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Abstract 

In this quantitative review, we investigate the degree to which landscape ecology 

studies that use spatial data address spatial uncertainty when conducting analyses. We 

identify three broad categories of spatial uncertainty that are important in determining 

the characterisation of landscape pattern and affect the outcome of analysis in 

landscape ecology: i) classification scheme uncertainty, ii) spatial scale and iii) 

classification error. The second category, spatial scale, was further subdivided into five 

scale dependent factors i) pixel size ii) minimum mappable unit, iii) smoothing, iv) 

thematic resolution and v) extent. We reviewed all articles published in the journal 

Landscape ecology in 2007 and recorded how spatial data was used and whether spatial 

uncertainty was addressed or reported in ecological analyses. 

This review found that spatial uncertainty was rarely addressed and/or 

reported. Most articles used the default pixel size of the sensor. Only 23% of articles 

addressed one or more scale dependent factors and 47% reported one or more as 

issues. A single study of the 59 investigated the effect of classification accuracy on 

ecological analyses. We demonstrate that spatial uncertainty is not being addressed as 

standard practice in analyses in landscape ecology, and then describe methods to test 

for spatial uncertainty and potential solutions that can be developed in the future.  

 

Keywords: Scale, spatial uncertainty, classification error, landscape pattern, remote 

sensing, GIS, land-cover mapping 



Introduction 

The use of thematic data derived from remote sensing is common in landscape 

ecology due to its wide availability, total sample, broad coverage and ecologically 

relevant spectral bands (Fassnacht et al. 2006; Gergel 2007). Remote sensing data 

processed using a geographic information system (GIS) is the most common form of 

data used to describe land cover in order to investigate the relationship between 

landscape pattern and ecological processes (Chen et al. 2008; Metzger 2008). However, 

it can be misused or used without an understanding of its limitations due to its 

availability and the ease which software can process remote sensing data, (Fassnacht et 

al. 2006; Gergel 2007). Maps derived from remote sensing data are often treated as the 

absolute truth (Adams and Gillespie 2006; Evans 1997), despite the uncertainty and 

error that is always present when simplifying and generalising the complexity of real 

world geographic phenomena (Kardos et al. 2006) (Figure 1).  

<Figure 1> 

Within the ecological literature there are numerous studies describing the effects 

of spatial uncertainty on ecological analyses. Some commonly known sources of spatial 

uncertainty, such as grain and extent, have been recognized for decades and are 

documented in landscape ecology textbooks (Gergel and Turner 2001; Turner et al. 

2001), but we contend that these effects are not routinely tested for in landscape 

ecology. This study first reviews the ecological and spatial sciences literature to 

describe the range of spatial uncertainty. We then systematically quantify the 

proportion of landscape ecology studies that address and/or acknowledge spatial 

uncertainty, using a subset of the studies published in the journal Landscape Ecology to 

assess whether testing for these factors is routine. We specifically look at three well-

known sources of spatial uncertainty that are proven to affect spatial analyses: i) 



classification schemes, ii) spatial scale, and iii) classification error. Finally, we conclude 

with a brief discussion of possible solutions to address the effects of spatial uncertainty 

on ecological analyses. 

Methods 

An initial survey of the ecological and spatial science literature was conducted to 

identify key remote sensing spatial uncertainty issues that influence the outcome of 

ecological analyses. We focused on issues that affect the characterisation of landscape 

pattern using remote sensing data, such as land use and land cover datasets (LULC).  

As an analogue for the landscape ecology community, this study reviewed all the 

research articles published in the journal Landscape Ecology in 2007 (n=101) to assess 

whether addressing spatial uncertainty issues is a routine practice. An alternative 

review method using a search in Scopus on the term “Landscape ecology” was found to 

be less consistent in identifying relevant articles. For each article, we recorded how 

landscape ecologists used spatial data and whether spatial uncertainty issues were 

addressed and reported. We did not make qualitative judgements of how effective the 

studies were. This study only reviewed articles that used remote sensing data, which 

was considered to include aerial and satellite derived imagery. Simulated spatial data 

was not included as it is assumed that articles using simulated represent landscapes 

with 100% accuracy at the appropriate scale. Of the original 101 articles reviewed, 15 

articles were not included due to inadequate information describing spatial data (Table 

1).  

