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Abstract

Low frequency (O(10 Hz–10 kHz)) vibration excitation of capillary waves has been ex-

tensively studied for nearly two centuries. Such waves appear at the excitation frequency or

at rational multiples of the excitation frequency through nonlinear coupling due to the finite

displacement of the wave, most often at one-half the excitation frequency in so-called Faraday

waves and twice this frequency in superharmonic waves. Less understood, however, are the
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dynamics of capillary waves driven by high frequency vibration (> O(100 kHz)) and small in-

terface length scales, an arrangement ideal for a broad variety of applications, from nebulisers

for pulmonary drug delivery to complex nanoparticle synthesis. In the few studies conducted to

date, a marked departure from the predictions of classical Faraday wave theory has been shown,

with the appearance of broadband capillary wave generation from 100 Hz to the excitation fre-

quency and beyond, but there has not yet been a clear explanation. We show that weak wave

turbulence is the dominant mechanism in the behavior of the system, evident from wave height

frequency spectra that closely follows the Rayleigh-Jeans spectral response η ∼ ω−17/12 as a

consequence of a period-halving, weakly turbulent cascade that appears within a 1 mm water

drop whether driven by thickness-mode or surface acoustic Rayleigh wave excitation. How-

ever, such a cascade is one-way, from low to high frequencies. The mechanism of exciting the

cascade with high frequency acoustic waves is an acoustic streaming-driven turbulent jet in the

fluid bulk, driving the fundamental capillary wave resonance through the well-known coupling

between bulk flow and surface waves. Unlike capillary waves, turbulent acoustic streaming

can exhibit subharmonic cascades from high to low frequencies; here it appears from the exci-

tation frequency all the way to the fundamental modes of the capillary wave some four orders

of magnitude in frequency less than the excitation frequency, enabling the capillary weakly

turbulent wave cascade to form from the fundamental capillary wave upwards.

Introduction

Deceptively simple in appearance, capillary waves generated upon a fluid interface have provided

nearly two centuries’ worth of scientific interest, from the crispations of Faraday’s era1 to the

development of entirely new analysis techniques in the modern era.2 Ubiquitous in nature and

man-made systems, from ocean waves to nebulisers, their importance in microfluidics comes as

no surprise: capillary waves influence the bulk transport of drops and thin films driven by surface

waves;3–5 form cavitation at intense amplitudes and frequencies below a few MHz;6,7 alter the
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acoustic wave propagation within the fluid bulk;8 affect micro-scale mixing,9 particle concentra-

tion10 and underlie atomisation, where the crests of large-magnitude capillary waves pinch off and

are ejected to form a mist of fine droplets.11–14

The surprise is the appearance of relatively low-frequency capillary waves in these researchers’

work, even when the frequencies of excitation (> O(100 kHz)) are three or more orders of mag-

nitude above the capillary waves’ resonance frequencies (O(10 Hz)–10 kHz). The two centuries

of work on capillary wave phenomena have only considered the use of excitation at frequencies

around or below the resonance frequencies of the capillary wave,15,16 yet throughout the new lit-

erature where high frequency excitation is employed, capillary waves still appear and drive the

consequent phenomena that are now widely used to creatively manipulate fluids. This remark-

able discrepancy has only now started to be explored.3,17,18 In the laboratory, capillary waves are

traditionally generated by either directly perturbing the interface using a wavemaker,15 a vibrat-

ing rod or plate penetrating the interface,19 a microsphere in contact with the interface,20 creative

use of electric fields,21 or—most typically—by parametrically inducing the waves through vertical

vibration of the fluid container.22–27

A fluid surface excited by a perpendicularly-oscillating support may exhibit Faraday waves vi-

brating at one-half the excitation frequency,1 in recognition of Faraday’s discovery of these waves

in a pool of mercury excited by hand in sunlight. Classical theoretical treatment of the Faraday

problem gives, along the way, a Mathieu equation in terms of the interface displacement xm,

d2xm

dT 2 +(pm−2qm cos(2T ))xm = 0, (1)

where T = f t, pm is the ratio of the mth discrete resonance (m ∈ {0,1,2, . . .}) frequency fm to the

forcing frequency f , and qm is proportional to the forcing amplitude.28,29 The excitation of the

surface comes from an explicit time-dependent coefficient in the equation of motion: the cos(2T )

term adds energy to the system. Stability analysis shows that the response frequency of the Faraday
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wave system depends on its representation in p–q space, defining the ratio of excitation frequency

to natural frequency and the amplitude of excitation. Figure 2 of Benjamin and Ursell28 shows

the widely quoted f/2 response is only seen when the ratio pm is of order one or less, and the

amplitude of forcing is not greater than the order of the natural wavelength. A finite-amplitude

analysis of the problem places greater restriction on the excitation frequency: that

ε ≡ ( f − fm)/ f � 1, (2)

for any resonance fm;29 in other words, the difference between the resonance frequency in ques-

tion, fm, and the excitation frequency, f , must be much less than the value of the excitation fre-

quency itself.

This restriction in excitation frequency is overlooked, even omitted from a number of articles in

the literature15,30–32 leading to the erroneous application of Faraday wave theory when examining

capillary waves in which the excitation frequency is many orders of magnitude greater than the

fundamental natural frequency of the interface.11,25,33,34 In this study, because we use extremely

high excitation frequencies and therefore violate the condition presented by eq 2, Faraday wave

theory as presented in the literature simply does not apply.

Furthermore, the fluid interface response cannot be fully described by a series of harmonic

eigenmode resonances for finite-amplitude excitation; the response is inherently broadband in na-

ture. The vibration response undergoes a transition from a discrete series of quantifiable, finite-

amplitude eigenmode waves to a broadband continuum of waves at a very low amplitude of exci-

tation.12,35 The mechanism driving this change from discrete to continuous vibration spectra is the

nonlinear, three-wave interaction between waves: after a set of travelling waves collide, the waves

that arise from that interaction will extract some energy from the original set, but possess different

energies, frequencies, and phases from each other and that original set. These new waves go on to

interact with each other, the original set, and additional waves not a part of this original collision
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to form other waves that likewise have new characteristics. And so on in a cascade of ever shorter

wavelength waves with reduced amplitude.36,37

Such a broadband, power-law spectrum12 is a strong indicator of turbulence-like nonlinear

behaviour in a system.22 Linear stability theory and similar approaches are therefore inappropri-

ate under these circumstances, unfortunately, as they cannot accommodate the spatiotemporal ex-

changes in energy exhibited by these nonlinear systems. Kolmogorov38 first proposed a Rayleigh-

Jeans energy spectrum with respect to wavenumbers for isotropic hydrodynamic turbulence; the

concept has since been applied to wave-like systems, where it has come to be known as wave tur-

bulence.37,39 Unlike the general case of hydrodynamic turbulence, wave turbulence is analytically

tractable because the system can be simplified to a lower order,37 an approach unavailable in an

analysis of the vorticity in hydrodynamic turbulence. Kolmogorov-like wave turbulence solutions

may be found for a great variety of systems, but the nature of the solutions and the route to finding

them rely upon the Hamiltonian of the system;40 the lowest-order non-zero nonlinear part of the

frequency-domain Hamiltonian determines the number of waves which participate in the interac-

tions. Capillary wave turbulence is a three-wave system; gravity wave turbulence, for example, is

instead a four-wave system.

The theory of weak wave turbulence offers three important results pertinent to our capillary

wave system: first, the power-law relation between the wave amplitude η and frequency f can be

found22,37 as η ∼ f−17/12 through dimensional analysis, as illustrated in the supporting informa-

tion. The second important result is that the inertial range in time or length scale over which this

power law applies exists between an energy source (so-called pumping) and an energy sink (fluid

damping). As the cascade represents some transfer of energy from one length scale to another, a

stationary solution which obeys the second law of thermodynamics requires an energy source and

sink. Finally, it can be shown that the energy flux in wavenumber space must be positive. For

capillary wave turbulence, this implies energy flows in one direction and only one direction: from

its source at wavenumber k0 to higher wavenumbers km where energy is damped. This result is a
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property of the medium and appears as a consequence of the−17/12 power law and the dispersion

relation.41 Other media support inverse cascades, where the pumping wavenumber is greater than

the damping, notably Langmuir waves in plasma,42 but not capillary waves on fluids. The power-

law relation between wave amplitude and frequency is readily observed: typical experiments in

capillary wave turbulence employ a wave generator inside a large tank19,43 or piston-like support

excitation;35 however, typical excitation frequencies are less than 10 Hz while the capillary wave

phenomena appears at frequencies above this value.

