED_AMOUNT DECIMAL(11,2),

mm DEMAND_RECOVERED_AMOUNT DECIMAL(11,2),

nn NO_CLAIMS SMALLINT,

oo LOAD_TIMESTAMP TIMESTAMP,

 PRIMARY KEY (PRODUCT_HIERARCHY_KEY, LOCALITY_KEY,

 DEMAND_SENT_DATE, CLAIM_NUM),

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

189 (August 11, 2012)

 FOREIGN KEY (CLAIM_HIST_KEY) REFERENCES A02.LATEST_DEMAND,

 FOREIGN KEY (PRODUCT_HIERARCHY_KEY) REFERENCES A02.PRODUCT_REFERENCE,

 FOREIGN KEY (CLAIM_ITEM_STATUS_KEY) REFERENCES A02.CLAIM_ITEM_STATUS,

 FOREIGN KEY (LOCALITY_KEY) REFERENCES A02.LOCALITY,

 FOREIGN KEY (DEMAND_SENT_DATE) REFERENCES A02.DATES);

Pair 14

Left Hand Schema Id: T02A

DDL

1 CREATE TABLE A01.DEMAND_TYPE (

2 DEMAND_ID CHAR(4) NOT NULL,

3 DEMAND_DESCRIPTION VARCHAR(40),

 PRIMARY KEY (DEMAND_ID));

4 CREATE TABLE A01.CLAIM_STAT (

5 STATUS_KEY SMALLINT NOT NULL,

6 STATUS_CODE CHAR(4),

7 STATUS_DESCRIPTTION VARCHAR(40),

8 STATUS_DATE_FROM DATE,

9 STATUS_DATE_TO DATE,

 PRIMARY KEY (STATUS_KEY));

10 CREATE TABLE A01.PRODUCT (

11 PRODUCT_KEY SMALLINT NOT NULL,

12 PRODUCT_CAT CHAR(5),

13 PRODUCT_SUB_CAT CHAR(5),

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

190 (August 11, 2012)

14 PRODUCT_NAME VARCHAR(40),

 PRIMARY KEY (PRODUCT_KEY));

15 CREATE TABLE A01.LOCATION (

16 LOCATION_KEY SMALLINT NOT NULL,

17 STATE_NO SMALLINT,

18 STATE_NAME VARCHAR(20),

 PRIMARY KEY (LOCATION_KEY));

19 CREATE TABLE A01.CALENDAR (

20 CALENDAR_KEY DATE NOT NULL,

21 CALENDAR_YEAR SMALLINT,

22 CALENDAR_MONTH SMALLINT,

23 CALENDAR_DAY SMALLINT,

24 WEEK_OF_MONTH SMALLINT,

25 QUARTER_NUMBER SMALLINT,

 PRIMARY KEY (CALENDAR_KEY));

26 CREATE TABLE A01.CLAIM (

27 PRODUCT_KEY SMALLINT NOT NULL,

28 LOCATION_KEY SMALLINT NOT NULL,

29 CALENDAR_KEY DATE NOT NULL,

30 CLAIM_NO integer NOT NULL,

31 DEMAND_ID CHAR(4) NOT NULL,

32 STATUS_KEY SMALLINT NOT NULL,

33 SETTLEMENT_AMT DECIMAL(11,2),

34 DEMANDED_AMT DECIMAL(11,2),

35 RECEIVED_AMT DECIMAL(11,2),

36 RECOVERED_AMT DECIMAL(11,2),

37 INSERT_TIMESTAMP TIMESTAMP,

 PRIMARY KEY (PRODUCT_KEY, LOCATION_KEY, CALENDAR_KEY,

 CLAIM_NO),

 FOREIGN KEY (DEMAND_ID) REFERENCES A01.DEMAND_TYPE,

 FOREIGN KEY (STATUS_KEY) REFERENCES A01.CLAIM_STAT,

 FOREIGN KEY (PRODUCT_KEY) REFERENCES A01.PRODUCT,

 FOREIGN KEY (LOCATION_KEY) REFERENCES A01.LOCATION,

 FOREIGN KEY (CALENDAR_KEY) REFERENCES A01.CALENDAR);

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

191 (August 11, 2012)

Pair 14

Right Hand Schema Id: T02B

T02B.District

District_Id

District_Desc

Region

T02B.Period

Period_Id

Period_Desc

Quarter

Year

T02B.Product

Product_Id

Prod_Desc

Size

T02B.Region

Region_Id

Region_Desc

T02B.Sales_Current

Period_Id (FK)

Product_Id (FK)

District_Id (FK)

Region_Id (FK)

Units

Dollars

Discount

DDL

a CREATE TABLE A02.CLAIM_HIST (

b CLAIM_HIST_KEY INTEGER NOT NULL,

c SETTLEMENT_DTE DATE,

d RECEIVED_DTE DATE,

e RECOVERED_DTE DATE,

f DEMANDED_DTE DATE,

 PRIMARY KEY (CLAIM_HIST_KEY));

g CREATE TABLE A02.PRODUCT_REFERENCE (

h PRODUCT_HIERARCHY_KEY SMALLINT NOT NULL,

i PRODUCT_CLASS CHAR(4),

j PRODUCT_SUBCLASS CHAR(5),

k PRODUCT_DESCRIPTIVE_NAME VARCHAR(40),

 RIMARY KEY (PRODUCT_HIERARCHY_KEY));

l CREATE TABLE A02.CLAIM_ITEM_STATUS (

m CLAIM_ITEM_STATUS_KEY SMALLINT NOT NULL,

n CLAIM_ITEM_STATUS_CODE CHAR(4),

o CLAIM_ITEM_STATUS_DESC VARCHAR(40),

p DATE_VALID_FROM DATE,

q DATE_VALID_TO DATE,

 PRIMARY KEY (CLAIM_ITEM_STATUS_KEY));

r CREATE TABLE A02.LOCALITY (

s LOCALITY_KEY SMALLINT NOT NULL,

t STATE_NBR SMALLINT,

u STATE_NAME VARCHAR(20),

v BRANCH_NAME VARCHAR(30),

 PRIMARY KEY (LOCALITY_KEY));

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

192 (August 11, 2012)

w CREATE TABLE A02.DATES (

x DATE_KEY DATE NOT NULL,

y YEAR SMALLINT,

z MONTH SMALLINT,

aa DAY SMALLINT,

bb MONTH_COUNT SMALLINT,

cc QUARTER SMALLINT,

 PRIMARY KEY (DATE_KEY));

dd CREATE TABLE A02.CLM_DEMAND (

ee PRODUCT_HIERARCHY_KEY SMALLINT NOT NULL,

ff LOCALITY_KEY SMALLINT NOT NULL,

gg DEMAND_SENT_DATE DATE NOT NULL,

hh CLAIM_NUM INTEGER NOT NULL,

ii CLAIM_HIST_KEY INTEGER,

jj CLAIM_ITEM_STATUS_KEY SMALLINT NOT NULL,

kk DEMAND_SETTLED_AMOUNT DECIMAL(11,2),

ll DEMAND_RECEIVED_AMOUNT DECIMAL(11,2),

mm DEMAND_RECOVERED_AMOUNT DECIMAL(11,2),

nn NO_CLAIMS SMALLINT,

oo LOAD_TIMESTAMP TIMESTAMP,

 PRIMARY KEY (PRODUCT_HIERARCHY_KEY, LOCALITY_KEY,

 DEMAND_SENT_DATE, CLAIM_NUM),

 FOREIGN KEY (CLAIM_HIST_KEY) REFERENCES A02.LATEST_DEMAND,

 FOREIGN KEY (PRODUCT_HIERARCHY_KEY) REFERENCES A02.PRODUCT_REFERENCE,

 FOREIGN KEY (CLAIM_ITEM_STATUS_KEY) REFERENCES A02.CLAIM_ITEM_STATUS,

 FOREIGN KEY (LOCALITY_KEY) REFERENCES A02.LOCALITY,

 FOREIGN KEY (DEMAND_SENT_DATE) REFERENCES A02.DATES);

Pair 15

Left Hand Schema Id: T10

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

193 (August 11, 2012)

DDL
1 CREATE TABLE T10.CUSTOMER (

2 CUSTOMER_KEY INTEGER NOT NULL,

3 CUSTOMER_NAME VARCHAR(40),

4 CUSTOMER_ADDRESS VARCHAR(120),

5 DATE_SUBSCRIBED DATE,

6 INCOME_GROUP CHAR(1),

7 PROFITABILITY_SCORE SMALLINT,

 PRIMARY KEY (CUSTOMER_KEY));

8 CREATE TABLE T10.MARKET (

9 STORE_KEY INTEGER NOT NULL,

10 STORE_NAME VARCHAR(40),

11 MARKET_NAME VARCHAR(40),

12 REGION_NAME VARCHAR(40),

13 TOTAL_US DOUBLE PRECISION,

 PRIMARY KEY (STORE_KEY));

14 CREATE TABLE T10.ITEM (

15 PRODUCT_KEY INTEGER NOT NULL,

16 PRODUCT_DESC VARCHAR(60),

17 PACKAGE VARCHAR(20),

18 FLAVOUR CHAR(3),

19 BRAND VARCHAR(40),

20 MANUFACTURER VARCHAR(40),

21 SUB_CATEGORY VARCHAR(40),

22 CATEGORY CHARACTER(40),

 PRIMARY KEY (PRODUCT_KEY));

23 CREATE TABLE T10.HOUR (

24 HOUR_KEY TIME NOT NULL,

25 AM_PM_IND CHAR(1),

26 PEAK_PERIOD_IND CHAR(1),

 PRIMARY KEY (HOUR_KEY));

27 CREATE TABLE T10.CALENDAR (

28 DATE_KEY DATE NOT NULL,

29 DAY SMALLINT,

30 DAY_OF_WEEK SMALLINT,

31 WEEK_BEGIN_DATE DATE,

32 CALENDAR_WEEK SMALLINT,

33 CALENDAR_MONTH SMALLINT,

34 CALENDAR_QUARTER SMALLINT,

35 CALENDAR_YEAR SMALLINT,

37 FISCAL_MONTH SMALLINT,

38 FISCAL_QUARTER SMALLINT,

39 FISCAL_YEAR SMALLINT,

 PRIMARY KEY (DATE_KEY));

40 CREATE TABLE T10.SALES (

41 CUSTOMER_KEY INTEGER NOT NULL,

42 STORE_KEY INTEGER NOT NULL,

43 PRODUCT_KEY INTEGER NOT NULL,

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

194 (August 11, 2012)

44 HOUR_KEY TIME NOT NULL,

45 DATE_KEY DATE NOT NULL,

46 DOLLAR_SALES DECIMAL(11,2),

47 UNIT_SALES DECIMAL(11,2),

48 RETAIL_SALES_PRICE DECIMAL(11,2),

 FOREIGN KEY (CUSTOMER_KEY) REFERENCES T10.CUSTOMER,

 FOREIGN KEY (STORE_KEY) REFERENCES T10.MARKET,

 FOREIGN KEY (PRODUCT_KEY) REFERENCES T10.SALES_ITEM,

 FOREIGN KEY (HOUR_KEY) REFERENCES T10.HOUR,

 FOREIGN KEY (DATE_KEY) REFERENCES T10.CALENDAR);

Pair 15

Right Hand Schema Id: T11

DATE

DAY_NUMBER

DAY_DATE

WEEK_NUMBER

YEAR_NUMBER

PRODUCT

PRODUCT_KEY

PRODUCT_DESC

PRODUCT_WEIGHT

CUSTOMER

CUSTOMER_ID

CUSTOMER_FNAME

CUSTOMER_LNAME

CUSTOMER_ADDRESS

CUSTOMER_TELEPHONE

CUSTOMER_BIRTHDATE

NUMBER_OF_CHILDREN

GEOGRAPHIC_LOCATION

GEOGRAPHIC_LOCATION_ID

SALES_LOCATION_NAME

SALES_LOCATION_NUMBER

SALES_LOCATION_STREET

SALES_LOCATION_CITY

PRODUCT_SALES

DAY_NUMBER (FK)

GEOGRAPHIC_LOCATION_ID (FK)

PRODUCT_KEY (FK)

CUSTOMER_ID (FK)

SALES_AMOUNT

SALES_VOLUME

SALES_COST

DDL
a CREATE TABLE T11.GEOGRAPHIC_LOCATION (

b SALES_LOCATION_ID INTEGER NOT NULL,

c SALES_LOCATION_NAME VARCHAR(40),

d SALES_LOCATION_NUMBER SMALLINT,

e SALES_LOCATION_STREET VARCHAR(40),

f SALES_LOCATION_CITY VARCHAR(30),

 PRIMARY KEY (SALES_LOCATION_ID)

);

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

195 (August 11, 2012)

g CREATE TABLE T11.PRODUCT (

h PRODUCT_KEY INTEGER NOT NULL,

i PRODUCT_DESC VARCHAR(40),

j PRODUCT_WEIGHT DOUBLE,

 PRIMARY KEY (PRODUCT_KEY)

);

k CREATE TABLE T11.CUSTOMER (

l CUSTOMER_ID INTEGER NOT NULL,

m CUSTOMER_FNAME VARCHAR(40),

n CUSTOMER_LNAME VARCHAR(40),

o CUSTOMER_ADDRESS CHAR(120),

p CUSTOMER_TELEPHONE CHAR(10),

q CUSTOMER_BIRTHDATE DATE,

r NUMBER_OF_CHILDREN SMALLINT,

 PRIMARY KEY (CUSTOMER_ID)

);

s CREATE TABLE T11.DATE (

t DAY_NUMBER INTEGER NOT NULL,

u DAY_DATE DATE,

v WEEK_NUMBER SMALLINT,

w MONTH_NUMBER SMALLINT,

x YEAR_NUMBER SMALLINT,

 PRIMARY KEY (DAY_NUMBER)

);

y CREATE TABLE T11.PRODUCT_SALES (

z SALES_LOCATION_ID INTEGER NOT NULL,

aa PRODUCT_KEY INTEGER NOT NULL,

bb CUSTOMER_ID INTEGER NOT NULL,

cc DAY_NUMBER INTEGER NOT NULL,

dd SALES_AMOUNT DOUBLE PRECISION,

ee SALES_VOLUME SMALLINT,

ff SALES_COST DOUBLE PRECISION,

 FOREIGN KEY (SALES_LOCATION_ID) REFERENCES T11.GEOGRAPHIC_LOCATION,

 FOREIGN KEY (PRODUCT_CODE) REFERENCES T11.PRODUCT,

 FOREIGN KEY (CUSTOMER_ID) REFERENCES T11.CUSTOMER,

 FOREIGN KEY (DAY_NUMBER) REFERENCES T11.DATE

);

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

196 (August 11, 2012)

Pair 16

Left Hand Schema Id: T05A

DDL

1 CREATE TABLE T05A.CLAIM_TYPE (

2 TYPE_KEY SMALLINT NOT NULL

3 TYPE_DESC VARCHAR(40),

 PRIMARY KEY (TYPE_KEY)) ;

4 CREATE TABLE T05A.CLAIMANT (

5 CLAIMANT_KEY INTEGER NOT NULL

6 NAME CHAR(40) ,

7 ADDRESS VARCHAR(60) NOT NULL,

8 CITY VARCHAR(20) NOT NULL,

9 STATE CHAR(4) NOT NULL,

 PRIMARY KEY (CLAIMANT_KEY));

10 CREATE TABLE T05A.PERIOD (

11 PER_KEY CHAR(06) NOT NULL

12 MONTH SMALLINT NOT NULL,

13 YEAR SMALLINT NOT NULL,

14 FISCAL_PERIOD DATE NOT NULL,

 PRIMARY KEY (PER_KEY));

15 CREATE TABLE T05A.POLICY (

16 POLICY_KEY INTEGER NOT NULL,

17 POLICY_TYPE CHAR(4) NOT NULL,

18 AGENT VARCHAR(40) ,

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

197 (August 11, 2012)

19 CONDITIONS VARCHAR(40) NOT NULL,

 PRIMARY KEY (POLICY_KEY));

20 CREATE TABLE T05A.POLICY_HOLDER (

21 POLICY_HOLDER_KEY INTEGER NOT NULL,

22 NAME VARCHAR(40) NOT NULL,

23 ADDRESS VARCHAR(60) NOT NULL,

24 CITY VARCHAR(40) NOT NULL,

25 STATE CHAR(4) ,

 PRIMARY KEY (POLICY_HOLDER_KEY));

26 CREATE TABLE T05A.TRANSACTION (

27 TRANSACTION_KEY INTEGER NOT NULL,

28 TRANSACTION_DESC VARCHAR(80) NOT NULL,

 PRIMARY KEY (TRANSACTION_KEY));

29 CREATE TABLE T05A.CLAIM_DESC (

30 TYPE_KEY SMALLINT NOT NULL,

31 CLAIMANT_KEY INTEGER NOT NULL,

32 PROV_ID SMALLINT NOT NULL,

33 PROC_CODE CHAR(4) NOT NULL,

 PRIMARY KEY (TYPE_KEY,CLAIMANT_KEY,PROV_ID,PROC_CODE),

 FOREIGN KEY (TYPE_KEY) REFERENCES T05A.CLAIM_TYPE(TYPE_KEY),

 FOREIGN KEY (CLAIMANT_KEY) REFERENCES T05A.CLAIMANT(CLAIMANT_KEY));

37 CREATE TABLE T05A.CLAIMS (

38 CLAIM_DOLLARS DECIMAL(11,2) NOT NULL,

39 PER_KEY SMALLINT ,

40 POLICY_HOLDER_KEY INTEGER ,

41 TRANSACTION_KEY INTEGER ,

42 TYPE_KEY SMALLINT ,

43 CLAIMANT_KEY INTEGER ,

44 PROV_ID SMALLINT ,

45 PROC_CODE CHAR(4) ,

 FOREIGN KEY (PER_KEY) REFERENCES T05A.PERIOD(PER_KEY),

 FOREIGN KEY (POLICY_HOLDER_KEY) REFERENCES

 T05A.POLICY_HOLDER(POLICY_HOLDER_KEY),

 FOREIGN KEY (TRANSACTION_KEY) REFERENCES

 T05A.TRANSACTION(TRANSACTION_KEY),

 FOREIGN KEY (TYPE_KEY, CLAIMANT_KEY, PROV_ID, PROC_CODE)

 REFERENCES

 T05A.CLAIM_DESC(TYPE_KEY, CLAIMANT_KEY, PROV_ID, PROC_CODE));

46 CREATE TABLE T05A.POLICY_SALES (

47 PER_KEY CHAR(6) ,

48 POLICY_KEY INTEGER ,

49 POLICY_HOLDER_KEY INTEGER ,

50 TRANSACTION_KEY INTEGER ,

51 COVERAGE_PERIOD SMALLINT NOT NULL,

52 COVERAGE_LIMIT INTEGER NOT NULL,

53 PREMIUM_DOLLARS DECIMAL(11),

 FOREIGN KEY (PER_KEY) REFERENCES T05A.PERIOD(PER_KEY),

 FOREIGN KEY (POLICY_KEY) REFERENCES T05A.POLICY(POLICY_KEY),

 FOREIGN KEY (POLICY_HOLDER_KEY) REFERENCES

 T05A.POLICY_HOLDER(POLICY_HOLDER_KEY),

 FOREIGN KEY (TRANSACTION_KEY) REFERENCES

 T05A.TRANSACTION(TRANSACTION_KEY));

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

198 (August 11, 2012)

Pair 16

Right Hand Schema Id: T05B

DDL

a CREATE TABLE T05B.CLAIM_NATURE (

b NATURE_KEY SMALLINT NOT NULL,

c NATURE_DESCRIPTION CHARACTER(40),

d NATURE_CODE CHAR(4),

 PRIMARY KEY (NATURE_KEY));

e CREATE TABLE T05B.POLICY_AGREEMENT_TYPE (

f POLICY_AGREEMENT_TYPE_KEY INTEGER NOT NULL,

g POLICY_AGREEMENT_TYPE_CODE CHAR(4),

h POLICY_AGREEMENT_TYPE_DESC VARCHAR(40),

 PRIMARY KEY (POLICY_AGREEMENT_TYPE_KEY));

i CREATE TABLE T05B.DATES (

j DATE_KEY DATE NOT NULL,

k CALENDAR_YEAR SMALLINT,

l CALENDAR_MONTH SMALLINT,

m FINANCIAL_YEAR SMALLINT,

n FINANCIAL_MONTH SMALLINT,

 PRIMARY KEY (DATE_KEY));

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

199 (August 11, 2012)

o CREATE TABLE T05B.POLICY_HADER (

p POLICY_NO INTEGER NOT NULL,

q COMPANY_NAME VARCHAR(40),

r POLICY_AGREEMENT_TYPE_KEY INTEGER,

 PRIMARY KEY (POLICY_NO),

 FOREIGN KEY (POLICY_AGREEMENT_TYPE_KEY)

 REFERENCES T05B.POLICY_AGREEMENT_TYPE);

s CREATE TABLE T05B.CLIENT (

t CLIENT_KEY INTEGER NOT NULL,

u CLIENT_NAME CHAR(18),

v CLIENT_ADDRESS VARCHAR(120),

w CLIENT_STATE CHAR(3),

 PRIMARY KEY (CLIENT_KEY));

x CREATE TABLE T05B.CLAIM_FINANCIAL (

y CLAIM_NO INTEGER NOT NULL,

z FINALISED_DATE DATE NOT NULL,

aa POLICY_NO INTEGER NOT NULL,

bb BASIC_PREMIUM_AMT DECIMAL(11,2),

cc NATURE_KEY SMALLINT,

dd SUM_INSURED DECIMAL(11,2),

ee POLICY_TERM SMALLINT,

ff CLIENT_KEY INTEGER NOT NULL,

 PRIMARY KEY (POLICY_NO, CLAIM_NO),

 FOREIGN KEY (NATURE_KEY) REFERENCES T05B.CLAIM_NATURE,

 FOREIGN KEY (FINALISED_DATE) REFERENCES T05B.DATES,

 FOREIGN KEY (POLICY_NO) REFERENCES T05B.POLICY_HADER,

 FOREIGN KEY (CLIENT_KEY) REFERENCES T05B.CLIENT);

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

200 (August 11, 2012)

Pair 17

Left Hand Schema Id: T06B

DDL

1 CREATE TABLE T06B.STATE_LOOKUP (

2 STATE_CODE CHAR(3) NOT NULL,

3 STATE_NAME VARCHAR(30),

4 DATE TIMESTAMP,

 PRIMARY KEY (STATE_CODE));

5 CREATE TABLE T06B.LOCATION_DETAIL (

6 LOCATION_IDENTIFIER SMALLINT NOT NULL,

7 STATE_CODE CHAR(3),

8 COUNTRY_NAME VARCHAR(30),

9 CITY_NAME VARCHAR(30) NOT NULL,

10 DATE TIMESTAMP NOT NULL,

 PRIMARY KEY (LOCATION_IDENTIFIER),

 FOREIGN KEY (STATE_CODE) REFERENCES T06B.STATE_LOOKUP);

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

201 (August 11, 2012)

11 CREATE TABLE T06B.BRANCH_LOOKUP (

12 BRANCH_CODE CHAR(3) NOT NULL,

13 BRANCH_NAME CHAR(40) NOT NULL,

14 DATE TIMESTAMP NOT NULL,

 PRIMARY KEY (BRANCH_CODE));

