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ABSTRACT 

It has been widely recognized that global climate change will have negative impacts not 

only on the natural environment but also on the human-built environment. This paper 

describes the framework developed to assess the potential impacts of climate change and 

urbanization on drainage systems of Australian urban cities. One of real concerns is how 

the flooding risk will change over the next 5-25 years under such possible impacts. In this 

study, the assessment method is explored with regards to two major effects of climate 

change (i.e. changed pattern of storm event and rising sea level), two effects of 

urbanization (i.e. increasing impervious area and storm water harvesting) and two effects 

of hydraulic deterioration (i.e. reduced cross-sectional area and increased internal surface 

roughness of conduits). The framework is demonstrated on a simulation study at street. 

The outcomes of this study will provide preliminary understanding on how drainage 

systems respond to changing climate inputs and also guided steps to implement the 

framework on real-world problems. 

 

INTRODUCTION 

Urban drainage systems are an important part of the Australian water infrastructure that 

removes only stormwater runoff from urban cities. They are managed by local city 

governments and their catchment size ranges from 200 ha -5,000 ha (Urban Cities of 

Victoria State, Australia).  

Sustaining an acceptable risk of urban flooding is one of the key objectives in operational 

planning and management of urban drainage systems. This is because flooding causes 

multi-dimensional damages which include social discomfort, economical cost and even 

political loss. Therefore, there is a need to assess the flooding impact of climate change 

on urban drainage systems so that appropriate risk management strategies can be applied. 

Rising sea level and increasing rainfall extremes are increasingly recognized as one of 

many impacts due to climate changes (Larsen et al., 2008). From urban drainage 

engineering point of view, these two impacts potentially increase the risk of urban 

flooding. This is because urban drainage systems are commonly designed based on peak 

flow (i.e. rainfall extremes) and are discharged directly into river or ocean which is 

dependent on sea level (Mailhot and Duchesne, 2010).    
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This paper presents a framework for impact assessment of climate change on urban 

drainage systems in terms of urban flooding. The framework can be adapted to different 

urban drainage systems managed by local City Governments. To make the framework 

close to reality, other factors affecting urban flooding are also considered. They are 

urbanization, stormwater harvesting, stormwater detention and hydraulic deterioration of 

stormwater conduits. The framework applicability is illustrated using a simple simulation 

study at street level of an urban site with the aid of SWMM software package.       

BACKGROUND 

Climate Change and Urban Flooding 

Risk of urban flooding was traditionally assessed using simulation of time series analysis 

of rainfall data (Olsson et al., 2009). This approach means that rainfall patterns in the past 

will continue in the future given that some random noise and average trend may exist. 

However, the human-induced climate change poses a new challenge to this approach 

since rainfall pattern may shift to a whole new level.  

It comes to the alternative approach of physically-based models which was developed as 

global climate models (GCMs) and can physically explain climate change in the future. 

This approach emphasized that greenhouse gas (CO2) emission is the major cause of 

global warming and climate change. Based on 8 scenarios of global produce of CO2 

emission over the next 100 years and sophisticated GCMs, the Intergovernmental panel 

on climate change (Intergovernmental Panel on Climate Change (IPCC), 2007) projected 

that global warming and climate change will include increase in temperature, increase in 

extreme rainfall events and increase in sea level.  

However, GCMs based rainfall projection is spatially much coarser (i.e. 200x200 km) 

than considered regional climate (10 x 10km), especially for urban catchments which 

may require even finer level of 5x5 km (Mailhot et al., 2007). Furthermore, the temporal 

resolution of GCM based rainfall projection is at best as daily scale since sub-daily scale 

requires much more inputs to run GCMs. Apparently, proper assessment of urban 

flooding requires hourly or even shorter time scale of rainfall projection. Several urban 

flooding studies have addressed the spatial and temporal issues of GCM based rainfall 

projection as reported by Olsson et al. (2009). 

The first approach is known as statistical downscaling as described in Nguyen et al. 

(2007, 2010). They used the statistical downscaling model and the scaling general 

extreme value distribution to spatially and temporally downscale GCM based rainfall 

projection to local site ranging 0.4-10 hectares and 5min to 1-day duration.  

