

Dynamic Communication across
Supply Chain Services

A thesis submitted for the degree of

Doctor of Philosophy

Manish Malhotra M.Eng (I.T)

Student Id: 2011269M

School of Electrical and Computer Engineering

Science, Engineering, and Technology Portfolio,

RMIT University,

Melbourne, Victoria, Australia.

September 21, 2009

Declaration

I certify that except where due acknowledgement has been made, the work is that of the author

alone; the work has not been submitted previously, in whole or in part, to qualify for any other
academic award; the content of the thesis is the result of work which has been carried out since

the official commencement date of the approved research program; and, any editorial work, paid

or unpaid, carried out by a third party is acknowledged.

Manish Malhotra
School of Electrical and Computer Engineering

RMIT University

September 21, 2009

Acknowledgments

I express my deepest and sincere gratitude to my supervisor Professor Andrew Jennings and

Professor Mohini Singh for their support, invaluable guidance and motivation over the years.
Their constant effort to keep me on track is highly appreciated without which this thesis would

not have been possible. They have been excellent mentors and good friends to support me

throughout my thesis.

I am thankful to Professor Zahir Tari for allowing me to work with him for ARC (Australian

Research Council) Linkage grants at the School of Computer Science and IT at RMIT University.

I would like to thank the School of Electrical and Computer Engineering, RMIT University and

Professor Andrew Jennings for providing me an opportunity to conduct research at the School.

Sincere thanks go to my work colleagues and fellow PhD students for their many interesting

discussions and help in making the work environment friendly and enjoyable. In particular,

thanks to the staff of RMIT for their valuable comments.

My gratitude to my parents S.S Malhotra and C.K Malhotra for their many years of hard work

and sacrifices they have made to support me.

Finally, a very special thanks to my daughter Prisha Malhotra and my wife Parul Malhotra for

their love, patience and for always being supportive to me

Abstract

This thesis deals with the design of communication protocol solutions across a Supply

Chain Management System. These solutions are capable of operating in multi-agent

environments, and allow customers to order services online. As part of two Australian

Research Council (ARC) grants, it is divided into four main sections. The first issue deals

with a dynamic communication protocol, which aims at agent-to-agent operability in an

open environment, such as the Internet. In the second section, we proposed a protocol

correctness system, which enables detection of deadlock errors in communication

protocols. Further, a comparison of the proposed validation techniques and those

currently in use, is provided. Next, the problem of routing and scheduling in the transport

industry was tackled, resulting in the development of an autonomous route scheduling

system, MIDAS (Mobile Intelligent Distributed Application Software). The MIDAS

server uses wireless technology to communicate with different parts of the system, which

was investigated in the final section of the thesis. The MIDAS system was tested on

devices with a GSM-enabled network connection, with results indicating that it takes less

than thirty seconds for information to be processed and transmitted. Further, studies

relating to this topic could involve extensions of the proposed systems using SOAP

(Simple Object Access Protocol).

While undertaking my PhD, I wrote the following five papers, which were published in

various journals and conferences:

1. Towards the Right Communication Protocol for Web Services,
International Journal for Web Services Research (IJWSR), June 2005

2. MIDAS - An Integrated E-Commerce Solution for the Australian Transport
Industries,
International Journal on Web Engineering and Technology (IJWET), 1(3), 353-373, October
2004

3. MIDAS’s Routing and Scheduling Approach for the Australian Transport
Industries,
International OTM (OntheMove) Workshops, November 2003

4. An XML-based Conversational Protocol for Web Services,
18th ACM International Symposium on Applied Computing (SAC), 1179-1184, May 2003

5. Towards Robust and Scalable Infrastructure for Web Service,
IEEE International Symposium on Signal Processing and Information Technology (ISSPIT),
December 2002

Contents:

Chapter 1: Introduction

1.1 Supply chain management system………………………………………...1

1.2 Scope of the project………………………………………...……………….4
1.2.1 E-Procurement…...………………………………………………………………........4

1.2.2 Logistics Exchanges…………………………………………………………...….......6

1.3 Issue-I Designing Communication Protocol………………………………..7

1.3.1 Background…………………………………………………………………………...8

1.3.2 Issues during designing protocols……………………………………………...…….10

1.3.3 Aim of the Project……………………………………………………..…………….11

1.4 Issue-II Protocol Correctness………………………………………..13
1.4.1 Background……………………………………………………………...…………...14

1.4.2 Issues involved during protocol correctness…………………………………………19

1.4.3 Aim of the Project……………………………………………………………………22

1.5 Issue-III Routing and Scheduling…………………………...………23
1.5.1 Background…………………………………………………………………………..23

1.5.2 Issues involved during Routing and Scheduling….…………………………………26

1.5.3 Aim of the Project……………………………………………………………………29

1.6 Issue-IV Wireless……………………………...…………………….31
1.6.1 Background………………………………………………………………………….31

1.6.2 Issues related to Wireless module...........................…………………………………34

1.6.3 Aim of the Project……………………………………………………………………37

Chapter 2: Designing Communication Protocol

2.1 Related works………………………………………………………..40
2.1.1 Agents Frameworks………………………………………………………………….40

2.1.2 Agent Communication Language and FIPA….……………………………………..42

2.1.3 Conversation rules…………………………………………………………………...44

2.1.4 Internet interoperability……………………………………………………………...46

2.1.5 Ontology……………………………………………………………………………..48

2.2.1 State Machines………………………………………………………49
2.2.2 Protocol Correctness…………………………………………………………………56

2.2.3 State Explosion………………………………………………………………………59

2.3.4 Invalid State Machines………………………………………………………………63

2.2.5 Ontological data………………………………………………………………….…..64

2.2.6 Similarity Matching…………………………………………………………………65

2.3 Implementation..……………………… ……………………………72
2.3.1 Buying behavior……………………………………………………………………..72

2.3.2 Vocabulary…………………………………………………………………………...74

2.3.3 Architecture………………………………………………………………………….76

2.3.4 Catalog Negotiation Protocol………………………………………………………..77

2.3.5 Merchant Protocols………………………………………………………………….81

2.3.6 Client Agent………………………………………………………………………....92

2.3.7 Client Parameters…..………………………………………………………………..92

2.3.8 Vocabulary Implementation…………………………………………………….…...93

2.3.9 State Machine Processing…………………………………………………………...94

2.3.10 XML Parsing………………………………………………………………………97

2.4 Testing…………………….…..…………………………………..98
2.4.1 State Machine Correctness…………………………………………………………98

2.4.2 Product Brokering………………………………………………………………….100

2.4.3 Individual Protocol Testing………………………………………………………...104

2.4.4 Merchant Brokering………………………………………………………………..109

Chapter 3: Protocol Validation for CCSMs

3.1 Related works……………………………………………………....113
3.1.1 Exhaustive Exploration Techniques………………………………….….116

3.1.2 Partial Exploration Techniques………………………………………......123

3.2 CCSM……………………………………………………………...130
3.2.1 Complex state machines……………………………………………………………130

3.2.2 Communicating Complex State Machines…………..……………………………..132

3.2.3 Advantages of CCSM Model……………………………………...……………….133

3.2.4 Protocol Errors……………………………………………………………………...135

3.2.5 Protocol Validation…………………………………………...…………………….136

3.3 Implementation…………………………………………………….143
3.3.1 XML specification………………………………………………………………….143

3.3.2 XML Parsing……………………………………………………………………….146

3.3.3 Class Description…………………………………………………………………...149

3.3.4 Analysis………………………………………………..…………………….…..…150

Chapter 4: Routing and Scheduling

4.1 Related works……………………………… ………………….….155

4.1.1 Vehicle Routing Problem…………………… …………………....155
4.1.1.1 Mathematical Formulation………………………………………………………..156

4.1.1.2 Insertion Heuristic………………………………………………………………..158

4.1.1.3 Genetic Algorithm………………………………………………………………..159

4.1.2 Digital Maps………………………………………………………160
4.1.2.1 OpenMap…………………………………………………………………….…161

4.1.2.2 Map Data…………………………………………………………………….…162

4.1.3 SMS……………………………………………………………....162
4.1.3.1 SMS Access…………………………………………………………………….162

4.2.1 MIDAS………………………………………………...………....163
4.2.1.1 MIDAS Functional Overview………………………………………………….164

4.2.1.2 MIDAS Processes………………………………………………………………164

4.2.1.3 MIDAS Technical Architecture……………………………………..…………165

4.2.1.4 MIDAS modules………………………………………………………………..168

4.2.2 MIDAS Server…………………………………………………...168
4.2.2.1 Specification……………………………………………………………………169

4.2.2.2 Design…………………………………………………………………………..172

4.3.1 Implementation…………………………………………………..179
4.3.1.1 Communication………………………………………………………………...179

4.3.1.2 Routing………………………………………………………………………...181

4.3.1.3 Scheduling……………………………………………………………………..186

4.3.2 Testing……………………………………………………………..187
4.3.2.1 Functional Testing…………………………………………………………………187

4.3.2.2 Performance Testing……………………………………………………………….189

Chapter 5: Wireless

5.1 Related Works…………………………………………………….. 193
5.1.1 Identification of stakeholders………………………………………….. .193

5.1.2 Functional Requiremnets……………………………………………....194
5.1.2.1 Requirements for handheld application…………………………………….….194

5.1.2.2 Requirement for handheld conduit………………………………………….….195

5.1.2.3 Requirement for Desktop Application………………………………………....195

5.1.2.4 Requirement for WAP Application……………………………………………195
5.1.3 Non Functional Requirements…………………………………......196
5.1.3.1 Handheld application…………………………………………………………..196

5.1.3.2 Handheld conduit………………………………………………………………196

5.2 System Architecture and Design………………………………...…196
5.2.1 Overall system architecture……………………….…………………………….196

5.2.2 Handheld application design……………………………………………………198

5.2.3 Use Cases ……………………………………………………………………….200

5.2.4 Component Diagram ……………………………………………………………201

5.2.5 Communication protocol and message format …………………………………203

5.2.6 Error Handling Protocol…………………………………………………….......206

5.3 Handheld conduit design……………………………………….…..207
5.3.1 Use Cases …………………………………………………………………………..211

5.3.2 Class Diagram ……………………………………………………………………...212

5.4 Desktop application design………………………………………...212
5.4.1 Use Cases …………………………………………………………………………..213

5.4.2 Class Diagram ……………………………………………………………………...213

5.5 WAP application design…………………………………………....214
5.5.1 Use Cases …………………………………………………………………………..215

5.5.2 Component Diagram ……………………………………………………………….216

5.6 System Implementation ……………………………………………217
5.6.1 C Programming language ………………………………………………………….217
5.6.2 PilRC Programming language ……………………………………………………..217

5.6.3 Java Programming language ……………………………………………………….218

5.6.4 VB Programming language ………………………………………………………..219

5.6.5 PRC-Tools …………………………………………………………………………219

5.6.6 PilRC compiler …………………………………………………………………….219

5.6.7 Palm OS Software Development Kit ………………………………………………219

5.6.8 Conduit Development Kit ………………………………………………………….219

5.6.9 Microsoft Visual .Net with Mobile Internet Framework …………………………..220

5.7 Testing…………………………………………………………...…220
5.7.1 Handheld Application testing ……………………………………………………..220

5.7.2 Handheld conduit testing …………………………………………………………..226

5.7.3 Desktop Application testing ………………………………………………………227

5.7.4 WAP Application testing …………………………………………………………..228

Chapter 6: Conclusion…………………………………………………..230

6.1 Conclusion…………………………………………………………230
6.1.1 Dynamic Communication Protocol…………………………………………….……….230

6.1.2 Protocol Correctness…………………………………………………………………....233

6.1.3 Routing and Scheduling……………………………………………………….……......234
6.1.4 Wireless…………………………………………………………………………………235

6.2 Future Work…………………………………………………….….237
6.2.1 Dynamic Communication Protocol……………………………………………...……...237

6.2.2 Routing and Scheduling……………………………………………………….........….238

6.2.3 Wireless………………………………………………………………………….........239

Chapter 7: References…………………………………………………...240

Appendices
Appendix A: Description of implemented Java classes …………………………………...247

Appendix B: Testing – scenario for various types of deadlocks …………………………...251

Appendix C: MIDAS Class Diagrams ……………………………………………….........260

Appendix D: Summary of individual classes in Java – MIDAS …………………………...269

Appendix E: Communications packet data structure …………………………………......273

Appendix F: Class Diagrams ………………………………………………………………274

Appendix G: XML listings…………………………………………………………………277

Appendix H: Sequence and class diagrams related to MIDAS ……………………………283

 Figure Index

Chapter1

1.1 Overall Supply chain from raw material to finished products………….2

1.2 Flow of Information and Goods throughout supply chain………………3

1.3 Issues in E-procurement and Logistics Exchanges……………………….7

1.4 A communicating finite state machine……………………………………18

1.5 Two CFSMs communicating through channels………………………….19

1.6 Architecture of MIDAS……………………………………………………..26

1.7 Screen shot of the system operator interface with vehicle locations

in Melbourne metropolitan area…………………………………………..28

1.8 Overview of the software…………………………………………………...33

1.9 Handheld application combo box………………………………………….38

Chapter 2

2.1 Just-In-Time State Machine…………………………………………………….51

2.2 Process P state machine for Reachability Analysis………………....................56

2.3 Process Q state machine for Reachability Analysis……………………………56

2.4 Global State Representation…………………………………………………….57

2.5 Fragment of reachability graph for state machines defined in Fig 2-2............58

2.6 (a) State Diagrams………………………………………………………….63

2.6 (b) State Diagrams………………………………………………………….63

2.6 (c) State Diagrams………………………………………………………….63

2.6 (d) State Diagrams………………………………………………………….63

2.7 (a) Invalid State Machine Example………………………………………64

2.7 (b) Invalid State Machine Example………………………………………64

2.8 Similarity Equation………………………………………………………………67

2.9 Hierarchical Car parts example………………………………….....………….68

2.10 (a) Similarity calculation for two Wine items…………………………...……..79

2.10 (b) Wine catalog fragment ...80

2.11 Shopfront Protocol State Transition Diagram………………………………...81

2.12 State Transistion Diagram for Haggle Protocol ………………….…………83

2.13 State Transition diagram for English Auction Protocol……………..……...87

2.14 Client Vocabulary implementation of Bid…………………………..…….….94

2.15 XML Messaging Architecture………….……………………….……..………97

2.16 Forward Reachability error in Client state machine…….…………………..99

2.17 Backward reachability error in Client state machine……………..….……100

2.18 Product Brokering Test Display………………………………………..……104

2.19 Shopfront Buy Scenario Test Display………………………………..………105

2.20 Haggle Protocol Test Scenarios………………………………………..…….107

2.21 English Auction Protocol Buy Scenario Display………………………...…..109

2.22 Merchant Brokering………………………………………………………..…111

Chapter 3

3.1 An incorrect communication system…………………………………………...117

3.2 Reachability tree for the communication system of Figure 1…………………118

3.3 An example of balanced protocol………………………………………………119

3.4 The structural partitions for a balanced protocol……………………………..119

3.5 A communication system with two entities……………………………………121

3.6 Tree protocol for process1………………………………………………………122

3.7 Tree protocol for process2………………………………………………………122

3.8 Maximal Progress State Exploration…………………………………………...125

3.9 A two-process protocol for reverse reachability analysis……………………...127

3.10 Simultaneous reachability analysis………………………………………………128

3.11 A sample CSM Agent with two complex states registration & Bidding……...131

3.12 CCSMs M1 and M2 communicating over channels C12 and C21……………..134

3.13 Possible deadlock states Procedure……………………………………………..138

3.14 Deadlock detection algorithm……………………………………………………140

3.15 Backtracking module……………………………………………………………..142

3.16 Top level view of a CCSM………………………………………………………..144

3.17 An internal FSM…………………………………………………………………..144

3.18 DTD for state machine specification……………………………………………..144

3.19 First example of a communication system………………………………………151

3.20 Second example showing establishment/clear procedure in X.25……………...152

3.21 Third example showing alternating bit protocol………………………………..153

Chapter 4

4.1 An example solution to a Vehicle Routing Problem…………………………….156

4.2 Screen shot of Sydney digital map……………………………………………….161

4.3 Overview of OpenMap architecture…………………………………………...161

4.4 Telstra SMS Access Manager - SMPP Access [11]……………………………..163

4.5 Functional Overview of MIDAS…………………………………………………164

4.6 MIDAS Processes…………………………………………………………………165

4.7 MIDAS Technical Architecture………………………………………………….166

4.8 Interaction between MIDAS and MIDAS external entities…………………….173

4.9 Communication packet data structure…………………………………………..179

4.10 Double layer trees…………………………………………………………………181

4.11 Closest points nomination………………………………………………………...182

4.12 Screen shot of the vehicle route from Werribee to Queenscliff and Anglesea...185

4.13 Screen shot of the result of the performance test case………………………….191

4.14 Time trend against the order growth in scheduling…………………….………191

Chapter 5

5.1 Handheld database layout………………………………………………………..199

5.2 Handheld record layouts………………………………………………………….200

5.3 Handheld application use cases…………………………………………………..200

5.4 Palm application code sections…………………………………………………...202

5.5 HotSync components relationship……………………………………………….207

5.6 Overview of the process flow through the components………….………….….208

5.7 Handheld conduit use cases……………………………………………………...211

5.8 Handheld conduit class diagrams……………………………………………….212

5.9 Desktop application use cases…………………………………………………...213

5.10 Desktop application class diagram………………………………………………213

5.11 WAP programming architecture………………………………………………..214

5.12 WAP application use cases……………………………………………………….216

5.13 WAP application component diagram…………………………………………..216

Table Index

Chapter 2

2.1 (a) Describes KQML code fragment…………………………………………..43

2.1 (b) Sibling Similarity Example………………………………………………...67

2.2 Dissimilarity values example………………………………………………………68

2.3 Example Feature Values of Car Parts…………………………………………….69

2.4 Feature Vector example for Tyre T1……………………………………………...69

2.5 Feature Vector example for Tyre T2………………………………………….70

2.6 Similarity calculation for T1 and T2………………………………………………70

2.7 Feature Vector example for Tyre T2……………………………………………...70

2.8 Feature Vector example for Brake B3………………………………………...70

2.9 Similarity calculation for T2 and B3………………………………………………71

2.10 Similarity calculation example for T2 and W2…………………………………...71

2.11 Penfold’s 1996 Kalimna Bin28 Shiraz feature vector……………………………78

2.12 Wynns’s 1993 Hermitage Shiraz feature vector………………………….………78

2.13 FSM Message table for Shopfront Protocol………………………………………82

2.14 FSM Message table for Haggle Protocol………………………………………….84

2.15 FSM Message table for English Auction Protocol………………………………..88

2.16 Client Agent parameters…………………………………………………………...92

2.17 State Machine XML elements……………………………………………………..94

2.18 Client parameters for Product Brokering test………………………………….101

2.19 Keyword Query for Product Brokering test…………………………………….102

2.20 Catalog Items (1) returned from Product Brokering…………………………...102

2.21 Reference Query for Product Brokering………………………………………...103

2.22 Catalog Items (2) returned from Product Brokering…………………………...103

2.23 Shopfront Protocol Test Scenarios……………………………………………….105

2.24 Haggle Protocol Test Scenarios…………………………………………………..106

2.25 English Auction Test Scenarios…………………………………………………..108

2.26 URLs for Merchant Brokering Test……………………………………………..110

2.27 Client parameters for Merchant Brokering Test……………………………….110

2.28 Product Brokering results for Merchant Brokering……………………………110

2.29 Merchant Brokering transaction………………………………………………...111

Chapter 3

3.1 Elements and attributes of an XML state machine……………………………..145

3.2 Java Classes Description………………………………………………………….149

3.3 Comparison of performance with existing algorithms…………………………153

Chapter 5

5.1 XML tags conversion table……………………………………………………….204

5.2 Server error code………………………………………………………………….206

5.3 Records synchronization logic……………………………………………………209

5.4 Difference between standard C and Palm OS C………………………………...218

5.5 Test cases and their actual and final results…………………………….……….221

5.6 Results of validation testing………………………………………………………222

5.7 Results of functionality testing…………………………………………………...226

5.8 Functionality testing results for Desktop application testing………………......227

5.9 Functionality testing results for WAP application testing……………………...228

 1

Dynamic Communication across
Supply Chain Services

A thesis submitted for the degree of

Doctor of Philosophy

Manish Malhotra M.Eng (I.T)

Student Id: 2011269M

School of Electrical and Computer Engineering

Science, Engineering, and Technology Portfolio,

RMIT University,

Melbourne, Victoria, Australia.

September 21, 2009

 2

Declaration

I certify that except where due acknowledgement has been made, the work is that of the author

alone; the work has not been submitted previously, in whole or in part, to qualify for any other
academic award; the content of the thesis is the result of work which has been carried out since

the official commencement date of the approved research program; and, any editorial work, paid

or unpaid, carried out by a third party is acknowledged.

Manish Malhotra
School of Electrical and Computer Engineering

RMIT University

September 21, 2009

 3

Acknowledgments

I express my deepest and sincere gratitude to my supervisor Professor Andrew Jennings and

Professor Mohini Singh for their support, invaluable guidance and motivation over the years.
Their constant effort to keep me on track is highly appreciated without which this thesis would

not have been possible. They have been excellent mentors and good friends to support me

throughout my thesis.

I am thankful to Professor Zahir Tari for allowing me to work with him for ARC (Australian

Research Council) Linkage grants at the School of Computer Science and IT at RMIT University.

I would like to thank the School of Electrical and Computer Engineering, RMIT University and

Professor Andrew Jennings for providing me an opportunity to conduct research at the School.

Sincere thanks go to my work colleagues and fellow PhD students for their many interesting

discussions and help in making the work environment friendly and enjoyable. In particular,

thanks to the staff of RMIT for their valuable comments.

My gratitude to my parents S.S Malhotra and C.K Malhotra for their many years of hard work

and sacrifices they have made to support me.

Finally, a very special thanks to my daughter Prisha Malhotra and my wife Parul Malhotra for

their love, patience and for always being supportive to me

 4

Abstract

This thesis deals with the design of communication protocol solutions across a Supply

Chain Management System. These solutions are capable of operating in multi-agent

environments, and allow customers to order services online. As part of two Australian

Research Council (ARC) grants, it is divided into four main sections. The first issue deals

with a dynamic communication protocol, which aims at agent-to-agent operability in an

open environment, such as the Internet. In the second section, we proposed a protocol

correctness system, which enables detection of deadlock errors in communication

protocols. Further, a comparison of the proposed validation techniques and those

currently in use, is provided. Next, the problem of routing and scheduling in the transport

industry was tackled, resulting in the development of an autonomous route scheduling

system, MIDAS (Mobile Intelligent Distributed Application Software). The MIDAS

server uses wireless technology to communicate with different parts of the system, which

was investigated in the final section of the thesis. The MIDAS system was tested on

devices with a GSM-enabled network connection, with results indicating that it takes less

than thirty seconds for information to be processed and transmitted. Further, studies

relating to this topic could involve extensions of the proposed systems using SOAP

(Simple Object Access Protocol).

While undertaking my PhD, I wrote the following five papers, which were published in

various journals and conferences:

1. Towards the Right Communication Protocol for Web Services,
International Journal for Web Services Research (IJWSR), June 2005

2. MIDAS - An Integrated E-Commerce Solution for the Australian Transport
Industries,
International Journal on Web Engineering and Technology (IJWET), 1(3), 353-373, October
2004

3. MIDAS’s Routing and Scheduling Approach for the Australian Transport
Industries,
International OTM (OntheMove) Workshops, November 2003

4. An XML-based Conversational Protocol for Web Services,
18th ACM International Symposium on Applied Computing (SAC), 1179-1184, May 2003

5. Towards Robust and Scalable Infrastructure for Web Service,
IEEE International Symposium on Signal Processing and Information Technology (ISSPIT),
December 2002

 5

Contents:

Chapter 1: Introduction

1.1 Supply chain management system………………………………………...1

1.2 Scope of the project………………………………………...……………….4
1.2.1 E-Procurement…...………………………………………………………………........4

1.2.2 Logistics Exchanges…………………………………………………………...….......6

1.3 Issue-I Designing Communication Protocol………………………………..7

1.3.1 Background…………………………………………………………………………...8

1.3.2 Issues during designing protocols……………………………………………...…….10

1.3.3 Aim of the Project……………………………………………………..…………….11

1.4 Issue-II Protocol Correctness………………………………………..13
1.4.1 Background……………………………………………………………...…………...14

1.4.2 Issues involved during protocol correctness…………………………………………19

1.4.3 Aim of the Project……………………………………………………………………22

1.5 Issue-III Routing and Scheduling…………………………...………23
1.5.1 Background…………………………………………………………………………..23

1.5.2 Issues involved during Routing and Scheduling….…………………………………26

1.5.3 Aim of the Project……………………………………………………………………29

1.6 Issue-IV Wireless……………………………...…………………….31
1.6.1 Background………………………………………………………………………….31

1.6.2 Issues related to Wireless module...........................…………………………………34

1.6.3 Aim of the Project……………………………………………………………………37

Chapter 2: Designing Communication Protocol

2.1 Related works………………………………………………………..40
2.1.1 Agents Frameworks………………………………………………………………….40

2.1.2 Agent Communication Language and FIPA….……………………………………..42

2.1.3 Conversation rules…………………………………………………………………...44

2.1.4 Internet interoperability……………………………………………………………...46

2.1.5 Ontology……………………………………………………………………………..48

2.2.1 State Machines………………………………………………………49
2.2.2 Protocol Correctness…………………………………………………………………56

2.2.3 State Explosion………………………………………………………………………59

2.3.4 Invalid State Machines………………………………………………………………63

2.2.5 Ontological data………………………………………………………………….…..64

2.2.6 Similarity Matching…………………………………………………………………65

2.3 Implementation..……………………… ……………………………72
2.3.1 Buying behavior……………………………………………………………………..72

2.3.2 Vocabulary…………………………………………………………………………...74

2.3.3 Architecture………………………………………………………………………….76

2.3.4 Catalog Negotiation Protocol………………………………………………………..77

 6

2.3.5 Merchant Protocols………………………………………………………………….81

2.3.6 Client Agent………………………………………………………………………....92

2.3.7 Client Parameters…..………………………………………………………………..92

2.3.8 Vocabulary Implementation…………………………………………………….…...93

2.3.9 State Machine Processing…………………………………………………………...94

2.3.10 XML Parsing………………………………………………………………………97

2.4 Testing…………………….…..…………………………………..98
2.4.1 State Machine Correctness…………………………………………………………98

2.4.2 Product Brokering………………………………………………………………….100

2.4.3 Individual Protocol Testing………………………………………………………...104

2.4.4 Merchant Brokering………………………………………………………………..109

Chapter 3: Protocol Validation for CCSMs

3.1 Related works……………………………………………………....113
3.1.1 Exhaustive Exploration Techniques………………………………….….116

3.1.2 Partial Exploration Techniques………………………………………......123

3.2 CCSM……………………………………………………………...130
3.2.1 Complex state machines……………………………………………………………130

3.2.2 Communicating Complex State Machines…………..……………………………..132

3.2.3 Advantages of CCSM Model……………………………………...……………….133

3.2.4 Protocol Errors……………………………………………………………………...135

3.2.5 Protocol Validation…………………………………………...…………………….136

3.3 Implementation…………………………………………………….143
3.3.1 XML specification………………………………………………………………….143

3.3.2 XML Parsing……………………………………………………………………….146

3.3.3 Class Description…………………………………………………………………...149

3.3.4 Analysis………………………………………………..…………………….…..…150

Chapter 4: Routing and Scheduling

4.1 Related works……………………………… ………………….….155

4.1.1 Vehicle Routing Problem…………………… …………………....155
4.1.1.1 Mathematical Formulation………………………………………………………..156

4.1.1.2 Insertion Heuristic………………………………………………………………..158

4.1.1.3 Genetic Algorithm………………………………………………………………..159

4.1.2 Digital Maps………………………………………………………160
4.1.2.1 OpenMap…………………………………………………………………….…161

4.1.2.2 Map Data…………………………………………………………………….…162

4.1.3 SMS……………………………………………………………....162
4.1.3.1 SMS Access…………………………………………………………………….162

4.2.1 MIDAS………………………………………………...………....163
4.2.1.1 MIDAS Functional Overview………………………………………………….164

4.2.1.2 MIDAS Processes………………………………………………………………164

 7

4.2.1.3 MIDAS Technical Architecture……………………………………..…………165

4.2.1.4 MIDAS modules………………………………………………………………..168

4.2.2 MIDAS Server…………………………………………………...168
4.2.2.1 Specification……………………………………………………………………169

4.2.2.2 Design…………………………………………………………………………..172

4.3.1 Implementation…………………………………………………..179
4.3.1.1 Communication………………………………………………………………...179

4.3.1.2 Routing………………………………………………………………………...181

4.3.1.3 Scheduling……………………………………………………………………..186

4.3.2 Testing……………………………………………………………..187
4.3.2.1 Functional Testing…………………………………………………………………187

4.3.2.2 Performance Testing……………………………………………………………….189

Chapter 5: Wireless

5.1 Related Works…………………………………………………….. 193
5.1.1 Identification of stakeholders………………………………………….. .193

5.1.2 Functional Requiremnets……………………………………………....194
5.1.2.1 Requirements for handheld application…………………………………….….194

5.1.2.2 Requirement for handheld conduit………………………………………….….195

5.1.2.3 Requirement for Desktop Application………………………………………....195

5.1.2.4 Requirement for WAP Application……………………………………………195
5.1.3 Non Functional Requirements…………………………………......196
5.1.3.1 Handheld application…………………………………………………………..196

5.1.3.2 Handheld conduit………………………………………………………………196

5.2 System Architecture and Design………………………………...…196
5.2.1 Overall system architecture……………………….…………………………….196

5.2.2 Handheld application design……………………………………………………198

5.2.3 Use Cases ……………………………………………………………………….200

5.2.4 Component Diagram ……………………………………………………………201

5.2.5 Communication protocol and message format …………………………………203

5.2.6 Error Handling Protocol…………………………………………………….......206

5.3 Handheld conduit design……………………………………….…..207
5.3.1 Use Cases …………………………………………………………………………..211

5.3.2 Class Diagram ……………………………………………………………………...212

5.4 Desktop application design………………………………………...212
5.4.1 Use Cases …………………………………………………………………………..213

5.4.2 Class Diagram ……………………………………………………………………...213

5.5 WAP application design…………………………………………....214
5.5.1 Use Cases …………………………………………………………………………..215

5.5.2 Component Diagram ……………………………………………………………….216

5.6 System Implementation ……………………………………………217
5.6.1 C Programming language ………………………………………………………….217
5.6.2 PilRC Programming language ……………………………………………………..217

5.6.3 Java Programming language ……………………………………………………….218

5.6.4 VB Programming language ………………………………………………………..219

 8

5.6.5 PRC-Tools …………………………………………………………………………219

5.6.6 PilRC compiler …………………………………………………………………….219

5.6.7 Palm OS Software Development Kit ………………………………………………219

5.6.8 Conduit Development Kit ………………………………………………………….219

5.6.9 Microsoft Visual .Net with Mobile Internet Framework …………………………..220

5.7 Testing…………………………………………………………...…220
5.7.1 Handheld Application testing ……………………………………………………..220

5.7.2 Handheld conduit testing …………………………………………………………..226

5.7.3 Desktop Application testing ………………………………………………………227

5.7.4 WAP Application testing …………………………………………………………..228

Chapter 6: Conclusion…………………………………………………..230

6.1 Conclusion…………………………………………………………230
6.1.1 Dynamic Communication Protocol…………………………………………….……….230

6.1.2 Protocol Correctness…………………………………………………………………....233

6.1.3 Routing and Scheduling……………………………………………………….……......234
6.1.4 Wireless…………………………………………………………………………………235

6.2 Future Work…………………………………………………….….237
6.2.1 Dynamic Communication Protocol……………………………………………...……...237

6.2.2 Routing and Scheduling……………………………………………………….........….238

6.2.3 Wireless………………………………………………………………………….........239

Chapter 7: References…………………………………………………...240

Appendices
Appendix A: Description of implemented Java classes …………………………………...247

Appendix B: Testing – scenario for various types of deadlocks …………………………...251

Appendix C: MIDAS Class Diagrams ……………………………………………….........260

Appendix D: Summary of individual classes in Java – MIDAS …………………………...269

Appendix E: Communications packet data structure …………………………………......273

Appendix F: Class Diagrams ………………………………………………………………274

Appendix G: XML listings…………………………………………………………………277

Appendix H: Sequence and class diagrams related to MIDAS ……………………………283

 9

 Figure Index

Chapter1

1.1 Overall Supply chain from raw material to finished products………….2

1.2 Flow of Information and Goods throughout supply chain………………3

1.3 Issues in E-procurement and Logistics Exchanges……………………….7

1.4 A communicating finite state machine……………………………………18

1.5 Two CFSMs communicating through channels………………………….19

1.6 Architecture of MIDAS……………………………………………………..26

1.7 Screen shot of the system operator interface with vehicle locations

in Melbourne metropolitan area…………………………………………..28

1.8 Overview of the software…………………………………………………...33

1.9 Handheld application combo box………………………………………….38

Chapter 2

2.1 Just-In-Time State Machine…………………………………………………….51

2.2 Process P state machine for Reachability Analysis………………....................56

2.3 Process Q state machine for Reachability Analysis……………………………56

2.4 Global State Representation…………………………………………………….57

2.5 Fragment of reachability graph for state machines defined in Fig 2-2............58

2.6 (a) State Diagrams………………………………………………………….63

2.6 (b) State Diagrams………………………………………………………….63

2.6 (c) State Diagrams………………………………………………………….63

2.6 (d) State Diagrams………………………………………………………….63

2.7 (a) Invalid State Machine Example………………………………………64

2.7 (b) Invalid State Machine Example………………………………………64

2.8 Similarity Equation………………………………………………………………67

2.9 Hierarchical Car parts example………………………………….....………….68

2.10 (a) Similarity calculation for two Wine items…………………………...……..79

2.10 (b) Wine catalog fragment ...80

2.11 Shopfront Protocol State Transition Diagram………………………………...81

 10

2.12 State Transistion Diagram for Haggle Protocol ………………….…………83

2.13 State Transition diagram for English Auction Protocol……………..……...87

2.14 Client Vocabulary implementation of Bid…………………………..…….….94

2.15 XML Messaging Architecture………….……………………….……..………97

2.16 Forward Reachability error in Client state machine…….…………………..99

2.17 Backward reachability error in Client state machine……………..….……100

2.18 Product Brokering Test Display………………………………………..……104

2.19 Shopfront Buy Scenario Test Display………………………………..………105

2.20 Haggle Protocol Test Scenarios………………………………………..…….107

2.21 English Auction Protocol Buy Scenario Display………………………...…..109

2.22 Merchant Brokering………………………………………………………..…111

Chapter 3

3.1 An incorrect communication system…………………………………………...117

3.2 Reachability tree for the communication system of Figure 1…………………118

3.3 An example of balanced protocol………………………………………………119

3.4 The structural partitions for a balanced protocol……………………………..119

3.5 A communication system with two entities……………………………………121

3.6 Tree protocol for process1………………………………………………………122

3.7 Tree protocol for process2………………………………………………………122

3.8 Maximal Progress State Exploration…………………………………………...125

3.9 A two-process protocol for reverse reachability analysis……………………...127

3.10 Simultaneous reachability analysis………………………………………………128

3.11 A sample CSM Agent with two complex states registration & Bidding……...131

3.12 CCSMs M1 and M2 communicating over channels C12 and C21……………..134

3.13 Possible deadlock states Procedure……………………………………………..138

3.14 Deadlock detection algorithm……………………………………………………140

3.15 Backtracking module……………………………………………………………..142

3.16 Top level view of a CCSM………………………………………………………..144

3.17 An internal FSM…………………………………………………………………..144

 11

3.18 DTD for state machine specification……………………………………………..144

3.19 First example of a communication system………………………………………151

3.20 Second example showing establishment/clear procedure in X.25……………...152

3.21 Third example showing alternating bit protocol………………………………..153

Chapter 4

4.1 An example solution to a Vehicle Routing Problem…………………………….156

4.2 Screen shot of Sydney digital map……………………………………………….161

4.3 Overview of OpenMap architecture…………………………………………...161

4.4 Telstra SMS Access Manager - SMPP Access [11]……………………………..163

4.5 Functional Overview of MIDAS…………………………………………………164

4.6 MIDAS Processes…………………………………………………………………165

4.7 MIDAS Technical Architecture………………………………………………….166

4.8 Interaction between MIDAS and MIDAS external entities…………………….173

4.9 Communication packet data structure…………………………………………..179

4.10 Double layer trees…………………………………………………………………181

4.11 Closest points nomination………………………………………………………...182

4.12 Screen shot of the vehicle route from Werribee to Queenscliff and Anglesea...185

4.13 Screen shot of the result of the performance test case………………………….191

4.14 Time trend against the order growth in scheduling…………………….………191

Chapter 5

5.1 Handheld database layout………………………………………………………..199

5.2 Handheld record layouts………………………………………………………….200

5.3 Handheld application use cases…………………………………………………..200

5.4 Palm application code sections…………………………………………………...202

5.5 HotSync components relationship……………………………………………….207

5.6 Overview of the process flow through the components………….………….….208

5.7 Handheld conduit use cases……………………………………………………...211

5.8 Handheld conduit class diagrams……………………………………………….212

 12

5.9 Desktop application use cases…………………………………………………...213

5.10 Desktop application class diagram………………………………………………213

5.11 WAP programming architecture………………………………………………..214

5.12 WAP application use cases……………………………………………………….216

5.13 WAP application component diagram…………………………………………..216

 13

Table Index

Chapter 2

2.1 (a) Describes KQML code fragment…………………………………………..43

2.1 (b) Sibling Similarity Example………………………………………………...67

2.2 Dissimilarity values example………………………………………………………68

2.3 Example Feature Values of Car Parts…………………………………………….69

2.4 Feature Vector example for Tyre T1……………………………………………...69

2.5 Feature Vector example for Tyre T2………………………………………….70

2.6 Similarity calculation for T1 and T2………………………………………………70

2.7 Feature Vector example for Tyre T2……………………………………………...70

2.8 Feature Vector example for Brake B3………………………………………...70

2.9 Similarity calculation for T2 and B3………………………………………………71

2.10 Similarity calculation example for T2 and W2…………………………………...71

2.11 Penfold’s 1996 Kalimna Bin28 Shiraz feature vector……………………………78

2.12 Wynns’s 1993 Hermitage Shiraz feature vector………………………….………78

2.13 FSM Message table for Shopfront Protocol………………………………………82

2.14 FSM Message table for Haggle Protocol………………………………………….84

2.15 FSM Message table for English Auction Protocol………………………………..88

2.16 Client Agent parameters…………………………………………………………...92

2.17 State Machine XML elements……………………………………………………..94

2.18 Client parameters for Product Brokering test………………………………….101

2.19 Keyword Query for Product Brokering test…………………………………….102

2.20 Catalog Items (1) returned from Product Brokering…………………………...102

2.21 Reference Query for Product Brokering………………………………………...103

2.22 Catalog Items (2) returned from Product Brokering…………………………...103

2.23 Shopfront Protocol Test Scenarios……………………………………………….105

2.24 Haggle Protocol Test Scenarios…………………………………………………..106

2.25 English Auction Test Scenarios…………………………………………………..108

 14

2.26 URLs for Merchant Brokering Test……………………………………………..110

2.27 Client parameters for Merchant Brokering Test……………………………….110

2.28 Product Brokering results for Merchant Brokering……………………………110

2.29 Merchant Brokering transaction………………………………………………...111

Chapter 3

3.1 Elements and attributes of an XML state machine……………………………..145

3.2 Java Classes Description………………………………………………………….149

3.3 Comparison of performance with existing algorithms…………………………153

Chapter 5

5.1 XML tags conversion table……………………………………………………….204

5.2 Server error code………………………………………………………………….206

5.3 Records synchronization logic……………………………………………………209

5.4 Difference between standard C and Palm OS C………………………………...218

5.5 Test cases and their actual and final results…………………………….……….221

5.6 Results of validation testing………………………………………………………222

5.7 Results of functionality testing…………………………………………………...226

5.8 Functionality testing results for Desktop application testing………………......227

5.9 Functionality testing results for WAP application testing……………………...228

 15

Chapter 1

 Introduction

1.1 Supply Chain Management System

A SUPPLY CHAIN is a network of suppliers, manufacturing, assembly,

distribution, and logistics facilities that perform the functions of materials

procurement, the transformation of these materials into intermediate and finished

products, and the distribution of these products to customers. Supply chains arise in

both the manufacturing and service organizations.

SUPPLY CHAIN MANAGEMENT (SCM) is a system approach to managing the

entire flow of information, materials, and services from raw materials suppliers

through factories and warehouses, to the end customer. SCM is different from

SUPPLY MANAGEMENT, which emphasizes only the buyer-supplier relationship.

Supply chain management has emerged as the new key to productivity and

competitiveness of manufacturing and service enterprises. The importance of this

area is shown by a significant spurt in research in the last five years, and also by the

proliferation of supply chain solutions and companies (e.g. i2, Manugistics, etc.).

All major ERP companies are now offering supply chain solutions as a major

extended feature of their ERP packages.

Supply chain management is a major application area for Internet Technologies and

Electronic Commerce (ITEC). In fact, advances in ITEC have contributed to a

growing importance in supply chain management, which has, in turn, contributed to

many advances in ITEC.

SCM has two major phases to it. The first can be loosely termed as the back-end,

and comprises the physical building blocks such as the supply facilities, production

 16

facilities, warehouses, and distributors, retailers, and logistics facilities. The back-

end essentially encompasses production, assembly, and physical movement. Major

decisions here include:

1. Procurement (supplier selection, optimal procurement policies, etc.)

2. Manufacturing (plant location, product line selection, capacity planning,

production scheduling, etc.)

3. Distribution (warehouse location, customer allocation, demand forecasting,

inventory management, etc.)

4. Logistics (selection of logistics mode, selection of ports, direct delivery,

vehicle scheduling, etc.)

5. Global Decisions (product and process selection, planning under uncertainty,

real-time monitoring and control, integrated scheduling)

 Figure 1.1 Overall Supply chain from raw material to finished products

 17

The second phase is called the front end, where IT and ITEC play a key role. It

involves the processing and use of information to facilitate and optimize back end

operations. Key technologies include:

EDI (for exchange of information across different players in the supply chain),

Electronic payment protocols, Internet auctions (for selecting suppliers, distributors,

demand forecasting) Electronic Business Process Optimization-Logistics,

Continuous tracking of customer orders through the Internet, Internet based shared

services.

Supply chain management is a set of approaches used to efficiently integrate

suppliers, manufacturers, warehouses, and customers, so that merchandise is

produced and distributed in the right quantities, to the right locations, and at the

right time, in order to minimize system wide costs while satisfying service-level

requirements. Fig 1.2 shows the flow of goods from the raw material supplier to the

end user after completing the route through manufactures, wholesale distributors

and then retailers.

 Figure 1.2 Flow of Information and Goods through the supply chain

Manufacturers

Wholesale

Distributors

Suppliers

Customers

 Information Flows

Goods Flow

Retailers

Supplier

Exchanges

Customer

Exchanges

Logistics

Exchanges

Contract

Manufacturers
Logistics

Providers

Virtual

Manufacturers

 18

1.2 Scope of this project

For the scope of this project, we have considered issues in the two most important

sections of SCM: E-Procurement and Logistics Exchanges.

1.2.1 E-Procurement

E-procurement (Electronic Procurement), also known as supply exchange, is the

business-to-business purchase and sale of supplies and services through the Internet,

as well as other information and networking systems, such as electronic data

interchange (EDI) and Enterprise Resource Planning (ERP) - an important part of

many B2B sites. Typically, e-procurement web sites allow qualified and registered

users to look for buyers or sellers of goods and services. Depending on the

approach, buyers or sellers may specify prices or invite bids. Transactions can be

initiated and completed. Ongoing purchases may qualify customers for volume

discounts or special offers.

Companies participating in e-procurement expect to be able to control parts

inventories more effectively, reduce purchasing agent overhead, and improve

manufacturing cycles. E-procurement is expected to be integrated with the trend

toward computerized supply chain management.

E-procurement is the term for electronic procurement or purchasing. It is part of e-

business and is used to designate the optimized, Internet-based acquisition process

of a company. It refers not just to the purchasing process itself, but to electronic

negotiations and the conclusion of contracts with suppliers as well. Because the

purchasing process is simplified by the electronic handling of operative tasks,

strategic tasks can be given a more important role in the process. These new

strategic purchasing tasks include the management of contacts to existing and new

suppliers, as well as the creation of new market structures by actively consolidating

the supply-side.

 19

Studies undertaken by [80] indicate that e-procurement contributes benefits to

compliance and spend management initiatives. Some specific advantages of e-

procurement include [81]:

a) Self-Service procurement – enabling self-service at various stages in the

supply chain, such as use of online shopping, and support of plant

maintenance orders.

b) Content management – Ability to import catalog data, or access content from

any source.

c) Centralised contract management – Supports global purchasing, access to

suppliers across geographical entities.

d) Purchasing analytics – Provides extensive reporting capabilities for both

purchasers and managers, resulting in more efficient decisions.

e) Improvement in spend compliance.

Further, the investigation by [80] suggests that e-procurement deployments now

manage more transactions, suppliers, and spend than ever before. Further, it is

delivering measurable improvements in cost, compliance and productivity.

However, supplier enablement, employee adoption, and executive support are the

key challenges.

There are six main types of e-procurement:

o Web-based ERP (Electronic Resource Planning): Creating and approving

purchasing requisitions, placing purchase orders and receiving goods and services by

using a software system based on Internet technology.

o E-MRO (Maintenance, Repair and Operating): The same as web-based ERP

except that the goods and services ordered are non-product related MRO supplies.

o E-sourcing : Identifying new suppliers for a specific category of purchasing

requirements using Internet technology.

o E-tendering : Sending requests for information and prices to suppliers and receiving

the responses of suppliers using Internet technology

 20

o E-reverse auctioning : Using Internet technology to buy goods and services from a

number of known or unknown suppliers.

o E-informing : Gathering and distributing purchasing information both to and from

internal and external parties using Internet technology.

Overall, the two main advantages offered by e-procurement include:

a) Furthering the automation of business processes, thereby ensuring that orders

align with those of ERP applications.

b) It is a valuable tool in sourcing new suppliers of goods and services, thus

promoting ‘better value for money’, as competitiveness increases.

1.2.2 Logistics Exchanges

Logistics Exchanges is responsible for various functions, like the selection of Logistics mode,

selection of ports, direct delivery, vehicle scheduling, etc. Advances in communication

technology have made this more efficient. The trend towards wireless technology

increasingly leads us into a new mobile and distributed computing environment.

Wireless technology gives us the capability of accessing information with a nomadic

device, anywhere and at any time.

 Although Internet development has been down in recent years, we are still in the

early stages of understanding and uncapping its unlimited potential. The integration

of web services allows our system to be more responsive and automated. MIDAS

(Mobile Intelligent Distributed Application Software) combines these two

technologies to provide an autonomous delivery management system for the

transportation and transport logistics industries.

Figure 1.3 shows the architecture of supply chain services and the issues involved in

e-procurement and logistics sections.

 21

fs

Figure 1.3 Issues in E-procurement and Logistics Exchanges

There are four main issues involved during these two phases are investigated in the

proceeding chapters:

I. Dynamic conversation protocol

II. Validating and checking the protocol

III. Dynamic Routing and Scheduling

IV. Wireless module

1.3: ISSUE-I Designing Communication Protocol

This research is conducted under the ARC Industry Grant (Linkage) research project -

"Designing a Scalable and Robust Infrastructure for Highly Dynamic Web Services".

Communication between two devices or agents requires a common understanding of the

format of data. The set of rules and regulations which define the format is called a protocol.

A communication protocol must be capable of defining:

Supply Chain

Services

Electronic

Procurement Issues

Logistic

Exchanges Issues

Dynamic

Conversation

Protocol, which

enables dynamic

communication
across various

“Buying” and

“Selling”

services.

Validation
Check for the

Dynamic

Conversation

Protocol

particularly for

the “Deadlock”

detection in the

protocol

Developing

Robust Palm

based Mobile

System

between the

Drivers and

MIDAS server,

including

Proof of

Deliveries

Dynamic Routing and
Scheduling of Trucks to

fulfil the dynamic orders

from MIDAS (Mobile

Intelligent Distributed

Application Software)

at any given point of

time using Maps

 22

• Rate of transmission

• Type of transmission (Synchronous or Asynchronous)

• Mode of transmission (Half duplex or full duplex)

• Ability to detect and recover from transmission errors, and for encoding and decoding

data.

