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Abstract 

 

Data pre-processing and analysis techniques are investigated for the analysis of one- 

and two-dimensional chromatographic data. Pre-processing, in particular alignment, is 

of paramount importance when employing multivariate chemometric methods as these 

techniques highlight variance, or changes between samples at corresponding variables 

(i.e. retention times). 

Principal components analysis (PCA) was employed to evaluate the effectiveness of 

alignment. Two methods, correlation optimised warping and icoshift were compared 

for the alignment of high performance liquid chromatography (HPLC) metabolite data. 

PCA was then employed as an exploratory technique to investigate the influence of 

phosphite on the secondary metabolites associated with Lupinus angustifolius roots 

inoculated with the pathogen, Phytophthora cinnamomi. 

In a second application, HPLC with acidic potassium permanganate 

chemiluminescence detection was evaluated for the analysis of Australian wines from 

different geographic origins and vintages. Linear discriminant analysis and quadratic 

discriminant analysis were used to classify red and white wines according to 

geographic origin. In the analysis of wine vintage, partial least squares and principal 

components regression were compared for the modelling of sample composition with 

wine age. 

Finally, software was developed for quality control (QC) of flavours and fragrances 

using comprehensive two-dimensional gas chromatography (GC×GC). The software 

aims to automatically align and compare a sample chromatogram to a reference 

chromatogram. A simple method of partitioning the two-dimensional pattern space 

was employed to select reference control points. Corresponding control points in a 

sample chromatogram were identified using a triangle-pattern matching algorithm. 

The reference and sample control points were then used to calculate the translation, 

scaling and rotation operations for an affine transform, which is applied to the 

complete sample peak list in order to align reference and sample peaks. Comparison 

of reference and sample chromatograms was achieved through the use of fuzzy logic. 



 

~ vi ~ 
 

It is concluded that the pre-processing and chemometric methods investigated here are 

valuable tools for the analysis of chromatographic data. The developed GC×GC 

software was successfully employed to analyse real flavour samples for QC purposes. 
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Chapter 1 - Introduction 

 

1.1 Chromatography 

Chromatography represents a range of separation methods in which the components to 

be separated are distributed between two phases, one of which is stationary (the 

stationary phase) while the other (the mobile phase) moves in a definite direction [1]. 

For a gaseous mobile phase, the process is known as gas chromatography (GC) and 

liquid chromatography (LC) if a liquid is used. 

The chromatographic process involves passing the mobile phase over and through the 

stationary phase. During this process the components of the mixture are distributed 

between the two phases and the amount of interaction with the sorbent bed results in 

different migration rates through the system. The sorption-desorption process occurs 

many times as the molecule moves through the bed, and the time required to do so 

depends mainly on the proportion of time the molecule is held in the stationary phase. 

Separation is achieved if the various components emerge from the bed at different 

times, referred to as retention times [2]. 

 

1.1.1 One-dimensional chromatography 

1.1.1.1 Gas chromatography 

In GC, volatile analytes partition between a stationary phase and a gaseous mobile 

phase. A traditional GC instrument consists of a carrier gas (mobile phase), an injector, 

a column (stationary phase) and a detector (Figure 1.1). A volatile liquid or gaseous 

sample is injected through a septum into a heated port where it evaporates. This 

vapour is swept through the column by carrier gas and the analytes are separate from 

one another based on their relative vapour pressures and affinities for the stationary 

bed. The separated analytes then flow through a detector and the response measured 

[3, 4]. 
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Figure 1.1: Schematic of a GC system. Adapted from [4]. 

 

Both open tubular and packed columns are used in GC. Open tubular columns are 

preferred for general use as they provide higher resolution, shorter analysis times and 

greater sensitivity. However, they do require higher operating pressure and have less 

sample capacity. Open tubular columns include wall-coated columns which contain a 

thin film of stationary liquid phase on the inner wall of the column, support-coated 

columns which have solid particles coated with liquid stationary phase that are 

attached to the inner wall and porous-layer columns in which the solid particles are 

the active stationary phase. Stationary phase selection is based on the rule “like 

dissolves like”. Non-polar columns are best for non-polar solutes, while columns of 

intermediate polarity are best for intermediate solutes and strongly polar columns are 

best for strongly polar solutes [3, 4]. The most popular class of liquid stationary 

phases are silicone polymers, differing in the extent to which they contain polar 

functional groups. Packed columns contain fine particles of solid support coated with 

non-volatile liquid stationary phase. Alternatively, the solid particles themselves may 

be the stationary phase. Despite their inferior resolution, packed columns are used for 

preparative separations, where a large amount of stationary phase is required, or to 

separate gases which are poorly retained. Columns are usually made of stainless steel 

or glass with diatomite solid support that has been silanised to reduce hydrogen 

bonding to polar solutes [2, 4]. Packed and capillary columns have been reviewed in 

the literature [5, 6]. 
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GC separations can be carried out at constant temperature (isothermal separation 

mode) or in the case of complicated analyte mixtures, the column temperature can be 

increased according to a temperature program. In temperature programming, the 

temperature of the column is raised during the separation to increase solute vapour 

pressure and decrease retention times of late eluting compounds. When a constant 

temperature is used more volatile compounds elute close together and less volatile 

compounds, if they are even eluted from the column, will elute much later and have 

broader peak shapes. By increasing the temperature according to a temperature 

program, all compounds elute and the separation will be fairly uniform. Since analyte 

retention time depends considerably on the column temperature precise regulation is 

required to ensure reproducible results [4, 7]. 

Various injectors have been developed for delivering the sample to the head of the 

separation column with the smallest possible bandwidth. These include split injection, 

splitless injection and on-column injection. In a split injection only 0.2-2% of the 

sample is delivered to the column. This is suited to high resolution work, where the 

best results are obtained using the smallest amount of sample that can adequately be 

detected.  The sample is rapidly injected through the septum into the evaporation zone 

of the glass liner. The injector temperature is kept high in order to promote fast 

evaporation. Carrier gas then sweeps the sample through the mixing chamber, where 

complete vaporisation and mixing occur. At the split point only a small fraction of 

vapour enters the chromatography column, while most passes through the needle 

valve to a waste vent. The portion of sample that does not reach the column is called 

the split ratio; this typically ranges from 50:1 to 600:1 [4]. Splitless injection is 

preferred for trace analysis. The same port for split injection is used, however the 

glass liner is a straight, empty tube with no mixing chamber. A large volume (~ 2 L) 

of dilute solution in a low-boiling point solvent is slowly injected into the liner with 

the split vent closed. The temperature of the injector is lower for splitless injection as 

the sample spends more time in the port and may decompose at higher temperatures. 

In splitless injection, ~ 80% of the sample is applied to the column, and little 

fractionation occurs during injection. The initial column temperature is set 40C 

below the boiling point of the solvent, which therefore condenses at the beginning of 

the column. As the solutes slowly catch up with the condensed plug of solvent, they 

are trapped in the solvent as a narrow band at the head of the column; this leads to 
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sharp chromatographic peaks. Chromatography is initiated by raising the column 

temperature to vaporise the solvent trapped at the head of the column [4]. On-column 

injection is used for samples that decompose above their boiling point and is often 

preferred for quantitative analysis. In on-column injection, solution is injected directly 

onto the column, without going through the hot injector. The initial column 

temperature is low enough to condense solutes in a narrow zone. Chromatography is 

initiated by warming the column [4]. Injectors for GC have been discussed in the 

literature [8-10]. 

The sample is moved through the column by carrier gas. The carrier gas must be inert 

and not chemically interact with the sample. The most popular carrier gases are 

hydrogen, helium and nitrogen and the choice is often dependent on the detector used. 

Measurement and control of carrier gas flow is essential to ensure a constant and 

reproducible flow rate and hence reproducible retention times [3]. 

There are a number of detectors which can be used in GC; these are summarised in 

Table 1.1. Detectors interact with the eluted compounds and the interaction is 

converted into an electrical signal which is sent to a recorder. The data is presented by 

plotting the intensity of the signal versus the time of analysis; this is the so-called 

chromatogram [7]. The detector signal is proportional to the quantity of each analyte 

making it possible to perform quantitative analysis. The most commonly employed 

detector for GC is the flame ionisation detector (FID), as it has high sensitivity, a 

large linear response range and low noise. 
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Table 1.1: Summary of commonly used GC detectors [4, 11] 

Detector Selectivity and principle Approximate 

detection limit 

Flame-ionization 

detector  

In the FID, eluate is burned in a mixture 

of hydrogen and nitrogen (in air). Carbon 

atoms (except carbonyl and carboxyl 

carbons) produce CH radicals, which are 

thought to produce CHO
+
 ions in the 

flame: 

CH + O  CHO
+
 + e

-
 

Electrons flow from the anode to the 

cathode, where they neutralise CHO
+
 in 

the flame. This current is the detector 

signal. 

2 pg/s 

Thermal 

conductivity 

detector 

Thermal conductivity detectors are 

universal detectors for anything 

providing a difference in thermal 

conductivity from the carrier gas. Eluate 

from the column flows over a hot 

filament. When an analyte emerges from 

the column, the conductivity of the gas 

stream decreases, the filament gets hotter, 

its electrical resistance increases, and the 

voltage across the filament changes. This 

change in voltage is measured by the 

detector.  

400 pg/mL 

(propane) 

Electron capture 

detector 

Electron capture detectors are particularly 

sensitive to halogenated compounds. Gas 

entering the detector is ionised by high-

energy electrons emitted from a 

radioactive source. The electrons formed 

are attracted to an anode, producing a 

baseline current. When analyte molecules 

with a high electron affinity enter the 

detector, they capture some of these 

electrons. The detector responds by 

varying the frequency of voltage pulses 

between the anode and the cathode to 

maintain a constant current. This 

frequency is converted to a voltage which 

is proportional to the concentration of the 

eluting compound.  

As low as 5 fg/s 
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Detector (cont.) Selectivity and principle (cont.) Approximate 

detection limit 

(cont.) 

Mass spectrometry 

(MS) detector 

Mass spectrometers are universal 

detectors for total or single ion 

monitoring. To obtain a mass spectrum, 

gaseous molecules or species desorbed 

from condensed phases are ionised. 

These ions are accelerated by an electric 

field and are separated according to their 

mass-to-charge ratio, m/z. 

25 fg to 100 pg 

Flame photometric 

detector 

Flame photometric detectors are selective 

to S- and P-containing compounds. They 

filter and measure light emitted when a 

sample is burned in a hydrogen-rich 

flame. 

< 1 pg/s 

(phosphorous) 

< 10 pg/s (sulfur) 

Sulfur 

chemiluminescence 

detector 

Sulfur chemiluminescence detectors are 

selective to sulfur-compounds: S-

compounds are oxidised to produce SO, 

after ozonisation SO gives SO2
*
 that 

decays to ground state producing a signal. 

100 fg/s (sulfur) 

 

GC applications have been frequently reviewed in the literature and include the 

analysis of essential oils [12], pesticides [13], petroleum [14], oil [15], fatty acids [16], 

steroids [17] and biological fluids [18]. 

 

1.1.1.2 High performance liquid chromatography 

High performance liquid chromatography (HPLC) is one of the most extensively 

employed liquid chromatographic methods; the two most important forms of HPLC 

are normal phase and reversed phase. In normal phase chromatography the retention 

order is based on increasing hydrophilicity, while in reversed-phase chromatography 

it is based on increasing hydrophobicity [19]. 

HPLC uses high pressure to force solvent through closed columns containing very 

fine particles which give high-resolution separations. A typical HPLC instrument 

consists of solvent (mobile phase), a pump, an injector, a column (stationary phase) 

and a detector (Figure 1.2). 
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Figure 1.2: Schematic of a HPLC system. Adapted from [2]. 

 

In HPLC, column efficiency is increased by increasing the rate at which solute 

equilibrates between the stationary and mobile phases. For GC, with an open tubular 

column, this is achieved by decreasing the thickness of the stationary phase and 

reducing the diameter of the column so that molecules can quickly diffuse between 

the channel and the stationary phase. However, since diffusion in liquids is 100 times 

slower than in gases, it is generally not feasible to use open tubular columns as the 

diameter of the solvent channel is too great for a solute molecule to cross in a short 

time. Hence, packed columns are often used in liquid chromatography. The efficiency 

of packed columns increases as the size of the stationary-phase particles decreases. 

This is due to the fact that they provide more uniform flow through the column and 

the distance the solute must diffuse in the mobile phase is less. However, smaller 

particle size results in resistance to solvent flow. The most common stationary phase 

for HPLC is highly pure, spherical, microporous particles of silica that are permeable 

to solvent and have a surface area of several hundred square meters per gram [4]. 

Monolithic columns can also be used in HPLC. In some instances monoliths offer an 

advantage over particle packed columns, namely, they can be operated at high flow 

rates allowing fast separation of complex mixtures. Monolithic columns consist of one 

piece of continuous, porous material and can be divided into two main classes based 

on whether they employ organic or inorganic precursors [20]. Both packed and 

monolithic have been reviewed by in the literature [21-24]. 

In adsorption chromatography, solvent molecules compete with solute molecules for 

sites on the stationary phase and elution occurs when solvent displaces solute from the 
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stationary phase. The more polar the solvent, the greater its eluent strength for 

adsorption chromatography with bare silica. The greater the eluent strength, the more 

rapidly solutes will be eluted from the column. Adsorption chromatography on bare 

silica is an example of normal phase chromatography, where a polar stationary phase 

and a less polar solvent are used. In reversed-phase chromatography, the stationary 

phase is non-polar or weakly polar and the solvent is less polar. This means a less 

polar solvent has a higher eluent strength. Peak tailing is eliminated in reversed-phase 

chromatography as the stationary phase has few sites that can strongly absorb solute 

to cause tailing [4]. 

When elution is performed with a single solvent (or constant solvent mixture), it is 

referred to as isocratic elution. If one solvent does not provide sufficiently rapid 

elution of all components, then gradient elution can be used. Gradient elution in 

HPLC is analogous to temperature programming in GC. It involves changing the 

eluent strength of the mobile phase, which gradually changes the composition of the 

eluent entering the column; this accelerates the elution of peaks which would 

otherwise elute late or not at all. Gradient elution is widely employed in reversed-

phase chromatography [25]. 

Selection of the appropriate mobile phase is based on a wide range of criteria, 

including viscosity, ultraviolet (UV) transparency, refractive index (RI), boiling point, 

purity and it must be inert with respect to sample compounds. As a general rule the 

mobile phase should not be detector-active, otherwise unwanted baseline effects and 

extra peaks may appear in the chromatogram [26]. 

The mobile phase is delivered at a constant flow rate through the column by a pump. 

The pump must be capable of generating high pressures with high flow accuracy and 

precision at the chosen flow rate. Moreover, the flow should be pulse-free and the 

internal volume must be low in order to enable a quick solvent change. Most HPLC 

pumps use a reciprocating piston design [26]. 

A sample injector introduces the sample into the chromatograph as a sharp plug to 

minimise dispersion and peak broadening. Valve injectors are generally used in 

commercial instrumentation as the sample is introduced with minimal flow 

interruption [27]. 
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There are many detectors which can be used in HPLC; these are summarised in Table 

1.2. The most commonly employed detector for HPLC is the UV-visible absorbance 

detector as many compounds of interest absorb in the UV (or visible) range [28]. 

 

Table 1.2: Summary of commonly used HPLC detectors [4, 28-30] 

Detector Selectivity and principle Approximate 

limit of detection 

(ng) 

UV-Vis absorbance 

detector 

UV-Vis absorbance detectors are near 

universal as many solutes absorb UV 

light. They measure the amount of light 

transmitted through a solution given by 

Beer’s law: 

A = cl 

0.1-1 

Refractive index 

detector 

RI detectors are sensitive to all analytes 

that have a RI different than the mobile 

phase. Light passes through a cell with 

pure solvent and is directed to a photocell 

by a deflection plate. When solute with a 

different RI enters the cell, the beam is 

deflected and the photocell output 

changes. The deflection of light is 

measured by Snell’s law: 

n1sin1 = n2sin2 

100-1000 

Fluorescence 

detector 

Fluorescence detectors are very sensitive, 

however they only respond to the few 

analytes that fluoresce. They excite the 

eluate with a laser and measure 

fluorescence.  

0.001-0.01 

Conductivity 

detector 

Conductivity detectors are very selective 

and can be used whenever the sample 

bands have different conductivity from 

the running buffer. 

0.5-1 

Electrochemical 

detector 

Electrochemical detectors are very 

selective and sensitive; they measure the 

electron flow generated at electrode 

surfaces during oxidation or reduction 

reactions. 
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Detector (cont.) Selectivity and principle (cont.) Approximate 

limit of detection 

(cont.) 

Evaporative light 

scattering detector 

Evaporative light scattering detectors are 

considered universal as they respond to 

any analyte that is significantly less 

volatile than the mobile phase. Eluate is 

formed into a uniform dispersion of 

droplets. Solvent is evaporated from the 

droplets, leaving a fine mist of solid 

particles. These particles are then 

detected by the light they scatter. 

0.1-1 

 

Chemiluminescence detection can also be employed in HPLC. Chemiluminescence is 

simply the emission of light from a chemical reaction. There are two types of 

chemiluminescence reactions, direct and indirect. In direct chemiluminescence, the 

reaction between compounds A and B forms a product or intermediate in an 

electronically excited state (C
*
) that returns to its ground state by the ejection of a 

photon (Equation 1.1). In indirect chemiluminescence, instead of C
*
 returning to the 

ground state by photon ejection, it can undergo energy transfer with a suitable 

fluorophore, which in turn may then exhibit its characteristic fluorescence emission 

(Equation 1.2). 

                           Equation 1.1 

            

 

                                              Equation 1.2 

                                      

 

Chemiluminescence detection is offers a simple, low cost and sensitive means to 

quantify a wide variety of compounds. Many chemiluminescence reagents have been 

used for detection in HPLC, including luminol, tris(2,2’-bipyridyl)ruthenium(III) and 

potassium permanganate [31]. 

A number of HPLC applications have been reviewed in the literature, these include 

pharmaceuticals [32], clinical analysis [33], polymers [34], food [35] and phenolic 

compounds [36]. 



 

~ 11 ~ 
 

1.1.1.3 Comparison of gas and liquid chromatography 

When comparing gas and liquid chromatography it is necessary to first look at the 

analytes to be separated and their matrix. Next, the parameters that are most important 

to each technique can be examined. In GC, the two most important parameters are the 

nature of the stationary phase, which can be changed to adapt to the separation 

problem and the temperature, which is critical as GC is limited to volatile samples that 

are thermally stable. The two most important parameters in HPLC are the nature of 

the stationary phase and the nature of the mobile phase. The applicability of HPLC is 

wider than GC as both the stationary and mobile phases can be changed to adapt to 

the separation problem. However, HPLC can be restricted by insolubility [2, 26]. 

GC is typically used for the analysis of non-polar and semi-polar, volatile and semi-

volatile chemicals. However, chemical derivatisation and pyrolysis can be performed 

on polar and non-volatile compounds, respectively, to permit their analysis by GC. 

HPLC is used for separating all types of organic chemicals independent of polarity or 

volatility [37]. 

Kivilopolo et al. [38] compared GC and LC methods for the analysis of phenolic acids 

in herb extracts. The results were compared in terms of their linearity, speed of 

analysis, selectivity, sensitivity and repeatability. Both methods proved suitable for 

the determination of phenolic acids. The sensitivity of both methods was good, but the 

linear range in LC was relatively small in comparison to GC. LC provided shorter 

analysis times and more straight-forward sample preparation than GC, which required 

liquid extraction, evaporation and derivatisation. On the other hand, the method 

development for GC was simpler than LC and GC provided better repeatability and 

easier identification of unknown species. LC proved a good choice for semi-

quantitative analysis of phenolic acids, while GC was more useful for the accurate 

quantification of low molecular weight phenolic acids. The major drawback of GC in 

the analysis of phenolic acids, is the need for volatility, which limits the range of 

compounds that can be analysed. 
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1.1.1.4 One-dimensional chromatographic data 

Chromatographic signal 

The chromatographic data considered in this thesis is generated using a univariate 

detector, e.g. an FID, thus only data from such a detector will be discussed. The 

overall signal of a chromatogram can be considered as comprising three major 

components [39]: 

1. The analytical signal, which contains the signal of any analyte present; it 

generally depends on the detector sensitivity and the capability of the 

chromatographic system. 

2. The background signal, which is any signal that is not related to the 

analyte signal and shows some sort of systematic behaviour. The 

background often depends on the chromatographic conditions. The terms 

background and baseline are often referred to as the same phenomena, 

however background is more appropriate when talking about the 

contribution to the analytical signal and baseline is more often used in the 

literature when dealing with the correction of offset. 

3. The noise, which is any unsystematic (random) variation in the signal; it 

essentially depends on the detector sensitivity. 

The components of a chromatographic signal are shown in Figure 1.3. 

 

 

Figure 1.3: Components of a chromatographic signal: (a) overall signal, (b) relevant signal, (c) 

background, and (d) noise. From [40]. 
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Structure of chromatographic data 

The data obtained from a one-dimensional (1D) chromatographic experiment is in the 

form of a vector. A vector is a single ordered, time series, row or column of numbers 

written as: 

                    Equation 1.3 

Where xj represents the specific, recorded detector response at time j in the range 

j = 1...J. 

When performing a chromatographic study with more than one sample, the data is 

presented in the form of a matrix consisting of I rows (i = 1...I) of samples and J 

columns (j = 1...J) of variables and is written as: 

        

       

   
       

      Equation 1.4 

 

1.1.2 Comprehensive two-dimensional chromatography 

The conditions defining a comprehensive two-dimensional separation were proposed 

by Schoenmakers et al. [41], based on the definitions formulated by Giddings [42], 

and can be summarised as [43]: 

1. Every part of the sample is subjected to two different separations. 

2. Equal percentages (100% or lower) of all sample components pass through 

both columns and eventually reach the detector. 

3. The separation (resolution) obtained in the first dimension is essentially 

maintained. 

 

1.1.2.1 Comprehensive two-dimensional gas chromatography 

In comprehensive two-dimensional gas chromatography (GC×GC), two GC 

separations based on fundamentally different separation mechanisms are applied to 

the entire sample. An interface known as the modulator separates the first column 



 

~ 14 ~ 
 

eluate into a large number of adjacent small fractions. Each individual fraction is then 

refocused and injected into the second GC column. The second column is often 

shorter and narrower than the first column, allowing fast separation in the second 

dimension to produce very narrow peaks. These narrow peaks require fast detectors in 

order to properly reconstruct the second dimension chromatograms. The outcome of a 

GC×GC run is a large series of high-speed, second-dimension chromatograms, which 

can be stacked side-by-side to form a two-dimensional chromatogram with one 

dimension representing the retention time on the first column and the other, the 

retention time on the second column. Visualisation is achieved through the use of 

contour plots, image plots and occasionally three-dimensional (3D) plots [44]. This 

process is depicted in Figure 1.4. GC×GC has been extensively reviewed in the 

literature [44-51]. These reviews discuss the principles of GC×GC, columns, 

modulation, detectors and applications. 

 

 

Figure 1.4: Generation and visualisation of a GC×GC chromatogram, from [44] 



 

~ 15 ~ 
 

There is general agreement regarding the main advantages of GC×GC over 

conventional 1D GC in the literature [49, 52, 53]. Most notably, the peak capacity is 

much higher, which improves separation. Secondly, due to the refocusing process in 

the modulator, as well as the improved analyte separation, detectability is improved. 

Thirdly, chemically related compounds appear as ordered structures; this facilitates 

group-type analysis and the provisional classification of unknowns [44]. 

A typical GC×GC system consist of an injector, first dimension column, a modulator, 

second dimension column and a detector. A schematic of a GC×GC system is shown 

in Figure 1.5. 

 

 

Figure 1.5: Schematic of a GC×GC system. I = injector, M = modulator, D = detector, 1
st
 GC oven with 

first-dimension column and 2
nd

 (separate) GC oven with the second-dimension column. Adapted from 

[44]. 

 

In GC×GC, two different and independent separation mechanisms are used in the two 

GC columns. In most cases, a non-polar stationary phase is used in the first dimension 

and a more polar stationary phase in the second dimension. Using a non-polar first 

dimension, analytes are separated according to boiling point and volatility. As the 

second dimension separation is fast, it is carried out under essentially isothermal 

conditions with little influence from sample volatility, so the separation is governed 

by the specific analyte interactions with the stationary phase [45, 47, 48]. 

The modulator can be considered the “heart” of a GC×GC system. It must serve three 

functions: (i) to continuously trap small adjacent fractions of the effluent from the first 

column whilst the first-dimension separation proceeds; (ii) to refocus the trapped 
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fractions either in time or space; (iii) to inject the refocused fractions as narrow pulses 

into the second-dimension column [44]. It is preferred that the separation in the 

second-dimension is finished before the injection of the next fraction or the second 

dimension retention time will exceed the modulation period, causing the second 

dimension peaks to appear in a later modulation than they were injected. This 

phenomenon is known as wrap-around [45, 46]. There are two main categories of 

commercially available modulators, thermal modulators and valve-based modulators. 

Thermal modulators are based on a temperature increase such as those using a “slotted 

heater” [54] or inversely, cryogenic modulation. Today, cryogenic modulation is used 

almost exclusively. The first cryogenic modulator was the longitudinally modulated 

cryogenic system [55, 56], which is based on a moving cold trap. Later, cryogenic jet 

modulators, with either carbon dioxide or liquid nitrogen, were developed [57-60]. 

These jet modulators have the advantage of no moving parts. There are fewer valve-

based modulators employed in GC×GC, these include the diaphragm modulator [61] 

and the differential flow modulator [62]. A review of developments in GC×GC 

modulation is provided by Adahchour et al. [46]. 

A GC×GC detector must offer higher sampling rates, as the refocusing of peaks from 

the first column to the second, produces very narrow peaks. These narrow peaks 

require detectors with small internal volumes and fast acquisition rates in order to 

ensure a faithful representation of the chromatographic peak shape. Several detectors 

are suitable for GC×GC peak characterisation, including the FID which has been the 

detector of choice because of its small internal volume, fast slew rate, and 

corresponding high sampling rate. MS detectors are also important in GC×GC 

analyses as they provide structural information, which brings an additional dimension 

to the system. Combining GC×GC with time-of-flight mass spectrometry (TOF-MS) 

allows high separation power based on the combined use of chromatographic 

resolution and mass spectral resolution [63]. A review of detector technologies for 

GC×GC is provided by von Muhlen et al. [64]. 

 

1.1.2.2 Comprehensive two-dimensional liquid chromatography 

The operating principles of comprehensive two-dimensional liquid chromatography 

(LC×LC) are similar to that of GC×GC. A typical LC×LC system consists of two 
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pumps, two columns, an injector, an interface (modulator) and a detector. An example 

of a typical LC×LC set-up is shown in Figure 1.6. The two columns are connected by 

the interface (usually a high pressure switching valve), which ensures the collection of 

the entire first dimension effluent in aliquots of predefined volumes and enables 

automatic re-injection of these fractions onto the second dimension column [65]. 

 

Figure 1.6: Schematic of an LC×LC system, adapted from [65] 

 

A number of LC×LC reviews appear in the literature [43, 65-70]. These reviews 

discuss the principles of LC×LC, columns, interfaces, mobile phase compatibility, 

detection and applications. 

 

1.1.2.3 Two-dimensional chromatographic data 

The primary data generated by a GC×GC or LC×LC system is similar to the time 

response data generated in 1D chromatography. A two-column matrix is obtained, 

with the first column representing the time and the corresponding detector response 

signal in the second. Since the modulation period and the sampling frequency are 

known the raw data matrix can be converted and re-shaped to form a two-dimensional 

matrix (Equation 1.5). 

        

       

   
       

      Equation 1.5 
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Where i = 1 to I columns represent the second dimension chromatogram and j = 1 to J 

rows are the first dimension chromatogram. 

The matrix resulting from this “data folding” can be visualised by appropriate 

software as a contour diagram. 

 

1.1.2.4 Two-dimensional chromatographic applications 

The separation provided by 1D chromatography can be significantly enhanced using 

2D chromatography. 1D chromatography generally does not provide sufficient 

separation of complex mixtures, such as petroleum. Petroleum samples are complex 

as they contain a very large number of saturated and unsaturated alkanes, cyclic 

alkanes, aromatics and heteroatom-containing compounds. The number of compounds 

in petroleum samples increases exponentially with boiling point, and 1D GC can only 

fully separate constituents in the low boiling range, i.e. up to C9 for straight-run 

hydrocarbon fractions, and even less for olefin-containing fractions [44]. 

Capillary 1D GC has routinely been used to analyse the volatile constituents of 

flavours and fragrances. However, the complex nature of these samples results in 

extended run times and extensive peak co-elutions which present a challenge for 

complete qualitative analysis [71, 72]. Shellie et al. [73] compared the separation of 

French lavender and tea tree essential oils by 1D GC and GC×GC. The 1D GC and 

GC×GC separations of tea tree oil are shown in Figure 1.7 (a and b), respectively. 