Strong nonlinearities in a capillary wave system can give rise to rather more complex phenom-

ena with a deviation from weak wave turbulence theory and the consequent power-law scaling. Lee

et al.40 found only recently that a renormalization of the dynamics and therefore the dispersion re-

lationship enables determination of the wave spectra even with strongly nonlinear interactions.

They note that a major question with weak wave turbulence theory remains with regard to what

happens to real wave systems if any of the assumptions required in weak wave turbulence theory

are violated. A platform permitting broad examination of the capillary wave phenomena, like the

one described in this study, would be useful for this purpose.

In this work, we examine the peculiar behaviour of capillary waves in a microfluidic system

as excited by high frequency acoustic waves between 500 kHz and 20 MHz. As our reference

systems, we will consider the parametric vibration induced by both a thickness-mode lead zir-

conate titanate (PZT) transducer and a lithium niobate (LiNbO3 or LN) based surface acoustic

wave (SAW) device. These two devices provide different vibration motions and two exclusively

different ranges of vibration frequencies—the former 1 to 1000 kHz and the latter 1 to 1000 GHz—

and are representative of an entire class of devices finding application with some excitement in

micro to nanofluidics.17 Comparison with wave turbulence theory will show that turbulent capil-

lary waves may be generated by extremely high-frequency excitation, far beyond what is typically

reported in the literature, offering a new route to generating and studying these wave phenomena.

Further, we explain the underlying phenomena driving the formation of the capillary waves and
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their characteristics.

Generating and Measuring Microscale Capillary Waves

In order to measure the vibration of a capillary interface, we require a working fluid, an actuation

device, and a means of measurement. For the fluid, a 2 µ` sessile hemispherical drop of deionised

water was placed upon on a solid substrate set to vibrate to generate capillary waves upon the fluid

interface as described later. A precision pipette (Eppendorf single channel adjustable 0.1–2.5 µ`

pipette, North Ryde NSW Australia), mounted on a translation stage, was used to deliver the drop;

in between experiments a regular protocol of cleaning using acetone, ethanol, deionized water, and

dry nitrogen gas was used to clean the surface. These practices allowed us to avoid variations in

drop size and contact angle from experiment to experiment; the contact angle was verified using

a video microscopy system (Infinity K2/SC, Infinity Photo-Optical Company, Boulder, Colorado)

with lab written contact angle measurement software in MATLAB (Mathworks, Chatswood NSW

Australia). The drop size was allowed to vary as a parameter, although its volume was chosen to

be less than the volume at which its shape significantly deforms due to gravity,44,45 with a size less

than the capillary length for gravity waves, `=
√

γ/(ρg)≈ 3 mm for water, where γ is the surface

tension and g is the acceleration due to gravity.36 In the absence of gravity, the most relevant fluid

property for capillary wave generation is the ratio of surface tension to density, fairly constant to

an order of magnitude among most simple fluids, making the choice of working fluid somewhat

arbitrary.

Two excitation devices were employed: PZT thickness-mode and LN SAW vibration devices.

Both devices provide parametric excitation through the substrate but have distinctly different oper-

ating frequency ranges and motions; the former as an analog to published approaches and without

vibration phase changes across the drop, albeit at a higher frequency of 500 kHz, and the latter as

a specific method to examine very high frequency excitation at 20 MHz, though with an unusual
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excitation motion that possesses rapid spatiotemporal phase changes across the drop. The pair was

chosen to assess the effects of the method of excitation on the form of generated capillary waves;

the SAW devices in particular are foreseen to be useful in a broad range of micro and nanofluidics

devices that employ fluid interfaces,17 but we will show the capillary wave phenomena they impart

is also present in the simpler PZT thickness-mode system.

The PZT transducer, illustrated in Fig 1(a), possesses a thickness-mode resonance with a wave-

length much larger than the contact area of the drop, akin to excitation motions typical in the liter-

ature.23,24,26,30,36,46,47 Thickness-mode PZT transducers can be fabricated to effectively generate

motion from a few kiloHertz to a few megaHertz. The thickness-polarized, face-electroded device

used for this work (C–203, Fuji Ceramics, Tokyo, Japan; with Cr–Ag electrodes and dimensions

as shown) was driven at its fundamental thickness-mode resonance at 500 kHz±2%; the variation

is due to ambient temperature changes. While the amplitude of piston vibration is not uniform

throughout such a disc, it was nearly uniform over the area of the drop’s footprint. Because the

surface of the Cr–Ag electrodes possesses micrometer-scale roughness, a sessile water drop will

consistently form a contact angle of about 90◦.

(a)
~1 mm

λ ~ 200μm

Side view

Top view

IDT

PZT

25.4 mm

~1 mm

(b)

LDV beam

LDV beam

[t]

Figure 1: Schematic representation of (a) thickness-mode PZT and (b) SAW device actuation. For
PZT, AC power is applied to electrodes on the upper and lower surfaces (upper surface shown in
inset), inducing a thickness-polarized vibration mode at 500 kHz as indicated by the dashed line.
The length scale of this deflection is greater than the contact length scale of the drop, O(1 mm),
and so the phase under the drop is constant. For SAW, the Rayleigh wave is generated on the
piezoelectric LN substrate at 19.425 MHz; the wave is damped as energy is absorbed by the fluid
(schematically depicted in the inset with the dashed line).
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The SAW device, illustrated in Fig 1(b), generates 19.425 MHz Rayleigh waves upon its sur-

face due to the application of a sinusoidal electric signal to an interdigital transducer (IDT) pat-

terned using photolithography on a single-crystal, piezoelectric, single-side polished, 127.68◦ Y -

axis rotated cut, X-axis wave propagating LN substrate. The frequency was selected with precision

through the definition of the simple IDT to resonate at a wavelength of 206 µm: in the simple IDT

used here, the fingers and gaps between them all have a width of one-fourth the desired wave-

length. In contrast to the PZT device, the SAW is a planar travelling wave and exhibits almost no

resonance frequency variation, and generally operates at a much higher frequency between about

10–1000 MHz. The motion of the surface is elliptical and retrograde. Wave energy may be ab-

sorbed into a fluid in contact with the substrate through the phenomenon of “leaky SAW”.48 The

principal features of SAW excitation are its high frequency, the fact the substrate has a rapid phase

change in its displacement over the propagation path of the SAW, and the presence of in-plane and

transverse components of vibration that are one-quarter of a wavelength in time out of phase with

each other.

While SAW provides parametric excitation to a fluid in a manner similar to that described by

Miles,29 it fundamentally differs in that the SAW is a travelling Rayleigh wave with a wavelength

so short that the phase of the wave spatially changes underneath the drop. Unlike the traditional

wave-maker technique19 and its variants,20 under SAW excitation the fluid surface is never di-

rectly contacted by any apparatus except at the boundary. This makes SAW far more suitable

for microscale devices: directly contacting the drop surface in any location would disturb the dy-

namics of the surface and possibly the internal fluid flow. SAW devices are capable of extremely

narrow-band excitation (bandwidth is typically < 0.005% of the excitation frequency) over a range

of frequencies from 1 MHz to 10 GHz, spanning four orders of magnitude. The particle velocity at

the substrate surface as the SAW passes is typically O(1 m/s), while displacements scale inversely

with the SAW frequency and are generally O(1–100 nm); acceleration scales with frequency and

can be exceptionally large, up to O(107 m/s2). If the substrate is rigorously cleaned before use,
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the surface is hydrophilic; however, the contact angle was consistently 90◦ using our procedure of

cleaning and droplet deposition.