1.3.1 Background

Due to the diverse nature of software agents, communication protocols between

agents are not standardized and may offer little interoperability. This often leads to

proprietary interfaces and protocols, but may still provide poor interoperability

between different types of agents. For an information agent operating on the

Internet, its execution environment is not a single controlled framework, but instead,

a large heterogeneous environment where all expected conversations could not be

anticipated. For example, a simple shopping agent may wish to interact with

multiple merchant sites having different protocols to retrieve product information

and purchase goods. An autonomous, long-lived client agent may need to converse

with many sites requiring different conversation protocols for site navigation.

Therefore, operation between information agents on the Internet may be viewed as

the goal.

In these conditions one agent would not care what standard(s) another agent

implemented, provided there was understanding between the agents about what

communication was required. e.g. “I don’t care what your standard is, just tell me

what to speak and I will speak it”. In the Internet commerce environment it is being

used as a replacement for the older technology of EDI. Libraries of XML DTD

documents exist, which are repositories of document definitions that can be used for

sites to exchange data in, typically, an Internet B2B transaction. This provides

“standard” data formats for these transactions.

To provide full operability between information agents on the Internet, we need

agents to not only know the correct data formats to pass, but also the conversation

level protocol involving those messages for any required service. This must also

 23

include valid responses, where multiple responses are possible, and the start and end

states of the conversation. Any common aspects between different e-service

providers across an industry may be found at the atomic level of the message, or

document definitions themselves. It is conceivable that industry-wide

interoperability requires a domain of well understood message definitions that can

form any number of interfaces, rather than statically specifying well-known

interfaces, or a work-flow sequence of messages.

This implies that operability between agents, rather than compatibility via any

implemented standard, may be seen as the goal. Agents operating on the Internet

could reasonably be expected to only make use of current Internet standards or

pseudo-standards, in order to provide the most open environment for agents wishing

to interact.

This project proposes a dynamic communication protocol between supply chain

services or their agents. This protocol is implemented using XML and Java, and

provides interoperability across different conversation protocols. An implementation

is tested using applications in a wine selling business domain using three different

protocols. This demonstrates the removal of such protocols from compiled

interfaces, being replaced by one that adapts to changes in messages between

agents.

 Communication between entities requires:

• a reliable communication system

• a common understanding of the data being exchanged

• an understanding of the sequence of exchanges, forming a valid communication

protocol

Of these requirements, defining communication protocols may be the most

problematic. While e-services may use well-known transport layer protocols and

implementation languages, communication protocols are application dependant.

Clients wishing to make use of a service must know the message formats and valid

 24

sequence of message exchange that forms the conversation expected by the service

provider. This implies prior knowledge of the conversation requirements by the

client. As the number of e-services increases in a large environment such as the

Internet, agents may increasingly be required to work through the large number of

services and actions available. Under such circumstances, conversations may need

to be discovered dynamically, rather than via prior knowledge, and this evolution

may be based on open technologies such as distributed object protocols, Java and

XML.

I am proposing ideas towards the implementation of dynamic communication

protocols by clients, and providing an implementation where one client is able to

communicate with different services, using different communication protocols. In

other words, in order for different agents to communicate with each other, the

protocol must be able to ‘understand’ or ‘learn’ the messages spoken by agents. This

defines a dynamic communication protocol that we are proposing. However, this

must not be confused with the dynamic interpretation of a protocol, which is a

different issue.

1.3.2 Issues during designing protocols

Agents running on the Internet are diverse in nature. They may be written in many

different languages, and implemented on different standards and platforms. For

interoperability, there must be an agreement between interacting agents at all levels.

The Internet relies on a limited number of standards or pseudo-standards such as

HTTP, TCP/IP, HTML and XML. It seems reasonable that any solution to agent

interoperability must only include these non-proprietary products generally accepted

as Internet standards.

Even allowing for use of such standards, there is the issue of different navigation

requirements at each site. As each Internet site may be implemented differently, a

client agent wishing to converse with multiple server agents may require a different

way to establish and maintain a conversation with each server agent. It is not

practical to expect any client agent to know of such site-specific details in advance.

 25

On the Internet, generally, centralized services, or repositories are not available for

discovery. Therefore, the issue remains a site-by-site discovery of such information.

For full interoperability, agents must be able to communicate without

misunderstanding. This implies a certain fundamental level of understanding of

domain-level concepts that may be mapped by individual sites to their internal

representation of relationships of data. In summary, an Internet agent using e-

services should deal with the following issues:

� Discovery of services: In an open environment, an agent wishing to make

use of services must first discover services and their locations.

� Conversation protocols: This may involve the discovery or negotiation of a

protocol to be used between agents. Such a protocol will be composed of a

sequence of valid messages.

� Language: Use of a commonly understood language between agents. Agents

must have a common understanding of data.

� Messaging: The message types and formats used between agents. These must

be known to, or be discovered by agents wishing to converse.

� Platform interoperability: Use of open standards. With such a diverse range

of platforms and products available, maximum interoperability can be

achieved by using openly available non-proprietary standards where possible.

1.3.3 Aim of the Project

This project deals with identified issues of agents using e-services as follows:

• Discovery of Services: This proposal does not deal with the discovery of

services for agents. Service discovery is recognized as an issue, and a suggestion

for using a “standard” search engine model. However the implementation used to

test protocol interoperation uses prior knowledge of service locations.

• Conversation Protocols: The proposal in this project is that each server site

publishes details enabling client agents to interact with the server. This involves

the publication of protocol specifications representing a Finite State Machine

(FSM). A client agent downloads this specification, validates it for correctness,

 26

and then implements the protocol dynamically, as a state machine. This can be

viewed as a negotiation of protocols, where the client negotiates to implement

all requirements of a server.

The advantages of implementing a conversation protocol dynamically are:

o It separates the client’s conversation level protocol specifications from its

compiled code. Therefore, the conversation protocol code does not

become a legacy. This allows agents to converse with services that may

change conversational requirements, such as site navigation.

o It enables interoperability-on-demand required to interact with a

potentially large number of servers that may be encountered on the

Internet.

• Language: All data used in this implementation is in the XML format. My

implementation is written using Java, as this is a commonly chosen language

for agents due to its platform independence and network centric nature;

however agents can be implemented in any language. The XML used is parsed

into meaningful objects for internal use by agents. This avoids implementing

any predefined object formats being passed between agents, or any internal

representation of data formats being exchanged. Communication with the plain

text format of XML has the advantage of allowing agents to parse well-known

data format into required data types.

• Messaging: To achieve dynamic implementation of conversations using an

FSM, a fundamental level of messaging must be understood as input events,

output messages, and to enable state transition. In this project, I am proposing

a base set of primitive vocabulary phrases, or message names that can be

subsequently used to “build” complex communication protocols. These phrases

are defined as fundamental business concepts that can be combined in any way

to form specific conversation protocols for services in the specific business

domain.

 27

An advantage of providing these message definitions at a fundamental business

level, rather than at an implementation level, is that it allows any

implementation, provided the fundamental business concept is adhered to. This

promotes interoperability as there will be a common understanding of message

types. The limitations are that there may need to be some mapping from these

ontological business concepts to internal representations, and that such

mapping may require a form of similarity matching involved in this mapping.

• Platform Interoperability. Implementation in this project has used only

Internet standards or pseudo-standards to promote independence of platform.

Commonly used communication protocols include TCP for the transport layer

and HTTP for the application layer. With the use of XML for data content, this

has the advantage of allowing any higher level implementation, provided these

standards are used. For example, if standard HTTP client/server requests are

used, any server-side implementation supporting these requests (eg Java

Servlets, CGI, ASP etc) can be used. This is an advantage over requiring any

higher level application protocol (such as SOAP [12], ATP [3], and SCMP

[13]) as these are either proprietary, or still emerging as accepted standards.

1.4 ISSUE II: Protocol Correctness

This research is conducted under the ARC Industry Grant (Linkage) research project -

"Designing a Scalable and Robust Infrastructure for Highly Dynamic Web Services".

All communication, either in the same environment, or in an inter-agent environment,

depends on the protocols used. Protocol design is not sufficient; it is important that they work

well. A lot of techniques are in use, which make it possible to validate the protocol for

correctness. This chapter presents our proposed model of Communicating Complex State

Machines (CCSMs) and defines the concepts related to this model. This chapter also

illustrates the algorithms of our proposed protocol validation technique for deadlock

detection in CCSMs. We are considering the Finite State Machine for the purpose of protocol

validation, so protocol behaviour depends on the behaviour and functioning of the FSM,

 28

which can be easily formalized and lends itself readily to the application of automated

verification techniques.

1.4.1 Background

Software applications interact with each other to exchange information and services.

These applications may be written in different languages, using different standards, and

on different platforms. On the Internet, web services eliminate this heterogeneity. A

web service is a collection of Internet standards used for operability between software

applications or agents.

Agents communicate using a valid sequence of message exchanges, that form a

communication protocol. The behaviour of these agents can be modelled using

Communicating Finite State Machines (CFSMs), and the communication protocol can

be modelled as a network of CFSMs. The CFSM model has been widely used for

specifying and validating communication protocols for years].

The CFSM model is based on Finite State Machines (FSMs) that consist of a finite set

of states and state transitions. A state represents the status of the CFSM at a particular

point in time. A CFSM can stay in only one state at a time, and makes a transition to

another state when it sends or receives a message from another CFSM. The sent

messages for a CFSM are stored in an error-free simplex channel with finite bound.

A communication protocol with N agents is specified using a network of N CFSMs

communicating via N simplex channels. For a large protocol, its CFSMs will consist of

large number of states and transitions, and this will make the specification look

complex. CFSMs consider all states to be at the same level. Hence, they do not have

much expressive power to provide a hierarchical view of a complex protocol, to reflect

its varying levels of granularity.

We propose a novel Communicating Complex State Machine (CCSM) model that allows

nesting of states. Some or all of the states of CCSMs are themselves other FSMs. Such

 29

states are called complex states while others are called simple states. The internal FSM

of a complex state could also be a Complex State Machine (CSM), thereby allowing

multi-level complexity in the protocol. The aim of embedding states within states is to

address the above shortcomings of CFSMs. CCSMs support hierarchy, modularity,

component reuse and a concise presentation of large and complex protocols.

A communication protocol needs to be validated against the existence of logical errors

to provide quality assurance of a communication system. This validation can be done

either during the specification phase before the protocol is executed, or during the

testing phase after the protocol has been executed. To avoid unnecessary

implementation, validation should be done in the protocol specification stage. A correct

protocol satisfies a certain desired set of properties. The absence of deadlock, liveness,

unspecified reception, non-executable transitions and buffer-overflow are examples of

such properties.

Protocol validation can be achieved either by exhaustive exploration or by partial

exploration of the protocol state space. In the former technique, a protocol is validated

by generating all its reachable states and checking each of them for errors. Such a

technique can generally detect all kinds of protocol design errors however it requires

large time and space complexities. Reachability analysis, structural analysis and N-tree

validation are exhaustive exploration techniques. In the latter technique, only partial

state space of the protocol is explored for its validation. Such a technique attempts to

reduce the computational complexity of the validation task; however it generally

validates the protocol against some errors only.

Maximal progress state exploration, reverse reachability analysis, random walk and

simultaneous reachability analysis are partial exploration techniques.

We propose a protocol validation technique that partially explores the protocol state

space for deadlock detection in a network of CCSMs. A deadlock occurs in a protocol

when all the CCSMs are unable to make a move from their current states. This happens

when the current states of all the CCSMs, with only a ‘receiving’ transitions departing

from them, but all the channels are empty. Our proposed algorithm identifies the

 30

possible deadlock states in the protocol and then backtracks via their past transitions to

check if they can really cause deadlocks.

Only the states that send no messages and have no choice but to wait for receiving

messages can cause deadlocks. Such states are identified as possible deadlock states.

Backtracking is done to check whether the messages expected by such states were ever

sent by the other CCSMs. If yes, then such states will eventually receive the message

and move to another state. If no, such a state will wait forever and cause a deadlock.

Such states are reported as the deadlock states by our algorithm.

The following section puts light on some of the models for protocol representation.

We describe the CFSM model in detail, which forms the basis of our proposed

model.

Modelling Protocols

This section provides a brief introduction to some of the most common models for

protocol representation. The most general model represents communication protocols as

parallel programs. This model can specify all protocols and most of the properties.

However, one limitation is that the protocol cannot be validated against all kinds of

protocol design errors.

As the name suggests, a CCSM allows uni-directional communication across un-

bounded FIFO (First-In-First-Out) channels between machines in a network. They are

useful in the modelling, verification and synthesis of communication protocols and

distributed systems [79]. A Petri net (PN) is another model used for protocol

representation. It offers a means of modelling complex processes and is generally

categorised into low or high-level PNs. Coloured Petri-nets (CP-nets) are a variation on

PNs, and allow modelling of a system as a combination of a PN and a programming

language. A number of CP-nets combined together in a particular format form a

hierarchical CP-net, which allows the construction of large models.

 31

Both CCSMs and CP-nets can be used to model communication protocols. The latter

generally applies to modelling systems in which the key characteristic is concurrency.

The former supports one-to-many synchronous communications with value passing,

hence making it ideal for modelling communication protocols. Although both

techniques offer similar characteristics, in CP-nets, protocols can be analysed more

easily, but some properties cannot be determined. It is a less general model than

parallel programs, and has less expressive power. Further, CCSMs offer a simple

approach to the investigation we are undertaking, whereas hierarchical CP-nets are

better suited to more complex modelling.

The CFSM model represents the protocol including all communicating processes and

interconnecting channels. In this model, a protocol allowing an arbitrary number of

messages in transit cannot be represented. This model makes the analysis of the

protocols easy and complete, as all the properties can be determined. It implies that all

the design errors can be detected by exhaustive exploration techniques. This fact has

led us to choose this model as the base of our proposed model.

The following section introduces the concepts of the CFSM model and shows how it

represents the behaviour of agents and the communication protocols.

CFSM Model

The CFSM model is based on the Finite State Machines (FSMs) that consist of a finite

set of states and state transitions. A state represents the status of the communicating

entity at a particular point in time. A communicating entity can be in only one state at a

time. A CFSM makes a transition to another state when it sends or receives a message

from another CFSM. A CFSM can formally be represented as an FSM ()TASqC f ,,,, .

where:

• C is the set of states of the communicating entity.

• q is the initial state where Cq ∈ .

• fS is the set of final states where CS f ⊂ .

 32

• A is the communicating alphabet which represents the set of valid message

types.

• T is a map of state transitions ()CAC ×× such that the FSM will move from the

current state to another state when applied with a transition.

A transition relation can be represented by a quadruple as ()emth ,,, where:

• Ch ∈ is head of the transition i.e. the state where the transition originated.

• Ct ∈ is tail of the transition i.e. the state where the transition terminated.

• Am ∈ is the message that is sent or received.

• e is the ‘sending’ or ‘receiving’ event.

An example of a CFSM is shown in Figure 1.4 Here, C contains states IDLE,

REQUEST, REGISTRATION, BIDDING and PAYMENT.

The CFSM will initially be in state IDLE. Using the departing ‘-request’ transition, it

moves to the state REQUEST. It will make the next transition ‘+catalog’ when another

CFSM it is communicating with, sends the ‘catalog’ message to it. On receiving this

message, it moves to the next state.

 Figure 1.4: A communicating finite state machine.

CFSMs communicate with each other by exchanging messages. When a message is sent

by the first CFSM, it needs to be stored by the second CFSM. The messages sent for a

CFSM are stored in a first-in-first-out (FIFO) queue with finite bounds. These queues

are assumed to be error-free. Figure 1.5 represents two CFSMs M1 and M2 which

 -ccdetails

 -Request +catalog +rgstd -confirm

 IDLE REQUEST REGISTRATION BIDDING PAYMENT

 33

communicate through two error-free simplex communication channels C12 and C21. The

former, C12 represents the channel of M2 that receives messages from M1, whereas the

latter, C21 represents the channel of M1 that receives messages from M2.

Initially, both CFSMs are in state 0. When M1 sends ‘a’ and moves to state 1, message

‘a’ is stored in channel C21. Now M2 can receive ‘a’ from the channel and move to state

1 as well.

 Figure 1.5: Two CFSMs communicating through channels.

Now M2 sends ‘b’ and moves to state 2. Message ‘b’ is stored in channel C12, and it can

be received by M1 now. This communication proceeds until both CFSMs reach one of

their final states.

1.4.2 Issues involved during Protocol Correctness

Before two agents start executing the communication protocol, their state machine

specifications need to be validated against protocol design errors. Some of the potential

design errors that could be encountered in a communication protocol are explained

below:

 0

4

2

1

3

 0

1

2

3

-a

+c

-b +d

-b

+a

-d

+b

+e

 M1 M2

+b

-e

C12

C21

 34

� Deadlock: A deadlock error occurs in a protocol when all entities are unable to

make a move from their current states. This happens when the current states of

all entities only have ‘receiving’ transitions departing from them, but all the

channels are empty. Thus, no state can receive a message and no transitions are

possible from the current state of all entities.

� Unspecified Reception: An unspecified reception error occurs when a state

encounters an input message that it does not have a ‘receiving’ transition for. In

a protocol, when a ‘sending’ transition does not have a corresponding

‘receiving’ transition in the receiving state machine, the current global state is

said to be an unspecified reception global state.

� Buffer Overflow Error: A buffer overflow error occurs when a channel is

already full and a message is sent to it. This only happens when the entities of a

protocol have finite-capacity (bounded) channels.

� Livelock: A livelock error occurs when processes continually exchange the same

messages and do not make any progress towards protocol completion. This

usually happens due to infinite loops in the specification.

� Non-Executable Transitions: Transitions that cannot occur under normal

operating conditions are called non-executable transitions. A non-executable

transition is equivalent to a dead code in a computer program.

For a communication system represented using the CFSM model, if complexity of the

communication protocol increases, the specification gets larger, resulting in a high

number of states. The CFSMs consider all states to be at the same level. Hence, CFSMs

do not have much expressive power to provide a hierarchical view of a complex

protocol to reflect its varying levels of granularity. Also, when a certain sequence of

states and transitions is significant and used again in the state machine, the CFSM

model will just repeat the sequence. This indicates the lack of modularity and

component reuse in this model.

 35

We aim to propose a state machine model that will add more expressive power to

CFSMs in order to resolve the above stated issues.

The communication protocol needs to be validated against the existence of logical

errors to provide quality assurance of a communication system. The protocol design

errors, if not detected, could lead to do some harm to the agents executing them.

Exhaustive exploration techniques like reachability analysis require large computational

complexity, and so may not be practical for the validation of a large protocol. Partial

exploration techniques like reverse reachability analysis attempt to reduce

computational complexities while detecting a specific kind of design error. Reverse

reachability analysis for deadlock detection does not divide the validation task into

independent subtasks for each communicating entity. We aim to propose a partial

exploration technique to validate the protocols against deadlocks and provide improved

complexity compared to reachability analysis. We also aim to divide the validation task

into subtasks to further improve efficiency over reverse reachability analysis.

Distributed systems offer an abundance of applications in the current world. With its

various properties, including liveness (progress occurs in a system), boundedness

(occurring in a finite state space) and termination (when every process is idle, and there

is no message in transit) come various problems as well. Communication protocols play

an important role in distributed systems, as the mentioned properties relate to them.

Deadlocks have been chosen in this investigation instead of other properties mentioned

above (liveness, boundedness or termination) because of the amount of interest in this

area. Deadlock detection is a very crucial issue in the operation of distributed systems.

Further, it is also related to other properties and/or problems in distributed systems. The

most common one is that deadlock avoidance algorithms guarantee liveness. Moreover,

according to [77], deadlock detection, which is related to termination detection, is of

fundamental importance.

 36

1.4.3 Aim of the Project

We propose a novel Communicating Complex State Machine (CCSM) model that allows

nesting of states. Some or all of the states of CCSMs are themselves other FSMs. Such

states are called complex states, while others are called simple states. The internal FSM

of a complex state could also be a Complex State Machine (CSM), thereby allowing

multi-level complexity in the protocol. The CCSM representation shows the following

advantages over CFSMs:

• It supports hierarchical decomposition of states that allows the state machines to

be viewed at varying levels of granularity.

• It introduces modularity and component reuse by allowing a significant sequence

of states and transitions to be replaced by a complex state.

• It presents a compact and higher level service behaviour of the entities in a

protocol.

• For strict CCSMs, the protocol validation of complex states can be performed in

parallel.

For the purpose of protocol validation, we propose a deadlock detection technique

that partially explores the protocol state space to identify the following types of

deadlocks in CCSMs:

I. Simple deadlocks: Deadlocks occurring when all CCSMs are in one of their simple

states.

II. Complex deadlocks: Deadlocks occurring when all CCSMs are in one of their

complex states.

III. Hybrid deadlocks: Deadlocks occurring when some of the CCSMs are in simple

states while the rest are in complex states.

Our proposed protocol validation technique is implemented and tested on various

protocols and communication systems. The comparison between reachability analysis

and reverse reachability analysis shows the following results:

 37

• Like the compared techniques, our validation technique detects both the presence

and absence of deadlock errors in protocols.

• Our validation technique will perform better than reachability analysis in most

cases.

• Our algorithm will perform at least equally well as reverse reachability analysis

in most cases.

• Unlike the compared techniques, our technique divides the validation task into

independent subtasks which can be executed in parallel, to further reduce time

complexity.

1.5 ISSUE III: Routing and Scheduling

This research is conducted under the ARC Industry Grant (Linkage) research project -

"Developing a Mobile Integrated Distributed Broker for On-Line Transport Industry

Applications". In networking terms, routing is a key feature of the Internet because it

enables messages to pass from one computer to another and eventually reach the target

machine. Part of this process involves analysing a routing table to determine the best path.

Routing is a complex process of determining which links and nodes will move the packet to

its final destination. This process is the same in case of vehicle routing; the only difference is

that nodes are considered vehicles, and destination machines are customers. Just as in the

previous case, there is a need to find out the best possible path to serve the customer.

1.5.1 Background

Efficient route scheduling can affect client/customer satisfaction and cut operating

costs in the transport industry. Dynamic scheduling has simplified transport

logistics such as courier services, by providing technology-enhanced, real-time

communication. Service requests from the same area should be served once rather

than multiple times, facilitating a huge saving in travel distance and time. However,

the time constraints of individual delivery in courier services increases through the

 38

complexity of route scheduling in terms of providing good services and minimizing

operating costs.

As a contribution to Mobile Intelligent Distributed Application Software (MIDAS),

the intention of this project is to develop an autonomous route scheduling system,

which will enable smoother running of transportation logistics with efficient

operation costs, by combining wireless and Internet technology. This system can

receive orders and requests from mobile devices (Palm) and the Internet, which can

be scheduled and forwarded to the drivers automatically. Autonomous route

scheduling will be the foremost concern of this project, which includes static and

dynamic scheduling to produce an optimal route. Static scheduling is used to deal

with non-emergency orders that can be scheduled overnight, resulting in a better

solution with sufficient computation time. Dynamic scheduling can also be used to

deal with emergency orders that require real-time scheduling within limited time

constraints. This system will also enhance the operator’s functionalities, such as the

facility of driver tracking and locating the nearest vehicle with digital maps.

• Wireless Technology

In recent years, the use of wireless technologies has grown rapidly under research

topics. In the near future, its capacity will evolve significantly under the 3rd-

Generation (3G) network infrastructure for the mobile network. Due to these

advances, the varieties of devices and applications have been gradually pushed into

the commercial market to amalgamate new wireless technology, such as Tablet PC

and Personal Digital Assistants (PDA) with the mobile phone. Richer data formats,

such as personal images, can now be sent across the mobile network. In the not-too-

distant future, we will be able to have face-to-face conversations on a mobile phone

using broad bandwidth. The benefit of new wireless technology has accommodated

mobile computing; an extended distributed computing, an extended distributed

computing concept.

Broad bandwidth can provide an inclusive environment for us to communicate with

remote host systems anywhere, at anytime, with the ability to send more data

 39

between mobile devices. In light of these advances, the generic public network and

various devices, can be utilized by the transport industry to provide an efficient

service without a huge investment in a customized approach.

• Internet

Due to the evolution of the Internet, the global network provides an effective

information access channel without the limitation of physical distance. The link

between different systems allows for information sharing. In terms of business, the

Internet acts as an open market, facilitating more business transactions globally than

ever before. Moreover, the Internet allows e-commerce to be more automated.

Compared with the “bricks and mortar” approach, ordering information over the

Internet can be easily saved to the database directly without re-entering. Customers

can receive a direct response in getting any item from an inventory without the

inconvenience that is often created by human delay. All these processes can be done

in just a few seconds through an Internet enabled device. The Internet has

dramatically improved and transformed how business is done. It facilitates

sophisticated and efficient business transactions around the world. The transport

industry, for instance, depends on effective services, such as a seamless

communication channel in medical couriering. Therefore, integration of the Internet

can provide a direct and efficient service for transport company customers without

any operation delays.

• MIDAS

The aim of MIDAS is to provide an autonomous delivery management system for

the transport industry, from client orders to proof of delivery. To accomplish this,

MIDAS utilizes different technologies, including Global Positioning System (GPS),

wireless technology (Short Message Service (SMS)/Wireless Application Protocol

(WAP)) and the Internet. One of the main tasks of MIDAS is route planning. This

will provide both static and dynamic scheduling using wireless communication

 40

channels to keep drivers up-to-date with information in real time when they are off-

site. MIDAS also benefits clients of the transport companies, whose orders can be

easily placed and traced anywhere at any time.

MIDAS resides in three components: mobile devices, an Internet server and the

MIDAS server. These will provide different capabilities that are presently lacking in

the existing software of transport companies. In any case, coexistence between

MIDAS with the existing software of these transport companies can also be done

without dramatic integration changes. Figure 1.6 shows an overview of the MIDAS

architecture and its sub-components.

Figure 1.6 MIDAS Architecture.

 Figure 1.6 Architecture of MIDAS

1.5.2 Issues involved during Routing and Scheduling

The scheduling requirements of this project can be viewed as a combination of

vehicle navigation and scheduling. These require two searches - local and global,

during scheduling. First, a local path between two points is required in a local

search. Then, an order of multiple service locations has to be arranged, as global, to

Existing software

Customer Driver Salesperson

Storage

Ordering

Scheduling

Mapping

Tracking
and

Statistic

Routing

Operator

Internet WAP Palm

Database Management System

SMS

 41

match the time constraint of services. Due to the need to manage the complexity of

navigation and scheduling in the project, we need to consider the following points.

� Vehicles or customers can appear at any point on the map. They may not

necessarily be next to or on a road line. Moreover, the system is not scalable

– it cannot examine every single road to determine the starting point for the

vehicle. Thus, we need to figure out how to find the nearest entry point on

the road network in an efficient route, and establish a connection between the

two points.

� Branches appear at intersections between two roads; two different paths

can reach the same destination. It is also not scalable to examine every

branch to obtain the best result. Therefore, recognizing the shortest path

between source and destination requires an efficient algorithm.

� An optimal route of scheduling requires swapping between different

locations to fit into service time constraints. In addition, the larger the

numbers of locations being served, the better the solution. The trade-off

between fast computation performance and a better solution has to be kept in

balance. In order to balance these factors, different algorithms are required

for emergency non-emergency services.

� Two communication channels have to be aligned and achieved in this

project: a communication channel between applications and one between the

system and drivers. Between applications, a standard communication

protocol is required, must be adaptable to both Palm devices and an Internet

server. In the driver communication, a simple messaging system is required.

� The fundamental elements of achieving route scheduling are location and

distance information. Therefore, map data is an essential component to

generate a realistic scheduling system. An Australian map is vital for this

project.

 42

� The supplementary function of displaying a digital map on an operator

application requires the capability of map manipulation. Map

manipulation includes the ability to change map view, allocating positions

and showing routes on the map (Figure 1.7).

Figure 1.7 Screen shot of the system operator interface with vehicle locations

in the Melbourne metropolitan area.

The development of the MIDAS project started without prior knowledge, such as

wireless technology, .NET and digital map technology.

As a part of MIDAS involvement, the aim of this project is to design and implement

the MIDAS server. Other than network programming and database connectivity

skills, further investigations need to be carried out on SMS and digital map

technologies. This is necessary for the correct operation of the MIDAS server.

Furthermore, the research of route scheduling techniques has to be examined for the

performance improvement of the scheduling module of the MIDAS server.

 43

I.5.3 Aim of the Project

The twin goals of this project are designing and implementing the server-side

components of MIDAS. This will supply a route scheduling solution and

integrate maps to provide an efficient delivery solution in real-time for the

transport industry. The scope of this project will enable handling of the following

scenarios.

• When the MIDAS server receives a valid order from the Internet/PDA, it has to

determine what day the order needs to be delivered by. If an order can be

fulfilled on the next day, it will be stored in the database, ready to be retrieved

for scheduling during the night. Afterwards, the scheduled manifests can be

distributed to the drivers in the morning with a supplementary route map.

Otherwise, the MIDAS system determines and then requests the most

appropriate vehicle that can fulfil the order within the given time frame. The

driver of the vehicle is then contacted through Short Messaging Service (SMS)

to accept the new order and new route. Conversely, a customer must be

immediately informed about an unresolved order through the autonomous

system.

• From the system operator’s perspective, the operator can track all the current

locations of vehicles on the digital map. Furthermore, the closest vehicle can

be indicated with a given location. It is also able to show a route on the map

for different drivers.

SMS messaging originally applies to cellular phones. However, it is increasingly

becoming common to send an SMS message from the Internet to a cellular phone. It

can be seen as a replacement of the primitive pager system, but with more

applications. It can apply to job despatch with instant messaging in the mobile

environment. Using current technology, it is not a problem for software applications

to access the SMS network. However, it is the ease of its usage for customized

applications that still remains in question. In the initial approach, a sophisticated

SMS manager development kit was found for SMS access by using a low level of

communication protocol, which is developed in C. This increases the development

 44

practice of SMS functionality of the MIDAS server. Later on, the investigation

process found a much simpler approach, which is supplied by an intermediate

service provider using Java application-programming interface (API). At the same

time, we also proposed a simulation approach by sending SMS messages

through an Internet browser simulation as an alternative for the solution.

The learning of map API is the most basic requirement for digital map

manipulation. The ability of rendering different localities is often used for tracking

and labelling on the map. Moreover, an understanding of the map data structure

enhances the feasibility of mapping development. This project is an Australia based

application, but there is not much sample map data that covers the entire Australian

road network and localities.

In route scheduling development, there are not many papers that provide a complete

and realistic solution for this project. Most of them focus on vehicle routing

algorithms, without specifying the actual distances obtained in real time. Therefore,

additional steps are required.

Firstly, a new data structure must be constructed for routing. Although the map

API can access the map data without any trouble, it is only suitable for map

rendering. Hence, a low level of map data access mechanism is reproduced to

provide a new data type for the new data structure.

Secondly, there is an additional dynamic search that needs to be developed for

routing, according to the realistic map data. Besides the new data structure, the

start of the search also requires the closest point search for entry to the road

network, and then executes the path search. Afterwards, the second dynamic search

can be applied for scheduling with time and load constraints, by using the vehicle

routing algorithm.

 45

1.6 ISSUE IV: Wireless Module

This research is conducted under the ARC Industry Grant (Linkage) research project -

"Developing a Mobile Integrated Distributed Broker for On-Line Transport Industry

Applications". In the field of communications, wireless is currently performing a key role.

With advances in technology, the communication field coverage with wireless has also

increased. Wireless technology is based on the IEEE (Institute of Electronics and Electrical

Engineers) 802.11 standard, which is one of the many standards of the IEEE 802 LAN/WAN

standards. The term wireless technology is generally used for mobile IT equipment. It

encompasses cellular telephones, Personal Digital Assistance (PDA’s), and wireless

networking. In our, project we are using wireless because the communication area is quite

large and its main purpose is to send SMS, track the position of trucks, provide the best

possible route, and send information back to drivers.

1.6.1 Background

The improvement in mobile technology and wireless communication has enabled a

new software system to be developed, which enables the transport industry to

perform electronic business transactions, such as sending orders electronically,

checking invoices and automatic proof of delivery. Additionally, it can improve

their services to customers without the limitations outlined above.

A working version of the system has been presented to the industry and research

centre representatives. Useful and encouraging feedbacks were obtained during the

presentations and it is recognized that this system can change the way business

transactions are done, and can introduce a more competitive market. The

performance of the system is very good, taking less than thirty seconds to complete

a business transaction at a cost of less than fifty cents.

 46

The goal of the project is to develop a sophisticated software system to deal

with electronic business transactions. It consists of four major components,

namely:

- Handheld Application

- Handheld Conduit

- Desktop Application

- WAP Application

The handheld application will be used by customers and/or marketing staff to place

and/or take orders for transport companies. Upon completing the electronic order

form on the handheld devices, the orders will be sent directly to the target company.

It communicates the order details with the receiving server using a wireless network

connection such as GSM or GPRS. Apart from this capability, customers can also

check their order invoices through the handheld devices, which could help them in

decision-making. This application is targeted to run on Palm Powered™ handheld

devices.

The Handheld conduit is an application module that is attached to the Palm’s

HotSync Manager to perform data synchronization between the handheld device and

either a local or remote desktop computer. Data Synchronization occurs when

information on either desktop computer or handheld device gets updated to ensure

that information is up to date. The HotSync Manager receives the synchronization

request and manages the synchronization process, but it is the conduit application

module that actually performs data synchronization based on the information

provided by the manager.

The synchronization process can be used as a means to backup the handheld data or

transfer data to the handheld device. The data communication and the

communication protocols used between handheld device and conduit application

module are defined by the HotSync Manager.

 47

The desktop application is a component that operates in addition to the handheld

application, which should be part of the handheld conduit. It can be used to view

handheld data at a desktop computer.

The WAP application can be used by drivers to communicate with the transport

company while they are on the move. By using this application, drivers can obtain

more information about orders by sending a request to the server that contains the

order booking number. Drivers can also update information about orders to the

transport company such as the status.

Figure 1.8 provides an overview of the overall software system, which system can be divided

into three different layers. The first layer is the system client, which consists of the handheld

application, handheld conduit, desktop application and WAP application, and where users

interact with the system.

Figure 1.8 Overview of the software

The next layer is the web portal. It is responsible for managing the transfer of data between

different devices and multiple MIDAS servers. The web portal will also keep track of

business transactions that have been performed for other purposes such as financial auditing.

…

Handheld

Application

Handheld

Conduit

Desktop

Application

GSM /

GPRS

Web Portal

Midas

Server 1
WAP Module

INTERNET

Midas

Server 2

Midas

Server n

 48

The last layer is the MIDAS server that resides on different transport companies. This layer

works in conjunction with the existing system, and manages orders in terms of automatic

manifest scheduling and finding the optimum route.

1.6.2 Issues related to Wireless Module

The software system uses several different technologies, each offering its own

advantages and limitations. Some technologies used, include Palm Powered™

handheld devices, wireless communication network (GSM/GPRS), XML document

data description, mobile phone, and WAP protocol.

Palm Powered™ handheld devices have been selected as a platform on which the

handheld application will be developed. Its selection is based on the device

popularity among other handheld devices in the market, and its ease of use. It is

important for the handheld application to have wireless communication with the

server. This can be achieved using either the GPRS or GSM network. Mobile phones

with WAP capabilities are intended for drivers to communicate with the main office.

For data communication to occur between the client and server, a communication

protocol has been derived to accommodate message exchange. The message format

that is used to communicate information contains XML data documents that

represent the information being communicated. XML is used because of its generic

nature, making it easier to achieve interoperability, and for future expansion.

Another protocol is required to handle a possible processing failure at the server.

This protocol is important since the client needs to know if the transaction is

successful or not. A very important part of the system is the interaction between

users (Customers / Marketing staffs / Drivers) and the server, which is achieved by

using a wireless connection and its related technologies However, there are

problems and limitations that need to be considered since they could affect system

performance. Wireless communication has grown rapidly and many approaches have

been proposed but there are still problems that occur, such as:

 49

� Frequent disconnection

It is in the nature of wireless networks for disconnections to occur more easily

and frequently. A connection could be broken when the signal is blocked or

when there is no wireless network coverage in the area, known as black spots.

� Bandwidth

Since the wireless connectivity that is available in Australia is obtained through

mobile phones, the capacity of data transfer depends on the capacity of mobile

phones. A significant improvement in wireless networks is the ability to support

higher bandwidths. Previously, in GSM, (the most common network for mobile

phones) supported only up to 9.6 kbps of data transfer. Currently, wireless

connections can support up to 56 kbps for both GSM and GPRS networks. Even

though the connection bandwidth has improved, optimum performance cannot be

guaranteed because interference is a major drawback in wireless networks.

Therefore, it is necessary to transmit as little data as possible in a short period of

time.

� Security

Transferring information via a wireless network is not the same as a wired network. It

is prone to security breaches since anyone can easily get connected to a wireless

network and hack into it. Data security is very important in electronic business

transactions to protect against malicious attacks.

 50

Handheld devices, used as a media to collect and transmit information to the

server via a wireless network connection, also have limitations, despite

improvements in recent years. These limitations include:

� User Interface

The standard screen size of a handheld device is quite small - 160x160 pixels.

This limitation needs to be taken into consideration when developing the user

interface. Information displayed should be as compact as possible, and the

interactions between users and the device should be kept minimal. The types of

user interface components are very limited in handheld devices, and component

behaviour is determined by the application developer.

� Storage capacity

The standard storage of Palm Powered™ handheld devices is 8Mb of RAM,

which means that it would be hard to store large applications or data on the

device. Because of limited storage, the handheld device is designed based on the

concept of managing memory as a chunk, with the largest being 32 kilobytes.

This design would restrict the way in which large applications and data are

stored.

� Energy resource

Handheld devices are usually powered by a rechargeable battery and the lifetime

of the device depends on the battery lifetime. Even when devices are not in use,

they still consume battery power to preserve the data stored in memory.

� Processing power

Because of the limited energy source, handheld devices are not capable of high

powered processing. The common processor speed in the market for handheld

 51

devices is 33MHz. This will prevent the system from being used to process

complex operations that require extensive computation. Even though it is

possible, this will drain the battery very quickly.

1.6.3 Aim of the Project

Unique characteristics and limitations of the devices and technologies have been

outlined above. The development of the system needs to take these into

consideration and provide solutions, to ensure that limitations will not affect the

performance and robustness of the system. We will now discuss measures taken to

address these limitations.

• Frequent disconnection

Wireless network communication is the most important part of the system

because without this, the system will not be able to achieve its objectives. To

address this problem, the handheld applications have been designed to

maintain information that needs to be transmitted to the server until

transmission is completed. This information is stored even though the user has

closed the application in the event of connection failure. This approach will

enable the user to resubmit information to the server.

• Bandwidth

The information that needs to be sent to the server is often large and we need to

transmit it as fast as possible. Therefore, it is necessary to reduce the amount of

information being sent. As mentioned at the beginning of this section, the

information being transferred will be transformed into XML document format.

Hence, to reduce the size of data to be transferred, the XML tags are

encoded.

 52

• Security

This is another important problem that needs to be addressed by the system,

since the security of the data being transferred is necessary. However, given the

state of Palm Powered™ handheld devices during the development of this

system, security is hard to implement because of other limitations introduced by

the device, such as limited energy resource and processing power. There is a

development to improve this in future versions of devices. The palm operating

system developer will include the RSA security feature in the operating

system, which will enable it to support many industry standard security

algorithms such as, Diffie-Hellman, DSA, and RSA [49,63].

• User interface

User interface is an important part of the system because it is the point where the

users interact with the system. For ease of use, information required should be

automatically entered. For this purpose, a profiling feature is introduced to the

system, where the application remembers the information that was entered

by the user before. If there are changes required, it should be easy and fast for

the user to perform. Therefore, a dynamic drop down menu is used in the

application to help the user. Since a combo box is not available on the device, it

is simulated for the user by combining a text field and a drop down menu (see

figure 1.9), thus ignoring the drop down label.

 Figure 1.9 Handheld application combo box

• Storage capacity

Since the palm operating system can only store information in records of 32

kilobytes memory chunks, the handheld application cannot be installed since the

size of the application will exceed the limit of 32 kilobytes. To solve this

Text Field Drop down menu

 53

problem, the handheld application code is segmented into multiple sections

that still count as one application. Segmentation occurs at function level,

and functions are grouped based on the operation they perform. An example

of code segmentation where a function called NetInit() is defined to be in section

“comm.”:

#define COMM_SECTION __attribute__ ((section ("comm")))

// function prototype

Err NetInit() COMM_SECTION ;

// function implementation

Err NetInit() {

 Err err = 0;

 ...

 return err;

}

The compilation of the application also requires special steps to be performed,

but the steps will not be discussed here.

 - 54 -

Chapter 2

Communication Protocol for E-Services

Introduction

The aim of this chapter is to present dynamic protocol interoperability for e-services. The

chapter discusses the following sub-sections:

The formal definition of a State Machine, and description of how client agents that may need

to implement unknown protocols during their lifetime, can dynamically implement these

protocols by loading a state machine definition from a server agent with which it wishes to

communicate. Protocol Correctness deals with the dynamic loading of a state machine in a

“Just-In-Time” manner, which requires that the protocol can be checked for correctness.

Strategies for validating protocol correctness are discussed. State Explosion deals with the

issue of state explosion with protocol validation and commonly used relief strategies. Invalid

State Machines include examples of invalid state machine definitions according to the

proposed validation axioms described in relief strategies. Such an incorrectly defined state

machine must be detected according to protocol correctness strategies. Ontological Data

covers how simple hierarchical ontology and domain specific vocabulary is used to provide

fundamental interoperability between agents operating in the same business domain.

Similarity Matching explains axioms and algorithms, which enable a simple product

brokering negotiation. The proposed approach is implemented to determine the effectiveness

of dynamic conversation interoperability between a client agent and various merchant agents.

Sec 2.1 Related works

Till now a lot of related work has been performed in this area which is as follows:

2.1.1 Agents Framework

In software development, a framework is a defined support structure, in which another

software project can be organized and developed. A framework may include support

programs, code libraries, or a scripting language. There are different proprietary

 - 55 -

frameworks that exist, in which agent software can exist and be supported by different type

of host services. These frameworks do not provide interoperability, just physical support, like

mobility and persistence. There are numerous frameworks providing agent-to-host standards

[1], defining how interactivity is possible within agents and the host environment. Interaction

refers to services such as activation, transport and persistence. It is a skeleton upon which

various objects are integrated for a given solution.

There are a few examples of agent frameworks:

• IBM Aglets workbench [2, 3]

This type of Agents frameworks use Java API for creation of mobile agents that can dispatch

to a remote Aglet Framework context for remote execution. These mobile agents pass user

defined messages via synchronous or asynchronous transmission and can locate other agents.

There is one problem with using this framework - it does not provide any coordination

between the agents themselves. To sum up, aglets do not deal with issues like

implementation, coordination, cooperation and coherence [1],

• Voyager [1,4]

Voyager is another tool for creating mobile agents and distributed network applications using

Java features such as serialization, reflection and network services, in which agents pass the

messages for interoperation. It is also good in a mobility point of view but main problem is

related to communication protocols between agents.

• Concordia (Mitsubishi Electric I.T. Centre) [5]

The key features of this framework include platform support such as persistence, security and

mobility. This framework emphasizes the transport mechanism for remotely communicating

agents instead of interoperation between agents. Agents communicate by dynamic invocation

of known method calls. Summing up, Concordia does not provide any methodology to

specify how agents cooperate, coordinate and negotiate to bring about a coherent solution.

• Java Net Agents [6]

Java Net Agents have a similar processing criterion. A fundamental difference is that

knowledge of agent locations and interactions is required, along with their compile time.

 - 56 -

• Java Agent Development Framework (JADE)

A FIPA compliant framework, JADE is used to develop agent applications for interoperable

intelligent multi-agent systems. Inter-agent conversations are supported, along with a

distributed agent platform. It also contains a transport mechanism for agent interoperability.

• Workflows and Agent Development Environment (WADE)

An extension of JADE, WADE supports a workflow approach to help manage the complexity

of distribution. The architecture facilitates the administration of a distributed WADE-based

application.

All of the above frameworks use Java agents. Mobility, security and serialization are well

supported due to the centric nature of Java, but interaction with a non-Java agent is not

possible.

2.1.2 Agent Communication Language and FIPA

The Foundation for Intelligent Physical Agents (FIPA) is an IEEE Computer Society

standards organization that promotes agent-based technology and the interoperability of its

standards with other technologies [70]. Its specifications for an ACL encourage the

interoperation of heterogeneous agents.

Communication is not possible anywhere, without a common language, neither in the human

world, nor in computer’s world. Therefore, different type of agents ready for interaction

should have a common understanding of messages in order to interact. The agent

communication language ACL, part of the ARPA Knowledge Sharing Effort [29] consists of

three parts [25]:

1. Vocabulary of domain functions: Here, vocabulary refers to the collection of

known functions which can be used for the interaction purpose between the agents.

For example Bid, Offer and sale etc.

The meaning of the same function can be different for different agents e.g. the

definition of “”Benefit” can be different in the insurance and retail sectors. So

ontologies can be used to map the relationships of data and classes within the

 - 57 -

application domain. How a method can be invoked, and by which means, depends on

the ontological context in which it resides.

2. Knowledge Interchange Formalism (KIF): This is an inner layer language which is

used to encode information that is passed between agents. In other words, it provides

knowledge about knowledge using two operators (in particular – the backquote (`)

and comma(,)) and related vocabulary. The following example illustrated in [72]

indicates how these are used.

‘Joe is interested in receiving triples in the salary relation’ is represented as:

(interested joe `(salary, ?x, ?y, ?z))

3. Knowledge Query and Manipulation Language (KQML): KQML is the outer

layer, which allows agents to interact through a sequence of speech acts [25]. A

collection of these speech acts form a complete vocabulary which is understandable

by each agent, thus making communication possible. Each vocabulary word, while

considered individually known as performative and when combined with a list of

arguments forms a language-independent message to another agent.

An example of KQML message transcribed from [25] is as follows:

 KQML code fragment

 (ask-one

 : content (PRICE IBM ? price)

 : receiver stock-server

 : language LPROLOG

 : ontology NYSE-TICKS)

Table 2.1 (a) below describes each of the fields in a statement.

Field Description

Ask-one The performative used to identify the type of message sent to

the receiving agent. This set defines the types of interactions

that can occur between agents supporting KQML.

:content(PRICE IBM ? price) The example format shows a balanced parenthesis format of an

LPROLOG statement querying the price of the IBM stock

 - 58 -

price. Both agents must understand the format. For example,

agents that used underlying SQL instead of LYROLOG might

use the following content:

SELECT PRICE FROM STOCK WHERE CODE = “ÏBM

:receiver stock-server A reference to the intended recipient of the KQML message.

:language LPROLOG An identification of the language required for processing of the

content field.

:ontology NYSE-TICKS This statement is used to identify ontology to determine the

context of the required application. An application area may be

described differently by two different ontologies using the same

vocabulary.

Use of such messages will enable KQML – aware agents to interact along with an

understanding of the structure of content as well as the meaning of the request. In this way

agents written in different languages and frameworks can communicate with each other.

2.1.3 Conversation rules

While communication occurs among different agents, having a common communication

language is not enough, there needs to be some pre defined rules and regulations which

specify how communication can be undertaken [7]. These rules and conventions form

communication protocols, which are independent of the language being used.

COOL (COOrdination Language) [7] is a language that defines such communication

conventions in a multi agents system using KQML message exchange. COOL defines

conversation rules, which specify transitions in an FSM (Finite State Machine) model, of a

desired part of conversation. These rules, when aggregated, form classes which detail the

conventions of a communicating protocol. The following code from [7] shows an incomplete

example of LISP- type structure of these conversation rules and conversation classes.

COOL Code fragment(1)

(def-conversation-rule r1

: current-state 2

: received <some KQML message>

 - 59 -

: next-state 3

: transmit <some KQML message>)

(def-conversation-class cnv-1

:initiator ? initiator

:respondent ?respondent

:conversation-rules(s0 r1 r2))

COOL Code fragment (2)

(propose

:sender a2

:receiver a1

:content (produce widget 100)

Reply-with r1

: conversation c1)

Agents using these classes effectively use an FSM for all operations like input and output

messages and state transitions, based on the individual conversation rules, whereas multi-

agent systems use COOL for communication purpose.