This study highlighted the increased separation of GC×GC and its ability to produce 

more baseline resolved peaks than traditional 1D GC. It was suggested that the peak 

capacity of GC×GC is up to 10 times higher than that of 1D GC and while the 

separation was no faster, within a similar analysis time GC×GC obtained higher 

sensitivity, greater resolution of peaks and a fingerprint pattern [73]. 
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Figure 1.7: (a) 1D GC tea tree oil separation (b) GC×GC tea tree oil separation, from [73]. Peak 

assignments are provided in [73]. 

The application of GC×GC has been reviewed in the literature for the analysis of 

petroleum [74], drugs [75], flavours and fragrances [76], food and beverages [77], 

environmental monitoring [78] and metabolomics [79]. 

Since GC×GC has reached a higher degree of maturity than LC×LC, there are fewer 

applications of LC×LC in the literature; however some recent applications employing 

LC×LC in the areas of food and beverages, polymers and complex biological samples 

can be found in references [80-82].  

(a) 

(b) 
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1.2 Data pre-processing 

Pre-processing of chromatographic data, to correct for artifacts in the signal, is 

important to enhance the quality of the individual chromatograms as well as improve 

the interpretation of results obtained using multivariate data analysis techniques. 

Standard pre-processing of chromatograms involves baseline correction to help 

eliminate artifacts such as column bleed as well as normalisation and scaling methods 

to reduce instrument and sample variations. Alignment of chromatographic data is 

also important as retention time shifts can occur due to variations in the flow rate and 

temperature, mobile phase composition and stationary phase decomposition. This can 

cause problems for multivariate data analysis as these techniques assume that 

compounds elute at the same time in all chromatograms. When this assumption is not 

met, variation modelled by the chemometric methods does not simply correspond to 

the chemical variations but rather a combination of chemical sources and retention 

time variations [83]. 

The application of chemometric tools to chromatographic data was traditionally 

performed using data that were processed to provide a list of detected, integrated peak 

areas or heights. However, in recent years there is an increasing interest in the direct 

chemometric interpretation of raw chromatographic signals. Integrated peak tables 

reduce the number of variables, remove baseline noise, and can remove the signal 

from irrelevant compounds if exact peaks are known. Problems can arise using 

integrated peaks since the analysis is restricted to identified compounds and as a result 

important information may be excluded. There are also many errors that can occur 

during the integration of raw signals due to poorly-resolved or missing peaks, which 

may skew the results and subsequent analysis. By applying chemometric tools directly 

to the raw data, all the information is preserved; however other issues become more 

important, most notably retention time shifts and the population of available variables. 

When comparing raw data, alignment is crucial to ensure that the peak for a given 

component is always registered in the exact same position in the data matrix. When 

using raw data the number of variables measured for each sample will outnumber the 

number of samples available in the data set. These overdetermined systems can defeat 

many chemometric techniques due, for example, to collinear variables. However, this 

may be overcome by the use of cross-validation (section 1.3.3) [84]. 
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The choice of pre-processing methods not only depends on the type of data used (raw 

or processed) and the sample information required, but also on the subsequent data 

analysis method since different data analysis methods focus on different aspects of the 

data. For example, principal components analysis (section 1.3.1) attempts to explain 

as much variation as possible in as few components as possible, whereas a clustering 

method (section 1.3.2) focuses on the analysis of (dis)similarities. Changing data 

properties using data pre-treatment may therefore enhance the results a PCA analysis, 

while obscuring the results of a clustering method [85]. 

A number of pre-processing strategies for chromatographic data appear in the 

literature [86-90]. These strategies are employed prior to multivariate data analysis 

and typically involve baseline correction, alignment, normalisation and scaling. 

 

1.2.1 Baseline correction 

Baseline drift is mainly caused by continuous variations in experimental conditions, 

such as temperature, solvent programming in liquid chromatography, or temperature 

programming in gas chromatography. This makes baseline correction a common 

requirement in chromatographic studies and of great importance for peak detection 

and comparison of different chromatographic signals [91]. Baseline correction 

methods are commonly employed to eliminate interferences due to drift, column bleed 

and overlap of broad or poorly defined peaks [40]. 

Baseline correction methods for chromatographic data frequently involve fitting a low 

order polynomial curve and subtracting it from the overall signal. These methods are 

based on the construction of either a local or a global baseline, an example of this is 

shown in Figure 1.8. A global fit using a second order polynomial is shown in (a) and 

an accurate correction is not achieved across the whole chromatogram. When using a 

local method with several second order polynomials (b), the curve is not smooth, but a 

more accurate fit of the baseline is obtained. Local methods work well if it is possible 

to find points in the baseline where there are no peaks, if peaks are not coeluting, and 

if the signal-to-noise ratio is high. When this is not the case, the baseline may be 

better described using a global polynomial fit with higher order polynomials to 

account for a more complex or curved baseline [39]. 
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Figure 1.8: Curve-fitting baseline methods (a) global fit using a second order polynomial and (b) local 

fit using several second order polynomials. From [39]. 

 

A global baseline correction technique using asymmetric least squares smoothing was 

proposed by Eilers [92]. This method works by fitting an initial polynomial of a 

specified order to all data points in the chromatogram. By iteratively weighting 

positive deviations from the polynomial more than negative deviations, the 

polynomial will at some point approximate the baseline (within a predefined limit), 

which is then subtracted from the original signal [93]. This process is illustrated in 

Figure 1.9. After some modifications, this approach has been extended to 2D data for 

use in 2D gel electrophoresis [94, 95]. 

 

(a) 

(b) 
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Figure 1.9: Global baseline correction using asymmetric least squares (a-d) consecutive baseline 

estimates, (e) original signal and (f) baseline corrected signal. From [40]. 

 

Gan et al. [96] also fitted a polynomial to estimate the baseline of a chemical signal. 

This process is shown in Figure 1.10; an initial polynomial is fitted, which is set as the 

automatic threshold, and parts of the signal that are above this threshold are cut out. 

The new signal replaces the original one for use in the next iteration and this iterative 

process continues until there is no change in the modelled baseline. 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 1.10: Fitted polynomial baseline estimate (a) simulated signal, (b) initial polynomial fit 

(threshold), (c) parts of signal above threshold removed and (d) final estimated baseline. From [96]. 

 

Numerical differentiation, usually first or second order, provides a straightforward 

method to remove baselines in chromatographic data. This method relies on the 

assumption that the slope of the baseline is relatively small compared to that of a 

chromatographic peak. Since numerical differentiation leads to a considerable 

decrease in the signal-to-noise ratio, the Savitzky-Golay algorithm [97] can be used to 

obtain the derivatives and smooth the data [86, 88, 89]. 

 

1.2.2 Alignment 

Variation in the elution time of an analyte is frequently observed in chromatographic 

analyses; this can obscure chemical variations and makes alignment of 

chromatographic signals necessary [90, 98-102]. Retention time variations can be due 

to subtle, random, and often unavoidable changes in instrument parameters. Pressure, 

temperature and flow rate fluctuations may cause an analyte to elute at a different 

retention time in replicate runs. Matrix effects and stationary phase decomposition 

may also cause retention time shifting [103]. Alignment is particularly important 

when multivariate chemometric analysis techniques are to be performed as these 

(a) (b) 

(c) (d) 
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techniques are generally employed to interpret chemical variation as changes from 

sample-to-sample at corresponding variables (i.e. retention times) [104]. Therefore in 

order to effectively interpret the between-sample differences, retention time variations 

need to be eliminated or reduced as the chemometric model may describe retention 

time shifts and conceal significant information regarding the samples [105]. 

For an alignment method to be successful, it must synchronise the signals and 

preserve the peak information (i.e. peak area and shape). The more flexible the 

alignment method, the more adjustment is possible, but there is increased risk of 

introducing artifacts. On the other hand, less flexible methods imply only smaller 

peak shifts can be corrected but with reduced risk of changing the chromatographic 

profile. Using a method with low flexibility that is able to correct for shifts present in 

the data is the goal for all alignment procedures [39, 104]. 

One issue for alignment is the selection of an appropriate reference chromatogram. 

Ideally the reference chromatogram should be representative, contain as many 

common peaks as possible, be reproducible, clean (contain no artifacts) and a real 

chromatogram (not generated). A number of reference chromatogram selections have 

been proposed in the literature, including using the first chromatogram [90, 92], the 

middle chromatogram [89, 106, 107], the chromatogram containing the highest 

number of common constituents [99, 101, 108], the chromatogram with the highest 

correlation coefficient to all the other chromatograms [100, 109], or a generated 

chromatogram such as the mean [110]. Daszykowski et al. [83] conducted a study on 

the use of different reference chromatograms and found the chromatogram with the 

highest correlation coefficient gave the most satisfactory results. 

Alignment of data may only require a linear shift of the whole chromatogram, i.e. a 

linear translation of the data vector. However, if the column is changed between runs 

or if samples are measured over a long period of time, non-linear shifts may occur. 

These shifts are characterised by a different degree of shifting for multiple peaks 

across samples and can be seen as peaks shifting independently from one another in 

the same chromatogram. Thus, more complex shift correction may be needed [87]. 

The most commonly employed method for aligning chromatographic signals is 

correlation optimised warping (COW) [88, 89, 106, 111-115]. COW was originally 

developed by Nielsen et al. [116] and is based on aligning a sample chromatogram to 
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a reference by piecewise linear stretching and compression. The algorithm requires 

two user input parameters, the segment length and slack size, which are selected in 

order to optimise the overall correlation between the reference and sample. The 

reference and sample chromatograms are divided into segments of user defined 

segment length. Each segment in the sample is stretched or compressed by shifting the 

position of its end point by the slack value. The resulting segment is then linearly 

interpolated to the corresponding segment in the reference. For each possible end 

point of the segment, the correlation coefficient between the interpolated segment and 

the corresponding reference segments is computed. This is performed on all segments. 

A warping solution is then constructed as a cumulative sum of the correlation 

coefficients of the previous segments. After examining all possible end points of all 

segments, the optimal warping path is constructed [99, 100]. A 2D COW algorithm 

that extends the 1D COW algorithm for 2D chromatographic profiles was proposed 

by Zhang et al. for aligning GC×GC TOF-MS data [117]. 

Dynamic time warping (DTW) has also been employed for the alignment of 

chromatographic data [101, 102]. DTW nonlinearly warps two signals in such a way 

that similar events are aligned and a minimum distance between them is obtained. The 

algorithm uses dynamic programming to find the optimal path of warping and 

employs the squared Euclidean distance metric as the optimisation criterion. Dynamic 

programming solves combinatorial optimisation problems in order to find the optimal 

warping path by examining all the possible combinations of data points on the time 

axis [118]. 

Piecewise alignment (PWA) is related to COW in that it divides the sample and 

reference chromatograms into windows of a user-specified length, but instead of 

applying stretching and shrinking interpolation just prior to calculating the correlation, 

each window in the sample chromatogram is iteratively shifted, point-by-point, within 

a specified limit along the retention time axis, thus saving computation time. The 

Pearson correlation coefficient between the sample and reference is calculated at each 

shift and the shift that gives the maximum correlation coefficient is used to correct 

that window of the sample chromatogram. The desired retention time corrections are 

assigned to the centre point of the windows and the shifts to be applied in the regions 

between the window centres are calculated by linear interpolation [103, 110, 119]. 

Pierce et al. [120] further modified this algorithm to develop a comprehensive 2D 
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retention time alignment algorithm which aims to correct the entire chromatogram and 

preserve the separation information in both dimensions. 

Instead of dividing the chromatograms into segments that can subsequently be 

stretched or compressed, parametric time warping (PTW) [92] calculates a global 

second order polynomial (the warping function) by minimising the sum of the squares 

between the reference and sample chromatograms. The sample chromatogram is then 

interpolated to the points in the warping function to obtain a chromatogram that is 

aligned to the reference chromatogram [93]. 

A recently developed nuclear magnetic resonance (NMR) alignment method, icoshift 

[121], has also been applied to the alignment of chromatographic data [122-124]. The 

icoshift algorithm divides the chromatograms into segments and aligns these to the 

corresponding segments in the reference chromatogram. Each chromatogram is 

independently aligned to the reference by shifting the segments sideways and 

maximising the cross-correlation between the segments. The icoshift algorithm 

requires two user input parameters, the segment length and maximum shift. The 

algorithm uses a fast Fourier transform engine to boost the simultaneous alignment of 

all chromatograms in the data set. Interpolation is avoided by filling in the missing 

parts on the edges of the segments with either missing values or by repeating the value 

of the boundary point [121, 125]. icoshift differs from COW and PWA as there is no 

interpolation step; it can also be further differentiated from COW as alignment is 

achieved through sideways shifting rather than stretching and shrinking. 

A summary of the different alignment techniques is given in Table 1.3. 
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Table 1.3: Summary of alignment techniques 

Method  Input 

parameters 

Optimisation 

criteria 

Aligns by Advantages Disadvantages Applications 

COW Reference, 

segment length, 

slack size 

Correlation 

coefficient 

Stretching/shrinking Correct complex shifts. 

Option to 

automatically optimise 

parameters. Provides 

good and robust 

alignment. 

Small segments and 

large slack can change 

peak shape. Time 

consuming due to many 

interpolation steps. 

Tested on many 

different types of 

shifted data. Able to 

correct most shifts. 

[98, 99-102, 118] 

DTW Reference, local 

continuity 

constraints, 

band constraints 

Squared 

Euclidean 

distance 

Elementary 

transitions 

Correct complex shifts Distance not best 

measure of similarity. 

Can be too flexible. 

Time consuming. 

Tested on simple and 

severely shifted data. 

Too flexible for 

simple shifts. [101, 

102, 118] 

PWA Reference, 

segment length, 

sideways 

shifting 

Correlation 

coefficient 

Shifting Correct complex shifts. 

Peak shape preserving. 

Only linear shifts are 

permitted within 

segments. Potential 

problem if peaks split 

between segments. 

Tested on severely 

shifted data, with 

peaks shifted across 

neighbour peaks 

[110] 

PTW Reference, 

warping 

function 

coefficients 

Sum of 

squared 

residuals 

Stretching/shrinking Fast and simple. No 

risk of peak splitting or 

artifacts as a global 

warping function is 

used. 

Low flexibility due to 

the quadratic warping 

function. Only correct 

non-complex shifts. 

Tested for many 

types of shifts, but 

really only suitable 

for small systematic 

shifts [98, 118] 
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Method 

(cont.) 

Input 

parameters 

(cont.) 

Optimisation 

criteria (cont.) 

Aligns by 

(cont.) 

Advantages 

(cont.) 

Disadvantages (cont.) Applications 

(cont.) 

icoshift Reference, 

interval length, 

shift 

Correlation 

coefficient 

Shifting  Fast and simple. 

Provides good 

alignment. 

Peaks can be split between 

segments. Visual inspection 

required to identify presence of 

artifacts. 

Tested on a broad 

range of shifts [121, 

125] 
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1.2.3 Normalisation and scaling 

The recorded signal intensity is affected by instrumental variations and 

chromatographic conditions as well as sampling and sample preparation. Variations in 

the data due to these factors can mask the compositional information and distort any 

subsequent data analysis. Hence, a normalisation step is a prerequisite for effective 

comparison of chromatographic data [88]. 

Normalisation is performed on the rows of the 1D data matrix and comprises methods 

to make the data from all samples directly comparable with each other. One common 

method involves normalising each chromatogram to have unit total detector response; 

this is referred to as normalisation to a constant sum [126]. This type of normalisation 

is useful for characterising different groups of samples, but not for establishing a 

calibration model as some quantitative information may be lost. For quantitative 

analysis, it is often recommended to normalise according to an internal standard peak 

as each peak still contains a quantitative measure of the analyte concentration. This 

relies on the assumption that all peaks behave in a similar manner and can be 

corrected by the same internal standard. If this is not the case, multiple internal 

standards may need to be used [39]. 

In multivariate data analysis and when dealing with models that focus on variability in 

data, it is usual practice to scale the data. Scaling is performed on the columns of the 

1D data matrix (i.e. on each chromatographic intensity across all samples). A review 

of the various scaling methods can be found in an article by van den Berg et al. [85]. 

The review describes how each of the scaling methods emphasise different aspects of 

the data and notes the advantages and disadvantages of each method. A summary of 

the methods described in this review are provided in Table 1.4. 

Although normalisation and scaling operations serve different purposes, it is usual 

practice to use both to aid in comparing chromatograms and prior to performing 

multivariate data analysis [126]. 
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Table 1.4: Overview of column scaling pre-treatments (from [85]). The mean is estimated as:      
 

 
    

 
     and the standard deviation is estimated as      

           
  

   

   
  

    and    represents the data after different pre-treatment steps. 

Method Formula Goal Advantages Disadvantages 

Centering                Focus on the differences and 

not the similarities in the data 

Remove the offset from the 

data 

When the data is 

heteroscedastic, the effect of 

this pre-treatment method is not 

always sufficient 

Autoscaling 
      

        

  
 

Compare variables based on 

correlations 

All variables become equally 

important 

Inflation of the measurement 

errors 

Range scaling 
      

        

      
       

 
 

Compare variables relative to 

the response range 

All variables become equally 

important. Scaling is related to 

response. 

Inflation of the measurement 

errors and sensitive to outliers 

Pareto scaling 
      

        

   

 
Reduce the relative 

importance of large values, 

but keep data structure 

particularly intact 

Stays closer to the original 

measurement than autoscaling  

Sensitive to large fold changes 

Vast scaling 
      

          

  
   

   
  

 
Focus on variables that show 

small fluctuations 

Aims for robustness, can use 

prior group knowledge 

Not suited for large induced 

variation without group 

structure 

Level scaling 
      

        

   
 

Focus on relative response Suited for identification Inflation of the measurement 

errors 
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Method (cont.) Formula (cont.) Goal (cont.) Advantages (cont.) Disadvantages (cont.) 

Log 

transformation 

                 

                 

Correct for heterscedasticity, 

pseudo scaling. Make 

multiplicative models 

additive. 

Reduce heterscedasticity, 

multiplicative effects become 

additive 

Difficulties with values with 

large relative standard deviation 

and zeros 

Power 

transformation 
             

                

Correct for heterscedasticity, 

pseudo scaling 

Reduce heterscedasticity, no 

problems with small values 

Choice of square root is 

arbitrary 

 

  



 

~ 33 ~ 
 

1.2.4 Smoothing 

Smoothing is applied to a chromatographic signal in order to increase the signal-to-

noise ratio for the peaks of interest. 

Noise in chemical signals is generally defined as the instantaneously irreproducible 

signals caused by interfering physical or chemical processes, imperfections in the 

experimental apparatus, and other irregularities, which often complicate the results. A 

number of methods such as moving average and the Savitzky-Golay smoothing 

method have been developed to compensate for these irregularities [91]. 

Moving average is a simple smoothing method, which involves averaging an odd 

number of points and assigning this value to the central point. The window then shifts 

by one point and the procedure is repeated, thus preserving data density. Another 

similar method is box-car averaging. Box-car averaging involves dividing the data 

into a series discrete, equally spaced bands and replacing each band by a centriod 

average value. It is then shifted the entire box-car length along the vector, thereby 

decreasing data density [127]. 

The most widely used smoothing technique in analytical science is the polynomial 

filter suggested by Savitzky and Golay [97]. The principle of the Savitzky-Golay 

smoother is simple; a low-order polynomial is fitted to a window in the chromatogram 

and the fitted value in the middle of the window is used as the smoothed data. The 

window is then shifted to the right and this procedure is repeated until all desired 

smoothed values have been computed [128]. The Savitzky-Golay smoother requires 

two input parameters; the window width and the order of the polynomial. Vivo-

Truyols and Schoenmakers [129] developed an algorithm for selecting the window 

size. The method is based on a comparison of the fitting residuals (i.e. differences 

between the input signal and the smoothed signal) with the noise of the instrument; 

the window size that yields the autocorrelation of the residuals closest to the 

autocorrelation of the noise of the instrument is considered optimal. 

A smoother based on penalized least squares, which extends a method proposed by 

Whittaker [130] has been develpoed by Eilers [128] as an alternative to the Savitzky-

Golay smoother. The smoother is reported to be extremely fast, provide continuous 

control over smoothness and interpolate automatically.  
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1.3 Data analysis 

1.3.1 Principal components analysis 

Principal components analysis (PCA) is the most widely used multivariate technique 

for exploratory analysis in chromatography [131-140]. A set of correlated variables 

are transformed into a set of uncorrelated latent variables (principal components) such 

that the first few components explain most of the variation in the data. 

PCA involves rotating and transforming the original axes, each representing an 

original variable, into new axes (so-called latent variables). This transformation is 

performed in such a way that the new axes lie along the direction of maximum 

variance of the data with the constraint that the new axes are orthogonal 

(uncorrelated). PCA can reveal the variables, or combinations of variables, that 

describe some inherent structure in the data. The first principal component (PC) is the 

linear combination with the largest variance that best summarise the distribution of 

the data. The second PC is uncorrelated with the first and accounts for the largest 

remaining variance; this process is continued until the total variance is accounted for. 

Each PC is characterised by two pieces of information, the scores, and the loadings. 

Loadings are the coefficients of the linear combinations of the original variables and 

scores are the coordinates of the original data in the new coordinate system [127]. 

PCA is a mathematical transformation of the original data matrix, which takes the 

form: 

                Equation 1.6 

Where X is the original data matrix of I rows and J columns; T is the scores matrix of 

I rows and A columns; P is the loadings matrix of A rows and J columns; E is an error 

matrix. This is shown graphically in Figure 1.11. 
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Figure 1.11: Principles of PCA, adapted from [141] 

 

The variance explained by each PC is referred to as an eigenvalue. The earlier (and 

more significant) the components, the larger their variance. 

Since a large fraction of the variance is usually described by few PCs, the data can be 

visualised by plotting the scores and loadings against each other [142]. Plotting scores 

against each other can help elucidate relationships between samples and how they are 

connected and grouped. Loading vectors plotted as chromatograms can show the 

components where variation was observed and thereby which variables affected the 

relationships in the score vectors. Plotting loading vectors against each other also 

reveals information about the connection between variables. The combination of score 

and loading plots, in the form of a biplot, will often reveal which samples are 

connected to which variables. However, this is more complicated when using raw 

chromatographic data [143]. 
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In chromatography, visualisation of scores and loadings has recently been employed 

to discriminate food and beverages [144, 145], analyse polycyclic aromatic 

hydrocarbons in environmental samples [146, 147], classify steroid metabolites [148] 

and differentiate gasoline for forensic purposes [149, 150]. PCA has also been 

employed to identify outliers in chromatographic data [151]. 

PCA and visual representation of the scores plots associated with the first few 

components is often the end to multivariate data analysis, however the scores can be 

used as inputs to other multivariate techniques. For example, scores may be used for 

both unsupervised and supervised pattern recognition techniques that require the 

number of samples be larger than the number of variables or when variables are 

highly correlated [152]. PCA scores have been used as inputs to discriminant analysis 

for classifying wines [153-155]. 

Data evaluation in chromatography by PCA was reviewed by Cserhati [156]. The 

review included the application of PCA to gas and liquid chromatographic data for 

health care, food and environmental applications, as well as miscellaneous 

applications such as the selection of chromatographic columns. 

 

1.3.2 Unsupervised pattern recognition 

In the case of unsupervised pattern recognition, often referred to as cluster analysis 

(CA), no class knowledge is required and no assumptions need be made regarding the 

class to which a sample may belong. 

CA involves converting the data into some corresponding set of similarity, or 

dissimilarity, measures between each sample with the subsequent aim of dividing a set 

of objects into several groups or clusters so that objects within the same group are 

more similar to each other than objects in different groups. CA has been extensively 

discussed in a tutorial by Bratchell [157]. The tutorial discusses distance and 

similarity measures, hierarchical clustering techniques, such as nearest neighbour, 

furthest neighbour or average linkage, which are used to link objects as well as 

visualisation and interpretation of results using a dendrogram. 
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CA is often used as the first step in chemometric data analysis as it can provide a 

simple visual representation of the results in the form of a dendrogram, this aids in 

identifying underlying patterns and structure in the data. In chromatography, CA has 

recently been employed in medical analyses to differentiate cancer patients and 

healthy controls [158, 159] as well as distinguishing between Alzheimer’s disease 

patients and healthy volunteers [160]. CA has also been used to classify 

chromatographic columns [161, 162]. 

 

1.3.3 Supervised pattern recognition 

Supervised pattern recognition techniques use known information about the class 

membership of samples to a certain group (or class) in order to classify new, unknown, 

samples to one of the known classes based on measurement patterns. There are 

several types of supervised pattern recognition methods which essentially differ in the 

way they achieve classification. There are those focused on discriminating among 

classes, such as linear discriminant analysis (LDA) and k-nearest neighbours (k-NN) 

and those oriented towards modelling classes, such as soft independent modelling of 

class analogy (SIMCA) [163]. 

Whatever the method used for classification, supervised pattern recognition 

techniques essentially consist of the following steps [163, 164]: 

1. Selection of a training set, which consists of objects of known class 

membership for which variables are measured. The training set is used for the 

optimisation of parameters characteristic of each technique. 

2. Variable selection. The variables that are meaningful for the classification are 

kept, while variables that are noisy or that have no discriminating power are 

eliminated. 

3. Building a model using the training set. A mathematical model is derived 

between the variables measured on the training set and their known classes. 

4. Validation of the model using an independent test set or cross-validation, in 

order to evaluate the reliability of the classification achieved. 

Validation is one of the most important aspects of supervised pattern recognition. 

Model validation evaluates the number of significant variables needed to characterise 
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the data set, the model prediction ability for unknown samples and the representative 

character of the data used to produce the model. Model validation ensures that the 

supervised pattern recognition technique is good enough to perform the classification 

of unknown samples. This is achieved by examining how successful the model is at 

classifying unknown objects, i.e. by evaluating the recognition and prediction abilities 

of the model. The recognition ability is defined as the percentage of the samples in the 

training set correctly classified during the modelling step. The prediction ability is the 

percentage of the samples in the test set correctly classified by using the models 

developed in the training step. In cross-validation, the prediction ability of the model 

is determined by developing a model using the training set and using the test set to 

test the model. Both training and test sets contain samples representative of each class. 

The model development and testing is repeated several times increase the probability 

that a sample will be used in the training and test sets. This can be done using K-fold 

cross-validation or leave-one-out cross validation [163]. 

Alonso-Salces et al. [165] compared LDA, k-NN and SIMCA for the classification of 

Galician and French ciders. 100% recognition ability for both classes was achieved 

using LDA, while 100% prediction ability was achieved using k-NN. SIMCA was 

able to achieve 100% recognition and prediction abilities, but only for the Galician 

ciders. The results of the supervised pattern recognition techniques were found to be 

complementary. 

Supervised pattern recognition in food analysis has been reviewed by Berrueta et al. 

[163]. The review discusses the various supervised pattern recognition techniques, 

including LDA, partial least squares discriminant analysis (PLS-DA), k-NN, SIMCA 

and artificial neural networks (ANN). The review also discusses validation models, 

such as K-fold and leave-one-out cross-validation and provides a detailed literature 

review of supervised pattern recognition techniques to classify wines, edible oils, 

honey, dairy foods, meat and fruit. 

1.3.3.1 k-nearest neighbours 

k-NN methods are simple to understand and implement. In k-NN, an unknown sample 

is classified according to the majority vote of its k-nearest neighbours, where k is an 

odd number. The k-NN method requires three steps [166, 167]: 
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1. Calculating the distance between an unknown object and all the members in 

the training set. The most common distance metric is Euclidean distance. 

2. Selecting the k nearest neighbours to the unknown. 

3. Predicting class membership of the unknown by applying the majority rule to 

the k nearest samples. 

In chromatography, k-NN along with LDA and support vector machines was recently 

employed discriminate HPLC fingerprints of raw and processed rhubarb samples 

[168]. All methods provided satisfactory results, however the best classification was 

achieved using k-NN. 

Despite being a simple method that provides good classification results, k-NN is less 

frequently employed than LDA for supervised pattern recognition of chromatographic 

data. 

1.3.3.2 Discriminant analysis 

Discriminant analysis is one of the most powerful and commonly used supervised 

pattern recognition techniques. The object of discriminant analysis is to fit a line or 

surface through a set of data points that provides a maximum discrimination between 

groups present in the data [127]. Objects lying on the same side of the line are 

considered as belonging to the same group. 

LDA is one variant of discriminant analysis, in which the discrimination boundaries 

are linear. LDA is based on the determination of a linear discriminant function, which 

maximises the ratio of between-class variance and minimise the ratio of within-class 

variance. LDA selects a direction that achieves maximum separation among the given 

classes. LDA requires that the variance-covariance matrices of the established classes 

can be pooled, which is only possible when these matrices can be considered equal. A 

quadratic discriminant function (QDA) is another function used for discrimination. 

QDA establishes parabolic boundaries and is subject to fewer constraints in the 

distribution of the objects in space than LDA. In QDA the distance to each class is 

calculated using the sample variance-covariance matrix of each class rather than the 

overall pooled matrix. Both LDA and QDA require that the number of samples is 

greater than that of the variables [163, 169]. 
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The results of discriminant analysis can be displayed in the form of a contingency 

table, referred to as a confusion matrix, of known parent groups against classified 

groups [127]. An example confusion matrix is shown in Table 1.5. 

