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Abstract

Instability of underground excavations is an ever-present potential threat

to safety of personnel and equipment. Further to safety concerns, in the

event of failure, profitability may reduce significantly because of loss of time

and dilution of the ore, raising the importance of support and reinforcement

design in underground excavations both in civil and mining engineering.

The truss bolt reinforcement system has been used in controlling the sta-

bility of underground excavations in severe ground conditions and preventing

cutter roof failure in layered rocks especially in coal mines. In spite of good

application reports, working mechanism of this system is largely unknown

and truss bolts are predominantly designed based on past experience and

engineering judgement.

In this study, the reinforcing effect of the truss bolt system on an under-

ground excavation in layered rock is studied using non-linear finite element

analysis and software package ABAQUS. The behaviour of the rock after

installing reinforcement needs to be measured via defining some performance

indicators. These indicators would be able to evaluate the effects of a reinforc-

ing system on deformations, loosened area above the roof, failure prevention,

horizontal movement of the immediate layer, shear crack propagation, and

cutter roof failure of underground excavations. To understand the mecha-

xi



nism of truss bolt system, a comparative study is conducted between three

different truss bolt designs. Effects of several design parameters on the per-

formance of the truss bolt are studied. Also, a comparison between the effects

of truss bolt and systematic rock bolt on different stability indicators is made

to highlight the different mechanism of these two systems.

In practice, site conditions play a vital role in achieving an optimum

design for the reinforcement system. To study the effects of position of the

bedding planes and thickness of the rock layers, several model configurations

have been simulated. By changing the design parameters of truss bolt, effects

of thickness of the roof layers are investigated and a number of optimum truss

bolt designs for each model configuration are presented.
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C H A P T E R 1

Introduction

1.1 Human’s need and Underground Mining

Since ancient times, man understood his need for raw material to produce

shelter, weaponry and other devices to survive the wild nature and achieve

a better life condition. Our ancestors could satisfy their early needs like

making a shelter by exploring the earth’s surface to find pieces of stones and

make a home. But the increase in world’s population expanded the need for

raw materials during the years. The demand for a better life entails more

and more raw materials. More and more materials are required for building

new structures, scientific developments and even exploring other planets to

find new material sources. Yet there is no practical way to import raw

materials from outside our planet, the only way to provide enough material

is extracting from the earth itself.

Generally, orebodies are not at the surface of the earth but deep inside the

crust, especially energy sources like coal, gas and oil. The simplest method to

reach the orebody is to remove the overburden material and create an open

pit mine (surface mining). But, removing the overburden is not always the

1



most efficient way. An alternative method is to dig into the ground, extract

the ore and carry it to surface (underground mining).

Tunnels and shafts are the pathways to reach the orebody in an under-

ground mine. Workers, equipments and fresh air need to transport to stopes.

A common concern in any kind of underground excavation is to make it stable

for a certain period of time. Providing safety of personnel and equipments

is the most important issue after excavating an underground excavation. In

addition to safety issues, when failure happens, dilution of ore and rock can

affect the profitability of the mining operations (Hoek et al. 1998). Stability

of an underground opening can be achieved by installing external support or

improving the load-carrying capability of rock near the boundaries of exca-

vation or a combination of both.

1.2 Stability of Underground Excavations and Rock

Bolts

Excavating an underground excavation is like removing the reaction forces

on the boundary of the opening. This changes the stress distribution around

an underground excavation. Depending on the in-situ stress distribution,

material properties of the site and presence of geological features, such as

bedding planes and faults, instability of a tunnel can happen as rock fall-out,

rock slip, roof deflection, wall convergence, floor heave, etc. The simplest

solution to overcome these problems is to design a support system, which

can be installed on the inner boundary of the tunnel and has a load bearing
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capacity equal to the imposed load on the tunnel’s boundary. For a long

time, support systems such as timber and steel sets, have been designed to

carry the dead weight of the overburden rock above the tunnel.

The concept of reinforcement has been brought to mining engineering

in 1913 by the request of a technical patent to German authorities (Kovári

2003). Reinforcement is to improve the strength and increase the load carry-

ing capability of rock mass from within the rock by installing rock bolts, cable

bolts, ground anchors, etc (Brady and Brown 2005). During 1970s rock re-

inforcement techniques, especially rock bolts, experienced a very fast growth

in use and nowadays rock bolts are widely used to reinforce underground

excavations (Bobet and Einstein 2011). The wide practice of rock bolts is

because of simple and fast installation, being appropriate for various types

of rocks and structures, and usage as immediate support after excavations.

1.3 Truss Bolt System

In highly stressed areas and severe ground conditions, especially in response

to cutter roof failure in laminated strata and coal mines, conventional rock

bolt patterns could be inadequate and risky to use. In these circumstances,

Peng and Tang (1984) suggest using a special configuration of rock bolts

called Truss Bolt systems. Truss bolt system, in its simplest form, consists

of two inclined members at two top corners and a horizontal tension element

called tie-rod joining the two bolts on the roof of the opening. A common

truss bolt system, known as Birmingham truss, consists of two long cable

3



bolts which are connected at the middle of the roof. Horizontal tension is

applied by means of a turnbuckle at the connection point of the cables at the

roof and transferring a compression to the rock (Gambrell and Crane 1986).

A schematic view of Birmingham truss is shown in Fig. 1.1.

Excavation

Coal

S

L

Angle of inclination
α( (

Anchor point

Inclined bolt

Blocking 
point Turnbuckle

Tie-rodHinge

Figure 1.1 Birmingham truss bolt system.

Since the invention of the truss bolt in 1960s, it has demonstrated to be an

effective application in practice and has been frequently used by the indus-

try. It has been used in a vast variety of ground conditions from severe to

moderate such as poor roof conditions in room-and-pillar mining, long wall

road-ways, intersections, and cross-cut entries as permanent support (Cox

2003). These successful applications of truss bolt have led researchers to

develop different truss bolt systems which resulted in several patents (White

1969; Khair 1984; Sigmiller and Reeves 1990). Alongside with these devel-

opments, several researchers initiated some studies to understand the mech-
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anism of the truss bolt system and publishing a number of practical design

schemes. A number of these works has been done by means of photoelastic

study during 1970s and 1980s (Gambrell and Haynes 1970; Neall et al. 1977,

1978; Gambrell and Crane 1986). In design schemes for truss bolt systems,

just a few number of rational, analytical and empirical design methods are

available in the literature (Sheorey et al. 1973; Cox and Cox 1978; Neall et al.

1978; Zhu and Young 1999; Liu et al. 2005). Further to these studies, some

field investigation and a small number of numerical analyses can be found

in this content (Cox 2003; Seegmiller and Reeves 1990; O’Grady and Fuller

1992; Stankus et al. 1996; Li et al. 1999; Liu et al. 2001; Ghabraie et al.

2012).

Despite these efforts in understanding the truss bolt mechanism, the com-

plicated effects of truss bolts on load distribution around an underground

excavation is still largely unknown (Liu et al. 2005). The lack of knowledge

forces engineers to consider large safety factors while using these schemes.

Understanding the effects of the truss bolt system on reinforcing the rock

around an underground excavation is the most important and the first step

in obtaining a practical, liable and easy to use design scheme. This project is

aimed at understanding the mechanism of truss bolt systems on stability of

underground excavations and preventing cutter roof failure. To achieve this,

several stability indicators are introduced. Using these indicators, they can

evaluate the effects of different parameters of truss bolt pattern and some ge-

ological features. The author believes that this study provides the necessary

understanding of the mechanism of truss bolt which is a preliminary step to

achieve a comprehensive guideline to design a truss bolt pattern.
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1.4 Structure of the Thesis

The next chapter introduces the concept of reinforcement and theories be-

hind the design of systematic rock bolt systems. Different elements in truss

bolt pattern and a preliminary understanding of the mechanism of truss

bolt systems are explained. This chapter addresses the previous research on

mechanism of truss bolt, current design techniques and briefly explains the

advantages and disadvantages of each design scheme.

To understand the mechanism of truss bolt systems on controlling sta-

bility of underground excavations, numerical modelling techniques are used.

Numerical models can capture the complicated behaviour of truss bolt sys-

tem. Once a comprehensive numerical model is established, one can re-

peat numerous tests for various input parameters at relatively no little cost.

The third chapter starts with a brief overview of major numerical modelling

techniques. Details of modelling an underground excavation and truss bolt

system in a layered rock strata (a typical coal mine) are explained using Fi-

nite Element Modelling technique and ABAQUS software package (ABAQUS

2010). In the end, verification process, sensitivity analysis on the dimension

of the model and a reference model for further investigations are presented.

The fourth chapter discusses the mechanism of truss bolt system on con-

trolling stability of an underground excavation and cutter roof failure. Dif-

ferent stability indicators are defined to evaluate the reinforcing effects of the

truss bolt system. Using these indicators, one can evaluate the mechanism

of a reinforcing system on deformations, loosened area, failure prevention,

horizontal movement of the immediate layer, shear crack propagation and

6



cutter roof failure of underground excavations. To illustrate the application

of these indicators, a comparative study is conducted between three different

truss bolt designs. Effects of each parameter on the mechanism of truss bolt

system are discussed. Finally, a preliminary comparison between the effects

of truss bolt system and systematic rock bolt on different stability indica-

tors is carried out to capture the differences and similarities in mechanism of

these two systems.

Chapter five discusses the effects of changing the thickness of the roof

layers on the optimum design of truss bolt system. Several different model

configurations are modelled and, using three of the stability indicators, a

group of optimum truss bolt designs are presented for each model config-

uration. In chapter six, conclusions and some recommendations for future

investigations are presented.
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C H A P T E R 2

Literature Review

2.1 Reinforcement and support

The main problem after excavating an underground excavation is to maintain

the stability of the excavation for a certain period of time. Failure in meeting

this demand is a threat to safety of men and equipment. In addition to

safety issues, stability of an underground excavation can be achieved by either

installing support and/or reinforcement systems. Support and reinforcement

are different instruments with different mechanisms. Brady and Brown (2005)

in their book clearly distinguished these two instruments.

Support is the application of a reactive force to the surface of an

excavation and includes techniques and devices such as timber,

fill, shotcrete, mesh and steel or concrete sets or liners. Re-

inforcement, on the other hand, is a means of conserving or

improving the overall rock mass properties from within the rock

mass by techniques such as rock bolts, cable bolts, ground anchors.

These definitions highlight the difference in practice and mechanism of

the reinforcement and support in underground excavation. For instance, the
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effect of support in continuous and discontinuous rock material is about the

same where by applying load at the surface of the excavation, prevents dis-

placement of the rock fragments. While reinforcement system has different

mechanism in discontinuous and continuous rock. In continuous rock mate-

rial reinforcement increases the strength characteristics of rock by acting in a

similar way to reinforced concrete whilst in discontinuous rock reinforcement

makes the rock to act as a continuous medium by inhibiting displacements

at discontinuities (Hudson and Harrison 1997).

Nowadays reinforcement systems are being used widely in underground

excavations and rock bolts are one of the most regular reinforcing devices

in this content (Palmström and Stille 2010). Rock bolts can be installed in

a short time straight after excavation as both primary and secondary rein-

forcement. This common practice is because of simple and fast installation,

being appropriate for various types of rocks and structures and usage as im-

mediate support after excavations. Several usages of the rock bolts provoke

different mechanisms of acting and transferring load to the rock material.

Consequently, doing any kind of research in this subject entails a good un-

derstanding of the mechanism of rock bolting systems.

2.2 Theories of Rock Bolting

Understanding the mechanism of rock bolts on the surrounding rock was of

the concern of the researchers for many years. These efforts resulted in several

theories about the mechanism of rock bolts which can be classified into three

9



main categories (Huang et al. 2002): a) suspension effect1; b) improving rock

material property, and c) beam building effect2. Here we briefly explain these

theories.

Suspension

One of the most common usages of rock bolts is to stabilize an unstable

block. This can be achieved by individual bolts or a number of bolts

which are anchored behind the unstable block (Hoek and Brown 1980).

This effect is shown in Figure 2.1a.

Improving material property

Similar to concrete, tensile strength of rock, by nature, is low. The

solution to increase the tensile strength of concrete is to put reinforce-

ment bars which have high tensile strength in the concrete material.

Rock bolts in rock can be considered as steel rods in reinforced concrete

which act as tensile elements and increase the tensile strength of rock.

Further to this, when a rock bolt passes through a discontinuity, be-

cause of the applied compression, it makes the rock to behave similar to

continuous rock. This effect is because the compression force applied

by rock bolt which tightens up the rock fragments together with in-

creased resistance against sliding on the discontinuity surface. Further

to these effects, in case of fully grouted rock bolts, grout increases the

cohesion and angle of friction on the plane of weakness which make it

more stable (Fig. 2.1b).

1Also known as key bolting
2Also known as arch forming effect in curved roof openings
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Beam building

Lang (1961), on the basis of his experience in Australia’s Snowy Moun-

tains project, showed a special practice of installing rock bolts in a

systematic manner on an uncoherent crushed rock mass by a simple

experiment. He filled up a rectangular box with fractured rock and

compacted to fill the free spaces. After installing rock bolts in position

and tightening them up, the material was successfully supported. He

did this test on an ordinary household bucket and not only the material

was supported, it was able to carry more loads as well. By carrying out

several photoelastic analysis on the systematic rock bolt pattern using

the material which represented fractured rock material, he reckoned

this effect of systematic rock bolt is because of producing a uniformly

compressed area between the bolts which acts like a beam and can

carry the load (Fig. 2.1c). This concept has been further theoretically

and experimentally analysed by Lang and Bischoff (1982), Lang and

Bischoff (1984) and Bischoff et al. (1992).

Among these theories the beam building theory is the most proper one as

most of present rock bolt patterns are based on the beam building effect of

rock bolts (Bischoff et al. 1992; Li 2006). It should be noted that systematic

rock bolt pattern improves the rock material properties and suspends indi-

vidual blocks (prevents from falling) as well as building a reinforced beam so

it can be considered as a combination of all of the theories which makes it

more complex.
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Figure 2.1 Schematic view of theories of rock bolting

2.3 Truss Bolt System

In highly stressed areas in underground mining, or in poor ground conditions

and when fallout is frequent between installed bolts, common bolting patterns

are not adequate and usually unsafe. These areas need a more effective and

safe support system. Many researchers reported good application of another

reinforcement system, named truss bolt system, for these areas (Seegmiller

and Reeves 1990; Stankus et al. 1996; Cox 2003; Liu et al. 2005). Also, it has

been reported that truss bolt systems are more reliable, cost-effective and
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easy to use in underground excavations (Sheorey et al. 1973; Liu et al. 2005).

Truss bolt system, at the simplest form, consists of two inclined bolts,

usually at an angle of 45 degree, and a horizontal element (tie-rod) connect-

ing the heads of the two inclined bolts. These inclined bolts will be anchored

above the walls and tensioning force applied horizontally at the middle of the

tie rod. As a result, compressive force will be applied on the rock in the area

near inclined bolts. To have more space to apply tension and also to prevent

penetration of bolts at the hole collar because of applying horizontal tension

(especially when cable bolts are being used), normally, two blocks will be

used near the connection of tie-rod and inclined bolts (blocking points in

Figure 2.2). This system was first introduced by White (1969) as a patent.

This design has been improved during the years and the installation proce-

dure become easier (Wahab Khair 1984). As truss bolt systems showed very

good application in controlling severe ground conditions, several truss bolt

system configurations have been introduced (Seegmiller and Reeves 1990).

This development even resulted in production of a truss system suitable for

curved roof excavations (Seegmiller 1990).

Generally, truss bolt systems can be categorized into two groups: 1) Birm-

ingham Truss3; this truss consists of two cables which will be connected at

the middle of the roof, i.e. tie-rod and inclined bolts are not separate, and

tension will be applied at the connecting point of the cables (turnbuckle in

Fig. 2.2). 2) In-cycle Truss; this truss is a combination of two inclined bolts

and a separate tie-rod. The main difference between these two types of truss

bolt system is about the time and the way that horizontal tension applies. In

3Also known as Classic Truss
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Figure 2.2 Schematic view of Birmingham truss bolt system.

the Birmingham truss the horizontal tension is applied once after installing

while in the in-cycle truss, first inclined bolts will be tensioned and after this,

tension will be applied on tie-rod (Gambrell and Crane 1986, 1990).

Truss bolt system can be used as either active or passive reinforcement. If

inclined bolts are fully grouted and the tie-rod is just attached to them, the

system is passive where by increasing deformation in rock, tension increases

in truss bolt system. On the other hand, if the inclined bolts are point an-

chored and pretension applies to tie-rod, the system is active (Wahab Khair

1984). Opinions of researchers in this area are quite contradictory. Cox

(2003) believed that after installing end-anchored inclined bolts and tie-rod,

a tension should be applied to tie-rod which means the passive installation

while O’Grady and Fuller (1992) pointed out that truss system should be

installed with end-anchored inclined bolts and in some cases just a small
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amount of tension should be applied to the tie-rod which means the active

installation. These differences in researchers’ experience are probably be-

cause of changes in the geological features, in-situ stress distribution and site

specification of different projects.

2.4 Truss Bolt Mechanism

Figure 2.3 shows a schematic view of the applied load by truss bolt on the

surrounding rock. The thing that makes truss bolt totally different from an-

gled bolts is the horizontal tension which is applied at tie-rod. This tension

places the roof rock at compression, which is favourable, and reduces the

tensile stress at the middle of the entry. By increasing the tension, more

roof layers will be placed in compression and the tunnel will be stable (Wa-

hab Khair 1984; Soraya 1984).