<Table 1> 

This review found that of the articles in Landscape Ecology in 2007 only 69% 

(n=86) had adequate information describing the type of data used or were not review 

articles. Additionally, 15% used only GIS data and 16% used neither GIS nor remote 



sensing data (Table 1). Hereafter, the review only investigates the articles that contained 

remote sensing data (n=59). 

Results and Discussion 

Classification Scheme uncertainty 

In landscape ecology the dominant geographic representation of landscapes is 

discrete patches of habitat surrounded by non-habitat (such as farmlands or urban 

areas), also known as a matrix or mosaic of patch types. This study found that discrete 

classification schemes were the dominant models used to represent land cover in 

landscape ecology, with 25% of the articles reviewed using a binary classification 

scheme and 68% using a multi-class classification scheme (Table 1). However, many 

alternative methods are available to represent landscapes, such as point based and 

continuous field data and fuzzy sets (Gustafson 1998; Robinson 2007). This review 

found that these alternative methods were rarely used. Gridded data with continuous 

values were the only non-discrete classification scheme recorded (12%). These 

alternative classification methods can be used to reduce the effect of spatial uncertainty 

arising from classifying complex natural objects into simple discrete classes. 

Using discrete classification systems in ecological analyses can result in spatial 

uncertainty as there are often no definite boundaries between land cover classes and/or 

patches. Thus, there is nearly an infinite number of ways to classify the landscape using 

a discrete classification system (Arnot et al. 2004; Burrough 1996; Schmit et al. 2006) 

and boundaries between classes can be subjective and artificial (Chapman et al. 2005; 

Powell et al. 2004). Using a discrete classification scheme that does not incorporate a 

range of sub-pixel variation will affect analyses such as the calculation of class areal 

extent (Foody 1996) and landscape metrics describing vegetation pattern (Arnot et al. 

2004). 



Another source of spatial uncertainty from using remote sensing data that occurs 

regardless of the type of classification scheme is the imprecise nature of landcover 

classes. The characterisation of landscape pattern depends on the system property 

being measured and the classification scheme used (Comber et al. 2005b; Congalton and 

Green 1993; Li and Wu 2004). The imprecise specification of landcover classes means 

that, even if the same class labels are used in maps produced by two different people, 

these classes will not necessarily be equivalent (Comber et al. 2005b). Differences in 

classification schemes and class description will affect the outcome of spatial analyses 

using remote sensing data (e.g. Colson et al. 2009; Cunningham 2006; Manton et al. 

2005), potentially making the results inaccurate or spurious.  

The imprecise nature of landcover classes and differences between classification 

schemes is an important consideration, especially when using readily available datasets 

that may not be specifically developed to address ecological phenomena. Readily 

available datasets are popular due to their availability and their low cost in comparison 

to developing new project specific maps (Comber et al. 2005a). Approximately 36% of 

articles reported using generic LULC datasets produced by a third party, such as 

Europe’s CORINE dataset or the US’s national land cover dataset (NLCD) (Table 1). 

Furthermore, 33% of articles using generic datasets aggregated LULC datasets to reduce 

the number of land cover classes, often to create binary land cover maps. Approximately 

17% of all articles aggregated multi-class data to a smaller number of classes. The 

aggregation of land cover classes introduces further uncertainty as the rules for 

aggregating classes can be somewhat arbitrary (Quaife et al. 2008). For example, 

combining LULCs that are classified using floristics to new classes based on structure 

(e.g. open/closed forest) will result in ambiguity for those vegetation types that do not 

neatly fit into the structural classes. The effects of aggregating classes in other cases, 



however, have been shown to result in higher accuracy classes when thematic 

resolution was lowered (Remmel 2009). 