Table 1.5: Example confusion matrix. Xx is the number of objects in X correctly classified as X, Xy is 

the number of objects in Y incorrectly classified as X, Yx is the number of objects in X incorrectly 

classified as Y and Yy is the number of objects in Y correctly classified as Y. TAX and TAY are the total 

number of objects actually in X and Y, respectively. TPX and TPY are the total number of objects 

predicted in X and Y, respectively. 

 Predicted X Predicted Y Total 

Actual X Xx Yx TAX 

Actual Y Xy Yy TAY 

Total TPX TPY  

 

In chromatography, LDA is more frequently employed for classification than QDA 

[170-177]. It is most commonly employed for classification of food and beverages 

according origin and variety. 

LDA and QDA, among other methods, were compared by Dixon and Brereton [169] 

for the classification of six synthetic data sets, with varying degrees of distribution 

between two classes. The LDA and QDA models were calculated using the first two 

PCs. For the classification of a training set, QDA achieved a greater number of correct 

classifications in three of the data sets; LDA achieved greater classification in just one 

of the data sets and on two occasions LDA was more accurate at classifying class 1, 

while QDA was more accurate at classifying class 2. 

1.3.3.3 SIMCA 

A SIMCA model consists of a collection of PCA models, one for each class in the 

data set. This is shown graphically in Figure 1.12. Each class can have a different 

number of PCs, which are defined by the user or cross-validation. This ensures a 

sufficient number of PCs are retained to account for most of the variation within each 

class, while ensuring a high signal-to-noise ratio by not including noisy PCs in the 

class model. SIMCA determines the class distance as well as the modelling and 

discriminatory powers. The class distance can be calculated as the geometric distance 

from the PC models or by using a confidence level (usually 95%), which assumes 

each class is bound by a region of space. The discriminatory power measures how 

well a variable discriminates between two classes. This differs from the modelling 
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power in the sense that a variable may able to model one class well, but this does not 

necessarily imply that it is able to discriminate two groups effectively [163]. 

 

 

Figure 1.12: Graphical representation of a SIMCA model, adapted from [178] 

 

Recently, SIMCA has been employed in chromatographic analysis to identify extra 

virgin olive oil adulteration [179], screen the quality of commercial Brazilian gasoline 

[180], discriminate herbal extracts [181] and evaluate the quality control of herbal 

medicines [182]. However, despite providing good classification results, SIMCA is 

still less frequently employed than LDA for supervised pattern recognition in 

chromatography. 
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1.3.4 Regression analysis 

Regression analysis is a class of techniques that study how measured independent or 

response variables vary as a function of a single so-called dependent variable. The 

principal aim in undertaking regression analysis is to develop a suitable mathematical 

model for descriptive or predictive purposes. The model can be used to confirm some 

idea or theory regarding the relationship between variables or it can be used to predict 

some general, continuous response function [127]. 

Multivariate regression techniques were reviewed by Brereton [183]. The article 

discusses and compares basic regression methods using case studies. 

1.3.4.1 Partial least squares regression 

Partial least squares (PLS) is probably the most commonly employed regression 

method in chromatography [184-191]. PLS is a multivariate projection method for 

modelling a relationship between dependent variables (Y) and independent variables 

(X). PLS aims to find the components in the input matrix (X) that describe as much of 

the relevant variations in the input variables as possible, while having the maximal 

correlation with the target value in Y, giving less weight to the variations that are 

irrelevant or noisy. Hence, PLS models both X and Y simultaneously to find the latent 

variables in X that will predict the latent variables in Y [163]. Two models are 

obtained in PLS: 

                Equation 1.7 

                Equation 1.8 

Where X represents the original data matrix and c is the concentrations. The first 

equation is similar to that of PCA, however the scores matrix also models the 

concentrations. The matrix T is common to both equations and the error matrices in X 

and c blocks are given by E and f, respectively [192]. These matrices are represented 

graphically in Figure 1.13. 
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Figure 1.13: Principles of PLS, adapted from [141] 

 

The theory of PLS has been extensively described by Wold et al. in a number of 

publications [193-202]. 

1.3.4.2 Principal components regression 

As with PLS, principal components regression (PCR) models the dependent and 

independent variables to construct new components, however PCR differs from PLS 

in the way it constructs the components. PCR creates the components to explain the 

observed variability in the independent variables, without considering the dependent 

variables. 

In chromatography, PLS and PCR have been compared by Wentzell and Vega 

Montoto [203] using simulations of complex mixtures. They found no significant 

differences in the prediction errors reported by PCR and PLS; however PLS usually 

required fewer latent variables, but this did not influence the predictive ability. This 

article also provided a review of PLS and PCR comparisons in the literature, with the 

common consensus being that PCR and PLS were similar, but generally PLS required 

less latent variables. 
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1.4 Chemometric applications in chromatography 

Some select examples of data pre-processing and analysis methods in gas and liquid chromatography are provided in Table 1.6. 

Table 1.6: Select examples of chemometric application in chromatography 

Description Method Data pre-processing Data analysis Reference 

Chemical fingerprinting of petroleum biomarkers GC Baseline correction, 

normalisation, alignment 

PCA [89] 

Classification of gasoline GC Baseline correction, alignment, 

normalisation 

PCA, LDA [103] 

Chemometric analysis of diesel fuel for forensic and 

environmental applications  

GC Baseline correction, alignment PCA [109] 

Assessment of oil weathering GC Baseline correction, alignment, 

normalisation 

PCA [112] 

Association and discrimination of diesel fuels GC Baseline correction, alignment, 

normalisation 

PCA [150] 

Analysis of petroleum compositional similarity GC×GC Scaling  PCA [204] 

Multivariate pattern recognition of petroleum-based 

accelerants 

GC Normalisation, scaling  PCA, CA, 

SIMCA 

[205] 

Identification of adulteration of gasoline GC Normalisation CA, k-NN [206] 

Quantification of naphthalenes in jet fuel GC×GC Alignment  PLS [207] 

Chemical fingerprinting of unevaporated automotive gasoline 

samples 

GC Scaling PCA, LDA [208] 

Prediction of total green tea antioxidant capacity 

 

HPLC Alignment PCA, PLS [111] 
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Description (cont.) Method 

(cont.) 

Data pre-processing (cont.) Data analysis 

(cont.) 

Reference 

(cont.) 

Profiling water soluble compounds in tea extracts HPLC Baseline correction, alignment, 

normalisation 

PCA [113] 

Comparative analysis of the chromatographic fingerprints of 

sage samples  

HPLC, GC Baseline correction, alignment, 

smoothing,  

PCA [114] 

Effectiveness of the use of triacylglycerols for the 

quantification of olive oil in vegetable oil blends 

HPLC Baseline correction, alignment, 

scaling 

PLS [123] 

Prediction of sensory properties of Brazilian Arabica roasted 

coffees 

GC Normalisation, smoothing PLS [209] 

Identification of volatile aroma-active compounds in oregano GC Scaling  CA, LDA, 

PLS 

[210] 

Classification of Chilean wines from different years, valleys 

and vineyards 

HPLC Normalisation  LDA, QDA, 

k-NN 

[211] 

Classification of vegetable oils characterised by the content of 

fatty acids 

GC Scaling  PCA, LDA [212]  

Analysis of tocopherols and triglycerides in coffee and their 

use as authentication parameters 

HPLC Normalisation PCA, LDA [213] 

Development of a data mining system for metabolite 

identification 

GC Scaling PCA, SIMCA [214] 

Exploring metabolic fingerprints in urine samples from 

prostate and bladder cancer patients 

LC Baseline correction, alignment, 

normalisation, scaling 

PCA [215]  

Separation, characterisation and semi-quantitation of 

phospholipids from extracts of complex biological samples 

 

HPLC Normalisation, scaling PCA [216] 
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Description (cont.) Method 

(cont.) 

Data pre-processing (cont.) Data analysis 

(cont.) 

Reference 

(cont.) 

Arsenic speciation patterns in freshwater fish HPLC Normalisation CA [217] 

Determination of pesticides in vegetables GC Scaling  PLS, PCR [218] 

Characterisation of herbal extracts and importance of pre-

processing 

HPLC Alignment, normalisation PCA [90] 

Monitoring and detection of unknown impurities in an 

industrial insulin intermediate  

LC Baseline correction, alignment, 

normalisation, scaling 

PCA [124] 

Classification of pharmaceutical substances HPLC Normalisation, scaling PCA, CA [131] 

Chromatographic fingerprints for quality control of herbal 

medicines 

GC Alignment PCA [219] 

Qualitative and quantitative analysis of chemical components 

from herbal medicines  

HPLC Alignment  PCA [220] 

Chemometric detection of thermally degraded samples in the 

analysis of drugs of abuse 

GC Baseline correction, 

normalisation, scaling 

PCA, SIMCA [221] 

Pattern recognition techniques for screening drugs of abuse GC Baseline correction, 

normalisation, scaling 

PCA, SIMCA [222] 

Forensic classification of ballpoint pen inks HPLC Scaling PCA, LDA [223] 

Characterising stationary phases LC Scaling PCA, CA [224] 

Determination of orthogonal chromatographic systems to 

characterise impurities in drug substances 

HPLC Scaling  PCA, CA [225] 

Characterisation of reversed-phase liquid chromatographic 

columns by chromatographic tests 

LC Scaling PCA [226] 
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1.5 Scope 

This thesis investigates the use of pre-processing techniques and chemometric 

analysis of chromatographic data. The overall objectives of this research are: 

1. To compare COW and icoshift for the alignment of HPLC data using PCA 

(Chapter 2). 

2. To employ PCA as an exploratory technique to investigate metabolic changes 

in plant roots in response to a pathogen using HPLC (Chapter 2). 

3. To evaluate HPLC with acidic potassium permanganate chemiluminescence 

detection for the classification of Australian wines according to geographic 

origin and vintage (Chapter 3). 

4. To classify wines according to geographic origin using discriminant analysis 

(LDA and QDA) (Chapter 3). 

5. To construct a regression model to correlate chromatographic peaks with wine 

age using PLS and PCR (Chapter 3). 

6. To develop software for quality control of flavours and fragrances (Chapter 4 

and Chapter 5). 

7. To develop an algorithm for the automated alignment of GC×GC 

chromatograms using affine transformation (Chapter 4). 

8. To develop an algorithm for the automated comparison of GC×GC 

chromatograms using fuzzy logic (Chapter 5). 
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Chapter 2 - Exploratory Data Analysis of 

Plant Metabolite Profiles Using HPLC 

 

2.1 Introduction 

Exploratory data analysis (EDA) is commonly used to gain visual insight and simplify 

the interpretation of data. EDA is applied in order to remove redundancy and noise 

while retaining as much of the information present in the original data as possible. 

The most frequently employed EDA technique is PCA. PCA reduces the 

dimensionality of the data by transforming the original variables into PCs, linear 

combinations of the original variables that are uncorrelated so there is no redundancy 

in the data. PCs are characterised by scores and loadings, which can be plotted in 

order to achieve visualisation [163]. 

In chromatography, PCA has recently been employed in the exploratory analysis of 

food and beverages [190, 191], pharmaceuticals [87, 124], environmental [147, 227], 

biological [148, 215] and forensic samples [149, 228]. 

When PCA is performed on multivariate data sets, a number of sources of variation 

may be encountered. EDA techniques such as PCA describe variation between 

samples, however chromatographic variation induced by the instrument or sampling 

procedure may serve to complicate this. Since PCA finds the directions of maximum 

variance, the chromatographic variations may be combined with actual sample 

variations, making interpretation of the results difficult. In general, the main source of 

chromatographic variation is retention time shifting, which is caused by variations in 

flow rate and temperature, mobile phase composition and stationary phase 

decomposition. These shifts can be systematic for all peaks as well as random for 

individual peaks [105]. Retention time shifts can cause problems as PCA interprets 

changes between samples at corresponding retention times; this requires uniform 

presentation of data, i.e. all signals should be of equal length and, when placed as 

rows in a data matrix, corresponding variables (peaks) should be in the same column 

of the matrix [98, 104]. In order to effectively interpret the between-sample 
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differences, chromatographic variations have to be eliminated or reduced. If not, the 

PCA model may describe retention time shifts and conceal significant information 

regarding the samples as the true sample variations may be small in comparison and 

as a result difficult to distinguish in the PCA results [105]. 

Several techniques have been proposed in the literature for aligning chromatographic 

data, including COW [100, 101, 116], DTW [101, 102], PWA [103, 110, 119] and 

PTW [92]. Of these techniques COW is the most commonly employed [88, 89, 106, 

111-115]; it is based on aligning a sample chromatogram to a reference by piecewise 

linear stretching or compression in combination with interpolation. COW is easy to 

implement and is considered to be of low flexibility (i.e. more peak shape preserving) 

[100]. 

The NMR alignment method, icoshift [121], has also been successfully applied to 

align chromatographic data [122-124, 229]. The icoshift algorithm has been 

demonstrated to be orders of magnitude to be faster than COW as there is no 

interpolation step and alignment is achieved by shifting the segments sideways, rather 

than shrinking or stretching the segments as in COW. 

There is still no generally accepted standard measure for assessing alignment quality. 

A number of methods have been proposed in the literature, including PCA [83, 89, 90, 

99, 101, 108, 113, 118], correlation coefficients [98, 102, 125] and visual inspection 

[98, 102]. 

Szymansaka et al. [118] evaluated DTW, COW and PTW for the analysis of urinary 

nucleosides of cancer patients and healthy subjects. The alignment algorithms were 

compared in terms of shift correction, computation time and ease of parameter 

optimisation. PCA was employed to evaluate the quality of alignment by looking at 

the separation achieved in the scores plot and the percentage of variance explained in 

the PCs. PCA demonstrated the significant advantages of COW and DTW over PTW 

or unaligned data. The separation between healthy and cancer patients was improved 

in the scores plot and more variance was explained in the first PC as the retention time 

shifts were removed as a source of variation [105]. The most effective algorithm for 

shift correction was found to be COW, which was also faster than DWT. PTW was 

the fastest and simplest to be employed, however it was not as precise as COW or 

DTW [118]. 
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In this chapter PCA is employed to compare and evaluate two alignment methods, 

COW and icoshift. As an EDA technique, PCA is subsequently applied to aligned 

HPLC metabolite profiling data in order to investigate the influence of phosphite on 

the secondary metabolites associated with Lupinus angustifolius roots inoculated with 

Phytophthora cinnamomi. 

The soil-borne plant pathogen, P. cinnamomi is the causal agent of widespread 

disease in vegetation and agriculture. It interrupts the physiological and chemical 

processes of a plant through the invasion of its root system [230]. 

There is no method currently available to eradicate P. cinnamomi in native forests 

without destroying the native plants themselves. Current management strategies aim 

to reduce spread of the pathogen and help build up the defences of existing host plants. 

The exogenous application of phosphite has shown some success in reducing the 

symptoms of disease associated with this pathogen in both agriculture and native 

forest incursions [231, 232]. 

The mode of action of phosphite has not been established and a clear understanding of 

the mechanism is required to optimise processes involved in the application to the 

plant of interest. This results in the need to develop methodology to monitor plant 

metabolites influenced by the application of phosphite. GC has primarily been used as 

the separation method for profiling primary plant metabolites, however the 

derivatisation of extracts required for GC analysis is known to degrade the glycosides 

and esters of secondary metabolites. Hence, HPLC has become the method of choice 

for secondary metabolite profiling [233].  
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2.2 Experimental 

2.2.1 Samples 

Plant growth 

Certified L. angustifolius seeds (Department of Primary Industries, VIC, Australia) 

were surface sterilised in ethanol for 30 seconds prior to a triple rinse in distilled 

water. The seeds were set in a soil-free plant growth system and root tips were 

removed six days after germination to encourage the growth of lateral roots. 

Development of adequate foliage for the application of phosphite was achieved after 

14 days [234, 235]. 

Application of phosphite treatment 

The commercially available product ‘Throw Down’ systemic fungicide (Nipro 

Products Pty Ltd, QLD, Australia), with the active constituent of 400 g L
–1

 

phosphorous acid (H3PO3), present as mono (KH2PO3) and di-potassium phosphite 

(K2HPO3) was used as the source of phosphite for this study. To aid chemical 

adhesion of the phosphite solution to plant foliage, an adjuvant (Biotrol Oil, Gulf A G 

Pty Ltd, Clayton, VIC, Australia) was added. 

The seedlings were removed from the controlled growth medium 14 days after 

germination for foliage treatment. The treatments were applied as a fine mist from a 

hand held spray bottle (Canyon Corp Pty Ltd, Melbourne, VIC, Australia) until the 

treatment began to run off the leaf surface. After treatment, the seedlings were left to 

dry for 15 minutes and placed back into the controlled growth conditions. 

Treatments were applied to the foliage of 14-day-old seedlings as 5 g L
-1

 phosphite in 

deionised water with the adjuvant added at 2.5 mL L
-1

. Deionised water was used as 

the control. After allowing 48 hours for translocation, root tips were inoculated with a 

few strands of clarified P. cinnamomi hyphae. 

At time points 0, 12 and 72 hours post inoculation, the lower 20 mm of roots were 

excised and external mycelia removed with forceps. Roots were immediately flash 

frozen in liquid nitrogen to quench metabolic activity and were stored at -80°C. The 
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metabolites were extracted using water, acetonitrile and isopropanol (2:3:3) and 

separated via HPLC [234, 235]. 

2.2.2 Chromatographic analysis 

Chromatographic separations were performed by employing a Hewlett Packard 1100 

series high performance liquid chromatograph (Agilent Technologies, Blackburn, VIC, 

Australia). Root extracts were separated through a reversed phase C18 column (Waters, 

250 mm x 4.6 mm, particle size 5 µm, Alltima, Alltech Ass. Inc., Deerfield, IL, US). 

The mobile phase was comprised of two solvents; A: water / formic acid 0.1% v/v and 

B: acetonitrile / formic acid 0.1% v/v. The pH of the mobile phase at 0.1% was 2.5. 

Formic acid was added to the mobile phases to aid phenolic and alkaloid elution from 

the samples. The flow rate was 1.0 mL
-1

 min and the volume injected was 20 µL. The 

column was kept at room temperature. The HPLC system was equipped with a Diode 

Array Detector (DAD) (1200 DAD, Agilent Technologies). A wavelength of 280 nm 

was chosen for detection of phenylpropanoid metabolites in this protocol [234, 235]. 

2.2.3 Mass spectrometry 

The samples were analysed via electrospray ionisation quadrupole time-of-flight mass 

spectrometry (ESI-QTOF-MS) (6210 MSD TOF-MS, Agilent Technologies). The MS 

was calibrated using a standard tuning mix (G2421A, Agilent Technologies). The 

mass spectra were recorded in negative ion mode based on the following ESI source 

settings; drying gas (N2) flow rate and temperature (7 L min
–1

, 350°C), nebuliser gas 

(N2) pressure (30 psi), capillary voltage 3.0 kV, vaporiser temperature 350°C, and 

cone voltage 60 V. MS data acquisition was carried out using Agilent MassHunter 

Workstation Acquisition for TOF/Q-TOF (B.02.00 (B1128)) and data analysis carried 

out using Agilent MassHunter Qualitative Analysis (version B.03.01) [234, 235]. 

2.2.4 Data pre-processing and analysis 

All data manipulation and analysis algorithms were implemented using Matlab (V7.10 

(R2010a), MathWorks Inc, MA, USA), the PLS Toolbox (V4.0.2, Eigenvector 

Research Inc., WA, USA) and in-house developed algorithms. 

Chemometric methods were applied to raw chromatographic data. The data was first 

smoothed using the Savitzky-Golay algorithm with an 11 point quadratic filter, then 
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aligned and normalised using an internal standard (vanillic acid). Two alignment 

methods, COW and icoshift, were compared. The algorithms are both publically 

available and were sourced from [236]. 

PCA was employed as an EDA technique as well as a measure of assessing the 

effectiveness of alignment by examining the structure of the data in the scores plot 

and the percentage of variance explained by the PCs. PCA was applied to mean-

centred data.  
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2.3 Results and discussion 

The data set consists of four classes; L. angustifolius treated with water, L. 

angustifolius treated with phosphite, L. angustifolius inoculated with the plant 

pathogen P. cinnamomi and treated with water and L. angustifolius inoculated with 

the plant pathogen P. cinnamomi and treated with phosphite. The non-inoculated 

samples serve as controls to monitor the plants response to the water and phosphite 

treatments. 

The plant roots were analysed at 0, 12 and 72 hours post inoculation. The average 

chromatograms for each time point are shown in Figure 2.1. There are no metabolites 

in the 0 or 12 hour data that are not present in the 72 hour data and the metabolites in 

the 72 hour data are also present in higher concentrations. As a result, all comparative 

investigations are carried out using the 72 hour data. 

 

Figure 2.1: Average aligned chromatograms for the 0, 12 and 72 hour time points. In order to aid 

visualisation, the chromatograms were offset by 100 points. 
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The average chromatograms of the 72 hour data for the non-inoculated and P. 

cinnamomi inoculated, water-treated and phosphite-treated L. angustifolius roots are 

shown in Figure 2.2. Tentative peak assignments are provided in Table 2.1. 

Metabolites were identified by first determining their molecular weight from the 

molecular ions obtained using ESI-QTOF-MS. This information was compared to an 

open access database [237] to compile a list of possible metabolite identities. The MS 

fragmentation patterns of the metabolites were then compared to MS fragmentation 

patterns of plant based metabolites published on an open access database [237] and in 

the literature [238-242] to compile the final list of metabolites. A full 

discussion/interpretation of MS results is provided in [234]. 

 

Figure 2.2: Average aligned chromatograms of the 72 hour data with peaks identified (the peak at 19 

minutes is the internal standard (vanillic acid)). Tentative peak assignments are provided in Table 2.1. 

In order to aid visualisation, the chromatograms were offset by 200 points. 
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Table 2.1: Tentative peak assignments 

Peak  Compound 

1 3,4,5-trihydroxybenzoic acid (gallic acid)  

2 Genistein 4’,7-O-diglucoside malonylated I 

3 Genistein 4',7-di-O-glucoside malonylated II  

4 2'-Hydroxygenistein 7-O-glucoside malonylated I  

5 Genistein 7-O-glucoside malonylated I   

6 Genistein 7-O-glucoside malonylated II 

7 5,7,2',4'-Tretrahydroxyisoflavone (2'-Hydroxygenistein)  

8 4',5,7-trihydroxyisoflavone (genistein)  

9 3-Rha-Gal-Glc-soyasapogenol B  

10 Rha-Gal-GlcA-Soyasapogenol E  

11 Flavonoid glucoside  

12  Luteone or Licoisoflavone A or Lupinisoflavone C  

13 Luteone or Licoisoflavone A or Lupinisoflavone C  

14 Lupinisoflavone A  

15 Luteone or Licoisoflavone A or Lupinisoflavone C  

16 Wighteone, Isowighteone and or Lupiwighteone 

17 Wighteone, Isowighteone and or Lupiwighteone 

18  Angustone A (2'-Hydroxyisolupalbigenin) 

 

From this it can be seen that there is an increase in the concentration of the aglycones 

of genistein (peak 8) and 2’hyrdoxygenistein (peak 7), the saponins (peaks 9 and 10) 

and prenylated isoflavones (peaks 12-18) post inoculation. This is accompanied by a 

decrease in the concentration of malonylated genistein glucosides (peaks 2, 3 and 5). 

Aglycones are often stored in high concentrations as inactive glycosides for 

downstream biosynthesis in response to stress [243]. In lupin species, a well 

recognised defence response is the prenylation of aglycones such as genistein and 

2’hyrdoxygenistein resulting in the production of prenylated isoflavones which are 

known to be highly anti-fungal metabolites [244, 245]. As well as prenylated 

isoflavones, L. angustifolius accumulated saponin-based metabolites in response to P. 

cinnamomi. Saponins exhibit a range of antimicrobial and antifungal activity [246]. 

The increase in peaks 9 and 10 post pathogen inoculation suggests that these saponins 

have a defence function in L. angustifolius. 

The observed increase in most of the defence metabolites appears to be lower in the 

phosphite-treated samples compared with the water-treated. This may be due to down-
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regulation of the plant’s immune response after the pathogen is arrested. In contrast, 

water-treated plants would continue to produce defence metabolites as the pathogen 

progressed. 

The increase in angustone A (peak 18) in the phosphite-treated L. angustifolius post 

inoculation is above that of the plants normal defence response (water-treated). Hence, 

it is possible that phosphite enhances the production of this metabolite, which may 

play a role in the plant’s defence response. 

It has been previously suggested that high concentrations of phosphite in plant roots 

work directly on P. cinnamomi, preventing the pathogen from forming an association 

with the plant [247]. However, the results presented here demonstrate that this was not 

the case. If the pathogen was arrested prior to making an association with the plant, 

the metabolite profiles of the non-inoculated and inoculated phosphite-treated L. 

angustifolius would be equivalent as there would be no change to plant metabolism. 

The water-treated and phosphite-treated L. angustifolius produce comparable 

metabolite profiles post inoculation with P. cinnamomi. This confirms that the 

pathogen is able to make an association with the plant despite the high concentration 

of phosphite in the root tissue and trigger the plants secondary metabolic defence 

response. These results will be discussed further when PCA is employed as an EDA 

technique (section 2.3.2). 

 

2.3.1 PCA comparison of alignment methods 

The first step in performing alignment is the selection of an appropriate reference 

chromatogram. The COW program provides several options for the choice of 

reference; namely the mean, median, maximum and highest correlation signals. The 

mean will contain peaks from all of the chromatograms, however using a generated 

chromatogram may cause problems as averaging a series of poorly aligned 

chromatograms would tend to produce a heavily distorted chromatogram and 

introduce artifacts [83]. Daszykowski et al. [83] conducted a study on the use of 

different reference chromatograms. They found that optimal results were obtained 

using the chromatogram with the highest mean correlation to the other chromatograms. 
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However, correlation can suffer if the data set contains two or more classes and as a 

result the alignment may be affected by the class the reference belongs to [100, 125]. 

Figure 2.3 (a) shows the potential reference chromatograms available in the COW 

program. There are significant differences between the references from approximately 

50-70 minutes, hence this section of the chromatograms is expanded in Figure 2.3 (b) 

and examined further. From this it can be seen that the peaks in the chromatogram 

with the maximum signal are distorted; this may cause problems as the interpolation 

of the data points in COW is guided by the shape of the peaks in the reference [100]. 

The peak at around 54.5 minutes is supposed to be two separate peaks, but the only 

reference that shows this is the chromatogram with the highest correlation. In order to 

see what effect this will have on alignment, all four potential reference 

chromatograms were examined to align the data. 

 

Figure 2.3: (a) potential reference chromatograms available in the COW program. In order to aid 

visualisation, the chromatograms were offset by 100 points. 
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Figure 2.3: (b) expanded section of (a). In order to aid visualisation, the chromatograms were offset by 

50 points. 

 

Figure 2.4 shows the data before alignment. The data is then aligned to each of the 

different references using the COW algorithm with an arbitrarily selected segment 

length of 20 points and slack size of 5. 
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Figure 2.4: Expanded section of chromatograms before alignment 

 

The results of alignment are shown in Figure 2.5. The alignment obtained for the 

peaks after approximately 55 minutes was successful for all references, however 

problems arose for the peaks at approximately 54.5 minutes. This was due to the poor 

shape of these peaks in the mean, median and maximum references. The most 

accurate alignment was achieved using the reference chromatogram with the highest 

correlation and as a result this chromatogram was chosen as the reference. The fact 

that there are four classes present in the data set does not present a problem as all the 

major peaks were found in the chromatogram with the highest correlation coefficient. 

The same reference was used for both COW and icoshift alignment. 
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Figure 2.5: Results of COW alignment using mean, median, highest correlation and maximum reference chromatograms. In order to aid visualisation, the chromatograms 

were offset by 400 points.
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COW requires the optimisation of two parameters, the segment length and slack size. 

Combining a small segment length and large slack size (i.e. high flexibility) will result 

in interpolation steps over many data points and thus the possibility of aligning peaks 

effectively, but this also increases the risk of changing the peak shapes and areas 

[100]. As a result, Skov et al. [100] developed an algorithm (built into the COW 

program) to optimise the selection of the segment length and slack size, whilst still 

preserving the peak area and shape. The optimisation method requires the user to 

define an optimisation space in which the selection of the segment length and slack 

size is to be based. This optimisation space is derived from the average peak widths in 

the reference chromatogram and the general observed shift in the peaks. As a rule of 

thumb, the segment length optimisation space, L, is: 

             
   

 
   Equation 2.1 

Where PWA is the approximate average peak width measured at the base of all peaks 

in the reference chromatogram. In the data presented here, the average peak width is 

110 points; therefore a segment length optimisation space of 55 to 165 was chosen. 

The correct slack size search space is more difficult to define as features such as 

different local peak shifts and increased flexibility of the COW algorithm in the 

middle of the chromatogram will have an effect on the outcome of the alignment 

procedure. According to Skov et al. [100] a rule of thumb is that if the number of data 

points before the first peak and after the last peak are approximately the same as the 

peak widths, then a slack size search space ranging from 1 to 15 is appropriate; this 

range was employed here. Based on the optimisation space, the algorithm selected a 

segment length of 105 and a slack size of 1. 