The excitation level is characterised here by measuring the transverse component of the vibra-

tion amplitude of the substrate. Electrical power input is sometimes selected as a basis for defining

the behavior of the capillary waves; it is not appropriate here because the relationship between in-

put power and vibration amplitude is very nonlinear, being dependent upon the electrical properties

and the electro-mechanical coupling of the specific device, the temperature, and how these devices

are mounted and driven. Our surface accelerations are typically between 15×106 to 90×106 m/s2

for both devices, corresponding to 1–6 nm SAW amplitudes. Beyond 6 nm, the sessile drop tends

to be transported across the substrate surface, and so measurement of the capillary wave is no

longer reliable. Potentially the drop could be restrained with a well, but this may introduce a dif-

ferent boundary condition and additional complications in its excitation and was not considered

here. Regardless, the electrical power used to drive drop vibration is generally less than 1 W.12

A laser Doppler vibrometer (LDV) (MSA-400, Polytec, Waldbronn, Germany) was used to

measure the vibration velocity spectrum of the fluid surface49 along the axis of the laser’s path at

its intersection with the measurement surface; the diameter of the measured area is approximately

1 µm.49 This technique has several advantages over alternatives: high sensitivity (to O(1 pm));

broad measurement range of DC to 25 MHz, where direct imaging or measurement of scatter

through the surface35 would require extremely high camera frame rates and correspondingly high-

intensity illumination; and non-contact measurement, where other techniques in use require in-

trusive capacitive probes19 that would distort the geometry of the drop. But the LDV has some

drawbacks worth noting. First, the LDV directly measures vibration particle velocity along the

laser path; this means the fluid surface must be nearly perpendicular to the incident beam, restrict-

ing the area of the drop we can measure to the central part to avoid substantial error in measure-

ment.50 Second, the signal returned by the vibrometer will contain information from all the laser

energy to enter the detector; this includes not only the desired portion which has reflected from the
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fluid surface, but also any light which has passed through the drop and reflected off the substrate.

Shrinking the depth of field eliminates this issue; the fluid may also be coloured to absorb any

light passing through the surface, although the colouring agent will change the properties of the

fluid and lower the intensity of reflected light. In practice, the first effect has minimal impact if

the measurement point is carefully positioned; coloured fluid experiments demonstrate the second

effect affects only the magnitude of the measurement at the excitation frequency. Third, the limit

of 25 MHz in measurement limits our ability to explore SAW excitation to the very lower end of

such devices, precluding examination of higher frequency devices widely available to 1 GHz and

beyond. Finally, the LDV is incapable of simultaneously measuring multiple points along the in-

terface: it must scan from point to point making the measurement at each point one after another.

Fortunately, as turbulent capillary waves may be considered a nearly ergodic system,41 temporal

and spatial ensemble averaging are considered equivalent. In order to observe stochastic properties

of the system vibration, we must perform some manner of averaging on the spectrum. For this

study, we ensemble average 360 spectra recorded sequentially in time at a single point, and benefit

from the near-ergodicity of the system in the interpretation of the results.

Validation of Capillary Wave Weak Turbulence Theory

For deep-water capillary wave turbulence theory to apply to such a system, a number of assump-

tions must be validated: that the depth of fluid is much greater than the amplitude of the waves,

that gravitational forces may be neglected, that the dispersion relation approaches

ω
2 = (2π f )2 =

γ

ρ
k3, (3)

and that the domain of the wave system be effectively infinite.

The linearised dispersion relation for deep-water capillary-gravity waves is widely accepted to
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be

(2π f )2 = gk+
γ

ρ
k3; (4)

for a flat interface. This implies a crossover frequency f ∗ from (2π f ∗)2 = 2gk = 2 γ

ρ
k3 where

gravity and capillary forces have equal importance; for water this crossover frequency is approx-

imately 10 Hz. At frequencies greater than this, capillary forces dominate and the capillary wave

dispersion relation reduces to eq 3.

Equations 3 and 4 are given in the context of an infinite flat interface. However, we show

in the supporting information that, subject to interrelated constraints on wavenumber and wave

amplitude, the relation for a curved surface typical of drops in our system is identical: for wave

amplitudes of O(10−9 m), eq 3 holds for frequencies f � O(107 Hz). We expect the linearised

Lagrangian L of the system to take the form L = a2G(k, f ); by minimizing the variation of the

Lagrangian we find G(k, f ) = 0, giving the dispersion relation. Since the constant component of

surface curvature does not participate in the variation, it will have no effect on G, and therefore

does not alter the dispersion relation.

The assumption of infinite depth, on the other hand, requires that the product of wavenumber k

and depth below the resting surface position h, kh� 1. Neglecting gravity, we assume h is of the

same order as the radius of the drop, O(1 mm) in our system; through the dispersion relation, the

frequency associated with the limiting wave number is approximately 40 Hz.

The deep-water capillary wave dispersion equation can therefore be applied to a drop of radius

O(1 mm) over the frequency range 40 Hz � f � 107 Hz; we will show that all observed wave

turbulent phenomena in our system occurs in this range.

As a final criterion for the applicability of wave turbulence theory, we must consider the effect

of the pinned contact line and the finite domain. Wave turbulence theory assumes an infinite

unbounded surface; however, such a domain is impractical for both numerical and experimental

investigations. It has been shown that boundary effects do not dominate the response at all length
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scales when the system is in a disordered state.35 However, so-called “frozen turbulence”, where

wave energy is concentrated at resonant points in the spectrum, may occur where the length scale of

the boundary is close to the length scale of interest,51 although it is possible for “frozen” turbulence

to exist side-by-side with broadband turbulence.52 Fortunately, in our system the length scale of the

boundary, O(1 mm), is larger than the capillary wavelength at frequencies beyond 1 kHz. Further,

we are measuring the deflection at the center of the drop, the point farthest from the boundary

possible. We expect that, as in past work,35,51,52 the domain may be considered effectively infinite

for the capillary waves we are examining.

Results
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Figure 2: Typical vibration spectra for 500 kHz thickness-mode excitation via PZT (left) and
20 MHz Rayleigh wave excitation via SAW (right). Over the frequency range 100 Hz–2 kHz for
the PZT and 1 kHz–2 MHz for the SAW, the experimentally measured spectra possess slopes that
are remarkably close to −17/12, the value predicted by wave turbulence theory and indicated by
the adjacent line. For PZT excitation, the (a) fundamental vibration mode is the largest response
of the capillary wave, though successive resonances may be seen. The response decays to below
the noise floor of the LDV at about 20 kHz, about 2 pm/

√
Hz, until the (b) Lorentzian response is

seen about the excitation frequency of 500 kHz. Note the absence of subharmonic resonances but
presence of superharmonic resonances at 2 f , 3 f ,. . . , 7 f ; for the SAW device, the superharmonics,
if present, lie beyond the upper measurement limit of the LDV, 25 MHz. The (c) fundamental
mode exhibits the largest response of the system to (d) SAW excitation at (b) 20 MHz, and the
response at the excitation frequency is a Lorentzian distribution.
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The LDV provides displacement spectral density distributions with respect to frequency from

100 Hz to 25 MHz, as illustrated in typical response spectra provided in Fig 2 for both the

thickness-mode PZT device and the Rayleigh-wave generating SAW device. As previously ob-

served,8,12,49 note the presence of a capillary wave at the excitation frequency, remarkable given

the very high frequency of the excitation in either case. This cannot be the response of the substrate

because the focal depth is only sufficient to measure the fluid interface, the amplitude of vibration

of the substrate is far lower than what is measured here, and the width of the response peak at the

excitation frequency is far more narrow for the substrate: the response of the substrate absent the

drop is identical to the noise floor except for a narrow peak at 500 kHz for the PZT and 20 MHz for

the SAW device to a displacement spectral density amplitude of order 10−11 m/
√

Hz. As remark-

able is the absence of a capillary wave at one-half the excitation frequency: there is no Faraday

wave. Finally, note the presence of the capillary wave response at (Hz to kHz order) frequencies

far lower than the excitation frequency.