15 CREATE TABLE T06B.ORG_DETAIL (

16 ORGANIZATION_IDENTIFIER SMALLINT NOT NULL,

17 BRANCH_CODE CHAR(3),

18 CORPORATE_OFFICE_NAME VARCHAR(40) NOT NULL,

19 REGION_NAME VARCHAR(20) NOT NULL,

20 EMPLOYEE_NAME VARCHAR(40) NOT NULL,

21 DATE TIMESTAMP NOT NULL,

 PRIMARY KEY (ORGANIZATION_IDENTIFIER),

 FOREIGN KEY (BRANCH_CODE) REFERENCES T06B.BRANCH_LOOKUP);

22 CREATE TABLE T06B.MONTH_LOOKUP (

23 MONTH_NUMBER SMALLINT NOT NULL,

24 CAL_MONTH_NAME CHAR(9) NOT NULL,

25 DATE TIMESTAMP NOT NULL,

 PRIMARY KEY (MONTH_NUMBER));

26 CREATE TABLE T06B.CALENDAR (

27 TIME_IDENTIFIER DATE NOT NULL,

28 MONTH_NUMBER SMALLINT,

29 DAY_OF_YEAR SMALLINT NOT NULL,

30 QUARTER_NUMBER SMALLINT NOT NULL,

31 MONTH_DAY_NUMBER SMALLINT NOT NULL,

32 WEEK_NUMBER SMALLINT NOT NULL,

33 CALENDAR_DATE DATE NOT NULL,

34 DATE TIMESTAMP NOT NULL,

 PRIMARY KEY (TIME_IDENTIFIER),

 FOREIGN KEY (MONTH_NUMBER) REFERENCES T06B.MONTH_LOOKUP);

35 CREATE TABLE T06B.PROD_LINE_CATEGORY_LOOKUP (

36 PRODUCT_CATEGORY_CODE CHAR(4) NOT NULL,

37 PRODUCT_CATEGORY_NAME VARCHAR(40) NOT NULL,

38 DATE TIMESTAMP NOT NULL,

 PRIMARY KEY (PRODUCT_CATEGORY_CODE));

39 CREATE TABLE T06B.PROD_LINE (

40 PRODUCT_IDENTIFIER INTEGER NOT NULL,

41 PRODUCT_CATEGORY_CODE CHAR(4),

42 PRODUCT_SUBCATEGORY_NAME VARCHAR(40) NOT NULL,

43 PRODUCT_NAME VARCHAR(40) NOT NULL,

44 PRODUCT_FEATURE_DESCRIPTION VARCHAR(40) NOT NULL,

45 DATE TIMESTAMP NOT NULL,

 PRIMARY KEY (PRODUCT_IDENTIFIER),

 FOREIGN KEY (PRODUCT_CATEGORY_CODE) REFERENCES

T06B.PROD_LINE_CATEGORY_LOOKUP);

46 CREATE TABLE T06B.TRANSACTION (

47 LOCATION_IDENTIFIER SMALLINT NOT NULL,

48 ORGANIZATION_IDENTIFIER SMALLINT NOT NULL,

49 TIME_IDENTIFIER DATE NOT NULL,

50 PRODUCT_IDENTIFIER INTEGER NOT NULL,

51 SALES_DOLLAR DECIMAL(11,2),

52 DATE TIMESTAMP NOT NULL,

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

202 (August 11, 2012)

 PRIMARY KEY (LOCATION_IDENTIFIER, ORGANIZATION_IDENTIFIER,

 TIME_IDENTIFIER, PRODUCT_IDENTIFIER),

 FOREIGN KEY (LOCATION_IDENTIFIER) REFERENCES T06B.LOCATION_DETAIL,

 FOREIGN KEY (ORGANIZATION_IDENTIFIER) REFERENCES T06B.ORG_DETAIL,

 FOREIGN KEY (TIME_IDENTIFIER) REFERENCES T06B.CALENDAR,

 FOREIGN KEY (PRODUCT_IDENTIFIER) REFERENCES T06B.PROD_LINE);

Pair 17

Right Hand Schema Id: T04

DDL
a CREATE TABLE T04.CATEGORY (

b PRODUCT_KEY INTEGER NOT NULL,

c CATEGORY CHAR(8) NOT NULL,

d DEPARTMENT CHAR(4) NOT NULL,

 PRIMARY KEY (PRODUCT_KEY));

e CREATE TABLE T04.SALES_BY_CATEGORY (

f TIME_KEY DATE NOT NULL,

g STORE_KEY INTEGER NOT NULL,

h PRODUCT_KEY INTEGER NOT NULL,

i DOLLARS_SOLD DECIMAL(11,2) NOT NULL,

j UNITS_SOLD INTEGER NOT NULL,

k DOLLARS_COST DECIMAL(11,2) NOT NULL,

 FOREIGN KEY (TIME_KEY) REFERENCES T04.TIME(TIME_KEY),

 FOREIGN KEY (STORE_KEY) REFERENCES T04.STORE(STORE_KEY),

 FOREIGN KEY (PRODUCT_KEY) REFERENCES T04.CATEGORY(PRODUCT_KEY)) ;

l CREATE TABLE T04.STORE (

m STORE_KEY INTEGER NOT NULL,

n STORE_ID CHAR(6) NOT NULL,

o STORE_NAME VARCHAR(80) NOT NULL,

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

203 (August 11, 2012)

p ADDRESS VARCHAR(120) NOT NULL,

q REGION CHAR(10) NOT NULL,

r DIVISION INTEGER NOT NULL,

s FLOOR_PLAN_TYPE CHAR(2) NOT NULL,

 PRIMARY KEY (STORE_KEY));

t CREATE TABLE T04.TIME (

u TIME_KEY DATE NOT NULL,

v DAY_OF_WEEK INTEGER NOT NULL,

w MONTH INTEGER NOT NULL,

x FISCAL_PERIOD INTEGER NOT NULL,

y SEASON CHAR(1) NOT NULL,

 PRIMARY KEY (TIME_KEY));

Pair 18

Left Hand Schema Id: T07B

DDL

1 CREATE TABLE T07B.CUSTOMER (

2 CUSTOMER_ID INTEGER NOT NULL,

3 ACCOUNT_NUM DOUBLE NOT NULL,

4 LNAME VARCHAR(100) ,

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

204 (August 11, 2012)

5 FNAME VARCHAR(50) ,

6 MI VARCHAR(20) ,

7 ADDRESS1 VARCHAR(100) NOT NULL,

8 CITY VARCHAR(50) NOT NULL,

9 STATE_PROVINCE VARCHAR(50) NOT NULL,

10 POSTAL_CODE CHAR(6) NOT NULL,

11 COUNTRY VARCHAR(50) NOT NULL,

12 PHONE VARCHAR(16) NOT NULL,

13 BIRTHDATE DATE NOT NULL,

14 TOTAL_CHILDREN SMALLINT NOT NULL,

 PRIMARY KEY (CUSTOMER_ID)) ;

15 CREATE TABLE T07B.PRODUCT (

16 PRODUCT_ID INTEGER NOT NULL,

17 PRODUCT_CLASS_ID INTEGER NOT NULL,

18 BRAND_NAME VARCHAR(40) NOT NULL,

19 PRODUCT_NAME VARCHAR(40) NOT NULL,

20 SKU DOUBLE NOT NULL,

21 SRP DOUBLE NOT NULL,

22 GROSS_WEIGHT DOUBLE NOT NULL,

23 CASES_PER_PALLET SMALLINT NOT NULL,

 PRIMARY KEY (PRODUCT_ID)) ;

24 CREATE TABLE T07B.STORE (

25 STORE_ID INTEGER NOT NULL,

26 STORE_TYPE CHAR(4) ,

27 REGION_ID INTEGER NOT NULL,

28 STORE_NAME VARCHAR(40) ,

29 STORE_NUMBER DOUBLE NOT NULL,

30 STORE_STREET_ADDRESS VARCHAR(120) NOT NULL,

31 STORE_CITY VARCHAR(50) ,

32 STORE_STATE VARCHAR(50) ,

33 STORE_POSTAL_CODE CHAR(6) ,

34 STORE_COUNTRY VARCHAR(50) ,

35 STORE_PHONE VARCHAR(16) ,

36 FIRST_OPENED_DATE DATE ,

 PRIMARY KEY (STORE_ID)) ;

37 CREATE TABLE T07B.TIME_BY_DAY (

38 TIME_ID INTEGER NOT NULL,

39 THE_DATE DATE NOT NULL,

40 THE_DAY SMALLINT NOT NULL,

41 THE_MONTH SMALLINT NOT NULL,

42 THE_YEAR SMALLINT NOT NULL,

43 DAY_OF_MONTH SMALLINT NOT NULL,

44 WEEK_OF_YEAR SMALLINT NOT NULL,

45 MONTH_OF_YEAR SMALLINT NOT NULL,

46 QUARTER CHAR(2) NOT NULL,

47 FISCAL_PERIOD DATE NOT NULL ,

 PRIMARY KEY (TIME_ID)

) ;

48 CREATE TABLE T07B.SALES (

49 STORE_SALES DOUBLE NOT NULL,

50 STORE_COST DOUBLE NOT NULL,

51 UNIT_SALES DOUBLE NOT NULL,

52 STORE_ID INTEGER ,

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

205 (August 11, 2012)

53 PRODUCT_ID INTEGER ,

54 PROMOTION_ID INTEGER ,

55 CUSTOMER_ID INTEGER ,

56 TIME_ID INTEGER ,

 FOREIGN KEY (STORE_ID) REFERENCES T07B.STORE(STORE_ID) ,

 FOREIGN KEY (PRODUCT_ID) REFERENCES T07B.PRODUCT(PRODUCT_ID) ,

 FOREIGN KEY (CUSTOMER_ID) REFERENCES T07B.CUSTOMER(CUSTOMER_ID) ,

 FOREIGN KEY (TIME_ID) REFERENCES T07B.TIME_BY_DAY(TIME_ID)) ;

Pair 18

Right Hand Schema Id: T11B

DDL

a CREATE TABLE T11.GEOGRAPHIC_LOCATION (

b SALES_LOCATION_ID INTEGER NOT NULL,

c SALES_LOCATION_NAME VARCHAR(40),

d SALES_LOCATION_NUMBER SMALLINT,

e SALES_LOCATION_STREET VARCHAR(40),

f SALES_LOCATION_CITY VARCHAR(30),

 PRIMARY KEY (SALES_LOCATION_ID)

);

APPENDIX B. SCHEMAS FOR EVALUATION OF STARMOD

206 (August 11, 2012)

g CREATE TABLE T11.PRODUCT (

h PRODUCT_CODE INTEGER NOT NULL,

i PRODUCT_NAME VARCHAR(40),

j PRODUCT_WEIGHT DOUBLE,

 PRIMARY KEY (PRODUCT_CODE)

);

k CREATE TABLE T11.CUSTOMER (

l CUSTOMER_ID INTEGER NOT NULL,

m CUSTOMER_FNAME VARCHAR(40),

n CUSTOMER_ADDRESS CHAR(120),

o CUSTOMER_TELEPHONE CHAR(10),

p CUSTOMER_BIRTHDATE DATE,

q CUSTOMER_LNAME VARCHAR(40),

r NUMBER_OF_CHILDREN SMALLINT,

 PRIMARY KEY (CUSTOMER_ID)

);

s CREATE TABLE T11.DATE (

t DAY_NUMBER INTEGER NOT NULL,

u DAY_DATE DATE,

v WEEK_NUMBER SMALLINT,

w MONTH_NUMBER SMALLINT,

x YEAR_NUMBER SMALLINT,

 PRIMARY KEY (DAY_NUMBER)

);

y CREATE TABLE T11.PRODUCT_SALES (

z SALES_LOCATION_ID INTEGER NOT NULL,

aa PRODUCT_CODE INTEGER NOT NULL,

bb CUSTOMER_ID INTEGER NOT NULL,

cc DAY_NUMBER INTEGER NOT NULL,

dd SALES_AMOUNT DOUBLE PRECISION,

ee SALES_VOLUME SMALLINT,

ff SALES_COST DOUBLE PRECISION,

 FOREIGN KEY (SALES_LOCATION_ID) REFERENCES T11.GEOGRAPHIC_LOCATION,

 FOREIGN KEY (PRODUCT_CODE) REFERENCES T11.PRODUCT,

 FOREIGN KEY (CUSTOMER_ID) REFERENCES T11.CUSTOMER,

 FOREIGN KEY (DAY_NUMBER) REFERENCES T11.DATE

);

Appendix C

Schema Match Results

This appendix contains match results for each pair of schemas described in appendix B. The

results are in three parts:

i Match results returned from the Similarity Flooding algorithm when schemas were de-

scribed using the relational model.

ii Match results returned from the Similarity Flooding algorithm when the same schemas

were described using StarMod.

iii Match results returned from COMA algorithm when schemas were described using the

relational model.

iv Match results returned from our participants in the evaluation. Only matches agree by

at least two of the participants are included.

207 (March 10, 2013)

APPENDIX C. SCHEMA MATCH RESULTS

 208 (August 11, 2012)

Matching Results between M7L and M7R using the Relational model:

Columns:

--------------------------------- ---------------------------- ------

PERSONNEL.BORN EMPLOYEE.BIRTHDATE 0.1300

PERSONNEL.DEPT DEPARTMENT.DEPTNAME 0.1274

PERSONNEL.PNAME EMPLOYEE.EMPNAME 0.1356

PERSONNEL.PNO EMPLOYEE.EMPNO 0.1648

Tables:

--------------------------------- ---------------------------- ------

PERSONNEL EMPLOYEE 0.6174

Matching Results between M7L and M7R using the Star model:

Columns:

--------------------------------- ---------------------------- ------

PERSONNEL.BORN EMPLOYEE.BIRTHDATE 0.0509

PERSONNEL.DEPT DEPARTMENT.DEPTNAME 0.0550

PERSONNEL.PNAME EMPLOYEE.EMPNAME 0.0567

PERSONNEL.PNO EMPLOYEE.EMPNO 0.0531

Tables:

--------------------------------- ---------------------------- ------

PERSONNEL EMPLOYEE 1

COMA Results between schemas M7L and M8R

--

PERSONNEL_TABLE.PERSONNEL.PNO <-> EMPLOYEE_TABLE.EMPLOYEE.EMPNO: 0.5140774

PERSONNEL_TABLE.PERSONNEL.PNAME <-> EMPLOYEE_TABLE.EMPLOYEE.EMPNAME: 0.6005358

PERSONNEL_TABLE.PERSONNEL.DEPT <-> DEPARTMENT_TABLE.DEPARTMENT.DEPTNO:0.5329773

PERSONNEL_TABLE <-> EMPLOYEE_TABLE: 0.5399605

Expected results agreed by at least 2 participants

--

1,e M07L.PERSONNEL M7R.EMPLOYEE

2,f PERSONNEL.PNO EMPLOYEE.EMPNO

3,g PERSONNEL.PNAME EMPLOYEE.EMPNAME

5,j PERSONNEL.BORN EMPLOYEE.BIRTHDATE

4,c PERSONNEL.DEPT DEPT.DEPTNAME

Matching Results between M8L and M9R using the Relational model:

Columns:

--------------------------------- ---------------------------- ------

PROFESSOR.ADDR PERSONNEL.ADDR 0.1479

PROFESSOR.ID PERSONNEL.ID 0.1270

PROFESSOR.NAME PERSONNEL.NAME 0.0725

PROFESSOR.SAL PERSONNEL.SAL 0.1806

Tables:

--------------------------------- ---------------------------- ------

PROFESSOR PERSONNEL 0.3672

Matching Results between M8L and M9R using the Star model:

Columns:

--------------------------------- ---------------------------- ------

PROFESSOR.ADDR PERSONNEL.ADDR 0.0683

PROFESSOR.ID PERSONNEL.ID 0.0429

PROFESSOR.NAME PERSONNEL.NAME 0.0363

PROFESSOR.SAL PERSONNEL.SAL 0.1498

APPENDIX C. SCHEMA MATCH RESULTS

 209 (August 11, 2012)

Tables:

--------------------------------- ---------------------------- ------

PROFESSOR PERSONNEL 0.5272

COMA Results

--

WORKSON_TABLE.WORKSON.NAME <-> PERSONNEL_TABLE.PERSONNEL.NAME: 0.8220887

STUDENT_TABLE.STUDENT.NAME <-> PERSONNEL_TABLE.PERSONNEL.NAME: 0.8142762

PROFESSOR_TABLE.PROFESSOR.ID <-> PERSONNEL_TABLE.PERSONNEL.ID: 0.83748543

PROFESSOR_TABLE.PROFESSOR.NAME <-> PERSONNEL_TABLE.PERSONNEL.NAME: 0.8195635

PROFESSOR_TABLE.PROFESSOR.SAL <-> PERSONNEL_TABLE.PERSONNEL.SAL: 0.8802841

PROFESSOR_TABLE.PROFESSOR.ADDR <-> PERSONNEL_TABLE.PERSONNEL.ADDR: 0.8499777

PROFESSOR_TABLE <-> PERSONNEL_TABLE: 0.7577273

Expected results agreed by at least 2 participants

--

1,a M8L.ADDRESS M9R.PERSONNEL

3,e ADDRESS.STREET PERSONNEL.ADDR

4,e ADDRESS.CITY PERSONNEL.ADDR

5,e ADDRESS.POSTALCODE PERSONNEL.ADDR

6,a M8L.PROFESSOR M9R.PERSONNEL

7,b PROFESSOR.ID PERSONNEL.ID

8,c PROFESSOR.NAME PERSONNEL.NAME

9,d PROFESSOR.SAL PERSONNEL.SAL

12,c STUDENT.NAME PERSONNEL.NAME

19,c WORKSON.NAME PERSONNEL.NAME

Matching Results between R05 and R05A using the Relational model:

Columns:

--

ACCOUNT.ACCOUNT_ID ACCOUNT_HIST.ACC_ID 0.0463

ACCOUNT_BALANCE.AMT_BALANCE_HOLDS ACCOUNT_HIST.ACC_BALANCE_AMT 0.0771

ACCOUNT_BALANCE.DATE_BALANCE ACCOUNT_HIST.BALANCE_DATE 0.0808

REF_ACCOUNT_TYPES.ACCOUNT_TYPE_CODE ACCOUNT_HIST.ACCOUNT_TYPE_CODE 0.0776

Tables:

--------------------------------- ---------------------------- ------

ACCOUNT_BALANCE ACCOUNT_HIST 0.4046

Matching Results between R05 and R05A using the Star model:

Columns:

--

ACCOUNT_BALANCE.AMT_BALANCE_HOLDS ACCOUNT_HIST.ACC_BALANCE_AMT 0.0607

ACCOUNT_BALANCE.DATE_BALANCE ACCOUNT_HIST.BALANCE_DATE 0.0451

ACCOUNT_TRANSACTIONS.ACCOUNT_ID ACCOUNT_HIST.ACC_ID 0.0395

REF_ACCOUNT_TYPES.ACCOUNT_TYPE_CODE ACCOUNT_HIST.ACCOUNT_TYPE_CODE 0.0557

Tables:

--------------------------------- ---------------------------- ------

ACCOUNT_TRANSACTIONS ACCOUNT_HIST 1

COMA Results

--

ACCOUNT_BALANCE_TABLE.ACCOUNT_BALANCE.DATE_BALANCE <->

ACCOUNT_HIST_TABLE.ACCOUNT_HIST.BALANCE_DATE: 0.86262786

APPENDIX C. SCHEMA MATCH RESULTS

 210 (August 11, 2012)

ACCOUNT_BALANCE_TABLE.ACCOUNT_BALANCE.AMT_BALANCE_HOLDS <->

 ACCOUNT_HIST_TABLE.ACCOUNT_HIST.ACC_BALANCE_AMT: 0.72583765

ACCOUNT_BALANCE_TABLE.ACCOUNT_BALANCE.BALANCE_CLOSING <->

 ACCOUNT_HIST_TABLE.ACCOUNT_HIST.CLOSING_BAL_AMT: 0.65651226

ACCOUNT_TRANSACTIONS_TABLE.ACCOUNT_TRANSACTIONS.DATE_BALANCE <->

 ACCOUNT_HIST_TABLE.ACCOUNT_HIST.BALANCE_DATE: 0.86436397

ACCOUNT_TABLE.ACCOUNT.ACCOUNT_ID <->

 ACCOUNT_HIST_TABLE.ACCOUNT_HIST.ACC_ID: 0.7396621

ACCOUNT_TABLE.ACCOUNT.ACCOUNT_TYPE_CODE <->

ACCOUNT_HIST_TABLE.ACCOUNT_HIST.ACCOUNT_TYPE_CODE: 0.86590797

ACCOUNT_TABLE <-> ACCOUNT_HIST_TABLE: 0.74746954

Expected results agreed by at least 2 participants

--

2,g REF_ACCOUNT_TYPES.ACCOUNT_TYPE_CODE R05A.ACCOUNT_HIST.ACCOUNT_TYPE_CODE

5,b ACCOUNT.ACCOUNT_ID ACCOUNT_HIST.ACC_ID

6,g ACCOUNT.ACCOUNT_TYPE_CODE ACCOUNT_HIST.ACCOUNT_TYPE_CODE

10,a R05.ACCOUNT_BALANCE R05A.ACCOUNT_HIST

12,c ACCOUNT_BALANCE.DATE_BALANCE ACCOUNT_HIST.BALANCE_DATE

13,d ACCOUNT_BALANCE.AMT_BALANCE_HOLDS ACCOUNT_HIST.ACC_BALANCE_AMT

15,f ACCOUNT_BALANCE.BALANCE_ADJUSTED ACCOUNT_HIST.ADJ_BAL_AMT

16,e ACCOUNT_BALANCE.BALANCE_CLOSING ACCOUNT_HIST.CLOSING_BAL_AMT

Matching Results between M8L and M8R using the Relational model:

Columns:

--------------------------------- ---------------------------- ------

PROFESSOR.ID PROFESSOR.ID 0.1100

PROFESSOR.NAME PROFESSOR.NAME 0.0375

PROFESSOR.SAL PROFESSOR.SALARY 0.0509

STUDENT.GPA STUDENT.GRADEPOINTAVERAGE 0.0207

STUDENT.NAME STUDENT.NAME 0.0384

STUDENT.YR STUDENT.YEAR 0.0184

WORKSON.PROJ WORKSON.PROJECT 0.0525

ADDRESS PROFESSOR.ADDRESS 0.1257

Tables:

--------------------------------- ---------------------------- ------

PROFESSOR PROFESSOR 0.3239

STUDENT STUDENT 0.2049

WORKSON WORKSON 0.2287

Matching Results between M8L and M8R using the Star model:

Columns:

--------------------------------- ---------------------------- ------

PROFESSOR.ID PROFESSOR.ID 0.0281

PROFESSOR.NAME PROFESSOR.NAME 0.0179

PROFESSOR.SAL PROFESSOR.SALARY 0.0414

STUDENT.GPA STUDENT.GRADEPOINTAVERAGE 0.0269

STUDENT.NAME STUDENT.NAME 0.0226

STUDENT.YR STUDENT.YEAR 0.0242

WORKSON.HRS WORKSON.EXPENSES 0.0190

WORKSON.NAME WORKSON.STUDENTNAME 0.0168

WORKSON.PROJ WORKSON.PROJECT 0.0214

Tables:

--------------------------------- ---------------------------- ------

PROFESSOR PROFESSOR 0.2897

STUDENT STUDENT 0.2408

APPENDIX C. SCHEMA MATCH RESULTS

 211 (August 11, 2012)

WORKSON WORKSON 0.2418

COMA Results

--

WORKSON_TABLE.WORKSON.PROJ <-> WORKSON_TABLE.WORKSON.PROJECT: 0.639833

WORKSON_TABLE.WORKSON.HRS <-> WORKSON_TABLE.WORKSON.EXPENSES: 0.4064996

WORKSON_TABLE <-> WORKSON_TABLE: 0.75411034

STUDENT_TABLE.STUDENT.NAME <-> STUDENT_TABLE.STUDENT.NAME: 0.91960126

STUDENT_TABLE.STUDENT.GPA <->

 STUDENT_TABLE.STUDENT.GRADEPOINTAVERAGE: 0.44814813

STUDENT_TABLE.STUDENT.YR <-> STUDENT_TABLE.STUDENT.YEAR: 0.631713

STUDENT_TABLE <-> STUDENT_TABLE: 0.82824075

PROFESSOR_TABLE.PROFESSOR.ID <-> PROFESSOR_TABLE.PROFESSOR.ID: 0.9234411

PROFESSOR_TABLE.PROFESSOR.NAME <-> PROFESSOR_TABLE.PROFESSOR.NAME: 0.91960126

PROFESSOR_TABLE.PROFESSOR.SAL <-> PROFESSOR_TABLE.PROFESSOR.SALARY: 0.67480767

PROFESSOR_TABLE.PROFESSOR.ADDR <->

 PROFESSOR_TABLE.PROFESSOR.ADDRESS: 0.6813034

PROFESSOR_TABLE <-> PROFESSOR_TABLE: 0.89705133

Expected results agreed by at least 2 participants

--

1,a M8L.ADDRESS M8R.PROFESSOR

3,e ADDRESS.STREET PROFESSOR.ADDRESS

4,e ADDRESS.CITY ROFESSOR.ADDRESS

5,e ADDRESS.POSTALCODE PROFESSOR.ADDRESS

6,a M8L.PROFESSOR M8R.PROFESSOR

7,b PROFESSOR.ID PROFESSOR.ID

8,c PROFESSOR.NAME PROFESSOR.NAME

9,d PROFESSOR.SAL PROFESSOR.SALARY

11,f M8L.STUDENT M8R.STUDENT

12,g STUDENT.NAME STUDENT.NAME

12,k STUDENT.NAME WORKSON.STUDENTNAME

13,h STUDENT.GPA WORKSON.GRADEPOINTAVERAGE

14,i STUDENT.YR STUDENT.YEAR

18,j M8L.WORKSON M8R.WORKSON

19,k WORKSON.NAME WORKSON.STUDENTNAME

20,l WORKSON.PROJ WORKSON.PROJECT

21,m WORKSON.HRS WORKSON.EXPENSES

Matching Results between R01 and R02 using the Relational model:

Columns:

--------------------------------- ---------------------------- ------

BOOKING.BOOKING_ID ADDRESS.ADDRESS_ID 0.0401

BOOKING.PAYMENT_RECEIVED CARS_SOLD.MONTHLY_PAYMENT_AMOUNT 0.0405

CAR.CURRENT_MILEAGE CARS_FOR_SALE.CURRENT_MILEAGE 0.0752

CUSTOMER.ADDRESS_LINE_1 ADDRESS.ADDRESS_LINE_1 0.0805

CUSTOMER.CITY ADDRESS.TOWN_CITY 0.0514

CUSTOMER.EMAIL_ADDRESS CUSTOMERS.EMAIL_ADDRESS 0.0761

CUSTOMER.STATE ADDRESS.STATE_COUNTY_PROVINCE 0.0386

MANUFACTURER.MANUFACTURER_NAME CAR_MANUFACTURERS.MANUFACTURER_FULL_NAME 0.0647

MODEL.MODEL_CODE CAR_MODELS.MODEL_CODE 0.0252

MODEL.MODEL_NAME CAR_MODELS.MODEL_NAME 0.0776

Tables:

--------------------------------- ---------------------------- ------

BOOKING CARS_SOLD 0.0508

CAR CAR_MODELS 0.0805

CUSTOMER ADDRESS 0.1121

APPENDIX C. SCHEMA MATCH RESULTS

 212 (August 11, 2012)

Matching Results between R01 and R02 using the Star model:

Columns:

--------------------------------- ---------------------------- ------

BOOKING.CUSTOMER_ID CARS_SOLD.CUSTOMER_ID 0.0166

BOOKING.DATE_OF_SERVICE CARS_FOR_SALE.DATE_ACQUIRED 0.0181

BOOKING.PAYMENT_RECEIVED CARS_SOLD.MONTHLY_PAYMENT_AMOUNT 0.0757

CAR.CURRENT_MILEAGE CARS_FOR_SALE.CURRENT_MILEAGE 0.0634

CUSTOMER.CITY ADDRESS.TOWN_CITY 0.0234

CUSTOMER.CUSTOMER_ID CUSTOMERS.CUSTOMER_ID 0.0239

CUSTOMER.EMAIL_ADDRESS CUSTOMERS.EMAIL_ADDRESS 0.0655

CUSTOMER.PHONE_NUMBER CUSTOMERS.CAR_MOBILE_PHONE 0.0306

CUSTOMER.STATE ADDRESS.STATE_COUNTY_PROVINCE 0.0178

MANUFACTURER.MANUFACTURER_NAME CAR_MANUFACTURERS.MANUFACTURER_FULL_NAME 0.0664

MODEL.MODEL_CODE CAR_MODELS.MODEL_CODE 0.0379

MODEL.MODEL_NAME CAR_MODELS.MODEL_NAME 0.0703

Tables:

--------------------------------- ---------------------------- ------

BOOKING CARS_SOLD 0.3584

CAR CARS_FOR_SALE 0.1325

CUSTOMER CUSTOMERS 0.1845

MANUFACTURER CAR_MANUFACTURERS 0.1259

MODEL CAR_MODELS 0.1401

COMA Results

--

MODEL_TABLE.MODEL.MODEL_NAME <->

 CAR_MODELS_TABLE.CAR_MODELS.MODEL_NAME: 0.8650665

MODEL_TABLE <-> CAR_MODELS_TABLE: 0.69309604

CUSTOMER_TABLE.CUSTOMER.CUSTOMER_ID <->

 CUSTOMERS_TABLE.CUSTOMERS.CUSTOMER_ID: 0.88079137

CUSTOMER_TABLE.CUSTOMER.PHONE_NUMBER <->

CUSTOMERS_TABLE.CUSTOMERS.CAR_MOBILE_PHONE: 0.625968

CUSTOMER_TABLE.CUSTOMER.ADDRESS_LINE_1 <->

ADDRESS_TABLE.ADDRESS.ADDRESS_LINE_1: 0.8232952

CUSTOMER_TABLE.CUSTOMER.CITY <-> ADDRESS_TABLE.ADDRESS.TOWN_CITY: 0.62634003

CUSTOMER_TABLE.CUSTOMER.STATE <->

 ADDRESS_TABLE.ADDRESS.STATE_COUNTY_PROVINCE: 0.5606197

CUSTOMER_TABLE.CUSTOMER.EMAIL_ADDRESS <->

CUSTOMERS_TABLE.CUSTOMERS.EMAIL_ADDRESS: 0.88613033

CUSTOMER_TABLE <-> CUSTOMERS_TABLE: 0.77226067

MANUFACTURER_TABLE.MANUFACTURER.MANUFACTURER_NAME <->

CAR_MANUFACTURERS_TABLE.CAR_MANUFACTURERS.MANUFACTURER_FULL_NAME: 0.79365826

MANUFACTURER_TABLE <-> CAR_MANUFACTURERS_TABLE: 0.7768769

CAR_TABLE.CAR.MODEL_CODE <->

 CAR_MODELS_TABLE.CAR_MODELS.MODEL_CODE: 0.87084925

CAR_TABLE.CAR.CUSTOMER_ID <-> CARS_SOLD_TABLE.CARS_SOLD.CUSTOMER_ID: 0.8257048

CAR_TABLE.CAR.CURRENT_MILEAGE <->

CARS_FOR_SALE_TABLE.CARS_FOR_SALE.CURRENT_MILEAGE: 0.8133527

CAR_TABLE.CAR <-> CAR_MODELS_TABLE.CAR_MODELS: 0.6177288

BOOKING_TABLE.BOOKING.DATE_OF_SERVICE <->

 CARS_SOLD_TABLE.CARS_SOLD.DATE_SOLD: 0.5087609

BOOKING_TABLE.BOOKING.PAYMENT_RECEIVED <->

CARS_SOLD_TABLE.CARS_SOLD.MONTHLY_PAYMENT_AMOUNT: 0.49978667

APPENDIX C. SCHEMA MATCH RESULTS

 213 (August 11, 2012)

Expected results agreed by at least 2 participants

--

1,p R01.CUSTOMER R02.CUSTOMERS

2,q CUSTOMER.CUSTOMER_ID CUSTOMERS.CUSTOMER_ID

6,s CUSTOMER.EMAIL_ADDRESS CUSTOMERS.EMAIL_ADDRESS

7,r CUSTOMER.PHONE_NUMBER CUSTOMERS.CAR_MOBILE_PHONE

8,cc CUSTOMER.ADDRESS_LINE_1 ADDRESS.ADDRESS_LINE_1

9,dd CUSTOMER.CITY ADDRESS.TOWN_CITY

10,ee CUSTOMER.STATE ADDRESS.STATE_COUNTY_PROVINCE

11,a R01.MODEL R02.CAR_MODELS

12,b MODEL.MODEL_CODE CAR_MODELS.MODEL_CODE

14,c MODEL.MODEL_NAME CAR_MODELS.MODEL_NAME

15,e R01.MANUFACTURER R02.CAR_MANUFACTURERS

16,f MANUFACTURER.MANUFACTURER_CODE

 CAR_MANUFACTURERS.MANUFACTURER_SHORT_NAME

17,g MANUFACTURER.MANUFACTURER_NAME

 CAR_MANUFACTURERS.MANUFACTURER_FULL_NAME

19,h R01.CAR R02.CARS_FOR_SALE

22,k CAR.MODEL_CODE CARS_FOR_SALE.MODEL_CODE

23,l CAR.CURRENT_MILEAGE CARS_FOR_SALE.CURRENT_MILEAGE

25,m CAR.MANUFACTURER_CODE CARS_FOR_SALE.MANUFACTURER_SHORT_NAME

26,t R01.BOOKING R02.CARS_SOLD

27,u BOOKING.BOOKING_ID CARS_SOLD.CAR_FOR_SALE_ID

28,v BOOKING.CUSTOMER_ID CARS_SOLD.CUSTOMER_ID

30,x BOOKING.DATE_OF_SERVICE CARS_SOLD.DATE_SOLD

207

Matching Results between R03 and R06 using the Relational model:

Columns:

--------------------------------- ---------------------------- ------

AUTHORS.AUTHOR_INITIALS PRODUCTS.BOOK_AUTHOR 0.0333

BOOKS.BOOK_PUBLICATION_DATE PRODUCTS.PUBLICATION_DATE 0.0639

BOOKS.ISBN PRODUCTS.BOOK_ISBN 0.0453

BOOKS.TITLE PRODUCTS.BOOK_TITLE 0.0452

CONTACTS.CONTACT_FIRST_NAME CUSTOMERS.FIRST_NAME 0.0538

CONTACTS.CONTACT_LAST_NAME CUSTOMERS.LAST_NAME 0.0538

CUSTOMERS.CUSTOMER_EMAIL CUSTOMERS.CUSTOMER_EMAIL 0.0670

CUSTOMERS.CUSTOMER_ID CUSTOMERS.CUSTOMER_ID 0.0253

CUSTOMERS.CUSTOMER_PHONE CUSTOMERS.CUSTOMER_PHONE 0.0678

ORDER_ITEMS.AGREED_PRICE PRODUCTS.PRODUCT_PRICE 0.0462

ORDER_ITEMS.CUSTOMER_ID CUSTOMER_ORDER.CUSTOMER_ID 0.0194

ORDER_ITEMS.ITEM_NUMBER CUSTOMER_ORDERS_PRODUCT.QUANTITY 0.0205

Tables:

--------------------------------- ---------------------------- ------

BOOKS PRODUCTS 0.0936

CUSTOMERS CUSTOMERS 0.2386

ORDER_ITEMS CUSTOMER_ORDER 0.0752

Matching Results between R03 and R06 using the Star model:

Columns:

--------------------------------- ---------------------------- ------

BOOKS.BOOK_ID PRODUCTS.PRODUCT_ID 0.0377

BOOKS.BOOK_PUBLICATION_DATE PRODUCTS.PUBLICATION_DATE 0.0643

BOOKS.ISBN PRODUCTS.BOOK_ISBN 0.0458

BOOKS.TITLE PRODUCTS.BOOK_TITLE 0.0457

CUSTOMERS.CUSTOMER_EMAIL CUSTOMERS.CUSTOMER_EMAIL 0.0714

CUSTOMERS.CUSTOMER_ID CUSTOMERS.CUSTOMER_ID 0.0571

APPENDIX C. SCHEMA MATCH RESULTS

 214 (August 11, 2012)

CUSTOMERS.CUSTOMER_PHONE CUSTOMERS.CUSTOMER_PHONE 0.0719

ORDER_ITEMS.AGREED_PRICE CUSTOMER_ORDERS_PRODUCT.QUANTITY 0.0830

ORDER_ITEMS.BOOK_ID CUSTOMER_ORDERS_PRODUCT.PRODUCT_ID 0.0231

Tables:

--------------------------------- ---------------------------- ------

BOOKS PRODUCTS 0.2834

CUSTOMERS CUSTOMERS 0.5884

ORDER_ITEMS CUSTOMER_ORDERS_PRODUCT 0.2629

COMA Results

--

ORDER_ITEMS_TABLE.ORDER_ITEMS.CUSTOMER_ID <->

 CUSTOMER_ORDER_TABLE.CUSTOMER_ORDER.CUSTOMER_ID: 0.87248325

ORDER_ITEMS_TABLE.ORDER_ITEMS.AGREED_PRICE <->

 CUSTOMER_ORDER_TABLE.CUSTOMER_ORDER.ORDER_PRICE: 0.5893995

ORDER_ITEMS_TABLE <-> CUSTOMER_ORDER_TABLE: 0.6626226

BOOKS_TABLE.BOOKS.ISBN <-> PRODUCTS_TABLE.PRODUCTS.BOOK_ISBN: 0.63474965

BOOKS_TABLE.BOOKS.TITLE <-> PRODUCTS_TABLE.PRODUCTS.BOOK_TITLE: 0.63474965

BOOKS_TABLE.BOOKS.BOOK_PUBLICATION_DATE <->

 PRODUCTS_TABLE.PRODUCTS.PUBLICATION_DATE: 0.6903354

BOOKS_TABLE <-> PRODUCTS_TABLE: 0.5840041

CONTACTS_TABLE.CONTACTS.CONTACT_ID <->

 PRODUCTS_TABLE.PRODUCTS.PRODUCT_ID: 0.5752502

CONTACTS_TABLE.CONTACTS.CONTACT_FIRST_NAME <->

 CUSTOMERS_TABLE.CUSTOMERS.FIRST_NAME: 0.73795813

CONTACTS_TABLE.CONTACTS.CONTACT_LAST_NAME <->

 CUSTOMERS_TABLE.CUSTOMERS.LAST_NAME: 0.73880535

AUTHORS_TABLE.AUTHORS.AUTHOR_INITIALS <->

 PRODUCTS_TABLE.PRODUCTS.BOOK_AUTHOR: 0.5216146

CUSTOMERS_TABLE.CUSTOMERS.CUSTOMER_ID <->

CUSTOMERS_TABLE.CUSTOMERS.CUSTOMER_ID: 0.9337578

CUSTOMERS_TABLE.CUSTOMERS.CUSTOMER_PHONE <->

CUSTOMERS_TABLE.CUSTOMERS.CUSTOMER_PHONE: 0.96267486

CUSTOMERS_TABLE.CUSTOMERS.CUSTOMER_EMAIL <->

CUSTOMERS_TABLE.CUSTOMERS.CUSTOMER_EMAIL: 0.96267486

CUSTOMERS_TABLE <-> CUSTOMERS_TABLE: 0.9253497

Expected results agreed by at least 2 participants

--

1, a R03.BOOKS R06.PRODUCTS

2, b BOOKS.BOOK_ID PRODUCTS.PRODUCT_ID

3, d BOOKS.ISBN PRODUCTS.BOOK_ISBN

4, g BOOKS.TITLE PRODUCTS.BOOK_TITLE

5, f BOOKS.BOOK_PUBLICATION PRODUCTS.PUBLICATION_DATE

6, k R03.CUSTOMERS R06.CUSTOMERS

7, l CUSTOMERS.CUSTOMER_ID CUSTOMERS.CUSTOMER_ID

9, m CUSTOMERS.CUSTOMER_NAME CUSTOMERS.FIRST_NAME

9, n CUSTOMERS.CUSTOMER_NAME CUSTOMERS.LAST_NAME

11, o CUSTOMERS.CUSTOMER_PHONE CUSTOMERS.CUSTOMER_PHONE

12, p CUSTOMERS.CUSTOMER_EMAIL CUSTOMERS.CUSTOMER_EMAIL

15, x ORDER_ITEMS.BOOK_ID CUSTOMER_ORDERS_PRODUCT.PRODUCT_ID

16, r ORDER_ITEMS.CUSTOMER_ID CUSTOMER_ORDER.CUSTOMER_ID

Matching Results between R06 and R07 using the Relational model:

Columns:

--------------------------------- ---------------------------- ------

CUSTOMERS.CUSTOMER_EMAIL CLIENT.CUSTOMER_EMAIL 0.0693

APPENDIX C. SCHEMA MATCH RESULTS

 215 (August 11, 2012)

CUSTOMERS.CUSTOMER_ID CLIENT.CUSTOMER_ID 0.0419

CUSTOMERS.CUSTOMER_PHONE CLIENT.CUSTOMER_PHONE 0.0682

CUSTOMERS.FIRST_NAME AUTHOR.AUTHOR_FIRST_NAME 0.0562

CUSTOMERS.LAST_NAME AUTHOR.AUTHOR_LAST_NAME 0.0562

CUSTOMER_ORDERS_PRODUCT.QUANTITY BOOK_AUTHOR.SEQ_NO 0.0212

PRODUCTS.BOOK_AUTHOR BOOK_AUTHOR 0.0656

PRODUCTS.BOOK_TITLE BOOK.BOOK_TITLE 0.0693

PRODUCTS.PRODUCT_ PRICE BOOK.BOOK_PRICE 0.0393

PRODUCTS.PUBLICATION_DATE BOOK.PUBLICATION_DATE 0.0725

Tables:

--------------------------------- ---------------------------- ------

CUSTOMERS CLIENT 0.1819

PRODUCTS BOOK 0.1313

Matching Results between R06 and R07 using the Star model:

Columns:

--------------------------------- ---------------------------- ------

CUSTOMERS.CUSTOMER_EMAIL CLIENT.CUSTOMER_EMAIL 0.0397

CUSTOMERS.CUSTOMER_ID CLIENT.CUSTOMER_ID 0.0236

CUSTOMERS.CUSTOMER_PHONE CLIENT.CUSTOMER_PHONE 0.0388

CUSTOMERS.FIRST_NAME AUTHOR.AUTHOR_FIRST_NAME 0.0584

CUSTOMERS.LAST_NAME AUTHOR.AUTHOR_LAST_NAME 0.0584

CUSTOMER_ORDERS_PRODUCT.PRODUCT_ID BOOK_AUTHOR.BOOK_ID 0.0239

CUSTOMER_ORDERS_PRODUCT.QUANTITY BOOK_AUTHOR.SEQ_NO 0.0220

PRODUCTS.BOOK_TITLE BOOK.BOOK_TITLE 0.0713

PRODUCTS.PRODUCT_ID BOOK.BOOK_ID 0.0232

PRODUCTS.PRODUCT_PRICE BOOK.BOOK_PRICE 0.0426

PRODUCTS.PUBLICATION_DATE BOOK.PUBLICATION_DATE 0.0722

Tables:

--------------------------------- ---------------------------- ------

CUSTOMER_ORDERS_PRODUCT BOOK_AUTHOR 0.2028

PRODUCTS BOOK 0.3913

COMA Results

--

CUSTOMER_ORDER_TABLE.CUSTOMER_ORDER.CUSTOMER_ID <->

 CLIENT_TABLE.CLIENT.CUSTOMER_ID: 0.8388858

CUSTOMER_ORDER_TABLE.CUSTOMER_ORDER.ORDER_ID <->

 AUTHOR_TABLE.AUTHOR.AUTHOR_ID: 0.55583584

PRODUCTS_TABLE.PRODUCTS.BOOK_ISBN <-> BOOK_TABLE.BOOK.BOOK_ID: 0.5712036

PRODUCTS_TABLE.PRODUCTS.PUBLICATION_DATE <->

 BOOK_TABLE.BOOK.PUBLICATION_DATE: 0.79273427

PRODUCTS_TABLE.PRODUCTS.BOOK_TITLE <->

 BOOK_TABLE.BOOK.BOOK_TITLE: 0.82702506

PRODUCTS_TABLE <-> BOOK_TABLE: 0.5806375

CUSTOMERS_TABLE.CUSTOMERS.CUSTOMER_ID <->

 CLIENT_TABLE.CLIENT.CUSTOMER_ID: 0.847226

CUSTOMERS_TABLE.CUSTOMERS.FIRST_NAME <->

AUTHOR_TABLE.AUTHOR.AUTHOR_FIRST_NAME: 0.68796057

CUSTOMERS_TABLE.CUSTOMERS.LAST_NAME <->

 AUTHOR_TABLE.AUTHOR.AUTHOR_LAST_NAME: 0.68796057

CUSTOMERS_TABLE.CUSTOMERS.CUSTOMER_PHONE <->

 CLIENT_TABLE.CLIENT.CUSTOMER_PHONE: 0.86897534

CUSTOMERS_TABLE.CUSTOMERS.CUSTOMER_EMAIL <->

 CLIENT_TABLE.CLIENT.CUSTOMER_EMAIL: 0.86897534

CUSTOMERS_TABLE <-> CLIENT_TABLE: 0.70517427

APPENDIX C. SCHEMA MATCH RESULTS

 216 (August 11, 2012)

