
i

Performance Measures and Control Laws for

Active and Semi-Active Suspensions

by

Ian Storey

Submitted to

The School of Aerospace, Mechanical & Manufacturing Engineering

in fulfilment of the requirements for the degree of

Doctor of Philosophy

at

The Royal Melbourne Institute of Technology (RMIT)

October 2011

This thesis is my original work and has not been submitted previously, in whole or in part, to

qualify for any other academic award at this or any other university. Nor does it contain, to

the best of my knowledge and belief, any material published or written by another person,

except as acknowledged in the text. The content of the thesis is the result of work which has

been carried out since the official commencement date of the approved research program.

Signature of Author___

25 September 2011

ii

Acknowledgements

First and foremost I would like to thank my supervisors. Doctor Anna Bourmistrova has

showed patience, endurance and understanding. Her critique kept the research on track and

smoothed the bumpy ride. She has been a superb supervisor and the work could not have

been completed without her capable direction. Professor Aleksandar Subic accepted my

original proposal, and agreed to act as second supervisor, for which I am extremely grateful.

His comments and editing have helped in the evolution of the work and have optimized the

results.

David Holinger, Ben Lancini and Doctor Hossein Zadeh helped with the decision to use a

microcontroller for proof of concept. Hossein suggested the AVR microprocessor.

Ian Searle helped solve the problem of 50 Hz interference. Professor Ross Smith spurred me

on to find proofs. Ian Searle, Doctor Hossein Zadeh, Professor Ross Smith and Frans

Koomen all courageously and patiently discussed more than a few sticky issues during the

course of the research. Christine Hope provided assistance with research material.

Thanks are due also to my friends David Colechin and Joan Richardson who made very

helpful critiques on edits. I would especially like to thank Gergory Plumb who made many

useful editing suggestions.

I would like to thank my parents, my brother Phillip and his family, and especially my darling

wife, Kate, who have all been supportive and have had to share in the sacrifices needed to

complete such a large research undertaking. Kate’s family also helped enormously, and

Neville Hard showed great patience in “taking the show on the road”.

Peter Tkatchyk helped with the experimental rig frame and produced an extremely fine result

from my rough blueprint (a technician with skills that I envy). Sebastian Naselli provided

great assistance with electronic components.

iii

I would like to thank the RMIT Business Department generally, and the Business IT and

Logistics School in particular, which provided leave for the thesis completion.

Last but not least, I would like to thank the examiners for their time and attention.

Ian Storey

iv

Contents
1. Introduction .. 4

1.1. Problem Definition... 11
1.2. Theory Overview ... 13
1.3. The Contribution of this Thesis ... 18

1.4. Thesis Chapter Outline .. 21
2. Literature Review... 23

2.1. Design Approaches .. 23
2.2. Dynamics ... 24

2.2.1. Quarter-Car Dynamics ... 24

2.2.2. Passive Suspension Design .. 26

2.3. Control Techniques .. 29

2.3.1. Linear Control .. 31
2.3.1.1. Modelling Discretised Linear Control ... 35
2.3.1.2. Kalman Filter ... 36

2.3.2. Nonlinear Control .. 38
2.3.2.1. Stochastic Input .. 41

2.3.2.2. Performance Measures ... 42
2.3.2.3. Minimum-Time Problem ... 43
2.3.2.4. Sliding-Mode Control .. 48

2.4. Skyhook ... 50

2.5. Groundhook ... 54
2.6. Passivity Constraint ... 55

2.7. Semi-active Skyhook ... 58
2.8. Road Surfaces .. 59

2.9. Suspension Design Goals ... 62
2.9.1. Comfort .. 63
2.9.2. Vertical Travel ... 65

2.9.3. Cumulative Absorbed Power ... 66
2.9.4. Road Holding ... 66

2.9.5. Driving “Feel” .. 66
2.9.6. Safety ... 67

2.10. Electronically Controlled Suspensions .. 70
2.10.1. Implementations of Controlled Suspension ... 74
2.10.2. Sensors ... 83
2.10.3. Control Hardware... 86

2.10.4. Modelling Controlled Suspensions .. 88
2.11. Practical Suspension Control Limitations .. 91
2.12. Computer Optimization of Suspension Control ... 93

2.12.1. Evolutionary Algorithms ... 93
2.12.2. Components of Evolutionary Algorithms .. 95

3. Vehicle Suspension Performance Measures .. 100
3.1. Isolation and Comfort .. 101

3.2. Tracking ... 111
4. Suspension Control .. 123

4.1. Introduction .. 124
4.2. Energy Dissipation in Semi-Active Suspensions ... 132
4.3. Road Discontinuity .. 135

4.4. Overview of Experimental Controls .. 137
4.5. Closed-Loop Controls .. 139

v

4.5.1. Linear Feedback Control.. 139
4.5.2. Nonlinear Feedback Control .. 143

4.5.2.1. Sigmoid Functions and Fuzzy Sets .. 144
4.5.2.2. Virtual Bump Stops.. 145

4.6. Minimum-Time Control... 148

4.6.1. Feedback Minimum-Time Control over Jerk .. 156
4.6.2. Bang-Off-Bang Control ... 158
4.6.3. Time to Landing Surface and Optimal Displacements 161

4.7. Rattlespace Constraint Controls ... 163
4.7.1. Theoretical Basis of Rattlespace Constraint .. 164

4.7.2. Nominated Target Rattlespace Limits ... 167

4.7.3. General Displacement Constraint Problem .. 170

4.7.3.1. Rebound ... 171
4.7.3.2. Simple Two-Stage Controls ... 175
4.7.3.3. Landing-Surface Method ... 180
4.7.3.4. Proof of Landing-Surface Method ... 185
4.7.3.5. Skim Methods .. 189

4.7.3.6. Applying the Landing-Surface Method ... 198
4.7.3.7. Control Variants for Increased Speed .. 203

4.7.4. Edge Constraint .. 206
4.7.5. Variable Hardness .. 212

4.8. Force Discontinuity in Semi-Active Suspension ... 215

4.8.1. Clipped Semi-Active Control .. 215

4.8.2. No-Jerk Skyhook ... 218
4.8.3. Semi-Active Jerk Reduction .. 219

4.8.4. Semi-Active Suspension and Rattlespace Constraint 225
4.9. Numerical Parameters and Numerical Constraints .. 225
4.10. Performance Measures Applied in Experiments .. 227

5. Computer Simulation Environment and Evolutionary Algorithm Coding 229
5.1. Objectives .. 229

5.2. Platform.. 230
5.3. Overview of Test Bed Program Functionality ... 232
5.4. Simulation Models ... 234

5.4.1. Road Surfaces .. 234
5.5. Fitness Measures .. 234

5.5.1. Comfort .. 234
5.5.2. Rattlespace Tracking .. 235

5.6. Genes and Evolutionary Processes .. 236
5.7. Results of EA Experiments .. 236

6. Physical Experiment .. 252
6.1. Experimental Rig ... 253

6.1.1. Controllable Damper .. 255

6.2. Electronics for Control ... 257
6.3. Measurement Calibration ... 261

6.3.1. Distance Calibration... 265
6.3.2. MCU Voltage Calibration .. 266
6.3.3. Numerical Calculation of Derivatives ... 269
6.3.4. Velocity Calibration ... 272

6.3.5. Calibration of the Accelerometer ... 277
6.3.6. Calibration of Damper and Spring Forces ... 283

vi

6.3.7. Estimate of Damper Inverse Function ... 299
6.4. Overshoot Experiments .. 304
6.5. Suspension Algorithm Tests .. 314

6.5.1. Damper Function and Inverse .. 314
6.5.2. Experimental Algorithms ... 316

6.5.3. Implementation & Results ... 323
7. Summary and Conclusions .. 329

7.1. Overview .. 329
7.2. Numerical Modelling Investigation ... 330
7.3. Physical Experiments ... 334

7.4. Original Contribution ... 334

7.5. Further Investigation .. 346

8. Appendix .. 351
8.1. Basic Nomenclature ... 351

8.1.1. Road and Chassis Height ... 352
8.1.2. Stroke, Rattlespace ... 354
8.1.3. “Damping Coefficient” and “Damping Constant” ... 355

8.1.4. Soft and Stiff Suspensions ... 356
8.1.5. Sigmoid Function ... 357

8.1.6. Fitness Function ... 357
8.2. Maple Derivation of LQR Coefficients ... 358

8.3. Maple Derivation using Euler-Lagrange ... 362

8.4. Transmissibility for Passive and Skyhook Suspensions .. 364

8.5. RMS Acceleration in “Elevator Example” .. 367
8.6. LQ Problem over Jerk with Finite Time .. 368

8.7. Alternative Proof for Minimum-Time Control .. 371
8.8. Java Code for Iterative Minimum-Time Algorithm... 373
8.9. Java Code for Time to Landing Surface .. 375

8.10. Maple Derivation of Jerk for Distance Constraint ... 377
8.11. Java Code for Distance without Overshoot Method .. 381

8.12. Exponentially-Weighted Moving Average .. 384
8.13. Independent Test Programs for Complex Algorithms ... 385
8.14. Landing-Surface Lemma ... 387

8.15. Numerical Methods .. 393
8.16. Conjectured Optimality of Skim Control ... 397

8.17. Code for Two-Second Timer Counter ... 401
8.18. Overview of Test Bed Program Design ... 402

8.19. Road Surfaces .. 410
8.20. Fitness Measures .. 420
8.21. Genes and Evolutionary processes ... 420

8.21.1. Genes.. 421
8.21.2. Generations .. 423

8.21.3. Genomes and Conversions of Algorithmic Parameters 424
8.21.4. The Mechanics of Mutation and Crossover ... 429

8.21.5. Selection ... 432
8.22. Calibration of Digital Accelerometer... 440
8.23. Physical Experiment Components and Some Code ... 444
8.24. AVR C Code for Crossover Removal .. 448

vii

Abbreviations and Symbols

ADC Analog-to-Digital Converter

ASCII American Standard Code for Information Interchange

BNC Bayonet Neill-Concelman

BOB Bang-Off-Bang

CAN Controller Area Network

CAP Cumulative Absorbed Power

DE Differential Equation

DOF Degrees of Freedom

EA Evolutionary Algorithm

ER Electro-Rheological

GA Genetic Algorithm

GPS Global Positioning System

HMMWV High Mobility Multi-Purpose Wheeled Vehicle – also referred to as “Humvee”

or “Hummer”

HRI Half-Car Roughness Index

HTML Hypertext Markup Language

IDE Integrated Development Environment

IRI International Roughness Index

ISO International Standards Organization

ISP In-System Programming

LIDAR Light Detection and Ranging

LQ Linear Quadratic

LQR Linear Quadratic Regulator

MCU Microcontroller Unit (µC is also used)

MEMS Micro-Electro-Mechanical Systems

MR Magneto-Rheological

MRF Magneto-Rheological Fluid

NHTSA National Highway Traffic Safety Administration

OEM Original Equipment Manufacturers

PC Personal Computer

PSD Power Spectral Density

PWM Pulse Width Modulation

RMS Root Mean Square

RS-232 Recommended Standard 232

RTOC Real-Time Optimal Control

SSF Static Stability Factor

sup Supremum

SUV Sport Utility Vehicle

TARDEC Tank Automotive Research, Development Center

USB Universal Serial Bus

UTACV Urban Tracked Air Cushion Vehicle

XLR “Cannon X” series electrical connector, with a Latch, and a Rubber compound

surrounding the contacts.

1

Summary

Electronic suspension controls can be optimized for a range of performance goals. There are

fundamentally different performance requirements for seismic suspensions, vibrating

machinery, passenger vehicles, racing cars and all-terrain vehicles. This thesis concentrates

on two competing performance requirements of passenger vehicles: passenger comfort and

tracking within a limited suspension stroke. Related problems are also considered. The focus

is on real-time feedback controls which can be applied in microprocessors with relatively

limited capacity.

Evolutionary algorithms (EAs) are used in this thesis to provide a high-level, general analysis

of the problem of balancing comfort and tracking for electronically controlled suspensions

with limited stroke. With numerical optimization techniques, such as EAs, the designer is not

restricted to the limited range of performance measures that provide analytical solutions for

idealized physical problems, such as least squares or minimum-time problems.

Electronic controls can switch force suddenly, delivering uncomfortable jolts and reducing

vehicle longevity. Acceleration measures will not necessarily penalize this obvious

discomfort. For this and other reasons, jerk (the rate of change of acceleration) is used here as

the basis of the suspension comfort performance measure. Ironically, the almost limitless

versatility of electronic controls produces a range of technical problems for suspension

optimization. In particular, control artefacts can result if ill-chosen performance measures are

used in the optimization process. Great care must be taken when selecting performance

measures.

Two distinct performance cost functions are used in this thesis to measure relative suspension

performance. Jerk is used as the basis of the smoothness/vibration measure, and a novel

nonlinear cost function is applied to tracking. A suspension is penalized much more heavily

when it approaches close to the edges of the working space of the suspension’s vertical travel.

It seems clear that unnecessarily and repeatedly hitting hard against the edges of the

suspension working space should be penalized in a measure of suspension tracking, but

2

tracking measures generally fail to explicitly refer to the working space width. This matter is

analysed below, showing that driver slowdown is a complicating factor. A conservative

approach is adopted here using a nonlinear cost function.

Electronic suspensions can be divided into two types: active and semi-active. Active controls

can apply appreciable power to produce a desired control force. Semi-active systems use only

minimal power. Semi-active suspension control generally takes the form of controllable

dampers combined with standard near-linear springs.

The test rig of the physical experiment is of the semi-active type. High performing semi-

active controls are generally based on active controls. Thus active controls are also

investigated in this thesis.

The linear control that responds directly to chassis velocity, which is arguably the

prototypical form of “skyhook” suspension, cannot be implemented by passive control

elements. Linear control can be generalized to a linear control over force, or equivalently

acceleration (since mass is assumed constant), using evolutionary algorithms to determine

linear coefficients. This can be further generalized to a control over jerk.

By “stiffening” the suspension as it moves away from equilibrium it can be made to combine

softness over smooth roads with the capacity to react to large bumps when needed. The

stiffening algorithms that can be used will generally be impossible to implement using just

rubber or neoprene bump stops.

Electronic control opens up the possibility of using on-board, real-time control to determine a

smooth chassis trajectory within the possible future limits of the suspension working space.

The space within the limits of suspension travel is referred to as the “rattlespace” in this

paper. This represents a novel approach to suspension control, to the best of the author’s

knowledge. Two general methods are discussed: one that adjusts the suspension “stiffening”

according to the current road state, and another that targets edge trajectories within the

possible future movements of the rattlespace. Some of these controls performed very well.

With further investigation, they may be developed into extremely high performance controls,

especially because of their high adaptability to varying conditions.

3

The problem of avoiding collisions with rattlespace limits suggests that it may help to

investigate the simpler problem of using a control to avoid overshoot of a limit distance. It

becomes apparent that the residual acceleration at the point of closest approach needs to be

limited, otherwise instability results.

This led to the search for controls that attain rest (including smoothly reaching zero

acceleration) without overshooting the final rest position. Many initial attempts failed as

feedback controls until a discovery was made using the author’s modelling software. The

minimum jerk needed for a general minimum-time control that does not overshoot zero

displacement is always the control with just one intermediate switch of control, instead of

two switches that are generally needed (as shown below).

This was proven to be optimal, and because of its optimality it works consistently when

applied as a closed-loop, real-time optimal control. This control deals with the most difficult

part of the trajectory: the final, “docking” manoeuvre. It is then possible to use this in

combination with other controls that can speed up the time to attain rest, or which can apply

other constraints: it is possible to quickly anticipate all the extremes of the control. The

control proved to be robust in physical experiments. This control may have application areas

such as aerospace, door closing, and lift control.

This control has also been used to describe a general procedure for coming to rest in a

stationary rattlespace. Some heuristics have been developed here to account for stochastic

movement of the rattlespace edges in suspension controls, and these have proven quite

successful in numerical experiments.

Semi-active suspensions have a limit on the forces they can apply (the passivity constraint). It

has been known for some time that a “target” control will need to be clipped when used with

a semi-active system. Clipping however produces uncomfortable jerk. Novel control methods

for removing this jerk are proposed here, based on a theoretical analysis of the physics of the

control. One method produces a vast improvement in semi-active controls in the numerical

experiments.

4

But the Velocities of the Velocities, the second, third, fourth, and fifth Velocities, &c. exceed, if I mistake not, all

Humane Understanding. … Certainly in any Sense a second or third Fluxion seems an obscure Mystery.

George Berkeley, The Analyst, 1734

1. Introduction

One of the earliest papers on the electronic control of suspensions is Crosby and Karnopp’s

article, The Active Damper, dating from the mid-1970s (1973). However, even as late as

1995, Karnopp noted that,

“It is probably no surprise in retrospect that progress on practical active or semi-active

vibration control systems has been relatively slow. The design of such systems

requires a clear concept, related not only to the mechanics of the system but also to

automatic control and system dynamics. Sensors and actuators must be available and

their limitations considered and finally cost effective signal processing devices must

be available. Only relatively recently has progress in all these aspects come to the

point at which practical designs are possible.” (1995, p184)

Since the mid-1990s the landscape has changed dramatically and sensors and actuators have

become inexpensive, fast and reliable, to the point that they are now regularly installed in

production vehicles. While electronically-controlled suspensions are available mainly in more

expensive vehicles, their use is steadily expanding. Indeed, during the course of this research

there has been an explosion in the number of types of vehicles with semi-active suspensions

using magneto-rheological dampers.

This thesis concentrates on the development of control algorithms for active and semi-active

suspensions. Today’s computing power allows complex virtual prototypes to be designed,

modelled and tested on a computer, replacing some of the relatively expensive stages of

building and testing physical prototypes that were previously needed.

Evolutionary algorithms (EAs) are computer algorithms that can be used to evolve

engineering systems, making slight changes to design parameters and selecting improvements

based on performance. This is an iterative process that mirrors biological evolution,

5

employing computer analogues of biological reproduction, cross-breeding, and selection

(refer to section 2.12.2). It requires a great deal of computer processing power, but it has

proven successful over a wide range of engineering applications.

In this thesis evolutionary algorithms are applied to the development of control laws for

“intelligent” vehicle suspensions (Li et al., 2004; Goncalves and Ahmadian, 2002; Ahmadian

and Simon, 2002; Deb, 2005; Stembridge et al., 2006; Hyvärinen, 2004). In practice,

“intelligent control” refers to electronic control, and the latter term will be used here.

The main focus of this thesis is the design and performance of suspension control algorithms.

Evolutionary algorithms are being used as a tool to research the effectiveness of various

control algorithms. It is important to clarify that EAs are not being used in the on-board

computer control in the suspension systems. EAs are here being used “off-board” (or “off-

line”) to research different kinds of electronic suspension controls that potentially can be used

in “on-board” (“on-line”) electronic control algorithms. The goal is to develop relatively

simple control laws that can be used in real-time microprocessor control.

Suspension control theory in the past rested on a large number of heuristic improvements on

linear control: bump stops, bushing, patch dynamics (the “patch” is the section of tyre that

meets the road and which supplies the driving and normal force), nonlinearity in dampers and

sometimes in springs, and the geometry of the suspension framework including such factors

as camber angle, caster angle, toe pattern, roll centre height, scrub radius, scuff and more.

(Bastow et al., 2004; Milliken and Milliken, 1995) Such an approach has been highly

successful as evidenced by the wide range of high-performance suspension systems available

today, and contains essential knowledge for good suspension design.

However, theory that applies specifically to electronically-controlled suspensions is only just

emerging and is still very sparse. This thesis aims at a first-order investigation of the

theoretical underpinnings of suspension control and the optimization of suspension control

with emphasis on electronically controlled suspension.

Many electronic controls in the literature are loose variations on the specific control referred

to here as the “purely linear skyhook” (refer to section 2.4). Unfortunately, the term

“skyhook” has become almost synonymous with electronic suspension control, although

http://en.wikipedia.org/wiki/Camber_angle
http://en.wikipedia.org/wiki/Caster_angle
http://en.wikipedia.org/wiki/Toe_(automotive)
http://en.wikipedia.org/wiki/Roll_center
http://en.wikipedia.org/wiki/Scrub_radius

6

there should at least be some sense in which a “skyhook” control accounts for absolute

chassis height.

The purely linear skyhook control, and “skyhook” controls generally, cannot be realized with

purely passive control elements (one can’t actually attach a hook to the “sky”), but they can

nonetheless be emulated in an electronically-controlled system. The theoretically superior

transmissibility of the purely linear skyhook control (see section 2.4) has been shown to

translate into the real-world. Despite the success of the linear skyhook, it is not “optimal” in

any mathematical sense and provably optimal systems, such as LQR systems (refer to section

2.3.1), have also been shown to perform well. A large number of controls have proven to be

superior in the numerical experiments performed here.

Electronically-controlled suspensions are categorized as either active or semi-active. Active

suspensions are generally powered by hydraulics, but other power sources are used, as

discussed in section 2.10.1. Semi-active systems, on the other hand, continuously vary the

parameters of a suspension element (almost invariably the damper), but they do so without

the input of significant amounts of energy; they do “not require either higher-power actuators

or a large power supply” (Cho et al., 1999, p667).

A number of physical mechanisms can be used to vary damper stiffness in semi-active

controls, but currently the most popular method employs magneto-rheological dampening. By

applying an electric current to electromagnets inside the damper, its stiffness can be readily

controlled electronically (see section 2.10.1). One of the desirable features of controlled

dampers is that they can easily replace a standard passive damper without upsetting the

delicate balance of the suspension geometry, which has undergone a century of intensive

research and development.

Analytical solutions that might be applied to suspension control are available for only a

handful of highly idealized optimization problems. These problems “are typically formulated

in the standard LQ manner seeking to minimize sprung mass acceleration, sprung mass jerk,

rattlespace requirements, or combinations of these items” (Vaughan, 2004, p9). Amazingly,

in 1988, armed with just very basic analytical tools, Redfield and Karnopp were able to

perform a quite comprehensive multi-objective analysis using what would now be called

Pareto optimization (1988).

7

Designers are familiar with analytical techniques and these are discussed at length in this

thesis, but there are pitfalls and limitations to such techniques. To begin with, only a handful

of highly idealized problems have analytical solutions. Of these many do not have

corresponding optimal feedback controls. Modern numerical techniques can bypass these

limitations, applying vast computing processing power to investigate problems beyond the

reach of analysis. In this thesis numerical techniques are applied to an optimization problem

which is almost certainly intractable, employing multi-objective, non-quadratic performance

measures to models that include complex nonlinear suspension control algorithms.

As with all numerical optimization approaches, there is the caveat that evolutionary

algorithms are limited to the specific system that is modelled. They do not produce

guaranteed optima; they are said to produce “suboptimal” results. Nonetheless the method is

successfully applied to a wide range of engineering problems. While EAs do not necessarily

guarantee optimality, the results are found to be generally robust (in the sense explained in

section 2.3.2).

Ironically, it is the very flexibility of electronic control that can exploit weaknesses in

optimization criteria resulting in undesirable artefacts. One very obvious way in which the

extreme flexibility of electronically-controlled suspensions can express unwanted behaviour

is by supplying sudden changes in force, even over smooth ground.

This has been observed in experiment, and it can arise for a variety of reasons. It can derive

from time optimality considerations, using Pontryagin’s theorem to produce time optimal,

bang-bang responses (see section 2.3.2.3), or from optimal power absorption in semi-active

systems (see section 4.2). It can arise simply because it is generally easier to switch power on

and off than to supply a continuously variable output. It also arises in a natural way from

controls that are clipped by some constraint, such as the passivity constraint of semi-active

controls (explained in detail in sections 2.6 and 4.8). Sliding-mode suspension control will

also exhibit uncomfortable force “chatter” if the artefact is not explicitly removed by

somewhat arbitrarily applying a linear control near the sliding surface (as discussed in section

2.3.2.4).

8

Sudden changes in force produce clear and obvious discomfort, but when root mean square

(RMS) acceleration is used as the comfort measure, such sudden changes, between moderate

values of acceleration, are completely invisible. And yet least squares acceleration is the

most-often used measure of comfort for suspension systems. It could be argued that it has the

status of being a standard measure. And it has empirical support. An extensive study in 1978

found in fact that this was a good predictor of perceived ride comfort, “Excellent correlation

was found to exist between the subjective ride ratings and simple root mean square

acceleration measurements…” (Smith et al., 1978, p34).

Of course, at that time there were no electronically controlled suspensions in production. It

should also be noted that in the 1978 paper by Smith, McGehee et al. the rate-of-change of

acceleration (jerk) was not investigated as a comfort measure. Certainly, when jerk is used as

a comfort measure, sudden changes in force are heavily penalised. Slowly at first, but

increasingly in recent decades, jerk (the rate-of-change of acceleration) has been used as a

basis for measures of comfort and vibration. Reasons why this might be so are analysed in

some depth in section 3.1.

There are a number of extant terms for the rate-of-change of acceleration (refer to section

3.1). The word “jerk”, admittedly not the prettiest term, has broad acceptance and will be

used throughout in this thesis.

There are a number of criteria for suspension systems (refer to section 2.9) but the main two

objectives are comfort and tracking. These goals compete with each other. If the suspension

is too soft it will be comfortable but will not track well. If it is too hard it will be

uncomfortable. The goal is to find a suspension control that reaches a compromise between

the two and which optimizes both within the constraints of that compromise.

Thus the tracking performance measure is also critical to the optimization process. Again,

care is needed to avoid unnecessary artefacts allowed by the performance measure. While the

term “tracking” is widely used its precise meaning is complex. This matter is fully analysed

in a long discussion on the meaning of tracking in section 3.2. At this point the best, most

widely accepted definition of tracking is the ability of a suspension to staying within an

acceptable distance of the target, for instance staying within road-height limits that case a

suspension to hit hard against the top or bottom of its travel limits. There is the problem that

9

many tracking performance measures allow travel outside the physical travel limits of the

suspension. The range of the suspension’s vertical travel is known by a number of terms, but

the expression used throughout this thesis is “rattlespace”. The term “stroke” refers to the

suspension displacement, and in this text refers to displacement around the zero equilibrium

position. Refer to appendix 8.1 and appendix 8.1.2 for further clarification of these terms.

Free travel within the rattlespace does not of itself adversely affect a suspension. When the

wheel is moving over rough, small corrugations, the suspension comfort as well as road

normal force are improved if the chassis remains relatively flat. With the chassis remaining

flat the wheel must move up and down to match the road corrugations, with corresponding

stroke movement. But this suspension movement does not of itself adversely affect comfort,

and may well improve road holding.

A suspension should be able to move freely within the rattlespace to optimize comfort, but at

the same time minimize the chance of hitting unnecessarily against the rattlespace limits. In

the extreme case, one could visualize a suspension travelling over a bumpy road with the

chassis remaining completely flat, with considerable wheel movement inside the rattlespace,

exactly matching the road height. This will be referred to here as the “flat” control: keep the

chassis height perfectly flat. Such a control in fact would be perfect for small road

fluctuations. At the time of writing, the Bose website (Bose, 2007) contained some examples

of a controlled suspension that could keep the chassis almost perfectly flat over relatively

small, but quite rough corrugations. A perfectly flat ride achieves a perfect comfort

performance (not to mention the fact that road normal force is kept steady), even though the

suspension may be moving heavily in order to exactly match road fluctuations.

However, when the bumps are larger than half the height of the rattlespace, a perfectly flat

suspension will show its limitations by unnecessarily and repeatedly hitting up hard against

the limits of vertical suspension travel: either “bottoming” or “topping”. Some degree of

“bottoming” or “topping” will occur with even the best suspension, and there is a

compromise between a too soft suspension that is smooth but which will collide too often

with rattlespace limits, and a too rough suspension which tracks well but is uncomfortable.

Both “topping” and “bottoming” have an extremely negative impact on suspension

performance.

10

Some practical compromise is sought between maintaining the wheel near equilibrium and

allowing free travel to provide comfort and consistent tracking force. How should excessive

travel be included in a tracking performance index? It is argued below that large bumps cause

drivers to slow down and so perhaps tracking measures need to take account of the speed at

which the vehicle can traverse a bump (all else being equal). It should also be born in mind

that while slowdown is caused by threatened collisions with rattlespace limits, it is also the

result of drivers’ seeking just to avoid the very uncomfortable response of passive

suspensions to large bumps, not to mention the instability that might result from oscillations.

Forward vehicle velocity was not used here for a number of reasons, explained in section 3.2.

Instead, a novel nonlinear performance indicator was developed, which only penalizes travel

near or beyond the rattlespace limits. This then is a compromise, being only a moderate

departure from traditional least squares measures, at the same time allowing relatively free

travel within the rattlespace constraints.

Controlled dampers in a semi-active suspension can supply force only in one direction at any

one time, depending on whether the damper is extending or compressing. When the damper is

extending it can only supply a downward force on the chassis; when compressing it can only

push upwards. This is known formally as the “passivity constraint” (see section 2.6). When a

semi-active control follows a general control law such as, say, an LQR control, the control

force will need to be “clipped”. At the point of clipping there is generally a sudden change in

force (as explained in section 2.6). This problem is analysed in more depth in section 4.8, and

methods for diminishing or removing this effect are discussed in section 4.8.3.

Many control algorithms have been advanced for the numerical experiments performed here;

some of these are derived from theoretical considerations, such as linear theory or minimum-

time optimization, while others are simply heuristics, such as the “virtual bump stops” which

stiffen on approach to a rattlespace limit. These algorithms are developed and tested using

evolutionary algorithms, as described in chapter 5. The computer program running the EAs,

written in Java, was entirely the author’s work.

A test rig has been constructed and a physical test of a small number of candidate algorithms

has been performed (see chapter 6). The physical rig was built to test the feasibility of the

suspension controls for real-time feedback control. The rig however demonstrates with very

11

modest equipment that the controls adapted for the rig are more than capable of running in

real time. The rig was also applied to the “landing surface” control showing that this control

is a practical real-time feedback control for semi-active systems (refer to section 6.4).

1.1. Problem Definition

In concise terms, the problem that is being analysed here is to provide a practical suspension

control algorithm that produces a smooth trajectory for the sprung end of the suspension (the

chassis in a vehicle) while maintain an acceptable range of distance from a target (staying

within the suspension vertical travel limits for a vehicle). The main target for this research is

passenger vehicle suspensions which have a limited travel and in which one of the main

suspension performance goals is ride comfort.

The automobile has been subject to an extraordinarily large amount of research, and a great

deal of practical knowledge has been amassed (Milliken and Milliken, 1995; Bastow et al.,

2004; Barak, 1991; Dixon, 2008). Currently, most vehicles use springs that are generally

almost perfectly linear. Originally, most vehicles used nonlinear springs, mainly leaf springs,

but these are now virtually non-existent on passenger vehicles. Today, independent, passive

hydraulic dampers are still mainly used, although there have been some minor but successful

variations such as the Moulton Hydrolastic system (Wang, 2001). It should also be noted that

standard passive suspensions are deliberately constructed with nonlinearities in the damper

(Milliken and Milliken, 1995; Bastow et al., 2004).

The major focus of this thesis is to investigate the design of real-time controls for

electronically-controlled vehicle suspension systems. The goal is to find control algorithms

that provide a comfortable ride but which also track the road surface well. These goals

conflict: generally a very soft suspension will be smooth and comfortable, but will track

badly, while a very hard suspension tracks well, but is less comfortable. So the goal is to find

algorithms that provide the best compromise, simultaneously improving both comfort and

tracking.

12

Jerk is the basis for a measure of suspension comfort, and a nonlinear function of stroke

displacement (wheel displacement relative to the chassis) is employed for a measure of

tracking. This nonlinear measure is entirely new, to the best of the author’s knowledge. The

theoretical and practical issues associated with these measures are explored in this thesis.

The control algorithms being sought must be simple enough to be capable of being applied in

real time. On modern microprocessors, simple polynomial time computations such as

trigonometric calculations, square roots, or the use of the Newton-Raphson method

(Kreyszig, 1993, p929) and other simple iterative methods are considered undemanding

enough for real-time application. Of course, microprocessor processing speed is continually

improving. Nonetheless, on-board electronic suspension controls have processing time limits

that cannot be exceeded, and complex numerical algorithms, such as on-board evolutionary

computations or numerical solutions to complex differential equations are not here

considered appropriate for on-board application.

In this thesis relatively fast and simple control algorithms are sought. Such methods come

under the rubric of “real-time computation”. According to Ross,

“In the early years, it was necessary to solve problems analytically (i.e. in terms of

elementary functions) so that function evaluations could be done easily. Today, this

ease of analytical solutions is defined more fundamentally as real-time computation.

Real-time computations are necessary for feedback implementations while analytical

solutions are sufficient.” (2009, p26)

Note again that evolutionary optimization is too complex and too slow to be applied in the

final on-board system; they are being used off board to evolve the parameters of other,

simpler on-board controls, which process real-time computations.

It is important to stress that evolutionary algorithms are not themselves the major focus of the

thesis. This thesis addresses the theory of suspension control algorithms. Evolutionary

algorithms are being used here as a tool to optimize control performance for particular

controls, and also to compare performance between control types, for optimization problems

that are intractable analytically.

13

Each of the controls run in the evolutionary algorithms has a number of real-valued

parameters. For example, the passive system, one of the simplest algorithms used, has just

two parameters, one representing spring rate and the other representing the damping rate.

Other systems have of the order of thirty such parameters. These parameters are adjusted in

an evolutionary process. (The final run of EAs, covering some 123 algorithms, took 9 and

one half days to complete.)

1.2. Theory Overview

Control over acceleration is sometimes referred to as the “double integrator” (Ross, 2009,

p42). By extension, control over jerk can be referred to as the “triple integrator”. Some of the

analytically derived double-integrator controls have been extended by the author into triple-

integrator controls, such as the minimum-time and LQR controls.

Small changes in an analytical control problem, even just changes in performance measures,

can produce dramatically divergent results. For instance, discontinuous forces result from

minimum-time problems with constrained acceleration, but smooth controls result from LQR

control over acceleration. Sometimes analytical techniques generate obviously absurd and

wildly impractical controls. For instance, at the limit, the unconstrained minimum-time

problem requires an infinite force over an infinitely small period of time (MacCluer, 2005,

p110; Ross, 2009, p61). As MacCluer asserts,

“the application of optimal control to practical problems is an art, requiring the

practitioner to perform many analytic and numerical iterations to reach an acceptable

(but often not optimal) solution to the original problem” (2005, p113).

An essential part of this process is getting a realistic and workable problem formulation.

According to Ross,

“a critical part of designing a practical control system is not only in using a proper

computational technique for implementing feedback controls but also getting the

problem formation right in the first place!” (2009, p51)

In the case of linear controls, stability, optimal conditions, the most likely state estimates and

possible failure conditions (through resonance) are all extremely well understood. There are a

14

few analytical problems which, like linear controls, have well-defined solutions under general

conditions. But the number of such problems is extremely small and any given physical

problem is liable to only approximate such idealized problems at best. Analytical techniques

are limited to only a handful of idealised problems.

In contrast, numerical methods today can be applied to virtually any physical problem. Due to

increased computational capacity, problems can now be approached that would have been

impossible a few decades ago. Nonetheless, numerical methods have the drawback that they

cannot guarantee generality. For example, the aberrant behaviour of linear systems at

resonant frequencies is well understood, but a slight change in a nonlinear system may

produce aberrant behaviour. Numerical models may provide theoretical support, but they do

not prove generality.

Nonetheless, there is little to lose and potentially much to gain by using numerical methods to

optimize and compare various types of control which are intractable analytically.

Furthermore, there is a sense in which some evolutionary algorithms can claim a degree of

“robustness”, in terms of sensitivity to slight variations in conditions and control parameters

(see section 2.3.2).

With numerical techniques the optimization problem can be modified in almost any way that

that seems desirable to precisely suit the needs of any application. Both the model and the

optimization criteria are virtually infinitely flexible. Designing the performance goals then

can be an important part of the optimization problem. This is a point which might be

overlooked in the highly confined space of analytical techniques, where “least squares” (see

section 2.3.1) performance measures are often assumed without discussion.

There is a wide range of possible performance indexes for suspension comfort: least squares

chassis vertical acceleration, least squares jerk, maximum jerk, or even higher time

derivatives than jerk. Performance measures could be based on frequency, or even subtle

combinations of any of the above. Comfort measures could even be based on modes of

vibration of rough models of human frames. The relative value of measures using

acceleration compared to measures based on higher derivative of motion is a particular focus

of this thesis.

15

There are also a large number of methods for measuring suspension tracking performance. A

nonlinear penalty for travel near and outside the rattlespace limits has been used as the

performance measure for suspension tracking in the numerical experiments performed for the

thesis. This measure has not been used elsewhere to the best of the author’s knowledge. The

matter of tracking performance is analysed in depth in section 3.2.

Chapter 4 investigates suspension control theory that is relevant to the controls used in the

experiments, including new theoretical elements developed by the author. The chapter begins

with two relatively simple, independent theoretical matters that are nonetheless important

enough to warrant inclusion in two very short subsections: energy dissipation (section 4.2)

and road discontinuity (section 4.3).

It is sometimes claimed that semi-active systems are inherently safe and stable because they

dissipate energy. Section 4.2 demonstrates how a semi-active control could be deliberately

engineered to increase kinetic energy where possible, even though the control element is

technically “dissipative”. A well designed semi-active control will tend to be safer than the

passive, and it is relatively easy to characterise the conditions under which such a control will

be truly dissipative. The purely linear skyhook for example absorbs energy better than the

passive (with the same “spring” and “damper” rates). The “on-off skyhook” absorbs energy at

the highest possible rate. Nonetheless, section 4.2 demonstrates that it is not a general

physical fact that all semi-active controls are inherently stable.

Section 4.3 proposes a simple first-order categorisation of suspension controls in terms of the

capacity of suspensions to travel over road discontinuities. The response of the passive

suspension to small sudden changes in road slope is readily observed in the average

passenger vehicle. A sharp jolt can be felt by the passenger even over very small

discontinuities as the passive damper suddenly changes force. The skyhook suspension, in

contrast, has a continuous force over a sudden change in road slope. This characterization in

terms of response to road discontinuity is very simple, but it can aid the designer’s intuition.

The remainder of section 4 investigates and develops a number of different suspension

control algorithms. These form the basis for the algorithms used in the numerical and

physical experiments. Some simple controls have been developed around simple

modifications of linear controls. These derive from a number of sources: previous work in the

16

field, extensions of previous work, heuristic devices that were thought worthy of at least

numerical experimentation, and various analytical optimization problems. Some are based on

theoretical investigations, such as the time-optimal controls over jerk.

Suspension control is traditionally based on linear theory. There are different types of linear

controls described in the literature: ranging from the standard linear suspension, the purely

linear skyhook, controls that address the LQ problem (linear control with quadratic

performance measures), and controls based on the Kalman filter. Linear control over

acceleration is here also extended to linear control over jerk.

In this thesis, control modifications are developed that increase suspension stiffness as the

chassis moves further and further away from equilibrium. For the sake of discussion, these

have been termed “virtual bump stop” controls.

Evolutionary algorithms are used to “optimize” control parameters, including linear

coefficients. The evolutionary algorithms then do all the work of determining the parameters

and provide a method for comparing results.

Bang-bang controls and bang-off-bang controls arise naturally from the minimum-time

problem (as explained in section 2.3.2.3). Such controls with constrained force (equivalently

acceleration) are impractical because of the discomfort caused by sudden changes in force.

The minimum-time control over constrained jerk was derived here using Pontryagin’s

theorem to be a bang-bang control generally requiring two intermediate switches of control,

compared to just one in the case of control over acceleration. Minimum-time control over

jerk does not suffer from sudden changes in force.

An RTOC (real-time optimal control) was found that could implement the basic minimum-

time control over jerk in closed-loop form, and the control has interesting similarities to

sliding-mode control (refer to section 4.6). After a search of the literature, it seems that this

feedback method has been applied by Koh et al. in the field of mechatronics (1999). As

shown below, the feedback algorithm can be extended to even higher order derivatives of

motion than jerk, although it becomes much more complex. Minimum-time controls over jerk

and a number of variants developed here have been subject to numerical optimization.

17

A new theoretical category of controls has been introduced that deals directly with the fact

that suspension travel is constrained within the rattlespace limits. The defining trait of such

controls is that they in some way affect the physical trajectory of the chassis to explicitly

avoid intersecting with the trajectories formed by the edges of the rattlespace (refer to section

4.7.5). These have been termed “rattlespace constraint” controls. These controls need in some

way to “anticipate” collisions with rattlespace limits.

After some initial experimentation, it was evident that these kinds of controls need to limit

the acceleration that remains once the chassis has made its closest approach to a rattlespace

limit. For the sake of discussion this problem is here referred to by the term “rebound” (refer

to section 4.7.3). In broad terms, controls need to avoid smashing unnecessarily hard against

the rattlespace edge but at the same time not aggravate the situation by increasing energy

back in the opposite direction.

For example, if constant force is used to absorb energy then there is a large residual force

remaining which needs to be removed slowly. If the forces are too large then either the

suspension will have to sacrifice smoothness or potentially become unstable. However, by

using controls that smoothly reduce acceleration at the same time as they reach their closest

approach to rattlespace limits, the problem can be overcome.

This suggests a related problem: one of bringing a system to rest (including zero acceleration)

at a given distance using constrained jerk control without overshooting. Such a problem helps

shed light on maintaining a suspension within the rattlespace, but it may also attract

independent interest (see section 4.7.3). An initially surprising result was found

serendipitously which led to what is here called the “landing-surface” control for reaching a

given distance without overshoot.

Semi-active suspensions suffer from a singular control constraint: the damper can only supply

force in one direction. As expressed by Ahmadian et al., “at zero crossings of the velocity,

conventional skyhook introduces a sharp increase (jump) in damping force, which, in turn,

causes a jump in sprung-mass acceleration” (2004, p580). When any general control is

clipped to remain with the limits of the controlled damper, an uncomfortable spike in jerk can

be produced, and this has been found in experiments in the literature (discussed in section

18

4.8.1). Controls were developed here that could anticipate an imminent jerk spike and take

steps to diminish it.

1.3. The Contribution of this Thesis

A theoretical goal of this thesis is to provide a first-order investigation of the performance

measures that are appropriate for highly-flexible electronic suspension controls. Most

importantly, reasons are advanced as to why acceleration alone is inadequate as a measure of

comfort.

As outlined above and as explained in detail below, there are a number of factors that may

make electronic controls prone to the generation of sudden force changes. Nonetheless, the

least squares acceleration performance measure fails entirely to penalise sudden changes in

acceleration (between moderate values) as being uncomfortable. Using jerk rather than

acceleration overcomes this problem.

All suspensions have limits on suspension travel. Vehicles that are intended for rougher

terrain tend to have long suspension strokes. Nonetheless all vehicles must find a compromise

between comfort and tracking which allows the suspension to remain within its working

space. Tracking then becomes, at least in part, a matter of keeping the suspension within the

rattlespace without unnecessarily hitting violently against the rattlespace limits. This

component of the suspension problem is analysed in depth in section 3.2.

A number of suspension controls have been tested with evolutionary algorithms. Some

controls are analytically derived while others are purely heuristic in nature. Evolutionary

algorithms have been run for each control, with the same evolutionary schedule and with road

data chosen in exactly the same way in each case. The road data is randomly chosen, from

one generation to the next.

Evolutionary algorithms are used to determine suboptimal control parameters. By comparing

the performance results from different control types, evolutionary algorithms become a tool

19

for investigating the relative performance of suspension controls. In a sense, the controls

“compete” against each other.

Linear controls have been investigated in the numerical experiments, including both the

linear passive and the linear skyhook, as well as LQR and general linear controls over both

acceleration and jerk, and finally general linear controls over acceleration and jerk that also

respond to chassis absolute height, and higher derivatives of chassis height. The linear

coefficients in each case are determined by evolutionary algorithms (refer to section 4.5.1).

Furthermore, what are here termed “virtual bump stops” can be applied to modify linear

controls in much the same way that actual bump stops are added to passive suspensions.

These can be much more flexible however than what can be achieved with rubber or

polyurethane bump stops.

Just as LQR control over acceleration can be extended to LQR control over jerk, so

minimum-time controls over acceleration can be extended to minimum-time controls over

jerk. A practical RTOC for implementing minimum-time control over jerk has been found.

(This control can be extended to higher-order derivatives of motion.) This control does not

suffer from acceleration chatter.

A general novel category of controls has been developed which targets the chassis trajectory

relative to the constraints of the projected rattlespace trajectory. This covers a wide range of

possible controls. To provide first-order analysis of this kind of control, simplifying heuristic

methods were used to anticipate rattlespace movement, and evolutionary algorithms are used

for adjustment of suspension parameters. A number of highly performing controls were

found.

The most challenging aspect of this control involves the residual acceleration at the point of

closest approach to the rattlespace limit, here termed “rebound”. If this is very large then

there is a need to smoothly reduce this acceleration. If this “rebound” is too large it can lead

to instability.

This prompted an independent investigation into controls that reach a limit distance without

overshoot, with constrained or zero residual acceleration. A number of new methods have

20

been developed here that have been applied to suspension control, but which may also have

other applications. These methods have also been proven theoretically, as well as being

modelled numerically. The test rig was used to provide empirical evidence of their

effectiveness (refer to section 6.4).

As discussed above, an inherent problem for semi-active suspensions is that they can suffer

from sudden changes in force when the damper stroke velocity changes from extension to

compression or vice versa. One of the controls in the literature, the no-jerk skyhook (see

section 2.6) uses a global control that does not suffer from crossover jerk. During the

development of this thesis a number of controls have been developed that remove this jerk.

The contributions of this thesis on the claimed stability and energy-absorbing qualities of

semi-active suspensions (see section 4.2) and responses to road discontinuities (discussed in

section 4.3) have been outlined above.

The work of this thesis incorporates a number of computer programs written entirely by the

author. The main program for processing evolutionary algorithms, SuspensionTest, was

developed for the purpose of optimizing and comparing various control algorithms under the

same conditions. The resultant optimal algorithms (strictly speaking, suboptimal) were then

compared against other control algorithms. The passive and skyhook algorithms are natural

benchmarks in these experiments.

The physical test rig was designed in consultation with Peter Tkatchyk, who built the main

test rig frame. The electronics for the control circuitry uses a component from Lord

Corporation to convert a signal-level input to a current supply for the controllable damper,

also supplied by Lord Corporation. The choice of a microcontroller was discussed with

Sebastian Naselli. Details can be found below, in section 6.

Throughout this work I have been very ably led and assisted by my supervisors, Anna

Bourmistrova and Aleksandar Subic, who helped enormously with suggestions.

Some of the work for this thesis was published during the research for the PhD, and

references can be found in the reference section. (These papers are available to examiners.)

21

1.4. Thesis Chapter Outline

This introduction concludes with a brief outline of the thesis chapters.

Chapter 1) Introduction

This chapter provides an introduction to the suspension problem definition, the theoretical

content of the thesis, as well as the contribution made by the thesis.

Chapter 2) Literature Review

Chapter 2 provides a review of the background literature on controlled suspensions. There is

also some material on the properties of passive suspensions.

Chapter 3) Vehicle Suspension Performance Measures

This chapter builds on the background literature focusing in particular on the performance

goals of comfort and tracking. The rate of change of acceleration, jerk, is compared with

acceleration as a comfort measure. Performance measures of tracking have not previously

penalized travel near the rattlespace limit. This issue and its relation to driver slowdown is

analysed, and is compared theoretically with other tracking measures.

Chapter 4) Suspension Control

Chapter 4 presents the theory used in the algorithms investigated in this thesis. This describes

linear controls as well as a number of novel controls and control elements created by the

author: linear control over jerk, “virtual bump stops”, and methods for removing jerk created

when stroke rate changes vertical direction. It also investigates methods produced by the

author for using constrained jerk control (with continuous acceleration) to perform various

tasks required by suspensions as well as other applications. A novel theory for suspension

control, “rattlespace constraint” is described and two basic approaches are described, as well

as specific controls.

Chapter 5) Computer Simulation Environment and Evolutionary Algorithm Coding

Chapter 5 describes the numerical evolutionary experiments performed for this thesis, and the

test bed software developed entirely by the author. This chapter focuses on the technical

matters of the implementation of the evolutionary algorithms and is somewhat independent of

22

the rest of the thesis except crucially for the results of the numerical experiment, presented in

section 5.7.

Chapter 6) Physical Experiment

This section describes the physical experiment, from design through calibration, including the

programming of the microcontroller, to the various experiments performed using the physical

test rig. “Overshoot” and suspension control experiments are described and results given.

Chapter 7) Summary and Conclusions

This chapter summarises the thesis in the light of its theoretical developments and

experimental results. Conclusions are drawn, and possibilities for further research are

suggested.

23

2. Literature Review

This chapter examines some of the background literature relevant to the thesis topic. It covers

the fundamentals of evolutionary algorithms, but the major part is given over to suspension

design and suspension control techniques.

2.1. Design Approaches

Barak proposes a general approach to suspension design. He recommends a set of ten “magic

numbers”, covering factors such as “bounce resonant frequency of the sprung mass” and

“wheel hop resonant frequency and the desired total mass/unsprung masses ratio”.