Conversation protocols are composed of four factors:

1. Finite State Control: This is a set of valid states for all conversations.

2. Input list: A list of used utterances [26,27,28] containing contents of messages.

3. Pushdown List: A list used to verify the responses against previous utterances.

4. Finite Set of Transitions: A collection of valid state transitions.

Agents wishing to communicate with each other do so via an inter-agent mediator. The Java

Interagent for MultiAgent System (JIM) [26, 27] employs conversation protocols to control a

valid conversation. While starting communication an inter-agent mediator of one agent

makes contact with the inter-agent mediator of another. Both inter-agent mediators negotiate

protocols to be used until an agreement is reached.

 - 60 -

2.1.4 Internet Interoperability

Previously discussed systems allow interoperability between agents in multi agent systems,

where these systems are executing within a framework of execution for services such as

agent discovery, standardized languages and pre-defined communication protocols.

The Internet is a large heterogeneous environment, with different platforms and no

centralized control of services, nor many data representations and individualistic

communication protocols for services provided. While dealing in an Internet environment, an

agent cannot assume to communicate with only one type of agent, so interoperability

becomes a necessity. We generally use HTTP as an application layer protocol, TCP as the

Transport layer and XML as a data exchange format, but we still need a mechanism for

constructing the meaningful convention of message exchange.

For XML to be used as a standard for data exchange requires the understanding of agents to

parse XML data rather than interpret a language-specific expression. The xCBL (XML

Common Business Library) definitions [8] are a type of library which contains Document

Type Definition (DTD) for XML data exchange between participants in an Internet

environment. Examples of the document types are business terms like “Invoice”, “Price” and

“Tax” which provide interoperability between users in the form of standard data formats, but

there is a need to define the communication protocols.

To form a meaningful business conversation, we need to define that valid sequence of

messages. The valid receipt and dispatch of such typed documents therefore defines an

abstract interface for e-service. The Web Services Conversation Language (WSCL) [9, 10]

provides an XML meta description of the sequence of XML documents that may be used in

document exchange.

Another family of XML based standards is Electronic Business XML, or e-business XML

(ebXML). According to [11], it is sponsored by OASIS and UN/CEFACT, whose mission is

to provide an open, XML-based infrastructure that enables the global use of e-business

 - 61 -

information in an interoperable, secure and consistent manner. The architecture allows

concepts and methodologies to be better implemented in e–business solutions.

Another XML-based language, the Web Services Description Language (WSDL) describes

network services as collection of communication endpoints capable of exchanging messages.

On the other hand, the Web Ontology Language (OWL) uses terms, and relationships

between these terms to represent machine interpretable content on the web. Three

sublanguages of OWL exist: OWL Lite, OWL DL and OWL Full, each offering varying

degrees of use and complexity.

 For example, the term “Purchase” may be defined as receiving a “PurchaseOrderRQ” and

then sending the “PurchaseOrderAcceptedRS” document and further “Shipping “State.

Abstract interfaces can be defined depending on the different industries. This approach is

intended to provide very loose coupling between protocols and interfaces as a user may

dynamically discover the semantics of the conversation. For example a client can choose

which operation to call first, and to which sequence to progress to, but it is intended that a

conversation definition be defined as an industry standard or agreement between partners.

But in reality, it is static; this does not provide for e-service providers in the same industry

with similar, but different interfaces, to be interoperable.

IBM’s Web Services Flow Language WSFL [11] is an XML-based language to describe the

composition of Web Services. Two types of compositions are considered here. The first one -

Flow Models, are used to determine the structure of a business process. The second type -

Global Model, is used to describe the interaction between partners. Examples of Flow Model

are credit checking, order processing, shipping etc. A simple fragment of XML transcribed

from [11] might be:

<service Provider name =”mySupplier” type =”supplier”>

<locator type =”static” service =”qualitySupply.com/>

</serviceProvider>

By combining these two models, a service user can discover a service interface using well

known document type and required sequencing of web Service usage.

 - 62 -

The Simple Object Protocol [12] is designed for the remote procedure calls across the

Internet, where clients pass XML payloads inside HTTP requests, with additional header

information describing method calls to be invoked server side. An application specific server

process, gets data from the XML payload, invokes the request and returns an XML response.

While SOAP provides the means of data transport tunnelled inside a HTTP request, the agent

communication protocol is determined by the required interaction between the traditional

client/server request/response of the underlying objects at either end of the SOAP request.

Similarly, the Simple Commerce Message Protocol (SCMP) [13] is a draft IETF application

protocol which may tunnel requests inside HTTP, and contains a payload of XML data for e-

commerce applications. Services such as data encryption, authentication and reputation are

provided in the protocol specification. It is a requirement that the sending agent create

message payloads in a format acceptable to the receiving agent’s application. The suggested

methods for achieving this are to perform one of the following:

• Have the receiving agent agree to comply with published industry standards.

• Have the receiving agent publish a specification on the services offered, data formats

required, processing rules and other processing behaviour.

• Have the receiving agents implement data according to a specification published by

the sending agent.

• Any combination of the above method.

Currently, these agents must either be written with knowledge of another agent site, or be

trained to interact with it. For example, MySimon.com [14] and MallAgent.com are both

meta search engines and have a database of hundreds of merchant sites. To traverse each site,

the MySimon.com engine, dispatches one agent to each merchant site to produce the final

query results. Each agent dispatched to a merchant site has been specifically trained, by a

human to be able to navigate the site.

2.1.5 Ontology

Ontology consists of relatively generic knowledge that can be reused by different kinds of

applications or tasks. Agent based systems must be able to interoperate without

misunderstanding. There must be a clear understanding of vocabulary terms used. Without

such common understanding, there is a barrier to provide services such as e-commerce [15].

 - 63 -

Ontologies are created by domain-experts and Information architects”, [15] to allow agents to

have meaningful communication using domain-specific knowledge.

Due to differing requirements, it is quite difficult to impose a single standard for all. Other

reasons include:

o Even the same industries follow different commercial practices.

o It’s very complex to describe every company’s product and services.

o Placing limitations on business models.

An alternative for this is to develop foundation ontology, which can classifying the basic

concepts for the domain, so it can be used between trading partners. Ontology.Org [16] is an

independent industry and research forum working on the application of ontologies in Internet

commerce. The main aim is related to the problems that impact exchange between e-trading

partners. A common understanding of the basic concepts can be enforced by creation of

XML DTDs (Document Type Definition). However use of XML DTD may be too forgiving

in defining the representation of complex ontology [16] where stronger typing is required, yet

it is a reasonable candidate.

2.2 .1 State Machines

Simply put, a state machine is a system with a set of unique states. According to [68], Finite

State Machines represent a very powerful way of describing and implementing the control

logic for applications. Further, he owes this to a very dense representation, they follow very

simple rules, are easy to verify, and they can be used to generate code. Host special state is its

initial state, but there can be one or more final states. A state machine is useful whenever we

have a program that handles input events and has multiple states depending upon those

events.

An information agent on the Internet may need to interact with many different server agents

during its lifetime. Every merchant agent may provide the same services in its way. The

method of data exchange may be different between a client and the merchant site, and the

conversation protocols involved in exchanging that data. A client agent wishing to interact

 - 64 -

with these different agents must be able to determine the message data to be exchanged and

the sequence of messages that determine the conversation protocol between client and server.

Agents interacting via a protocol, send message data in a defined sequence to form the

protocol. Each entity must know what messages are required as input and output and what the

state of processing is between these messages. The behaviour of an entity in this processing is

commonly represented in a state machine. Provided both entities know and adhere to their

respective, validated state machine specifications, the entities can communicate in a valid

manner. The behaviour of each of these processes can be formally modelled as a Labelled

Transition System (LTS). Each LTS of an entity is a state transition diagram containing all

possible reachable states and execution transitions. As described by Cheung and Kramer [17]

a LTS can be described by a four tuples as:

<S, A,∆, Q >

Where:

• S is a set of states in which the entity may exist.

• A is the communicating alphabet of the process. This is the set of input and output

message names that form the valid message types.

• ∆ is a map of state transitions (S x A x S), such that a given state, when applied with a

transition action, will move to another state.

• Q is the initial state for the entity.

Client and server agents’ communication between LTS (or state machines) can be modelled

using these tuples. In the Internet environment, client agents will wish to interact with

different server agents. If the client agent process is to be modelled as an LTS, then this

specification of the LTS must be available to the client agent. [69. It] describes a labelled

transition system as a directed graph with labels on the edges, where states are represented as

vertices, and labelled transition, as the edges with labels. An LTS contains all the states a

component may reach and all the transitions it may perform.

In a distributed environment, each process has proper codes for input and output. As

described by [18] “as protocols evolve to accommodate new requirements, it is cumbersome

if not impossible to upgrade protocol code properly. As a result, protocol often becomes a

 - 65 -

legacy problem.” Normally when client agents are written, they have some knowledge about

the conservation protocols, but in a multi-agent environment such as the Internet, I suggest

that two principles will be encountered:

• An agent cannot expect all other agents with which communication is desired, to

implement any single specific standard.

• Agents will wish to interact with other agents, without initial knowledge of their

communication protocol.

.

Figure 2-1 Just-In-Time State Machine

In the context of a LTS, this means that a client agent may wish to interact with a merchant

agent with no initial knowledge of its conversation level protocol. Client agents tend to

implement protocols at compile-time would severely limit the number of other agents with

which interoperation where possible.

Output messages

Download and Validate

Merchant agent

State Machine

Input events

Accept event Generate message

JIT STATE MACHINE

Client agent

Vocabulary Client

parameters

 - 66 -

To solve this problem, I propose that this conversation protocol be implemented by a client

agent dynamically as required. This could be achieved by asking the other agent for a state

machine specification and dynamically implementing the functionality of that state machine.

The client agent could then validate the state machine structure, and dynamically implement

the rules of the state machine to be able to converse with the target merchant agent.

This project only considers the client/server architecture for information agents operating

using only Internet pseudo-standards, but in multi-agent societies, it may be working on a

peer-to-peer basis. The client/server approach is a simpler approach for the initial stage of

dynamically implementing “Just-In-Time” (JIT) conversation level protocols. This is because

a client will only need to learn the required protocol of the server, or multiple servers, as

required. In a true peer-to-peer environment the knowledge of many-to-many relationship of

dynamic protocol implementation is required.

In this context, JIT refers to the compilation technique, which improves runtime performance

by converting code at runtime prior to executing it. Most implementations of Java rely on JIT

compilation for high-speed execution.

Figure 2-1 shows the client downloading a specification, and then using the state machine

to converse with the merchant agent. When a merchant at another site is required, the

client agent can download another state machine specification and repeat the process.

Potentially, the client agent can now converse with any number of merchant agents that

provide a state machine specification for clients. Returning to the formal four tuples

definition of LTS [17], we can analyse the proposal for a JIT State Machine. The following

describes the concept of each tuple, and then a discussion will show some concrete examples.

The four tuples definition is <S, A,∆, Q >

o States <S>

In general, State can be defined as the condition of FSM at a certain time or informally it is

the content of memory. States can be defined as required in the JIT State Machine as

required. A client needs no prior knowledge of the states to be defined. Each state will

require:

 - 67 -

• A name eg IDLE, BROWSING, BUYING etc

• A list of valid input events eg Sale, Status

• A list of valid output messages eg Buy, Bid

• Specification of the state(s) to which transition can be made

o Alphabet <A>

In LTS, a vocabulary of known phrases, or message names, used by both ends of a

communicating global FSM is known as alphabets. In this project, we are emphasizing that

the prior knowledge level of agents about each other is. In this case, these primitives

comprise the alphabet, or as I will refer to it, the vocabulary needed to operate with other

agents.

We consider that information agents perform a single specific purpose. For example, one

agent may be created for the purpose of shopping; another agent for the purpose of finding

news articles on specific subjects, another agent may be created for filtering and responding

to email. These agents will need different semantic understanding of the primitives involved

to be pro-active or reactive to their respective tasks. The shopping agent will need to know

the meaning of Buy, Sell, Bid, Offer etc. The newspaper agent will need to know the

meanings of Media, Language, and News Category etc. The email agent will need to know

the meaning of Sender, Receiver, and Copy To, Subject etc. In this case, the first principle is

obeyed since the tasks and responsibilities of each agent are different. Hence, each of them

will have a separate set of standards. However, communication between agents is essential,

thus leading to the second principle.

Each of them needs a common understanding of the messages used for the interaction

purpose in the same domain. The need for vocabulary arises here. In the context of this

project, agents with a small vocabulary will be created to enable interoperation between

agents. It is important to note that whilst it is necessary to have prior knowledge of this

vocabulary (or a subset), it is not necessary to have the knowledge of protocols in advance.

This satisfies the second principle stated earlier, as all agents must interact with each other to

complete their specific tasks.

 - 68 -

 Vocabulary forms the atomic particles of the conversation level protocol to be dynamically

implemented. While an agent will need to have a semantic understanding of what a primitive

means, it does not need to know how this primitive may need to be combined with other

primitives to form the “unlimited” number of conversation level protocols that may be

specified by all agents encountered.

For example, a shopping agent may know about a primitive called “Bid”. It has a semantic

understanding about what a “Bid” is. It knows that it will vary the value of the Bid until

either a pre-defined bidding criterion has been meeting or a bid has been accepted by a

merchant.

At the lowest vocabulary level, little more needs to be known about what a “Bid” is.

However at the higher protocol level, this “Bid” could be used in a number of different ways.

Depending on the business of a merchant, a “Bid” is a negotiation process over a price

between one merchant and one client, or used in an auction between one merchant and

potentially multiple clients. Even the auction type could be different, employing perhaps

English, Dutch or Calcutta auction type.

o Transition Mapping <∆>

Transition mapping is a process to map or design the possible transitions by a state machine.

A map of state transitions is specified, with each state transition requiring the following

• Current State

• Actions causing the transition (i.e. events)

• Transition State

Some state machines are easier to implement than others. The easiest state machine to

implement is a deterministic state machine. This means that for each state and action

combination, there may only be transition to one other single state. As formally defined by

[17], a state machine is deterministic if, and only if:

∀ s, s’ and s’’ ∈ S,

(s, a, s’) ∈ ∆ ^ (s, a, s’’) ∈ ∆ ⇒ (s’ = s’’)

 - 69 -

For every input state there would be a specific output state. While this may be simple to

implement, it may not allow the flexibility required for specifying more complex state

machines required by client agents. It may be possible that one input event may require

transition to a number of states, depending on guard conditions. For example, consider a

shopping agent that is dealing with two types of messages:

An output message to a merchant making a “Bid” on an item. An input event from a

merchant making an “Offer” to the client.

Depending on certain guard criteria, the client agent will process the merchant’s offer

differently. The client agent could remain in the same state and continue bidding, it could

decide to accept the offer and buy the item, or it could end negotiations if the price was

outside the bounds of the bidding parameters. Therefore, there are (at least) three different

state transitions that might be desirable when receiving this “Offer” event. Where a state and

action combination can result in transition to a collection of other states, where these states

are determined by guard conditions there is a need for non-deterministic approach of state

machines.

This requires that the state machine transitions are validated to ensure the correctness of

transitions in a non-deterministic state machine.

o Initial State <Q>

The initial state of a state machine is the state from where the state machine starts any

operation. It’s true that each state machine can have only one initial state. Additionally, each

state machine must have states that are defined as final states which indicate the end of the

conservation with no possibility of any more states. Except initial and final, there is another

state also known as the intermediate state.

For example, a typical initial state is IDLE, indicating no current activity in the process. As

the process executes, it may pass through many different state transitions and revert to an idle

state waiting for the next execution of the process.

 - 70 -

2.2.2 Protocol Correctness

State machines used in communications protocols must be free from design errors and should

be checked properly. One of the most appropriate techniques for this process is the

Reachability analysis [17]. This is an exploration of global states, that starts from the initial

global state and recursively explores all the possible transitions that lead to new global states.

The result is a reachability graph which captures all possible states. A global state is the

combination of the internal states of each entity in the conversation, and the possible message

exchanges between these entities while in those states.

Figure 2-2 Process P state machine for Reachability Analysis

Figure 2-3 Process Q state machine for Reachability Analysis

 1

 4 3

 2

a

a /b

/b

d /c

 1 2

 3

/a

b

c

/d

 - 71 -

Use of reachability analysis attempts to explore the possible global states of a multi-entity

protocol to check for design errors. For example, consider a two-entity communications

protocol with processes P and Q. Each entity has its own state machine, combining to form

the communication protocol. For example, the state transition diagrams in

Figure 2-2 and
Figure 2-3, input events are represented by letters (eg ‘b’) and output messages represented

using a slash (eg ‘/d’).

If we represent a global state in this reachability graph as in Figure 2-4:

Figure 2-4 Global State Representation

The potential problems that can be shown by reachability graph are Deadlocks,

Unspecified reception, Livelock and Non-executable transitions.

Deadlocks: A set of processes is deadlocked if each process in the set is waiting for an

event that only another process in the set can cause (including itself). No process in the

protocol will perform a transition to another state.

Unspecified Reception: A node encounters an input message for a state machine process that

does not have specification for that input message.

Livelock: Processes continually exchange the same messages and do not any progress

towards protocol completion. While cycles are allowed in graphs, some mechanism must be

employed to ensure that these cycles are intentional and controlled.

Non-executable transitions: Non executable transitions as the name suggests are dead code,

states or state transitions that cannot be reached.

P state P->Q message

Q->P message Q state

 - 72 -

In Fig 2-5, each global state is represented as described in Figure 2-4, and “E” in the P->Q

Message, or Q->P Message indicates that message input is empty for that state.

The root node is the starting global state, where both entity P and entity Q are in state “1”,

and there are no messages being sent by either entity. The child nodes are created for each

possible next step of the protocol. If you notice the state machine for process P, there are two

possible transitions. One transition is to send out message “a” and moves to state “2”, the

other transition is to send out message “d” and moves to state “3”. Each of these are shown

by global states as the first level of child nodes in the graph i.e. “P sends ‘a’” and “P sends

‘d’”.

 1 E

E 1

2 a

E 1

2 E

a 2

2 E

b 3

3 b

E 3

3 d
E 1

3 E
d 4

3 E

c 1

1 c

E 1

3 E

b 3

Result: Deadlock

Result: unspecified

reception

Result: OK

P sends P sends ‘d’

Q receives
‘a’

Q sends ‘b’

P receives ‘b’

Q receives ‘d’

Q sends ‘c’
Q sends ‘b’

P receives ‘c’

 - 73 -

If we look at the first of these child nodes (P sends ‘a’) we can see that entity P is now in

state ‘2’ and has just sent message “a”, and entity Q (before receiving the message) is

still in state ‘1’. Its child node (Q receives ‘a’) shows the global state when Q receives the

message. Note that Q has now changed to state ‘2’ after receiving message “a”. Now, note

from the state machine for entity Q that only one message type, “b” is sent from Q when it is

in state ‘2’. The next child node (Q sends ‘b’) shows this message being sent from entity Q.

Entity Q moves to state ‘3’. The next child node (P receives ‘b’) shows that entity P receives

‘b’ and moves from state ‘2’ to state ‘3’, as required by its state machine.

We now have a situation where both entities are in state 3. This represents a deadlock,

because entity P will never generate an ‘a’ message that entity P requires to change state, and

entity Q will never generate a ‘c’ message that Q requires to change state. This is a simple

example, and obviously only a small fragment of the entire graph is shown here. But it

indicates that by traversing all possible message sending and states, protocol errors can be

identified.

When checking protocol specifications for correctness, there are two accepted forms of

checking- Protocol Validation and protocol verification. The general properties of the

protocol are checked for correctness in former one. This includes the states, state transitions

and input and output messages of the state machine. Protocol verification is the process used

to check the functional properties of the protocol. This includes the reachability graph above,

produced from an exchange of multiple entities.

 2.2.3 State Explosion

One of the major issues with verification of a multiple entity protocol is the possibility of

state explosion [19]. This occurs when expanded nodes of the reachability graph increase to a

very large number. Certain relief strategies have been suggested to cope with this state space

explosion such as:

• Decompose protocols into components, or multiple phases, which can then be separately

verified to ensure the correctness of the original protocol [19].

• Restricting the choices for state transitions according to choice rules (eg not allowing the

same transition twice) [19].

 - 74 -

• Simplify reachability analysis by restricting the analysis to only two-entity protocols. [27]

This reduces the number of possible global states.

• Implement a depth-first search of the state space using heuristic searches common in

Artificial Intelligence models.

• Acyclic protocol validation, which grows each entity in a protocol to check for design

errors, rather than creating a graph of global states with possible cycles [17]. Errors can

still be detected with a sufficiently sophisticated search.

Testing for protocol correctness may be a complex process. For this project, I am proposing a

client to use a state machine provided to it by a server agent on the Internet. This should

allow us to simplify any checking that should be done by the client, for the following

reasons:

• Clients use the protocol to test and verify it for the server site.

• The client will still wish to validate the client state machine, as a client state machine

with incorrect properties (eg state transition structure) may lead to incorrect processing in

the client agent.

• Stateless servers are generally used on the Internet. We suggest that merchant servers in

an Internet B2C environment would be designed as stateless servers. This is partly a

product of the stateless HTTP application layer protocol used across the Internet and

partly because it is undesirable for such servers to maintain the state of many clients. For

example, the SET (Secure Electronic Transaction) protocol[20] used for payment

authorization, and payment capture, uses a series of tokens produced by the server

process and passed back to the client. This token can be later passes it back to the server

process as a state representation.

These points allow us to simplify the correctness checking to only client-side validation of

the client state machine. Providing message names for state transitions are correct in the

downloaded XML file from the merchant server:

� Deadlocks will not occur because the client is receiving and displaying valid message

names and the server is stateless and therefore will not get deadlocked.

 - 75 -

� Unspecified reception will not occur because the message used to build the client-side

state machine is assumed to be correct

� Livelocks must still be guarded against.

For our simple case of a client-side state machine interacting with a stateless server, we can

suggest some relief strategies of our own to simplify the validation. I have come up with a set

of axioms, to be able to validate the client state machine.

• Axiom 1

Every initial and non-final state must have transition to another state.

This ensures that the conversation protocol can perform a transition to another state, given

the correct input message. Therefore the conversation will not become deadlocked in a non-

final state.

• Axiom 2

Every non-initial and final state must have transition from another state.

This ensures that each state can be reached via some transition from another state. This

ensures that a final state in the protocol can be reached.

• Axiom 3

Every non-initial state must have a path from the initial state to it.

This ensures that every state can be reached, via some path, from the initial state. This means

that there is no state for which there is non-executable code from the initial state. It carries

from the interpretation of Axiom 2.

• Axiom 4

Every non-final state must have a path to a final state.

 - 76 -

This ensures that once a state is reached that the conversation protocol can successfully

complete upon some sequence of messages.

If we combine Axiom 3 and Axiom 4 it ensures that for every intermediate state:

• The intermediate state is reachable from the initial state

• The final state is reachable from the intermediate state

Therefore, there is a path from initial state to a final state through each intermediate state.

If this is correct, and we have made the initial acceptance that transition message names in

the downloaded file are correct, then we can be satisfied that the client state machine is

validated for use with the merchant server.

Figures 2-6(a), 2-6(b), 2-6(c), 2-6(d) illustrate the various state transitions

 - 77 -

Fig 2-6(a), 2-6(b), 2-6(c), 2-6(d)

2.2.4 Invalid State Machines

When dynamically implementing a client protocol, it is essential to identify poorly specified

state machines definitions. Should a client implement an invalid state machine, it could lead

to a protocol error such as deadlocks. State machine definitions written for the JIT State

INITIAL

FINAL

STATE A
INITIAL

FINAL

STATE A

INITIAL

STATE B

STATE A STATE C

STATE D

FINAL

STATE A STATE B

STATE C

a) b)

c)

d)

 - 78 -

Machine will be specified using XML. An XML author could easily write an incorrect

specification. The axioms stated in the previous section will identify these poorly specified

state machine definitions. Following are two examples of invalid state machines that will be

detected by the axioms.

The state machine in Figure 2-77(a) is invalid as both STATE A and STATE B cannot reach

a final state. This violates Axiom 1.

The state machine in Figure 2-77(b) is invalid because STATE C cannot be reached from the

initial state. This violates Axiom 3.

Figure 2-7 (a), 2.7(b) Invalid State Machine Examples

2.2.5 Ontological Data

Due to the probability of different data relationships across a business domain, data and their

relationships must have some commonality across the domain if we wish to ensure

interoperability with numerous different agents. In the context of this project, this means that

server agents representing different merchant web sites must have some commonality if they

expect a generic domain-specific client agent to be able to interact with it.

Implementations of industry standards may not be possible. Different companies use different

representations of data and terminology to describe fundamental business concepts.

Adherence to an imposed standard may restrict any individual company’s business model.

However, business in the same domain would expect to understand the fundamental business

principles of their business domain. For example, two Insurance companies will almost

INITIAL

STATE

STATE

FINAL

INITIAL

STATE B

STATE A

FINAL STATE C

a) b)

 - 79 -

certainly have different internal data formats, procedures and relationships, but still have an

understanding of the fundamental domain concepts of such things as Premium, Reinsurance,

Claims, and Disability etc. This implies the there needs to be some mapping between

accepted domain ontology of fundamental concepts, and an internal implementation of the

business processes.

2.2.6 Similarity Matching

Because there may be different internal representations of a fundamental domain concept, we

require a method to calculate the similarity of any two different requests. Such a calculation

would be required to calculate the similarity between different requests. A simple example is

a request for a sale item that a merchant does not have. That merchant could compare the

similarity of each of the items it does have, with the original request.

In a simple merchant domain, it raises the question of similarity matching. A domain-specific

client may issue a request of those maps to a similar product or service known to a merchant

server. Therefore, a server agent must have some way to compare the similarity of a request

from a client, to the known internal structure in the server. This could involve a series of

negotiations between the client and server agents, attempting to refine the search for a

requested product or service. In the same way that negotiation can occur regarding protocol

specification during a handshake process, there should be support for the process of offer and

counter offer when requesting products or services.

Similarity matching can be implemented using a tree structure containing nodes with a

feature vector at each node used for similarity comparison, such as calculating the nearest

neighbour problem by [21] or Similarity Indexing using feature vectors by [22].

I will consider similarity matching using a simple acyclic tree and feature vectors containing

domain-specific similarity values. Each feature vector will contain a feature value for each

level of hierarchy. For example a node at depth 3 in a tree, would have a feature vector of

length 3, representing a feature value for itself and its two ancestor nodes. Such values would

be expected to be created by a domain expert.

 - 80 -

The similarity value of any node represents similarity to its sibling nodes. The following

algorithm defines how any two nodes can be compared for similarity.

1) Individual features can not be assumed to be independent. In a hierarchical

classification, lower level nodes are in an IS-A relationship with ancestor nodes.

Therefore any difference between items at one level of the classification hierarchy

may also be propagated to calculations in the lower levels of the classification

hierarchy.

2) Similarity values are arbitrary values allocated by a domain expert. Features with

closer similarity values are more similar. Each similarity value will be between 0.0

and 1.0. Therefore similarity values represent a probability that two items at the same

classification level are identical.

• Algorithm

The similarity match between any two feature vectors can be expressed as the 1.0 less the

product of the differences in the all the common features in the two vectors.

As a formal definition:

The feature vector (FV) of any node is defined as:

FV = [Fi,...., Fn]

where:

Fi is the feature value of ancestor nodes at depth i in the hierarchy, starting at i=1.

n = node depth.

The similarity algorithm for any two Feature Vectors FVA and FVB is shown below:

n = min(FVA length, FVB length);

similarity = 1.0;

 - 81 -

for (i=1;i<=n;i++) {

 similarity *= (1.0 – (abs(FVA[i] – FVB[i])));

}

Figure 2.8 Similarity Equation

This algorithm implies that similarity matching can only be applied to the level of speciality

shared by the two nodes in the hierarchy. For example, a node of depth 5 can only be

compared to a node of depth 3, with the first three features in their feature vectors. As the

depth of nodes increases, similarity between nodes becomes more distinct. In other words, a

more precise value is obtained when nodes with high depths are used in the above equation.

This does not necessarily mean that they are less, or more similar, thus resulting in a higher

degree of accuracy for the similarity value.

The above algorithm has been used, instead of a formula, due to its ease of use in the

examples that follow. Further, a different approach, such as a Euclidean measure, or

Minkowski distance was not employed for the same reason.

Following is an example of dissimilarity and similarity calculation, using example feature

vectors for siblings from Table 2-1 (b).

Table 2-1 (b) Sibling similarity example

Part Feature Value

A 1.0

B 0.7

C 0.7

D 0.5

Dissimilarity between any two siblings is simply the difference between their feature values.

This feature may represent quality, price or any other property determined by a domain

expert. The similarity is simply 1.0 minus the dissimilarity.

Therefore, two identical nodes would have a dissimilarity value of 0.0 and a similarity value

of 1.0. In this sense, the differences between the feature values represent a distance function

between the components. So, Table 2-1 (b) would calculate similarities between nodes as the

following simple distance functions shown in Table 2-2.

 - 82 -

Table 2-2 Dissimilarity values example

From Node To Node Dissimilarity Similarity

A B 0.3 0.7

B C 0.0 1.0

C D 0.2 0.8

In a hierarchy represented by the tree, the similarity between siblings can be used to calculate

similarity between any two nodes, by propagating similarity from the two nodes through a

common ancestor node. Given that our simple tree structure is representing a hierarchical

relationship of data, it is true that any child node maintains an IS-A relationship with parent

and ancestor nodes.

Figure 2-9 Hierarchical Car parts example

Using 1) and 2) mentioned earlier,, the feature vector definition, the similarity algorithm and

the similarity examples above, following is an example of similarity matching for a hierarchy

of car parts in Figure 2-.

In this example, both Tyres and Brakes IS-A Wheel Component, and children of Handles and

Tyres IS-A Car Component. Therefore we can use the similarity function of all the nodes

Car Component

Wheel
Component

Door
Component

Tyres Brakes Window Handles

T1 T2 T3 B2 B3 B1 W1 W2 W3 H1 H2 H3

 - 83 -

upwards to the common ancestor to calculate a similarity based on the similarity of all

hierarchical types. For example, if we consider the similarity feature values in Table 2-3:

Table 2-3 Example Feature Values of Car Parts

Node Feature Value

Wheel Component 1.0

Door Component 0.0

Tyres 1.0

Brakes 0.4

T1 1.0

T2 0.9

T3 0.8

B1 1.0

B2 0.9

B3 0.8

Windows 1.0

Handles 0.0

W1 1.0

W2 0.8

W3 0.7

We can calculate the following similarities for any leaf node using the feature vectors and

algorithm. First, a trivial example. The feature vector for Tyre type T1 is shown in Table 2-4.

Table 2-4 Feature Vector example for Tyre T1

Type Feature Value

Wheel Component 1.0

Tyres 1.0

T1 1.0

The feature vector for Tyre type T2 is shown in Table 2-5.

Table 2-5 Feature Vector example for Tyre T2

 - 84 -

Type Feature Value

Wheel Component 1.0

Tyres 1.0

T1 0.9

Therefore we calculate the similarity as a product of the similarity of off the levels of

hierarchy as in Table 2-6.

Table 2-6 Similarity calculation for T1 and T2

T1 Type Feature

Value

T2 Type Feature

Value

Dissimilarity Similarity

Wheel

Component

1.0 Wheel

Component

1.0 0.0 1.0

Tyres 1.0 Tyres 1.0 0.0 1.0

T1 1.0 T2 0.9 0.1 0.9

And the similarity between T1 and T2 is 1.0 * 1.0 * 0.9 = 0.9

If we wanted to compare nodes that are not siblings, such as a type T2 of Tyre and a type B3

of Brake, the mechanism is the same.

The feature vector for Tyre type T2 is shown in Table 2-7.

Table 2-7 Feature Vector example for Tyre T2

Type Feature Value

Wheel Component 1.0

Tyres 1.0

T2 0.9

The feature vector for Brake type B3 is shown in Table 2-8.

Table 2-8 Feature Vector example for Brake B3

Type Feature Value

Wheel Component 1.0

Brakes 0.4

B3 0.8

 - 85 -

We calculate the similarity as a product of the similarity of off the levels of hierarchy as

Table 2-9.

Table 2-9 Similarity calculation for T2 and B3

T2 Type Feature

Value

B3 Type Feature

Value

Dissimilarity Similarity

Wheel

Component

1.0 Wheel

Component

1.0 0.0 1.0

Tyres 1.0 Brakes 0.4 0.6 0.4

T2 0.9 B3 0.8 0.1 0.9

Therefore the similarity is 1.0 * 0.4 * 0.9 = 0.36

In this example, this is a reasonable similarity, given that Tyres and Brakes are closely

related in the operation of a car wheel, but are specifically different items. To determine

whether an item might be an acceptable match based on similarity alone, threshold values

may be employed.

If we traverse ancestor nodes with no similarity, we would expect no similarity between the

two nodes being compared. Consider an example of comparing similarity between a specific

Tyre T2 and a specific Window W2. The resultant similarity is shown in Table 2-10.

Table 2-10 Similarity calculation example for T2 and W2

T2 Type Feature

Value

W2Type Feature

Value

Dissimilarity Similarity

Wheel

Component

1.0 Door

Component

0.0 1.0 0.0

Tyres 1.0 Window 1.0 0.0 1.0

T2 0.9 W2 0.8 0.1 0.9

So, the similarity is 0.0 * 1.0 * 0.9 = 0.0

This example indicates that for there to be any degree of similarity between items, there must

exist somewhere in their ancestry, siblings with a non-zero degree of similarity. In any

 - 86 -

hierarchical structure, all nodes will share a the common root node, but nodes at any depth

cannot be assumed to be similar at all unless there is some commonality between ancestor

nodes that are direct siblings. For example, in an Object Oriented class hierarchy such as the

Java API, there is some degree of similarity between a java.io,FileInputStream and a

java.io.ObjectInputStream because they are siblings with some commonality (ie they both IS-

A java.io.InputStream). However there is no degree of similarity (other than being Objects)

between a javax.swing.JMenuBar and a java.io.FileInputStream, because there is no

similarity between their ancestors that are direct siblings (ie a java.awt.Component and a

java.io.InputStream.)

 2.3 Implementation

The proposed approach is implemented to determine the effectiveness of dynamic

conversation interoperability between a client agent and various merchant agents.

This section discusses Buying behaviour, Vocabulary, Implemented classes, Catalog

Negotiation Protocol, Merchant Protocols, Client Agents and at last testing. Each one of

them has a number of factors to be considered which we are going to discuss in detail:

2.3.1 Buying Behaviour

This is the most important part of the marketing process - understanding why a customer or

buyer wants to purchase. Without this, it is difficult to respond to the customer or buyer’s

needs.

This model implements some of the buying behaviour model described by [23]. The main

focus is on the six fundamental stages of behaviour, which are as follows:

• Need Identification: This stage is the first step which allows a buyer to be aware that it

has a requirement to buy an item. This is a mechanism which indicates that the item is out

of stock. In my implementation, an agent will be aware that an item is required according

to client parameters given to the agent.

• Product Brokering: Product brokering is a process to negotiate contracts, purchases or

sales in return of a fee. This stage involves retrieval of information that enables an agent

to determine what product it wishes to purchase. A brokering process can be performed

 - 87 -

with a merchant to determine the specifics of a required item. This brokering may involve

multiple requests to a merchant for more detailed information, or perhaps for information

on products similar to a requested item.

My implementation involves a client being able to browse a catalog of merchant

information, and then make further refined queries based on the information received. The

result of product brokering will be a specific item selected from an initial generic keyword

query.

• Merchant Brokering: This stage involves the selection of a merchant from which to

purchase an item. In my prototype implementation, three merchants are used. An agent

uses price to determine the merchant from which to buy. Buying behaviour could

potentially include other buyer-defined criteria such as warranty, delivery time, previous

buying history, merchant reputation etc.

• Negotiation: The process of bargaining that precedes an agreement. This stage

determines how a client agent and merchant determine the price of a requested item. We

use different techniques, depending on the business domain, in which to set a price, such

as fixed price, price negotiation and numerous auction procedures. The types of

negotiations possible are determined by the vocabulary supported by client and merchant

agents.

• Purchase and Delivery: This stage deals with finalizing the purchase and describing

delivery options. In my implementation, purchasing is performed in a way appropriate to

the particular protocol specified by the merchant. I have not implemented any delivery

options information as part of this prototype, as they are not relevant to the dynamic

protocols I am investigating.

• Product Service and Evaluation. This involves a customer evaluating the service

received from the merchant and the satisfaction of the product purchased. In a

sophisticated shopping agent system, a client agent could maintain some buying history

about merchants and products, and then use that as feedback into later invocations of the

Merchant brokering stage of buying. In my implementation, this project is looking at

 - 88 -

protocols between agents in a distributed system, and the evaluation and feed back

appropriate to this stage are not relevant in the context of the project.

2.3 .2 Vocabulary

A supply of expressive means or a repertoire of communication is used by agents wishing

to participate in communication in this domain. Each vocabulary term represents a

fundamental concept in the domain. Implementation of each concept is independent of other

vocabulary terms. In the context of a finite state machine, they will represent input events, or

output messages used between state transitions. Finite State Machines will vary from one

merchant server agent to the next. This composition of terms and states is used to form the

communication protocol between agents interoperating in this domain.

The following phrase definitions are defined in terms of the business domain, as fundamental

business concepts. This intention is to demonstrate the possibility of reusable core domain

primitives that may be used in an ontological sense rather than a specific implementation.

• Catalog: A Catalog phrase is a request for a listing of catalog items. A request can be

formed from a simple keyword query such as “Shiraz”, which implies a request for a list

of syntactically matching items. A request can also be formed using a specific reference

item returned from a previous catalog request. This implies a request for a list of similarly

matched items.

• CatalogItems: A CatalogItems phrase is a response to a request for a Catalog. This

request may ask for either a syntax match or a similarity match. Items returned from a

similarity match will be ranked in descending order of similarity to the reference item.

• Bid: in actual terms an offer or proposal of a price. A Bid is a monetary value that a

purchaser is willing to pay for a specific item. The issuer makes a genuine contract of

willingness to pay the specified price. Should the selling agent accept the bid, the buying

agent will be obliged to a transaction at the specified Bid price. When Bid values do not

change in consecutive Bids, it can be assumed that the bidder has reached a final limit on

the Bid value. Depending on the method of bidding currently invoked, the value may

 - 89 -

increase or decrease. However, this Bid direction is invalid if made in the wrong direction

for the current bidding mechanism being used.

• Offer: An Offer is a monetary value at which a seller is prepared to sell an item. The

issuer makes a genuine offer of sale at the specified price, and is obliged to complete the

sale at the specified price if the buyer decides to accept the offer. Successive Offers are

expected to change value. When Offer values do not change in consecutive Offers, it can

be assumed that the issuer of the Offer will issue no further Offer changes. Depending on

the mechanism of negotiation currently invoked, Offer values may increase or decrease.

• Buy: A Buy is a request to purchase a specific item at a previously agreed price. This

may be the result of any level of price negotiation through Bid and Offer exchanges. A

valid merchant Offer price must be accepted as the Buy price for the request item.

• Sale: A Sale is confirmation of the completion of a Buy transaction for a specific item.

This may include such proof of purchase as a receipt for the sale.

• Register: In the context of an auction procedure of any type, an entity interested in

participating in the bidding process for a specific item must register interest with the

entity controlling the auction. An interest will be specified in a specific item.

• Registered: In the context of an auction procedure of any type, an entity that requested

registration via Register will be notified that it is registered to participate in the auction of

the requested item. The registered party will be supplied with a unique bidding token for

use in the bidding process to uniquely identify the bidder.

• AuctionInquire: In the context of an auction procedure of any type, a registered bidding

entity may inquire on the current status of the auction.

• AuctionStatus: In the context of an auction procedure of any type, a registered

entity will receive information from the auction controller indicating the current

status of the auction for a specific item. This may include such information as the

current bid price, the owner of the current bid and time remaining in the auction.

 - 90 -

2.3.3 Architecture

Java API has been implemented for this purpose. Java SDK 1.3 for creation of Java classes,

JAXP 1.1 for XML parsing, Java Servlet Development Kit 1.2. This version of Java has been

employed because this investigation was originally carried out in 2000. At that time, this

version of Java was the latest one available.

Merchant servers were created and accessed using both TCP sockets on the UNIX and

Windows95/NT platforms, and Java Servlets on the Windows95 platform. Client applications

(known as Barney) were created as Java applications using Java Socket or URL classes to

communicate with servers. Client applications were Observable objects which were observed

by GUI for the display of state transitions. All messages were exchanged in XML format.

XML was parsed to/from Java objects between data exchanges.

A full description of all the Java classes implemented is attached in Appendix A. For class

diagrams of the following, refer to Appendix F:

• Client Implementation – Figure 1

• Server Implementation – Figure 2

• XML Parsing to Object – Figure 3

• Creation from Objects - Figure 4

Along with the server concrete protocol, request Dispatcher Object is responsible for I/O,

using inputStream and outputStream objects. The ProtocolRequestDispatcher reads from its

InputStream to provide input to Barney as a ProtocolEvent. Then ProtocolEvent is sent to the

StateMachine object, which searches the current state for the allowable input event. Then a

ProtocolEventListener object (the Barney client) is asked to produce a valid ProtocolMessage

as an output message. This ProtocolMessage is used to fire state transition in the

StateMachine and then sent to the ProtocolRequestDispatcher for output to its OutputStream.

The MerchantServer class is used for creating concrete servers using TCP Sockets. The

MerchantServlet class is used for creating servers using Java Servlets. Each of these servers

implement a subclass of WineCatalogMerchant, specialized for the required server protocol.

These specialized classes are ProtocolMessageListener objects that read input

 - 91 -

ProtocolMessages from an InputStream, and return a ProtocolEvent to be sent back to the

client. Because servers are stateless, there is no StateMachine object.

XML files are used by servers for ontology hierarchies, wine catalogs and state machine

definitions.

The Builder pattern [24] is used to build any valid ProtocolMessage or ProtocolEvent type

from parsed XML The class diagram for parsing input XML and building ProtocolEvent

objects in the client and ProtocolMessages in the servers is given in Appendix F – Fig. 3.

The SAXDirector is responsible for parsing XML, and sending data to a concrete

DataBuilder object to build an object. Depending on the type of input, either a

ProtocolMessageBuilder or ProtocolEventBuilder object use a ProtocolMessageFactory or

ProtocolEventFactory to instantiate an object and populate it with data received from the

SAXDirector. This allows parsed XML to build any recognized event or message type.

XML data from any known object type can be created by using builder pattern [24]. The

ObjectDirector object knows of one Object that it wants to convert into XML. This will be a

ProtocolMessage or ProtocolEvent object. Using Java reflection, properties from the object

are obtained and used to build XML data. A DataBuilder subclass responsible for

transforming XML accepts the data and writes well-formed XML tag data.

2.3.4 Catalog Negotiation Protocol

Negotiation is essential between interoperable agents. In this context, it refers to the

establishment of a common understanding of a concept or implementation, rather than (for

example) negotiation over a merchant’s price. Previous mention to the JIM [27] protocol,

handshake negotiation between interagents is an example of this. Negotiation between a

client agent and a merchant agent regarding the required Wine item for potential purchase is

implemented. This involves syntactic matching, and similarity matching using similarity

algorithm for a hierarchical ontology. The high level overview of the negotiation is as

follows:

 - 92 -

A keyword query is obtained by the client from its user, e.g. “Shiraz”. Then, the client agent

sends this keyword to the merchant agent, along with its catalog request to match the syntax

“Shiraz”. The Merchant agent displays a list of items known that have a syntactical match

with “Shiraz” i.e. all wines of that variety. The client agent checks all of them and a list is

generated, which has the closely matched keyword. The client selects that item as a

“reference item”, and returns it in another Catalog query to the merchant agent. The merchant

agent takes the reference item, and again performs the similarity query to check all other

items. The client receives a list of similar items, limited in number by a threshold value (eg

0.70). This process is repeated until an appropriate item is found, or it determines that no

item is appropriate.

Processing of syntax queries is a simple task of matching query keyword with item

description throughout the item’s hierarchy.

Similarity queries require the similarity algorithm described to calculate a collection of items

similar to a reference item. The following tables, Table 2-11 and Table 2-12 show feature

vectors of two wine items contained in the Wine Catalog Fragment shown in Figure 2-10(b).

Following is an example of the similarity calculation using the feature vectors.

Table 2-11 Penfold’s 1996 Kalimna Bin28 Shiraz feature vector

Category Variety Winery Label Vintage

Red Wine Shiraz Penfolds Kalimna 1996

1.0 1.0 1.0 0.65 0.9

Table 2-12 Wynns’s 1993 Hermitage Shiraz feature vector

Category Variety Winery Label Vintage

Red Wine Shiraz Wynns Hermitage 1993

1.0 1.0 0.9 0.7 0.8

To compare these two wines using their feature vectors, we employ 1) and 2) described in

Section 2.2.6, and the algorithm defined for similarity matching.

The similarity calculation for these two Wine items will be:

 - 93 -

Similarity = CategorySimilarity * VarietySimilarity * WinerySimilarity * LabelSimilarity *

VintageSimilarity

= (1 – (RedWine – RedWine)) * (1 – (Shiraz – Shiraz)) * (1 – (Penfolds - Wynns)) * (1 –

(Hermitage - Kalimna)) * (1 – (1996Vintage – 1993Vintage))

= 1.0 * 1.0 * 0.9 * 0.95 * 0.9

= 0.77

Figure 2.10 (a) Similarity calculation for two Wine items

 - 94 -

This similarity figure could be viewed as a probability that the two items are similar.

Figure 2-10(b) Wine Catalog fragment

Root

Red Wine

f = 1.0

White Wine

f = 0.0

Shiraz
f = 1.0

Shiraz/Cabernet
f = 0.9

Cabernet
Sauvignon

Cabernet
Merlot

Merlot
f = 0.4

Penfolds

f = 1.0

Wynn’s

f = 0.9

Henschke

f = 0.9

Grange

f = 1.0

Bin128

f = 0.6

Bin38

9

Kalimna

f = 0.65

Michael

f = 0.9

Hermitage

f = 0.9

Hill of Grace

f = 0.9

1996

f = 0.9

1997

f = 0.8

1993

f = 0.8

1994

f = 0.9

1995

f = 0.5

1998

f = 0.9

1990

f = 1.0

1991

f = 0.9

1992

f = 0.8

 - 95 -

2.3.5 Merchant Protocols

We use three different merchant protocols:

� Shopfront protocol

This is a simple protocol use to browse for a specific item when buying it at the merchant’s

advertised price. The State Transition Diagram for this protocol is shown in Figure 2.11. The

FSM message table for this protocol is detailed in

 - 96 -

Table 2-13.

Figure 2-11 Shopfront Protocol State Transition Diagram

CATALOG

BUYING

IDLE

/Catalog
CatalogItems

/Buy
CatalogItems

CatalogItems

/Catalog
doCatalog

Sale

 - 97 -

Table 2-13 FSM Message table for Shopfront Protocol

Event State IDLE CATALOG BUYING

DoCatalog /* Send keyword

query to

merchant */

Output:

Catalog

State:

CATALOG

- -

/* Receive list of catalog

items from merchant. If no

item present that meets

criteria, select a similar item

from the received list and

send that item as a reference

item to the server, requesting

more Catalog items similar to

the reference item */

Output: Catalog

State: CATALOG

/* If a desired item is found

in the returned Catalog list,

then purchase the item */

Output: Buy

State: BUYING

CatalogItem -

/* If all Catalog lists have

been exhausted, then, nothing

here to purchase */

Output: none

State: IDLE

-

 - 98 -

Sale - - /* Receive sale

information from

merchant eg Receipt

Number */

Output: none

State: IDLE

Buying behaviour is implemented as follows:

1. Identification of the required item.

2. Request from client agent to buy that item.

3. Response from Merchant agent to notify the sale.

� Haggle Protocol

This protocol involves browsing for a specified item, then engaging the merchant server in a

price negotiation.

Figure 2-12 State Transition Diagram for Haggle Protocol

The State Transition Diagram for the Haggle protocol is shown in Figure 2-12.

The FSM Message table for the Haggle protocol is shown in Table 2-14.