Spatial Scale 

The concept of scale can be considered in terms of the scale dependency of the 

pattern-process relationship as well as the method used to sample ecological 

phenomena. In this study the word scale is used as an overarching term that can be 

subdivided into three categories: operation, observation and analysis scale (Dungan et al. 

2002).  

The operation scale (also known as the ecological or characteristic or intrinsic 

scale) describes the scale at which the phenomenon (i.e. organism) interacts with or 

perceives the landscape (Dungan et al. 2002; Wu and Li 2006). This concept is related to 

hierarchy theory, which describes the organisation of ecological systems into relatively 

isolated distinct operational scales (O'Neill et al. 1989). While there may be just one 

correct scale at which to measure a phenomenon, there are cases where phenomena act 

at multiple scales and therefore need to be measured at multiple scales (Chen et al. 

2008; Levin 1992; Wiens 1989; Wu et al. 2006). Typically, little is known about the 

operation scale (Holland et al. 2004; Mayer and Cameron 2003). However, some 

phenomena may be scale invariant (Wu et al. 2006) or mathematically predictable and 

thus scalable (Saura and Castro 2007).  

In practice, a phenomenon cannot be measured directly and our understanding 

of it is affected by the analysis and observation scale. The observation scale (also known 

as sampling or measurement scale) describes the size, shape, extent and distance 

between observational units used to sample a phenomenon. The analysis scale (or in 

some cases modelling scale) refers to the units that are used in analyses (Dungan et al. 



2002; Wu and Li 2006). Within landscape ecology the analysis scale is often patches or 

landscapes while the observation scale is generally the pixel size (Figure 2).  

<Figure 2> 

The analysis and observation scales can change as a result of a number scale 

dependent factors relating to all aspects of the creation of spatial data, from the sensor 

used to post-processing and data analysis methods (Figure 3). The survey of the 

literature identified  five scale-dependent factors as important in determining the 

characterisation of landscape pattern and affect the outcome of analysis in landscape 

ecology i) pixel size ii) minimum mappable unit (MMU), iii) smoothing, iv) thematic 

resolution and v) extent. The first four factors affect observation scale and the fifth 

affects analysis scale. 

<Figure 3> 

Observation scale 

Spatial resolution is made up of several scale dependent factors, including pixel 

size, MMU, and smoothing. The spatial resolution is the primary factor influencing the 

classification of remote sensing data and limits the smallest identifiable area (Tatem et 

al. 2002; Woodcock and Strahler 1987). In raw unprocessed raster data, spatial 

resolution is often considered to be equivalent to pixel size (Atkinson 2004). The value 

of a pixel is predominantly determined by land cover corresponding to its location 

(Cracknell 1998). However, the true spatial resolution is greater than the pixel size as 

its value is affected by land cover found in neighbouring pixels due to the characteristics 

of remote sensing devices (Cracknell 1998; Fisher 1997).   

In some cases, LULC maps are processed so that the spatial resolution of the 

image is coarsened through the imposition of a MMU. The MMU is the smallest area in 

the extent that will be mapped as a discrete unit (Fassnacht et al. 2006; Saura 2002). As 



the MMU is larger than the pixel size, detail contained in the original mapping unit is 

lost (Saura 2002). MMUs are often imposed to increase classification accuracy or 

decrease the complexity of a map and increase legibility of the cartographic 

representation of the landscape (European Environment Agency 1994; Saura 2002).  

The pixel size and MMU define the physical area on the ground that is sampled. 

However, pre and post-processing of a remote sensing image using smoothing filters or 

resampling increases the influence of the values of the neighbouring pixels and thus 

decreases spatial resolution. Smoothing filters such as a low pass or majority filter are 

commonly used in remote sensing to increase classification accuracy or to remove noise 

caused by sensor error in raw remote sensing data (Ivits and Koch 2002; Zukowskyj et 

al. 2001) while, resampling is often used for image registration. 