The icoshift program does not have a method for optimising the segment length and 

slack, so these must be selected by the user via trial and error. Since the optimum 

segment length and slack size were already chosen for COW, they were also used for 

the icoshift algorithm to allow direct comparison between the alignment methods. 

Visual inspection of the icoshift aligned results is required because when segments of 

constant length are used there is the possibility that the segment edges may be located 

in a peak, leading to artifacts in the peak shapes. Furthermore, due to the lack of an 

interpolation step and the use of sideways shifting instead of stretching and shrinking, 

missing parts of the segment edges are replaced by repeating the value of the 
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boundary point; this can also result in artifacts [121, 125]. Visual inspection revealed 

the presence of artifacts using a segment length of 105 and a slack size of 1, an 

example of this is shown in Figure 2.6. 

 

Figure 2.6: Artifacts observed in the icoshift aligned data (segment length = 105 and slack size = 1). In 

order to aid visualisation, the chromatograms were offset by 100 points. 

 

In an attempt to remove the artifacts, different combinations of segment lengths and 

slack sizes were tested; the results are summarised in Table 2.2. 
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Table 2.2: Results using different segment length and slack size combinations for icoshift alignment 

Segment length Slack size Artifacts Quality of alignment 

50 1 yes poor 

100 1 yes poor 

150 1 yes poor 

200 1 yes poor 

50 5 yes average 

100 5 no average 

150 5 yes average 

200 5 no average 

50 10 yes average 

100 10 yes average 

150 10 yes average 

200 10 yes average 

50 “best” yes good 

100 “best” no good 

150 “best” yes good 

200 “best” no good 

 

The “best” slack allows the algorithm to search for the shift in each segment that 

maximises the correlation between the reference and sample. This results in a 

different slack value for each segment and provides the algorithm with more shifting 

freedom. 

The results from Table 2.2 indicate that both segment lengths of 100 and 200 with the 

“best” slack resulted in good alignment with no artifacts. However, 100 is closest to 

the segment length used in COW alignment (segment length = 105) and as a result 

will allow more accurate comparison between the alignment methods. 

A small selected region of the chromatograms is used as an example to illustrate the 

quality of alignment achieved using a segment length of 100 with the various slack 

sizes. The results are presented in Figure 2.7. 
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Figure 2.7: Results of icoshift alignment with a segment length of 100 and slack sizes of 1, 5, 10 and “best”. In order to aid visualisation, the chromatograms were offset by 

3500 points 
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Figure 2.7 indicates that a segment length of 100 and the “best” slack provide the 

most accurate alignment. Hence, this data was used for further analysis. 

PCA was performed on the unaligned as well as the COW and icoshift aligned data to 

evaluate the effectiveness of alignment. Since the data consists of four classes (non-

inoculated and inoculated, water-treated and phosphite-treated), it is expected that 

PCA will be able to discriminate between the classes. The unaligned and aligned data 

were smoothed, normalised and mean-centred prior to performing PCA, so the only 

difference in pre-processing was alignment. Table 2.3 gives the eigenvalues for the 

first ten PCs. 

 

Table 2.3: PCA eigenvalues for the unaligned and COW and icoshift aligned data 

 Unaligned COW aligned icoshift aligned 

PC 

number 

% 

variance 

% 

cumulative 

variance  

% 

variance 

% 

cumulative 

variance 

% 

variance 

% 

cumulative 

variance 

1 63.45 63.45 86.75 86.75 88.10 88.10 

2 24.65 88.10 9.10 95.85 8.35 96.45 

3 4.83 92.93 1.75 97.60 1.38 97.83 

4 3.22 96.15 1.00 98.60 0.88 98.71 

5 1.18 97.33 0.34 98.94 0.35 99.06 

6 0.95 98.28 0.28 99.22 0.33 99.39 

7 0.42 98.70 0.22 99.44 0.15 99.54 

8 0.32 99.02 0.20 99.64 0.15 99.69 

9 0.26 99.28 0.13 99.77 0.09 99.78 

10 0.18 99.46 0.06 99.83 0.06 99.84 

 

The aligned data sets contain more variance in the first PC than the unaligned data, 

this is in accordance with other published studies [83, 89, 101, 108, 113, 118]. More 

variance is explained in the first PC after alignment as the retention time shifts are 

removed as a source of variation [105]. Before alignment, variations between the 

samples and the peak retention times are described by the model; this means that more 

PC’s are required to effectively describe the added variation. However, after 

alignment, only the sample variations remain and as a result can be effectively 

explained by the first PC. 
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Since most of the variance is accounted for in the first two PCs, they were 

subsequently examined and interpreted. Figure 2.8 (a to c) shows the scores plot of 

the first two PCs for the data before alignment, after alignment with COW and after 

alignment with icoshift, respectively. Before alignment (Figure 2.8 (a)) no separation 

between the classes is evident. After alignment with COW (Figure 2.8 (b)) and 

icoshift (Figure 2.8 (c)) the four classes are separated and easily identified. 

 

Figure 2.8: Scores plots for the first two PCs (a) before alignment 
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Figure 2.8: Scores plots for the first two PCs (b) COW aligned and (c) icoshift aligned 
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Before alignment, the loadings plot (Figure 2.9 (a)) shows broad variation with no 

peaks defined due to the peak shifts. However, after alignment with COW (Figure 2.9 

(b)) and icoshift (Figure 2.9 (c)) the peaks responsible for separation between the 

different classes in the scores plots (Figure 2.8) are more evident. The icoshift aligned 

data produces slightly sharper peaks, which may be due to the alignment being more 

accurate. 

 

Figure 2.9: Loadings plots for the first two PCs (a) before alignment 

 



 

~ 70 ~ 
 

 

 

Figure 2.9: Loadings plots for the first two PCs (b) COW aligned and (c) icoshift aligned 
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Comparison of the alignment methods by PCA revealed that more variance was 

explained in the first PC and between class separation in the scores plot became 

evident after alignment. Both COW and icoshift were successful in aligning the data, 

however the icoshift aligned data explained slightly more variance and produced 

sharper peaks in the loadings plot. As a result, the icoshift aligned data is used in the 

exploratory analysis by PCA. 

 

2.3.2 Exploratory analysis by PCA 

From the scores plot (Figure 2.8 (c)) it can be seen that the non-inoculated (water and 

phosphite treated) samples clustered close together, which would suggest that the 

plant has a similar response to both treatments and as a result changes in the 

metabolites post inoculation can be attributed to the plants response to the pathogen. 

The loadings on PC1 and PC2 are plotted against time in order to interpret the 

separation observed in the associated scores plot. The loadings are shown in Figure 

2.10 with peaks identified. 

 

Figure 2.10: Loadings plot (PC1 and PC2) for icoshift aligned data with peaks identified. Tentative 

peak assignments are provided in Table 2.1. 
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The loadings on PC1 indicate the non-inoculated samples are separated based on the 

malonylated genistein glucosides (peaks 5 and 6), while the inoculated samples are 

separated according to the aglycones of genistein (peak 8) and 2’hyrodxygenistein 

(peak 7). On PC2, the loadings again highlight separation of the non-inoculated 

samples based on malonylated genistein glucosides (peaks 3 and 6) and separation of 

the inoculated samples based on the aglycones of genistein (peak 8) and 

2’hyrodxygenistein (peak 7) as well as the prenylated isoflavones (peaks 12-18). 

These results concur with those obtained by the comparison of the average 

chromatograms (Figure 2.2). 

From these results it is proposed that in response to the pathogen, P. cinnamomi, L. 

angustifolius up-regulates a defence beginning with the cleavage of glycosides from 

stored genistein and 2’hyrodxygenistein (peaks 2,3,5 and 6), which results in 

accumulation of aglycones of genistein (peak 8) and 2’hyrodxygenistein (peak 7). The 

prenylation of the genistein and 2’hyrodxygenistein aglycones then results in the 

production of a range of secondary metabolites (peaks 12-18), which are likely to be 

either a response to stress or a failed defence response. However, since many of the 

isoflavones tentatively assigned as secondary metabolites have previously been 

associated with the defence response of lupin species to pathogenic fungi [248], it is 

probable that the metabolic response observed here is an example of a failed defence 

response by L. angustifolius. The proposed metabolism of the 2’hyrodxygenistein and 

genistein glucosides is shown in Figure 2.11. 
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Figure 2.11: Proposed metabolism of 2’hydroxygenistein and genistein glucosides [234, 235]. 

Tentative peak assignments are provided in Table 2.1. 
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2.4 Conclusion 

PCA was employed to compare and evaluate the effectiveness of COW and icoshift 

for the alignment of HPLC data. By comparing the explained variance and the 

separation in the scores plot before and after alignment, it was observed that after 

alignment more variance was explained in the first PC as the retention time shifts 

were removed as a source of variation. This also meant that the separation in the 

scores plot was enhanced as it was based on sample differences rather than retention 

time differences. 

Both COW and icoshift were successful in aligning the data, with icoshift being 

slightly better as it explained more variance in fewer components. Alignment using 

icoshift was also orders of magnitude faster than COW. However, icoshift required 

multiple combinations of segment lengths and slack sizes in order to remove artifacts 

introduced by the algorithm. 

PCA was also employed as an exploratory method to profile metabolites in L. 

angustifolius inoculated with the pathogen, P. cinnamomi, and treated with both water 

and phosphite. The results demonstrated that the pathogen stimulates a similar 

response using both treatments, differing only in concentration. This response was 

proposed to be a component of the plants defence against the pathogen. The triggering 

of the defence response suggests that the pathogen is able to make an association with 

the plant despite the presence of phosphite in the root tissue. 
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Chapter 3 - Classification of Wines by 

HPLC with Chemiluminescence Detection 

 

3.1 Introduction 

Classification of wines is important in the food industry [249, 250]. Wine has become 

a commodity of significant commercial value, with consumer expectations depending 

on many factors, including grape variety, maturity and geographic origin [251]. In 

Europe, most wine producing countries associate wine quality and value with both 

climate and soil characteristics, in particular defined by geographical classification or 

denomination of origin systems [252-254]. Recently, the determination of food 

authenticity and the detection of adulteration have become major issues in the food 

industry and are attracting an increasing amount of attention from wine producers, 

consumers and researcher as the quality of wine has an obvious commercial value 

[251, 252]. Hence, a number of multivariate data analysis techniques, including PCA, 

CA, LDA, PLS-DA, SIMCA, ANN and PLS have been employed classify wines 

(Table 3.1). 

Classification of wines according to geographic origin, variety and vintage have been 

successfully achieved by measuring chemical compounds present in the wine matrix, 

such as phenolic compounds [255-262], minerals [263-265], volatile compounds 

[266-270] and amino acids and amines [271, 272]. 

Phenolic compounds are particularly important components and their composition in 

wine depends on the grape variety, vineyard location, and ageing, among many other 

factors. They contribute to their sensorial properties, being responsible for red wine 

colour, flavour, astringency and bitterness, both directly and indirectly through 

interaction with proteins, polysaccharides or other phenolic compounds. In addition to 

contributing to the olfactory profile of the wine, phenolic acids are precursors of 

volatile phenols, which enrich wines with varying aromas. They are also responsible 

for browning reactions of the wine and are considered to be essential elements during 
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preservation and ageing [273]. Phenolic compounds and commonly determined by 

HPLC with UV detection [257, 262, 274-277]. 

Chemiluminescence has been established as a valuable detection technique with 

advantages including low limits of detection, wide linear dynamic ranges and speed of 

response [278]. Chemiluminescent detection methods have recently been employed to 

determine phenolic compounds in wine [279-282]. Phenolic compounds have been 

shown to be particularly sensitive towards acidic potassium permanganate 

chemiluminescence reactions, with polyphenol’s generally producing a greater 

response than simple phenols [283]. Costin et al. [278] successfully employed acidic 

potassium permanganate chemiluminescence detection to monitor the total 

phenolic/antioxidant levels in wine. It was found that acidic potassium permanganate 

chemiluminescence detection was selective with minimal interferences observed from 

non-phenolic components in the wine. The inherent selectivity for phenolic 

compounds makes acidic potassium permanganate an excellent chemiluminescent 

reagent for the study of polyphenol variations between wines. 

In this chapter HPLC with acidic potassium permanganate chemiluminescence 

detection is evaluated for the analysis of Australian wines from different geographic 

origins and vintages. LDA and QDA are compared for the classification of red and 

white wines according to geographic origin. PLS and PCR are also examined for the 

modelling of sample composition with wine age. 

  



 

~ 77 ~ 
 

Table 3.1: Some recent examples of chemometric classification of wines according to geographic origin, variety and vintage 

Study Method Chemometric technique Reference 

Geographic discrimination of wines GC-MS PCA, LDA, PLS-DA [153] 

Classification of Riesling wines from different countries  Visible and NIR spectroscopy PCA, LDA, PLS-DA [154] 

Geographic classification of Spanish and Australian 

Tempranillo red wines 

Visible and NIR spectroscopy PCA, LDA, PLS-DA [251] 

Geographic classification of Italian wines Flame atomic absorption and emission 

spectrophotometry 

PCA, CA, LDA, SIMCA [264] 

Geographic classification of young red wines from the 

Canary Islands  

HPLC PCA, LDA [273] 

Geographic classification of Australian and New Zealand 

wines  

UV, visible, near-infrared (NIR) and mid-

infrared (MIR) spectroscopy 

PCA, PLS-DA, SIMCA [284] 

Discrimination between Shiraz wines from different 

Australian regions 

UV-visible, NIR and MIR spectroscopy PCA, LDA, SIMCA [285] 

Differentiation of certified brands of origins of Spanish 

wines 

Headspace solid-phase microextraction 

gas chromatography 

PCA, LDA, ANN [286] 

Authentication of Italian CDO wines  Chemical analyses SIMCA, unequal class 

modelling 

[287] 

Characterisation of the geographic origin of Italian red 

wines  

Chemical analyses, chromatography, 

emission spectroscopy and NMR 

PCA, CA, DA [288] 

Differentiation of Slovenian wines according to 

geographic origin  

NMR and isotope ratio mass 

spectrometry (IRMS) 

PCA, CA, ANN [289] 

Classification of Hungarian wines according to 

geographic origin, wine-making technology, grape 

variety and year of vintage 

Ion-exchange chromatography PCA, LDA [272] 
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Study (cont.) Method (cont.) Chemometric technique 

(cont.) 

Reference 

(cont.) 

Determination of origin and vintage of Slovenian wines NMR and IRMS PCA, LDA [290] 

Differentiation and classification of wines according to 

origin, grape variety and ageing process 

UV-vis spectroscopy PCA, SIMCA [291] 

Varietal discrimination of red and white wines MIR spectroscopy  PCA, LDA [155] 

Classification of Australian white wines according to 

varietal origin 

MS-based electronic nose PCA, LDA, PLS-DA [292] 

Discrimination of Australian white wines according to 

varietal origin 

Visible and NIR spectroscopy PCA, LDA, PLS-DA [293] 

Classification of rice wines according to ageing time HPLC PCA, PLS-DA [294] 

Determination of the age of sherry wines Gas and liquid chromatography PLS, multiple linear 

regression 

[295] 

Classification of wines according to vintage year Chemical analyses PCA, LDA [296] 
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3.2 Experimental 

3.2.1 Samples 

Geographic 

Finished high-quality Cabernet Sauvignon (n = 34) and Chardonnay (n = 22) wines 

were collected from the Geelong (Cabernet Sauvignon, n = 10, Chardonnay, n = 11) 

and Coonawarra (Cabernet Sauvignon, n = 24, Chardonnay, n = 11) wine regions of 

Australia with a total of 21 different wineries (Punters Corner Wines, Wynns 

Coonawarra Estate, Brand’s of Coonawarra, Balnaves of Coonawarra, Wingara Wine 

Group, Hollick Wines Pty Ltd, Rymill Winery, Majella Wines, Di Giorgio Family 

Wines Pty Ltd, Flint’s of Coonawarra, Redman Wines, Leconfield, Moorabool Estate, 

Provenance Wines, Scotchmans Hill, Bannockburn Vineyards, Pettavel Pty Ltd, 

Eagles Rise, Clyde Park Vineyard, and Lethbridge Wines) involved in the study [297, 

298]. 

Vintage 

Finished high-quality Cabernet Sauvignon (n = 17) wines were collected from the 

Pirramimma Winery in the McLaren Vale wine region of Australia from the 1971 to 

2003 vintages [297, 299]. 

Both the geographic and vintage wine samples were stored in centrifuge tubes at -

18
o
C until required. For analysis the samples were thawed, equilibrated at room 

temperature and mixed thoroughly, using a vortex mixer, prior to filtering through a 

0.45 m nylon membrane filter (Acrodisc PSF syringe filters; Pall Australia, VIC, 

Australia). All wines were sampled in duplicate [297-299]. 

3.2.2 Chromatographic analysis 

Chromatographic separations were performed by employing a Hewlett Packard 1100 

series high performance liquid chromatograph equipped with a quaternary pump, 

solvent degasser, autosampler (Agilent Technologies, Forest Hill, VIC, Australia) and 

a DAD (1200 DAD, Agilent Technologies). The HPLC was fitted with a Chromolith 

Performance RP-18e 100 × 4.6 mm column and a 5 mm monolithic guard column 
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(Merck, Kilsyth, VIC, Australia). The eluent from the DAD (254 nm) was merged 

post-column with a chemiluminescent reagent (section 3.2.4) prior to the 

chemiluminescence detector. Thus the column eluent was propelled sequentially 

through each detector. The HPLC pump, DAD and data acquisition from the 

chemiluminescence detector were controlled using Hewlett Packard Chemstation 

Software (Agilent Technologies). Wines were analysed by injecting 20 L aliquots of 

the samples and separated at a flow rate of 3 mL min
-1

. Solvent composition of 3% 

methanol in an aqueous solution of trifluoroacetic acid (0.1% v/v) was increased to 30% 

methanol over 12 minutes, which was then raised to 70% methanol for a further 10 

minutes [297-299]. 

3.2.3 Mass spectrometry 

Characterisation of the detected, prominent wine constituents was gained with the aid 

of high-resolution mass spectrometry. In order to achieve an optimum negative ion 

signal the chromatography was performed without trifluoroacetic acid. The sample 

stream was split post chromatographic separation with a portion (50%) directed to the 

mass spectrometer in order to reduce overloading the mass spectrometer. A 6210 

MSDTOF mass spectrometer (Agilent Technologies) was used with the following 

conditions: drying gas, nitrogen (7mL min
-1

, 350C); nebulizer gas, nitrogen (16 psi); 

capillary voltage, 4.4 kV; vaporizer temperature, 350C; and cone voltage, 60 V. The 

MS was calibrated using a standard tuning mix (G2421A, Agilent Technologies) 

[297-299]. 

3.2.4 Chemicals 

HPLC grade methanol was obtained from BDH (Poole, UK). All mobile phases were 

filtered through a 0.45 m nylon membrane filter. The permanganate 

chemiluminescence reagent was made by dissolving potassium permanganate  

(5 × 10
-4 

M; Ajax, Auburn, NSW, Australia) in a 1% (w/v) sodium polyphosphate 

(Sigma-Aldrich, Castle Hill, NSW, Australia) solution and the pH adjusted to 2.0 

using sulfuric acid (Rhone-Poulenc, Melbourne, VIC, Australia) [297-299]. 
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3.2.5 Data pre-processing and analysis 

All data manipulation and analysis algorithms were implemented using Matlab (V7.10 

(R2010a), MathWorks Inc, MA, USA), the PLS Toolbox (V4.0.2, Eigenvector 

Research Inc., WA, USA) and in-house developed algorithms. 

Chemometric methods were applied to raw chromatographic data to preserve all the 

important information. The chromatograms were smoothed using an 11 point 

quadratic filter, aligned using COW [236] and normalised to a constant total area 

(constant sum). The COW parameters selected by the optimisation algorithm for the 

geographic and vintage data are given in Table 3.2. Despite the fact that icoshift was 

shown to be the more accurate alignment method in Chapter 2, COW is used in this 

chapter as the chemiluminescence detector results in non-systematic peak shifts and 

baseline drift due to the solvent gradient. 

 

Table 3.2: Optimised segment lengths and slack sizes for COW alignment  

 Segment length Slack size 

Geographic (Cabernet Sauvignon) 153 1 

Geographic (Chardonnay) 106 1 

Vintage 154 4 

 

PCA was employed as both an EDA technique and a pre-processing method in order 

to reduce the dimensionality of the chromatographic data. PCA was performed on 

mean-centred data. 

LDA and QDA were applied to the PCs to classify the Cabernet Sauvignon and 

Chardonnay wines according to geographic origin. The classification models were 

developed and validated using leave-one-out cross-validation and the results displayed 

in the form of a confusion matrix. 

PLS and PCR were applied to data from the Pirramimma wines in order to construct a 

regression model to correlate the identified chromatographic peaks with wine age. 
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3.3 Results and discussion 

3.3.1 Classification of Cabernet Sauvignon wines according to geographic origin 

Average chromatograms of Cabernet Sauvignon from the two wine growing regions 

are shown in Figure 3.1. The average chromatograms were generated by averaging the 

aligned chemiluminescence traces. Peak assignments are provided in Table 3.3. A full 

discussion/interpretation of MS results is provided in [297]. 

 

Figure 3.1: Average aligned chromatograms of Cabernet Sauvignon wines from the Coonawarra and 

Geelong regions. Peak assignments are provided in Table 3.3. 

 

Variation can be observed between the wine varieties from the two regions. In general 

the intensity of the chromatographic peaks is higher between 0 and 8 minutes for the 

Geelong region, with the Coonawarra wines presenting a greater intensity for the 

peaks after 8 minutes. Based on the reversed-phase liquid chromatography, this may 

indicate that the Geelong wines contain higher concentrations of smaller water-

soluble phenols and fewer less soluble polyphenolic tannins than those from 

Coonawarra. 
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Table 3.3: Peak assignments 

Peak Compound Peak Compound 

1 Cinnamic acid 12 Epicatechin 

2 Tartaric acid 13 Ethyl gallate 

3 Gallic acid 14 Myricetin 

4 Vanillic acid 15 Syringic acid 

5 Gallocatechin 16 Procyanidin B 

6 Quercetin hexoside-gallate 17 Procyanidin A 

7 Catechin 18 Resveratrol 

8 Epigallocatechin 19 Picied 

9 Coumaric acid 20 Morin 

10 Caffeic acid 21 Malvidin 

11 Sinapic acid   

 

PCA was performed as an EDA technique and as a method for reducing the 

dimensionality of the data by using the scores as inputs to discriminant analysis. Table 

3.4 gives the eigenvalues for the first ten PCs. 

 

Table 3.4: PCA eigenvalues for Cabernet Sauvignon 

PC number % variance % cumulative variance  

1 47.03 47.03 

2 21.89 68.92 

3 16.49 85.41 

4 3.16 88.57 

5 2.29 90.86 

6 1.57 92.43 

7 1.47 93.90 

8 1.24 95.14 

9 0.78 95.92 

10 0.64 96.56 
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The scores plot for the first two PCs, which account for 68.92% of the variance, is 

plotted in Figure 3.2 (a). Clustering of the wines according to production region is 

evident, however there is still not complete separation. Therefore the third PC is 

added (16.49% of the variance) in attempt to gain complete separation between the 

Coonawarra and Geelong wines. The 3D scores plot of the first three PCs is shown 

Figure 3.2 (b). 

 

Figure 3.2: Cabernet Sauvignon scores plots (a) first two PCs 
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Figure 3.2: Cabernet Sauvignon scores plots (b) first three PCs 

 

There is no noticeable improvement in the separation between the Coonawarra and 

Geelong wines when the third PC is added and since visualisation and interpretation is 

simpler using two PCs, only the first two PCs are used for the discussion. The 

loadings associated with the first two PCs are shown in Figure 3.3. 
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Figure 3.3: Cabernet Sauvignon loadings for the first two PCs. Peak assignments are provided in Table 

3.3. 

 

The loading plots highlight cinnamic acid (peak 1), tartaric acid (peak 2) and 

myricetin (peak 14) as significant compounds in the classification of these red wines. 

The levels of myricetin have been found to differ according to geographic origin [258, 

300] and since tartaric acid is one of the most common acids found in red wine, it will 

play a role in the classification. 

Discrimination between the Coonawarra and Geelong regions was obtained using 

LDA and QDA. Discriminant analysis requires that the number of variables is less 

than the number of samples and that the variables are not correlated. By reducing the 

data with PCA, these two important criteria for robust discriminant analysis are 

satisfied [155]. Since two PCs adequately separated the Coonawarra and Geelong 

wines in the scores plot (Figure 3.2 (a)), LDA and QDA were performed using the 

first two PCs and the results are summarised as a confusion matrix (Table 3.5). 
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Interpretation of the LDA confusion matrix (Table 3.5 (a)) is as follows; for the total 

48 Coonawarra wines, 46 of them were correctly classified as Coonawarra, while 2 of 

them were incorrectly classified as Geelong wines giving an accuracy of 96%. For the 

20 Geelong wines, 18 of them were correctly classified as Geelong and 2 of them 

were incorrectly classified as Coonawarra, to give an accuracy of 90%. The overall 

accuracy of 94% for the LDA classification was calculated according to Equation 3.1. 

              
    

 
   

 
    Equation 3.1 

Where nii is number of samples correctly classified in each class (diagonal elements of 

the matrix) and n is the total number of samples in the matrix. 

QDA (Table 3.5 (b)) provided the same overall accuracy (94%) as LDA. However, 

QDA correctly classified all 20 of the Geelong wines, but could only correctly 

classify 44 of the 48 Coonawarra wines. 

Despite having the same overall accuracy, the classification results of LDA and QDA 

differ. This is due to LDA employing a linear discrimination boundary, while QDA 

uses a parabola. The results suggest that the parabolic boundary employed by QDA 

improves the classification of the Geelong wines, but in doing so, the correct 

classification of the Coonawarra wines is reduced. 

 

Table 3.5: Cabernet Sauvignon discriminant analysis results using the first two PCs (a) LDA and (b) 

QDA 

(a) 

 Coonawarra Geelong Total Accuracy 

Coonawarra 46 2 48 96% 

Geelong 2 18 20 90% 

Overall accuracy    94% 

 

(b) 

 Coonawarra Geelong Total Accuracy 

Coonawarra 44 4 48 92% 

Geelong 0 20 20 100% 

Overall accuracy    94% 
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3.3.2 Classification of Chardonnay wines according the geographic origin 

Average chromatograms of Chardonnay from the two wine growing regions are 

shown in Figure 3.4. The average chromatograms were generated by averaging the 

aligned chemiluminescence traces. Peak assignments are provided in Table 3.3. 

 

Figure 3.4: Average aligned chromatograms of Chardonnay wines from the Coonawarra and Geelong 

regions. Peak assignments are provided in Table 3.3. 

 

Variation between Chardonnay from the Coonawarra and Geelong wine growing 

regions is not as evident as with the Cabernet Sauvignon, however changes in 

concentration of the simple phenolic acids, gallic acid (peak 3), coumaric acid (peak 9) 

and epicatechin (peak 12) can be observed, all of which are higher in the Geelong 

wines. The concentrations of these species have been shown to vary with geographic 

origin [301]. 

As with the Cabernet Sauvignon, PCA was employed as an EDA technique and to 

reduce the dimensionality of the data. Table 3.6 gives the eigenvalues for the first ten 
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PCs. Since most of the variance is explained in the first two PCs (52.74% and 29.39% 

respectively), they are used for PCA. 

 

Table 3.6: PCA eigenvalues for Chardonnay 

PC 

number 

% 

variance 

% cumulative 

variance  

1 52.74 52.74 

2 29.39 82.13 

3 4.33 86.46 

4 3.35 89.81 

5 2.50 92.31 

6 1.76 94.07 

7 1.53 95.60 

8 1.03 96.63 

9 0.70 97.33 

10 0.55 97.88 

 

The scores plot for the first two PCs is shown in Figure 3.5 (a). Clustering of the 

wines according to geographic origin is evident, however there is some overlap 

between the two classes. Therefore the third PC is added (4.33% of the variance) in 

attempt to gain complete separation between the Coonawarra and Geelong wines. The 

3D scores plot of the first three PCs is shown Figure 3.5 (b). 



 

~ 90 ~ 
 

 

Figure 3.5: Chardonnay scores plots (a) first two PCs 
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Figure 3.5: Chardonnay scores plots (b) first three PCs 

 

As with the Cabernet Sauvignon wines, separation between the Coonawarra and 

Geelong wines is not really improved by adding in the third PC, thus only the first 

two PCs are used for the discussion. The loadings associated with the first two PCs 

are plotted in Figure 3.6. 



 

~ 92 ~ 
 

 

Figure 3.6: Chardonnay loadings for the first two PCs. Peak assignments are provided in Table 3.3. 

 

The loading plots highlight gallic acid (peak 3) and myricetin (peak 14) as significant 

compounds for the geographic classification of these white wines. Gallic acid has 

been shown to vary according to geographic origin [258]. Although myricetin is more 

commonly associated with red wines [302], it contains many hydroxyl moieties 

making it an ideal candidate for reactivity with acidified potassium permanganate. 