“Moreover, these numbers will continue to control our design philosophy in the next

decade regardless of high technological concepts such as active suspension and four-

wheel steer. These magic numbers are timeless. They are the product of the so-called

‘Past Experience’ and/or ‘The Slide-Rule Generation’ in the automobile industry. In

this respect, despite innovation in suspension design the reality is that there is no

change in these design specifications.” (1991, p1698)

Computer “virtual prototyping” (Hyvärinen, 2004, p45) is the detailed modelling of a

physical system for the purpose of analysis and testing. This can greatly assist in the design

process, resulting in more sophisticated design with less need for expensive physical

prototypes. A virtual prototype can be developed and tested on a computer as a part of the

verification and validation process.

This thesis aims at an investigation of the appropriateness of various performance measures

for suspension systems and their effects on optimality, especially for vehicles with limited or

small strokes. It lightly examines suspension system fundamentals that are needed for

suspension control design, but the main focus is the literature on suspension control laws.

24

2.2. Dynamics

The two models shown in figure 2.1 are the typically used models for the quarter-car passive

suspension (Milliken and Milliken, 1995, pp235-9). In figure (b) the tyre is represented by a

spring. The smaller mass, representing the wheel and the axle components that move with the

wheel, is the unsprung mass, denoted here as M. The sprung mass, m, is the mass of the

portion of the vehicle that does not move with the wheel: the chassis, luggage, and

passengers. In most models, a constant forward velocity is assumed and it is mathematically

convenient to represent road height simply as a function of time, r(t). Half-car and full-car

models are discussed below (in section 2.2.2).

(a)

(b)

Figure 2.1 (a) Single DOF quarter-car suspension model (b) 2-DOF model

2.2.1. Quarter-Car Dynamics

25

The forces acting on the chassis of the quarter car are the gravitational force, the force from

the spring, and the force from the damper. If the equilibrium rest position is taken as zero the

force of gravity can be ignored giving the following equations of motion, assuming that the

spring and damper are linear,

).()(rykrycym

Equation 2.1

Coil springs, as used in most modern suspensions, are close to ideal in practice, except where

they are deliberately designed to be nonlinear. The above equation assumes a linear damper,

but car dampers in practice are only approximately linear. The nonlinearity of dampers is

discussed in section 2.2.2. Even so, linear models are often used in the literature to provide a

first-order approximation to real suspension behaviour.

The equations of motion for the 2 DOF linear system are,

Equation 2.2

The equivalent spring rate for the suspension spring in series with the tyre is found using the

formula,

This can be used to calculate the main spring rate when the combined spring rate and the tyre

spring rate are known (Milliken and Milliken, 1995, pp239-40).

The tyre is often modelled simply as a spring, as in figure 2.1(b), and it is claimed that “the

tire possesses negligible damping” (Miller, 1998, p2048). For more extensive modelling used

for late-stage design more extensive tyre models are required. The term “magic formula” has

“broad applicability to a wide range of tire curves” (Kasprzak et al., 2006). These models are

used for more extensive modelling of tyre dynamics. They often use curves of best fit to

empirical data, or even models developed by neural networks (Bastow et al., 2004, p289).

 .

,

rykyykyy
dt

d
cyM

yykyy
dt

d
cym

utuuu

uu

.
kk

kk
k

t

t
e

26

Tyre dynamics are extremely important to a vehicle’s stability and many of the great

improvements made in car ride quality in the mid-to-late twentieth century can be attributed

to the study of tyre dynamics (Segel, 1993, p7). The force supplied by the tyre lags behind the

point where the vertical from the centre of the wheel touches the ground. The tyre meets the

ground in a “patch” and this patch supplies the driving force, generally at a small angle away

from the direct line of the hub. This results in the effect known as “slip” (Bastow et al.,

2004).

A very delicate geometrical placement of the wheel and suspension housing are required to

counteract unwanted instabilities. One of the great advantages of the semi-active suspension

is that the delicate geometrical balance of the suspension – developed over almost a century

of intensive engineering – need not be disturbed, since the only change necessary is the

replacement of the passive telescoping damper with the controlled damper.

2.2.2. Passive Suspension Design

Parameter values used in various car models found in the literature, whether quarter-car, half-

car or full-car are given in table 1 and table 2 below.

The design of suspension parameters is an art as much as a science, but the design process

often begins with the targeting of fundamental frequencies (Kim et al., 2001). “For most

automobiles, the heave natural frequency of the sprung mass is usually 1.0hz to 2.0hz and the

unsprung mass natural frequency is usually 8.0 to 12.0hz.” (Miller, 1998, p2047) Giorgetti,

Bemporad et al. targeted 1.5 Hz for the sprung mass natural frequency and 10 Hz for the

wheel-hop frequency (2006). Racing cars, on the other hand, with a greater emphasis on road

holding, have stiffer suspensions and a higher natural frequency of between 2 and 7 Hz

(Woods and Jawad, 1991). The natural frequency, in hertz, is calculated using the formula,

The natural wheel frequency, also known as the “wheel hop frequency”, is affected by the

suspension spring and the tyre as if they act in parallel, giving the formula,

.
2

1

m

k

.
2

1

M

kk t
w

27

(Milliken and Milliken, 1995, p241)

The damping ratio, is the ratio of the actual damping rate divided by the critical damping

rate (Milliken and Milliken, 1995, p788). The critical damping rate occurs when the damping

rate is,

Therefore,

At a damping ratio of the transmissibility at the fundamental frequency is typically

about 2.5 and this is regarded as an acceptable compromise for car suspensions (Milliken and

Milliken, 1995). Australian Government certification of “road-friendly suspension systems”

stipulate that “the mean damping ratio DM must be more than 20% of critical damping,” that

is (DOTARS, 2004).

Most modern dampers are designed to have a different damping rate under extension,

“rebound”, than under compression, “bounce” or “jounce” (Woods and Jawad, 1991;

Rideout, 1998, p8; Isermann, 2001, p98). “The rate in rebound [can be] between two and

three times the rate in bump.” (Williams et al., 1996, p45) Various reasons are given for this

asymmetry. According to Williams et al., “the asymmetry brings benefits during rapid wheel

excursions encountered at pot holes and similar inputs” (1996, p45). According to Milliken

and Milliken, “measurements on vehicles have shown that wheel velocities in the upward

(bump) direction are generally considerably higher than in the downward (rebound) direction

by a factor of about two. The damper is manufactured to have a corresponding asymmetry …

thereby keeping forces on the vehicle symmetric” (1995, p800). (Note that upward wheel

movement corresponds with suspension compression in this statement.) Bastow et al. see this

as a “compromise” between soft ride and “controlling movements of sprung and unsprung

masses subjected to periodic disturbances” (2004, p247).

Perhaps the clearest explanation is given by Guglielmino, E., T. Sireteanu, et al. (2008, p7):

“In the occurrence of a bump, vertical upward acceleration can reach several g while

if a pothole is encountered, the vertical downward acceleration cannot be larger than 1

,

.2 mkccrit

.
2 mk

c

c

c

crit

25.0

2.0

28

g. This is also the reason why hydraulic dampers are designed with non-symmetrical

characteristics for bound and rebound strokes.”

It is also suggested, however, that road-holding is improved if the rates are closer together

(Milliken and Milliken, 1995, p785).

Other nonlinearities, both wanted and unwanted, exist in damper characteristics: roll-off at

high velocities (Milliken and Milliken, 1995, pp801-2), a “small ‘deadband’ … due to the

unavoidable presence of some ‘dry’ friction (stiction) in the suspension linkage” (Milliken

and Milliken, 1995, p801), and nonlinearities caused by blow-off valves designed to release

pressure at high relative velocities (Milliken and Milliken, 1995, p801).

Dry friction is more formally known as Coulomb friction. “Coulomb friction is undesirable ...

because it locks the suspension at small forces, and gives a poor ride on smooth surfaces,

once known in the USA by the colourful term ‘Boulevard Jerk’”. (Dixon, 2008, p16)

Designers will typically spend a designated period of time, normally five to ten days, tuning

dampers. Take-apart dampers are modified in an “iterative process of subjective assessment

and valve changing, which continues until the desired characteristics have been approached”

(Bastow et al., 2004, p169).

Source Sprung

Mass

kg

Unsprung

Mass

kg

Spring

Stiffness

N/m

Tyre

Stiffness

N/m

Fund.

Freq

Hz

Damping

Coeff

Ns/m

Damping

Ratio

Tseng and

Hendrick

(1994, p558)

240 36 16,000 160,000 1.3

Giua, Seatzu

et al. (1999)

288.9 28.58 14,345 155,900 1.12

Savaresi,

Silani et al.

(2003)

400 50 20,000 250,000 1.01 1,300 0.23

Wang

(2001)
250 35 150,000

Sam (2006) 282 45 17,900 165,790 1.27 1,500 0.33

Table 1 Parameter values for some quarter-car models.

29

Source Sprung

Mass

kg

Unsprung

Mass

kg

Spring

Stiffness

N/m

Tyre

Stiffness

N/m

Damper

Coeff

Ns/m

Radius of

Gyration

m

Half Car

Ashari (2004,

p373)

1500

800 kg

load

60 38,000 190,000 1,500 1.2

Vaughan (2004)

(Heavy Vehicle)

4500

9000

unload

450 250,000 1,500,000 10,000

Zribi and Karkoub

(2004, p510)

1794

150 kg

load

87.15

(front)

140.04

(rear)

16,824.2

(front)

18,615

(rear)

 1,190

Full Car
Youn et al. (2006,

p661)

1120 45(front)

70 (rear

combined)

20,310

(front)

15,230

(rear)

157,600 1,050

(front)

875 (rear)

Caponetto et al.

(2003, p789)

Model of

Alfa Romeo 156

1257 49 (front)

39 (rear)

29,600

(front)

16,800

(rear)

190,000

Table 2 Some parameter values for half- and full-car models.

Half-car models of a vehicle moving over certain bumps at a particular driving speed readily

demonstrate that a suspension with harder springs at the back than the front will suffer

dramatically less pitch (Milliken and Milliken, 1995, pp795-6; Bastow et al., 2004, p151).

This effect is most pronounced at a particular forward velocity and is affected by continuous

sinusoidal disturbances, so there is a certain amount of tuning required of the difference

between the stiffness of front and back springs.

2.3. Control Techniques

This section gives a broad overview of control techniques found in the literature that apply to

suspension systems. There are many techniques that derive, in one way or another, from the

theory of linear systems. “Early research focused primarily on linear techniques, such as

optimal control … and skyhook control” (Dixit and Buckner, 2005, p84). Frequency response

is also often a first step in the characterization of nonlinear systems and the natural

frequencies of the system ignoring dampers is also useful (Goncalves and Ahmadian, 2002,

p3). A step function too has been used as an input road excitation to provide a rough first

impression of the transient response of a nonlinear system (Goncalves and Ahmadian, 2002,

30

p3). Goncalves and Ahmadian settled on peak-to-peak excitations of 0.9 inches (23 mm) for

the transient test, which seems appropriate if comfort is being tested, but insufficient if the

capacity to stay within the rattlespace is a concern.

Many researchers have used frequency plots to explain the performance of semi-active or

active suspensions (Cole, 2001, p230; Lauwerys et al., 2004; Stembridge et al., 2006; Koo et

al., 2003, p5; Lu and DePoyster, 2002, p814; McLellan, 1998; Song et al., 2003; Vaughan,

2004, p31; Yi and Song, 1999; Sims and Stanway, 2003, p96; Wang, 2001; Williams and

Best, 1994, p341; Yagiz et al., 2000; Yu et al., 2006). It is common that such plots will be

compared with passive systems and that the controlled system will show a dampening of the

resonance peaks of the passive system (Elbeheiry and Karnopp, 1996, p559; Burton, 1993,

p230; Hyvärinen, 2004, p28; Jalili, 2002, p602; Krüger, 2002, p518; Lin and

Kanellakopoulos, 1997, p48; Majjad, 1997, p527; Sammier et al., 2000, p981; Yi and Song,

1999, p146; Youn et al., 2006, p669; Hiromatsu et al., 1993, p24; Savaresi et al., 2003,

pp2267-8).

While many controls are derived from linear techniques, there are some systems that are

nonlinear even at their theoretical basis, such as bang-bang controls derived from

Pontryagin’s Principle. Of course, even if a nonlinear system does not have obvious modes of

resonance there is no assurance that such a system will not behave erratically under certain

conditions. “The primary drawbacks of [nonlinear control techniques] include the ad hoc

nature of controller synthesis and absence of robustness guarantees.” (Dixit and Buckner,

2005, p84) In the absence of robustness guarantees, extensive testing is required. Nonlinear

systems cannot be guaranteed to fail only under conditions of resonance and frequency plots

are insufficient to show that a nonlinear system is stable. There is some reason to believe that

semi-active, nonlinear control systems, which cannot input energy, will be more stable than

active, nonlinear systems, although even here testing is required. As shown in section 4.2,

even semi-active systems can reach highly destructive states, although this is under extremely

unlikely conditions.

As shown in the sections immediately below, jerk can be used as a control in both linear and

nonlinear systems. It is possible to use jerk in mechanical systems, such as in high-speed cam

profiles (Hicks et al., 2006), and in the sculpting of parts for smooth machining (Lee and Lin,

31

May 1998). Control over jerk has received some attention in the area of industrial robot arm

manipulation (Cao et al., 1997; Macfarlane and Croft, 2003) and in lift control (Peters, 1995).

With electronically-controlled systems, both active and semi-active, it is possible to produce

a desired level of chassis jerk, by output of the appropriate control. Jerk is not directly output;

the control for the required jerk is first calculated in the microprocessor (or other electronic

computing system). “Inverse kinematics” (Kyriakopoulos and Saridis, 1988, p364) are

employed to produce the control jerk required by the algorithm. Similar remarks apply to

control over acceleration, where hydraulic pressure, voltage, damper stiffness or some other

directly manipulated control parameter produces the acceleration required of the algorithm.

The term “controls over jerk” is a convenient and useful shorthand terms to distinguish those

controls whose control algorithms are based on jerk from those that are based on acceleration,

even though the actuators may be the same. “We can think of controls as some ‘internal’

variables that need to be computed to generate the inputs for the plant in much the same way

as we view state variables as being internal variables that are used to define the state of the

system independent of the output” (Ross, 2009, p9). In the numerical and physical

experiments performed for this thesis all such calculations are carried out before the control is

applied, and controls over jerk are applied exactly in the same manner as controls over

acceleration (see section 8.15).

Jerk as a control and jerk as a performance indicator are quite independent. For example, jerk

can be used to measure the performance of a passive system although it is infeasible for it to

be used as a control for a passive system.

2.3.1. Linear Control

Linear quadratic (LQ) problems involve a linear system and a quadratic cost function. The

linear quadratic regulator (LQR) is shown to be the ideal optimum for this problem, derived

from Pontryagin’s Principle (Kirk, 1970, pp209-17; MacCluer, 2005, p151; Ross, 2009, p19).

“This is also referred to as the Minimum Principle, the Maximum Principle, Pontryagin’s

Minimum Principle, and Pontryagin’s Maximum Principle.” (Ross, 2009, p19) While the

LQR is the optimal for a linear system, it is itself also a linear control.

32

The LQR approach is readily applied to suspension systems with weighted sums of quadratic

cost measures. For a single variable, the quadratic performance measure is equivalent to the

root-mean-square (RMS) measure in the sense that both give the same ranking. (Perhaps it is

formally correct to talk about “quadratic measures” or “least squares”, but the term “RMS” is

more familiar and will often be used in this thesis.) As well as the usual measures of

acceleration and vertical travel, LQR techniques can include rotational movements such as

angular acceleration of pitch (Yedavalli and Liu, 1994, p1213).

In matrix form, the LQ problem seeks to minimize the quadratic cost functional,

Equation 2.3

for a system described by the linear equation,

Equation 2.4

It is assumed also that the matrix, R, is invertible. The matrices in the cost functional, Q and

R, are assumed to be symmetric and positive semi-definite (Kirk, 1970, p209; MacCluer,

2005, pp139-40). In these equations x represents the state vector. LQ problems, where cost is

measured over a finite time, will admit feedback controls that have time-dependent gains

(Ross, 2009, p49; MacCluer, 2005, p146). Where the integral extends to infinity,

 ,
0

dtRuuxQxJ TT

the LQR technique with constant gain matrices is optimal. The optimal control, u, is usually

found by solving a matrix Riccati equation (Kirk, 1970, p217; Dorf and Bishop, 2005, p693;

MacCluer, 2005, p151; Tseng and Hendrick, 1994, p550; Giorgetti et al., 2006; Sammier et

al., 2000, p978).

The linear quadratic regulator is often used to approximate a nonlinear system. Takahashi et

al. use the LQR approach to find a local weighted-sum optimum (Takahashi et al., 2000).

Johnson and Erkus introduced inequalities into constraints of the LQR problem in order to

represent the energy dissipative constraint of the semi-active damper. “However, this

,
0

T

dtRuuQxxJ

.BuAxx

33

constraint is nonlinear, making the problem challenging”, and the problem is solved

numerically (2002, p2264).

When modified LQ methods are compared with the skyhook in semi-active applications, the

skyhook has been found to have better performance (Wagner and Liu, 2000, p568). In

numerical experiments on active systems, LQR methods give remarkable results (Wagner and

Liu, 2000).

Because LQR control is later extended to control over jerk, the corresponding control over

acceleration is examined here in perhaps a little more detail than would ordinarily be

necessary, because the control is very well known. Let u represent the control over vertical

acceleration,

In matrix form, as in equation 2.4,

(The cost for velocity is not included here because it is being assumed that the performance

entails a combination of tracking and comfort, with tracking corresponding to the distance

performance measure and comfort corresponds to acceleration.) The cost functional takes the

form,

Solving the Riccati equation (as shown in section 8.2) gives the linear control,

 .222 24 yy
y

y
u

Equation 2.5

Here
2

4
 is a convenient simplification.

This can be found more directly using Euler-Lagrange equations (MacCluer, 2005 ; Smith,

1998). The problem is to minimize,

.yu

.
1

0

00

10

u

y
u

y

y
BuAx

y

y

dt

d
x

 .
00

0
][

0

22

0

2

0

 dtyydtu

y

y
yydtRuuQxxxJ

34

0 0

22 ,),,,(dtyyytfdtyyJ

Where the function f is given as,

 .22 yyf

The Euler-Lagrange equation (the form that includes second-order derivatives) becomes,

 .022)4(

2

2

yy

y

f

dt

d

y

f

dt

d

y

f

The roots of the characteristic equation for this linear differential equation are the fourth roots

of . This has stable solutions of the form,

 .)cos()sin()(tBtAety t

The following has been used to simplify the expression,

 .
2

4

The parameters A and B are determined from initial conditions, dy)0(and .)0(vy

These are easily solved to give,

.)cos()sin()(

 tdt

vd
ety t

It remains to show that this satisfies the linear equation 2.5 above. This is easily done by

performing the algebra to verify that,

 .022 2 yyy

See Maple code to perform these operations in section 8.3. This verifies the result found

using Riccati equations.

Note that this linear suspension is simply a passive suspension. It is a slightly underdamped

linear passive system with a damping ratio of,

Most cars are much more underdamped than this, with a damping ratio around 2.5 or 3 (see

section 2.2.2).

As discussed above, optimal solutions to LQ problems admit constant feedback gains. Such

controls are “called proportional-plus-derivative- or simply PD-controllers because the gains

.707.0
2

1

35

are (linear) functions of ‘errors’ in x and its derivative” (Ross, 2009, p49). Proportional-plus-

derivative-plus-integral (PID) controllers also include feedback on the integral (Dorf and

Bishop, 2005, p391). Some LQ problems require variable gains and “time-dependent gains

are known under the heading, gain scheduling, although gain scheduling is frequently not

optimal. Much of control theory of the 20th century has been dominated by assuming that

control is given in terms of gains and the task is [to] find the right set of gains” (Ross, 2009,

p49).

“The Linear Quadratic Regulator (LQR) has been used as one of the main control techniques

for dealing with active suspension design” (Camino et al., 1999, p3168). However, linear

quadratic controls are not the only form of optimal control, and optimality depends on the

optimality problem, including both the system and the performance measure. The LQR will

not generally be optimal even for a linear system if a non-quadratic performance measure is

used.

2.3.1.1. Modelling Discretised Linear Control

A linear system,

 ,BuAxx

is known to have the continuous solution,

 .)()()(

0

0)(

0

)(

t

t

tAttA
dBuetxetx

Suppose the system is discretised for step-by-step control, as with control by a

microprocessor. Suppose too that the step size is represented as h,

 ,1 htt kk

and the control,),(tu is constant between kt and 1kt and is constant and equal to ku .

Therefore,

 ,
0

)(

1 k

h

hA

k

Ah

k Budexex

which can then be placed in the form,

 ,1 kkkkk uGxFx

where kF and kG are the matrices as defined in the previous equation (Simon, 2006, p27).

36

2.3.1.2. Kalman Filter

The Kalman filter is a method for state-estimation (Simon, 2006) that is often applied in

control systems. It is designed as a method to optimize the accuracy of state estimations. It

was applied originally to linear systems, although nonlinear versions now exist. The method

discussed here is a discrete-time method appropriate for microprocessor control, although

continuous versions exist.

It is a fundamental result of statistics that least squares values are also the maximum likely

estimator assuming Gaussian white noise, linearity, independence and equal population

variances (Larson, 1982, p482). With a time series of such values a convenient recursive

estimator, the Kalman filter may be relatively easily implemented (Simon, 2006, p84). Such a

method can be employed as a state estimation phase in a discrete control. The Kalman filter

was used for the Apollo space program in the 1960s (Simon, 2006, p487), but the theory of

the filter “has its roots in the early 1700s in the least squares work of Roger Cotes” (Simon,

2006, p485).

The discrete-time method is very fast and has been investigated for use in a wide range of

applications including controlled suspensions. The Kalman filter has been investigated for

use with suspension systems (Lee et al., 2008; Yu et al., 2000; Yoshimura et al., 1987; Best et

al., 2007; Sadati et al., 2008).

The actual states (which are hidden from the observer), ,kx follow a linear discrete-time

model,

 ,11111 kkkkkk wuGxFx

while the measurements, ,ky are given by,

 .kkkk vxHy

The terms, kw and ,kv represent zero-mean, stochastic processes. The convergence of the

Kalman filter can be calculated directly from covariance matrices, or as in the experiments

37

conducted here, with simple time invariant steps, the multipliers can be estimated from

previous experiments with a range of values.

Each step of the method involves two stages:

 Finding the a priori measurement estimate at time k, ,ˆ
kx and,

 Finding the a posteriori measurement estimate, .ˆ
kx

The method proceeds by estimating the process error covariance as well as estimating the

process states, which is the only data that needs to be stored between time steps, except for an

additional matrix, ,kK and the constant parameters of the problem. The mathematical

processes for the discrete-time Kalman filter are summarised in Simon (2006, pp128-9).

The method statistically minimises least squares errors in estimates, ,ˆ
kx of the true system

state, ,kx at times k, given all the previous measurements, ,ky up to time k. It provides the

optimal solution if the stochastic processes are zero-mean, uncorrelated, white and Gaussian,

but it also provides the optimal linear filter if they are zero-mean, uncorrelated, white but

non-Gaussian (Simon, 2006, p130).

When considering control over the first differential, ,xu for time invariant systems, it is

possible to derive a particularly simple, scalar version of the Kalman filter equations:

).ˆ)(1(

)ˆ)((

ˆ)()ˆ(ˆˆ

11

11

kkk

kkk

kkkkkk

tuxKKy

GuxFKHIKy

xKHIKyxHyKxx

Note that, since the system is time invariant, the model matrices, F and G, are time invariant,

but so are the matrices of the Kalman filter itself, H and K, and so subscripts are not needed

on these matrices. The convergence of the Kalman filter can be calculated directly from

covariance matrices, or as in the experiments conducted here, with simple time invariant

steps, the multipliers can be estimated from previous experiments with a range of values.

Similarly, an estimate of a derivative, ,1kx can provide improved state estimation of a given

state scalar by replacing u in the previous equation:

).ˆ)(1(ˆ
11

 kkkk xtxKKyx

 Equation 2.6

38

In the physical experiments discussed in section 6 it is more convenient, and equivalent, to

use the same scalar equation three times to avoid higher-order matrices. The various Kalman

gain values of the experiment were determined by simply experimenting with values that

gave an acceptable compromise between good smoothing (low K values) and low time lag

(high K values).

2.3.2. Nonlinear Control

While linear control is well understood, with a history covering centuries, there are a wide

variety of physical systems which do not submit to analytical techniques. With linear

systems, system failure is generally accompanied by resonance indicated by large eigenvalues

(Strang, 1980, p183). The failure of nonlinear systems is less well known, and even optimal

analytical controls can fail in unpredictable ways due to slight variations in parameters or

given unanticipated stochastic input. Nonlinear systems require stringent demonstrations of

robustness. To test for robustness detailed computer modelling can be used (Krüger, 2002,

p500) as well as prototype testing.

The use of evolutionary algorithms during development can help to retain robustness

(Fleming, 2001). “The advantage of using an [evolutionary optimization] is that a global

robust solution can be obtained and the method can be extended for finding multi-objective

reliable solutions easily” (Deb, 2005, p14). “Often in practice, the mathematical optimum

solution is not desired, due to its sensitivity to the parameter fluctuations and inaccuracy in

the formulation of the problem” (Deb, 2005, p13). “Consider [figure 2.2], in which although

the global minimum is at B, this solution is very sensitive to parameter fluctuations. A small

error in implementing solution B will result in a large deterioration in the function value. On

the other hand, solution A is less sensitive and more suitable as the desired solution to the

problem. The dashed line is an average of the function around a small region near a solution.

If the function shown in dashed line is optimized the robust solution can be achieved.” (Deb,

2005, p13)

39

Figure 2.2 True Performance and Performance found by EA (Deb, 2005, p13)

Linear control is optimal only in a range of problems. As noted above, the linear LQR

technique minimizes a quadratic (almost equivalently RMS) performance measure, for

example, equation 2.3, when returning a system asymptotically to rest. If the performance

index is changed to a measure of the time spent returning to rest using a constrained control

(see section 2.3.2.3), the optimal control becomes nonlinear, and has a completely different

character (MacCluer, 2005, p120). Pontryagin’s Principle applies in such cases and the

optimal control is not only nonlinear, it is discontinuous, with sudden changes between states.

These are known as bang-bang controls (Kirk, 1970, p259; MacCluer, 2005, p116). In

textbook examples this kind of control is often applied to the minimization of rocket fuel use,

or to economic problems. A change in the problem formulation produces wildly different

optimal solutions, even for problems that are superficially similar: for example returning a

system to rest.

With bang-bang control over acceleration sudden discontinuities of force are experienced.

Such discontinuities cause great discomfort and yet this discomfort remains undetected by the

RMS measure of acceleration, as shown below in section 3.1. The discontinuities of bang-

bang controls over acceleration are not properly recognized in the performance measure

40

because they have no effect on it. Force discontinuities also arise in sliding-mode control, in

which the control is switched at the “sliding surface”. The pure sliding-mode control can

produce rapidly changing accelerations, often called “chattering” (refer to section 2.3.2.4). In

the case of the sliding-mode control, chattering is in practice mitigated by using a linear

control near the switching surface to soften the discontinuity (see section 2.3.2.4 below).

Similarly, the adaptation of an active control for a semi-active suspension, such as the

“clipped optimal” control (discussed in section 4.8.1), will generally result in discontinuities

as the stroke velocity of the controlled damper changes direction.

Optimal control should not be associated with open-loop solutions to idealized analytical

problems. Some optimal controls admit feedback implementations. This is certainly the case

with the optimal controls for the LQ problem (as shown in section 2.3.1) that admit passive

implementation.

Feedback controls can also be found for other problems beside LQ problems, including

minimum-time problems (as shown in section 4.6.1). According to Ross,

“In broad terms, trajectory optimization refers to solving an optimal control problem

to a very high accuracy whereas feedback control implies a real-time computation of a

control solution. In trajectory optimization, we typically have accurate system models,

and hence, seek to find accurate solutions to an optimal control problem. In feedback

control, we typically have inaccurate system models, and hence, seek to manage the

uncertainty by requiring real-time computation. Thus, the holy grail in optimal control

theory is a means to solve problems accurately and in real time.” (2009, p17)

Feedback systems have to contend with inaccurate system models, but also state estimation

errors (refer to section 2.3.1.2), stochastic vibration (discussed in section 2.3.2.1) and latency:

“a question of great practical and theoretical value is the maximum amount of computational

delay a closed-loop control system can withstand before it behaves ‘badly’” (Ross, 2009,

p48).

41

2.3.2.1. Stochastic Input

Linear systems are completely described by their frequency response and their response to

transients. For nonlinear systems this is not enough and the designer needs to test with

random road profiles that match the statistical properties of actual roads.

It can be useful, in the first instance, to look at the transient response of the unperturbed

system. MacCluer used such analyses to derive an insightful comparison of the strengths and

weaknesses of simple tracking controls (2005, pp152-6). As discussed above in section 2.3, a

number of input forms can be used for at least first-order testing: step functions (Goncalves

and Ahmadian, 2002), chirps functions (Goncalves and Ahmadian, 2002; Song et al., 2003),

sine waves (Hönlinger and Glauch, 2000; Sims and Stanway, 2003) and randomly generated

road profiles (see section 2.8).

As discussed above, analysis shows that the LQR technique returns a system to rest

optimizing the quadratic performance measure. The LQR control can then be applied to a

perturbed system (stochastic road surfaces) by using the current state as the basis of discrete

feedback control. In the same way any method that returns a system to rest can be applied as

a suspension for a system that is stochastically perturbed. For instance, the algorithm that

returns a system to rest in minimum time can be used as the basis of a suspension (and in fact

this becomes a special case of a sliding-mode suspension as explained below in section

2.3.2.4).

If the road changes height on a medium-term basis (over a matter of seconds) or if the road

enters a long slope, the suspension must re-zero to the changed conditions. Generally this will

require the use of a high-pass filter. Models of maglev suspensions employing skyhook

control used by Paddison et al. needed to use a high-pass filter (with a corner frequency of 10

Hz) to correct for long gradients (1994, pp600-1). Such a filter is easily implemented in a

digital system using a z-transform (Papoulis, 1980). High-pass filters are also needed to

correct for drift in numerical methods (see section 2.10.3).

42

2.3.2.2. Performance Measures

Various suspension performance measures used in the literature are covered in much greater

depth in the next major section, section 3. The various performance indexes are described and

compared in that section, and some new measures and theory are introduced.

In the case of the numerical experiments performed for this thesis the performance measure is

a weighted sum of the integrals of a nonlinear distance measure and the fourth power of jerk,

where is a weighting factor, is the nonlinear rattlespace penalty (see section 3.2) and

 is the height of the chassis. If this problem had a fast analytical solution, this could be

used as a feedback control. Unfortunately, problems such as this are generally extremely

complex analytically, and are quite often intractable. However, similar problems do have

analytical solutions and they can suggest controls, both closed- and open-loop, which may be

able to perform better than the linear control.

Even if the nonlinear rattlespace penalty is greatly simplified to a double-step function,

Equation 2.7

the problem remains intractable. Note however, that as P increases, as greater weight is

placed on keeping the suspension inside the rattlespace, the optimal control will “try to

avoid” hitting the rattlespace limits. This suggests the control problem of maximizing

comfort while remaining within the vertical displacement constraints of the rattlespace. This

is the inspiration behind the “rattlespace constraint” controls discussed in section 4.7.

,)())((][4

0

dttytyyJ

)(y

)(ty

, if

, if 0
)(

RyP

Ry
y

43

2.3.2.3. Minimum-Time Problem

The problem of returning a system to rest in minimum time using a bounded acceleration,

 is a common example of a constrained control (MacCluer, 2005, p117; Smith,

1998, p305; Ross, 2009, p62; Kirk, 1970, p249). The optimal solution is a bang-bang control

derived according to Pontryagin’s Principle (MacCluer, 2005, p120). The two-stage bang-

bang solution can be neatly represented in a phase-space diagram, as in figure 2.3. This is

essentially the same figure originally used by Pontryagin et al. as an example of feedback

time-optimal control (1986, p26). The phase-plane curve for an application of constant

acceleration is obtained by eliminating time, t, from the equations for velocity and

displacement,

 ,0 atyy

.2

2
1

00 attyyy

This produces,

 .
22

22

0
0

a

y

a

y
yy

The acceleration, a, is here either positive or negative. To return to rest, first follow the curve

that intersects with the switching curve and then return to zero using the opposite acceleration

along the switching curve.

Figure 2.3 Phase-plane Diagram for Minimum Time using Acceleration

,)(aty

44

The control force that is used in the minimization problem is the largest force available

within the constraints of the physical system. Note that if force is unconstrained, the optimal

control applies an infinite force returning to rest in an infinitely small time: a clearly absurd,

impractical and infeasible solution.

The bang-bang control is “optimal” relative to the conditions for which Pontryagin’s theorem

applies, i.e. a linear system with bounded control, but also relative and the performance goal

of fastest-time. It is not optimal in the sense of other performance measures, such as

minimum RMS acceleration.

Pontryagin’s theorem is applied to prove that a constrained control over acceleration requires

at most one “intermediate switch” of control direction to bring a system to rest in minimum

time (there are also two other switches to and from zero control at the start and at the end).

The mathematical proof is shown here since it is later extended to control over jerk.

What is the minimum time required to return a system to rest using constrained acceleration?

The control time is minimized by minimizing the functional,

T

dtQ
0

,1

The absolute value of control acceleration, u, is constrained to be less than a constant value,

a:

 .aua

The equation of motion in vector form is,

).,(),()(uvvxFF xx

That is to say, vu and .xv Here x and v represent distance and velocity respectively.

The method given in MacCluer, chapter 7, can be applied since the problem is similar to the

“rolling cart problem” (2005, p125). The Hamiltonian is,

.1

),).(,(1.1

uv

uvFH

Maximizing the Hamiltonian produces,

45

.0 if

,0 if

a

a
u

Equation 2.8

The adjoint differential equation is,

).,0(,),(

v

H

x

H
Hx

Therefore,

,

,

0

0

ct

where 0 and c are constants. Since the equation for is linear, it can cross zero at most

once. When crosses zero, the control u switches direction, using equation 2.8. Thus there

is at most one switching for the control, u, which returns the system to rest in minimum time.

An alternative proof that there is at most one switch for this control under slightly relaxed

conditions uses a method discussed in Hermes and LaSalle (1969) and is shown in the

appendix in section 8.7.

Given that the final position of the control is zero (zero distance and zero velocity), the final

application of acceleration must lie on the switching curve, as shown in figure 2.3. Thus the

switch occurs when the control reaches the switching curve. The entire algorithm is elegantly

represented by Pontryagin’s diagram, similar to figure 2.3. From any starting position in

phase space that it not on the switching curve, the system must first enter the switching curve.

It then returns to rest along the switching curve. In a typical application of this algorithm

there is one switch in control direction when the system reaches the switching curve, between

full acceleration in one direction to full acceleration in the opposite. (There are also switches

from zero and to zero at the start and end.)

As noted by Ross a real-time feedback control to implement this control requires a

computational procedure to represent the switching curve (2009, p66). If the current point is

above the switching curve then implement negative acceleration, otherwise use positive

acceleration.

46

This represents a principle that is used a number of times throughout the thesis. The general

concept is known as the Principle of Optimality:

“An optimal policy has the property that whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with regard to the state

resulting from the first decision.” (Bellman, 2010, p83; Bellman and Dreyfus, 1962,

p15)

This has been used in Dynamic Programming to determine optimal controls (Bellman and

Dreyfus, 1962; Kirk, 1970, p54) but it also contains the rationale behind the reason that

optimal controls can translate into feedback or Real-Time Optimal Controls (RTOCs). This

has been expressed by MacCluer as the principle that, “if [control] u is optimal on],,[21 tt it

is optimal on every subinterval” (2005, p121). (This is readily proven by contradicting the

negation.)

Just as constrained acceleration can bring a particle to rest in minimum time using a bang-

bang control over acceleration, so a bang-bang control over jerk can bring a particle to rest in

minimum time using constrained jerk. See section 4.6 for an analogous proof that this

requires two switches of control direction instead of one.

Bang-bang control over jerk has been studied for the control of industrial robot arms

(Muenchhof and Singh, 2003; Koh et al., 1999; Kyriakopoulos and Saridis, 1988). Robot arm

movement does not occur in a perturbed environment and most studies of robot arm

movement have concentrated on movement beginning and ending with zero velocity and zero

acceleration. Similarly a lift rises or lowers from one floor to another with zero velocity and

acceleration at either end and lift control using jerk has concentrated on such movement

(Peters, 1995). With one degree of freedom this produces the simple symmetric control

shown in figure 2.4. If the control takes time, T, to bring the system to rest then there are

changes in control direction at times,
4

T
 and .

4

3T
 Finally at time T, distance, velocity and

acceleration are simultaneously brought to rest. Koh et al. show a method that can be applied

from moment-to-moment, but the only example they give in the paper of 1999 is again the

simple symmetrical system. The method is verified by numerical experiments as discussed

below in section 4.6. The method was developed in the caurse of the PhD research by this

47

author. A wider literature search later revealed that this algorithm had been advanced by Koh

et al. in the area of mechatronics, verifying the technique.

Figure 2.4 Example of Minimum-Time Control over Jerk

Muenchhof and Singh studied controls that were simultaneously jerk limited and acceleration

limited. Jerk is applied until acceleration reaches “the saturation level” (Muenchhof and

Singh, 2003, p139; Koh et al., 1999), at which time the jerk is turned off. Such controls are

called bang-off-bang controls. According to Muenchhof and Singh, “numerical results show

that accepting a small increase in the final time, the jerk can be reduced considerably” (2003,

p142).

The minimum-time algorithm can be applied on a continuous basis to a randomly perturbed

system, as discussed in section 2.3.2.1. After a large disturbance, this control will tend to

move the system onto the switching curve and return the system to equilibrium. This can be

implemented as a special case of a sliding-mode control (discussed in the following section).

Koh et al. proposed the control for robotic arm movements (1999) where robotic arm

movement is well-orchestrated and could not be said to be stochastically perturbed except for

minor vibrations.

Constrained jerk control has also be applied by Ben-Itzhak and Karniel in the context of

robotic arm movement, for the purpose of optimizing RMS acceleration over a given finite

time period (2008). This results in a somewhat different control however.

48

2.3.2.4. Sliding-Mode Control

Sliding-mode control as a suspension control design paradigm has been investigated by a

number of researchers (Ashari, 2004; Donahue, 2001; Yagiz, 2005; Dixit and Buckner, 2005;

Yokoyama et al., 2001) and the method is claimed to be quite robust, at least in the sense that

“the closed-loop response becomes totally insensitive to a particular class of uncertainties and

disturbances” (Ashari, 2004, p370). “Sliding mode control was proposed first in the Soviet

Union by Emelyanov and Utkin” (Yagiz et al., 2000, p80). Yagiz employs sliding-mode

control for an active suspension system, applying Lyapunov Stability Criteria (2000, p82).

Zribi and Karkoub apply sliding-mode control to a semi-active suspension using a model of

an MR damper, and they show that the system is stable (2004, pp519-20).

Sliding-mode control attempts to place a system in state-space onto a surface, the “sliding

surface” (Ashari, 2004, p370) also sometimes called “switching surface” or “sliding

manifold”. This is redolent also of the “landing domain” or “landing surface” used for bang-

bang control by Koh et al. (1999, p274). Briefly, the method uses available control, usually

constrained force, to move the system onto a surface of the phase space, as depicted in figure

2.5. By repeating this process, perhaps using electronic sensors and electronic controls, the

control slides back along the manifold to the equilibrium position. Note that the continuous

minimum-time solution, discussed in the previous section, is a special case of a sliding-mode

control.

Figure 2.5 Phase-Plane Diagram of Sliding-Mode Control (Yagiz et al., 2000)

49

A major disadvantage of pure sliding-mode control is a phenomenon known as “chattering”,

which is “high frequency switching” of the control signal as the system repeatedly crosses the

sliding surface (Ashari, 2004, p370). Generally, some method is used to soften the control as

it approaches the sliding surface (Ashari, 2004, p371; Dixit and Buckner, 2005, p93; Liu et

al., 2005, p1029; Yokoyama et al., 2001, p2654). One way to do this is to use a linear control

in the “boundary layer”, a layer close to the switching plane. “Inside the boundary layer, the

switching function is approximated by a linear feedback gain” (Young et al., 1999, p329).

The most effective way to do this is to base the sliding surface on a control, say a linear

control, and to use the control of the surface itself when “near” the surface. Thus the system

returns to rest along the surface rather than switching quickly on either side of the surface as

in figure 2.5.

Without this modification, using control over acceleration results in a system that will suffer

chattering around the switching surface. Prior to electronic control, “chattering” has been

associated with imperfect control because of “limited actuator dynamics” (Lorenz et al.,

2003, p381), or because of imperfections in passive components such as loose bushing or

hydraulic valving in dampers. In this instance, however, “chattering” in the unmodified

control is a consequence of the very control design itself.

The RMS measure of acceleration does not necessarily indicate that chattering is

uncomfortable. As discussed below in 3.1, a control system that has quick jumps between

relatively small values of acceleration will not penalize those jumps. But these “jumps” are

associated with high values of jerk. However, the use of jerk as a comfort measure will

immediately penalize the discontinuities as being periods of very high jerk. With electronic

control, fast control switching is possible and may even seem desirable: it is generally the

easiest control to implement, and Pontryagin’s theorem may indicate that it is optimal. If

RMS acceleration alone were used as an indicator of comfort, the pure switched version of

sliding-mode control would be hardly different in comfort from the control that returns

smoothly along the sliding surface (and switches smoothly onto the sliding surface). This is a

practical example where RMS acceleration is deficient as an indicator of suspension comfort,

and has been shown to be deficient in the literature (Ashari, 2004).

50

Even in the case of control systems in which a minimum-time algorithm could seem to be

well suited, such as elevator controller optimization, linear analysis is applied, as in Fathy

(2003a) which avoids the production of discontinuous forces.

2.4. Skyhook

The purely linear skyhook suspension control is ubiquitous in the literature (Karnopp, 1995;

Burton, 1993; Paddison et al., 1994; Reichert, 1997; Elbeheiry and Karnopp, 1996; McLellan,

1998; Wagner and Liu, 2000; Goncalves and Ahmadian, 2002; Ahmadian et al., 2004;

Donahue, 2001; Song et al., 2003; Song and Ahmadian, 2004; Stembridge et al., 2006; Li et

al., 2004; Williams and Best, 1994; Hyvärinen, 2004; Krüger, 2002; Caponetto et al., 2003;

Guglielmino et al., 2008, p70). The control is very simple and has been applied with success

by many researchers. Karnopp claimed in 1995 to have been associated with the Skyhook

concept for 30 years (1995, p177), which makes the skyhook control very old indeed in the

field of electronically-controlled suspension systems. Karnopp and Crosby produced a patent

in 1974 for a suspension that used feedback of the chassis height for actuator control (1974).

The skyhook is claimed to be “theoretically capable of isolating the body mass from the road

input and also reducing the tyre load fluctuations” (Stembridge et al., 2006, p1). It is also

claimed that studies “indicate that skyhook control is the optimal control policy in terms of its

ability to isolate the suspended mass from the base excitations” (Reichert, 1997, pp12-3). In

fact, the skyhook is only “optimal” in a very limited sense. In contrast, the LQR control is

mathematically optimal (for quadratic performance measures). Nonetheless, the skyhook has

great simplicity and a proven track record that has earned it an iconic status in the literature,

and throughout this thesis a number of possible reasons for its success are suggested.

51

Figure 2.6 Skyhook Schematic

The skyhook can be schematically represented as in figure 2.6. The damper in a skyhook

system is attached to the “sky”. Of course such an arrangement is impossible physically. This

is a “virtual” control in that this arrangement is physically impossible. Rather, the skyhook is

a control law which can be implemented by computer-controlled suspension. The force

provided by the suspension mimics the force provided by the arrangement shown in figure

2.6. The damper in this sense is a “virtual damper”. Even the spring in the virtual control may

have a different spring rate than any actual spring employed in the suspension.

The force supplied by the skyhook’s “damper” is proportional to the absolute chassis velocity

rather than its velocity relative to the road. If s is used to represent stroke, then the

damping force supplied by the skyhook is proportional to absolute chassis velocity,

rather than the damping force being proportional to relative chassis velocity (stroke) as in the

passive suspension,

Stembridge et al. discuss a modified skyhook law (2006) which is simply a system using both

a damper attached to the road (or unsprung mass) and a separate damper attached to the

“sky”,

The skyhook with a linear virtual spring and a linear virtual damper has the control force,

,rys

,ycFd

.scFd

.ycscF skyd

52

 .ycksF

Equation 2.9

This is taken as the prototypical form of the skyhook by Reichert (1997) and this author will

do likewise. Nonetheless the linear form of equation 2.9 is not the only control called a

skyhook. Generalizing the concept of the skyhook, Paddison et al. assert that, “feedback of

the absolute velocity is often referred to as ‘skyhook damping’” (1994, p602).

Semi-active variants of the skyhook are necessarily nonlinear. These can be viewed as

approximations to the basic skyhook. In some cases they are very rough approximations

indeed, as in the on-off semi-active skyhook (McLellan, 1998, p55). In other cases the closest

available control is used, turning the damper off when the required force lies outside the

passivity constraint (Guglielmino et al., 2008, p70). Refer to section 2.6 for an explanation of

the passivity constraint.

In the model above, the skyhook is applied to heave (vertical displacement), but in half-car

and full-car models the skyhook control generalizes to controls over all modes of vibration

including rotations, especially pitch (Hyvärinen, 2004, p74).

The pure skyhook is linear and it can be analysed in terms of transmissibility. It is useful to

compare the skyhook with the purely linear passive control. The equation of motion for the

linear passive suspension as shown in figure 2.1 is given as,

The undamped natural frequency in radians/sec, and the damping factor, are defined

as,

(Stubberud et al., 1994, p48). Thus,

The transmissibility at frequency is given as,

.krrckyycym

,n ,

.
2

,

km

c

m

k
n

.22 22 rryyy nnnn

53

.

21

21

2

nn

n

j

j

R

Y

(Reichert, 1997, p9).

Graphs of the magnitude of transmissibility for a number of values of damping factor are

shown in figure 2.7.

The equation of motion of the skyhook does not have a term containing ,r

The transmissibility at frequency is given as,

.

21

1
2

nn

j
R

Y

(Reichert, 1997, p12)

Graphs of the transmissibility for the skyhook are shown in figure 2.8.

Figure 2.7 Transmissibility for Passive Suspension

.2 22 ryyy nnn

n /

54

Figure 2.8 Transmissibility for Skyhook

The skyhook performs dramatically better than the passive suspension at higher frequencies.

Passive suspensions used in passenger cars typically have a damping factor less than 0.2. The

skyhook reduces transmissibility at the fundamental frequency but drastically reduces

transmissibility for higher frequencies at higher values of the damping factor, .

Notice also that below n2 , the passive suspension has transmissibility greater than one, no

matter what damping ratio is chosen. For the passive suspension, there is a trade-off; high

frequency attenuation is associated with greater transmissibility around the fundamental

frequency. With the skyhook, however, the suspension can attenuate all frequencies, with

high damping ratios.

2.5. Groundhook

The groundhook control is a notional control similar to the skyhook. “Like skyhook, the

groundhook damper is supposed to be hooked to a fixed point, in this case the ground”

(Guglielmino et al., 2008, p70), as shown in figure 2.9. The groundhook effectively dampens

the unsprung mass. Koo et al. investigated a number of forms of the groundhook control law

n /

55

(2003). Similar laws are used by Goncalves and Ahmadian (2002) and by Hyvärinen (2004,

p42), who looked more closely at the effect of different types of tyres. Looking at the

groundhook model, the chassis mass seems to be being used as an “absorber” for the

unsprung mass (Jalili, 2002).

Figure 2.9 Notional Groundhook Suspension

According to Guglielmino et al., “This logic ... aims at reducing dynamic tyre force, thus

improving handling and at the same time reducing road damage (particularly useful in the

case of heavy vehicles)” (2008, p70).

2.6. Passivity Constraint

The passivity constraint is a major problem for semi-active suspensions. Semi-active systems

vary control parameters with minimum input of external energy; semi-active systems do “not

require either higher-power actuators or a large power supply” (Cho et al., 1999, p667).

Theoretically, systems that vary spring rate could be called semi-active (Jalili, 2002). There

are cases of springs that are adjustable, but springs that are continuously variable at high rates

under electronic control are not used. “Semi-active suspension” almost invariably refers to

56

systems with variable dampers: dampers whose damping rate is variable from one moment to

the next under electronic control. This will be the understood meaning of semi-active

suspension in this thesis.

Suppose a controllable damper is capable of any damping rate between zero and infinity (at

very high damping rates the damper acts like a stiff rod connecting the chassis and the

wheel). Such a damper is still limited in the forces that it can apply to the chassis. Suppose

the chassis is moving downwards faster than the wheel. (It may help to imagine that the

chassis is moving down and the wheel is moving up.) The damper is compressing. The

damper can supply any upward force to the chassis between zero and infinity. In the

“infinite” case, the damper effectively connects the chassis with the wheel, and there is no

“suspension”. However, the damper cannot exert a force downwards on the chassis; it can

only exert a force upwards. The forces that the damper can supply are limited to one

direction. When the damper is compressing, the force supplied by the damper can only be

upwards. When the damper is extending, the force can only be downwards. Here hysteresis

effects have been ignored.