CATALOG

BIDDING

BUYING

IDLE

/Catalog
CatalogItems

Offer Sale

/Bid
Offer

/Catalog
doCatalog

CatalogItems

/Buy
Offer

Sale

/Bid
CatalogItems

 - 99 -

Table 2-14 FSM Message table for Haggle Protocol

Event State IDLE CATALOG BIDDING BUYING

doCatalog /* Send

keyword query

to merchant */

Output: Catalog

CATALOG

- - -

/* Receive list of

catalog items from

merchant. If no item

present that meets

criteria, select a

similar item from the

received list and send

that item as a

reference item to the

server, requesting

more Catalog items

similar to the

reference item */

Output: Catalog

State: CATALOG

CatalogItem -

/* If a desired item is

found in the returned

Catalog list, then bid

for the item */

Output: Bid

State: BIDDING

- -

 - 100 -

/* If all Catalog lists

have been exhausted,

then, nothing here to

purchase */

Output : none State:

IDLE

/* If offer received

from merchant <=

buy price, then

accept the offer

and buy the

product */

Output: Buy

State: BUYING

/* If offer received

from merchant >

buy price, and the

offer is equal to

the previous offer,

then merchant

final offer is too

high, therefore

terminate

negotiation */

Output: none

State: IDLE

Offer - -

/* If offer price is

> buy price but is

not the merchant’s

final offer, then

make another bid

for the item */

Output: Bid

State: BIDDING

-

 - 101 -

Sale - - /* Receive sale

information from

merchant eg

Receipt Number */

Output: none

State: IDLE

/* Receive sale

information from

merchant eg

Receipt Number */

Output: none

State: IDLE

Buying behaviour is implemented as follows:

1. Merchant advertises item in catalog at a specific shelf price. Merchant has a minimum

price that it is willing to accept for the item.

2. Client agent identifies catalog item as previously described.

3. Client agent has parameters for bidding such as an initial bid price, a bid increment, a

maximum bid price, and an acceptable buy price.

4. Client agent makes a bid for the item based on the following rules:

• First bid will be the initial bid parameter.

• Subsequent bids are based on the bid increment

• If the client receives an offer from the merchant that is equal to or less than the

acceptable buy price then the agent will accept the offer and buy the item.

• If the client receives an offer indicating that the merchant is not reducing its offer

price, a decision is made to either buy at the last offer price or to terminate

negotiation.

• Otherwise the client makes another bid.

5. Merchant examines the bid price and either:

• Makes a counter offer, which will be higher than the last client bid. It will be equal to

or greater than the last merchant offer, and never less than the minimum merchant

offer price.

• Accepts the bid and sells the item to the client.

 - 102 -

� English Auction protocol

This protocol involves a merchant advertising an item for sale to clients who can make bids

for the item. The owner of the highest bid at the completion of the (timed) auction is then

sold the item.

The State Transition Diagram for the English Auction protocol is shown in

Figure 2.13

Figure 2-13 State Transition diagram for English Auction Protocol

CATALOG

BIDDING
REGISTERING

IDLE
/Catalog

Bid
/AuctionInquire,
AuctionStatus

/AuctionInquire
Registered

/Register
CatalogItems

AuctionStatus

/Catalog
doCatalog

CatalogItems

Sale

CatalogIte

ms

 - 103 -

Table 2-15 FSM Message table for English Auction Protocol

Event State IDLE CATALOG REGISTERING BIDDING

doCatalog /* Send

keyword

query to

merchant */

Output:

Catalog

CATALOG

- - -

/* Receive list of

catalog items from

merchant. If no item

present that meets

criteria, select a similar

item from the received

list and send that item as

a reference item to the

server, requesting more

Catalog items similar to

the reference item */

Output: Catalog

State: CATALOG

CatalogItem -

/* If a desired item is

found in the returned

Catalog list, then

register interest for the

item */

Output: Register

State: REGISTERING

- -

 - 104 -

/* If all Catalog lists

have been exhausted,

then, nothing here to

purchase */

Output : none State:

IDLE

Registered - - /* Receive

notification that

client agent has

registered interest

in the item */

Output:

AuctionInquire

State: BIDDING

-

AuctionStatus - - - /* Receive

notification that

the Auction is

finished, OR that

the current auction

price is greater

than the client

agent’s highest bid

price */

Output: none

State: IDLE

 - 105 -

/* Receive auction

information

indicating that

another bidder has

the highest bid.

This current

highest bid is less

than the client

agent’s highest

bid, so submit

another bid */

Output: Bid

State: BIDDING

/* Receive auction

information

indicating that the

client agent

currently owns the

highest bid */

Output:

AuctionInquire

State: BIDDING

Sale - - - /* Receive sale

information from

merchant eg

Receipt Number

*/

Output: none

State: IDLE

 - 106 -

The buying behaviour is implemented as follows:

1. Advertisement of items in catalog along with the specified price.

2. Identification by client agent of the required item.

3. Client registers interest with merchant regarding item.

4. Acknowledgement from Merchant for client agent’s interest.

5. Client agent inquires on the progress of the auction

6. Merchant agent either:

• Provides status information for:

• Current highest bid

• Owner of the current highest bid

• Time remaining in auction

• Realises the auction duration is over, and that the requesting client is the owner of the

winning bid. A confirmation of sale is sent to the client.

7. Client agent analyses status and either:

• Makes a bid for the item, based on the initial bid price, maximum bid price and the

current highest bid

• Discovers that it is already the owner of the highest bid. Make another inquiry.

• Discovers that the current bid price is outside the bidding parameters set in the

agent’s parameters.

� Protocol Comparisons

• Excluding the initial IDLE state, the only state common to each protocol is the

CATALOG state. The product negotiation previously mentioned is implemented in all

protocols. However, transition from the CATALOG state is to a different state for all

protocols, and different client output messages are produced.

• BIDDING is implemented in only two of the merchant protocols. The implementation of

bidding is quite different in these two situations. Using the Haggle protocol, a series of

Bids and Offers are exchanged until either agent decides that a price contracted by the

other agent is acceptable, and a sale is generated. Using the English Auction protocol, a

client makes Bids against other unknown clients, rather than the server making counter

offers. The server only responds to the client with status information when requested.

There is no client BUYING state during this auction process.

 - 107 -

• BUYING is implemented in only two of the merchant protocols. Each of these protocols

has a different transition to BUYING. The Shopfront protocol chooses to buy after a

catalog search, and for the Haggle protocol, BUYING is reached after a series of Bid and

Offer exchanges.

• Of the ten vocabulary items available, four are used in the Shopfront protocol, six are

used in the Haggle protocol and eight are used in the English Auction protocol.

These comparisons show that the vocabulary primitives defined earlier can be used

independently to compose different valid protocol definitions. For example, with only a

fundamental understanding of what a Bid is, BIDDING can be implemented in different

ways, or Sale can be implemented in different protocols using different state transitions.

2.3.6 Client agent

A client agent is implemented using Java SDK 1.3 and JAXP 1.1 for XML parsing.

2.3.7 Client parameters

Client agent used the following parameters during product brokering and item purchase.

They are retrieved from a client agent properties file.

Table 2-16 Client Agent parameters

Parameter Example

Value

Description

item Shiraz A simple keyword query to initiate product brokering.

buy.price 230 Maximum price user is willing to pay for an item.

bid.start 180 For bidding protocols, the amount the agent should make

for the first bid.

bid.increment 10 The amount by which successive bids increment.

merchant yallara:28038 URL of merchant(s)

behaviour value Mode used to find a product. Either “value” or “cheapest”.

Explained further in the product brokering.

search.high 1.10 For product brokering, the upper price which the agent

should consider when searching for items. In this example,

the agent should consider items up to 1.1 * 230, or $253.

 - 108 -

When some protocols are used, this might be a starting

point for price negotiation, therefore such an item may

subsequently be offered at or below the agent’s maximum

price.

search.low 0.90 The low price bound which the agent should consider when

searching for items. Using search.high and search.low

parameters, the user essentially has a price band for

choosing items.

similarity.thre

shold

0.75 When selecting an item from a similarity match, this is the

lowest acceptable similarity match for a chosen item.

spy true This initiates a GUI Observer on the client agent showing

the input events, the output messages and the state changes.

Samples of this GUI are shown in some of the following

test examples.

2.3.8 Vocabulary Implementation

The client agent has a record of all the vocabulary items previously mentioned.

Implementation of each of these vocabulary items is done independently as either an

expected input event, or an output message from the state machine. Implementation of each

of these vocabulary phrases is done in a fundamental way, so that no vocabulary phrase

implementation needs to know anything about other phrases. For example, a simple

implementation of the fundamental bid operation is listed in Figure 2.18.

private ProtocolMessage doBid() {

 Bid bid = new Bid();

 bidPrice += bidIncrement;

 if (bidPrice > buyPrice)

 bidPrice = buyPrice;

 bid.setItem(item);

 bid.setItemId(itemId);

 bid.setPrice(bidPrice);

 bid.setQuantity(quantity);

 bid.setBidderId(bidderId);

 - 109 -

 return bid;

 }

Figure 2-14 Client Vocabulary implementation of Bid

In the above code fragment, ProtocolMessage refers to a Java interface defining an output

message from the state machine. As implementation of these terms is independent, they can

be used in any combination of input events or output messages, as required, by a valid state

machine specification.

2.3.9 State Machine processing

The client agent downloads a state machine from a merchant defined URL. This state

machine is defined in XML format. Appendix G shows the XML State Machine definition

for the Haggle protocol.

The Document Type Definition describes the following elements and attributes in the XML

file. Each of the element tags for the StateMachine XML definition is described in Table

2.17.

Table 2-17 State Machine XML elements

Element Example Attributes Example Data Description

StateMachine none State+ The document type.

State name=”BIDDING”

final=”false”

StateTransition+ The name of the state and

optionally whether the state

represents a final state.

StateTransition none event

message

transition

State transition information

containing exactly:

• One input event.

• One output message.

• One transition state.

event dtd=”Offer.dtd” “Offer” The input event that triggers

a state transition.

• The dtd attribute can

 - 110 -

specify a url of an XML

definition of the event.

message dtd=”Bid.dtd”

url=yallara:28039

“Bid” The output message sent

during state transition.

• The dtd attribute can

specify a url of an XML

definition of the

message.

• The URL attribute

specifies the destination

URL for the message. In

this example it specifies

that the message should

be sent to a server at

host=yallara and

port=28039.

transition none BIDDING The name of the state to

which transition occurs. This

must be a valid name of a

state in this state machine.

This state machine defines how the client interacts with the merchant that specified it. It is

first one validated.

A StateMachine object is created from the parsed XML data. It does the following:

• Accepts input events destined for the client

• Creates a collection of valid output message types according to the current state

• Asks the client agent for one of the valid output messages types

• Dispatches the output message to the merchant

• According to the output message type selected by the client agent, the state machine

changes state accordingly

The following is an example scenario of a transaction through the state machine.

 - 111 -

The initial state of the state machine is the first state encountered, in this case, IDLE.

As client/server transactions are initiated by the client, the state machine simulates a “Void”

input message to initiate processing. Defined transitions from IDLE are only to CATALOG

state, with the output of a Catalog message to the specified URL. This is the first message

sent by the client agent to the merchant server.

Now in the CATALOG state, the state machine will only expect a CatalogItems input event

from the merchant. This part of the state machine involves the negotiation between the client

and the merchant regarding the selected product. Input events for this negotiation can lead to

any of the three following transitions:

• BIDDING – If a satisfactory item is found for purchase.

• CATALOG – If further catalog item negotiation is to be performed.

• IDLE – If no satisfactory item is found for purchase.

Transitions will depend on the items returned from the initial user-supplied syntax query, and

subsequent reference item queries.

As an example, assume that a suitable item is found in the merchant’s CatalogItems. The

client will return a Bid message via the state machine to the merchant and transition is made

to a BIDDING state.

Now in the BIDDING state, the state machine is expecting either an “Offer” or a “Sale”

event only. If an Offer event is received from the merchant, the state machine will request the

client agent to return a “Buy” or “Bid” message back to the merchant. The agent could also

choose the “Void” message option, indicating that no response is required to the merchant.

This process of Bid and Offers can cycle. It is important to prevent a livelock when cycles of

messages are allowed. The vocabulary definitions of Bid and Offer cater for this in their

specification. When successive Bids or Offers have the same monetary value, it can be

assumed that no further Bids/Offers will be changed, effectively meaning that it is the final

Bid/Offer. Then, the cycle will cease. Eventually, either a “Void” message or a “Buy”

message would be sent to the state machine from the agent.

 - 112 -

A Void message will cause the state machine to revert to IDLE and the state machine is now

completed. A Buy message sent to the state machine will cause transition to BUYING state

and the Buy message to be dispatched to the merchant server. Once in the BUYING state, the

state machine will only expect a “Sale” input event from the merchant.

If a “Sale” event is received from the merchant, a transition will occur back to IDLE and the

state machine is now completed.

2.3.10 XML Parsing

All messages passed between the client agent and merchants are in XML format. This format

can be published at a specified URL by the merchant server.

Input events in XML are parsed using the SAX parsers of the Java JAXP 1.1 API into Java

Objects. Output XML messages are built using the DOM transformers of the Java JAXP 1.1

API from Java Objects. The architecture of the client message processing is shown in Figure

2-15.

Figure 2-15 XML Messaging Architecture

This implementation contains simple XML for the defined vocabulary items. Examples of

XML passed between the client agent and a Haggle merchant for a Bid, Offer, Buy and Sale

of an item are shown in Appendix G.

Protocol Request
Dispatcher

StateMachine

Client Agent

Vocabular

y

User
parameters

Input XML event
from merchant

ProtocolEvent Object
created from parsed XML

Input ProtocolEvent and list of
valid output ProtocolMessages

Instance of valid output
ProtocolMessage Object

ProtocolMessage Object

ProtocolMessage parsed
into output XML message
and dispatched to merchant

 - 113 -

2.4 Testing

Testing is the last step, and includes the following areas:

� State Machine correctness. This section mainly deals with the correctness of the state

machine. Testing ensures that valid state machine definitions can be successfully

downloaded and validated, and that invalid state machine definitions can be detected by a

client agent and discarded.

� Product Brokering. The common product brokering mechanism involving syntax matches

and similarity matches can successfully broker a product for the client agent. This

exchange is initiated from user parameters given to the client agent.

� Individual protocol testing. These tests are designed to ensure that every state and

transition in any individual state machine definition can be successfully invoked, and

client state machines can successfully traverse from initial state to all final states.

� Merchant Brokering. When a client agent is negotiating with multiple merchant servers,

the client agent must be able to decide between merchant agents based on the product

brokering results from each agent.

2.4.1 State Machine Correctness

Three valid State Machines were defined using XML for the Shopfront, Haggle and

EnglishAuction protocols. All of these client protocols successfully validate.

Each state machine specification is defined as the file StateMachine.xml in the root directory

used for implementation of each merchant server. This file is accessed either via a well-

known TCP port used by each merchant, or via a known URL for access via JAVA Servlets.

Appendix G shows an XML fragment of an invalid state machine specification (1) used to

test the state machine validation process. This state machine is an invalid version of the

Haggle protocol. The transition form IDLE to CATALOG has mistakenly been made to

BUYING instead.

 - 114 -

This error means that the CATALOG state cannot be reached from any other state. Forward

reachability analysis of the StateMachine validation will fail during state machine creation

with the error:

State CATALOG not reachable from initial state

Figure 2-16 Forward Reachability error in Client state machine

Figure 2-16 shows this invalid client state machine example.

Similarly, the following fragment of XML defines an invalid state machine for the Haggle

protocol. The transition from BUYING to IDLE has mistakenly been made to BUYING.

This does not provide any path from BUYING to any final state. Backwards reachability will

fail on the BUYING state. Backward reachability analysis of the StateMachine validation

will fail during state machine creation with the error:

State BUYING cannot reach a final state

CATALOG

BIDDING

BUYING

IDLE

/Catalog
CatalogItems

Offer Sale

/Bid
Offer

/Catalog
doCatalog

CatalogItems

/Buy
Offer

Sale

/Bid
CatalogItems

 - 115 -

Figure 2-17 shows this invalid client state machine example.

Figure 2-17 Backward reachability error in Client state machine

2.4.2 Product Brokering

Product brokering is the same for all three tested merchant protocols. Each occurrence of

product brokering is initiated by a keyword query to a merchant, and followed by any number

of exchanges of catalog item lists and reference item queries. These reference items will be

chosen in accordance with the client parameters stated in Table 2-12.

Final selection is based on finding a suitably similar item and price as specified by client

parameters. The client agent has two modes of behaviour for selecting a final product.

First behaviour mode is CHEAPEST. In this mode, an item is selected from a similarity

match based on the property that it is the cheapest. It is enough that the item is present in the

similarity list and above any similarity threshold limit to qualify as sufficiently similar.

The second mode is VALUE_FOR_MONEY. Where multiple suitable items are found, a

simple value for money (VFM) algorithm is implemented to discriminate between items in

the similarity query.

CATALOG

BIDDING

BUYING

IDLE

/Catalog
CatalogItems

Offer Sale

/Bid
Offer

/Catalog
doCatalog

CatalogItems

/Buy
Offer

Sale

/Bid
CatalogItems

 - 116 -

Value_For_Money = Similarity * Reference_Item_Price / Item_Advertised_Price

Where

• Similariity = The similarity of an item to a reference item passed to a Catalog query.

• Reference_Item_Price = The price of the reference item. As the reference item is chosen

according to the buy.price parameter and possibly search.high and search.low parameters,

this can be considered a function of the client agent parameters.

• Item_Advertised_price = The Advertised price of the item returned from the Catalog

query.

So for example if the original client maximum BuyPrice = $100, a reference item may also

be selected for $100. An item returned from this reference item search may have an item

similarity of 0.9, then true value for money for that item is $90. The higher the value for

money, the better. If Value for Money >= 1, this means that the item is AT LEAST as much

value for money as the original client requested item and price.

The following test using VFM shows the selection of a buy item using keyword and

similarity queries in selection of an appropriate product.

Table 2-18 Client parameters for Product Brokering test

Name Value

item Shiraz

buy.price 200

search.high 1.20

search.low 0.90

Table 2-19 Keyword Query for Product Brokering test

Name Value

Keywords Shiraz

Reference Item <none>

 - 117 -

Table 2-20 Catalog Items (1) returned from Product Brokering

The following items are returned from the initial keyword catalog query.

Variety Winery Label Vintage ItemId Price

Shiraz Henschke Hill Of Grace 1991 17 800

Shiraz Henschke Hill Of Grace 1990 16 1000

Shiraz Penfold’s Bin 128 1999 15 250

Shiraz Penfold’s Bin 128 1998 14 260

Shiraz Penfold’s Kalimna 1997 13 280

Shiraz Penfold’s Kalimna 1996 12 300

Shiraz Penfold’s Bin 389 1997 11 350

Shiraz Penfold’s Bin 389 1996 10 400

Shiraz Penfold’s Grange 1992 9 1000

Shiraz Penfold’s Grange 1991 8 1200

Shiraz Penfold’s Grange 1990 7 2000

Shiraz Wynn’s Hermitage 1993 6 240

Shiraz Wynn’s Hermitage 1994 5 230

Shiraz Wynn’s Hermitage 1995 4 220

Shiraz Wynn’s Hermitage 1998 3 210

Shiraz Wynn’s Michael 1997 2 400

Shiraz Wynn’s Michael 1993 1 500

The client looked through this list and discovered the first item within the client prices

parameters was ItemId 6 at $240.

A Reference query was returned to the server using ItemId 6 as the reference item.

Table 2-21 Reference Query for Product Brokering

Name Value

Keywords <none>

Reference Item 6

 - 118 -

Table 2-22 Catalog Items (2) returned from Product Brokering

The following items are returned from the reference item #6 queries.

Variety Winery Label Vintage ItemId Price Similarity VFM

Shiraz Wynn’s Hermitage 1993 6 240 1.0 1.0

Shiraz/

Cabernet

Wynn’s Red Label 1999 20 190 0.9 1.13

Shiraz Penfold’s Bin 389 1997 11 350 0.9 0.61

Shiraz Penfold’s Bin 389 1996 10 400 0.9 0.54

Shiraz Wynn’s Hermitage 1994 5 230 0.9 0.93

Shiraz Wynn’s Hermitage 1998 3 210 0.9 1.03

Shiraz Penfold’s Kalimna 1997 13 280 0.855 0.73

Shiraz/

Cabernet

Wynn’s Red Label 2000 21 210 0.81 0.92

Shiraz Penfold’s Bin 128 1999 15 250 0.81 0.77

Shiraz Penfold’s Bin 128 1998 14 260 0.81 0.75

The return items numbers 6, 20 and 3 all show VFM >= 1. Therefore the client agent

considers them good value for money, and selects the largest of the values for further

processing.

The result of this product negotiation is to select item 20 for purchase according to the

appropriate protocol.

This product brokering normally selects an item from the variety (eg “Shiraz”) specified by

the client parameters. However, this case is used to demonstrate that similarity matching is

able to determine the best match for a “Shiraz” may actually be a “Shiraz/Cabernet” blend,

because of their similarity, and the cheap advertised price of the “Shiraz/Cabernet” blend.

The following screen shots are from a GUI Observer class of the State Machine. The top

panel of the GUI shows the states and their transitions, the left side text area shows input

events to the client agent, and the right side text area shows output messages from the client

agent.

 - 119 -

Figure 2-18 Product Brokering Test Display

2.4.3 Individual Protocol Testing

All of the following scenarios for individual protocol testing are performed after product

brokering, as described in the previous section. Therefore, they all assume that a product item

has successfully been selected for purchase.

 - 120 -

• Shopfront Protocol scenario

Table 2-23 Shopfront Protocol Test Scenarios

Scenario Description Message sequence and

STATE transition

Client parameters and

result

Successful Buy Agent buys item from

merchant at advertised price.

Send Buy → BUYING

Recv Sale → IDLE

item=Cab/Sauv

buy.price=250

Client decides to buy identical

item at cheaper price of $240

{VFM}

Figure 2-19 Shopfront Buy Scenario Test Display

 - 121 -

Haggle Protocol scenarios

Table 2-24 Haggle Protocol Test Scenarios

Scenario Description Message sequence and

STATE transition

Client Parameters and

result

Successful

Bid

Client agent successfully

negotiates a merchant’s

price down. Negotiation

occurs over multiple

Bid/Offer cycles. Client

decides to accept a merchant

offer. Buy message sent to

server and Sale received in

response.

Cycle of: {

Send Bid → BIDDING

Recv Offer → BIDDING}

Then:

Send Buy → BUYING

Recv Sale → IDLE

item=Shiraz

initial.bid=180

bid.increment=10

buy.price=230

search.high=1.2

search.low=0.9

sim.threshold=0.75

Item is purchased after price

negotiation for $225

ReferenceItem=15

BuyItem=14

Successful

Bid

Client agent successfully

negotiates a merchant’s

price down. Negotiation

occurs over multiple

Bid/Offer cycles. Merchant

accepts one of the client’s

Bid prices and immediately

sends a Sale message

Cycle of: {

Send Bid → BIDDING

Recv Offer → BIDDING}

Then:

Recv Sale → IDLE

item=Shiraz

initial.bid=280

buy.price=330

bid.increment=10

search.high = 1.2

search.low = 0.9

sim.threshold=0.75

ReferenceItem=12

BuyItem=3

Item is purchased after

negotiation for $280

 - 122 -

Unsuccessfu

l Bid

Merchant does not

sufficiently lower price its

price to below the client

agent’s maximum price. No

purchase of Item. This will

require a livelock prevention

as the merchant will return

consecutive Offers for the

same amount to indicate

lowest offer price. Client

aborts bidding and returns to

IDLE.

Cycle of: {

Send Bid → BIDDING

Recv Offer → BIDDING}

Then:

Recv Offer → IDLE

item=Shiraz

initial.bid=400

buy.price=420

bid.increment=10

search.high=1.2

search.low = 0.9

sim.threshold=0.75

ReferenceItem=2

BuyItem=1

Lowest Merchant Offer is

$430 which cannot be

accepted by the client

agent.

Figure 2-20 Haggle Protocol Test Scenarios

 - 123 -

• English Auction Protocol scenarios

Table 2-25 English Auction Test Scenarios

Scenario Description Message sequence and

STATE transition

Client Parameters

Successful

Bid

Agent registers and

makes bid for item. At

end of auction

duration, the item is

sold to the agent.

Cycle of {

{Send Inquire → BIDDING

OR

Send Bid → BIDDING}

Recv Status → BIDDING

}

then:

Recv Sale → IDLE

item=Shiraz

initial.bid=180

bid.increment=10

buy.price=230

sim.threshold=0.75

Item is purchased after

price negotiation for

$230

ReferenceItem=15

BuyItem=14

Unsuccessful

Bid

Agent registers and

makes bid for item. A

subsequent Inquire

indicates that price is

above agent’s

maximum price so

withdraws from

auction.

Cycle of {

{Send Inquire → BIDDING

OR

Send Bid → BIDDING}

Recv Status → BIDDING

}

then:

Recv Status → IDLE

item=Shiraz

initial.bid=400

buy.price=420

bid.increment=10

search.high=1.2

search.low = 0.9

sim.threshold=0.75

ReferenceItem=2

BuyItem=1

Client agent receives

information that item

auction price is

currently 430. This is

greater than the client

buy price, so client

agent aborts the

auction.

 - 124 -

Figure 2-21 English Auction Protocol Buy Scenario Display

2.4.4 Merchant Brokering

This test was performed using the client agent performing product brokering with all three

merchants as specified in the “Product Brokering” test section. Merchant servers were

created using both TCP sockets and JAVA Servlets as the transport between client agent and

merchant servers.

Choice of architecture is independent of any agent communications protocols implemented.

The URLs in

 - 125 -

Table were used on UNIX and Windows 95 platforms respectively.

 - 126 -

Table 2-26 URLs for Merchant Brokering Test

Merchant TCP host:port Servlet URL

Shopfront yallara:28038 http://localhost:8000/servlet/shopfront

Haggle yallara:28039 http://localhost:8000/servlet/haggle

EnglishAuction yallara:28040 http://localhost:8000/servlet/auction

Each merchant will have a different catalog of items available.

The following client parameters are used:

Table 2-27 Client parameters for Merchant Brokering Test

Parameter Value

item Riesling

buy.price 250

initial.bid 210

search.high 1.2

search.low 0.9

similarity.threshold 0.75

The following product brokering resulted:

Table 2-28 Product Brokering results for Merchant Brokering

Merchant Selected Item Price

Shopfront Leasingham Bin 9 1993 240

Haggle Wolf Blass Watervale 1998 230

Auction Peterson’s Back Block 1997 250

After selecting an appropriate product from all three merchants, one merchant’s product is

selected for purchase. That item is then purchased from the merchant according to the

 - 127 -

specified merchant protocol. Figure 2.22 shows the architecture used for Merchant

Brokering.

Figure 2-22 Merchant Brokering

The merchant brokering in this case selects the cheapest merchant. This merchant employed

the Haggle protocol, so the following exchange of messages then encapsulates the purchase.

Table 2-29 Merchant Brokering transaction

Client Receives Client Sends State Transition

 Bid message for $210 BIDDING

Offer event for $220 BIDDING

 Buy message for $220 BUYING

Sale event for $220 IDLE

5.Negotiation
and Purchase

4.Merchant
brokering

3.Product
brokering

2.Product
brokering

1.Product
brokering

Storefront Haggle Auction

Client Agent

 - 128 -

In conclusion, it is well known how important protocols are in communication, and without a

proper and error free protocol, communication is not possible at all. [27] defines a dynamic

conversation protocol is one in which the protocol interactively defines new protocols at

run time using a protocol definition and manipulation language based on a set of reserved

coordination performatives, or specifications. This chapter dealt with such a dynamic

protocol and presented an example in an auction scenario. Further, there indeed is a tight

connection between the agent’s logic and its interactions.

The next chapter deals with the various issues encountered in verifying and correcting

protocols.

 - 129 -

Chapter 3: Protocol Correctness

Protocol Validation for CCSMs

Background

This chapter covers the basic concepts behind CCSMs (Communicating Complex State

Machines) and the advantages of CCSM models. Different protocol validation techniques are

used as partial and exhaustive exploration techniques. These techniques partially explore the

protocol state space for deadlock states procedure, the deadlock detection algorithm, and the

backtracking module. Implementation of the proposed algorithm is based on the XML

specification. XML parsing is used to parse information regarding the status and transitions for

XML specification, which are stored in a data structure. This section includes a discussion about

states, transitions, outgoing transitional characteristics, possible deadlock states, incoming

transitional characteristics and desired messages.

 A list of classes covers a detailed description of the Java classes. The Analysis section covers the

factors analysed for validation e.g. Complexity and Comparison. The Testing section of simple,

complex and hybrid deadlock scenarios is included in Appendix B.

 Sec 3.1 Related Work

According to [73], a network of communicating finite state machines (CFSM) consists of a set of

finite machines which communicate asynchronously with each other over (potentially)

unbounded FIFO channels by sending and receiving typed messages. As with any other model,

errors are a central issue during their design. As mentioned previously, in the case of CFSMs,

these errors include deadlocks, unspecified reception and unbounded communications, just to

name a few.

Various techniques have been developed to overcome these problems, the most common one is

reachability analysis, or perturbation technique. Each state is reached during the exploration of

the state space is analysed for errors after first verifying that it has not been observed in the

 - 130 -

validation [74]. A major restriction on the use of reachability analysis is the state explosion

problem. The number of states that require analysis increases to a point where it is impractical to

perform analysis. [19] proposed a new strategy called PROVAT (Protocol Validation Testing),

which was based on the heuristic approach, stating that with PROVAT incorporated, the

validation tool is much more effective than blindly performing the D-search.

Research carried out by [73, 75] discovered that their technique can reduce by at least half, the

number of reachable global states that have to be searched in verifying freedom from deadlocks.

[75] tested the fair reachability technique, which was limited to a network of CFSMs with any

number of machines. Further, the latter was true for CFSMs with bounded communication, which

is the case for most practical communication protocols.

Previous works mentioned above are dated pre-2002. An overview of the recent publications on

this subject, dated post-2002, are presented next.

[84] dealt with verifying reliable web services, which consist of asynchronously communicating

peers. They used finite state machines to specify behaviour of the peers. This behaviour was

modelled similar to that of a CFSM. The “Peer Controller Pattern” was presented, which resolved

various errors occurring in web services, including protocol correctness. This approach showed

an improvement in peer-to-peer operability, which is comparable to agent-to-agent operability.

Inter-agent communication is a key component in operating systems. The idea of conformance is

equally important, and allows for substitution of agents without changes to inter-agent message

exchanges. According to [85], to ensure conformance with other others does not required any

knowledge about other services involved in the interaction. They introduced such a set of edit

operations to ensure conformance and preserve operability.

Advances in technology have seen an exponential growth in web services such as e-commerce, e-

government and data-driven web services. These services are governed by specification tools that

generate the code to carry out various functions. Verification of these codes is a major step in

protocol correctness, since it addresses the actual specification. This verification was extended by

[87] to both inter-agent communication, as well as interaction through a web interface.

 - 131 -

One of the investigations involved boundedness of queues and lossyness of channels. Results

highlighted the impact of data awareness on the verification problem. The composition of

CFSMs via bounded, perfect queues is easily reducible to a single FSM for which verification is

decidable.

Further, [89] developed and verified a small functional implementation of the Transport Layer

Security protocol (TLS 1.0), mainly for verification of complex security protocols. Their strategy

involved developing, testing and verifying a small reference implementation of the protocol by

writing additional “verification harness” code.

Finally, a technical definition of a deadlock situation is provided, as described in [73]. A CFSM

can be represented as a labelled directed graph, with a distinguished initial state, where each edge

is labelled as an event. The events of a CFSM are ‘send’ and ‘receive’ commands over a finite set

of message types ∑.

Let I = {1, ..., n}, where n≥2 and represented the total number of processes in a network.

A CFSM ip is a four-tuple, described as:

(),,,, oiiii pS δ∑
±

Where

iS is the set of local states

oip is the initial local state

∑∑ ∑
≤≤

±

≤≤

∑∑=
nj

iji
nj

ji

1

,

1

, Υ

Where ∑ ji ,
, nj ≤≤1 , is the alphabet of messages that iP can send to iP , and ∑ ij,

,

nj ≤≤1 , is the alphabet of messages that iP can receive from jP .

iS

iii IS 2: →×±× ∑δ is the transition function.

),,(jmpi −δ is the set of states that process iP could move to from state p after sending a

message m to process),,(. jmpP ij +δ is the set of states that process iP could move to from

state p after receiving a message m send by process jP .

 - 132 -

We are working on the CFSM model and there is a variety of techniques available for protocol

validation. These techniques are broadly classified into two categories, the first is based on an

exhaustive exploration, and the second is a partial exploration of the protocol state space taken as

the approach for error detection. Both the techniques have relative positive as well as negative

aspects.

3.1.1 Exhaustive Exploration Techniques

All reachable states can be verified and checked for error if a protocol has finite capacity

channels. This section will describe the techniques in which the whole state space of the protocol

is explored for error detection. These techniques can generally detect all kinds of protocol design

errors; however it may require large time and space complexities.

I. Reachability Analysis

Reachability analysis is a technique to verify communication protocols. This technique is capable

of verifying different design errors such as deadlocks, unspecified reception, non-executable

transitions and buffer overflow. These involve a systematic search of the entire state space.

Firstly, it starts from the initial global state and recursively explores all possible transitions that

lead to new global states. This search is terminated when the channels are bounded. Each new

global state is analysed for protocol design errors. For each generated global state, a check is

performed to ensure it has not already been explored. This is done by querying the data structure

that stores the already discovered global states. This data structure also provides a means for

search termination. When the successor states of all the stored states are discovered, the search is

complete.

The result is an exhaustive reachability tree that captures all details. The reachability tree drawn

for an incorrect communication system shown in Figure 3.1. Nodes of the tree indicate the global

states of the system and a ‘0’ in channel content represents an empty channel.

 - 133 -

Figure 3.1: An incorrect communication system.

A reachbaility tree is generated in a similar way to a reachability graph. Each state in Fig. 3.2 is

represented as (M1 state, M2 state, M1�M2 message, M2�M1 message). Following this, the

reachability tree for the communication system in Fig. 3.1 is obtained as follows:

Initially, both M1 and M2 start in a state of ‘1’, and there are no messages being exchanged

between them – this is state S1 shown in Fig. 3.2. M1 sends ‘a’ to M2, and changes state to ‘2’,

resulting in state S2. When M2 receives ‘a’, it transits to ‘2’. At this point, state S3 results. The

next two states, S4 and S5, occur when M2 sends ‘b’ to M1.

A deadlock situation (state S5) occurs when both M1 and M2 states are ‘3’. In this instance, M1

is waiting to receive ‘c’ from M2, whereas M2 must receive ‘a’ to move forward. Since both

cannot happen at the same time, this communication system does not operate correctly.

The right-hand-side of Fig. 3.2 shows another scenario. When M1 sends ‘a’ to M2, state S6

results, and M2 moves onto ‘2’ (state S7). When M2 sends ‘c’, M1 moves to ‘1’ (states S8 and

S9), resulting in a successful communication situation. However, an unspecified reception occurs

when the system reaches state S10 when M2 sends ‘b’ to M1. In this case, there is no ‘receiving’

transition in M1 to accept the message ‘b’ in the channel from M2 to M1.

1

2

3

2

3

1

-a

+a

-c

+a

-b

-a

+c

+b

M1 M2

 - 134 -

Figure 3.2: Reachability tree for the communication system of Figure 3.1.

Non-executable transitions are identified as state transitions that are present in the protocol

specification, but are absent in the reachability tree. In Fig.3.1, transition ‘+a’ from state 3 to

state 2 in M2 is such an example.

Advantages of reachability analysis:

1. Automation of the entire verification process.

2. Ability to detect all kinds of design errors including buffer-overflow and livelocks.

However reachability analysis has major limitations as well:

1. The most common - the state explosion problem.

2. As the number of states to be analysed increases, computational complexities grow

exponentially, thus making it impractical.

II. Structural Analysis

To overcome the complexities raised due to a large number of states, another approach, namely

the structural analysis approach is used, which partition a large protocol, and verifies its subsets

 1, 1, E, E

 3, 2, E, E 2, 2, E, E

 3, 1, a, E
 2, 1, a, E

 1, 1, E, E 3, 3, E, E

 3, 1, E, c 2, 3, E, b 3, 3, E, b

 (S1)

 (S9)

 (S2)

 (S3)

 (S4)

 (S5)

 (S6)

 (S7)

 (S8) (S10)

 - 135 -

to counteract the complexity of analysis. Reachability analysis is performed for each protocol

partition, and the results are combined to infer the correctness of the entire protocol. This analysis

procedure is for balanced protocols, in which the finite state graphs representing the CFSMs, are

isomorphic i.e. have a one-to-one correspondence. An example of such a protocol is shown in

Figure 3.3.

Figure 3.3: An example of a balanced protocol.

During the decomposition approach of structural analysis, the protocol graph is partitioned into

subgraphs. Each of these subgraphs contain one unique header node and zero or more exit nodes.

In a case when there is no exit node in a subgraph, the header node can also serve as an exit node.

These subgraphs in the structural partition can only be connected by the exit node of one, to the

header node of the other. A minimal subgraph consists of a single node. A schematic structural

partition of a protocol in two subgraphs can be shown as in Figure 3.4.

Figure 3.4: The structural partitions for a balanced protocol.

 Gi U h

 Gj

 h

 Gi’ U h’

 Gj’

 h’

M1 M2

 +e / +a / -b

 +c +c / -d

 +e +e

 +a +c / +e

 / -a

 -e +b

 +d +f

 5

 4 3

 2

 1 0

 +e / +a / -b

 +c +c / -d

 +e

+e

 +a +c / +e
 / -a

 -e +b

 +d +f

 5

 4 3

 2

 1 0

 - 136 -

For M1, let Gi U h denote the union of subgraph Gi with the header node h of its successor

subgraph Gj. Let their corresponding counterparts in M2 be subgraphs Gi’ U h’ and Gj’

respectively. If the processes exchange events while M1 is in Gi U h and M2 is in Gi’ U h’ or

when M1 is in Gj and M2 is in Gj’, then this interaction is referred to as expected interaction

between subgraphs. If the processes exchange events while M1 is in Gi U h or Gj and M2 is in

Gj’ or Gi’ U h’ respectively, this interaction is called cross interaction between subgraphs.

Cross interaction between subgraphs can occur as a result of one process racing ahead of the

other. The purpose of this technique is to partition the protocol such that cross interactions are

eliminated. Let us denote the protocol graph in Figure 3.4 (Gi U Gj and Gi’ U Gj’). If there are

no cross interactions between the subgraphs in Figure 3.1, the reachability tree of the protocol

will be the union of the reachability tree of (Gi U h and Gi’ U h’) and the reachability tree of (Gj

and Gj’) over the global state <h, h’, 0, 0> plus a transition region. The transition region

represents the intermediate states when one process races ahead of the other. So the correctness

of the subgraphs implies the correctness of the protocol. For a protocol subgraph, if there are

deadlocks or unspecified receptions then these errors have to be distinguished as definite or

potential errors. The latter is an error that may vanish as a result of forming larger partitions. This

happens because the current partition is too fine and as a result, there is cross interaction between

graphs. A definite error is not only one for the protocol subgraph, but will become an error for

the entire protocol graph as well.

Advantages:

1. Since an entire protocol is divided into subgraphs, validation of individual graph can be

done independently and simultaneously.

2. This technique also explores all the global states in the state space of a protocol, but

divides this task to smaller subtasks, which can be performed independently and then

combined later.

Disadvantages:

1. Partitioning can require extra computational complexity.

2. It may not always be possible to eliminate cross interactions.

3. This technique is applicable only for balanced protocols.

 - 137 -

III. N-Tree Validation

N-tree, as the name suggests, is a technique of validating the process, not as a whole, rather each

process executes and generates a tree. The protocol, constituted by N-trees, is called a tree

protocol. This technique redirects the problem of error-detection into the identification of all

executable ‘receiving’ transitions and all stable global states. Stable global states are the

reachable states with all channels empty.

If a protocol is given the corresponding tree, a protocol can be constructed by tracing all possible

executions. Conversely, given a tree protocol, the corresponding general protocol can be

constructed by merging equivalent states and messages. While constructing a tree protocol, each

time a repeated state and message are renamed, all states and messages in different paths in the

tree are distinct. So, state s (as an example) of a process can be represented using several separate

states s.0, s.1, s.2 etc; each corresponding to a different way of reaching state s from the initial

state. A message ‘-m’ (as an example) can be represented by ‘-m.0’, ‘-m.1’, ‘-m.2’ etc; so that no

message is transmitted from two different states in the tree. For a general protocol shown in

Figure 3.5, the constructed trees are shown in Figure 3.6 and Figure 3.7.

Figure 3.5: A communication system with two entities.

+ALARM

ACK

-REQ

+DONE

-ACK

READY

+ALARM

WAIT REGISTER

-ALARM

+REQ

-DONE

+ACK

IDLE

SERVICE FAULT

+REG

process1 process2

 - 138 -

Figure 3.6: Tree protocol for process1.

Figure 3.7: Tree protocol for process2.

Whenever a node with the same message is created and analysed for duplication, the state

generation process is terminated. This means that all the departing messages of this new node are

the same as when it was discovered before and therefore, there is no need of expanding the tree

further. The technique describes the following three necessary conditions for a ‘receiving’

transition to be executable. The first condition states that a process can receive a message from a

-REQ 1

+DONE 0

-REQ 0 +ALARM 0

WAIT.0

READY.0

+ALARM 0

READY.1 WAIT.1

WAIT.2

+ALARM 2

REGISTER.1

-REQ.2

-ACK 0

+ALARM 1

REGISTER.2

REGISTER.0

WAIT.3

READY.2

+REQ 0 +ACK 0

IDLE.2

+REQ 1

-DONE 0

-REQ 0 -ALARM 0

SERVICE.0

IDLE.0

FAULT.1

SERVICE.1

-ALARM 2

FAULT.3.1

+REQ.2 -ALARM 1

FAULT.2

FAULT..0

IDLE.1

SERVICE.2

 - 139 -

specific process only after it has received all messages previously sent by the same process. The

second condition assumes that the protocol consists of more than two processes. It states that if

process1 is to receive a message from process2 at state x, and process2 enters state y after having

sent that message, the last two states that process3 must have been reached before process1 has

reached state x and process2 has reached state y must be in predecessor-successor relation.

The third condition says that, in order for process1 to receive a message from process2 at state x,

the last state that process1 must have reached before process2 has sent the message, must be the

predecessor of the state x. Otherwise, process1 must have passed state x by the time the message

has been sent. Then, it is impossible to receive the message at state x for process1.

Advantages:

1. This technique can generate N trees for N-process protocol to divide the problem into

simpler sub-problems that make the whole task easier.

2. The generation of a large global tree is eliminated, thus reducing computational

complexity.

Disadvantages:

1. A limitation of the approach lies in the termination of the tree growth, which is

undecidable.

3.1.2 Partial Exploration Techniques

This section will describe the techniques in which only a partial state space of the protocol is

explored for the error detection. These techniques attempt to reduce complexity, and explore only

part of the global tree, using some criteria. They can generally work more efficiently than the

ones previously presented; however they also have limitations when compared to the exhaustive

search techniques.

 - 140 -

I. Maximal Progress State Exploration

The maximal progress state exploration technique divides the task of reachable state generation

for a two-process protocol into two independent subtasks. The reachable state generation is

performed separately for each process. In each subtask, only states reachable by allowing one of

the two processes to make maximal progress, are generated and examined. The main problem

with exhaustive state exploration is the assumption that all reachable states of a protocol will be

generated in a particular order. One needs to consider all possible progress speeds for the two

processes. Also, one state can be generated many times since the same state can be reached by

many different progress speeds for the two processes.

The generated states are analysed against three types of a non-progress state: deadlock,

unspecified reception and channel overflow states. Another is called aprogress state. The

application of this procedure is shown for the two-process protocol in Figure 3.8. The processes

are forced to perform maximal progress as described by the following steps.

1. States are generated for process1 through ‘sending’ transitions and firable ‘receiving’

transitions of process1. This is done as much as possible, until transitions from the

current states are all unfirable ‘receiving’ transitions i.e an empty channel.

.

 - 141 -

Figure 3.8: Maximal Progress State Exploration.

 1

 3 2

 1

 3 2

-g1

-g1

+g4

+g1

+g2

-g4

-g3

+g3

+g3

-g2 +g1

 1, 1, E, E

 3, 3, E, E 3, 1, E, 12

 1R, 3, 3, E 2, 1, E, 1

 3, 3, E, E 3, 3, E, 12

 3, 2, E, 2 3, 3, 3, 12

 2, 2, E, E 2, 2, E, 12

 3, 2, 4, E 3, 2, 4, 12

 3, 2, 4, 2

 3, 3, E, 2

 3, 2, E, 22

3, 2, E, 122 3, 2, E, 2

 3, 2, E, 22

 2, 2, E, 2

 1, 1, E, E

 2, 2, E, E 1, 2, 34, E

 2, 1R, E, 1 1, 3, 3, E

 2, 2, E, E 2, 2, 34, E

 3, 2, 4, E 2, 2, 34, 1

 3, 3, E, E 3, 3, 34, E

 3, 2, E, 2 3, 2, 34, 2

 3, 2, 4, 2

 2, 2, 4, E

 3, 2, 44, E

3, 2, 344, E 3, 2, 4, E

 3, 2, 44, E

 3, 3, 4, E

 - 142 -

2. The same procedure is repeated for process2 through its ‘sending’ and firable ‘receiving’

transitions.

3. If all generated states of process1 and process2 are progress states, then the processes

have no non-progress states. Each generated state in Figure 3.8 is a progress state and

hence, the protocol is free from any non-progress states.

The state explorations in the first and second steps of the procedure are independent of each

other. If these two state explorations are executed in parallel, the time complexity requirement is

less than that in exhaustive state exploration techniques. If these are executed sequentially, the

required storage space is less than the exhaustive search techniques.

II. Reverse Reachability analysis

Reverse reachability analysis starts from some undesirable global states that are in the opposite

direction, and generates global states. If at any stage the initial global state can be reached during

this process of reverse reachability analysis, then the undesirable state is called a deadlock state.

Otherwise, the protocol is deadlock-free. It is a type of imaginary process the starts the process

from some suspected global state through a state transition diagram. This diagram is called the

reverse global state transition (RGST) diagram. If the states and the state transitions of the RGST

diagram are included in a path from a possible deadlock state to the initial state, the suspect is a

deadlock state. Also, for each ‘sending’ event in the reverse reachability analysis, there exists a

corresponding ‘receiving’ event that occurred before it.

For the two-process protocol shown in Figure 3.9, the reverse reachability analysis generates <2,

2, 0, 0> as one of the four suspect deadlock states. When this global state is used to generate

reverse paths, one of the four generated paths reaches the initial global state. This path is

presented as: <2, 2, 0, 0> �R <1, 2, 0, c> �R <1, 1, a, c> �R <0, 1, 0, c> �R <0, 0, 0, 0>. This

concludes the presence of deadlock in the protocol due to global state <2, 2, 0, 0>.

Advantages:

1. The reverse reachability analysis generally has a fewer number of global states generated

than the exhaustive search techniques, and therefore, performs better in most cases.

 - 143 -

Disadvantages:

1. It can not detect all kinds of errors. Additionally, it also does not have independent

subtasks that can be performed in parallel when compared to other partial exploration

techniques.

Figure 3.9: A two-process protocol for reverse reachability analysis.

III. Random Walk State Exploration

To overcome the limitations of Reverse reachability analysis, Random walk state exploration

can be viewed as a modified form. In this technique, only one random transition from the

current state is analysed, instead of systemically exploring all transitions one by one. This

technique proposes to analyse only a part of whole transitions leading to some potential

errors, which is sufficient to identify the cause of the error.

Advantages:

1. This technique is simpler compared to previous methods.

 0

 3

 2

 1 1

 0

 2

 3

C12

C21

-a
+c

+d

-b
+c

+c

+c
-d

-c

+a

+a

+b

+a

 - 144 -

Disadvantages:

1. Random walk state exploration has no well defined termination of the process. There

is no way of detecting whether all states have been visited, neither does it guarantee

error-free protocols.