The chemical structure of myricetin is similar to that of quercetin (myricetin has an 

extra hydroxyl moiety), which has been shown to have an exceptionally high response 

to permanganate chemiluminescence [278]. This high sensitivity to 

chemiluminescence detection enables myricetin to play a significant role here. 

LDA and QDA were used to discriminate the Chardonnay wines according to 

production region. As with Cabernet Sauvignon, PCs were used as inputs to 

discriminant analysis. Since the Geelong and Coonawarra wines were adequately 

separated by two PCs in the scores plot (Figure 3.5 (a)), LDA and QDA were 

performed using the first two PCs and the results are summarised in Table 3.7. 
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The overall accuracy of QDA was higher, 82% compared with 77% for LDA. LDA 

correctly classified 20 of the 22 Coonawarra wines, however only 14 of the 22 

Geelong wines were able to be correctly classified. On the other hand, QDA was able 

to correctly classify 16 of the 22 Geelong wines and 20 of the 22 Coonawarra wines. 

These results suggest that parabolic discriminating boundary in QDA was more 

accurate at classifying the Geelong wines, while maintaining the same accuracy as the 

linear boundary for classifying the Coonawarra wines. 

 

Table 3.7: Chardonnay discriminant analysis results using the first two PCs (a) LDA and (b) QDA 

(a) 

 Coonawarra Geelong Total Accuracy 

Coonawarra 20 2 22 91% 

Geelong 8 14 22 64% 

Overall accuracy    77% 

 

(b) 

 Coonawarra Geelong Total Accuracy 

Coonawarra 20 2 22 91% 

Geelong 6 16 22 73% 

Overall accuracy    82% 
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3.3.3 Regression analysis of wine vintage 

The average chromatogram from the 33 chromatograms (representing the 17 Cabernet 

Sauvignon wines) is shown in Figure 3.7. The average chromatograms were generated 

by averaging the aligned chemiluminescence traces. Peak assignments are provided in 

Table 3.3. 

 

Figure 3.7: Average aligned chromatogram of the 33 chromatograms (representing the 17 Cabernet 

Sauvignon wines). Peak assignments are provided in Table 3.3. 

 

PCA was employed as an EDA technique, Figure 3.8 (a) shows the scores plot for the 

first two PCs and separation between wines produced in the 1970’s, 1980’s, 1990’s 

and 2000’s is evident. The loading plots for the first two PCs are provided in Figure 

3.8 (b), tartaric acid (peak 2), catechin (peak 7), sinapic acid (peak 11) and myricetin 

(peak 14) were identified as significant compounds for the separation of wines 

produced in the 1970’s, 1980’s, 1990’s and 2000’s. 

Wine vintage is strongly influenced by tartaric acid [303]. Goldberg et al. [304] found 

catechin levels to vary according to vintage and geographic location, with Pinot Noir 
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varying by 30% in the USA, while remaining stable between vintages in the 

Beaujolais and Burgundy regions of France. Myricetin content was found to vary 

between vintages grown in several countries by McDonald et al. [300]. Variations 

included 7% in Australian Cabernet Sauvignon, 40% in USA and Bulgarian Cabernet 

Sauvignon, 50% in Chilean Merlot, 34% in USA Merlot, and 17% in French Pinot 

Noir. Similar results were found for a range of Bulgarian [305] and Italian [306] 

wines. 

 

Figure 3.8: Vintage data PCA results for the first two PCs (a) scores plot, where “a” and “b” refer to the 

duplicate analyses 
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Figure 3.8: Vintage data PCA results for the first two PCs (b) loadings plot. Peak assignments are 

provided in Table 3.3. 

 

A model of the relationships between sample composition and age was developed by 

PLS and PCR. Prior to developing the model, the number of components in the model 

must be selected. A simple way of doing this is by looking at the variance explained 

by the model, given in Table 3.8. Figure 3.9 shows the percentage of cumulative 

variance explained in the dependent variable (Y) for both the PLS and PCR models. 
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Table 3.8: PLS and PCR latent variables (X-block is the variance explained in the independent variable and Y-block is the variance explained in the dependent variable) 

 PLS PCR 

 X-block Y-block X-block Y-block 

Component % 

variance 

% cumulative 

variance 

% 

variance 

% cumulative 

variance  

% 

variance 

% cumulative 

variance 

% 

variance 

% cumulative 

variance  

1 55.07 55.07 61.58 61.58 57.77 57.77 40.65 40.65 

2 17.52 72.59 24.43 86.01 15.10 72.87 39.32 79.97 

3 4.56 77.15 7.95 93.96 8.99 81.86 0.81 80.78 

4 5.57 82.72 2.83 96.79 6.48 88.34 1.65 82.43 

5 5.93 88.65 0.90 97.69 3.41 91.75 0.93 83.36 

6 3.24 91.89 0.89 98.58 2.21 93.96 6.42 89.78 

7 2.52 94.41 0.33 98.91 1.77 95.73 1.35 91.13 

8 1.27 95.68 0.28 99.19 1.16 96.89 3.75 94.88 

9 1.14 96.82 0.21 99.40 0.64 97.53 2.62 97.50 

10 0.84 97.66 0.19 99.59 0.53 98.06 0.13 97.63 
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Figure 3.9: Percent cumulative variance explained in the dependent variable for PLS and PCR 

 

Figure 3.9 suggests that 6 components explain enough of the variance as this is where 

it starts to plateau. The variance explained in Y is lower for PCR as the model is 

constructed to explain the independent variable (X), rather than Y; this can be seen in 

Table 3.8 as more variance is explained in X by PCR compared with PLS. Figure 3.10 

(a and b) shows the predicted age versus actual age for the 6 component PLS and PCR 

models, respectively. From this it can be seen that PLS is more accurate at fitting the 

dependent variable (age) than PCR. This is also confirmed by considering the R
2
 

values, 0.9858 and 0.8978 for PLS and PCR, respectively. 
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Figure 3.10: Predicted age versus measured age for a 6 component model (a) PLS and (b) PCR 
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A more sophisticated method for selecting the number of components in a model is 

cross-validation as it avoids over-fitting by not reusing the same data to fit a model 

and to estimate prediction error. The mean squared prediction error (MSPE) is 

estimated from a training set and is frequently used for assessing the performance of a 

regression model and selecting the optimal number of components in PLS and PCR. 

Commonly employed internal estimators include K-fold cross-validation and leave-

one-out cross-validation [307]. The K-fold cross-validation estimate is given by: 

             
 

  
               

 
    

 
     Equation 3.2 

Where the training set (T) is randomly divided in K segments (Tk, k = 1,…,K) of 

roughly equal size and fk is the predictor trained on T\Tk [307]. 

The MSPE for both PLS and PCR was estimated using 10-fold cross-validation and 

the results are shown in Figure 3.11. 

 

Figure 3.11: PLS and PCR MSPE curves estimated using 10-fold cross-validation 
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The MSPE curve for PLS regression indicates that 7 components provide sufficient 

prediction accuracy, as this is where the curve starts to plateau. On the other hand, 

PCR needs all 10 components to get the same prediction accuracy. In fact, the sixth 

component in PCR increases the prediction error of the model, suggesting that the 

combination of predictor variables contained in that component are not strongly 

correlated with Y, which can again be attributed to the fact that PCR constructs 

components to explain X, not Y. As a result the final regression models were 

developed using 7 and 10 components for PLS and PCR, respectively. 

The PLS model using 7 components explained 98.91% of the variance in age. Figure 

3.12 (a) shows the predicted age versus actual age, and good agreement is evident 

with an R
2
 value of 0.9891. The regression vector, which represents the 7 components, 

is shown in Figure 3.12 (b). 

 

Figure 3.12: 7 component PLS model (a) predicted versus measured age 
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Figure 3.12: 7 component PLS model (b) regression vector. Peak assignments are provided in Table 3.3. 

 

The PCR model using 10 components explained 97.63% of the variance in age, which 

is very close to the variance explained in the PLS model. Figure 3.13 (a) shows the 

predicted age versus actual age, and good agreement is evident with an R
2
 value of 

0.9763. The regression vector, which represents the 10 components, is shown in 

Figure 3.13 (b). Both the PLS and PCR models effectively fit the data, however PLS 

requires fewer components and has a slightly higher R
2
 value. 
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Figure 3.13: 10 component PCR model (a) predicted versus measured age and (b) regression vector. 

Peak assignments are provided in Table 3.3. 
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The regression vectors for both the 7 component PLS model and the 10 component 

PCR model appear similar and highlight a negative trend in tartaric acid (peak 2), 

catechin (peak 7), sinapic acid (peak 11), resveratrol (peak 18) and malvidin (peak 21) 

indicating that the concentrations of these analytes is higher in the younger wines and 

decrease during ageing. Vanillic acid (peak 4), ethyl gallate (peak 13) and 

procyanadin B (peak 16) show a positive trend and therefore increase over the ageing 

period and are higher in the older wines. 

Kelebek at al. [308] found the content of malvidin to decrease, while procyanadin B 

and vanillic acid increased during ageing. Malvidin was also found to decrease by 

Schwartz et al. [309]. Significant decreases in catechin were observed by Chamkha et 

al. [310] in Pinot Noir and Gris et al. [311] in Cabernet Franc and Merlot wine 

varieties. Although these studies were not conducted over a long period of time such 

as that in this work, it could be expected that these trends would continue during 

ageing as found in our study. 

In a study conducted over a wider range of vintages, Chira et al. [312] correlated wine 

age with the phenolic content of Bordeaux Cabernet Sauvignon (1978 to 2005) and 

Merlot (1979 to 2003) wines. It was found that phenolic compounds could 

discriminate both wine varieties according to vintage. 

PCR also highlights a negative trend in myricetin (peak 14) and morin (peak 20). The 

fact that myricetin was found to be important in PCR was not unexpected as the 

components were calculated by PCA and myricetin was found to be significant in the 

PCA loadings (Figure 3.8 (b)). This highlights a significant difference between PCA 

and PLS. PCA is only concerned with variance and any relationship between the data 

and the dependent variable (age) is irrelevant. On the other hand, the relationship 

between X and Y is important in PLS. Thus, myricetin appears in PCA as its levels 

change a lot, however these changes are not correlated to age and are therefore of low 

importance in PLS. The reverse of this is evident for vanillic acid, where it is not even 

discernible in PCA, but plays an important role in PLS as it is related to age. 

  



 

~ 105 ~ 
 

3.4 Conclusion 

HPLC with acidic potassium permanganate chemiluminescence detection was found 

to be suitable for the geographic classification of Australian red and white wines. For 

the red wines, PCA adequately separated the Coonawarra and Geelong regions using 

two PCs and highlighted cinnamic acid, tartaric acid and myricetin as significant 

maker compounds for identification of geographic origin. LDA and QDA were 

employed to discriminate the wines according to geographic origin. Using two PCs, 

LDA and QDA had the same overall accuracy of 94%, however the number of 

Coonawarra and Geelong wines correctly classified by each technique were different. 

This was due to the discrimination boundaries employed in each technique; the 

parabola employed by QDA improved the classification of the Geelong wines, but in 

doing so, reduced the correct classification of the Coonawarra wines. For the white 

wines, adequate separation according to production region was achieved using PCA 

with two PCs; gallic acid and myricetin were identified as important compounds in 

terms of geographic origin. QDA was slightly better at discriminating the wines with 

an overall accuracy of 82% compared with 77% for LDA. This was due to the 

parabolic discriminating boundary in QDA being more accurate at classifying the 

Geelong wines, while still maintaining the same accuracy as the linear boundary for 

classifying the Coonawarra wines. 

In the analysis of wine vintage, HPLC with acidic potassium permanganate 

chemiluminescence detection was again found to be suitable. PLS and PCR were 

compared for the modelling of sample composition and wine age. PLS required 7 

components, while PCR required 10 components to achieve similar predictive ability. 

The PCR model required more components as it was constructed to explain the 

independent variable and not the dependent variable and as a result more components 

were need to effectively explain the dependent variable. Both methods highlighted 

tartaric acid, vanillic acid, catechin, sinapic acid, ethyl gallate, procyanadin B, 

resveratrol and malvidin as analytes that vary throughout the ageing process. PCR 

also found myricetin to be important; this was not unexpected as the components in 

PCR were calculated by PCA and myricetin was found to be significant in the PCA 

loadings. This highlighted a significant difference between PCA and PLS. Since PCA 

is only concerned with variance, any relationship between the data and the dependent 

variable (age) is irrelevant. On the other hand, PLS models are developed to describe 
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the relationship between the dependent and independent variables. Hence, myricetin 

appears in PCA as its levels change a lot, however these changes are not correlated to 

age and are therefore of low importance in PLS. 

The phenolic compounds identified with acidic potassium permanganate 

chemiluminescence detection were found to be valuable for the analysis of wine 

vintage as well as discriminating the geographic origin of red and white wines. 

  



 

~ 107 ~ 
 

Chapter 4 - GC×GC Quality Control 

Software: Data Alignment 

 

4.1 Introduction 

Quality control (QC) involves monitoring a process and eliminating causes leading to 

unsatisfactory performance. The scope of QC varies considerably depending on the 

context in which it is to be used, however all QC processes involve analysis, 

collection of information and the interpretation and presentation of results. In the 

analytical laboratory, a quality system seeks to assure the analytical results are 

accurate and representative of the test sample being analysed [313]. 

QC differs from “normal” analysis in that the sample is well characterised; its 

composition is known and the analysis is being performed to ensure that it is within 

some defined tolerance values and, hence, “fit for purpose”. 

The aim of the work described here is to develop software for the final data analysis 

phase of the QC of flavours and fragrances. The software is required to compare a 

new sample to a known reference material in order to accept or reject the new sample. 

Flavours and fragrances are made up of numerous constituents, many of which are 

complex mixtures such as natural extracts or essential oils [314]. They are often 

characterised by the presence of many volatile components, belonging to several 

classes of compounds in a wide range of concentrations [315]. Since most flavour and 

fragrance compounds are volatile, 1D GC methods are routinely employed for QC of 

flavours and fragrances [316-319]. However, even when combined with 

identification/confirmation techniques such as MS, 1D GC generally does not provide 

sufficient separation power for complex qualitative or quantitative analysis. This 

results in the need for a greater degree of separation, hence the use of GC×GC for QC 

purposes has been investigated [314, 320, 321]. Since flavours and fragrances are 

composed of a number of chemical classes with different polarities, there is an 

opportunity to exploit the polarity differences of closely eluting compounds through 

the two separation mechanisms employed in GC×GC. Provided there is a separation 
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mechanism which permits their resolution on the second column, co-eluting 

compounds from the first column will subsequently be resolved on the second [12]. 

GC×GC provides advantages such as enhanced resolution and sensitivity [50] and 

increased peak capacity [322, 323] compared to 1D GC. The greater separation 

capacity afforded by GC×GC provides data sets that are typically 3 to 10 times larger 

than 1D GC [324]. This makes the technique an information rich source of chemical 

data that requires sophisticated computerised data processing methodologies in order 

to extract the maximum relevant and useful information. Commonly employed 

GC×GC data processing methods include visualisation, background correction, peak 

detection and quantification [325-329]. 

Comparison of chromatograms is required for QC in order to compare a manufactured 

product with a standard. Shellie et al. [330] developed a number of methods for 

comparing GC×GC chromatograms, including direct chromatogram comparison, 

chromatogram subtraction and averaging routines, as well as a method for generating 

relative weighted peak surface difference chromatograms and a more conventional 

Students t-test statistical approach. 

Comparison of chromatograms depends on accurate alignment of features to ensure 

that the same analytes are being compared [120, 326, 331, 332]. Several methods have 

been proposed for the alignment of GC×GC data and most are based on procedures 

originally developed for 1D GC. It should be noted, however, that in 2D separations 

the alignment is more critical due to the inherently higher variability of the retention 

times in the short second dimension time window [333]. Due to the limited number of 

modulation cycles per one-dimensional run, the number of data points available in the 

first dimension is limited (i.e. data density is low). In the second dimension, the data 

acquisition rate is much higher than in the first dimension (2 orders of magnitude or 

more), hence more information is obtained in this direction [328]. Fraga et al. [334] 

and van Mispelaar et al. [335] proposed algorithms to correct retention time variations 

in comprehensive 2D separations, however both methods can only be applied to small, 

local regions of interest in the chromatogram. In order to correct retention time 

variations over the entire chromatogram in both separation dimensions, Zhang et al. 

[117] and Pierce et al. [120] extended the 1D alignment methods of correlation 

optimised warping and piecewise alignment, respectively. 



 

~ 109 ~ 
 

A GC×GC chromatogram can be considered similar to a digital image, where each 

resolved chemical species produces a cluster of pixels at a pair of characteristic 

retention values defined by each column. Image based comparison methods for 

GC×GC data sets are described by Hollingsworth et al. [336]. 

This chapter describes the development of novel QC software that involves automated 

alignment of GC×GC chromatograms obtained with a univariate detector such as a 

FID. Each chromatogram, reference and sample, is reduced to a list of component 

peaks. Suitable reference peaks, termed control points, are then identified in the 

reference chromatogram. An astronomical pattern matching algorithm [337] is used to 

match these control points to features in the sample chromatogram. Subsequent 

alignment of the sample data is performed by affine transformation. A model 

fragrance is used to illustrate implementation of the software. 
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4.2 Experimental 

4.2.1 Samples 

The sample examined to evaluate and test the software is a model fragrance provided 

by Firmenich (Firmenich SA, Meyrin, Switzerland). It contained a representative 

range of perfumery ingredients, including esters, aldehydes, ketones and amines. 

4.2.2 Instrumentation 

The GC×GC system was based on an Agilent 6890 GC (Agilent Technologies, 

Wilmington, DE, USA) equipped with a split-splitless injector and a FID detector. A 

two-stage double loop modulator (ZX1; Zoex Corporation, TX, USA) was installed in 

the GC oven. This modulator consists of a cold jet (nitrogen gas cooled by liquid 

nitrogen) and a hot jet (heated air, at the temperature of the GC oven temperature + 

150°C, duration = 350 ms) positioned orthogonal to each other. A double trapping 

loop was positioned in the flow of both jets. The cold jet operated constantly to trap 

compounds within the double loop assembly, whilst the hot jet pulses periodically, 

acting to both divert the flow of the cold jet to release trapped compounds, and to heat 

the cold spot to actively remobilise the trapped compounds more quickly [57, 338]. 

The modulation period was 1.5 s. The first dimension column (HP-FFAP 15 m × 0.25 

mm × 0.25 µm; Agilent J&W) was linked to the second column (DB-1 1 m × 0.1 mm 

× 0.1 µm; Agilent J&W) via a deactivated silica column (called the transfer line, 0.1 

mm i.d., 1.75 m). The transfer line was installed in the modulator in a double loop 

configuration. Press fits were used between the first column and the transfer line and 

between the transfer line and the second column. The trapping of the compounds was 

performed in the transfer line. The GC inlet was heated to 250°C, and a 0.1 µL 

injection volume (using a 1 µL syringe, Hamilton 7001N, ga 0.47/70mm/pst 2, P/N 

80135/01) was used with a split ratio of 30:1. For the reference data helium was used 

as carrier gas at a flow of 1 mL min
-1

, in constant flow mode. The oven temperature 

program started from 40°C then increased at 15°C min
-1

 up to 230°C with a 7 min 

hold. A flame ionisation detector was used at 250°C, with nitrogen makeup gas, and a 

data acquisition rate of 100 Hz. 
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Further sample chromatograms were obtained by varying the flow rate and 

temperature ramp in order to generate chromatograms with induced peak shifts. The 

details are summarised in Table 4.1. 

Table 4.1: Details of the conditions used to obtain the varied sample chromatograms. (-) refers to no 

change 

Sample  Flow rate (mL/min)  Temperature ramp (C/min) 

1 - 0.1 (-) 

2 + 0.1 (-) 

3 (-) - 0.5 

4 (-) + 0.5 

  

4.2.3 Data processing 

All data manipulation and analysis algorithms were developed and implemented in-

house using Matlab (V7.10 (R2010a), MathWorks Inc, MA, USA). The raw data from 

the GC×GC system were acquired using Agilent ChemStation vE01.01.335 (Agilent 

Technologies). It was then exported in comma-separated values format (.csv) using an 

in-house macro and imported into Matlab for processing. 
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4.3 Program development 

The developed software is employed to align reference and sample chromatograms in 

order to allow accurate comparison for QC purposes. The software involves peak 

detection of the reference and sample chromatograms, reference control point 

selection, identification of corresponding sample control points, and alignment of the 

sample to the reference chromatogram. A model fragrance was used to illustrate 

development of the algorithm. The fragrance was analysed under standard conditions 

(section 4.2.2) and the GC×GC chromatogram was used as the reference. The 

fragrance was then analysed after increasing the temperature ramp (sample 4 in Table 

4.1) to provide a test sample chromatogram with induced peak shifts in order to 

illustrate the alignment process. 

 

4.3.1 GC×GC data 

GC×GC data is similar to the time-response data generated in 1D GC (Figure 4.1). 

 

Figure 4.1: Raw GC×GC data of the model fragrance 
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Since the modulation period and sampling frequency are known accurately the 

recorded data can be folded every cycle (Equation 4.1) to form a 2D matrix or array as 

shown in Figure 4.2. 

                      Equation 4.1 

Where mod is the modulation period (s) and freq is the sampling frequency (Hz). In 

this work a modulation period of 1.5s and a sampling frequency of 100Hz was used, 

therefore every 150 points the data is folded to form a new column in the 2D matrix. 

 

 

Figure 4.2: 2D image of the model fragrance GC×GC data matrix 

 

To simplify interpretation, only a small selected region of the chromatogram 

(highlighted in Figure 4.2) is used to demonstrate development of the software. 

 

4.3.2 Peak detection 

Peak detection is performed using an algorithm based on that described by Peters et al. 

[328]. The algorithm involves 1D peak detection, 2D peak merging and quantification 

of the 2D peaks. 



 

~ 114 ~ 
 

It is assumed that each column of the 2D array represents a 1D chromatogram in the 

second dimension and as a result a 1D peak detection algorithm can be applied to each 

of these 1D chromatograms. Figure 4.3 highlights columns 197-201 of the 2D data 

matrix in Figure 4.2, from this it can be seen that each 1D chromatogram (columns in 

the data array) contains one peak that should be found by a 1D peak detection 

algorithm. 

 

Figure 4.3: Columns 197-201 from the GC×GC data matrix in Figure 4.2 

 

The 1D peak detection algorithm employed in this work was based on that described 

by Vivo-Truyols et al. [339] and is undertaken on the data as a single dimension 

vector, as displayed in Figure 4.1. Baseline correction is achieved by subtracting from 

each segment, corresponding to a second dimension column, the median value of the 

segment. The complete 1D data vector (d0i) is then smoothed and peak locations 

identified from the first (d1i) and second (d2i) derivatives obtained using the Savitzky-

Golay algorithm [97] with a 7-point quadratic polynomial. The peak location is given 

by the second derivative and the range (width) of each peak is derived from the first 
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derivative data. Figure 4.4 shows an example of the original, first and second order 

derivatives with the defined peak characteristics. 

 

Figure 4.4: Example of the original (d0), first (d1) and second (d2) order derivatives. Peak 

characteristics are labelled. (1) maximum peak height (maximum in d0), (2) peak location (minimum in 

d2), (3) peak start point (first point in d1 above the threshold ) and (4) peak end point (last point in d1 

above the threshold). To allow comparison of these three plots on the same vertical axis, d0 was 

divided by 5. 

 

To define peak characteristics, start and end points, and to establish a minimum peak 

intensity, a threshold value is set with only peaks exceeding this threshold considered. 

The threshold employed in this work in defined according to Equation 4.2. 

                 
 

  
         

            

 
     

     Equation 4.2 

The threshold value is based on the second derivative data vector and is ten times the 

average difference of adjacent values. After detecting all peaks exceeding the 

threshold value in the 1D chromatogram, the output is a list of peaks comprising their 

first and second dimension indices, the start and end points and the area under the 

peak. 
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The algorithm then merges appropriate peaks into 2D clusters. A 2D cluster is a 

collection of 1D peaks in consecutive 1D chromatograms that are considered to 

belong to the same peak, and therefore should be merged to form a single object. 

When a 2D cluster is unable to be extended with more 1D peaks, a 2D peak is 

considered complete and defined. The first 1D peak in the first second dimension 

chromatogram is considered as the first 2D cluster. Next, all 1D peaks found in the 

adjacent second dimension chromatogram are considered as candidates for merging. 

Overlap and unimodality criteria are applied in order to accept or reject the merging 

of these 1D peaks with the first 2D cluster. The overlap criterion examines the degree 

of overlap between the 1D peaks in consecutive second dimension chromatograms. 

Depending on the adjacent peak regions considered, five different situations can be 

distinguished. These are outlined below and illustrated in Figure 4.5 where 1D peak A 

is defined as the last 1D peak of the existing 2D cluster and 1D peak B is the 

candidate peak for merging. 

(a) Both peaks start at the same location in the second dimension 

(b) Peak A starts and ends later than peak B 

(c) Peak B starts and ends later than peak A 

(d) Peak B starts later than peak A, but ends earlier 

(e) Peak A starts later than peak B, but ends earlier 

The percentage of overlap is calculated according to Equation 4.3. 

                      Equation 4.3 

Where b is the region of the candidate peak (1D peak B) that is overlapped with the 

peak region of 1D peak A and a is the region of peak A. A threshold is then selected; 

in this work a threshold of 40% was used. If OV is greater than the threshold, the 1D 

candidate peak is accepted; if not, this candidate peak is rejected and the algorithm 

proceeds to the next candidate peak. In cases (d) and (e), one of the peaks is 

incorporated in the peak region of the other peak and as a result the candidate peak is 

always accepted. 
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Figure 4.5: Schematic representation of peak regions of adjacent 1D peaks for the five different cases. 

Adapted from [328]. 

 

All 1D peaks that meet the overlap criterion are then subjected to a unimodality 

criterion. The unimodality criterion examines the peak maxima profile, which 

represents the chromatographic peak profile in the first dimension and therefore it 

should only show one maximum (i.e. unimodal). With increasing first dimension 

locations, if a maximum has already been detected, only candidate peaks with 

decreasing intensities are accepted. However, if the intensity of the candidate peak is 

greater than the previous maximum, the 2D cluster is considered complete and a new 

cluster is started. The 1D peak maxima profile of the peaks in the selected region of 

Figure 4.2 is depicted in Figure 4.6 (a). From this it can be seen that there are four 

separate 2D clusters, each made up of multiple 1D peaks. The 1D peaks in each 

cluster then need to be merged to form four 2D peaks. In order to identify which 2D 

peaks the 1D peaks in Figure 4.6 (a) correspond to, they are plotted as 2D peaks in 

Figure 4.6 (b). 
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Figure 4.6: (a) 1D peak maxima profile of the peaks in the selected region of Figure 4.2 and (b) 2D 

image plot identifying the 2D peaks that correspond to the 1D peaks in (a). a-j identify the 

corresponding peaks 

 

(b) 
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If more than one peak meets the overlap and unimodality criteria, the candidate peak 

with the second dimension location closest to the last 1D peak in the 2D cluster is 

selected for merging. Once this process is complete, peaks identified as belonging to a 

single cluster are merged to form a 2D peak and its underlying volume is given by 

summing the areas of the contributing 1D peaks. This peak merging process is 

illustrated in Figure 4.7. 
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Figure 4.7: General flow chart of procedure for merging 1D peaks to form 2D clusters. Adapted from 

[328]. 
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At this point in the software, the output for both the reference and sample data is the 

2D data matrix displayed as an image (Figure 4.8) and a list of the identified peaks 

with their corresponding first and second dimension locations and the relative volume 

enclosed by each peak (Table 4.2). 

 

 

 

Figure 4.8: 2D image generated by software with peaks identified (a) reference and (b) sample 

 

(a) 

(b) 
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Table 4.2: List of peaks identified by software with their first and second dimension locations and 

relative volume enclosed by each peak 

Reference Sample 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(% total) 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(% total) 

3.48 0.13 20.99 3.43 0.13 21.08 

4.13 0.26 20.81 4.08 0.25 20.65 

4.63 0.39 20.22 4.55 0.37 20.28 

4.98 0.24 37.98 4.90 0.22 37.99 

 

4.3.3 Aligning chromatograms 

In order to match and compare peaks arising from a reference material and a sample 

material, the generated peaks, as x- and y- locations and z-intensity data, are 

considered as points in an image and it is necessary to identify and select peaks that 

are common to both sets of data. These peaks are referred to as index points or control 

points. 

The process of overlaying two or more maps or images of similar data is referred to as 

registration. Registration geometrically aligns a reference and some sample image. 

Zitova and Flusser [340] reviewed modern and traditional methods of image 

registration and in the case of aligning 2D chromatograms we can identify the 

following four steps. (1) feature detection, by which the locations of distinctive and 

characteristic objects in the reference image are noted. In a 2D chromatogram these 

features can be represented by the location of peak maxima, and are termed index 

points or control points. (2) feature matching, where the correspondence between the 

control points in the sample and the reference chromatograms is established. (3) 

determine a mapping function that aligns the sample control points with those from 

the reference. (4) transform the complete sample chromatogram by the mapping 

function to achieve correspondence between the two chromatograms. All sample peak 

locations are moved using this transformation function, allowing subsequent 

comparison of all peaks between chromatograms. 