Semi-active suspensions, using damper stiffness control, thus suffer from a constraint on the

force that they are able to deliver. The term “passivity constraint” has been used to describe

this limitation (Yi and Song, 1999, p147; Giorgetti et al., 2006; Sergio M. Savaresi et al.,

2003, p2264; Jalili, 2002, p600; Yokoyama et al., 2001). The constraint has been expressed in

terms of damping rate, which cannot be negative (Hyvärinen, 2004, pp31-2). The region of

forces that can be supplied by the semi-active damper has also been called the “working

region” (Stamatov et al., 2008, p1).

An important unwanted side effect of using a semi-active suspension to follow a general

control (the skyhook for example) is that there will be a sudden force discontinuity as the

stroke velocity crosses zero. According to Ahmadian et al., “at zero crossings of the velocity,

conventional skyhook introduces a sharp increase (jump) in damping force, which, in turn,

causes a jump in sprung-mass acceleration. This acceleration jump, or jerk, causes a

significant reduction in isolation benefits that can be offered by skyhook suspensions” (2004,

p580). This artefact of semi-active control is important in this thesis and is here termed

“crossover jerk”. It is discussed at length below in section 4.8.

57

If it is assumed that the damper in a semi-active system is ideal and can be as stiff or as soft

as desired, but not negative, then the overall force that can be supplied by the damper is

limited in range,

 if and

 if

(Jalili, 2002, pp602-3)

A slightly more accurate model includes finite limits on damping rate, ,minc and ,maxc as in

figure 2.10 (Koo et al., 2003, p2; Hyvärinen, 2004, p91). The notion that the limits lie

between fixed damping rates may also be somewhat unrealistic. Where more accurate models

are required the limiting regions may be bounded by curves (Krüger, 2002, p498) that need to

be determined experimentally and which may vary with different devices. Further

complications are introduced by hysteresis, as noted in section 2.10.4.

Figure 2.10 Passivity Constraint

The passivity constraint is of particular concern for the development of semi-active

suspensions. Because the damper is restricted to providing force in only one direction semi-

active systems can produce high jerk when the damper changes direction. A control law that

is based on the skyhook suspension but which removes the force discontinuity has been

proposed (Reichert, 1997, p63; Ahmadian et al., 2004; Ahmadian and Vahdati, 2006). This

law has been called the “no-jerk skyhook” (Ahmadian et al., 2004, p580), and it can be

written as,

0dF ,0s

0dF .0s

58

.0 e wher0

,0 where

sy

sysy
i

(Reichert, 1997, p63).

2.7. Semi-active Skyhook

Almost all semi-active control suspensions in the literature are based on the skyhook. A very

simple approximation to the ideal skyhook is the on-off skyhook (Ahmadian et al., 2004, p4;

Hashiyama et al., 1995, p168; Savaresi et al., 2003, p2265; Simon and Ahmadian, 2001;

McLellan, 1998; Guglielmino et al., 2008, p70). The on-off skyhook simply switches

between minimum and maximum damping rates and has the control law of equation 2.10

below. Given the difficulty of engineering smoothly controllable dampers, this is one of the

easiest controls to implement in physical experiments (McLellan, 1998; Simon and

Ahmadian, 2001). Experiments give mixed results. “The transient test results indicate that the

controlled MR dampers appear to yield larger acceleration and displacement peaks, as

compared to the stock dampers. The acceleration and displacement RMS values, however,

did not show the same increase.” (Simon and Ahmadian, 2001, p374)

In light of the equation for energy absorption (see equation 4.2 of section 4.2), the on-off

skyhook will maximize energy dissipation when the damper is capable of it, and will switch

off (switch to minimum damping rate) in those conditions where a passive damper would

actually be adding energy to the system.

Equation 2.10

Savaresi et al. experiment with an interesting variant of this rule which they call the two-state

feedback on body acceleration. The control law for this rule responds to car-body

acceleration rather than velocity,

(Savaresi et al., 2003, p2266).

.0 where

,0 where

min

max

syc

syc
c

 .0 where

 ,0 where

min

max

syc

syc
c

59

Yet another variant on this rule uses stroke displacement, s, (sometimes called “relative

displacement”, see section 8.1.2). The damper is “on” when .0ss Wagner and Liu call this

“relative control” (2000, p567).

But the closest approximation that is possible with a semi-active suspension to a skyhook

control is to use the same force where possible and to turn “off” the damper when outside the

passivity constraint. This requires taking into account the force supplied by the virtual spring.

To the best of this author’s knowledge, it is always assumed in the literature that the virtual

spring and the real spring have the same rate, but this need not be the case and it is not

assumed here. In the literature, the virtual spring is often assumed to be the same as the actual

spring, in which case the control over the damper is greatly simplified,

.0 if 0

,0 if

ys

ysyc
Fd

(Ahmadian et al., 2004, p580; Guglielmino et al., 2008, p70).

Here c represents the damping rate of the virtual damper attached to the sky.

2.8. Road Surfaces

According to Segel (1993, p8), “subsequent to the appearance of the analog computer, the

next milestone in advancing of our understanding of the ride and roadholding process was the

recognition that the road constitutes a random disturbance function and that ride should be

examined as a stochastic process. … The first public recognition that vehicle ride should be

considered as a random process seems to have been enunciated by Mitschke” in 1958. Road

modelling research has been carried out over quite a long period of time.

Road modelling affects suspension control optimality. While various control methods focus

on how to bring a suspension back to equilibrium, the optimality of a suspension is dependent

on the statistical properties of the roads that the suspension is likely to encounter. For a

particular type of control, whether passive, skyhook, LQR, etc., the optimal parameters

depend on the types of roads encountered. Complex road statistical properties are rarely used

to analytically derive suspension parameters because of the enormous mathematical

60

difficulties involved. But road modelling and, of course, testing of suspensions on real and

challenging road surfaces is an essential component of practical suspension design in

industry.

The methods for collecting road height data vary. Body height is typically measured with an

accelerometer (Sayers and Karamihas, 1996, p38). To achieve an “earth-referenced

coordinate system”, Schick et al. used a D-GPS (Differential Global Positioning System)”

(2006a, p4). Relative height to the road surface can be “measured with a non-contacting

sensor, such as a laser or an ultrasonic transducer” (Sayers and Karamihas, 1996, p38).

Schick et al. collected data by using a high-speed camera to scan a line projected on the

road’s surface (2006a, p4).

The International Roughness Index (IRI), developed in the late 1970s, “has units of slope”

(Sayers and Karamihas, 1996, p4). This index shows a remarkably high correlation with

psychological tests. A similar index, called the Half-Car Roughness Index, also takes roll into

account (Sayers and Karamihas, 1996, p7).

Researchers “have traditionally represented road disturbances as a sum of sine waves whose

power spectral density (PSD) matches that of typical road disturbances” (Sims and Stanway,

2003, p94). Roads are often analysed using the measure of Power Spectral Density (PSD)

This is an adaptation of techniques used for analysing electrical signals, but it has been

widely applied to road surfaces (Sayers and Karamihas, 1996; Elbeheiry and Karnopp, 1996;

Kavanagh and Ramanathan, 1982; Burton, 1993, p226; Robson and Dodds, 1970; Yagiz et

al., 2000).

Random white noise signals are sometimes used when simulating road surfaces. According to

Cole (2001, p347), the “input provided by a typical road surface can be idealised as white

noise velocity.” Since the velocity is assumed to contain white noise, a given random white

noise input will be integrated to present the road surface. Gaussian white noise is often used

for modelling random input signals and is often used for road modelling (Lauwerys et al.,

2004, p793; Giorgetti et al., 2006, p41; Karkoub and Zribi, 2006; Majjad, 1997, p523;

McLellan, 1998, p22; Vaughan, 2004; Caponetto et al., 2003).

61

Yagiz claims that a “useful analogy exists between the effects of random signal inputs in the

form of integrated white noise and unit step function inputs” (2000, p81). The step function

may be useful for some first-order analyses of suspension-optimization problems. In fact

MacCluer uses just this problem to nicely compare various mathematical approaches to the

optimization of a tracking system (2005, p152).

Chirp signals are also used for experimentation (Lu and DePoyster, 2002; Song et al., 2003).

These are signals in which the frequency is slowly changed. Koo et al. use a chirp signal

which “sweeps frequency ranges from 0.5 Hz to 10 Hz in 68 seconds. This slow sweeping

chirp signal was desired so as to be sure that the low frequency dynamics were not lost” (Koo

et al., 2003, p2080). Chirp signals provide a snapshot of the frequency response of the system

and can be used to provide an analysis based on frequency (Koo et al., 2003, pp2081-2). The

magnitude of the signal can vary with frequency to mimic frequency profiles of actual roads.

While a simple frequency analysis is capable of characterizing the response of a linear

system, it is insufficient for demonstrating robustness in nonlinear systems.

To simulate road surfaces some researches use simple sine wave tracks, or “corrugated

tracks” (Hönlinger and Glauch, 2000, p3). Some have used simple sums of sine waves. Sims

and Stanway used a signal comprised of a “sum of sine waves from 0.25 to 15 Hz in steps of

0.25 Hz, each with velocity amplitude of 1 mm/s” (2003, p94). As argued below (in section

3.2), it is important in a nonlinear system to model bumps of a substantial size, approaching

the size of speed bumps. Such bumps can be used to augment the results from the study of

other road surfaces (Hönlinger and Glauch, 2000, p5), or they can be directly added to the

road surface in simulation, as in this author’s experiments.

With two-wheeled vehicles it is often acceptable just to model the wheels encountering the

same surface but with a time lag between the wheels (Ashari, 2004, p373). With a four-

wheeled, two-track vehicle however there is the problem of the cross-correlation between the

tracks (Kavanagh and Ramanathan, 1982, p338).

If computer modelling is used in the optimization process, as in the use of evolutionary

algorithms in the experiments performed here, then the road models will affect the

optimization. Evolutionary algorithms will adapt their results to the modelled data that is

input to them. In this case the input data includes road surfaces. If there are many large

62

bumps in the training data, then the resulting suspension parameters will be harder than if the

training data contains mainly soft bumps (section 5.5.2). For simulation purposes, it may be

possible to neglect some factors such “as variation in statistical properties along the length of

the road and the effects of hills, banking and holes,” (Kavanagh and Ramanathan, 1982,

p337) but a road surface model for the purpose of evolving the parameters of a suspension

system should contain a certain proportion of rough road surfaces. These should be mixed

with smoother sections to fairly represent normal road conditions and allow a suspension to

evolve which is able to handle rough conditions but also be smooth and comfortable under

normal operating conditions. A training surface without significantly large bumps will result

in a suspension that is unable to handle bumps. On the other hand a training surface with too

many bumps will result is a suspension that is too rough over smooth surfaces.

Models of one particular actual road or racing track are obviously realistic, but the use of just

that one track for training data may result in a suspension which is only adapted to that track;

indeed, random simulated tracks may be better for training data than an actual track’s

measurements.

2.9. Suspension Design Goals

In 1988 Redfield and Karnopp performed a comprehensive multi-objective analysis of a two-

DOF suspension system using just linear models and RMS measures of performance (1988).

They looked at both passive and active systems, by the use of what they then called

“boundary curves” (1988, p237). Redfield and Karnopp produced an analysis which is

equivalent to today’s Pareto optimization. The three performance measures used by them

were RMS values of,

1. – Sprung mass acceleration,

2. – Suspension stroke, and

 3. – Tyre contact force variation,

(1988, p238).

These measures correspond roughly to 1) isolation or comfort, 2) suspension tracking and 3)

road holding or wheel hop. Their analysis showed that the various objectives competed with

one another; comfort could be increased at the expense of road holding for example. They

63

also argued that active suspensions could theoretically provide better performance than

passive ones.

Car companies now invest large amounts of research into the “feel” of a car (Harrer et al.,

2006; Yamakado and Abe, 2006; Schick et al., 2006b; Toda and Kageyama, 2006). BMW

used comprehensive questionnaires of their test drivers to determine which factors seemed to

most contribute to the desired feel of their vehicles. These tests were specifically aimed at

discerning what the drivers considered to be the feeling of the BMW brand (Harrer et al.,

2006). This underscores the fact that at least some of the car performance indicators are of a

complex psychological nature, and these factors may not directly correspond to simple

objective measures.

Interestingly, passenger cars can provide a greater challenge for designers in terms of

performance criteria than commercial vehicles, military vehicles and racing cars, since

passenger cars need to fulfil an extremely wide range of performance criteria. On the other

hand a Formula One vehicle has one main objective: speed (Bastow et al., 2004), limited, of

course, by safety considerations. The following is a brief summary of some of the

performance goals of suspension systems with reference to the literature. The performance

goals of comfort and vertical travel are central to this thesis and these will be analysed in

greater depth in section 3.

2.9.1. Comfort

This goal represents the degree of comfort felt by a passenger. It is the extent to which the

suspension “softens” the ride of the vehicle. This is a subjective matter and there is no single

objective standard by which to measure comfort.

Ride smoothness is associated with “isolation”, meaning vibration isolation. For a vehicle

suspension, vibration isolation is the degree to which the chassis is isolated from the road

roughness (Yedavalli and Liu, 1994; McLellan, 1998; Karnopp, 1995). According to Barak,

“the Human Body is sensitive to certain frequencies such as 0.5-0.7 Hz dizziness and

seasickness, 5-7 Hz body resonance and 18-20 Hz head and neck” (1991, p1699).

64

There are different ways to interpret isolation and the differences are quite subtle. Vibration

isolation could be used to:

 reduce the risk of damage to inanimate cargo,

 reduce the bruising of fruits and other foodstuff,

 avoid damage to live cargo,

 reduce health risks such as driver back or spinal damage as a result of long periods of

vehicle travel,

 create a sensation of comfort and luxury,

 minimize car sickness,

 create a sense of “fun” from the feel of the suspension,

 create a particular “feel” of responsiveness that a company is aiming for.

Separate goals may correlate with different physical measures; for example damage to

inanimate cargo might correlate better to RMS acceleration while passenger comfort may

correlate best with RMS jerk. However, in order to retain the distinction between comfort and

other goals of vibration isolation, the term “comfort” will be reserved to refer only to the

sense of comfort for human passengers.

Redfield and Karnopp used RMS vertical chassis acceleration as the main measure of

vibration isolation (1988). Smith et al. analysed a psychological study correlating perceived

ride comfort with various metrics and standards of various standards bodies, including the

International Standards Organization (ISO) standard, Urban Tracked Air Cushion Vehicle

(UTACV) and Absorbed Power metrics for measuring vehicle ride comfort (1978). This

research, “supported in part by the United States Department of Transportation” (1978, p39)

incorporated an extensive psychological study using two vehicles, 78 different passengers

and 18 different roadway sections (1978, p35). Psychological measures and physical

measures were calculated and compared. The study looked at both floor board accelerations

and seat accelerations, and it concluded that unweighted RMS acceleration in the vertical

direction was as good a predictor of ride comfort as any of the other measures used at the

time, some of them quite sophisticated.

They also found that there was little difference in using the frequency range 0 to 40 Hz,

compared to using the range 0 to 100 Hz, “indicating little additional information relative to

the ride quality exists within the 40-100 Hz band” (Smith et al., 1978, p37). McLellan uses

65

the range 1 Hz to 15 Hz (McLellan, 1998, p36). The frequency range 0.1 Hz to 50 Hz would

seem to more than cover the range of frequencies needed to be controlled by an active or

semi-active system. This is in the sub-audio frequency range and it is easily dealt with by

electronic filters, modern digital processors and analog-to-digital and digital-to-analog

converters.

With short-stroke vehicles, the problem of combining comfort with tracking is much more

difficult than with long-stroke vehicles. And yet passenger cars, with the greatest demand for

comfort, tend to have shorter strokes than say trucks, tanks, HMMWVs (also called

“Humvee” or “Hummer”), and other large vehicles.

2.9.2. Vertical Travel

As discussed in section 2.9, RMS suspension stroke has been used as a measure of vertical

travel (Redfield and Karnopp, 1988). The smaller that this value is the better the suspension

stays near the equilibrium point of the suspension and the better the suspension follows the

road surface.

However, the objective with vertical travel is not to minimize the travel, but to constrain the

travel within the limits of travel: the rattlespace. This is the objective of stopping the

suspension from hitting up hard against the suspension travel limits: either from hitting

against the wheel well, “bottoming”, or extending and jerking against the full length of the

suspension travel. This is often misinterpreted as the degree of travel of the wheel. The way

that vertical travel as a performance measure is interpreted needs a deeper investigation if it is

to be addressed in a consistent way. This discussion is continued in a later section (section

3.2).

66

2.9.3. Cumulative Absorbed Power

Cumulative Absorbed Power (CAP) is an interesting suspension performance measure

because it seems to combine a number of performance goals into one. “TARDEC has

conducted extensive research on terrain roughness values and how they relate to the human

drivable speed for a given road. The maximum drivable speed is the speed that the

Cumulative Absorbed Power … reaches 6 Watts.” (Donahue, 2001, p71) Roughly speaking,

drivers will slow down when their bodies absorb 6 Watts. Donahue graphs maximum speed

versus terrain roughness as a measure of performance. The experiment was performed on a

HMMWV. This measure is designed for military vehicles travelling at high speed over rough

terrain and so the energy absorption of passengers is a limiting factor, and comfort is a

secondary matter. A highway vehicle on the other hand has comfort as a high priority and,

with a much shorter stroke, hitting against the suspension travel limits is much more

important.

2.9.4. Road Holding

Loss of traction occurs during periods of low tyre contact force. A suspension with lower

variation in tyre contact force will, in general, have less periods of low contact force

(Hönlinger and Glauch, 2000).

Some studies use tyre normal force as an indicator of road holding (Caponetto et al., 2003,

p788; Cole, 2001; Uys et al., 2006, p48). Extensive tyre and road modelling is necessary if

this factor is to be modelled accurately (Lee et al., 2006; Lot and Massaro, 2006; Schick et

al., 2006a). Tyre deflection can also be used as an indicator of road holding (Youn et al.,

2006).

2.9.5. Driving “Feel”

Empirical studies into driving feel indicate that responsiveness to steering is an important

indicator of the feel of responsiveness (Uys et al., 2006; Harrer et al., 2006). Yawing under

67

cornering, and side-to-side accelerations are also important for the feel of steering

responsiveness (Harrer et al., 2006, p11; Uys et al., 2006, p44).

2.9.6. Safety

Safety affects the full range of parameters that can be used in a suspension design.

In 1965 Ralph Nader published Unsafe at any Speed (1972). Nader criticized the 1960-63

General Motors’ Chevrolet Corvair for the tendency of the suspension to “tuck under”,

contributing to vehicle rollover. The ensuing public outcry influenced the US government to

legislate standards for car suspensions. In particular, the intent has been to legislate against

parameters affecting rollover. Similar legislation now exists throughout the world. The

Australian government has legislated for minimum spring rates (DOTARS, 2004). The main

design parameter affecting energy storage and affecting rollover onset is the spring constant

(Lee et al., 2006).

Wheel hop occurs when the wheel actually leaves the road (Elbeheiry and Karnopp, 1996; Lu

and DePoyster, 2002; Lee et al., 2006). The most catastrophic cases lead to car rollover,

usually under cornering. Extensive modelling by Lee et al. showed a runaway resonance

pattern during rollover. Rollover onset was shown to be sensitive to the stiffness of dampers,

springs and bump stops (the bump stop is the buffer, usually rubber, at the ends of the

rattlespace travel) (Lee et al., 2006, p8).

The Swedish “elk test” or “moose test” created some controversy “in 1997 when journalists

from the Swedish motor magazine Teknikens Värld overturned the new Mercedes-Benz A-

Class in the moose test, while a Trabant – a much older and widely mocked car from the

former German Democratic Republic – managed it perfectly” (Wikipedia, 2007b). This test

uses a swift side-to-side lane change to simulate the avoidance of a road obstacle. SAAB

perform the elk test using a physical “model” elk (Wikipedia, 2007b). The US National

Highway Traffic Safety Administration (NHTSA) used a rollover test in which vehicles were

tilted to see at which angles they tipped and slid (Uys et al., 2006, p45). They also use

another test somewhat similar to the “elk test”, called the “dynamic maneuvering test”

(NHTSA, 2007).

68

Larger vehicles and all-terrain vehicles can be more prone to rollover; according to the “car

accidents” website (car-accidents.com, 2011):

“There are about 280,000 rollover accidents in the US each year, resulting in about

10,000 fatal accidents. SUVs with a high center of gravity, are more likely to be

involved in rollover accidents than typical sedans. About 35 percent of fatal crashes in

SUVs resulted from a rollover crash, compared to 16 percent of fatal passenger car

accidents resulting from rollovers. This percentage indicates the fact that SUVs are

much more likely to rollover and result in a fatality.

Rollover accidents relate to a vehicle’s stability in turns. That stability is determined

by the relationship between the center of gravity and distance between the left and

right wheels (called track width). In light trucks, Jeeps, Sport Utility Vehicles, high

centers of gravity and narrow track width often makes the vehicles unstable in sudden

turns or changes of direction. This increases the likelihood that the vehicle will tip

over if it skids sideways.”

Figure 2.11 Rollover (car-accidents.com, 2011)

“In roll, the body rolls out-of-phase with the wheel/tire.” (Brinker et al., 2006) The

Metaldyne Suspension System (MSS) (2006) slightly alter the geometry of the control arms

to minimize this effect. Improvements to suspension geometry have been applied over

almost a century of research and development (Bastow et al., 2004). Semi-active damping has

the advantage that such improvements can be retained, since the only physical change

http://www.car-accidents.com/rollover-accidents.html

69

required to the suspension geometry is the replacement of the telescopic damper with a

controllable damper.

Catastrophic failure due to modes of resonance of the chassis are rare, but they can occur on

large vehicles, as perhaps in the example in figure 2.12. This incident may have occurred

during cornering, but the placement of load at each end of the trailer, lowering the frequency

of the torsional vibration mode, surely had an impact.

Figure 2.12 Possible Failure due to Torsional Resonance (UMTRI, 2000, p6)

While electronic control may mitigate resonance and rollover, there is still the problem of a

semi-active damper going offline: either the control signal could fail, or the damper could

physically fail. MR dampers are at their softest when no current is supplied (Stembridge et

al., 2006, p3). MR dampers can be used in such a way that their damping rate when the

control signal fails matches that of legal standards, or of original equipment manufacturers.

“In the absence of an electric input current to the damper or in the case of a malfunction in

the control hardware, the new MRF damper provides the same damping force that is

produced by an original equipment manufacturer (OEM) passive viscous damper”

(Gordaninejad and Kelso, 2000, p395). Thus “they become passive dampers when the control

hardware malfunctions” (Zribi and Karkoub, 2004, p511). Thus MR dampers can be

considered as ‘fail-safe’ devices if they still function with an acceptable damping rate when

they go offline. MR dampers designed for mountain bicycles have also been designed as fail

safe (Breese and Gordaninejad, 2003; Ericksen and Gordaninejad, 2003).

70

Fail safe comes at the expense of potential comfort however since one of the great potential

advantages of a semi-active system is a much smoother ride using a smaller damping rate

under smooth road conditions. In the design of Gordaninejad and Kelso (2000, p396), “the

MRF damper at passive-off state is designed so that it is slightly softer than the OEM

damper”. Another possibility is to have the suspension electronics linked to the engine

control and to place the vehicle in limp home mode in the event of a suspension control

failure.

Hydraulic suspension systems are potentially unsafe if they do not power down properly.

Suddenly switching off control power to a hydraulic system can result in an unexpected

release of pressure at some later stage. At power down all forces should be brought to zero

smoothly (Donahue, 2001, p19). A semi-active or active suspension should have a similar

slow power down, otherwise a sudden jerk could result.

The performance goals of comfort and of vertical suspension travel especially for short-stroke

vehicles forms the major focus of this thesis. These are investigated in more detail in section

3.

2.10. Electronically Controlled Suspensions

This section looks briefly at suspension control systems with particular emphasis on vehicle

suspensions, as opposed to structural suspensions. The term “intelligent” control is

sometimes used to refer to control using computers or microprocessors. In practice,

intelligent systems are almost always electronically controlled, and the term “electronic

controlled” is used here. Electronic suspension systems vary the suspension characteristics on

a moment-by-moment basis. These can be divided into active and semi-active suspensions

(Stembridge et al., 2006; Goncalves and Ahmadian, 2002; Hyvärinen, 2004; Li et al., 2004;

Song et al., 2003). This section gives the definition of active and semi-active suspensions and

covers some of the wide range of current implementations. Further details from the literature

of suspension control algorithms are discussed in later sections.

In the 1970s researchers were beginning to investigate active suspension. Crosby and

Karnopp defined active suspension,

71

“In idealized form, an active suspension element is a controllable force generator powered

from an external energy source. Such devices can be programmed to produce forces which

are functions of any desired system variable. By sensing system variables, such as,

absolute or relative accelerations, velocities, or displacements and appropriately com-

bining them, a command signal is developed for the force generator. With such devices,

isolation system performance is limited only by the amount of external power, the

designer is willing to expend and system complexity.” (1973, p119)

An active suspension will have a powered actuator that produces the force required by the

control, as represented in the left in figure 2.13. Active suspensions can potentially produce

any force desired and so are much more flexible than traditional passive controls.

Figure 2.13 Electronically-Controlled Suspension – Left: Active Right: Semi-Active

While there was initially some deviation in terminology, definitions for active, semi-active

and passive suspensions have now become quite standardised (Karnopp, 1995; Chang et al.,

1999, p3276; Ahmadian and Simon, 2002). “A vibration-control system, either as an isolator

or an absorber, is said to be active, passive, or semi-active depending on the amount of

external power required for the system to perform its function” (Jalili, 2002, p593). A semi-

active damper will “draw small amounts of energy ... to adjust the damping level and reduce

the amount of energy that is transmitted from the source of vibration energy to the suspended

body” (Ahmadian and Simon, 2002, p123) as represented on the right in figure 2.13. The

energy used in a semi-active system is only small and could be used only to “operate a valve”

in the controllable damper (Ahmadian and Simon, 2002, p123) or to power a small

electromagnet to vary the rheological properties of a fluid as in a magneto-rheological

damper (Sims and Stanway, 2003).

72

A passive system has no external power applied, such as the conventional systems comprised

of springs and dampers. Note that energy is stored in the springs in a conventional suspension

so a passive system can apply stored energy, but the energy is derived from the suspension

itself and not an outside power source. Furthermore, a passive system need not be simply the

spring and damper system, nor need a control law be mediated by electronic control; a purely

mechanical system for semi-active dampers has been proposed by Ivers and Miller (1991,

pp337-8). Such systems suffer from the fact that it is cumbersome to base a mechanical

control on chassis velocity. Their mechanism was tuned to a very low frequency, 0.1 Hz

(Ahmadian et al., 2004, pp337-8).

Hydraulic suspension systems have been in use on production vehicles for some time.

Perhaps the simplest such systems use hydraulics to transfer force between the suspensions

on different wheels and use only rubber springs and rubber valves for damping, as in

“hydrolastic” suspensions used in Minis since 1964 (Longhurst, 2007). Hydrolastic

suspensions evolved into hydro-pneumatic suspensions, such as the Moulton Hydrogas

suspension which uses nitrogen gas for springing (Longhurst, 2007; Rideout, 1998). The

compressibility of gas makes this a more pliant suspension. Although some of these derive

some power from the pumps, the pumps simply maintain a given pressure; they cannot

properly be called active suspensions.

A fully active system allows power to be applied in any direction and with whatever force the

designer desires on a moment-to-moment basis. A semi-active system however requires only

a minimum amount of power; it “requires no more power than a headlight” (Ivers and Miller,

1991, p327).

Systems that change their characteristics over a long period of time are termed “adaptive”

rather than active or semi-active (Ivers and Miller, 1991, p327). “The distinction between an

adaptive and semi-active system can be made by the bandwidth of the system. If the natural

frequencies of the suspension system are below the natural frequencies of the vehicle’s

natural frequencies, an adaptive system is quoted. The load-levelling system offered by many

car manufacturers can be considered to belong to this category.” (Hyvärinen, 2004, pp30-1).

Adaptive suspensions can change driving characteristics depending on a driver’s choice of

“feel”; they can change characteristics as components age; and they can change

characteristics depending on type of terrain encountered, or depending on the load placed on

73

the vehicle. This requires the electronics to measure suspension properties over time through

“on-line system identification” (Song et al., 2003, p219). Adaptive systems are not the focus

of this thesis, but adaptive elements that respond to terrain-type variation, component aging

and vehicle load can be included in both active and semi-active suspensions.

There has been some research into “active-passive tandem” suspensions. This refers to

systems that do not use the road height or the unsuspended mass height as inputs (Hyvärinen,

2004, pp30-1). The term “limited active” control has been used by Elbeheiry and Karnopp to

refer to a system that does not measure tyre deflection (1996, p556).

Shi et al. investigated the use of passive components alongside active components in order to

save power (1996), and even regenerative systems have been investigated (Okada and

Harada, 1996). In a regenerative suspension energy is stored for later use. While passive

suspensions store energy in springs, regenerative suspensions store energy that can be

returned using electronic control. Okada and Harada’s experiment demonstrated the principle

of regeneration but the system was very simple. In one system “An electro-dynamic actuator

is used” to regenerate electrical energy when the suspension is moving quickly (1996,

p4715). Their work focused on energy usages and the switching used in their control

produced a clearly discontinuous response (1996, p4720). A system that regenerates

hydraulic pressure has also been proposed (see US patent 6,394,238 B1) (Rogala, 2002).

Jalili uses the term “hybrid” system to refer to systems that switch between passive and active

modes. “With the aim of lowering the control effort, relatively small vibrations are reduced in

active mode, while passive mode is used for large oscillations” (2002, p599). Such systems

are proposed for large-structure seismic stabilization rather than vehicle suspension, where a

seismic event such as an earthquake occurs infrequently, hopefully never, and the control

switches modes and stays in the new mode for a relatively long period of time. This kind of

control allows the system to effectively change its stiffness depending on the urgency of

prevailing conditions.

The use of controlled suspension for truck seats “between the vehicle floor and driver’s

seating system”, is an attractive alternative to the implementation of electronic control at the

wheels, since it requires much less force (Wagner and Liu, 2000, p564). Alternatively, the

truck cabin can be independently suspended. Deprez et al. investigated Simulink simulations

74

of a “semi-active hydropneumatic cabin suspension” (2002, p1497). Hiromatsu et al. have

experimented with physical implementations (1993).

Hydraulic systems that use accumulators to store fluids under pressure can have regenerative

capabilities (Smith et al., 2006). Whether such a system can be called active depends on the

response time and whether or not the force is limited in some way. “Gas springing has been

used for many years... The gas is lighter than a metal spring but requires containment.”

(Dixon, 2008, p19). This is virtually equivalent to a spring in parallel with the metal spring.

But if this is controlled with a fast response time, and if the supplied force is not heavily

limited, such systems are very close to the completely general response of a truly active

suspension (Williams and Best, 1994).

Vehicle suspensions can also use preview to improve ride. Preview employs information

about the approaching road surface to improve the ride. Preview could acquire its data about

the up-coming road surface by using a pre-stored database of information, or by using an on-

board sensor. Donahue implemented such a system using sensors placed on the front of the

chassis (2001, pp19-25). Such systems are still in the experimental stage and are not the

subject of this thesis.

2.10.1. Implementations of Controlled Suspension

This section takes a brief overview of the proposed and actual uses of active and semi-active

suspensions and some technologies for implementing them. There has been a steady

development of such technology over the last few decades. In 1994, Williams and Best

claimed that a “high bandwidth active suspension”, capable of dealing with frequencies

between 1 to 12 Hz required “the use of aerospace technology” (1994, p338). Today,

suspension systems deal with such frequencies routinely and relatively cheaply. In 1993

Burton wrote that a “major obstacle … is linked to the (un)availability of cheap and reliable

sensors and actuators which, in addition, have acceptable levels of performance and power

consumption” (1993, p225). In fact electronically-controlled suspensions are now used on

production vehicles and their price has plummeted, as discussed below.

75

Active and semi-active suspensions have been studied for application to a wide range of

vehicles other than passenger cars: motorcycles (Ivers and Miller, 1991, p330), military tanks

(Ivers and Miller, 1991, p330), HMMWVs (Donahue, 2001; Gordaninejad and Kelso, 2000),

heavy trucks (Simon and Ahmadian, 2001), articulated vehicles (Palkovics and Fries, 2001),

buses (Cole, 2001), trains (Atray and Roschke, 2003), and aircraft landing gear (Krüger,

2002).

Williams et al. experimented with an oleo-pneumatic (hydro-pneumatic) active suspension

(1996, p45). “Fluid is supplied to the actuator from a high pressure source (via a control

valve).” Most of the springing of the system was due to the gas reservoir. It was found that

the nonlinearity of the system needed to be addressed to achieve better control.

There have been a range of dampers that can be adjusted from the driving seat, including a

very early dry friction damper, the Hartford Telecontrol damper, operated mechanically via a

Bowden cable from the dashboard, shown in figure 2.14. “A common form of adjustable

damper has a rotary valve with several positions each having different orifice size. Some

form of rotational position control, e.g. a stepper motor, is fixed to the top, controlling the

piston valve through a shaft in the hollow rod” (Dixon, 2008, p20). More recently, magneto-

rheological dampers have been used as adjustable dampers. Even when employing magneto-

rheological dampers the system is not properly semi-active unless it is being adjusted

electronically on a moment-to-moment basis.

Figure 2.14 Hartford Telecontrol Damper (Dixon, 2008, p6)

76

There are a number of systems that implement controlled suspension by passing a fluid

through a valve with a controlled aperture, often using just on-off control activated

electrically by a solenoid or motor. This is often augmented by gas reservoirs (accumulators)

either just to absorb the movement of the suspension or to add to the springing of the

suspension. Els et al. experimented with numerical models of a semi-active hydro-pneumatic

system operated by solenoid values, with switching times of at most 100 ms (2005). Lawerys

et al. experimented with and modelled an active hydraulic system using a controlled solenoid

valve, with a switching delay of 6 ms (2004). Their system was powered by a hydraulic pump

consuming approximately 500 watts. Wagner and Liu performed numerical experiments

using a hydraulic system controlled by a solenoid valve (2000). They also investigated an

“active electro-mechanical hydraulic actuator”. They claimed a 22% reduction in RMS

acceleration using the semi-active system although the testing was restricted to a single

bump. Donahue modelled and implemented an active hydraulic system which moved a valve

to “direct high pressure fluid flow” to either side of a piston in parallel with a bypass valve to

help regulate the pressure differential (2001, p8).

Solenoid valve systems have inherent force discontinuities and attendant “spikes” in jerk (see

section 4.3). Ivers and Miller attributed this problem to pressure build-up in the tyre and they

provide an interesting analysis of the problem (1991, p337):

“In many types of primary suspension applications in which on/off semi-active control

is used, a noise problem can exist … The noise is described as ‘thumping’ or ‘banging,’

and is correlated with the derivative of acceleration of the vehicle body. It usually

occurs only when the valve opens. While the valve is closed in order to resist the

vertical motion of the vehicle body, the tire can be compressed (beyond its equilibrium

state) by the reaction force. If the valve is then opened, the energy stored in the tire is

suddenly released. Since there is very little damping in the system while the valve is

open, the axle mass is free to resonate. This is perceived in the vehicle as an undesirable

noise.

Methods for solving this problem are fairly simple. One is to increase the damping in

the off state, however, this degrades performance. A better solution is to simply not

allow the valve to open as long as the tire is compressed. This modification of delaying

closed-to-open switches until the relative velocity reaches zero degrades performance

77

very little because of the small percentage of time involved in the delay… There is an

analogous algorithm for the continuously variable semi-active system …”

A number of researchers have experimented with continuously variable hydraulic dampers.

Sam and Hudha model a hydraulic system using as a damper for a semi-active system (2006).

Gao et al. modelled and numerically tested a damper controlled by a “proportional

servovalve” (2006). The control force depends in complex ways on the pressure in

accumulators. They demonstrated improved performance using modified skyhook controls.

Teixeira et al. experimented with a damper containing a valve controlled by a piezo-electric

actuator. The damping force versus velocity is linear in their system (2006, p349). They also

produced a physical prototype.

Hydraulically powered systems for implementing active suspensions have disadvantages.

“The actuators require hydraulic lines and a hydraulic pump which consumes power from the

engine. Other disadvantages include increased weight, maintenance, cost, and reduced

reliability,” (Ivers and Miller, 1991, pp328-9) and they are not fail safe.

Figure 2.15 Comparisons of Suspension Control (Bose Website)

Figure 2.16 Bose Linear-Motor Strut (Bose Website)

78

Bose have released an active suspension that uses a linear electromagnetic motor (refer to

figure 2.15 and figure 2.16). The motors are driven by power amplifiers based on the highly

efficient switch-mode audio power amplifiers. The process is regenerative and Bose claim

that the entire system “requires less than a third of the power of a typical vehicle’s air

conditioner system” (Bose, 2007). This is an active system as demonstrated when a Bose

suspension was programmed to “jump” over a line painted on a test track (Wired, 2005). The

system comes in a number of forms but the simplest is designed to have a two-point

connection and to replace conventional struts.

Studies into the use of semi-active systems for suspension control, then called “active

damping”, date back to the early 1970s with the work of Karnopp and Crosby (1973), and the

concept was patented by them in 1974 (1974). “The first documented vehicle installation …

of a semi-active system was in 1981 on a Yamaha YZ-250 dirt bike. This consisted of an

on/off active damper on the rear wheel and a controller. The controllable valve was located

external to the damper” (Ivers and Miller, 1991, p330). “The first vehicle demonstration with

experimental evidence to show the benefits of a semi-active suspension was on a military

tank … The M551 tank, a tracked vehicle with ten wheels, was selected as a test bed by the

U.S. army Tank-Automotive Command (TACOM) for evaluation of the on/off semi-active

suspension concept” (Ivers and Miller, 1991, p330).

Krüger modelled the use of semi-active suspensions for aircraft landing gear. Landing gear

needs to deal with a “high stroke velocity at landing impact” but it should also provide a

“comfortable ground ride” (2002, p497).

There are a number of other ways of implementing a controllable damper besides hydraulic

or electrical methods:

“Semiactive dampers can be adjusted by mechanical means or using the rheological

properties of the fluid that is used in the damper. The former uses mechanical valves

driven by a solenoid or stepper motor to control damper force in a hydraulic damper.

The latter category uses the rheological effect of controllable fluids, such as

magnetorheological or electrorheological fluids, to provide adjustable damping forces.

Although mechanical and rheological control dampers have been researched and

developed extensively, the rheological controllable dampers have received much more

79

attention in the past few years, mainly due to great advances in magnetorheological

fluids.” (Ahmadian and Vahdati, 2006, p145)

Fluids that can be controlled in this fashion also go by the generic name of “smart fluids”

(Sims and Stanway, 2003, p77). These are fluids that change viscosity in a controllable way.

Electro-rheological (ER) fluids change viscosity on application of an electric field, while

magneto-rheological (MR) fluids change their viscosity on application of a magnetic field.

MR dampers are discussed later in this section.

Friction provides another means of controlling dampers. This “requires only the direct

contact of two parts moving relative to each other and it can be incorporated into harsh

environments and vacuum environments where the use of elastomeric damping treatments

and fluid filled dampers is limited” (Unsal et al., 2004, p60). Because the “static coefficient

of friction is noticeably greater than the kinetic coefficient” friction dampers are susceptible

to sticking at zero relative velocity: the “stick-slip” phenomenon (Unsal et al., 2004, p60).

They are obviously highly nonlinear in this region. Unsal, Niezrecki et al. have used piezo-

electric actuators to supply a normal force for the friction damper. They concluded that MR

dampers of similar size were capable of providing more force at lower voltage. Guglielmino

et al. devote an entire chapter to friction dampers, and they discuss a wide range of friction

damper models (2008).

Ways of implementing a semi-active spring, rather than a damper, have been researched

(Hyvärinen, 2004, p32; Jalili, 2002, p598). Semi-active springs can be used to maintain a

narrow range of spring constant as a spring ages. As noted by Jalili, adaptive springs, that

change their properties over longer periods of time, to counteract the effects of aging, or to

vary the systems response, are quite feasible.

The most widely used controlled dampers for use in semi-active suspensions are dampers

using magneto-rheological (MR) fluids. These are referred to as MR dampers or MRF

dampers (Magneto-Rheological Fluid dampers) (Gordaninejad and Kelso, 2000, p395).

Koo et al. studied the response times of the commercially available MR damper used in the

“Motion Master Ride Management System” (Lord, 2006; Koo et al., 2004). They “define the

response time as the time required to transition from the initial state to 63.2% of the final

80

state, or one time constant.” Lord claim a response time of 10 ms. Experiment shows that

response time does not vary with current (between 0.5 to 2 A) but it does vary exponentially

with damper extension velocity. Below 15 mm/sec (0.6 in/sec) the response time is larger

than 10 ms.

Koo et al. used an accumulator to compensate for the jerk (“jounce”) of the damper stroke;

this was implemented through a nitrogen gas chamber sealed behind a floating piston.

Reichart claims that the “accumulator serves two purposes. The first is to provide a volume

for the MR fluid to occupy when the shaft is inserted into the damper cylinder. The second is

to provide a pressure offset so that the low pressure side of the MR valve is not reduced

enough to cause cavitation of the MR fluid” (1997, p18).

McLellan used MR dampers supplied by the Lord Corporation in comparative experiments

employing a number of control algorithms (1998, p26). The dampers employed two electro-

magnetic coils. “One coil is used on the compression stroke, and the other is used for the

extension stroke” (1998, p26). “The accumulator, made of closed-cell foam, was necessary to

allow for changes in the volume of the fluid as it was heated, and also to allow for the added

volume of the piston rod as it enters the damper” (1998, p27). The system “was tested on a

Volvo VN series class 8 truck ... Although the cab has three axles, the magneto-rheological

semiactive system was installed on only two of the axles” (1998, p30).

Semi-active systems have been increasingly used in vehicles over the last few decades.

According to Goncalves and Ahmadian, “Semi-active suspensions have been shown to offer

valuable benefits for vehicle primary suspensions … Available in the 2002 Cadillac Seville

STS, the MagneRide semi-active suspension uses a magneto-rheological damper made by

Delphi to vary the damping according to the driving conditions. Beyond improvements in

ride and handling, Cadillac also claims that the system is very effective at slowing weight

transfer, which promotes stability” (Goncalves and Ahmadian, 2002, p1). The MagneRide

system employs a number of sensors: “a relative position sensor between each control arm

and the body as well as a lateral accelerometer and a steering-wheel angle sensor” (Gehm,

2001, p32). To date semi-active suspensions have mainly been introduced into production

vehicles at the “top end” of the market.

81

Figure 2.17 Audi TT Roadster (Google, 2011)

The applications of MR dampers do not stop at vehicle suspension control. Research has also

been carried out on large scale control systems for seismic stabilization, discussed below, and

smaller scale systems for “varying the stiffness of exercise equipment, and for reducing

vibrations in truck seats” (Atray and Roschke, 2003, p223; Jolly et al., 1998) as well as for

use in clutches (Kavlicoglu et al., 2002). They have been investigated for the vibration

damping of helicopter rotors where the extreme temperatures during operation can cause the

degradation of the performance of a passive damper (Gandhi et al., 2001).

MR dampers have been used in protecting buildings against seismic shocks. For this purpose

they currently have much better properties than electro-rheological (ER) dampers (Soong and

Spencer, 2002, p257). Semi-active hydraulic systems have also been developed and used for

seismic control in the Kajima Shizuoka Building, Shizuoka Japan (Soong and Spencer,

2002). In 1998, Dyke et al. wrote that, “Extensive research has been done on active structural

control … and these systems have been installed in over twenty commercial buildings and

more than ten bridges (during construction)”. MR dampers are considered appropriate for

building stabilization. They are,

82

“relatively inexpensive to manufacture because the fluid properties are not sensitive to

contaminants. Other attractive features include their small power requirements,

reliability, and stability. Requiring only 20–50 watts of power, these devices can

operate with a battery, eliminating the need for a large power source or generator.

Because the device forces are adjusted by varying the strength of the magnetic field,

no mechanical valves are required, making a highly reliable device. Additionally, the

fluid itself responds in milliseconds, which allows for the development of devices

with a high bandwidth.” (Jansen and Dyke, 2000, pp1-2)

The use of batteries provides a fail-safe since mains-supply power outage can accompany

seismic disruptions. Jung, Park et al. have modelled the application of various controls for

suspension bridges and propose a hybrid system, using passive as well as controlled dampers.

Seismic applications of suspension control have very different requirements from vehicle

suspension. Safety during an earthquake is of extreme importance, and comfort is a minor

consideration. The control algorithms appropriate for a commercial building or bridge may be

very different from those used in vehicles because the suspension performance goals are

different. Electronically-controlled seismic dampers are needed mainly during high winds or

earthquakes, and they may be unpowered for much of the time. This may require different

physical properties of the MR fluid since the system “cannot rely on dynamic stroking of the

damper to provide any mixing action to maintain a well dispersed fluid” (Jolly et al., 1998).

There are a large number of commercially available MR fluids and devices for different

applications. Jolly, Bender et al. discuss the physical properties of various kinds of MR fluids

and their commercial applications (1998).

In vehicle and seismic suspensions the vehicle or structure is isolated from external vibration.

Conversely, suspensions can protect a machine mounting or the floor of a building from the

vibration of a machine, a heavy electric generator for example. In another configuration in

multi-storey buildings active control systems will move a heavy substructure which acts as an

“absorber” so that the building superstructure remains stable (Jalili, 2002, p594).

Thus there are different uses for suspension systems. The performance measures and control

algorithms that work best for one application will not necessarily be best for another. For

large structural or seismic suspensions, it is energy absorption which is the major concern,

83

rather than tracking. Even comfort is secondary. This thesis focuses, however, on small-

stroke suspensions in which comfort and tracking are important.

2.10.2. Sensors

Electronic suspension control systems require input from the environment. Sensors placed on

the car body, on the wheel housing and sometimes in the tyre itself, provide information from

the environment. Accelerometers are used most often: one on the car body and another on the

unsprung mass (McLellan, 1998, p32). Accelerometers are continually improving in accuracy

and decreasing in size. Even as early as 1991, Ivers and Miller claimed that “the cost of an

accelerometer has dropped from hundreds of dollars to tens of dollars – as much as a factor of

20. … More than any other single item, the accelerometer cost had prevented semi-active

suspension from appearing on production vehicles” (1991, p335).

Accelerometers generally use electro-magnetic effects of various kinds to pick up the

movement of a small suspended mass. Until recently, one of the the most common designs

for accelerometers has a seismic mass that “rests on a number of piezoelectric discs”. The

mass and discs are pre-loaded by a spring and the whole assembly is sealed inside a housing”

(Westbrook and Turner, 1994, p157). The piezo-electric effect generates a current which, in a

certain frequency range, is proportional to acceleration (Westbrook and Turner, 1994, p159).

The most recent developments in accelerometers use Micro-Electro-Mechanical Systems

(MEMS), and they are for all intents and purposes solid state devices (Yoshihiko et al.,

2006). Examples of breakout boards containing such devices are shown in figure 2.18. These

use piezo-electric effects arising from the very small movement of elements on an etched

silicon surface. In recent years the ease of use of MEMS accelerometers, as well as their

increasing accuracy and decreasing cost, has made them very attractive for use in production

vehicles.

 “What makes MEMS important is that it utilizes the economy of batch processing,

together with miniaturization and integration of on-chip electronic intelligence …

Simply stated, MEMS makes high-performance sensors available for automotive

applications, at the same cost as the traditional types of limited-function sensors they

84

replace. In other words, to provide performance equal to today’s MEMS sensors, but

without the benefits of MEMS technology, sensors would have to be several times

more expensive if they were still made by traditional electromechanical/discrete

electronics approaches.” (Fleming, 2001, p296)

Such accelerometers can include signal conditioning on the chip itself, and can often be

bought on circuit boards that simplify the attaching of leads and themselves may contain

more signal-conditioning and protection circuitry.

Figure 2.18 MEMS Accelerometers (Robotshop, 2011)

Jerk can be calculated by differentiating the acceleration signal, although there has been some

investigation into the engineering of specific sensors for measuring jerk. Yamakado and Abe

designed a sensor specifically for the measurement of jerk (2006). They were able to develop

a dedicated jerk sensor using electromagnetic induction. They found in their studies that drivers

tend to select the timing of braking turning “when either longitudinal or lateral motion of a

vehicle is momentarily in a stationary state (i.e., jerk zero point) and start to steer or accelerate at

this timing” (2006).

Integration on accelerometer output can be performed to estimate velocity and absolute

vertical displacement (Ivers and Miller, 1991, p332; McLellan, 1998, p32). Integration can be

performed digitally or can be performed by analog components and converted to a digital

signal using a D/A (Digital-to-Analog) converter (McLellan, 1998, p32). Low pass filtering is

also applied to the accelerometer input to remove noise (Donahue, 2001, p56).

http://www.robotshop.com/ca/dimension-engineering-de-accm2g.html
http://www.robotshop.com/ca/spark-fun-accelerometer-adxl320.html

85

Yi and Song experimented with the errors in measurements and output force in a semi-active

suspension using accelerometers alone to measure inputs (Yi and Song, 1999). They found

that “all states of a semi-active suspension can be estimated only with acceleration

measurements” (1999, p129). Yi and Song showed conclusively that signal processing, to

produce an estimate of system states (such as sprung mass velocity) produced improved

results. Such estimators are formally known as “observers” (Dorf and Bishop, 2005, p660).