In order to understand the effects of truss bolt on the surrounding rock,

researchers carried out several photoelastic analysis. Gambrell and Haynes

(1970) by comparing angled roof bolts and classic roof truss system con-

cluded that classic truss bolt creates a compression force, with the major

axis parallel to the roof of the opening, between the heads of the inclined

bolts above the roof of the excavation which is because of horizontal tension-

ing of the tie-rod. This compressive field, immediately above the roof of the

excavation, reduces the excess of the tensile stress which is the main cause

of the failure at the mid-span area in lots of cases. Also, as Gambrell and

Haynes (1970) reported, diameter and physical characteristics of tie-rod do

15



Roof layers

Coal layer

Horizontal tension

Area of compression

Figure 2.3 Load distribution around truss bolt system (after Wahab Khair
(1984)).

not have significant influence on the capacity of truss bolt system. The sup-

porting effect of a small diameter steel rod is about the same as a wide-flange

steel beam. This shows that tie-rod element is just to provide the horizontal

tension and not a load bearing element.

Neall et al. (1977) by doing photoelastic analysis on the effects of truss

bolt in laminated strata model concluded that truss bolt successfully closes

the separation of the layers. In addition, Neall et al. (1978) using the same

photoelastic model, conducted a research on the load distribution around

several truss bolt patterns. Results showed that truss bolt creates a com-

pression field in layers above the roof and reduces the shear stress at the

mid-span together with an area above the rib. Their work is more focused

on delivering a design procedure and an optimum design which is discussed
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in Section 2.6.2.

Gambrell and Crane (1986) compared the effects of in-cycle and classic

trusses. They concluded that both systems create a compressive area between

the heads of the inclined members, however classic truss bolt shows better

application in this case. This difference is because of the initial tension of

the inclined bolts in in-cycle truss which creates a tensile field at the middle

of the roof and as a result less compression after tensioning the horizontal

tie-rod. Their models showed that compressive area above the roof in classic

truss bolt is similar to a beam in pure bending. After applying simulated

in-situ stress on the model, the compressive area reduced and the tension

in horizontal tie-rod increased. Also, Gambrell and Crane (1986) concluded

that both of the systems create tensile stress at the corners of the roof. This

tensile stress is also greater for in-cycle truss bolt system.

It should be noted that rock mass behaviour is different from materials

which have been used in photoelastic analysis. This evokes an uncertainty

in the results and special care should be considered while using these re-

sults (Gambrell and Crane 1986).

Results of the physical modelling of truss bolt system carried out by Wa-

hab Khair (1984) showed that truss bolt controls the roof sag by controlling

the tensile stress development in the upper layers and increasing the shear-

ing resistance at the roof of the excavation. In addition, he found that the

thickness of the immediate roof changed the effects of truss bolt on the sur-

rounding rock. Thinner immediate roof results in less effect of truss bolt

system on the immediate adjacent rock.

In addition to physical and photoelastic analysis, some researchers ac-
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cording to their experience made their comments about the mechanism of

truss bolt system. Cox (2003); Cox and Cox (1978) pointed out that truss

bolt systems would reinforce the ground by a combination of suspension and

reinforced arch building effect. Stankus et al. (1996) examined truss bolt sys-

tems in high horizontal stress fields where cutter roof failure was the problem.

They reported that high capacity systematic rock bolt would just be able to

control high vertical in-situ stress fields but truss bolt systems, because of in-

clined bolts, successfully control both vertical and horizontal stress fields and

abutment pressure together with preventing the shear failure around the rib

area. This effectiveness of truss bolt in controlling horizontal displacement

of roof is also reported by Seegmiller and Reeves (1990).

2.5 Design of Reinforcement Systems

Design methods of reinforcement systems can be split into several categories

based on the rock bolting theory. In this case, designing individual rock

bolts to support an unstable block or suspend the roof layers is simpler than

designing a systematic rock bolt pattern. In suspension, capacity of rock

bolts should be large enough to overcome the weight of the unstable block

minus the friction effect on the sliding surface. Figure 2.4 shows an unstable

block which would slide towards the opening by its weight. Total required

bolt load will be (Brady and Brown 2005)

T =
W (F. sinψ − cosψ tanφ)− cA

cos θ tanφ+ F. sin θ
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Figure 2.4 Reinforcing a potentially unstable block, T = Σt (adapted
from Hoek and Brown (1980)).

where W is the weight of the wedge, T is the load in the bolts, A is the area

of sliding surface, ψ is the dip of the sliding surface, θ is the angle between

the rock bolt and normal to the sliding surface, c and φ are respectively the

cohesion and angle of friction of the sliding surface and F is factor of safety.

Depending on the damage that sliding would result and grouting condition,

a desired factor of safety (usually 1.5 to 2) should be used (Hoek and Brown

1980).

The required load can be applied by number of bolts with respect to

capacity of each bolt. This solution can be used to have a first determination

of the required number and capacity of bolts. To have a more comprehensive

design, other factors should be taken into account, e.g. the wedging action

between two planes (Hoek and Brown 1980).

A more comprehensive design of reinforcement systems is to design the

systematic rock bolt pattern. The systematic rock bolt design should be
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based on several parameters such as length and spacing of rock bolts, ca-

pacity of rock bolts, amount of tension (in pretension rock bolts) and type

of anchors. Lang (1961), on the basis of his experience, proposed number

of recommendations to design and check the systematic rock bolt pattern.

These recommendations were based on the minimum requirements of length

and spacing of the rock bolts. Minimum length of rock bolts should be the

greatest of the following (Hoek and Brown 1980):

(a) Twice the bolt spacing.

(b) Three times the width of critical and potentially unstable rock blocks

defined by average joint spacing in the rock mass.

(c) For spans of less than 6 meters, bolt length of one half of the span, for

spans of 18 to 30 meters, bolt length of one quarter of span in roof and

for excavations higher than 18 meters, sidewall bolts one fifth of wall

height.

And, minimum spacing of rock bolts should be the least of:

(a) One half the bolt length.

(b) One and one half times the width of critical and potentially unstable

rock blocks defined by the average joint spacing in the rock mass.

(c) When weldmesh or chain-link mesh is to be used, bolt spacing of more

than 2 meters makes attachment of the mesh difficult (but not impossi-

ble).

Further to these recommendations, Barton et al. (1974) proposed a de-

sign scheme for reinforcement systems based on the tunnelling quality index,
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Q. Excavation support ratio (ESR) and span of the opening are the other

parameters in this scheme (Fig. 2.5). These empirical design procedures

are based on a number of experience and investigations in different ground

conditions. However, properties of adjacent rock and design conditions for

any underground excavation, which is a unique characteristic of any project,

would differ from case studies that were used for developing the recommen-

dations (Brady and Brown 2005). This is why Hoek and Brown (1980) men-

tioned that these design schemes should be used with special consideration.

This can be achieved by using numerical and comprehensive analysis of rock

bolt design4.

2.6 Truss Bolt Design

After the invention of truss bolt systems and observing the good practice of

these systems in controlling severe ground conditions, many attempts have

been made to publish proper design guidelines for variety of ground condi-

tions. These attempts are based on industrial experience, field observation,

static, rational and numerical analysis. Here some of these design guidelines

are briefly discussed.

4As we are not discussing the comprehensive design of rock bolt systems we will not
expand this concept here.
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Figure 2.5 Design recommendations for permanent support and reinforce-
ment (after Barton (2002)).

2.6.1 Design Recommendations

Researchers according to their experience and observations in different field

conditions proposed several installing procedure and design recommenda-

tions. These criteria are based on several parameters of truss bolt system

(length and angle of inclined bolts and length of tie-rod). O’Grady and Fuller

(1992) and Cox (2003) emphasized the importance of anchoring inclined rock

bolts in the safe area above the rib, out of the plastic area. Also, the length
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of anchorage in safe area should be long enough to make the system capable

of carrying dead weight of the loosened area (O’Grady and Fuller 1992).

Wahab Khair (1984) based on his physical model, recommended 45◦ in-

clined bolts in comparison with 60◦. The reason is that in the results of his

investigation, there was not much difference in influence of 45◦ versus 60◦

inclined bolts. Angle of inclination equal to 45◦ would be more cost effective

as it can cover a bigger tunnel span and be anchored in a safer area with

the same length of inclined bolts. 45◦ inclined bolts are also recommended

by Cox (2003).

Another design factor which proposed by O’Grady and Fuller (1992) is

stiffness which basically can be defined by the free (unbonded) length of the

inclined bolts. This parameter specifies the amount of roof deformation which

develops adequate load in truss bolt system to prevent further deformation.

Pullout capacity of inclined bolts together with the position of the collars

(collars’ position specifies the amount of deformation at the head of the

inclined bolts) are other factors which control the stiffness of the system.

The importance of installation procedure of truss bolt systems is also

emphasised by Cox (2003). He believed that small number of the observed

truss failures were due to the failure in anchoring the inclined bolts out of the

rib line or improper installation of the system. Consequently, he proposed

an installation and design guideline to properly install the system. In this

scheme, he mentioned that the length of tie-rod should be one fifth of the

entry span, angle of the inclined bolts should be 45◦ and the length of the

inclined bolts should be at least 1.4 times the distance from the walls plus

length of the anchorage (0.6 to 1m). This length is to place the whole length
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of anchorage out of the rib line.

2.6.2 Rational and Analytical Design Schemes

Sheorey et al. (1973) statically analysed the load distribution around the

collar head and blocking point of the truss bolt. They considered the reaction

forces of rock at borehole head (R1 and R2) alongside with friction effect

on the blocking point (R̄2) to understand the effective parameters which

control the load distribution (Fig. 2.6). These controlling parameters are

angle of inclination (α), thickness of the blocking point (b) and the distance

between blocking point and borehole (l). These variables can be calculated

as (Sheorey et al. 1973)

P =
T

µb+ a+ l

(
(a+ 1) cosα + b cosα

)
R1 =

T

µb+ a+ l

(
(a+ 1) cosα− b cosα

)
R2 =

T.b

µb+ a+ l

R̄2 =
T.b

µb+ a+ l
(
√

1− µ2)

By parametric analysis of the variables in these equations, they proposed a

couple of recommendations for choosing the design properties of truss bolt

which would result in maximum reaction force of the system. These recom-

mendations are a) angle of inclination of 60◦ would be the optimum angle

and it should not be less than 45◦ and b) the optimum thickness of blocking

points and distance of the blocking points from the borehole (with respect to
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Figure 2.6 Load distribution around blocking point (after Sheorey et al.
(1973)).

block width of 2a = 20 cm) are shown in Table 2.1. These variables depend

on the length of the tie-rod or hole to hole span.

Truss bolt systems, like rock bolts, can be designed with respect to the

theories of rock bolting. Cox and Cox (1978) used suspension and reinforced

arch theories to calculate the design parameters of truss bolt. Equation 2.2

shows the required tension (T ) to suspend the weight of the loosened area

Table 2.1 Optimum tie-rod length values corresponding to block width of
2a = 20 cm (Sheorey et al. 1973).

Tie-rod length (m) b (cm) l (cm)

2.6 8 20-22

3.0 8 20-22

3.6 10 25-30
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(W in Eq. 2.1) above a tunnel with span of L.

W = γhLb (2.1)

T =
W

2 sinα
(2.2)

where, h is the height of the rock fall, b is spacing of the truss systems, γ

is the unit weight of the rock and α is the angle of inclination of inclined

bolts. In Equation 2.2 the required tension should be equal to the weight of

the loosened area to successfully support the roof. This amount of tension is

usually much higher than the required tension to stabilize an underground

excavation. This value can be used as the upper limit for the design purpose.

On the other hand, Cox and Cox (1978) proposed another design scheme

which is based on the reinforced arch theory of rock bolts. In this design

it has been assumed that truss bolt system creates a reinforced arch like

systematic rock bolt systems which can carry the load. In this scheme, the

horizontal and vertical reactions of the rock load (weight of the loosened

rock) in the roof truss reinforced arch (Ht) and the abutment (Vt) can be

calculated as

Ht =
γhL2

8Z
− T

bZ

(L
5

sinα + (
t− Z

2
)(1− cosα)

)
− T

b
sinα (2.3)

Vt =
γhL

2
− T

b
sinα (2.4)

where γ, h, L, T , b and α are the same as in Equations 2.1 and 2.2 and Z

is the rise of the rock arch axis (typically Z = 3
4
t where t is the thickness of

the arch). The performance of the rock arch depends on several parameters
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such as unity of the arch, compressive strength of the rock material, shear

strength of the rock at abutments and deformation parameters of rock. They

also compared the resultant reaction values (Eq. 2.3 and 2.4) of two typical

truss systems with normal roof bolting patterns and inclined bolts. This led

them to the conclusion that truss bolt systems are much more successful in

controlling roof loads which cause failure.

Neall et al. (1978) used the beam theory to theoretically analyse the effect

of truss bolt on a beam roof layer which is under the tabular overburden load.

They used the superposition technique to add the different load components

of the truss bolt which act on the roof layer. They added four different load

components of truss bolt and rock load which are a) tabular loading that is

the weight of the overburden layers, b) equal symmetric loads which apply

vertically at the blocking points (vertical components of the applied load at

blocking points), c) axial loads which are the result of the horizontal load

component at the blocking point and d) moment which is due to the applied

horizontal load at blocking points that act at a distance from the neutral

axis. Then they calculated the resultant stresses of truss loads (items b, c

and d) where should be equal to the overburden load (item a), so (Neall

et al. 1978)

w =
24T

SL2

(2t(1− cos θ)

3
+
a2 sin θ

L

)
(2.5)

where, w is the tabular load per unit, T is truss tension, S is truss spacing,

L is beam length, t is thickness of the roof layer, θ is the angle of inclina-

tion and a is the distance of blocking point to the wall of the excavation.
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By differentiating the Equation 2.5 with respect to θ and solving for zero,

the extremum points, if any exists, can be found. For a given condition, a

maximum point represents the optimum angle of inclination (Eq. 2.6).

0 =
2t sin θ

3
+
a2 cos θ

L

tan θ = − 3a2

2tL
(2.6)

They solved this equation for the given parameters in their photoelastic

model and came to the conclusion that the optimum angle of inclination

would be 90◦ from roof of the excavation. They modified Equation 2.5 to

calculate required tension (T ) to eliminate the tensile stress at the bottom

line of the roof layer, as a measure for stability, and checked the results with

results of photoelastic analysis. They reckon the theoretical results were

15 times greater than the observed values in photoelastic analysis. In this

case, they proposed the use of correction factors which depended on the field

variables such as thickness of the roof layers.

Neall et al. (1978) also proposed an empirical approach to determine the

truss spacing (S) as

S =
C

W

where C is truss capacity which is a function of truss tension, immediate layer

tickness, angle of inclination, blocking point configuration, truss span, depth

of anchor and W is the roof load which is a function of thickness of roof layers,

moduli of roof layers, shear strength of roof layers, depth below surface,
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time factor, residual or tectonic forces, opening width, mine geometry, joint

density, joint orientation, fluid or gas pressure, density of roof layers and so

on. They also mentioned that if it is possible many of these variables should

be eliminated or blended to other variables in order to make it more simple.

It should be noted that Neall et al. (1978) emphasised the uncertainty of their

theoretical calculation as a result of simplified assumptions at the beginning

of the calculation.

Another closed-form design procedure of truss bolt systems was proposed

by Zhu and Young (1999), using arching theory (beam building theory) .

They believed that their proposed design can be used to calculate and/or

check the preliminary values of length of tie-rod and minimum horizontal

tension of the system. This design considers the angle of inclination, α, span

of the tunnel, L, span of the truss system (length of tie-rod), S, and thickness

of the immediate roof layer, h. Assuming that truss bolt reduces the bending

stresses at middle and corner of the roof to zero and calculating coefficients

of A, B and C as

A = 4.5 cosα

B = −6(L cosα + h sinα)

C = 1.5L2 cosα + 4Lh sinα

the length of tie-rod in the truss bolt system, S can be derived as Equa-

tion 2.7.

AS2 +BS + C = 0 (2.7)
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As Zhu and Young (1999) suggested, this equation can be used to calculate

the length of tie-rod when other design parameters such as angle and length

of inclined bolts are usually predefined (angle normally between 38◦ and 60◦

and inclined bolts should be long enough to be anchored over the rib). In

addition, the minimum tension in truss system should be great enough to

create shearing resistance against vertical reaction of the abutment. This

tension for a tunnel with weight of roof beam and overburden equal to W

can be obtained as

T =
WL3[

12(L− S)2 cosα + 16(L− S)h sinα

]
× sinα

The factor of safety for an unsupported roof to resist shear failure at abut-

ment can be calculated as (Wright 1973)

F0 = L2 tanφ
(
3.16hL− 1.76h2

)
Now by comparing the maximum shear resistance and the shear force at

abutment, the factor of safety against shearing for a supported tunnel with

truss bolt can be derived as

Fs =

{[
3 cosα(L2 − S2) + 6hS sinα

]
× T sinα

LW
− L2

}
× tanφ

Bh
+ F0

where B is the longitudinal truss spacing. Further to this, Zhu and Young

(1999) expanded their closed-form solution for a single truss bolt to multiple

truss bolt systems which are two separate truss bolt systems that can be
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installed within each other (two systems with different tie-rod lengths) or

one overlapping the other (two systems with different positions and same

length of tie-rod). This solution is much the same as single truss bolt design

and can be found in Zhu and Young (1999).

The latest available analytical approach to design the truss bolt pattern

in the literature has been proposed by Liu et al. (2005). This design is on

the basis of three controlling parameters (design principals) as

(a) Minimum pre-tightening force which should be adequate to create an

arch shape reinforced structure.