Note that it is not necessary that the complete sample chromatogram be transformed 

to match that of the reference. We only need to match corresponding peaks, i.e. 

chemical components, between the chromatograms, thus saving computation time. 
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4.3.3.1 Selection of control points 

Selection of suitable control points is required to derive the translation, scaling and 

rotation parameters for data transformation. Although manual selection of these 

common peaks is generally straightforward, the process is subjective and can be time 

consuming. Instead an efficient and effective automated method to carry out this task 

is proposed. Here, selection of control points in the reference chromatogram is 

undertaken by partitioning the chromatogram into a set of equal sized segments, the 

number of which can be user selected according to the distribution of peaks within the 

GC×GC pattern space. In this case 24 sectors were employed, 12 along the first 

dimension and 2 along the second dimension. The mean peak volume for all peaks 

across the entire chromatogram is calculated and the peak in each sector with the 

volume closest to the mean is selected as a control point, thus providing up to 24 

reference control points covering the pattern space. This procedure reduces the 

likelihood that neither very intense peaks nor minor peaks are likely to be selected as 

control points. Intense peaks can arise due to overloading the GC system and are often 

characterized by broad, asymmetric, and irregular profiles with unclear peak maxima 

locations between similar samples. Similarly, minor or weak peaks can be problematic 

since their retention times are more likely to be influenced by environmental factors, 

instrument noise, or the presence of intense peaks, and may not be present in all 

samples to be compared. 

However, as the simple illustrative example chromatograms contain only four peaks 

and the affine transform requires a minimum of three peaks, all four peaks will be 

used as control points. 

Once control points are selected in the reference chromatogram, identification of 

corresponding points in the sample chromatogram is undertaken. The algorithm 

employed here is derived from a star recognition algorithm originally developed by 

Groth for the comparison of star maps [337]. The Groth pattern-matching algorithm 

compares two lists of star coordinate positions and identifies individual points from 

one list (a reference) and their likely counterparts in the other, sample list. The 2D 

coordinate lists are matched according to the similarity of triangles formed between 

every combination of three points within each list. Geometrically similar pairs of 

triangles, one from each list, are identified and a voting process provisionally 
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highlights points that appear in multiple triangle pairs as being common to both lists. 

The algorithm is insensitive to translation, rotation, magnification or inversion; it can 

tolerate minor random errors or distortions and does not require the two lists to be of 

equal length. Modifications to the original algorithm have been proposed for matching 

photographic images of whale sharks [341]. Here, Groth’s algorithm has been adapted 

for GC×GC analysis. 

From the coordinates of the reference control points, triangles are formed between 

every combination of three points with a peak position defining each of a triangle’s 

vertices (v1, v2, and v3 defined by the locations (x1,y1), (x2,y2), and (x3,y3) 

respectively). For each list of n points, the total number of triangles, N, is given by 

Equation 4.4. Thus for the 4 control points in the reference chromatogram there are 4 

triangles describing the peak distribution. 

                      Equation 4.4 

The triangle vertices are arranged to make the shortest side, r2, lie between vertices 1 

and 2, the intermediate side, r1, between vertices 2 and 3, and the longest side, r3, 

between vertices 1 and 3. The triangles are then defined by the following six 

geometric properties as illustrated in Figure 4.9. 

i) The location of the centroid of the triangle,      , 

                      Equation 4.5 

                    

ii) The ratio of the longest to the shortest sides, R. 

                 Equation 4.6 

iii) The cosine, C, of the angle, α, at vertex 1 

iv) The rotation angle, , defined by the angle between vertex 1, the centroid 

and the x-axis. 

              
        

      
     Equation 4.7 

v) The perimeter of the triangle, P. 

                   Equation 4.8 
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vi) The orientation of the triangle (whether vertices 1, 2 and 3 are in a 

clockwise or counter-clockwise direction), O. In terms of vertex 

coordinates, 

                                   Equation 4.9 

      describes a clockwise oriented triangle [342]. 

 

 

Figure 4.9: The characteristic features of triangles between any three peak locations 

 

These geometric properties are required to prevent incorrect matching of the triangles. 

The orientation of the triangle, whether the sides are specified in a clockwise or 

counter-clockwise manner, provides a useful discriminating tool to ensure only 

triangles facing the same direction are matched. The rotation angle, , prevents 

severely rotated triangles from being incorrectly matched. The rotation angle was an 

addition to Groth’s algorithm proposed by Arzoumanian et al. [341] for matching 

shark patterns and was employed as a ‘local’ measure of rotation that provides some 

insensitivity to distortions. Matching triangles with similar values of C ensures that 

only triangles with a similar angle at vertex 1 are considered. Triangles of 

significantly different sizes are not matched due to R and P and by looking at the 



 

~ 126 ~ 
 

location of triangle centres, triangles which are similar in all other properties but are 

located in significantly different regions of the 2D chromatogram are not matched. 

This feature of examining the location of the triangle centres is a new measure 

employed in this work. Unlike a star map or photograph of a shark, the peaks in a 

GC×GC chromatogram will not be severely shifted between chromatograms; 

therefore triangles located at significantly different regions of the chromatogram will 

not be matched based on the location of the triangle centre. 

The reference control points and the characteristics of their triangles are employed to 

match corresponding points in sample chromatograms and subsequently align the 

peaks. 

4.3.3.2 Matching reference and sample control points 

Once the triangle properties of the reference control points have been defined, the 

entire sample peak coordinate list is examined. The six geometric properties are 

calculated for all possible triads from the sample peak list. The reference and sample 

triangles are illustrated in Figure 4.10 and their corresponding geometric properties 

are provided in Table 4.3. From this it can be seen that despite the peak locations 

being shifted in the chromatogram (Table 4.2) the triangle characteristics remain 

similar. 

  



 

~ 127 ~ 
 

    

    

    

    

Figure 4.10: Reference and sample triangles (a) reference triangle 1, (b) sample triangle 1, (c) reference 

triangle 2, (d) sample triangle 2, (e) reference triangle 3, (f) sample triangle 3, (g) reference triangle 4 

and (h) sample triangle 4  

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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Table 4.3: Geometric properties for the four reference and sample triangles in Figure 4.10 

 

Reference Sample 

Triangle Centroid (x,y) R C  P O Centroid (x,y) R C  P O 

1 38.67,21.00 2.10 0.96 0.27 124.13 -1.00 36.33, 20.00 2.08 0.96 0.24 121.45 -1.00 

2 45.33, 25.33 2.97 0.54 -0.05 134.36 1.00 42.67, 24.00 2.91 0.56 -0.08 131.20 1.00 

3 54.00, 29.67 1.66 0.72 -0.34 78.43 1.00 51.33, 28.00 1.61 0.75 -0.37 76.12 1.00 

4 34.00, 26.00 2.22 1.00 0.53 105.76 -1.00 31.67, 25.00 2.27 1.00 0.51 102.11 -1.00 
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The computed properties for every triangle from the sample chromatogram are 

compared with each of those from the reference chromatogram in order to find 

matches. The triangles are first compared according to orientation, then closeness of 

centroids, followed by perimeter, rotation angle, ratio of side lengths, and cosine of 

the vertex angle. A successful match is noted if all comparisons are within predefined 

tolerance values (selected empirically according to typical uncertainty of coordinate 

measurements). From this a list of matched triangle pairs is compiled, each of which 

involves three pairs of matched vertex points. Table 4.4 shows the tolerances 

employed in this work compared with those employed by Groth [337] and 

Arzoumanian et al [341]. 

To improve the efficiency of the matching algorithm, it is necessary to filter the 

triangles. Triangles with large length ratios and cosine values close to 1 are removed 

as such elongated and flattened triangles have a high probability of causing false 

matches and as a result weaken the algorithms discriminating ability. This process 

removes triangle 4 (Table 4.3) as it was a flattened triangle with a cosine value of 1. 

 

Table 4.4: Tolerance values for triangle matching 

Parameter Groth Arzoumanian This work Description 

Rmax 10 8 8 Maximum triangle side length 

ratio 

Cmax NA 0.99 0.99 Maximum cosine of angle at 

vertex 1 

max NA 10 20% Maximum relative triangle 

rotation 

Pmax NA NA 10% Maximum difference between 

triangle perimeter 

Centriod  NA NA 20 Maximum difference in position 

of triangle centre 

 

In order to determine which peaks are truly common to both reference and sample, it 

is assumed that matching peaks will appear in more matching triangles. Therefore the 

number of times a sample peak appears in a matching triangle is calculated, and this 

value is referred to as the vote. The sample peak having the highest vote for each 

reference peak is selected, providing a list of peaks that are assumed to be the same in 
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both the reference and sample chromatograms. This list of matching peaks identifies 

corresponding analytes in the chromatograms that can be used for subsequent 

derivation of the transformation function in order to achieve alignment of the 

chromatograms. The matching reference and sample peaks for the example data are 

provided in Table 4.5. The results indicate that all the peaks were successfully 

matched. 

 

Table 4.5: Results of triangle matching. List of matched reference and sample peaks (first and second 

dimension locations) with the vote 

Reference Sample  

Dim 1 

(min) 

Dim 2 

(s) 

Dim 1 

(min) 

Dim 2 

(s) 

Vote 

3.48 0.13 3.43 0.13 2 

4.13 0.26 4.08 0.25 2 

4.63 0.39 4.55 0.37 1 

4.98 0.24 4.90 0.22 1 

 

The maximum number of votes, Vmax, for a list of K points, is given by: 

                
                   Equation 4.10 

For the 4 sample peaks, the maximum number of votes that a peak can receive 

according to Equation 4.10 is 3. Thus the 2 votes obtained for two of the peaks in 

Table 4.5 represents good matching, while the peaks that got only 1 vote belonged to 

triangles that varied more than the tolerances defined in Table 4.4 and hence were not 

found to be matching triangles. 

4.3.3.3 Alignment 

In order to align the sample to the reference it is necessary to derive and apply some 

suitable transformation function. Transformation or mapping functions can be divided 

into two broad categories [339]. Global models use all the control points to estimate a 

single transformation function for the whole image, while local mapping functions 

treat the image as comprising patches of data each of which will have its own separate 

transformation model. 
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A wide variety of transforms are discussed in the literature and of the global models, 

low degree polynomials are most frequently encountered. Transformation to align a 

sample to a reference consists of translation, scaling and rotation, with the simplest 

and most robust of the linear models being the affine transform. We assume the 

reference control points, R, have been shifted in the corresponding sample data, S, by 

a linear combination of translation, scaling and rotation operations. Then, using 

homogeneous coordinates, 

R 

xR1 xR2 ... xRn

yR1 yR2 ... yRn

1 1 ... 1
















, S 

xS1 xS2 ... xSn

yS1 yS2 ... ySn

1 1 ... 1

















 ,            Equation 4.11 

The transformation matrix, A, is defined as, 

A 

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

0 0 1

















                Equation 4.12 

Thus, 

                           Equation 4.13 

Where a1,1 and a2,2 are the scaling coefficients for x and y respectively, a1,2 and a2,1 are 

the rotation coefficients and a1,3 and a2,3 describe translation along the x- and y-axes. 

The affine transform requires a minimum of three non-collinear control points, but 

generally many more than this are available. The parameters of the fitting function are 

then calculated by means of a least-squares fit, minimising the sum of squared errors 

at the control points. 

                                   Equation 4.14 

A is determined from coordinates of the control points in the sample chromatogram 

matched, using the triangles algorithm, to the control points in the reference 

chromatogram. Once calculated, it is applied to the complete list of sample peak 

coordinates (Equation 4.13). 

The affine transform is known to be a quick and simple method that is effective in 

reducing retention time variations associated with chromatographic data [336, 343]. 
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The results of performing an affine alignment are shown in Figure 4.11. The reference 

chromatogram is plotted and the sample peaks before and after alignment are shown. 

From this it can be seen that the sample peaks are closer to the reference peaks after 

alignment via affine transformation. This allows the reference and sample peaks to be 

accurately compared. 

 

 

Figure 4.11: Results of alignment. Reference chromatogram with sample peaks plotted before and after 

alignment via affine transformation 
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4.4 Results and discussion 

The software was employed to align peak lists from entire reference and sample 

chromatograms. A model fragrance was used to illustrate implementation of the 

algorithm. As described above, the fragrance was analysed under standard conditions 

(section 4.2.2) and the GC×GC chromatogram obtained was used as the reference 

image. The fragrance was then analysed under modified conditions to provide a series 

of test chromatograms with induced peak shifts. The flow rate was decreased (sample 

1) and increased (sample 2) by 0.1 mL/min and the temperature ramp was decreased 

(sample 3) and increased (sample 4) by 0.5C/min to produce four sample data sets 

(Table 4.1). 

Peak detection was performed on the reference and the four sample chromatograms. 

The results of peak detection are provided in Table 4.6. For each chromatogram the 

data is sorted according to the first dimension index and second dimension index. The 

reference and four sample chromatograms, with peaks marked, are illustrated in 

Figure 4.12. 
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Table 4.6: List of peaks identified in the reference and four sample chromatograms (first and second dimension locations and volume) 

Reference Sample 1 Sample 2 Sample 3 Sample 4 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(%) 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(%) 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(%) 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(%) 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(%) 

3.48 0.13 0.37 3.60 0.20 0.38 3.35 0.09 0.36 3.50 0.16 0.39 3.43 0.13 0.36 

4.13 0.26 0.36 4.28 0.32 0.36 4.00 0.21 0.36 4.20 0.28 0.38 4.08 0.25 0.36 

4.63 0.39 0.35 4.75 0.45 0.37 4.50 0.34 0.35 4.70 0.41 0.37 4.55 0.37 0.34 

4.98 0.24 0.66 5.13 0.29 0.68 4.85 0.18 0.66 5.05 0.25 0.69 4.90 0.22 0.66 

5.18 1.00 0.30 5.30 0.07 0.32 5.00 1.46 0.31 5.25 0.02 0.32 5.05 1.50 0.31 

6.20 0.19 1.45 6.35 0.24 1.49 6.08 0.13 1.45 6.33 0.19 1.51 6.08 0.17 1.45 

6.68 0.20 4.69 6.80 0.25 4.76 6.55 0.13 4.66 6.80 0.21 4.80 6.53 0.18 4.67 

7.08 0.25 3.08 7.23 0.29 3.13 6.93 0.20 3.08 7.23 0.26 3.15 6.93 0.24 3.08 

7.23 0.24 0.16 7.38 0.29 0.17 7.08 0.19 0.15 7.38 0.25 0.17 7.08 0.23 0.16 

7.30 0.06 0.02 7.45 0.12 0.02 7.15 0.01 0.02 7.45 0.07 0.02 7.15 0.05 0.02 

7.93 0.43 11.24 8.08 0.48 11.35 7.80 0.37 11.23 8.10 0.45 11.38 7.75 0.40 11.20 

8.23 0.35 1.83 8.38 0.40 1.84 8.08 0.30 1.83 8.40 0.37 1.85 8.05 0.32 1.81 

8.73 1.47 2.12 8.88 0.01 2.14 8.58 1.41 2.11 8.93 1.46 2.15 8.53 1.46 2.12 

9.75 0.23 3.42 9.88 0.28 3.43 9.60 0.18 3.43 9.98 0.24 3.43 9.10 0.32 0.01 

9.90 1.41 10.61 10.05 1.46 10.72 9.78 1.35 10.57 10.15 1.39 10.71 9.50 0.22 3.43 

10.28 1.39 8.59 10.40 1.43 6.95 10.13 1.33 7.14 10.53 1.38 8.59 9.68 1.39 10.60 

10.33 1.39 4.83 10.45 1.44 6.59 10.18 1.34 6.25 10.58 1.38 4.96 10.03 1.38 9.30 

10.50 1.34 1.78 10.63 1.40 1.79 10.35 1.29 1.77 10.75 1.33 1.77 10.08 1.37 4.13 

10.65 0.04 0.17 10.80 0.09 0.18 10.48 1.49 0.18 10.90 0.04 0.18 10.23 1.34 1.77 

10.68 1.39 0.07 10.83 1.44 0.07 10.53 1.33 0.07 10.95 1.38 0.07 10.40 0.04 0.18 
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Reference (cont.) Sample 1 (cont.) Sample 2 (cont.) Sample 3 (cont.) Sample 4 (cont.) 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(%) 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(%) 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(%) 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(%) 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(%) 

10.78 0.15 1.43 10.93 0.20 1.43 10.65 0.09 1.40 11.05 0.15 1.48 10.43 1.39 0.06 

10.80 1.34 1.74 10.95 1.39 1.61 10.68 1.29 1.72 11.08 1.34 1.75 10.53 0.13 1.49 

10.85 0.18 0.06 10.98 1.35 0.15 10.70 0.13 0.07 11.15 1.44 2.01 10.55 1.33 1.75 

10.88 1.44 2.03 11.00 0.22 0.05 10.73 1.39 2.02 11.18 0.19 1.60 10.60 1.44 2.02 

10.93 0.18 1.60 11.03 1.49 2.00 10.78 0.12 1.61 11.30 0.18 0.06 10.65 0.17 1.60 

11.03 0.16 0.08 11.08 0.22 1.59 10.90 0.11 0.08 11.58 0.77 1.67 10.78 0.15 0.08 

11.28 0.75 1.73 11.18 0.22 0.07 11.15 0.70 1.75 11.73 1.35 0.05 11.00 0.71 1.75 

11.45 1.35 0.07 11.43 0.78 1.70 11.30 1.30 0.06 12.03 1.43 1.67 11.15 1.36 0.07 

11.73 1.44 1.69 11.60 1.41 0.07 11.58 1.38 1.67 12.05 0.31 0.13 11.43 1.43 1.68 

11.75 0.29 0.14 11.83 0.35 0.03 11.60 0.24 0.14 12.10 0.30 0.09 11.45 0.28 0.13 

11.83 0.28 0.09 11.88 1.49 1.67 11.68 0.23 0.08 12.38 0.04 9.43 11.53 0.27 0.08 

12.08 0.04 9.55 11.88 0.35 0.10 11.90 1.49 9.58 12.40 1.31 0.02 11.75 0.03 9.59 

12.55 0.14 1.61 11.95 0.34 0.08 11.95 1.26 0.02 12.88 0.14 1.58 12.08 0.01 0.30 

12.63 1.50 0.03 12.20 0.09 9.79 12.43 0.08 1.60 12.98 0.01 0.03 12.25 0.13 1.60 

12.68 0.31 0.29 12.70 0.19 1.59 12.48 1.44 0.37 13.00 0.32 0.28 12.33 0.01 0.03 

12.78 1.34 0.04 12.80 0.07 0.03 12.53 0.26 0.28 13.10 1.34 0.04 12.35 0.31 0.28 

12.90 0.04 4.25 12.83 0.39 0.29 12.63 1.29 0.04 13.23 0.02 4.40 12.45 1.35 0.04 

12.90 1.49 0.35 12.93 1.41 0.04 12.73 1.47 4.51 13.28 0.37 0.67 12.58 0.03 4.35 

12.95 0.40 0.69 13.05 0.10 4.19 12.80 0.30 0.70 13.30 0.10 8.76 12.58 1.50 0.26 

12.98 0.11 8.88 13.08 0.06 0.30 12.83 0.04 8.71 13.33 1.48 0.12 12.63 0.40 0.69 

13.10 0.38 0.04 13.13 0.18 8.57 12.95 0.29 0.05 13.43 0.37 0.04 12.65 0.11 8.71 
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Reference (cont.) Sample 1 (cont.) Sample 2 (cont.) Sample 3 (cont.) Sample 4 (cont.) 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(%) 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(%) 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(%) 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(%) 

Dim 1 

(min) 

Dim 2 

(s) 

Volume 

(%) 

13.20 0.40 2.33 13.13 0.50 0.68 13.08 0.30 3.24 13.53 0.38 1.98 12.78 0.38 0.04 

13.25 0.39 0.92 13.25 0.47 0.05 13.13 0.02 0.64 13.58 0.38 1.18 12.88 0.39 3.25 

13.28 0.09 0.64 13.35 0.47 1.81 13.20 0.28 0.23 13.60 0.08 0.57 12.95 0.09 0.62 

13.35 0.37 0.24 13.40 0.48 1.34 13.25 0.33 0.21 13.68 0.37 0.22 13.03 0.37 0.27 

13.43 0.42 0.19 13.43 0.16 0.55 13.40 0.36 0.08 13.75 0.41 0.20 13.10 0.43 0.18 

13.58 0.45 0.08 13.53 0.46 0.27 13.45 0.37 0.07 13.90 0.44 0.06 13.23 0.45 0.07 

13.63 0.47 0.07 13.60 0.51 0.18 13.65 0.39 0.09 13.98 0.46 0.06 13.30 0.47 0.05 

13.83 0.48 0.09 13.75 0.55 0.07 13.83 0.41 0.09 14.15 0.48 0.09 13.50 0.49 0.09 

14.00 0.51 0.08 13.80 0.56 0.07 17.03 0.67 2.88 14.35 0.50 0.09 13.68 0.51 0.08 

17.35 0.79 2.85 14.00 0.57 0.08       17.68 0.76 2.77 16.98 0.77 2.85 

      14.20 0.60 0.09                   

      17.68 0.89 2.75                   
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(a) 

(b) 

(c) 
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Figure 4.12: 2D images with peaks identified (a) reference, (b) sample 1, (c) sample 2, (d) sample 3 and 

(e) sample 4 

 

Following peak detection, the reference and sample control points are selected. The 

reference control points are selected as described above and shown below in Figure 

4.13. The 24 segments of the chromatogram are marked for illustration purposes and 

the 11 highlighted peaks represent the selected reference control points. 

 

(d) 

(e) 
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Figure 4.13: 11 selected reference control points, the 24 segments are marked for illustration purposes 

 

The coordinates corresponding to the 11 control points provide 165 triangles against 

which a sample chromatogram can be compared. 

Consider sample 4 with the increased temperature ramp. For the complete set of 51 

peaks identified in the sample chromatogram, 20,825 discrete triangles can be formed. 

However, to minimise problems associated with small peaks, triangles are only 

formed using sample peaks with intensities greater than 20% of the minimum 

reference control point. This produces a list of 11,480 sample triangles. 

Some triangles are poorly suited for comparison. Triangles with large length ratios, 

R>8, and cosine, C, values greater than 0.99 are discarded from both the reference and 

sample triangle lists. Such elongated and flattened triangles can be falsely matched, 

which weakens the algorithms discriminating ability [341]. Figure 4.14 shows the 

distribution of R and C values for the triangles derived from the sample peak 

coordinates, the filtering criteria, R>8 and C>0.99 are highlighted for illustration 

purposes. The results of filtering provide 131 reference triangles and 8,522 sample 

triangles for matching, requiring a total of 1,116,382 comparisons. 
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Figure 4.14: Distribution of (a) length ratios and (b) cosines at vertex-1, for the triangles derived from 

the coordinates of the sample 4 chromatogram 
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The time taken to construct the list of matching triangles can be dramatically reduced 

by filtering the sample triangles during the triangle comparison algorithm; this also 

increases the efficiency and effectiveness of pattern matching. Examining triangle 

orientation eliminates approximately half of the comparisons. Comparing closeness of 

the triangle centres as being within an acceptable level (+/- 20 in dimension 1) and 

eliminating all sample triangles with perimeters different to the reference triangles by 

more than 10% reduces subsequent comparisons to around 20,000. The list of 

acceptable matches is further reduced by comparison of the rotation angle, side-length 

ratio and vertex-1 cosine. The list of matching triangles obtained contains the 

coordinates of every sample triangle that is matched to each reference triangle. The 

number of times each coordinate appears in a match is referred to as the vote for that 

coordinate. The votes are then examined and those matches having the coordinates 

with the highest number of votes are retained. This results in a final list of coordinates 

that is used to define the affine transform between this list and the corresponding 

reference control points. Results of triangle matching are provided in Table 4.7. 

 

Table 4.7: Results of triangle matching. List of matched reference and sample 4 peaks (first and second 

dimension locations) with the vote 

Reference Sample 4 

 Dim 1 

(min) 

Dim 2 

(s) 

Dim 1 

(min) 

Dim 2 

(s) 

Vote 

 

3.48 0.13 3.43 0.13 62 

6.20 0.19 6.08 0.17 60 

7.08 0.25 6.93 0.24 55 

8.23 0.35 8.05 0.32 47 

8.73 1.47 8.53 1.46 55 

10.88 1.44 10.60 1.44 43 

10.93 0.18 10.65 0.17 49 

11.73 1.44 11.43 1.43 65 

12.55 0.14 12.25 0.13 27 

13.20 0.40 12.88 0.39 31 

17.35 0.79 16.98 0.77 84 

 

Of the 11 control points identified in the original reference data, all are correctly 

matched in the sample data. For the 51 sample peaks, the maximum number of votes 
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that a peak can receive is 1225 (Equation 4.10), however the highest vote obtained 

was 84. This suggests that many of the triangles were filtered out by the tolerances 

defined in Table 4.4, which improves the efficiency and accuracy of the algorithm. 

The list of matching reference and sample control points are then used to calculate the 

affine transformation matrix of translation, scaling and rotation parameters, which is 

then applied to all 51 peaks in the sample chromatogram. This transformation could 

be applied to the complete chromatogram to generate an array or image for visual 

comparison. Figure 4.15 shows the reference chromatogram with the sample peaks 

plotted before and after alignment with the affine transform. From this it can be seen 

that the sample peaks are much closer after alignment than before, which indicates 

that the selected control points and the affine transformation were successful for 

aligning the reference and sample data. 

 

 

Figure 4.15: Results of alignment. Reference chromatogram with sample 4 peaks plotted before and 

after alignment via affine transformation 

 

The remaining sample chromatograms (samples 1-3) were compared to the reference 

chromatogram in a similar manner using the same 11 control points. The results of 

triangle matching are provided in Table 4.8 and the subsequent alignment results are 

shown in Figure 4.16. 
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Table 4.8: Results of triangle matching. List of matched reference and sample (1-3) peaks (first and second dimension locations) with the vote 

Reference Sample 1 Sample 2 Sample 3 

Dim 1 

(min) 

Dim 2 

(s) 

Dim 1 

(min) 

Dim 2 

(s) 

Vote 

 

Dim 1 

(min) 

Dim 2 

(s) 

Vote 

 

Dim 1 

(min) 

Dim 2 

(s) 

Vote 

 

3.48 0.13 3.60 0.20 56 3.35 0.09 70 3.50 0.16 58 

6.20 0.19 6.35 0.24 42 6.08 0.13 65 6.33 0.19 56 

7.08 0.25 7.23 0.29 46 6.93 0.20 66 7.23 0.26 62 

8.23 0.35 8.38 0.40 47 8.08 0.30 57 8.40 0.37 50 

8.73 1.47 9.88 0.28 4 8.58 1.41 60 8.93 1.46 62 

10.88 1.44 11.03 1.49 37 10.73 1.39 50 11.15 1.44 46 

10.93 0.18 11.08 0.22 51 10.90 0.11 49 11.05 0.15 48 

11.73 1.44 11.88 1.49 44 11.58 1.38 61 12.03 1.43 54 

12.55 0.14 12.70 0.19 26 12.43 0.08 21 12.88 0.14 22 

13.20 0.40 13.35 0.47 20 13.25 0.33 21 13.28 0.37 20 

17.35 0.79 17.68 0.89 66 17.03 0.67 67 17.68 0.76 58 
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Figure 4.16: Results of alignment. Reference chromatogram with sample peaks plotted before and after 

alignment via affine transformation (a) sample 1, (b) sample 2 

 

(a) 

(b) 



 

~ 145 ~ 
 

 

Figure 4.16: Results of alignment. Reference chromatogram with sample peaks plotted before and after 

alignment via affine transformation (c) sample 3 

 

All of the sample peaks in Figure 4.16 appear to be closer to the reference peaks after 

alignment, except for the sample chromatogram obtained with the reduced flow rate 

(sample 1). This may be due to an incorrect control point match and as a result the 

reference control points and matched sample 1 control points are plotted for 

inspection (Figure 4.17). The circled peaks are incorrectly matched due to wrap-

around. As the circled reference control point is wrapped around in the sample 1 

chromatogram, the triangle patterns are different and can no longer be correctly 

matched according to their geometric properties. It can also be seen in Table 4.8 that 

the vote for this peak (9.88,0.28) is very low, which can indicate an incorrect match. 

Figure 4.16 also indicates that although affine transformation is able to sufficiently 

align the reference and sample peaks, the alignment results may be inadequate. This is 

due to the fact that the affine transform is a global solution and is therefore not exact 

for individual peaks. 

 

(c) 
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Figure 4.17:(a) reference control points and (b) sample 1 control points. The circled peaks are the 

incorrectly matched control points 

 

The final output produced from the algorithm is a list of aligned peaks between the 

reference and sample chromatograms allowing direct comparison of analytes within 

samples. 

  

(a) 

(b) 
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4.5 Conclusion 

The comparison of GC×GC chromatograms requires the analytical data to be aligned, 

it has been demonstrated in this chapter that this can be achieved automatically using 

a pattern-matching algorithm originally developed for comparing two-dimensional 

star maps. A major aspect of this algorithm is its ability to compare coordinate lists of 

different size. Adopted for GC×GC data, this feature is exploited to identify the 

correspondence between a small number of control points taken from a reference 

chromatogram and a larger list of coordinates from a sample chromatogram; this 

dramatically reduces computation time. Once corresponding reference and sample 

control points are identified, they are used to calculate the translation, scaling and 

rotation operations for the global affine transform. The affine transformation is then 

applied to the sample data in order to align reference and sample peaks. 