Different types of accelerometers have different frequency responses and accelerometer

output may need to be filtered. Furthermore there is the need to remove low frequencies as

the vehicle travels up and down hills and long ramps. After integration, Ivers and Miller used

a high-pass cut-off frequency of 0.5 Hz (1991, p331).

Sometimes noise can be introduced by the measurement devices themselves. One approach to

the problem of noisy observers is to optimize despite the lack of “full state measurement”

(Fathy et al., 2003b). In very broad terms, this technique finds the controller input that most

likely optimizes the suspension given incomplete information.

Sometimes sensors that directly measure the distance between the chassis and the unsprung

mass are used (Williams and Best, 1994, p338; Fathy et al., 2003b). These are attractive

because double integration to measure distance introduces potential errors due to drift.

Displacement sensors have been used in the MagneRide system, as well as a steering-wheel

angle sensor, see section 2.10.1 (Gehm, 2001). Systems for measuring flow inside hydraulic

dampers, or some functional equivalent, have also been proposed as a way of measuring

damper displacement (Ivers and Miller, 1991, p329).

In researching look-ahead suspension systems, Donahue experimented with two types of

preview sensors: a radar sensor and an infrared LED sensor (2001). According to Donahue,

“The optical sensor detects small bumps better that the radar... However, since the radar

filters small width, low frequency disturbances it may better represent the actual system

disturbance” (2001, pp52-3). The generation of road-height data was found to require

trigonometric calculation from sensor data plus a “forgetting factor” (2001, p23) to account

for noise. According to Donahue, “results from this technique are promising but extracting

the bump data from the preview information is not a robust process” (2001, p24).

86

Mercedes-Benz have produced a research car, the F700, that uses LIDAR (Light Detection

and Ranging) sensors in the headlights “to scan the road so that the car’s suspension could

firm up or soften its damping and direct the hydraulic shocks to absorb or counter the loads

on each wheel.” It is claimed that their sensors can “‘measure’ the thickness of the painted

lines on the asphalt” (Voelcker, 2008).

Look-ahead suspension systems are not the subject of this thesis. Even without look-ahead

sensors, however, it may be possible to implement a modest form of look ahead by using data

from the front wheels to anticipate the road encountered by the back wheels. This also was

not the topic of the research for this thesis.

2.10.3. Control Hardware

There are a number of elements in the control hardware of a digitally controlled suspension

besides sensors and actuators: filters, microprocessors, amplifiers, digital-to-analog, and

analog-to-digital converters. This section looks at some of the control hardware used for

electronically-controlled suspension. Control software can be processed by either a desktop

or laptop computer, or a microprocessor. Desktop and laptop control is highly flexible but it

is only appropriate for design purposes. Microprocessors that are easily reprogrammed are

also widely available and these can also be used in both design and development work. There

is a range of ready-made commercially-available integrated circuits called microcontrollers

that can be used for control purposes and which can be easily programmed via computer

packages.

There is a range of types of microcontrollers that can be used for electronic control: the 8051

family, the Microchip PIC range (Predko, 2008), Atmel AVRs, the Texas Instruments

MSP430 family, and the Rabbit Semiconductor range of MCUs (Edwards, 2005, p16).

Programming of MCUs has now reached the point where they can be programmed in-circuit,

which is perfect for experimentation with a number of control algorithms. For instance,

Atmel devices can be programmed and reprogrammed via Ethernet (Donahue, 2001, p69),

RS-232 or USB (Wikipedia, 2006; Wikipedia, 2007a). Reprogramming can be performed off-

87

board or it can be done in-circuit. Atmel AVR devices have been used in the automotive

industry for “security, safety, powertrain and entertainment systems” (Wikipedia, 2007a).

Standards now also exist for communication between devices in an automobile:

“In Europe the dominant vehicle control network is CAN (Controller Area Network).

This protocol was developed by Robert Bosch GmbH in the mid 1980s and was first

implemented in a Mercedes Benz S-class car in 1991. CAN has since been adopted by

most major European automotive manufacturers and a growing number of US

companies are now using CAN. In the USA in 1994 the SAE Truck and Bus Control

and Communications subcommittee selected CAN as the basis for the J1939 standard

… The IS0 standardised CAN as an automotive networking protocol: IS0 11898 and

IS0 11519-2.

Many of the world’s major semiconductor companies now offer CAN

implementations. It is estimated that there are already over 140 million CAN nodes

installed worldwide.” (Leen et al., 1999, p262)

Robert Bosch GmbH is the name of the company that was started by Robert Bosch in the

1880s. There now exist a number of networking standards that can be used side-by-side in the

one vehicle: LIN (Local Interconnect Network), CAN, TTCAN (Time-Triggered CAN),

FlexRay and MOST (Media Oriented Systems Transport) (Blijleven, 2010).

Some AVR microcontrollers feature models for automotive use with on-board

communication using the CAN protocol. These are easily found by accessing the Atmel

website: http://www.atmel.com.

The programming of modern MCUs is performed using a range of computer packages. The

developer can program in machine code (McLellan, 1998), use high-level language

compilers, or can even use graphical engineering packages such as Simulink to produce code

from block diagrams (Donahue, 2001, p60; Atray and Roschke, 2003, p226). Matlab is a

popular package for simulation, but it can also be used for programming microprocessors

(Donahue, 2001, p60) and for the design of filters (Donahue, 2001, p59).

Dedicated analog filters will generally use op-amps (McLellan, 1998, p38). These amps do

not generally need excessive shielding or expensive components as the frequencies of interest

are relatively low, in the low end of the audio range 0.1 Hz to 50 Hz (refer to section 2.11).

88

Although semi-active dampers require much less power than active components, they do

require more than just signal-level power. MR dampers supplied by Lord Corporation require

a maximum of 2 A current for model number RD-1005-3. (The technical data sheet for this

device is contained in the file PhD\Thesis\Appendix\Lord RD 1005 3 Damper.pdf.) Such

dampers are highly inductive as the power is being supplied to coils to provide a magnetic

field to the rheological fluid. They are also susceptible to overheating and a fuse may be

needed to limit overheating (McLellan, 1998, p48).

2.10.4. Modelling Controlled Suspensions

This section presents a brief outline of some of the current research into models of particular

controllable dampers for semi-active control. The major focus is the modelling of the MR

damper.

Accurate modelling of suspension systems requires such details as the geometry of brackets,

the modelling of bushes, hysteresis effects, and “nonlinearities such as backlash and dead

zone” (Song et al., 2003, p223). Bushing and bump stops are a crucial part of a suspension.

Bushes have been modelled also as a damper in series with the suspension (Lauwerys et al.,

2004, p1483). Modelling in great detail is becoming more and more a part of the vehicle

design cycle. “Most manufacturers in the world are now investigating the feasibility of zero,

or virtual, prototype engineering. A definition of zero prototype engineering is the deletion of

hand-built, or ‘soft’ toll, prototypes from a development program” (Bastow et al., 2004,

p284). Computer-aided design has greatly reduced the number of physical prototypes

required. However, modelling for the purpose of the development of control strategies occurs

at earlier stages in the design and need not be as detailed. It is possible to “neglect actuator

dynamics to focus on validation of the proposed approach” (Tan et al., 2005, p12). That is to

say, simpler models can be used as a proof of concept before larger, more complex models

are applied to the problem.

Hydraulic systems have been widely employed for suspension control, as discussed above.

Tibaldi and Zattoni developed an algebraic model for a two DOF suspension using a

89

hydraulic strut (1996). Giua et al. develop a detailed, nonlinear model of a solenoid-valve

hydraulic damper (2004).

ER and MR fluids have been studied extensively as methods of damping control, and MR

fluids are being used commercially in high-end sports and luxury cars (refer to section

2.10.1). “The discovery of these fluids dates back to the 1940s” (Guglielmino et al., 2008,

p166). “ER and MR fluid respond to, respectively, an applied electric or magnetic fields with

a dramatic change in their rheological behaviour. The main characteristic of these fluids is

their ability to change reversibly from free-flowing, linear viscous liquids, to semi-solids with

the yield strength swiftly and continuously controllable (milliseconds scale dynamics) when

exposed to either an electric or magnetic field” (Guglielmino et al., 2008, p166).

ER dampers have been studied for a number of years and accurate dynamical models have

been developed. ER and MR dampers have a high hysteresis, and there has been some

research into the use of feedback to “linearize” the devices (Sims and Stanway, 2003, p83;

Stembridge et al., 2006, p4).

“Adequate characterization of an MR damper has shown to be a challenge because of the

device’s highly nonlinear dynamic response” (Schurter and Roschke, 2000, p1). MR Damper

models used in the literature have varying levels of complexity. The simplest is one in which

output force is proportional to current and is regarded as the model of the “ideal” MR damper

(Reichert, 1997, p20),

where is a constant and i is the current. The direction of the force is opposite to the stroke

velocity.

Curves for MR damper force versus stroke velocity have been presented by Goncalves et al.

in the context of determining damper response time (2003, p426). Also, in a 2002 paper

Goncalves and Ahmadian (2002) present a similar response curve, shown below in figure

2.19. Note the linearity of the response in portions of the graph. It is not expressly stated in

either paper how the data was collected.

,iFDamper

90

Figure 2.19 MR Damper Damping Force Envelope (Goncalves and Ahmadian, 2002, p4)

Gordon and Best (1994) employed a less linear model, shown below in figure 2.20.

Figure 2.20 Map of Nonlinear Damper Forces (Gordon and Best, 1994, p333)

A nonlinear mathematical expression based on physical modelling was developed by Yu et

al. They derived the following relatively simple expression,

Here V is the stroke velocity (2006, pp2-3).

Electronically-controlled devices have latencies caused by delays in the input and output

devices as well as the communication interfaces, such as serial buses for USB or CAN

communication. Ebau, Giua et al. take into account the time delay in both sampling and

updating and in response time of the semi-active damper (2001, p95). They assumed response

times of the order of 10 ms.

).sgn()(2 VcbiaiVCF eDamper

91

If greater accuracy is required a more detailed model of damper hysteresis is required.

Karkoub and Zribi use a model developed by Dyke et al (Karkoub and Zribi, 2006, p38;

Dyke et al., 1996; Dyke et al., 1998; Jansen and Dyke, 2000). It should be noted that the

systems studied by Dyke et al. were intended for the control of a building against seismic

shocks.

“A significant problem faced in application of [an MR damper] is accurate modelling

of its nonlinear hysteretic behavior. Spencer et al. … developed a numerical model of

the SD-1000 MR damper model that characterizes its behavior with seven

simultaneous differential equations that have 14 parameters. More recently, Schurter

et al. … used Adaptive Neuro Fuzzy Inference System (ANFIS) to characterize

behavior of the SD-1000 damper. ANFIS is a powerful neuro-fuzzy algorithm that

adjusts the membership functions (MFs) of a fuzzy inference system (FIS) such that

the FIS can mimic the actual behavior of the MR damper with a high degree of

accuracy while reducing the computational time significantly” (Atray and Roschke,

2003, p223).

Various authors have modelled the “viscoplastic behaviour” of the MR fluid directly

(Spencer et al., 1997; Breese and Gordaninejad, 2003; Butz and von Stryk, 2002). Hysteresis

in MR dampers has also been modelled by Hudha et al. (2005, p235) and Ahn et al. (2009).

These various models cover a diverse range of applications, including vehicle suspension.

The model developed by Spencer et al. was intended for the control of “civil engineering

structures subjected to strong earthquakes and severe winds” (1997, p1). Schurter and

Roschke developed their model for the SD-1000 MR fluid damper which was “put into

commercial use as a semi-active suspension system for large on- and off-highway vehicle

seats” (Schurter and Roschke, 2000, p1).

2.11. Practical Suspension Control Limitations

There are a host of practical factors affecting the function of a suspension system: wear and

aging of components, balance and alignment (Scheffer and Girdhar, 2004), unwanted

harmonics, bushing (Sung and Jang, 2006), delays in control response, the properties of

hydraulic fluids, bump-stop characteristics, tyre types, road types, etc. Component wear and

92

aging needs to be accounted for. Suspensions should continue to work well even as the

components age and weaken. Components should not wear appreciably. As far as possible,

steps should be taken so that the control system adjusts for changes in component

characteristics.

One important limitation for electronically-controlled components is the time delay between

the measurement and the application of the control. “The very use of feedback control

introduces these effects” (Bellman, 1966, p5). The road or chassis disturbance needs first to

be detected by a transducer, sometimes the data will be conveyed to the microprocessor via a

local network inside the car, the control signal then needs to be calculated by the processor,

and finally the actuator needs to respond by producing the required change in physical

characteristic. Each of these steps takes time. Improving response time may not necessarily

be just a matter of improving the processing step time of the microprocessor. However,

currently the response times of transducers and actuators, and the speeds of automotive

networks and microprocessors are constantly improving.

Since the early 1990s it has been claimed that an overall response time of the order of 15 ms

is “necessary to provide good control of the primary suspension” (Ivers and Miller, 1991,

p331). Given an algorithm step size of 15 ms the highest road frequency that can be

comfortably controlled by the electronic portion of the suspension is of the order 30 Hz.

Frequencies higher than this must be dealt with by the passive elements. A vehicle travelling

at 100 kph (approximately 60 mph) will cover a distance of 42 cm (approximately 16 inches)

in 15 ms. Thus the smallest bump that can be theoretically smoothed by the suspension is 42

cm long. This is clearly unacceptable. Travelling at the same speed, a response time of 1 ms

allows the handling of bumps 28 mm (approximately one inch) across.

The tyre is an important passive component of the suspension, although it is not in the

controlled portion of the suspension between the wheel and chassis and, in most cases tyre

deflection or pressure is not used as a control input. “Usually tire damping … and the speed

of tire deformation … are so small that variation of dynamic tire force due to damping is

neglected.” (Hyvärinen, 2004, p43)

Sometimes simple filtering of output can produce improvements. For example, Donahue

found that, “experimental data depicted considerable model error in the range of 1 Hz to 5

93

Hz” (2001, p15). To compensate, an “error filter” was used; “system output was attenuated at

1 Hz and amplified at 5 Hz by two”. Further changes were also introduced to “improve

tracking near the resonant modes of the suspension” (2001, p16). These changes produced

great improvements in the experimental setup.

2.12. Computer Optimization of Suspension Control

In recent years computer techniques have been used for the optimization of engineering

structures. Nonlinear systems and intractable optimization problems can be handled using an

enormous number of models, each with slightly different characteristics. This section gives

some examples of the application of computer-intensive techniques to suspension control

design of both seismic and vehicular suspensions. Most attention is given to Evolutionary

Algorithms (EAs) as these are the method used in the numerical experiments carried out for

this thesis.

2.12.1. Evolutionary Algorithms

In this section somewhat greater emphasis is placed on evolutionary algorithms since these

were used in the numerical experiments of this thesis to fine tune the parameters of various

suspension control designs. Evolutionary Algorithms (EAs) are used to search a problem

space and converge on highly scoring results. In fact, optimality cannot be assured but EAs

can find acceptable solutions where analytical techniques are either intractable or impractical

(Goldberg, 1989). Values found are said to be “suboptimal”. The processes are analogous to

those of biological evolution. In general the fittest genes from one generation are chosen for

breeding the next generation. Mutation and crossover ensure that variety is maintained

(Goldberg, 1989).

Evolutionary algorithms are sometimes applied to the development of fuzzy controllers, and

this technique has been applied to the development of a semi-active suspension control

algorithm (Hashiyama et al., 1995; Nawa et al., 1999; Caponetto et al., 2003). According to

Hashiyama et al., “setting the performance index is the only procedure for the designer of the

94

controllers” (1995, p166). There is no need to design a control law since this is discovered by

the evolutionary algorithm. This thesis, in contrast, specifically investigates control laws and

uses EAs for purposes of comparison.

Yan and Zhou used genetic algorithms to optimize the fuzzy-logic control of a MR damper

used for seismic stabilization (2006). Fuzzy controls have been used by Yu et al. to

implement skyhook and groundhook schemes (see sections 2.4 and 2.5) for a semi-active

suspension based on a quite extensive nonlinear model of an MR damper (2006). They

achieved a 7% reduction in RMS acceleration in physical experiments.

Evolutionary algorithms use randomization for mutation and selection, but in many cases the

phenomenon being analysed is itself stochastic. “In real life black–box optimization

problems, the existence of noise during evaluation is inevitable. Sources of noise can vary

from noise in the sensors, actuators, or because of the stochasticity pertaining in some

problems such as multi–agent simulations.” (Bui et al., 2005, p779) In the case of vehicle

suspensions the stochastic input and source is the road input. Random noise has the effect of

slowing the evolution, particularly when Pareto fronts are being sought for multi-objective

evolution (Bui et al., 2005). “Noise can mislead the search process considerably”

(Dumitrescu et al., 2000, p63).

Tan, Dyke et al. applied genetic algorithms to the development of control algorithms for

multi-storey seismic structures (2005). Similar to the method used in this author’s

experiments the population genes contain control parameters. They concluded that genetic

algorithms were “flexible” and robust.

While EAs cannot guarantee optimality they will generally be robust, in the sense that small

changes in parameters will not result in large degradations to performance. “We sometimes

try to detect robust solutions. Solutions that are very sensitive to small perturbations of their

parameter values may not be useful in certain situations” (Dumitrescu et al., 2000, p63). For

engineering design, a robust suboptimal design might even be preferred over a global

optimum that is highly sensitive to parameters’ variation (refer to section 2.3.2.).

95

2.12.2. Components of Evolutionary Algorithms

This section very briefly outlines the theory behind evolutionary algorithms, particularly

those aspects that relate to the experiments.

In the early works on genetic algorithms, genes were represented as binary bits (Goldberg,

1989). However, in applications where genes are naturally used to represent floating-point

measurements, such as suspension spring stiffness in a semi-active suspension, the genes may

be more profitably represented directly as floating-point numbers. “In a classical genetic

algorithm, these variables would be encoded as binary genotypes. Here, a conversion process

is required to translate between the genotypic representation and phenotypic representation

and vice versa. Floating-point representations do not require a conversion process, making

them faster to manipulate. Furthermore, they permit greater precision than binary code,

constrained only by machine precision.” (Purshouse and Fleming, 2001, p29)

One way to attempt to improve evolutionary algorithms is to induce a high degree of

variation at the start and slowly “cool” the evolutionary process. As the EA “cools” there is

less diversity, but there is also less “noise” in the evolutionary process. The change from high

to low temperature is known as simulated annealing. The temperature can be associated with

a number of factors: average extent of a mutation, number of mutations, probability of gene

acceptance as a function of fitness, number of crossovers.

The standard deviation of mutations is a possible candidate for a temperature variable. As the

genetic algorithm “cools” (or “heats up”) the standard deviation of the mutation can be

decreased (or increased).

A rule of thumb for adaptive evolutionary algorithms is the “1/5 success rule”. In broad

terms, “the ratio of successful mutations to all mutations should be 1/5” (Dumitrescu et al.,

2000, p264). This can be achieved by using a feedback process and changing the standard

deviation of the mutation, or by varying the number of mutations. A way to do this is to

update the standard deviation “every n generations with learning rates c and
1c ”

(Dumitrescu et al., 2000, p266). The following formula for varying the standard deviation is

applied,

96

. if),(

, if),(

, if),(
1

)(

5
1

5
1

5
1

pt

ptc

pt
c

nt

Here p is the ratio of successful to unsuccessful mutations in the previous ten generations.

The value of c is in the range 0.82 to one; usually it is 0.85 (Dumitrescu et al., 2000, p267).

Mutations are random changes in the genome. Mutation is the primary mechanism for

continually re-introducing diversity into a population to allow the exploration of new,

possibly fitter solutions. With Boolean-valued genes, mutations take the form of a simple

change between one and zero (Goldberg, 1989, p16). With real-valued genes, mutations can

be more sophisticated, and an “infinite set of alternatives exists. Gaussian mutation is an

attractive method of choosing an alternative. This operator generates a new value based on a

normal distribution, centred over the current value. The standard deviation defines the

likelihood of generating a value close to the original” (Purshouse and Fleming, 2001, p30).

Genes are selected randomly, but genes with greater fitness have a higher chance of being

selected. In the simplest selection algorithm, genes are selected randomly with a probability

that is directly proportional to their fitness, referred to as “proportional selection”

(Dumitrescu et al., 2000, p46). Suppose the n chromosomes of the current population are

represented as,

 .,...,,)(21 nxxxtP

Each
ix can be a binary value or a vector of floating-point values. The selection probability

of chromosome
ix is given as,

.

1

n

j

j

i

i

xf

xf
p

Equation 2.11

Here f represents the fitness function (Dumitrescu et al., 2000, p47). Scaling of fitness values

will alter the probabilities of selection (Dumitrescu et al., 2000, p59).

97

A number of mutation schemes exist for floating-point genes. If ix is a real-valued gene, out

of a vector of such values, then the following could be used to perform the mutation,

),,0(iiii Nxx

where i is a real parameter and),0(iN is a normally distributed random variable

(Dumitrescu et al., 2000, p201). “A multiplicative lognormal perturbation may sometimes be

more interesting.” This can be expressed as,

 ,
),0(iN

ii exx

Equation 2.12

where is a real parameter (Dumitrescu et al., 2000, p202). Schemes also exist to stop

values from going outside the feasible range (Purshouse and Fleming, 2001, p30). This last

method may favour larger values over smaller and may “drift”. Adjustments can be made to

counteract this drift.

Crossover (or equivalently “recombination”) in biological evolution involves the splicing and

recombining of parent genes. For a particular gene the child may take genetic material from

one parent’s gene “before” the splice and from the other parent’s “after” the splice. This

provides the child with the chance to share some benefits of the mother’s genes with those of

the father’s. Crossover increases diversity but keeps much genetic material intact. The

implementation of crossover using binary genes is relatively straight forward, but it is

“potentially noncontinuous and depends on the variety, in terms of bits, between the parent

chromosomes” (Purshouse and Fleming, 2001, p29).

A simple form of crossover with real-valued genomes is simply to randomly swap random

genes. For example, suppose the following genome values are given,

),,,,,(54321 xxxxxx and).,,,,(54321 yyyyyy

One form of mutation is to simply swap individual values, for example,

),,,,,(54321 yxyxxx and).,,,,(54321 xyxyyy

This is termed discrete crossover (Dumitrescu et al., 2000, p190). Rather than just swapping

values, weighted sums of genomes from different sites can be calculated producing

continuous crossover (Dumitrescu et al., 2000, p191), as in the following example,

98

),3/)2(,,2/)(,,(5543321 yxxyxxxx and

).3/)2(,,2/)(,,(5543321 yxyyxyyy

Elitism is the forced retention of a set of the highest-scoring genes into later generations

(Goldberg, 1989, p115; Zitzler et al., 2000, p188). In this author’s experiments a certain

proportion of the genes of one generation were included into the next. Zitzler et al. found that

elitism was a very important factor in the success of the EAs in their experiments.

With multi-objective optimization it may be that one gene scores better in one objective, but

the other is more fit in another objective. Which gene is the more fit? One solution is to

weight the components. The other solution is to keep both genes; this is referred to as Pareto

optimization. For example, if is the comfort measure and is the measure of the

capacity to stay within the rattlespace, then the scores can be combined into an ordered pair,

 In the following pairs,

 (200,300) and (400,500),

the second gene dominates the first because it scores higher in both components. In the

following case however,

 (500, 300) and (200, 400)

neither gene dominates the other (Goldberg, 1989, pp198-9). A solution is Pareto optimal if it

is not dominated by any other solution (Goldberg, 1989, p198; Fonseca, 1995; Zitzler et al.,

2000, p175). The set of such genes defines a “front” of genes that are Pareto optimal. Genes

below the Pareto front will not be optimal. Genes that lie along the Pareto front will have the

highest chance of passing on their genes to future generations (Goldberg, 1989, pp199-201;

Zitzler et al., 2000, p176).

The Pareto front could be determined by applying different weights, plotting the optimal

solutions for each weighting, as this author and others have used previously (Bourmistrova,

2005). Means exist however for finding the Pareto front in a single application of an EA.

Fonseca and Fleming use the count of the number of times that a gene is dominated as the

measure of fitness and this is said to provide better convergence especially under noisy

conditions (1993).

CJ RJ

).,(RC JJ

99

With the use of Pareto fronts, the evolutionary process can suffer a loss of diversity (Bui et

al., 2005, p783). This is called “niching” (Purshouse and Fleming, 2001, p6), and it is a major

difficulty for multi-objective optimization using Pareto fronts (Zitzler et al., 2000, p176). In

an effort to circumvent this, fitness can be decreased when genes are too close together.

Various techniques are used (Purshouse and Fleming, 2001, pp6-9). Genetic drift generally

creates a loss of diversity and “is one of the major factors responsible for the premature

convergence of the search process” (Dumitrescu et al., 2000, p98).

100

3. Vehicle Suspension Performance Measures

Suspension performance measures comprise a central theoretical component of this thesis.

The discussion of section 2.9 outlines various suspension performance goals in the literature,

and it forms the broader context for this chapter, which focuses on measures applied in later

experiments.

In very broad terms, suspension design attempts to reach a compromise between softness and

hardness. The softer the suspension the more comfortable it will be. If it is too soft, the wheel

will periodically hit violently against the limits of suspension vertical travel, or the vehicle

will be uncontrollable over large bumps. At the other extreme, an excessively hard

suspension will track well, but it will be unacceptably uncomfortable. There is no single

solution to the compromise. For example, racing cars have a harder suspension than touring

cars since comfort is of less concern than the ability to corner and handle bumps at speed.

The formulation of the performance measure for an idealized optimization problem can have

a critical impact on the optimal solution. For instance, the provably optimal strategy that

minimizes quadratic indexes is the smooth, LQR feedback control, discussed in section 2.3.1.

By contrast, the analytically proven optimal control that minimizes time in returning to rest is

the bang-bang control (see section 2.3.2). Both controls are provably optimal, and yet one is

continuous and the other switches discontinuously. The controls could not be more different

and yet they are both “optimal”, using different measures of performance.

In contrast to traditional passive suspensions, electronic systems allow a virtually unlimited

range of control possibilities. They are capable of greater smoothness and handling, but they

are also capable of extreme behaviour. Setting the performance measure is an important part

of the formulation of an optimality problem. Caution is needed because the wrong

performance measure can mask unwanted effects, as shown perhaps most dramatically in the

case of RMS acceleration measures.

A careless formulation of an optimization problem can even result in controls that are absurd

and wildly impractical. For instance, the unconstrained version of the minimum-time problem

requires an infinite force for an infinitely small period of time (MacCluer, 2005, p110; Ross,

101

2009, p60). As noted by MacCluer, “the application of optimal control to practical problems

is an art, requiring the practitioner to perform many analytic and numerical iterations to reach

an acceptable (but often not optimal) solution to the original problem” (2005, p113).

To sum up, caution and perhaps a degree of conservatism are needed when selecting

performance measures, especially when using atypical performance measures. This is even

more the case where there is much greater flexibility in control, as in electronically-controlled

systems. Certainly, comprehensive testing is required, alongside theoretical justification.

3.1. Isolation and Comfort

Suspension comfort is typically measured as the RMS of acceleration. This measure has a

proud pedigree, and a large number of researchers consider RMS acceleration to be the main

if not standard measure of riding comfort (Caponetto et al., 2003; Cole, 2001; Els et al., 2005,

p795; Gao et al., 2006; Hiromatsu et al., 1993, p2135; Song et al., 2003; Uys et al., 2006;

Vaughan, 2004).

According to Smith et al., RMS acceleration proved to be a good predictor of comfort (refer

to section 2.9.1). The various metrics studied by Smith et al. used frequency data (1978).

They showed that RMS acceleration correlates well with perceived comfort. It should be

noted that none of the metrics used in their comparative study incorporated jerk (1978). In

any case, in the late 70s, there were no practical passive mechanisms that directly controlled

jerk. Furthermore, passive systems are typically approximated to linear systems, and they

only produce force discontinuities under rough road conditions (as discussed later is section

4.3). Thus the problems of jerky control were not initially apparent, or at least were not dealt

with analytically.

The following measure has the same ordering as the RMS acceleration measure,

Equation 3.1

.)(
0

2

T

dtty

102

Minimizing this produces the least square solution. In matrix form a similar measure is the

quadratic performance index (MacCluer, 2005, p139), and equation 3.1 is a special case of

this. The least squares measure with linear systems provides analytical methods for both

optimization (refer to section 2.3.1) and state estimation (see section 2.3.1.2). This produces

the same ordering as the
2L -norm and the RMS measure. The least squares measure is

convenient as a performance goal, and undoubtedly “a popular optimality criterion among

control engineers is the minimization of an
2L cost function” (Ross, 2009, p42).

A similar measure found in the literature uses a heavier weighting for larger values of

acceleration by taking the fourth power of acceleration rather than the second. The Vibration

Dose Value (VDV), discussed by Deprez et al. uses the fourth power of acceleration,

Equation 3.2

(2002, p1498). This produces the same ordering as the
4L -norm. At the extreme is the

L -

norm. For the purposes of this thesis this is equivalent to the “maximumum”,

).(max ty
t

One could perhaps argue that comfort is as bad as the worst shock, but it seems reasonable to

include an overall gauge using some kind of summation measure.

It should perhaps be made explicitly clear that suspension force on the chassis and

acceleration of the chassis are assumed to be directly proportional, since the mass of a vehicle

is assumed to be constant. Comfort measures using vertical acceleration have the same

ordering as measures using vertical force.

The quadratic measure of acceleration is by no means the only way to gauge isolation and

comfort. Measures such as the VDV measure are generally not conducive to analytical means

of optimization and typically require numerical techniques, but they have been used. In

summary, the least squares measure of acceleration is well understood, has a long history, is

mathematically amenable and has been thoroughly accepted by the engineering community.

However, its mathematical convenience does nothing to prove that this is the “natural”

T

dtty
0

4 .)(

103

measure of comfort. Where numerical optimization techniques make virtually any measure

feasible, perhaps higher power measures produce a better performance index.

A number of researchers have investigated the use of jerk (the rate-of-change of acceleration)

as a comfort measure (Hrovat and Hubbard, 1981; Hrovat and Hubbard, 1987; Paddison et

al., 1994; Hashiyama et al., 1995; Ahmadian and Vahdati, 2003; Ahmadian et al., 2004;

Ahmadian and Vahdati, 2006; Yamakado and Abe, 2006). In some cases the term “jerk”

seems to mean little more than acceleration discontinuity (Reichert, 1997, p41; Hyvärinen,

2004), and still others maintain that RMS acceleration is a sufficient predictor of ride comfort

compared with jerk, as discussed above (section 2.9). In any case, jerk is being used more-

and-more widely. Certainly, jerk is being investigated for use in the control of industrial robot

arms (Koh et al., 1999; Kyriakopoulos and Saridis, 1988; Ben-Itzhak and Karniel, 2008; Cao

et al., 1997; Macfarlane and Croft, 2003).

Jerk is generally estimated in practice from accelerometer measures. While dedicated jerk

sensors have been developed (Yamakado and Abe, 2006) they are not readily available. The

controls developed here are controls over jerk. They use estimates of displacement, velocity

and acceleration, but they do not need estimates of jerk. However, noting the jerk achieved in

controls is important in experimentation if not in the on-board system. It is only the chassis

jerk that is of concern and so jerk can be estimated from an accelerometer placed on the

chassis. This requires differentiation of the accelerometer measures, and this process is very

sensitive to high-frequency noise. It will be necessary therefore to filter out high-frequency

noise.

Just as with acceleration, there are different possible performance measures involving jerk:

RMS jerk (equation 3.1), the “quadratic” measure,

and the integral of the fourth power of jerk,

Equation 3.3

T

dtx
0

2 ,

T

dtx
0

4 ,

104

which gives higher weight to greater values of jerk, and is similar to the measure of equation

3.2. This is the measure used in this author’s experiments. Another measure that has been

used is simply the maximum absolute value of jerk (Deb and Saxena, 1997, p558).

While the usefulness of acceleration as a measure of comfort has been demonstrated there are

a number of reasons to suppose that a suspension optimized for jerk could perform better and

feel more comfortable, and perhaps may even have a more natural overall “feel”. Only

extensive psychological testing could settle the matter conclusively, but various arguments

are presented here to support the contention that jerk is a better measure of suspension

comfort than acceleration, and some corroborating empirical evidence is cited.

Humans constantly experience the force of gravity on their bodies without discomfort. A

sustained, unvarying acceleration of 0.8 g (roughly 8 m/s
2
), will not alone cause discomfort,

and a constant acceleration of 1.2 g (roughly 12 m/s
2
) will also not cause great discomfort.

However, a sudden change between these accelerations will be very noticeable.

Figure 3.1 shows two acceleration profiles. Suppose that these represent the acceleration

profiles of a vehicle traversing a relatively bumpy road. Suppose the profiles represent sizable

bumps over a period of 15 seconds or so, that might cause some degree of discomfort to a

passenger.

The profile on the right has discontinuities where the acceleration jumps suddenly from one

value to another. If the profile on the left is somewhat uncomfortable then it is very clear that

the acceleration profile on the right is very much more uncomfortable because of the sudden

changes in acceleration. Both profiles have exactly the same magnitude of acceleration at

each point; therefore both profiles produce exactly the same measure of RMS acceleration. If

trajectories with the same RMS acceleration produce different levels of comfort then the

measure of RMS acceleration is insufficient to measure comfort. The discomfort caused by

the sudden changes in acceleration is completely masked by the RMS acceleration measure.

105

Figure 3.1 Acceleration profiles with the same RMS Value – The left profile is continuous but

the right profile has discontinuities.

Every discontinuity in the profile on the right represents a spike in jerk. Of course, pure

discontinuities do not occur in nature, but they are approximated. In real-world systems

where force actuators are suddenly switched on or off, there will nonetheless be a very large,

uncomfortable, if not infinite spike in jerk. Nonetheless, the logic of the argument remains

the same. Sudden changes between moderate acceleration levels are not penalized by the

RMS acceleration measure.

Sudden changes in acceleration are accompanied by large albeit finite spikes in jerk, which

cause discomfort and which are penalized by an RMS jerk measure. It is not uncommon in

the literature to talk of “force discontinuities” or “acceleration discontinuities” (Reichert,

1997, p69; Ahmadian and Vahdati, 2006, p153; Harris, 2004; Chang et al., 1999, p3276),

using this as shorthand for approximations to discontinuities, which have accompanying

finite spikes in jerk.

There are a number of reasons why acceleration discontinuities can arise with highly flexible

electronic controls:

 Semi-active adaptations of active controls have a natural tendency to produce jerk at

the boundary of the passivity constraint (see sections 2.6 and 4.8).

 On-off controls are much easier to engineer electronically.

 On-off dampers can be interpreted as being “optimal” for some purposes: for instance

for energy absorption, as explained in section 4.2, and bang-bang controls are optimal

in a minimum-time sense, as explained in section 2.3.2.3.

 Pure sliding-mode control, without a linear control near the sliding plane, exhibits

“chattering” (see section 2.3.2.4).

106

Thus, if the RMS measure is used to measure comfort, there may seem to be good theoretical

reasons for applying a discontinuous control force. In control problems where Pontryagin’s

Principle is applied, for instance, bang-bang is optimal (see section 2.3.2). But a bang-bang

control over acceleration is demonstrably highly uncomfortable.

Force discontinuities known as “chattering” also result from the pure sliding-mode control

(see section 2.3.2.4) where linear controls have had to be artificially inserted around the

switching plane to remove uncomfortable force discontinuities.

With electronically controlled suspension, switching techniques become feasible, and in fact

are often the simplest control to implement electronically. Experimental active and semi-

active suspension systems have used simple on-off switching for control (Ivers and Miller,

1991; McLellan, 1998). Not surprisingly, experiments reveal uncomfortable force

discontinuities.

A semi-active suspension that attempts to approximate an active suspension’s control force

will suffer discontinuities because of the passivity constraint, as explained below in section

4.8. As noted by Ahmadian et al., “at zero crossings of the velocity, [a] conventional skyhook

introduces a sharp increase (jump) in damping force, which, in turn, causes a jump in sprung-

mass acceleration” (2004, p580). Again, the discomfort caused by such discontinuities is

completely disregarded if acceleration alone is used as the performance measure. This

represents a serious problem for semi-active suspension control and the matter is discussed at

length below in section 4.8.

There is a great difference between a discontinuous control over acceleration, and a

discontinuous control over jerk. To visualize this, consider a very simple “elevator example”.

Suppose bang-bang acceleration control was applied to an elevator, as in figure 3.2 (a), where

the elevator car moves from “floor 3” to “floor 0” (Here displacement and acceleration are

shown on the same graph for convenience).

Using RMS acceleration as a measure of comfort, this might seem to be a good candidate for

elevator control since it brings the system to rest in a finite and minimum amount of time for

the given force. Such a control however would contain three sudden changes in acceleration:

once at the start, once at the end and a complete reversal of acceleration direction in the

107

middle. Each of these changes in acceleration represents a sudden change on the force

experienced by the passenger in the elevator. There are three “jerks” (actually spikes in jerk)

in this control as the acceleration and force felt on the body suddenly changes, at the start,

half way, and at the end. It takes little imagination to realize that this would provide an

extremely uncomfortable elevator ride.

(a)

(b)

Figure 3.2 “Elevator Example” using (a) Bang-Bang Acceleration and (b) Bang-Bang Jerk

The control of figure 3.2 (b) is also a bang-bang control, in this case involving four sudden

changes in jerk. However, the acceleration is continuous and changes smoothly. A constant

jerk smoothly increases the magnitude of acceleration, smoothly reverses the acceleration,

and finally eases the elevator to a stop at the end. This is clearly a much more comfortable

control, and it is optimal in terms of bringing the elevator car to rest in minimum time using

constrained jerk.

Again, RMS acceleration does not indicate that the first control is more uncomfortable than

the second. In fact, the second control has a 15% higher level of RMS acceleration (see

108

appendix, section 8.5). On the other hand, an RMS measure of jerk will clearly indicate the

control over acceleration is uncomfortable.

Constrained jerk might also be beneficial for delicate machinery or other inanimate cargo as

well as passenger comfort. Jerk constraint has been suggested for industrial robotic systems

with the aim of increasing the life span of equipment by reducing vibration:

“… a robotic assembly system with high speed motion needs the constraint for

maximum jerk to improve the positional accuracy and to prevent the mechanical

system from … vibration … The anti-vibration is the key factor for determining the

life cycle of the mechanism. In robotic systems, the jerk constrained motion

guarantees a smooth and stable motion”. (Koh et al., 1999, p273)

It has been suggested that jerk is a better indicator of discomfort for vehicle suspensions

“because drivers’ bodies are sensitive to jerk” (Yamakado and Abe, 2006, p2). The body

contains a deformable mass of soft tissue surrounding a rigid skeleton. Under constant

acceleration the body deforms due to force, but it reaches equilibrium. Indeed, humans can

quite easily sleep under the constant force of gravity. However, in a body experiencing jerk,

the deformation does not reach equilibrium. Thus jerk can be seen as a kind of measure of the

“jostling” of the human body. Similar arguments could also apply to inanimate objects

especially those with liquid or moving parts. Jerk could also contribute to the loosening and

wear of machine parts.

Empirical experiment into human arm movement has shown that humans do not use only

acceleration in the control of arm movement. Flash and Hogan found that human arm

movements were consistent with the minimization of jerk but not with minimization of

acceleration (Flash and Hogan, 1985). Actually, the “limited resolution of experimental data”

did not allow them “to establish unequivocally which one of the two models, jerk

minimization or snap minimization, offers a better fit” (Flash and Hogan, 1985, p1698).

“Snap” is an even higher-order derivative of distance: the rate-of-change of jerk. There are a

number of extant terms for higher-order derivatives of distance. “[Jerk] has also been called a

‘jounce,’ a ‘sprite,’ a ‘surge,’” and a “spasm”. The fourth time derivative is referred to as

“snap” while the fifth

and sixth derivatives are sometimes called “crackle” and “pop” (Sprott,

1997, p538; Ben-Itzhak and Karniel, 2008). Flash and Hogan concluded that the human body

109

itself prefers jerk minimization, or perhaps even snap minimization, over acceleration

minimization. This suggests that a suspension optimized for jerk could feel more “natural”

and more pleasing than one optimized for acceleration.

Flash and Hogan offer an interesting hypothesis to explain why humans might use jerk in the

control of bodily movements.

“The rationale for jerk minimization in biological trajectory planning does not lend

itself to self-evident, casual explanations. Given the fact that the movements under

consideration occur at moderate speeds and do not subject the system to undue stress,

it is unlikely that such a strategy has evolved to minimize the “wear and tear” on the

system. It is possible that the objective is to minimize unwanted, abrupt changes in the

forces transmitted to objects carried by the hand. Another possibility … is that the

objective is to maximize the predictability of the trajectory, which is consistent with

minimizing its higher time-derivatives. To discriminate between these and other

possibilities will require further work”. (1985, p1698)

Harris has questioned the use of higher-order smoothness than jerk. “Trajectories with higher

order discontinuities (i.e. very smooth) require longer times to reach a given state for a given

command signal. Keeping the order as low as possible would be beneficial, but there are

biomechanical limits” (Harris, 2004, p114). It seems likely that human movement is a trade-

off between optimization for one or more of a range of factors, but also for achieving this in

an environment in which the “neural control signal is corrupted by noise” (Arechavaleta et

al., 2008, p6).

One of the problems in determining the order of smoothness of human movement is that

higher-orders of smoothness are difficult to determine from noisy data: “Measurements tend

to be noisy, so that successive differentiations of time series of data become rapidly

meaningless. Low-pass filtering reduces the noise, but by its nature, smoothes out the

discontinuities” (Harris, 2004, p100). In any case, whether human movement is smooth at the

level of jerk or of higher time derivatives, it is abundantly clear that human movement does

not generally involve discontinuities in acceleration.

Another possible argument against RMS acceleration is that it ignores the force of gravity.

The human body experiences acceleration as a force, and while the measure of RMS

110

acceleration includes the up-and-down motion of the body, it does not include the much

larger force (generally) due to gravity. If this force were included in the RMS acceleration

measure of comfort then a perfectly flat road would produce almost the same measure of

discomfort as an undulating one. However, higher order derivatives such as jerk are zero over

flat roads and produce measures over corrugations that are more consistent with human

discomfort.

Although comparisons have been made between controlling for jerk and for acceleration in

purely passive systems (Hrovat and Hubbard, 1987), traditional, passive suspension control

produces continuous forces in any case, at least when the road surface is continuous in slope

(see section 4.3). The suspension force therefore is at least continuous in the case of passive

systems, barring road discontinuities and damper value effects. With electronic suspensions,

on the other hand, switched, discontinuous controls are the easiest to implement, and are even

optimal for some performance criteria.

As briefly described above, switched force controls may seem an attractive option for the

engineer for a number of reasons and such experimental systems have been investigated

(McLellan, 1998, p71; Guglielmino et al., 2008; Ivers and Miller, 1991, p336; Crosby and

Karnopp, 1973, pp121-2). Discontinuities can also arise as an artefact of a semi-active control

following an active control (see section 4.8), or simply as artefacts of power supply

switching. Such discontinuities would not necessarily affect an RMS acceleration measure of

comfort. The consistent way to resolve the matter when investigating electronically-

controlled suspension is to penalize acceleration discontinuities by using jerk as at least a

component of a comfort measure.

Despite all this, there may be physical reasons why acceleration should be considered where

appreciable power is being absorbed by the human body, especially at higher frequencies.

Power absorption is the basis of the CAP measure (Donahue, 2001) (refer to section 2.9).

This measure was used for experimentation with a HMMWV. The ability of a military

vehicle to pass over rough terrain at high speed is a priority; passenger comfort is secondary.

However, these vehicles in such terrain are near the limits of human power absorption, and

this is a separate suspension goal relevant for military vehicles, and perhaps racing vehicles.

111

Different vibration frequencies affect different parts of the body, and the effect depends very

much on frequency (Bastow et al., 2004). Higher-frequency vibrations have the greatest

effect on the parts in most contact with the seats – back, buttocks and legs – but they also

affect the head and neck (Cole, 2001, p331; Donahue, 2001, p26; McLellan, 1998, p15).

Perhaps frequencies above say 5 Hz would be perceived by the amount of power that they

transfer to the body’s soft tissue. More experimentation is needed to determine if there is a

roll-off in jerk-related discomfort to acceleration-related discomfort at higher frequencies.

However, even here, a jerk penalty also penalizes acceleration, whereas acceleration can

mask discomfort, as explained above.

On balance the arguments of this section indicate that jerk is a superior measure of comfort

for suspension systems, and there is some corroborating experimental evidence to support

this. In fact, with the advent of electronic control, comfort measures using acceleration are

likely to be inadequate.

3.2. Tracking

Suspension control theory has rested heavily on linear theory, and the RMS stroke index, of

equation 3.4, is an often used measure of tracking (Song et al., 2003; Vaughan, 2004, p62;

Redfield and Karnopp, 1988, p238). This is partly due to the successful application of this

measure in variational calculus and statistics. However numerical optimization techniques

open up the possibility of using more tailored performance indicators.

Equation 3.4

Imagine a vehicle travelling over a corrugated road, with undulations up to say one fifth of

the rattlespace width. Suppose that the suspension control is capable of keeping the chassis

perfectly flat, with the wheels made to move up and down to exactly match the road height

underneath. Such a control can be theoretically achieved with an active suspension. In fact,

the Bose website features a remarkable demonstration of a car using their active Bose®

.
0

2dtsJ

T

R

112

suspension traversing a “bump course” in which the car body stays almost perfectly level but

the wheels move furiously up and down to exactly match the road corrugations, over middle

to low frequencies (Bose, 2007). As astonishing as this demonstration is, it represents the

very simplest possible control algorithm, which for the sake of discussion will here be called

the “flat” control: 0)(ty for all t. If y represents chassis height and s represents stroke (as

in section 2.4) then the stroke movement must match the road exactly:

).()()()(trtrtyts

This is not to suggest that Bose use exactly the flat control for this demonstration. The

demonstration does verify however the feasibility of engineering the inverse dynamics

required for this control, at least for lower frequency vibrations of moderate size. Even so, it

is the theoretical possibility of the flat control that is at issue here.

The important theoretical point is that there is no inherent negative effect of wheel

displacement inside the rattlespace. The flat control over small bumps has perfect comfort;

the comfort measure is zero by any reasonable measure. Furthermore, road normal force is

perfectly constant (at least the component of road normal force contributed by the heavy

chassis, excluding the wheel) and so there is little or no change of traction force. The flat

control algorithm dramatically demonstrates that it is not stroke travel which has a negative

effect on tracking, since the wheels are moving up-and-down within the rattlespace to match

the road corrugations, and yet the control has perfect comfort and theoretically perfect

traction (ignoring tyre distortions).

The extreme case of the flat control demonstrates the general theoretical point that the wheel

should move within the rattlespace to produce as smooth a chassis trajectory as possible. It is

important to make good use of the rattlespace travel available in order to provide as smooth a

ride as possible, and to remove unnecessary chassis movement. Unnecessary chassis

movement creates discomfort, degrades tracking and contributes to instability.

Of course, the problem with the extreme case of the flat control quickly becomes obvious as

soon as it encounters a bump that is large enough to cause the chassis to hit against the

vertical travel limits of the rattlespace. And the closer the chassis approaches the vertical

travel limits, the more likely it is that future movement will cause a collision with the

113

rattlespace limits. Nonetheless, it is the potential collision with the vertical travel limits that is

the ultimate performance problem, not rattlespace movement itself. By penalising relatively

small movement within the rattlespace, the quadratic measure of equation 3.4 does not

properly represent the tracking performance goal.

Let us make a first attempt to remedy the situation by applying no penalty at all for travel

inside the rattlespace. Rather than weight travel in proportion to the square of stroke, it

may then be better to weight travel inside the rattlespace as zero and to give a high weighting

outside (the theoretical consequences of considering motion outside the rattlespace limits are

discussed below). Suppose a weighting of P is assigned for travel outside the rattlespace, but

no weighting for travel inside, as in equation 3.5 below.

Equation 3.5

The cost function for measuring the capacity of the suspension to stay within the vertical

travel limits could then be found by integrating this penalty function over time:

Equation 3.6

This measure is then in proportion to the time spent outside the rattlespace; minimizing this

measure is exactly the same as minimizing the time that is spent outside the vertical travel

limits.

Minor modifications to equation 3.5 assist in the optimization process. In the numerical

experiments performed for this thesis, the penalty was modified by adding a small cost as the

suspension approaches the vertical travel limits. Extra weighting has also been added in

proportion to the distance travelled beyond the rattlespace. This is suggested by analogous

experiments with linear programming problems, showing that weightings on the distance

from feasible solutions help to improve convergence (Gen and Cheng, 1996). The modified

penalty function used in the experiments is given by equation 3.7.

,2s

. if

, if 0
)(

msP

ms
s

 .)(
0

dttsJ

T

R

114

Equation 3.7

A graph of an example of this function is shown in figure 3.3. A very similar function, called

a “nonlinear filter” function, was used by Lin and Kanellakopoulos (1997, p51), although in

their experiments the function was used for the control of a band-pass filter rather than for

measuring performance. This penalty is integrated exactly as in equation 3.6, and this is the

performance measure used in this author’s numerical experiments.