The capillary waves do appear to behave as a system driven by weak wave turbulence. The

majority of the spectra is dominated by a response cascade that follows a power-law relationship

η ∼ f−1.420, closely correlated to the capillary wave turbulence theory-derived −17/12≈−1.417

slope (R2 = 0.990 and 0.998 for the PZT and SAW devices, respectively), providing strong evi-

dence of capillary weak wave turbulence in the system for two rather entirely different modes of

fluid interface excitation.

The progression of resonant responses from the fundamental resonance frequency at about

200 Hz upwards appears according to the well-known3,18,45 Lamb model of elastic resonance of a

spherical capillary surface,53

fm =

√
(m+1)(m+2)(m+4)γ

3πρL3 (5)

providing the frequencies fm = {247,479,742,1030,1350,1700, . . .} Hz that correlate well with
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the experimentally measured fundamental and higher-order resonances driven by the PZT de-

vice, fm = {176,432,735,1140,1470,1940, . . .} Hz (R2 = 0.999), and the SAW device, fm =

{259,506,668,862,1220,1688, . . .} Hz (R2 = 0.990): there appears to be no need to resort to

more thorough analysis provided elsewhere.54 Note that there is nothing in these calculations that

involve the excitation frequency. Further, there is a strong correlation (R2 = 0.961) between the

experimentally and theoretically determined fundamental resonance frequencies as the drop size

is varied with the SAW device as illustrated in Fig 3. The exceptionally narrow peak indicated
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Figure 3: Driven by SAW at 20 MHz, the fundamental resonance frequency of the drop scales with
the cube of its length according to eq 5 with good correlation (R2 = 0.961); the line through the
data represents the theoretical prediction. The error bars are twice the standard error; the horizontal
error is due to pipetting as there was no observable evaporation effects for the short duration of each
experiment. The data taken at each drop volume appear to be normally distributed (n = 5).

with an asterisk in Fig 2 is a specious single data point appearing due to the encoder card’s analog-

to-digital conversion at 214 = 16,384 Hz; its absence in the SAW-driven response is simply due

to the stronger response driven by this system that acts to hide it under those conditions. No-

tably, there are no subharmonic cascades in this system from the excitation frequency at 500 kHz.
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These results, taken altogether indicate that the system does not exhibit Faraday waves,31 but more

importantly, that it is behaving as a weak wave turbulent system.

For PZT excitation there are superharmonic resonances from the excitation frequency of 500 kHz

upwards in a rational cascade { f ,2 f ,3 f , . . . ,7 f}, and perhaps beyond if not for encountering the

upper limit of the LDV’s measurement range at this resolution. The upper limit of the LDV’s mea-

surement range prevents us from determining whether there are similar superharmonic resonances

in the SAW driven system.

The ultimate source of energy in this system is the parametric excitation, either from the SAW

or PZT device; indeed the excitation frequency is strongly indicated by Lorentzian distributed drop

surface vibration responses (see Fig 2(b,d); Lorentzian response distributions are characteristic of

a second-order linear system with viscous damping). However, the strongest response whatever

the excitation method appears at the drop’s fundamental resonance frequency (see Fig 2(a,c)).

The drop visibly vibrates in either case at its fundamental resonance under most conditions. The

Faraday wave mechanism is clearly not the cause: the excitation of the fundamental drop resonance

represents a downshift from the excitation frequency of three orders of magnitude for the PZT

device and five orders of magnitude for the SAW device, far beyond the usual f/2 treatment

resulting from the standard Mathieu equation-based result of Faraday wave analysis. Further, the

capillary wave resonance frequencies clearly do not depend on the frequency of excitation, at odds

with Faraday wave theory, not surprising given the violation of a fundamental precept of the theory

in eq 2. However, the capillary wave resonances that appear at 200 Hz in Fig 2 are a consequence

the physics of the capillary surface itself, as made clear by Fig 3.

We have shown here that the capillary waves behave under weak wave turbulence theory: their

amplitude exhibits a Rayleigh-Jeans distribution of η ∼ f−17/12 over a broad frequency range.

We will show now that this is actually a cascade from the fundamental capillary wave resonance

frequency upwards in a one-way response. It is tempting to assume energy is transported from the

high-frequency excitation to eventually give rise to the fundamental resonance of the drop through
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a subharmonic cascade (akin to Lauterborn and Cramer55). However, the direction of energy flux

for capillary wave weak turbulent spectra is always to greater frequencies: for capillary waves the

energy source for the cascade must be at a lower frequency than the cascade itself, as discussed

above.

The wave-turbulent cascade in our system is therefore not the mechanism by which the ab-

sorbed acoustic energy is shifted in frequency to the fundamental resonance: it cannot be for the

excitation frequency is far higher than the entire capillary wave cascade. In fact, the cascade forms

as a consequence of vibration at the fundamental resonance. It is apparent that the mechanism

responsible for the downshift does not interfere with the capillary wave response at frequencies

between the excitation and the fundamental mode, as the surface exhibits the theoretical stochastic

wave-turbulent response.

So the question turns from why the response appears as it does to why it is excited in the first

place. Turning now to focus upon the use of SAW excitation alone, we show that a mechanism

permitting a subharmonic cascade from the high excitation frequency to the low capillary wave

frequencies is the formation of turbulence in the acoustic streaming induced by the SAW within

the fluid bulk.

Examining first the streaming Reynolds number17 as a consequence of SAW excitation of the

water drop,

Rest =
ρ ûL

µ
=

ρ
(
uhyd +uvib

)
L

µ
=

ρ
[
uhyd +(2π f xvib)

]
L

µ
∼ (6)(

103)[(10−1)+ (2π10710−9)](10−3)
(10−3)

∼ 103,

where ρ , L, µ , and û ≡ uhyd + uvib are the fluid density, drop size, fluid dynamic viscosity and

Lagrangian fluid velocity, respectively; the last term being defined as a summation of the hydrody-

namic fluid velocity in the drop, as observed to be on the order of uhyd ∼ 0.1 m/s, and the vibration

particle velocity as the acoustic wave passes through the fluid, uvib, being dependent upon the am-
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plitude of the vibration of the substrate. The streaming Reynolds number for PZT excitation is

similar, because the Lagrangian fluid velocity is the same though the excitation frequency is two

orders of magnitude lower.

A streaming Reynolds number of Rest ∼ 103 is well above the critical values of∼ 102 reported

in the literature (and nicely explained in the classic article by Thompson, et al56) predicting a

transition to subharmonic, period-doubling cascades of turbulent fluid flow55 that result in chaotic

flow behaviour. It is important to distinguish these results from those typical of hydrodynamic

Reynolds number where there appears a transition to turbulence, for example, at values of 105 in

“typical” pipe flow.57

The acoustic streaming can be shown to have become turbulent via another route. Lighthill58

shows quite eloquently how turbulent Stuart streaming appears—with convective acceleration be-

coming significant—at only a few microwatts at 1 MHz. Taking a very conservative estimate for

our system, assuming turbulent Stuart streaming appears when the acoustic streaming power, P,

is above a critical value Pcrit = 1 mW, the power of the acoustic beam propagating into the fluid

drop is Pcρu2
vib = cρ f 2η2 where c is the speed of the acoustic wave in the fluid, resulting in

ηcrit = (1/ f )
√

Pcrit/(ρc) = 0.61 nm by solving for ηcrit and substituting in typical values for wa-

ter. This shows that for our SAW system we have turbulent acoustic streaming in all cases, with

the 0.74 nm amplitude case near the critical amplitude, assuming that the amplitude of the acoustic

wave is of the same order as the amplitude of the SAW the drop is residing upon, an assumption

we have found to be valid elsewhere.59

The matter of turbulent acoustic streaming is important because it is key to explaining how a

very high frequency acoustic excitation can result in such low frequency acoustic capillary waves,

especially when there is no known mechanism to drive a subharmonic cascade in the capillary

waves themselves. Unlike the capillary wave phenomena, a large-scale subharmonic cascade is

possible in a turbulent jet,55,56,58 and this appears to underlie the driving of low-frequency capillary

waves by the very high frequency boundary vibration. The SAW-driven generation of turbulent
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acoustic streaming in improving mixing in drops with geometries similar to this study has been

shown to appear over a wide range of viscosities and powers,,9 indicating how the bulk of the

entire drop becomes turbulent through the acoustic streaming.