(b) Maximum pre-tightening force which is to prevent the failure of inclined

bolts and failure of rock at abutment and tail of the bolts. The effective

parameters in this case are strength parameters of rock, stiffness of the

truss bolt system and the contact condition between truss bolt system

and the adjacent rock.

(c) Minimum anchorage force which can be defined by the length of the

anchorage. This anchorage length should be beyond the plastic zone

around the tunnel and be greater than pre-tension force and weight of

the rock above the roof, below the axes of rock arch.

To analytically calculate these parameters they proposed that inclined

bolts apply different load distributions at plastic and elastic rock material

around the tunnel (Also, prior to Liu et al. (2005), Li et al. (1999) used this

theory and analytically calculated the imposed forces by inclined bolts in a

truss system and verified their work with field investigation5). The applied

5These two works are much the same in this content.
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Figure 2.7 Lateral behaviour of inclined bolts and reinforced arch (after Liu
et al. (2005)).

load at the plastic zone creates a reinforced arch above the tunnel which

reduces the bending moments and tensile stresses in the rock. In this model,

the thickness of the reinforced arch is equal to the thickness of the plastic

zone around the tunnel (Fig. 2.7). And thickness of this plastic zone has

been assumed to be equal to the plastic zone around an equivalent circular

tunnel with diameter equal to the diagonal of the rectangular tunnel (Liu

et al. 2005).

After deriving the analytical equations, they used the finite element anal-

ysis to parametrically analyse the effects of some of the variables on design

parameters on the basis of their proposed equations. This part of their anal-

ysis has been carried out on effect of depth, angle of friction of rock, shear
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strength of rock, cohesion, span of the tunnel, truss system spacing, angle of

inclination and factor of safety on thickness of the plastic zone around the

tunnel and lower and upper pre-tightening force limits. One of their conclu-

sion to this part of their study is that the optimum angle of friction would

be between 45◦ and 75◦.

Liu et al. (2005) also published a flowchart that shows the procedure of

designing a truss bolt system on the basis of their analytical results. Here,

just an overview of this design scheme is explained. The first step of their

design procedure is to determine basic parameters of rock, in-situ stress con-

dition and dimension of the opening together with setting up the initial de-

sign parameters for truss such as truss system spacing b, inclined bolt length,

bolts diameter B, tie-rod diameter and angle of inclination α. Next step is

to determine the three design principals and use the proposed upper and

lower limits to check the design dimensions and structural parameters. At

this stage, the bolt and tie-rod strengths should be checked to prevent their

failure. Finally, using trial and error technique, design parameters should be

changed and checked to achieve an optimum design and required factor of

safety.

As Liu et al. (2005) mentioned, this design scheme estimates the lower

bounds of pre-tightening force and axial anchorage forces. In practice, these

forces should be between the lower and upper bounds to satisfy the safety

concerns. To provide a safe design, they first calculate the minimum required

length of anchorage that provides the lower bound of pre-tightening force and

lower bound of anchorage. After this, with respect to the upper limit of pre-

tightening force, they measured the desired length of anchorage to provide
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the upper bound of the axial anchorage. Finally, they choose the maximum

of these lengths as the anchorage length. The length of inclined bolts should

be equal to this length plus the thickness of the plastic zone (to ensure the

anchorage in a safe area) plus the accessional length (normally 0.1 to 0.2

m). Furthermore, they mentioned that this length of inclined bolts can be

checked by an empirical equation proposed by Lang and Bischoff (1982) as

L = s2/3 where L is the length of inclined bolts and s is the span of the

tunnel.

There are several simplifying assumptions that Liu et al. (2005) have

made in their analysis which is worthwhile to be mentioned here. They

assumed that truss bolt creates a span-wide reinforced arch shape structure

above the tunnel and the arch’s thickness is equal to the thickness of the

plastic zone. This thickness of the plastic zone around a rectangular tunnel

was assumed to be equal to the plastic zone around a hypothetical circular

tunnel with radius of half of the diagonal of the actual rectangular tunnel.

The length of tie-rod was assumed to be approximately equal to the width of

the opening which caused the reinforced arch to cover the whole span. They

did not consider the effect of blocking and anchor points, and the arching

action of truss system was considered to be just the result of the lateral

behaviour of rock bolts at the plastic area. Considering these factors would

significantly change the response of truss bolt system. Finally, this design

mainly determined the capacity of the truss bolt and length of inclined bolts

while parameters like angle of inclination and truss bolt spacing should be

chosen by trial and error and the position of inclined bolts (tie-rod length)

should be predefined and was not considered at the analysis.
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2.6.3 Numerical Analysis

There is a small number of numerical analyses on the behaviour of truss bolt

system available in the literature and none of them comprehensively discussed

and considered the effects of various parameters of truss bolt on the adjacent

rock. Liu et al. (2001) used the finite difference method and FLAC software to

model a tunnel and truss bolt system. They investigated the effects of length

of tie-rod, angle of inclination, tension and anchorage force on the stability

of the excavation. In their model, the material properties of roof, floor rock

and coal seam were different while no bedding plane was modelled. Using

maximum displacement at the middle of the roof together with the area of

the plastic zone, they investigated the effects of truss bolt on stability of the

tunnel. They showed that truss bolt system successfully controlled the plastic

behaviour of rock around the corners of the roof and reduced the deformation

at the middle of the roof. Also, by changing the design parameters, they

proposed some recommendations to obtain the optimum values of design

parameters for their model as angle of inclination equal to 60◦, tie-rod should

have a distance of 0.3 meters from the sidewalls and they mentioned that the

large amount of tension was not necessary as increasing the tensioning force

of truss bolt did not have great influence on the practice of the system. It

should be noted that they studied the effects of each parameter by changing

them in the model while other parameters were constant in each model.

Ghabraie et al. (2012)6 used finite element modelling technique and ABAQUS

program to model truss bolt system acting on a continuum material model.

6This paper is actually a part of this thesis which has been published in the ANZ-2012
conference, Melbourne VIC, Australia and will be more explained in section 4.3.1
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They proposed that truss bolt would reduce the area of the loosened rock

above the roof by changing the position of the natural roof arch. This is

different from the effect of systematic rock bolt which creates a reinforced

beam in the loosened area. Using the area of the loosened rock as a measure

for stability and practice of the truss bolt system, Ghabraie et al. (2012)

changed the design parameters of truss bolt (angle and length of inclined

bolts and tie-rod length) and by solving 125 models, proposed a group of

optimum patterns. On the basis of these patterns they pointed out several

recommendations to choose the truss bolt design parameters as a) angle of

inclination should be between 45◦ and 75◦, b) length of inclined bolts should

be more than 80% of the width of the excavation and c) tie-rod length should

be between half and 70% of the span of the opening. In addition, they high-

lighted the importance of the anchoring the inclined bolts in the safe area

above the rib.
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C H A P T E R 3

Numerical Analysis

As mentioned in section 2.6, current analytical and rational design procedures

for truss bolt systems are based on several simplifying assumptions while em-

pirical designs are based on a number of input parameters, which requires

experience in specific project sites. These assumptions and a large num-

ber of variables make it necessary for engineers to use these design schemes

with large safety factors for several types of problem domains (Neall et al.

1978). Additionally, regular closed form and analytical methods of stress

analysis are largely weak in facing discontinuous, inhomogeneous, anisotropy

and not-elastic nature of the rock, known as DIANE (Jing 2003). There is

no analytical solution for these types of rock. Only very simple conditions

of these problems can be solved analytically. Furthermore, when it comes to

the interaction of the rock and reinforcement system, this problem becomes

even more complex as several different effects of reinforcement systems on

the total behaviour of the adjacent rock should be considered.

The influence of a large number of variables on the stability of an under-

ground excavation together with the complex and changing nature of coher-

ent rock material make it hard to understand the mechanism of reinforce-

ment and reach an optimum design with regular analytical design schemes. A
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more comprehensive and practical solution to solve these complicated prob-

lems can be obtained by using numerical analysis (Brady and Brown 2005).

Numerical methods would be able to solve these complex interactions under

less simplifying assumptions and time and can give us reasonable results.

These methods are able to monitor the effective parameters of the rock dur-

ing excavation and loading procedure which makes engineers able to study

the detailed effects of different parameters on the stability of an underground

excavation.

In this chapter using a common numerical modelling technique, namely

Finite Element Method, we explain the basics of the modelling an under-

ground excavation with several geological features together with the verifica-

tion and sensitivity analysis of these basic models.

3.1 Current Numerical Techniques

There are a number of classifications for numerical modelling methods on the

basis of the nature of these methods. Brady and Brown (2005) categorized

the computational and numerical modelling techniques to five main groups

as

• Boundary Element Method (BEM),

• Finite Element Method (FEM),

• Finite Difference Method (FDM)

• Distinct Element Method (DEM) and

• Hybrid Methods which are combinations of two different methods (e.g.
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FEM/BEM)

Among these methods, FEM is the most popular and commonly used tech-

nique for modelling rock mechanics problems (Jing 2003). FEM was the

first numerical method with adequate flexibility to cope with special nature

of the rock mass such as discontinuities and anisotropy, inhomogeneous and

not-elastic material (DIANE features). Also, the ability to model complex

boundary conditions together with moderate efficiency to model disconti-

nuities make it widely applied across rock mechanics problems (Jing and

Hudson 2002; Jing 2003). Consequently, FEM has been chosen as the most

appropriate method for the scope of this study and ABAQUS (ABAQUS

2010) as a powerful package in dealing with complex soil and rock problems

has been chosen as the software package to make a use of FEM.

3.2 Modelling Underground Excavations

3.2.1 Modelling In-situ Stress

Excavating an underground excavation changes the initial stress distribution

around the tunnel. In fact, deriving a tunnel is like removing the reaction

forces on the boundary of a ‘to be driven’ tunnel. Before excavating the

underground excavation, forces and reaction forces are at equilibrium on the

hypothetical boundary of the tunnel (Fig. 3.1a). By removing material, i.e

excavating the tunnel, the reaction forces become zero and the equilibrium

is no longer valid (Fig. 3.1b). At this stage, a new state of in-situ stress
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(a) (b) (c)

Figure 3.1 (a) stresses and reactions before excavation, (b) stresses after
excavation and (c) deformation after excavation.

distribution will be applied to the rock around the tunnel. This new stress

distribution results in the deformation of surrounding rock and the boundary

of the opening (Fig. 3.1c). Shape and amount of this deformation depends

on many factors such as magnitude and direction of the new in-situ stress

distribution, dimension and shape of the tunnel and physical properties of

the rock material.

In numerical analysis, this process can be precisely modelled in three steps

(Fig. 3.2). First, in-situ stress applies as initial condition (Fig. 3.2a). At

this stage, stresses and reaction forces are at equilibrium at every element

and no deformation happens. After this, the tunnel will be excavated by

removing some elements from the model while the boundaries of the tunnel

are restrained with no deformation on X-Y plane1 (Fig. 3.2b). At this stage,

according to the dimensions of the excavation, a new state of stress distri-

bution, i.e. in-situ stress, will be applied to the tunnel. Finally, by removing

1Note that the tunnel is supposed to be very long which can be modelled under plain
strain condition.
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(Avg: 75%)
S, S22

−1.576e+01
−1.497e+01
−1.418e+01
−1.339e+01
−1.259e+01
−1.180e+01
−1.101e+01
−1.022e+01
−9.425e+00
−8.633e+00
−7.841e+00
−7.049e+00
−6.257e+00

(a) Step 1

(Avg: 75%)
S, S22

−1.415e+01
−1.362e+01
−1.309e+01
−1.255e+01
−1.202e+01
−1.149e+01
−1.096e+01
−1.042e+01
−9.891e+00
−9.359e+00
−8.826e+00
−8.294e+00
−7.761e+00

(b) Step 2

(Avg: 75%)
S, S22

−1.701e+01
−1.563e+01
−1.425e+01
−1.287e+01
−1.149e+01
−1.011e+01
−8.723e+00
−7.342e+00
−5.960e+00
−4.578e+00
−3.196e+00
−1.815e+00
−4.328e−01

(c) Step 3

Figure 3.2 Numerical modelling of an underground excavation (S22 is σy).
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the boundary conditions from the surface of the opening, deformation hap-

pens at the tunnel boundaries and the model reaches to its final condition

(Fig. 3.2c). This process can be modelled in at least two steps as steps one

and two can be modelled at the same time.

3.2.2 Modelling Rock Material

There are several different models available in the literature for modelling

the rock behaviour and several researchers used different models for their

own objectives. Among these models, two of them, namely Mohr-Coulomb

and Hoek-Brown failure criterion, are considered as classic models which

are the most adopted models by researchers (Hoek and Brown 1997; Jing

2003). During the years, these models have been implemented into the FEA

and developed to represent several features of rock behaviour (Yingren et al.

1986; Adhikary and Dyskin 1998; Jing 2003). Also, these models would

be appropriate to model jointed rock mass. According to Carranza-Torres

(2009) and Hoek and Brown (1980), in heavily jointed rock mass, where

joints do not have a major orientation and are in several directions, rock mass

can be modelled as continuum material with modified or reduced strength

parameters that represent the presence of the joints.

Mohr-Coulomb failure criterion is provided by ABAQUS and regularly

used to model rock or soil material (Jing 2003; ABAQUS 2010). In this

model, by increasing the applied stress, the material undergoes linear elastic

deformation to reach the failure point. The expression of the failure in this
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criterion, on the basis of principal stresses, is

σ1 = σ3
(1 + sinφ)

(1− sinφ)
+

2c cosφ

1− sinφ
(3.1)

where σ1 and σ3 are respectively the major and minor in-situ stresses, φ is

the angle of friction and c is the cohesion of the material. By considering the

Uniaxial Compressive Strength of the rock mass, σc, and k as

σc =
2c cosφ

1− sinφ
(3.2)

k =
(1 + sinφ)

(1− sinφ)
(3.3)

Equation 3.1 changes to the following form (Hoek et al. 1998)

σ1 = σc + kσ3 (3.4)

This equation shows that for a given k and σc, the amount of major and

minor in-situ stresses equal to σ1 and σ3 result in failure of the rock material

and the linear elastic model is no longer valid. This model does not con-

sider the after failure behaviour of the material. ABAQUS, by considering

the non-associated flow rule, models the perfectly plastic behaviour of the

material after failure (Fig. 3.3). In this model, after yielding, by increasing

deformation, load carrying ability of the rock mass does not change and re-

mains constant.

In fact, Mohr-Coulomb failure criterion can be shown as a straight line.
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ε

σ

linear elastic behaviour

failure point

plastic behaviour

Figure 3.3 Elastic-perfectly plastic behaviour on the stress-strain (σ-ε) plane.

The Mohr-Coulomb failure envelope can be drawn as the closest straight

tangential line to the Mohr’s circles at failure under different in-situ stress

conditions (various σ1 and σ3). Figure 3.4 shows two different Mohr’s circles

at failure corresponding to different σ1 and σ3 on the τ -σ plane where the

Equation 3.1 changes to the following form

τ = c+ σ tanφ

where, τ and σ are shear and normal stress respectively.

3.3 Modelling Rock Bolts

A regular way to model bolted rock material, in macroscopic scale, is to use

the equivalent reinforced rock material with modified properties (Maghous

et al. 2012). On the other hand, to precisely model an installed rock bolt in
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rock, all the effects of rock bolt on the rock material (Section 2.2) should be

taken into account. In addition to these effects, the influence of deformation

of the tunnel should be considered. Because of the applied in-situ stress,

tunnel’s boundaries converge inward. This results in changing the amount

of tension in rock bolts. This change in amount of tension is of high impor-

tance especially in passive rock bolts, where rock bolts are installed without

or with a small amount of tension. However, this increase of tension in pas-

sive rock bolts can sometimes lead to the failure of pretension rock bolts

material which should be prevented. Other effects of rock bolt which can

be seen in fully grouted rock bolts and can be considered in the numerical

model are increasing the strength parameters of joints (cohesion and friction

angle), because of grout material, and applying a compressive force against

separation of joint. Some examples of these models can be found in Chen

et al. (2009); Deb and Das (2011).

In ABAQUS there are several ways to model a rock bolt acting on the

σ

τ

c cotφ

c

Failure Envelope
τ = c+ σ tanφ

φ

σ1σ3
σ1+σ3

2

σ1
−σ3
2

σ1σ3

Figure 3.4 Mohr-Coulumb failure envelope on τ -σ plane.
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rock material. The simplest way is to simulate the effects of bolt with two

concentrated forces at two ends of the rock bolt acting on opposite directions.

This model only can be used when there is no discontinuity passing the

axis of the rock bolt, i.e. continuum material (Bobet and Einstein 2011).

A more comprehensive model of rock bolt can be achieved by considering

the changes in tension of the rock bolt element during the loading period.

This can be modelled by using truss elements in ABAQUS. Truss elements

are one dimensional which can only sustain tension in the direction of their

axis. In these elements, by increasing the deformation at two ends of the

element, the induced stress at the element increases until failure is reached.

ABAQUS calculates this failure point with respect to the predefined strength

parameters (Mises yield model) and cross sectional area of the element. Note

that this model does not consider the effect of rock bolt on increasing the

shear resistance of discontinuities. However, by applying a stress component

in direction of the normal to the discontinuity’s surface, it has significant

effect on decreasing the slip and separation of the discontinuity. In this

model, for pretension rock bolts, as Bobet and Einstein (2011) mentioned,

it can be assumed that axial resistance of rock bolts are much higher than

their shear resistance, i.e. one dimensional elements. Another possible model

for rock bolts is to use beam elements in ABAQUS which have resistance to

axial stretch as well as bending. These elements are appropriate only in fully

grouted rock bolts where rock bolts significantly increase the shear resistance

of rock discontinuities.