Problems can arise for GC×GC data when peak wrap-around occurs. Wrap-around 

changes the triangle patterns and as a result they can no longer be correctly matched 

according to their geometric properties and false matches can occur. Despite the affine 

transform being a simple method for alignment, it is a global solution and is therefore 

not exact for individual peaks. These issues will be looked at in the next chapter. 
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Chapter 5 - GC×GC Quality Control 

Software: Data Comparison 

 

5.1 Introduction 

In the previous chapter software was described for the automated alignment of 

GC×GC chromatograms. A simple method of partitioning the reference 

chromatogram was employed to aid selection of reference control points that cover 

the pattern space. These control points were then compared with the entire sample 

peak coordinate list using a triangle pattern matching algorithm, originally developed 

for the comparison of star maps, to identify corresponding points in the sample 

chromatogram. Once reference and sample control points were identified, they were 

used to calculate the translation, scaling and rotation operations for an affine 

transform. The affine transformation was then applied to the complete sample peak 

list in an attempt to align reference and sample peaks. 

A few problems were identified with use of the software, these were generally 

associated with peak wrap-around and the use of a global affine transform for 

alignment. These issues are addressed in this chapter as well as further extending the 

software to perform sample comparisons for the purpose of QC. Comparison of 

reference and sample chromatograms is achieved through the use of fuzzy logic with a 

trapezoidal membership function. Fuzzy comparisons are ideally suited for this type 

of analysis, they are flexible and, as a result, can compensate for the lack of accuracy 

obtained with an affine transform. The developed software is employed to analyse a 

number of real flavour samples for QC purposes. 
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5.2 Experimental 

5.2.1 Samples 

The samples examined to evaluate and test the software are a model fragrance and 

real flavour samples provided by Firmenich (Firmenich SA, Meyrin, Switzerland). 

5.2.2 Instrumentation 

The GC×GC system was based on an Agilent 6890 GC (Agilent Technologies, 

Wilmington, DE, USA) equipped with a split-splitless injector and a FID detector. A 

two-stage double loop modulator (ZX1; Zoex Corporation, TX, USA) was installed in 

the GC oven. This modulator consists of a cold jet (nitrogen gas cooled by liquid 

nitrogen) and a hot jet (heated air, at the temperature of the GC oven temperature + 

150°C, duration = 350 ms) positioned orthogonal to each other. A double trapping 

loop was positioned in the flow of both jets. The cold jet operated constantly to trap 

compounds within the double loop assembly, whilst the hot jet pulses periodically, 

acting to both divert the flow of the cold jet to release trapped compounds, and to heat 

the cold spot to actively remobilise the trapped compounds more quickly [57, 338]. 

The modulation period was 1.5 s. The first dimension column (HP-FFAP 15 m × 0.25 

mm × 0.25 µm; Agilent J&W) was linked to the second column (DB-1 1 m × 0.1 mm 

× 0.1 µm; Agilent J&W) via a deactivated silica column (called the transfer line, 0.1 

mm i.d., 1.75 m). The transfer line was installed in the modulator in a double loop 

configuration. Press fits were used between the first column and the transfer line and 

between the transfer line and the second column. The trapping of the compounds was 

performed in the transfer line. The GC inlet was heated to 250°C, and a 0.1 µL 

injection volume (using a 1 µL syringe, Hamilton 7001N, ga 0.47/70mm/pst 2, P/N 

80135/01) was used with a split ratio of 30:1. For the reference data helium was used 

as carrier gas at a flow of 1 mL min
-1

, in constant flow mode. The oven temperature 

program started from 40°C then increased at 15°C min
-1

 up to 230°C with a 7 min 

hold. A flame ionisation detector was used at 250°C, with nitrogen makeup gas, and a 

data acquisition rate of 100 Hz. 

Further sample fragrance chromatograms were obtained by varying the flow rate and 

temperature ramp in order to generate chromatograms with induced peak shifts (Table 

4.1). 
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5.2.3 Data processing 

All data manipulation and analysis algorithms were developed and implemented in-

house using Matlab (V7.10 (R2010a), MathWorks Inc, MA, USA). The raw data from 

the GC×GC system were acquired using Agilent ChemStation vE01.01.335 (Agilent 

Technologies). It was then exported in comma-separated values format (.csv) using an 

in-house macro and imported into Matlab for processing. 
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5.3 Program development 

5.3.1 Improved control point selection 

The alignment process using an affine transformation is made more stable by 

increasing the number of control points employed. Since it is a least squares fit, a 

larger number of control points reduces the effects outliers and provides for a more 

accurate equation of fit. In order to ensure the analytical data is more evenly spread 

across the pattern space, and hopefully increase the number of selected control points, 

the reference chromatogram is rotated to occupy the centre of the pattern space. 

As in the previous chapter, the reference chromatogram is that obtained from a model 

fragrance analysed under standard conditions (section 5.2.2). To rotate the 

chromatogram to the centre of the pattern space, the reference chromatogram is 

projected in the second dimension by summing along all columns in the data matrix 

(Equation 5.1). 

                    
 
      Equation 5.1 

This provides a profile of the reference which is used to identify the spread of the 

peaks. A parabola is then constructed and the correlation between the parabola and the 

reference profile is calculated. Figure 5.1 shows the parabola with the reference 

profile, it can be seen that the spread of the peaks lies on the edges of the parabola and 

the objective is to shift these peaks to the centre of the parabola and hence the centre 

of the chromatogram, which allows for selection of more, better placed reference 

control points. 
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Figure 5.1: Parabola and reference profile 

 

To centre the chromatogram, the reference profile vector is incrementally shifted and 

correlated with the parabola. The shift required to achieve the highest correlation, i.e. 

the position that centres the chromatogram, is recorded. This shift is referred to as the 

offset. The complete reference chromatogram as a 1D vector is then circularly shifted 

by the offset, resulting in a chromatogram where the peaks occupy the centre of the 

pattern space. Figure 5.2 shows the parabola with the shifted reference profile and the 

reference chromatogram before and after rotation is shown in Figure 5.3. 
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Figure 5.2: Parabola and shifted reference profile 

 

 

Figure 5.3: (a) original reference chromatogram 

 

(a) 
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Figure 5.3: (b) rotated reference chromatogram 

 

The control points are then selected as described in Chapter 4 and shown in Figure 5.4. 

From this it can be seen that there are now 14 control points, compared with the 11 

selected using the original version of the software (Chapter 4). A higher number of 

control points is better for the affine transform as it gives it more points across the 

pattern space to calculate the transformation. The affine transformation is improved 

by a higher number of control points as it is a least squares fit and more points results 

in a better equation approximation. 

(b) 
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Figure 5.4: 14 selected reference control points, the 24 segments are marked for illustration purposes 

 

5.3.2 Wrap-around 

Wrap-around occurs when the separation in the second-dimension is not finished 

before the next fraction is injected. Thus, the second dimension retention time exceeds 

the modulation period and part or all of a peak appears in a later modulation than that 

in which it was injected. This is illustrated in Figure 5.5 and it can be seen that the 

same highlighted peak has been wrapped around between the two chromatograms. 

Wrap-around causes problems in pattern matching as the second dimension retention 

times are significantly different, in the example below the peak in the first 

chromatogram is located at 8.73,1.47 and the second chromatogram it is at 8.88,0.01. 

This results in different patterns and hence different triangle properties, which will 

cause incorrect peak matching. 
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Figure 5.5: Example of wrap-around. The circled peak is wrapped around between the two 

chromatograms 

 

In order to correct the effects of wrap-around, the sample chromatogram is aligned 

with the reference in the centre of the pattern space. Since the reference and sample 

are aligned in the second dimension, the selected reference control points will not be 

wrapped around in the sample chromatogram and as a result can be accurately 

matched. The sample used to illustrate this part of the algorithm is the sample with the 

decreased flow rate (sample 1 in Table 4.1), as wrap-around issues were observed for 

this sample in Chapter 4. 

To align the sample chromatogram with the reference in the centre of the pattern 

space, the sample profile is found in the same manner as the reference, by summing 

the chromatogram in the second dimension (Equation 5.1). The correlation between 

the new, shifted, reference profile and the sample profile is calculated and the offset 

between the reference and sample is defined. Figure 5.6 shows the sample profile and 

shifted reference profile. 
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Figure 5.6: Original sample profile and shifted reference profile 

 

The sample as a 1D vector is then circularly shifted by the offset, to provide a sample 

chromatogram that is aligned with the reference in the centre of the pattern space 

(Figure 5.7). The rotated sample chromatogram is shown in Figure 5.8. 
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Figure 5.7: Shifted reference and sample profiles 

 

 

 

Figure 5.8: Rotated sample chromatogram 
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5.3.3 Matching reference and sample control points 

The 14 control points selected from the new, rotated, reference chromatogram as 

described above are matched to the entire peak list from the sample. The sample peaks 

are detected as described in Chapter 4. 

The triangles are then formed for the reference control points and the entire sample 

list and the triangles are filtered to remove triangles poorly suited for matching as 

previously described. Finally, the votes are examined and the matches with the 

highest number of votes are assumed to be the matching sample control points. The 

results of triangle matching are provided in Table 5.1. 

 

Table 5.1: Results of triangle matching. List of matched reference and sample peaks (first and second 

dimension locations) with the vote 

Reference Sample 

 Dim 1 

(min) 

Dim 2 

(s) 

Dim 1 

(min) 

Dim 2 

(s) 

Vote 

 

3.48 0.77 3.60 0.80 63 

5.18 0.65 5.30 0.67 123 

6.20 0.83 6.35 0.84 57 

7.08 0.89 7.23 0.89 52 

7.30 0.70 7.45 0.72 80 

8.23 0.99 8.38 1.00 50 

8.75 0.61 8.88 0.61 70 

10.90 0.58 11.05 0.59 115 

11.28 1.39 11.43 1.38 40 

11.75 0.58 11.90 0.59 83 

12.55 0.78 12.70 0.79 59 

13.20 1.04 13.35 1.07 74 

13.28 0.73 13.43 0.76 41 

17.35 1.43 17.68 1.49 215 

 

Of the 14 reference control points, all are correctly matched in the sample. This would 

suggest that rotating the reference and sample chromatograms to occupy the centre of 

the pattern space has removed the effect of wrap-around as well as improving the 

affine transformation by increasing the number of control points. Many of the votes 
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are also higher than that of the un-rotated chromatograms (Tables 4.7 and 4.8), which 

indicates that more triangles were able to be accurately matched. 

5.3.4 Reducing false matches 

Another issue observed in the previous chapter was that of incorrect matching, these 

matches were identified as having a low vote and significantly different coordinates. 

In order to correct for this a vote cut off and/or coordinate tolerance can be set. First, a 

vote cut-off is evaluated. A vote cut off was applied by both Groth [337] and 

Arzoumanian et al. [341], where matches were removed if the vote dropped by a 

factor of two. In this work, a vote cut-off was set at half of the maximum vote; 

anything lower than half of the maximum vote was removed. This vote cut-off was 

applied to all four sample chromatograms and the results are provided in Table 5.2. 

From this it can be seen that too many matches are removed and in the case of sample 

2 only two matches remain. Two control points are not sufficient for an affine 

transform, which requires a minimum of three points. 

Applying a tolerance on the coordinates was also evaluated. If the coordinates are 

greater than twice the average tolerance (Equation 5.2) apart, they are removed. The 

results for the four samples are provided in Table 5.3. The results indicate that the last 

peak at 17.35,1.43 (reference) is removed from sample 1 and 2, despite being a 

correct match. However, peak coordinates that are too far apart are not recommended 

for an affine transform as it will adversely affect the transformation. Since the affine 

transformation is a least squares fit, peaks that deviate significantly result in a poor 

approximation as the method is not robust. For this reason, the coordinate tolerance 

was subsequently used in the algorithm as a means of reducing false matches. 

                                          
 

 Equation 5.2 

Where cycle is defined in Equation 4.1, x and y are the first and second dimension 

locations and 1 and 2 refer to the reference and sample, respectively. 
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Table 5.2: Results of vote cut off for the reference and four sample chromatograms 

Reference Sample 1 Sample 2 Sample 3 Sample 4 

Dim 1 

(min) 

Dim 2 

(s) 

Dim 1 

(min) 

Dim 2 

(s) 

Vote 

 

Dim 1 

(min) 

Dim 2 

(s) 

Vote 

 

Dim 1 

(min) 

Dim 2 

(s) 

Vote 

 

Dim 1 

(min) 

Dim 2 

(s) 

Vote 

 

5.18 0.65 5.30 0.67 123 5.03 0.66 124 5.25 0.68 125 5.08 0.66 111 

7.30 0.70                   7.15 0.71 70 

8.75 0.61                   8.55 0.62 73 

10.90 0.58 11.05 0.59 115       11.18 0.60 109 10.63 0.60 99 

13.20 1.04                   12.78 1.04 79 

17.35 1.43 17.68 1.49 215 17.03 1.37 200 17.68 1.42 210 16.98 1.43 137 
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Table 5.3: Results of coordinate tolerance for the reference and four sample chromatograms 

Reference Sample 1 Sample 2 Sample 3 Sample 4 

Dim 1 

(min) 

Dim 2 

(s) 

Dim 1 

(min) 

Dim 2 

(s) 

Vote 

 

Dim 1 

(min) 

Dim 2 

(s) 

Vote 

 

Dim 1 

(min) 

Dim 2 

(s) 

Vote 

 

Dim 1 

(min) 

Dim 2 

(s) 

Vote 

 

3.48 0.77 3.60 0.80 63 3.35 0.79 52 3.50 0.82 57 3.43 0.79 60 

5.18 0.65 5.30 0.67 123 5.03 0.66 124 5.25 0.68 125 5.08 0.66 122 

6.20 0.83 6.35 0.84 57 6.08 0.83 53 6.33 0.85 61 6.08 0.83 62 

7.08 0.89 7.23 0.89 52 6.93 0.90 52 7.23 0.92 63 6.93 0.90 56 

7.30 0.70 7.45 0.72 80 7.15 0.71 67 7.45 0.73 78 7.15 0.71 73 

8.23 0.99 8.38 1.00 50 8.08 1.00 59 8.40 1.03 68 8.05 0.98 45 

8.75 0.61 8.88 0.61 70 8.60 0.61 54 8.95 0.62 64 8.55 0.62 64 

10.90 0.58 11.05 0.59 115 10.75 0.59 96 11.18 0.60 109 10.63 0.60 106 

11.23 1.39 11.43 1.38 40 11.15 1.40 41 11.58 1.43 43 11.00 1.37 44 

11.75 0.58 11.90 0.59 83 11.60 0.58 66 12.05 0.59 82 11.45 0.59 71 

12.55 0.78 12.70 0.79 59 12.43 0.78 39 12.88 0.80 55 12.25 0.79 57 

13.20 1.04 13.35 1.07 74 13.08 1.00 50 13.53 1.04 57 12.88 1.05 69 

13.28 0.73 13.43 0.76 41 13.13 0.72 33 13.60 0.74 40 12.95 0.75 40 

17.35 1.43 

      

17.68 1.42 210 16.98 1.43 215 
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5.3.5 Alignment 

As in Chapter 4, the matched, corresponding reference and sample control points are 

used to calculate the affine transformation matrix of translation, scaling and rotation 

parameters, which is then applied to the sample peaks. The results are summarised in 

Table 5.4. The average Euclidean distance between the coordinates of the reference 

and sample control points was calculated both before and after pattern matching and 

alignment. In every case the pattern matching and subsequent affine transform 

considerably reduced the differences between the reference and sample control points. 

 

Table 5.4: Average Euclidean distance between the reference and sample control points before 

(uncorrected) and after (corrected) pattern matching and affine transformation 

Sample Before After 

1 6.03 1.02 

2 5.80 0.83 

3 9.45 1.11 

4 9.06 0.87 

 

Once the reference and sample chromatograms are aligned, they can be returned to the 

original, un-rotated, coordinate system by simply subtracting the offset values. 

 

5.3.6 Chromatogram comparison 

After alignment, the final comparison of the reference and sample chromatograms is 

achieved through the use of fuzzy logic. Fuzzy logic is a convenient way of mapping 

an input space to an output space by introducing vagueness to eliminate sharp 

boundaries dividing members of a class from non-members. Rather than having “hard” 

yes-no answers, fuzzy reasoning allows for “not-quite” yes or no answers to class 

membership. This type of reasoning is common in human language, but can be 

difficult for a computer. Reasoning in fuzzy logic is simply a matter of generalising 

the familiar yes-no (Boolean) logic by assigning “true” the numerical value 1 and 

“false” 0, however this is also extended to allow in-between values of, for example, 

0.6 etc [344-346]. This feature of fuzzy logic is exploited in the comparison of 
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GC×GC chromatograms to compare a reference peak to the entire sample peak list in 

order to identify its matching peak. Instead of “yes this is the matching sample peak” 

or “no it isn’t”, the peaks are assigned a degree of matching which makes the 

algorithm flexible enough to tolerate the imprecise alignment resulting from the affine 

transform. The degree of matching is given by the membership function which is a 

curve that defines how each point in the input space is mapped to a membership value 

between 0 and 1 [345]. Membership functions include triangular, trapezoidal and 

Gaussian functions; these are illustrated below in Figure 5.9. In this work a 

symmetrical trapezoidal membership function was employed. 

 

 

Figure 5.9: Membership functions (a) triangular, (b) trapezoidal and (c) Gaussian. From [345]. 

 

The comparison begins by first converting the 2D reference and sample peaks lists 

into 1D peak positions according to Equation 5.3. 

                        Equation 5.3 

Where x and y are the first dimension and second dimension peak locations, 

respectively and cycle is defined in Equation 4.1. 

In this example, the reference is the standard model perfume, as used previously, and 

the sample is that with the reduced temperature ramp (sample 3). The 1D peak 

positions for the reference and sample are shown in Figure 5.10. 

(a) (b) (c) 
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Figure 5.10: 1D peak locations (a) reference and (b) sample 
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The highlighted section in Figure 5.10 is expanded in Figure 5.11 and as a simple 

example the highlighted reference peak is compared to the sample peaks (peaks 1-6) 

in order to find its matching peak. It is simple to identify the matching peaks by eye, 

however the problem is getting a computer to automatically identify matching peaks 

and this is done using the fuzzy membership function. 

 

Figure 5.11: Expanded section of Figure 5.10 (a) reference with selected peak for matching highlighted 
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Figure 5.11: Expanded section of Figure 5.10 (b) sample with peaks 1-6 highlighted 

 

Membership values between 0 and 1 for the sample peaks to each of the reference 

peaks are then determined from the membership function. The closer the membership 

value is to 1, the more likely it is that the peaks are a match. A 3D representation of 

the trapezoidal membership function is shown in Figure 5.12 (a); this function 

essentially fits over a reference peak and the membership values of the sample peaks 

are determined by their closeness to the reference peak. However, as the algorithm 

operates in 1D space, the actual membership values are determined as in Figure 5.12 

(b). 
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Figure 5.12: Trapezoidal membership function in (a) 3D and (b) 1D forms 

 

The membership values for the sample peaks (peaks 1-6) to the highlighted reference 

peak are provided in Table 5.5. The membership values indicate that sample peak 3 is 

the closest match to the reference peak, however in order to make sure that an 

(a) 
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incorrect peak is not matched simply as it is the closest, the membership values are 

scaled according to the peak intensity (Equation 5.4). This ensures that the peaks are 

relatively the same size. The scaled membership values are provided in Table 5.5. The 

results confirm that peak 3 is the most likely match to the selected reference peak. It 

can also be seen that the membership values of some peaks drop significantly after 

scaling. For example, peak 4 originally had a membership value of 0.58, but after 

scaling the value dropped to just 0.02. This indicates that the intensity of the peak was 

significantly different from the reference and as a result is not the correct match. 

 

Table 5.5: Original membership values and scaled membership values for sample peaks (peaks 1-6) to 

the selected reference peak 

Peak number Membership value Scaled membership values 

1 0.20 0.00 

2 0.52 0.43 

3 1.00 0.99 

4 0.58 0.02 

5 0.60 0.52 

6 0.23 0.21 

 

              
       

       
    Equation 5.4 

Where M is the original membership value and Z is the peak intensity. 

After the membership values are scaled, the algorithm finds the maximum 

membership value of every sample peak to each reference peak. This results in a list 

of matching reference and sample peaks that can be compared. 
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5.4 Results and discussion 

The software developed in this chapter and the previous chapter is employed to 

analyse a series of real flavour samples. The data contains two batches of each flavour, 

one that passed QC and the other that failed. The failed samples were failed in the QC 

laboratory by either 1D GC or taste testing and the software is employed to see if 

GC×GC is able to identify why it was failed. 

When comparing a new sample to a reference for QC purposes, it is necessary to 

identify if any new peaks appear in the sample that are not in the reference (“extra 

peaks”) or peaks that may be present in the reference but are missing from the sample 

(“missing peaks”). Tolerance values also need to be set in order to pass or fail 

matches, a peak may be the same in both the reference and sample but the 

concentrations may vary significantly, as a result the product should not be passed. 

The tolerance values employed in this work were originally developed for 1D GC QC 

and are provided in Table 5.6. 

 

Table 5.6: Tolerance values employed to pass or fail matches 

 Fragrances Flavours 

Tolerance (%) Peak area (%) Peak area (%) 

2 10-100 20-100 

5 3-10 6-20 

10 1-3 0.9-6 

50 0.2-1 0.15-0.9 

100 0.02-0.2 0.03-0.15 

 

The final comparison output to be used in a QC laboratory contains a list of the 

reference and sample peaks, their corresponding percentage volume and a comment as 

to whether the sample peak passed, failed, etc. as well as a graphical representation of 

the results. The comparison requires the user to input the file names (reference and 

sample), modulation period, sampling frequency and tolerance values. No manual 

intervention is required. The comparison output for one of the flavour samples is 

provided in Figure 5.13. The results indicate that there are two extra peaks and a 

missing peak as well as a number of fails based on component concentrations; this 
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would suggest a possible contamination in the production. The comparison outputs for 

the remaining flavour samples are provided in Appendix 1. 

The time taken to perform the entire comparison, including peak detection, control 

point selection, alignment and comparison, varies depending on the number of peaks 

and increases with the number of peaks. For the 10 flavour samples, the average 

computation time was 23.2 seconds (range 2.0 to 120.5 seconds). This computation 

was performed on an Asus laptop equipped with an Intel Core i7 processor running at 

1.60 GHz and 4.00 GB of RAM. The operating system was Microsoft Windows 7 (64 

bit). 
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Date: 13-Dec-2011 18:08:12  

 

Reference: FLAVOUR 001 PASS   

Sample: FALVOUR 001 FAIL   

Modulation period (s): 1.5  

Sampling frequency (Hz): 100  

 

Tolerance 1: 20.00% - 100.00% = 2.0%  

Tolerance 2: 6.00% - 20.00% = 5.0%  

Tolerance 3: 0.90% - 6.00% = 10.0%  

Tolerance 4: 0.15% - 0.90% = 50.0%  

Tolerance 5: 0.03% - 0.15% = 100.0% 

 

 

Ref 1 Ref 2 Vol% Smpl 1 Smpl 2 Vol% Diff Comment 

        102 137 4.61 102 137 4.35 -5.61 Pass 

141 12 1.28 141 12 1.22 -4.53 Pass 

151 148 1.25 151 147 0.97 -22.00 Fail 

165 19 19.47 165 19 18.90 -2.94 Pass 

167 135 1.49 167 135 1.38 -7.27 Pass 

189 137 1.52 189 137 1.54 1.50 Pass 

192 140 0.06 192 140 0.08 43.92 Pass 

199 149 10.65 199 149 8.45 -20.70 Fail 

202 21 1.32 202 21 1.28 -2.91 Pass 

216 21 6.60 216 22 6.46 -2.06 Pass 

224 44 2.09 224 44 2.05 -1.74 Pass 

251 21 0.66 252 24 2.44 268.23 Fail 

276 7 0.46 277 10 1.52 230.69 Fail 

280 5 0.13 281 8 0.56 334.66 Fail 

327 141 26.12 327 140 24.15 -7.55 Fail 

376 10 0.09 376 10 0.05 -43.06 Pass 

399 126 0.08 399 127 0.25 199.48 Fail 

433 127 0.17 433 128 0.46 177.73 Fail 

466 1 21.20 465 150 20.71 -2.33 Fail 

515 149 0.69 517 3 2.97 329.47 Fail 

0 0 0.00 234 20 0.07 100.00 Extra Peak 

0 0 0.00 451 133 0.03 100.00 Extra Peak 

 

  

(a) 
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Figure 5.13: FLAVOUR_001comparison output (a) text output and (b) graphic output 

  

(b) 
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5.5 Conclusion 

The software developed in Chapter 4 was further extended in this chapter to improve 

the selection of reference control points by rotating the reference chromatogram to 

occupy the centre of the pattern space. This resulted in an increased number of control 

points, which aids alignment via affine transformation. In order to account for peak 

wrap-around, the sample chromatogram was aligned with the reference in the centre 

of the pattern space. By aligning the reference and sample in the second dimension, 

the selected reference control points were not wrapped around in the sample 

chromatogram and as a result could be accurately matched. A tolerance on the 

coordinates was also added to help reduce false matches. 

A method of comparing reference and sample peaks was developed using fuzzy logic 

with a trapezoidal membership function. The flexibility of fuzzy comparisons allows 

peaks to be assigned a degree of matching rather than a “hard” 0 or 1; this was able to 

compensate for the imprecise alignment of the global affine transformation. The 

membership values were also scaled according to the peak intensity to aid correct 

matching as it ensured that the peaks were relatively the same size. 

The final version of the software was then successfully employed for analysing real 

flavour samples for QC purposes. 
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Chapter 6 - Conclusions and Further Work 

 

Data pre-processing and chemometric techniques proved to be essential for the 

analysis of chromatographic data. 

PCA was employed for both exploratory analysis and to evaluate the effectiveness of 

alignment on HPLC data. Two alignment methods, COW and icoshift were compared 

using PCA; while both methods were successful in aligning the data, icoshift was 

slightly better as it explained more variance in fewer components. Alignment using 

icoshift was also orders of magnitude faster than COW. However, icoshift required 

multiple combinations of segment lengths and slack sizes in order to remove artifacts 

introduced by the algorithm. As an exploratory technique, PCA was applied to profile 

metabolites in L. angustifolius inoculated with the pathogen, P. cinnamomi, and 

treated with both water and phosphite. Since the pathogen stimulated a similar 

response using both treatments, the response was proposed a component of the plants 

defence against the pathogen. This demonstrated that the pathogen was able to make 

an association with the plant despite the presence of phosphite in the root tissue. 

HPLC with acidic potassium permanganate chemiluminescence detection was 

evaluated for the analysis of Australian wines from different origins and vintages. 

PCA was again employed for exploratory analysis as well as a pre-processing 

technique to reduce the dimensionality of the data. PCs were used as inputs to LDA 

and QDA in order to discriminate red and white wines from the Coonawarra and 

Geelong wine growing regions. For the red wines, LDA and QDA had the same 

overall accuracy; however the number of Coonawarra and Geelong wines correctly 

classified by each technique was different. This was due to the difference between the 

linear and parabolic discrimination boundaries employed by LDA and QDA, 

respectively. For the white wines, QDA was found to be slightly more accurate than 

LDA. In the analysis of wine vintage, PLS and PCR were compared for the modelling 

of sample composition with wine age. PCR required more components than PLS to 

achieve similar predictive ability. This was due to the PCR model being constructed 

to explain the independent variable rather than the dependent variable and as a result 

more components were needed to effectively explain the dependent variable. 
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Software was developed for quality control of flavours and fragrances using GC×GC. 

The software automatically aligns and compares a sample chromatogram to a 

reference chromatogram. To ensure a sufficient number of reference control points 

were selected, the reference chromatogram was rotated to occupy the centre of the 

pattern space and a simple method of partitioning the 2D pattern space was employed 

to select the reference control points. In order to prevent peak wrap-around, the 

sample chromatogram was aligned with the reference in the centre of the pattern space. 

The selected reference control points were then compared to the entire sample peak 

list using a triangle pattern matching algorithm to identify the corresponding control 

points in the sample chromatogram. Once reference and sample control points were 

identified, they were used to calculate the translation, scaling and rotation operations 

for an affine transform. The affine transformation was then applied to the complete 

sample peak list in order to align reference and sample peaks. Comparison of 

reference and sample chromatograms was achieved through the use of fuzzy logic 

with a trapezoidal membership function. Finally, the developed software was 

successfully employed to analyse a number of real flavour samples for QC purposes. 

Further work 

The software could be further extended to replace any “hard” decisions with fuzzy 

decisions. This would make the software more flexible and robust. For example, the 

tolerance values could be made fuzzy to prevent peaks not being matched simply 

because their volumes were just outside the tolerance cut-off points. 