Other potential mechanisms of subharmonic coupling including interactions in the viscous

boundary layer, bubble formation and collapse or interactions in and around these bubbles, or

some other instability mechanism—especially the Kelvin-Helmholtz instability.60 All these are

unlikely: the first would require all of the energy of the capillary wave cascade to be transmitted

through a exceedingly small part of the fluid drop’s volume, since the viscous boundary layer only

has a thickness on the order of 10 nm. The second potential mechanism has a similar volume

constraint in addition to the fact that it is known bubbles are not formed with SAW excitation,12

as opposed to what happens at much lower frequencies of excitation.6,7 Kelvin-Helmholtz insta-

bilities appear only upon sufficient flow speed at the fluid interface; the critical flow speed for our

system would be ucrit =
√

2
√

γgρ = 7.2 m/s where γ is the air-water surface tension, and g is the

gravitational acceleration.60 Even presuming that the critical flow speed did not apply here, per-

haps due to the presence of the turbulence, suggests the wavelength of the least stable wave due to

the acoustic streaming flow is over 10 cm, well beyond the scale of our drop, suggesting that this

form of instability is not responsible for the capillary waves we see.

However, the observation that the bulk flow and capillary wave are coupled through shear is

well-known in the literature, as found by Longuet-Higgins61 and shown convincingly by Trinh

and Wang;62 though the typical treatment of the phenomenon is the generation of the bulk flow

by the capillary waves, here we see evidence of the process occurring in reverse, in a manner still

consistent with their studies. In the absence of any detailed analysis of the formation of capillary

waves due to bulk flow, if we take the liberty of considering the classical solution of Stokes’ drift61

due to capillary waves, u = η2ωke−2kz where z is the distance into the flow of the deep bulk (using

a shallow treatment prevents solution here), and note that the Stokes’ drift in this context is also

the time-averaged fluid flow in the bulk u induced by the turbulent acoustic jet, we can determine
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what order the velocity of the turbulent jet would have to be to induce the fundamental capillary

waves we observe. With the relationship as written, u∼ η2ωk = ω−11/6k if we note the capillary

weak wave turbulence relation η ∼ ω−17/12. Since the fundamental vibration mode is at about

250 Hz and its wavelength is about 1 mm, consequently u∼ 10 mm/s. If instead we chose to note

that the typical amplitude of the fundamental vibration mode is on the order of 100 µm, again u∼

10 mm/s. Either way, the turbulent acoustic jet is driving flow in the drop at these velocities and

beyond, and the turbulence of the acoustic streaming is present to drive formation of the capillary

wave at these frequencies, so via this simplistic treatment it appears entirely possible to drive

capillary waves of the form we see with the acoustic streaming we know to be present in the drop.

Certainly more appropriate and detailed analysis, properly incorporating the nonlinearities in lieu

of reference to classic theory, would provide a more detailed picture of the mechanism responsible

for the capillary waves.

We turn now to examine the dynamics of the drop through its vibration spectrum at different

excitation levels. Figure 4(a) indicates the noise floor of the LDV, in other words, the minimum

displacement spectral density as a function of frequency, a function of ambient noise, thermal

noise, analog-to-digital conversion limitations, and the shot noise of the measurement system.

These culminate in a constant velocity, 1/ f , noise over the range 104– 105 Hz due to the limitations

of the analog-digital encoder hardware in the LDV, while beyond 105 Hz the noise floor is defined

by a constant value of about 0.5 /
√

Hz due to shot noise at the photodiode of the LDV. The asterisks

refer to specific peaks present due to intrinsic encoder difficulties (as with all such encoders) at

213,214,215 Hz that are not true resonance peaks. The noise floor coincidentally matches the

theoretical slope from 300 to 2000 Hz but does not match elsewhere.

The capillary wave response transforms from a discrete to continuous response as the SAW

amplitude is increased. Upon application of SAW to the drop at 20 MHz, the response at that

same frequency appears as a narrow peak in Fig 4(b), which grows as the excitation amplitude is

increased to 1.6 nm but remains relatively constant as the excitation amplitude is increased further
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Figure 4: Evolution of the spectrum with increasing SAW excitation amplitude; (a) ambient noise
floor without explicit vibration excitation, (b) 0.74 nm by comparison to ambient, (c) 1.6 nm
excitation compared to 0.74 nm excitation, (d) 3.3 nm excitation compared to 1.6 nm, and (e)
5.1 nm versus 3.3 nm excitation.
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to 5.1 nm: the energy is moving elsewhere in the spectrum. As the excitation level increases, the

response of the drop at low frequencies begins to saturate (c); energy then enters the wave turbulent

cascade (d). At high excitation level (e), the turbulent cascade is fully established over an inertial

range spanning at least 103–106 Hz. Another indicator of the turbulent response is the smoothened

broadband response at the highest excitation levels (d,e) from the discrete resonances that appear at

relatively lower excitation amplitudes (b,c), except for the ever present and substantial fundamental

resonance of the drop at around 200 Hz.

Figure 4(b–e) illustrates this by comparison of the displacement response due to a given level of

excitation to the next lowest level of excitation; Fig 4(c), for example, shows the response to 1.6 nm

excitation is very similar to the 0.74 nm response between 100 Hz and 1000 Hz, but is very different

between 1000 Hz and 50 kHz. Low-frequency vibration appears at even the lowest excitation levels

we could sustainably operate, 0.74 nm, and this response propagates upwards in frequency to fill in

the turbulent cascade from 200 Hz to—eventually—1 MHz as the excitation is increased to 5.1 nm.

The discrete response of the system and absence of a complete cascade at 0.74 nm indicates that we

are likely on the lower bound of excitation of the turbulent acoustic streaming and consequently

the formation of the capillary waves (predicted to occur at 0.61 nm above); future work could

consider this transition in far more detail. Curiously, there is little difference between an excitation

of 3.3 nm and 5.1 nm in Fig 4(e) other than the appearance of a “hump” in the higher amplitude

response which appears to be correlated to the appearance of atomisation phenomena, an aspect

for consideration in a separate work. It is important to remember the effect of operating with such

high excitation frequencies with regard to the incredible accelerations imparted to the drop: though

the displacements are only 0.74, 1.6, 3.3, and 5.1 nm, the respective accelerations are 11, 23, 50,

and 76×106 m/s2 for these four levels of excitation.

We should expect the inertial range to end with wave energy being rapidly damped beyond

some threshold wavenumber, as shown in other studies.43 In such a case, the cascade will steepen

in descent away from the theoretical gradient.We see this behavior in Fig 4(b) from 103 to 104 Hz,
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in Fig 4(c) over 104 ∼ 105 Hz, and 5× 105 ∼ 106 Hz in Fig 4(d). The presence of the noise

floor of the LDV precludes our ability to measure this phenomena beyond about 1 MHz. The

vibrometer’s claimed displacement resolution at MHz-order frequencies is less than 0.1 pm/
√

Hz;

our measurements show the spectrum becomes constant at a noise floor of O(0.01 pm/
√

Hz) at

O(107 Hz). An alternate perspective is provided by calculating the Kolmogorov viscous time scale

in water, τ =
(

ν

ε

)1/2 ∼O(1 MHz); 1 MHz has been indicated with a solid circle on Figure 4(b–e),

nominally representing the end of the capillary wave cascade, which appears consistent with the

experimentally measured results.

The evolution of the low frequency resonance with increasing excitation level is also appar-

ent in Fig 4. The harmonic series of low frequency resonances is quite typical of narrow-band

pumping:22,41 pumping energy is localised around a specific frequency or characteristic length,

in contrast to wide-band pumping where the pumping is spread over a range of frequencies, an

extreme example being the excitation of drops by white noise.63 Here, the energy is initially con-

centrated at the frequency of pumping; interactions between two waves generated by the pumping

lead to energy transfer to the next harmonic in the series, and similar processes lead to the creation

of ever shorter and wider harmonic peaks that gradually merge with the background level of the

spectrum at higher frequencies. All of the spectra, regardless of excitation amplitude, exhibit zero

frequency side bands, exponential decay, and power law behaviour; phenomena that according to

Xia and Punzmann35 imply the presence of turbulence throughout. Turbulence is already present

from low excitation levels; increasing the amplitude of excitation acts to distribute the power to

higher frequencies.