The final aggregation factor, thematic resolution, describes the level of 

classification detail of the sampling units, otherwise known as attribute precision 

(Cunningham 2006) or categorical resolution (Franklin and Woodcock 1997).  For 

example, the Anderson classification scheme contains 4 resolutions with each higher 

resolution class nested in a lower level class, e.g., Residential nested within Urban. The 

exclusion or inclusion of different land cover classes will affect the representation of 

spatial pattern. Both the thematic resolution and MMU were only reported in articles 

that used thematic/categorical datasets (91% of articles reviewed) as these scale 

dependent factors are not relevant to continuous data. 

The four factors that make up observation scale (pixel size, MMU, smoothing and 

thematic resolution) are important in determining the characterisation and the 

accuracy of landscape pattern and its components such as patches and corridors. 

Decreasing the resolution of the observation scale (i.e., larger pixels, larger MMU, etc.) all 

have similar effects on characterising landscape structure—reducing fine scaled 



fragmentation. This has been shown for each factor: pixel size (Wu 2004; Wu et al. 

2002), smoothing (e.g. Lechner et al. 2008; Thompson and Gergel 2008), MMU (Kendall 

and Miller 2008; Thompson and Gergel 2008) and thematic resolution (Buyantuyev et 

al. 2010; Buyantuyev and Wu 2007; Castilla et al. 2009). When observation scale is 

coarse, small patches will not be extracted (Fassnacht et al. 2006; Lechner et al. 2009), 

the spatial extent and configuration of patches will change (Thompson and Gergel 

2008), edge complexity will decrease (i.e. edge to area length decreases) (Kendall and 

Miller 2008), and landscapes will be represented as large homogenous areas that in 

reality may not exist (Corry and Nassauer 2005; Stohlgren et al. 1997). Ecologically 

important small and linear features such as corridors are more likely to be mapped 

inaccurately or be absent from a landscape (Lechner et al. 2009). While landscape 

composition is affected by all aggregation factors, thematic resolution directly affects 

landscape composition through reducing the number of patch types (Corry and 

Nassauer 2005). These factors indirectly affect landscape composition through the loss 

of rare land cover types that tend to be found in small patches (Smith et al. 2002; 

Thompson and Gergel 2008). Thompson and Gergel (2008) found estimates of rare 

forest classes differed by as much as 36%, and that the mean patch size increased by 

650% due to the application of a smoothing filter.  

The observation scale not only affects the accuracy of remote sensing 

classifications (Smith et al. 2003; Woodcock and Strahler 1987) but also affects 

ecological analyses rely on them (c.f. modifiable areal unit problem). Spatial resolution 

has been demonstrated to affect statistical analyses such as inference about population 

mean, variation, and statistical significance (Pontius Jr et al. 2005; Stoms et al. 1992). 

Changing scale can affect the output of ecological models such as multivariate analysis, 

by changing the variables included in a model, the relative importance of those 



variables and the complexity of the models (Karl et al. 2000; Lawler et al. 2004). The 

effects of spatial resolution and, to a lesser degree, thematic resolution have been 

shown for other types of analysis such as measuring land cover proportions (Moody and 

Woodcock 1994; Smith et al. 2002), landscape metrics that measure fragmentation 

(Buyantuyev and Wu 2007; Wickham and Riitters 1995; Wu et al. 2000), graph-based 

metrics that identify critical habitat patches for the maintenance of landscape 

connectivity (Pascual-Hortal and Saura 2007; Rae et al. 2007), and analyses that 

investigate the change in landscape composition over time (Pontius et al. 2008).  