The second approach utilized regional climate models as shown in Mailhot at el. (2007) 

that used the Canadian regional climate model to produce sub-daily IDF curves at 45x45 

km grid box for the Quebec region between the years 2040-2070. They found that return 

periods over the grid box area can be approximately halved for events with return periods 

ranging between 20 and 50 years in present climate. They also applied the delta change 

method to convert IDF curves from area values to point values at the rain gauge station. 



  

Other Factors Affecting Urban Flooding 

Impervious area: this is one of distinctive attributes of urban catchments that facilitate 

flash flooding. A study in UK has practically demonstrated how progressive urbanization 

(i.e. increase of impervious areas) can lead to surface and property flooding (Swan, 

2010). The study then outlines how these problems might be reversed using both ‘quick 

fix’ and ‘long-term’ remediation strategies and explores the respective merits of both 

approaches. While current impervious area can be estimated using aerial photographs and 

remote sensing techniques, the challenge is to predict the increase rate of impervious area 

in the future so that flooding risk assessment can be properly done. 

Downstream water level: Australian urban cities often discharge stormwater runoff 

directly to adjacent catchments and eventually to the ocean or rivers. When the 

downstream water level is increased, the upstream level will be affected and thus cause 

flooding. Global climate change also causes sea level rise (Michael, 2007). However, 

estimates of future sea level rise are subject to considerable uncertainty as a result of 

assumptions made concerning future emission scenarios, the impact of this radiative 

forcing on the atmosphere, the rate of heat penetration into the oceans and uncertainty 

over the response of the ice caps and ice-sheets to climate change (Purvis et al., 2008). 

The challenge is to assess how sea level will rise at a particular coastline in the future 

given such existing uncertainty and how this will impact on flooding risk of connected 

urban catchments? 

Condition of drainage system (i.e. collecting pits and conveying pipes): Hydraulic 

deterioration of drainage components including pits and pipes is the accumulation 

process of debris and encrustation, which reduces cross-sectional area and increases 

surface roughness (Tran et al., 2006). The challenge is how to predict hydraulic 

deterioration in the future. The baseline is the comparison between no cleaning and 

annual cleaning. 

Stormwater harvesting: There is an increasing interest to harvest stormwater at the 

household level (through water tanks) and at the commercial level (through constructed 

wetlands or other forms as part of water sensitive urban design) in urban cities with water 

shortage. The stormwater harvesting will have a positive impact on reducing stormwater 

runoff and subsequently flooding risk (Wheater and Evans, 2009). The challenge is how 

to estimate the increase rate of stormwater harvesting and take this factor into flooding 

risk assessment. 

FRAMEWORK OF IMPACT ASSESSMENT 

The assessment framework of climate change impact on urban flooding consists of 5 

phases. They are designed to address practical issues in urban drainage modeling such as 

data collection and uncertainty analysis. The descriptions of these five phases are shown 

as follows. 

 

Phase 1: Data Collection Program.  

Recommended data collection program is shown in Table 1. 

 



  

 

Table 1: Data to be collected and collection method 

 

Phase 2: Urban Drainage Model 

The simulation tool is based on SWMM version 5.0 which is developed by US EPA 

(2010) and is freely downloadable. SWMM is a dynamic rainfall-runoff simulation model 

used for single event or long-term (continuous) simulation of runoff quantity and quality 

from primarily urban areas. The runoff component of SWMM operates on a collection of 

sub catchment areas that receive precipitation and generate runoff. The routing portion of 

SWMM transports this runoff through a system of pipes, channels, storage/treatment 

devices, pumps, and regulators comprising of multiple time steps to assess the response 

of components. 

Table 2 shows components of urban catchment that are modeled in the SWMM. An 

illustrated process of modeling an urban street into SWMM is shown in Figures 1-3. 

Figure 1 shows an aerial photograph of an urban street with mixing of impervious and 

pervious areas. Figure 2 shows the layer of land size and boundary. Figure 3 models each 

household as a sub-catchment. Furthermore, street surface is also divided into a number 

of sub-catchments whose runoffs are designated to corresponding collection pits. The 

modeling process can be done manually or automatically through an excel file format. 