Figure 3.3 Example of Cost Function Penalty for Suspension Travel

If the road surfaces that are used in evolutionary algorithms are too smooth, there is a danger

that the evolved suspension will be unable to deal with large bumps. An evolutionary

algorithm will quickly converge on a suspension which is too soft to be of practical use. The

suspension can remain perfectly flat, as with the flat control, and achieve a perfect comfort

score. Thus, EA training data should contain road bumps which can test the suspension’s

capacity to avoid hitting against the rattlespace limits: “topping” or “bottoming” (Lord,

2006). To do this, some of the bumps used in the process of evolution should be at least half

the rattlespace width in height.

 . if)(

, if
s

 , if 0

)(

222

211

3

12

1

1

msTmsP

msmP
mm

m

ms

s

115

To date there are not many modellers who have used real road profiles in such a design

process (Yu et al., 2006, p1) but even real road profiles, gathered from physical

experimentation, section 2.8, should include such large bumps. Of course, at the other

extreme, too many large bumps in the training data will produce extremely hard suspension

systems. A compromise is needed. The training data used in the numerical experiments for

this thesis erred perhaps on the side of rough roads for training data, in order to more

thoroughly test the capacity of a system to be capable of being smooth while at the same time

handling rough terrain.

All the performance measures of tracking discussed above use the general form of an integral

of a penalty function, including the quadratic measure which uses the square as the penalty.

In all cases the penalty function includes a weighting for movement outside the rattlespace.

But real suspensions typically do not crash through the rattlespace travel limits, at least not

without causing fatal physical damage to the vehicle. Viewed in this way, the entire basis of

the model seems unrealistic, and all the above performance measures seem to be dependent

on an unrealistic model.

This problem arose during the PhD research, and it was not immediately clear to this author

how the problem should be resolved. The unreality of models that smash through the vertical

travel limist would seem to indicate that they should be abandoned in favour of realistic

models that include bump stops: especially when the major benefit of numerical optimization

is that it easily includes more realistic modelling. Furthermore, there seems to be the potential

for a more elegant, “unified” performance measure that includes both comfort and tracking,

as explained below. The pivotal step in resolving the issue requires taking a fresh look at the

“realism” of the model, especially the matter of how real drivers behave when approaching

large bumps.

To begin with, suppose an attempt is made to employ a model that includes very stiff bump

stops near the ends of the suspension travel. As discussed, this could appear to solve the

problem of travel outside the rattlespace. Travel is limited to the rattlespace and severe

bumps with the rattlespace ends are penalised heavily because of the discomfort they cause.

These bumps apparently make the model more realistic, avoiding the embarrassing matter of

modelling “infeasible” suspension travel beyond the rattlespace limits. Furthermore,

116

optimization would seem to avoid such collisions since they cause extreme discomfort, albeit

for extremely short periods of time.

This can seem to be a very tidy “unified” solution since the tracking problem is included in

the goal of comfort: the one measure of discomfort doubles as a travel measure since it

includes the great discomfort that results when the chassis hits up hard against the travel

limits. The discomfort of hitting the rattlespace limits then also acts also as a performance

indicator for suspension vertical travel. To reiterate, this seems like an elegant solution that

does not require unrealistic movement outside the rattlespace.

However, when using this method, optimization depends critically on how hard the

suspension hits against the vertical travel limits, creating instability in the optimization

process. The exact trajectory of the rattlespace edge collisions has a critical effect on

optimization, as does the method of measuring discomfort. Even if the collisions are very

violent and uncomfortable, they may be so quick that they will not create a large impact when

integrated over time. With only brief albeit very hard collisions with the vertical travel limits

a very soft suspension that very frequently collides with the vertical travel limits may

predominate. On the other hand, if discomfort is measured as maximum jerk then

optimization will avoid any topping or bottoming at all, and the suspension that is optimal

will be very hard. The compromise between comfort and tracking is not a true unified

measure and the effect on optimization will almost certainly be skewed.

Most importantly, however, the premise behind the “unified” measure is entirely flawed; the

model is still unrealistic in that it assumes that real drivers attack large bumps at constant

speed. What seems like a more realistic model is highly unrealistic, in ways that make the

method unworkable.

In the real world, when drivers approach a section of road that is liable to cause rattlespace

collisions they will generally slow down. Real drivers are inconvenienced or frustrated by

suspensions that are likely to hit unnecessarily and violently against rattlespace travel limits,

and it is this inconvenience which is the major negative component of the tracking

performance.

117

Other factors affect slowdown, such as momentary changes in traction, especially when

accelerating, braking or cornering. Note that traction has little effect at constant straight-line

velocity. Unpredictable movements that may lead to loss of control in other ways, such as

rollover, also cause drivers to slow down. Furthermore, just the threat of severe jolts from

road bumps can cause a driver to slow down, even if the bumps are not large enough to

threaten rattlespace collisions.

Thus real drivers generally slow down when approaching large bumps, changing the road

height versus time profile encountered by the vehicle. The assumption of constant forward

vehicle speed in the model is unrealistic. Driver slowdown is likely to occur when the driver

judges either that the bump will produce an extreme and sudden change in suspension force

or, even worse, that an impact with a rattlespace limit is likely or imminent. Resonance with

the tyre over rutted roads can be complex, but generally it also produces slowdown.

This kind of driver behaviour can be directly observed at speed bumps. Drivers will usually

slow down when approaching a speed bump. Of course, this is the very purpose of speed

bumps. All previously discussed models of suspension systems do not model the driver’s

slowing down for large bumps, and in this sense the models are unrealistic.

Most speed bumps are roughly an inverted circular section in profile, producing an enormous

spike in jerk at the points of “slope discontinuity” (refer to section 4.3). Undoubtedly,

discomfort at sudden jerks on the chassis, as well as the potential mechanical damage they

threaten, are a contributing factor to driver slowdown. Nonetheless, whether in the form of a

deliberately designed speed bump or not, large bumps, and especially large bumps which

threaten rattlespace collision will certainly cause a careful driver to slow down.

Driver slowdown alters the road profile as a function of time, reducing the rate of change of

road height (and other derivatives of road height) in proportion to the vehicle’s forward

speed. A slower change in road height allows a suspension more time to avoid hitting

rattlespace limits, and it generally improves stability. The resulting change in road height

profile constitutes a considerable change to the model.

The less the driver needs to slow down for bumps the better is the suspension tracking, all

else being equal. If driver slowdown were included in the model, the goal of maintaining the

118

suspension within the rattlespace limits could be measured as the amount that the driver is

forced to slow down. Suppose the preferred speed of the car is V, but the actual speed with

driver slowdown is (which can be assumed to be lower than V). The tracking objective

function could then use a least squares measure taking into account forward velocity, as

shown in equation 3.8.

Equation 3.8

This measure assumes that the target speed for the vehicles forward velocity is V and that the

driver does not travel above this speed. The meaure of equation 3.8 therefore penalise the

amount that the driver has to slow down below the target speed V in order to maintain a

smooth ride. The less the driver has to slow down, the less the diver’s frustration at the

suspension’s inability to track the surface.

Can driver slowdown then be faithfully modelled and employed in computer optimization?

Different drivers attack speed bumps at different speeds, and some seem to have more regard

for the health of their vehicles than others. At first sight, modelling driver slowdown would

seem to require complex and extensive empirical psychological testing.

Nonetheless, it may be possible to produce a simple numerical model that reasonably

approximates driver slow-down behaviour. Suppose a model is altered to slow down

whenever the rattlespace limit is crossed (or even when instability or loss of traction arises).

It should be possible to develop an iterative algorithm that would slow down to just the point

that the suspension avoids hitting the rattlespace edges, or the forces or jerks generated reach

a given limit. Drivers learn by experience how to avoid hitting against suspension limits over

large bumps, and they develop a good instinctive knowledge of their vehicles, and it seems

likely that optimal slow-down behaviour will be approximated by a good driver who is

familiar with their vehicle. With this assumption it becomes possible to model at least some

aspects of driver slowdown. In fact, to help drivers to acquire a sense of the vehicle’s travel

limits it might be helpful if a warning light could be included in the dash to warn the driver

that they are travelling dangerously close to the rattlespace limits. The assumption that the

driver knows the limits of the vehicle could also be used to model slowdown as a means of

),(tv

.))((
0

2dttvVJ

T

R

119

avoiding large jerks to the chassis, by again using slowdown to limit jerk to a maximum

value.

Unfortunately, the use of this method requires a great deal of experimentation of its own.

Given that this thesis already deals in novel ways with jerk as a comfort measure, the author

decided to stay within the bounds of a relatively conservative movement away from standard

measures. What is more, the development of the method would have greatly delayed the

research. Thus driver slowdown is not included in the numerical experiments described

below.

Nonetheless, driver slowdown is extremely important theoretically. Most importantly, it

explains how the use of unrealistic models that incorporate travel beyond the rattlespace must

be balanced against the unreality of models that have only constant forward velosity.

It should be said in this context that any reasonably smooth suspension, no matter how high

performing, will collide with rattlespace limits if driven fast enough over a rough road. The

only way to completely eliminate rattlespace collision is to have an extremely stiff and

extremely uncomfortable suspension: virtually the equivalent of no suspension at all. Thus,

without driver slowdown, some high-performing suspensions will collide with vertical travel

limits. Without driver slowdown, some excursion beyond the rattlespace limits, with

performance penalties, will produce more realistic optimization results than simply including

models of excessive jolts against the travel limits.

While driver slowdown has not been modelled or used as a performance measure in this

thesis, it is needed in order to comprehensively describe the alternatives. It is needed as

theoretical background to explain the seeming contradictions described above, to provide a

theoretical background for the relative benefits of alternative tracking performance measures,

and to explain the compromise measure used in this thesis: a nonlinear measure with high

penalty for travel outside the rattlespace.

120

Modelling

Method

Main Advantage Main

Disadvantage

Forward

Speed

Optimization

RMS

suspension

travel

A large body of

proven experience
Travel within

suspension limits is

too heavily penalized

Constant Multi-objective

Penalize

travel

outside

rattlespace

Based on traditional

techniques – Allows

greater travel within

suspension travel

limits

Physically unrealistic

as the simulation

travels beyond the

vertical travel limits

Constant Multi-objective

Include

bump stop in

model

“Realistic” model.
Can simplify

objective function

Numerical instability

in optimization
Constant Can use

comfort as

single objective

function
Driver

slowdown
Most realistic Requires more

complex models of

drivers slowing down

Variable Multi-objective

Table 3 Summary of Possible Techniques for Measuring Tracking

Table 3 summarises the various alternatives for tracking performance measures that have

been alluded to in the above discussion. There are three ways of visualizing the tracking

performance:

1) Minimize displacement around the equilibrium by using various weighting

functions, including RMS and non-quadratic measures that severely penalize

travel outside the rattlespace.

2) Model the suspension hitting hard against bump stops at the vertical suspension

travel limits, and use comfort as the single performance measure.

3) Minimize frustration by the driver slowing down to avoid hitting hard against the

rattlespace limits and combine with a comfort measure.

Note that 1) covers the first two rows of the table, 2) corresponds with the third row, and 3)

covers the final row. The first row represents a special case of the second, but it is included

because of its special place in engineering practice.

RMS or least squares measures produce tractable solutions for both LQR control and for least

square estimators, when applied to linear systems. And they have a proven track record. They

121

have proven successful in LQR systems and least square estimators. These measures employ

a penalty in proportion to the square of the difference.

“Nonlinear” penalties (more properly non-quadratic measures) can also be used. Thus

suspension travel very close to or beyond the rattlespace could be penalized very heavily,

while travel within say the middle third of the rattlespace might not be penalized at all. As

explained above, a nonlinear penalty that heavily penalises travel outside the rattlespace can

be readily adapted for numerical techniques, as used here.

The method of modelling bump stop collisions, option 2) above, can seem at first attractive.

Tracking is penalized by the discomfort of hitting hard against the vertical travel limits, and

providing one combined measure for both comfort and tracking. With such a model a

“rattlespace collision” is a very hard collision with a very stiff bump stop at one end of the

rattlespace. There is a “collision” but there is not an “intersection” with the rattlespace: the

chassis does not smash through the ends of the suspension travel, destroying the suspension.

This method seems more realistic, and it also seems to offer the possibility of a more elegant,

“unified” measure of comfort and tracking.

Ultimately however, the logic that the model is more realistic is fundamentally flawed

because of driver slowdown. It is not necessary to perform the delicate balancing act of

measuring the discomfort of such rattlespace collisions because they rarely occur in the real

world, and the method would seem to produce more instability in optimisation than a method

that merely penalises travel near the vertical suspension travel limits. It is a reasonable

assumption that a careful driver will usually avoid discomfort and vehicle damage by slowing

down for large bumps. (Collisions with the rattlespace limits do occur, but they are the

exception that proves the rule.)

Models of collisions with stiff bump stops are just as unrealistic as models in which the

chassis travels outside the rattlespace, because of driver slowdown. The modelling of severe

bump stop collisions is ultimately unrealistic, except perhaps for reckless driving or driving

in emergencies.

HMMWV experimentation employed a measure very like the combined measure anticipated

here (Donahue, 2001): the Cumulative Absorbed Power (see section 2.9.3). For a military

122

vehicle travelling quickly over rough terrain, where comfort is very much secondary; the

Cumulative Absorbed Power measure has some justification. For delicate optimization

processes for passenger vehicles balancing comfort with tracking, the measure is

inappropriate. The “unified” measure is unrealistic and will be biased towards either very soft

or very rough suspensions, depending on the discomfort caused by large jolts over very short

periods of time. In the end, if realistic bump stops are to be included in the model, then

realistic models of driver slowdown are also necessary.

The nonlinear, non-quadratic performance measure for suspension stroke using equation 3.7

was used as the tracking performance measure for this thesis. It represents a compromise. It

departs minimally from proven engineering tradition. As a compromise for the lack of a

model of driver slowdown, it allows travel outside these limits. The measure did not produce

noticeable artefacts or instability in the optimization process. Driver slow-down may be

superior theoretically, but the method remains unproven and may have its own artefacts or

instabilities depending on how driver slowdown is modelled. However, a more cautious

approach was used in this thesis. Given that the use of jerk as a comfort measure is somewhat

nonstandard (although it becoming more widely used), and given the extra experimentation

needed fror modelling slowdown, the tracking measure used in this thesis simply applied a

minor variation on the quadratic measure by heavily penalizing travel outside the rattlespace:

the second row in table 3. In optimization this has the effects of finding the most comfortable

method possible that at least heavily penalizes travel time spent outside the rattlespace.

123

4. Suspension Control

It is not an objective of this Chapter to present the complete overview of suspension control

theory. The focus will be only on the areas relevant to the scope of this research, particularly

the theory applied in experiments (numerical or physical) and especially those aspects of

theory which are original in this thesis. Many elements of suspension control theory have

been covered in the literature review (see chapter 2), and the corresponding sections of the

literature review will be referred to as needed.

(Various pieces of Java computer program code have been developed using the Eclipse

development environment which is freely available on the web. The workspace used is

PhD\Eclipse RSpace Constraint\Edge Overshoot

in the PhD directory. In Eclipse, press File|Switch Workspace and browse to find the

workspace.) A number of demonstration programs are included in this code. The

ExampleFileFilter class has been copyrighted by Sun (refer to code for details). All remaining

code here has been written by this author, including all the graphing software in the

FunctionGraph package, and code for maintaining persistent parameters using text fields and

sliders in the SliderGroupControl package.

Note that the SuspensionTest program is not run in Eclipse (for reasons that are made

apparent in chapter 5). This program was developed using a text editor and it was compiled

and run using instructions issued by hand in a command or “DOS window”. This code is

explained in detail in chapter 5.

In many of the examples in this section, for instance in figure 4.1 and figure 4.2, dimensions

of length are not indicated. Meters or feet, or any desired dimensions could be used. This is

often the practice in the literature when discussing control theory, as opposed to actual

experimental results. On the other hand, seconds are assumed for the time dimension unless

otherwise stated. This is simply for convenience.

124

4.1. Introduction

Knothe and Bohm refer to experiments performed in 1931 into vibrations in steering systems

(1999, p311) as well as many experiments in the 1950s and 60s into railway and road vehicle

suspension stability. Very early theoretical investigations into road vehicle suspension

systems were also carried out by aeronautical engineers (Knothe and Bohm, 1999, p305). Of

course, racing car suspension development too has had an enormous impact on road vehicle

suspension theory (Milliken and Milliken, 1995).

As discussed in section 2.10, active suspensions can potentially produce any force desired

and so are much more flexible than traditional passive controls. This great flexibility creates

new problems not observed in passive suspensions. Indeed force discontinuities can be

observed in the Crosby and Karnopp’s model of the “active damper” control (1973) as shown

in figure 4.1 (Crosby and Karnopp, 1973, p125).

Figure 4.1 Force Discontinuities in the “Active Damper” (Crosby and Karnopp, 1973, p125)

In 1978, Smith et al. published the results of a quite extensive study of performance indexes

of riding comfort involving 18 roads and 78 passengers (1978). Smith et al. recommended

RMS acceleration of chassis movements as a predictor of ride comfort. In 1988, Redfield and

Karnopp analysed suspension performance using three separate indexes, producing what

today would be recognized as a form of Pareto optimisation (1988). In their analysis,

125

acceleration was used as the performance measure of comfort, and indeed is still the most

applied measure of passenger comfort.

Despite the distinguished pedigree of RMS acceleration, for reasons argued earlier in this

thesis, especially in section 3.1, acceleration alone is not a viable measure of passenger

comfort. In earlier times, when all suspension systems were passive, suspension force

discontinuities resulted mainly from road surface discontinuities. Passive suspensions do not

generally generate sudden force changes whereas active controls can produce any desired

force at any time, and semi-active systems can suddenly change damper stiffness at high

stroke velocity. Indeed, such sudden force changes have been observed in both numerical and

physical experiments into both active and semi-active suspensions (Ivers and Miller, 1991;

McLellan, 1998; Crosby and Karnopp, 1973; Ahmadian et al., 2004).

Section 3.1 covers the reasons in detail that jerk is used in the experiments here as the

measure of comfort. Note that if jerk is kept low then, necessarily, so is acceleration, but low

accelerations can be accompanied by very high jerks, as demonstrated in section 3.1.

With the advent of active and semi-active control comes the possibility of the use of a wide

variety of controls, and a large number of basic control methods have received at least some

attention in the literature. This includes methods based on the linear quadratic resonator,

sliding-mode control and skyhook control, all discussed in the literature review in chapter 2.

As explained below, the LQR control is widely used. The linear “skyhook” and a number of

variations that are referred to as “skyhook” controls are also widely used (Karnopp, 1995;

Burton, 1993; Paddison et al., 1994; Reichert, 1997; Elbeheiry and Karnopp, 1996; McLellan,

1998; Wagner and Liu, 2000; Goncalves and Ahmadian, 2002; Ahmadian et al., 2004;

Donahue, 2001; Song et al., 2003; Song and Ahmadian, 2004; Stembridge et al., 2006; Li et

al., 2004; Williams and Best, 1994; Hyvärinen, 2004; Krüger, 2002; Caponetto et al., 2003;

Guglielmino et al., 2008, p70). The term “skyhook control” has become quite broad, covering

almost any control that uses absolute chassis height or chassis height velocity as a control

parameter. (In this thesis, in order to clarify the distinction, the term “linear skyhook” is used

to describe the linear skyhook with a linear “virtual” damper attached to the “sky” as

described in section 2.4.)

126

It should be noted that the linear skyhook is not provably optimal in any sense although it has

very pleasing transmissibility, as shown in section 2.4, and the “damper” can be shown to

absorb chassis kinetic energy (in the vertical direction) at all times as discussed below in

section 4.2.

The LQR is a popular basis for control which is truly optimal, but it is optimal for a very

specific performance measure: quadratic measure (or nearly equivalently, RMS measure).

Above (in section 2.3.1) the single DOF control has been optimized for RMS displacement

and velocity, producing a linear control, with a damping coefficient of approximately 0.7,

which is much greater than actual damping rates used in practice in modern vehicles of about

0.25 (Milliken and Milliken, 1995). In section 4.5.1 below, the LQR control is adapted to the

minimisation of jerk to produce a linear control over jerk.

Only a very limited range of highly idealized physical problems are truly optimized by

analytical, mathematical techniques. For example, as discussed in section 2.3.1, it is stated

that “the Linear Quadratic Regulator (LQR) has been used as one of the main control

techniques for dealing with active suspension design” (Camino et al., 1999, p3168). The LQR

technique addresses the problem of optimizing a quadratic performance for a linear system.

But real-world systems are not linear. Furthermore, quadratic performance measures may be

convenient, and they may have a respectable pedigree, but this is no guarantee that they

represent the “true” performance goal.

For any given real-world problem, it should be asked if the idealized solution to the idealized

problem is sufficient for the task at hand. Analytical optimisation techniques are important

and useful, but they only work for a very small set of idealised optimised criteria. As

MacCluer nicely demonstrates, optimisation using different performance costs can produce

wildly different controls, and he concludes that,

“The application of optimal control to practical problems is an art, requiring the

practitioner to perform many analytic and numerical iterations to reach an acceptable (but

often not optimal) solution to the original problem.” (2005, p113)

When more flexible numerical techniques become available it is possible to employ more

flexible models and more realistic performance measures, even though these do not admit of

a neat mathematical solution.

127

As discussed above in chapter 3 the performance criteria used throughout the experiments

here are relatively non-standard. While quite a few researchers have used jerk as a

performance goal of one form or another (Hrovat and Hubbard, 1981; Hrovat and Hubbard,

1987; Paddison et al., 1994; Hashiyama et al., 1995; Ahmadian and Vahdati, 2003; Ahmadian

et al., 2004; Ahmadian and Vahdati, 2006; Yamakado and Abe, 2006) acceleration is still

preferred as a measure of ride comfort. Furthermore, to the best of this author’s knowledge

there have been no researchers into suspension who have looked at the rattlespace as a

constraint, as done below in section 4.7, or who have even used nonlinear performance

measures of vertical travel dependent on vertical suspension travel limits.

Over recent decades, computational capacity has increased enormously and various

techniques have arisen for performing large-scale numerical analyses to attempt to improve

the performance of engineered systems: fuzzy logic, neural networks, various forms of

evolutionary algorithms and others. These techniques are proving immensely useful to the art

of engineering design.

In this paper numerical techniques are being applied only to first-order suspension controls,

to circumvent the inadequacies of analytical techniques. Evolutionary algorithms in particular

are used to compare the performance of very simple, first-order suspension controls. It is

important to stress the difference between this and the application of computing power to

develop a specific engineering design. In industrial use, the engineer typically produces a

very detailed model in an attempt to iteratively improve a detailed design. This is known as

“virtual prototyping” (Hyvärinen, 2004, p45) and it is extremely important for modern

research and development.

Here, however, numerical techniques are simply used to compare the effectiveness of various

high-level first-order algorithms such as linear controls, virtual bump stops, skyhook controls,

various controls over jerk and an entirely new kind of control here termed rattlespace

constraint controls. Another reason for a first-order investigation is that performance

measures are to some extent the focus of this thesis. Jerk is used as a comfort measure while

the majority of researchers are using acceleration, and this thesis also uses a nonlinear

measure for suspension tracking which has never been applied before.

128

The use of flexible controls, including controls over jerk, is made possible by the fact that

electronic controls can switch quickly between different levels of force, and yet such force

discontinuities are not penalised by the more often used RMS acceleration measure of

comfort, as discussed in section 3.1. There are also a number of reasons why electronic

controls may be prone to such extreme jerkiness (discussed in section 3.1) compared to

passive suspension systems.

Numerical techniques open up the possibility of testing a much broader range of control

algorithms. Instead of finding an analytical optimum, the numerical method finds a

suboptimal value. This is done while running the simulations over stochastic input (random

road surfaces) and any desired performance criteria can be applied. The numerical method is

not restricted to a very limited range of tractable idealistic problems that cope very badly with

stochastic input.

In this thesis the use of fuzzy sets has not been included. While fuzzy sets have been widely

used in the context of optimization with EAs, experiments with simple linear sets in one

dimension revealed little beyond the tendency of a property to strengthen or weaken with the

independent parameter. A simpler way to judge such changes is to use a simple sigmoid

function, as explained below in section 4.5.2.1. Sigmoid functions evolve much more quickly

than fuzzy functions. Furthermore, the approach of using fuzzy sets is extremely general.

“Setting the performance index is the only procedure for the designer of the controllers”

(Hashiyama et al., 1995, p166). Fuzzy sets are so general that they can hide the details of how

they work. It was felt that in this thesis, which aims at a theoretical understanding, the

contribution of fuzzy sets is questionable.

There are two small subsections at the beginning of this chapter, sections 4.2 and 4.3 that deal

briefly with a couple of particular matters needing qualification and clarification. The first is

energy dissipation in the semi-active suspension. It has been claimed that “since the

semiactive damper does not add any energy into the system, the system is stable” (Song et al.,

2003, p227) but it is shown in section 4.2 that this notion at least needs qualification. These

qualifications, to the best of this author’s knowledge are original. Section 4.3 deals with

discontinuities in road surfaces, in particular sections of road where road height or road slope

changes suddenly. Some simple observations regarding a suspension’s response to such

surfaces provide useful insights, for the engineer, into the differences between various

129

suspension controls and these are noteworthy enough to be included in this thesis. The work

of that section is entirely original.

The sections following section 4.3 deal in more detail with the controls used in numerical or

physical experiments (not all controls used in the numerical experiments were applied to the

physical test rig). These sections deal with a variety of algorithms that can be used wholly, or

in part, in a suspension control system.

The controls advanced in this chapter come from a variety of sources. Some are derived

directly from linear theory, while others are simple heuristics that derive from modifications

of linear controls. This includes “virtual bump stops” that “stiffen” the suspension when it is

approaching the limits of the suspension travel. The use of virtual bump stops and some of

the other modifications are original, as far as the author is aware.

A new category of controls, entirely this author’s original work, called “rattlespace

constraint” controls are introduced here in section 4.7. A search has not revealed any controls

of this type in the literature. These controls look at the suspension tracking problem as one of

constraint (refer to figure 4.17 below). It seems almost trivial to say that a suspension is

constrained within the rattlespace, and that it should be free to move smoothly within this

constraint, and yet the suspension system problem is never presented this way in the

literature.

The simplest idealised mathematical form of the rattlespace constraint problem that would be

a constraint problem:

Maximise ride smoothness (comfort),

where suspension stroke, s, is constrained by the rattlespace,

 ,Rs

and R is defined as half the width of the rattlespace.

The use of half the width of the rattlespace is mathematically convenient because of

symmetry but it contains a hidden assumption: that the equilibrium position of the suspension

will be in the centre of the rattlespace. This cannot of course be assumed and in fact, the

130

equilibrium position of a fully loaded vehicle will generally be different from an unloaded

one. This matter is discussed below in the Further Investigations, in section 7.5.

Rattlespace constraint controls address this problem directly by targeting the ends of the

rattlespace and remaining within it. It is worth repeating that, “the application of optimal

control to practical problems is an art” (MacCluer, 2005, p113), and it is important not to

naively leap to the conclusion that idealized solutions to this or any other mathematical

problem will immediately be practical. Experiments, as always, are required. However, this

method is quite intuitive and the techniques developed in this chapter should at least form a

solid base for possible further investigation.

Some techniques used below are derived from the consideration of the minimum-time

problem, discussed in the literature review in section 2.3.2.3. As discussed there, minimum-

time problems are generally resolved using Pontryagin’s Principle (MacCluer, 2005; Smith,

1998; Hermes and LaSalle, 1969; Kirk, 1970). To the best of this author’s knowledge,

minimum-time controls have never in any form been proposed before for suspension control

and the work here is entirely original. Minimum-time control over acceleration is a popular

text-book example of control as discussed in the literature review (section 2.3.2.3) but it

would be extremely uncomfortable if applied to suspension control. The minimum-time

control over jerk, on the other hand, is very subtle. The minimum-time control with a given

initial displacement and zero velocity and acceleration is quite simple, but finding the control

with any initial displacement, velocity and acceleration proved quite elusive. The author

spent some time searching for this control. Finding the control conclusively and the proof of

the control occurred almost simultaneously.

The optimality of this control is proved by a relatively simple extension of the mathematical

proof of the minimum-time control over acceleration as found in MacCluer (2005). This

proof is given below in section 4.6. A search uncovered experiments using minimum-time

control for application to the movement of industrial robot arms by Koh et al. (1999) and

similar experiments by others applied in robotics (Macfarlane and Croft, 2003; Ben-Itzhak

and Karniel, 2008), however, the proof given below has not been presented before to the best

of this author’s knowledge and neither has the alternative method given in the appendix,

section 8.7, based on a slightly different but equivalent approach from Hermes and LaSalle

(1969).

131

In the development of some algorithms for rattlespace constraint controls, there arose a need

for a continuous control over jerk which could smoothly reach equilibrium without overshoot

(refer to figure 4.2). An algorithm has been found to achieve this with a continuous

acceleration, using constrained jerk. Furthermore, an iterative algorithm has been found to

achieve this. This method could have independent interest in other applications. All this is

original work to the best of this author’s knowledge.

Figure 4.2 Achieving Rest – Left: with Overshoot, Right: without Overshoot

A theory and a method were developed for removing jerk (force discontinuity) from a semi-

active suspension (see section 4.8). Semi-active suspensions are prone to force discontinuities

when they attempt to follow a given active control, because of the passivity constraint, as

explained below. This work follows from the work of Ahmadian et al. who developed a

global control for the removal of jerk (2004). In papers written in the course of this thesis,

methods have been proposed for locally dealing with the passivity constraint (Storey et al.,

2006; Storey et al., 2008), and the discussion of section 4.8 represents a maturation of this

approach. This work, insofar as it diverges from the method of Ahmadian et al. is unique.

132

4.2. Energy Dissipation in Semi-Active Suspensions

In introducing active and semi-active systems, many researchers will often make statements

about the relationship between energy dissipation and a suspension’s stability. This brief

section takes a careful look at energy dissipation in the semi-active suspension.

While the worst responses of linear systems are generally due to resonance, a nonlinear

system might exhibit aberrant or dangerous behaviour for unknown reasons. Active systems

thus may have “inherent stability problems” (Elbeheiry and Karnopp, 1996, p548). During

development, they may exhibit idiosyncratic side effects, such as the effect observed by

Williams and Best in which their oleo-pneumatic active system maintained movement with

no disturbance; the “open loop roll response proved to be quite interesting, as both measured

and theoretical results show resonances at 3.5 Hz and 4.5 Hz when the vehicle is stationary”

(1994, p342).

Semi-active systems however are often regarded as inherently stable; “since the semiactive

damper does not add any energy into the system, the system is stable” (Song et al., 2003,

p227). Dyke et al. claim that, “according to presently accepted definitions, a semi-active

control device is one which cannot input energy into the controlled system” (1996, p565). It

is also claimed that “semiactive dampers do not add any energy to the system – they only

dissipate energy (the same as a passive damper)” (Ahmadian and Simon, 2002, p123).

Such statements can be misleading and at least need qualification. Under some conditions the

semi-active damper can add to the kinetic energy of a vehicle’s vertical motion. This is true

too of a passive system, but an extremely bad semi-active suspension control could

conceivably perform much worse than the passive, as explained below.

A simple analysis of the energy dissipation in a linear system is sufficient to show this. The

energy comprises principally of gravitational potential energy, chassis kinetic energy and

spring potential energy,

Equation 4.1

.2

2
12

2
1 ksymmgrE

133

(Refer to section 2.2 for a description of the variables used. The kinetic energy of the forward

motion of the vehicle is ignored here as this is assumed constant.)

Power is derived by differentiating this equation with respect to time. After inserting the

formula for acceleration (equation 2.1) the power is given as,

yscysksrmg

m

kssc
ymsksrmg

yymsksrmgEP

)(

Equation 4.2

The damping rate is positive, ,0c and so the term involving the damping rate, ,ysc

contributes to energy absorption only when the stroke velocity and the chassis velocity are in

the same direction,

 .0ys

Equation 4.3

However, when they are in opposite directions, as will occur periodically over rough terrain,

the damper in a passive system actually contributes energy to the system. It seems

counterintuitive that a dissipative element is actually increasing system energy, but because

the damper is not tethered to a stationary point, there are conditions under which the damper

force increases the chassis velocity. When the damping force, ,sc acts in the same direction

as the chassis vertical velocity, ,y the damper actually pulls the chassis with it, thus

increasing the kinetic energy of the chassis.

In fact a semi-active system could be deliberately designed to switch the damper on during

only these periods, making it much more dangerous than a conventional passive system.

Roughly speaking, a deliberately very badly designed semi-active suspension could be made

to “ratchet kinetic energy upwards”, as the suspension uses road disturbances to increase the

energy in the system. Such a system would hardly be a candidate for a viable suspension

control and this is an artificial scenario, but the very possibility is a counter example

disproving the claim that semi-active systems act only to dissipate energy in the system. Of

134

course, as a broad rule of thumb any reasonably viable semi-active system will almost

certainly be safer even than the passive. The point is that the damper in a semi-active system

can add energy to the system, and energy absorption cannot be said to be an inherent physical

property of semi-active systems. In fact, as a general principle, it is misleading to say that

untethered dampers are “dissipative”.

The calculation shown above can be made much simpler. The power absorption of the

damper could be more readily calculated using the simple formula of force times velocity

(Meirovitch, 1985, p78),

.ysc

yFP d

In this expression, damper power is sometimes positive as explained above, putting energy

into the system. Nonetheless, the slightly more comprehensive analysis is perhaps justified

given the often made assumption that the damper is entirely dissipative.

Energy dissipation has been used specifically as a key component of suspension design logic

by Johnson and Erkus. “If the dissipativity constraint can be imposed in the design of the

primary controller, it will produce predominantly dissipative forces, making semiactive

systems more efficient. As a result, semiactive control strategies will be applicable for a

wider range of problems.” (2002, p2463). This is perhaps a promising line of enquiring for

suspensions in which energy dissipation is a much greater priority than comfort, as in seismic

applications, but their approach has not yet directly produced any noteworthy consequences

for vehicle suspensions.

The purely linear, active skyhook has interesting energy absorption properties. In the skyhook

suspension the damper’s force is proportional to chassis height velocity, and the force acting

on the chassis is,

Thus the acceleration of the chassis is,

Performing a similar differentiation to the one in equation 4.2 the equation for power in a

skyhook system is found to be,

.ycksF

.
m

y c ks
y

135

 .)(2ycrksmgEP

Thus the skyhook has the pleasing property that the damper always acts to decrease energy in

the system, since the term involving the damping rate is always negative,

This should not be interpreted to mean, however, that the skyhook is therefore optimal in

absorbing energy, as discussed in the following paragraph. The pure skyhook is a virtual

control, and the “virtual spring” (see section 2.7) produces power in some parts of the

suspension’s swing. Nonetheless, this may be another factor which helps to explain the

enduring qualities of the skyhook algorithm.

The on-off skyhook control (Ahmadian et al., 2004, p4; Hashiyama et al., 1995, p168;

Savaresi et al., 2003, p2265; Simon and Ahmadian, 2001; McLellan, 1998; Guglielmino et

al., 2008, p70) given by equation 2.10, is the optimal control for removing vertical kinetic

energy from a semi-active suspension when the spring is the actual spring, because it turns

the damper off in precisely the condition that it would otherwise contribute energy to the

chassis, when equation 4.3 does not hold, and it is full on otherwise. It uses the damper to

absorb power at its maximum possible rate. The problem is that the control is very jerky and

highly uncomfortable (as discussed in section 2.7). Nonetheless, it may form the foundation

for the control of a seismic suspension under extreme conditions where energy absorption is

the primary goal.

4.3. Road Discontinuity

When a passive suspension traverses a step discontinuity in the road surface, as in figure 4.3,

it produces an extremely high force for a very brief period of time. In the “step discontinuity”

on the left in figure 4.3 the spring experiences a sudden change in force, and an

accompanying high jerk. The damper force also has an extremely high spike in force.

Of course, a discontinuity is a mathematical abstraction; road surfaces are not truly

discontinuous. In reality, an infinitesimal spike, or more technically a Dirac delta function

(Meirovitch, 1985), is approximated by a large but finite spike. Nonetheless, even quite small

.2yc

136

bumps that approximate a discontinuity produce great discomfort in road vehicles, easily

verified in the average passenger car. Despite the mathematical artefacts, the theoretical

response of a suspension control to such “discontinuities” is highly revealing and is worthy of

a brief discussion.

Figure 4.3 Left: Step Discontinuity – Right: Slope Discontinuity

In a purely linear passive suspension the spring does not experience a sudden change in force

when traversing a discontinuity in road slope, as in the diagram on the right in figure 4.3, but

the damper does. The damper produces a sudden change in acceleration due to the sudden

change in extension velocity. Again, the damper contributes most to the worst part of the

suspension response. Perhaps this is another reason that practical passive suspensions have

such a low damping ratio (as discussed in section 2.3.1). Certainly, this helps to explain why

the skyhook may be superior to the passive suspension.

Note again that the RMS acceleration measure of ride discomfort is unaffected by a force

discontinuity between two moderate forces, as explained in section 3.1, and yet abrupt force

changes are demonstrably uncomfortable. On the other hand, a jerk measure reveals the

problem. The sudden change between two moderate acceleration values produces a “spike” in

jerk which is read by a discomfort measure employing jerk.

In contrast to the passive suspension, the damper of the purely linear skyhook suspension

does not experience a jerk spike over a slope discontinuity (because the skyhook damper

responds to chassis movement and not stroke). The skyhook’s damper does not produce

either a spike in either acceleration or jerk over either the step or slope discontinuities.

Table 4 summarises the responses in terms of acceleration discontinuity (jerk spike). The

passive suspension has a discontinuous force over both a step discontinuity and a slope

discontinuity (due to the damper) while a skyhook suspension produces a continuous force

137

traversing a slope discontinuity. The skyhook does not cause great discomfort over the slope

discontinuity.

In this way, a first-order characterization of suspension systems can be developed that

depends on whether discontinuous forces are produced by road discontinuities. The

FlatLinearJerk01 control, which is a linear control over jerk, is an example of a control that

theoretically has a continuous force response over both kinds of road disturbances.

Discontinuity Type Passive Skyhook FlatLinearJerk01

Step Discontinuity Discontinuous Discontinuous Continuous

Slope Discontinuity Discontinuous Continuous Continuous

Table 4 Acceleration Continuity for Various Suspensions

This may help to explain the superiority of some controls, but it also points out another very

important factor for electronically controlled suspension: latency. Electronic control is

capable of a smooth force response even with road discontinuities, but the control must be

able to respond very quickly. On real road surfaces, if an approximation to a discontinuity

occurs over a greater period of time than the response time of the system there can be a

noticeable improvement in response in comparison to passive systems.

This section has investigated a very simple non-numeric categorization for comparing

suspension control algorithms. For one thing, it clearly indicates one advantage of the

skyhook control over the passive. This is only a first-order characterization, but it is revealing

in ways which more complex analyses may not be. This analysis should not be seen as a

replacement for transmissibility and more technical analyses, but simply as an intuitive aid

for the designer.

4.4. Overview of Experimental Controls

The numerical and physical experiments in the following chapters will compare a variety of

suspension control algorithms. These experiments employ the performance measures

discussed in section 3 to test the suspension performance, specifically the performance

138

measures of equation 3.3, equation 3.6 and equation 3.7. The remainder of this chapter

explains the theory behind the various control algorithms used in the experiments.

In retrospect there appears to be a rough correspondence between three broad categories of

control strategies discussed here and analytical solutions to three ideal optimization problems.

Linear controls derive from LQ optimization, sliding-mode controls relate to minimum-time

problems, and rattlespace constraint controls derive from problems of constrained suspension

travel. This theoretical correlation however was not the origin of the division, rather the

categories were chosen because they seemed to correspond to different design approaches.

There is also a control method developed in this chapter for reducing what is here called

“crossover jerk”. This is the sudden jerk that is caused when a semi-active control is clipped

by the physical limit of the passivity constraint (Yi and Song, 1999, p147; Giorgetti et al.,

2006; Sergio M. Savaresi et al., 2003, p2264; Jalili, 2002, p600; Yokoyama et al., 2001;

Hyvärinen, 2004, pp31-2). The passivity constraint has been discussed in section 2.6. The

methods developed in this chapter are “local”. That is, they attempt to reduce crossover jerk

when crossover is imminent, leaving the control open at other times for some high-

performance control. Previous attempts to reduce or remove crossover jerk have applied

“globally”, at all times (Reichert, 1997, p63; Ahmadian et al., 2004; Ahmadian and Vahdati,

2006). Thus while controls to remove crossover jerk are not a separate category, they can be

applied to a semi-active system in combination with any other control, allowing high-

performance active controls to be applied to a semi-active system without too great an impact

from crossover jerk. This matter is discussed below in section 4.8.3.

A slight ambiguity can result over the use of the term “variable” in the context of

evolutionary algorithms. EAs have been used to test a large number of suspensions of the one

type with different properties. To give a simple example, a large number of passive

suspensions with different spring rates and damper rates will be run in simulation. There are a

lot of different passive suspensions tested with different spring rates. The spring rate for any

one suspension is constant, but the spring rate varies between instances of passive

suspensions. A passive suspension’s spring rate is constant and not “variable” for any given

suspension instance, but it does “vary” between suspensions. In the context of this thesis the

term “parameter” or “suspension parameter” will tend to be reserved for properties, like the

spring rate, which are constant from one suspension instance to another. The term “variable”

139

can be safely applied to those properties that vary over time for even one particular

suspension instance, such as vertical chassis height, chassis velocity, or road height. It is the

parameter values which may be subject to evolutionary change.

The basic method with almost all suspensions discussed in this thesis, is to iteratively

calculate a value for the acceleration (or jerk) to be applied at any instant. In the cases of a

semi-active system the damper stiffness is calculated based on desired damping force.

Evolutionary algorithms can be applied to set the suspension parameters to potentially

produce at least a robust suboptimal performance.

4.5. Closed-Loop Controls

A “feedback control” is one that produces output by comparing a desired reference input

against a feedback signal (Meirovitch, 1985, p302). Generally the control will become

“harder” or “stiffer” as it moves “further” from equilibrium. Suspension stiffness has

generally referred to force, and so for instance the damper in a passive suspension will tend to

supply a larger force with larger extension velocity. In this thesis however, jerk as well as

force can be controlled using feedback. These are also referred to as “closed-loop controls” or

“feedback controls” as they are often modelled in block diagrams with closed loops (Dorf and

Bishop, 2005, p193).

4.5.1. Linear Feedback Control

The LQR technique applied to the problem of minimizing quadratic acceleration, with

weighted quadratic displacement, yields the controls of equation 2.5 in section 2.3.1. In a

similar way, it is possible to develop an optimal control over the third rate of change of

distance (jerk),

 .yu

where the cost functional now takes the form,

140

0 0

22TT . dtyyRuuQxxJ

The equations of motion in matrix form are,

 .

1

0

0

000

100

010

u

y

y

u

y

y

y

BuAx

y

y

y

dt

d
x

The cost functional takes the form,

0 0

222

0

TT .

000

000

00

dtyydtu

y

y

y

yyyRuuQxxJ

Solving the time invariant Riccati equation (MacCluer, 2005) as shown in more detail in

section 8.2, produces the linear control,

Equation 4.4

The expression has been simplified slightly by using

Equivalently, using Euler-Lagrange equations (MacCluer, 2005; Smith, 1998) this problem

can readily be solved directly. The problem is to minimize,

0 0

22 ,),,,,(dtyyyytfdtyyJ

where,

 .22 yyf

Solving this requires the form of the Euler-Lagrange equation that deals with second- and

third-order derivatives. The Euler-Lagrange equation becomes,

 .022)6(

3

3

2

2

yy

y

f

dt

d

y

f

dt

d

y

f

dt

d

y

f

Solving this directly produces the same linear control as represented in equation 4.4.

 .22 22 2363 yyy

y

y

y

u

.6

141

Since a critically-damped suspension in the second-order linear system occurs when the

characteristic equation has multiple roots, the natural analogy in the third-order case is one in

which the characteristic equation is a pure cubic,

Equation 4.5

A “critically damped” control over jerk will have coefficients in the ratios shown in equation

4.5 whereas an LQ control will have coefficients in the ratios given in equation 4.4. The LQ

optimal control is somewhat “underdamped” in the sense that the coefficients of speed and

acceleration are lower, given the same coefficient of distance, which is similar to what was

found for the second-order case. In the example shown in figure 4.4 the system swings back

beyond zero in the manner characteristic of an underdamped system (dependent on initial

conditions).

Figure 4.4 Example of an Optimum Trajectory using LQR

LQR controls are optimized only with respect to the quadratic performance measure. Again,

the simple fact should be stressed that they will almost certainly not be optimal using non-

quadratic performance measures. When using linear control in evolutionary algorithms the

linear coefficients can be determined purely by the evolutionary process itself, without appeal

to the LQR, critical damping or any other theoretical derivation of parameters. The

completely general version of the second-order linear control represented by equation 2.5

then becomes,

.33 23 yyyy

.21 ssyu

142

This is a passive system of indeterminate stiffness, where
1 and

2 represent the spring rate

and damping rate respectively. During evolution, the spring and damper are slowly altered

until an acceptable sub-optimal value is found (sub-optimal in the sense that the numerical

method cannot guarantee optimality, as discussed in section 2.12). However, given that this

suspension has only two parameters, the optimization process should be extremely efficient.

Indeed, if other, more complex suspension controls outperform the passive suspension in the

same environment, then they are certainly deserving of attention, even if the results are

suboptimal. Thus the passive system makes a very good benchmark against which to compare

other controls.

As shown in section 2.4, the passive suspension only responds to stroke properties, s and

while the skyhook responds to the velocity of chassis height (the “sky”), :y

Like the passive suspension, this has only two parameters and is a second good benchmark in

experiments. It is also well represented in the literature (Karnopp, 1995; Burton, 1993;

Paddison et al., 1994; Reichert, 1997; Elbeheiry and Karnopp, 1996; McLellan, 1998;

Wagner and Liu, 2000; Goncalves and Ahmadian, 2002; Ahmadian et al., 2004; Donahue,

2001; Song et al., 2003; Song and Ahmadian, 2004; Stembridge et al., 2006; Li et al., 2004;

Williams and Best, 1994; Hyvärinen, 2004; Krüger, 2002; Caponetto et al., 2003;

Guglielmino et al., 2008, p70).

The superior transmissibility of the skyhook compared to the passive suspension has been

discussed by Reichart (1997) as explained in detail in section 2.4, but evolutionary algorithms

can be used to determine a suboptimal mix of linear parameters for the stroke and chassis

height, and as well as their derivatives, and A numerical approach then is to

employ general linear coefficients,

Equation 4.6

where all coefficients, are simply determined by an evolutionary algorithm. Note the

inclusion of chassis height parameters, ,y and ,y as well as the passive linear parameters, ,s

and .s If evolution favours a “skyhook-like” control, then it could be expected that EAs

would produce relatively small values for the parameters
1 and .2

,s

.ycksyu

s ,y s .y

.4321 ssyyyu

,i

143

In the same way that equation 2.5 has been generalised to equation 4.6, so equation 4.4 can

be expanded to a general linear control over jerk,

Equation 4.7

Again, all the coefficients are determined by evolutionary algorithms, but here the resulting

control is applied to control over jerk.

Note that the LQ problem using the cost function over a finite time,

T T

dtyyRuuQxxJ
0 0

22TT ,

can also be solved to give feedback control, but with variable gains as in the case of the

analogous problem with control over acceleration, as described in section 2.3.1. Using

Pontryagin’s theorem it can be shown that the control solution is a quadratic control function

of time, rather than a linear function as in the case of control over acceleration (refer to

appendix 8.6).

4.5.2. Nonlinear Feedback Control

Even though suspensions of production cars are based on linear models they are far from

being truly linear. Production shock absorbers (dampers) are designed to have two different

rates, under bump and rebound, as outlined in section 2.2.2. Sometimes variable-rate springs

are used, generally as after-market add-ons, and rubber or polyurethane bump stops also

contribute to suspension nonlinearity. The nonlinear feedback controls discussed in this

section vary “stiffness” rates in a nonlinear way. Thus instead of multiplying by a parameter,

as in equation 4.6, stiffness will be a nonlinear function.

In this thesis nonlinear functions of a single variable will be used, which can be summed

together as represented in general form in equation 4.8 below:

),(),(),(),(4321 sssssysyyu

Equation 4.8

,y

.654321 sssyyyyu

144

The functions are not necessarily linear. It could be expected, for instance, that the

suspension may become stiffer with increasing travel away from equilibrium, especially as

the suspension approaches the rattlespace limits. Similarly, controls over jerk may have the

form,

),(),(),(),(),(),(654321 sssssssysysyyu

Equation 4.9

Possible nonlinear functions are discussed in the following sections.

4.5.2.1. Sigmoid Functions and Fuzzy Sets

Truly fuzzy control was not employed in this thesis although fuzzy set implementations were

developed in some early experiments. Fuzzy control with a large number of parameters was

found to produce very slow evolution even though the fuzzy sets were developed

independently for each parameter. Fuzzy control with a large number of member sets was

found to deliver very little advantage here. The purpose of this thesis was to derive a better

theoretical understanding of controlled suspension, and using just a few “member sets” is

much more easily interpreted and analysed than a complex fuzzy control. Fuzzy controls can

have the effect of concealing the theory behind computer intensive numerical methods. Fuzzy

controls can be effectively developed almost completely outside any design theory or

strategy; “setting the performance index is the only procedure for the designer of the

controllers” (Hashiyama et al., 1995, p166). The reverse engineering of a comprehensive

fuzzy control may give interesting results but it was thought that this approach would have

severely impeded the overall development of the research for this thesis.