Analysis scale 

The analysis scale is a property of the geographic extent of the analysis units and 

the landscape components that are measured with those spatial units. The scale 

dependent factor extent (also known as geographic scale) refers to the size of the study 

area or the total area mapped (Changyong and Lam 1997; Turner 1989). Within a study 

area the type of spatial organisational unit can be a patch, site, or landscape for discrete 

data types. Studies that conducted patch-level analyses compared patch measurements 

(e.g., patch area or shape) to ecological phenomena (e.g., species diversity) for each 

patch or a sample of patches within a landscape (Figure 4). Studies which used site-level 

analyses (i.e. core area or neighbourhood area or plot) related ecological variables 

measured at a single point or plot (e.g. trap counts) to environmental measurements 

calculated for the surrounding area. For studies with landscapes as the organisational 

unit, the comparison was either between multiple landscapes in different locations or 

the same landscape at different times (Figure 4). The most common analysis scale was 

the landscape, used in 53% of articles (Table 1). In some of the articles reviewed, more 

than one analysis scale was used (e.g. Debuse et al. 2007; Gustafson et al. 2007).   

<Figure 4> 



Uncertainty associated with using a specific extent is a result of the sometimes 

arbitrary location of boundaries, affecting the characterisation of landscape pattern and 

the outcome of ecological analyses. Landscape pattern will change with extent, as 

landscapes may appear fragmented at one extent and continuous at other extents 

(Cushman and McGarigal 2008). For example, Turner (1989) found that measures of 

diversity remained constant until the extent boundaries crossed natural boundaries (i.e. 

catchment boundary). Once the natural boundary was crossed, there was a rapid 

increase in diversity then it remained constant until the next boundary. As extent 

increases so does the probability of sampling rare classes (Riitters et al. 2000; Wiens 

1989). Furthermore, extent can affect landscape pattern through artificially truncating 

patches that occur at the boundary (Cushman and McGarigal 2008; O'Neill et al. 1996). 

Changing extent can affect ecological analyses because it can influence the inclusion of 

abiotic and biotic processes in a study area. As with aggregation factors, changing extent 

will affect analyses such as measurements of landscape pattern (Buyantuyev et al. 2010; 

O'Neill et al. 1996; Townsend et al. 2009), graph based connectivity metrics (Pascual-

Hortal and Saura 2007) and statistical analysis (Chapman et al. 2005; Hess et al. 2006; 

Wu et al. 1997). 

Do landscape ecologists routinely address scale dependent factors? 

This review determined that only 39% of the articles reviewed addressed one or 

more scale dependent factors and only 47% reported one or more as issues (Figure 5). 

The studies that addressed one or more scale dependent factors commonly did this 

through testing the sensitivity of the results of their analyses to a range of scales, for 

example by varying pixel size. Only 8% of articles addressed grain (pixel size or MMU) 

and 25% addressed extent, which is surprisingly low considering these two type of 

scale dependent factors appear to be the most prominent factors discussed in the 



landscape ecology and ecological literature (Table 1) (e.g. Mayer and Cameron 2003; 

Turner 2005). The most common form of spatial uncertainty addressed was in testing 

for uncertainty in the scale of the analysis at the site level, conducted in 59% of site level 

studies, commonly using multiple buffer sizes.  

<Figure 5> 

Most studies used the pixel size of the raw remote sensing image within their 

analyses, with the exception of those that specifically addressed scale issues by 

conducting multi-scale studies. 46% of the papers reviewed used Landsat data which 

has a 30 m pixel size for most bands of both TM and ETM+ sensors (one study used 

Landsat MSS which has an 80m pixel size). 53% used aerial imagery with a pixel size 

less than 1 m (Table 1). The small range of pixel sizes used suggests the choice of scale 

is largely driven by the available data and the cost in acquiring and classifying it (Chen 

2008; Comber 2008; Gergel 2007). Papers that addressed scale through multi-scale 

studies typically addressed only one single scale-dependent factor, despite the multi-

faceted nature of scale (Lechner et al. 2008).  