Apart from modelling the rock bolt element itself, one of the most diffi-

cult parts of numerical modelling is to model the interaction between different

46



materials such as bolt-grout and grout-rock interfaces. A simplified assump-

tion can be made on modelling end-anchored rock bolts that rock bolt and

rock are strongly tightened together and no separation is allowed between

them. In this case, end-anchored rock bolts can be modelled by tightening

the two ends of the rock bolt elements to the rock. Tightening several nodes

of rock bolt elements to rock material can represent fully grouted rock bolt.

In this study, truss elements are used to model end-anchored rock bolts

and tie-rod in Birmingham truss bolt systems. It is assumed that there is

no waste of energy in connection of inclined and horizontal members of truss

bolt system, resulting in the same amount of tension in inclined bolts and

tie-rod. Anchorage and head of rock bolts are modelled by constraining the

two ends of the truss elements to the rock material where no separation

is allowed. By applying in-situ stress on the excavation, the rock material

undergoes different amounts of deformation in various distances from the

boundary of the excavation. Obviously, the maximum deformation will be at

the boundary of the opening. This results in different amounts of deformation

at two ends of an installed rock bolt (truss element), which increases the

stress in the rock bolt element and as a result, more load applies to the rock

material.

3.4 Modelling Bedding Planes

ABAQUS presents an option, named contact pair to model bedding planes.

With this option, two surfaces will be identified for two sides of a bedding
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plane. These surfaces have zero spacing at the beginning of the analysis, pre-

senting a closed plane of weakness. Two sides of this discontinuity transmit

shear stress as well as pressure and follow the simple Coulomb friction model.

In this model shear stress (τ) is a function of a fraction of the pressure at

contact (p).

τ = µp (3.5)

where µ is the coefficient of friction. During solving the model, ABAQUS

calculates a critical shear stress (τcritical) at the surface of each element and

judges sliding or sticking (zero sliding) behaviour for contact. Sliding occurs

when the shear stress becomes equal or greater than the critical shear stress,

where τcritical = µp and µ is tanφ. On the other hand, if shear stress does

not exceed the critical value, stick region, no sliding occurs (Fig. 3.5).

One difficulty in modelling contact pairs in ABAQUS is choosing the cor-

rect formulation for pressure-overclusure behaviour of contact. To prevent

penetration of the surfaces of the discontinuity, ABAQUS provides so-called

hard formulation. Graphical illustration of this hard pressure-overclosure for-

mulation is shown in Figure 3.6. In this model, when clearance becomes zero,

contact pressure increases without undergoing any overclosure (penetration).
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Figure 3.5 Sliding and sticking regions, adapted from ABAQUS (2010) man-
ual.

3.5 Verification

3.5.1 In-situ Stress and Rock Material

As mentioned before, Mohr-Coulomb failure criterion can be used to model

rock mass behaviour. For verification purpose, an analytical solution pro-

posed by Hoek et al. (1998) can be used. This solution gives the amount of

displacement at the boundary of a circular tunnel with radius of r0 under

hydrostatic in-situ stress equal to p0 and a uniform internal support pressure

acting outward on the boundary of the opening equal to pi (Fig. 3.7). In this

solution, critical support pressure (pcr) can be defined as

pcr =
2p0 − σc

1 + k

where σc and k are the same as Equations 3.2 and 3.3. If the internal pressure

is greater than critical pressure no failure occurs and rock remains elastic
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Figure 3.6 Pressure-overcloasure behaviour, adapted from ABAQUS (2010)
manual.

r0
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pi

plastic rock

elastic rock

p0

p0

Figure 3.7 Plastic and elastic rock around a tunnel (after Hoek et al. (1998)).

where the inward radial elastic displacement of the tunnel can be calculated

as

uie =
r0(1 + ν)

E
(p0 + pi) (3.6)
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where E is the modulus of elasticity and ν is the Poissons ratio. On the other

hand, if the internal pressure of support is less than the critical pressure,

failure of rock occurs. In this condition, the thickness of the failed rock and

the total inward displacement of the boundary of the tunnel, uip are given

by (Hoek et al. 1998)

rp = r0

[
2
(
p0(k − 1) + σc

)
(1 + k)

(
(k − 1)pi + σc

)] 1
k−1

(3.7)

uip =
r0(1 + ν)

E

[
2(1− ν)(p0 − pcr)

(rp
r0

)2
− (1− 2ν)(p0 − pi)

]
(3.8)

where rp is the radius of plastic zone from the centre of the tunnel (Fig. 3.7).

A graphical illustration of the variables and behaviour of the tunnel is shown

in Figure 3.8. This plot is a result of Equations 3.6 and 3.8. It shows that the

inward displacement is zero when the internal pressure and in-situ stress are

equal. By decreasing the internal pressure to the critical support pressure,

elastic inward displacement increases and internal pressure less than critical

support pressure results in plastic inward displacement of boundary of the

tunnel.

To verify the numerical model, the amount of inward displacement on the

crown of the tunnel (Eq.3.8) is calculated. After obtaining the numerical and

analytical solutions for the same problem, the resultant relative error of the

numerical analysis to analytical solution has been calculated to be at 0.31%

which is not remarkable.
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Figure 3.8 Changes in inward radial displacement with respect to support
pressure (after Hoek et al. (1998)).

3.5.2 Bedding Planes

To verify the behaviour of bedding planes in the numerical model, analytical

solution suggested by Brady and Brown (2005) has been used. This solution

calculates the normal and shear stresses on the plane of weakness at the

distance of R from centre of the tunnel with radius of r (Fig. 3.9a). It is

assumed that discontinuity has zero tensile strength, zero cohesion and is

non-dilatant in shear. Considering Kirsch (1898) equations (Section 3.6) for

a circular tunnel under hydrostatic stress field in elastic material, normal and

shear stress on the plane of weakness without sliding at the distance of R
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from the centre of a tunnel can be derived as

σn =
1

2
(σrr + σθθ) +

1

2
(σrr − σθθ) cos(2α)

= p(1− r2

R2
cos(2α)) (3.9)

τ = σrθ cos(2α)− 1

2
(σrr − σθθ) sin(2α)

= p
r2

R2
sin(2α) (3.10)

Plotting the value of τ/σn = tanφ, determined by the analytical solution,

versus horizontal distance from the centre of a tunnel with the given dimen-

sions at Figure 3.9a results in a curve which is shown in Figure 3.9b. It can

be seen that the value of shear stress increases from zero exactly above the

centre of the tunnel and reaches the maximum value at the horizontal dis-

tance less than a radius of the tunnel. For the given dimension of the tunnel,

angle of friction equal to 17.2◦ (tanφ = 0.31) depict the maximum shear

stress (critical shear stress value). Angle of friction bigger than this value

results in no sliding behaviour of discontinuity and the elastic solution can

be maintained. On the other hand, angle of friction slightly less than this

value results in sliding. The predicted area of sliding for φ = 14.6◦, obtained

from elastic solution, is shown in Figure 3.9b.

If sliding happens, the problem is no longer elastic and Equations 3.9

and 3.10 can not be used. However, the elastic solution can give us a valu-

able preliminary insight to the problem (Brady and Brown 2005). In this

case, numerical analysis should be used to give a more accurate solution of

stress distribution around the tunnel.
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Figure 3.9 (a) shear and normal stresses on the plane of weakness (after Brady
and Brown (2005)) and (b) minimum range of slip for φ = 14.6◦.
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Numerical Solution

For a tunnel with dimensions same as Figure 3.9a, results of the numerical

model showed a negligible error compared to analytical results. The most

important parameter that should be verified is sliding which will be one of

the parameters to be investigated in next chapters. In this case, analytical

solution showed that for the given dimensions of tunnel, the angle of friction

greater than φ = 17.2◦ (peak point in Fig. 3.9b) resulted in no sliding and

vice versa. Results of the numerical analysis showed the exact agreement

with the analytical results (Table 3.1).

Table 3.1 Results of numerical modelling compared to analytical solution.

φ = 10 φ = 16 φ = 18 φ = 20

Analytical results sliding sliding no sliding no sliding

Numerical results sliding sliding no sliding no sliding

In case of shear stress, magnitude of error exceeds 2.4% and increases

gradually for the distance of more than 5 times radius from the centre of

the tunnel (Fig. 3.10a). It has been shown by Brady and Brown (Brady and

Brown 2005) that the stress distribution does not change significantly after

the distance of 5 times of radius of the tunnel. So, this amount of error does

not have considerable influence on the results of analysis.

The peak error for normal stress on the contact surface is less than 10

percent, which can be seen at the distance of 1.7 to 3 times radius from

the centre of tunnel (Fig. 3.10b). This amount of error is relatively high

and is probably because of the little amount of penetration on the contact

surfaces, which is inevitable. The value of contact pressure does not play any
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Figure 3.10 Percentage of error in shear (a) and normal (b) stress obtained
from numerical results

significant role in future analysis in this thesis.

3.6 Sensitivity Analysis

Rock material around an underground excavation can be considered as in-

finite material with respect to the dimension of the tunnel. In numerical

simulation, dimension of the model should be large enough to represent an

infinite material. In other words, effects of boundary conditions on the stress

distribution around a tunnel should be minimum. In order to study the ef-

fect of boundary conditions on the results of excavating a tunnel, sensitivity

analysis on the dimension of the model has been carried out. A closed-form

solution, namely Kirsch equations, has been used to check the results of the

numerical analysis. This solution calculates the stress condition and displace-

ment after excavating a circular tunnel in an elastic isotropic homogenous
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material subject to biaxial in-situ stress as (Brady and Brown 2005)

σrr =
p

2

[
(1 +K)

(
1− a2

r2

)
− (1−K)

(
1− 4a2

r2
+

3a4

r4

)
cos 2θ

]
σθθ =

p

2

[
(1 +K)

(
1 +

a2

r2

)
+ (1−K)

(
1 +

3a4

r4

)
cos 2θ

]
σrθ =

p

2

[
(1−K)

(
1 +

2a2

r2
− 3a4

r4

)
sin 2θ

]
ur = − pa

2

4Gr

[
(1 +K)− (1−K)

(
4(1− ν)− a2

r2

)
cos 2θ

]
(3.11)

uθ = − pa
2

4Gr

[
(1−K)

(
2(1− 2ν) +

a2

r2

)
sin 2θ

]

where σrr, σθ and σrθ are the total stresses after excavation, ur and uθ are

radial and tangential displacements induced by the tunnel, p is in-situ stress

value, K, is the fraction of horizontal to vertical stress, a is tunnel radius, r

is radial distance from the centre of the tunnel, θ is the angle of the polar

coordinates (shown in Figure 3.11) and G is modulus of rigidity of the ma-

terial where G = E
2(1+ν)

.

To study the effect of dimensions of the model, several models with different

dimensions have been created. The properties of the model are shown in

Table 3.2. Sensitivity analysis has been carried out using the radial displace-

ment at the crown of a circular tunnel (Eq. 3.11) and results of numerical

models have been compared to closed-form solution. These results are shown

in Table 3.3 where it can be seen that by increasing the dimensions of the

model, amount of radial displacement at the crown of the tunnel becomes

closer to the analytical solution. This also can be seen in Figure 3.12 that

for a large dimension, the amount of displacement converges to the result of
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Figure 3.11 Circular tunnel under biaxial in-situ stress.

the closed-form solution. In infinity, these results will be exactly the same.

In this Figure, horizontal axis shows the dimensionless fraction of dimension

of the model (D) to radius of tunnel (a) in semi logarithmic scale.

Large models require high amount of computational cost so smaller mod-

els with negligible amount of error can be used for further analysis. Looking

at Table 3.3, it can be concluded that models with dimension greater than

20 times of the tunnel radius result in under 0.83% error which is acceptable.
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Table 3.2 Model parameters for a circular tunnel in a typical rock material.

Model characteristics

Module of elasticity E = 5.74 GPa

Poissons ratio ν = 0.35

In-situ stress σv = σh = 10 MPa

Tunnel radius a = 1 m

Model dimension D

Table 3.3 Results of numerical and closed-form solutions.

D (m) ur (cm) Error (%)

5× 5 1.43 9.21

10× 10 2.06 2.87

15× 15 2.21 1.41

20 × 20 2.27 0.83

30× 30 2.31 0.39

40× 40 2.33 0.21

50× 50 2.33 0.17

100× 100 2.34 0.08

Analyitical 2.35 0

3.7 Comprehensive Model of an Underground Ex-

cavation

A rectangular underground excavation in laminated adjacent rock has been

modelled using the introduced features in this chapter. The tunnel is as-

sumed to be long enough to validate plain strain assumption. As long as

the problem is symmetrical, half of the tunnel can be modelled by putting

suitable boundary conditions on the symmetry line, i.e. restraining displace-

ment in Y direction. Dimension of the mesh in an area near the tunnel has
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Figure 3.12 Numerical and analytical results for different tunnel dimensions

been chosen as one tenth of the shortest length of rock bolt (inclined bolt)

in this study (1 m). This results in square mesh with dimension of 0.1 m.

Because of high calculation cost, this high density mesh can not be applied

to the whole model and has been used for only a certain area around the

tunnel. This area has been chosen with respect to Brady and Brown (2005)

which pointed out that the influence of an underground excavation is limited

to an area of 5 times of the tunnel’s dimension around the tunnel. This also

has been observed in early models that the effect of excavating a tunnel on

adjacent rock reduces and becomes negligible beyond the distance of 5 tunnel

diameter from the centre of the tunnel.

The model contains 4 bedding planes, two above at distance of 90 and

150 cm from the roof and two beneath at distance of 1 and 3 m from the floor

of the tunnel. Rock has been modelled as elastic-perfectly plastic material

which yields under Mohr-Coulomb failure criterion. Different rock properties
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have been chosen to represent several rock layers and suitable angle of friction

assigned to each bedding surface. Finally, truss bolt elements (inclined bolt

and tie-rod) have been modelled using truss elements with pretension being

applied as initial condition.

To apply the in-situ stress condition, this model is solved in three steps

(Section 3.2.1). Similarly, pretension in truss elements can be applied using

initial condition and changing the boundary conditions during several steps.

For this purpose, during steps one and two, two ends of all of the truss

bolt elements are restrained against X-Y displacements. At step three, with

excavating the tunnel, boundary conditions of these nodes will be removed

and the pretension will be applied to truss bolt elements. This entails an

assumption that reinforcement is installed right after excavating the tunnel.

Figures 3.13 and 3.14 show two views of the model mesh and the structure

of the model2. These figures show FEM mesh for a rectangular tunnel with

height and span of 2 and 3 m respectively with a typical truss bolt system.

2Model properties, e.g. rock, truss properties, etc. are presented in next chapters.
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Figure 3.13 Close view of ABAQUS FEM meshing around a tunnel with truss
bolt and different rock layers.
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close view

Figure 3.14 Wide view of ABAQUS FEM meshing around a tunnel with truss
bolt and 4 bedding planes.
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C H A P T E R 4

Truss Bolt Mechanism

As discussed in previous chapters, truss bolt demonstrated very good ap-

plication in providing the stability of underground excavations according to

several researchers’ experience. Despite the benefits of truss bolt systems in

support of underground excavations, the working mechanism of this system

under deformation of roof is largely unknown (Wahab Khair 1984; Liu et al.

2001), and most of the design parameters are chosen predominantly based on

engineers’ judgement and experience. In unfamiliar ground conditions, such

experimental design may cause several stability problems. These problems

regularly happens in underground mines where the condition of surrounding

rock may frequently change during a mine’s life. Ground parameters such

as bedding thickness, properties of rock material, geological features such as

faults and many other factors could possibly affect the optimum design of

reinforcement system. Without knowing the effects of these parameters on

working mechanism of truss bolt, achieving an optimum design is practically

impossible.

To investigate the mechanism of truss bolt system, numerical modelling

as a powerful method can give us the ability to monitor the detailed effects of

reinforcement systems. This allows engineers to observe, gather the required
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data and analyse the output to obtain the desired information.

In this chapter, mechanism of truss bolt is investigated using numeri-

cal modelling techniques. Parametric study on different design parameters

of truss bolt is carried out by modelling some regular design patterns with

different design parameters. These patterns are mainly based on existing

practice and recommendations in the literature. The behaviour of the rock

after installing reinforcement needs to be measured via defining some per-

formance indicators. For the scope of this study, these indicators should be

able to evaluate the reinforcing effect of the truss bolt system, roof deflection

and effects of truss bolt on preventing cutter roof failure. Additionally, to

have a preliminary insight of the difference between mechanism of systematic

rock bolt and truss bolt system, a comparison between these reinforcement

systems is made using several stability indicators.

4.1 Regular Truss Bolt Patterns

Parametric study is perhaps, one of the best ways to understand the different

effects of several design parameters of truss bolt system on stability of an

underground opening. To monitor the effects of each design parameter, three

regular truss bolt patterns with different design parameters have been chosen

to be modelled. All of these designs have been chosen from literature and

adapted to the tunnel dimensions in this study. These truss bolt patterns

with different parameters are adopted to highlight the different effects of each

parameter on the stress distribution around the tunnel:
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Pattern 1-Liu et al. (2005): The first pattern has been chosen with re-

spect to a pattern that Liu et al. (2005) used to verify their analytical

method. Here we adjust the design parameters to the dimensions of our

model to obtain the desired pattern. The characteristics of this truss

bolt pattern, after adjusting to the dimensions of a tunnel (Fig. 4.1),

are L = 2m, α = 60◦ and S = 2.8m (these parameters are shown in

Fig. 4.1). It is necessary to mention that Liu et al. (2005) used this

pattern in combination with ground anchors to support side walls.