The low-frequency interactions are governed by the same weakly nonlinear mechanics as the

cascade at higher frequencies. However, the effects of eigenmode resonances of the drop sur-

face and initial energy concentration at the fundamental vibration mode combine to limit the in-

teractions between waves, constrained by the three-wave resonance conditions f1 = f2 + f3 and

k1 = k2 +k3, to a set of discrete harmonics. We observe the harmonic series, steadily decreasing
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in magnitude with higher frequency, superimposed upon a broadband level decreasing at a slower

rate than the harmonic peaks. This is evident in Fig 4(b,c); as the excitation amplitude increases

beyond 1.6 nm the spacing between adjacent resonances become narrower in the frequency do-

main.

Conclusions

To conclude, we have described a method to parametrically generate and measure capillary wave

phenomena at the micro-scale using laser Doppler vibrometry, MHz-order SAW actuation and

kHz-order thickness-mode actuation, inducing fluid flows that exhibit strongly inertial behavior.

Capillary waves appear at the frequency of excitation as a linear response to the excitation, but

also—and most remarkably—appear at much lower frequencies, from the fundamental resonance

frequency upwards as a discrete modal response at low excitation amplitudes that gives way to a

continuous broadband response.

The turbulent Rayleigh-Jeans power-law cascade and pumping characteristics in our system

behave as per weak wave turbulence theory, despite the fact the excitation frequency is substan-

tially higher than the capillary wave response frequencies, regardless of whether the system is

driven through thickness vibration or surface acoustic wave vibration, and despite the exception-

ally large accelerations induced in the system. Notably, strongly nonlinear phenomena that might

have renormalized the expected Zakharov-Kolmogorov turbulence spectrum,40 was not seen, a

surprise considering the extreme accelerations induced by the SAW. The key aspects of weak tur-

bulence theory this system was observed to conform to include

1. The capillary wave amplitude η ∼ f−17/12, between the energy source frequency and the

energy sink frequency.

2. The energy flux in wavenumber space must be positive: energy flows from a source at a low

k0 to a high km; km > k0 is required and therefore the capillary wave energy must flow from
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low frequencies to high frequencies.

Finally, no Faraday wave response was detected in this system, a consequence of the excitation

frequency being far greater than the observed capillary wave frequencies, atypical in many ex-

periments studying capillary wave phenomena but a feature of many new acoustically driven mi-

croscale devices under consideration.

Through the known one-way nature of capillary wave weak turbulence with its energy flow

from low to high frequencies, we may infer that the fundamental capillary wave resonance ap-

pears to be directly driven by the parametric excitation at very high frequency, through acoustic

streaming-driven chaotic flow in the fluid bulk. The acoustic streaming was found to be turbulent

due to the presence of convective acceleration when the induced vibration amplitude for the SAW

was greater than 0.61 nm, over the entire measurement range of this study. Though alternative

routes of coupling to form capillary waves from the incident acoustic wave were considered, the

most likely candidate remains the turbulent acoustic streaming inducing bulk flow within the drop

that drives the generation of the capillary waves through shear. In any case, the turbulence in the

jet can support energy flow from high excitation frequencies to the low frequencies of the capillary

wave phenomena, and it is this mechanism that drives the subsequent formation of the low-to-high

frequency capillary wave cascade.
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Capillary wave weak turbulence and the scaling of wave energy

Following the approach developed by Zakharov,41 we define the occupation number n(k, t), a

function of the wave vector k and time, by the energy density e = f (k)n(k, t); wave frequency

is considered a function of the wave number through the dispersion relation in eq 3 for capillary

waves. Continuity of energy can then be expressed as ∂e
∂ t +∇ · p(k, t) = 0; p is the energy flux in k

space. Therefore,

∇ · p(k, t) = ω(k)I(k, t), (7)

where I(k, t) is defined by the so-called stationary kinetic equation,41

∂n
∂ t
≡ I(k, t)

= π

∫
|Vk12|2 fk12

δ (k−k1−k2)δ (ω−ω1−ω2)+(...)dk1dk2; (8)

k12 represents a function of variables k,k1,k2, fk12 scales as n(k, t)2 and the terms represented by

the ellipsis are defined by permutation in the k variables, substituting k1 for k, k2 for k1, and so on.

The form of Vk12 is known, but for this discussion only its scaling with respect to k, V (k)∼V0km,

is significant: from dimensional analysis of the system Hamiltonian, m = 9/4. The two delta

functions enforce 3-wave interactions.

If we assume a power-law scaling for n against k, n(k) = Ak−s0 , then the scaling of I with

respect to area in k space becomes

I(k, t)∼ (V 2
0 k2m)(A2k−2s0)(kd), (9)
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where the integrating variables have been collected under the kd term; d represents the dimension-

ality of the problem; for surface waves, d = 2.

Taking the integral form of eq 7,

P(k) =−π

∫ k

0
ω(k)I(κ)(2κ)d−1dκ; (10)

we note that the frequency does not depend on the integrating variable, due to the Dirac delta

functions inside I(k). Substituting the scaling from eq 9, we have

P(k)∼ ω

∫
V 2

0 A2k2m+d−2s0kd−1dk. (11)

We require P(k) to be constant with respect to k;41 in that case 2m+ 2d− 2s0 = 0; since m is

known to be 9/4 and d = 2, the power-law relation for n(k) is thus

n(k) = Ak−17/4. (12)

Through the dispersion relation, we can find an equivalent scaling for n against angular frequency,

n(ω) = A′ω−17/6. (13)

The occupation number n is not directly measurable. However, it can be directly related to the

two-point correlation of surface deflection η , 〈η(t)η(τ + t)〉 ∼ n,37 and thus

η ∼ ω
−17/12 ∼ f−17/12. (14)

The power law scaling of occupation number,37,41,64 energy and surface deflection19,35 are con-

firmed in the literature.
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Dispersion relation on a curved surface

There exists a class of wave motions termed dispersive, as distinct from (for example) hyperbolic

waves. Linearising the wave equation for such waves will yield a relation

G(ω,k) = 0, (15)

known as the dispersion relation; it relates the frequency ω of a linear wave to the wavelength

λ = 2π/k. k is the wave vector; its magnitude is k, the wavenumber.

While it has been emphasised that the dispersion relation applies to a linear system, it is applied

in various ways in the analysis of non-linear systems. In such systems the dispersion relation is

still considered to relate a wavelength with its corresponding wave frequency.

For this derivation, we choose to use a calculus of variations method. Following Whitham,65

we assume a wave train with wave height η of the form

η ∼ acos(α), (16)

where α = k ·x−ωt and the amplitude a, wave vector k, and frequency ω are considered “slowly

varying” (that is, their derivatives are neglected); the independent variables are position vector x

and time t. The Lagrangian L is then constructed as

L = T −V (17)

with kinetic energy T and potential energy V . It is understood65 that for any linear problem, L

must take the form

L = G(ω,k)a2, (18)
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and since the solution for non-zero variation δa requires

∂L
∂a

= 0, (19)

then

G(ω,k) = 0 (20)

provides the dispersion relation.

We shall derive here the dispersion relation for the case of low-amplitude high-frequency linear

waves. The resting curvature of the surface shall be considered uniform; that is, we are assuming

a spherical domain. The geometry of interest is that of a surface whose resting shape is uniformly

curved; that is, a spherical surface. For reference, however, we shall illustrate the solution tech-

nique first for an infinite flat surface, before deriving the solution for the curved surface.

Dispersion relation on a flat surface

This derivation is made for comparison only; the result may be verified in any text dealing with

water waves. The subsequent derivation for a curved surface is of more interest, and we shall

explore assumptions more carefully there.