Classification Error 

Classification error refers to the difference between the label assigned on a 

classified remote sensing map and the real value on the ground. Classification error is 

generated at different stages of the production of remote sensing maps, affecting the 

representation of land cover (Friedl et al. 2001). The quantification of classification 

error is typically based on a confusion matrix (also known as an error or agreement 

matrix) and is considered fundamental to accuracy assessment (Congalton 1988; Foody 

2002). The confusion matrix describes the accuracy of each land cover class and the 

relative rates of misclassifications for each pair of classes (Congalton 1993). Studies that 

make use of a remote sensing land cover dataset should as a minimum include a 



classification accuracy assessment (Cunningham 2006). A statement of accuracy of the 

data is important as it conveys to the reader some indication of the reliability of the data 

their results rely on. This review found that only 5% of studies included a confusion 

matrix. However, 36% of all studies used generic datasets which are likely to be 

associated with published material elsewhere describing accuracy assessment results. 

High accuracy biophysical input maps derived from remote sensing are 

considered important requirements for ecological analyses such as habitat models 

(Guisan and Zimmermann 2000). While accuracy assessment using confusion matrices 

is important, the spatial distribution of errors (e.g., whether erroneous pixels are found 

more often in smaller patches) may also need consideration (Congalton 1988). 

Furthermore, classification error can be magnified when propagated into a model 

(Gergel et al. 2007). For example, Langford et al. (2006) found that in certain situations 

classification error can cause a thousand-fold increase in error in the calculation of 

landscape metrics. Gergel et al. (2007) suggested that it is important to describe not 

only the magnitude of errors but also the implication of the errors. This review found 

only 1 of the studies reviewed tested for the effect of classification error on analysis. 

Addressing spatial uncertainty 

In our review of 2007 Landscape Ecology papers, we found four strategies for 

addressing spatial uncertainty: i) not reporting, ii) reporting without testing, iii) testing 

for the effect of one or more spatial uncertainty source (commonly through sensitivity 

analyses) and iv) developing methods to address a single source of spatial uncertainty. 

Strategy (i) was the most common with 53% of the articles reviewed failing to report 

potential scale issues and 81% failing to report classification error issues. Furthermore, 

many articles provided very little documentation on the source of the spatial data and 

the processing used. In some cases, it is possible that the scale of the dataset may have 



been appropriate for the organism/s in question by default, or that the classification 

error levels may have been low enough to not affect analyses but the lack of reporting 

makes that impossible to determine. It is also possible that some authors may have 

failed to discuss these issues in a manuscript due to space requirements, even if they 

had been explored in the actual research.  

Of papers that tested for spatial uncertainty (strategy iii), all but one investigated 

issues of scale (97%); and in those cases, the investigation of spatial uncertainty was the 

focus the paper as opposed to being addressed as part of a robust ecological analysis. 

That is, these studies specifically focused on testing scale dependent ecological patterns. 

The lack of testing is likely because of the absence of clearly defined rules for dealing 

with spatial uncertainty when developing ecological models (Chen 2008). Furthermore, 

the solutions to spatial uncertainty issues that are developed are unique to the specific 

combination of form of spatial uncertainty, ecological model, and the ecological 

phenomenon being investigated.  In what follows, we detail recommendations for 

contending with spatial uncertainty. 

Recommendations to contend with spatial uncertainty 

To conduct robust ecological analyses based on spatial data, we need to know 

and/or reduce the error and uncertainty in the analytical process. This first requires 

that we measure and state the consequences of uncertainty as well as take steps to 

reduce its harmful effects.  There are several components to addressing spatial 

uncertainty:  i) identify and explain scale dependent factors, ii) sensitivity analysis, and 

iii) solution to specific types of spatial uncertainty. Addressing spatial uncertainty is a 

multi-faceted task of which some aspects of the task are well-understood and others are 

topics for continuing research. This section ends with a recommendation for future 

research that is required to develop a generalised solution to spatial uncertainty. 