IV. Simultaneous reachability analysis

Simultaneous reachability analysis [23, 28, 39] is a technique which performs protocol

verification by generating and analysing a small subset of all reachable global states

simultaneously, while detecting deadlocks. For each generated global state, this technique

computes the sets of transitions to be simultaneously executed on all processes, and then executes

them, to generate the next global states. This technique names each transition at a global state as

an independent transition, a dependent transition or an impossible reception.

Figure 3.10: Simultaneous reachability analysis

-b31

-d23 +c32 +b31 +a31

P1

1

2 3

P2

4

5 6

P3

7

8

>< 8,4,1

>

<

εεε

εεε

,,

,,,

>< 8,6,1

>

<

ε

εεε

,,

,,,

bd

>< 8,4,1

>

<

εε

εεε

,,

,,,

b

{ }43 , tt { }4t

 - 145 -

If a transition can be executed immediately at a global state, it is known as an independent

transition. A dependent transition is one that cannot be executed immediately. A ‘sending’

transition will be independent if its execution will not cause channel overflow, whereas a

‘receiving’ transition will be independent if its desired message is in the channel. A dependent

‘sending’ transition will cause channel overflow and a dependent ‘receiving’ transition cannot

receive a message as the channel is empty. When a transition is ‘receiving’ and the channel has

another message, the transition is called an impossible reception.

A maximum set of transitions from the union of the set of all dependent transitions, and a set of

all independent transitions form a candidate set of that global state if it includes: at most one of a

dependent transition or an independent transition of that global state from each process, and at

least one independent transition of that global state. For each such candidate set, the

simultaneously executable set is obtained by removing dependent transitions from that candidate

set. In simultaneous reachability analysis of a protocol, a global state generates another global

state if there exists a simultaneously executable set for the former, and the processes execute

simultaneously the transitions in that set. This technique generates a simultaneous reachability

graph in which nodes represent global states and arcs represent simultaneous global state

transition between global states. The application of this technique is shown for the fragment of a

three-process protocol in Figure 3.10 [23].

Advantages:

1. This technique has good concurrency control, thus avoiding unnecessary state space

generation.

Disadvantages:

1. It only analyses the simultaneous behaviour of the processes to detect all the deadlocks

and so, the number of global states explored are less than the exhaustive search

techniques.

 - 146 -

3.2 CCSM

Entire communication systems can be viewed as a network of Finite State Machines,

though it is a very effective technique of validating and specifying the protocols but they

do not provide a compact higher level service view of a large and complex protocol.The

Communicating Finite State Machines (CFSM) Model has been widely used for specifying

and validating communication protocols for years. For a large and complex protocol, as the

number of states increases, so does the complexity. This increase in the number of states and

transitions will affect the clarity and presentation of the protocol. Therefore, we need a

technique to overcome this problem. This section details the concepts and terminologies of

the CCSM model, the advantages of this model over the CFSM model and also the types of

protocol design errors that can be encountered in CCSMs. which is based on the UML state

chart diagrams [40, 41, 29].

3.2.1 Complex State Machines

Complex State Machines (CSMs) are finite state machines whose states are themselves other

finite state machines. A network of CFSM consists of a set of finite state machines which

communicate asynchronously with each other. A client agent can download the CFSM

specifications published by the server, and follow that format and sequence in order to

converse. As the complexity of communication protocol increases, the CFSM specification

gets larger and thus consists of huge number of states. To improve the expressiveness of

specifications in such a case, we need a structuring mechanism that allows us to specify

protocols by stepwise refinement.

 - 147 -

Figure 3.11: A sample CSM Agent with two complex states REGISTRATION and

BIDDING.

A complex state has other states embedded into it, which are called internal states and the state

machines using those states are known as internal FSM. This complexity gives modularity to the

state machine. Figure 3.11 shows a sample CSM M1 of a bidding agent who has three simple

states (IDLE, REQUEST and PAYMENT) and two complex states (REGISTRATION and

BIDDING). The complex states REGISTRATION and BIDDING are representing internal

FSM's M2 and M3 respectively. CSM M3 also has a complex state ‘s2’, which represents the

internal FSM M4. These complex states can each be viewed as a top-level service in the state

hierarchy, but the internal FSMs corresponding to them will represent the details and

complexities involved in them. Figure 3.11 is an example of a CSM that allows multi-level

complexity

 -ccdetails

 -request +catalog +rgstd -confirm

M1

 -item -price

 +higher

 +deal

 -request

 -details
 +reject

r1 r2

r3

 IDLE REQUEST REGISTRATION BIDDING PAYMENT

s1 s3

s4

s2

 -model

 +unavail
 +avail

t1 t2

t3

M2 M3

M4

 - 148 -

Due to the varying nature of the errors encountered with CSMs, the treatment of these errors also

differs. For instance, deadlocks occur when one state is waiting for a change from the second

state, and vice-versa. On the other hand, livelocks involve FSMs looping among states, without

really doing anything. Therefore, for FSMs with or without complex states, the treatment of

errors is computationally different due to the very nature of these errors.

The equivalent simple finite state machine of a CSM can be called a flattened state machine. The

advantages of our proposed model are discussed after defining CCSMs.

3.2.2 Communicating Complex State Machines

In this model, a protocol is defined as a network of two or more processes, represented as CSMs

that exchange messages over error-free simplex channels. A community of agents

communicating with each other via a protocol can be modelled using Communicating Complex

State Machines (CCSM). A complex state machine can communicate with either complex state

machines or simple states. This implies that the state machines do not necessarily need to reach

their complex states simultaneously.

Formally, a CCSM can be represented as the top-level FSM ()TASqC f ,,,, where:

• C is the set of states where some states will be complex and other will be simple states.

Each complex state will correspond to an FSM.

• q is the initial state where Cq ∈

• fS is the set of final states where CS f ⊂

• A is the communicating alphabet which represents the set of valid message types.

• T is a map of state transitions ()CAC ×× such that the CSM will move from the current

state to another state when applied with a transition.

The transition relation can be represented by a quadruple as ()emth ,,, where:

• Ch ∈ is head of the transition i.e. the state where the transition originated.

• Ct ∈ is tail of the transition i.e. the state where the transition terminated.

 - 149 -

• Am ∈ is the message that is sent or received.

• e is the ‘sending’ or ‘receiving’ event.

In the case where t is a complex state, the transition will result in placing the corresponding

FSM within the complex state in its initial state. In the case where h is a complex state, the

transition will only occur if the internal FSM of the complex state has reached one of its final

states. Figure 3.12 shows an example of two CCSMs communicating over channels C12 and C21.

3.2.3 Advantages of CCSM Model

The CCSM Model possesses the following advantages over the CFSM model:

It supports hierarchical decomposition of states by allowing nesting states within states. This

hierarchy allows the state machines to be viewed at different levels of granularity.

1. A significant sequence of states and transitions are replaced by a complex state. If the

state machine wants to use the same sequence again, it can reuse the complex state. In

such cases, the model will use an exponentially less numbers of states and transitions.

It supports modularity.

2. It presents a compact and higher level service behaviour of the entities in a protocol.

Each complex state can represent the part of the protocol involving other services.

Even the channels and alphabets used in the internal FSMs can be different from the

higher level, but they should have specifications of these.

3. For strict CSMs, where a complex state can only talk to another specified complex

state, the protocol validation of the complex states can be performed in parallel, and

the results can be combined for the entire protocol validation.

 - 150 -

Figure 3.12: CCSMs M1 and M2 communicating over channels C12 and C21.

The above statements imply that the CCSM model has more expressive power than the CFSM

model.

S1

-d

0

1

3

4

6

5

8 7

1

0

2

3

4

5

7

6

8

2

9

-a +a

+c

-e
+e

+b
-d +b

+d

+h

-e

+f
-f

-c

+k

+i

-i

+h

-g

+g

+k +k -l

+l

-m +m

C12

C21

M1 M2

S1

S2

 - 151 -

3.2.4 Protocol Errors

The most common errors occurring in communicating FSMs are deadlocks, unspecified

receptions, non-executable transitions and buffer overflows. These errors can occur at the top

level or in the internal FSM level of a CSM. They are classified as follows:

� Simple Protocol Errors

Consider a case when all the CCSMs are in one of their simple states and an error occurs then

it is called simple protocol errors. Figure 3.12 shows an example of two CCSMs

communicating over channels C12 and C21. M1 and M2 starting initially from ‘0’. M1 sends

‘a’ and moves to state 1. M2 receives ‘a’ and moves to state 1 as well. Now, M1 is waiting to

receive ‘b’ or ‘c’ and M2 is also waiting to receive ‘b’ in order to move further. As both the

machines are waiting for each other to send the expected message, global state 1,1 is a

deadlock. As state 1 in both M1 and M2 is a simple state, this is an example of simple

deadlock.

� Complex Protocol Errors

Complex errors occur in the internal FSM’s of CCSMs. Errors occurring when all CCSMs are in

one of their complex states are called complex protocol errors. In Figure 3.12, M1 and M2 are

initially in state 0. M1 send ‘d’ and moves to complex state S1. Since the initial state of S1 is 3,

M1 is now in state 3. M2 receives‘d’ and moves to initial state 2 of complex state S1 as well.

From state 2, M2 sends ‘e’ and moves to state 3 in the internal FSM. M1 receives ‘e’ and moves

to state 4 of internal FSM. M2 sends g and moves to 5 and M1 receives g and moves to state 5.

Now, M2 and M1 are both waiting for message ‘h’ to arrive from each other. As M1 and M2 are

both in their complex states, the global state 1,1 SS or precisely 5,5 is an example of a complex

deadlock.

� Hybrid Protocol Errors

Errors occurring when some of the CCSMs are in simple states while the rest are in complex

states, are called hybrid protocol errors.

 - 152 -

In Figure 3.12, moving from state 4 inside S1 of M1, M1 sends ‘i’ and moves to complex

state S2. M1 is now in an initial state 6 of S2. M2 receives ‘i’ and moves from state 3 of S1

to simple state 6. Once again, M1 and M2 are waiting for the message ‘k’ to arrive. No one

can move further until the other one sends a message. As M1 is in one of its complex states,

S2 and M2 are in a simple state; the global state 6,2S or precisely 6,6 is a hybrid deadlock

situation.

3.2.5 Protocol Validation

Protocols are rules and regulations which define the method of interaction between agents, so

design errors in protocol designing are not acceptable and should be removed properly before

they are implemented. Moreover, it is necessary for quality assurance. If not detected, they can

even produce wrong execution. For example, they can result in accessing some private variables

of one of the agents, or wasting its resources. It is always safe and desirable for an agent to

perform some validation on a protocol before executing it.

A deadlock situation occurs when no move is possible from the current state. We propose a

protocol validation technique that partially explores the protocol state space for deadlock

detection in a network of CCSMs. This happens when the current states of all CCSMs only

have ‘receiving’ transitions departing from them, but all channels are empty.

Our proposed algorithm identifies the possible deadlock states in the protocol, and then

backtracks via their past transitions to check if they really can cause deadlocks. Such states are

identified as possible deadlock states. Backtracking is performed to check whether the messages

expected by such states were ever sent by the other CCSMs. If yes, then such states will

eventually receive the message and move to another state. If no, then such a state will wait

forever, and cause a deadlock. Such states are reported as the deadlock states by our algorithm.

The type of deadlocks they are causing is also reported.

 - 153 -

This section presents our algorithm to detect deadlocks for two CCSMs. The algorithm has three

procedures

1. To generate possible deadlock states

2. Detect them for the presence of deadlock

3. Determine the type of deadlock.

• Algorithm

A deadlock occurs when states have all ‘receiving’ departing transitions with empty

channels. The output transitional characteristics are set true for a state if this is the case.

Otherwise its output transitional characteristic is set to false. The Deadlock Detection (DD)

procedure calls the Possible Deadlock States (PDS) procedure to generate all the possible

local deadlock states for each CSM. The DD procedure generates their combination to see if

it can create a deadlock. If yes, then it applies Backtrack procedure to each of them.

These procedures can be applied to protocols dealing with two CCSMs but their channel

capacity is assumed to be one. Although the algorithm can easily be extended for a network

of more than two CCSMs, and channels with more capacity and there are some drawbacks to

this. Firstly, deadlock detection would be looking for all combinations of input transitional

characteristics from the different CCSMs, thus compromising scalability. Memory usage

would also be high due to the amount of processing power required.

Figure 3.13 shows the PDS procedure, which is called once for each CCSM. It generates all

possible local deadlock states by determining the output transitional characteristics of all the

states. This procedure also generates input transitional characteristics of the states, which are

used by the DD procedure to check whether the combination of two local states, one from

each CCSM, can cause a global deadlock state.

Input: S – set of states in the given CCSM as: (name, isFinal, isComplex).

 T – set of transitions for all states in the given CCSM as:

 (trans_from, event, message, trans_to).

Output: P – set of possible deadlock states in the given CCSM.

 - 154 -

 I – set of input transitional characteristics for P as: (state, input).

 D – set of desired messages for P as: (state, message).

receive – A flag indicating output transitional characteristic of the current state.

send – A flag indicating input transitional characteristic of the current state.

 procedure PDS(S, T, P, I, D)

1 foreach s є S, where (isFinal = false) do

2 foreach t є T, where (trans_from = s) do

3 if (event = ‘+’) then

4 receive = true;

5 D= D ∪ (s, message);

6 elseif (event = ‘-‘) then

7 receive = false;

8 break;

9 fi;

10 od;

11 if (receive = true) then

12 P= P ∪ s;

13 fi;

14 foreach t є T, where (trans_to = s) do

15 if (event = ‘-’) then

16 send = false;

17 elseif (event = ‘+‘) then

18 send = true;

19 break;

20 fi;

21 od;

22 I= I ∪ (s, send);

23 od;

 end PDS.

Figure 3.13: Possible deadlock states procedure.

 - 155 -

The procedure begins by checking the states of the CCSM one by one. In line 1, it checks if the

concerned state is a final state. If so, it skips this state because the final state cannot be a deadlock

state as the CCSM can terminate at the final state. In line 2, it checks for all those transitions

which are departing from the concerned state. If all transitions are ‘receiving’, the desired

messages of this state are added to a queue in line 5. And, the state is added to the set of possible

deadlock states in line 12. Now, all those transitions which are arriving at the concerned state are

examined in line 14. If all these transitions are ‘-‘ then the flag is set false in line 16. The state is

added with the flag to the input transitional characteristics in line 22. The set of possible deadlock

states, their input and output transitional characteristics are returned by this procedure to the DD

procedure shown in Figure 3.14. Procedure DD generates a global state by combining the local

possible deadlock states of the both CCSMs. We will call these CCSMs M1 and M2. It starts by

generating a combination of the first possible deadlock state of M1 in line 3, with first possible

deadlock state of M2 in line 4. It checks if the generated global state can still cause a deadlock by

looking at the corresponding input transitional characteristics of the local states in line 5.

All five variables, i.e. both input and output values are required for procedure PDS because both

input values (S and T) are substituted into the procedure to generate output P, I and D. Further,

the two loops cannot be run in parallel since the ‘receive’ value appears in the if statement as

well.

Input: S1, S2 – sets of states in M1 and M2 as: (name, isFinal, isComplex).

 T 1, T2 – set of transitions for all states in M1 and M2 as:

 (trans_from, event, message, trans_to).

 in1, in2 – initial states of M1 and M2.

Output: Solution to the deadlock detection problem.

P1, P2 – sets of possible deadlock states in M1 and M2 as: (name, isFinal, isComplex).

I1, I2 – sets of input transitional characteristics for P1 and P2 as (state, input).

D1, D2 – sets of desired messages for P1 and P2 as (state, message).

 - 156 -

procedure DD()

1 PDS(S1, T1, P1, I1, D1);

2 PDS(S2, T2, P2, I2, D2);

3 foreach s1 є P1 do

4 foreach s2 є P2 and (s2, y) є D2 do

5 if (s1, true) є I1 or (s2, true) є I2 then

6 if Backtrack(s1, y, T1, in1) then

7 if (isComplex for s1) and (isComplex for s2)

8 print(“<s1, s2> is complex deadlock”);

9 elseif (isComplex for s1) or (isComplex for s2)

10 print(“<s1, s2> is hybrid deadlock”);

11 else print(“<s1, s2> is simple deadlock”);

12 fi;

13 fi;

14 fi;

15 od;

16 od;

17 foreach s2 є P2 do

18 foreach s1 є P1 and (s1, x) є D1 do

19 if (s1, true) є I1 or (s2, true) є I2 then

20 if Backtrack(s2, x, T2, in2) then

21 if (isComplex for s1) and (isComplex for s2)

22 print(“<s1, s2> is complex deadlock”);

23 elseif (isComplex for s1) or (isComplex for s2)

24 print(“<s1, s2> is hybrid deadlock”);

25 else print(“<s1, s2> is simple deadlock”);

26 fi;

27 fi;

28 fi;

29 od;

30 od;

end DD.

Figure 3.14: Deadlock detection algorithm.

 - 157 -

According to [83], the problem of a prompt and efficient detection and resolution of a deadlock is

an important fundamental issue of distributed systems. Resources involved in a deadlock are not

available to other processes, resulting in an increased response time (until the deadlock is

resolved). Hence, a deadlock detection algorithm must be able to cope with protocols that contain

cycles. In the above algorithm, this is certainly the case.

Deadlock cannot occur in a state where the input transitional characteristic is false for both states,

because such a situation indicates that both the states have only ‘sending’ transitions coming to

them. It indicates that both the CCSMs have sent something to each other, and both channels are

full. They can move from the current states by receiving the channel contents. This means that

the present combination cannot cause a deadlock, but is vice versa in case of true.

 Such a local state is sent to the Backtrack procedure in line 6, with one by one the messages

desired by the other one. As the name suggests, the Backtrack procedure backtracks from the

current state to previous states until it encounters the ‘sending’ event for the desired message.

This procedure, shown in Figure 3.15, is called recursively, if the answer is not certain at the first

go.

Backtracking works in the opposite direction. The Backtrack procedure checks if M1 ever

sent the message desired by the local state of M2. If M1 did so, then M2 can move on from

the current local state by receiving it. Otherwise, M2 will not be able to receive that message

and keep waiting for it. This will cause a deadlock to occur. The Backtrack procedure first

checks, in line 4, all the ‘sending’ transitions coming to the current local state looking for the

same message. If it finds so, it declares non-deadlock and returns back to procedure DD with a

false flag which is shown in lines 5, 6 and 7.

Input: s – a possible deadlock state as: (name, isFinal, isComplex).

 a – the desired message by the other CCSM.

 T – set of transitions for all the states in the given CCSM as:

 (trans_from, event, message, trans_to).

 s0 – initial state of the given CCSM.

Output: deadlock – global flag indicating deadlock occurrence, initially false.

 - 158 -

limit – global flag to limit recursion, initially false.

 procedure Backtrack (s, a, T, s0)

1 if s = s0 then

2 limit = true;

3 fi;

4 foreach (s', -, a', s) є T do

5 if a = a’ then

6 deadlock := false;

7 return deadlock;

8 else

9 deadlock := true;

10 fi;

11 od;

12 if limit then

13 return deadlock;

14 fi;

15 foreach (s', +, a', s) є T do

16 Backtrack (s’, a, T, s0);

17 od;

18 return deadlock;

 end Backtrack.

Figure 3.15: Backtracking module.

If Backtrack does not find a ‘sending’ event for that message, it sets the flag true and does some

more checking, moving on from line 10. It now checks for the ‘receiving’ transitions coming to

the current local state, so that it can reach the previous state and backtrack from them. This is

shown in lines 15 and 16. The search for ‘sending’ event for the message continues until the

match is found, or further backtracking is not possible. Backtracking can not proceed when there

are none incoming ‘receiving’ transitions which proves that the message was not sent. If the

 - 159 -

search continues until the initial state is found, then we allow just one more go, by setting the flag

limit to true in lines 1 and 2. This checks the incoming ‘sending’ transitions and returns the

current value of the flag in line 13.

When procedure DD becomes true as the return value from Backtrack in line 6, it checks the

isComplex property of both the local states to see what kind of deadlock the combination is.

When isComplex property is true for both the local states in line 7, the generated global state is

called a complex deadlock state. If isComplex property is true for one and false for the other in

line 9, the global state is called the hybrid deadlock state. When isComplex is false for both the

local states in line 11, the resulting global state is called a simple deadlock state.

After concluding that a global state is or is not a deadlock, procedure DD generates another

global state by combining the first local state of M1 with the second local state of M2 and so on

with all possible deadlock states of M2 as shown in lines 3 and 4. The same process is repeated

from line 17 to 30 for the local states of M2 and they are one by one combined with all the

possible deadlock states of M1. Each time the algorithm checks if the generated combination can

still cause a deadlock by looking at the corresponding input transitional characteristics of the

local states.

3.3 Implementation

This chapter provides the details of the implementation of our proposed algorithm. First, we

describe the XML specification of CCSMs, and then illustrate how the parsing of this

specification is done to store useful information in data structures. We give functionalities of

the classes created in this implementation.

3.3.1 XML Specification

In Communicating Complex State Machines (CCSMs) or Communicating Finite State Machines

(CFSMs), the protocol is defined in the XML format. The Document Type Definition (DTD) of

the state machine specification is shown in Figure 3.16. Figures 3.17 and 3.18 have been shown

for the purpose of illustrating the XML specification.

 - 160 -

Figure 3.16: Top level view of a CCSM.

Figure 3.17: An internal FSM.

<?xml version=“1.0”?>

<!DOCTYPE CCSM [

<!ELEMENT CCSM (StateMachine+)>

<!ELEMENT StateMachine (State+)>

<!ATTLIST StateMachine name CDATA #REQUIRED>

<!ELEMENT State (StateTransition+)>

<!ATTLIST State name CDATA #REQUIRED>

<!ATTLIST State final CDATA # REQUIRED>

<!ATTLIST State complex CDATA # REQUIRED>

<!ELEMENT StateTransition (event, message transition)>

<!ELEMENT event (#PCDATA)>

<!ELEMENT message (#PCDATA)>

<!ELEMENT transition (#PCDATA)>

]>

Figure 3.18: DTD for state machine specification

 -ccdetails

 -request +catalog +rgstd -confirm

M1

 IDLE REQUEST REGISTRATION BIDDING PAYMENT

 M2 M3

 -request

 -details

 +reject

r1 r2

r3

M2

 - 161 -

Figure 3.17 shows the top level view of a CCSM that has a complex state called

REGISTRATION. This complex state is represented by the internal FSM shown in Figure 3.18.

The table explaining the elements and attributes of the DTD of a state machine, is shown below

using this CCSM example.

Table 3.1: Elements and attributes of an XML state machine.

Element Example Attributes Example Data Description

CCSM None StateMachine+ The document type representing

two or more State Machines.

StateMachine name = “M1” State+ Name of the complex state

machine or internal state

machine.

State name = “REQUEST”

final = “false”

complex = “false”

StateTransition+ Name of the state and whether it

is a final and complex state.

StateTransition None Event

message

transition

State transition information

indicating the kind of event, the

message and the transition state.

event None receive The ‘send’ or ‘receive’ event.

message None catalog A valid message from the

communication alphabet.

transition None REGISTRATION The name of the state to which

transition occurs. This can be a

valid simple or complex state.

Table 3.1 describes the XML specification for the state machines beginning with element

‘CCSM’. This element denotes the communication system and contains two or more

‘StateMachine’ elements. Each of these elements represents the CCSMs involved in the system.

To give a simple example, we show part of the XML specification of the CCSM fragment M1 in

Appendix G.

 - 162 -

The same specification will also contain the details of all internal FSMs in the communication

system. Appendix G shows the fragment of XML specification for internal FSM M2 representing

the complex state REGISTRATION.

The XML parser needs all the details reagarding the Communicating State Machines (CCSMs) as

well as all internal FSMs representing complex states.. A valid specification should be free from

syntax errors as well. Such errors will be reported by the parser and the specification will not be

processed.

3.3.2 XML Parsing

To manipulate an XML document, you need an XML parser. The parser loads the document

into your computer's memory. Once the document is loaded, its data can be manipulated

using the DOM. The DOM treats the XML document as a tree.

After parsing information relating to states and transitions they are stored in data structures to

make them useful for the deadlock detection algorithm. These data structures are made once

for each participating CCSM. It stores the data as:

• States: Each state of a CCSM is represented as an element of vector ‘states’. Each

element of ‘states’ is defined as stateInfo(String name, boolean isFinal, boolean

isComplex) where,

• ‘name’ is a unique identifier for the state.

• ‘isFinal’ is a Boolean, which, when set to true indicates this is a final state.

• ‘isComplex’ is a Boolean, when set to true indicates that this is a complex state.

The first element of the ‘states’ is the initial state of the corresponding CCSM. There is only one

and unique entry for each state in the ‘states’ vector. For CCSM M1, the initial state is IDLE and

it will be stored as (IDLE, false, false) in the ‘states’ vector.

� Transitions: Each transition of a CCSM is represented as an element of vector

‘transitions’. Each element of ‘transitions’ is defined as transInfo(String trans_from, char

event, char message, String trans_to) where,

• ‘trans_from’ is the state at the head of the transition.

 - 163 -

• ‘event’ indicates a receive event when +, and send event when -.

• ‘message’ represents the data sent or received.

• ‘trans_to’ is the state at the tail of the transition.

An example of transition will be (IDLE, send, request, REQUEST) which is the first transition in

the state machine. When parsing a CCSM, transitions coming towards a complex state are

replaced as the transitions coming towards the initial state of the internal FSM representing that

complex state. In the same way, transitions going out of a complex state are replaced as

transitions going out from the final states of internal FSM representing that complex state.

As an example in M1, the transition (REQUEST, receive, catalog, REGISTRATION) will actually

be stored as (REQUEST, receive, catalog, r1), as ‘r1’ is the initial state internal FSM representing

REGISTRATION. The same way transition (REGISTRATION, receive, rgstd, BIDDING) will

actually be stored as (r4, receive, rgstd, s1) where ‘r4’ is the final state of REGISTRATION and

‘s1’ is the initial state of BIDDING.

� Outgoing Transitional Characteristics: These characteristics are derived from the

‘transitions’ vector for each state in ‘states’ vector. These are represented as an array of

booleans ‘output’ which has the same number of elements as in ‘states’. Also the entry

number in ‘output’ corresponds to the entry number in ‘states’. For example, the first

element of ‘output’ tells the outgoing transitional characteristic of the first state in

‘states’.

If all outgoing transitions from the first state of ‘states’ are receiving, the value of the first

element of ‘output’ will be true. If any of the transitions from the first state is sending, the value

of the first element will be false. This checking is performed for all states, and the flags are set to

‘output’ correspondingly. This array is used to generate the possible deadlock states in the

algorithm.

� Possible Deadlock States: A state is called a possible deadlock state if all the

outgoing transitions from it are ‘receiving’. Only such states can globally cause a

deadlock to occur because in case of an empty channel they cannot make a move, as there

is no ‘sending’ transition. If a CCSM is in one of such states, and the channel is empty, it

 - 164 -

has to wait until the other CCSM sends a message. It might have to wait forever to

receive it and so, it can cause a deadlock.

The possible deadlock states for a CCSM are derived by looking at the output transitional

characteristics of all the states. For a state in ‘states’ vector, if the corresponding element in

‘output’ array is true then this state is called a possible deadlock state. The possible deadlock

states are stored in a vector ‘pds’, which forms a subset of the ‘states’ vector. So, each state of

‘pds’ is also defined as stateInfo(String name, boolean isFinal, boolean isComplex) as in the

‘states’ vector.

� Incoming Transitional Characteristics: These characteristics are derived from

‘transitions’ vector for each state in ‘pds’ vector. These are represented as an array of

booleans ‘input’, which has same number of elements as in ‘pds’. Also, the entry number

in ‘input’ corresponds to the entry number in ‘pds’. For example, the first element of

‘input’ tells the incoming transitional characteristic of the first possible deadlock state.

This array is used after generating the possible deadlock states in the algorithm to check if it can

be globally responsible for a deadlock. If all incoming transitions to the first state of ‘pds’ are

sending, the value of the first element of ‘input’ will be false. If any of the transitions to the first

state is receiving, the value of the first element will be true. This checking is done for all possible

deadlock states and the flags are set in ‘input’ correspondingly.

� Desired Messages: The expected messages for the possible deadlock states are

stored in a two dimensional array ‘desired’. The first dimension of this array is equal

to the number of elements in the ‘pds’ vector. The row number in the array corresponds

to the element number in the vector. For example, all the elements in the first row of the

array are the messages expected by the first possible deadlock state.

 - 165 -

3.3.3 Class Description

Implementation is performed in Java using J2SDK1.4.2 on the Windows XP platform. Table 3.1

provides an overview of the Java classes description. The state machines were presented in XML

format and XML elements were parsed to Java objects and used by the algorithm.

Table 3.2: Java Classes Description

Class Name Description

theParseXMLFile Parses an XML file and validates for syntax errors. It identifies

different nodes and attributes, and processes them to store their

values in objects. For the XML file representing state machines,

it gets ‘states’ and ‘transitions’ information for all state

machines. The ‘states’ and ‘transitions’ vectors are unique for

each communicating state machine.

StateInfo Stores the attributes of a state including ‘name’, ‘isFinal’ and

‘isComplex’. Each state of all communicating state machines has

one object of this class. These objects make elements of the

‘states’ vector.

TransInfo Stores the information about a transition including ‘trans_from’,

‘event’, ‘message’ and ‘trans_to’. Each transition of all

communicating state machines has one object of this class.

These objects make elements of the ‘transitions’ vector.

IOCharacteristic Processes the ‘transitions’ vector to get input and output

transitional characteristics. Each communicating state machine

has one object of this class.

Algorithm Implements the proposed algorithm by first determining the

possible deadlock states and then applying backtracking

mechanism to each of them to detect deadlock.

 - 166 -

3.3.4 Analysis

The analysis is done in two parts. Firstly, the complexity of our proposed validation technique is

provided. Then, a performance analysis is done and compared against two well known protocol

validation techniques.

• Complexity

Deadlock detection is a very important step in protocol validation. The proposed algorithm

takes the approach of partial state search technique for detecting deadlocks in a network of

CCSMs. This is important a global state space can grow enormously for a large and complex

protocol, thus limiting the number of generated states, leading to better time and space

complexity.

For time and space complexity of our algorithm, we look at the DD procedure in Figure 3.14.

The complexities will be given in terms of the number of states generated through the algorithm.

Since lines 3 to 16 and 17 to 30 can be performed in parallel, we will only consider one of these

parts for complexity analysis. Before executing these loops, the algorithm generates some

possible deadlock states. In most cases, the number of such states will be much less than the

number of total states in the communication system. For example, in Figures 3.21-3.26, for the

three communication systems total number of states are 9, 16 and 25, whereas the number of

generated possible deadlock states are 3, 2 and 2 only.

Since step1 and step2 can be performed in parallel, if the outer loop of line 3 to 16 of the DD

procedure is executed n times, and the inner loop is executed m times, the time complexity of our

algorithm will be O([m*b]n), where n and m are also the number of possible deadlock states in

two CCSMs, and b is the complexity of the Backtrack procedure. The best case for Backtrack

complexity will be if the message is found at the first try itself. Complexity in this case will be 1.

The worst case will be the generation of all the states in the state machine. The best case

complexity of DD will be O(mn). On average, the complexity can also be represented as

O([m*s]n), where s is the number of states in the state machine with m deadlock states.

 - 167 -

The complexity of an algorithm can be estimated by the number of possible deadlock states

(m and n). Since these states will generally be much less in number than the total number of

states (s), our algorithm should perform better than reachability analysis in most cases.

• Comparison

The two existing methods we have chosen are called reachability analysis and reverse

reachability analysis. The former is chosen for comparison as it is the most exhaustive and

effective approach of protocol validation [82]. The latter interested us because our algorithm is

based on the same principals of selecting some targets and going back from there, as used in

reverse reachability analysis.

Figure 3.19: First example of a communication system.

The performance is shown in terms of the number of generated states. A fewer number of

generated states will indicate better performance. In case of reachability analysis, performance

represented the number of generated global states. For reverse reachability analysis, it is the

number of generated reverse global states. And for ours, it is the total of the number of global

possible deadlock states and generated local states during backtracking. The examples and data

for both the techniques used here are taken from Reverse Reachability Analysis. For examples 1-

3, shown in Figures 3.19-3.21, we shall apply our algorithm to validate the protocol for

deadlocks, and put the results in Table 1. We are producing the results for a queue capacity of

one.

 0

 2

 3

 1 2 1

 4 0 +a

-b

-e / +c

-b

-e +a

+c

-b

+d

+e / -c

+b -a

+b

-d
-e

 - 168 -

For the above example, state 3 from machine1 is the probable candidate for deadlock. But there

is no possible deadlock state from machine2, as none of the states have all ‘receiving’ transitions

going out of it. So there will not be any global possible deadlock state for this example and the

number of generated states will be 0 for our algorithm.

Figure 3.28: Second example showing establishment/clear procedure in X.25.

For example 2, state 5 from machine1 and state 6 from machine2 are the only ones with all

‘receiving’ outgoing transitions. The global state <5, 6> will be a possible deadlock state. Since

all incoming transitions towards state 5 and state 6 are ‘sending’, they cannot generate a

deadlock. So, the number of generated states will be 1.

 +e / +f -e

 -g

 -d +c +f
 -g +f

+b

 / -g +f

+c +c
 -g +f

 -g +b +b -a +f

 0

 5 1 2

 3

 4

 6

 -e +e / +g

 +g -f

 +d -c
 +g -f

 +a

 +g -f /

 +d +d
 +g -f

 +g

 -b -b +a -f

 0

 5 1 2

 3

 4

 6

 - 169 -

Figure 3.21: Third example showing alternating bit protocol.

For the above example, state 4 from machine1 and state 0 from machine2 will make the possible

deadlock global state <4, 0>. Again, all incoming transitions towards state 5 and state 6 are

‘sending’, so they cannot generate a deadlock. So, the number of generated states will be 1 in this

case as well.

Table 3.3: Comparison of performance with existing algorithms.

 Example

 Reachability analysis Reverse

 Reachability Analysis

 Backtrack

1 18 2 0

2 40 1 1

3 136 1 1

Both reachability and reverse reachability analysis, along with backtracking, were compared for

each of the three examples provided in Fig. 3.19-3.21. The results of this comparison are

summarised in Table 3.3.

Looking at the above examples, we can say that in most cases our algorithm will perform better

than reachability analysis, and at least equally well as reverse reachability analysis. Perhaps, most

important is the fact that it provides two subtasks, one for each CCSM. Since these subtasks are

 +e / +a / -b

 +c +c / -d

 +e +e

 +a +c / +e
 / -a

 -e +b

 +d +b

 -c

 5

 4 3

 2

 1 0

 +e / +a / -b

 +c +c / -d

 +e +e

 +a +c / +e
 / -a

 -e +b

 +d +b

 -c

 5

 4 3

 2

 1 0

 - 170 -

independent of each other, and time and storage requirements of each subtask are less than the

total task, they can be performed simultaneously to save time and space. This property of our

algorithm is much different from the above two techniques.

In summary, a protocol is the backbone of a communication medium, and it becomes a more

crucial factor when working in a multi-agent environment. Here, we have discussed the various

techniques and algorithms used to validate protocol correctness and tested the proposed

validation techniques as well. A communication protocol should be validated against the

existence of logical errors to provide the quality assurance of a communication system.

Agents exchange information using a valid sequence that forms a communication protocol. The

behaviour of these agents can be modelled using a Communicating Finite State Machine

(CFSMs). But, CFSMs do not have much expressive power in providing a hierarchical view of a

complex protocol to reflect its differing levels of granularity. To overcome this limitation,

CCSMs are used, which provide the support of nested states.

We tested the operation of proposed validation techniques on various protocols, compared the

results of reachability analysis and reverse reachability analysis techniques. According to the

observations, a proposed validation technique is capable of detecting the presence, as well as the

absence of deadlock errors in the protocols. An algorithm can perform better than reachability

analysis, and almost equally well in many cases, and our algorithm provides one more option to

divide the analysis of possible deadlock states into two independent subtasks, which can be

executed in parallel, to reduce the time complexity of the analysis.

On the basis of these observations, we conclude that this proposed technique can handle protocol

validation and verification efficiently. The use of this protocol in various applications will be

explained in the next sections.

 - 171 -

Chapter 4

ISSUE3: Routing and Scheduling

Introduction

The focus of this chapter is on the existing approach to vehicle routing problems, digital

maps and SMS technology. The first section introduces the concept of vehicle routing

problems with their existing solutions. A mathematical formulation for problem solving and

two types of heuristic techniques will be examined in the subsections. Afterwards, a review

of digital maps will be conducted, and their technology will be described in the second

section. Lastly, SMS will be covered with its accessing methodologies. This chapter covers

the MIDAS architecture, processes and methods to find out the shortest paths for different

situations.

4.1 Related work

4.1.1 Vehicle Routing Problem

Vehicle routing problem is a complex situation and can be described as follows: A given

fleet of vehicles, each having a uniform capacity, a common depot and several customers.

Its main aim is to set the routes with minimum route cost which service all the customer

demands.

But it should meet the following criteria.

• Each customer is visited exactly once

• All routes start and end at the depot

• Sum of all demands on a route must not exceed the capacity of a vehicle

 - 172 -

Figure 4.1: An example solution to a Vehicle Routing Problem

There are also several other models for the time window constraints scheduling problem

[37], which include:

• The travelling salesman problem (TSPTW)

• The shortest path problem (SPPTW)

• Pickup and delivery problems (PDPTW).

 However, The VRPTW (Vehicle Routing Delivery) is the most widely discussed and

generic representative to our scheduling problem. These problems have been defined as

Non-Polynomial hard (NP-hard) [38] and are best solved by using heuristics. Heuristic

strategies firstly find an initial feasible solution and then improve it using local or global

optimisation techniques [31].

The objective of VRPTW is to service all customers while minimizing the number of

vehicles, travel distance, schedule time and waiting time without violating vehicles’

capacity constraints and the customers’ time windows. VRPTW has been proven very

useful in postal deliveries, industrial refuse collection, national franchise restaurant

services, school bus and security patrol services etc.

4.1.1.1 Mathematical Formulation

This section presents the VRPTW [30] mathematical formulation to focus the problem

and illustrate the difficulty of problems with time windows. VRPTW is given by a fleet

of homogeneous vehicles V and a directed graph G = (N, E). The graph consists of a

 - 173 -

finite set of nodes N and a finite set of edges E. Let N = {0, 1, 2… n}, we denote the

central depot as {0} and the customers as {1… n}. The set of edges represents

connections between the depot and the customers, and among customers. Each edge e has

two endnotes i, j and is denoted by e (i, j), we associate a cost ci j and a time ti j , which

may include service time at customer i.

Every customer in the network must be visited only once by one of the vehicles. Each

vehicle has a limited capacity q, and each customer has a varying demand di. Each

customer must also be serviced within a pre-defined time window [ai, bi]. A vehicle must

arrive at the customer before bi. It can arrive before ai but the customer will not be

serviced before time bi. The depot also has a time window [a0, b0]. Vehicles may not

leave the depot before a0 and must be back before or at time b0. There are two types of

decision variables in VRPTW. The decision xi j k (i, j ∈ N; k ∈ V; i≠ j) is 1 if vehicle k

travels from node i to node j, and 0 otherwise. The decision variable si k denotes the time

vehicle k starts service at the customer i.

The following mathematical formulae are given from [1]:

Min ∑ k∈V ∑ i∈N ∑ j∈N ci j xi j k (1)

subject to

∑ k∈V ∑ j∈N xi j k = 1 ∀i ∈ N (2)

∑ i∈N di ∑ j∈N xi j k ≤ q ∀k ∈ V (3)

∑ j∈N x0 j k = 1 ∀k ∈ V (4)

∑ i∈N xi h k - ∑ j∈N xh j k = 0 ∀h ∈ N, ∀k ∈ V (5)

∑ i∈N xi,0, k = 1 ∀k ∈ V (6)

si k + ti j – K(1 – xi j k) ≤ si k ∀i, j ∈ N, ∀k ∈ V (7)

ai ≤ si k ≤ bi ∀i ∈ N, ∀k ∈ V (8)

xi j k ∈ {0, 1} ∀i, j ∈ N, ∀k ∈ V (9)

The following constraints state that:

(2): each customer is serviced exactly once

 - 174 -

(3): no vehicle is loaded with more than its permitted capacity.

(4), (5) and (6): each vehicle leaves the depot, arrives at a customer base, then leaves

again, and finally arrives back at the depot.

(7): a vehicle k cannot arrive at j before sik + tij if it is travelling from i to j. In formula (7)

K is a large scalar.

(8) time windows are observed, and

(9) An integral constraint.

4.1.1.2 Insertion Heuristic

Insertion heuristic is a fast and easy to use technology which provides a set of feasible

routes by repeatedly inserting an as of yet unrouted customer into a partially constructed.

The insertion heuristic was introduced by Solomon [30]. He concluded that the insertion

heuristic has an excellent performance, compared to savings heuristic, nearest neighbour

heuristic and sweep heuristic. The simple implementation of insertion heuristic is easily

adaptable in any development environment without time performance penalization.

Moreover, it can be combined into other techniques for building an initial solution due to

its fast performance.

The concept of insertion heuristic assumes a route R, where C0 is the first customer and

Cm is the last customer with their earliest and latest arrival times. The feasibility of

inserting a customer into route R is checked by inserting the customer between all edges

in the current route, and selecting the edge that has the lowest travel cost. For customer Ci

to be inserted between C0 and C1, the insertion feasibility depends upon checking, by

computation:

(1) The total load,

(2) The total travel time and

(3) The amount of time that the arrival time of t1 is pushed forward.

Insertion is only warranted if none of the constraints is violated. The first two can be

easily obtained by adding the demand of customer i to the previous load and adding two

 - 175 -

route distances plus the waiting time and service time to the total time. A change in the

arrival time could affect the arrival time of all the successive customers of C1 in the

current route. Therefore, the insertion feasibility for Ci needs to be computed by

sequentially checking the pushed-forward values of all the successive customers Cj of Ci.

The pushed-forward value for a customer Cj is 0 if the time propagated by the previous

customer Cj, by insertion of Ci into the route, does not affect the arrival time. The

sequential checking for feasibility is continued until the pushed-forward value for a

customer is 0 or a customer is pushed into being tardy. In the worst-case scenario, all

customers are checked for feasibility. The insertion heuristic starts a new route by

selecting an initial customer and then inserting customers into the current route until

either the capacity of the vehicle is exceeded, or it is not feasible to insert another

customer into the current route.

4.1.1.3 Genetic Algorithm

A genetic algorithm is a new search technique used in computing to find the true or

approximate solutions to optimize and search problems. The Genetic Algorithm (GA) is

an adaptive heuristic search method based on population genetics. There are four major

steps to create a new generation of individuals: representation, selection, recombination

and mutation. The GA maintains a population of candidate members over many

generations. The population members are string entities of artificial chromosomes.

Chromosomes are usually fixed length binary or integer strings. A special selection

mechanism will pick up parents to go through crossover and mutation procedures and

produce some children to replace them. A new generation is formed with all the parents

replaced. The termination criterion of a GA is convergence within a tolerable number of

generations.

Berger et al. [31] propose a method based on the hybridisation of a genetic algorithm

with well-known construction heuristics. The initial population is created with the nearest

neighbour heuristic. The fitness values of individuals are based on the number of routes

and the total distance of the corresponding solution. For selection purposes, the authors

use the so-called roulette-wheel scheme.

 - 176 -

In this scheme, the probability of selecting an individual is proportional to its fitness. The

proposed crossover operator combines iteratively, various routes R1 of parent solution P1

with a subset of customers, formed by R2 nearest-neighbour routes from parent solution

P2. A removal procedure is first carried out to remove some key customer nodes from R1.

Then an insertion heuristic coupled to a random customer acceptance procedure is locally

applied to build a feasible route, considering the partial route R1 as an initial solution.

The mutation operators are aimed at reducing the number of routes of solutions having

only a few customers and locally re-ordering the routes. However, this technique requires

a lot of computation time to produce an optimal solution. The developer must also be

equipped with artificial intelligence (AI) knowledge to accomplish the implementation.

4.1.2 Digital Maps

Digital maps are used to provide visual information to customers, operators and drivers

(Figure 4.2). According to scientific theory it is easy to read and understand pictorial

information than textual one. Customers can easily trace their items on a map from the

Internet without knowing an exact location with which they may not be familiar; they can

obtain a rough idea about even the distance to their destination. Operators can also use

the map to track all the current locations of vehicles and routes. Furthermore, the map can

also be used to assist the driver to reach the destinations as a car navigation system in a

new driving environment.

Advantages:

• Improved Customer service

• Good Decision making

• Reduced fuel costs

• Saving of time

• Improved management of Customer expectation.

Map data also contains useful information for computing route scheduling in a more

dynamic and realistic form. It is not user-friendly to pre-calculate every single distance

between many points on a map. The distance is easier to calculate in the execution time

with the current positioning by using GPS coordinates. Furthermore, the directions can

 - 177 -

also be indicated. A digital map aids in the completion of a schedule. It provides an

efficient and high quality service for the transport industry.

Figure 4.2 Screen shot of Sydney digital map.

4.1.2.1 OpenMap

OpenMap has been widely used in different projects, and is used to manipulate and

display maps in this project. Its ease of use and multi-functionality can be utilized to

create a component and display a digital map from different sources to the screen.

Figure 4.3 an overview of OpenMap architecture [5].

 - 178 -

Its main component, map bean, consists of different layers; individual layers represent

different data information, such as highways, minor roads, population and boundaries

(Figure 4.3). Moreover, OpenMap sources may come from flat files, databases and the

Internet. In the end, we can simply embed the map bean into our application for map

manipulation capability.

4.1.2.2 Map Data

Map data is crucial for the functionality of this project. The data file that has been used in this

project is shapefile. A shapefile stores non-topological geometry and attribute information for

the spatial features in a data set [36], which is defined by the Environment System Research

Institute, Inc. (ESRI). All sample shapefiles in the project are downloaded from the

Geoscience Australia [35] website. Initially, we are considering major roads, but in the

future, it will be extended to the street level.

4.1.3 SMS

Short Message Service (SMS) is a transmission of short text messages to and from a

mobile phone, fax machine and or IP address. Once a message is sent, it is received by a

short message service centre, which must then get it to the appropriate mobile device.

The undeliverable message, stored in an SMS centre continues its attempts for seven

days. The SMSC receives verification that the message was received by the end user,

then categorizes the message as "sent" and will not attempt to send again. An SMS can be

sent and received simultaneously with GSM voice, data and fax calls. The utilization of

SMS can provide a simple and convenient way of staying in touch with drivers.

4.1.3.1 SMS Access

In the past, it was only possible to send SMS through mobile phones, but currently, they

can be transmitted from Internet web sites. Other than that, most Australian

telecommunication carriers have provided SMS access solutions for business or

individual customers to directly access the SMS network infrastructure using computer

software (Figure 4.4), such as Telstra. Telstra MobileNet SMS Access Manager provides

flexible access to the SMS network infrastructure via a variety of ways, which include

 - 179 -

wireless access, Short Message Peer to Peer Protocol (SMPP) access and dial-up access

[32].

Figure 4.4 Telstra SMS Access Manager - SMPP Access [11]

Apart from the major telecommunication carriers in Australia, the SMS access solution is

also available from some wireless service providers, such as BlueSkyFrog. BlueSkyFrog

smsAccess is a message gateway, which benefits from two different technologies,

Component Object Model (COM) and Simple Object Access Protocol (SOAP), and

offers a programming interface to access the SMS gateway through the Internet [33]. It

has provided a lightweight development environment, but offers few choices.

4.2.1 MIDAS

In June 2001, the concept of MIDAS (Mobile Intelligent Distributed Application Software)

evolved with the Australian industries requirements and specifications. The Australian

Transport Association (DOCITA) report 2001 believes that this electronic business system

can change the Australian business strategy and can increase income. Due to high diversity

and distances in Australia, the road transport industry plays an important role in the final

value/cost of many goods and services. The road transport industry accounts for 3.5 % of

Australia's GDP and employs 2.6 % of the Australian workforce or 223 500 people.

Australian transport businesses need to try technologies like bar coding, satellite phones,

CDMA mobile phones, Global Positioning Systems, in-vehicle navigation, in-vehicle data

systems, routing and scheduling software.

 - 180 -

4.2.1.1 MIDAS Functional Overview:

The aim of MIDAS is to provide an autonomous delivery management system from client

orders to proof of delivery using different technologies, including Global Positioning System

(GPS), wireless technology (Short Message Service (SMS)/Wireless Application Protocol

(WAP)) and the Internet. MIDAS provides both static and dynamic scheduling using wireless

communication channels to keep drivers up-to-date with information in real time when they

are off-site.