We shall consider an infinite plane interface between a fluid of infinite depth and density ρ

below, and a fluid of negligible density above. Such an arrangement models a deep water surface

in an atmosphere of air. At rest, the interface occupies the x,y plane; that is, z = 0. The position

vector r for any point on the surface is defined as

r = xêx + yêy +η (x,y, t) êz. (21)

To construct the Lagrangian as per eq 17, we assume that wave height is of the form of eq 16;
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the potential term is

V =Vg +Vγ (22)

where Vg is the gravitational potential energy

Vg =
∫ ∫ ∫

η

0
ρgzdxdydz

=
1
2

ρg
∫ ∫

η
2 dxdy (23)

and Vγ is the potential energy due to surface tension

Vγ = γ

∫ ∫
(dS−dA) , (24)

where γ is the interfacial surface tension; dS represents an infinitesimal element of surface area,

while dA represents the uncurved area dxdy. Recognising that

dS = |rx× ry|dxdy (25)

(subscripts denote partial differentials), we find

dS =
√

η2
x +η2

y +1 dxdy, (26)

and hence

Vγ = γ

∫ ∫ (√
η2

x +η2
y +1−1

)
dxdy. (27)

If we assume η2
x ,η

2
y � 1, we may further simplify this to

Vγ =
1
2

γ

∫ ∫ (
η

2
x +η

2
y
)

dxdy. (28)
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Finally, the kinetic energy is found from the gradient of the flow potential ψ as

T =
1
2

ρ

∫ ∫ ∫
η

−∞

|∇ψ|2 dxdydz. (29)

Assuming η is small, we can replace the upper limit of integration z = η by z = 0. Then, using

Green’s first identity and the assumption that the flow is irrotational, we have

T =
1
2

ρ

∫ ∫
ψ

∂ψ

∂ z
dxdy. (30)

To obtain the dispersion relation, we simply have to substitute in the flow potential and surface

height functions. For simplicity, let us consider a wave propagating in the x-direction; the argument

α from eq 16 is then

α = kx−ωt. (31)

The flow potential ψ satisfies both the Laplace equation

∇
2
ψ = 0 (32)

and the velocity boundary condition at the surface,

∂ψ

∂ z

∣∣∣∣
z=η

=
∂η

∂ t
(33)

= ωasin(α). (34)

If we again approximate z = η by z = 0, we may find, using separation of variables,

ψ (x,z, t) =
1
|k|

e|k|zωasin(α). (35)
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Thus the energies at the interface become

T =
1
2

ρ

∫ ∫
ω2a2

k
sin2 (α)dxdy, (36)

Vg =
1
2

ρg
∫ ∫

a2 cos2 (α)dxdy, (37)

Vγ =
1
2

γ

∫ ∫
k2a2 sin2 (α)dxdy. (38)

We then integrate over one period to find the phase-averaged Lagrangian

L =
1
4

[
ρ

ω2

k
−ρg− γk2

]
a2 (39)

and recalling eq 20 we can conclude that

ω
2 = gk+

γ

ρ
k3. (40)

Derivation for dispersion on a spherical surface

For this derivation, we shall neglect the gravitational term. Equation 40 allows us to assume

that gravitational effects are negligible for frequencies greater than O(102 Hz), or equivalently

wavelengths shorter than O(10−3 m). In fact, as we consider this problem in the context of a

sessile drop of diameter O(1 mm), we shall assume that the wavelength must be substantially

shorter than this, as it is obvious that wavelengths longer than the diameter of the sphere cannot be

considered. As such, our omission of the effects of gravity is henceforth justified.

We shall consider the complete surface of the sphere. The position vector is simply

r = rêr, (41)

r = r0 +η , (42)
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while the angular coordinates are the aziumth θ and the latitude relative to the bisecting plane, φ .

The sphere is of radius r0. Rather than consider a travelling wave as per eq 16 we will assume, for

reasons which will become clear, an axisymmetric standing wave surface deflection of

η = acos(kr0φ)cos(ωt). (43)

We will construct the Lagrangian in a similar manner to the previous derivation, that is

L = T −Vγ (44)

where Vγ is as per eq 24 and T is similar in form to eq 29:

T =
1
2

ρ

∫ ∫ ∫
η

0
|∇ψ|2 r2 cosφ dr dθ dφ . (45)

To compute the local curvature, surface area and normal vectors of the surface due to the wave,

we will use the non-dimensional surface height r∗ = r/r0 = (r0 +η)/r0 = 1+η∗. The element of

surface dS is then

dS = r2
0 (dS∗)

= r2
0

(∣∣∣r∗θ × r∗φ
∣∣∣r∗2 cosφ dθ dφ

)
= r2

0

(1+η
∗)

√√√√1+
η∗2

θ

(1+η∗)2 +
η∗2

φ

(1+η∗)2 r∗2 cosφ dθ dφ

 , (46)

where the subscripts refer to partial derivatives.
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Here we make our first simplification, that

η
∗� 1, and thus (47a)

r∗ ≈ 1. (47b)

Measured spectral amplitudes of vibration are O(1 nm), and the radius r0 is O(10−3m), so typically

η∗ ∼ O(10−6). Considering the partial derivatives of surface height,

η
∗
φ =−kr0a∗ sin(kr0φ)cos(ωt) (48)

∼ O(k)O(η), (49)

remembering that a∗ ≡ a/r0 ∼O(η)/O(r0). Therefore, to consider η∗
φ
� 1, we require k�O(η);

if we assume for the moment that eq 40 holds, this implies that ω � O(107 Hz). The assumption

is therefore not unreasonable.

It should be noted at this point that the assumption η∗
φ
� 1 simplifies the application of Green’s

first identity for the kinetic energy equation (transforming eq 29 to eq 30), allowing us to replace

the normal vector with the radial vector.

Returning to the element of area, applying the above assumptions yields

dS = r2
0

(
η∗2

φ

2
cosφ dθ dφ

)
, (50)

which, substituted into eq 24 and including eq 48, gives

Vγ =
1
2

r2
0γ

∫ ∫
η
∗2
φ cosφ dθ dφ (51)

=
1
2

r2
0γ

∫ ∫
k2a2 sin2(kr0φ)cos2(ωt)cosφ dθ dφ . (52)

Turning now to the flow potential function, we impose boundary conditions analogous to those
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of the previous analysis, eq 32 and
∂ψ

∂ r

∣∣∣∣
r=r0

=
∂η

∂ t
. (53)

Applying separation of variables,

ψ = RΦ, where (54)

R =
∞

∑
l=0

Alrl (55)

Φ = Pl (cosφ) , (56)

where Pl is the lth Legendre polynomial. Allowing l to become large, we approximate Pl ≈ ccos lφ ,

where c is “slowly varying” relative to the argument of the cosine function; because the argument

of the Legendre polynomial is cosφ , Φ is always an even function. Strictly speaking, the boundary

condition disallows travelling wave solutions. This then is the reason why we have chosen to

consider a standing wave (eq 43) rather than a travelling wave as before. Proceeding from eq 53

and eq 54,
∂ψ

∂ r

∣∣∣∣
r=r0

≡ R′Φ
∣∣∣∣
r=r0

=−ωasin(ωt)cos(kr0φ); (57)

we set l = kr0, and thus for R′ (recalling eq 55, letting Al = 0 for l 6= kr0, and correcting a/c to a1),

lAlrl−1
0 =−ωa1 sin(ωt) (58)

Al =
−ωa1

krkr0
0

sin(ωt). (59)

We then have

ψ =
−ωa

krkr0
0

rkr0 sin(ωt)cos(kr0φ) (60)

∂ψ

∂ r
=
−ωa

rkr0−1
0

rkr0−1 sin(ωt)cos(kr0φ). (61)
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Substituting this result into eq 45 and eq 52, and constructing the Lagrangian as

L =
∫ ∫

a2
[

1
2

ρ

(
ω2

k
sin2(ωt)cos2(kr0ψ)

)
−1

2
γ
(
k2 cos2(ωt)sin2(kr0φ)

)]
r2

0 cosφ dθ dφ , (62)

which, by integrating for the phase average as in the previous section, will return

ω
2 =

γ

ρ
k3, (63)

identical to the dispersion relation for a flat surface.