CUSTOMER_ORDERS_PRODUCT_TABLE <-> BOOK_AUTHOR_TABLE: 0.4523942

Expected results agreed by at least 2 participants

--

1, p R06.PRODUCTS R07.BOOK

2, q PRODUCTS.PRODUCT_ID BOOK.BOOK_ID

3, t PRODUCTS.PRODUCT_PRICE BOOK.BOOK_PRICE

5, x PRODUCTS.BOOK_AUTHOR AUTHOR.AUTHOR_FIRST_NAME

5, y PRODUCTS.BOOK_AUTHOR AUTHOR.AUTHOR_INITIALS

5, z PRODUCTS.BOOK_AUTHOR AUTHOR.AUTHOR_LAST_NAME

6, u PRODUCTS.PUBLICATION_DATE BOOK.PUBLICATION_DATE

7, s PRODUCTS.BOOK_TITLE BOOK.BOOK_TITLE

11, a R06.CUSTOMERS R07.CLIENT

12, b CUSTOMERS.CUSTOMER_ID CLIENT.CUSTOMER_ID

13, d CUSTOMERS.FIRST_NAME CLIENT.CUSTOMER_NAME

14, d CUSTOMERS.LAST_NAME CLIENT.CUSTOMER_NAME

15, f CUSTOMERS.CUSTOMER_PHONE CLIENT.CUSTOMER_PHONE

16, g CUSTOMERS.CUSTOMER_EMAIL CLIENT.CUSTOMER_EMAIL

209

Matching Results between R07 and R03 using the Relational model:

Columns:

--------------------------------- ---------------------------- ------

AUTHOR.AUTHOR_FIRST_NAME AUTHORS.AUTHOR_FIRST_NAME 0.0578

AUTHOR.AUTHOR_INITIALS AUTHORS.AUTHOR_INITIALS 0.0594

AUTHOR.AUTHOR_LAST_NAME AUTHORS.AUTHOR_LAST_NAME 0.0578

BOOK.BOOK_PRICE ORDER_ITEMS.AGREED_PRICE 0.0300

BOOK.BOOK_TITLE BOOKS.TITLE 0.0382

BOOK.PUBLICATION_DATE BOOKS.BOOK_PUBLICATION_DATE 0.0502

BOOK_AUTHOR.SEQ_NO ORDER_ITEMS.ITEM_NUMBER 0.0151

CLIENT.CUSTOMER_ADDRESS CUSTOMERS.CUSTOMER_ADDRESS 0.0591

CLIENT.CUSTOMER_CODE CUSTOMERS.CUSTOMER_CODE 0.0573

CLIENT.CUSTOMER_EMAIL CUSTOMERS.CUSTOMER_EMAIL 0.0573

CLIENT.CUSTOMER_ID CUSTOMERS.CUSTOMER_ID 0.0346

CLIENT.CUSTOMER_NAME CUSTOMERS.CUSTOMER_NAME 0.0561

CLIENT.CUSTOMER_PHONE CUSTOMERS.CUSTOMER_PHONE 0.0561

Tables:

--------------------------------- ---------------------------- ------

AUTHOR AUTHORS 0.1319

BOOK BOOKS 0.0703

CLIENT CUSTOMERS 0.2491

Matching Results between R07 and R03 using the Star model:

Columns:

--------------------------------- ---------------------------- ------

AUTHOR.AUTHOR_FIRST_NAME AUTHORS.AUTHOR_FIRST_NAME 0.0398

AUTHOR.AUTHOR_ID AUTHORS.AUTHOR_ID 0.0226

AUTHOR.AUTHOR_INITIALS AUTHORS.AUTHOR_INITIALS 0.0405

AUTHOR.AUTHOR_LAST_NAME AUTHORS.AUTHOR_LAST_NAME 0.0398

BOOK.BOOK_ID BOOKS.BOOK_ID 0.0290

BOOK.BOOK_PRICE ORDER_ITEMS.AGREED_PRICE 0.0353

BOOK.BOOK_TITLE BOOKS.TITLE 0.0484

BOOK.PUBLICATION_DATE BOOKS.BOOK_PUBLICATION_DATE 0.0606

BOOK_AUTHOR.BOOK_ID ORDER_ITEMS.BOOK_ID 0.0210

BOOK_AUTHOR.SEQ_NO ORDER_ITEMS.ITEM_NUMBER 0.0093

CLIENT.CUSTOMER_ADDRESS CUSTOMERS.CUSTOMER_ADDRESS 0.0408

CLIENT.CUSTOMER_CODE CUSTOMERS.CUSTOMER_CODE 0.0396

APPENDIX C. SCHEMA MATCH RESULTS

 217 (August 11, 2012)

CLIENT.CUSTOMER_EMAIL CUSTOMERS.CUSTOMER_EMAIL 0.0388

CLIENT.CUSTOMER_ID CUSTOMERS.CUSTOMER_ID 0.0230

CLIENT.CUSTOMER_NAME CUSTOMERS.CUSTOMER_NAME 0.0380

CLIENT.CUSTOMER_PHONE CUSTOMERS.CUSTOMER_PHONE 0.0382

Tables:

--------------------------------- ---------------------------- ------

BOOK BOOKS 0.2292

BOOK_AUTHOR AUTHORS 0.1146

CLIENT CUSTOMERS 0.1820

COMA Results

--

AUTHOR_TABLE.AUTHOR.AUTHOR_ID <-> AUTHORS_TABLE.AUTHORS.AUTHOR_ID: 0.9300933

AUTHOR_TABLE.AUTHOR.AUTHOR_FIRST_NAME <->

 AUTHORS_TABLE.AUTHORS.AUTHOR_FIRST_NAME: 0.9632353

AUTHOR_TABLE.AUTHOR.AUTHOR_INITIALS <->

 AUTHORS_TABLE.AUTHORS.AUTHOR_INITIALS: 0.9632353

AUTHOR_TABLE.AUTHOR.AUTHOR_LAST_NAME <->

 AUTHORS_TABLE.AUTHORS.AUTHOR_LAST_NAME: 0.9632353

AUTHOR_TABLE <-> AUTHORS_TABLE: 0.9264706

CLIENT_TABLE.CLIENT.CUSTOMER_ID <->

 CUSTOMERS_TABLE.CUSTOMERS.CUSTOMER_ID: 0.87094575

CLIENT_TABLE.CLIENT.CUSTOMER_CODE <->

 CUSTOMERS_TABLE.CUSTOMERS.CUSTOMER_CODE: 0.90828025

CLIENT_TABLE.CLIENT.CUSTOMER_NAME <->

CUSTOMERS_TABLE.CUSTOMERS.CUSTOMER_NAME: 0.9063005

CLIENT_TABLE.CLIENT.CUSTOMER_ADDRESS <->

CUSTOMERS_TABLE.CUSTOMERS.CUSTOMER_ADDRESS: 0.90768933

CLIENT_TABLE.CLIENT.CUSTOMER_PHONE <->

CUSTOMERS_TABLE.CUSTOMERS.CUSTOMER_PHONE: 0.9063005

CLIENT_TABLE.CLIENT.CUSTOMER_EMAIL <->

CUSTOMERS_TABLE.CUSTOMERS.CUSTOMER_EMAIL: 0.9063005

CLIENT_TABLE <-> CUSTOMERS_TABLE: 0.77982455

BOOK_TABLE.BOOK.BOOK_ID <-> BOOKS_TABLE.BOOKS.BOOK_ID: 0.87176013

BOOK_TABLE.BOOK.BOOK_TITLE <-> BOOKS_TABLE.BOOKS.TITLE: 0.71178776

BOOK_TABLE.BOOK.PUBLICATION_DATE <->

 BOOKS_TABLE.BOOKS.BOOK_PUBLICATION_DATE: 0.7795656

BOOK_TABLE <-> BOOKS_TABLE: 0.7624644

Expected results agreed by at least 2 participants

--

01, f R07.CLIENT R03.CUSTOMERS

02, g CLIENT.CUSTOMER_ID CUSTOMERS.CUSTOMER_ID

03, h CLIENT.CUSTOMER_CODE CUSTOMERS.CUSTOMER_CODE

04, i CLIENT.CUSTOMER_NAME CUSTOMERS.CUSTOMER_NAME

05, j CLIENT.CUSTOMER_ADDRESS CUSTOMERS.CUSTOMER_ADDRESS

06, k CLIENT.CUSTOMER_PHONE CUSTOMERS.CUSTOMER_PHONE

07, l CLIENT.CUSTOMER_EMAIL CUSTOMERS.CUSTOMER_EMAIL

16, a R07.BOOK R03.BOOKS

17, b BOOK.BOOK_ID BOOKS.BOOK_ID

19, d BOOK.BOOK_TITLE BOOKS.TITLE

21, e BOOK.PUBLICATION_DATE BOOKS.BOOK_PUBLICATION_DATE

22, x R07.AUTHOR R03.AUTHORS

23, y AUTHOR.AUTHOR_ID AUTHORS.AUTHOR_ID

24, z AUTHOR.AUTHOR_FIRST_NAME AUTHORS.AUTHOR_FIRST_NAME

25, aa AUTHOR.AUTHOR_INITIALS AUTHORS.AUTHOR_INITALS

26, bb AUTHOR.AUTHOR_LAST_NAME AUTHORS.AUTHOR_LAST_NAME

APPENDIX C. SCHEMA MATCH RESULTS

 218 (August 11, 2012)

28, b BOOK_AUTHOR.BOOK_ID BOOKS.BOOK_ID

28, o BOOK_AUTHOR.BOOK_ID ORDER_ITEMS.BOOK_ID

Matching Results between R08A and R08B using the Relational model:

Columns:

--------------------------------- ---------------------------- ------

ACCOUNT.ACCOUNT_NAME APPLICANT.APPLICANT_NAME 0.0386

CUSTOMER.CUSTOMER_ADDRESS APPLICANT.APPLICANT_ADDRESS 0.0389

CUSTOMER.CUSTOMER_PHONE APPLICANT.APPLICANT_PHONE 0.0362

FINANCIAL_TRANSACTION.TRANSACTION_AMOUNT TRANSACTION.TRANSACTION_AMOUNT 0.0749

FINANCIAL_TRANSACTION.TRANSACTION_DATE TRANSACTION.TRANSACTION_DATE 0.0768

Tables:

--------------------------------- ---------------------------- ------

CUSTOMER APPLICANT 0.0473

CUSTOMER_CARD CARD 0.1536

FINANCIAL_TRANSACTION TRANSACTION 0.1593

Matching Results between R08A and R08B using the Star model:

Columns:

--------------------------------- ---------------------------- ------

ACCOUNT.ACCOUNT_NAME APPLICANT.APPLICANT_NAME 0.0363

CUSTOMER.CUSTOMER_ ADDRESS APPLICANT.APPLICANT_ADDRESS 0.0364

CUSTOMER.CUSTOMER_PHONE APPLICANT.APPLICANT_PHONE 0.0340

FINANCIAL_TRANSACTION.TRANSACTION_AMOUNT TRANSACTION.TRANSACTION_AMOUNT 0.1104

FINANCIAL_TRANSACTION.TRANSACTION_DATE TRANSACTION.TRANSACTION_DATE 0.0299

REF_CARD_TYPE.CARD_TYPE_CODE CARD_TYPE.CARD_TYPE 0.0452

REF_CARD_TYPE.CARD_TYPE_DESCRIPTION PAYMENT.PAYMENT_DESCRIPTION 0.0335

Tables:

--------------------------------- ---------------------------- ------

CUSTOMER APPLICANT 0.1162

CUSTOMER_CARD CARD 0.3277

FINANCIAL_TRANSACTION TRANSACTION 0.4860

COMA Results

--

REF_CARD_TYPE_TABLE.REF_CARD_TYPE.CARD_TYPE_CODE <->

 CARD_TYPE_TABLE.CARD_TYPE.CARD_TYPE: 0.81683004

REF_CARD_TYPE_TABLE <-> CARD_TYPE_TABLE: 0.77969897

CUSTOMER_CARD_TABLE.CUSTOMER_CARD.CARD_TYPE_CODE <->

 CARD_TABLE.CARD.CARD_TYPE: 0.8051237

CUSTOMER_CARD_TABLE.CUSTOMER_CARD.CARD_ID <->

 CARD_TABLE.CARD.CARD_DEBT: 0.66209203

CUSTOMER_CARD_TABLE.CUSTOMER_CARD.CARD_NUMBER <->

 CARD_TABLE.CARD.CARD_NUMBER: 0.88136595

CUSTOMER_CARD_TABLE.CUSTOMER_CARD.DATE_VALID_FROM <->

 CARD_TABLE.CARD.CARD_EXPIRE_DATE: 0.596231

CUSTOMER_CARD_TABLE.CUSTOMER_CARD.DATE_VALID_TO <->

 CARD_TABLE.CARD.CARD_EXPIRE_DATE: 0.596231

CUSTOMER_CARD_TABLE <-> CARD_TABLE: 0.7763117

CUSTOMER_TABLE.CUSTOMER.CUSTOMER_PHONE <->

 APPLICANT_TABLE.APPLICANT.APPLICANT_PHONE: 0.5251432

CUSTOMER_TABLE.CUSTOMER.CUSTOMER_ADDRESS <->

 APPLICANT_TABLE.APPLICANT.APPLICANT_ADDRESS: 0.5378516

ACCOUNT_TABLE.ACCOUNT.ACCOUNT_ID <->

 APPLICANT_TABLE.APPLICANT.APPLICANT_ID: 0.6380226

ACCOUNT_TABLE.ACCOUNT.ACCOUNT_NAME <->

APPENDIX C. SCHEMA MATCH RESULTS

 219 (August 11, 2012)

 APPLICANT_TABLE.APPLICANT.APPLICANT_NAME: 0.6395299

ACCOUNT_TABLE <-> APPLICANT_TABLE: 0.6348931

FINANCIAL_TRANSACTION_TABLE.FINANCIAL_TRANSACTION.TRANSACTION_ID <->

 TRANSACTION_TABLE.TRANSACTION.TRANSACTION_ID: 0.8932756

FINANCIAL_TRANSACTION_TABLE.FINANCIAL_TRANSACTION.TRANSACTION_AMOUNT <->

 TRANSACTION_TABLE.TRANSACTION.TRANSACTION_AMOUNT: 0.908187

FINANCIAL_TRANSACTION_TABLE.FINANCIAL_TRANSACTION.TRANSACTION_DATE <->

 TRANSACTION_TABLE.TRANSACTION.TRANSACTION_DATE: 0.9068642

FINANCIAL_TRANSACTION_TABLE <-> TRANSACTION_TABLE: 0.8026174

Expected results agreed by at least 2 participants

--

1,g R08A.REF_CARD_TYPE R08B.CARD_TYPE

2,h REF_CARD_TYPE.CARD_TYPE_CODE CARD_TYPE.CARD_TYPE

4,i REF_CARD_TYPE.DEBIT_AMOUNT CARD_TYPE.CARDTYPE_LIMIT

5,a R08A.CUSTOMER R08B.APPLICANT

6,b CUSTOMER.CUSTOMER_ID APPLICANT.APPLICANT_ID

7,c CUSTOMER.CUSTOMER_NAME APPLICANT.APPLICANT_NAME

8,e CUSTOMER.CUSTOMER_PHONE APPLICANT.APPLICANT_PHONE

10,f CUSTOMER.CUSTOMER_ADDRESS APPLICANT.APPLICANT_ADDRESS

11,j R08A.CUSTOMER_CARD R08B.CARD

13,m CUSTOMER_CARD.CUSTOMER_ID CARD.APPLICANT_ID

14,k CUSTOMER_CARD.CARD_NUMBER CARD.CARD_NUMBER

16,l CUSTOMER_CARD.DATE_VALID_TO CARD.CARD_EXPIRE_DATE

17,o CUSTOMER_CARD.CARD_TYPE_CODE CARD.CARD_TYPE

22,t R08A.FINANCIAL_TRANSACTION R08B.TRANSACTION

23,u FINANCIAL_TRANSACTION.TRANSACTION_ID

 TRANSACTION.TRANSACTION_ID

25,x FINANCIAL_TRANSACTION.TRANSACTION_AMOUNT

 TRANSACTION.TRANSACTION_AMOUNT

27,w FINANCIAL_TRANSACTION.TRANSACTION_DATE TRANSACTION.TRANSACTION_DATE

Matching Results between PP1 and PP2 using the Relational model:

Columns:

--------------------------------- ---------------------------- ------

DEALER.DELIVERY_FINAL_COST CAR_SALES.FIN_COST 0.0512

FISCAL_CAL.FISCAL_MONTH FINANCIAL_CAL.FIN_MONTH 0.0592

FISCAL_CAL.FISCAL_YEAR FINANCIAL_CAL.FIN_YEAR 0.0577

FISCAL_CAL.YEAR_MONTH FINANCIAL_CAL.FIN_YEAR_MONTH 0.0339

MONTHLY_SALES.SALES_AMT CAR_SALES.SALES_AMOUNT 0.0545

MONTHLY_SALES.SALES_QTY CAR_DEALER.SALES_RNK 0.0495

Tables:

--------------------------------- ---------------------------- ------

DEALER CAR_DEALER 0.1181

FISCAL_CAL FINANCIAL_CAL 0.1541

MAKE CAR_MAKE 0.0566

MODEL CAR_MODEL 0.0566

MONTHLY_SALES CAR_SALES 0.1761

Matching Results between PP1 and PP2 using the Star model:

Columns:

--------------------------------- ---------------------------- ------

DEALER.DEALER_ID CAR_DEALER.DEALER_KEY 0.1165

DEALER.DEALER_NAME CAR_DEALER.DEALER_NM 0.0534

FISCAL_CAL.FISCAL_MONTH FINANCIAL_CAL.FIN_MONTH 0.0564

FISCAL_CAL.FISCAL_YEAR FINANCIAL_CAL.FIN_YEAR 0.0552

FISCAL_CAL.YEAR_MONTH FINANCIAL_CAL.FIN_YEAR_MONTH 0.0459

APPENDIX C. SCHEMA MATCH RESULTS

 220 (August 11, 2012)

MAKE.MAKE_ID CAR_MAKE.CAR_MAKE 0.0343

MAKE.MAKE_NAME CAR_MAKE.CAR_MAKE_DESC 0.0458

MODEL.MODEL_ID CAR_MODEL.CAR_MODEL 0.0343

MODEL.MODEL_NAME CAR_MODEL.CAR_MODEL_DESC 0.0458

MONTHLY_SALES.DEALER_ID CAR_SALES.DEALER_KEY 0.0221

MONTHLY_SALES.MAKE_ID CAR_SALES.CAR_MAKE 0.0177

MONTHLY_SALES.MODEL_ID CAR_SALES.CAR_MODEL 0.0177

MONTHLY_SALES.MONTHLY_ADS_COST CAR_SALES.FIN_COST 0.0415

MONTHLY_SALES.SALES_AMT CAR_SALES.SALES_AMOUNT 0.0517

MONTHLY_SALES.SALES_QTY CAR_SALES.SOLD_QTY 0.0487

MONTHLY_SALES.YEAR_MONTH CAR_SALES.FIN_YEAR_MONTH 0.0248

Tables:

--------------------------------- ---------------------------- ------

DEALER CAR_DEALER 0.2725

FISCAL_CAL FINANCIAL_CAL 0.2705

MAKE CAR_MAKE 0.1141

MODEL CAR_MODEL 0.1141

MONTHLY_SALES CAR_SALES 0.9070

COMA Results

--

DEALER_TABLE.DEALER.DEALER_ID <->

 CAR_DEALER_TABLE.CAR_DEALER.DEALER_KEY: 0.6401282

DEALER_TABLE.DEALER.DEALER_NAME <->

 CAR_DEALER_TABLE.CAR_DEALER.DEALER_NM: 0.66036695

DEALER_TABLE.DEALER.DELIVERY_FINAL_COST <->

 CAR_SALES_TABLE.CAR_SALES.FIN_COST: 0.5586653

DEALER_TABLE <-> CAR_DEALER_TABLE: 0.702073

MAKE_TABLE.MAKE.MAKE_ID <-> CAR_MAKE_TABLE.CAR_MAKE.CAR_MAKE: 0.62163365

MAKE_TABLE.MAKE.MAKE_NAME <-> CAR_MAKE_TABLE.CAR_MAKE.CAR_MAKE: 0.6184272

MAKE_TABLE <-> CAR_MAKE_TABLE: 0.7313195

FISCAL_CAL_TABLE.FISCAL_CAL.YEAR_MONTH <->

 FINANCIAL_CAL_TABLE.FINANCIAL_CAL.FIN_YEAR_MONTH: 0.74298567

FISCAL_CAL_TABLE.FISCAL_CAL.FISCAL_YEAR <->

 FINANCIAL_CAL_TABLE.FINANCIAL_CAL.FIN_YEAR: 0.6262011

FISCAL_CAL_TABLE.FISCAL_CAL.FISCAL_MONTH <->

 FINANCIAL_CAL_TABLE.FINANCIAL_CAL.FIN_MONTH: 0.70120114

FISCAL_CAL_TABLE <-> FINANCIAL_CAL_TABLE: 0.7388057

MONTHLY_SALES_TABLE.MONTHLY_SALES.MODEL_ID <->

 CAR_SALES_TABLE.CAR_SALES.CAR_MODEL: 0.5878663

MONTHLY_SALES_TABLE.MONTHLY_SALES.DEALER_ID <->

 CAR_SALES_TABLE.CAR_SALES.DEALER_KEY: 0.60163754

MONTHLY_SALES_TABLE.MONTHLY_SALES.MAKE_ID <->

 CAR_SALES_TABLE.CAR_SALES.CAR_MAKE: 0.58968925

MONTHLY_SALES_TABLE.MONTHLY_SALES.YEAR_MONTH <->

 CAR_SALES_TABLE.CAR_SALES.FIN_YEAR_MONTH: 0.7123402

MONTHLY_SALES_TABLE.MONTHLY_SALES.SALES_AMT <->

 CAR_SALES_TABLE.CAR_SALES.SALES_AMOUNT: 0.7046375

MONTHLY_SALES_TABLE.MONTHLY_SALES.SALES_QTY <->

 CAR_SALES_TABLE.CAR_SALES.SOLD_QTY: 0.62969095

MONTHLY_SALES_TABLE <-> CAR_SALES_TABLE: 0.65521526

MODEL_TABLE.MODEL.MODEL_ID <->

 CAR_MODEL_TABLE.CAR_MODEL.CAR_MODEL: 0.61981076

MODEL_TABLE <-> CAR_MODEL_TABLE: 0.72402775

APPENDIX C. SCHEMA MATCH RESULTS

 221 (August 11, 2012)

Expected results agreed by at least 2 participants

--

1,a PP1.FISCAL_CAL PP2.FINANCIAL_CAL

2,b YEAR_MONTH FIN_YEAR_MONTH

3,c FISCAL_YEAR FIN_YEAR INTEGER

4,d FISCAL_MONTH FIN_MONTH

5,i PP1.MAKE PP2.CAR_MAKE

6,j MAKE.MAKE_ID CAR_MAKE.CAR_MAKE

7,k MAKE.MAKE_NAME CAR_MAKE.CAR_MAKE_DESC

8,l PP1.MODEL PP2.CAR_MODEL

9,m MODEL.MODEL_ID CAR_MODEL.CAR_MODEL

10,n MODEL.MODEL_NAME CAR_MODEL.CAR_MODEL_DESC++++

11,e PP1.DEALER PP2.CAR_DEALER

12,f PP1.DEALER.DEALER_ID CAR_DEALER.DEALER_KEY

13,g DEALER_NAME DEALER_NM

15,o PP1.MONTHLY_SALES CAR_SALES

16,p MONTHLY_SALES.YEAR_MONTH CAR_SALES.FIN_YEAR_MONTH

17,s PP1.MONTHLY_SALES.MAKE_ID CAR_SALES.CAR_MAKE

18,r PP1.MONTHLY_SALES.MODEL_ID CAR_SALES.CAR_MODEL

19,q PP1.MONTHLY_SALES.DEALER_ID CAR_SALES.DEALER_KEY

20,w SALES_QTY SOLD_QTY

21,u SALES_AMT SALES_AMOUNT

22,v MONTHLY_ADS_COST MONTH_AD

213

Matching Results between T01A and T01B using the Relational model:

Columns:

--------------------------------- ---------------------------- ------

AUTO_DEALER.DEALER_ID DEALER.DEALER_ID 0.0194

AUTO_MAKE.MAKE_ID MMSC.MAKE_ID 0.0181

AUTO_MAKE.MAKE_NAME MMSC.MAKE_NAME 0.0612

AUTO_MODEL.MODEL_ID MMSC.MODEL_ID 0.0181

AUTO_MODEL.MODEL_NAME MMSC.MODEL_NAME 0.0612

DATE.CALENDAR_YEAR DATE.CALENDAR_YEAR 0.0665

DATE.FISCAL_YEAR DATE.FISCAL_YEAR 0.0629

DATE.MONTH_NAME DATE.MONTH_NAME 0.0619

MONTHLY_AUTO_SALES.AUTO_SALES_AMOUNT

 MONTHLY_AUTO_SALES.AUTO_SALES_AMOUNT 0.0598

MONTHLY_AUTO_SALES.OBJECTIVE_SALES_AMOUNT

 MONTHLY_AUTO_SALES.OBJECTIVE_SALES_AMOUNT

 0.0598

MONTHLY_AUTO_SALES.OBJECTIVE_SALES_QUANTITY

 MONTHLY_AUTO_SALES.OBJECTIVE_SALES_QUANTITY

 0.0593

Tables:

--------------------------------- ---------------------------- ------

AUTO_DEALER DEALER 0.0857

AUTO_MODEL MMSC 0.0578

DATE DATE 0.1527

MONTHLY_AUTO_SALES MONTHLY_AUTO_SALES 0.2451

Matching Results between T01A and T01B using the Star model:

Columns:

--------------------------------- ---------------------------- ------

AUTO_DEALER.DEALER_ID DEALER.DEALER_ID 0.0302

AUTO_MAKE.MAKE_ID MMSC.MAKE_ID 0.0263

AUTO_MAKE.MAKE_NAME MMSC.MAKE_NAME 0.0618

APPENDIX C. SCHEMA MATCH RESULTS

 222 (August 11, 2012)

AUTO_MODEL.MODEL_ID MMSC.MODEL_ID 0.0263

AUTO_MODEL.MODEL_NAME MMSC.MODEL_NAME 0.0618

DATE.CALENDAR_YEAR DATE.CALENDAR_YEAR 0.0698

DATE.FISCAL_YEAR DATE.FISCAL_YEAR 0.0665

DATE.MONTH_NAME DATE.MONTH_NAME 0.0658

DATE.MONTH_YEAR DATE.MONTH_YEAR 0.0297

MONTHLY_AUTO_SALES.AUTO_SALES_AMOUNT

 MONTHLY_AUTO_SALES.AUTO_SALES_AMOUNT 0.0590

MONTHLY_AUTO_SALES.DEALER_ID MONTHLY_AUTO_SALES.DEALER_ID 0.0217

MONTHLY_AUTO_SALES.MAKE_ID MONTHLY_AUTO_SALES.MAKE_ID 0.0227

MONTHLY_AUTO_SALES.MODEL_ID MONTHLY_AUTO_SALES.MODEL_ID 0.0227

MONTHLY_AUTO_SALES.MONTH_YEAR MONTHLY_AUTO_SALES.MONTH_YEAR 0.0176

MONTHLY_AUTO_SALES.OBJECTIVE_SALES_AMOUNT

 MONTHLY_AUTO_SALES.OBJECTIVE_SALES_AMOUNT

 0.0590

MONTHLY_AUTO_SALES.OBJECTIVE_SALES_QUANTITY

 MONTHLY_AUTO_SALES.OBJECTIVE_SALES_QUANTITY

 0.0645

Tables:

--------------------------------- ---------------------------- ------

AUTO_DEALER DEALER 0.2075

AUTO_MODEL MMSC 0.2095

DATE DATE 0.3413

MONTHLY_AUTO_SALES MONTHLY_AUTO_SALES 1

COMA Results

--

AUTO_MAKE_TABLE.AUTO_MAKE.MAKE_NAME <-> MMSC_TABLE.MMSC.MAKE_NAME: 0.83674204

AUTO_MAKE_TABLE.AUTO_MAKE <-> MMSC_TABLE.MMSC: 0.47530934

AUTO_MODEL_TABLE.AUTO_MODEL.MODEL_NAME <->

 MMSC_TABLE.MMSC.MODEL_NAME: 0.83394575

AUTO_MODEL_TABLE <-> MMSC_TABLE: 0.6048572

DATE_TABLE.DATE.MONTH_YEAR <-> DATE_TABLE.DATE.MONTH_YEAR: 0.9361829

DATE_TABLE.DATE.FISCAL_YEAR <-> DATE_TABLE.DATE.FISCAL_YEAR: 0.9925

DATE_TABLE.DATE.CALENDAR_YEAR <-> DATE_TABLE.DATE.CALENDAR_YEAR: 0.9925

DATE_TABLE.DATE.MONTH_NAME <-> DATE_TABLE.DATE.MONTH_NAME: 0.9925

DATE_TABLE.DATE <-> DATE_TABLE.DATE: 0.985

MONTHLY_AUTO_SALES_TABLE.MONTHLY_AUTO_SALES.DEALER_ID <->

 MONTHLY_AUTO_SALES_TABLE.MONTHLY_AUTO_SALES.DEALER_ID: 0.84580815

MONTHLY_AUTO_SALES_TABLE.MONTHLY_AUTO_SALES.MAKE_ID <->

 MONTHLY_AUTO_SALES_TABLE.MONTHLY_AUTO_SALES.MAKE_ID: 0.93859327

MONTHLY_AUTO_SALES_TABLE.MONTHLY_AUTO_SALES.MODEL_ID <->

 MONTHLY_AUTO_SALES_TABLE.MONTHLY_AUTO_SALES.MODEL_ID: 0.93845487

MONTHLY_AUTO_SALES_TABLE.MONTHLY_AUTO_SALES.MONTH_YEAR <->

 MONTHLY_AUTO_SALES_TABLE.MONTHLY_AUTO_SALES.MONTH_YEAR: 0.9361829

MONTHLY_AUTO_SALES_TABLE.MONTHLY_AUTO_SALES.AUTO_SALES_AMOUNT <->

 MONTHLY_AUTO_SALES_TABLE.MONTHLY_AUTO_SALES.AUTO_SALES_AMOUNT:

 0.90986574

MONTHLY_AUTO_SALES_TABLE.MONTHLY_AUTO_SALES.OBJECTIVE_SALES_AMOUNT <->

 MONTHLY_AUTO_SALES_TABLE.MONTHLY_AUTO_SALES.OBJECTIVE_SALES_AMOUNT:

 0.90986574

MONTHLY_AUTO_SALES_TABLE.MONTHLY_AUTO_SALES.OBJECTIVE_SALES_QUANTITY <->

 MONTHLY_AUTO_SALES_TABLE.MONTHLY_AUTO_SALES.OBJECTIVE_SALES_QUANTITY:

 0.8648658

MONTHLY_AUTO_SALES_TABLE.MONTHLY_AUTO_SALES <->

 MONTHLY_AUTO_SALES_TABLE.MONTHLY_AUTO_SALES: 0.8797314

AUTO_DEALER_TABLE.AUTO_DEALER.DEALER_ID <->

APPENDIX C. SCHEMA MATCH RESULTS

 223 (August 11, 2012)

 DEALER_TABLE.DEALER.DEALER_ID: 0.803889

AUTO_DEALER_TABLE.AUTO_DEALER.DEALER_INFORMATION <->

 DEALER_TABLE.DEALER.DEALER_NAME: 0.6346453

AUTO_DEALER_TABLE.AUTO_DEALER <->

 DEALER_TABLE.DEALER: 0.65350115

Expected results agreed by at least 2 participants

--

1,f T01A.AUTO_DEALER T01B.DEALER

2,g AUTO_DEALER.DEALER_ID DEALER.DEALER_ID

3,h AUTO_DEALER.DEALER_INFORMATION DEALER.DEALER_NAME

3,i AUTO_DEALER.DEALER_INFORMATION DEALER.DEALER_CITY

3,j AUTO_DEALER.DEALER_INFORMATION DEALER_STATE

4,m T01A.AUTO_MAKE T01B.MMSC

5,n AUTO_MAKE.MAKE_ID MMSC.MAKE_ID

6,r AUTO_MAKE.MAKE_NAME MMSC.MAKE_NAME

7,m T01A.AUTO_MODEL T01B.MMSC

8,o AUTO_MODEL.MODEL_ID MMSC.MODEL_ID

9,s AUTO_MODEL.MODEL_NAME MMSC.MODEL_NAME

11,a CREATE T01A.DATE T01B.DATE

12,b DATE.MONTH_YEAR DATE.MONTH_YEAR

13,c DATE.FISCAL_YEAR DATE.FISCAL_YEAR

14,d DATE.CALENDAR_YEAR DATE.CALENDAR_YEAR

15,e DATE.MONTH_NAME DATE.MONTH_NAME

16,w T01A.MONTHLY_AUTO_SALES T01B.MONTHLY_AUTO_SALES

17,bb MONTHLY_AUTO_SALES.MONTH_YEAR MONTHLY_AUTO_SALES.MONTH_YEAR

18,cc MONTHLY_AUTO_SALES.DEALER_ID MONTHLY_AUTO_SALES.DEALER_ID

19,x MONTHLY_AUTO_SALES.MAKE_ID MONTHLY_AUTO_SALES.MAKE_ID

20,y MONTHLY_AUTO_SALES.MODEL_ID MONTHLY_AUTO_SALES.MODEL_ID

22,dd MONTHLY_AUTO_SALES.AUTO_SALES_AMOUNT DATE.AUTO_SALES_AMOUNT

23,gg MONTHLY_AUTO_SALES.OBJECTIVE_SALES_AMOUNT

 MONTHLY_AUTO_SALES.OBJECTIVE_SALES_AMOUNT

24,ee MONTHLY_AUTO_SALES.OBJECTIVE_SALES_QUANTITY

 MONTHLY_AUTO_SALES.OBJECTIVE_SALES_QUANTITY

Matching Results between T07A and T09A using the Relational model:

Columns:

--------------------------------- ---------------------------- ------

CUSTOMER.EDUCATION ON_SALE.DESCRIPTION 0.0101

PRODUCT.BRAND_NAME ON_SALE.BRAND 0.0699

PRODUCT.SKU ON_SALE.SKU_NUMBER 0.0677

PROMOTION.COST PRODUCT_SALES.UNIT_COST 0.0685

STORE.STORE_TYPE ON_SALE.PACKAGE_TYPE 0.0569

Tables:

--------------------------------- ---------------------------- ------

SALES PRODUCT_SALES 0.1753

Matching Results between T07A and T09A using the Star model:

Columns:

--------------------------------- ---------------------------- ------

PRODUCT.BRAND_NAME ON_SALE.BRAND 0.0507

PRODUCT.PRODUCT_ID ON_SALE.PRODUCT_KEY 0.0401

PRODUCT.SKU ON_SALE.SKU_NUMBER 0.0494

PROMOTION.MEDIA_TYPE ON_SALE.PACKAGE_TYPE 0.0404

PROMOTION.PROMOTION_NAME ON_SALE.DESCRIPTION 0.0080

SALES.PRODUCT_ID PRODUCT_SALES.PRODUCT_KEY 0.0358

APPENDIX C. SCHEMA MATCH RESULTS

 224 (August 11, 2012)

Tables:

--------------------------------- ---------------------------- ------

PRODUCT ON_SALE 0.4005

SALES PRODUCT_SALES 0.9202

COMA Results

--

SALES_TABLE.SALES.STORE_COST <->

 PRODUCT_SALES_TABLE.PRODUCT_SALES.UNIT_COST: 0.5818722

SALES_TABLE.SALES.PRODUCT_ID <->

 PRODUCT_SALES_TABLE.PRODUCT_SALES.PRODUCT_KEY: 0.55921656

SALES_TABLE <-> PRODUCT_SALES_TABLE: 0.61783636

PRODUCT_TABLE.PRODUCT.PRODUCT_ID <->

 PRODUCT_SALES_TABLE.PRODUCT_SALES.PRODUCT_KEY: 0.5640777

PRODUCT_TABLE.PRODUCT.BRAND_NAME <->

 PRODUCT_ON_SALE_TABLE.PRODUCT_ON_SALE.BRAND: 0.6251667

PRODUCT_TABLE.PRODUCT.SKU <->

 PRODUCT_ON_SALE_TABLE.PRODUCT_ON_SALE.SKU_NUMBER: 0.5951667

PRODUCT_TABLE.PRODUCT.RECYCLANLE_PACKAGE <->

 PRODUCT_ON_SALE_TABLE.PRODUCT_ON_SALE.PACKAGE_TYPE: 0.57150924

Expected results agreed by at least 2 participants

--

28,a T07A.PRODUCT T09A.ON_SALE

29,b PRODUCT.PRODUCT_ID ON_SALE.PRODUCT_KEY

31,e PRODUCT.BRAND_NAME ON_SALE.BRAND

32,d PRODUCT.PRODUCT_NAME ON_SALE.DESCRIPTION

33,c PRODUCT.SKU ON_SALE.SKU_NUMBER

89,h T07A.SALES T09A.PRODUCT_SALES

216

Matching Results between A01 and A02 using the Relational model:

Columns:

--------------------------------- ---------------------------- ------

CALENDAR.CALENDAR_DAY DATES.DAY 0.0365

CALENDAR.CALENDAR_MONTH DATES.MONTH 0.0365

CALENDAR.CALENDAR_YEAR DATES.YEAR 0.0387

CALENDAR.QUARTER_NUMBER DATES.QUARTER 0.0382

CLAIM.CLAIM_NO CLM_DEMAND.NO_CLAIMS 0.0387

CLAIM.DEMANDED_AMT CLAIM_HIST.DEMANDED_DTE 0.0275

CLAIM.INSERT_TIMESTAMP CLM_DEMAND.LOAD_TIMESTAMP 0.0424

CLAIM.RECEIVED_AMT CLAIM_HIST.RECEIVED_DTE 0.0275

CLAIM.RECOVERED_AMT CLAIM_HIST.RECOVERED_DTE 0.0275

CLAIM.SETTLEMENT_AMT CLAIM_HIST.SETTLEMENT_DTE 0.0275

CLAIM_STAT.STATUS_CODE CLAIM_ITEM_STATUS.CLAIM_ITEM_STATUS_CODE

 0.0380

CLAIM_STAT.STATUS_DATE_FROM CLAIM_ITEM_STATUS.DATE_VALID_FROM 0.0377

CLAIM_STAT.STATUS_DATE_TO CLAIM_ITEM_STATUS.DATE_VALID_TO 0.0377

LOCATION.STATE_NAME LOCALITY.STATE_NAME 0.0584

LOCATION.STATE_NO LOCALITY.STATE_NBR 0.0282

PRODUCT.PRODUCT_NAME PRODUCT_REFERENCE.PRODUCT_DESCRIPTIVE_NAME

 0.0462

Tables:

--------------------------------- ---------------------------- ------

CALENDAR DATES 0.0670

CLAIM CLM_DEMAND 0.0960

CLAIM_STAT CLAIM_ITEM_STATUS 0.1125

APPENDIX C. SCHEMA MATCH RESULTS

 225 (August 11, 2012)

LOCATION LOCALITY 0.0546

PRODUCT PRODUCT_REFERENCE 0.1165

Matching Results between A01 and A02 using the Star model:

Columns:

--------------------------------- ---------------------------- ------

CALENDAR.CALENDAR_DAY DATES.DAY 0.0397

CALENDAR.CALENDAR_MONTH DATES.MONTH 0.0397

CALENDAR.CALENDAR_YEAR DATES.YEAR 0.0419

CALENDAR.QUARTER_NUMBER DATES.QUARTER 0.0414

CLAIM.DEMANDED_AMT CLAIM_HIST.DEMANDED_DTE 0.0278

CLAIM.INSERT_TIMESTAMP CLM_DEMAND.LOAD_TIMESTAMP 0.0156

CLAIM.PRODUCT_KEY CLM_DEMAND.PRODUCT_HIERARCHY_KEY 0.0158

CLAIM.RECEIVED_AMT CLM_DEMAND.DEMAND_RECEIVED_AMOUNT 0.0348

CLAIM.RECOVERED_AMT CLM_DEMAND.DEMAND_RECOVERED_AMOUNT 0.0348

CLAIM.SETTLEMENT_AMT CLAIM_HIST.SETTLEMENT_DTE 0.0278

CLAIM_STAT.STATUS_CODE CLAIM_ITEM_STATUS.CLAIM_ITEM_STATUS_CODE

 0.0440

CLAIM_STAT.STATUS_DATE_FROM CLAIM_ITEM_STATUS.DATE_VALID_FROM 0.0435

CLAIM_STAT.STATUS_DATE_TO CLAIM_ITEM_STATUS.DATE_VALID_TO 0.0435

CLAIM_STAT.STATUS_DESCRIPTTION CLAIM_ITEM_STATUS.CLAIM_ITEM_STATUS_DESC

 0.0295

CLAIM_STAT.STATUS_KEY CLAIM_ITEM_STATUS.CLAIM_ITEM_STATUS_KEY

 0.0246

LOCATION.LOCATION_KEY LOCALITY.LOCALITY_KEY 0.0214

LOCATION.STATE_NAME LOCALITY.STATE_NAME 0.0656

LOCATION.STATE_NO LOCALITY.STATE_NBR 0.0342

PRODUCT.PRODUCT_CAT PRODUCT_REFERENCE.PRODUCT_SUBCLASS 0.0403

PRODUCT.PRODUCT_KEY PRODUCT_REFERENCE.PRODUCT_HIERARCHY_KEY

 0.0302

PRODUCT.PRODUCT_NAME PRODUCT_REFERENCE.PRODUCT_DESCRIPTIVE_NAME

 0.0553

Tables:

--------------------------------- ---------------------------- ------

CALENDAR DATES 0.2099

CLAIM CLM_DEMAND 0.7669

CLAIM_STAT CLAIM_ITEM_STATUS 0.3055

LOCATION LOCALITY 0.1574

PRODUCT PRODUCT_REFERENCE 0.3123

COMA Results for matching A01 with A02

--

PRODUCT_TABLE.PRODUCT.PRODUCT_KEY <->

 PRODUCT_REFERENCE_TABLE.PRODUCT_REFERENCE.PRODUCT_HIERARCHY_KEY:

 0.8030105

PRODUCT_TABLE.PRODUCT.PRODUCT_CAT <->

 PRODUCT_REFERENCE_TABLE.PRODUCT_REFERENCE.PRODUCT_CLASS: 0.69785964

PRODUCT_TABLE.PRODUCT.PRODUCT_SUB_CAT <->

 PRODUCT_REFERENCE_TABLE.PRODUCT_REFERENCE.PRODUCT_SUBCLASS: 0.7056376

PRODUCT_TABLE.PRODUCT.PRODUCT_NAME <->

 PRODUCT_REFERENCE_TABLE.PRODUCT_REFERENCE.PRODUCT_DESCRIPTIVE_NAME:

0.8152281

PRODUCT_TABLE.PRODUCT <->

 PRODUCT_REFERENCE_TABLE.PRODUCT_REFERENCE: 0.75034904

DEMAND_TYPE_TABLE.DEMAND_TYPE.DEMAND_ID <->

 CLM_DEMAND_TABLE.CLM_DEMAND.DEMAND_SENT_DATE: 0.52169096

APPENDIX C. SCHEMA MATCH RESULTS

 226 (August 11, 2012)

LOCATION_TABLE.LOCATION.LOCATION_KEY <->

 LOCALITY_TABLE.LOCALITY.LOCALITY_KEY: 0.71002436

LOCATION_TABLE.LOCATION.STATE_NO <->

 LOCALITY_TABLE.LOCALITY.STATE_NBR: 0.68908656

LOCATION_TABLE.LOCATION.STATE_NAME <->

 LOCALITY_TABLE.LOCALITY.STATE_NAME: 0.87971157

LOCATION_TABLE.LOCATION <-> LOCALITY_TABLE.LOCALITY: 0.6469231

CALENDAR_TABLE.CALENDAR.CALENDAR_KEY <->

 DATES_TABLE.DATES.DATE_KEY: 0.52051216

CALENDAR_TABLE.CALENDAR.CALENDAR_YEAR <->

 DATES_TABLE.DATES.YEAR: 0.69585377

CALENDAR_TABLE.CALENDAR.CALENDAR_MONTH <->

 DATES_TABLE.DATES.MONTH: 0.643076

CALENDAR_TABLE.CALENDAR.CALENDAR_DAY <->

 DATES_TABLE.DATES.DAY: 0.6523352

CALENDAR_TABLE.CALENDAR.QUARTER_NUMBER <->

DATES_TABLE.DATES.QUARTER: 0.68733126

CALENDAR_TABLE.CALENDAR <-> DATES_TABLE.DATES: 0.4375409

CLAIM_TABLE.CLAIM.PRODUCT_KEY <->

 CLM_DEMAND_TABLE.CLM_DEMAND.PRODUCT_HIERARCHY_KEY: 0.7567142

CLAIM_TABLE.CLAIM.LOCATION_KEY <->

 CLM_DEMAND_TABLE.CLM_DEMAND.LOCALITY_KEY: 0.69613546

CLAIM_TABLE.CLAIM.CALENDAR_KEY <->

 DATES_TABLE.DATES.DATE_KEY: 0.52051216

CLAIM_TABLE.CLAIM.DEMAND_ID <->

 CLAIM_HIST_TABLE.CLAIM_HIST.DEMANDED_DTE: 0.50176376

CLAIM_TABLE.CLAIM.CLAIM_NO <->

 CLM_DEMAND_TABLE.CLM_DEMAND.NO_CLAIMS: 0.6763557

CLAIM_TABLE.CLAIM.DEMANDED_AMT <->

 CLM_DEMAND_TABLE.CLM_DEMAND.DEMAND_SETTLED_AMOUNT: 0.5937898

CLAIM_TABLE.CLAIM.RECEIVED_AMT <->

 CLM_DEMAND_TABLE.CLM_DEMAND.DEMAND_RECEIVED_AMOUNT: 0.6322553

CLAIM_TABLE.CLAIM.RECOVERED_AMT <->

 CLM_DEMAND_TABLE.CLM_DEMAND.DEMAND_RECOVERED_AMOUNT: 0.63159084

CLAIM_TABLE.CLAIM.INSERT_TIMESTAMP <->

 CLM_DEMAND_TABLE.CLM_DEMAND.LOAD_TIMESTAMP: 0.5906589

CLAIM_TABLE.CLAIM <-> CLAIM_HIST_TABLE.CLAIM_HIST: 0.5492281

CLAIM_TABLE <-> CLM_DEMAND_TABLE: 0.6406745

CLAIM_STAT_TABLE.CLAIM_STAT.STATUS_KEY <->

 CLAIM_ITEM_STATUS_TABLE.CLAIM_ITEM_STATUS.CLAIM_ITEM_STATUS_KEY:

 0.7132797

CLAIM_STAT_TABLE.CLAIM_STAT.STATUS_CODE <->

CLAIM_ITEM_STATUS_TABLE.CLAIM_ITEM_STATUS.CLAIM_ITEM_STATUS_CODE: 0.7348547

CLAIM_STAT_TABLE.CLAIM_STAT.STATUS_DESCRIPTTION <->

 CLAIM_ITEM_STATUS_TABLE.CLAIM_ITEM_STATUS.CLAIM_ITEM_STATUS_DESC:

 0.62528205

CLAIM_STAT_TABLE.CLAIM_STAT.STATUS_DATE_FROM <->

 CLAIM_ITEM_STATUS_TABLE.CLAIM_ITEM_STATUS.DATE_VALID_FROM: 0.7348547

CLAIM_STAT_TABLE.CLAIM_STAT.STATUS_DATE_TO <->

 CLAIM_ITEM_STATUS_TABLE.CLAIM_ITEM_STATUS.DATE_VALID_TO: 0.7348547

CLAIM_STAT_TABLE.CLAIM_STAT <->

 CLAIM_ITEM_STATUS_TABLE.CLAIM_ITEM_STATUS: 0.72483766

Expected results agreed by at least 2 participants

--

4,l A01.CLAIM_STAT A02.CLAIM_ITEM_STATUS

5,m CLAIM_STAT.STATUS_KEY CLAIM_ITEM_STATUS.CLAIM_ITEM_STATUS_KEY

6,n CLAIM_STAT.STATUS_CODE CLAIM_ITEM_STATUS.CLAIM_ITEM_STATUS_CODE

APPENDIX C. SCHEMA MATCH RESULTS

 227 (August 11, 2012)

7,o CLAIM_STAT.STATUS_DESCRIPTTION

 CLAIM_ITEM_STATUS.CLAIM_ITEM_STATUS_DESC

8,p CLAIM_STAT.STATUS_DATE_FROM

 CLAIM_ITEM_STATUS.DATE_VALID_FROM

9,q CLAIM_STAT.STATUS_DATE_TO CLAIM_ITEM_STATUS.DATE_VALID_TO

10,g A01.PRODUCT A02.PRODUCT_REFERENCE

11,h PRODUCT.PRODUCT_KEY PRODUCT_REFERENCE.PRODUCT_HIERARCHY_KEY

2,i DEMAND_TYPEDEMAND_ID PRODUCT_REFERENCE.PRODUCT_CLASS

13,j PRODUCT.PRODUCT_CAT PRODUCT_REFERENCE.PRODUCT_SUBCLASS

14,k PRODUCT.PRODUCT_NAME PRODUCT_REFERENCE.PRODUCT_DESCRIPTIVE_NAME

15,r A01.LOCATION A02.LOCALITY

16,s LOCATION.LOCATION_KEY LOCALITY.LOCALITY_KEY

17,t LOCATION.STATE_NO LOCALITY.STATE_NBR

18,u LOCATION.STATE_NAME LOCALITY.STATE_NAME

19,w A01.CALENDAR A02.DATES

20,x CALENDAR.CALENDAR_KEY DATES.DATE_KEY

21,y CALENDAR.CALENDAR_YEAR DATES.YEAR

22,z CALENDAR.CALENDAR_MONTH DATES.MONTH

23,aa CALENDAR.CALENDAR_DAY DATES.DAY

24,bb CALENDAR.WEEK_OF_MONTH DATES.MONTH_COUNT

25,cc CALENDAR.QUARTER_NUMBER DATES.QUARTER

26,dd A01.CLAIM A02.CLM_DEMAND

27,ee CLAIM.PRODUCT_KEY CLM_DEMAND.PRODUCT_HIERARCHY_KEY

28,ff CLAIM.LOCATION_KEY CLM_DEMAND.LOCALITY_KEY

29,gg CLAIM.CALENDAR_KEY CLM_DEMAND.DEMAND_SENT_DATE

30,hh CLAIM.CLAIM_NO CLM_DEMAND.CLAIM_NUM

32,jj CLAIM.STATUS_KEY CLM_DEMAND.CLAIM_ITEM_STATUS_KEY

33,kk CLAIM.SETTLEMENT_AMT CLM_DEMAND.DEMAND_SETTLED_AMOUNT

35,ll CLAIM.RECEIVED_AMT CLM_DEMAND.DEMAND_RECEIVED_AMOUNT

36,mm CLAIM.RECOVERED_AMT CLM_DEMAND.DEMAND_RECOVERED_AMOUNT

37,oo CLAIM.INSERT_TIMESTAMP CLM_DEMAND.LOAD_TIMESTAMP

Matching Results between T02A and T02B using the Relational model:

Columns:

--

ORGANIZATION.REGION_NAME REGION.REGION_DESC

TIME.DAY_OF_YEAR PERIOD.YEAR

TIME.QUARTER_NUMBER PERIOD.QUARTER

TIME.TIME_IDENTIFIER PERIOD.PERIOD_ID

Tables:

--

ORGANIZATION REGION

PRODUCT PRODUCT

SALES SALES_CURRENT

TIME PERIOD

Matching Results between T02A and T02B using the Star model:

Columns:

--

ORGANIZATION.REGION_NAME REGION.REGION_DESC

PRODUCT.PRODUCT_IDENTIFIER PRODUCT.PRODUCT_ID

SALES.PRODUCT_IDENTIFIER SALES_CURRENT.PRODUCT_ID

SALES.SALES_DOLLAR SALES_CURRENT.DOLLARS

TIME.DAY_OF_YEAR PERIOD.YEAR

TIME.QUARTER_NUMBER PERIOD.QUARTER

TIME.TIME_IDENTIFIER PERIOD.PERIOD_ID

APPENDIX C. SCHEMA MATCH RESULTS

 228 (August 11, 2012)

Tables:

--

ORGANIZATION REGION

PRODUCT PRODUCT

SALES SALES_CURRENT

TIME PERIOD

COMA Results

--

ORGANIZATION_TABLE.ORGANIZATION.REGION_NAME <->

DISTRICT_TABLE.DISTRICT.REGION: 0.608506

ORGANIZATION_TABLE <-> REGION_TABLE: 0.5459982

TIME_TABLE.TIME.DAY_OF_YEAR <-> PERIOD_TABLE.PERIOD.YEAR: 0.52207315

TIME_TABLE.TIME.QUARTER_NUMBER <-> PERIOD_TABLE.PERIOD.QUARTER: 0.62035346

TIME_TABLE <-> PERIOD_TABLE: 0.50840425

PRODUCT_TABLE.PRODUCT.PRODUCT_IDENTIFIER <->

 PRODUCT_TABLE.PRODUCT.PRODUCT_ID: 0.65886056

PRODUCT_TABLE <-> PRODUCT_TABLE: 0.7549077

SALES_TABLE.SALES.PRODUCT_IDENTIFIER <->

SALES_CURRENT_TABLE.SALES_CURRENT.PRODUCT_ID: 0.61372167

SALES_TABLE.SALES.SALES_DOLLAR <->

 SALES_CURRENT_TABLE.SALES_CURRENT.DOLLARS: 0.5786033

SALES_TABLE <-> SALES_CURRENT_TABLE: 0.64747894

Expected results agreed by at least 2 participants

--

1,a T02A.Location T02B.District

1,o T02A.Location T02B.Region

3,q Location.Country_Name Region.Region_Desc

5,c Location.County_Name Region.District_Desc

6,c Location.City_Name Region.District_Desc

15,j T02A.Product T02B.Product

16,k Product.Product_Identifier Product.Product_Id

21,r T02A.Sales T02B.Sales_Current

22,s Sales.Time_Identifier Sales_Current.Period_Id

24,t Sales.Product_Identifier Sales_Current.Product_Id

25,u Sales.Location_Identifier Sales_Current.District_Id

26,x Sales.Sales_Dollar Sales_Current.Dollars

28,f Sales.Time_Identifier Sales_Current.Period_Id

Matching Results between T10 and T11 using the Relational model:

Columns:

--------------------------------- ---------------------------- ------

CALENDAR.CALENDAR_WEEK DATE.WEEK_NUMBER 0.0316

CALENDAR.CALENDAR_YEAR DATE.YEAR_NUMBER 0.0335

CALENDAR.DAY DATE.DAY_DATE 0.0482

CUSTOMER.CUSTOMER_ADDRESS CUSTOMER.CUSTOMER_ADDRESS 0.0666

ITEM.PRODUCT_DESC PRODUCT.PRODUCT_DESC 0.0626

Tables:

--------------------------------- ---------------------------- ------

CALENDAR DATE 0.1140

CUSTOMER CUSTOMER 0.2033

ITEM PRODUCT 0.0424

SALES PRODUCT_SALES 0.1481

APPENDIX C. SCHEMA MATCH RESULTS

 229 (August 11, 2012)

Matching Results between T10 and T11 using the Star model:

Columns:

--------------------------------- ---------------------------- ------

CALENDAR.CALENDAR_WEEK DATE.WEEK_NUMBER 0.0322

CALENDAR.CALENDAR_YEAR DATE.YEAR_NUMBER 0.0339

CALENDAR.DAY DATE.DAY_DATE 0.0477

CUSTOMER.CUSTOMER_ADDRESS CUSTOMER.CUSTOMER_ADDRESS 0.0672

CUSTOMER.CUSTOMER_KEY CUSTOMER.CUSTOMER_ID 0.0270

ITEM.PRODUCT_DESC PRODUCT.PRODUCT_DESC 0.0612

ITEM.PRODUCT_KEY PRODUCT.PRODUCT_KEY 0.0219

SALES.PRODUCT_KEY PRODUCT_SALES.PRODUCT_KEY 0.0247

Tables:

--------------------------------- ---------------------------- ------

CALENDAR DATE 0.3269

CUSTOMER CUSTOMER 0.4820

ITEM PRODUCT 0.1461

MARKET GEOGRAPHIC_LOCATION 0.1040

SALES PRODUCT_SALES 0.8023

COMA Results

---------------------------------=

MARKET_TABLE.MARKET.REGION_NAME <->

 GEOGRAPHIC_LOCATION_TABLE.GEOGRAPHIC_LOCATION.SALES_LOCATION_NAME:

 0.506793

ITEM_TABLE.ITEM.PRODUCT_KEY <-> PRODUCT_TABLE.PRODUCT.PRODUCT_KEY: 0.8731693

ITEM_TABLE.ITEM.PRODUCT_DESC <-> PRODUCT_TABLE.PRODUCT.PRODUCT_DESC: 0.8715706

ITEM_TABLE <-> PRODUCT_TABLE: 0.7431412

CUSTOMER_TABLE.CUSTOMER.CUSTOMER_KEY <->

 CUSTOMER_TABLE.CUSTOMER.CUSTOMER_ID: 0.689523

CUSTOMER_TABLE.CUSTOMER.CUSTOMER_NAME <->

CUSTOMER_TABLE.CUSTOMER.CUSTOMER_FNAME: 0.81839025

CUSTOMER_TABLE.CUSTOMER.CUSTOMER_NAME <->

CUSTOMER_TABLE.CUSTOMER.CUSTOMER_LNAME: 0.81839025

CUSTOMER_TABLE.CUSTOMER.CUSTOMER_ADDRESS <->

CUSTOMER_TABLE.CUSTOMER.CUSTOMER_ADDRESS: 0.9161467

CUSTOMER_TABLE <-> CUSTOMER_TABLE: 0.8322934

CALENDAR_TABLE.CALENDAR.DAY <-> DATE_TABLE.DATE.DAY_DATE: 0.6186527

CALENDAR_TABLE.CALENDAR.CALENDAR_WEEK <->

 DATE_TABLE.DATE.WEEK_NUMBER: 0.5677635

CALENDAR_TABLE.CALENDAR.CALENDAR_MONTH <->

 DATE_TABLE.DATE.MONTH_NUMBER: 0.5677635

CALENDAR_TABLE.CALENDAR.CALENDAR_YEAR <->

 DATE_TABLE.DATE.YEAR_NUMBER: 0.5948496

CALENDAR_TABLE <-> DATE_TABLE: 0.5854795

SALES_TABLE.SALES.PRODUCT_KEY <->

PRODUCT_SALES_TABLE.PRODUCT_SALES.PRODUCT_KEY: 0.85580826

SALES_TABLE.SALES.CUSTOMER_KEY <->

 PRODUCT_SALES_TABLE.PRODUCT_SALES.CUSTOMER_ID: 0.6345357

SALES_TABLE.SALES.UNIT_SALES <->

 PRODUCT_SALES_TABLE.PRODUCT_SALES.SALES_AMOUNT: 0.62851804

SALES_TABLE.SALES.UNIT_SALES <->

 PRODUCT_SALES_TABLE.PRODUCT_SALES.SALES_COST: 0.63407356

SALES_TABLE <-> PRODUCT_SALES_TABLE: 0.712036

APPENDIX C. SCHEMA MATCH RESULTS

 230 (August 11, 2012)

Expected results agreed by at least 2 participants

--

1,k T10.CUSTOMER T11.CUSTOMER

3,m CUSTOMER.CUSTOMER_NAME CUSTOMER.CUSTOMER_FNAME

3,n CUSTOMER.CUSTOMER_NAME CUSTOMER.CUSTOMER_LNAME

4,o CUSTOMER.CUSTOMER_ADDRESS CUSTOMER.CUSTOMER_ADDRESS

8,a T10.MARKET T11.GEOGRAPHIC_LOCATION

9,b MARKET.STORE_KEY GEOGRAPHIC_LOCATION.SALES_LOCATION_ID

10,c MARKET.STORE_NAME GEOGRAPHIC_LOCATION.SALES_LOCATION_NAME

14,g T10.ITEM T11.PRODUCT

15,h ITEM.PRODUCT_KEY PRODUCT.PRODUCT_CODE

16,i ITEM.PRODUCT_DESC PRODUCT.PRODUCT_NAME

27,s T10.CALENDAR T11.DATE

28,t CALENDAR.DATE_KEY DATE.DAY_NUMBER

32,v CALENDAR.CALENDAR_WEEK DATE.WEEK_NUMBER

33,w CALENDAR.CALENDAR_MONTH DATE.MONTH_NUMBER

35,x CALENDAR.CALENDAR_YEAR DATE.YEAR_NUMBER

40,y T10.SALES T11.PRODUCT_SALES

41,bb SALES.CUSTOMER_KEY PRODUCT_SALES.CUSTOMER_ID

43,aa SALES.PRODUCT_KEY PRODUCT_SALES.PRODUCT_ID

46,dd SALES.DOLLAR_SALES PRODUCT_SALES.SALES_AMOUNT

47,ee SALES.UNIT_SALES PRODUCT_SALES.SALES_VOLUME

48,ff SALES.RETAIL_SALES_PRICE PRODUCT_SALES.SALES_COST

Matching Results between T05A and T05B using the Relational model:

Columns:

--------------------------------- ---------------------------- ------

CLAIMANT.ADDRESS CLIENT.CLIENT_ADDRESS 0.0252

CLAIMANT.NAME CLIENT.CLIENT_NAME 0.0251

CLAIMANT.STATE CLIENT.CLIENT_STATE 0.0242

CLAIMS.CLAIM_DOLLARS CLAIM_FINANCIAL.CLAIM_NO 0.0344

CLAIM_DESC.PROC_CODE CLAIM_NATURE.NATURE_CODE 0.0195

CLAIM_TYPE.TYPE_DESC

 POLICY_AGREEMENT_TYPE.POLICY_AGREEMENT_TYPE_DESC 0.0487

PERIOD.YEAR DATES.CALENDAR_YEAR 0.0490

POLICY_HOLDER.NAME POLICY_HADER.COMPANY_NAME 0.0247

POLICY_SALES.PREMIUM_DOLLARS CLAIM_FINANCIAL.BASIC_PREMIUM_AMT 0.0340

Tables:

--------------------------------- ---------------------------- ------

CLAIMANT CLIENT 0.0328

CLAIMS CLAIM_FINANCIAL 0.0601

PERIOD DATES 0.0663

POLICY POLICY_AGREEMENT_TYPE 0.0818

Matching Results between T05A and T05B using the Star model:

Columns:

--------------------------------- ---------------------------- ------

CLAIMANT.ADDRESS CLIENT.CLIENT_ADDRESS 0.0238

CLAIMANT.CLAIMANT_KEY CLIENT.CLIENT_KEY 0.0148

CLAIMANT.NAME CLIENT.CLIENT_NAME 0.0238

CLAIMANT.STATE CLIENT.CLIENT_STATE 0.0230

CLAIM_DESC.PROC_CODE CLAIM_NATURE.NATURE_CODE 0.0145

CLAIM_TYPE.TYPE_DESC

 POLICY_AGREEMENT_TYPE.POLICY_AGREEMENT_TYPE_DESC 0.0510

PERIOD.PER_KEY DATES.DATE_KEY 0.0228

PERIOD.YEAR DATES.CALENDAR_YEAR 0.0463

APPENDIX C. SCHEMA MATCH RESULTS

 231 (August 11, 2012)

POLICY.POLICY_TYPE

 POLICY_AGREEMENT_TYPE.POLICY_AGREEMENT_TYPE_CODE 0.0475

POLICY_HOLDER.NAME POLICY_HADER.COMPANY_NAME 0.0242

POLICY_SALES.PREMIUM_DOLLARS CLAIM_FINANCIAL.BASIC_PREMIUM_AMT 0.0368

Tables:

--------------------------------- ---------------------------- ------

CLAIMANT CLIENT 0.0852

CLAIMS CLAIM_FINANCIAL 0.3778

CLAIM_DESC CLAIM_NATURE 0.0800

PERIOD DATES 0.1660

POLICY POLICY_AGREEMENT_TYPE 0.1694

COMA Results

--

CLAIMS_TABLE.CLAIMS.CLAIM_DOLLARS <->

 CLAIM_FINANCIAL_TABLE.CLAIM_FINANCIAL.CLAIM_NO: 0.5309347

CLAIMS_TABLE.CLAIMS.POLICY_HOLDER_KEY <->

 CLAIM_FINANCIAL_TABLE.CLAIM_FINANCIAL.POLICY_NO: 0.57706654

CLAIMS_TABLE.CLAIMS.CLAIMANT_KEY <->

 CLAIM_FINANCIAL_TABLE.CLAIM_FINANCIAL.CLIENT_KEY: 0.685828

CLAIMS_TABLE <-> CLAIM_FINANCIAL_TABLE: 0.6070546

POLICY_HOLDER_TABLE.POLICY_HOLDER.NAME <->

 POLICY_HADER_TABLE.POLICY_HADER.COMPANY_NAME: 0.68988

POLICY_HOLDER_TABLE <-> POLICY_HADER_TABLE: 0.7160417

CLAIM_TYPE_TABLE.CLAIM_TYPE.TYPE_KEY <->

 CLAIM_NATURE_TABLE.CLAIM_NATURE.NATURE_KEY: 0.62102175

CLAIM_TYPE_TABLE.CLAIM_TYPE <-> CLAIM_NATURE_TABLE.CLAIM_NATURE: 0.62718093

CLAIM_TYPE_TABLE <-> CLAIM_NATURE_TABLE: 0.6910546

CLAIMANT_TABLE.CLAIMANT.CLAIMANT_KEY <->

 CLIENT_TABLE.CLIENT.CLIENT_KEY: 0.6904576

CLAIMANT_TABLE.CLAIMANT.NAME <-> CLIENT_TABLE.CLIENT.CLIENT_NAME: 0.6900491

CLAIMANT_TABLE.CLAIMANT.ADDRESS <->

 CLIENT_TABLE.CLIENT.CLIENT_ADDRESS: 0.6900491

CLAIMANT_TABLE.CLAIMANT.STATE <-> CLIENT_TABLE.CLIENT.CLIENT_STATE: 0.6900491

CLAIMANT_TABLE <-> CLIENT_TABLE: 0.72654325

CLAIM_DESC_TABLE.CLAIM_DESC.TYPE_KEY <->

 CLAIM_NATURE_TABLE.CLAIM_NATURE.NATURE_KEY: 0.61595464

CLAIM_DESC_TABLE.CLAIM_DESC.CLAIMANT_KEY <->

 CLAIM_FINANCIAL_TABLE.CLAIM_FINANCIAL.CLIENT_KEY: 0.69045764

CLAIM_DESC_TABLE.CLAIM_DESC.PROC_CODE <->

 CLAIM_NATURE_TABLE.CLAIM_NATURE.NATURE_CODE: 0.6044005

PERIOD_TABLE.PERIOD.PER_KEY <-> DATES_TABLE.DATES.DATE_KEY: 0.50935185

PERIOD_TABLE.PERIOD.MONTH <-> DATES_TABLE.DATES.CALENDAR_MONTH: 0.6390741

PERIOD_TABLE.PERIOD.MONTH <-> DATES_TABLE.DATES.FINANCIAL_MONTH: 0.6390741

PERIOD_TABLE.PERIOD.YEAR <-> DATES_TABLE.DATES.CALENDAR_YEAR: 0.6814352

PERIOD_TABLE <-> DATES_TABLE: 0.61703706

POLICY_TABLE.POLICY.POLICY_KEY <->

 POLICY_HADER_TABLE.POLICY_HADER.POLICY_AGREEMENT_TYPE_KEY: 0.6866576

POLICY_TABLE.POLICY.POLICY_TYPE <->

 POLICY_AGREEMENT_TYPE_TABLE.POLICY_AGREEMENT_TYPE.