Sigmoid functions (see section 8.1.5) can be thought of as functions with just two “member

sets”. These have a profile similar to that shown in figure 4.5. Sigmoid functions, as in

equation 4.8 and equation 4.9, can be employed in EAs to perhaps evolve stiffness

parameters that become larger as they travel away from equilibrium in a nonlinear way.

The sigmoid function employed to separate the “member sets” uses the sine function,

i

145

 otherwise.
2

sin
22

, if

, if

1212

2

1

w

π(x-c)hhhh

wcxh

wcxh

y

Equation 4.10

The values c, w,
1h and

2h are the centre, width, height at the lower end and height at the

upper end respectively. An example is shown in figure 4.5. The parameters can be

determined by an evolutionary algorithm. Sigmoid functions can be used to vary all or any of

the parameters of equation 4.8 or equation 4.9.

Figure 4.5 Sigmoid Function

4.5.2.2. Virtual Bump Stops

Real-world passive suspensions have bump stops at the end of the suspension travel, which

dramatically increase the restorative force of the suspension when they are depressed. In an

electronically-controlled suspension this effect can be mimicked (or enhanced if actual bump

stops are also used) by supplying extra force as the suspension approaches the vertical

suspension travel limits.

146

A suspension should stiffen when approaching the rattlespace limits (stroke travel limits) to

prevent or decrease the risk of the wheel hitting hard against the rattlespace limits. This is

represented schematically in figure 4.6. Furthermore, if the wheel is close to the vertical

suspension travel limit and moving towards it, then the suspension should become stiffer than

if the wheel is moving away from the chassis.

Figure 4.6 Asymmetrical Multiplying Factor

With an electric control, one simple way to do this is to modify the parameters of a linear

function, as shown in equation 4.8 and equation 4.9. One way to think of this is to use

coefficients that increase near the rattlespace limit. Such a modified linear control could be

represented as,

 .)()()()(4321 ssssysysyu

The functions
1 to

4 could have the form represented in figure 4.7, which has four

parameters for each coefficient, ,1s ,1c 2s and .2c Alternatively, a sigmoid function such as

that represented in figure 4.5 could be used. The parameters of the skew function could be

determined by an evolutionary algorithm.

147

Figure 4.7 Simple Skew Function

A simple refinement on this is to only increase the coefficient if the parameter is moving in

the direction of the rattlespace edge. For example, if the stroke velocity is such that the

chassis is approaching the rattlespace limit, then increase the coefficient, but if it is moving

away from the rattlespace do not increase the coefficient (use the smaller value, for example

1c in figure 4.7). Similar modifications could be made to linear control over jerk.

Many different formulas could be used to implement an increasing in stiffness on approach to

the rattlespace limit. Such a formula may involve dividing by the distance to the closest

vertical suspension travel limit,

,
1

sR

where R is the limit of the value for stroke, s. This is an asymptotic function, increasing to

infinity as the distance approaches zero, which creates instability for the numerical methods.

Of course a real suspension physically disintegrates before it actually reaches this condition.

This matter is discussed further below, in section 4.9.

More complex measures of “closeness” are of course possible. The above measures have

been applied heuristically to see if they produce improvement in numerical experiments. Will

a control that is “soft in the center” and which becomes stiffer on approach to the rattlespace

limits provide a better compromise between softness over relatively smooth roads with the

ability to avoid rattlespace collisions in bumpy condition? In any case, it is clear that the

148

controls discussed above include controls that are impossible to implement even with the

most sophisticated passive bump stops.

For the sake of discussion, suspension controls that use a nonlinear function to stiffen on

approach to the rattlespace limits have been termed by this author “virtual bump stop”

controls. “Virtual bump stop” methods have not been investigated before, to the best of the

author’s knowledge.

4.6. Minimum-Time Control

As shown in section 2.3.2.3, the optimal control to return to rest in minimum time using

constrained acceleration is a bang-bang control. The proof of optimality appeals to

Pontryagin’s theorem. Bang-bang control can be extended to control over jerk. With

acceleration control, distance and velocity are simultaneously brought to rest. But with jerk

control, distance, velocity and acceleration all come to zero simultaneously. Acceleration is

continuous, changes smoothly, and is brought to rest simultaneously with distance and

velocity. Thus acceleration is not suddenly dropped to zero. In this section Pontryagin’s

theorem is used to prove the optimality of the bang-bang control over jerk (and to derive the

switching points).

A literature search has shown that variants on bang-bang controls have been researched in the

area of mechatronics (Koh et al., 1999). These have tended to deal with predetermined

symmetric trajectories, or with different optimization criteria. The simple discrete control

based on determining the phase-space point in relation to the landing surface had been

developed in the course of the research, but it was later discovered that this method has been

investigated by Koh, Aum et al. This method will be explained in detail below. This method

has been published by the author during the course of the PhD research (Storey et al., 2009).

Interestingly, the discrete bang-bang method could be characterised as a special case of

sliding-mode control (see section 2.3.2.4) over jerk. Sliding-mode control over acceleration

149

has been widely researched (Ashari, 2004; Donahue, 2001; Yagiz, 2005; Dixit and Buckner,

2005; Yokoyama et al., 2001), and it has been found to have the problem of chattering, which

has been resolved in the research by using a linear control near the switching manifold. With

control over jerk however, “chatter” results in only very small, smooth changes in force,

rather than large, fast swings in force. The control proposed here is a sliding-mode control

(over jerk) which does not need to be artificially softened near the sliding surface.

Similar to the way in which at most one intermediate switch of acceleration direction is

needed for minimum-time control over acceleration, at most two switches of control direction

are needed for minimum-time control over jerk. The proof is discussed below and parallels

the proof using Pontryagin’s Principle shown in section 2.3.2.3. The major difference is that a

solution to the adjoint equation is linear in the case of control over acceleration, and so

crosses zero at most once, while the corresponding equation in the case of control over jerk is

quadratic as a function of time and generally crosses zero at most twice.

Consider then the following optimization problem: what is the minimum time required to

return a system to rest (zero distance, velocity and acceleration) using constrained jerk? The

proof below uses Pontryagin’s Principle as applied in MacCluer (2005, pp120-9). A different

proof, taken from the method in Hermes and LaSalle (1969) can be found in section 8.7,

validating the result.

To minimize time, minimize the functional,

T

dtQ
0

,1

where the control jerk,),(tu is constrained,

 .)(jtuj

The equation of motion in vector form is,

).,,(),,()(uavavxFF xx

That is to say, ,au ,va and .xv Here x, v and a represent distance, velocity and

acceleration respectively. The Hamiltonian is,

.1

),,).(,,(1.1

uav

uavFH

The control,),(tu which minimises the Hamiltonian with control is given as,

150

 .
0)(if

0)(if
)(

tj

tj
tu

Equation 4.11

The adjoint equation is,

).,,0(,,),,(

a

H

v

H

x

H
Hx

Solving this system of differential equations produces,

,

,

,

21

2

02

1

10

0

ctct

ct

Equation 4.12

where 0 , 1c and 2c are constants. The equation for is quadratic and changes sign at most

twice, and together with equation 4.11, this implies that there are at most two switches for the

control, u. That is to say, there are at most two points at which the jerk switches between j

and ,j or vice versa.

As in section 2.3.2.3, to find the optimal trajectory, the control is deduced from end

conditions. It is useful to define a two-dimensional “switching surface” in the three-

dimensional phase space comprising displacement, velocity and acceleration:).,,(yyy This

surface contains all the points that can reach the origin, including acceleration, (0,0,0) using

just one switch. In sliding-mode control this surface could be called the “switching surface”

or “switching manifold”, but it has also been called the “landing surface” in the literature on

time-optimal control for robotic manipulators (Koh et al., 1999, p273).

On the landing surface, velocity and acceleration are each brought to zero simultaneously

using jerk in exactly the same way that distance and velocity are brought to zero using

acceleration, elegantly depicted in the interpretation of Pontryagin’s diagram (Pontryagin et

al., 1986, p26) shown earlier in figure 2.3. The control of the switching surface can be

projected onto the plane ,0y shown below in figure 4.8, producing exactly the same

schema as in figure 2.3 except with y replaced by ,y and y replaced by .y Figure 4.8 thus

represents a projection of the switching surface onto the velocity and acceleration axes; the

displacement axis, y, is out of the page.

151

Figure 4.8 Switching-Surface in Phase-Space – projected onto the velocity and acceleration axes

A three-dimensional plot of the landing surface is shown below in figure 4.9. This has been

generated in Matlab and the code can be found in the appendix, in section 0. Again, this is the

surface from which the system can return to rest (including zero acceleration) with just one

intermediate switch of jerk. The system will generally be initially either above or below this

surface, and will switch when reaching this surface, and then finally switch once on this

surface, at the final switching curve. The final switching curve is shown as a thick line on the

diagram.

152

Figure 4.9 3-D Plot of Landing Surface

It has been shown that the control to return to rest can consist of at most 2 switches. If the

system begins from a point “above” the switching surface then the initial jerk must be

negative to bring the system onto the switching surface. At the switching surface the direction

of jerk changes and there is one more change of direction of jerk on the switching surface.

Similar remarks apply if the system’s initial point is below the switching surface (with the

initial jerk in the opposite direction).

The calculation required to deduce the direction of jerk at any point outside the landing

surface is quite simple. Find out if the current point in phase space is above or below the

switching surface by calculating the distance on the surface with the same velocity and

acceleration as the current point. This is almost exactly the same mathematically as the bang-

bang control over acceleration.

153

The control over acceleration and velocity once on the landing surface is easily calculated.

This determines jerk while on the landing surface and so movement on the landing surface is

easily calculated; once on the landing surface simple cubic polynomials give the trajectory,

and the timing of the jerk switch is readily calculated (Java code for this calculation is given

in the appendix in section 8.8).

Thus, once on the landing surface the trajectory is easily calculated, and it is virtually the

exact same algebra as control over acceleration. The problem is that the point at which the

system enters the landing surface is not so easily calculated. While the height above the

switching surface is easily calculated, the optimal trajectory does not generally intersect the

switching surface at the point directly “beneath” the initial point. Nonetheless, it is a simple

matter to determine if any given point is above or below the landing surface, and this is

sufficient to determine the jerk direction required. Thus a feedback control can be very easily

implemented simply by calculating if the current point is above or below the switching

surface, in exactly the same way that a closed-loop control can be implemented using

acceleration which determines if the intial point is above or below the switching curve.

Suppose that the system is at the initial position in three-dimensional phase space,),,,(000 avy

where 00 ,vy and 0a are the initial displacement, velocity and acceleration respectively. To

determine if the point is above or below the switching curve simply determine the

displacement for the switching curve directly “beneath” the intial point; that is, the point with

the same velocity and acceleration values. Suppose that the distance moved on the landing

surface is d (calculated using cubic polynomials). This point on the landing surface is

),,(00 avd and is not generally the same as the current).,,(000 avy However, it is an easy

matter to determine if the current point is above or below the landing surface just by

comparing d and .0y If dy 0 then apply negative jerk, ,j and if dy 0 apply positive

jerk .j As expressed by Koh et al., this method can calculate “the distance from the current

point ... to the landing surface ... The jerk is determined to make the point approach the

landing surface” (1999, p275).

It should be re-emphasized that this does not determine the entire trajectory. In particular it

does not determine the point that the trajectory first enters the landing surface. It determines

154

only whether the initial point is above or below the landing surface and this determines the

direction of jerk at the initial point. The system does not enter the landing surface at the point

),,(00 avd nor does it generally pass through this point. This method calculates only the jerk

at the current instant. For an iterated control this is all that is needed, and it has been

investigated as a possible robotic arm movement control. “The proposed motion planning

method is implemented as [an] iterative algorithm which determines velocity, acceleration

and position commands at every control instant” (Koh et al., 1999, p275). The calculation

involves only a few mathematical steps, the most costly operation being a single square root.

The control is quite straight-forward and easy to implement.

In some of the algorithms discussed in this thesis, the maximum and minimum distance

travelled in the trajectory need to be computed and the algorithm just outlined is insufficient.

However, all aspects of the trajectory are easily computed once the time taken to reach the

landing surface is known, as discussed at length in subsection 4.6.3.

Minimum-time bang-bang controls over jerk can be extended to bang-bang controls over

higher-order derivatives, in the same way that the one-switch bang-bang control over

acceleration has been extended to the two-switch control over jerk. Note that control over

jerk moves first onto a two-dimensional switching surface, while the control over

acceleration discussed earlier moved first onto a one-dimensional switching curve. Thus

control over jerk can be transformed to a three-switch control over snap (the rate-of-change

of jerk), but with much greater computational difficulty. To control snap, the three-

dimensional switching manifold in four-dimensional phase space is made up of the control

over jerk. The distance “above” this switching manifold is calculated, which in turn

determines the direction of snap that needs to be applied at a given moment. Note that this

requires the full trajectory for the control over jerk. Control over snap or further higher-order

derivatives have not been implemented in this thesis.

An example application of minimum-time control over jerk is shown in figure 4.10. In this

example the initial values for displacement, velocity and acceleration are ,25.1 2 and 2.0

respectively. The graphs of jerk, displacement, velocity and acceleration are shown. The

control jerk value is plus or minus 2. Displacement, velocity and acceleration all reach zero

simultaneously.

155

Figure 4.10 Example of Minimum-Time Control over Jerk

Initially, constant negative jerk pulls back on the acceleration (dashed line), then switches to

increasing the acceleration to a positive value, and finally brings the acceleration back to

zero. Note that acceleration is continuous, and hence force is continuous, although jerk is

discontinuous.

This graph was produced by a computer program (written by this author) in which the various

parameters could be varied and simultaneous zero displacement, velocity and acceleration

were achieved in all observed cases, confirming the algorithm. Code to implement this

156

algorithm is discussed in the appendix, in section 8.8. (Select the button “Min-Time Jerk” in

the program OvershootDemo.java. Sliders for “road Parameters” allow initial conditions to

be changed, and the “COMFORT_JERK” parameter in the “Jerk Profile” group of sliders allows

the control jerk to be changed.)

Graphs such as the above consume a lot of space. In figure 4.11 below, the graphs of

acceleration velocity and distance are superimposed. The jerk control can be inferred from

the straight slopes in the acceleration profile. Excluding the jerk for the superposition seems

to make the graphs clearer. This kind of graph is used here to save space. Other authors have

used similar superimposed graphs to illustrate controls (Ross, 2009, pp46-7; Kirk, 1970,

p266).

Figure 4.11 Combined Graph

4.6.1. Feedback Minimum-Time Control over Jerk

An iterative, discretised version of the minimum-time control over jerk is very easy to

implement. The current state in phase space is compared with the landing surface, as

explained in section 4.6. If the iterative, “discrete” method is used with a reasonably small

time period, the numerical result is very close to the analytical result, except that there is

some jerk “chattering” (see section 2.3.2.4) around zero. Compare figure 4.11 with figure

157

4.12 below. Note again that the jerk graph in figure 4.12 has not been included because it can

be easily inferred from the constant slopes of the graph of acceleration. The optimal,

minimum-time control is achieved as a discretised feedback control via real-time optimal

control (RTOC) (Ross, 2009, p48).

Chattering is in part due to accumulated numerical errors, but mainly to the fact that the jerk

is never actually sent to zero, even when the system is at or near rest. (The code for this

algorithm is also given in section 8.8.) It should be noted however that jerk chattering need

not be uncomfortable and in fact may be entirely unnoticeable. Acceleration chatter, on the

other hand, results in sudden, extreme changes in force, which are certainly uncomfortable.

There is an obvious similarity with the sliding-mode control. This feedback version of the

control can be viewed as a special case of a sliding-mode control over jerk: jerk changes

direction depending on whether the system is above or below the landing surface in phase

space. In fact, “chattering” of a kind is produced here for the same reason that it develops in

sliding mode control over acceleration, although jerk chatter does not result in the discomfort

produced by acceleration chatter.

Figure 4.12 Discretised Minimum-Time Control Example

After a literature search it was found that this control was proposed by Koh et al. for robotic

arm control. Koh et al. propose the control for its anti-vibration benefits, “The anti-vibration

158

is the key factor for determining the life cycle of the mechanism” (Koh et al., 1999, p273).

Low jerk results in low wear and tear on physical components, but it is also claimed to result

in improved tracking; “Jerk limitation is important in industrial robot applications, since it

results in improved path tracking and reduced wear on the robot” (Macfarlane and Croft,

2003, p42).

4.6.2. Bang-Off-Bang Control

“Bang-off-bang” (BOB) controls have also been studied for use with robotic arm movements,

as discussed in section 2.3.2.3. By sacrificing time, such controls can produce softer results

overall (Muenchhof and Singh, 2003, p142). Bang-off-bang controls are often the result of

secondary constraints. Koh et al., for example, “propose a minimum time motion planning

algorithm considering jerk and acceleration constraints” (1999, p273). Note the inclusion of

both jerk and acceleration constraints.

A bang-off-bang control is much more easily visualized in the case of a control over

acceleration rather than jerk. Consider the two controls for returning to rest depicted in figure

4.13. The control, A to B to D and then to rest, is the bang-bang control of return to rest using

constrained acceleration as described above in section 2.3.2.3. The force is constant and

negative from A to B, and switches to a constant positive force from D to rest. After reaching

the rest position, the force is zero. The second control, A to B to C, and then to rest, is a bang-

off-bang control; there is no acceleration between points B and C. The bang-off-bang control

takes longer than the bang-bang control, but it travels the same maximum distance, and uses

less overall acceleration in the process (it here uses the same acceleration for less time, but it

also uses therefore less total RMS acceleration).

159

Figure 4.13 Return to Rest comparing Bang-Bang with Bang-Off-Bang

The phase plane diagram corresponding to figure 4.13 is shown below in figure 4.14. The

first control is a trajectory from the phase-space diagram of figure 2.3. The dotted line shows

the BOB control moving from B to C. The BOB control sacrifices time but travels with a

smaller velocity.

Figure 4.14 Phase-Plane Diagram of Bang-Bang and Bang-Off-Bang

160

A phase-plane plot of a bang-off-bang control over acceleration is shown below in figure

4.15, but variations are possible. Kirk has a similar variation resulting from weighted time

and fuel performance (1970, p283). The relationship between this diagram and the phase plot

for the minimum-time control in figure 2.3 should be clear.

Figure 4.15 Acceleration Control with Constrained Velocity

One way then to implement BOB control over jerk is to use the control over acceleration

depicted in figure 4.15 as a landing surface for a control over jerk, as was done for the

minimum-time control. Using this method produces trajectories such as the one shown in

figure 4.16. As with control over acceleration, time is sacrificed, and overall RMS jerk is

decreased.

161

Figure 4.16 Bang-Off-Bang Example

In figure 4.16 the acceleration is constrained on part of the control. Thus both jerk and

acceleration are limited. BOB controls result naturally when there are multiple constraints

such as this. BOB controls over acceleration result for instance when there are velocity

constraints. Another BOB algorithm using jerk is developed later in section 4.7.3.7, and this

also derives from constraint over both acceleration and jerk.

4.6.3. Time to Landing Surface and Optimal Displacements

In later sections, the maximum and minimum distances travelled by the minimum-time

control over jerk need to be computed, as well as other parameters. As shown above, the

feedback control is quite simple and does not require the calculation of the time taken to

reach the landing surface. However, to fully describe the trajectory of the minimum-time

control the time to reach the landing surface needs to be computed.

The entire trajectory for the minimum-time control over jerk is simply made up of three cubic

polynomials and all the characteristics of the curve, such as the optimal displacements and

the times at which they occur, can be easily determined by simple calculus once the time

162

taken to reach the landing surface is determined. However, no simple closed-form formula

for this value was found.

A simple, reasonably fast iterative numerical method has been devised. As discussed above, it

is easy to determine whether a given point is above or below the landing plane; this is the

basis of the iterative method.

The numerical method begins by finding a time period which results in a point on the

opposite side of the landing plane to the initial point, by repeatedly multiplying an initial time

guess by two and stopping when a point on the opposite side of the landing plane is reached.

This produces two points, one on either side of the landing surface. Iteratively take the

midpoint between these two times. If the midpoint time is too low it is used as the new low

estimate, if it is too high it replaces the new high estimate. In this way the difference between

these estimates decreases exponentially. Once the difference becomes acceptably small, one

of the values is chosen as the value of the time to the landing surface. Once this time is found,

the rest of the algebra involves simple cubic polynomials.

The entire code for this algorithm, including finding maxima and minima, and the times at

which they occur is to be found in the Eclipse Java package in the Overshoot package in the

class SwitchingPlaneX.java. Test code can be run from the OvershootDem0.java class in the

OvershootControl package. (Click the “Min-Time Jerk” and “Cts. Min-Time Jerk” buttons

and vary parameters d, v, a and COMFORT_JERK.)

The Java code for finding the time to reach the landing surface is also given in the appendix

in 8.9. This method uses an initial guess of the time to reach the landing surface. If the

distance travelled in this time results in a point on the same side of the landing plane as the

initial point, then try a time twice as large as the original, otherwise halve. Continue this

process until two times are found, one on either side of the landing plane. Now, dissect these

two times and use the new time as an upper or lower limit, depending on whether it results in

a point on the opposite or same side of the landing plane as the initial point. For instance, if

the new point is on the opposite side then this becomes the new upper limit time. Keep

dissecting in this manner until an acceptably small “tolerance” level is reached. This is a

“binary” method which has a log order magnitude of algorithmic complexity.

163

4.7. Rattlespace Constraint Controls

Figure 4.17 below shows a graph of a quarter car suspension as it travels over a road surface.

The chassis movement is physically limited to remain within the suspension’s rattlespace.

Hitting the rattlespace limits results in great discomfort and perhaps even vehicle damage.

Any movement within the rattlespace itself has no inherent negative effect on suspension

goals. Even if the suspension is very close to a vertical suspension travel limit there is no

negative effect. Of course, if the chassis is close to a limit there may be more chance of

hitting the limit in the near future, but there is no inherent negative tracking performance

impact as long as it does not hit the limit.

Figure 4.17 Rattlespace Limits

The goal of a limited-stroke suspension control is to guide the chassis smoothly within the

rattlespace without hitting up hard against the ends of the rattlespace, more precisely, to find

a trajectory through the rattlespace that achieves an optimal compromise between handling

and comfort. Suspension movement is constrained by the rattlespace and suspension tracking

performance should be measured by a suspension’s capacity to remain within the rattlespace.

164

This is an obvious point and yet, as discussed in chapter 3.2, there are no experiments or

theories in the surveyed literature dealing with tracking in this way.

This section of the thesis investigates how controls might be devised specifically to stay

within the rattlespace. For the want of a better term, such controls have been referred to by

this author as “rattlespace constraint” controls; their defining trait is that control is in some

way based on a model of the trajectory of the chassis within the anticipated rattlespace.

Control is exerted to restrain the chassis from crossing a rattlespace limit.

Two distinct general approaches are possible, as explained in a later section. One is “variable

hardness”, and the other “edge constraint”. Specific implementations of these methods are

developed and are applied in numerical experiments.

Of course, real suspension controls have limits. Given a sufficiently bumpy road (traversed at

a sufficiently high speed) any suspension will hit up hard against the vertical travel limits.

The reasons why numerical models may allow travel outside the rattlespace (discussed at

length in section 3.2) and the numerical considerations of section 4.9 below, still apply to

rattlespace constraint controls. Models may therefore travel outside the rattlespace. However,

heavy penalties are applied to travel outside the rattlespace, and evolution should avoid this

where possible, consistent with the goal of maintaining a smooth ride.

All the controls and theory presented in this section (4.7) are original work unless otherwise

stated, to the best of the author’s knowledge, and were conceived during the research for this

thesis.

4.7.1. Theoretical Basis of Rattlespace Constraint

In order to maintain the trajectory of the chassis within the future limits of the rattlespace, it

is necessary to anticipate the future movements of the rattlespace limits. This thesis does not

investigate look-ahead systems and it is assumed that the road surface ahead of the vehicle is

uncertain, and so the best models of future rattlespace limits must be statistical in nature.

165

Thus the future wheel movement can be heuristically represented as a statistical “probability

cloud”, as in figure 4.18.

In this diagram, zero time represents the current “instant” (the small time period of the

current calculation in an iterated method). Probability densities in this diagram could

represent probabilities that a given height at a given time is within the rattlespace. The darker

regions in figure 4.18 represent higher probability that a given height at a given time will be

within the rattlespace. The vertical suspension travel limits before this are known with

certainty, because this period has just elapsed, and probabilities are either zero or one. Future

rattlespace limits however are unknown, and become less and less certain with increasing

time.

Perhaps a probability density of trajectories is more accurate, but there is little benefit from

this complication in this context because only heuristics are applied in this thesis and the

graphical representation of figure 4.18 greatly assists the explanation. Even so, given a

statistical description of road types, the probability of a point on the graph being within the

rattlespace is mathematically well-defined.

Figure 4.18 Probability Cloud Representation of the Rattlespace

166

It is intuitively obvious that the “probability cloud” becomes more and more uncertain with

increasing time above zero, and the probability density is roughly highest at the current

height and decreases with further distance from that height. The exact mathematical nature of

the probabilities, however, is not needed for this thesis. Heuristic methods are employed as

discussed in section 4.7.3 in order to approximate future rattlespace limits, and evolutionary

algorithms have been used to optimize and test performance. The model has a theoretical

purpose at this point.

The challenge for suspension design is to find a path through the probability cloud that is

smooth but which minimizes the likelihood of hitting against the rattlespace limits, at least in

the “near to short term”. Time periods that are closer to the current instant are more urgent

because later times can be subject to further adjustments.

A rattlespace control should have the property that it can prioritize comfort when there is

little immediate danger of hitting against the rattlespace limits, but become stiffer if the threat

of a rattlespace collision is imminent, as depicted in figure 4.19. Here the chassis is pulled

down more tightly than in figure 4.18, in order to avoid the more highly likely imminent edge

collision. When collision is not imminent, a rattlespace constraint control should be able to

prioritize comfort, even if the edges of the rattlespace are undergoing rough but small

corrugations. In fact, distinguishing small corrugations from large bumps is perhaps the main

difficulty for a rattlespace constraint control.

Figure 4.19 Rattlespace Constraint with Imminent Collision

167

4.7.2. Nominated Target Rattlespace Limits

There are a range of possible future positions for the rattlespace edge. It may be possible then

to designate a certain particular line through the probability cloud as a target for current

chassis trajectory control. That is to say, at each future time particular heights are nominated

as possible rattlespace limit targets. In figure 4.20 a particular line, after the current instant,

represents the upper rattlespace edge. The goal then is to keep the chassis within these

explicit targets. Clearly, this is a heuristic to avoid complexity.

Figure 4.20 Nominated Target Rattlespace Limits

This should not be thought of as a single possible future rattlespace trajectory. Rather, the

target limits should produce a control which can distinguish those moments when rattlespace

collision is imminent from those moments where collision is not imminent, and comfort can

be prioritized. When collision is imminent, the target lines should form a limit that the

suspension control can aim for and have some chance of recovery in the case that the

rattlespace edge moves within the expected limit. Thus the target line should be more

restrictive in the near term, and spread out in the long term. Evolutionary algorithms can be

168

used to determine the parameters of the target rattlespace limits. The goal of the control then

is to find, on a moment-to-moment basis a control that can “steer” the chassis through the

nominated target limits and apply the control for that trajectory in that time cycle.

Suppose the actual rattlespace limits (past and future) are represented as RtrRT)(and

,)(RtrRB where R is half the rattlespace width and TR and BR are the top and bottom

rattlespace limits. Simply flat target limits could be employed, as depicted in figure 4.21(a)

below, or more complex parabolic limits could be nominated using the equations,

2

2
12)0()0()0(trPtrPtDtDRrR AVAVT

 and

 ,)0()0()0(2

2
12 trPtrPtDtDRrR AVAVB

depicted in figure 4.21(b).

(a)

(b)

Figure 4.21 Rattlespace Projections

Figure 4.22 shows a road with a mixture of large bumps and corrugations. Distinguishing

corrugations from large bumps using only past data is perhaps the greatest challenge for a

rattlespace constraint control. On the one hand, a soft response to a large bump leads to

169

rattlespace collision, or at least high jerk responses near the rattlespace edge. On the other

hand, a hard response over-reacts to small edge corrugations and produces an uncomfortable

ride.

Figure 4.22 Large Bump with Corrugations

A more sophisticated statistical analysis of current and past road conditions (or at least wheel

conditions) may be needed to yield reliable predictions for the onset of large bumps. In this

thesis, only current instantaneous road conditions are applied, although filters using moving

averages as described in 8.12 may be applied, and these could be regarded as a rudimentary

form of road “memory” that are used in order to distinguish rough from smooth sections of

road.

When the road conditions are quite soft and the rattlespace edge is moving only say within

5% of the rattlespace edge, there is no reason why the chassis should move appreciably. A

passive suspension, and even the skyhook, will move somewhat under such conditions, but a

rattlespace constraint control might barely move at all. It is only when there is an imminent

likelihood of rattlespace collision that the suspension should move or stiffen to avoid edge

collisions. The problem is to distinguish which of the two modes, call then “soft” and “hard”,

should take priority.

Accordingly, a rattlespace constraint control may need to switch between a “hard” mode that

avoids collision with the rattlespace limits and a “soft” mode that seeks to reach equilibrium

comfortably. As will be explained in later sections, the main problem for the hard mode is to

avoid edge collision without creating an unstable rebound away from the edge.

Another kind of control results from varying the “hardness” of the system. For example, if

maximal jerk is the measure of “hardness”, the hardness is set to the level such that the

170

maximum displacement is not outside the rattlespace. There are a number of ways of

interpreting suspension “hardness” as explained in detail later in section 4.7.5 so there are a

number of ways of implementing this general idea. This is simpler to implement than the

edge constraint method just outlined, and such methods have been implemented with some

success in the numerical experiments.

Fast and simple control algorithms are the object of this thesis, and rattlespace constraint

techniques tend to be relatively complex, at least compared to linear or sliding-mode controls.

Nonetheless, microprocessor power is becoming very cheap, as are transducers for measuring

movement. It is becoming possible to use more sophisticated control algorithms in an ever

wider range of applications.

4.7.3. General Displacement Constraint Problem

When approaching the bottom, say, of the rattlespace, control (either jerk or acceleration)

may be needed to pull the chassis back up. The suspension displacement is constrained to lie

above the lower rattlespace limit, and below the upper limit. A defining component of a

rattlespace constraint control is that it moves the chassis to avoid hitting either the top or the

bottom of the rattlespace.

This in turn suggests the general problem of finding a control that is constrained by distance

in just one direction. The problem examined below is to come to rest as quickly and as

smoothly as possible without overshooting the rest position. This problem could be easily

extended to the case of smooth approach to an accelerating target distance, by translating into

a frame accelerating with the target. This kind of “normalisation” is sometimes used in

control theory (Ross, 2009, p32).

Control methods to address this problem may find application in other contexts where it is

desirable to reach a rest position without overshoot, such as robot arm movement

(Constantinescu and Croft, 2000), parking of hard drive heads (Chang and Hori, 2006), heavy

door closing, elevator approach to a floor, satellite rotation control (Zadeh, 2004) or possibly

even with airplane landing gear (Krüger, 2002).

171

With a robotic arm the goal of a distance constraint is to move the end of an arm to rest at a

certain point, without collision with another object beyond that point. Industrial robotic arms

should move from point to point as quickly and as smoothly as possible, and cubic

polynomial trajectories have been investigated for this purpose, in an effort to avoid the jerky

end movement that so typifies robot movement (Ben-Itzhak and Karniel, 2008;

Constantinescu and Croft, 2000; Hicks et al., 2006; Macfarlane and Croft, 2003). Smoothness

can help to minimize wear and tear (Koh et al., 1999; Cao et al., 1997) and perhaps even

decrease the cost of robotic rigs. Cubic splines have been used in the literatures for pre-

planned movement, but the methods described here allow jerk to be used with feedback

controls.

4.7.3.1. Rebound

It is helpful to illustrate the problem of rebound in the context of relatively simple examples.

Without loss of generality, and to simplify some of the algebra, suppose that the target rest

position is set as zero. The displacement constraint problem is one of smoothly bringing a

system to zero displacement with zero velocity, so that the system does not overshoot zero

distance. Visualize an industrial robot arm coming to rest near a delicate piece of machinery

without bumping into it.

Unless otherwise stated, d, v, and a represent initial distance, velocity and acceleration

respectively,

),0(yd),0(yv and).0(ya

Without loss of generality, the initial distance is assumed positive, ,0d unless otherwise

stated.

Let us begin with the simple method of using constant force. This problem is then readily

analysed in terms of energy and work. To bring the system to rest requires just enough force

to absorb the initial kinetic energy.

Work Done = Initial Kinetic Energy,

172

.
2

,

2

2

2
1

d

v
a

mvmadFd

Equation 4.13

Constant acceleration will bring the system to zero distance with zero velocity, as depicted in

figure 4.23.

Figure 4.23 Constant Acceleration to Rest: d=4, v=-4 and a=2

With this very simple method the force is constant, from beginning to end. However, the

system will rebound upon reaching zero unless the acceleration is suddenly dropped to zero,

with an associated spike in jerk. To actually bring the system to “rest” including zero

acceleration requires then a large jerk as the acceleration is suddenly dropped to zero. If the

trajectory is to avoid discontinuous force (and extremely high jerk) then the problem remains

of reducing the rebound acceleration.

In the case of a suspension system, rebound away from one of the rattlespace limits can cause

it to move back too quickly towards the opposite side of the rattlespace. Rebound in this case

is a source of instability.

This shows that simple energy considerations alone do not solve the problem of finding a

smooth trajectory that avoids collision at a given distance. Because of the added requirement

of smoothness, the force that remains at the end cannot be suddenly dropped to zero, and if

173

the residual force is too large then either there must be a sudden uncomfortable change in

force, or the trajectory must rebound a large distance, moving back towards the opposite

rattlespace limit and affecting stability.

Exponential decay does not have this problem of rebound. Consider the example shown in

figure 4.24.

Figure 4.24 Exponential Decay

Suppose that the equation of motion is,

.tdey

If the initial velocity is v, then,

Solving for gives, and the initial value of acceleration is,

Equation 4.14

Now there is no residual acceleration or threat of rebound.

Interestingly, the force at time zero is now exactly twice the force needed in the previous case

using constant acceleration, given by equation 4.13. It may seem counterintuitive that this is a

“smoother” system since it requires greater initial force. However, by absorbing energy at a

faster rate at the start, less force is required later, and there is no rebound at the end. The price

for removing rebound is a higher initial force. On the other hand, it does seem intuitively

.)0(dyv

,/ dv

d

v

dvya

2

2

2)0(

174

clear that a stiff suspension is less prone to wild movement between rattlespace limits than a

very soft one.

In the case of exponential decay all derivatives of motion are brought to zero, which may be

more than needed. A slightly more general result can be obtained, using a constant k
th

derivative of motion to bring a system to rest with all lower derivatives coming to zero.

Suppose that a constant k
th

 derivative of motion, equal to say ,K is employed in order to

bring all lower derivatives to zero simultaneously. The algebra becomes slightly easier to

represent if the timing is reversed and the system starts at zero, with all the lower-order

derivatives set to zero at time zero. Therefore,

0)0(...)0()0()1(kyyy and,

.)()(Kty k

Furthermore,

 ,)()1(Ktty k

,)(2

2

1)2(Ktty k

,)(
!

1)(r

r

rk Ktty

,)(2

)!2(

1))2((

 k

k

kk Kttyy

,)(1

)!1(

1))1((

 k

k

kk Kttyy

.)(
!

1)(k

k

kk Kttyy

Finally this produces,

 .
1)!1()!1(

!)!2(
22

2222

k

k

ttKkk

tKkk

yy

y

ad

v
kk

k

Equation 4.15

(The answer here is the same sign when the directions are reversed.) Note that this general

result includes the control using constant acceleration above as a special case, with 2k

giving equation 4.13, and the use of exponential decay can be seen as the limiting case with k

approaching infinity,

 ,1
1

lim
2

 k

k

ad

v

k

as in equation 4.14.

175

If constant jerk is used to bring a system to rest, ,3k then,

.
2

32

ad

v

Equation 4.16

This is exactly half way between the initial force required for constant acceleration and

exponential decay.

The mathematics has been useful to show how larger force is needed to reduce rebound, and

the formulas give some idea of the relative force increases that might be needed. There is the

problematic matter however of the initial point. It has been assumed in this section that the

initial force can be selected arbitrarily. This creates a problem which is examined in

following sections. The important point of this section however is the theoretical recognition

that there is a trade-off between smoothness and rebound, and the price for removing rebound

(and potential instability) seems to be a larger control force. In the case of a discrete control

this translates to higher control levels than may seem to be needed from energy

considerations alone.

In summary, while the problem of rebound may be solved, there remains the problem of the

“initial instant” (or the current time in a discrete feedback control). The problem with all the

controls above is that no matter how smooth they are at later times, the control force at time

zero is not generally continuous; the initial acceleration of the control does not necessarily

match the initial acceleration of the given system. At the start there will be a spike in jerk as

the acceleration changes instantaneously to match the acceleration required of the control.

4.7.3.2. Simple Two-Stage Controls

In the previous section the initial acceleration was not taken into consideration. In each of the

controls in the last section the acceleration will change instantaneously initially, to

correspond to the initial acceleration required of the control. A solution to this problem is to

apply a two-stage control, with the first stage setting up conditions for smooth decay in the

second stage, but with continuous acceleration at all times.

176

The approaches developed in this section are only very briefly outlined because much

superior methods were discovered later in the research, and are covered in later sections. The

controls developed here illustrate weaknesses that are solved in later sections.

Suppose constant jerk is applied in the first stage so that exponential decay can be applied in

the second and final stage, as depicted in figure 4.25. Acceleration rises linearly in the first

stage, while distance velocity and acceleration decay to zero in the second. In this example,

constant jerk is first applied to create the conditions under which equation 4.14 holds, and

exponential decay is then applied to approach zero without overshoot. Note that acceleration

can be made continuous at all times, including the initial instant.

Figure 4.25 Control with Exponential Decay Jerk

(The graphs above have been generated using Java code. The software can be found in the

Eclipse workspace,

PhD\Eclipse RSpace Constraint\Edge Overshoot,

discussed previously. The JerkControlDemo class contains the main routine and the above

code can be run by clicking the button labelled “Specific Solution Exp”. Different initial

values for displacement, velocity and acceleration, d, v, and a, can be input using sliders.)

177

In order to implement a two-stage method, a time period for the first stage of control must be

nominated. The time period for the first stage of the control will here be designated as “T”. In

the example in figure 4.25, the first stage time was calculated as the time it takes for the

system to cross zero displacement with no change in acceleration (that is, if acceleration were

simply held constant at the initial value).

Given a value for T, the values of distance, velocity and acceleration at the end of the first

stage must be such that they satisfy equation 4.14, allowing exponential decay in the second

stage. If the initial distance, velocity and acceleration are d, v and a respectively (at the start

of the first stage), and a constant jerk j is applied, then the values of distance, velocity and

acceleration after time T are easily calculated by successively differentiating the formula for

distance,

 .)(3

6

12

2

1 jtatvtdty

This can be solved simultaneously with equation 4.14. This has an algebraic (closed-form)

solution: the jerk required to satisfy equation 4.14 in time T is,

Equation 4.17

The derivation of this equation (using the algebraic software package, Maple 7) is shown in

the appendix, in section 8.10.

A similar technique uses constant jerk for the second stage, rather than exponential decay.

Figure 4.26 gives an example of this algorithm, with the same initial conditions as the

example shown above in figure 4.25. (The example was generated by clicking the button

labelled “Specific Solution” in the JerkControlDemo class.) At the end of the first stage, at

time T, the values of displacement, velocity and acceleration must now satisfy equation 4.16.

This was also solved (using Maple, as shown in section 8.10) and gives the analogous result

to equation 4.17,

 .
)3(

624

2

1 222

dvTT

adTaavTv
j

Equation 4.18

.
21212123662

3

42322222

T

TaavTTvadTddaT
j

178

Once the time period of the initial stage is selected this method is algebraically extremely

simple.

Figure 4.26 Return to Zero without Overshoot

The above control gives an acceptable response, but it fails when used as a feedback control.

A discrete control is “iterated” in the sense that the control value is recalculated from one

time step to the next in a microprocessor (Simon, 2006). (This should not be confused with

“numerical iteration” such as used in Newton’s method, which might be employed by a

microprocessor within a single time step.) The control is discretised by calculating the jerk on

a moment-to-moment basis, using the current conditions as the initial conditions, as was done

successfully with the minimum-time method in section 4.6.1.

Figure 4.27 shows a comparison of the non-iterated control with the iterated control for the

same starting conditions. (The iterative example was generated by clicking the button

labelled “Cont. Pure Jerk” in the JerkControlDemo class.) Figure (a) shows the kind of

trajectory that results from a control that is planned at the start, but figure (b) shows the

trajectory that results when the control is implemented as a feedback control. The discretised

version fails to bring acceleration to zero. This produces again the problem of residual

rebound acceleration. This problem is caused by the fact that the estimate of the first stage

time is not consistent from one step to the next.

179

(a)

(b)

Figure 4.27 Failure of Iterated Control: (a) Non-Iterated (b) Iterated

This author’s first attempts to resolve this problem focused on the ratio,

 ,
2

ad

v

which was used above to distinguish the various methods of returning to zero smoothly, in

section 4.7.3.1. Evolving from this idea, the control became more and more complex in order

to deal with exceptions. Some experimentation produced an algorithm which gave acceptable

results over a wide range of initial conditions. An example of the control with the same initial

conditions as in figure 4.27 is shown below in figure 4.28. (Press the button labelled “Cont.

Specific Soln.” in JerkControlDemo.) While the control is quite ungainly, it does have the

property that acceleration decays to zero.

180

Figure 4.28 Iterated Control with Acceleration Decay

4.7.3.3. Landing-Surface Method

A much more elegant method was found, discovered by the author after experimenting with

simulations. In a simple simulation program, control jerk values and initial conditions could

be varied smoothly with a slider, while the minimum-time method was used to return to rest.

(The code can be executed by clicking the button labelled “Min-Time Jerk” in the

OvershootDemo class in the OvershootControl package.)

Recall that the minimum-time control over jerk generally has two intermediate switches of

jerk value, as shown in figure 4.11 earlier. When the software was used to vary the jerk value

being applied, it always happened that the least jerk value which did not produce overshoot

occurred exactly at the point where there was only one intermediate switch of jerk, as in

figure 4.29 (b) below. Note that in figure 4.29, the jerk profile should be inferred from the

constant slope of the acceleration, as discussed in section 4.6, this is done to save space and

to make the graphs less cluttered and complex.

When the absolute value of jerk is a little too large, as in figure (a), there is a jerk switch near

the initial point. In this example the initial values of distance, velocity and acceleration are

181

0.4, 1 and -1.5 respectively. When the jerk is slightly too small, as in figure (c), overshoot

occurs with a switch in jerk near the end. At the “Goldilocks point”, when the jerk is just

large enough to avoid overshoot, as in figure (b), there is only one switch in control, and the

system is on the landing surface (the landing surface is explained in section 4.6). After

experimenting with a large number of different initial conditions the result was always the

same. The least jerk required to avoid overshoot occurred exactly when only one intermediate

switch of jerk was required: too much jerk and a switch appeared at one end, too little and a

switch appeared at the other end. This result was entirely unexpected.

(a)

(b)

182

(c)

Figure 4.29 Jerk Too Large (a), Too Small (c), Just Right (b)

The method deriving from this result has been dubbed here the “landing-surface” method,

because the initial point is on the phase-plane landing surface for the minimum-time control

over jerk (refer to figure 4.9 in section 4.6). The landing surface is the surface in phase-space

made up of the points that can reach zero with one switch of jerk in the middle. (The landing-

surface control should not be confused with the iterative minimum-time control discussed

above in section 4.6.1. The landing surface is being used here in a completely different way

to find a control with no distance overshoot.)

A proof of this result was eventually found by this author, and it will be shown below that:

 If the initial conditions produce overshoot with no change in acceleration, then the

minimum-time control that avoids overshoot and which employs the least jerk

magnitude is the landing-surface control.

That is to say, the minimum-time control that has the least jerk and which does not overshoot

is the landing-surface method. The proof is discussed below in section 4.7.3.4.

To apply the landing-surface method it is necessary to find the jerk value such that the initial

point is on the landing surface. This problem has been solved by the author in a number of

ways, each method more efficient than the previous. The first method involved calculations

of distances onto the landing surface given various values of jerk, until the initial point

converged onto the landing surface. Another method involved varying the timing of the first

183

stage, rather than varying jerk. This method amounts to finding the intersection of two curves

such as those shown in figure 4.30. The Java code for this method can be found in the

appendix, in section 8.11.

Figure 4.30 Jerk vs. First-Stage Time Period

An advantage of this method is that it can be modified easily so that the jerk of the final

approach is lower than that used in the first stage. The method is slow to converge, however,

and requires the calculation of a square root at every step.

Equation 4.16 can be used to estimate the jerk required in the final stages of decay. From

equation 4.16, and from the fact that velocity and acceleration have opposite sign, it can be

shown that,

 .
2

3
)sgn(

ad
avest

This estimate can then be applied in the formula for the calculation of jerk,

 .
2

2

estv

a
jerk

An example of this control is shown in figure 4.31, which is quite close to the ideal of figure

4.29 (b). The reason that this control works as an iterative control is explained below. (The

graphs in this section were produced using the JerkControlDemo.java program in the

JerkControl package.)

184

Figure 4.31 Decay Jerk Calculated from Acceleration and Distance

The numerical method developed here lends itself to finding a softer jerk in the second stage

by altering the convergence condition. In the above, the condition of convergence applies

when the jerk of the first and second stages are equal in magnitude,

 Jerk1 = -Jerk2.

By a simple change in this condition,

 ReverseJerkFactor × Jerk1= -Jerk2,

where 0≤ ReverseJerkFactor ≤ 1, the second stage jerk can be made softer than the

first, generally at the expense of a small increase in the size of the initial jerk, as shown in

figure 4.32. Here the magnitude of the second stage jerk is 0.3 times the magnitude of the

first. Note that this also produces a quite flat jerk profile in an iterative method. (To

demonstrate this algorithm, change the slider value of ReverseJerkFactor to a value

between zero and one in the program OvershootDemo.java.)

185

Figure 4.32 Smaller Second-Stage Jerk

4.7.3.4. Proof of Landing-Surface Method

The above methods are quite slow computationally. A faster method became possible after a

proof had been developed by this author showing that the landing-surface control is minimal

in the sense discussed above. The Newton-Raphson method can be applied (Kreyszig, 1993,

p929) to equations derived in the proof. The proof is outlined in this subsection, with the

details transferred to an appendix (in section 8.14).

Figure 4.33 Switching Times

186

Refer to figure 4.33 above. Suppose that the initial conditions are on the landing surface

(there is only one intermediate switch of jerk). The system reaches rest (zero distance,

velocity and acceleration) at time Et and the intermediary switch occurs at time .1t The initial

distance, velocity and acceleration are represented as d, v and a respectively. Without loss of

generality the initial distance is assumed positive, .0d

The magnitude of the jerk used in the method is represented as j. Thus, in the example

depicted in figure 4.33, the jerk from time zero to time ,1t is constant at j, and the jerk of the

final stage, from 1t to ,Et is .j The case where initial jerk is negative and the second is

positive can be easily dismissed since this implies that the displacement is negative in the

second stage and thus overshoots. Hence j is a positive parameter of the method.

Since the initial point in phase-space,),,,(avd must lie on a landing surface, there are

restrictions on d, v, and a for a given j. For the proof of the optimality of the landing-surface

method, and in the numerical method for applying it, it is useful to define a function

),,,(avdjL
 which represents the jerk of the landing surface method as a function of initial

distance, d, velocity, v, and acceleration, a. It can be shown that Lj is well defined, at least

when the initial point results in overshoot with zero control jerk (otherwise there is an easy no

overshoot control, using zero jerk). (If there were more than one jerk value the supremum

could be selected, but it becomes clear later that the jerk value for the point to be on the

landing surface is unique.)

The following result can also be shown:

The function),,(avdjL
 is continuous, monotonic decreasing as a function in d, and

also,

 .0lim

L
d

j

The proof is divided into a number of cases, paying particular attention to the signs of

acceleration and velocity. The proof of this is perhaps algebraically messy, but it is does not

187

require advanced mathematics and the details of the proof are shown in the appendix, in

section 8.14. This also shows that the value of Lj is uniquely defined.

The period from 1t to Et is easy to characterize. At time Et the final values of acceleration,

velocity and distance are zero simultaneously. Also in this period jerk is constant, so in the

time between 1t and ,Et the values of distance and acceleration must be opposite in sign to

velocity and jerk. Assuming distance is positive, jerk and velocity are negative. This also

shows that the opposite jerk in the initial period, up to ,1t must be positive.

It is shown next by contradiction that the displacement on the landing surface cannot drop

below zero prior to the time .1t Suppose then that distance is negative at some time between

the initial point (at time zero, 0)0(yd by assumption). There is therefore a local

minimum between time zero and .Et Because distance is positive at time 1t , ,0)(1 ty and

the slope at time 1t is negative, y must have a local maximum some time after the local

minimum and before .1t This implies that the jerk before 1t is negative (the only way for a

third-order polynomial to have a minimum followed by a maximum with negative final

velocity is for the third-order coefficient to be negative). But it has been shown in the

previous paragraph that jerk is positive in the first phase, so this is impossible. Thus the

assumption of this paragraph, that the distance can be negative before time ,1t is false. Thus

it has been shown that the displacement is positive before
1t and positive between

1t and ,Et

therefore the displacement is positive at all times: there is no overshoot on the landing

surface.