Such a modeling approach allows the inclusion of water tank and land use changes. 

 

Data group Detailed Collection methods 

Catchment surface Impervious area 

Land strata 

City Council’s GIS database  

Drainage system Coordinates 

Pipe diameter 

Pipe age 

Pipe depth 

CCTV data 

City Council’s GIS database 

Runoff (or discharge) Catchment runoff 

Sub-catchment runoff 

Flowmeters to be installed 

Rainfall Catchment level 

Sub-catchment level 

Rain gauges to be installed 

(optional) 

Climate  Global rainfall projection 

Sea level rise 

Temperature rise 

GCM or RCM outputs 



  

 

 

Table 2: Components of the urban drainage models 

 

Phase 3: Model Calibration  

This model calibration phase is to estimate model parameters so that the model-produced 

runoff is consistent with observed runoff. The crucial data is measured runoff. Where 

runoff data is available for calibrating model parameters, the models work very well. But 

40 years of effort by many researchers in many countries has not produced much success 

in modeling runoff on ungauged catchments (Boughton, 2009). A preliminary discussion 

indicated that many local City Governments do not have flowmeters in place and thus 

installation of flowmeters is recommended.  

Model components Description 

Urban Catchment The whole catchment managed by the Local City 

Government. 

Sub-catchments -Households, parks, streets and buildings are modeled 

as a sub-catchment.  This allows changing impervious 

area and runoff coefficient at individual levels. 

-Residential areas are considered impervious while 

front and backyards are considered pervious area. 

Assumption is 60/40 impervious/pervious 

-Streets are considered as 100% impervious sub-

catchments. 

-Stormwater runoff of household and street surface is 

supposed to connect to the street junction. 

Junction Street junctions are considered connection point for 

sub-catchments and conduits.  

Detention Detention is modeled as storage unit. 

Conduits -Circular and concrete conduits 

-Hydraulic deterioration is modeled through diameter 

change and roughness coefficients. 

Outfall -Stormwater runoff is discharged through the outfall. 

-Rising sea level can be modeled through the outfall 

water level. 

Rain gages Timely distribution of rainfall can be entered using 

internal dialog or external file. 



  

Two generally applicable classes of approach are potentially available to handle the 

model calibration for ungauged catchments. They are both based on making use of 

information from a large set of gauged sites for which substantial flow records are 

available. Approaches in the first class work directly with the statistical distributions of 

extreme events for the collection of gauged sites: often the analysis relates to the 

distribution of annual maximum peak flows. Relations are sought between these 

statistical distributions and the catchment descriptors and are then used to derive 

estimates for the statistical distribution of extreme events for a target catchment based on 

its known catchment descriptors (Jones and Kay, 2007). However, “All of the studies 

examined here reported relatively low correlations between model parameters and 

catchment attributes.” (Boughton, 2009).  

Transfer of hydrological information from one or more gauged catchments to the 

ungauged catchment by extrapolation from the gauged data, observation by remote 

sensing, hydrological model simulation and integrated meteorological and hydrological 

modeling are recognized as the second potential predictive approach (Goswami et al., 

2007, Li et al., 2009).  

 

Figure 1. Satellite view of urban streets 

 

 



  

Figure 2. Land use of the ‘Norge’ street 

 

 

Figure 3. Urban drainage model at a street level 

Phase 4: Development of Prediction Models  

The prediction models for the following factors can be developed to reflect flooding risk 

in the future between the years 2030-2100: 

 Rainfall projection through statistical downscaling   (Nguyen et al., 2007) or 

dynamics downscaling (i.e. regional climate modeling) of GCM outputs (Olsson 

et al., 2009).  

 Rising sea level through GCM outputs (Karim and Mimura, 2008).  

 Increasing rate of impervious area (Schueler et al., 2009) can be modeled using 

multiple linear regression (Chabaeva et al., 2009) or a power law model. 