 POLICY_AGREEMENT_TYPE_CODE: 0.72884274

POLICY_TABLE <-> POLICY_AGREEMENT_TYPE_TABLE: 0.70771325

POLICY_SALES_TABLE.POLICY_SALES.PREMIUM_DOLLARS <->

 CLAIM_FINANCIAL_TABLE.CLAIM_FINANCIAL.BASIC_PREMIUM_AMT: 0.44146645

APPENDIX C. SCHEMA MATCH RESULTS

 232 (August 11, 2012)

Expected results agreed by at least 2 participants

--

1,a T05A.CLAIM_TYPE CREATE T05B.CLAIM_NATURE

2,b CLAIM_TYPE.TYPE_KEY CLAIM_NATURE.NATURE_KEY

3,c CLAIM_TYPE.TYPE_DESC CLAIM_NATURE.NATURE_DESCRIPTION

4,s T05A.CLAIMANT T05B.CLIENT

5,t CLAIMANT.CLAIMANT_KEY CLIENT.CLIENT_KEY

6,u CLAIMANT.NAME CLIENT.CLIENT_NAME

7,v CLAIMANT.ADDRESS CLIENT.CLIENT_ADDRESS

9,w CLAIMANT.STATE CLIENT.CLIENT_STATE

10,i T05A.PERIOD T05B.DATES

11,j PERIOD.PER_KEY DATES.DATE_KEY

12,l PERIOD.MONTH DATES.CALENDAR_MONTH

13,k PERIOD.YEAR DATES.CALENDAR_YEAR

17,g POLICY.POLICY_TYPE

 POLICY_AGREEMENT_TYPE.POLICY_AGREEMENT_TYPE_CODE

20,s T05A.POLICY_HOLDER T05B.CLIENT

21,t POLICY_HOLDER.POLICY_HOLDER_KEY CLIENT.CLIENT_KEY

22,u POLICY_HOLDER.NAME CLIENT.CLIENT_NAME

23,v POLICY_HOLDER.ADDRESS CLIENT.CLIENT_ADDRESS

25,w POLICY_HOLDER.STATE CLIENT.CLIENT_STATE

30,cc CLAIM_DESC.TYPE_KEY CLAIM_FINANCIAL.NATURE_KEY

43,ff CLAIMS.CLAIMANT_KEY CLAIM_FINANCIAL.CLIENT_KEY

48,aa T05A.POLICY_SALES.POLICY_KEY CLAIM_FINANCIAL.POLICY_NO

Matching Results between T06B and T04 using the Relational model:

Columns:

--------------------------------- ---------------------------- ------

CALENDAR.DAY_OF_YEAR TIME.DAY_OF_WEEK 0.0614

ORG_DETAIL.REGION_NAME STORE.REGION 0.0617

STATE_LOOKUP.STATE_NAME STORE.STORE_NAME 0.0552

Tables:

--------------------------------- ---------------------------- ------

CALENDAR TIME 0.1000

MONTH_LOOKUP TIME.MONTH 0.0599

ORG_DETAIL STORE 0.0999

PROD_LINE_CATEGORY_LOOKUP SALES_BY_CATEGORY 0.0455

Matching Results between T06B and T04 using the Star model:

Columns:

--------------------------------- ---------------------------- ------

CALENDAR.DAY_OF_YEAR TIME.DAY_OF_WEEK 0.0467

ORG_DETAIL.REGION_NAME STORE.REGION 0.0465

STATE_LOOKUP.STATE_CODE STORE.STORE_KEY 0.0152

STATE_LOOKUP.STATE_NAME STORE.STORE_NAME 0.0412

TRANSACTION.PRODUCT_IDENTIFIER SALES_BY_CATEGORY.PRODUCT_KEY 0.0260

TRANSACTION.TIME_IDENTIFIER SALES_BY_CATEGORY.TIME_KEY 0.0286

Tables:

--------------------------------- ---------------------------- ------

CALENDAR TIME 0.2056

ORG_DETAIL STORE 0.1930

PROD_LINE_CATEGORY_LOOKUP CATEGORY 0.0938

TRANSACTION SALES_BY_CATEGORY 0.7051

APPENDIX C. SCHEMA MATCH RESULTS

 233 (August 11, 2012)

COMA Results

--

STATE_LOOKUP_TABLE.STATE_LOOKUP.STATE_NAME <->

 STORE_TABLE.STORE.STORE_NAME: 0.62557685

STATE_LOOKUP_TABLE <-> STORE_TABLE: 0.5135469

ORG_DETAIL_TABLE.ORG_DETAIL.REGION_NAME <->

 STORE_TABLE.STORE.REGION: 0.59808177

MONTH_LOOKUP_TABLE.MONTH_LOOKUP.MONTH_NUMBER <->

TIME_TABLE.TIME.MONTH: 0.5025678

CALENDAR_TABLE.CALENDAR.DAY_OF_YEAR <->

 TIME_TABLE.TIME.DAY_OF_WEEK: 0.49160638

CALENDAR_TABLE <-> TIME_TABLE: 0.44984058

PROD_LINE_CATEGORY_LOOKUP_TABLE.

PROD_LINE_CATEGORY_LOOKUP.PRODUCT_CATEGORY_CODE <->

 CATEGORY_TABLE.CATEGORY.CATEGORY: 0.55901647

PROD_LINE_CATEGORY_LOOKUP_TABLE <-> CATEGORY_TABLE: 0.5512149

TRANSACTION_TABLE.TRANSACTION.TIME_IDENTIFIER <->

 TIME_TABLE.TIME.TIME_KEY: 0.42954636

Expected results agreed by at least 2 participants

--

26,t T06B.CALENDAR T04.TIME

27,u CALENDAR.TIME_IDENTIFIER TIME.TIME_KEY

28,w CALENDAR.MONTH_NUMBER TIME.MONTH

35,a PROD_LINE_CATEGORY_LOOKUP T04.CATEGORY

36,c PROD_LINE_CATEGORY_LOOKUP.PRODUCT_CATEGORY_CODE

 CATEGORY.CATEGORY

40,b PROD_LINE.PRODUCT_IDENTIFIER CATEGORY.PRODUCT_KEY

46,e T06B.TRANSACTION T04.SALES_BY_CATEGORY

50,h TRANSACTION.PRODUCT_IDENTIFIER SALES_BY_CATEGORY.PRODUCT_KEY

51,i TRANSACTION.SALES_DOLLAR SALES_BY_CATEGORY.DOLLARS_SOLD

223

Matching Results between T07B and T11 using the Relational model:

Columns:

--------------------------------- ---------------------------- ------

CUSTOMER.ADDRESS1 CUSTOMER.CUSTOMER_ADDRESS 0.0388

CUSTOMER.BIRTHDATE CUSTOMER.CUSTOMER_BIRTHDATE 0.0401

CUSTOMER.CITY GEOGRAPHIC_LOCATION.SALES_LOCATION_CITY

 0.0286

CUSTOMER.FNAME CUSTOMER.CUSTOMER_FNAME 0.0379

CUSTOMER.LNAME CUSTOMER.CUSTOMER_LNAME 0.0382

CUSTOMER.TOTAL_CHILDREN CUSTOMER.NUMBER_OF_CHILDREN 0.0233

PRODUCT.PRODUCT_NAME PRODUCT.PRODUCT_NAME 0.0580

STORE.STORE_NUMBER DATE.WEEK_NUMBER 0.0283

TIME_BY_DAY.THE_MONTH DATE.MONTH_NUMBER 0.0289

TIME_BY_DAY.THE_YEAR DATE.YEAR_NUMBER 0.0289

Tables:

--------------------------------- ---------------------------- ------

CUSTOMER CUSTOMER 0.1449

PRODUCT PRODUCT 0.1258

SALES PRODUCT_SALES 0.1284

TIME_BY_DAY DATE 0.0912

APPENDIX C. SCHEMA MATCH RESULTS

 234 (August 11, 2012)

Matching Results between T07B and T11 using the Star model:

Columns:

--------------------------------- ---------------------------- ------

CUSTOMER.ADDRESS1 CUSTOMER.CUSTOMER_ADDRESS 0.0392

CUSTOMER.BIRTHDATE CUSTOMER.CUSTOMER_BIRTHDATE 0.0405

CUSTOMER.CITY GEOGRAPHIC_LOCATION.SALES_LOCATION_CITY

 0.0285

CUSTOMER.CUSTOMER_ID CUSTOMER.CUSTOMER_ID 0.0275

CUSTOMER.FNAME CUSTOMER.CUSTOMER_FNAME 0.0382

CUSTOMER.LNAME CUSTOMER.CUSTOMER_LNAME 0.0386

CUSTOMER.TOTAL_CHILDREN CUSTOMER.NUMBER_OF_CHILDREN 0.0241

PRODUCT.PRODUCT_NAME PRODUCT.PRODUCT_NAME 0.0608

SALES.CUSTOMER_ID PRODUCT_SALES.CUSTOMER_ID 0.0243

SALES.STORE_COST PRODUCT_SALES.SALES_COST 0.0404

STORE.STORE_NUMBER DATE.WEEK_NUMBER 0.0284

TIME_BY_DAY.THE_DATE DATE.DAY_DATE 0.0368

TIME_BY_DAY.THE_MONTH DATE.MONTH_NUMBER 0.0302

TIME_BY_DAY.THE_YEAR DATE.YEAR_NUMBER 0.0302

Tables:

--------------------------------- ---------------------------- ------

CUSTOMER CUSTOMER 0.3568

PRODUCT PRODUCT 0.2899

SALES PRODUCT_SALES 0.7625

STORE GEOGRAPHIC_LOCATION 0.1503

TIME_BY_DAY DATE 0.2689

COMA Results

--

PRODUCT_TABLE.PRODUCT.PRODUCT_ID <->

 PRODUCT_TABLE.PRODUCT.PRODUCT_CODE: 0.66858333

PRODUCT_TABLE.PRODUCT.PRODUCT_NAME <->

 PRODUCT_TABLE.PRODUCT.PRODUCT_NAME: 0.8943154

PRODUCT_TABLE <-> PRODUCT_TABLE: 0.78863084

STORE_TABLE.STORE.STORE_CITY <->

 GEOGRAPHIC_LOCATION_TABLE.GEOGRAPHIC_LOCATION.SALES_LOCATION_CITY:

 0.477647

CUSTOMER_TABLE.CUSTOMER.CUSTOMER_ID <->

 CUSTOMER_TABLE.CUSTOMER.CUSTOMER_ID: 0.91481817

CUSTOMER_TABLE.CUSTOMER.LNAME <->

 CUSTOMER_TABLE.CUSTOMER.CUSTOMER_LNAME: 0.73678505

CUSTOMER_TABLE.CUSTOMER.FNAME <->

 CUSTOMER_TABLE.CUSTOMER.CUSTOMER_FNAME: 0.73678505

CUSTOMER_TABLE.CUSTOMER.ADDRESS1 <->

 CUSTOMER_TABLE.CUSTOMER.CUSTOMER_ADDRESS: 0.73678505

CUSTOMER_TABLE.CUSTOMER.CITY <->

 GEOGRAPHIC_LOCATION_TABLE.GEOGRAPHIC_LOCATION.SALES_LOCATION_CITY:

 0.47915852

CUSTOMER_TABLE.CUSTOMER.BIRTHDATE <->

 CUSTOMER_TABLE.CUSTOMER.CUSTOMER_BIRTHDATE: 0.73678505

CUSTOMER_TABLE.CUSTOMER.TOTAL_CHILDREN <->

 CUSTOMER_TABLE.CUSTOMER.NUMBER_OF_CHILDREN: 0.6125258

CUSTOMER_TABLE <-> CUSTOMER_TABLE: 0.812459

TIME_BY_DAY_TABLE.TIME_BY_DAY.THE_DATE <->

 DATE_TABLE.DATE.DAY_DATE: 0.6427102

TIME_BY_DAY_TABLE.TIME_BY_DAY.THE_YEAR <->

 DATE_TABLE.DATE.YEAR_NUMBER: 0.54808575

TIME_BY_DAY_TABLE.TIME_BY_DAY.WEEK_OF_YEAR <->

Appendix D

StarMod Specification in OWL

235 (March 10, 2013)

APPENDIX D. STARMOD SPECIFICATION

 236 (August 11, 2012)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">

 <!ENTITY owl "http://www.w3.org/2002/07/owl#">

 <!ENTITY dbs "Relational.owl#">

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

]>

<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

 <owl:Ontology rdf:about="http://www.w3.org/2000/01/star-schema#"

dc:title="The STAR Schema vocabulary (STAR)">

 <rdfs:comment xml:lang="en">An Ontology to describe the schema

 information of Star schemas.</rdfs:comment>

 </owl:Ontology>

 <owl:Class rdf:ID="Star">

 <rdfs:subClassOf rdf:resource="&rdf;Bag"/>

 <rdfs:label xml:lang="en">Star Schema</rdfs:label>

 <rdfs:comment xml:lang="en">A star is an unordered set of things (i.e.

 dimensions and facts).</rdfs:comment>

 </owl:Class>

 <owl:ObjectProperty rdf:ID="hasDimension">

 <rdfs:label xml:lang="en">Has Dimension</rdfs:label>

 <rdfs:comment xml:lang="en">Star schema can have zero or more dimension

 tables.</rdfs:comment>

 <rdfs:subPropertyOf rdf:resource="&dbs;has"/>

 <rdfs:domain rdf:resource="#Star"/>

 <rdfs:range rdf:resource="#DimensionTable"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="DimensionTable">

 <rdfs:subClassOf rdf:resource="&dbs;Table"/>

 <rdfs:label xml:lang="en">Dimension Table</rdfs:label>

 <rdfs:comment xml:lang="en">A dimension table is an ordered list (of

 attributes) and a subtype of the relational

 table.</rdfs:comment>

 </owl:Class>

 <owl:ObjectProperty rdf:ID="hasAttribute">

 <rdfs:label xml:lang="en">Has Attribute</rdfs:label>

 <rdfs:comment xml:lang="en">Dimesnion tables have one or more dimension

 attributes.</rdfs:comment>

 <rdfs:subPropertyOf rdf:resource="&dbs;has"/>

 <rdfs:domain rdf:resource="#DimensionTable"/>

 <rdfs:range rdf:resource="#Attribute"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="Attribute">

 <rdfs:subClassOf rdf:resource="&dbs;Column"/>

 <rdfs:label xml:lang="en">Dimension Attribute</rdfs:label>

 <rdfs:comment xml:lang="en">Attribute is a subtype of a

 column.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="SurrogateKeyAttribute">

 <rdfs:subClassOf rdf:resource="#Attribute"/>

 <rdfs:label xml:lang="en">SurrogateKeyAttribute</rdfs:label>

 <rdfs:comment xml:lang="en">Surrogate key attribute is a subtype of

 attribute and is generated sequential number. It uniquely

 identifies a row in the dimension table</rdfs:comment>

 </owl:Class>

APPENDIX D. STARMOD SPECIFICATION

 237 (August 11, 2012)

 <owl:Class rdf:ID="DataAttribute">

 <rdfs:subClassOf rdf:resource="#Attribute"/>

 <rdfs:label xml:lang="en">Data Attribute</rdfs:label>

 <rdfs:comment xml:lang="en">A data attribute is a subtype of attribute

 used for aggregation of measures</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="DegenerateFact">

 <rdfs:subClassOf rdf:resource="#Attribute"/>

 <rdfs:label xml:lang="en">Degenerate Fact</rdfs:label>

 <rdfs:comment xml:lang="en">A degenerate fact is a subtype of attribute.

 Although part of the dimension table can be aggregated. Use of

 degenerate facts are not recommended.</rdfs:comment>

 </owl:Class>

 <owl:ObjectProperty rdf:about="#hasAttribute">

 <rdfs:label xml:lang="en"> </rdfs:label>

 <rdfs:comment xml:lang="en">Keys have attributes.</rdfs:comment>

 <rdfs:subPropertyOf rdf:resource="&dbs;has"/>

 <rdfs:domain rdf:resource="&dbs;Key"/>

 <rdfs:range rdf:resource="#Attribute"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="DimUniqueKey">

 <rdfs:subClassOf rdf:resource="&dbs;Key"/>

 <rdfs:label xml:lang="en">Dimension Unique Key</rdfs:label>

 <rdfs:comment xml:lang="en">Dimension Unique Key (other than primary key)

 is a subtype of the key defined in Relational.owl</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="DimRegularKey">

 <rdfs:subClassOf rdf:resource="&dbs;Key"/>

 <rdfs:label xml:lang="en">Dimension Regular Key</rdfs:label>

 <rdfs:comment xml:lang="en">A regular key is a subtype of key that is not

 unique.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="PrimaryKey">

 <rdfs:subClassOf rdf:resource="&dbs;Key"/>

 <rdfs:label xml:lang="en">Primary Key</rdfs:label>

 <rdfs:comment xml:lang="en">A primary key is a subtype of

 key.</rdfs:comment>

 </owl:Class>

 <owl:ObjectProperty rdf:about="#refersTo">

 <rdfs:label xml:lang="en">Refers to</rdfs:label>

 <rdfs:comment xml:lang="en">This links a fact table to a dimension table

 through the surrogate key in the dimension and the same column as

 the foreign key in the fcat table.</rdfs:comment>

 <rdfs:domain rdf:resource="#SurrogateKeyReference"/>

 <rdfs:range rdf:resource="#SurrogateKeyAttribute"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#refersTo">

 <rdfs:label xml:lang="en">Refers to</rdfs:label>

 <rdfs:comment xml:lang="en">This link joins dimensions creating

 snowflaked dimensions through the surrogate key.</rdfs:comment>

 <rdfs:domain rdf:resource="#SurrogateKeyAttribute"/>

 <rdfs:range rdf:resource="#SurrogateKeyAttribute"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#refersTo">

 <rdfs:label xml:lang="en">Refers to</rdfs:label>

 <rdfs:comment xml:lang="en">This relation represents snowflaked

APPENDIX D. STARMOD SPECIFICATION

 238 (August 11, 2012)

 dimensions which are linked through natural keys.</rdfs:comment>

 <rdfs:domain rdf:resource="#DataAttribute"/>

 <rdfs:range rdf:resource="#DataAttribute"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="dimUniquelyIdentifiedBy">

 <rdfs:label xml:lang="en">DimensionUniquely Identified by a primary

 key</rdfs:label>

 <rdfs:comment xml:lang="en">A primary key uniquely identifies a row in

 the dimension table.</rdfs:comment>

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#DimensionTable"/>

 <rdfs:range rdf:resource="#PrimaryKey"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#dimUniquelyIdentifiedBy">

 <rdfs:label xml:lang="en">Dimension Uniquely Identified By</rdfs:label>

 <rdfs:comment xml:lang="en">A unique key uniquely identifies a row in the

 dimension table. </rdfs:comment>

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#DimensionTable"/>

 <rdfs:range rdf:resource="#DimUniqueKey"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="dimIdentifiedBy">

 <rdfs:label xml:lang="en">Dimension Identified By a non unique

 key</rdfs:label>

 <rdfs:comment xml:lang="en">A regular key identfies instances from a

 dimension table</rdfs:comment>

 <rdfs:domain rdf:resource="#DimensionTable"/>

 <rdfs:range rdf:resource="#RegularKey"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="FactTable">

 <rdfs:subClassOf rdf:resource="&dbs;Table"/>

 <rdfs:label xml:lang="en">Fact Table</rdfs:label>

 <rdfs:comment xml:lang="en">A fact table is an ordered list of things

 (i.e. columns) and is a subtype of the table.</rdfs:comment>

 </owl:Class>

 <owl:ObjectProperty rdf:ID="hasFact">

 <rdfs:label xml:lang="en">Has Fact</rdfs:label>

 <rdfs:comment xml:lang="en">A star schema must have at least one fact

 table.</rdfs:comment>

 <rdfs:subPropertyOf rdf:resource="&dbs;has"/>

 <rdfs:domain rdf:resource="#Star"/>

 <rdfs:range rdf:resource="#FactTable"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasElement">

 <rdfs:label xml:lang="en"> Has Element</rdfs:label>

 <rdfs:comment xml:lang="en">Fact tables have one or more

 elements</rdfs:comment>

 <rdfs:subPropertyOf rdf:resource="&dbs;has"/>

 <rdfs:domain rdf:resource="#FactTable"/>

 <rdfs:range rdf:resource="#Element"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasElement">

 <rdfs:label xml:lang="en"> </rdfs:label>

 <rdfs:comment xml:lang="en">Fact key containing elements.</rdfs:comment>

 <rdfs:subPropertyOf rdf:resource="&dbs;has"/>

 <rdfs:domain rdf:resource="&dbs;Key"/>

 <rdfs:range rdf:resource="#Element"/>

APPENDIX D. STARMOD SPECIFICATION

 239 (August 11, 2012)

 </owl:ObjectProperty>

 <owl:Class rdf:ID="Measure">

 <rdfs:subClassOf rdf:resource="#Element"/>

 <rdfs:label xml:lang="en">Measure</rdfs:label>

 <rdfs:comment xml:lang="en">Measures are kinds of elements. Measures can

 be aggregated.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="DegenerateDimension">

 <rdfs:subClassOf rdf:resource="#Element"/>

 <rdfs:label xml:lang="en">Degenerate dimension</rdfs:label>

 <rdfs:comment xml:lang="en">Degenerate dimension is a subtype of element

 but is more of a dimension attribute than fact

 element.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="SurrogateKeyReference">

 <rdfs:subClassOf rdf:resource="#Element"/>

 <rdfs:label xml:lang="en">Surrogate key Reference</rdfs:label>

 <rdfs:comment xml:lang="en">Surrogate Key reference is a subtype of

 element. It refers to teh surrogate key in a dimension

 table.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="SurrogateKeyElement">

 <rdfs:subClassOf rdf:resource="#Element"/>

 <rdfs:label xml:lang="en">Surrogate key Element</rdfs:label>

 <rdfs:comment xml:lang="en">Surrogate key element is a subtype of

 element. It plays the same role as the surrogate key attribute

 except that it is not referred to.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="FactUniqueKey">

 <rdfs:subClassOf rdf:resource="&dbs;Key"/>

 <rdfs:label xml:lang="en">Unique Fact Key</rdfs:label>

 <rdfs:comment xml:lang="en">A Unique key for fact tables is subtype of

 key uniquely identifying a row in the fact table.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="FactRegularKey">

 <rdfs:subClassOf rdf:resource="&dbs;Key"/>

 <rdfs:label xml:lang="en">Regular Fact key</rdfs:label>

 <rdfs:comment xml:lang="en">A regular key for fact tables is subtype of

 key. This is not a unique key.</rdfs:comment>

 </owl:Class>

 <owl:ObjectProperty rdf:about="factIdentifiedBy">

 <rdfs:label xml:lang="en">Fact Identified by a non unique

 key</rdfs:label>

 <rdfs:comment xml:lang="en">A fact regular key identifies instances from

 fact table.</rdfs:comment>

 <rdfs:domain rdf:resource="#FactTable"/>

 <rdfs:range rdf:resource="#FactRegularKey"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="factUniquelyIdentifiedBy">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:label xml:lang="en">Fact Uniquely Identified By</rdfs:label>

 <rdfs:comment xml:lang="en">Fact rows are uniquely identified using fact

 unique key.</rdfs:comment>

 <rdfs:domain rdf:resource="#FactTable"/>

 <rdfs:range rdf:resource="#FactUniqueKey"/>

 </owl:ObjectProperty>

APPENDIX D. STARMOD SPECIFICATION

 240 (August 11, 2012)

 <owl:Class rdf:ID="Hierarchy">

 <rdfs:subClassOf rdf:resource="&rdf;Seq"/>

 <rdfs:label xml:lang="en">Dimension hierarchy</rdfs:label>

 <rdfs:comment xml:lang="en">Dimension hierarchies describe the roll-up

 relations.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="Level">

 <rdfs:subClassOf rdf:resource="&rdf;Seq"/>

 <rdfs:label xml:lang="en">Level</rdfs:label>

 <rdfs:comment xml:lang="en">Aggregation of fact measures are done

 alongside the hierarchy levels.</rdfs:comment>

 </owl:Class>

 <owl:ObjectProperty rdf:about="hasLevel">

 <rdfs:subPropertyOf rdf:resource="&dbs;has"/>

 <rdfs:label xml:lang="en">Has Level</rdfs:label>

 <rdfs:comment xml:lang="en">A hierarchy has one or more

 levels.</rdfs:comment>

 <rdfs:domain rdf:resource="#Hierarchy"/>

 <rdfs:range rdf:resource="#Level"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="hasDataAttribute">

 <rdfs:subPropertyOf rdf:resource="&dbs;has"/>

 <rdfs:label xml:lang="en">Has Data Attribute</rdfs:label>

 <rdfs:comment xml:lang="en">A level may have one data

 attributes.</rdfs:comment>

 <rdfs:domain rdf:resource="#Level"/>

 <rdfs:range rdf:resource="#DataAttribute"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="rollsUpTo">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:label xml:lang="en">Rolls up to</rdfs:label>

 <rdfs:comment xml:lang="en">A level rolls up to other parent

 levels.</rdfs:comment>

 <rdfs:domain rdf:resource="#Hierarchy"/>

 <rdfs:range rdf:resource="#Level"/>

 </owl:ObjectProperty>

 <owl:Restriction>

 <rdfs:comment xml:lang="en">All of the following relationships have a

mandatory one to one relationship.</rdfs:comment>

 <owl:onProperty rdf:resource="#hasFact"/>

 <owl:onProperty rdf:resource="#hasPrimaryKey"/>

 <owl:minCardinality

 rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

 <owl:maxCardinality

 rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>

 </owl:Restriction>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#hasDimension"/>

 <rdfs:comment xml:lang="en">The following relationships have a one to

 many optional relationship.</rdfs:comment>

 <owl:minCardinality

 rdf:datatype="&xsd;nonNegativeInteger">0</owl:minCardinality>

 </owl:Restriction>

 <owl:Restriction>

 <rdfs:comment xml:lang="en">The following relationships have a mandatory

 one to many optional relationship.</rdfs:comment>

 <owl:onProperty rdf:resource="#hasAttribute"/>

 <owl:onProperty rdf:resource="#hasElement"/>

Bibliography

A. Abelló, J. Samos, and F. Saltor. On relationships offering new drill-across possibilities. In

Proceedings of the 5th ACM International Workshop on Data Warehousing and OLAP, DOLAP

’02, pages 7–13. ACM, 2002.