Figure 4.5: Functional Overview of MIDAS

MIDAS also benefits clients of the transport companies, whose orders can be easily placed

and traced anywhere, anytime. The MIDAS Functional overview is given in Figure 4.5.

4.2.1.2 MIDAS Processes

 MIDAS is an intelligent integrated solution for the Australian transport industry. Its duties

include everything from taking orders, fulfilling, and even acknowledging. MIDAS does not

replace, in fact, compliments the existing management systems in an organisation. It has

several functionalities:

1. Customers can give orders on either palm devices or the Internet.

2. After determining which company it belongs to, this order is then sent to MIDAS.

 - 181 -

The server sitting in the company’s premises, which then saves it to the company’s

remote database.

3. Using the Global Positioning System, MIDAS determines the most appropriate truck

for delivery.

Figure 4.6: MIDAS Processes

4. The MIDAS server then communicates with the truck driver through the wireless

device he is carrying.

5. Upon delivery, the MIDAS server also acknowledges it.

4.2.1.3 MIDAS Technical Architecture

The MIDAS system is based on a three-tier design, consisting of three main layers, which

include client (Handheld/WAP/Desktop application), web portal, and MIDAS servers,

residing at the transport companies. With this design, it would be easier to extend and

manage the system’s functionality since most of the changes could occur on the web portal,

saving transport companies the need to keep upgrading their MIDAS servers.

 - 182 -

Figure 4.7: MIDAS Technical Architecture

The architecture (Figure 4.7) is based on the principle of a Layered Reference Model. The

first layer of the architecture is the “User Interface and Services Layer”, which acts as the

point where users interact with the system. Beside the user interfaces, this layer also contains

service modules that handle different types of communications with the lower layer.

The second layer is the “MIDAS Application Server Layer”. It contains several

subsystems, which work together to provide services to the upper layer. The important

subsystems in this layer are:

���� Communication Subsystem: deals with handling communication with the User

Interface and Service Layer. It consists of different components to handle different

types of communication. Data synchronization between the handheld application and

the handheld conduit is performed by the HotSync. The handheld component is used

to send information from the handheld application to the server via a wireless

network such as GSM or GPRS. The WAP component is used for wireless

Customer Marketing Staff Driver

User Interface and Service Layer

Palm Interface

Palm Services

WAP Interface

WAP Services

Desktop Interface

Desktop Services

1.1

1.2

1.3

1.4

MIDAS Software System Layer

 Tracking &

Scheduling

Storage Subsystem

Communication Subsystem

Hot Sync Handheld Comm. WAP Comm.

Order SMS

Subsystem

Login

Subsystem

Routing &

Scheduling

Conduit

Subsystem

1.4.1.1

System Layer

Existing DBMS

Internet

 - 183 -

communication between the WAP application and the server. This subsystem is very

important since it is the core of the whole system.

���� Conduit Subsystem: The prime responsibility of this subsystem is to manage the

correct data synchronization between the handheld device and desktop computer.

During the synchronization, the subsystem also needs to perform data conversion

from handheld data format into desktop data format. The synchronization logic

applied by this subsystem is summarized in table 3.2.

���� Order Subsystem: The subsystem will be part of the MIDAS server, which resides

at the transport companies. It is responsible for handling all requests that are related

to orders, such as accepting new orders, and calculating order invoices.

���� Routing and Scheduling Subsystem: In any transport company satisfaction

between client/customer and operating costs are the most important factors. This

subsystem is responsible of the dynamic routing and scheduling of the daily run sheet

of drivers. Dynamic scheduling has simplified transport logistics such as courier

services, by providing technology-enhanced, real-time communication. Service

requests from the same area should be served once rather than multiple times,

facilitating a huge saving in travel distance and time.

���� Login Subsystem: This subsystem is responsible for maintaining users’ accounts

and handling the authentication of requests from handheld applications and WAP

applications. This module will be part of the web portal.

���� Storage Subsystem: This is responsible for providing a means for storage, such

as connection to existing DBMS and file management. Queries on the database

depend upon this subsystem. By having this subsystem, changes to storage will

not affect any of the other subsystems, thus improving system flexibility.

The last layer of this architecture is the “System Layer”. It represents the existing

company’s system environment, which includes the company’s DBMS and Operating

System.

 - 184 -

4.2.1.4 MIDAS modules:

 MIDAS consists of three different modules: - Internet module, MIDAS Server Module and

lastly, Wireless module, each have different key responsibilities.

1. Accepting orders, communicating with remote company’s server and transferring data in

XML format are key responsibilities of the Internet module. This module also provides a

generic Internet based transport exchange, which invites many customers from different

companies, log in and give an order. For each of these customers, a personalized profile is

stored.

2. Secondly, the MIDAS Server module accepts the XML based order from the Internet and

Palm, and stores it on the company’s database. Finding the appropriate truck through GPS

and sending the SMS messages to drivers are included in its task list. Routing and Scheduling

is another important part of this module. It provides dynamic routing for each run sheet of a

driver at a run time.

3. Thirdly, the Wireless module, which allows the customer to give an order, which is then

accepted by MIDAS server. This module also accepts proof of delivery and docket transfers.

4.2.2 MIDAS Server

The MIDAS server resides in the company’s remote server and is the heart of the system.

It performs a lot of core tasks, such tracking drivers, trucks and routes, finding the closest

truck with time constraints, sending SMS messages to the drivers, and rescheduling the

manifest. Some of the key functionalities are classified into External and Internal

Functionalities.

External Functionalities: External Functionalities of the MIDAS server include Accepting

order, Checking Balances, Registration Validations, Check booking and Acknowledging

order completion.

Internal Functionalities: Internal Functionalities include Path searching, Scheduling,

Mapping, SMS and Database Connectivity.

 - 185 -

4.2.2.1. Specification

This chapter will also specify the objectives, constraints and requirements of the system. It

includes the statements of the functional and non-functional requirements. Performance and

maintainability issues will then be considered. These requirements specify the quantity and

quality of the application.

o Objectives

The main objective of the MIDAS server system is to provide an autonomous dynamic route

scheduling system that enables scheduling of transport industry orders in two manners: static

and dynamic. Furthermore, the sub-goals of MIDAS need to be accomplished as follows:

Order System accepts a new order from any means, either from a palm device or from the

Internet server, and saves it onto a database. The Intelligent system determines the day of

delivery; if it is the same day, then acknowledgement should be sent to the driver. The

Scheduling System produces optimal routes for the order. Finally, the Digital Map system

shows the current position of the truck and the route.

o Constraints

i. An important requirement is to have a device which can tell the current position of all

the vehicles. However, this is not possible and we assume that the GPS data is already

saved in the database.

ii. The meaning of the current position of vehicles on longitude and latitude values have to

be interpreted by maps. Unfortunately, the commercial value of Australian map data costs

over $A28,000 a year. This is quite expensive, so we are using free map data, which

covers major roads and locality names.

iii. Although this project is developed in the Java computer language, the database uses

Microsoft Access as a back end. Therefore, the complete working version requires a

Windows platform. Otherwise, database migration is required.

o Specific Requirements

This section identifies the actual work that needs to be implemented in the system. In order to

develop a system in a manageable way; it must provide much more detail on what to do and

what is needed for the intended system.

 - 186 -

� Functional Requirements

The functional requirements state the quantity of the application that needs to be developed.

It specifies the operational functionalities of the system.

I. MIDAS Server External Functional Requirements

a) Accept order: To accept order through palm device or Internet server in XML format

and the output would be in Order number

b) Check balance: To accept an invoice balance, checking the request from a Palm

device or Internet server in XML format, and producing the output will be an invoice

amount.

c) Register validation: Validating a customer of the transport company for the Internet

server by checking the Australian Business Number and customer code in XML

format. The result will be either ‘yes’ or ‘no’.

d) Check booking: checking the booking details by booking number using WAP phone.

The result will be sender and receiver details.

e) Acknowledge order completion: Upon completion, the server must be able to accept

an order completion notification using order number in XML format. The result will

be either true or false.

II. MIDAS Server Internal Functional Requirements

a) Path searching: To find the optimal path between two locations. The input we

provide is two locations and the result is an optimal path.

b) Scheduling: To schedule the existing orders, we provide the vehicle list and order list

as the input and the result is new schedule for the database.

c) Mapping: MIDAS server must be able to access map data from a Shape file and

perform mapping. The resultant is searchable data structure.

d) SMS: Other responsibilities include SMS via Internet or mobile.

 - 187 -

e) Database connectivity: MIDAS server must be able to access a database and answer

the query.

III. Operator Functional Requirements

a) Track driver: track the driver’s location using driver Identification

b) Track truck: Operator must be able to track current truck location using truck

identification.

c) Track route: Operator must be able to track route of a manifest by its truck

identification / manifest number. The result will be a route on the digital map.

d) Finding closest truck: Operator must be able to find the closest truck with a specific

location using postcode.

e) Sending SMS: Operator must be able to send SMS to drivers using mobile phone. The

input may be a number or message. Result will be either true or not.

f) Scheduling: Operator must be able to reschedule the manifest using date; the result

will be new schedule.

� Non Functional Requirements

The non-functional requirements state the quality of the application that needs to be

maintained, such as execution efficiency and scalability of the system.

I. Performance

Route scheduling and Order scheduling are the main issues which affect the performance of

the system. In a digital map with 470,000 connection points and 5,000 intersection points it is

quite complex to find or to schedule a route. Therefore, the search algorithm should be able

to return an optimal path in five seconds. In route scheduling, path searching is not the sole

requirement, a second level of route scheduling search is also crucial. However, the two

levels of search increase execution time. This will not be an issue for static route scheduling

because it can gain extra time during midnight or offline periods. In contrast, a dynamic route

scheduling requires a quick response to the customer. Thus, the maximum decision time for

accepting a same day order should not exceed more than thirty seconds.

 - 188 -

II. Maintainability

The MIDAS server is developed to be compatible and cooperate with existing operational

systems that are used by transport companies. Route scheduling is a core component of the

MIDAS server. In terms of adaptability, the MIDAS server should be able to integrate with

any existing system without any major transformation. Thus, it should be easily able to plug

in a new algorithm without components modification. The MIDAS server is a central

communication hub that resides in a transport company. It establishes the communication

channels with the other two components of the MIDAS, Internet server and mobile devices,

for internal systems. Hence, interoperability communication is an elemental requirement for

the cooperation of the MIDAS server and other components.

4.2.2.2 Design

Besides the specifications, design is another major step to ensure a high quality of

applications in software engineering. This chapter illustrates the design of our system from

various diagrams by the Unified Modelling Language (UML), which include use cases,

class diagrams, sequences diagrams and state diagrams. These diagrams identify the

satisfaction of requirements from the design approach from the previous chapter.

Furthermore, these diagrams also describe the system development semantics in Object-

Oriented Language.

a) Use Cases

Figure 4.8 illustrates the interaction between the MIDAS server and MIDAS external entries.

It identifies the system activities and user actions, which needs to be performed by the

MIDAS server from the functional requirements. The necessary components can be identified

to carry out these activities. External entries include the Internet, Palm and WAP devices and

system operators. Activities between the MIDAS server and the Internet/Palm devices

include ordering, balance checking and register validating.

 These major activities invoke database connectivity to perform saving or retrieving data

records from the back-end database. Ordering will also invoke route scheduling with routing

and mapping to obtain an appropriate vehicle to fulfil an emergency order and then inform

the vehicle driver through the SMS module.

 - 189 -

order

check balance

Internet

register validation

Palm

check booking

order acknowledgement

WAP

routing

route scheduling

mapping

database connectivity

SMS

find closest truck

send SMS

track route

track truck

track driver

schedule

System Operator

<<include>>

<<extend>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<extend>>

<<extend>>

<<extend>>

<<include>>

<<extend>>

<<extend>>

Figure 4.8 Interaction between MIDAS and MIDAS external entities.

� The activities between the MIDAS server and WAP devices include booking

checking and order acknowledgement. They will directly invoke database

connectivity to perform checking and acknowledge recording.

� The activities between the MIDAS server and system operators include several

comprehensive tasks; sending SMS, scheduling, finding the closest truck, performing

truck and driver tracking, and route tracking.

All tracking is done using the mapping procedure. The task of finding the closest truck

invokes routing and mapping to accomplish a reality road network based search. The

 - 190 -

scheduling invokes similar components to ordering, thus performing more intensive

route scheduling. The extension of the SMS module can also allow the operator to send

an instant message to the drivers.

b) Class Diagram

A class diagram is used to illustrate and identify the relationship between classes in an

application. Figure 5 in Appendix H shows a cut down version of the MIDAS server class

diagram. It provides an overview of the relationship between major components.

Class Name Class description Tasks Performed

BsfHttpClient A generalization of

SmsHandler.

Sending SMS messages through

browser simulation.

BsfSoapClient A generalization of

SmsHandler.

Sending SMS messages through

SOAP protocol.

CacheManager A cache manager. Performing route caching to

reduce path-searching time.

InputUI A generic user input graphic

interface.

Capturing the user input for

tracking and scheduling.

Layer A generic map layer. Presenting different map data to

the user.

MapScreen A digital map interface

controller, which consists of

different map layers.

Performing mapping.

MidasAppServer The driver class of the MIDAS

server, which consists of

RoadManager, Scheduler,

SmsHandler and Storage.

Handling the external

connectivity, such as receiving

requests from the Internet/Palm

devices and delegating them to

the internal components.

 - 191 -

OperatorUI An operator user interface,

which consists of MapScreen.

Initiating the input interface and

allowing the user to perform

tracking, scheduling and

sending SMS.

RoadManager A road network manager. Loading the road map data and

performing routing.

Scheduler A schedule manager Performing route scheduling.

SmsHandler A generic class defines the

functionalities of the SMS

handler.

SmsUI A SMS user interface. Capturing the user input for

sending SMS messages.

Storage A database connectivity

handler.

Performing database

connectivity.

XmlHandler A generic XML handler. Interpreting XML messages into

a system data type.

For the feature of each class, the MIDAS class diagram (parts 1, 2 and 3) has demonstrated

the detail of the classes’ properties and relationships in the implementation level, which

includes over 70 classes in 14 packages to perform MIDAS server activities. It clearly shows

the attributes and the operations of a component in the system. Moreover, the package-centric

view of class diagrams is also included in Appendix C. In addition, the summary of

individual classes is documented in Java class documentation, Appendix D.

c) Sequence Diagram

The following diagrams show the flow of events and activities between components. All

relevant sequence diagrams are shown in Appendix H. A scenario is presented to show the

flow of activities. However, there are only selected scenarios that will be presented due to the

scale of the system. The following tasks illustrated by these case diagrams are as follows:

 - 192 -

� Sequence Diagram for Palm ordering

Scenario: A new order is received from a Palm device. The order must be completed on

the same day. An appropriate driver has been tracked and SMS is sent to him. Refer to

Figure 2 in Appendix H.

Sequence:

When a new order is received by the MidassAppServer, the XML encoded message will

be parsed by using the XML parser with the XmlOrderHandler. So, the order

information can be obtained and passed to Storage. During the order saving process, the

Storage has to determine the emergency of the order. If the order must be completed on

the same day, the RecordListener will be informed and a new booking number will be

returned. The RecordListener determines an appropriate truck and notifies the

OperatorUI. Then, the SMS message is sent through the SmsHandler. Also, the booking

number is encoded in XML format and sent back to the sender.

� Sequence Diagram for Retrieving Booking Detail

Scenario: A WAP user retrieves a booking detail through the Internet server. The

booking/order number already exists in the database. Refer to Figure 3 in Appendix H.

Sequence:

When a request is received by the MidassAppServer, the XML encoded message will be

parsed by using the XML parser with the XmlBookingHandler. Therefore, the booking

number can be obtained and used to retrieve the detail of the booking from the Storage.

Then, the booking detail is encoded in XML format and sent back to the sender.

� Sequence Diagram for Route Tracking

Scenario: The system operator inputs a truck number for route tracking. A specific route

is rendered to the screen with the digital map. Refer to Figure 4 in Appendix H.

Sequence:

When the OperatorUI receives the action event from the system operator, an InputUI

will be created and displayed. This allows the user to enter the truck identification.

Then, the entered information is passed onto OpMap, which then retrieves the current

location of the truck and service locations from the Storage. Next, the route is

 - 193 -

constructed by RoadManage with the location information. Finally, the truck location,

service locations and route information are added to different map data handlers,

including VehicleDataHandler, CustomerDataHandler and RouteDataHandler, which

handle mapping data during display to the user.

� Sequence Diagram for Truck Tracking

Scenario: The system operator inputs a truck number for truck tracking. Refer to Figure

5 in Appendix H.

Sequence:

When the OperatorUI receives the action event from the system operator, an InputUI

will be created and displayed. It allows the user to enter the truck identification. Then,

the entered information is passed onto the OpMap. The OpMap retrieves the current

location of the truck and its locality from the Storage. Next, the truck location and the

relevant information is added to VehicleDataHandler and LabelDataHandler, which

handle mapping data during display to the user.

� Sequence Diagram for Scheduling

Scenario: The system operator inputs a scheduling date, which is saved to the database.

Refer to Figure 6 in Appendix H.

Sequence:

When the OperatorUI receives the action event from the system operator, an InputUI

will be created and displayed, allowing the user to enter the scheduling date. This is then

passed onto the Scheduler, which retrieves the vehicles and booking information from

the Storage. Finally, this information is forwarded to the Algorithm to perform

scheduling, which also invokes the Road Manager to obtain route information.

 At the end of the scheduling, the Algorithm returns the Search Result object that

contains the scheduled routes. The Scheduler saves routes to the database via the

Storage.

 - 194 -

d) State Diagrams

The state diagram extends the event and activities occurrences from an external point of view

into an internal point of view of individual components. It illustrates the internal state

changes for further understanding of task performances in each component. In this section, it

will only cover the state diagram of the system’s main component, namely routing and

scheduling.

� Activity Diagram for Routing

This diagram illustrates the activity states during routing in RoadManager component. It

provides a graphical pseud-code description of the path-searching algorithm. Refer to Figure

7 in Appendix H.

• Activity Diagram for Scheduling

This diagram illustrates the activity states during scheduling in the Insertion component.

It provides a graphical pseudo-code description of the Insertion scheduling algorithm. Refer

to Figure 8 in Appendix H.

 - 195 -

4.3.1 Implementation

Various solutions for the MIDAS server regarding communication, routing and scheduling

are discussed in this chapter. It concentrates on the data structures and algorithms that had

been proposed and implemented in the project.

4.3.1.1 Communication

MIDAS (Mobile Intelligent Distributed Application Software) is an open system; the MIDAS

server performs communication with mobile devices, Internet server and drivers. Therefore

the communication we are discussing is between applications, and application to server.

� Application Communication

Communication between external applications and the MIDAS server is built on top of the

TCP/IP protocol. These applications use Socket to exchange data packets. The packet

structure for communication is defined as follows:

 Bit 0 7 15 23 31

Message ID Reserved Sequence Number

Data

Figure 4.9 Communication packet data structure

Message ID:

For an identifier of the message, refer to Appendix E.

Reserved:

An 8 bits space is reserved for future usage.

Sequence number:

A sequence number is used in a communication session with an

incremental value.

Data:

Data is exchanged during communication with varying lengths. It is

encoded in XML format.

 - 196 -

As communication is between different types of agents having different platforms and

different communication criteria, interoperation is difficult. This is solved by using XML for

exchanging information.

� Driver Communication

Based on mobile phone technologies, SMS and WAP are two means which make

communication possible between the driver and the MIDAS server. There is no direct

communication between the mobile phone and the MIDAS server. A driver has to use a WAP

enabled mobile phone to make contact with the intermediate MIDAS web server. Once this is

successful, application communication is used to forward the request to the MIDAS server

for extracting information. On the other hand, the MIDAS server has to send a SMS message

via the SMS Access gateway, which is provided by BlueSkyFrog wireless service provider,

to keep in touch with the drivers. Alternately, the web browser accessing simulation had been

developed for sending SMS through the SMS provider’s web page by using HTTP Client

Java package. Therefore, the SMS message may also be sent to the SMS provider’s web

server through the HTTP protocol to make contact with a driver at a lower cost without an

additional service charge [33].

 - 197 -

Linked List First Layer Tree Second Layer Tree

4.3.1.2 Routing

Routing is a fundamental part of scheduling, which performs a dynamic path search with map

data to produce an optimal route. In this section, we will review our proposed data structure

and algorithm for search execution.

� Data Structure

Figure 4.10 Double layer trees

Up to this point, we have the map data and API to access the data file and display it on the

screen. However, the data in the shapefile is not in a format for path searching. Various

problems have been raised – how will the road on the map be recognised? Are they

connected to each other? The most basic information we have is “a road is represented in a

poly-line, which contains two or more pairs of coordinates in latitude and longitude values”.

Therefore, we need to construct a data structure for ease of search. In our approach, we create

a data structure that is based on binary trees. There are two layers of binary trees. Both are

sorted on different values, one is according to the latitude value and the other is according to

the longitude value. Besides, a node of the top layer binary tree contains the second layer

binary tree. Hence, when a coordinate of a road comes in, it will compare with the latitude

value on the first tree and get into the second binary tree. Next, the coordinate will be stored

in the second tree according to the longitude value.

 - 198 -

� Closest Point

Figure 4.11 Closest points nomination

However, these are the same coordinates that belong to two or more different roads because

of connections or intersections between them. Therefore, the nodes of the second tree allow

duplicate values to be stored for different roads. Therefore, a node of the second tree contains

a linked list and the final storage of the coordinates is the linked list, which will also link to

all the corresponding road information (Figure 4.10). This structure allows us to search an

entry according to two values (latitude and longitude) in log N complexity, where N is the

number of entries.

There are no restricted locations, so vehicles and customers can be anywhere on the map. A

virtual path needs to be established between a specific coordinate and a real road. Other than

that, the nearest road has to be selected for forming a real path based on the road network.

It is not possible to check every point on the road for shortest path testing, especially when

the area of the map is getting bigger. To overcome this, we utilize the characteristic of

 - 199 -

coordinates and sort them using the above data structure. Then, we try to find a small range

of nominated coordinates, which are possibly next to the specific location. This approach can

also be used for searching the nearest vehicle with a given point. First of all, four nominated

coordinates can be selected based on four directions of the particular coordinate (a centre

point); the closest point from each of the four directions - North, East, South and West. From

these four points, we can form a rectangular area, which will cover all the points next to the

centre point. As all the points of rectangle are not regular, the rectangle can be very irregular.

The next step is to form a circular area by using the closest point out of all of them. We use

the distance between the closest and the centre point, as a radius to form the circle. As we

know, a circle has the same distance in all directions at any angle from the centre point;

hence, the covered points in this area are more representative for the nomination with shorter

distances. Furthermore, since the points in the area are much less than the whole map, the

number of direct distance comparisons can be reduced significantly; just use those points in

the nominated area for finding the nearest point (Figure 4.11). Hence, time can be saved from

comparing all the points. Unfortunately, the circle may still happen to cover all the points in

the worst case.

� Path Searching

A wise choice in the correct direction, while standing in front of an intersection, can save a

lot of unnecessary traversal for destination reaching. In our approach, we will store all the

nominated paths into a limited buffer list, which is sorted according to the approximate

distance to the destination, in ascending order.

A = an approximated distance

L = the actual path length have found

D = the direct distance from the path to the destination

A = αL + βD

Where α + β = 1, α >= 0, β >=0.

Therefore, the list will be resorted when a new branch is added, where the first path in the list

is always the shortest to the destination.

 - 200 -

The algorithm for path searching is as follows:

A new list is started in both the left and right directions. Then, the new nominated paths are

constructed recursively from the extension of the existing shortest path in the list, by adding

its branches before the next intersection appears, and then storing back to the list. If the new

branch is leading away from the destination or the path length is increasing without leading

closer to the destination, it will be pushed down from the head of the list. Repeated execution

of this will gradually lead to the destination with the shortest path at the first element of the

list.

From this approach, we can ensure the path is going in the correct direction and heading to

the destination that will be selected. On the other hand, the limited size of the buffer will

evict the last element from the list when the buffer is full. This will eliminate an unnecessary

search of those branches leading in the opposite direction. In some cases, this also eliminates

the infinity search when there is no path connection between two points. Figure 4.12 is a

sample outcome of path searching from Werribee to Queenscliff and Anglesea.

Begin with the left path and right path of the starting point and store them into the

buffer list, which is sorted by approximate distance to the destination.

While (the list is not empty).

Current path = Get the first path of the list and remove it

If (the current path does not reach the destination) then

If (the path is not end) then

Reproduces the current path to new paths with its branches

and store them back to the list

Else

Ignore the path

End if

Else

Terminates the loop and the path is established.

End if

End while

 - 201 -

Figure 4.12 Screen shot of the vehicle route from Werribee to Queenscliff and Anglesea.

vehicle route

 - 202 -

4.3.1.3 Scheduling

After routing, scheduling is a vital requirement for providing efficiency of transport or

logistics services. Scheduling performs the second level of search with time and load

constraints to produce an optimal route for the whole journey of vehicles.

Vehicle list

Order list

Route list

While (vehicle list and order list are not empty).

Route = get a vehicle route from the vehicle list.

While (the order list is not empty)

Order = get an order from the order list

For (insert the Order.pickup into the route with different position until the

end)

Check the time and load constraints

If (pickup can be done) then

Do the same procedure as pickup with the Order.delivery

For (start from behind the pickup until the end of the route)

Check the time constraints

If (the delivery is successful) then

Add the route to the route list

Remove the order from the order list

End if

End for

End if

End for

Reset the vehicle route to the best route from the route list

If (the route is full) then

Remove the vehicle from the list

Go to get another vehicle route

End if

End while

End while

 - 203 -

� Insertion Schedule

The implementation of scheduling is based on the Insertion Heuristic. The basic idea of

scheduling involves using a minimum number of vehicles to fulfil the pickup and delivery

orders in the same day with time and load constraints.

First, an initial route of a vehicle is started with a customer order from the order list. Then,

another order is inserted into the initial route from the beginning position with the pickup. If

the constraints are satisfied, delivery will be inserting behind the pickup, with a different

position for the satisfaction test.

Moreover, pick up for the new order may shift to the second position. The best result of the

tests will be chosen according to the earliest time of the routes’ end time. If the vehicle is full,

the next vehicle will be assigned. The process of scheduling will continue until the orders list

is completed or all vehicles are full.

4.3.2 Testing

In this chapter, the functional testing and the performance testing depict the result of the

MIDAS server implementation.

4.3.2.1 Functional Testing

This section mainly focuses on functionalities testing of the MIDAS server by using black

box testing. It demonstrates the operational correctness of the MIDAS server.

 Test case Purpose Result

1.

Sending order from

Palm/Internet

Test the network

connectivity, the data

interpretation and storing

procedure, and the

database connectivity.

Correctly save the

order to the database.

2.

Sending order from

Palm/Internet (the same

date order)

Test the locating closest

truck by path searching,

sending SMS and

Correctly save the

order to the database

and then send the

 - 204 -

mapping. SMS.

3.

Checking invoice

balance from Palm

Test the network

connectivity, the data

interpretation and

retrieving procedure.

Correctly return the

amount of the invoice.

4.

Register validation from

Internet

Test the network

connectivity, the data

interpretation and

retrieving procedure.

Correctly verify the

register.

5.

Checking booking from

WAP

Test the network

connectivity, the data

interpretation and

retrieving procedure.

Correctly return the

booking detail.

Sending

acknowledgement from

WAP

Test the network

connectivity, the data

interpretation and storing

procedure.

Correctly save the

acknowledgement.

6.

Driver tracking from the

operator interface

Test the data retrieving

procedure and mapping.

Correctly locate the

driver on the digital

map.

7.

Truck tracking from the

operator interface

Test the data retrieving

procedure and mapping.

Correctly locate the

truck on the digital

map.

8.

Route tracking from the

operator interface

Test the data retrieving

procedure, path searching

and mapping.

Correctly render the

vehicle route on the

screen with the digital

map.

 - 205 -

9.

Finding closest truck Test the data retrieving

procedure, path searching

and mapping.

Correctly locate the

closet vehicle on the

digital map.

10.

Sending SMS from the

operator interface

Test sending the SMS Correctly receive the

SMS from the mobile

phone.

11.

Scheduling from the

operator interface

Test the data retrieving

procedure, path searching,

scheduling and the data

storing procedure.

Correctly save the

schedule to the

database.

4.3.2.2 Performance Testing

Performance testing in section is used to measure the execution duration of static route

scheduling. The sample test case is selected with four customer orders, which include eight

service points (pickup and delivery), spreading over the Melbourne metropolitan area. This

experiment is done on an Intel Pentium III 1GHz machine with 250MB RAM. The execution

will search the entire map of Australia with 480,000 road nodes to produce an optimal route

with time frames (Figure 4.21).

The customer orders are:

Booking

No
Pickup Delivery

3 3026 Laverton North 08:00 - 18:00
3038

Sydenham
08:00 - 18:00

4 3021 St Albans 12:00 - 18:00 3002 Jolimont 12:00 - 18:00

 - 206 -

5 3061 Campbellfield 08:00 - 18:00 3082 Mill Park 08:00 - 18:00

6 3095 Eltham 08:00 - 10:00 3078 Fairfield 10:00 - 11:00

According to the recorded execution times, the result had shown that the MIDAS server

requires 55,000 milliseconds to produce the optimal route for the above customer orders.

This investigation shows that this system minimises the ordering procedure and delivery time

for the Transport and Logistics services, thus providing a more effective solution in the

industry. Implementing customer orders onto the MIDAS system, resulted in the graph

shown in Figure 4.14. The graph shows an almost linear relationship between the number of

orders and the time required to complete them. We can also see the time trend of the

increasing orders between 1 and 12. The slope of the figure is mainly affected by the distance

between two service points and the time constraints. Moreover, the average execution time of

the path searching between two points is 980 milliseconds, which is also recorded in this

testing.

 - 207 -

Figure 4.13 Screen shot of the result of the performance test case.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3 4 5 6 7 8 9 10 11 12

Ti
m
e

Number of Orders

Figure 4.14 Time trend against the order growth in scheduling.

 - 208 -

Thus far, the system has completely implemented route scheduling with the assistance of map

data and the Insertion Algorithm to perform a dynamic search.

In this chapter, we discussed communication in Routing and Scheduling. Even the best and

shortest possible path can be identified by using various algorithms and methods. The main

objective of this chapter is to discuss the various strategies to find the best routes and

schedule them according to the requirement to serve the customer as fast as possible.

The aim of this project was to analyze dynamic routing and scheduling in the Transport

Industry, using MIDAS, which the ARC Industry Grant (linkage) has specified. Use of the

Simple Object Access Protocol (SOAP) is a possible extension of the investigation presented

here.

In the next chapter we will see the placing of orders through the wireless devices which

reduce the service time for delivering order to the customer.

 - 209 -

Chapter 5

ISSUE 4: Wireless Communication

Introduction:

This section will outline the work that was performed as part of the steps to build the MIDAS

system. The requirements described in this section are not the complete software

requirements for the MIDAS system, but only certain aspects that are relevant to the

discussion in this report. This section covers the stakeholders, system functional requirements

and non-functional requirements.

This chapter provides a detailed description of:

� The MIDAS architecture and design

� Various subsystems: Handheld Application design, Handheld Conduit Design,

Desktop Application Design, WAP Application and Design Implementation and

testing using different languages.

Sec 5.1 Related works

In this chapter we will discuss – how to identify the stakeholders? What are the functional

and non functional requirements?

5.1.1 Identification of stakeholders

A stakeholder is a person who has the interest in a project or in other words who will be

benefited by a project. In our project there are three stakeholders: MIDAS project manager,

the author and the Project supervisor.

� The MIDAS project manager – Once the project is complete, it will provide the

solution for the transport industry in an effective way.

� The author, who willl gain experience in the industry.

 210

� The project supervisor – The supervisor is interested in the project because this will

provide an automated system with Internet and wireless communication for the

transport industry.

5.1.2 Functional requirements

This section describes the functional requirements of the MIDAS project. We will

concentrate on the requirements that are relevant to Mobile Computing. A major emphasis of

this project is on the careful design and communication between the client and its providers

via handheld devices and wireless network connection. The requirements are as follows:

5.1.2.1 Requirements for handheld application

� Input from the customer about the requirements and the demand of the product is

important.

� Message type and message number is the prime requirement when sending the

request. This will correctly determine the reply type and sequence number. After all

the required fields have been entered by the user, the application must be able to

generate XML data from the information and construct the request message header.

� The application must be able to retrieve the reply message header and parse the XML

data

� The new order details must be sent to the transport company through the web portal

by the application.

� In case of errors, the application must be capable of maintaining the order details e.g.

In communication or any server error condition.

The application must be able to send an invoice-checking request to the web portal,

which includes the booking number of an order.

� There should be dynamic listings to help the user fill in order details.

� The application must be able to let the user add new sender/receiver information for

faster access.

� The application must be able to maintain user information, which is needed during

communication with the web portal.

� The application must use the Palm database as storage instead of the traditional file.

 - 211 -

� Before sending to the web portal, all user input must be validated. Validation is

performed according to the capability of the handheld device.

� The application must be able to detect a server error and parse the error.

5.1.2.2 Requirements for Handheld Conduit

The basic requirement of this module is to perform data synchronization between the

handheld device and a desktop computer. The most important part of this module is the

synchronization logic. The requirements include:

� Module must be able to convert the data structure between handheld device and

desktop correctly.

� The module must be able to determine the type of synchronization and select the

correct action to be performed.

� The module must be able to create a backup file after synchronization, as it is

important in case of failure.

5.1.2.3 Requirements for Desktop Application

The application data at the desktop computer is obtained through synchronization performed

by the handheld conduit. A basic requirement of this application is to display handheld

application data at the desktop computer. The requirements include:

� Application must be able to display synchronized information stored at the handheld

device.

5.1.2.4 Requirements for WAP Application

The requirement for this module is to send proof of delivery from the driver to the web portal

so that the company database will have the latest information regarding all orders.

� Before doing any operation, a user must enter the user name and password, which

must be checked against the appropriate database entry.

� Upon a successful login, drivers must have the ability to send proof of delivery to the

web portal

� Drivers must be able to view order details by providing the booking number.

 212

5.1.3 Non-functional requirements

Non functional requirements are not essential to ensure system functionality, nonetheless, it

is desirable to have them.

5.1.3.1 Handheld application

� Handheld application should have the capability to prepare a history for the sent

orders for future use.

� The handheld device user should be able to add new product details into the palm

database.

� The handheld application should maintain a record for the last order sent to reduce

the amount of information to be stored.

5.1.3.2 Handheld Conduit

� The handheld conduit should do an appropriate log in.

� The integrity level should be high as a slight mistake can affect business transactions.

� There should be options for further expansion and growth of functionalities, as well

as users.

� The system must be easy to use without the need of any user manuals to perform

daily functions. Documentation for both users and developers should be kept for

future reference.

5.2 System Architecture and Design

We have discussed the MIDAS architecture in the chapter Routing and Scheduling in detail,

so an overview is provided. The MIDAS system is based on a three-tier design, where the

whole system can be segmented into three main layers, which include client

(Handheld/WAP/Desktop application), web portal, and MIDAS servers, residing at transport

companies. All changes occur on the web portal. Beside system extendibility, the use of the

3-tier approach will also make the management of the system easier; since the system can be

managed from one location, which is the web portal.

5.2.1 Overall system architecture

The architecture of the system is created based on the principle of a Layered Reference

Model – refer to Figure 4.7.

 - 213 -

� The first layer of the architecture is the “User Interface and Services Layer”, which

acts as the point where the users interact with the system and communicate with the

lower layers.

� The second layer is the “MIDAS Application Server Layer”. This layer contains

several subsystems, which work together to provide services to the upper layer. The

important subsystems in this layer are:

� Communication Subsystem:

This subsystem is responsible for handling communication with the layer above (“User

Interface and Service Layer). The HotSync component is used to perform data

synchronization between the handheld application and the handheld conduit. The

handheld component is used to send information from the handheld application to the

server via a wireless network such as GSM or GPRS. The WAP component is used for

wireless communication between the WAP application and the server. This subsystem is

very important since it is the core of the system.

� Conduit Subsystem:

This subsystem is responsible for managing the data synchronization between the

handheld device and the desktop computer. This subsystem is responsible for data

synchronization to be performed correctly. During synchronization, the subsystem also

needs to perform data conversion from a handheld data format into a desktop data format.

� Order Subsystem:

This subsystem is responsible for handling all requests that are related to orders, such as

accepting new orders, and calculating order invoices. The subsystem will be part of the

MIDAS server, which resides at the transport companies.

 214

� Driver Subsystem:

This subsystem is responsible for handling all requests that come from the drivers to the

server, such as updating proof of delivery and requesting order details. This module will

be part of the web portal.

� Login Subsystem:

This subsystem is responsible for maintaining user accounts and handling the

authentication of requests from handheld applications and WAP applications. This

module will be part of the web portal.

� Storage Subsystem:

This subsystem is responsible for providing a means for storage, such as connection to

existing DBMS and file management. All other subsystems depend on this system to

perform any queries to the database. By having this subsystem, changes to storage will

not affect any of the other subsystems, which improve system flexibility. This subsystem

is part of the MIDAS server, which resides at the transport companies.

The last layer of this architecture is the “System Layer” representing the existing company’s

system environment, which includes the company’s DBMS and Operating System.

5.2.2 Handheld application design

Customers use the handheld application to exchange information with the company servers

using wireless network connection. They are able to perform business transactions from

anywhere and at anytime. The Palm Powered handheld device has been selected as the

platform to implement this feature because it has been the most successful PDA in the

market, and it was developed with user usability and experience in mind. Moreover, it is easy

to deploy, with minimal training required for users. There have been a number of successful

implementations of Palm Powered PDA in the industries, including the transport industry.

It can be used to provide real-time information, access to email and scheduling applications,

and custom applications to take new orders.

 - 215 -

 However, this application was developed in-house which makes it a specific system to the

company and difficult to be deploy for Australian transport companies. Because Palm

Powered handheld devices have limited amounts of memory and use non-volatile memory

instead of disk storage, a traditional file system is not optimal for storing and retrieving data.

Therefore, database storage system is used, where data is stored as records in a memory

chunk. Figure 5.1 outlines the Palm Powered™ handheld database layout.

Figure 5.1 Handheld database layout

The database layout consists of a header followed by any number of records. The header

section of the database contains:

- Database name

- Database creator

- Database type

- The number of records

- The last synchronization date

- Variable length application information block (optional)

- Variable length sorting information block (optional)

Following the header, records will be stored one after another. Figure 5.2 outlines the layout

of record attributes. The size of the attributes is one byte, which is divided into two parts. The

Data

Records

Database

Header

Database Name

Database Creator

Database Type

Number of Records

Last Sync Date

AppInfo Block *p

SortInfo Block *p

Unique ID 1 Cat Attribs

Remaining Records…

AppInfo (Categories)

Sorting Information

Record Body
Unique ID 2 Cat Attribs

 216

first part, four bits, is used to store the category number for a category such as personal or

general. The second part is segmented into four with one bit each, and is used to determine

record conditions, including whether the record has been marked as modified, for archiving,

for deletion, or as private. Each of the records consists of the following information:

- Unique record ID

- Record category index

- Record attributes

- Record data

Figure 5.2 Handheld record layouts

5.2.3 Use Cases

The handheld device’s key responsibility is to send new order details to the transport

company.

Figure 5.3 Handheld application use cases

Send new order detai ls

Add new sender/receiver

View History

Send / receive message

Check order invoice

<<uses>>

<<uses>>

Customer /

Marketing sales

Add new prod uct detai ls

Input validation

<<uses>>

<<us es>>

<<uses>>

<<uses>>

Category (4)

secret

busy

dirty

delete

 - 217 -

Additionally, they can also perform several other informative actions such as check order

invoice and view history. Figure 5.3 depicts the activities that can be carried out by users.

5.2.4 Component Diagram

The handheld application is segmented into several code sections, which provide distinctive

functionalities. Figure 5.4 represents the relationship between the sections, which consist of:

- Main section: This section is the first, or entry point of the application that

implements the main function (UInt32 PilotMain(UInt16 launchCode, MemPtr cmdPBP,

UInt16 flags) {}) and responds whenever the application launch request is sent from the

palm operation system. It also handles database initialization and starts the events loop.

- User interface section: The handheld application user interface is created using a

resource complier called PilRC. The resource compiler will read resource script files that

contain codes defining the user interface components and their layouts on the screen. The

following is an example of codes contained in the script file:

BITMAPCOLOR ID 2 "Logo100x100.bmp" COMPRESS TRANSPARENT 255

255 255

FORM ID MainForm AT (0 0 160 160)

MENUID MainMenu

BEGIN

 TITLE "MIDAS"

 FORMBITMAP AT (30 10) BITMAP 2

 LABEL "Mobile Intelligent Distributed" AUTOID AT (CENTER 100)

 LABEL "Application System" AUTOID AT (CENTER 111)

 BUTTON "Send Order" ID MainFormButtonSend AT (CENTER 125 65 AUTO)

END

-

 218

- General functions section: Implements common functions such as loading/saving

data to/from user interface components and input validation.

- Common event handler section: Code specified in this section capture and handle

common user interface events such as application menu selection

- Send order handler section: All user interface events related to filling in order

details are captured and handled by functions defined here. It also defines functions to

convert information to XML document format and creation of the dynamic drop down

list and maintains a table scroll.

- Check invoice handler section: Events that relate to requesting order invoice are

captured and handled by functions defined in this section. It also defines XML

conversion functions.

- History handler section: Maintains a history record of details of sent orders.

Figure 5.4 Palm application code sections

- Sender/receiver handler section: Handles the sending and receiving of the

information. Events include generating a dynamic drop down list, menu list selection, and

saving sender or receiver details for easy access in the future.

Main Program

Common Event

Handler

Communication

Subprogram

Sender/Receiver

Handler

General

Functions

Send Order

Handler

Product Details

Handler

User Interface

History

Handler

Check Invoice

Handler

 - 219 -

- Product details handler section: Whenever a new product detail must be added or

captured, this section is active.

- Communication section: This section is responsible for managing information

exchange between the handheld application and the server. It provides network functions

such as locating and loading the network library, initializing and activating the socket

connection, and sending and receiving data.

5.2.5 Communication protocol and message format

Communication between the handheld devices and web portal will follow the protocol

defined in this section. The information that is sent between them will be formatted in XML

document format with the following Document Type Definition:

<?xml version=”1.0”?>

<!DOCTYPE order [

<!ELEMENT order (locationcode, sender, receiver,

customercode, password, fleetclass, jobno, usercode,

consignment, senderref, receiverref, servicecode, resroucetype,

criticaltimefield, pickup, delivery, orderdetails+)>

<!ELEMENT locationcode (#PCDATA)>

<!ELEMENT sender (name, address+, postcode, suburb, state)>

<!ELEMENT receiver (name, address+, postcode, suburb, state)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT address (#PCDATA)>

<!ELEMENT postcode (#PCDATA)>

<!ELEMENT suburb (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT customercode (#PCDATA)>

<!ELEMENT password (#PCDATA)>

<!ELEMENT fleetclass (#PCDATA)>

 220

<!ELEMENT jobno (#PCDATA)>

<!ELEMENT usercode (#PCDATA)>

<!ELEMENT consignment (#PCDATA)>

<!ELEMENT senderref (#PCDATA)>

<!ELEMENT receiverref (#PCDATA)>

<!ELEMENT servicecode (#PCDATA)>

<!ELEMENT resourcetype (#PCDATA)>

<!ELEMENT criticaltimefield (#PCDATA)>

<!ELEMENT pickup (date, starttime, endtime)>

<!ELEMENT delivery (date, starttime, endtime)>

<!ELEMENT date (#PCDATA)>

<!ELEMENT starttime (#PCDATA)>

<!ELEMENT endtime (#PCDATA)>

<!ELEMENT orderdetails (productcode, quantity)>

<!ELEMENT productcode (#PCDATA)>

<!ELEMENT quantity (#PCDATA)>

]>

To minimize the amount of traffic and reduce the time required to transmit data to the server,

the XML tags are converted into certain codes outlined in table 5.1, which means the server

will receive encoded XML documents and will decode the data received before parsing it.

Table 5.1 XML tags conversion table

Tag name Tag code Tag name Tag code

order x1 Senderref x15

locationcode x2 Receiverref x16

sender x3 Servicecode x17

 - 221 -

receiver x4 Resourcetype x18

name x5 Criticaltimefield x19

address x6 Pickup x20

Postcode x7 Delivery x21

State x8 Date x22

Customercode x10 Starttime x23

Fleetclass x11 Endtime x24

Jobno x12 Orderdetails x25

Usercode x13 Productcode x26

Consignment x14 Quantity x27

Password x30 Suburb x31

In addition to the XML document specification, the message format is designed to avoid

unnecessary processing and protection against message loss. The format contains message id

to identify the type of message and sequence number to validate that the message is in the

correct order. Sequence No. will always starts from 0 and increase by one every time the

message is sent to the server. However, once the application exits and starts again, the

sequence number will start from 0 again. Data is the XML document to be sent.

The format of the message is:

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

! Message ID | RESERVED | Sequence No. !

+-+

! !

~ Data ~

! !

+-+

Message ID value will be one of the following:

- 0 : new order details

 222

- 1 : check invoice balance

- 2 : client registration conformation

- 3 : proof of delivery update

- 10 : synchronization

- 200 : reply

- 250 : Error message

5.2.6 Error handling protocol

Errors are very common in communications. They might be caused either by communication

failure or due to wrong input from users. But for the appropriate functioning of the system, it

should be free from errors. The errors that occur at the client side are easy to handle whereas

the errors occurred at server side need client to be notify about it. In order to accommodate

errors at the server side, an error protocol has been developed. The error message sent from

the server follows the same message format as the communication protocol. Messages from

the server that carry error codes will use message ID 250. The error code contained in the

message will be formatted using an XML tag with the following Document Type Definition:

<?xml version=”1.0”?>

<!DOCTYPE error [

<!ELEMENT error (#PCDATA)>

]>

Table 5.2 Server error code

Error Code Meaning

201 Invalid tag

202 Invalid data format

203 Invalid XML

220 Booking no is not found

222 Invalid customer code

223 Invalid date format

224 Invalid product code

401 Invalid message id

 - 223 -

As with the order communication protocol, the XML tag in this protocol is also encoded. The

encoding code that represents this tag is x500. The server is only returning error codes to the

clients, which then get interpreted by the client, thus providing a meaningful error message to

the user. Table 3.2 outlines the meaning of all possible errors that might occur at the server.

5.3 Handheld conduit design

The conduit is an important component of the handheld application. Conduits synchronize

data for a specific application, on the handheld device with the desktop computer. Conduits

perform the following tasks:

• open and close databases on the handheld

• add, delete, and modify records on the handheld and desktop computer, converting

formats as required

Figure 5.5 HotSync components relationship

Because each application stores data in its own format, each conduit must implement

custom data handling and conversion algorithms. The conduit itself is not a standalone

application but instead, an add-on component to HotSync Manager and gets executed by

HotSync Manager every time a synchronization is performed. The handheld application,

HotSync manager, HotSync client, conduits, and notifiers are also involved in it. Figure

5.5 shows a simple view of the relationship between components involved in

synchronization.

There are several ways for a user to perform synchronization with the desktop computer that

are supported by HotSync Manager. Some of them are local synchronizations, while the

Handheld

Device

Desktop

Computer

HotSync

Manager

Conduits

Palm

Applications

Address Book

Memo Pad

Midas

…

To Do

Desktop

applications

Address Book

Memo Pad

Midas

…

To Do

 224

others are remote synchronizations. There are design concepts that need to be followed when

developing conduit to ensure its performance and robustness. These are :

Figure 5.6 Overview of the process flow through the components [67].

The types of communication connection to be used during synchronization are:

- Direct cable using the cradle connection

- Modem connection

- Network connection

- Infrared connection

-

1.1.1.1 Desktop Software 1.1.1.2 Palm OS

Software

Handheld

Databases 1.1.1.3 Cond
uit

Desktop

Applications

Desktop

Memo

Desktop

To do

Desktop

Midas

Memo

Conduit

To do

Conduit

Midas

Conduit

HotSync Manager

Notifier DLLs Sync Manager

HotSync Client

Handheld

Memo

Handheld

To do

Handheld

Midas

 - 225 -

- Fast execution: The main goal for the HotSync process is a quick and successful

synchronization. This means that conduits need to be designed for optimal processing

speed and minimal data transfer between the desktop computer and handheld device.