The proof for the result given in section 4.7.3.3 can be now shown. The result is restated as:

 If the initial conditions produce overshoot with no change in acceleration, then the

minimum-time control that avoids overshoot and which employs the least jerk

magnitude is the landing-surface control.

Using proof by contradiction, suppose first that the required control does not begin on a

landing surface. The initial point is either above or below the landing surface. If it is below

188

the landing surface then the first jerk of the minimum-time method is positive (as discussed

in section 4.6.1), the second jerk is negative, and the final jerk is positive. In this case, in the

final stage of the minimum-time method jerk is positive, acceleration is negative, velocity is

positive, and distance is negative, as seen in the final stage in figure 4.29 (c). Negative

distance implies overshoot, contradicting the assumption that the initial point is below the

landing surface.

Suppose then that the initial distance, d, is above the landing surface. Let mj be the supposed

minimal jerk of this assumption. Suppose that the landing surface distance directly “below”

the initial point),,(avd is),,(avdm
 with .ddm Thus the jerk used on the landing surface

of the minimal method can be written as,

).,,(
def

avdjj mLm

The landing surface method at the initial point would use a jerk given by,

).,,(
def

0 avdjj L

However, from the above lemma, Lj is a decreasing function of d, and ,ddm giving,

 .),,(),,(0 mmLL javdjavdjj

Now the landing-surface method using 0j is itself a method reaching zero without overshoot,

since it has been shown above that the landing surface does not overshoot. Furthermore it

uses lower jerk than mj , contradicting the assumption that mj is minimal. This then

contradicts the possibility that the initial point is above the landing surface.

The initial point in phase space is neither above nor below the landing surface so it is on the

landing surface. In fact, the function),,(avdjL can be used to find the jerk needed for the

initial point to be on the landing surface (refer to appendix 8.14).

Because the landing-surface method is also a minimum-time method, it must also be a

minimum-time method which avoids overshoot (using the jerk value of the landing surface)

since it already has the property that it avoids overshoot. All minimum-time controls using

larger jerk than the landing surface control also avoid overshoot, but at the cost of

smoothness.

189

Optimality explains the observed consistency when used as a feedback control. “If [control] u

is optimal on],,[21 tt it is optimal on every subinterval” (MacCluer, 2005, p121). As noted in

section 2.3.2.3, this is, in fact, an expression of Bellman’s “principle of optimality”. Because

of this principle, the optimal control translates to a consistent RTOC.

4.7.3.5. Skim Methods

The landing-surface method uses the least jerk of all minimum-time controls that do not

overshoot, but is it minimal of all controls? Is it the control which avoids overshoot using the

least maximal jerk?

In fact, it is not minimal in this sense and the actual minimal control is quite easily

determined. Suppose a constant positive jerk Sj is applied to keep distance positive. This

gives the following values for acceleration, velocity and distance:

.)(

,)(

,)(

3

6

12

2

1

2

2

1

tjatvtdty

tjatvty

tjaty

S

S

S

Equation 4.19

Set both distance and velocity simultaneously to zero at some time T: 0)(Ty and .0)(Ty

(Note that acceleration is not set to zero.) Now Sj can be eliminated from the equations for

y and y giving a quadratic in T as below,

 .0322

2

1 dvTaT

Solving the quadratic for T and choosing the least positive solution gives,

 ,
642 2

a

advv
T

It can be shown that, in fact, in the case that ,0d the negative always applies:

 .
642 2

a

advv
T

Using this, Sj is derived from equation 4.19 by setting 0)(Ty and solving to give,

190

.

642

6422
2

2

22

2

advv

advva

T

aTv
jS

At the point that the trajectory skims the time axis, both distance and velocity are at zero, but

there will generally be some remaining rebound acceleration, .0)(Ty This remaining

acceleration will be dealt with below.

At this point, it is easy to show that the truly minimal control for avoiding overshoot (but not

coming to rest with zero acceleration) must use jerk Sj up to the time of skimming the time

axis, T. Suppose that there is a jerk control,)(tjm which does not overshoot but which has a

smaller jerk than Sj at all times before time T:

 .)(sup
0

Sm
Tt

jtj

Suppose that)(tjm is integrable, then,

.0)(

)()(

3

6
12

2
1

0 0 0

2

2
1

0 0 0

2

2
1

TyTjaTvTddddjaTvTd

dddjaTvTdTy

S

T

S

T

mm

And so the method overshoots, contradicting the assumption. Thus Sj is the minimum jerk

that avoids overshooting the time axis. Furthermore, it is clear that T is the minimum time to

intersect the time axis without overshoot, using jerk no larger than .Sj

When overshoot does not occur with zero control, a negative value of Sj will also produce a

skim. However, the case that Sj is negative, controls for a minimum-time control with lower

values of control jerk than Sj will not produce overshoot, but larger values may. In fact the

minimum-time method (with no distance constraint) will then overshoot for jerk values

between Sj and .Lj

191

Figure 4.34 shows an example of a skim compared to a landing-surface control. Here the

initial values are ,1d 5.1v and .3.0a For these values the value of Sj is

approximately .1233.2Sj

Figure 4.34 Landing-Surface compared to Skim

The problem for the skim method though is that some rebound acceleration generally remains

at the point that the trajectory skims the time axis, similar to the rebound problem discussed

previously in section 4.7.3.1. The quickest way to deal with this remaining acceleration is to

employ a minimum-time control over jerk to bring the system back to zero, as in figure 4.35.

This control can be added to control the rebound, immediately after the skimming of the time

axis.

Figure 4.35 Removing Remaining Acceleration

192

Any value of jerk can be used for this control without producing overshoot, even

infinitesimally small values. However, the time taken using such a control is given as,

 ,
4.39031)21(

R

R

R

R
R

j

a

j

az
T

Equation 4.20

where Ra is the acceleration remaining after applying ,Sj Rj is the jerk applied, and RT is

the time taken to reach zero in this portion of the control. (Click on “J vs T” in Overshoot

Control Demo.) Here z is the positive root of ,3162412 24 zzz

 .69515635.1z

(Refer to Maple file PhD/Maple Experiments/MinTimeZeroInitialDistAndVel 02.mws.)

Furthermore, the maximum rebound distance is found to be,

 ,
3

2
66665443.0

2

3

2

3

max

R

R

R

R

j

a

j

a
d

and occurs at time,

 .
2

0000247.2max

R

R

R

R

j

a

j

a
T

Equation 4.21

From equation 4.20, the jerk value which returns the system to zero in minimum time with

jerk not larger than Sj must use jerk value .SR jj Figure 4.36 shows the full skim control

including this control of rebound after the initial skim.

193

Figure 4.36 Skim showing Rebound, compared with Landing-Plane

In the example shown above the values of jerk for the landing-surface method, ,Lj and for

the minimum-jerk skim method, ,Sj are,

 50835.2Lj and 12331.2Sj

The jerk for the skim method is lower, but the rebound takes a very long time and, in this

example, even travels back beyond the initial point. Depending on the application this could

induce instability.

There are some initial conditions for which skim jerk can be somewhat lower than landing-

surface jerk, .Lj With initial conditions ,8.1d 8.1v and ,85.0a the jerk values are

somewhat further apart:

 ,488759.0Lj and .0760144.0Sj

However, the rebound time and rebound distance for the skim method are extremely large in

this case.

There is a continuous range of controls with jerk values between the landing surface control,

,Lj and the minimum-jerk skim control, .Sj For a given value of jerk, J, that lies between

Lj and Sj a two-stage control can be applied, using a constant positive jerk, J, until such

time as the conditions require a constant negative jerk of J to just skim the time axis. This

194

is clearly simple to apply as a feedback control and numerical experiments verify that this

works as a closed-loop iterative method. Figure 4.37 shows a comparison using three values

of control jerk. The initial conditions are ,4.0d 4.0v and .1.0a The three controls

are the landing surface control, the minimum-jerk skim control, and an example of a skim

control with a control jerk value intermediate between the two extremes. (Click on “Newton

vs. Skim” in Overshoot Control Demo.)

Figure 4.37 Various Skim Methods Compared

The full range of such controls will here be considered the definition of a “skim” control.

Note there are three stages in the general skim control: stage one is a period of increasing

acceleration, using nominal jerk J; stage two switches from positive jerk to negative, ,J at

exactly the point when this is required to just skim the time axis; and stage three occurs just

after skimming the time axis and comprises the rebound, using the standard minimum-time

control with jerk magnitude J, removing the acceleration at rebound.

For lower jerk values, the skim controls have larger rebound, given the same initial condition.

At the lowest jerk limit, the skim control that has no initial stage becomes the minimum-jerk

skim control. At the other extreme, with the landing-surface control, there is no rebound at

all. The controls can be extended for jerk limits greater than Lj simply by including the

standard minimum-time method, which do not overshoot for these jerk values.

This complete range of “skim” methods then is conjectured to be the full range of minimum-

time methods that have distance and jerk constraints that return to rest without overshoot at

zero distance. That is, they are conjectured to be the full range of solutions to the following

problem.

195

What is the minimum-time control that returns to rest (zero distance, velocity and

acceleration) with constrained jerk,

 ,)(Jty

and which does not overshoot zero displacement, that is,

,0)(ty

for all ?0t

The two extremes, the landing-surface control and the minimum-jerk skim control, have been

proven to be minimum time here, and of course, the standard minimum-time controls are

minimum time. A proof of the wider claim, including the controls between the minimum-jerk

skim and the landing-surface control, is more difficult. What follows in the next few

paragraphs is a condensed version of a more detailed discussion given in the appendix, in

section 8.16.

The general “no overshoot” problem is constrained in the state-space: .0)(ty Pontryagin’s

method does not apply to problems with state-space constraints, although the performance

criteria can be modified so that solutions only occur within the state-space constraints (Kirk,

1970, pp237-8). This method may be useful numerically, but it does little to assist with an

analytical solution. The approach taken by this author is to divide the problem into two

portions, with the point of skim forming the division. It then remains to show that any small

admissible perturbation in the initial section (one that does not cause overshoot) produces

only an overall increase in the total time.

The first stage of control must be equivalent to a minimum-time control, unconstrained by

displacement, which ends in zero distance and velocity, but with a non-zero “rebound”

acceleration. Since this problem has the same adjoint equation as equation 4.12, the same

conclusion results: there are at most two switches in jerk.

A small perturbation then can only take the form of the introduction of a switch a small time

after the start, or a small time before the end (with concomitant changes in the other

switching times, constrained by the fact that distance and velocity must be zero at the end).

Such perturbations, with finite differences in control value but small timing differences, are

196

allowed as perturbations in the proof of Pontryagin’s minimisation principle (Mesterton-

Gibbons, 2009, p169; Pontryagin et al., 1986, p87).

Suppose the control is perturbed by switching a small time after time zero, ,0t from J

initially to .J When the change in overall time is graphed (such as shown in figure 8.14) it is

apparent, in at least all cases examined by the author, that there is an increase in overall time.

This of course does not constitute a proof. It needs to be shown algebraically that the rate of

change of overall time with respect 0t is positive, and this also needs to be shown for small

perturbations “at the end”.

If this is shown then the minimum-jerk skim and the landing surface methods, which have

been proven independently, are special cases of skim controls. Thus there is a compromise.

Larger jerk values decrease comfort, but they produce smaller rebound, and quicker overall

time to zero. Thus there is a trade-off between smoothness, rebound, and overall time.

The extent to which rebound represents a problem depends on the application. For example, a

small amount of rebound might not be a problem in a suspension avoiding a rattlespace limit,

since a suspension needs to move to the centre of the rattlespace in any case. On the other

hand, a landing surface may be exactly what is needed in other contexts, such as a robotic

arm movement up to a delicate piece of machinery. Skim methods with very low jerk control

values might also prove useful near rest to deal with small state-estimation errors, numerical

round-off errors or small vibrations. On the other hand, some physical implementations may

be incapable of producing rebound, such as semi-active controls in a configuration that is

limited by the passivity constraint.

Consider now a system which is constrained on two sides (such as in a suspension, or when

considering error corrections). Suppose that a control is applied to skim from one side to the

other until an acceptably smooth standard minimum-time method can be used within the

rattlespace, as depicted in figure 4.38. In this method, different values of jerk magnitude, 1j

to ,nj are used with skim methods applied in stages between each edge. (The arrows in the

diagram indicate that the controls are opposite in direction; there are jerk switches in each

region.)

197

Figure 4.38 Coming to Rest in Rattlespace

If the minimum-jerk skim is used to target each opposite edge, then it is easy to show that the

system will oscillate forever from one edge to the other with jerks equal in magnitude,

...321 jjj , and with the acceleration at each edge being the same in magnitude but

opposite in direction. At the other extreme, if the landing-surface jerk is used, the system will

come to an abrupt stop at the first edge encounter. Using skim methods with jerk values

between the landing-surface and the minimum-jerk skim, the system can be made to decay in

a controlled way with21 njjj Acceleration at the opposite edge decreases with each

traversal. Finally, a minimum-time method brings the system to rest with an acceptable jerk

value. The kind of decay used will depend on the needs of the application, specifically on the

relative importance of smoothness compared to settling time: a smoother control will take

longer to reach zero.

It takes little imagination to see that the method can be adapted to coming to rest without

actually skimming rattlespace limits, but turning at convenient distances within the

rattlespace.

What this shows is that jerk control at the level of minimum-jerk skim will oscillate forever

within the rattlespace. The landing-surface jerk on the other hand is too large and brings the

system to rest at the rattlespace edge. We conjecture that a suspension control using jerk will

therefore use jerk values in this range, or perhaps slightly larger. If larger values are needed

they might be skim jerk values that apply to a smaller rattlespace, say one third the wider

width.

198

4.7.3.6. Applying the Landing-Surface Method

To apply the landing-surface method numerically in a discrete control, it is necessary to solve

a fourth-order equation. Refer to the appendix, 8.14. In the case of positive initial

acceleration, case 1, the following equation holds,

 ,12

v

ad

Equation 4.22

where the function 1 is defined as,

 ,
)2(3

)364(2
)(

22

32def

1
x

xx
x

Equation 4.23

and)(j is defined as,

 .
4

2)(
2

def

a

vj
j

Equation 4.24

To find the jerk for the landing-surface method requires first solving the fourth-order

polynomial given by equation 4.22 and equation 4.23. Closed-form solutions can be

calculated for fourth-order equations, as shown by Dixon (2008, pp385-91), but the solution

is quite cumbersome. “In practice, numerical iteration methods may be as good in this case,

although the analytic method ... is more predictable in computation time (Dixon, 2008,

p391).” The numerical Newton-Raphson method has been used in this thesis. The iterative

method has some scope for improvement in efficiency. For instance, the equation has really

only one varying parameter, ,/ 2vad so there is some scope for the use of look-up tables to

provide initial estimates. There may also be the possibility of using previous values in initial

estimates in a real-time feedback control. These refinements were not investigated here.

Using the Newton-Raphson method, equation 4.22 can be solved for a value of x that solves

./)(2

1 vadx Each step requires the following calculation,

199

 .
)312188(2

)2(3)364(2

)2(
)(

)(

32

22

2

32

2

1

21

1

nnnn

nnn

nn

n

n

nn
xxxx

x
v

ad
xx

xx
x

v

ad
x

xx

Once x is found, this is squared to give (defined in the appendix in section 8.14) and the

jerk is derived from the equation for ,

 .2
4

2

v

a
j

The most computationally complex operation in each step of Newton’s method is a single

division. This is a considerable improvement over the numerical methods developed

previously in section 4.7.3.3 which required a square root in each step, and which converge

much more slowly.

In the case of negative acceleration, case 2, the iteration step requires the calculation,

 ,
)312188(2

)2(3)364(2

)2(
)(

)(

32

22

2

32

2

2

22

1

nnnn

nnn

nn

n

n

nn
xxxx

x
v

ad
xx

xx
x

v

ad
x

xx

where,

 .
)2(3

)364(2
)(

22

32def

2
x

xx
x

Equation 4.25

Asymptotes exist near points where 2 causing convergence problems, but it is a simple

matter to trap when these problems occur and move closer to a region of convergence. This is

helped by the fact that the signs of initial acceleration and velocity determine whether 2

or .2 The method used is to calculate a new value of closer to 2 using a formula

of the form,

 ,
1

2
1

 k

k
n

n

where k is some number larger than or equal to 1 (10 was used in the author’s code).

The cases 0a and 0v are also easily dealt with by applying the results for these special

cases when a or v is near zero (see section 8.14).

200

When
2v

ad
 is very large, convergence is slow but very close approximations can be found.

For example, when acceleration is positive and x is large, the following is a close

approximation,

 .
2

)(1
x

x

(The Java code for the entire method can be found in the procedure “jerkForLandingSurface”

in the SwitchPlane01.java class definition in the Overshoot package.)

An alternative method for finding the control parameter is of less value numerically, but it is

perhaps worth mentioning. It is simpler algebraically, but it has a slower convergence. Recall

from section 4.7.3.2 that equation 4.18 was derived by assuming that the end conditions of

the first stage were such that constant jerk could be applied to bring the system to rest, up to

zero acceleration. Solving for first-stage jerk in terms of initial conditions produces the

following variant of equation 4.18,

 .
)3(

624

2

1

11

2

1

2

1

2

1
dvtt

adtaavtv
j

Recall that the second stage jerk could be different from the first. Now set just the final

velocity and acceleration to zero and solve for jerk magnitude in the final stage,

 .
)64)(3(2

)2(

)(2

)(
2

11

3

1

1

2

1
2

dvtatvtd

atv

ty

ty
j

Equating 1j and 2j gives the value of 1t as the root of the equation,

 .0)3)(64()2(1

23

11 vtdadvatvt

Equation 4.26

This equation can also be solved using Newton’s method. This method was not used here

(although the solution is calculated in the method jerkForLandingSurfaceGamma and can be

seen running by pressing the button labelled “Newton” in OvershootDemo.java). Also the

former method uses functions 1 (equation 4.23) and 2 (equation 4.25) that have only one

parameter and which thus may allow further optimization using look-up tables and other

methods.

201

Applying the landing surface method as a real-time feedback control produces results similar

to those shown in section 4.7.3.3. Figure 4.39 shows an example of an application of the

method, with initial conditions, ,5.1d 1v and .5.0a Distance has been colour-

coded in the diagram according to the stage control being applied.

Figure 4.39 Iterative Landing-Plane Method

The jerk of the second stage of the iterated landing-surface method needs to be estimated

when used in a feedback control. Suppose ,Cd Cv and Ca are the current distance, velocity

and acceleration, at a time after the first stage. Suppose that jerk 2j is used to bring velocity

and acceleration to zero at time 2t (after the current instant). Solving for 2t and 2j gives,

.

,2

2

2

2

t

a
j

a

v
t

C

C

C

This method when iterated produces small round-off errors at the end of the final stage,

shown in the figure above. Even so the second-stage jerk is very flat. It is vastly superior to

the iterated methods used in sections 4.7.3.2 and 4.7.3.3 which failed completely to work as

iterative methods, or were cumbersome and slow.

To deal with the round-off effects the distance remaining when the velocity and acceleration

reach zero can be estimated as,

202

 .3

226
12

22
1

2 tjtatvdd CCCR

A small jerk can be added to 2j in the opposite direction to Rd using,

 .
3

2

2

def

2
t

d
jj R

For small errors only a small value for the proportionality factor, , is needed. The method

can be iterated improving the distance estimate, but since the value should be small this is

only done twice in the control demonstrated below. The result is a smoother response near

zero, as seen in figure 4.40, although there are still some round-off artefacts to deal with.

Problems resulting from small values should be dealt with by using code to identify when

round-off produces division by near-zero values, or methods that “capture” the final state in a

very small “rattlespace” could be used.

Figure 4.40 Example of Feedback Landing-Surface with Distance Error Correction

At any rate, the small errors of the final stage are not a concern in suspension applications or

some semi-active systems. With a suspension, the control should seek the centre before

reaching a rattlespace edge, and a semi-active system that reaches zero cannot supply

rebound forces.

203

4.7.3.7. Control Variants for Increased Speed

The control outlined in the previous section can be used for the delicate final “docking”

approach. Because the method above can determine the jerk value required for the control in

real-time, it can be applied only when the jerk required reaches a nominated value. Thus any

other control can be used initially to speed up the approach trajectory. If the jerk required is

already larger than the nominated value then the landing surface method will give as smooth

an approach as possible, in terms of jerk magnitude, without rebound. Because the jerk level

of the landing-surface control is known, and because other parameters, especially maximum

acceleration, are easily calculated, the landing-surface method can be used to complete what

might otherwise be a very difficult manoeuvre.

Specifically, suppose the jerk magnitude, ,BJ is nominated as being acceptably soft for

comfort and for protection against damage due to vibration in the final approach. Suppose

also that at the initial point, the landing surface method requires less jerk than ,BJ as will

almost certainly be the case when initialising a point-to-point movement. Then any other

control could be used, until the point that BJ is needed for the landing method. When this

point is reached, the landing-surface method takes over for the complex final approach. This

combination allows both fast and acceptably smooth movement.

In a real-time feedback control landing surface jerk required is calculated at each step. If the

jerk is less than ,BJ then apply the alternative method, otherwise use the landing-surface

control. Any control prior to this could be used: linear jerk control, or even just constant

negative jerk, .BJ Different applications may need different constraints resulting in subtly

different controls.

In the literature, jerk controls over robotic arm movement exploit control symmetries

(Muenchhof and Singh, 2003; Ben-Itzhak and Karniel, 2008; Peters, 1995). Muenchhof and

Singh restrict their attention to controls that are “point-symmetric about the mid-maneuver

time” (Muenchhof and Singh, 2003, p140). The inclusion of the landing-surface control,

however, handles the problem using feedback control and deals with the most difficult part of

the manoeuvre, the final “docking” approach.

204

An example of a comparison between the pure landing-surface method (press “Cts. Land

Test” in Overshoot Control Demo) and a modified method (press “BOB2”) is shown in figure

4.41. The initial conditions of this example are, ,2d ,1v and ,1.0a and the

nominated value of BJ is 1. The system returns to rest more quickly: in approximately 3

seconds as opposed to 4.5 seconds.

(a)

 (b)

Figure 4.41 Comparison: (a) Landing-Surface, (b) BOB with Improved Time

In a similar way the maximum acceleration of the landing-surface method is easily calculated

and can be used to implement a constraint on acceleration. The maximum value of the

landing-surface acceleration is given as,

 .1ttj EL

205

Thus the method applies the landing surface method only when the system reaches a state

where the maximum acceleration required by the method reaches or exceeds some nominal

value, say .BA Similarly, when using BJ the jerk should stop when acceleration reaches

.BA Figure 4.42 shows the use of an acceleration limit. (The examples are run using button

“BOB2”.) The initial conditions are ,1d 0v and .35.0a The jerk limit is ,5.1BJ

and the acceleration limit is .35.0BA Figure (a) has a jerk limit only and figure (b) shows

that a smoother response is yet again achieved at the sacrifice of speed.

(a)

(b)

Figure 4.42 Figure (b) has an Acceleration Limit

206

Recall from the previous section (section 4.7.3.6) that the final stage of the iterative control

uses an estimate of the time taken and jerk required for the remainder of the very final stage:

.

,2

2

2

2

t

a
j

a

v
t

C

C

C

Here substantially the same caluclations are performed as in the previous section except that

if ,02 t then the control is not in danger of overshoot and jerk back to zero can be applied,

.BJ Also when the control has a large residual distance (Rd in the previous section) or if it

takes a long time to reach zero, then return jerk is controlled to remain lower in magnitude

than .BJ

4.7.4. Edge Constraint

The above theory can now be applied to suspension systems. Firstly, in this section two

general approaches developed by this author are explained which, for the sake of discussion,

are here termed “edge constraint” and “variable hardness”. These methods have developed

relatively late in the thesis research, but there are a few numerical algorithms applied in the

numerical experiments using these methods.

The basic idea of edge constraint is to apply a control of some kind to avoid an imminent

collision with one of the rattlespace limits. Suppose that the chassis height trajectory is

controllable, while the road height as a function of time is not. The idea is that the future

trajectory of the chassis should not overshoot the approaching rattlespace limit, which

matches road movement (ignoring the tyre) and is stochastic. The problem discussed in the

previous section, of reaching a given distance with no overshoot, was inspired by the need to

control a suspension chassis as it approaches a rattlespace limit, either top or bottom. As

mentioned earlier (in section 4.7.1) one major difficulty is trying to predict the future

movement of the rattlespace, since it is stochastic.

207

The edge constraint should be mixed with an acceptably soft return to equilibrium when there

is little danger of a collision with a rattlespace edge. It has been found that if this is not

included the control will tend to wallow between the edges without reaching equilibrium.

Thus, the control should be able to prioritize whether to avoid an edge collision or softly

return to equilibrium. This decision is complex, and among other things it depends on the

control strength needed at future times. Ultimately, it also depends on the statistical

properties of the road, as noted in section 4.7.1.

Inside the rattlespace, the jerk needed to avoid a collision with the rattlespace edge can be

calculated for both the top and the bottom edges. Consider the simple method of using the

value of jerk with the largest magnitude, on the assumption that the greater the danger of

rattlespace collision, the greater the jerk value. Figure 4.43 shows an example of this control

under relatively smooth conditions. Clearly, the simple method stays within the rattlespace

but, as might be expected, it does not seek the centre.

Figure 4.43 Edge Avoidance

When the edges have rough corrugations, as in figure 4.44, it may be helpful to target smooth

edges that lie inside the rattlespace, thus avoiding over-reacting to small corrugations.

Momentarily high edge velocities do not necessarily indicate an impending large bump. This

208

is a statistical matter, but a rough approximation can be made by smoothing the edge. A two

parameter method was used to give the results shown in figure 4.44. The method employed a

simple formula to find a given proportion of the distance between the chassis and the

rattlespace edge.

Using the example of the top rattlespace edge, the height of this point is given as,

),)((PROP_REL yRryA

where y is the chassis height, r is the height of the centre of the rattlespace, R is half the

rattlespace width and PROP_REL is the proportion factor, between zero and one. Another

proportional factor, PROP_ABS, is the absolute proportion between the rattlespace centre

and the edge and is a limit on PROP_REL. The code for performing these calculations can be

found in,

 Overshoot\RattlespaceTargetX.java.

(A demonstration of this code can be run by pressing the “Continuous Control button” in the

OvershootDemo program.)

 Employing this algorithm produces the results shown in figure 4.44 (using “RCE” as the

“baseAlgorithm” parameter. Here the parameter values are, PROP_ABS=0.5 and

PROP_REL=0.4.)

209

Figure 4.44 Edge Avoidance with Edge Targets

Further refinements can be made to take account of edge velocity. In the first edge collision

in figure 4.44, for example, the rattlespace edge is clearly moving quickly towards the

chassis. When a large bump does occur, the suspension should respond accordingly. The best

approach would analyse edge statistics to determine how best to distinguish between edge

corrugations and large bumps. Again a simple heuristic was adapted here.

The method used here employs only one parameter COLLISION_TIME. Firstly, an estimate

of the current edge velocity is found. It is then easy to estimate the time to edge collision

using current chassis height and rattlespace edge height and velocity. Suppose t represents

this estimated time to collision, the interval between zero and COLLISION_TIME, then the

following formula is used to provide an edge velocity measure for the edge avoidance

algorithm that discounts when collision is not imminent:

 .
TIMECOLLISION_

 TIMECOLLISION_Use
Ev

tv

Here Ev is the estimate of the current edge velocity, and
 Usev is the velocity estimate.

COLLISION_TIME is the single parameter of the method. With this formula, the closer the

likelihood of edge collision, the closer the edge velocity estimate is to the true edge velocity.

(The code for this algorithm can also be found in,

Java\TwoJerksEdgeX\RattlespaceTargetX.java.) This produces a vast

improvement on the capacity to avoid edge collisions as can be seen in figure 4.45, where a

COLLISION_TIME value of 0.5 seconds was used.

210

Figure 4.45 Edge Avoidance with Edge Velocity Estimate

There is a trade-off. With small values of COLLISION_TIME, large bumps are not

recognized until very late. With large values, the suspension can over-react to small

corrugations, mistaking them for large bumps. Again, the optimal value depends on road

statistics, but robust, acceptable values might be determined by an evolutionary algorithm.

The control for return to zero could be any soft control such as linear control over jerk or a

minimum-time control over jerk (see section 4.6). In its simplest form, this needs just one

parameter value, the absolute value of jerk. This parameter will be represented as

COMFORT_JERK. In order to determine if this is too soft, and is likely to hit the rattlespace

edge, it is necessary to be able to determine the maximal and minimal travel of the minimum-

time method. This might not be a trivial calculation in the case of the minimum-time method,

but modern microprocessors should be more than equal to the task.

The determination of which algorithm to employ, either the “hard outer” controls or the “soft

inner” control, can be based on the projected trajectory of the soft inner control. The

algorithm will switch to the hard outer control if the soft control is likely to collide with the

rattlespace limits. Furthermore, if both upper and lower limits lie outside the rattlespace, it is

211

the limit which occurs first which determines which edge avoidance is applied. A simulation

showing the application this algorithm is given in figure 4.46. Periods of the inner control are

shown in red on this graph.

Just as corrugations can cause over reactions in the outer control, so they can disrupt what

should be a smooth inner control. Smoothing of the target can be performed using a low-pass

filter (which is easily implemented in a discrete control using a moving average as in section

8.12). Such smoothing is shown in figure 4.46. (The algorithm for road smoothing can be

found in file,

 Java/TwoJerksEdgeX/RoadFilter.java.

The code for the version of the dual-mode algorithm as outlined here can be found in the

class definition file,

 Java/TwoJerksEdgeX/EdgeTargetWithMinTimeX.java.)

In the example, the value of comfort jerk is 1.25. The decay rate for the rattlespace centre is

1.05 and the decay rate for rattlespace centre velocity is 0.1.

Figure 4.46 Dual-Mode Control

212

This variant has been implemented for numerical experiments. More sophisticated variants

are possible and more research is needed.

4.7.5. Variable Hardness

An alternative approach for rattlespace constraint is to vary a control’s “hardness” so that it

stays within the rattlespace limits. So for example a linear control could momentarily increase

its linear coefficients to ensure travel remains in the rattlespace. The iterated minimum-time

bang-bang control could also be used. The jerk parameter of the method could be varied to

ensure that the control remains within the rattlespace.

Suppose that the nominal future rattlespace limits are assumed to be constant, as in figure

4.21 (a), and as in figure 4.47. Here the initial distance, velocity and acceleration are given.

Without loss of generality, suppose the centre of the rattlespace is zero height. The minimum

control jerk that is required to just glance against the edge of the rattlespace can be

calculated, producing the chassis trajectory shown in figure 4.47.

Figure 4.47 Maximum Displacement at Rattlespace Limit

Suppose first that the maximum and minimum distance travelled for any given magnitude of

control jerk, j, can be calculated. Let the maximum distance travelled vertically be

213

represented as max, and the minimum as min. These values are easily calculated for any

given jerk, j, once the time to reach the landing surface has been calculated (see section 8.8).

Since the separate parts of the trajectory are cubic polynomials, the maximum and minimum

points are easily found using calculus.

The pseudo code in figure 4.48 provides a numerical method to find a jerk value that will

maintain the system within the rattlespace. Let R represent half the rattlespace width. Firstly

the maximum and minimum heights are calculated for the initial jerk value, JInit, using the

current displacement, velocity and acceleration of the chassis. If the initial estimate leads to

either max or min outside the rattlespace,

 Rmax or ,min R

then the initial jerk value is too small. The suspension is not “hard” enough, and so the

algorithm repeats, doubling the jerk value. If it is inside the rattlespace, the jerk value is not

yet “soft” enough and so the step is repeated with half the jerk control value. Eventually two

jerk values are derived: a “hard” value, JIn, which maintains the system inside the rattlespace,

and a “soft” value, JOut, which produces a trajectory outside the rattlespace. This algorithm

can be forced to stop if it reaches a predetermined large, maximum value for jerk, J_MAX,

which circumvents the need to mathematically prove that the algorithm stops, although it

allows the method to stray outside the rattlespace under extreme conditions.

After this, the interval between JIn and JOut is repeatedly dissected, modifying these values

so that they become closer and closer, stopping when the difference between them reaches a

predetermined very small tolerance value, JERK_TOLERANCE.

214

******** Find initial values for JIn and JOut, using doubling or halving

Find min and max with jerk set to JInit

If outside rattlespace (i.e. max>R or min<-R) Then

 JOut=JInit

 JIn=2*JOut

 Find min and max with jerk set to JIn

 While outside rattlespace (max>R or min<-R) and JIn< J_MAX

 JOut=JIn

 JIn=2*JIn

 Find min and max with jerk set to JIn

 End While

Else

 JIn=JInit

 JOut=JIn/2

 Find min and max with jerk set to JOut

 While inside rattlespace (i.e. max≤R or min≥-R) and JIn>JERK_TOLERANCE Then

 JIn=JOut

 JOut=JOut/2

 End While

End If

******** Keep dissecting till tolerance level reached

While JIn-JOut>JERK_TOLERANCE and JOut< J_MAX

 Jerk=(JIn+JOut)/2;

 Find min and max with jerk set to Jerk

 If outside rattlespace (i.e. max>R or min<-R)

 JOut=Jerk

 Else

 JIn=Jerk

 End If

End While

Return JIn or J_MAX, whichever is smallest

Figure 4.48 Pseudo code for Variable Hardness

The value found can effectively keep the suspension within the rattlespace, if the rattlespace

does not move discontinuously, and if a jerk less than J_MAX is sufficient to achieve this

goal. The use of this value not only ensures that the method stops, it is also included for

numerical stability in evolutionary algorithms (see section 4.9). There is also a limit to the

hardness of a suspension that a passenger should endure and which should cause a reasonable

driver to slow down.

215

It has been found that control is improved if there is some decay in control strength. If a hard

suspension is required momentarily, it is best not to decrease the control strength too quickly.

A moving average (see section 8.12) can be adapted to this purpose.

4.8. Force Discontinuity in Semi-Active Suspension

Because of the passivity constraint (Yi and Song, 1999, p147; Giorgetti et al., 2006; Sergio

M. Savaresi et al., 2003, p2264; Jalili, 2002, p600; Yokoyama et al., 2001; Hyvärinen, 2004,

pp31-2) semi-active controls are constrained in the force they can supply, as explained in

section 2.6. Semi-active controls are often adapted from other successful controls, frequently

using “clipping” as explained below. For example, there are a number of “semi-active

skyhook” controls in the literature which follow the skyhook algorithm (see section 2.4)

within the constraints of the semi-active system.

4.8.1. Clipped Semi-Active Control

The simplest way to adapt a control algorithm for a semi-active system is to match the target

system’s control forces where possible, and to use the closest value where this is not possible

(Gordon and Best, 1994, p332; Johnson and Erkus, 2002, p2463; Jalili, 2002, p603; Giorgetti

et al., 2006, p524; Dyke et al., 1996). The target control could be any desired control: an

LQR control, a purely linear skyhook control, minimum-time control, sliding mode control,

etc. The unconstrained target control before clipping will be referred to generically here as

the “target control”.

It will be assumed that the damping rate limits are minc and ,maxc where .0 maxmin cc

(More accurate damper models are available, as discussed in section 2.6.) It is convenient to

apply a “saturation operator” (Savaresi et al., 2003, p2266; Giorgetti et al., 2006, p524; Tseng

and Hendrick, 1994, p549), which clips the input to the extremes. This is defined as,

216

Saturation is often referred to as “clipping” by engineers, and the term has also been used for

semi-active controls (Krüger, 2002, p498; Jalili, 2002, p603; Giorgetti et al., 2006; Johnson

and Erkus, 2002, p2463; Spencer et al., 1997, p14). Clipping the target suspension control

results in the following damping rate,

 .
],[maxmin

s

ksF
satc T

cc

Equation 4.27

In this equation TF is the force required by the target control. As in previous sections, k is the

spring rate, s is the stroke and c is the damping rate. Note that as s approaches zero, the

damping rate saturates at its maximum value.

Refer to figure 4.49 below. Here a semi-active system starts out by being able to supply the

target force, but as the stroke rate drops to zero the target force can no longer be maintained

because of the passivity constraint. The point at which the damper loses the ability to reach

the target force occurs when the stroke rate crosses from one direction to another (assuming

that the target force does not change sign at exactly the same time). As the stroke rate

approaches zero the damping force is clipped by the maximum damping rate, At the

point at which clipping starts, the damping force drops as stroke velocity approaches zero

with force given by,

 .max scFd

The rate-of-change of damping force is,

 .max scF
dt

d
d

The damping force drops to zero, and accompanying the sudden change in force is a spike in

jerk. (The force after the stroke changes direction may be non-zero because the damper has a

minimum damping rate .)minc

otherwise.

, if

, if

)(
],[

x

bxb

axa

xsat
ba

.maxc

217

Figure 4.49 Crossover with Clipped Target Control

The greater the upper limit on damping rate, the higher the spike in jerk. Controllable

dampers can become extremely stiff and they are capable of producing an immense spike in

jerk. Thus a high jerk is caused by the clipping of a target control algorithm, and it occurs

when the stroke velocity, changes sign. Furthermore, it produces a spike in jerk without

necessarily encountering a road surface discontinuity (as discussed in section 4.3).

Gordon and Best claimed that clipping provides an acceptable approximation to their target

control, but fitness in their experiments was measured using acceleration and force (1994,

p334) rather than jerk. Sudden changes between moderate acceleration values can have

almost no effect on RMS acceleration, as explained in section 3.1. Clipped controls can seem

to perform well using RMS acceleration because this measure ignores entirely this artificially

created, highly uncomfortable spike in jerk.

The clipped linear quadratic regulator has been referred to as the “clipped-optimal” control,

and it has received a great deal of attention in the literature (Krüger, 2002, p498; Giorgetti et

al., 2006; Johnson and Erkus, 2002; Tseng and Hendrick, 1994, p546). Giorgetti, Bemporad

et al. refer to this also by the more specific term, “clipped-LQR” (2006, p523). Similarly, a

clipped version of the pure skyhook control will be termed here the “clipped skyhook”

control.

,s

218

This author briefly investigated the possibility of a system that might allow two controlled

dampers “back-to-back” to produce a control force in either direction. This is almost certainly

impossible, given that the damper always seems to produce a resultant force that opposes the

motion of the chassis relative to the wheel, and vice versa. Even if there were some system of

pulleys or levers that made this possible, it would no doubt require a fundamental and

somewhat inconvenient change to suspension geometry. Furthermore, control force would

still drop to zero when the stroke rate reaches zero, and the “crossover” problem substantially

remains. This possibility will not be considered further in this thesis.

Another variant on a clipped control law, put forward by Savaresi et al., is called the “linear

skyhook”. This mixes groundhook and skyhook in a generalized way. The control law is,

The parameter, determines the amount of mixing and the “typical value for is 0.5”

according to Savaresi et al. (2003, pp2265-6).

4.8.2. No-Jerk Skyhook

This short section examines a control law from the literature, the “no-jerk skyhook”

(Ahmadian et al., 2004; Reichert, 1997), which has been devised as a global control law to

remove crossover jerk. Crossover jerk occurs when the stroke velocity, changes sign. To

counter this effect, the damping rate can be reduced in a controlled way as the stroke velocity

changes sign. Similar methods have been developed and published as part of this PhD

research (Storey et al., 2006).

Recall from section 2.6 that the no-jerk skyhook control law can be written as,

,0 e wher0

,0 where

sy

sysy
i

(Reichert, 1997, p63). In this equation, i represents the control force and is a parameter.

This control was tested in a physical experiment with a heavy-truck seat suspension

(Ahmadian et al., 2004, p581; Reichert, 1997). Ahmadian claimed that the physical analysis

.0 if 0

,0 if
)1(maxmax

],[maxmin

sy

sy
s

ycsc
sat

c cc

,

,s

219

“clearly showed the elimination of jerk”. It has energy damping properties similar to the on-

off skyhook (discussed in section 4.2) but it doesn’t suffer the jerk spike of the on-off

skyhook. This control law is a global law applied for only a local effect, but it shows the

effectiveness of the control as stroke rate crosses zero.

4.8.3. Semi-Active Jerk Reduction

A variant of the no-jerk skyhook was developed during the PhD research and was termed the

“lo-jerk skyhook” (Storey et al., 2006). The crucial element of this control was the approach

to zero stroke rate: damping control reduced to a minimum with zero stroke rate. A “lo-jerk”

control was defined generically as any control in which the damper approaches minimum

stiffness as the stroke rate approaches zero. In fact a fuzzy control version of the lo-jerk

skyhook was the highest performing semi-active control, according to numerical experiments

represented in this paper.

A semi-active control was developed which switches from any general high-performing

control, say skyhook, but reduces the damper stiffness to minimum when stroke rate seems to

be decreasing to zero. The method to reduce control force “cuts in” when stroke velocity

seems to be approaching zero, but it allows another control to be used at other times (Storey

et al., 2008). Thus a high performance control can be used when there is no danger of jerk

caused by clipping, but the reduction to zero damper force is smooth when clipping seems

imminent.

While later working on the theory below it was discovered that a paper had been published by

Stamatov et al. in April 2008 (2008), as this author’s paper was in submission. Stamatov et al.

also have a two-mode control, but the algorithms used are different and there is no analysis of

jerk. The differences are discussed in the conclusions, in section 7.4.

For the purposes of this discussion the high-performing suspension control will be referred to

as the “target control”. This could be any control that otherwise would need to be clipped for

a semi-active suspension: skyhook, linear with bump stops, LQR, etc. When the stroke rate,

220

,s drops toward zero, the control switches to a mode that is designed to smoothly reduce the

damper force to zero. Thus the “crossover reduction” method will activate when it is

determined that the target control is about to be clipped, and will determine the damper force

in order to provide a smooth transition to minimum control. A heuristic method for doing this

was published during the course of the PhD research (Storey et al., 2008). The method

presented below is developed in the context of the physical model.

In figure 4.49 above, crossover jerk can be seen to occur when the stroke velocity approaches

zero. A change in direction of the damper’s stroke velocity moves the system “across” the

boundary of the passivity constraint (refer to figure 2.10). The removal of jerk becomes

urgent at the point that the stroke velocity, changes sign. For the purposes of this

discussion, the point at which the stroke rate crosses zero, ,0s can be referred to as

“crossover”.

Without loss of generality, as in figure 4.49 above, the target control force is assumed

positive before the stroke rate changes sign. The diagram shows damper force only (the

spring force component has been subtracted). Up to the point that stroke velocity reaches

zero, the maximum force that can be applied by the damper is,

 .maxmax, scFd

To remove the spike in jerk before clipping, it is necessary to reduce the damping force

smoothly to zero when a change in the direction of stroke rate is imminent.

Figure 4.50 Crossover Jerk Reduction

,s

221

Consider figure 4.50. From time 0t to XT the damping force is dropped gradually to zero

with constant jerk. Without loss of generality, suppose that the time 0t is zero: .00 t The

stroke velocity and acceleration are functions of time,

)(ts and).(ts

Suppose also that stroke velocity reaches zero at time ,CT

 .0)(CTs

Equation 4.28

Let us designate the stroke velocity and acceleration at time zero as follows:

)0(
def

0 ss and).0(
def

0 ss

If these are roughly constant after time 0t up to the point of crossover then,

 .)(00 tssts

After combining with equation 4.28 this gives,

 .
0

0

s

s
TC

Equation 4.29

This is one, simple method for estimating .CT Other methods based on more complex

statistical techniques may provide better estimates, but these are not examined here.

In order to be conservative with the time estimate, a parameter, , is introduced to reduce

damping force more quickly than otherwise might be the case. The following conservative

time estimate then could be used,

 ,
0

0

s

sT
T C

X

Equation 4.30

where say .21 There are heuristic reasons for using the parameter . Using a

conservative estimate for crossover time, ,CX TT may help remove anomalies produced by

state estimation errors (especially in the acceleration estimation), and it may help with

222

stochastic fluctuations in road trajectory predictions. In numerical experiments, the best value

for the parameter can be simply determined by evolution. Again, other methods are possible.

It is possible to ignore this step, simply by putting .CX TT

Now a constant jerk is needed to smoothly reduce the damping force down to zero during the

period .0 XTtt Suppose that a value of jerk, XJ , is nominated for this task. This is judged

to be a “comfortable” jerk level, yet sufficient for the task. Suppose XJ is the value of jerk

used in figure 4.50 (in that case XJ is negative). During the period XTtt 0 the damping

force will approximate the linear function,

 ,)(0 tmJFtF Xd

Equation 4.31

where m is the chassis mass and)(tFd represents the damping force. Suppose the target is to

achieve a zero force, ,0)(tFd when .XTt Then equation 4.31 gives,

 .00 XXTmJsmF

Equation 4.32

Solving for ,XJ this produces,

 .0

X

X
T

s
J

Equation 4.33

Substituting 0F from equation 4.32 back into equation 4.31 produces,

).()(0 XXXXXXd TtmJtmJTmJtmJFtF

Here, XT is determined from equation 4.30 and XJ is determined from equation 4.33. If the

step size of a discrete control is h, the desired damping force at the end of the time step is,

).()(XXd ThmJhF

Equation 4.34

These equations then provide a method for determining control force required for crossover:

equation 4.30, equation 4.33, and equation 4.34. Equation 4.30 and equation 4.33 are the

223

simplest possible methods for estimating crossover time and required jerk, and are capable of

refinement.

It remains to determine if crossover is needed or if the target control should be applied. A

very simple method is to use just the crossover option whenever the crossover force

magnitude is lower than the target control force magnitude (and of the same sign).

Figure 4.51 shows a simulation using this method. (Select the button “Crossover Demo” in

the program OvershootDemo.java.) The “target law” here is simply to use jerk to maintain

acceleration at a constant. This is used to allow the jerk reduction strategy to be clearly

differentiated from the target.

(a)

(b)

(c)

Figure 4.51 Crossover Jerk Removal

224

In figure (a), no crossover strategy is applied, and there is a sudden drop in damper

acceleration at crossover, associated with an uncomfortable, enormous spike in jerk. Figure

(b) shows the slow reduction to zero acceleration using crossover jerk removal. Because the

predicted movement cannot be exact, in a stochastic environment, jerk changes direction

before crossover, however, small jerk chatter is barely noticeable compared to acceleration

chatter, or indeed to sudden large changes in acceleration. Again, the jerk chatter should be

small enough to produce barely noticeable changes in force (refer to section 2.3.2.4 for a

discussion on jerk chatter). On the downward slope crossover removal is being applied, as

given in equation 4.33.

In figure (c) a simple strategy is used to reduce chatter. If crossover reduction has been

applied in the previous step, but is not required in the current step, then a jerk value in

between the crossover jerk, ,XJ and the target value is required. In the simulation the jerk

applied is given as,

 ,4/3 XT JJ

Where TJ is the target damper jerk. This step is unnecessary, since small jerk chatter is not a

great problem, but it does seem to help to slightly improve prediction of crossover time.

The above analysis investigates the case when the target force is moving out of the

controllable region. The case that the target force is moving into the controllable region is

much less problematic. In the case of control over acceleration, a limit jerk can be applied for

the rate of increase of acceleration up to the target value, as in the simulation in figure 4.51

(b). In the case of a control over jerk, however, there is no problem at all because the jerk

limits of the control itself take over.

Up to this point the jerk contributed by the suspension’s spring has been ignored. However,

assuming a linear spring, it can be shown that the spring does not contribute jerk when the

stroke rate changes sign. Jerk is the derivative of force, and the condition that the damper is

reaching crossover, ,0s is precisely the condition that the jerk component contributed by

the spring is zero;

 Spring Jerk .0

 s

m

k

m

ks

dt

d

225

Equation 4.35

Given that springs are highly linear, the simplification of ignoring the spring force is justified.

A small technical problem for simulations is that the system acceleration needs to be

initialized to the spring acceleration rather than zero. This is because the damper will attempt

to “correct” for a false zero, producing a spike in jerk on the first control step.

The method described here is not computationally complex, using the simple equations,

equation 4.30, equation 4.33, and equation 4.34. The first two of these could be refined, as

noted above. Other possible refinements include a minimum damping rate, and a minimum

jerk level. It is also possible to make the method “stiffer” near the rattlespace limits, allowing

the system to be more responsive when there is a danger of rattlespace collision.

4.8.4. Semi-Active Suspension and Rattlespace Constraint

The passivity constraint restricts the forces that can be applied by a semi-active system.

Damper forces are limited in direction, as explained in section 2.6. However, the controlled

damper in a semi-active suspension can always resist stoke movement away from

equilibrium. Therefore, at precisely the moments that a control (such as a rattlespace

constraint control) senses movement towards a rattlespace limit, either nearly topping or

bottoming, the damper stiffness can increase, resisting the movement towards the edge of the

rattlespace. At precisely those moments, the passivity constraint does not apply. This seems

to be one of those pleasant cases in which physics favours the engineer. It seems likely

therefore that semi-active controls are well suited to the implementation of rattlespace

constraint controls.