A. Abelló, J. Samos, and F. Saltor. Implementing operations to navigate semantic star

schemas. In Proceedings of the 6th ACM International Workshop on Data Warehousing and

OLAP, DOLAP ’03, pages 56–62. ACM, 2003.

A. Abelló, J. Samos, and F. Saltor. YAM2: A multidimensional conceptual model extending

UML. Information Systems, 31(6):541–567, 2005.

S. Agarwal, A. M. Keller, G. Wiederhold, and K. Saraswat. Flexible relation: An approach

for integrating data from multiple, possibly inconsistent databases. In Proceedings of the

Eleventh International Conference on Data Engineering, ICDE ’95, pages 495–504, 1995.

A. Aho, M. Garey, and J. Ullman. The transitive reduction of a directed graph. SIAM Journal

on Computing, 1(2):131–137, 1972.

J. Akoka, I. Comyn-Wattiau, and N. Prat. Dimension hierarchies design from UML general-

241 (March 10, 2013)

BIBLIOGRAPHY

izations and aggregations. In Conceptual Modeling ER 2001, volume 2224 of LNCS, pages

442–445. Springer-Verlag, 2001.

R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in data ware-

houses. In 28th International Conference on Very Large Data Bases, VLDB’02, pages 586–597.

VLDB Endowment, 2002.

P. Anokhin and A. Motro. Data integration: Inconsistency detection and resolution based on

source properties. In Proceedings of the 1st International Workshop on Foundations of Models

for Information Integration, FMII ’01, pages 176–196. George Mason University, 2001.

M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsistent databases.

In Proceedings of the 18th Symposium on Principles of Database Systems, PODS ’99, pages 68–

79. ACM, 1999.

M. Arenas, L. E. Bertossi, and J. Chomicki. Scalar aggregation in fd-inconsistent databases.

In The 8th International Conference on Database Theory, volume 1973 of LNCS, pages 39–53.

Springer-Verlag, 2001.

M. Banek, B. Vrdoljak, and M. Tjoa. Automating the schema matching process for hetro-

geneous data warehouses. International Journal of Data Warehousing and Mining, 4(4):1–21,

2008.

C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of methodologies for

database schema integration. ACM Computing Surveys, 18(4):323–364, December 1986.

242 (March 10, 2013)

BIBLIOGRAPHY

P. Bernstein, S. Melnik, M. Petropoulos, and C. Quix. Industrial-strength schema matching.

SIGMOD Record, 33(4):38–43, 2004.

R. A. Best. Sharing law enforcement and intelligence information: The congressional role.

Technical report, Foreign Affairs, Defense, and Trade Division, United States, 2007.

L. Betrossi, L. Bravo, and M. Caniupan. Consistent query answering in data warehouses. In

Alberto Mendelzon International Workshop on Foundations of Data Management, AMW ’2009,

2009.

S. Brockmans, R. Volz, A. Eberhart, and P. Lffler. Visual modeling of OWL DL ontologies

using UML. In Proceedings of the 3rd International Semantic Web Conference, volume 3298 of

LNCS, pages 198–213. Springer-Verlag, 2004.

D. Burdick, P. M. D. Deshpande, T. S. Jayram, R. Ramakrishnan, and S. Vaithyanathan.

OLAP over uncertain and imprecise data. The VLDB Journal, 16:123–144, 2007.

Business Objects and Teradata. Data mart consolidation and business intelligence standard-

ization: Getting the most out of information, 2007. URL www.businessobjects.com/pdf/

investors/data mart consolidation.pdf.

L. Cabibbo and R. Torlone. A logical approach to multidimensional databases. In Proceedings

of the 6th International Conference on Extending Database Technology: Advances in Database

Technology, volume 1377 of LNCS, pages 183–197. Springer-Verlag, 1998.

L. Cabibbo and R. Torlone. Dimension compatibility for data mart integration. In Proceedings

of The 12th Italian Symposium on Advanced Database Systems, pages 6–17, 2004.

243 (March 10, 2013)

BIBLIOGRAPHY

L. Cabibbo and R. Torlone. Integrating heterogeneous multidimensional databases. In Pro-

ceedings of the 17th international conference on Scientific and Statistical Database Management,

SSDBM ’2005, pages 205–214. Lawrence Berkeley Laboratory, 2005.

P. Calado, M. Herschel, and L. Leito. An overview of XML duplicate detection algorithms.

In Software Computing in XML Data Management, volume 255/2010 of Studies in Fuzziness

and Soft Computing, pages 193–224. Springer-Verlag, 2010.

A. Carmè, J.-N. Mazón, and S. Rizzi. A model-driven deuristic approach for detecting mul-

tidimensional facts in relational data sources. In Proceedings of the 12th International Con-

ference on Data Warehousing and Knowledge Discovery, volume 6263 of LNCS, pages 13–24.

Springer-Verlag, 2010.

C. Carpineto, G. Romano, and P. d’Adamo. Inferring dependencies from relations: A con-

ceptual clustering approach. International Journal of Intelligent Systems, 15(4):415–441, 2009.

S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. SIG-

MOD Record, 26:65–74, 1997.

Y.-T. Chen and P.-Y. Hsu. A grain preservation translation algorithm: From ER diagram to

multidimensional model. Information Science, 177(18):3679–3695, 2007.

J. Chomicki. Consistent query answering: Five easy pieces. In Proceedings of the 11th Inter-

national Conference on Database Theory, volume 4353 of LNCS, pages 1–17. Springer-Verlag,

2006.

N. Conklin, S. Prabhakar, and C. North. Multiple foci drill-down through tuple and at-

244 (March 10, 2013)

BIBLIOGRAPHY

tribute aggregation polyarchies in tabular data. In Proceedings of the IEEE Symposium on

Information Visualization, INFOVIS ’02, pages 131–134. IEEE Computer Society, 2002.

C. P. de Laborda and S. Conrad. Relational OWL: A data and schema representation format

based on OWL. In Proceedings of the 2nd Asia-Pacific Conference on Conceptual Modelling,

pages 89–96, 2005.

H.-H. Do and E. Rahm. COMA: A system for flexible combination of schema matching ap-

proaches. In Proceedings of the 28th International Conference on Very Large Databases, VLDB

’02, pages 610–621, 2002.

F. Duchateau, Z. Bellahsene, and R. Coletta. A flexible approach for planning schema match-

ing algorithms. In On the Move to Meaningful Internet Systems, volume 5331 of LNCS, pages

249–264. Springer-Verlag, 2008.

Eclipse. UML2OWL, 2010. URL http://code.google.com/p/twouse/wiki/UML2OWL.

S. G. Eick. Visualizing multidimensional data. SIGGRAPH Computational and Statistical

Graphics, 34(1):61–67, 2000.

A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection: A survey.

IEEE Transactions on Knowledge and Data Engineering, 19(1):1–16, January 2007.

D. Engmann and S. Massmann. Instance matching with COMA++. In BTW Workshops,

pages 28–37, Aachen, Germany, 2007.

C. Fellbaum, R. Tengi, and L. Jose. Wordnet: A Lexical Database For English, 2011. URL

http://wordnet.princeton.edu/.

245 (March 10, 2013)

BIBLIOGRAPHY

E. Franconi and U. Sattler. A datawarehouse conceptual datamodel for multidimensional

aggregation: A preliminary report. In Proceedings of the Workshop on Design and Man-

agement of Data Warehouses, volume 1 of (DMDW’99), pages 9–21. Italian Association for

Artifcial Intelligence, 1999.

A. Gal. Why is schema matching tough and what can we do about it? SIGMOD Record, 35

(4):2–5, December 2006.

M. Gebhardt, M. Jarke, M. Jeusfeld, C. Quix, and S. Sklorz. Tools for data warehouse quality.

In Proceedings of 10th International Conference on Scientific and Statistical Database Manage-

ment, SSDM ’1998, pages 229–232. IEEE Computer Society, 1998.

W. Giovinazzo. Object Oriented Data Warehouse Design, Building a Star Schema. Prentice Hall,

Inc., 2000.

M. Golfarelli, S. Rizzi, and B. Vrdoljak. Data warehouse design from XML sources. In

Proceedings of the 4th ACM International Workshop on Data Warehousing and OLAP, DOLAP

’01, pages 40–47. ACM, 2001.

S. Greco and C. Molinaro. Towards relational inconsistent databases with functional depen-

dencies. In 13th International Conference on Knowledge-Based and Intelligent Information and

Engineering Systems, volume 5178 of LNCS, pages 695–702. Springer-Verlag, 2008.

W. Grossmann and M. Moschner. Knowledge integration from multidimensional data

sources. In Computer Aided Systems Theory, volume 4739 of LNCS, pages 345–351.

Springer-Verlag, 2007.

246 (March 10, 2013)

BIBLIOGRAPHY

L. Haas, M. Hernández, H. Ho, L. Popa, and M. Roth. Clio grows up: From research pro-

totype to industrial tool. In Proceedings of the 2005 ACM SIGMOD international, pages

805–810, 2005.

M. S. Hacid and U. Sattler. An object-centered multi-dimensional data model with hierar-

chically structured dimensions. In Proceedings of the 1997 IEEE Knowledge and Data Engi-

neering Exchange Workshop, pages 65–72. IEEE Computer Society, 1997.

J. Han and M. Kamber. Data Mining - Concepts and Techniques. Elsevier Inc., 2nd edition,

2006.

J. Horner and I.-Y. Song. A taxonomy of inaccurate summaries and their management in

OLAP systems. In 24th International Conference on Conceptual Modeling, volume 3716 of

LNCS, pages 433–448. Springer-Verlag, 2005.

J. Horner, I.-Y. Song, and P. P. Chen. An analysis of additivity in olap systems. In ACM 7th

International Workshop on Data Warehousing and OLAP, DOLAP ’04, pages 83–91. ACM,

2004.

C. A. Hurtado and A. O. Mendelzon. Reasoning about summarizability in heterogeneous

multidimensional schemas. In Proceedings of the 8th International Conference on Database

Theory, volume 1973 of LNCS, pages 375–389. Springer-Verlag, 2001.

C. A. Hurtado and A. O. Mendelzon. OLAP dimension constraints. In Proceedings of the 21st

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’02,

pages 169–179. ACM, 2002.

247 (March 10, 2013)

BIBLIOGRAPHY

C. A. Hurtado, A. O. Mendelzon, and A. A. Vaisman. Updating OLAP dimensions. In

ACM 2nd International Workshop on Data Warehousing and OLAP, DOLAP ’99, pages 60–66.

ACM, 1999.

IBM. Websphere software, 2012. URL http://www-01.ibm.com/software/webspher.

IBM DB2. Multidimensional clustering, 2009. URL http://publib.boulder.ibm.com/

infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/admin/c0007201.htm.

C. Imhoff, N. Galemmo, and J. Geiger. Mastering Data Warehouse Design. Wiley Publishing,

Inc., 2003.

W. H. Inmon. Building the Data Warehouse. John Wiley & Sons, third edition, 2005.

M. Jensen, T. Holmgren, and T. Pedersen. Discovering multidimensional structure in rela-

tional data. In Data Warehousing and Knowledge Discovery, volume 3181 of LNCS, pages

138–148. Springer-Verlag, 2004.

M. R. Jensen, T. H. Møller, and T. B. Pedersen. Specifying OLAP cubes on XML data. Journal

of Intelligent Information Systems, 17(2-3):255–280, December 2001.

M. R. Jensen, T. H. Møller, and T. B. Pedersen. Converting XML DTDs to UML diagrams for

conceptual data integration. Data Knowlege and Engineering, 44(3):323–346, March 2003.

K. Kailing, H.-P. Kriegel, S. Schoenauer, and T. Seidl. Efficient similarity search for hierar-

chical data in large databases. In Extending Database Technology, EDBT’09, pages 676–693,

2004.

248 (March 10, 2013)

BIBLIOGRAPHY

A. S. Kamble. A conceptual model for multidimensional data. In Proceedings of the 5th Asia-

Pacific Conference on Conceptual Modelling, pages 29–38. Australian Computer Society, Inc.,

2008.

M. Kantola, H. Mannila, K. Räihä, and H. Siirtola. Discovering functional and inclusion

dependencies in relational databases. International Journal of Intelligent Systems, 7:591–607,

1992.

R. Kimball and M. Ross. The Data Warehouse Toolkit. Wiley Publishing, Inc., Indianapolis,

USA, 2002.

E. M. Knorr and R. T. Ng. Algorithms for mining distance-based outliers in large datasets.

In Proceedings of the 24th International Conference on Very Large Databases, VLDB’98, pages

392–403. Morgan Kaufmann Publishers Inc., 1998.

C. Letz, E. T. Henn, and G. Vossen. Consistency in data warehouse dimensions. In Inter-

national Database Engineering and Applications, IDEAS ’02, pages 224–232. IEEE Computer

Society, 2002.

L. Li and L. Yang. Automatic schema matching for data warehouses. In 5th World Congress

on Intelligent Control and Automation, pages 3939–3943. IEEE, 2004.

D. Linestedt. History of the data vault, 2011. URL http://danlinstedt.com/datavaultcat/

dvhistory/.

D. Linstedt, K. Graziano, and H. Hultgren. The Business Of Data Vault Modeling. Lulu,

Raleigh, North Carolina, 2011.

249 (March 10, 2013)

BIBLIOGRAPHY

J. Liu, F. Huang, D. Ye, and T. Huang. Efficient consistent query answering based on at-

tribute deletions. In Proceedings of the International Symposium on Computer Science and its

Applications, CSA ’08, pages 222–227. IEEE Computer Society, 2008.

S. Luján-Mora and M. Palomar. Reducing inconsistency in integrating data from differ-

ent sources. In International Database Engineering and Applications Symposium, IDEAS ’01,

pages 209–218. IEEE Computer Society, 2001.

S. Luján-Mora, J. Trujillo, and I.-Y. Song. A UML profile for multidimensional modeling in

data warehouses. Data Knowledge and Engineering, 59(3):725–769, 2006.

E. Malinowski and E. Zimányi. Hierarchies in a multidimensional model: From concep-

tual modeling to logical representation. Data Knowledge and Engineering, 59(2):348–377,

November 2006.

H. Mannila and K. Räihä. Algorithms for inferring functional dependencies from relations.

Data Knowledge and Engineering, 12(1):83–99, 1994.

B. Marshall, H. Chen, and T. Madhusudan. Matching knowledge elements in concept maps

using a similarity flooding algorithm. Decision Support Systems, 42(3):1290–1306, 2006.

W. May. Information extraction and integration with FLORID: The MONDIAL case study.

Technical Report 131, Universität Freiburg, Institut für Informatik, 1999. URL http://

dbis.informatik.uni-goettingen.de/Mondial.

J.-N. Mazón and J. Trujillo. Enriching data warehouse dimension hierarchies by using se-

250 (March 10, 2013)

BIBLIOGRAPHY

mantic relations. In 23rd British National Conference on Databases, volume 4042 of LNCS,

pages 278–281. Springer-Verlag, 2006.

J.-N. Mazón, J. Lechtenbörger, and J. Trujillo. A survey on summarizability issues in multi-

dimensional modeling. Data Knowledge and Engineering, 68(12):1452–1469, 2009.

S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph matching

algorithm (extended technical report). Technical report, Stanford University, University

of Leipzing, 2002a. URL http://ilpubs.stanford.edu:8090/497/1/2001-25.pdf.

S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph matching

algorithm and its application to schema matching. In Proceedings of 18th International

Conference on Data Engineering, pages 117–118, 2002b.

D. Milano, M. Scannapieco, and T. Catarci. Structure-aware XML object identification. In

VLDB Workshop on Clean Databases (CleanDB), CleandDB ’06, 2006.

J. Mundy, W. Thornwaite, and R. Kimball. The Microsoft Data Warehouse Toolkit. Wiley, 2006.

OLAP Council. OLAP council white paper, 1997. URL http://www.olapcouncil.org/

research/whtpaply.htm.

B. O’Neil. The information model and the data vault, 2004. URL http://www.tdan.com/

view-articles/5221.

Oracle. Oracle database SQL reference, 2005. URL http://download.oracle.com/docs/cd/

B19306 01/server.102/b14200/statements 5006.htm.

251 (March 10, 2013)

BIBLIOGRAPHY

Q. H. Pan, F. Hadzic, and T. S. Dillon. Discovering concept mappings by similarity propa-

gation among substructures. In International Database Engineering and Applications Sympo-

sium, volume 6283 of LNCS, pages 324–333. Springer-Verlag, 2010.

S. Pavel and J. Euzenat. A survey of schema-based matching approaches. Technical Report

DIT-04-087, Informaticae Telecomunicazioni, University of Trento, 2004. URL http://disi.

unitn.it/∼p2p/RelatedWork/Matching/JoDS-IV-2005 SurveyMatching-SE.pdf.

T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. Extending practical pre-aggregation in on-

line analytical processing. In Proceedings of 25th International Conference on Very Large Data

Bases, VLDB ’99, pages 663–674. Morgan Kaufmann Publishers Inc., 1999.

J. Pokorny. Modelling stars using XML. In 4th ACM International Workshop on Data Ware-

housing and OLAP, DOLAP ’01, pages 24–31, 2001.

S. Puhlman. Fehlerklassen in XML daten und erzeugung schmutziger XML daten (Error

classes in XML data and generating dirty XML data). Technical report, Umboldt Univer-

sity of Berlin, 2004.

M. Rafanelli. Operators for multidimensional aggregate data. In M. Rafanelli, editor, Multi-

dimensional Databases, pages 116–165. IGI Publishing, 2003.

M. Rafanelli and A. Shoshani. STORM: A statistical object representation model. In Scientific

and Statistical Database Management, SSDBM’90, pages 14–29, 1990.

E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching. The

Very Large Databases Journal, 10(4):334–350, December 2001.

252 (March 10, 2013)

BIBLIOGRAPHY

D. Riazati and J. A. Thom. Matching star schemas. In Proceedings of the 22nd International

Conference on Database and Expert Systems Applications - Volume Part II, volume 6861 of

LNCS, pages 428–438. Springer-Verlag, 2011.

D. Riazati, J. A. Thom, and X. Zhang. Drill across & visualization of cubes with non-

conformed dimensions. In Proceedings of the 19th Conference on Australasian Database, vol-

ume 75 of ADC ’08, pages 97–105. Australian Computer Society, Inc., 2008.

D. Riazati, J. A. Thom, and X. Zhang. Inferring aggregation hierarchies for integration of

data marts. In Proceedings of the 21st International Conference on Database and Expert Systems

Applications: Part II, volume 6262 of LNCS, pages 96–110. Springer-Verlag, 2010.

D. Riazati, J. A. Thom, and X. Zhang. Enforcing strictness in integration of dimensions:

Beyond instance matching. In Proceedings of the ACM 14th International Workshop on Data

Warehousing and OLAP, DOLAP ’11, pages 9–16. ACM, 2011.

O. Romero, D. Calvanese, A. Abelló, and M. Rodrı́guez-Muro. Discovering functional de-

pendencies for multidimensional design. In Proceeding of the ACM 12th International Work-

shop on Data Warehousing and OLAP, DOLAP ’09, pages 1–8. ACM, 2009.

H. Samet. The Design and Analysis of Spacial Data Structures. Addison Wesley, 1990.

Satama. Different between knowledge and information, 2012. URL http://www.nairaland.

com/702795/different-between-knowledge-information.

H. Shefrin. Ending the management illusion: Preventing another finnacial

253 (March 10, 2013)

BIBLIOGRAPHY

crisis, 2009. URL http://www.iveybusinessjournal.com/topics/innovation/

ending-the-management-illusion-preventing-another-financial-crisis.

H. L. A. Shoshani. Summarizability in OLAP and statistical data bases. In 9th Interna-

tional Conference on Scientific and Statistical Database Management, SSDBM 97, pages 132–

143. IEEE Computer Society, 1997.

Y. Sismanis, L. Wang, A. Fuxman, P. J. Haas, and B. Reinwald. Resolution-aware query

answering for business intelligence. In 25th International Conference on Data Engineering,

ICDE ’09, pages 976–987. IEEE Computer Society, 2009.

I. Y. Song, R. Khare, and B. Dai. Samstar: A semi-automated lexical method for generating

star schemas from an entity-relationship diagram. In Proceedings of the ACM 10th Interna-

tional Workshop on Data Warehousing and OLAP, DOLAP ’07, pages 9–16. ACM, 2007.

C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis, and visualiza-

tion of multidimensional databases. Communications of the ACM, 51(11):75–84, November

2008.

R. Torlone. Two approaches to the integration of heterogeneous data warehouses. Dis-

tributed Parallel Databases, 23(1):69–97, 2008.

S. Vinnik and F. Mansmann. From analysis to interactive exploration: Building visual hi-

erarchies from OLAP cubes. In Proceedings of 10th International Conference on Extending

Database Technology, EDBT ’2006, pages 496–514, 2006.

254 (March 10, 2013)

BIBLIOGRAPHY

W3C. OWL web ontology language overview, 2009. URL http://www.w3.org/TR/

owl-features/.

M. Weis and F. Naumann. Detecting duplicate objects in XML documents. In Information

Quality in Informational Systems, IQIS ’04, pages 10–19. ACM, 2004.

M. Weis and F. Naumann. Dogmatix tracks down duplicates in XML. In Proceedings of the

2005 ACM SIGMOD International, SIGMOD’05, pages 431–442. ACM, 2005.

J. Wijsen. Project-join-repair: An approach to consistent query answering under functional

dependencies. In Flexible Query Answering Systems, volume 4027 of LNCS, pages 1–12.

Springer-Verlag, 2006.

255 (March 10, 2013)