Zero data loss: Conduits must take measures required to prevent data loss under any

circumstances, including loss of connection during a HotSync operation.

-

- Good conflict handling: Mirror image synchronization performed by conduits should be

handled very carefully and free from any conflicts. This is also known as “double

modify”. This is a conflict when the user modifies data at both the desktop computer and

handheld device.

- No user interaction: Users always expect minimum interaction during synchronization,

so conduits need to be developed in that way that is good practice. This is especially

important for users who are performing synchronization remotely.

Data synchronization by conduits, and data integrity, in case of modification situations,

should be performed correctly whenever the user wants to make changes. Status bits (see

figure 5.2) maintained for each record are used in determining which course of action

should be taken. Table 5.3 describes all possible scenarios and related actions that are

required during data synchronization

Table 5.3 Records synchronization logic

Handheld

Record Status

Desktop

Record Status

Action

Add No record Add the handheld record to the desktop

databases.

Archive Delete Archive the handheld record and delete the

record from both the handheld and desktop

databases.

Archive No change Archive the handheld record and delete the

 226

record from both the handheld and desktop

databases.

Archive No record Archive the handheld record.

Archive,

Change

Change If the changes are identical, archive both the

handheld record and the desktop record.

If the changes are not identical, do no archive

the handheld record; instead, add the desktop

record to the handheld database, and add the

handheld record to the desktop database.

Archive,

No change

Change Do not archive the handheld record; instead

replace it with the desktop record.

Change Archive, change If the changes are identical, archive the

handheld record and then delete the records

from both the handheld and desktop

databases.

If the changes are not identical, do not archive

the desktop record; instead add the desktop

record to the handheld database and add the

handheld record to the desktop database.

Change Archive,

no change

Do not archive the desktop record; instead,

replace the record in the desktop database

with the handheld record.

Change Change If changes are identical, no action.

If changes are not identical, add the handheld

record to the desktop database and add the

desktop record to the handheld database.

Change Delete Do not delete the desktop record; instead,

replace the desktop record with the handheld

record.

 - 227 -

Change No Change Replace the desktop record with the handheld

record.

Delete Change Do not delete the handheld record; instead,

replace the handheld record with the desktop

record

Delete No change Delete the record from the desktop and

handheld databases.

No change Archive Archive the desktop record, and then delete

the record from both databases.

No change Change Replace the handheld record with the desktop

record.

No change Delete Delete the record from the desktop and

handheld databases.

5.3.1 Use Cases

The main activity performed by handheld users is synchronizing data between the handheld

device and desktop computer. They can also use the conduit to backup handheld data. Figure

5.7 outlines all the actions that can be performed by the user and any other relevant

processes.

Figure 5.7 Handheld conduit use cases

Convert Data S tructure

Sy nc Data

P alm Us er

B ac kup Data

<< us es> >

< <uses> >

 228

5.3.2 Class Diagram

The class diagram shown in figure 5.8 illustrates the components of handheld conduit with

their constraints in the way components are connected.

Figure 5.8 Handheld conduit class diagrams

5.4 Desktop application design

Working on a handheld device is quite different from working on the desktop computer,

so the design of the application and the interface for the handheld is more demanding

compared to the desktop. The operation of the handheld device is made complex by the

lack of a keyboard. It is always best to use unique requirements while designing the

interface. For every handheld application, there should be a desktop application

companion for it. The desktop application operates on a copy of the handheld data

transferred during synchronization. The application is used to view handheld application

data at the desktop computer. Moreover, it can be used to perform processing intensive

operations for a handheld application, and act as a secondary data entry point.

ConduitConfiguration

MidasRecordManager

MidasPreferencesLocalDB

MidasPreferencesRecord

1
1

MidasProductRecord

MidasLocationRecord

MidasServiceLocalDB

MidasFleetRecord

MidasStateRecord

MidasProductLocalDB

1
1

MidasLocationLocalDB

1

1

MidasServiceRecord

1

1

MidasFleetLocalDB

1

1 MidasStateLocalDB

1

1

MidasSenderReceiverRecord

MidasCurrentRecord

MidasOrderRecord

MidasCurrentLocalDB

1

1

MidasOrderLocalDB11

MidasOthersLocalDB
1

1

1

1

MidasOthersRecord

1

1

1

1

1

1

MidasSenderReceiverLocalDB

1..*

1

1..*

1

1 1 1..*

1

MidasConduit

1

1

1

1

1

1

1

1

1

1
1

1

1
1

1

1

1

1

1

1

1

1

1

1

1 11 1

1

11

1

1

1

1

1

1

1

1

1

1

1

11
1..*

1

11

1

1

1

1

1

1

1
1

1

1

1

1 1
1

1

1 1
1

 - 229 -

5.4.1 Use Cases

Desktop application users will mainly use the application for viewing handheld application

data. Figure 5.9 outlines the actions that can be performed by the user and the ttype of

handheld application data that can be viewed.

Figure 5.9 Desktop application use cases

5.4.2 Class Diagram

Figure 5.10 Desktop application class diagram

Display user preferences Display current profile Display sender/receiver details

Display order history

Display product details

Display location code
Display fleet class code

Desktop Application

User

Display service code

PreferencesViewer CurrentProfileViewer

Sender/ReceiverDeta ilsViewer

OrderHistoryViewer

ServiceCodeViewer

ProductDetailsViewer

FleetClassViewer

Desk top appl ic ation

1

1

1

1

1

1

1

1 1
1

1
1

1
1

1

1

LocationCodeViewer

1

11

1

1

1

1
1

1
1

1
11

1

1

1

 230

The class diagram shown in figure 5.10 illustrates the components of a desktop application

with their constraints in the way components are connected.

5.5 WAP Application design

WAP (Wireless Application Protocol is a group of related technologies and protocols used to

provide Internet access to mobile phones or other thin-client devices. WAP is a recognized

IEEE standard, proposed and developed by a group called the WAP Forum. The protocol is

based on existing Internet standards such as HTML, XML, and TCP/IP and is designed to

operate over many wireless networks, such as TDMA, CDMA, GSM, and iDEN.

Figure 5.11 WAP programming architecture

The WAP protocol specifies an application framework and network protocols for wireless

devices such as mobile phones and pagers. Figure 5.11 provides an overview of WAP

programming architecture [13]. The architecture is quite similar to the World Wide Web

(WWW) architecture and provides several benefits to the application developer, including a

familiar programming model, proven architecture, and the ability to leverage existing tools

(e.g. Web servers, XML, etc.). It consists of several components that work together to form a

fully compliant Internet module.

Client

The Wireless Application Environment (WAE) is a general purpose application environment

based on a combination of WWW and Mobile Telephony technologies. It is used to establish

an interoperability environment that will allow service providers to develop applications that

 - 231 -

can reach a wide variety of different wireless platforms. WAE includes a micro-browser

containing these functionalities:

� Wireless Markup Language (WML): Represent information for delivery to a

narrowband.

� WML Script: A scripting language, extended subset of JavaScript language.

� Wireless Telephony Application (WTA): A set of telephony services and programming

interfaces enable contents written in WML and WML Script to utilize telephony features

in the device.

� Content Formats: A set of well-defined data formats for actual representation of content,

including images, phone book records, and calendar information.

Gateway

A gateway in telecommunications refers to a computer or network that allows or controls

access to another computer or network .The WAP gateway acts as a proxy that connects the

wireless domain and the WWW. The gateway typically includes the following

functionalities:

� Protocol Gateway: This protocol is responsible for translating requests from the WAP

protocol stack to the WWW protocol stack.

� Content Encoders and Decoders: The encoders and decoders are responsible for

translating WAP content into compact encoded formats to reduce the size of data over the

network.

Origin server

The origin server can be any of the standard web servers (e.g. Microsoft IIS and Apache) on

which a given resource resides. It is the main server where original web pages reside and it is

maintained by the enterprise. It is responsible for accepting requests from clients and

providing contents.

5.5.1 Use Cases

The main activity performed by drivers is sending proof of delivery so that the company

system/database can obtain the latest information as soon as possible. Drivers can also use

the WAP application for viewing order details. Figure 5.12 shows operations that can be

 232

performed by drivers. Drivers are required to login to the system before performing any of

the above actions.

Figure 5.12 WAP application use cases

5.5.2 Component Diagram

The WAP application is divided into several subprograms, where each provides distinctive

functionalities. Figure 5.13 represents the relationship between the subprograms. The

subprograms are:

- WML page and script

The WML page is responsible for defining how contents are displayed for the user. The

pages are created using WML format specification. The scripting language used is

Microsoft Active Server Pages to provide dynamic content to the WML pages.

Figure 5.13 WAP application component diagram

Login

Send Proof of delivery
Driver

View order details

WML page and

script

Database

subprogram

Communication

subprogram

XML Parser

subprogram

 - 233 -

� XML parser subprogram: This subprogram contains the functions to transform the

user request and information into XML document format. The transformed request is

then sent to the MIDAS server.

� Communication subprogram: All information exchanges between the application

and the server are handled in this subprogram. Functions defined in this subprogram

handle the communication protocols and message format between the WAP

application and MIDAS server.

� Database subprogram: This subprogram deals with data storage or retrieval

requested by the other subprograms, such as retrieving user’s password for login

authentication. By having this subprogram, the application can be independent from

the underlying database management system.

5.6 System Implementation

Different technologies have been used during the implementation and problems that arose

during the testing have been solved. Implementation and testing were done at the RMIT

Distributed and Networking Research Laboratory. The system was implemented in Microsoft

Windows and Linux environments. Different types of programming languages and tools are

used for implementing the system. This section is dedicated to defining the languages and

tools selected to implement the system.

5.6.1 C Programming Language

The handheld application is built using C programming language for Palm computing

platform. Table 5.4 describes the differences between the C programming language used and

standard C programming language [10]. C is selected as the implementation language instead

of Java because it has the advantage of being able to produce binary files and eliminates the

need for a virtual machine environment.

5.6.2 PilRC Programming Language

This language is used to create the handheld application user interface. It has several object

definitions such as FORM, MENU, ALERT, VERSION, and ICON. These objects define the

 234

actual user interface components and their properties such as id, location, and value. Refer to

page 217 for an example of PilRC codes for creating a user interface.

5.6.3 Java Programming Language

Desktop application and handheld conduit are built using the Java language with the help of

other development kits. Java language is selected as the language to implement the

components because it is platform independent, which enables the application to be executed

in either a Windows, or Mac platform.

Table 5.4 Difference between standard C and Palm OS C

Standard

C functions

Palm OS

functions

Additional Information

strlen StrLen

strcpy StrCopy

strncpy StrNCopy Does not pad with extra null terminators

strcat StrCat

strncat StrNCat Last parameter is the total length of the string

(including null terminator) rather then the number

of characters to copy. Does not pad a null

terminator if source string is empty

strcmp StrCompare

strncmp StrNCompare

itoa StrIToA

strchr StrChr

strstr StrStr

sprintf StrPrintF Limited subset of sprintf, for example, no %f

svprintf StrVPrintF Limited subset of svprintf, for example, no %f

malloc MemPtrNew The use of memory handle is preferred.

free MemPtrFree

memmove MemMove

memset MemSet The last two parameters have been reversed

memcmp MemCmp

 - 235 -

5.6.4 VB Programming Language

The WAP application is developed using the VB programming language, which is part of the

Microsoft Visual Studio .Net. VB is selected because it provides ease of use and is the default

language for creating WAP applications in Visual Studio .Net.

5.6.5 PRC-Tools

This tool is used to compile Palm OS C codes into a resource file that can be executed by

Palm OS. This tool contains many utilities that are needed when developing handheld

applications. m68k-palmos-gcc is a compiler for Palm OS C codes. multigen (that reads

definition files) is a utility that generates an assembly language source file and a linker script,

for use in development with multiple code resources (segmented application source code).

The assembly stub file will need to be compiled with the application and the linker script

needs to be added to the link command. build-prc is a post-linker utility that reads resource

and definition files and produces one Palm OS .prc resource data file. By using all the

utilities defined, a handheld application (.prc) is created, which can be installed in the device.

5.6.6 PilRC compiler

This compiler reads in the codes created using the PilRC language and produces a series of

binary resource files that are used when developing Palm Powered™ handheld applications.

These resource files will then be combined with other codes to create the entire application.

5.6.7 Palm OS Software Development Kit

This SDK contains the headers, libraries, and tools for Palm OS platform development that is

necessary when creating handheld applications. It contains functions that help the developer

to create the application such as, network library functions, data and resource functions, and

user interface functions.

5.6.8 Conduit Development Kit

This CDK provides all required APIs for conduit development for Windows and/or Mac

platforms. APIs defined in this development kit contain functions to communicate with the

HotSync Manager and also generic record structure of handheld application data.

 236

5.6.9 Microsoft Visual .Net with Mobile Internet Framework

This IDE is used to develop the WAP application component of the system. The development

of this application requires mobile Internet framework extension to be installed, which

contains the definitions of mobile applications.

5.7 Testing

The method of testing is a sort of Black-box testing, where the attention is on the desired

behaviour of the system and not on how the code works. No attention is paid to the

underlying language or program code.

All features of the system have been tested for integrity, including the handheld application,

handheld conduit, desktop application, WAP application, and integration with the rest of the

system and the environment. Access privileges were tested to ensure that only individuals

who are entitled to access particular information are allowed to do so without others being

able to access the same information. The system was tested to ensure that accessibility is

available during the industry operational time. Testing includes the usability of user

interfaces and the correctness of information provided to users. The speed of access to the

various system features was also tested from different access points. The resources used

during testing were a fully functional web portal and MIDAS server, handheld device,

desktop computer, and system modules discussed in this report.

5.7.1 Handheld application testing

Testing on this module is centred on its capability to send new orders, check invoices, history

maintenance, add sender/receiver details, and add product details. Input validation is also

checked during the test period.

 - 237 -

Functionality testing:

Table 5.5 Test cases and their actual and final results.

Test case Purpose Expected result Actual result Pass

1. Submit a

new order to

the server

Core of the

business

The server returns a

order number on valid

data, else returns error

As Expected Yes

2. Find the

amount owing

on an order

So that the

customer knows

how much they

owe

On valid input --return

the amount owing on

a order, return error

on invalid input

As Expected Yes

3. Store user

profile on the

client

So that user does

not need to type

redundant

information again

Previous values

should be loaded by

default

As Expected Yes

4. History

maintenance

So that user has

records of orders

that has been sent

from handheld

Sent order should be

added to history list

and it can be retrieved

correctly

As Expected Yes

5. Add

sender/receiver

details

To help user in

filling the order

details.

New sender/receiver

should be added to the

list and can be

retrieved correctly

As Expected Yes

6. Add product

details

So that user can

add new product to

the list of possible

product to be sent

New product details

should be added to the

list and displayed

during product

selection

As Expected Yes

 238

Validation testing:

Table 5.6 Results of validation testing

Attributes Test Expected result Actual result Pass

1. Pickup

Date

Accept date in

correct format.

No room for error

(calendar selection

form).

OK Yes

2. Delivery

Date

Accept date in

correct format.

No room for error

(calendar selection

form).

OK Yes

3. Pickup

Start Time

Accept date in

correct format.

No room for error

(time selection

form).

OK Yes

4. Pickup

End Time

Accept date in

correct format.

No room for error

(time selection form)

OK Yes

5. Delivery

Start Time

Accept date in

correct format.

No room for error

(time selection form)

OK Yes

6. Delivery

End Time

Accept date in

correct format.

No room for error

(time selection form)

OK Yes

7. Product

Code

Accept only the

listed product code

No room for error

(drop down list)

OK Yes

8. Sender

Name

Should not be

empty or contain

only white spaces

User enters sender

name

OK Yes

 - 239 -

9. Sender

Address

Should not be

empty or contain

only white spaces

User enters sender

address

OK Yes

10. Sender

Suburb

Should not be

empty or contain

only white spaces

User enters sender

suburb

OK Yes

11. Sender

State

Should not be

empty or contain

only white spaces

User enters sender

state

OK Yes

12. Sender

Post Code

Should not be

empty or contain

only white spaces

User enters sender

postcode

OK Yes

13. Sender

Reference

Should not be

empty or contain

only white spaces

User enters sender

reference

OK Yes

14. Receiver

Name

Should not be

empty or contain

only white spaces

User enters receiver

name

OK Yes

15. Receiver

Address

Should not be

empty or contain

only white spaces

User enters receiver

address

OK Yes

16. Receiver

Suburb

Should not be

empty or contain

only white spaces

User enters receiver

suburb

OK Yes

17. Receiver

State

Should not be

empty or contain

only white

User enters receiver

state

OK Yes

 240

spaces

18. Receiver

Post Code

Should not be

empty or contain

only white

spaces

User enters receiver

postcode

OK Yes

19. Receiver

Reference

Should not be

empty or contain

only white spaces

User enters receiver

reference

OK Yes

20. Location

Code

Should not be

empty or contain

only white spaces

User enters location

code

OK Yes

21.

Customer

Code

Should not be

empty or contain

only white spaces

User enters customer

code

OK Yes

22. User

Code

Should not be

empty or contain

only white spaces

User enters user

code

OK Yes

23. Fleet

Class

Should not be

empty or contain

only white spaces

User enters fleet

class

OK Yes

24. Service

Code

Should not be

empty or contain

only white spaces

User enters service

code

OK Yes

25. Should not be User enters OK Yes

 - 241 -

Consignment

Number

empty or contain

only white spaces

consignment number

26. Resource

Type

Should not be

empty or contain

only white spaces

User enters resource

type

OK Yes

27. Booking

Number

Should not be

empty or contain

only white spaces

User enters booking

number

OK Yes

28. Server IP

address

Should not be

empty or contain

invalid IP address

format

User enter IP

address

OK Yes

29. Server

Port number

Should not be

empty, must be

numeric and within

the port number

range

User enter port

number

OK Yes

 242

5.7.2 Handheld conduit testing

Testing on this module is centred on its capability to synchronize handheld data with desktop

data.

Functionality Testing:

Table 5.7 results for functionality testing

Test case Purpose Expected result Actual result Pass

1. Synchronization

for the first time

Synchronize

data between

handheld and

desktop

All handheld data

get copy to

desktop

As Expected Yes

2. Synchronization

with the same

desktop

To test if fast

synchronization

works correctly

Modified records

get synchronized

As Expected Yes

3. Synchronization

with different

desktop

To test if slow

synchronization

works correctly

Modified records

get synchronized

As Expected Yes

4. Checking the data

storage

To check if data

is in the correct

state after

synchronization

Data is in correct

state

As Expected Yes

 - 243 -

5.7.3 Desktop application testing

Testing on this module is centred on its capability to display handheld data at the desktop

computer.

Functionality Testing:

Table 5.8 Functionality testing results for Desktop application testing

Test case Purpose Expected result Actual result Pass

1. Display user

preferences

Displaying user

preferences

information from

handheld

Display correct

information

As Expected Yes

2. Display

current profile

Displaying user

current profile

information from

handheld

Display correct

information

As Expected Yes

3. Display

sender/receiver

details

Displaying list of

sender/receiver

information from

handheld

Display correct

information

As Expected Yes

4. Display order

history

Displaying list of

order history

information from

handheld

Display correct

information

As Expected Yes

5. Display

product details

Displaying list of

product

information from

handheld

Display correct

information

As Expected Yes

 244

6. Display

location code

Displaying list of

location codes

from handheld

Display correct

information

As Expected Yes

7. Display fleet

class code

Displaying list of

fleet class from

handheld

Display correct

information

As Expected Yes

8. Display service

code

Displaying list of

service code from

handheld

Display correct

information

As Expected Yes

5.7.4 WAP Application testing

Testing on this module is centered on its capability to send proof of delivery and to request

order details.

Functionality Testing:

Table 5.9Functionality testing results for WAP application testing

Test case Purpose Expected result Actual result Pass

1. Login Authenticate user Login successfully

with the correct

username/password

As Expected Yes

2. Send

proof of

delivery

Update the server

that delivery has

been made

Proof of delivery is

sent to server

As Expected Yes

3. Request

order

details

Getting order

information for a

given booking

number

Order details is

returned by server and

displayed to user

As Expected Yes

 - 245 -

It should be noted that it is difficult to migrate developments to other platforms due to the

system’s architecture dependency. Changes to the code can be done, such as using a

platform-specific separator character when constructing path names. Further, different

problems occur for various dependent bugs. In other words, the errors occurring for a

version-dependent software is different to an operating system.

 - 246 -

Chapter 6

Conclusion and Future work

6.1 Conclusion

6.1.1 Dynamic communication Protocol:

For communication between agents, three major considerations are

• a reliable communication system

• a common understanding of the data being exchanged

• an understanding of the sequence of exchanges, forming a valid communication

protocol

In the context of the Internet, agents may be diverse in nature. Therefore, it is not

possible to have prior knowledge of all possible protocols that may be needed for

communication. In this project, I proposed a communication protocol that could be

implemented to operate between agents and services. The language used for the

implementation is XML. This avoids implementing any predefined object formats

being passed between agents, or any internal representation of data formats being

exchanged. This protocol specification is parsed into a state machine and state

machine used messages representing fundamental concepts for the domain. A third

factor that should be taken into consideration is primitive vocabulary phrases, or

messages that can be used to make communication protocols. A common

understanding of phrases promotes interoperability.

[28] presented a framework for trading scenarios, which was based on an extension

of a Java-based version of the Fishmarket trade. The investigation explains the

 - 247 -

various operations involved in the auction house, and defines a protocol for the

bidding process. Our investigation, on the other hand, involved a wine merchant.

Further, the interaction between buyers and the market was also modeled on a

communication protocol. A finite state machine was used to model the coordination

and structured conversations in this systems. In our case, a complex communicating

state machine was employed.

Both [26] and [27] proposed an inter-agent (autonomous software agent), JIM, that

promoted communication and coordination among agents composing a multi-agent

system. Our investigation involved a dynamic communication protocol. They also

devised a conversation protocol to handle the coordination aspect. Where [26] used

a hierarchical interaction protocol, SHIP, to support agent interaction, [27]

employed the agent communication language, KQML (Java was used once again due

to its platform independence). Similar to [28], both [26] and [27] also implemented

their protocol in a Fishmarket scenario.

In our investigation of multi-agent systems, a Java-based inter-agent was devised,

which handled both the communication and coordination aspects. The major

difference was that this was part of a bigger picture – the next section dealt with

protocol correctness.

It is important to note that the dynamic implementation of protocols refers to agents

having the ability to communicate with each other through a protocol which can

learn their language, or already has an understanding of that language. Protocol

specifications simply define the rules of the communication; they do not enter the

domain the languages and do not play a part in the ‘understanding’ of

communication between agents. The dynamic interpretation of protocol

specifications is not the intention of this investigation. This study deals with a

protocol having the ability to adapt to changes in messages between agents.

In the testing of a wine merchant’s implementation, we have created three different

protocols, and the requirements for interoperation with clients were published, as a

state machine specification using XML. A client agent can dynamically construct

 - 248 -

and communicate with all merchant agents. This can be possible due to common

vocabulary and understanding.

This policy has different advantages as follows:

• Implementation does not require knowledge of conversation details at

compile time, so that interfaces and expected messages do not become a

legacy.

• With common vocabulary knowledge, any number of protocols can be

created at the time of communication with a variety of agents.

• Agents wishing to use services are not restricted to any specific execution

framework.

• E services can change their conversation details at any time without affecting

clients.

There is one limitation also. If a client does not have the knowledge of fundamental

vocabulary, it is not possible to construct, validate and traverse the state machine

required for agent interoperation. However, this is possible for domain specific

clients. In this implementation, client agents are able to interact with any merchant

who understands the terms “Buy”, “Bid” and “Sale” etc. This limitation is a

significant one. A software agent created to perform a specific task may not be able

to interact in a different domain.

In this implementation, all the specified protocols have product brokering to match

the type of product before interaction. It is similar to providing the username and

password to match a user’s identification. Here some similarity matching algorithms

are used to check for similar agents to offer the services to the matched one. In our

example, the wine implementation used feature vectors and a similarity algorithm to

provide the similarity matching of wine products.

In the context of the project I have identified some of the issues involved in aiming

towards agents to agent operability in the open environment such as the Internet.

 - 249 -

6.1.2 Protocol Correctness

Software applications interact with each other to exchange information and services.

Agents exchange information using a valid sequence that forms a communication

protocol. The behavior of these agents can be modeled using Communicating Finite

State Machine (CFSMs). But CFSMs do not have much expressive power to provide a

hierarchical view of a complex protocol, thus reflecting its varying level of granularity.

To overcome this limitation, CCSMs are used, which provide support for nested states.

CCSMs support hierarchy, modularity, component reuse and concise presentation of

large and complex protocols. A communication protocol should be validated against the

existence of logical errors, to provide the quality assurance of a communication system.

We have used state and partial exploration techniques for this purpose. We also

compare a few of these validation techniques, the results of which are summarized

below:

� In the deadlock detection algorithm, the number of possible deadlock states will

be much less than the number of total states in the communication system.

� In the deadlock detection procedure, if the number of possible deadlock states

are n and m, for a two-process system, the time complexity of our algorithm will

be O([m*b]n), where b is the complexity of the Backtrack procedure.

� The best case for Backtrack will be when the expected message is found in the

first instance. The Backtrack complexity will then be 1 and the best case

deadlock detection complexity will be O(mn).

� The worst case for Backtrack will be generation of all the states in the state

machine. In this case, deadlock detection complexity can also be represented as

O([m*s]n), where s is the number of states in the state machine, with m deadlock

states. This means that the complexity of the Backtrack procedure is equal to the

number of states in the state machine, which is highly unlikely. This is because

 - 250 -

it indicates that all possible states are deadlock states, which means there would

be no message transfer between states, resulting in no communication.

Therefore, regardless of whether the state receives or send messages, it will

always be in a deadlock state.

We tested the operation of proposed validation techniques on various protocols, and

compared the results using reachability analysis and reverse reachability analysis. We

discovered that our technique is able to detect both the presence and the absence of

deadlock errors in the protocols. The algorithm can perform better than reachability

analysis, and almost equally well in many cases. Further, it provides an additional

option - to divide the analysis of possible deadlock states into two independent

subtasks, which can be executed in parallel to reduce the time complexity of the

analysis.

6.1.3 Routing and scheduling

MIDAS provides a complete intelligent solution for truck companies in Australia. It

ensures all their customers a complete, satisfying and intelligent system because of

its portable, secure, flexible, mobile and scalable nature. It not only monitors the

truck movements, it also allows customers to dynamically route and schedule the

driver’s movements depending on the current order. With the power of MIDAS, it is

possible to give orders anywhere at any time, even the checking of account

balances. This software has improved the Australian transport industry as a whole,

through electronic commerce by exchanging information with customers, especially:

� Proof of Delivery documents

� Freight tracking

� Communication with vehicles

� Purchasing and supply

� Meeting regulatory requirements of government, information provision such

as weather reports and traffic congestion.

MIDAS improves customer service, maximizes profitability, increase revenue and

market share by positioning the supply chain to meet forecast demand, intelligently

 - 251 -

promising and capturing orders, seamlessly executing and delivering order and

monitoring the entire fulfillment cycle.

6.1.4 Wireless

The implementation of MIDAS has proved to be a positive approach with good

results. Most requirements are fulfilled using these system components. A major

requirement is to exchange information using handheld devices using the wireless

network. A system has been developed, with various factors such as performance,

robustness, scalability and usability. Since MIDAS is a three-tier structure, it is a

scalable system and can handle extensions, if required in the future. The first

version has been released and demonstrated to transport companies and research

center representatives. This version is capable of performing information exchange,

user profiling and error handling using a wireless network. Enhancements on the

first version have been completed after feedback. Now, the system is capable of

performing data synchronization between handheld devices and desktop computers.

But due to these enhancements, the system is much more complex.

Some problems were faced during the implementation of the system:

• Difficulty in managing the table component of the user interface, where the

developer needs to control all aspects of the table, including table scrolling.

• Palm devices do not have a large amount of memory i.e. only 32Kb of

memory. Hence, the entire application cannot be stored at one time and needs

to be compiled into steps.

• Sometimes, due to lack of memory stack, overflow occurs during

implementation and testing.

• Limited number of programming language functions available, such as a

string tokenizer, thus requiring manual tokenizing.

• As the format is not same, there is a need to convert the data format of the

handheld application to a desktop application.

 - 252 -

The system has been tested and presented on real devices (Palm m515 running

Palm OS 4.1), with a GSM network connection, and it takes less than 30 seconds

for information to be processed and sent, and replies from the server to be

received. In conclusion, this system is a great achievement in the transport

industry. It does not require a lot of alterations in the current system; it will be a

new enhancement with ease of work, and good productivity. This system has the

ability to do electronic business transactions and service customers.

Conclusion:

The MIDAS server acts as a milestone of the MIDAS project and provides an

autonomous delivery management system. Its functionalities range from taking

client orders to proof of deliveries for the transport industry. Using MIDAS has

increased the effectiveness and efficiency, and has decreased delivery time.

Technology provides various comprehensive solutions like digital maps and SMS to

overcome missing components of the traditional approach. Implementation of route

scheduling, along with the closest point nomination, path searching and insertion

schedule are implemented. MIDAS provides support for mobile device users,

Internet users, vehicle drivers and system operators by interacting with the

autonomous system through network connectivity. We are using digital maps for

Australia, which covers all major roads and suburbs of Victoria. Using these maps,

system operators can track drivers, vehicles and routes.

The MIDAS server communicates in two ways – TCP/IP technology is used for

application communication, whereas SMS is required for drivers to stay in touch.

Route scheduling relies on two searches. The first one is a local search, which

provides the shortest path information between individual points, and the second

one is a global search, which is mainly to schedule time arrangement between

multiple locations. Firstly, a local search is performed using digital maps, and an

insertion algorithm is applied for a global search. This project completely

implements route scheduling using digital map data and the insertion algorithm.

 - 253 -

6.2 Future Work

6.2.1 Dynamic communication protocol

In the entire project, we are considering the Internet as the medium, where there

are a variety of agents communicating with each other for services.

Communication is possible only when there is a common understanding of

messages, and both agents can understand messages sent by each other. In this

project we are considering traditional client/server agents. Relationship among

agents could be either peer-to-peer or Client/server.

In a peer-to-peer society, it is difficult to determine which agent would

dynamically implement which protocol. In a collaborative approach, an agent

might publish its own protocol specification, which other agents are able to

implement. This would quickly lead to a complex network of different

communication protocols. TCP sockets and Java Servlets were used to provide

implementation. In an environment of enterprise level e-services, distributed

object architecture between distributed services may be reasonably expected.

Implementation of dynamic conversation protocols, tunneled in an application

layer distributed object protocol such as SOAP [12] may be required to represent

the expected interaction between client and server objects.

In a multi-agent environment, discovery of agents, and services provided by

other agents must be performed. While working in the agent framework, a

repository of agent services is available. Matching of requests and services can

be performed using product brokering and facilitator [25, 42]. Alternatively, a

client may contract the services [43] for tendering that it is seeking. But agents

operating outside the framework such as the Internet, do not have a well defined

method of service discovery. Discovery of agent services requires a yellow

pages look up for services, but on the Internet there is no such repository, so a

search engine can be used as centralized repository system.

 - 254 -

Search engines have large databases, which can be viewed as a directory, and

used to list resources according to the keyword entered by the client.

6.2.2 Routing and Scheduling

Currently, digital maps contain information regarding major roads and suburbs,

but with the extension of details provided by the map, the feasibility of MIDAS

server scheduling can be enhanced. This is necessary for courier services. State

or suburb level maps are not sufficient, so street level maps are required. The

performance of the route scheduling is critical in terms of computation time and

a better solution. These factors have mainly affected the performance of the

MIDAS server in case of emergency orders, in which cases, street maps are a

necessity.

Caching is a useful mechanism in reducing the computation delay due to

dynamic routing in real time. In every execution, the route between two points

will be computed, even if they are at the same point. Along with the algorithm

improvement, caching techniques [44] [45] [46] should also be considered.

Hence, the application can cache a redundancy segment of routes, to prevent a

re-computation delay. During path searching, it sits on the top and requires

multiple comparisons of each route at different times, thus producing optimal

results. Moreover, caching can also reduce the rendering time.

While working in a wireless medium which is unguided, security is the prime

concern, so future versions of MIDAS must provide security mechanisms to

shield the application communication in open areas, such as encryption for data,

and digital signature for data integrity and authentication.

 - 255 -

6.2.3 Wireless

This project is an enhancement for the transport industry. Different features of

the system provide the enhanced capability to perform the function effectively

and efficiently. Some features are yet to be developed, like security, desktop

application extension, the electronic signature, and the SOAP protocol.

Security: In a multi-agent environment, it is hard to implement security.

Platforms that are currently in use do not support much security, but it must be

mentioned that in future versions of handheld devices, there would be such

features. This means that industry standard data security protection can be added

to the software system.

Desktop Application Extension: The current implementation of the desktop

application that accompanies the handheld application can be extended to

include several other features such as support for input/output devices, acting as

an alternative application for which information can be sent to the server, and

performing data synchronization with the server, which acts as the data entry

point for handheld applications.

Electronic Signature: Handheld devices like Palm Powered have the capability

to capture graffiti from the screen where users enter information directly. This

feature can be used to improve the authenticity feature of the device, and to

make information sent to the server, more secure.

SOAP protocol: SOAP is a lightweight protocol and can be used as an

improvement to the current communication protocols in use. SOAP is based on

the XML document format, which makes it easy to add it to the current protocol.

SOAP uses the same language format and is a better way to improve the

system’s interoperability and extensibility.

 - 256 -

Chapter 7

References

[1] Deepika Chauhan
JAFMAS - A Java-Based Framework for Multi-Agent Systems Development and
Implementation. PhD Thesis, ECEDS Department, University of Cincinnati, 1997

[2] The Architecture of Aglets
www.javaworld.com/javaworld/jw-04-1997/jw-04-hood.html

[3] IBM Aglets Home page
www.trl.ibm.co.jp/aglets

[4] http://www.objectspace.com/products/voyager/
ObjectSpace Voyager

[5] http://www.concordiaagents.com/documents.html
Mitsubishi Electra ITA – Concordia Java Mobile Agent Technology

[6] http://www-poleia.lip6.fr/~merlat/JNA.html
JavaNetAgents – A Java Platform for mobile agents execution on the Internet

[7] Mihai Barbuceanu and Mark S. Fox
COOL: A Language for Describing Coordination in Multi-Agent Systems
Proceedings of the first International Conference on Multi-Agent Systems 1995 (ICMAS-95)

[8] XCBL Index, available at
 http://www.xcbl.org

[9] Arindam Banerji, Claudio Bartolini, Dorothea Beringer, Venkatesh Chopella, Kannan
Govindarajan, Alan Karp, Harumi Kuno, Mike Lemon, Gregory Pogossiants, Shamik
Sharma and Scott Williams. Web Services Conversation Language (WSCL) 1.0 March 2001.
HP Laboratories, http://ww.e-speak.hp.com/media/wscl/_5_16_01.pdf

[10] Harumi Kuno, Mike Lemon, Alan Karp and Dorothea Beringer. Conversation and
Interfaces equals Business Logic. HP Labs Technical Reports HPL-2001-127
http://www.hpl.hp.com/techreports/2001/HPL-2001-127.html

[11] Prof. Dr. Frank Leymann, Distinguished Engineer, IBM Software Group. Web Services
Flow Language (WSFL 1.0) May 2001. http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

 - 257 -

[12] Aaron Skonnard
arSOAP: The Simple Object Access Protocol
Microsoft Corporation, available a http://www.microsoft.com/mind/0100/soap/soap.asp

[13] Tom Arnold, Jason Eaton
SCMP (Simple Commerce Messaging Protocol) IETF Draft (work in progress) March 2001

[14] Example of a price comparison website (comparable to auctioning), available at
www.mysimon.com

[15] Ontology related links, available at www.ontology.org

[16] Howard Smith and Kevin Poulter
The Role of Shared Ontology in XML-Based Trading Architectures
White Paper, Ontology.org available at http://www.ontology.org/main/papers/cacm-
agents99.html

[17] S.C. Cheung and J. Kramer
Compositional Reachability Analysis of Finite-State Distributed Systems with User-Specified
Constraints
Proceedings of Third ACM Symposium on the Foundations of Software Engineering pp
140-151, 1995

[18] Danny B. Lange and Mitsuru Oshima
Seven Good Reasons for Mobile Agents
Communications of the A.C.M. March 1999 pp 88-89

[19]F.J. Lin, P.M. Chu and M.T. Liu
Protocol Verification Using Reachability Analysis: The State Space Explosion Problem and
Relief Strategies
Computer Communication Review 17(5) pp 126-135, 1987

[20] Mark S Merkow, Jim Breitharpt and Ken L Wheeler
Building SET applications for Secure Transactions, John Wiley & Sons, 1998

[21] Sunil Arya and David M. Mount
Algorithms for Fast Vector Quantization
Department of Computer Science, University of Maryland, 1993

[22] David A. White and Remesh Jain
Similarity Indexing with the SS-tree
Visual Computing Laboratory, University of California, San Diego, 1996

 [23] Pattie Maes, Robert H. Guttman and Alexandros G. Moukas
Agents That Buy and Sell
Communications of the A.C.M. March 1999 pp 81-91

[24] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides

 - 258 -

Design Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesly 1st
Edition 1995

[25] Tim Finin, Rich Fritzson, Don McKay and Robin McEntire
KQML as an Agent Communication Language
University of Maryland, Baltimore MD USA & Unisys Corporation Paoli PA USA, 1994

[26] Francisco J. Martin, Enric Plaza and Juan A. Rodriguez-Aguilar
An Infrastructure for Agent-Based Systems: an Interagent Approach, International Journal of
Intelligent Systems, Vol.15, pp 217-240 (2000)

[27] Francisco J. Martin, Enric Plaza, Juan A. Rodriguez-Aguilar and Jordi Sabater
JIM - A Java Interagent for Multi-Agent Systems, Proceedings of the AAAI Workshop on Software
Tools for Developing Agents (1996). Also available at:
http://reference.kfupm.edu.sa/content/j/i/jim_a_java_interagent_for_multi_agent_sy_930
705.pdf

[28] Juan A. Rodriguez-Aguilar, Fransisco J. Martin, Pablo Noriega, Pere Garcia and Carles
Sierra
Competitive Scenarios for Heterogeneous Trading Agents, Proceedings of the second international
conference on Autonomous Agents, pp 293-300, May 1998

[29] The ARPA Knowledge Sharing Effort, available at :
http://www.cs.umbc.edu/kqml/papers/desiderata-acl/section3.4.html

[30] Solomon, M. “Algorithms for The Vehicle Routing and Scheduling Problems with
Time Window Constrains”, Operations Research, Vol.35, No.2, 1987.

[31] Berger, J., Salois, M. and Begin, R. “A hybrid genetic algorithm for the vehicle routing
problem with time windows”, In Proceedings of the 12th Bienneal Conference of the
Canadian Society for Computational Studies of Intelligence, pages 114—127, 1998.

[32] Telstra Mobile SMS ACCESS MANAGER Technical Guide.
http://www.telstra.com.au/mobilenet/pdf/sms_techguide.pdf

[33] BlueSkyFrog wireless service provider.
http://business.blueskyfrog.com

[34] Larsen, J. “Vehicle Routing with Time Windows – Finding optimal solution
efficiently”, DORSnyt, Sept 15, 1999.

[35] Geoscience Australia
http://www.ga.gov.au

[36] Environment System Research Institute, Inc. “ESRI Shapefile Technical Description”,
An ESRI White Paper, July 1998.

 - 259 -

 [37] Solomon, M. and Desrosiers J.“Time Windows Constrained Routing and Scheduling
Problems”, Transportation Science, Vol.22, No.1, 1988.

[38] Savelsbergh, M. “Local Search in Routing Problem With Time Windows”, Annual
Operations Research 4, 285-305, 1985.

 [39] Michael R. Genesereth and Steven P. Ketchpel
Software Agents - Communications of the ACM July 1994 pp 48-53

[40] Trip S. Chowdhry, Kevin Hughes (CommerceNet)
eCo System: CommerceNet's Architectural Framework for Internet Commerce
CommerceNet Inc, White Paper & Prospectus 1997, available at www.commerce.net

[41] Gasser L.
Social Conception of Knowledge and Action: DAI Foundation and Open Systems
Artificial Intelligence vol 47, pp 107-138

[42] The Fishmarket Project. http://www.iiia.csic.es/Projects/fishmarket

[43] Kwang Mong Sim and Raymond Chan
A Brokering Protocol for Agent Based E-Commerce
IEEE Transactions on Systems, Man and Cybernetics - pp 474-484 December 2000

 [44] Castro, M., Adya, A., Liskov B., and Myers, A.C. “HAC: Hybrid Adaptive Caching for
Distributed Storage Systems”, Proceedings of the 16th ACM Symposium on Operating
Systems Principles, Saint-Malo, France, 5-8 Oct. 1997.

[45] O'Neil, E. J., O'Neil, P. E., and Weikum, G. “The LRU-K page replacement algorithm
for database disk buffering”, In ACM SIGMOD Int. Conf. on Management of Data, pages
297-306, Washington, D.C., May 1993.

[46] Robinson, J., and Devarakonda, N. “Data cache management using frequency-based
replacement”, In Proceedings of ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 134-142, 1990

[47] Forman G.H., and Zahorjan J., The Challenges of Mobile Computing,
University of Washington, USA, 1994.

[48] Gossett, B., Introduction to Conduit Development,
http://www.palmos.com/dev/support/docs/, 2002.

[49] Rohdes, N., and McKeehan, J., Ten Common Palm OS Programming Pitfalls,
http://palmos.oreilly.com/news/palmosprog_1001.html, 2001.

[50] American Freightways, http://www.palm.com/enterprise/studies/study33.html

 - 260 -

[51] WAP - Architecture Specification,
Version 30-Apr-1998.

 [52] Alexander Artikis, Jeremy Pitt and Christos Stergiou
Agent Communication Transfer Protocol
Proceedings of the fourth international conference on Autonomous agents, pp 491-498,
2000

[53] Moses Ma
Agents in E-commerce
Communications of the A.C.M. March 1999 pp 78-80

[54] Abid, C., A., Zouari, B., A distributed verification approach for modular Petri nets,
Proceedings of the 2007 summer computer simulation conference, pp 681-690 (2007)

[55] BBN Technologies
http://openmap.bbn.com

[56] Environment System Research Institute, Inc.
http://www.esri.com

[57] Hoch, F. “Assessing a wireless future”, Trends Report 2001, Oct 1, 2001.

[58] Imielinski T., and Badrinath B.R., Mobile Wireless Computing: Challenges in
Data Management, Rutgers University, New Brunswick, NJ, 1994.

[59] Mykland, R., Palm OS Programming from the ground up, Osborne/McGraw-
Hill, USA, 2000.

[60] Winton, G., Palm OS Network Programming, 1st edition, USA,
O’Reilly, 2001.

[61] Foster, L. R., Palm OS Programming Bible, 1st edition, USA, IDG Books
Worldwide Inc., 2000.

[62] Wilson, G., and Ostrem J., Palm OS Programmer’s Companion,
http://www.palmos.com/dev/support/docs/, 2002.

[63] RSA Security, http://www.rsasecurity.com

[64] WAP forum, http://www1.wapforum.org/member/developers/index.htm

[65] Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/SOAP/,
 2000
[66] WAP - Wireless Telephony Application Specification,
Version 30-Apr-1998.

 - 261 -

[67] Gossett, B. (2002) Introduction to Conduit Development, available at
http://www.accessdevnet.com/docs/conduits/win/Intro_CondPPPlatform.html#996015

[68] Martin, Robert C. (2008), Engineering Notebook Column, C++ Report, available at
http://www.objectmentor.com/resources/articles/umlfsm.pdf

[69] Hildebrandt, T. (2004), Labelled transition systems, CCS and the Mobility Workbench,
Model-based Design of Distributed and Mobile Systems, available at
http://www.itu.dk/courses/IMDD/F2005/Week1/slides1.pdf

[70] FIPA website – http://www.fipa.org/

[71] Wikipedia website – http://en.wikipedia.org/wiki/Main_Page

[72] KIF information website - http://www.cs.umbc.edu/kse/kif/

[73] Peng, W., Deadlock detection in communicating finite state machines by even
reachability analysis, Mobile Networks and Applications 2, pp 251-257, 1997

[74] West, C.H (1989), Protocol Validation in Complex Systems, Symposium Proceedings on
architectures and protocols, pp303-312, 1989

[75] M. Gouda and J. Han, Protocol validation by fair progress state exploration, Computer
Networks and ISDN System 9, pp353–361, 1985

[76] Peng W., Purushothaman S., Data Flow Analysis of Communicating Finite State
Machines, ACM Transactions on Programming Languages and Systems, Vol. 13, No. 3, pp 399-442,
1991

[77] Misra, J., Detecting Termination of Distributed Computations using Markers, Proceedings
of the Second Annual ACM Symposium on Principles of Distributed Computing, pp 290-294, 1983

[78] Introduction to Petri Nets, available at:
http://neo.dmcs.p.lodz.pl/oom/petri_nets.pdf

[79] Gouda, M. G., Chang, C. K., Proving liveness for networks of communicating finite
state machines, Transactions on Programming Languages and Systems (TOPLAS), Vol. 8, No. 1,
pp.154 – 182, 1986

[80] Aberdeen Group (Dec 2004), The E-procurement Benchmark Report, Less Hype,
More results, available at:
http://www.oneoncology.com/Company/Design/Docs/Aberdeen-eProReport-
CompleteVersion.pdf

[81] E-Procurement with SAP for the Public Sector (2004), available at:
http://www.sap.com/canada/industries/publicsector/pdf/BWP_SB_EProcurement_Public
Sector.pdf

 - 262 -

[82] West, C. H., An Automated Technique of Communications Protocol Validation, IEEE
Transactions on Communications, Vol. 26, Issue 8, pp 1271-1275, 1978

[83] Razzaque, M., A., Rashid, M., M., O., Hong, C., S., MC2DR: Multi-cycle Deadlock
Detection and Recovery Algorithm for Distributed Systems (2007), available at:
http://www2.cs.uh.edu/~openuh/hpcc07/papers/53-Razzaque.pdf

[84] Betin-Can, A., Bultan T., Fu X., Design for verification for asynchronously
communicating Web Services, Proceedings of the 14th international conference on World Wide Web, pp
750-759 (2005)

[85] Baldoni M., Baroglio C., Chopra A.K., Desai N., Patti V., Singh M.P., Choice,
interoperability, and conformance in interaction protocols and service choreographies,
Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems – Vol.2,
pp 843-850 (2009)

[86] Bultan T., Fu X., Su J., Analyzing Conversations of Web Services, IEEE Internet
Computing, Vol.10, no.1, pp 18-25 (2006)

[87] Deutsch A., Sui L., Vianu V., Zhou D., Verification of Communicating Data-Driven
Web Services, Symposium on Principles of Database Systems (PODS), 2006

[88] Chabbar E., Bouhdadi M., On verification of Communicating Finite State Machines
Using Residual Languages, First Asia International Conference on Modelling and Simulation, pp 212-
217 (2007)

[89] Bhargavan K., Fournet C., Coring R., Zalinescu E., Cryptographically verified
implementation for TLS, Proceedings of the 15th ACM conference on Computer and communications
security, pp459-468 (2008)

 - 263 -

Appendices

Appendix A: Description of implemented Java classes

Package Name Class/Interface name Description

bazaar.protocol Base package

 ProtocolEvent Interface identifying a class representing

an input event from a server to a client

agent.

 ProtocolEventFactory Factory responsible for instantiating

concrete subclasses of ProtocolEvent

 ProtocolEventListener Interface to listen for input events to the

client agent.

 ProtocolMessage Interface identifying a class representing

an output message from a client agent to

a server.

 ProtocolMessageFactory Factory responsible for instantiating

concrete subclasses of ProtocolMessage

 ProtocolMessageListener Interface to listen for incoming messages

to a server agent.

 ProtocolRequestDispatcher Interface for dispatching a client output

message to a target server URL

 FileProtocolRequestDispatcher Concrete implementation of

ProtocolRequestDispatcher which write

output to disk files.

 SocketProtocolRequestDispatcher Concrete implementation of

ProtocolRequestDispatcher which write

output to TCP sockets.