Identify and explain scale dependent factors 

Studies that conduct spatial analysis should include i) a list and explanation of 

the scale dependent factors associated with the data (i.e. MMU, extent, etc.), ii) a 

description of the scale at which the ecological phenomenon perceives the landscape, 

iii) the appropriateness of the classification scheme used, iv) an error matrix, and v) 

explicit definition of all scale dependent factors. This last point is important because 

many articles examined in this study used scale as a generic term but failed to qualify its 

meaning explicitly, consistent with previous findings (King 1991; Vermaat et al. 2005).  

Sensitivity analysis 

Given that the true amount and nature of error due to uncertainty is unknown, 

researchers need to do a sensitivity analysis of the outcomes resulting from the range of 

spatial uncertainties and input errors identified earlier.  Sensitivity analyses of model 

output to a range of spatial errors should be viewed as a minimum when spatial data is 

used as input to a spatially explicit model. For the results of the output of an analysis to 

be valid, the outcome should be robust to variation resulting from various sources of 

spatial uncertainty.  

There are numerous forms of spatial uncertainty; too numerous to be routinely 

evaluated individually. Researchers need to consider the ranges of variation tested for 

in a sensitivity analysis. What is the largest and smallest pixel size that should be tested?  

Expert opinion and literature review can be used to guide the selection of the types of 

spatial uncertainty to be tested for in sensitivity analyses. For example, when modelling 

the movement of kangaroos across a catchment, vegetation maps derived from 30m 

Landsat imagery are likely to describe the spatial distribution of habitat patches 

suitably. However, smaller mammals such as bandicoots are likely to use patches 



smaller than the 30m pixel size. Thus, the effects of pixel size on the amount of habitat 

or total number of patches would need to be evaluated. 

Some kinds of spatial uncertainty such as ambiguity in classification schemes 

may only be practical to test with a subset of the data. For example, the robustness of an 

analysis to a particular classification scheme may be tested with more accurate, but 

time consuming to produce field based mapping and compared to generic remote 

sensing data for a subset of the study area. 

Solutions to spatial uncertainty 

The simplest solution for some ecological problems where knowledge of species 

ecology is present will be to use imagery with i) finer spatial resolution than the 

phenomena of interest, ii) extent larger than the ecological process of interest, and iii) a 

MMU that eliminates patches too small to be relevant to the question at hand. These 

measures, along with more accurate classification methods and a classification scheme 

specific to the ecological phenomenon being analysed, can reduce some of the known 

potential sources of spatial uncertainty. However, more complex dynamic ecological 

processes, such as those driven by multiple unknown operation scales, will require the 

development of more complex methods to identify the appropriate scale(s), 

classification scheme, and acceptable levels of classification accuracy (See Lechner et al. 

2012 for an analysis of the robustness of multi-scale studies to spatial uncertainty).  

In some cases uncertainty is unavoidable and techniques to address spatial 

uncertainty need to be used and/or developed. Already existing techniques for 

addressing spatial uncertainty are found more widely in the remote sensing and spatial 

science community. An example of this is the use of fuzzy classification schemes that are 

not patch based (Robinson 2007). In most cases though, these solutions tend to address 

a single form of spatial uncertainty and are often tailored to a given ecological model. 



For example, Saura and Castro (2007) described scaling functions for making subpixel 

landscape metric estimates. The results from the sensitivity analysis as well as 

knowledge of species ecology need to be used guide the types of spatial uncertainty that 

need to be addressed.  However, using current methods available described above there 

will always be untested and unaddressed forms of spatial uncertainty.  

Development of a generalised spatially explicit error models 

The development of a generalised spatially explicit error model is required to 

describe the uncertainty in the relationship between the observation of ecological 

phenomenon and the outcome of analyses. Since spatial error does not follow 

commonly used error assumptions (e.g., zero mean, independent, normally distributed), 

alternate, spatially explicit error models are necessary for generating reasonable 

stochastic variants in sensitivity analysis. We know and can model many ways that data 

can be damaged and/or distorted. Applying models of these errors (and their 

interactions) to data can allow users to then evaluate their consequences for our 

ecological inferences and decisions. 