Pattern 2-Cox and Cox (1978): As mentioned in Section 2.6 Cox and

Cox (1978) pointed out several recommendations for design and a

scheme for installing truss bolt system. On the basis of their recom-

mendations, the second truss bolt pattern will be L = 2m, α = 45◦ and

S = 2m.

Pattern 3-Ghabraie et al. (2012): They have pointed out a group of op-

timum designs on based on the effect of truss bolt system on reducing

the area of loosened rock beneath the natural reinforced arch. The third

pattern has been chosen with respect to one of the optimum designs of

their study. The parameters are L = 3m, α = 60◦ and S = 1.6m.

4.2 General Properties of the Model

A reference model has been created to examine the effects of several rein-

forcement patterns on the stability of the excavation. This model consists

of four bedding planes, two above the tunnel and two beneath the tunnel.
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A schematic view of the tunnel showing dimensions and rock formation is

shown in Figure 4.1 and Table 4.1. Meshing and model dimensions are the

same as the model discussed in Section 3.7. The thickness of layers and

rock properties have been chosen with respect to Xuegui et al. (2011), Zhang

(2005) and Yassien (2003). Other properties of the model are as follow.

Table 4.1 Physical properties of different rock layers (Yassien 2003; Zhang
2005).

Type of the Angle of friction Cohesion Elastic Poisson’s Ration

rock (φ) (MPa) Modulus (GPa) (ν)

Limestone 29 3.01 17 0.3

Blackshale 20 1.0 2 0.27

Siltyshale 27 1.37 4.5 0.27

Coal 22 1.09 2.4 0.34

Thickness of the first roof layer is an important factor that changes

the practice of truss bolt system and can affect the optimum design (Wa-

hab Khair 1984). In this part of the study we model only one layer config-

uration as shown in Figure 4.1. Effects of this factor will be investigated in

the next chapter.

Properties of the bedding planes are chosen with respect to Zhang (2005)

and shown in Table 4.2.

Physical characteristics of rock bolts have been chosen with respect to

the design catalogues of Minova (Orica) Company for cable strata reinforce-

ment. These properties are shown in Table 4.3.

Tension force increases by the deformation of the host rock. To prevent

failure, as Hoek et al. (1998) mentioned, pre-tension stress at bolts should

not exceed 70% of the yield stress of rock bolts. In all of the models, tensile
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Figure 4.1 Reference model.

stress in truss bolt system has been chosen as 0.314 MN which is equal to 60

percent of yield stress (1670 MPa).

In-situ stress distribution has been chosen as hydrostatic type of stress

equal to 1.9 MPa (σv = σh = 1.9 MPa). In Section 4.4 for investigating the

effect of truss bolt on cutter roof failure other in-situ stress distributions will

be used.

Table 4.2 Coefficient of friction on bedding surfaces (Zhang 2005).

Bedding planes Coefficient of friction (µ)

First bedding plane (above) 0.364

Second bedding plane (above) 0.46

First bedding plane (beneath) 0.364

Second bedding plane (beneath) 0.46
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Table 4.3 Typical mechanical properties of the cable bolts used for modelling
truss bolt and systematic rock bolt.

Cross-sectional area 313 mm2

Module of elasticity 200 GPa

Ultimate tensile strength 1670 MPa

Elongation on 600mm length 6-7%

Mass per meter-Cable 2.482 (kg/m)

4.3 Stability Indicators

Finite Element Method is not able to model separations and rock falls. This

limitation makes it difficult to judge the stability of an underground exca-

vation with a simple “yes or no” function. The behaviour of the rock after

installing reinforcement can be measured via defining some performance in-

dicators. These indicators are derived from Mohr-Coulomb material model,

failure criterion and elastic-plastic deformation in rock and can be adopted

to monitor reinforcing effect of truss bolt, elastic-plastic behaviour of rock,

horizontal and vertical deformations in rock, roof deflection and shear crack

propagation in cutter roof failure. Although these stability indicators are not

able to indicate the failure of the tunnel, but can evaluate the effects of each

design parameter. In this Section, these indicators will be introduced and

the results of installing different truss bolt patterns on the surrounding rock

will be discussed.

4.3.1 Reinforced Roof Arch and Area of Loosened Rock

After excavating a tunnel, redistribution of the in-situ stress forms a pres-

surized arch above the tunnel. This arch is stable and can carry the load to
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the sides of the tunnel. The rock material beneath this arch is considered as

loosened material (Figure 4.2). This phenomenon can be observed in almost

all types of coherent rock formations (Li 2006) and is proved by experience

as well as numerical analysis (Bergman and Bjurstrom 1984; Huang et al.

2002). Position of this arch changes drastically by changing the in-situ stress

distribution. High horizontal stress is favourable in forming a closer natural

arch to the roof, i.e. smaller loosened area. It should be noted, however, that

extensive horizontal stress has negative effects on cutter roof failure and also

causes stability problems in pillars.

Usually, the natural arch is positioned far above the tunnel and the loos-

ened area beneath it should be stabilized (Li 2006). This can be achieved

by either removing or reinforcing the loosened rock. In coal mines, how-

ever, where the shape of the tunnel is normally governed by the shape of

the coal layer, removing the loosened rock is not an option, thus a suitable

reinforcement system should be used.

Choosing parameters of the reinforcement systems to carry the load of

the loosened area, without considering reinforcing effects of the system, nor-

mally leads to overdesign. The load of the loosened area can be used as only

to achieve an upper limit (ultimate capacity) for the parameters of the rein-

forcement system (Cox and Cox 1978). To have a safe and economic design,

the reinforcing effect of truss bolt on the loosened rock area should be taken

into account. By applying a new load distribution around the tunnel, truss

bolt system reinforces the loosened area and repositions the natural roof arch

which results in smaller loosened area.
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Figure 4.2 Natural roof arch and loosened area around a tunnel in laminated
rock, adapted from Cox and Cox (1978).

To specify the position of the reinforced arch, Huang et al. (2002) used the

concept of invert stress cone to find the natural arch position around an

underground excavation. In their model the thickness of the arch has been

governed by the direction of principal stresses. According to Huang et al.

(2002), reinforced arch is the area in which principal stresses are not in

vertical or horizontal direction except on the apex of the arch. Another

approach to find the reinforced arch is to use the vertical deformation of the

rock above the roof. In this approach, the reinforced arch is defined by the

points with the closest amount of vertical deformation to a certain fraction

of the maximum vertical displacement of the tunnel roof. This fraction is

the amount of displacement which predicts the stable/unstable rock. This
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condition can be expressed as (Ghabraie et al. 2012)

|di − (n× dmax)| = Minimum (4.1)

where di is the vertical displacement at points above the roof in FE mesh,

dmax is the maximum vertical displacement on roof and n is a fraction between

0 and 1.

In this approach, n × dmax is a threshold (a certain amount of displace-

ment) which predicts the area of the loosened rock. Areas with less defor-

mation than this threshold are considered to be stable and vice versa. The

fraction (n) can be chosen with respect to the sensitivity of the tunnel to dis-

placement and can be different from case to case. In this study, n = 50% has

been chosen which implies that areas with less than 50% of the maximum dis-

placement on the roof are loosened area. The output of this method is a line

which connects all the points resulting from Equation 4.1. It should be noted

that this approach does not necessarily predict the actual area of loosened

rock and is only used to define a basis for comparing different designs.

Using n = 50%, the position of the reinforced arch and area of the loos-

ened rock for different truss bolt patterns have been derived. These results

are shown in Figure 4.3. It can be seen that truss bolt system repositions

the reinforced arch and reduces the area of loosened rock around a tunnel

under hydrostatic in-situ stress. These results highlight the importance of

the position and the angle of the inclined bolts. The truss pattern with short

span and wide angled inclined bolts (pattern 3, Figure 4.3c) shows the best

result. On the other hand, pattern 1, which has a bigger span, has a small
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Figure 4.3 Reinforced roof arch before and after installing several truss bolt
patterns.

effect on the area above the middle of the roof but shows a good response on

the areas near the corners (Figure 4.3a). This is because in this pattern the

inclined bolts are closer to the corners of the roof.

Table 4.4 shows the amount of reduction in the loosened area as a result of

installing different truss bolt patterns. Pattern 3 shows the best response on

reducing the area of the loosened rock. Pattern 1 and 2 reduce the area of

the loosened rock almost the same amount but result in different shape of
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the reinforced arch (see Figures 4.3a and 4.3b). One reason is that the major

area of the loosened rock is above the middle of the roof and pattern 3 has

better coverage on this area compared to the other truss bolt patterns. Also

a wide angle of inclination in pattern 3 produces a greater vertical component

which can control the vertical displacement on the roof.

Table 4.4 Reduction in the loosened area after installing three truss bolt
patterns

Different truss bolt Reduction in the

patterns loosened area (cm2)

Pattern 1 2200

Pattern 2 2300

Pattern 3 3300

4.3.2 Roof Deflection

One definition for the stability of an underground excavation can be expressed

by the amount of deformation in the surrounding rock. Failure means an

excessive deformation of the rock material. This deformation can happen

as roof deflection, rock falls, rock slip, floor heave or convergence of side

walls. The amount of deformation which denotes failure varies case to case

and depends on the application and purpose of the tunnel. On the basis of

this concept, the area of the deflection at roof after installing each truss bolt

pattern can be evaluate as a stability indicator. It seems necessary to mention

that truss bolt systems do not have significant effect on the reduction of the

roof sag (O’Grady and Fuller 1992) but control the stability of the tunnel

by improving the load carrying ability of rock. However, this measure shows
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the response of the truss bolt pattern on controlling the vertical deformation

on the roof of an underground excavation and can be used to understand the

mechanism of the reinforcement system.

Table 4.5 shows different amounts of reduction in the area of roof deflec-

tion after installing different truss bolt patterns. It can be seen that the most

effective truss bolt pattern in reducing roof sag is pattern 3 which has long

and high angled inclined bolts and are installed close to the center of the

roof. In contrast, patterns 2 and 3 show approximately the same effect on

this measure which is significantly less than the effect of pattern 3. This is

probably because of the position and angle of inclined bolts. When truss pat-

tern is more similar to systematic rock bolt pattern, i.e. high angled inclined

bolts, where direction of inclined bolts is close to the direction of the major

displacement component on roof (vertical displacement), the reinforcement

system has better effect on controlling the deformation on the roof. Further

to this parameter, installing inclined bolts near the major area of roof sag

(centre of the roof), i.e. short tie-rod length, results in higher amount of re-

duction in deformation.

Table 4.5 Reduction in the area of roof deflection for three truss bolt patterns

Different truss bolt Reduction in roof Reduction in roof

patterns deflection (cm2) deflection (%)

(1) L = 2m, α = 60◦, S = 2.8m 1.33 7.5

(2) L = 2m, α = 45◦, S = 2m 1.51 8

(3) L = 3m, α = 60◦, S = 1.6m 2.11 12
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4.3.3 Stress Safety Margin (SSM)

As mentioned in Section 3.2.2 Mohr-Coulomb failure criterion is well known

and has been widely used to analyse the elastic-plastic behaviour of rock

material (Jing 2003). The yield function in Mohr-Coulomb failure criterion

on the basis of principal stresses (σ1 ≥ σ2 ≥ σ3) is

f = (σ1 − σ3)− (σ1 + σ3) sin(φ)− 2c cos(φ) (4.2)

In this model compressive stresses are considered as positive. The negative

values of f mean the elastic behaviour of the rock and f equals to zero means

the yield point. This model is not able to show the post failure behaviour of

rock.

In this criterion, if the Mohr’s circle corresponding to the stress condition

at a point in rock material touches the Mohr-Coulomb failure envelope, rock

will yield and the elastic solution is no longer valid. By increasing stress

on the surrounding rock around an excavation, more points will undergo

failure and the tunnel would collapse. The area beneath the failure envelope

represent elastic behaviour of rock with no failure and can be considered as

safe area. The failure in Mohr-Coulomb failure criterion is a function of two

key parameters: a) radius of Mohrs circle (σ1−σ3
2

) and b) position of centre of

the circle (σ1+σ3
2

). Failure happens by increasing radius of the circle or/and

decreasing the amount of σ1+σ3. Figure 4.4 shows two possible Mohr’s circles

for these two paths of failure. It can be seen that the possibility of failure

by decreasing radius of the circle is always more than failure by decreasing

the amount of σ1 + σ3, in fact, xc > xr/ sinφ. Hence, the shortest distance

76



to failure is xr, where xr equal to zero represents failure. Now the stress

safety margin can be defined based on this parameter. The mathematical

expression for xr can be derived as (Ghabraie et al. 2008)

xr = c cos(φ) + (
σ1 + σ3

2
) sin(φ)− (

σ1 − σ3
2

) (4.3)

Using a dimensionless expression of this factor makes it easier to compare

the results of several models. This can be achieved by the following equation

SSM =
r + xr
r

=
2c cos(φ) + (σ1 + σ3) sin(φ)

σ1 − σ3
(4.4)

where r is the radius of the Mohr’s circle

r =
σ1 − σ3

2

In Equation 4.4, SSM equal to one represents failure and plastic behaviour

of rock while SSM greater than one means elastic behaviour of rock and safe

Mohr’s circle.

Figures 4.5 to 4.7 show contours of ∆SSM, which is the difference of SSM

before and after installing the three truss bolt patterns around a tunnel un-

der hydrostatic stress distribution (∆SSM = SSMbefore − SSMafter). By this

definition, negative values represent areas in which truss bolt has favourable

effect. The green line in these graphs shows the line in which truss bolt does

not have any significant effect on the value of SSM around the tunnel. This

line demonstrates the border of favourable and unfavourable effects of truss
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Figure 4.4 Shortest distance from Mohr’s circle to failure envelope.

bolt. It can be seen that truss bolt effectively increases the value of SSM

around the roof and abutments of tunnel.

Comparing the three truss bolt patterns reveals that short tie-rod, wide angle

of inclination and long inclined bolts (pattern 3) results in better effect on

the area above the roof but less favourable effect on the rib area (Figure 4.7).

On the other hand, in patterns 1 and 2, the most effective areas around truss

bolt are near inclined bolts (Figures 4.5 and 4.6). This makes truss bolt

patterns 1 and 2 capable of reinforcing the area above the walls of the ex-

cavation (rib area). Length of inclined bolts, in current design schemes, is a

function of the required load carrying capacity of the reinforcement systems.

Inclined bolts should be long enough to ensure sufficient length of anchorage

in the safe area (behind the rib line) to provide enough capacity to the truss

bolt system (Liu et al. 2005; Cox 2003). Figures 4.5 to 4.7 show that the
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length of inclined bolts even changes the load distribution around the truss

bolt where long inclined bolts (Figure 4.7), in comparison with short inclined

bolts (Figures 4.5 and 4.6), are not able to produce a highly reinforced area

around inclined members. On the other hand, failure in providing enough

length of anchorage results in failure of the truss bolt system. Consequently,

the required length of anchorage to carry the applied load on truss bolt sys-

tem can be always used to find the the lower limit for the length of inclined

bolts while this length can be adjusted with respect to the required amount

of reinforcing effect near corners of the roof.

Figure 4.8 shows a different illustration of effects of pattern 3 on SSM around

the tunnel. Contour lines in this figure have been chosen to represent three
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different areas, namely a) major area of reinforcing effect (areas with less

than −0.03), b) minor area of reinforcing effect (between −0.03 and 0) and

c) unfavourable effect of truss bolt (bigger than 0). It can be seen that the

major reinforced area approximately fits in an arch shape above the roof

while the minor reinforced area is more like a trapezoid area which is lo-

cated above the roof and between the inclined bolts. In other patterns the

major reinforced area can be seen around the inclined members (Figures 4.5

and 4.6). However, load distribution around these patterns also shows arch

shape borders. The applied horizontal tension at tie-rod can be well trans-

ferred to the rock at blocking points and by lateral behaviour of inclined

bolts. This load produces an arch shape compressive area above the roof.

The reinforced areas in Figures 4.5 to 4.8 match the compressive areas of
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Figure 2.3 in Section 2.3.

On the other hand, horizontal tension in tie-rod places the area behind

inclined bolts in tension. This unfavourable area is mostly located on sides of

the tunnel and can cause stability problems, especially when the side rock is

relatively weak. Patterns 1 and 2 which have inclined bolts near the corners

of the roof show less unfavourable effect on this area in comparison with

pattern 3. In this case, installing truss bolt can shear the side rock which

causes rock sliding in this area. Individual rock bolts or rock anchors can be

used to stabilise this area (Liu et al. 2005).

4.3.4 Plastic Points Distribution

Following excavating an underground excavation, stress concentration on the

adjacent rock around the excavation causes failure in rock material. As dis-

cussed in Section 3.3, after installing reinforcement, rock undergoes elastic-

plastic deformation. This displacement induces an amount of pressure on the

reinforcement system which increases the tension force in the system. Hence,

more load is transferred to rock by truss bolt. This increase in load continues

to reach an equilibrium in which the stress in rock will be equal to the ap-

plied pressure by reinforcement. This effect of reinforcement system prevents

some areas of rock from failure and plastic deformation. Figures 4.9 to 4.11

show the effects of the three truss bolt patterns on the plastic behaviour of

rock before and after installing reinforcement system.