As the software was developed in collaboration with a flavour and fragrance 

manufacturer, it was only tested on flavour and fragrance data. Hence, the software 

could be applied to different sample types such as biological samples in order to 

identify abnormalities in blood or urine. This would considerably extend the ease at 

which GC×GC could be employed for routine monitoring and analysis. 

The software could also be modified for the analysis of LC×LC data. Some 

preliminary results indicate that the peak detection algorithm may need to be altered 

to account for the difference in LC×LC peak shapes compared with GC×GC. 

Finally, since the software is still in Matlab code, it could be complied to be a 

standalone program or turned into a graphic user interface.  
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Appendices 

 

Appendix 1: Flavour sample comparison outputs 

 

FLAVOUR_002 

Date: 25-Jan-2012 22:05:09  

 

Reference: FLAVOUR 002 PASS   

Sample: FLAVOUR 002 FAIL   

Modulation period (s): 1.5  

Sampling frequency (Hz): 100  

 

Tolerance 1: 20.00% - 100.00% = 2.0%  

Tolerance 2: 6.00% - 20.00% = 5.0%  

Tolerance 3: 0.90% - 6.00% = 10.0%  

Tolerance 4: 0.15% - 0.90% = 50.0%  

Tolerance 5: 0.03% - 0.15% = 100.0%  

 

 

Ref 1 Ref 2 Vol% Smpl 1 Smpl 2 Vol% Diff Comment 

        89 127 0.39 89 127 0.56 43.71 Pass 

148 4 2.00 148 3 1.88 -6.28 Pass 

152 1 2.74 152 1 2.87 4.61 Pass 

154 28 2.30 154 28 2.23 -2.87 Pass 

165 18 18.63 166 17 18.29 -1.79 Pass 

169 142 17.91 169 142 16.54 -7.61 Fail 

189 133 0.06 189 132 0.04 -42.26 Pass 

196 13 0.14 196 13 0.12 -11.26 Pass 

199 149 4.41 199 149 4.43 0.32 Pass 

220 32 46.33 220 32 48.18 3.99 Fail 

241 138 0.21 241 137 0.13 -35.59 Pass 

252 26 3.71 252 26 3.89 4.87 Pass 

305 122 0.10 305 122 0.07 -35.87 Pass 

399 131 0.66 399 131 0.47 -29.19 Pass 

434 128 0.27 434 129 0.21 -21.22 Pass 
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FLAVOUR_003 

Date: 25-Jan-2012 22:05:33  

 

Reference: FLAVOUR 003 PASS   

Sample: FLAVOUR 003 FAIL   

Modulation period (s): 1.5  

Sampling frequency (Hz): 100  

 

Tolerance 1: 20.00% - 100.00% = 2.0%  

Tolerance 2: 6.00% - 20.00% = 5.0%  

Tolerance 3: 0.90% - 6.00% = 10.0%  

Tolerance 4: 0.15% - 0.90% = 50.0%  

Tolerance 5: 0.03% - 0.15% = 100.0% 

 

 

Ref 1 Ref 2 Vol% Smpl 1 Smpl 2 Vol% Diff Comment 

        92 42 0.03 0 0 0.00 0.00 Missing Peak 

101 129 0.03 102 130 0.10 256.10 Fail 

103 49 0.06 0 0 0.00 0.00 Missing Peak 

116 137 0.05 116 138 0.07 41.38 Pass 

137 1 1.19 137 1 1.03 -13.79 Fail 

141 9 0.72 141 9 0.64 -11.33 Pass 

163 2 0.04 163 2 0.04 -10.02 Pass 

202 16 0.37 202 16 0.33 -8.84 Pass 

213 24 0.03 213 24 0.03 -7.26 Pass 

216 10 0.07 215 10 0.06 -9.32 Pass 

224 35 0.17 225 35 0.15 -8.30 Pass 

232 2 0.10 232 2 0.09 -6.44 Pass 

241 134 0.11 241 134 0.10 -3.66 Pass 

253 137 1.70 253 137 1.61 -5.28 Pass 

260 132 0.12 260 132 0.13 8.90 Pass 

276 118 0.04 276 119 0.12 175.47 Fail 

277 34 0.02 0 0 0.00 0.00 Missing Peak 

284 133 0.44 283 133 0.45 2.85 Pass 

305 121 0.19 305 121 0.19 0.48 Pass 

331 143 85.97 331 143 85.87 -0.13 'Pass' 

348 128 2.04 348 128 2.68 31.25 Fail 

371 135 0.02 371 135 0.02 -6.41 Pass 

386 120 0.03 0 0 0.00 0.00 Missing Peak 

399 128 0.45 399 128 0.52 15.28 Pass 

421 128 0.40 421 128 0.38 -6.54 Pass 

440 133 0.94 440 133 0.89 -5.30 Pass 

454 133 2.35 454 133 2.13 -9.38 Pass 

467 125 0.04 467 126 0.03 -2.65 Pass 

470 140 0.78 470 140 0.73 -6.62 Pass 

488 144 0.96 488 144 0.89 -7.34 Pass 

490 126 0.02 490 126 0.02 -8.14 Pass 



 

~ 200 ~ 
 

504 145 0.04 504 145 0.02 -47.61 Pass 

519 148 0.06 519 148 0.06 -6.61 Pass 

562 6 0.10 562 6 0.08 -13.81 Pass 

597 15 0.10 596 16 0.16 55.84 Pass 

607 136 0.14 608 136 0.13 -6.39 Pass 

0 0 0.00 92 123 0.05 100.00 Extra Peak 

0 0 0.00 302 132 0.03 100.00 Extra Peak 

0 0 0.00 416 119 0.04 100.00 Extra Peak 
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FLAVOUR_004 

Date: 25-Jan-2012 22:05:56  

 

Reference: FLAVOUR 004 PASS   

Sample: FLAVOUR 004 FAIL   

Modulation period (s): 1.5  

Sampling frequency (Hz): 100  

 

Tolerance 1: 20.00% - 100.00% = 2.0%  

Tolerance 2: 6.00% - 20.00% = 5.0%  

Tolerance 3: 0.90% - 6.00% = 10.0%  

Tolerance 4: 0.15% - 0.90% = 50.0%  

Tolerance 5: 0.03% - 0.15% = 100.0% 

 

 

Ref 1 Ref 2 Vol% Smpl 1 Smpl 2 Vol% Diff Comment 

        102 132 0.07 101 131 0.05 -32.45 Pass 

102 148 0.06 102 147 0.06 -7.02 Pass 

112 139 90.08 112 139 86.91 -3.51 Fail 

133 55 0.39 133 55 0.41 3.50 Pass 

159 48 0.07 159 47 0.08 12.82 Pass 

177 33 0.02 177 33 0.04 83.82 Pass 

191 45 1.56 191 46 1.82 16.68 Fail 

198 141 0.19 198 141 0.22 16.86 Pass 

200 53 0.03 200 53 0.04 38.21 Pass 

207 36 0.03 207 35 0.04 36.71 Pass 

222 128 0.04 222 127 0.05 18.94 Pass 

232 3 0.08 231 3 0.10 29.70 Pass 

240 138 0.43 240 138 0.54 24.85 Pass 

253 136 0.76 253 136 0.95 23.58 Pass 

260 133 0.11 260 133 0.14 24.19 Pass 

276 121 0.11 276 120 0.11 -3.98 Pass 

332 67 0.53 332 68 0.75 40.43 Pass 

334 124 0.11 334 124 0.13 15.72 Pass 

345 27 0.02 345 27 0.03 45.33 Pass 

356 149 0.06 356 149 0.08 47.67 Pass 

358 145 0.03 358 145 0.04 27.99 Pass 

371 148 0.09 371 148 0.11 30.31 Pass 

376 10 0.04 376 10 0.06 44.88 Pass 

387 142 0.14 387 142 0.19 31.86 Pass 

399 128 0.23 399 128 0.26 13.60 Pass 

400 140 0.03 400 140 0.05 71.79 Pass 

453 127 0.04 453 126 0.04 15.80 Pass 

463 145 4.41 463 145 6.37 44.48 Fail 

487 140 0.05 487 139 0.06 35.71 Pass 

508 129 0.05 508 129 0.06 22.82 Pass 

562 6 0.04 561 6 0.03 -23.81 Pass 
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FLAVOUR_005 

Date: 25-Jan-2012 22:06:11  

 

Reference: FLAVOUR 005 PASS   

Sample: FLAVOUR 005 FAIL   

Modulation period (s): 1.5  

Sampling frequency (Hz): 100  

 

Tolerance 1: 20.00% - 100.00% = 2.0%  

Tolerance 2: 6.00% - 20.00% = 5.0%  

Tolerance 3: 0.90% - 6.00% = 10.0%  

Tolerance 4: 0.15% - 0.90% = 50.0%  

Tolerance 5: 0.03% - 0.15% = 100.0% 

 

Ref 1 Ref 2 Vol% Smpl 1 Smpl 2 Vol% Diff Comment 

        102 137 6.12 102 137 5.59 -8.61 Fail 

103 3 0.78 103 3 0.66 -15.51 Pass 

103 50 0.38 0 0 0.00 0.00 Missing Peak 

109 125 0.08 109 125 0.18 142.11 Fail 

110 43 0.02 0 0 0.00 0.00 Missing Peak 

147 147 0.18 146 147 0.19 10.18 Pass 

188 31 0.35 188 31 0.36 2.34 Pass 

215 13 0.35 215 13 0.34 -0.90 Pass 

241 136 0.36 241 136 0.38 4.89 Pass 

245 3 0.35 245 3 0.35 1.30 Pass 

245 133 0.05 245 132 0.05 -3.24 Pass 

253 139 6.12 253 138 6.16 0.61 Pass 

266 35 1.44 266 35 1.46 1.04 Pass 

271 138 0.20 271 138 0.28 43.74 Pass 

279 137 0.04 279 137 0.05 29.73 Pass 

301 135 0.03 301 134 0.04 26.92 Pass 

307 149 1.98 307 150 2.01 1.56 Pass 

308 132 0.07 309 130 0.09 27.45 Pass 

330 140 76.37 330 140 76.78 0.53 Pass 

336 124 0.54 336 123 0.56 2.79 Pass 

348 126 0.71 348 125 0.77 8.26 Pass 

367 12 0.19 367 12 0.20 3.27 Pass 

371 138 0.31 371 137 0.31 1.67 Pass 

376 13 0.62 376 13 0.64 2.26 Pass 

399 4 0.02 399 4 0.02 3.86 Pass 

406 139 0.09 406 139 0.12 35.67 Pass 

428 136 0.28 428 136 0.28 0.65 Pass 

432 6 0.03 433 6 0.03 9.99 Pass 

488 144 1.14 488 144 1.18 3.54 Pass 

607 136 0.18 607 137 0.22 24.15 Pass 

709 7 0.61 710 7 0.61 0.00 Pass 

0 0 0.00 361 140 0.08 100.00 Extra Peak 
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FLAVOUR_006 

Date: 25-Jan-2012 22:06:26  

 

Reference: FLAVOUR 006 PASS   

Sample: FLAVOUR 006 FAIL   

Modulation period (s): 1.5  

Sampling frequency (Hz): 100  

 

Tolerance 1: 20.00% - 100.00% = 2.0%  

Tolerance 2: 6.00% - 20.00% = 5.0%  

Tolerance 3: 0.90% - 6.00% = 10.0%  

Tolerance 4: 0.15% - 0.90% = 50.0%  

Tolerance 5: 0.03% - 0.15% = 100.0% 

 

 

Ref 1 Ref 2 Vol% Smpl 1 Smpl 2 Vol% Diff Comment 

        92 124 0.04 0 0 0.00 0.00 Missing Peak 

110 125 0.05 0 0 0.00 0.00 Missing Peak 

112 139 0.63 111 139 0.85 34.79 Pass 

116 141 0.40 116 140 0.43 6.87 Pass 

118 147 0.06 118 147 0.06 -2.97 Pass 

137 7 5.28 137 7 5.27 -0.25 Pass 

177 144 0.15 177 144 0.15 0.68 Pass 

224 36 0.11 224 36 0.11 1.19 Pass 

244 34 0.03 244 34 0.03 -1.20 Pass 

253 136 0.67 253 136 0.68 1.85 Pass 

282 20 0.21 282 20 0.21 0.67 Pass 

309 132 0.11 309 132 0.08 -25.33 Pass 

331 144 86.89 331 145 87.54 0.75 Pass 

348 127 0.92 348 127 0.81 -11.22 Fail 

372 122 0.10 0 0 0.00 0.00 Missing Peak 

399 125 0.03 399 126 0.02 -8.16 Pass 

406 141 0.26 406 141 0.19 -25.67 Pass 

422 10 0.02 422 11 0.02 -1.80 Pass 

423 130 0.13 423 130 0.13 0.69 Pass 

440 131 0.21 440 131 0.22 2.42 Pass 

450 133 0.08 450 131 0.02 -69.58 Pass 

453 130 0.21 455 128 0.19 -11.14 Pass 

454 129 0.37 454 130 0.48 29.52 Pass 

455 128 0.08 0 0 0.00 0.00 Missing Peak 

461 131 0.05 0 0 0.00 0.00 Missing Peak 

470 140 0.45 470 141 0.51 12.69 Pass 

504 147 0.27 503 147 0.25 -6.80 Pass 

511 136 1.37 511 135 1.16 -14.98 Fail 

565 68 0.04 565 68 0.06 46.20 Pass 

683 12 0.65 683 12 0.45 -31.08 Pass 
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FLAVOUR_007 

Date: 25-Jan-2012 22:06:42  

 

Reference: FLAVOUR 007 PASS   

Sample: FLAVOUR 007 FAIL   

Modulation period (s): 1.5  

Sampling frequency (Hz): 100  

 

Tolerance 1: 20.00% - 100.00% = 2.0%  

Tolerance 2: 6.00% - 20.00% = 5.0%  

Tolerance 3: 0.90% - 6.00% = 10.0%  

Tolerance 4: 0.15% - 0.90% = 50.0%  

Tolerance 5: 0.03% - 0.15% = 100.0% 

 

 

Ref 1 Ref 2 Vol% Smpl 1 Smpl 2 Vol% Diff Comment 

        83 40 0.02 82 41 0.06 210.64 Fail 

89 131 0.05 90 131 0.04 -7.49 Pass 

90 51 0.03 0 0 0.00 0.00 Missing Peak 

102 131 0.12 102 130 0.09 -23.24 Pass 

109 140 44.11 110 140 39.89 -9.57 Fail 

114 17 0.02 114 17 0.02 5.26 Pass 

134 52 0.15 133 54 0.13 -13.50 Pass 

136 149 0.25 136 150 0.22 -12.18 Pass 

151 143 0.06 152 143 0.06 11.31 Pass 

160 46 0.03 160 46 0.03 -2.29 Pass 

164 40 0.05 164 40 0.05 -6.49 Pass 

177 36 0.42 177 36 0.37 -10.34 Pass 

194 55 23.43 193 57 22.22 -5.15 Fail 

196 35 0.05 196 36 0.05 -10.55 Pass 

208 35 0.04 208 35 0.03 -8.43 Pass 

223 7 0.07 223 7 0.07 3.03 Pass 

296 16 0.09 296 17 0.10 11.77 Pass 

307 146 0.14 307 146 0.16 8.53 Pass 

328 142 30.76 328 142 35.86 16.60 Fail 

358 144 0.03 358 144 0.04 17.35 Pass 

0 0 0.00 375 144 0.02 100.00 Extra Peak 

0 0 0.00 463 137 0.30 100.00 Extra Peak 
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FLAVOUR_008 

Date: 25-Jan-2012 22:07:35  

 

Reference: FLAVOUR 008 PASS   

Sample: FLAVOUR 008 FAIL   

Modulation period (s): 1.5  

Sampling frequency (Hz): 100  

 

Tolerance 1: 20.00% - 100.00% = 2.0%  

Tolerance 2: 6.00% - 20.00% = 5.0%  

Tolerance 3: 0.90% - 6.00% = 10.0%  

Tolerance 4: 0.15% - 0.90% = 50.0%  

Tolerance 5: 0.03% - 0.15% = 100.0% 

 

 

Ref 1 Ref 2 Vol% Smpl 1 Smpl 2 Vol% Diff Comment 

        102 137 2.90 102 137 2.95 1.89 Pass 

111 138 0.21 111 139 0.21 -1.00 Pass 

117 137 0.06 116 138 0.06 7.06 Pass 

123 144 1.91 123 144 1.93 1.08 Pass 

130 1 1.73 130 2 1.75 0.68 Pass 

137 7 5.17 137 8 5.23 1.12 Pass 

141 24 0.14 141 25 0.14 -1.09 Pass 

142 13 1.63 142 13 1.64 0.38 Pass 

146 9 0.55 146 11 0.57 3.43 Pass 

160 47 0.14 160 48 0.13 -6.51 Pass 

163 5 0.07 163 6 0.07 -7.96 Pass 

186 12 2.19 186 12 2.21 1.18 Pass 

189 136 0.53 189 136 0.53 0.63 Pass 

191 43 0.82 191 44 0.83 1.03 Pass 

196 23 1.17 196 24 1.18 0.92 Pass 

199 139 0.03 199 140 0.03 -9.76 Pass 

201 36 1.22 201 37 1.22 0.64 Pass 

202 22 1.71 202 24 1.73 0.94 Pass 

207 36 0.09 207 37 0.09 0.82 Pass 

213 27 0.20 213 28 0.20 0.62 Pass 

215 16 0.90 215 16 0.91 0.89 Pass 

222 127 0.07 222 128 0.06 -18.08 Pass 

223 37 0.12 223 38 0.12 0.23 Pass 

232 6 0.47 232 6 0.47 0.81 Pass 

237 7 1.15 237 8 1.16 0.90 Pass 

241 137 0.20 241 138 0.20 1.37 Pass 

245 133 0.03 245 134 0.03 2.08 Pass 

253 140 4.40 253 141 4.47 1.63 Pass 

256 11 0.02 256 12 0.02 4.47 Pass 

260 133 0.10 260 134 0.10 1.21 Pass 

264 9 0.05 265 10 0.05 0.75 Pass 
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274 125 2.51 274 126 2.57 2.52 Pass 

282 22 0.91 282 22 0.91 0.14 Pass 

302 136 0.13 302 135 0.10 -25.26 Pass 

303 122 0.05 303 122 0.05 18.84 Pass 

304 127 2.27 304 127 2.31 1.69 Pass 

307 145 0.02 307 145 0.02 -0.60 Pass 

313 18 0.07 313 18 0.05 -17.92 Pass 

314 126 0.50 314 125 0.51 0.08 Pass 

317 29 0.26 317 29 0.26 -0.32 Pass 

317 131 0.26 317 131 0.26 -0.43 Pass 

324 135 2.63 324 135 2.62 -0.55 Pass 

327 126 0.08 327 126 0.06 -30.67 Pass 

331 129 0.13 331 129 0.12 -10.68 Pass 

334 128 1.48 334 128 1.50 1.37 Pass 

342 149 0.07 342 149 0.07 -0.53 Pass 

345 32 0.49 345 31 0.49 -0.91 Pass 

347 127 0.31 347 127 0.31 1.14 Pass 

371 147 0.02 371 147 0.02 -1.87 Pass 

393 129 0.06 393 129 0.06 1.32 Pass 

397 11 0.10 397 10 0.09 -0.33 Pass 

399 127 0.09 399 127 0.09 -0.25 Pass 

407 10 0.18 407 10 0.18 -0.20 Pass 

413 130 0.56 413 130 0.56 0.66 Pass 

432 9 0.25 432 9 0.25 -0.64 Pass 

440 137 1.93 440 137 1.93 -0.14 Pass 

442 14 0.55 442 13 0.54 -0.69 Pass 

453 14 0.83 453 13 0.82 -0.92 Pass 

454 138 7.03 454 137 6.98 -0.74 Pass 

467 3 38.24 468 2 38.05 -0.49 Pass 

470 143 1.30 470 143 1.29 -0.42 Pass 

488 148 1.80 488 148 1.79 -0.47 Pass 

493 143 0.30 493 143 0.30 -0.74 Pass 

501 132 0.19 501 132 0.17 -10.34 Pass 

505 4 3.26 505 3 3.22 -1.11 Pass 

505 128 0.03 0 0 0.00 0.00 Missing Peak 

508 132 0.27 508 132 0.30 13.67 Pass 

509 125 0.03 509 125 0.03 16.21 Pass 

518 150 0.05 518 150 0.05 1.76 Pass 

565 4 0.37 565 4 0.37 -1.67 Pass 

607 139 0.28 607 139 0.28 -0.09 Pass 
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FLAVOUR_009 

Date: 25-Jan-2012 22:09:51  

 

Reference: FLAVOUR 009 PASS   

Sample: FLAVOUR 009 FAIL   

Modulation period (s): 1.5  

Sampling frequency (Hz): 100  

 

Tolerance 1: 20.00% - 100.00% = 2.0%  

Tolerance 2: 6.00% - 20.00% = 5.0%  

Tolerance 3: 0.90% - 6.00% = 10.0%  

Tolerance 4: 0.15% - 0.90% = 50.0%  

Tolerance 5: 0.03% - 0.15% = 100.0% 

 

Ref 1 Ref 2 Vol% Smpl 1 Smpl 2 Vol% Diff Comment 

        82 42 0.17 83 40 0.05 -69.06 Fail 

82 124 1.00 82 124 1.14 13.91 Fail 

118 1 1.38 118 1 1.27 -7.55 Pass 

133 61 2.30 133 61 2.16 -6.13 Pass 

137 2 1.43 137 3 1.32 -7.58 Pass 

160 46 0.15 160 46 0.14 -6.39 Pass 

164 43 0.82 164 43 0.77 -5.77 Pass 

173 48 0.12 0 0 0.00 0.00 Missing Peak 

177 40 2.12 177 39 2.07 -2.27 Pass 

179 32 0.10 179 33 0.17 68.66 Pass 

185 40 0.59 185 40 0.56 -5.86 Pass 

196 65 51.18 196 64 59.33 15.94 Fail 

197 47 3.92 0 0 0.00 0.00 Missing Peak 

209 50 8.28 209 49 3.99 -51.82 Fail 

217 21 0.85 218 20 0.78 -7.90 Pass 

222 43 2.16 222 43 2.05 -5.15 Pass 

224 13 2.43 224 13 2.30 -5.34 Pass 

228 37 0.03 228 37 0.03 -2.63 Pass 

260 13 0.23 260 13 0.22 -4.20 Pass 

280 12 0.14 280 12 0.14 6.05 Pass 

282 94 0.16 282 94 0.17 1.19 Pass 

284 11 0.16 284 10 0.15 -4.16 Pass 

286 23 0.18 286 23 0.16 -6.51 Pass 

290 11 0.61 290 11 0.59 -3.13 Pass 

295 94 0.44 295 94 0.42 -3.27 Pass 

297 25 3.66 297 26 3.58 -2.40 Pass 

309 2 4.03 309 3 3.89 -3.49 Pass 

310 74 0.14 310 75 0.15 5.20 Pass 

311 142 0.15 311 142 0.15 -1.71 Pass 

314 24 1.59 314 25 1.58 -0.69 Pass 

317 6 0.05 317 6 0.05 -6.64 Pass 

319 7 0.11 319 7 0.11 -5.22 Pass 

327 57 0.23 327 58 0.23 -2.08 Pass 
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329 73 0.38 329 73 0.36 -4.59 Pass 

329 150 0.04 329 150 0.03 -5.92 Pass 

330 22 0.16 330 22 0.16 -0.19 Pass 

331 67 0.31 331 68 0.31 -2.66 Pass 

336 143 0.13 336 143 0.11 -13.58 Pass 

339 1 0.10 339 1 0.09 -6.42 Pass 

343 145 0.06 343 145 0.06 -6.34 Pass 

344 5 0.04 344 5 0.04 -3.76 Pass 

347 19 0.03 347 19 0.03 -0.54 Pass 

347 51 0.07 347 52 0.07 -0.33 Pass 

349 141 0.10 349 140 0.09 -5.72 Pass 

354 53 0.06 354 54 0.05 -5.54 Pass 

357 3 0.95 357 3 0.89 -6.24 Pass 

358 149 0.84 358 149 0.81 -2.84 Pass 

359 57 0.08 359 58 0.08 -3.92 Pass 

360 16 0.04 360 16 0.04 -2.64 Pass 

363 28 0.54 363 28 0.53 -1.97 Pass 

366 51 0.10 366 51 0.11 16.98 Pass 

367 11 0.06 367 11 0.06 -2.09 Pass 

369 57 0.91 369 58 0.86 -5.77 Pass 

372 3 1.12 372 3 1.07 -4.41 Pass 

373 44 0.08 373 45 0.08 1.38 Pass 

374 148 0.49 375 145 0.45 -7.40 Pass 

375 13 0.07 375 13 0.07 -1.49 Pass 

379 51 0.37 379 52 0.34 -8.36 Pass 

383 46 0.03 383 46 0.03 -5.78 Pass 

387 141 0.15 387 141 0.14 -4.72 Pass 

390 147 0.33 390 147 0.31 -5.90 Pass 

394 145 0.04 394 145 0.04 -3.79 Pass 

399 140 0.22 399 139 0.21 -5.51 Pass 

407 139 0.09 407 138 0.09 -6.28 Pass 

408 5 0.09 408 4 0.09 -3.45 Pass 

430 142 0.04 430 141 0.04 -9.16 Pass 

444 137 0.19 444 137 0.17 -6.16 Pass 

447 19 0.04 447 20 0.04 -5.64 Pass 

456 130 0.09 457 129 0.08 -7.32 Pass 

466 6 0.10 466 5 0.09 -4.32 Pass 

505 7 0.08 505 7 0.07 -5.67 Pass 

509 133 0.09 509 133 0.08 -9.22 Pass 

512 133 0.06 512 132 0.06 -8.67 Pass 

530 11 0.04 530 11 0.04 -9.50 Pass 

552 137 0.05 551 136 0.04 -13.96 Pass 

644 14 0.04 644 14 0.05 36.24 Pass 

767 48 0.03 767 48 0.04 7.57 Pass 

0 0 0.00 198 35 0.16 100.00 Extra Peak 

0 0 0.00 208 43 1.45 100.00 Extra Peak 
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FLAVOUR_010 

Date: 25-Jan-2012 22:10:21  

 

Reference: FLAVOUR 010 PASS   

Sample: FLAVOUR 010 FAIL   

Modulation period (s): 1.5  

Sampling frequency (Hz): 100  

 

Tolerance 1: 20.00% - 100.00% = 2.0%  

Tolerance 2: 6.00% - 20.00% = 5.0%  

Tolerance 3: 0.90% - 6.00% = 10.0%  

Tolerance 4: 0.15% - 0.90% = 50.0%  

Tolerance 5: 0.03% - 0.15% = 100.0% 

 

 

Ref 1 Ref 2 Vol% Smpl 1 Smpl 2 Vol% Diff Comment 

        191 38 0.03 191 40 0.03 1.05 Pass 

240 142 0.02 240 142 0.02 0.18 Pass 

278 37 0.03 278 37 0.02 -3.75 Pass 

288 22 2.31 288 22 2.31 0.16 Pass 

290 28 15.48 290 29 15.48 0.02 Pass 

300 23 8.78 300 23 8.77 -0.01 Pass 

307 6 0.06 307 6 0.06 -0.40 Pass 

307 30 0.09 307 31 0.08 -1.82 Pass 

307 80 0.16 307 81 0.16 -1.51 Pass 

307 147 0.12 307 147 0.12 -0.65 Pass 

311 5 0.04 311 5 0.03 -17.22 Pass 

311 143 0.15 311 143 0.15 -0.01 Pass 

319 37 3.59 319 37 3.55 -0.92 Pass 

322 7 1.77 322 7 1.83 3.66 Pass 

322 150 0.06 0 0 0.00 0.00 Missing Peak 

325 3 0.21 325 3 0.21 1.10 Pass 

325 29 0.08 325 29 0.08 -2.04 Pass 

326 69 0.03 326 70 0.03 -1.63 Pass 

328 11 5.99 328 12 5.99 0.00 Pass 

330 52 0.04 330 53 0.03 -3.40 Pass 

331 3 0.20 331 3 0.20 -0.43 Pass 

334 5 0.81 334 5 0.82 0.33 Pass 

334 67 0.21 334 67 0.21 -1.10 Pass 

338 4 1.01 338 4 1.04 2.59 Pass 

346 16 53.06 346 17 53.09 0.06 Pass 

350 10 3.38 350 10 3.39 0.31 Pass 

351 147 0.30 351 147 0.29 -4.74 Pass 

354 142 0.03 354 142 0.03 0.60 Pass 

356 143 0.03 356 143 0.03 -1.11 Pass 

359 149 0.61 359 148 0.49 -19.61 Pass 

366 141 0.04 366 140 0.03 -20.43 Pass 
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375 3 1.05 375 3 1.05 -0.20 Pass 

388 138 0.04 388 137 0.03 -16.64 Pass 

403 135 0.02 403 135 0.02 1.54 Pass 

447 20 0.03 447 20 0.03 -4.40 Pass 

0 0 0.00 323 19 0.02 100.00 Extra Peak 

0 0 0.00 360 140 0.10 100.00 Extra Peak 
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