 ServletProtocolRequestDispatcher Concrete implementation of

ProtocolRequestDispatcher which write
output to Servlet URLs.

 ProtocolRequestDispatcherFactory Creates a concrete

ProtocolRequestDispatcher from a String

representation of a URL.

 ProtocolValidation Class responsible for checking forward

reachability and backward reachability in

StateMachines.

 State Representation of a single STATE in a

state machine.

 StateMachine Representation of a Finite State Machine

(FSM)

 StateTransition Representation of a single state transition

in a state machine.

 StateMachineNotification Listener for events when parsing a XML

description of a state machine.

 ProtocolException Exception class.

bazaar.events Package representing the expected events

between server agent and client agent.

 Offer Class representing a merchant offer to a

client.

 Sale Class representing a confirmed purchase
to a client.

 Registered Class notifying a client that it has been

successfully registered by a merchant for

some purpose eg Auction

 AuctionStatus Notification to client of the current status

 - 264 -

of an item being auctioned.

 CatalogItems List of items returned to client matching

a previous Catalog query.

 VoidEvent Generic event used to initiate the

StateMachine.

bazaar.messages Package representing the expected

messages between client agent and server

agent.

 Bid Class representing a client agent’s bid for

an item.

 Buy Class representing a client’s purchase of
an item.

 Catalog Client query of items in merchant

catalog.

 Register Client request to register interest with a

merchant.

 AuctionInquire Client inquiry on the current status of an

auction item.

 VoidMessage Generic message used to end a

StateMachine invocation.

bazaar.parsers Package containing classes and

interfaces responsible for parsing XML

format to Java objects.

 StateMachineParser Interface to identify a class as being able

to parse state machine XML.

 SAXStateMachineParser Class using SAX to sequentially parse

input XML representing a state machine.

 SAXOntologyParser Class using SAX to sequentially parse

input XML representing a hierarchical

ontology for the domain of wine sales.

 StateHandler Interface to receive events generated
during state machine parsing.

 StateParseException Exception class.

bazaar.builder DataDirector Abstract base class for classes

responsible for generating data, as used

in the Builder design pattern.

 DataBuilder Abstract base class for classes

responsible for building objects, as in the

Builder design pattern.

 ObjectBuilder Default concrete class for object

building.

 ObjectDirector Default concrete class for data

generation.

 SAXDirector Class responsible for parsing input XML

for tag and attribute data.

 CatalogItemsDirector Class for parsing Catalog of items from

server.

 ProtocolEventBuilder Class responsible for creating a

recognizable vocabulary phrase as client

input.

 ProtocolMessageBuilder Class responsible for creating a
recognizable vocabulary phrase as server

input.

 XMLItemsBuilder Class for creation of catalog item XML

output from server.

 XMLSimpleBuilder Class for creation of XML representing

all other vocabulary phrases. Eg Bid,

Offer, Sale etc.

bazaar.ontology Package containing objects to be used in

 - 265 -

representing an Ontology for wine

domain.

 Category Class representing a wine category eg

“Red”, “White”

 Variety Class representing a wine variety eg

“Shiraz”, “Chardonnay”

 Winery Class representing a winery eg

“Penfold’s”, “Wynns”

 Label Class representing a label of wine eg

“Grange”, “Hill Of Grace”

 Vintage Class representing a single vintage of a
label eg 1999, 2000

 OntologyNode Abstract superclass of above classes, to

allow hierarchical tree data structure.

 Ontology Collection of OntologyNode objects

representing the hierarchical Ontology of

the wine domain.

bazaar.util Utilities package.

 INode Interface for a tree node.

 StateNode Concrete INode class wrapping a State

class, for use in protocol validation.

 NodeIterator Base class for iterator of tree containing

INode nodes.

 NodeDepthIterator Depth-first iterator.

 NodeBreadthIterator Breadth-first iterator.

 NodeSetDepthIterator Depth-first iterator, ignoring duplicates.

 NodeSetBreadthIterator Breadth-first iterator, ignoring

duplicates.

bazaar.agent

bazaar.merchants Package for common functionality

amongst merchants.

 Item Abstract representation of a merchant

item, including item name and id.

 ItemInventory Collection of Item objects forming an

Inventory.

 Wine Concrete implementation of Item

representing an instance of a wine.

 WineInventory Collection of Wine objects forming an
Inventory.

 Feature Class representing a feature value for an

item.

 FeatureVector A collection of Feature objects forming a

feature vector for an item.

 SimilarityComparator Implementation of java.util.Comparator

interface for sorting of similarity matches

based on feature vectors.

 MerchantToken Class providing unique tokens for use by

merchants.

 MerchantServer Implementation of base merchant server

using TCP sockets.

 MerchantSevlet Implementation of base merchant server

using Java Servlets.

 WineCatalogMerchant Implementation of product brokering

used by merchant servers.

 StateMachineServer Implementation of StateMachine server

using TCP sockets.

 StateMachineServlet Implementation of StateMachine server

using Java Servlets.

bazaar.merchants.hagg Package for implementation of Haggle

 - 266 -

le merchant protocol.

 HaggleMerchantServer Specialization of MerchantServer for this

protocol.

 HaggleMerchantServlet Specialization of MerchantServlet for

this protocol.

 WineHaggle Specialization of WineCatologMerchant

implementing support for vocabulary

items known to this protocol.

bazaar.merchants.wine

store

 Package for implementation of Shopfront

merchant protocol.

 ShopMerchantServer Specialization of MerchantServer for this
protocol.

 ShopMerchantServlet Specialization of MerchantServlet for

this protocol.

 WineStore Specialization of WineCatologMerchant

implementing support for vocabulary

items known to this protocol.

bazaar.merchants.aucti

on

 Package for implementation of English

Auction merchant protocol.

 AuctionMerchantServer Specialization of MerchantServer for this

protocol.

 AuctionMerchantServlet Specialization of MerchantServlet for

this protocol.

 WineAuction Specialization of WineCatologMerchant

implementing support for vocabulary

items known to this protocol.

bazaar.agent Package contains client agent classes.

 Barney2 Client agent designed for testing of

product brokering and individual

protocol state transitions.

 Barney3 Client agent extending Barney2 to
include merchant brokering of the three

different agent protocols.

 - 267 -

Appendix B

Testing – scenarios for the various types of deadlocks (Protocol

Correctness)

Testing involves checking for the proper functioning of the algorithm in detecting

various deadlocks. There are three types of scenarios: simple, hybrid and complex deadlocks.

The aim here is to evaluate the effectiveness of our technique on various protocols and

communication systems that contain different deadlock scenarios. We shall denote the global

deadlock states detected by the program as <s1, s2, d1, d2> where state ‘s1’ of CCSM M1

will expect message ‘d1’ in the next transition. Similarly, state ‘s2’ of M2 will expect

message ‘d2’ in the next transition. A null message in ‘d1’ or ‘d2’ is indicated by 0.

• Simple Deadlock Scenario

 A simple deadlock error arises when two complex state machines are both in their

simple states. This implies that the algorithm should work for any simple finite state machine

as well. The state machine for a scenario with the simple deadlock error is shown in Figure 1.

These state machines can be viewed as simple CFSMs or fragments of CCSMs.

Figure 1. A simple deadlock scenario.

Let us first see where the deadlock is, by analysing the above scenario. As M1 and M2 start

from the initial state 0, M1 sends ‘a’ and moves to state 1. M2 receives ‘a’ and moves to state

1. Now, from state 1 of both, there is no ‘send’ transition. Each of them will now have to wait

until the other one sends a message that it can receive, and move on. It implies that the global

 0

4

2

1

3

 0

1

2

3

-a

+c

-b +d

+b

+a

-d

+b

+e

 M1 M2

+b

-e

C21

C12

 - 268 -

state <1, 1> is a simple deadlock. The program output is shown below in Figure 2. The

program starts with determining the output transitional characteristics for all states of M1 and

M2. Only the states with a ‘true’ value are the possible deadlock states. In M1, state 1 and 4

are such states. The program then checks the messages to be desired by these states. For state

1, the expected messages are ‘b’ and ‘c’, whereas for state 4, the expected message is ‘b’.

Now input transitional characteristics are determined for these states. In this case, it is ‘false’

for both the states, as they both have got only ‘sending’ transitions coming towards them.

 - 269 -

Figure 2: Program output for the simple deadlock scenario.

 - 270 -

� For M2, state 1 is the possible deadlock state. This state has an expected message ‘b’

and its input transitional characteristic is ‘true’ because of a ‘receiving’ transition

coming towards it.

� Now, the input transitional characteristic of state 1 of M1 is combined with the same

of state 1 of M2. Since one of them is ‘true’, this combination is still a deadlock

candidate. State 1 of M1 is sent to the backtracking module, with an expected

message ‘b’ of state 1 of M2. When we look at the backtracking from state 1 of M1,

we find the transition coming towards it from state 0, which is ‘sending’ message ‘a’.

Since this is the only transition coming to state 1, and the message is not what was

expected by M2, the global state <1, 1, 0, b> is declared as a simple deadlock.

Similarly, state 4 of M1 has to be checked with message ‘b’ expected by state 1 of M2. But

this combination is not sent for backtracking procedure, as state 4 is a final state in M1. Final

state cannot cause a deadlock as state machine execution terminates there. So, global state

<4, 1, 0, b> is not a deadlock. Next, checking is done for state 1 of M2 with message ‘b’

desired by state 1 of M1. This combination goes for backtracking and we see in M2, a

‘receiving’ transitions coming towards state 1 from state 0. Now we can backtrack from state

0 in search of ‘sending’ transition of message ‘b’. This will be the last level of backtracking

allowed, as state 0 is the initial state. Transition from state 2 is ‘sending’ message ‘e’, which

is not what we require. Global state <1, 1, b, 0> is declared as a simple deadlock.

The same happens for <1, 1, c, 0> which is a simple deadlock as well. And then, global state

<4, 1, b, 0> is not a deadlock again because state 4 is the final state. This implies that the

program was able to detect all possible deadlocks, and also identify others as non-deadlock.

• Hybrid Deadlock Scenario

A more complex scenario is shown in Figure 3 to create a hybrid deadlock situation. The

XML specification for these CCSMs is given in Appendix G. We can proceed here error-free

until state S1 of M1 and state 3 of M2. When we reach the complex state S1 of M1, state 4,

which is the initial state of internal FSM, will wait for message ‘e’ to arrive. State 3 of M2

will also wait for its only transition to happen. Since one state in this case is an internal state,

and the other one is a simple state, this scenario will cause a hybrid deadlock.

 - 271 -

The program output for this scenario is shown in Figure 4. In this case, backtracking is done

for more than one level to check for ‘sending’ of the desired message. As soon as a

‘receiving’ transition is discovered, no proceeding is required in that particular path, so other

possibilities are checked. The program was able to detect the deadlock and determine its type

correctly. The output shows <4, 3, 0, e> and <4, 3, e, 0> to be hybrid deadlocks.

Figure 3. A hybrid deadlock scenario.

 0

2

1

3

 0

1

2

-a

+c

+d

+b

+a

-d

-b
+a

-c

C21

C12

-a

-d

 +e +f

 -h

 +g

 S1

4

7

6

5

8

6

-j

+e

-g

+j

4

5

3 -h

-i

-f

M1 M2

+i

 - 272 -

Figure 4 - Program output for the hybrid deadlock scenario.

 - 273 -

• Complex Deadlock Scenario

Figure 5: A complex deadlock scenario

-i S1

 +k

 +m/-n -r

 +q

 0

2

1

3

 0

1

2

-a

+c

+d

+b

+a

-d

-b +a

-c

C21

C12

-a

 +h

-d -e +f

 -h

 +g

 S1

4

7

6

5

6

-j

+e

-g

+j

4

5

3 -h

-i

-f

M1 M2

+i

9 8

7

+p

10

 +i S2

 -k -o

 +l

 -m/+n -m

 +r

 +q

8

12 11

10 9

13

-p

-h

 - 274 -

Figure 6: Program output for the complex deadlock scenario.

The scenario shown in Figure 5 creates a complex deadlock situation. We can proceed error-

free through to state S2 of M1 and state S1 of M2. From the initial state 8 of S2, M1 sends ‘k’

 - 275 -

and moves to state 9. M2, from the initial state 6 of S1, receives ‘k’ and moves to 7. Now M1

can move to state 11 and M2 can move to state 8. From here, they both expect message ‘q’

from each other and keep waiting for it. Since both these states are internal states, they will

cause a complex deadlock. The program output for this scenario is shown in Figure 6. The

program performs correctly in this scenario as well. The program output shows <11, 8, 0, q>

and <11, 8, q, 0> as complex deadlocks. This implies that the algorithm functions effectively

for all types of deadlocks. Also, when compared to the number of states in each CCSM, our

method explores only a small part of the total state space.

 - 276 -

Appendix C: MIDAS Class Diagrams

Figure 1. Package Overview

Figure 2. Package: midas

 - 277 -

Figure 3. Package: midas.database

Figure 4. Package: midas.database.record

Figure 5. Package: midas.database.table

 - 278 -

Figure 6. Package: midas.map

Figure 7. Package: midas.route

 - 279 -

Figure 8. Package: midas.route.cache

Figure 9. Package: midas.schedule

Figure 10. Package: midas.schedule.algos

 - 280 -

Figure 11. Package: midas.schedule.db

Figure 12. Package: server

Figure 13. Package: server.comm.

Figure 14. Package: sms

 - 281 -

Figure 15. Package: ui

 - 282 -

ErrorCode

(from comm)

ErrorCodeException

errorCode : int

ErrorCodeException()

ErrorCodeException()
getErrorCode()

toString()

(from comm)

XmlEncoding

(from comm)

SenderReceiver

senderName : String

senderAddress1 : String

senderAddress2 : String

senderAddress3 : String

senderState : String
senderPostcode : int

receiverName : String

receiverAddress1 : String

receiverAddress2 : String

receiverAddress3 : String

receiverState : String

receiverPostcode : int

SenderReceiver()

setSenderName()

setSenderAddress1()

setSenderAddress2()

setSenderAddress3()
setSenderState()

setSenderPostcode()

setReceiverName()

setReceiverAddress1()

setReceiverAddress2()

setReceiverAddress3()

setReceiverState()
setReceiverPostcode()

toString()

(from database)

BasicLayer

lowScale : float

highScale : float

Bas icLayer()

paint()
setLowScale()

getLowScale()

setHighScale()

getHighScale()

componentRes ized()

componentMoved()

componentShown()
componentHidden()

project ionChanged()

setProjec tion()

setDataHandler()

getDataHandler()

(from map)

DataHandler

generateGraphics()

removeAll()

add()
setGraphicList()

getGraphicList()

setProjection()

(f rom map)

-dataHandler

Scalable
(from map)

ScalableLocationL

ayer

lowScale : float

highScale : float

paint()

setLowScale()

getLowScale()

setHighScale()

getHighScale()

setProjection()

(f rom map)

ScalableShapeLay

er

lowScale : float

highScale : float

paint()

setLowScale()

getLowScale()

setHighScale()

getHighScale()

setProjection()

(from map)

TransparencyLayer

paint()

(from map)

LabelDataHandler

posCounters : java.util.Hashtable = new Hashtable ()

order : int = 0

LabelDataHandler()
generateGraphics()

addRoute()

addPoint()

setShowOrder()

setShowLocation()

removeAll()

getGraphicList()
add()

addLocation()

addRoutes()

addPoints()

(f rom m ap)

CustomerDataHandler

CustomerDataHandler()

generateGraphics()
addCustomer()

locateCustomer()

add()

addCustomers()

getAllCustomers()

(f rom map)

RouteDataHandler

counter : int = 1

RouteDataHandler()

generateGraphics()

addRoute()

removeAll()

add()

addRoutes()

(f rom m ap)

MapScreen

layersProperty : String = "openmap"
mapResources : String = "map.properties"

props : java.util.Properties = new Properties ()

MapScreen()
init()

clear()

getStatus()

loadResource()

main()

findLayer()

(from map)

#labelsHandler

#customersHandler

#routesHandler

VehicleDataHandler

VehicleDataHandler()

generateGraphics()
locateVehicle()

removeAll()

addVehicle()

setLocater()

add()

addVehicles()

(from map)

#vehiclesHandler

InputUI_textField_keyAdapter

keyPressed()

InputUI_textField_keyAdapter()

(from ui)

InputUI

InputUI()

jbInit()

textField_keyPressed()

(from ui)

adaptee

SmsUI

MAX_MSG : short = 140

SmsUI()

jbInit()

msgTxt_keyReleased()

msgTxt_keyTyped()

(from ui)

ManifestUI

ManifestUI()

jbInit()

(from ui)

LoginUI_textField_keyAdapter

keyPressed()

LoginUI_textField_keyAdapter()

(from ui)

LoginUI

LoginUI()

jbInit()

textField_keyPressed()

(from ui)

adaptee

MainFrame

normalStartup()

securedStartup()

setCenter()

setCenterOfScreen()

main()

(from ui)

OpMap

OpMap()

getStatus()

showManifest()

showDriver()

showAllDrivers()

showVehicle()
showRoute()

showClosest()

(from OperatorUI)

RecordListener

(f rom d ata base)

ManifestTableModel

columnNames[] : String = {"Manifest No","From","To"}
data[][] : Object

ManifestTableModel()

getRowCount()

getColumnCount()

getColumnName()

getValueAt()

(from tabl e)

OperatorUI

OperatorUI()

jbInit()
exit()

actionPerformed()

manifestCmb_actionPerformed()

manifestsBtn_actionPerformed()

trackDriverBtn_actionPerformed()

trackTruckBtn_actionPerformed()

routeBtn_actionPerformed()
closestTruckBtn_actionPerformed()

smsBtn_actionPerformed()

showInputWindow()

doNewOrder()

sendOrderNotification()

sendSMS()
orderNotification()

(from ui)

opMap

Storage

today : java.uti l.Calendar

date : java.uti l.Date

Storage()

addOrder()

checkBalance()

setDeliveryCompletion()

getServicePoint()

getCustomerCode()
isValidCustomer()

getAllPostcodeCoordinates()

getAllManifestNos()

getGPS4Driver()

getCustomerAddress()

getPostCodeCoordinate()

getDriverLocation()
getTruckLocation()

getDriver()

getDriverContactNumber()

printSQLExcept ion()

setRecordListener()

getSenderReceiver()
getAllDrivers()

getGPS4Manifest()

(from database)

recordListener

$db

db

-$storage

Fig 16 MIDAS class diagram part1

 - 283 -

Fig 17 MIDAS class diagram part2.

CommunicationPro

tocol
(from comm)

XmlHandler

encoding : int

tags : java.util.LinkedList = new LinkedList ()

XmlHandler()

startElement()

endElement()

createElement()

createElement()

(from comm)

Road

BEGIN : int = 1

END : int = 2

BETWEEN : int = 3

NOT_FOUND : int = - 1

length : double

reverse : boolean

currentPos : int

Road()

isReversed()

isAnEndPoint ()

c lone()

getCurrentSeg()

length()

equals()

checkLength()

Road()

add()

add()

setFi rst ()

setLas t()

contains()

posit ion()

setStartAt()

compareLengthTo()

getForwardPoints()

getBackwardPoints()

getPoints ()

getPoints ()

setCurrentSeg()

convertFrom()

convertFrom()

convertTo()

(f rom rout e)

-currentSeg

SmsHandler

SEND_SOAP : int = 0

SEND_HTTP : int = 1

sendOption : int = SEND_SOAP

argHash : java.util.Hashtable = new Hashtable ()

SmsHandler()

SmsHandler()

SmsHandler()

SmsHandler()

SmsHandler()

setProxy()

setLogin()

sendSMS()

getDefaultHandler()

main()

(f rom sms)

SmsClient
(from sms)

-bsc
Bs fSoapCl ient

argHash : java.util.Hashtable

BsfSoapClient()

BsfSoapClient()

BsfSoapClient()

BsfSoapClient()

addArg()

clearArgs()

sendSMS()

invoke()

invoke()

BsfSoapClient()

invoke()

invoke()

BsfSoapClient()

invoke()

invoke()

setEndpointUrl()

setProxy()

getAllArgs()

getEndpointUrl()

getProxy()

(from sms)

BsfHttpClient

argHash : java.util.Hashtable

BsfHttpClient()

BsfHttpClient()

BsfHttpClient()

setEndpointUrl()

setProxy()

addArg()

logout()

sendSMS()

clearArgs()

getAllArgs()

getEndpointUrl()

getProxy()

main()

BsfHttpClient()

(from sms)

Insertion

speed : float = 1

Insertion()

addNode()

addNode()

bestSchdeule()

timeForwarding()

copyTimeTable()

findClosest()

printList()

printTimetable()

search()

(from algos)

Packet

messageID : int

reserved : int

sequenceNo : int

data : String

Packet()

setMessageID()

setReseved()

setSequenceNo()

setData()

setData()

getMessageID()

getReseved()

getSequenceNo()

getData()

readFrom()

writeTo()

toString()

(from comm)

Scheduler

Scheduler()

schedule()

schedule()

(from schedule)

ScheduleDBHandler

ScheduleDBHandler()

main()

getBookings()

getBookings()

getRecord()

getVehicles()

(from db)

-dbHandler

Schedule

latest : java.util.Date

start : java.util.Date

end : java.util.Date

maxLoad : int

currentLoad : int

Schedule()

Schedule()

getLatest()

setLatest()

clone()

setCurrentLoad()

getCurrentLoad()

setMaxLoad()

getMaxLoad()

addLoad()

subtractLoad()

put()

remove()

(from schedule)

TimeComparator

compare()

(from schedu le)

TimeOutOfRangeExcept ion

TimeOutOfRangeException()

(from schedule)

LimitedTree

capaci ty : int = 25

LimitedTree()

LimitedTree()

LimitedTree()

setCapacity()

add()

addAll()

(from RoadManager)

LatLonComparator

compare()

(f rom m idas)

LonLatComparator

compare()

(f rom m idas)

DateFormatException

DateFormatException()

DateFormatException()

(from midas)

Coordinates

latTree : java.util .TreeMap

lonTree : java.uti l.TreeMap

Coordinates()

addAll()

isEmpty()

getSubComparator()

addAll()

addNode()

addNode()

getNode()

findClosest()

findRange()

findClosest()

getPoints()

findClosest()

previousKey()

nextKey()

findRange()

distance()

simDistance()

(f rom midas)

Algo

FAST : int = 0

BEST : int = 1

addNode()

getInstance()

setRoadManager()

getRoadManager()

search()

(from algos)

CacheManager

cache : java.util.TreeMap

max_size : int = 200

CacheManager()

put()

get()

evict()

(f rom cache)

postcodes

XmlBookingHandler

bookingNo : int

XmlBookingHandler()

characters()

characters()

characters()

getBookingNo()

(from comm)

XmlCheckBalanceHandler

bookingNo : int

XmlCheckBalanceHandler()

characters()

characters()

characters()

getBookingNo()

(f rom comm)

XmlRegistrationHandler

abn : String

customerCode : String

customerName : String

XmlRegistrationHandler()

characters()

characters()

characters()

getABN()

getCustomerCode()

getCustomerName()

(from comm)

RoadManager

alpha : double = 0.6

beta : double = 0.4

count : int

RoadManager()

RoadManager()

setProperties()

readData()

getAngleA()

getIntersections()

calculateTimeTaken()

getEstimateTime()

RoadManager()

addRoad()

addRoad()

getRoad()

findClosestByRoad()

findClosestByRoad2()

getRoute()

getRouteByClosest()

getRoute()

getRoute()

sortByClosest()

changeTail()

changeHead()

(from ro ute)

-cache

roadManager

MidasAppServer

MidasAppServer()

getRoadManager()

getStorage()

main()

doOrder()

doBalance()

doRegistration()

doOrderCompletion()

doBook ingChecking()

parse()

(from server)

-$roadManager

XmlOrderHandler

XmlOrderHandler()

startDocument()

startElement()

endElement()

characters()

getOrder()

doInternalTags()

(from comm)

 - 284 -

DriverLocation

driverCode : String

DriverLocation()

DriverLocation()

getDriverCode()

toString()

clone()

(from database)

Postcode

postcode : int

suburb : S tring

Postcode()
Postcode()

Postcode()

toS tring()

getSuburb()

getPostcode()

clone()

(from database)

Record

(from re cord)ServicePoint

servicePointCode : String
subRouteCode : String

branchCode : String

customerCode : String

ServicePoint()

ServicePoint()
setServicePointCode()

getServicePointCode()

setSubRouteCode()

getSubRouteCode()

setBranchCode()

getBranchCode()

setCustomerCode()
getCustomerCode()

saveTo()

(from record)

RoadNode

RoadNode()

RoadNode()

RoadNode()

clone()
size()

isIntersection()

isConnector()

add()

getAllRoads()

getNextRoad()

remove()

(f rom rout e)
GPSPoint

GPSPoint()
GPSPoint()

GPSPoint()

GPSPoint()

getLatitude()

getLongitude()

toString()
GPSPoint()

GPSPoint()

getLatLonPoint()

(from midas)

Schedulable
(f rom sc hedule)

VehicleConstraints
(from schedule)

Product

bookingID : int

productCode : String

quantity : int

weight : int

Product()
Product()

setProductCode()

setQuantity()

setBookingID()

getBookingID()

getProductCode()

getQuantity()
saveTo()

(from record)

Address

address1 : String

address2 : String

address3 : String

state : String

postcode : int

setAddress()

setAddress1()

setAddress2()

setAddress3()

setState()
setPostcode()

getAddress1()

getAddress2()

getAddress3()

getState()

getPostcode()
toString()

(f rom datab ase)

-senderAddress

-receiverAddress

-product

Order

bookingID : int

locationCode : String

customerCode : String

senderName : String
senderSubRoute : String = "NIL"

pickupStartTime : St ring

pickupEndTime : String

receiverName : St ring

receiverSubRoute : String = "NIL"

deliveryS tartTime : String

deliveryEndTime : St ring
criticalTimeField : int

fleetClas sCode : S tring

routeCode : String
resourceType : St ring

consignmentNo : String

senderRef : String

receiverRef : S tring

userCode : String

criticalTime : String
serviceCode : St ring

invoiceNo : String

invoiceDate : String

deliveryCompletionDate : String

Order()

setBookingID()
setBookingDate()

setLocationCode()

setCustomerCode()

setSenderName()

setSenderSubRoute()

setReceiverName()
setReceiverSubRoute()

setFleetClassCode()

setRouteCode()

setInvoic eNo()

setInvoic eDate()

setSenderRef()

setReceiverRef()
setDeliveryComplet ionDate()

setResourc eType()

setPickupDate()

setPickupStartTime()

setPickupEndTime()

setDeliveryDate()
setDeliveryStartTime()

setDeliveryEndTime()

setUserCode()

setCriticalTime()

setServiceCode()

setCriticalTimeField()
setConsignmentNo()

getSenderName()

getPickupDate()

getPickupStartTime()

getReceiverName()

getBookingID()

getBookingDate()
getCustomerCode()

saveTo()

checkProductsList()

getSenderAddress()

setSenderAddress()

setReceiverAddress()
getReceiverAddress()

addProduct()

(f ro m reco rd)

-senderAddress

-receiverAddress

-order

CDate

DB_FORMAT : String = "dd/MM/yyyy"
PALM_FORMAT : String = "dd-MM-yy"

SMS_FORMAT : String = "dd-MMM-yy"

calendar : java.util.Calendar = Calendar.getInstance()

CDate()

CDate()
CDate()

CDate()

setTime()

setCalendarTime()

toString()

isToday()

createDate()

(f rom m id as)

-book ingDate

-pickupDate-deliveryDate

TimeWindow

cal : java.util.Calendar = Calendar.getInstance()

start : java.util.Date

end : java.util.Date

setStartTime()
setEndTime()

getStartTime()

getEndTime()

isInBetween()

toString()

(from schedule)

Route

startTime : java.util.Date

endTime : java.util.Date

Route()

setList()

getList()

setEndTime()

getEndTime()

setStartTime()
getStartTime()

toString()

getVehicle()

setVehicle()

setSchedule()

getSchedule()

(f rom sc hed ule)

SearchResult

SearchResult()
setFreeVehicle()

getFreeVehicle()

setRoutes()

getRoutes()

setUnservedList ()

getUnservedList ()

(f rom al gos)

-routes[]

ServiceNode

PICKUP : int = 0

DELIVERY : int = 1

serviceType : int = PICKUP

custName : String
scheduleTime : java.util.Date

load : int

ServiceNode()

setServiceType()

setCustomer()
setLocation()

getServiceType()

getCustomer()

getLocation()

getPeerNode()

isValidAt()

getWaitingTimeFrom()
serviceTime()

getServiceTime()

getLatitude()

getLongitude()

setScheduleTime()

getScheduleTime()
toString()

setLoad()

getLoad()

setTimeWindow()

setPeerNode()

getTimeWindow()

getLatLonPoint()

(from schedule)

-peerNode

-timeWindow

-unservedList[]

Vehicle

id : String
load : int

size : float

scheduleTime : java.util.Date

Vehicle()

setLocation()

getLatitude()
getLongitude()

getId()

setId()

setScheduleTime()

getScheduleTime()

getSpeed()
toString()

setLoad()

getLoad()
getLatLonPoint()

(from schedule)

-vehicle

-freeVehicle[]

Distance

distance : double

Distance()

getSource()

getDestionation()

length()
compareTo()

(from RoadManager)

GPSAddress

GPSAddress()

setLatLon()

getLatitude()

getLongitude()

getLatLonPoint()

(from schedule)

GPSData
(f rom m idas)

-location

-location

source

destination

-point

Fig. 18 MIDAS class diagram part3.

 - 285 -

Appendix D: Summary of individual classes in Java – for MIDAS

Package midas

Interface Summary

GPSData The GPSData interface specifies the GPS functionalities.

Class Summary

CDate The CDate extends Date by adding customized date functionalities.

Coordinates
The Coordinates is a data structure, which is used for storing location according

the latitude and Longitude values.

GPSPoint The GPSPoint extends LatLonPoint by implementing GPSData interface

LatLonComparator
The LatLonComparator class specifies the ordering of the GPSData by

comparing latitude and then longitude.

LonLatComparator
The LonLatComparator class specifies the ordering of the GPSData by

comparing longitude and then latitude.

Exception Summary

DateFormatException The DateFormatException extends Exception.

Package midas.database

Interface Summary

RecordListener The RecordListener interface specifies the record event.

Class Summary

Address The Address class represents the address information.

DriverLocation DriverLocation class represents the driver location information.

OrderDBHandler The OrderDBHandler handles the database connectivity for the customer order.

Postcode The Postcode class represents the postcode information.

SenderReceiver The SenderReceiver class represents the sender and receiver information.

Storage The Storage class represents the database connectivity of the MIDAS server.

 Package midas.database.record

Interface Summary

Record The Record interface specifies the functionality of a database record.

Class Summary

Order The Order class represents the customer order information.

Product The Product class represents the product information.

ServicePoint The ServicePoint class represents the service point information.

 - 286 -

Package midas.database.table

Class Summary

ManifestTableModel The ManifestTableModel class represents the manifest table.

Package midas.map

Interface Summary

Scalable The Scalable interface specifies the functionalities of the scalable object.

Class Summary

BasicLayer
BasicLayer extends Layer by adding DataHandler which allows to modify

the data source of the layer without class modification.

CustomerDataHandler
CustomerDataHandler extends DataHandler by adding specified

functionalities.

DataHandler DataHandler is an abstract class for handling the grapgical data.

LabelDataHandler
LabelDataHandler extends DataHandler by adding specified functionalities

for the graphical label on the map.

LocationHandler
LocationHandler extends CSVLocationHandler by adding specified

functionalities for handling the graphical location on the map.

MapScreen The MapScreen represents the GUI of the digital map.

RouteDataHandler
RouteDataHandler extends DataHandler by adding specified functionalities

for the graphical route on the map.

ScalableLocationLayer
ScalableLocationLayer extends LocationLayer by adding Scalable, which

allows controlling the visiablity on different scale.

ScalableShapeLayer
ScalableShapeLayer extends ShapeLayer by adding Scalable, which allows

controlling the visiablity on different scale for shapefile.

TransparencyLayer
TransparencyLayer extends BasicLayer by adding transparency

functionality, which allows rendering a transparency graphic.

VehicleDataHandler
VehicleDataHandler extends DataHandler by adding specified functionalities

for the rendering vehicle location on the map.

Package midas.route

Class Summary

Road The Road class represents the road information.

RoadManager
The RoadManager extends the Coordinates class by adding path searching

functionality for routing.

RoadNode The RoadNode class represents the point information of the road.

Package midas.route.cache

Class Summary

CacheManager The CacheManager manages the cache content for the routing.

 - 287 -

Package midas.schedule

Interface Summary

Schedulable The Schedulable interface specifies the schedulable functionality.

VehicleConstraints The VehicleConstraints interface specifies the vehicle constraints.

Class Summary

GPSAddress The GPSAddress extends the Address by adding GPS infomation.

Route The route represents the route information.

Schedule The Schedule class represents a schedule time table.

Scheduler The Scheduler manages the route scheduling.

ServiceNode The ServiceNode represents the service point of the customer information.

TimeComparator
The TimeComparator specifies the ordering of the ServiceNode by comparing the
schedule time.

TimeWindow The TimeWindow represents the time frame information.

Vehicle The Vehicle class represents the vehicle information.

Exception Summary

OverloadException The OverloadException extends the Exception.

TimeOutOfRangeException The TimeOutOfRangeException extends Exception.

Package midas.schedule.algos

Class Summary

Algo The Algo cless represents the generic class for the route scheduling.

Insertion
The Insertion extends the Algo by adding Insertion algorithm for performing route

scheduling.

SearchResult The SearchResult class represents the seach result of the route scheduling.

Exception Summary

ScheduleForwardException The ScheduleForwardException extends Exception.

Package midas.schedule.db

Class Summary

ScheduleDBHandler The ScheduleDBHandler handles the database connectivity for the scheduling.

Package midas.server

Class Summary

MidasAppServer
The MidasAppServer class is the driver class and handles the network

connectivities.

 - 288 -

Package midas.server.comm

Interface Summary

CommunicationProtocol
The CommunicationProtocol interface specifies the communication

message tags.

ErrorCode The ErrorCode interface specifies the communication error.

XmlEncoding The XmlEncoding interface specifies the XML encoding tags.

Class Summary

Packet The Packet class represents the communication packet.

XmlBookingHandler
The XmlBookingHandler extends XmlHandler by adding booking

number.

XmlCheckBalanceHandler
The XmlCheckBalanceHandler extends XmlHandler by adding booking

number.

XmlHandler
The XmlHandler extends DefaultHandler as a generic class for XML

parsing.

XmlOrderHandler
The XmlOrderHandler extends XmlHandler by adding order

interpretability.

XmlOrderHistoryHandler The XmlOrderHandler extends XmlHandler by adding customer code.

XmlRegistrationHandler
The XmlOrderHandler extends XmlHandler by adding register

interpretability.

Exception Summary

ErrorCodeException The ErrorCodeException extends Exception by adding error codes.

Package midas.sms

Interface Summary

SmsClient The SmsClient interface specifies the functionalities of the SMS client.

Class Summary

BsfHttpClient The BsfHttpClient manages HTTP connectivity for sending SMS.

BsfSoapClient The BsfSoapClient manages SOAP connectivity for sending SMS.

SmsHandler The SmsHandler manages the SMS.

Package midas.ui

Class Summary

InputUI The InputUI class represents the generic input form.

LoginUI The LoginUI class represents the generic login form.

MainFrame The MainFrame manages the main GUI of the system application.

ManifestUI The ManifestUI class represents the manifest table.

OperatorUI The OperatorUI manages the GUI of the system operator.

SmsUI The SmsUI class represents the generic message form.

 - 289 -

Appendix E: Communications packet data structure
A communication message consists of message ID, reserved field, sequence number and

data.

Message ID is a positive number in 8 bits size, it must be one of the following pre-defined

value:

− 0 : new order

− 1 : check invoice balance

− 2 : registration validation

− 3 : order completion

− 4 : check booking

− 200 : reply

− 250 : error

Reserved field is 8 bits reserved size for future usage.

Sequence number is a positive number with incremental value during a communication

session.

Data is the exchanged information, which is presented in XML format.

 - 290 -

Appendix F: Class diagrams

Client Implementation

Figure 1 – Client Implementation Class diagram

Observable

StateMachine

ProtocolMessage fireEvent(protocolEvent)

changeState(State)

ProtocolEventListener

ProtocolMessage CreateMessage(ProtocolEvent) 11
State

1..n1..n

ProtocolEvent
11

ProtocolMessage
StateTransition

1..n1..n11

11

Barney

11

InputStreamOutputStream

ProtocolRequestDispatcher

sendMessage(ProtocolMessage)

ProtocolEvent receiveEvent()
11

11

11

 - 291 -

Server Implementation

Figure 2 – Server Implementation Class diagram

Building Objects from XML

Figure 3 – XML Parsing to Object Class Diagram

WineCatalogMerchant

InputStream

ProtocolMessageListener

ProtocolEvent createEvent(ProtocolMessage)

1

OutputStream
11

1

ShopMerchantServer

HaggleMerchantServer

AuctionMerchantServer

MerchantServlet

ShopMerchantServlet
WineStore

11 11

HaggleMerchantServlet
WineHaggle

11 11

AuctionMerchantServletWineAuction

11 11

HTTPServlet

MerchantServer

ServerSocket

11

SAXDirector

DataDirector

build()

DataBuilder

setProperty()11

ProtocolMessageBuilder

ProtocolMessageFactory

ProtocolMessage newProtocolMessage()

ProtocolEventBuilder

ProtocolEventFactory

ProtocolEvent newProtocolEvent()

 - 292 -

Building XML from Objects

Figure 4 – XML Creation from Objects Class Diagrams

DataDirector

build()

DataBuilder

setProperty()11

XMLSimpleBuilder XMLItemsBuilderObjectDirector

Object
11

 - 293 -

Appendix G: XML listings

Chapter 2 – State Machine definitions

• Haggle Protocol

<?xml version="1.0"?>

<!DOCTYPE StateMachine [

<!ELEMENT StateMachine (State+)>

<!ELEMENT State (StateTransition+)>

<!ATTLIST State name CDATA #REQUIRED>

<!ATTLIST State final CDATA #IMPLIED>

<!ELEMENT StateTransition (event,message,transition)>

<!ELEMENT event (#PCDATA)>

<!ATTLIST event dtd CDATA #IMPLIED>

<!ELEMENT message (#PCDATA)>

<!ATTLIST message url CDATA #IMPLIED>

<!ATTLIST message dtd CDATA #IMPLIED>

<!ELEMENT transition (#PCDATA)>

]>

<StateMachine>

<State name="IDLE" final="true">

<StateTransition>

<event>Void</event>

<message url="yallara:28039" dtd="Catalog.dtd">Catalog</message>

<transition>CATALOG</transition>

</StateTransition>

</State>

<State name="CATALOG">

<StateTransition>

<event dtd="CatalogItems.dtd">CatalogItems</event>

<message>Void</message>

<transition>IDLE</transition>

</StateTransition>

<StateTransition>

<event dtd="CatalogItems.dtd">CatalogItems</event>

<message url="yallara:28039" dtd="Catalog.dtd">Catalog</message>

 - 294 -

<transition>CATALOG</transition>

</StateTransition>

<StateTransition>

<event dtd="CatalogItems.dtd">CatalogItems</event>

<message url="yallara:28039" dtd="Bid.dtd">Bid</message>

<transition>BIDDING</transition>

</StateTransition>

</State>

<State name="BIDDING">

<StateTransition>

<event dtd="Offer.dtd">Offer</event>

<message url="yallara:28039" dtd="Buy.dtd">Buy</message>

<transition>BUYING</transition>

</StateTransition>

<StateTransition>

<event dtd="Offer.dtd">Offer</event>

<message url="yallara:28039" dtd="Bid.dtd">Bid</message>

<transition>BIDDING</transition>

</StateTransition>

<StateTransition>

<event dtd="Offer.dtd">Offer</event>

<message>Void</message>

<transition>IDLE</transition>

</StateTransition>

<StateTransition>

<event dtd="Sale.dtd">Sale</event>

<message>Void</message>

<transition>IDLE</transition>

</StateTransition>

</State>

<State name="BUYING">

<StateTransition>

<event dtd="Sale.dtd">Sale</event>

<message>Void</message>

<transition>IDLE</transition>

 - 295 -

</StateTransition>

</State>

</StateMachine>

• XML passed between the client agent and a Haggle merchant for a Bid,

Offer, Buy and Sale of an item

<?xml version="1.0" encoding="UTF-8"?>

<Bid>

<ItemId>11</ItemId>

<Item>Red;Shiraz;Wynns;Michael;1997;1</Item>

<Price>120.0</Price>

<Quantity>1</Quantity>

<BidderId></BidderId>

</Bid>

<?xml version="1.0" encoding="UTF-8"?>

<Offer>

<ItemId>11</ItemId>

<Item>Red;Shiraz;Wynns;Michael;1997;1</Item>

<Price>133.0</Price>

<Quantity>1</Quantity>

<Token>7661213378746749237</Token>

</Offer>

<?xml version="1.0" encoding="UTF-8"?>

<Buy>

<ItemId>11</ItemId>

<Item>Red;Shiraz;Wynns;Michael;1997;1</Item>

<Price>133.0</Price>

<Quantity>1</Quantity>

<Token>7661213378746749237</Token>

</Buy>

 - 296 -

<?xml version="1.0" encoding="UTF-8"?>

<Sale>

<ItemId>11</ItemId>

<Item>Red;Shiraz;Wynns;Michael;1997;1</Item>

<Price>133.0</Price>

<Quantity>1</Quantity>

<Receipt>2147483648</Receipt>

</Sale>

• Invalid State Machine specification (1)

<State name="IDLE" final="true">

<StateTransition>

<event>Void</event>

<message url="yallara: 28039" dtd="Catalog.dtd">Catalog</message>

<TRANSITION>BUYING</TRANSITION>

</StateTransition>

</State>

• Invalid State Machine specification (2)

<State name="BUYING">

<StateTransition>

<event dtd="Sale.dtd">Sale</event>

<message>Void</message>

<TRANSITION>BUYING</TRANSITION>

</StateTransition>

</State>

 - 297 -

Chapter 3 – XML Specification

• Part of the XML specification of the CCSM fragment M1

<CCSM>

<StateMachine name = “M1”>

 <State name = “IDLE” final = “false” complex = “false”>

 <StateTransition>

 <event>send</event>

 <message>request</message>

 <transition>REQUEST</transition>

 </StateTransition>

 </State>

 <State name = “REQUEST” final = “false” complex = “false”>

 <StateTransition>

 <event>receive</event>

 <message>catalog</message>

 <transition>REGISTRATION</transition>

 </StateTransition>

 </State>

 <State name = “REGISTRATION” final = “false” complex = “true”>

 <StateTransition>

 <event>receive</event>

 <message>rgstd</message>

 <transition>BIDDING</transition>

 </StateTransition>

 </State>

 <State name = “BIDDING” final = “false” complex = “true”>

 <StateTransition>

 <event>send</event>

 <message>confirm</message>

 <transition>PAYMENT</transition>

 </StateTransition>

 </State>

 <State name = “PAYMENT” final = “true” complex = “false”>

 <StateTransition>

 - 298 -

 <event>send</event>

 <message>ccdetails</message>

 <transition>IDLE</transition>

 </StateTransition>

 </State>

</StateMachine>

• XML Specification of an internal FSM

<StateMachine name = “REGISTRATION”>

 <State name = “r1” final = “false” complex = “false”>

 <StateTransition>

 <event>send</event>

 <message>request</message>

 <transition>r2</transition>

 </StateTransition>

 </State>

 <State name = “r2” final = “false” complex = “false”>

 <StateTransition>

 <event>send</event>

 <message>details</message>

 <transition>r3</transition>

 </StateTransition>

 </State>

 <State name = “r3” final = “true” complex = “false”>

 <StateTransition>

 <event>receive</event>

 <message>reject</message>

 <transition>r1</transition>

 </StateTransition>

 </State>

</StateMachine>

 - 299 -

Appendix H: Sequence and class diagrams related to MIDAS

• MIDAS Server

Figure 1 – Cut down version of the MIDAS server class diagram

 - 300 -

• Palm ordering

Figure 2 – Sequence diagram for Palm Ordering

 : SmsHandler
 : Palm

 :

MidasAppServer

 :

XmlOrderHandler

 : Storage :

RecordListener

 : OperatorUI : SmsClient

doOrder(Packet)

parse(Data, XmlOrderHandler)

getOrder()

addOrder(Order)

Order

recordAdded(Order)

sendSMS(recviver, message)

sendSMS(receiver, message)

booking number

Xml Encoding

Booking number

sendSMS(receiver, message)

 - 301 -

• Retrieving booking details

Figure 3 – Sequence diagram for retrieving booking details

 : In te rn e t :
M id a s A p p S e rv e r

 :
X m lB o o k in g H a n d le r

 : S to ra g e

d o B o o k in g C h e c k in g (P a c k e t)

p a rs e (D a ta , X m lB o o k in g H a n d le r)

g e tB o o k in g N o ()

B o o k in g n u m b e r

g e tS e n d e rR e c e iv e r(B o o k in g n u m b e r)

S e n d e rR ec e iv e r

X m l E n c o d in g

S e n d e rR e c e iv e r

 - 302 -

• Route Tracking

Figure 4 – Sequence diagram for Route Tracking

 : System Operator
 : OperatorUI : InputUI : OpMap : Storage :

RoadManager
 :

VehicleDataHandler
 :

CustomerDataHandler
 :

RouteDataHandler

routeBtn_actionPerformed(ActionEvent)

showInputWindow(ActionEvent)

textField_keyPressed(KeyEvent)

showRoute(truck_id)

getTruckLocation(truck_id)

GPSPoint

addVehicle(GPSData)

getGPS4Driver(truck_id)

GPSData[]

getRoute(GPSData, GPSData[])

Road[]

addCustomers(GPSData[])

addRoutes(Road[])

 - 303 -

• Truck Tracking

Figure 5 – Sequence diagram for truck tracking

 : System Operator
 : OperatorUI : InputUI : OpMap : Storage : Coordinates :

LabelDataHandler

 :

VehicleDataHandler

trackTruckBtn_actionPerformed(ActionEvent)

showInputWindow(ActionEvent)

textField_keyPressed(KeyEvent)

showVehicle(truck_id)

getTruckLocation(truck_id)

GPSPoint

addPoint(Postcode)

findClosest(GPSData)

PostCode

addVehicle(GPSData)

 - 304 -

• Scheduling

Figure 6 – Sequence diagram for Scheduling

 : System Operator
 : OperatorUI : InputUI : Scheduler : Storage : Algo : SearchResult :

RoadManager

scheduleBtn_actionPerformed(ActionEvent)

showInputWindow(ActionEvent)

textField_keyPressed(KeyEvent)

schedule(Date)

getVehicles()

Vehicle[]

getBookings()

ServiceNode[]

search(Vehicle[],ServiceNode[])

SearchResult

getRoutes()

Route[]

saveRoutes(Route[])

getRoute(GPSData, GPSData[])

Road

 - 305 -

Activity diagrams

• Routing

Figure 7 – Activity diagram for Routing

Routing start

Routing end

Locating source point

do/ find an entry point

Locating Destination point

do/ find an entry point

Search cache

do/ get cache

Cache found

Cache not found

Constructing initial path

do/ find all possible path from source point

Extending the path

do/ extend the path with it's branches

Selecting path

do/ Select a new shortest path from storing pathes

Saving

path

Constructing complete route

do/ add the source and destination to the path

More path to construct

Branch found

New pathes are established

No branch found

All pathes are constructed

A path selected

No path for selectingThe path reaches the destination entry point

 - 306 -

• Scheduling

Figure 8 – Activity diagram for Scheduling

Start

End
Assigning order

do/ get an order from the order list...
No order

Assigning vehicle

do/ get a vehicle from the vehicle list...

No vehicle

Inserting Order

do/ insert the order into the vehicle route with different position...

has vehicle

Is the vehicle ready for
accepting an new order

Has order

No

Yes

Checking constraints

do/ check the time and load constraints...

Constraints are not satisfied

Selecting best result

do/ select the earliest end time from the saved schedules...

Tried all positions

Estimating distance

do/ Estimate the time taken between the current location and the next location...

In next position

Saving
schedule

Constraints are satisfied

Assigning schedule

do/ assign the new schedule to the vehicle

Best result is selectedNo result selected