That a constant surface curvature does not affect the dispersion of waves of a much smaller

length should not come as a surprise. Aside from the great difference in length scale which we

have imposed, the method used to find the dispersion relation concerns the derivatives of energy

terms to obtain the dynamics of the system. The constant resting curvature cannot appear in such

derivatives, and therefore should not have an effect on the linear system.

While we have considered a standing wave for analysis on the curved surface, the existence

of travelling waves is not precluded. In the physical system we are primarily concerned with very

small waves a long way from the boundary; dispersion and non-linear wave interaction act to

prevent such very small waves forming a standing wave pattern.

References

(1) Faraday, M. On a Peculiar Class of Acoustical Figures; and on Certain Forms Assumed by

Groups of Particles upon Vibrating Elastic Surfaces. Philosophical Transactions of the Royal

Society of London 1831, 121, 299–340.

(2) Huang, N.; Shen, Z.; Long, S. A New View of Nonlinear Water Waves: The Hilbert Spectrum.

36



Annual Review of Fluid Mechanics 1999, 31, 417–457.

(3) Brunet, P.; Baudoin, M.; Matar, O.; Zoueshtiagh, F. Droplet displacements and oscillations

induced by ultrasonic surface acoustic waves: A quantitative study. Physical Review E 2010,

81, 036315.

(4) Rezk, A.; Manor, O.; Friend, J. R.; Yeo, L. Y. Unique fingering instabilities and soliton-like

wave propagation in thin acoustowetting films. Nature Communications 2012, 3.

(5) Alghane, M.; Chen, B. X.; Fu, Y. Q.; Li, Y.; Desmulliez, M. P. Y.; Mohammed, M. I.; Wal-

ton, A. J. Nonlinear hydrodynamic effects induced by Rayleigh surface acoustic wave in

sessile droplets. Phys. Rev. E 2012, 86, 056304.

(6) Ohl, S.-W.; Ow, D. S.-W.; Klaseboer, E.; Wong, V. V.; Camattari, A.; Ohl, C.-D. Creation of

cavitation activity in a microfluidic device through acoustically driven capillary waves. Lab

Chip 2010, 10, 1848–1855.

(7) Xu, J.; Attinger, D. Control and ultrasonic actuation of a gas–liquid interface in a microfluidic

chip. Journal of Micromechanics and Microengineering 2007, 17, 609.

(8) Tan, M. K.; Friend, J. R.; Matar, O. K.; Yeo, L. Y. Capillary wave motion excited by high

frequency surface acoustic waves. Physics of Fluids 2010, 22, 112112.

(9) Shilton, R.; Yeo, L. Y.; Friend, J. Quantification of surface acoustic wave induced chaotic

mixing-flows in microfluidic wells. Sensors and Actuators B: Chemical 2011, 160, 1565–

1572.

(10) Li, H.; Friend, J.; Yeo, L. Surface acoustic wave concentration of particle and bioparticle

suspensions. Biomedical Microdevices 2007, 9, 647–656.

(11) Kurosawa, M.; Watanabe, T.; Futami, A.; Higuchi, T. Surface acoustic wave atomizer. Sen-

sors and Actuators A: Physical 1995, 50, 69–74.

37



(12) Qi, A.; Yeo, L.; Friend, J. Interfacial destabilization and atomization driven by surface acous-

tic waves. Physics of Fluids 2008, 20, 074103.

(13) Qi, A.; Yeo, L.; Friend, J.; Ho, J. The Extraction Of Liquid, Protein Molecules and Yeast

Cells From Paper Through Surface Acoustic Wave Atomization. Lab on a Chip 2010, 10,

470–476.

(14) Heron, S. R.; Wilson, R.; Shaffer, S. A.; Goodlett, D. R.; Cooper, J. M. Surface acoustic

wave nebulization of peptides as a microfluidic interface for mass spectrometry. Analytical

chemistry 2010, 82, 3985–3989.

(15) Perlin, M.; Schultz, W. Capillary effects on surface waves. Annual Review of Fluid Mechanics

2000, 32, 241–274.

(16) Earnshaw, J.; Hughes, C. High-frequency capillary waves on the clean surface of water. Lang-

muir 1991, 7, 2419–2421.

(17) Friend, J. R.; Yeo, L. Y. Microscale Acoustofluidics: Microfluidics Driven via Acoustics and

Ultrasonics. Reviews of Modern Physics 2011, 83, 647–704.

(18) Miyamoto, K.; Nagatomo, S.; Matsui, Y.; Shiokawa, S. Nonlinear vibration of liquid droplet

by surface acoustic wave excitation. Jpn. J. Appl. Phys 2002, 41, 3465–3468.

(19) Falçon, E.; Laroche, C.; Fauve, S. Observation of gravity-capillary wave turbulence. Physical

Review Letters 2007, 98, 94503.

(20) McGuiggan, P.; Grave, D.; Wallace, J.; Cheng, S.; Prosperetti, A.; Robbins, M. Dynamics of

a Disturbed Sessile Drop Measured by Atomic Force Microscopy (AFM). Langmuir 2011,

27, 11966–11972.

(21) Vogel, V.; Moebius, D. Resonance of transverse capillary and longitudinal waves as a tool for

monolayer investigations at the air-water interface. Langmuir 1989, 5, 129–133.

38



(22) Snouck, D.; Westra, M.-T.; van de Water, W. Turbulent parametric surface waves. Physics of

Fluids 2009, 21, 025102.

(23) Kumar, S. Vibration-induced interfacial instabilities in viscoelastic fluids. Physical Review E

2002, 65, 026305.

(24) James, A.; Vukasinovic, B.; Smith, M.; Glezer, A. Vibration-induced drop atomization and

bursting. Journal of Fluid Mechanics 2003, 476, 1–28.

(25) Barreras, F.; Amaveda, H.; Lozano, A. Transient high-frequency ultrasonic water atomiza-

tion. Experiments in Fluids 2002, 33, 405–413.

(26) Douady, S. Experimental study of the Faraday instability. Journal of Fluid Mechanics 1990,

221, 383–409.

(27) Vukasinovic, B.; Smith, M.; Glezer, A. Dynamics of a sessile drop in forced vibration. Jour-

nal of Fluid Mechanics 2007, 587.

(28) Benjamin, T. B.; Ursell, F. The Stability of the Plane Free Surface of a Liquid in Vertical

Periodic Motion. Proceedings of the Royal Society of London A 1954, 225, 505–515.

(29) Miles, J. W. Nonlinear Faraday Resonance. Journal of Fluid Mechanics 1984, 146, 285–302.

(30) Binks, D.; van de Water, W. Nonlinear Pattern Formation of Faraday Waves. Physical Review

Letters 1997, 78, 4043–4046.

(31) Skeldon, A.; Porter, J. Scaling properties of weakly nonlinear coefficients in the Faraday

problem. Physical Review E 2011, 84.

(32) Epstein, T.; Deegan, R. D. Strip waves in vibrated shear-thickening wormlike micellar solu-

tions. Physical Review E 2010, 81, 1–7.

39



(33) Lang, R. Ultrasonic atomization of liquids. The Journal of the Acoustical Society of America

1962, 34, 6–8.

(34) Friend, J.; Yeo, L.; Arifin, D.; Mechler, A. Evaporative self-assembly assisted synthesis of

polymeric nanoparticles by surface acoustic wave atomization. Nanotechnology 2008, 19,

145301.

(35) Xia, H.; Shats, M.; Punzmann, H. Modulation instability and capillary wave turbulence. EPL

(Europhysics Letters) 2010, 91, 14002.

(36) Vega, J.; R udiger, S.; Viñals, J. Phenomenological model of weakly damped Faraday waves

and the associated mean flow. Physical Review E 2004, 70, 046306.

(37) Newell, A. Wave Turbulence. Annual Review of Fluid Mechanics 2011, 43.

(38) Kolmogorov, A. The local structure of turbulence in incompressible viscous fluid for very

large Reynolds numbers. Proceedings of the Royal Society of London. Series A: Mathematical

and Physical Sciences 1991, 434, 9–13.

(39) Zakharov, V.; Dias, F.; Pushkarev, A. One-dimensional wave turbulence. Physics Reports

2004, 398, 1–65.
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