It can be seen that truss bolt prevents the plastic points to propagate around
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Figure 4.9 Plastic points before and after installing Pattern 1.
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Figure 4.10 Plastic points before and after installing truss bolt pattern 2.
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Figure 4.11 Plastic points before and after installing truss bolt pattern 3.

an underground excavation. Effects of truss bolt on the plastic behaviour of

the surrounding rock is deeply related to the parameters of the truss bolt

pattern. This difference can be well monitored by comparing the effects

of two truss bolt patterns in Figures 4.9 and 4.11. When inclined bolts

are positioned well in the failed area, truss bolt shows a good practice in

reducing the number of plastic points (Figure 4.11). On the other hand, truss

bolt pattern in Figure 4.9 prevents some points to fail around the corner of

the excavation but more points fail above the roof of the tunnel. Another

conclusion to these results is that, pattern 3 prevents an arch shape area to

fail above the roof (Figure 4.11). In fact, this area is completely similar to

the results of SSM where the area of the major reinforcing effect of truss bolt

in Figure 4.8 for pattern 3 can be fit in an arch shape area.
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4.4 Effects of Truss Bolt System on Cutter Roof

Failure

Cutter roof is a kind of failure which normally happens in laminated roof

rock, especially when the immediate roof layer is relatively weak (Su and

Peng 1987; Gadde and Peng 2005). Cutter roof failure applies a huge amount

of pressure on support or reinforcement system which makes a massive block

of rock to fail. In some cases, re-opening and stabilizing a site after cutter

roof failure has no efficient solution and the site would be abandoned (Su

and Peng 1987).

Mechanism of cutter roof failure is well discussed in the literature (Su

and Peng 1987; Gadde and Peng 2005; Coggan et al. 2012; Altounyan and

Taljaard 2001). After excavating an underground excavation in laminated

rock, shear cracks start to appear near the rib area. During the time after

excavation, cracks propagate with an angle depending on the in-situ stress

distribution. High horizontal stress causes low angle shear crack propagation

from the roof meanwhile high vertical stress causes shear cracks to propagate

under an angle close to perpendicular to the roof (Su and Peng 1987). Other

factors mentioned by researchers are entry width, relative stiffness between

coal and the immediate layer, ground surface topography, geological anoma-

lies, separation of bedding and gas pressure(Su and Peng 1987; Gadde and

Peng 2005). When fractures reach a bedding plane or an area above the

rock bolt anchorage, because of overburden pressure and weight of the rock,

a massive block separates from the roof (Su and Peng 1987). Figure 4.12 il-
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lustrates a schematic procedure of crack propagation and cutter roof failure.

As mentioned by several researchers, conventional systematic rock bolt

patterns are not able prevent this type of failure and the whole system to-

gether with a huge block of rock fail into the excavated area (Su and Peng

1987; Gadde and Peng 2005). In contrast, truss bolt system has shown very

good practice in controlling the cutter roof failure (Stankus et al. 1996). In

this section, effects of different truss bolt patterns on preventing cutter roof

failure is investigated. Mechanism of truss bolt on preventing cutter roof

failure can be studied by monitoring horizontal movement of the immediate

roof layer and shear crack propagation in models under high horizontal or

vertical in-situ stresses.

4.4.1 Shear Crack Propagation

One of the main limitations of FEM method is in modelling fracture growth (Jing

2003). Capturing crack propagation is only possible by employing relatively

new methods such as enriched FEM and generalized FEM (Deb and Das

2011; Duarte et al. 2000). Using these techniques in a compressive model of

underground excavation with complex geometry is hard and needs extensive

calculation costs. This problem becomes more complicated when the model

contains pretensioned elements (rock bolts) and geological features such as

bedding planes.

Based on Mohr-Coulomb failure criterion, shear failure can happen under

compressive stresses when the maximum shear stress reaches the critical value
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Figure 4.12 Schematic progressive shear and cutter roof failure, after Altoun-
yan and Taljaard (2001) .

defined by the Mohr-Coulomb yield function. After shear failure the rock be-

haviour could be assumed to be plastic. This failure could thus be captured
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using an elastic-plastic material model in FEA. Hence the yielded areas re-

sulted from elastic-plastic FEA, provided that the stresses are compressive,

could be assumed to represent the shear crack propagation. However, if the

failure occurs in tension, due to the separation in material, the post failure

behaviour could not be captured appropriately using an elastic-plastic FEA.

To monitor the effects of truss bolt on cutter roof, progressive failure

(shear crack propagation) around the tunnel is modelled using a simplified in-

teractive approach. For this purpose, the model is solved with elastic-plastic

material model once, and then the most likely area to yield is found with

respect to the Mohr-Coulomb yield function and SSM factor (Equation 4.4).

As discussed in Section 4.3.3 changes in radius of Mohr’s circle is always

smaller than the required change in the amount of pressure to satisfy the

failure criterion (xr < xc). From Equation 4.4, SSM equal to one (xr = 0)

denotes failure (Figure 4.13). ). Increasing load in rock material results in

changing the radius of Mohr’s circle and causes an increase in the number of

failure points in rock. Modelling this progressive failure in rock is possible by

gradually increasing values of xr and finding the yielded points for the new

stress condition corresponding to the new xr. This approach is essentially a

linear extrapolation which helps us estimate shear crack propagation. The

increase in the amount of xr can be defined through several increments (In)

where

SSM− 1 = In (4.5)

In this equation SSM = 1 represents yielding. By replacing the definition of
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SSM (Equation 4.4) in Equation 4.5, different increments can be derived as

In = xr/r (4.6)

This equation identifies the locations where rock will undergo shear failure

at increment In. In equal to zero interprets xr = 0 which shows the area

of the failure under current loading condition. Increasing the amount of In

shows propagation of yielded as loads increase. Four possible conditions of

rock for different increments from Equation 4.5 are shown in Figure 4.14. It

can be seen that after excavating an underground excavation, rock undergoes

the elastic deformation (condition: elastic and safe). By increasing the load,

the Mohr’s circle becomes bigger and as it touches the failure envelope, rock

yields (condition: yield in increment 0). Now, by considering various incre-

ments (In in Equation 4.5), smaller Mohr’s circles will also undergo failure

and plastic deformation. Points corresponding to these smaller Mohr’s cir-
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Figure 4.14 Different stages of rock behaviour during the analysis.

cles can be considered as the potentially yield area for the given increment

(condition: potentially yield, increment 0.1). By increasing the increment,

more points undergo the plastic deformation and a bigger area is considered

as the potentially yield area (condition: potentially yield, increment 0.4).

It should be noted that the resulting yielded areas for different increments

do not necessarily mean that these areas are yielded but shows the pattern

of potentially yielded area (shear cracked area) in different time spans after

excavation.

With respect to the definition of cutter roof by Su and Peng (1987), when

shear cracks reach the plane of weakness, cutter roof happens. Four different
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increments have been chosen to represent the shear cracks just after exca-

vation (In = 0) to cutter roof failure (when shear cracks reach the plane of

weakness). Two different in-situ stress distributions have been modelled. Re-

sults showed that when the horizontal stress is high (σv = 1
2
σh) shear cracks

tend to propagate with a sharp angle to the roof of the opening. Stars in

Figure 4.15 show yielded points for different increments. Different increments

are shown by different colours. The hypothetical lines in this figure show the

areas of yielded rock for different increments. As it can be seen, at the final

increment (In = 0.015) shear cracks reach the plane of weakness and the cut-

ter roof happens. Similarly, using the same method for a tunnel under high

vertical in-situ stress (σv = 2σh) the pattern of shear crack propagation can

be obtained as shown in Figure 4.16. Comparing these two figures illustrates

that the angle of shear crack propagation and shape of the unstable block is

deeply related to the condition of the in-situ stress. In high vertical stress,

shear cracks propagate at an approximately right angle to the roof while in

high horizontal stress this angle is less than 90◦. Su and Peng (1987) on the

basis of numerical analysis, using FEA and safety factor, together with field

observations reported the same pattern of cutter roof in high vertical and

horizontal stress conditions.

Figures 4.17 to 4.22 show results of installing three different truss bolt pat-

terns on two identical tunnels under high horizontal and vertical in-situ

stresses. Comparing these results with Figures 4.15 and 4.16 (pattern of

shear cracks before installing truss bolt), it can be concluded that truss bolt

system reduces the possibility of cutter roof by controlling shear crack prop-
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Figure 4.16 Pattern of shear crack propagation (σv = 2σh).
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agation. It appears that truss bolt system by having inclined bolts near the

area of initial shear cracks (around the corners of the roof) prevents continu-

ous cracking and reduces the possibility of cutter roof. It has been shown in

Section 4.3.3 that, because of the pretension force and induced compressive

stress around the inclined bolts, a reinforced area will be created near the

corners of the roof. In high vertical stress, where inclined bolts are well lo-

cated at the area of shear crack propagation, the applied compressive stress

by inclined bolts prevents continues shear crack propagation. In addition to

this, investigating the results of SSM factor around truss bolt system shows

another major reinforced area which is similar to an arch shape between in-

clined bolts above the roof (Figure 4.8). Comparing patterns of shear cracks

before (Figure 4.15) and after installing truss bolt (Figures 4.17 to 4.19) in

high horizontal stress shows that truss bolt prevents propagation of cracks at

areas near blocking points and above the roof. In fact, this area is identical

to the produced reinforced arch area by truss bolt.

Results of installing different truss bolt patterns on preventing cutter roof il-

lustrate that, depending on design parameters of truss bolt and in-situ stress

distribution, effectiveness of the system on preventing shear crack propaga-

tion varies. It can be seen that in high vertical stress (Figures 4.20 to 4.22),

pattern 2 shows the best application. Inclined bolts in this pattern exactly

pass through the initial area of cracking and, by reinforcing this area, this

pattern prevents further crack propagation (Figure 4.21). Figure 4.22 shows

that pattern 3 is also able to reduce the possibility of cutter roof in this

in-situ stress condition. On the other hand, inclined bolts in pattern 1 are
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Figure 4.17 Truss bolt pattern 1 in high horizontal in-situ stress.
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Figure 4.18 Truss bolt pattern 2 in high horizontal in-situ stress.
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Figure 4.19 Truss bolt pattern 3 in high horizontal in-situ stress.

located behind the area of initial cracking and even push the crack propaga-

tion pattern slightly towards the middle of the roof instead of controlling it

(Figure 4.20).

Comparing results of installing different truss bolts on a tunnel under high

horizontal stress shows that patterns 2 and 3 prevent shear crack propagation

to reach the plane of weakness (Figures 4.18 and 4.19). Whilst pattern 1 does

not have any significant effect on preventing cutter roof and shear cracks

reach the plane of weakness around the middle of the roof (Figure 4.17).

This is probably because of the position of inclined bolts in pattern 1 which,

similar to Figure 4.20 in high vertical stress, are located behind the area of

initial crack propagation. As discussed in Section 4.3.3, pattern 3 by having

95



0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

3.3

3.6

3.9

Excavation

**
****

******

*******

********

*

********

***

*********

***
******
*********

*

*
********

**
**
*
*
*****

*

****
**

****

*****

*******

********

********

**

*********

**

**
**
*********

*

*
********

**
**

*

****
****
**

****

******

*******

********

*

*********

*

*
*********

*

********

******
****

*
*

**

*

*

*

*
*

*

*

*

*
*
**

Excavation

Horizontal distance from centre of the tunnel (m)

V
e
rt
ic

a
l d

is
ta

n
ce

 f
ro

m
 c

e
n
tr
e
 o

f 
th

e
 t
u
n
n
e
l (

m
)

Increment 0.025

 

Increment 0.02

Increment 0

*
*
*
*

Increment 0.01 Bedding

Bedding

Figure 4.20 Truss bolt pattern 1 in high vertical in-situ stress.
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Figure 4.21 Truss bolt pattern 2 in high vertical in-situ stress.
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Figure 4.22 Truss bolt pattern 3 in high vertical in-situ stress.

long inclined bolts and short tie-rod length produces a stronger reinforced

arch compared to other patterns. This enables it to effectively control the

shear crack propagation above the roof and show the best response.

4.4.2 Slip On the First Bedding Plane

In numerical modelling, slip on the first bedding plane can be precisely stud-

ied by monitoring the relative displacement of bedding surfaces. This pa-

rameter can be interpreted as the relative horizontal movement of the imme-

diate rock layer. Figures 4.23 and 4.24 show the relative horizontal displace-

ment between surfaces of the first bedding plane before and after installing

truss bolt patterns on two different in-situ stress distributions (high vertical
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Figure 4.23 Amount of slip on the first bedding plane for different truss bolt
patterns (σv = 2σh).

σv = 2σh and high horizontal σv = 1
2
σh stresses). These figures show that

truss bolt reduces the amount of horizontal movement in the immediate rock

layer in both models.

A closer inspection at Figure 4.23 reveals that, in high vertical stress the

major area of slip before installing truss bolt is approximately above the

roof. This slippage approaches zero near the rib area (radial distance of 2

m). After installing different truss bolt patterns, pattern 3 shows the best

response which is due to the location of the inclined bolts that pass through

the major area of the slip. By increasing the length of tie-rod, effectiveness

of truss bolt reduces dramatically and pattern 1 shows relatively little effect

on this factor.

In contrast, when horizontal stress is high, the slippage on the first bed-

ding plane reaches a peak above the roof and extends to almost 1.5 times of
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Figure 4.24 Amount of slip on the first bedding plane for different truss bolt
patterns (σv = 1

2
σh).

the span of the opening (radial distance of 4 m) and smoothly approaches

zero after this distance (Figure 4.24). To prevent the cutter roof failure, hor-

izontal displacement, especially above and behind the rib area, need to be

controlled. Figure 4.24 shows that for the area above the tunnel short span

truss bolt has the best effect (similar to results of high vertical stress, Fig-

ure 4.24). However, for the area around corners of the roof (radial distance of

2 m) pattern 2 shows the best results. In this area pattern 1 and 2 are more

effective than pattern 3 due to having inclined bolts passing through this

area. Also, angle of inclined bolts in pattern 2 is another reason for effective

application of this pattern where 45◦ inclined bolts produce a larger hori-

zontal component than 60◦ degree for the same amount of pretension. This

component is in the opposite direction to the horizontal stress and reduces

the effect of this stress.
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4.5 Comparison Between Truss Bolt and Sys-

tematic Rock Bolt

4.5.1 Systematic Rock Bolt Pattern

Comparing two different reinforcement systems needs considering several fac-

tors at the same time such as installing procedure, length of drill-holes, total

length of rock bolts, time of installation, required number of workers, total

price and so on. Considering all of these factors is out of the contents of

this study. To have a simple and fair comparison between truss bolt and

systematic rock bolt systems, several conditions can be made to design a

systematic rock bolt pattern which is relatively comparable to the truss bolt

system. These conditions result in couple of design controlling factors. Here,

we use two factors as a) total length of the drill-wholes and b) sum of the

tension in all rock bolts to design the systematic rock bolt pattern. Using

truss bolt pattern 3 as the reference truss bolt pattern1, total length of rock

bolts and total tension in rock bolts for the systematic rock bolt pattern can

be chosen. The amount of pretension for each rock bolt in the systematic

rock bolt will be the total amount of tension divided by the number of rock

bolts in the pattern. Number of rock bolts is judged by spacing of rock bolts

which have been chosen to meet the conditions in Lang’s empirical design

criteria (Lang 1961). Length of rock bolts is chosen as equal to total length

of drill-wholes divided by number of rock bolts. In addition to this pattern,

1Pattern 3 has the greatest amount of material and longest drill-hole length amongst
three truss bolt patterns which make it the least economic pattern.
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Figure 4.25 Two systematic rock bolt patterns.

another systematic rock bolt pattern has been modelled just on the basis of

Lang’s empirical design criteria (Section 2.5) and using the same amount of

total tension for the system. These patterns are shown in Figure 4.25.

The differences in mechanism of truss bolt and systematic rock bolt systems

101



can be understood by comparing the effects of these two systems on stability

of an underground excavation by investigating the stability indicators. It

should be noted here that the purpose of this comparison is to examine the

difference in mechanism of truss bolt systems and systematic rock bolts not

to compare the applicability of these systems on controlling stability of an

underground excavation.

4.5.2 Stress Safety Margin (SSM)

Effect of systematic rock bolt on the SSM is shown in Figures 4.26 and 4.27

for two different patterns. It can be seen that the induced reinforced areas by

both systematic rock bolt patterns are mainly above the roof and between the

head and anchorage area. These figures show a little difference in response

of these two systematic rock bolt on the area above the roof. This shows

that greater number of rock bolts with the same amount of tension does not

necessarily produce a better reinforced area above the roof. On the other

hand, systematic rock bolt pattern 1 (Figure 4.26) by having rock bolts near

the corners of the roof has a slightly better respond on reinforcing the sides

of the tunnel.

Figure 4.28 shows the major reinforced areas and areas of unfavourable

effects of the systematic rock bolt pattern 2. Contour lines in this figure

is the same as Figure 4.8 in Section 4.3.3. Figure 4.28 illustrates that sys-

tematic rock bolt produces a beam shape reinforced area above the roof. In

fact, this reinforced beam confirms the beam building theory of rock bolting

which has been discussed in Section 2.2.
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Figure 4.26 ∆SSM by systematic rock bolt pattern 1.

Comparing results of installing truss bolt and systematic rock bolt systems on

SSM around a tunnel shows a significant difference in the mechanism of these

systems. Truss bolt system is able to reinforce a trapezoid area between the

inclined bolts and above the roof. The major reinforced area in this trapezoid

is an arch shape structure which is located between the blocking points of

the truss bolt system (Figure 4.8). In contrast, the produced minor and

major reinforced area around the systematic rock bolt are about the same

shape. This area is like a beam shape structure between the anchorage area

and heads of the rock bolts and covers the area above the roof (Figure 4.28).