 Pipe hydraulic deterioration. Tran et al. (2006, 2008) have developed the Markov 

model and neural network model to predict the hydraulic condition of pipes.  

 Rate of stormwater harvesting can be modeled using exponential or straight line 

model. 

 

Phase 5: Performing Simulation 



  

The simulation can be performed based on different scenarios. Each scenario can be 

generated by changing the following factors. 

1. Rainfall extreme (30% increase) 

2. Impervious area (increase from 60% to 80%) 

3. Downstream water level (unchanged) 

4. Condition of drainage system (i.e. pits and pipes)  

(50% reduction of cross-sectional area and 100% increase in roughness) 

5. Stormwater harvesting (unchanged) 

6. Stormwater detention (unchanged) 

Some factors will be based on prediction models developed in Phase 4. Values in bracket 

indicate the hypothetical change between current year of 2010 and future of 2040 for the 

illustration of simulation. 

Table 4 shows the simulation results between two hypothetical scenarios in which one 

scenario is the current condition at 2010 and another scenario (in bold) is at 2040. It can 

be seen from the table that such hypothetical increases in rainfall extreme and impervious 

area can cause overflow in conduits 1-4 (where Max / Full depth equal to 1) and 

consequently flooding in corresponding junctions. Based on that, mitigation measures 

such as regular pipe cleaning and control of impervious area can be adopted. 

Table 4. Simulation results 

 

Link Type 

Max 

flow  

Time of max. 

occurrence 

Max 

Velocity  

Max/Full 

Flow 

Max / Full 

Depth 

  cms Days Hr:min (m/s)   

C1 CONDUIT 0.021 0 0:46 0.73 0.17 0.28 

  0.01 0 1:18 0.44 1.08 1 

C2 CONDUIT 0.041 0 0:46 0.88 0.34 0.4 

  0.01 0 1:25 0.39 1.08 1 

C3 CONDUIT 0.061 0 0:46 0.97 0.51 0.5 

  0.01 0 1:34 0.4 1.06 1 

C4 CONDUIT 0.074 0 0:46 1.02 0.61 0.56 

  0.01 0 1:39 0.4 1.06 1 

C15 CONDUIT 0.173 0 0:47 2.02 0.11 0.23 

  0.024 0 1:21 0.75 0.19 0.3 

 

Phase 6: Uncertainty Analysis   

Probabilistic prediction of mathematical models is more realistic than point (or 

deterministic) prediction because it addresses the uncertainty of the underlying and 

modeling processes. The interval values coming from the probabilistic prediction are 



  

considered as the quantification of the uncertainty and are useful for risk assessment 

(Borsuk and Tomassini, 2005). 

Sources of uncertainty in mathematical models come from input uncertainty (due to 

measurement error and imprecise information) (Kleidorfer et al., 2009), quantity and 

quality of calibration data (i.e. sufficient sample size and representative sample) (De 

Michele and Salvadori, 2005), calibration of model parameters (i.e. local optimum) 

(Kuczera et al., 2006) and choice of model types (Cloke and Pappenberger, 2009).   

The use of urban drainage models requires careful calibration, where model parameters 

are selected in order to minimize the difference between measured and simulated results 

(Kleidorfer et al., 2009). It has been recognized that often more than one set of calibration 

parameters can achieve similar model accuracy. A probability distribution of model 

parameters should therefore be constructed to examine the model’s sensitivity to its 

parameters. It also becomes important to analyze the model parameter sensitivity while 

taking into account uncertainties in input and calibration data. 

SUMMARY 

This paper presents a proposed framework for impact assessment of climate change on 

urban flooding using a conceptual rainfall runoff model. The major objective is to 

investigate how such a modeling tool can be used to provide useful information for 

operational, tactical and strategic asset management strategies. The assessment 

framework consists of 5 phases which are designed to address practical issues in urban 

drainage modeling, such as data collection and uncertainty analysis. The preliminary 

simulation of an urban street shows interesting results of overflow under one scenario of 

climate change and other factors such as increase of impervious area. Based on that, 

mitigation measures such as regular pipe cleaning and control of impervious area can be 

adopted. 
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