Part of the solution may lie in the use of the virtual ecologist approach (Zurell et 

al. 2010) where simulated data are used to mimic real phenomenon and the manner in 

which they are ‘virtually’ observed. The virtual ecologist approach can also utilise the 

null landscape model concept (Gardner and Urban 2007) for the simulation of virtual 

landscapes to test whether observed patterns are structured by stochastic factors or 

even non-stochastic/biased factors that are due to spatial uncertainty. For example, 

Fortin et al. (2003) demonstrated how spatial stochastic models could be used to 

provide confidence intervals for landscape metric estimates through simulating 

different realisations of landscape based on the spatial autocorrelation and proportion 

of habitat of a range of landscapes. 



Conclusion 

This review reveals that the assumptions, generalisations, and errors that occur 

when using spatial data are not being routinely addressed by ecologists (Chapman et al. 

2005; Nelson 2001). Spatial uncertainty needs to be addressed as it affects the 

characterisation of landscape pattern, which may result in failing to uncover a 

relationship that exists or deriving spurious relationships. The complexity of collecting, 

processing and classifying imagery and a lack of standard techniques for incorporating 

spatial uncertainty into ecological analyses mean that addressing these issues is non-

trivial. Many map users only deal with final remote sensing products such as generic 

land cover maps (Schmit et al. 2006; Turner et al. 2001) and are unfamiliar with the 

computational methods used to create this. The many resulting forms of spatial 

uncertainty can reduce the robustness of landscape ecological analyses, but the 

approaches described above may assist in our efforts to improve our understanding of 

ways to address this uncertainty. However, by continuing to routinely ignore spatial 

uncertainty, we risk being what Hall (1988) described as a “discipline [that has] been 

far too eager to grasp at data that appear superficially to support our most cherished 

beliefs” even though the “data [has] been trying to tell us something quite different”.  
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Figure 1 LULC map creation process. Remote sensing data is captured using Landsat 
TM, pre-processed, classified and post-processed. Spatial uncertainty arises in each 
processing step. 

  



 
Figure 2 Example of different observation and analysis scales. Ecological phenomena 
can be measured and analysed using any one of the scales described in the image, from 
pixels to patches. 



 

Figure 3 Conceptual relationship describing spatial uncertainty in landscape ecology.  Landscapes (1) used in pattern-process analyses 
characterised by remote sensing data are affected by multiple ways in which the LULC maps are derived (2). These geographic 
representations of landscapes are the analysed in relation to an ecological phenomenon at a particular analysis scale (3). The results of 
ecological analyses will be a property of the scale at which a phenomenon operates and the way it is observed and analysed (4). 
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Figure 4 Examples of different organisational levels and the types of measurements used. 
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Figure 5 Scale dependent factors and classification error addressed, reported and not 
reported (pixel, smoothing, extent and classification error, n=59; MMU and thematic 
resolution n=54). 
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Table 1 Summary of spatial data use. *Note some studies used more than one 

remote sensing dataset or more than one analysis scale thus the total in each 

category may not add up to 100%. 

 

Review category     total percentage 

Spatial data sources (n=86)   
 Only GIS data 13 15% 
 RS data 59 69% 
 No spatial data 14 16% 
RS data type (n=59)*   
 Binary 15 25% 
 Multi-class 40 68% 
 Continuous 7 12% 
Readily available data used (n=59)*   
 Corine 2 3% 
 NLCD 6 10% 
 Other generic 21 36% 
 Non-generic data 38 64% 
Analysis scale used (n=59)*   
 site 17 29% 
 patch 13 22% 
 landscape 31 53% 
Acquisition method used (n=59)*   
 Aerial photography 31 53% 
 Landsat (MSS / TM / ETM+) 27 46% 
 NOAA- AVHRR 2 3% 
 Other 14 24% 
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