Also, comparing results of installing truss bolt patterns 1 and 2 (Figures 4.5

and 4.6) with systematic patterns 1 and 2 (Figures 4.26 and 4.27) shows that
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Figure 4.27 ∆SSM by systematic rock bolt pattern 2.
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truss bolt systems with short length of inclined bolts are able to produce a

better reinforced area around the inclined bolts and above the abutments of

the tunnel.

Both truss bolt and systematic rock bolt systems show an unfavourable

effect on the sides of the opening. The shape of this area changes with respect

to the pattern of the reinforcement system. In general, a truss bolt pattern

or systematic rock bolt pattern with rock bolts or inclined bolts near the

corners of the roof (Figures 4.5 and 4.26) shows less unfavourable effect on

the side rock in comparison with patterns which have rock bolts or inclined

bolts around the middle of the roof (Figures 4.7 and 4.27).

4.5.3 Plastic Point Distribution

Figures 4.29 and 4.30 show the plastic points before and after installing

reinforcement systems. It can be seen that systematic rock bolt has very

good application in controlling the plastic behaviour of the rock above the

roof. This is probably because of having rock bolts at the major area of

the plastic behaviour above the roof. The area which systematic rock bolt

prevents the failure in rock is quite similar to the major reinforced area shown

in Figure 4.28 which is like a beam shape structure.

Comparing the total amount of reduction in the number of plastic points

for two different systematic rock bolt patterns reveals that systematic rock

bolt pattern 2 (61 points) is more successful than pattern 1 (54 points). Sim-

ilar to the result of SSM in Section 4.5.2, these figures show that more rock

bolts does not necessarily produce a better reinforcing effect on the roof of the
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Figure 4.29 Plastic points before and after systematic rock bolt pattern 1.

excavation. This is because of the different locations and the amount of ten-

sion of rock bolts in these patterns. These results highlights the importance

of the location and amount of tension in rock bolts rather than the number of

bolts in design of systematic rock bolt pattern to achieve an optimum design.

Comparing results of installing truss bolt and systematic rock bolt systems

on the failure of the rock material around the tunnel shows the difference in

shape of the reinforced areas around two different systems. Figure 4.11 shows

an arch shape area above the roof while systematic rock bolt in Figure 4.30

reinforces a beam shape area above the roof. Figure 4.30 also shows that

systematic rock bolt is more successful in controlling plastic behaviour of the

area above the middle of the roof while a truss bolt pattern with long tie-rod
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Figure 4.30 Plastic points before and after systematic rock bolt pattern 2.

(Figure 4.9) does not have any significant effect on this area.

4.5.4 Area of Loosened Rock And Roof Deflection

Similar to truss bolt systems, systematic rock bolt systems are able to reduce

the area of the loosened rock beneath the natural roof arch. Figure 4.31 shows

reinforced arches before and after installing two different systematic rock bolt

patterns. It can be seen that both systematic rock bolt patterns show the

same response on the area above the roof, but pattern 1 has a slightly better

application on the area near the corners of the roof.

Table 4.6 shows the amount of reduction at the area of the loosened rock after

installing two systematic rock bolt patterns. The amount of reduction in the
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Figure 4.31 Reinforced roof arch before and after installing systematic rock
bolt

area of the loosened rock for both patterns are about the same. These results,

similar to the results of plastic points and SSM (Sections 4.5.2 and 4.5.3),

indicate that although the number of rock bolts in pattern 1 is greater than

pattern 2 but the response of these systematic rock bolt patterns are about

the same.

Table 4.7 shows the reduction in the area of roof deflection after installing

two systematic rock bolt patterns. It can be seen that pattern 1 has bet-

ter response in controlling the vertical deformation of the roof in comparison

with pattern 2. This good practice of pattern 1 is probably because of having

one vertical bolt right at the middle of the roof which can cover the major

area of the vertical deformation in hydrostatic in-situ stress distribution.

Investigating the results of installing truss bolt and systematic rock bolt on

the position of the reinforced arch and area of deflection reveals that truss

bolt pattern 3 (which has the best result for these stability measures among
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Table 4.6 Reduction in the loosened area after installing two systematic rock
bolt patterns

Different systematic rock Reduction in the

bolt patterns loosened area (cm2)

Pattern 1 2700

Pattern 2 2500

Table 4.7 Reduction in the roof deflection for two systematic rock bolt pat-
terns

Systematic rock bolt Reduction in roof

patterns deflection (cm2)

Pattern No.1 2.62

Pattern No.2 2.42

truss bolt patterns) is more capable of reducing the area of loosened rock

than systematic rock bolt patterns. On the other hand, both systematic

rock bolt patterns show better response in reducing the area of deflection on

the roof than truss bolt pattern 3. In fact, systematic rock bolt decreases

the vertical displacement at the roof more than truss bolt system by forming

an artificial reinforced beam at the loosened area above the roof that can

carry the load. However, truss bolt system makes an arch shape reinforced

rock by moving the reinforced roof arch towards the roof. A reason for good

application of truss bolt system on reducing the area of loosened rock is that,

because of the angle and length of inclined bolts, the anchor points in truss

bolt are far away from the loosened area, i.e. inclined bolts are anchored in a

safe area. But in systematic rock bolt, anchorage area is just above the roof

and close to the loosened area. This makes systematic rock bolt just able

to reinforce the loosened area (by applying compressive stress and making a

reinforced beam) rather than changing the position of the reinforced arch.
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4.5.5 Cutter Roof Failure

Shear Crack Propagation: Figures 4.32 to 4.35 show the pattern of shear

crack propagation for two in-situ stress distributions and two patterns of

systematic rock bolt. The method and various increments for each in-situ

stress distribution are identical to Section 4.4.1. It can be seen that in high

horizontal in-situ stress both systematic rock bolt patterns successfully con-

trol the crack propagation and cracks does not reach the first bedding plane

(Figures 4.32 and 4.33). This is because the reinforcing effect of vertical rock

bolts on the area above the roof (beam shape structure), which is located at

the major area of cracking, and prevents the shear crack propagation.

In high vertical in-situ stress (Figures 4.34 and 4.35), both systematic

rock bolt patterns prevent shear cracks to reach the bedding plane. It can be

seen that, despite having a vertical bolt at the corner of the roof in pattern

1, pattern 2 shows slightly better response on controlling the shear crack

propagation in this case.

Slip on the First Bedding Plane: Figures 4.36 and 4.37 show the effect

of installing systematic rock bolt patterns on the horizontal movement of

the immediate roof layer. It can be seen that systematic rock bolt pattern

1 shows a smoothly better response on controlling slip on the first bedding

plane in high horizontal in-situ stress compare to pattern 2 (Figure 4.36).

The difference between results of these two patterns becomes greater around

the radial distance of 2 m (above the rib line). This is because of a vertical

bolt in pattern 1 which is exactly located at this area. Vertical rock bolts

110



0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

3.3

3.6

3.9

***
*
*
***
***
***
******** ***
***
***
***
******** **
******* *

Excavation

Horizontal distance from centre of the tunnel (m)

V
e
rt
ic

a
l d

is
ta

n
ce

 f
ro

m
 c

e
n
tr
e
 o

f 
th

e
 t
u
n
n
e
l (

m
)

Increment 0.05

 

Increment 0.045

Increment 0

*
*
*
*

Increment 0.025 Bedding

Bedding

Figure 4.32 Crack propagation for pattern 1 (σv = 1
2
σh).
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Figure 4.33 Crack propagation for pattern 2 (σv = 1
2
σh).
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Figure 4.34 Crack propagation for pattern 1 (σv = 2σh).
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Figure 4.35 Crack propagation for pattern 2 (σv = 2σh).
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Figure 4.37 Effect of systematic rock bolt patterns on slip on the first bedding
plane (σv = 2σh)

by applying compressive stress to the bedding surfaces increase the amount

of normal stress and prevent sliding (Section 3.4). On the other hand, when

the vertical in-situ stress is high, the two systematic rock bolt patterns have
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the same response on this measure.

Comparing results of installing truss bolt and systematic rock bolt systems

on shear crack propagation shows different mechanism of these two systems

on controlling this factor. In high horizontal in-situ stress systematic rock

bolts (both patterns) are able to prevent shear crack propagation to reach

the bedding plane by applying compressive stress and reinforcing the area

between the anchorage and roof of the tunnel (beam shape area, Figures 4.32

and 4.33). But truss bolt system (especially pattern 3, Figure 4.19) reinforces

the area around inclined bolts and top of the immediate roof layer (arch shape

area). When vertical in-situ stress is high, both systematic rock bolt patterns

show approximately the same response as truss bolt pattern 2 (Figure 4.21).

Figures 4.38 and 4.39 show the results of installing truss bolt and system-

atic rock bolt systems on slip on the first bedding plane at the same time.

In Figure 4.38, when horizontal in-situ stress is high, systematic rock bolts is

more capable of controlling slip on the area above the roof. When it comes to

the area above the rib line (radial distance of 2 m), truss bolt pattern 2 shows

a better effect than systematic rock bolt pattern 2. As discussed before, this

is because of the inclined bolt in truss bolt system which passes through this

area. Systematic rock bolt pattern 1 shows about the same response as truss

bolt pattern 2 on this area by having a vertical rock bolt around the corner

of the roof.

In high vertical in-situ stress (Figure 4.39) systematic rock bolt is more ca-

pable of controlling horizontal movement of the immediate layer by having
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Figure 4.38 Comparing effects of truss bolt and systematic rock bolt on slip
on the first bedding plane (σv = 1
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Figure 4.39 Comparing effects of truss bolt and systematic rock bolt on slip
on the first bedding plane (σv = 2σh).

vertical bolt right at the major area of the slip. In this case, a truss bolt

pattern which is more similar to systematic rock bolt (truss bolt pattern 3)

shows the best result.
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4.6 Discussion

The importance of a comprehensive consideration of all the design parameters

and site variables can be concluded here. It has been shown that the shorter

length of inclined bolts produce better reinforced area around the inclined

bolts compared to longer bolts. If truss bolt system with short inclined bolts

is located in the right place to prevent crack propagation in high vertical

in-situ stress (by choosing suitable tie-rod length), it can effectively prevent

the cutter roof failure. On the other hand, longer inclined bolts have the

advantage of adequate length of anchorage in passive zone behind the rib

line. The length of anchorage is a key parameter to determine the capacity

of the system. If the applied load on truss bolt system exceeds the capacity

of truss bolt, the whole block with truss bolt will fail.

The length, position and angle of inclined bolts are also important in

controlling horizontal movement and the area of the loosened rock. If in-

clined bolts pass through the major area of slip (depending on in-situ stress

distribution), the response of truss bolt on preventing horizontal movement

increases significantly. The area of slip changes by changing in-situ stress

condition. Results showed that medium length tie-rod locates the inclined

bolts at the best possible location to prevent slip on the first bedding plane

in high horizontal stress. Further to the importance of tie-rod length in truss

bolt, choosing an angle closer to horizon would result in producing higher

resisting force against high horizontal stresses. It should be mentioned that

bolt angles less than 45 degree will result in significant reduction in the ca-

pability of truss bolt to control the area above the roof. Reinforcing this area

116



above the roof is vital to prevent cutter roof failure when horizontal in-situ

stress is high. In contrast, the area of slip in high vertical stress is mainly

above the roof where short length tie-rod shows the best response. Same

as the latter case, capability of this truss bolt pattern in controlling crack

propagation should be taken into account. Truss bolt with medium length

of tie-rod and 45 degree inclined bolts shows the best response in controlling

shear crack propagation in high vertical in-situ stress.

Studying the effects of installing truss bolt on the position of natural

roof arch also shows that changing the design parameters of truss bolt would

result in reinforcing different areas above the roof and corners of the tunnel.

These results match perfectly with results of SSM factor where short span

truss bolt with wide angle inclined bolts are able to reinforce the area above

the roof. By increasing the length of tie-rod and decreasing the length of

inclined bolts, the main area of reinforcing effect of truss bolt shifts from an

area above the middle of the roof to the area around inclined bolts.

It has been shown that, impact of truss bolt system changes with respect

to the condition of the in-situ stress distribution. There are many other

geological features that might have significant influence on the practice of

truss bolt systems, such as thickness of the rock layers, strength parameters

of rock, condition of discontinuities, time factor, etc. (Neall et al. 1978).

Consequently, it can be concluded that obtaining an optimum design for

truss bolt systems entails consideration of effects of each individual design

parameter alongside with comprehensive study of all of the external geological

and ground controlling parameters.

Effects of systematic rock bolt on the stability indicators showed that
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greater number of vertical rock bolts not necessarily result in a better re-

sponse of the reinforcement system. In spite of having less number of rock

bolts, pattern 1 showed a better response in controlling plastic behaviour of

rock and preventing shear crack propagation. Comparing the results of truss

bolt and systematic rock bolt systems on the stability indicators showed the

different mechanism of these systems. Truss bolt produces a trapezoid re-

inforced area above the tunnel in which the major reinforced area fits in an

arch while systematic rock bolt reinforces the area above the roof in a beam

shape area. Effects of these systems on preventing plastic behaviour of the

rock also showed the same areas of reinforcing effects.

118



C H A P T E R 5

Truss Bolt Optimum Design

Variable rock mass qualities around underground excavations is always a

problem in finding the optimum design pattern for reinforcement devices.

Despite good efforts in designing the truss bolt pattern, none of the design

procedures considers the changes in geology and properties of the coherent

rock material (Section 2.6). An optimum truss bolt design can vary with

respect to changes in the geological features such as strength parameters of

rock layers, joint directions, thickness of the rock layers, induced stresses

by advancing stopes and changing the overburden load. To have a better

understanding of the effects of each factor and finding the optimum design

patterns, these variables should be changed alongside with the design pa-

rameters of the truss bolt. This only can be achieved by using numerical

methods which are able to consider lots of variables at the same time. In

this chapter, using the finite element modelling techniques we use three de-

sign parameters (length and angle of inclined bolts and length of tie-rod) and

several thicknesses of the rock layers and change them to find the optimum

design pattern of truss bolt for each bedding configuration.
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5.1 Numerical Modelling

Tunnel dimensions, material properties of different rock types and rock bolt

elements, horizontal tension force and the mesh are chosen as the same as

Section 4.2. In-situ stress distribution is hydrostatic and equal to 1.9 MPa.

Seven bedding configurations are modelled which are shown in Table 5.1.

Here we call each model by two numbers whereas the first number is the

distance of the first bedding plane from the roof and the second number is

the distance of the second bedding plane from the roof. For example, 30150

is a model with thickness of the first layer equal to 30 cm and the second

layer equal to 150− 30 = 120 cm (Table 5.1).

Table 5.1 Different bedding configurations.

Name of the Thickness of the first Top level of the second

Models layer (cm) layer (cm)

3090 30 90

30150 30 150

30250 30 250

90150 90 150

90250 90 250

120250 120 250

150250 150 250

As mentioned before, three design parameters of truss bolt patterns are cho-

sen to be changed in models with different bedding configuration. These

variables and their values are shown in Table 5.2. As a result total number

of 5×5×4 = 100 models are generated for each bedding configuration. Con-

sidering seven types of bedding configuration results in 7×100 = 700 models.
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Table 5.2 Different truss bolt design parameters.

Design parameters

α 15 30 45 60 75

L (m) 1 1.5 2 2.5 3

S (m) 1.6 2 2.4 2.8

according to several reports, inclined bolts should be anchored far enough

from the loosened area, above the rib of the tunnel to provide a safe anchor-

age (Cox and Cox 1978; O’Grady and Fuller 1992; Liu et al. 2005). This

factor should be controlled during the model generation, while the design

parameters of the truss bolt are being changed. A rejection criterion is de-

veloped to reject the models those have less than 0.6 m length of inclined

bolts behind the walls of the tunnel, i.e. not anchored in the safe area (Cox

and Cox 1978). This criterion is simply based on the length and angle of

inclined bolts and the position of the drill-hole which is defined by the length

of the tie-rod.

A number of Matlab codes are developed to generate the models, run

them, get the results, tabular the outputs and draw the required graphs.

Three different stability indicators, which have been introduced in Chapter 4,

are chosen to compare the results. These indicators are 1) reduction in the

number of plastic points (we call it plastic points), 2) reduction in the area

of the loosened rock beneath the reinforced arch (we call it loosened area)

and 3) reduction in the horizontal movement of the first roof layer, or slip

on the first bedding plane (we call it slip). Note that to compare the effect

of truss bolt on the slip on the first bedding plane, the reduction in the area
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beneath the graph of slip versus radial distance from centre of the roof, is

calculated. These stability indicators are chosen to represent the effects of

truss bolt on strength parameters of rock, vertical deformation of the roof

rock and the horizontal movement of the immediate roof layer. Obviously,

each of these indicators represent different aspects of the behaviour of the

surrounding rock mass.

To have a fair comparison, the selected indicators should be weighted

with respect to their significance on the stability of the tunnel. This needs

an intense statistical study on the way that each of these indicators control

the stability of an underground excavation. Here we simply normalize these

indicators to have dimensionless values and add them together with the same

weight. This means that the significance and effect of each indicator, on the

stability of the underground excavation, are considered as the same. The

normalized indicator can be expressed as

ain = ai ×
100

max(ai)

where ain is the normalized value and ai is the initial value resulting from

each indicator. In this calculation the maximum value for each indicator will

be 100 and the most optimum design is a pattern which its total result is a

value closer to 300.
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5.2 Results and Discussion

After running the models and performing calculations to measure the nor-

malized stability indicators, the upper 15% of the results are considered as

optimum design patterns, i.e. 15 models out of 100 models for each bedding

configuration. Tables 5.3 to 5.9 show these optimum design patterns together

with the values of every stability indicators. These 15 patterns are split in

four groups which are defined by different colours: upper 5% as red, between

5% to 10% as yellow, between 10% and 15% as green and the rejected models

as gray1.

Table 5.3 shows the optimum designs for model 3090, which represents a

highly laminated rock formation. It shows that the optimum angle of incli-

nation changes between 30◦ and 60◦ while the optimum tie-rod length changes

between 1.6 and 2 m. Considering the change in the length of inclined bolts

for a specific angle of inclination and tie-rod length (e.g. 45◦ and 1.6m tie-

rod), it can be concluded that not necessarily the longer inclined bolts are

favourable as by increasing the length of inclined bolts the overall points of

the pattern decrease (changing colour from red to yellow or yellow to green

in Table 5.3).

The major number of optimum designs for 30150 are placed under the

45◦ angled inclined bolts (Table 5.4). 4 out of 5 most optimum patterns (red

cells) lie under 2 m tie-rod. Long length, 30◦ inclined bolts and a number of

models with 45◦ inclined bolts are also ranked as green and yellow while the

1The rejection criterion is based on the truss parameters not the bedding configuration,
consequently they are the same in every group.
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optimum tie-rod length varies from 1.6 to 2.4 m.

Comparing the results of increasing the thickness of the second layer from

60 cm to 220 cm, while the thickness of the first layer is constant (models

3090 to 30250, see Tables 5.3 to 5.5), reveals that patterns with 30◦ inclined

bolts are no longer the optimum designs for models with thick second layer.

Instead, truss bolt systems with 45◦ inclined bolts, 1.6 and 2 m tie-rods and

various length of inclined bolts show the best response. Also, in all of these

three model configurations (Tables 5.3 to 5.5) 60◦ with 2 to 3 m inclined bolts

and 1.6 and 2 m tie-rods show fairly good response, by having a number of

yellow and green ranked designs.

Tables 5.6 and 5.7 are mostly the same, showing the negligible effect of the

changing the thickness of the second bedding plane while the first bedding

plane is relatively thick (comparing with thickness of 30 cm for the first layer).

Most of the optimum designs in these two model configurations are patterns

with long inclined bolts, angle of inclination of 45◦ and 60◦ and short tie-rod

length (1.6 m). Also, from Table 5.7, most of the patterns with 75◦ inclined

bolts and short length tie-rod are rejected. However, using longer inclined

bolts, if possible, would result in anchoring the inclined bolts out of the rib

area and good response of truss bolt system as two of these patterns are in

upper 5% of the optimum designs in 90250 model. The same result can be

seen in Tables 5.8 and 5.9 for 120250 and 150250 models.

By increasing the thickness of the first layer, while the second layer re-

mains constant (comparing Tables 5.7, 5.8 and 5.9), the optimum angle of

inclined bolts increases from 45◦ to 60◦ and 75◦ and the longer inclined bolts

show better response. This change is probably because of the changing in the
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nature of the models, where a model with thick rock layers tends to behave

similar to a continuum material model. Furthermore, changing the optimum

angle of inclination from 45◦ to 75◦ shows that higher angle of inclination is

more favourable in models with thick layers (or continuum material). High

angled inclined bolts (ultimately 90◦) represents a pattern similar to sys-

tematic rock bolt. It can be concluded that, in continuum material or thick

layers, systematic rock bolt would have better application in comparison with

truss bolt pattern. It should be noted that considering the effect of horizontal

tension to create a reinforced arch area is vital and this effect on 90◦ inclined

bolts should be compared with vertically tensioned systematic rock bolt to

have a better understanding in this content.
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Table 5.3 Optimum truss bolt designs for a model with 30 cm and 90 cm
bedding planes.

α 15

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 30

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 45

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 60

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 75

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

Upper 5%

Upper 5 to 10%

Upper 10 to 15%a

Rejected

Truss bolt pattern plastic points loosened area slip total

3090-L=3A=60S=2 90.91 87.18 30.63 208.72

3090-L=2.5A=60S=2 90.91 87.18 32.12 210.21

3090-L=3A=45S=2 81.82 71.79 57.40 211.01

3090-L=2A=45S=2 81.82 66.67 63.69 212.18

3090-L=1A=30S=1.6 63.64 51.28 100.00 214.92

3090-L=1.5A=45S=2 81.82 66.67 68.31 216.79

3090-L=3A=45S=1.6 81.82 74.36 61.69 217.86

3090-L=2A=30S=2 100.00 51.28 66.82 218.10

3090-L=1.5A=45S=1.6 72.73 74.36 71.22 218.30

3090-L=2.5A=45S=1.6 81.82 74.36 63.86 220.04

3090-L=1.5A=30S=2 100.00 46.15 74.56 220.71

3090-L=2A=45S=1.6 81.82 74.36 67.69 223.87

3090-L=1A=30S=2 90.91 46.15 87.54 224.61

3090-L=2.5A=60S=1.6 90.91 94.87 38.87 224.65

3090-L=3A=60S=1.6 90.91 100.00 37.85 228.76
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Table 5.4 Optimum truss bolt designs for a model with 30 cm and 150 cm
bedding planes.

α 15

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 30

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 45

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 60

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 75

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

Upper 5%

Upper 5 to 10%

Upper 10 to 15%a

Rejected

Truss bolt pattern plastic points loosened area slip total

30150-L=3A=60S=1.6 76.92 87.23 48.71 212.87

30150-L=1.5A=45S=2.4 76.92 74.47 62.66 214.06

30150-L=3A=30S=2 92.31 61.70 60.79 214.80

30150-L=3A=45S=1.6 76.92 74.47 66.47 217.86

30150-L=2A=60S=1.6 76.92 91.49 50.22 218.63

30150-L=1A=45S=2 61.54 70.21 87.00 218.75

30150-L=2.5A=45S=1.6 76.92 74.47 68.47 219.86

30150-L=3A=60S=2 84.62 95.74 40.15 220.51

30150-L=2.5A=45S=2.4 92.31 78.72 51.62 222.65

30150-L=2A=45S=2.4 92.31 78.72 55.40 226.43

30150-L=3A=45S=2.4 100.00 78.72 49.74 228.47

30150-L=2A=45S=2 84.62 78.72 67.12 230.46

30150-L=2.5A=45S=2 92.31 78.72 62.02 233.05

30150-L=1.5A=45S=2 84.62 74.47 74.88 233.97

30150-L=3A=45S=2 100.00 82.98 60.05 243.03
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Table 5.5 Optimum truss bolt designs for a model with 30 cm and 250 cm
bedding planes.

α 15

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 30

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 45

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 60

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 75

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

Upper 5%

Upper 5 to 10%

Upper 10 to 15%a

Rejected

Truss bolt pattern plastic points loosened area slip total

30250-L=2A=60S=2 83.33 89.29 45.84 218.46

30250-L=3A=60S=1.6 83.33 89.29 50.38 223.00

30250-L=2A=60S=1.6 91.67 78.57 53.44 223.68

30250-L=1.5A=45S=1.6 75.00 67.86 82.36 225.22

30250-L=1A=45S=2.4 75.00 73.21 79.01 227.23

30250-L=3A=60S=2 91.67 96.43 41.16 229.26

30250-L=1A=45S=2 75.00 67.86 87.72 230.58

30250-L=2.5A=60S=1.6 91.67 89.29 52.66 233.61

30250-L=2.5A=45S=1.6 91.67 71.43 70.70 233.79

30250-L=2.5A=45S=2 100.00 75.00 63.45 238.45

30250-L=2A=45S=1.6 91.67 71.43 77.03 240.13

30250-L=3A=45S=1.6 91.67 82.14 67.28 241.09

30250-L=3A=45S=2 100.00 82.14 60.18 242.32

30250-L=2A=45S=2 100.00 75.00 70.20 245.20

30250-L=1.5A=45S=2 100.00 75.00 77.32 252.32
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Table 5.6 Optimum truss bolt designs for a model with 90 cm and 150 cm
bedding planes.

α 15

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 30

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 45

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 60

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 75

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

Upper 5%

Upper 5 to 10%

Upper 10 to 15%a

Rejected

Truss bolt pattern plastic points loosened area slip total

90150-L=2A=60S=2 57.58 100.00 67.42 225.00

90150-L=2.5A=75S=1.6 75.76 78.38 77.52 231.66

90150-L=1.5A=60S=2 57.58 94.59 80.07 232.24

90150-L=3A=45S=1.6 100.00 67.57 64.95 232.52

90150-L=2A=45S=1.6 96.97 67.57 68.86 233.40

90150-L=2.5A=45S=1.6 100.00 67.57 66.30 233.87

90150-L=1A=75S=1.6 81.82 56.76 97.31 235.88

90150-L=3A=75S=1.6 75.76 83.78 76.54 236.08

90150-L=2A=75S=1.6 84.85 78.38 79.39 242.62

90150-L=1A=60S=1.6 93.94 51.35 100.00 245.29

90150-L=1.5A=75S=1.6 84.85 78.38 82.60 245.83

90150-L=2A=60S=1.6 90.91 83.78 81.00 255.70

90150-L=3A=60S=1.6 96.97 83.78 75.59 256.35

90150-L=1.5A=60S=1.6 90.91 72.97 95.04 258.92

90150-L=2.5A=60S=1.6 96.97 83.78 78.28 259.03
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Table 5.7 Optimum truss bolt designs for a model with 90 cm and 250 cm
bedding planes.

α 15

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 30

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 45

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 60

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 75

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

Upper 5%

Upper 5 to 10%

Upper 10 to 15%a

Rejected

Truss bolt pattern plastic points loosened area slip total

90250-L=2.5A=75S=2 43.48 94.87 61.24 199.59

90250-L=2A=45S=1.6 78.26 58.97 67.27 204.50

90250-L=1.5A=45S=1.6 82.61 53.85 72.10 208.55

90250-L=2.5A=45S=1.6 91.30 58.97 62.56 212.83

90250-L=1A=75S=1.6 69.57 53.85 92.01 215.42

90250-L=3A=45S=1.6 95.65 69.23 60.17 225.05

90250-L=2A=60S=1.6 82.61 64.10 80.52 227.23

90250-L=1.5A=75S=1.6 91.30 64.10 81.91 237.32

90250-L=1.5A=60S=1.6 82.61 64.10 93.72 240.43

90250-L=2A=75S=1.6 86.96 79.49 76.51 242.95

90250-L=2.5A=60S=1.6 100.00 74.36 74.92 249.28

90250-L=1A=60S=1.6 100.00 53.85 100.00 253.85

90250-L=3A=60S=1.6 100.00 84.62 69.82 254.43

90250-L=3A=75S=1.6 95.65 94.87 72.60 263.13

90250-L=2.5A=75S=1.6 95.65 94.87 73.43 263.95
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Table 5.8 Optimum truss bolt designs for a model with 120 cm and 250 cm
bedding planes.

α 15

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 30

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 45

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 60

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 75

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

Upper 5%

Upper 5 to 10%

Upper 10 to 15%a

Rejected

Truss bolt pattern plastic points loosened area slip total

120250-L=2A=45S=1.6 92.86 59.18 61.60 213.64

120250-L=2.5A=75S=2 59.52 87.76 70.90 218.18

120250-L=2.5A=45S=1.6 92.86 63.27 62.64 218.76

120250-L=2A=75S=2 57.14 83.67 78.99 219.81

120250-L=3A=45S=1.6 100.00 63.27 61.94 225.20

120250-L=3A=75S=2 61.90 93.88 69.48 225.26

120250-L=1.5A=60S=1.6 85.71 69.39 87.88 242.98

120250-L=1.5A=75S=2 54.76 100.00 91.35 246.11

120250-L=2.5A=60S=1.6 95.24 77.55 80.10 252.89

120250-L=2A=60S=1.6 90.48 77.55 85.42 253.45

120250-L=3A=60S=1.6 100.00 85.71 75.07 260.79

120250-L=2A=75S=1.6 85.71 85.71 89.50 260.93

120250-L=3A=75S=1.6 90.48 89.80 81.66 261.94

120250-L=2.5A=75S=1.6 90.48 89.80 82.90 263.17

120250-L=1.5A=75S=1.6 88.10 77.55 100.00 265.65
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Table 5.9 Optimum truss bolt designs for a model with 150 cm and 250 cm
bedding planes.

α 15

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 30

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 45

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 60

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

α 75

S 1.6 525 2.4 2.8

L = 1

L = 1.5

L = 2

L = 2.5

L = 3

Upper 5%

Upper 5 to 10%

Upper 10 to 15%a

Rejected

Truss bolt pattern plastic points loosened area slip total

150250-L=1.5A=75S=2 55.81 68.63 95.17 219.61

150250-L=2.5A=60S=2 58.14 68.63 95.11 221.87

150250-L=3A=60S=2 55.81 76.47 94.42 226.70

150250-L=2.5A=45S=1.6 79.07 60.78 90.75 230.60

150250-L=1.5A=75S=1.6 79.07 60.78 93.26 233.11

150250-L=3A=45S=1.6 88.37 60.78 91.74 240.90

150250-L=2A=60S=1.6 90.70 60.78 100.00 251.48

150250-L=2A=75S=1.6 90.70 64.71 99.99 255.39

150250-L=2.5A=60S=1.6 90.70 64.71 100.00 255.40

150250-L=2A=75S=2 65.12 96.08 100.00 261.19

150250-L=3A=75S=2 62.79 100.00 99.63 262.42

150250-L=2.5A=75S=2 65.12 100.00 99.92 265.04

150250-L=3A=60S=1.6 100.00 68.63 99.96 268.59

150250-L=3A=75S=1.6 90.70 80.39 100.00 271.09

150250-L=2.5A=75S=1.6 93.02 80.39 100.00 273.41
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C H A P T E R 6

Conclusions

Truss bolt systems have proved competency in controlling the stability of un-

derground excavations in severe ground conditions particularly in coal mines

and layered strata. Despite this, knowing the mechanism of truss bolt sys-

tems on reinforcing an underground excavation is vital. This study has tried

to understand the mechanism of truss bolt by means of numerical modelling.

This study involves a review of theories of rock bolting and previous ef-

forts on understanding the mechanism of truss bolt system. Available design

schemes of truss bolt system have been reviewed and a reviewing summary

is presented. Also, basics and different components of modelling an under-

ground excavation in FE, verification process and sensitivity analysis on the

dimension of the model have been discussed in detail. The main contributions

of this study can be concluded to the following points:

• Several stability indicators have been introduced to evaluate the effects

of truss bolt on stability of a tunnel. None of the individual indicators

is able to determine the stability of an underground excavation, but in

combination, they help us to understand the effects and mechanism of

truss bolt system.
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• Truss bolt stabilize underground excavations in several ways such as

repositioning the natural reinforced arch and reducing the area of loos-

ened rock above the roof, creating a trapezoid reinforced area in which

an arch shape structure is the major reinforced area, reducing horizon-

tal movement of rock layers, preventing shear crack propagation, and

decreasing the chance of cutter roof failure.

• Changing the angle and length of inclined bolts and the span of the

system change the effectiveness of the system in facing different stability

problems.

• To reinforce the loosened area and preventing roof deflection, a short

span truss bolt with wide angled inclined bolts is more appropriate.

• Results of employing Stress Safety Margin (SSM) show that short in-

clined bolts are able to reinforce the area near inclined bolts better than

longer bolts. And a short span truss bolt responds better on the area

above the roof while a wide span truss bolt results in better reinforcing

effect on the area above pillars.

• To prevent horizontal movement of the immediate layer in high hori-

zontal in-situ stress, a wider span and sharper angle of inclination (from

horizon) respond better.

• To prevent shear crack propagation in high vertical stress, a pattern

with medium length of tie-rod and inclined bolts and 45 degree inclined

bolts results in the best performance.
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• Systematic rock bolt and truss bolt show different reinforcing mecha-

nism. Systematic rock bolt is able to produce a highly reinforced beam

shape area above the roof between the anchorage and head of the ver-

tical bolts. On the other hand, truss bolt reinforces an arch shape area

above the roof which is a part of a minor reinforced trapezoid shape

area between the inclined bolts.

• Changing the thickness of the roof layers to find the optimum design

parameters of truss bolt system showed that

◦ By increasing the thickness of the immediate roof layer while sec-

ond roof layer is constant, the optimum angle of inclined bolts

changes from 45◦ to 75◦ (from horizon) and longer inclined bolts

response better.

◦ And by increasing the thickness of the second layer while the thick-

ness of the immediate layer is constant, optimum angle of inclined

bolts changes from 30◦ to 60◦ (from horizon).

◦ When the rock layers are thick, the surrounding rock tends to

behave similar to continuum material and highly inclined bolts,

which make a truss bolt pattern similar to systematic rock bolt,

represents the best response.
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6.1 Recommendations for Further Analysis

The numerical models in this thesis are mostly a simplified condition of

the real problem. In practice, the rock-reinforcement interaction is more

complicated. a number of variables are included in the behaviour of rock

and stability of underground excavations. The author believes that possi-

ble improvements can be applied in these analyses by modelling interactions

between rock-grout and grout-bolt, considering more sophisticated elastic-

plastic material model for both rock and rock bolt, presenting discontinuities

and considering fracture growth around the excavation. Also, carrying out

field investigations and experimental studies to validate the numerical re-

sults would give a very good credit to the results of the numerical analysis.

A comparative study and sensitivity analysis on effects of truss bolt param-

eters and different site variables such as in-situ stress distribution, thickness

of the layers, joints direction and dimension of the tunnel would result in

a comprehensive design guideline which would be a useful tool in designing

truss bolt systems.

In the end, the author wishes that this study provides engineers with a basic

understanding of the mechanism of truss bolt systems and effects of several

design parameters and site variables which would be useful in achieving an

optimum design of truss bolt systems.
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