4.9. Numerical Parameters and Numerical Constraints

The parameters of the numerical experiments are based on data contained in table 2, which

has been derived from models of actual vehicles. Also wheel stroke was set to correspond to

the stroke of a passenger vehicle. Deprez et al. (2002) provide data on RMS accelerations

226

attained under various conditions (see table 5) for tractors. Their graph of road accelerations

under rough conditions shows the acceleration peaking at around 1 g, corresponding to the

driver being weightless under some conditions. Such conditions, of course, are rarely attained

with passenger vehicles. Nonetheless, values of close to 1 g are sometimes experienced over

rough conditions, with above 1 g being highly unusual.

Input profile Suspension RMS Acceleration m/s
2

Field (4 km/h) No Suspension

Passive

Semi-Active

1.009

0.058

0.025

Unpaved road (11 km/h) No Suspension

Passive

Semi-Active

0.686

0.094

0.054

Paved Road (28 km/h) No Suspension

Passive

Semi-Active

1.502

0.352

0.063

Table 5 Calculated RMS Acceleration Under Various Conditions

Some of the control functions developed above increase force asymptotically as the stroke

approaches the rattlespace limit. Numerical instability can be controlled by placing limits on

experimental controls that output unrealistic control forces.

Let maxd represent the maximum distance that a control can move in a period of one second.

If the maximum jerk is maxj then,

 .
6

max3

max6
1

max

j
tjd

Equation 4.36

A different analysis yields a slightly different result. Suppose that the maximum time period

of a time step is h, and suppose the distance travelled in one time step is limited to ./max hd

In this case,

Equation 4.37

This is a somewhat larger value (given that h is small). For acceleration a similar analysis

yields,

.
6

,

4

max
max

max3

max6
1

h

d
j

h

d
hj

227

It is important to distinguish between constraints that are part of the control and constraints

that are used for numerical stability. A constraint that is capable of being set by an

evolutionary process for example, may become quite low during evolution, becoming a true

part of the control. This can affect the control interpretation, and it can slow down evolution.

4.10. Performance Measures Applied in Experiments

Suspension controls developed in this thesis was first tested using computer models applied

in evolutionary algorithms. A test bed program, described in the next chapter, was developed

to simulate a number of different kinds of suspensions and to compute the comfort

experienced by a passenger using the fourth power of jerk as in equation 3.3,

 .)(
1

],[
0

4dtty
T

ysJ

T

C

and to separately compute a factor designed to indicate how well the suspension tracks the

road surface using the non-quadratic weighting, of equation 3.7,

 .)(
1

],[
0

dtts
T

ysJ

T

R

The fourth power of jerk was used for the comfort measure in order to penalize large jerk

values more severely than the least squares measure. This is because the least squares

measure may mask some conditions where there is a high jerk for very short periods of time.

In order to overcome this possibility the next highest even power was used. It was felt that

very high-power norms, or even the
L -norm (maximum magnitude of jerk) would too

severely penalize momentary discomfort. This is very much a compromise and itself needs

further investigation. The reasons for the tracking measure are explained in detail in section

3.2.

A large number of suspension control algorithms were tested. Some systems were related to

each other. For instance, there were a number of systems using the basic skyhook control

.
2

3

max
max

h

d
a

,

228

with minor refinements. Each of these suspension controls has a number of parameters. For

example, the passive suspension has just two parameters, one for the spring rate and one for

the damping rate. Other suspensions may have as many as 20 parameters. The parameters of

each of the controls were submitted to an evolutionary algorithm.

When referring to a particular suspension control type the term “control” or perhaps even

“control algorithm” will be favoured over the term “algorithm”. This is to avoid ambiguity

with evolutionary algorithms.

Each type of suspension system runs through an evolutionary algorithm with different

parameter values in competition over many generations. The schedules for the evolutionary

algorithms are explained in the next chapter. Randomly chosen roads are used as the input.

The mass of the vehicle was constant throughout; otherwise the evolutionary algorithm would

tend towards lower and lower vehicle weight. Suboptimal control parameters are derived by

selecting the highest scoring suspension from the final generation.

The major benchmark controls, the passive and the skyhook controls, use only a small

number of genes (two real number genes each). With such a small search space, and with

such simple controls, evolution is very quick. As discussed in section 4.5.1, the passive and

skyhook controls make good benchmarks against which to judge other controls. These

controls also admit linear modelling and their frequency response characteristics are well

understood; see section 2.4. Any controls that perform convincingly better than these

benchmarks deserve further investigation, in possibly more detailed simulation or in physical

experimentation.

Details of the test bed program running the evolutionary algorithms and the suspension

simulations are discussed in the following chapter.

229

5. Computer Simulation Environment and Evolutionary

Algorithm Coding

This chapter describes the numerical evolutionary experiments performed for this thesis, and

the test bed software. The numerical test bed program is the main focus of this chapter, as

well as a small number of ancillary programs. This program was written entirely by this

author in Java.

The graphs used throughout this thesis were produced by software written by the author for

the purpose of the thesis. Some standard drawing routines were applied, but the placing of

ticks and axes, and routines for drawing the graphs are all the work of the author. The code

for these routines can be found in Java/GraphX, in the class definition file

FunctionGraph.java, and a demonstration can be run from the main() routine in

Demo.java.

5.1. Objectives

As described above, this research is not aimed at a comprehensive model of any one

particular suspension control, but at an overview of a various candidate algorithms for

electronically controlled suspensions. Thus the purpose of the computer test bed program was

to compare a large number of separate basic suspension control algorithms by means of

numerical suspension simulations and relevant evolutionary algorithms

The suspension problem investigated here is only slightly more complex than the simple

LQR system and yet it is intractable analytically and should be approached numerically. The

sheer versatility of electronic control makes the use of more realistic performance measures

crucial. In this research performance measurements are comfort and rattlespace, which are

recognised to be intractable analytically. Also, as has been shown in section 3, some controls

that perform well using classical analytical techniques prove extremely jerky in practice.

230

Thus EAs are used for testing simple control algorithms where analytical techniques prove

intractable. EAs are virtually limitless in the number of performance measures they can use.

The method then was to submit a range of suspension control algorithms to EAs and find a

“suboptimal” control for each algorithm. The EAs were run separately for each suspension

type. The median score of the final generation of the EA for a given suspension type becomes

the “score” for that suspension control. The median score was used because excessively bad

road conditions produce outliers that greatly skew the mean. On the other hand, in the final

generation, large numbers of roads are used to produce a stringent test of suspension

capabilities.

For the purposes of comparison, each suspension algorithm should be run under the same

conditions as the others. All systems were tested with the same chassis weight and exactly the

same road conditions. Furthermore, all semi-active systems were tested with the control

output being the only difference between them. Similarly, for all active algorithms in the

same numerical model with control output being the only difference.

The problem with using EAs is that the control that is judged superior will depend on the

particulars of the numerical experiment, chassis mass and road perturbations. To this end, a

number of candidate algorithms are chosen here as candidates for further investigation of

suspension control theory. A number of different controls were also selected for physical

experimentation. Despite this, EAs are quite robust (see section 2.3.2) and so the numerical

experiments performed here can provide a fair performance comparison.

5.2. Platform

The process of running the various suspensions can be very time consuming, taking days and

even weeks to complete. Speed of processing was a major consideration in this project and

the writing of dedicated code seemed to offer greater speed than if the experiment had been

set up in Matlab or Simulink. An advantage of using Java as the programming language is

231

that the control algorithms run in Java use code that is similar to the C languages

programming code used in the microprocessor.

All code used for this thesis was written by the author during the course of research for the

PhD, including the graphing software. Standard Java libraries for user interfacing, file access,

etc., were used as needed. Development was performed using the Java SE Development Kit

(JDK), Version 6, downloaded from the Sun website. All code was written using the text

editor, TextPad.

Java code for various purposes such as graphing and running EAs is freely available on the

Internet, and this is one of the reasons that Java was selected as the programming language.

However, the code snippets found on the Internet for processing genetic algorithms were

slow and awkward to use. In the end, third-party software was not used for any purpose, only

the standard Java libraries including the Java Swing libraries.

There is insufficient space here for an in-depth explanation of the design process or a line-by-

line explanation of the programming code. Some programming code details are supplied

where these are considered to be useful in replicating or verifying algorithms, or in

explaining the implementation of a programming technique.

The code for the test bed program is contained within the subdirectory

Java/SuspensionTestX, where “X” stands for the version number. For example, the version

3.02 is contained in the subdirectory Java/SuspensionTest302. (Not all code edits resulted in

new version numbers.) The program source files are all the files with the extension .java

contained in this directory. The test bed program can be compiled and run using the following

statements (in a “DOS” console):

D:\Apps\Java\jdk1_6\bin\javac *.java

D:\Apps\Java\jdk1_6\bin\java SuspensionTest

(The directory structure is dependent on the machine implementation of Java, and will almost

certainly be different from that shown here.)

Every effort has been taken to minimize the use of Java code in the thesis, but in some cases

more detail is needed. It is important to verify the way in which the SuspensionTest program

converts between the phenotype (the code that represents the suspension control algorithm in

232

the on-board microprocessor) and the genotype (a collection of floating-point values

representing the suspension parameters). The goal of this procedure is to keep the algorithmic

code in the numerical experiments as close as possible to the target microprocessor code used

in electronic control. Because the process is non-standard and somewhat complex there is a

need to go into some depth in the explanation of it. Nonetheless, the intent of the conversion

should be obvious to someone who skims section 8.21.3, and this section can be skimmed

without affecting the rest of the thesis content.

Throughout the code a pseudorandom number generator has been used that is supplied in the

standard Java libraries, Math.random(). This is claimed by Sun to produce pseudorandom

floating-point numbers that mimic a uniform random variable between zero and one. The

term “random” will be used freely below, although the more awkward term “pseudorandom”

is perhaps more accurate.

5.3. Overview of Test Bed Program Functionality

A screen shot of the main user interface of the suspension test bed program, SuspensionTest,

is shown in figure 5.1. The main goal of the computer program was to provide a flexible test

bed for the design of various active and semi-active suspension control algorithms and to use

evolutionary algorithms as a testing tool.

Figure 5.1 User Interface for the Test bed Program

233

During the processing of an evolutionary algorithm, the parameters of a suspension control

are altered. For example, in the case of the purely linear passive suspension there are just two

control parameters: the spring rate and the damping rate. The evolutionary process will

experiment with a large number of such suspensions each with different spring and damping

rates. The aim of the evolutionary process is to evolve robust suspensions of a number of

different suspension control types with as high a performance as possible for each type of

suspension.

At the completion of the evolutionary process, after sufficient “cooling”, the median

performance measure of the final generation is nominated as the performance measure for

that control. This is in fact a suboptimal value. Many control algorithms are “optimized” in

this way and compared for performance. The performance of one system over another is

dependent on road surfaces. The random road surfaces of the numerical experiments are

discussed in detail below.

Two fundamental types of suspension are catered for: active and semi-active. Crucial to the

numerical experiment is the fact that algorithms are run in exactly the same manner in the

numerical model, with the application of control being the only difference. All active controls

are processed in the same numerical model, with only acceleration as the output. Similarly,

each semi-active algorithm is processed in the same numerical model with damping rate as

the output. The numerical methods, their test bed programs and their validation are discussed

in the appendix, section 8.15.

Some of the suspension control algorithms are quite complex, and in some cases separate test

bed programs for these algorithms or a set of related algorithms have been developed.

Appendix section 8.13 discusses these programs in a little more detail.

The main test bed program design is based on object-oriented design principles. The design

also used data-driven principles and persistent data. The design is explained in more detail in

the appendix, section 8.18.

234

5.4. Simulation Models

The simulations run in the EAs require physical modelling of road surfaces and suspension

responses. This section explains the physical modelling in more detail.

5.4.1. Road Surfaces

The test road surfaces were designed to have repeated bumps of a mixture of frequencies and

to contain single bumps, to test the capacity of algorithms to handle substantial and sustained

height changes. The details of the generation of the road surfaces is contained in the appendix

in section 8.19.

An example of a road surface generated by this algorithm is shown in figure 5.2.

Figure 5.2 Example Road Surface

5.5. Fitness Measures

The code for calculating the fitness measures is contained in the class Fitness. The fitness

measures are calculated according to Equation 3.3 and Equation 3.6 using the penalty of

Equation 3.7. The parameters of these functions can be set at runtime by the user. Refer to the

appendix for details, in section 8.20.

5.5.1. Comfort

The comfort factor is calculated using the Simpson’s method approximation (Kreyszig, 1993,

p961) to the integral,

235

(See section 3.1.) The value of jerk was approximated from sampled acceleration values,

The overall score out of 1000 was then calculated using

where c is the scaling factor for comfort used for the weighted performance index. This factor

is contained in the constant JERK_FACT, defined in the FitnessData class in the file

Fitness.java.

5.5.2. Rattlespace Tracking

The rattlespace tracking factor is calculated from the Simpson’s method approximation to the

integral,

The weighting function is calculated using the extensionBadness() function of the

ExtensionFunction class. (All functions of this class are static.) The equation used for here

is given above in equation 3.7, and a graph of the weighting function is shown above in

figure 3.3. The values used for the calculation of the rattlespace penalty function are

contained in the class RattlespaceParameters, in the file Parameters.java. The

correspondence between the variables in this file and the variables in equation 3.7 is:

mediumExtensionBadness ≡ ,

maxExtensionBadness ≡ ,

maxGoodExtension ≡ ,

absoluteMaxExtension ≡ ,

tailRate ≡T.

The overall score out of 1000 was then calculated using

T

C dttyJ
0

4 .)(

 ./)()()(1 htytyty nnn

,1000 CcJC

T

R dttsJ
0

.))((

1P

2P

1m

2m

,1000 RrJR

236

where r is the scaling factor for rattlespace tracking. The value used for r is contained in the

constant RATTLE_FACT, defined in the FitnessData class in the file Fitness.java.

5.6. Genes and Evolutionary Processes

“Genes” represent suspension control parameters and these are tested in simulation over a

large number of roads. Different gene types are responsible for representing the different

suspension control algorithms; each gene class represents a different control algorithm. The

gene class thus contains the crucial logic of the control algorithm. Furthermore, the code in

the gene class is similar to the control logic in the microprocessor that would control the

suspension.

The representation of genes and generations, and the processes of mutation, crossover and

selection have all been programmed by the author, and the details are explained in the

appendix (see sections 8.21.1 to 8.21.5). Note that some of the evolutionary process involved

genes that were spread along a Pareto front, as shown graphically in figure 8.35.

5.7. Results of EA Experiments

It should be kept in mind that a poor result for some of the numerical controls could be due to

programming bugs. Every effort has been taken to ensure that the routines work properly, and

separate testing routines have been used, especially in the case of more complex control

algorithms. But, as a programming lecturer of more than decade’s experience and as one who

has worked in the field, the author knows better than to guarantee that all the routines coded

here are entirely bug free.

On the other hand the general modelling environment has been very thoroughly tested (refer

to section 5.3 and appendix section 8.15), and the author is highly confident that any bugs in

at least the numerical model are limited to the “plug-in” routines defined by the gene classes

(in Gene.java) and not to the physical models.

237

There are other important qualifying factors to be kept in mind when interpreting the results

below, such as the fact that EAs produce suboptimal and not optimal results. These

qualifications will be addressed in the concluding chapter, especially in section 7.2.

In order to save on doubling-up of naming, the various controls will be given the name of the

Java programming class in which the control logic is coded. For example, the standard

passive control is encoded in the Java class “Passive” and so will be referred to in the results

as the “Passive” control. The various classes have evolved over a long period of time (longer

than 5 years). Some of the class names may appear a little inscrutable, such as

“SkyhookOnOffFilteredRoadGene” for instance. The names distinguish the control, but

the name alone might not exactly define or indicate the control function.

The two benchmark controls are the Passive and the ActivePureSkyhookGene (the linear

skyhook examined in section 2.4). Both of these are purely linear and they are perhaps the

simplest controls used (they use just two real-numbered gene components each). Certainly,

they are the simplest controls that produce reasonable results.

Some of the control algorithms are explained here, but not all. In the PhD appended material

are HTML pages that describe a major proportion of the control functions. (These can be

referenced from the page,

 PhD\Java\SuspensionTestX\Help\Help.html)

These pages contain a brief overview of a large number of genes (click on the “Gene Classes”

link). The complete control logic of every gene in the form of Java code is contained in a

class defined in a single Java source file (in the file “Gene.java” in the folder,

 PhD\Java\SuspensionTestX.)

The final overview statistics for the performance of the genes in the final run of the

evolutionary algorithms can be obtained (by clicking on the link, “Comparative stats for all

genes”). (This page is generated by pressing the “All Stats Summary” button in the

“Statistics” frame. A history of previous generations’ results can be found in the folder,

 PhD\Java\SuspensionTestX\stats\)

file:///D:/Data/PhD/Java/SuspensionTest302/Help/genesHTML/Genes.html%23SkyhookOnOffFilteredRoadGene

238

While not all the controls are explained in detail the author is of the opinion that showing the

results for all genes developed gives a fair overview of the relative success of the controls.

The controls that performed on a par with the passive control or better are the primary focus

of the discussion below.

In figure 5.3 below, samples are shown of the final, and hence highest performing generation

of three different suspension types: the passive (Passive), the linear skyhook

(ActivePureSkyhookGene) and a general linear control over acceleration with a virtual

bump stop (FlatLinearAcceleration01Skew). In these examples, the green line

represents a road (randomly generated as described in section 5.4.1) and the red line

represents the chassis. The superiority of the tracking performance of the skyhook over the

passive is evident even from a cursory glance at these graphs.

Passive

Passive

Skyhook

Skyhook

Linear Acceleration with Virtual Bump Stop

Linear Acceleration with Virtual Bump Stop

Figure 5.3 Examples of Suspension Performance

239

In contrast, figure 5.4 shows an example trajectory of a poorly performing control:

SkyhookPassiveSpikeRemovalGene with a score of -3899. Note that the control seems

smooth, but there are a number of rattlespace collisions (as seen when the graphs cross in the

case of the bottom rattlespace limit). The evolutionary algorithm has been unable to find a

high performing compromise between smoothness and tracking using this control.

Figure 5.4 Example of Poor Performance

For the experiments the tracking performance weighting function (as described in section

5.5.2) is shown in figure 5.5. The rattlespace width is effectively 0.6 m. That is to say, the

chassis will hit the rattlespace edges when the suspension moves 0.3 m from the rattlespace

centre (which is assumed to be the equilibrium point).

Figure 5.5 Rattlespace Penalty Function

240

The results presented below are derived from a near continuous run on a laptop which ran

from 4:31 PM 20
th

 November 2010 to 10:41 AM on the 30
th

. The run was not entirely

continuous because the EA would be stopped from time-to-time to save the current state (the

facility to do this took some time to program, but it resulted in saved time over the course of

the research by allowing evolutionary algorithms to be stopped, saved and re-started instead

of losing data when programs were halted half-way). Furthermore, there was one point, after

perhaps a few hours where a bug in one gene had stopped the evolutionary algorithm. This

gene was dropped, and the evolutionary algorithm had to be re-started.

All-in-all the evolutionary process took approximately nine and a half days. Some 123

Controls were tested with an average time of roughly 2 hours for each algorithm. The data

shown below is derived from an automatically generated HTML file that summarizes the

performance of the various control algorithms. (The HTML file can be found at,

PhD\Java\SuspensionTestX\stats\allStats.htm)

The benchmark controls are shown highlighted.

Gene Type Median Mean

Median

Jerk/

Smooth

ness

Median

Rattle-

Space/

Track-

ing

Suspension

Type

FlatLinearJerk01Skew 982.1 980.4 978.1 986.2 Active

FlatLinearAcceleration01Skew 978.0 975.6 976.9 979.1 Active

RCollisionAvoidJerk03 977.5 974.1 975.5 979.5 Active

FlatLinearAcceleration01 976.4 973.6 970.5 982.3 Active

SigmoidLinearAcceleration01 974.7 971.9 965.2 984.2 Active

ActiveAdaptiveJerkFilterGene 974.4 969.7 971.8 977.0 Active

ActivePassiveSkyhookGene 973.9 971.3 968.0 979.7 Active

FilterWithStiffening01 971.7 960.5 958.9 984.6 Active

ActiveAdaptiveJerkFuzzyFilterGene 968.2 -9.2E29 941.2 995.3 Active

BackMomentumActive01Gene 966.6 964.6 963.0 970.1 Active

FlatLinearJerk01 965.0 960.5 985.0 945.0 Active

ActiveAdaptiveJerkFilter01Gene 963.9 962.6 944.9 982.9 Active

ActivePureSkyhookGene 958.3 955.9 973.5 943.1 Active

AnticipatedTravelActive01Gene 951.3 5.6 982.2 920.4 Active

PassiveGeneDoubleSpring 950.4 948.3 939.8 961.0 DoubleSpring

EdgeJerk01 948.0 945.1 924.8 971.2 Active

FullFilter01 931.8 929.7 909.7 954.0 Active

RattlespaceCollisionActive03Gene 928.6 926.2 909.6 947.5 Active

EulerLagrange02 923.2 920.5 942.7 903.8 Active

241

EulerLagrange01 920.6 917.9 902.5 938.8 Active

RCollisionAvoidJerk02 918.8 -8.1E04 862.4 975.2 Active

ActiveAdaptiveFilter02Gene 896.7 894.5 885.3 908.1 Active

ActiveAdaptiveFilter01Gene 889.9 885.7 882.5 897.3 Active

MinJerkActive01Gene 888.0 883.7 859.1 916.8 Active

EulerLagrange03 887.4 884.0 912.0 862.7 Active

EulerLagrange04 874.0 865.7 894.8 853.2 Active

SlidingMode04 858.8 856.8 852.3 865.3 Active

MinJerkTargetDeltaActive01Gene 834.9 829.8 921.5 748.2 Active

xLandingEdgeCenter 826.6 821.2 775.7 877.5 Active

MinJerkTargetDeltaActiveRootTGene 825.4 824.3 891.1 759.8 Active

FlatLinearJerk01SkewSemiCross 823.9 822.8 776.6 871.2 Semi-Active

FlatLinearJerkSimpleSemi02 820.8 815.3 722.6 919.0 Semi-Active

FlatLinearJerk01SemiCross 819.5 815.2 686.3 952.8 Semi-Active

FlatLinearJerkSpikeRemoval02 817.8 815.6 710.5 925.1 Semi-Active

RCollisionAvoidSemi03 814.8 810.4 728.7 900.9 Semi-Active

FlatLinearAcceleration01SkewSemiCross 813.8 810.2 727.3 900.3 Semi-Active

FlatLinearJerkSimpleSemi05 812.2 807.3 713.1 911.2 Semi-Active

PureSkyhookSemiCross 806.9 803.3 735.1 878.7 Semi-Active

xMinTimeHardenSemiCross 806.7 804.2 737.5 876.0 Semi-Active

xLandingEdgeCenterSemiCross 806.5 801.8 784.7 828.3 Semi-Active

FlatLinearSemiJerk01 804.9 801.8 768.8 841.0 Semi-Active

FlatLinearJerkSimpleSemi04p 803.7 797.3 725.5 882.0 Semi-Active

FlatLinearJerkSimpleSemi01 802.4 797.3 791.0 813.9 Semi-Active

FlatLinearJerkSpikeRemoval04 802.4 798.0 720.4 884.4 Semi-Active

ActiveAdaptiveJerk01Gene 800.3 793.4 760.2 840.4 Active

FlatLinearAcceleration01SemiCross 797.8 794.9 699.5 896.1 Semi-Active

SlidingModeSemi01 797.4 793.8 786.5 808.3 Semi-Active

SlidingModeSemi02 788.8 782.1 670.4 907.1 Semi-Active

SlidingMode01 785.5 776.0 797.5 773.6 Active

SlidingMode05 775.4 769.7 754.6 796.2 Active

LoJerkConstantKAdaptiveJerkFilterGene 766.0 759.1 655.6 876.4 Semi-Active

SlidingMode03A 757.5 750.6 812.9 702.1 Active

RattlespaceCollisionActive04Gene 750.9 748.5 860.1 641.8 Active

EulerLagrangeSemi01 745.8 742.7 598.7 892.8 Semi-Active

SlidingMode03 744.8 733.4 881.1 608.5 Active

xMinTimeHarden 735.2 725.0 786.5 684.0 Active

FlatLinearJerkSimpleSemi04 734.2 712.8 543.8 924.5 Semi-Active

LoJerkJRangeGene 728.1 721.5 746.6 709.6 Semi-Active

RCollisionAvoidSemi05 727.9 -2E22 529.5 926.3 Semi-Active

SlidingMode02 727.4 715.3 765.6 689.3 Active

RCollisionAvoidSemi05p 722.2 421.8 605.2 839.2 Semi-Active

FlatLinearAccSimpleSemi04 719.5 715.1 625.3 813.7 Semi-Active

MinJerkTargetDeltaFuzzySplineGene 716.1 711.9 829.8 602.4 Active

RCollisionAvoidSemi04 712.0 -1E95 549.2 874.7 Semi-Active

242

FlatLinearJerkSimpleSemi03 550.5 543.0 337.3 763.6 Semi-Active

FlatLinearJerk01SkewSemi 533.7 -4E115 397.7 669.8 Semi-Active

FlatLinearAccSimpleSemi03 522.7 518.2 274.8 770.5 Semi-Active

SigmoidLinearSemiAcc01 442.5 430.3 244.4 640.6 Semi-Active

LoJerkSkyhookPassiveFilteredRoadGene 410.3 395.5 291.5 529.1 Semi-Active

SkyhookEmulationGene 386.2 377.6 255.7 516.8 Semi-Active

LoJerkFuzzySplineGene 383.7 360.4 291.2 476.2 Semi-Active

FlatLinearAccSimpleSemi04p 375.1 360.4 198.9 551.3 Semi-Active

LoJerkConstantKActivePassiveGene 374.6 367.0 271.5 477.6 Semi-Active

LoJerkConstantKGene 368.3 355.5 278.7 457.8 Semi-Active

SkyhookGene 352.6 345.6 227.6 477.6 Semi-Active

LoJerkForceSkyhookGene 342.5 324.3 237.2 447.9 Semi-Active

LoJerkNonlinearFuzzyGene 338.9 -6.1E6 366.7 311.0 Semi-Active

NoJerkForceSkyhookGene 326.8 302.9 77.0 576.5 Semi-Active

FlatLinearAccSimpleSemi02 324.7 321.1 236.4 413.0 Semi-Active

FlatLinearAccSimpleSemi05 322.3 319.9 224.2 420.5 Semi-Active

LoJerkNonlinearGene 321.7 313.8 223.3 420.1 Semi-Active

PassiveGene 321.0 306.4 248.7 393.4 Semi-Active

SkyhookEmulationFilteredRoadLimited
Slope 318.7 -2.2E95 98.6 538.9 Semi-Active

FilterWithStiffeningSemi01 317.3 316.8 167.2 467.4 Semi-Active

LoJerkSkyhookGene 311.5 306.7 273.7 349.4 Semi-Active

PassiveRolloff 305.5 297.1 240.7 370.3 Semi-Active

EulerLagrangeSemi02 303.3 288.0 190.9 415.7 Semi-Active

LoJerkNonlinearActivePassiveGene 299.9 275.0 398.4 201.3 Semi-Active

StiffnessNearness 294.2 276.6 365.7 222.7 Semi-Active

CSlopeWithK01 293.0 283.6 270.9 315.2 Semi-Active

SkyhookPassiveFilteredRoadGene 290.6 276.5 319.0 262.3 Semi-Active

SkyhookOnOffFilteredRoadGene 286.7 284.9 199.4 374.0 Semi-Active

SkyhookPassiveFilteredRoadLimitedSlope
Gene 280.6 260.5 281.6 279.6 Semi-Active

FlatLinearAccSimpleSemi01 255.7 256.7 311.5 199.9 Semi-Active

TwoLinearFuzzyGene 244.4 231.8 191.0 297.8 Semi-Active

RCollisionAvoidSemi01 234.3 204.1 99.9 368.7 Semi-Active

NoJerkSkyhookGene 220.8 210.1 -64.1 505.6 Semi-Active

AdaptiveFuzzyDamperWithDecayGene 180.4 -640 -177.4 538.1 Semi-Active

RCollisionAvoidSemi03AC -414.1 -431 -438.5 -389.7 Semi-Active

RCollisionAvoid03 -1539.0 -1527 769.6 -3847.5 Active

FlatLinearJerk01Semi -3312.8 -2E12 -4634.1 -1991.6 Semi-Active

SkyhookPassiveSpikeRemovalGene -3899.4 -2E26 -3780.5 -4018.3 Semi-Active

FlatLinearAcceleration01Semi -4095.0 -4.8E5 -6645.0 -1545.0 Semi-Active

RCollisionAvoidJerk01 -4956.6 -6105 -921.1 -8992.1 Active

RCollisionAvoid02 -9613.1 -9650 200.7 -19426.8 Active

FlatLinearAccSimpleSemi00 -11326 -3E28 -11365.1 -11287.6 Semi-Active

SkyhookPassiveGene -12906 -3E27 -17679.8 -8131.9 Semi-Active

243

PureSkyhookSemi -14514 -2E10 -27994.7 -1033.6 Semi-Active

FlatLinearAcceleration01SkewSemi -21216 -9.6E6 -42000.9 -431.3 Semi-Active

RCollisionAvoidSemi02 -21799 -1E97 -44557.6 960.0 Semi-Active

xLandingEdgeCenterSemi -47459 -9.4E6 -95021.6 104.1 Semi-Active

AdaptiveDamperWithDecayGene -48882 -4.9E4 -11725.2 -86038.7 Semi-Active

SlidingModeAcc01 -116744 -1.2E5 -20686.0 -2.1E05 Active

xMinTimeHardenSemi -129631 -8.2E5 -258610 -651.9 Semi-Active

RattlespaceCollisionActive02Gene -592738 -7.2E9 830.2 -1.2E06 Active

RCollisionAvoid01 -966815 -9.7E5 -1.9E06 -19173.4 Active

FlatLinearJerkSpikeRemoval03 -9.4E09 -4E10 -1.9E10 977.7 Semi-Active

HardPassiveGene -1.1E10 -1E10 -2.2E10 1000.0 Semi-Active

FlatLinearJerkSpikeRemoval01 -3.1E22 -1E120 -6.2E22 -1.5E05 Semi-Active

SigmoidLinearJerk01 -2.0E37 -7E42 -4.0E37 -1.4E07 Active

FlatLinearJerkSimpleSemi00 -2.3E40 -2E205 -4.6E40 -1.8E09 Semi-Active

FlatLinearAccSimpleSemi01A -3.1E97 -3E97 -3.1E97 -3.1E97 Semi-Active

SigmoidLinearSemiJerk01 -4.6E97 -2E224 -4.6E97 -4.6E97 Semi-Active

The final scores were taken from the median results for the final generation. The median

scoring gene was used rather than the mean to avoid skewing of results due to the fact that

some generations may have a small proportion of genes that encounter very rough roads and

obtain extremely low scores. The means are shown above, and the effect of skewing is clear

in some cases where there is a large difference between the mean and the median. The overall

score then is an average of the smoothness and tracking scores of the median element, and

these scores are also shown above.

The data has been collected from the final generation of a long process of evolution. The final

generation has been run with very “cool” parameters, which is to say that there is very little

mutation in the final stages. Furthermore, the selection process in these final stages employs

highly elitist selection and lower genetic variability, so the final measurement is most likely

to apply to the best performing genes.

Even so, there is some variability in the results due mainly to variations in roads encountered

by the controls. This variability can be approximated by taking the standard deviation of a

sample of the final ten generations of the genetic evolution. Nine generations were chosen.

The median scores of the final 9 generations for the highest scoring control,

FlatLinearJerk01Skew, are:

 982.13, 982.78, 980.49, 982.06, 980.8, 980.92, 981.25, 982.36, 982.06.

244

The standard deviation for these results is 0.75. So the results are very tightly clustered. The

standard deviation of the last 9 median scores for the benchmark

ActivePureSkyhookGene control is 2.9. The standard deviation for the other benchmark,

PassiveGene, is 11.1. Thus as the controls perform better, there is less variation in the

results, as would be expected. The ordering of the performance scores must be judged with

this slight variability in mind.

The evolved control parameters for the various genes can be viewed by running the EA test

bed program, SuspensionTest, clicking onTools|Parameters, selecting the desired algorithm,

and then viewing the parameters in View|Current Generation. Some kind of graphical

representation may accompany the data.

Firstly, the results for linear controls and “modified” linear controls are described. The main

modifications take the form of the inclusion of virtual bump stops, and crossover removal in

the case of semi-active controls.

There are three controls that are instances of purely linear control over acceleration, and this

includes the two benchmarks. Table 6 summarises the control parameters found by the

evolutionary algorithm for the highest performing gene instance in the final generation of the

passive (PassiveGene), skyhook (ActivePureSkyhookGene) and the general linear

control (FlatLinearAcceleration01). In a sense the skyhook has a damping coefficient

for a damper attached between the chassis and “sky”, instead of between the wheel and

chassis (stroke). The most general linear control over acceleration could be thought of as

having two springs and two dampers, one each attached to the sky and the wheel. (It should

perhaps be repeated that springs or dampers cannot actually be attached to the sky, but

control forces can be implemented by electronic systems which produce the same forces as if

there was a spring or damper attached to the sky.)

245

Control Spring

Rate

(Sky)

k

Nm
-1

Damper

Rate

(Sky)

c

Nsm
-1

Spring

Rate

(Stroke)

k

Nm
-1

Damper

Rate

(Stroke)

c

Nsm
-1

EA

Score

PassiveGene - - 917.7 70.47 321.0
ActivePure-

SkyhookGene
- 373.3 1,005.4 - 958.3

FlatLinear-

Acceleration01
81.0 332.0 980.5 4.329 976.4

Table 6 Comparison of Linear Controls over Acceleration

It is clear from this data that the final control in the table has coefficients almost exactly like

the skyhook; the stroke spring rate and the damping rate of the damper attached to the sky are

almost the same as the skyhook, while the other two components are relatively much smaller.

In fact the damping rate for the damper “attached to the chassis”, as in a passive suspension,

is extremely low, 4.329, indicating that it is the damper that is the most challenging

component in a passive and semi-active system (refer to the discussion in section 4.3).

It is interesting to compare the purely linear control over acceleration with the purely linear

control over jerk. Table 7 below shows the evolved coefficients for the control over jerk.

These are the coefficients as represented in equation 4.7. (In the following table, to be

consistent with equation 4.7, the control u is taken as the control directly over jerk, which is

why Newtons do not appear in the units.)

Coefficient
1 2 3 4 5 6

Term y

(Sky)

y

(Sky)

y

(Sky)

s

(Stroke)

s

(Stroke)

s

(Stroke)

Units s
-3

 s
-2

 s
-1

 s
-3

 s
-2

 s
-1

Value

0.00901 0.304 1.885 1.303 3.502 0.00475

Table 7 Coefficients for Linear Control over Jerk

As with the skyhook, coefficients for the stroke tend to favour the lower order derivatives: s

and .s In fact the coefficient of stroke acceleration, ,s is virtually zero. On the other hand the

coefficients for absolute chassis movement are larger with the higher derivatives: y and .y

The coefficient of absolute chassis movement, y, is almost zero. (This bodes well for control

246

implementation since the acceleration of the chassis is directly measured with an

accelerometer, while the other two variables, y and ,y depend on numerical integration.

Indeed, the highly error-prone double integration can be dropped completely.)

The effect of including virtual bump stops is examined next, specifically the virtual bump

stops using the skew function represented by figure 4.7 and explained in section 4.5.2.2.

Recall that the function will apply the increase only if the physical parameter has the same

sign as the stroke. (So if the chassis is close to a rattlespace limit but moving away from it,

the increase in control strength is not applied.)

The control coefficients for the FlatLinearAcceleration01 and the

FlatLinearAcceleration01Skew controls are represented schematically below in figure

5.6. Recall that the coefficients in the skewed example change with stroke, s. (It is assumed

below that the parameters, , and , , , ssyy are positive, otherwise the skewing is reversed.) It is

clear that the linear control becomes roughly a stiffer version of a skyhook control as the

suspension approaches the rattlespace limit. The virtual bump stop created a modest

improvement from 976 to 978, and produced the second highest scoring control.

Virtual bump stops for jerk control also improved performance, from 965 to 982. Again there

was a stiffening of jerk control near the rattlespace limit. In the end, the linear control over

jerk with virtual bump stops was the highest scoring control of all.

Figure 5.6 Coefficients for Linear Control over Acceleration

247

As expected, when simply clipped for a semi-active system, the linear controls performed

very badly. The FlatLinearAcceleration01Semi control obtained a score of -4,095.0,

and the FlatLinearAcceleration01SkewSemi obtained a score of -21,216.

When crossover jerk removal was included, the scores improved dramatically. The

FlatLinearAcceleration01SemiCross and

FlatLinearAcceleration01SkewSemiCross both applied the crossover removal

algorithm described in section 4.8.3. The parameters for crossover removal were also

determined by the EA. The FlatLinearAcceleration01SemiCross obtained a score of

797.8, and the score for the FlatLinearAcceleration01SkewSemiCross control was

813.8. These performed vastly better than the benchmark semi-active systems, the Passive,

with a score of 321.

These were among the highest performing semi-active systems. They were eclipsed by the

jerk analogues of the controls mentioned in the previous paragraph:

 The FlatLinearJerk01SemiCross with score 819.5 and,

 FlatLinearJerk01SkewSemiCross with score 823.9.

In summary the following results are clear for linear systems or “modified” linear systems:

Linear systems perform well overall,

Controls over jerk outperformed controls over acceleration,

Bump stops or virtual bump stops improved performance,

Some form of crossover jerk removal is necessary for semi-active systems.

In fact these results were consistent in evolutionary algorithms performed for papers

published during the research.

The improvement created by using crossover jerk removal is obvious. A number of crossover

jerk removal methods have been attempted. Some of these have been discussed in the papers

published by the author during the PhD research. At one end is the simple global control, the

no-jerk skyhook, and at the other is the method described in section 4.8.3.

248

The no-jerk skyhook (NoJerkSkyhookGene) in fact did not perform as well as the passive.

The NoJerkSkyhookGene scored 221 while the Passive scored 321. This indicates that

although it removes crossover jerk, it is not a high-performance method globally. When the

method was used with maximum and minimum damping rate limits, the

NoJerkForceSkyhookGene, the method performed only slightly better than the passive.

(Note that when these limits are close this method is virtually indistinguishable from the

passive, so this can allow the EA to find a compromise between the two.)

Variations of the author’s lo-jerk skyhook (discussed in section 4.8.3) performed somewhat

better. The “linear lo-jerk skyhook” is a novel global control developed by the author using

the algorithm,

 otherwise. 0

,0 where ysysK
I

(Storey et al., 2006). This produced some improvement over the no-jerk skyhook. The

LoJerkConstantKGene, which uses this algorithm with maximum and minimum damping

rates, scored 368, slightly better than the passive. The highest scoring lo-jerk variant, the

LoJerkConstantKAdaptiveJerkFilterGene obtained a respectable score of 766.

When a crossover jerk removal algorithm was applied to modify a high-performance “target”

control however, there was much greater success. Such methods use a local crossover method

in conjunction with a high-performance “target” method. For this reason the crossover

algorithm is here referred to as a “local” method. They are “activated” when crossover is

imminent, especially when moving out of the operational range of the target method, as

described in section 4.8.

During the course of the research a number of crossover removal methods have been invented

by the author and have been used in the numerical experiments. For example, the

FlatLinearJerkSpikeRemoval04 is a linear control over jerk that used an old method to

anticipate crossover, and it obtained a respectable score for a semi-active control: 802.

Initial attempts at crossover removal used heuristic approaches. The theory of section 4.8.3

developed after looking more carefully at the physics of the problem. The use of a more

complete physical model was rewarded with the most successful crossover reduction methods

249

of the numerical experiments. In fact the highest performing semi-active suspension, the

FlatLinearJerk01SkewSemiCross, uses this crossover algorithm with a modified linear

target control (linear control over jerk with a virtual bump stop) achieving a score of 824.

All else being equal it should be expected that the semi-active method would perform worse

than the target method, at least if the target is a high-performance control (in some cases

where the target is a very poor performer, it may happen that the crossover removal acts to

soften and improve the control, but there is little point in examining such cases).

Furthermore, all else being equal, a semi-active control with crossover removal should

perform better than the target control that is merely clipped for a semi-active suspension.

This expectation was supported by experiment. This can be seen in the relative performances

in table 8 below.

Algorithm Target

Control

Type Crossover Score

FlatLinearAcceleration01 Linear over

Acceleration

Active - 976.4

FlatLinearAcceleration01SemiCross Linear over

Acceleration

Semi-Active Yes 797.8

FlatLinearAcceleration01Semi Linear over

Acceleration

Semi-Active No -4095.0

FlatLinearJerk01 Linear over

Jerk

Active - 965.0

FlatLinearJerk01SemiCross Linear over

Jerk

Semi-Active Yes 819.5

FlatLinearJerk01Semi Linear over

Jerk

Semi-Active No -3312.8

Table 8 Comparison of Linear Controls

There are two highly performing active controls which were based on theoretical notions that

are not explicitly linear but which actually are equivalent to special cases of linear controls

with virtual bump stops. As could be expected, these did not perform as well as the general

linear controls, but they performed quite well and they may indicate significant underlying

theoretical factors.

This is especially the case for the ActiveAdaptiveJerkFilterGene control with a score

of 974.4. This kind of control was described in the paper published during the research in

250

2006 (Storey et al., 2006). It was designed as an initial form of rattlespace constraint, but it

uses decay rates that are based loosely on what could be described as varying exponential

decay rates (for either acceleration or jerk). In the end, the control comes down to a less

flexible variant of a linear control with a virtual damper. The relatively high performance of

this somewhat simpler control however indicates that variable rates of exponential decay

could be used as a simple method of suspension control. This notion was not carried further

however when it was found that the method was a special case of the more general linear

method with variable stiffness.

BackMomentumActive01Gene performs only slightly better than the benchmark skyhook

but is much more complex. The control increases the return jerk based on a complex

combination of stroke, absolute chassis height and chassis acceleration. This uses third-order

functions depending on stroke and is again a special case of a linear control with virtual bump

stop.

Now the nonlinear, active controls are examined. These are controls that are nonlinear and

are not “modifications of the linear control”.

The highest performing nonlinear method is RCollisionAvoidJerk03 with a score of

977.5. This is a variable hardness form of rattlespace constraint control described in section

4.7.5. This particular control uses constant jerk to avoid the rattlespace limit. It has two

modes, a hard mode, when collision with the rattlespace is imminent, and a soft mode when

there is little danger of collision with the rattlespace. Given that this method is the third

highest scoring control, this is a control worthy of further investigation.

The control EdgeJerk01 performs only slightly less well than the benchmark skyhook; it

scores 948 compared to the skyhook’s 958. The EdgeJerk01 control uses complex edge

constraint methods as discussed in section 4.7.4. Recall that this method attempts to calculate

the control “strength” (jerk in this case) to maintain the trajectory within the anticipated

rattlespace. This control uses rattlespace edge targeting discussed in section 4.7.4 with edge

filtering (as illustrated in figure 4.44 and performed in the Java class

RattlespaceTarget01).

file:///D:/Data/PhD/Java/SuspensionTest302/Help/genesHTML/Genes.html%23BackMomentumActive01Gene

251

Next the semi-active, nonlinear controls are examined. Most of these are simply semi-active

adaptations of active target controls, with crossover removal added in. The

RCollisionAvoidSemi03 control for instance, which scores 815, is similar to the

RCollisionAvoidJerk03 control with a form of crossover removal.

There are two controls that deserve mention which are high performing semi-active variants

of rattlespace constraint controls: the xMinTimeHardenSemiCross which scored 806.74,

and the xLandingEdgeCenterSemiCross which scored 806.51. The

xMinTimeHardenSemiCross uses a variant of edge constraint similar to the EdgeJerk01

control, except that the jerk strength is calculated based on the maximum travel of the

minimum-time, bang-bang jerk control (described in section 4.6). It is difficult to calculate

the jerk needed to reach a given distance, so an iterative approach is used with the jerk

increasing in each step until the suspension is stiff enough to avoid colliding with the

rattlespace limit. Rattlespace edge filtering is also used (as described in section 4.7.4).

The xLandingEdgeCenterSemiCross control was perhaps the last control developed, and

it is in many ways incomplete. This control was based on the more mature theory developed

in section 4.7. That this first attempt could perform so well is somewhat encouraging,

although admittedly it scored lower than the simpler linear controls. This is an edge

constraint method which uses the landing-surface jerk to determine the jerk required to avoid

an edge collision. This has the advantage, as discussed in section 4.7.3.3, that rebound is

minimized and hence stability problems potentially avoided.

The semi active variants just mentioned performed relatively better than their active variants,

xMinTimeHarden and xLandingEdgeCenter, when compared to the linear controls. This

may be because the passivity constraint is less likely to affect controls when they stiffen on

approach to the rattlespace limits, as discussed in section 4.8.4.

file:///D:/Data/PhD/Java/SuspensionTest302/Help/genesHTML/Genes.html%23RCollisionAvoidSemi03

252

6. Physical Experiment

The physical experimental rig was designed for testing various control algorithms applied to

a semi-active suspension. A reprogrammable MCU (microcontroller unit) provides electronic

control. Ironically, as this thesis was being researched a new range of MCUs from Atmel, the

XMEGA range, was developed.

The use of an MCU, acting independently of a PC, demonstrates that the algorithms

employed here are not too demanding to be employed on board a dedicated MCU. It should

perhaps again be emphasised that processor-hungry evolutionary algorithms have been used

for optimization of control algorithms, they have not themselves been considered for on-

board control.

Preliminary designs for the physical rig were discussed with Peter Tkatchyk (see figure 8.42),

a lab technician at RMIT Bundoora campus. The rig needs to be a fair test of the algorithms

in as realistic a setting as possible given constraints of time and a very limited budget. The

first designs involved shakers that could shake a rig containing a small controllable damper

and a spring. Commercially available controllable dampers, however, are not small enough to

make this kind of rig feasible.

It was decided to try for a rig that could be mounted onto a small trailer, using the trailer as

the unsprung mass analogue and a suspended mass as the chassis analogue. The suspended

mass was comprised of gym weights in the final design.

A number of rig designs were considered. One possibility was to simply place a spring and

damper under a weight and mount them on a base. This arrangement however would need

precise mechanical fitting if it was not to shake, jam, or fall over. This was considered too

unwieldy.

Another possibility is simply to turn the suspension upside down and literally suspend the

load weight. In fact, the term “suspension” derives from the fact that carriages were originally

253

suspended below their supports (Bastow et al., 2004, p3). This orientation would be

extremely simple to engineer with no effect on the viability of experimentation. The only

difference is the spring equilibrium force. Even so, it was considered that this might not be as

convincing a test of suspension control as one that operated in the conventional orientation.

The final design settled on was a pivoted arm suspended above a base. Gym weights could be

added to the arm to simulate the chassis weight, as explained in the following sections. The

weight at the top of the experimental rig is a chassis analogue. For brevity, in this context this

weight will sometimes simply be referred to as the “chassis”. Similarly the distance between

the top and base may be referred to as the “stroke”. This design has the advantage that

effective spring and damper rate can be altered by moving them relative to the pivot.

While it proved quite easy to perform experiments to determine the damper parameters and to

control the force of the suspension system, the ability to test the rig over terrain proved quite

difficult. Speciifically it proved difficult in the constraints of the experiment to get absolutely

uniform tests over rough terrain. It was decided therefor to use long runs for this kind of

experiment and summerise the results. The controls that bring a suspended system smoothly

to rest, on the other hand, could be repeated reliably in the lab and are reliable results for a

control algorithm that may have substantial commercial applications, and has great relevance

for suspension systems. The experiments over rough terrain however do suffice as a proof

that the algorithms can be applied reliably using even very cheap accelerometers and

microprocessors. Sophisticated ral-time optimal control is viable with modern equipment: the

numerical experiments show that even relatively simple modifications to linear controls are

worthy of further investigation.

6.1. Experimental Rig

The physical frame was built at RMIT Bundoora campus by Peter Tkatchyk (see figure 8.42)

according to this author’s original design, shown below in figure 6.1. The completed rig

(unpainted) is shown in figure 6.2. Load weights are placed on an arm attached to a pivot

mounted on a frame.

254

Figure 6.1 Original Design for the Experimental Rig

Figure 6.2 Physical Rig

255

6.1.1. Controllable Damper

Perhaps the most crucial component of the experimental rig is the controllable damper. The

damper has been supplied by Lord Corporation (Lord, 2009) and is an RD-1005-3 damper.

Note that the datasheet for the damper supplied by Lord Corporation was available from the

website at the time of purchase. (It can be found in the supplied material:

PhD\Experiment\Lord RD 1005 3 Damper.pdf.) The damper is depicted in figure

8.43 and can be seen attached to the rig in figure 8.42 and figure 6.2 above. The damper’s

technical datasheet states that, “Continuously variable damping is controlled by the increase

in yield strength of the MR fluid in response to magnetic field strength.” The strength of the

magnetic field and the subsequent force applied by the damper are determined by the current

supplied by the damper.

In order to simplify the electronic control of the damper, Lord supplied a component which

takes a 5 volt input signal and produces a 12 volt current output appropriate for the control of

the damper, the LORD Wonder Box™

Device Controller Kit, RD-3002-03 (Lord, 2008)

shown in Figure 8.44. (The datasheet for the controller can be found in

PhD\Experiment\LORD Wonder Box Device Controller Kit.pdf.) The BNC

connector, at the right in figure 8.44, takes a 5 volt signal (as supplied by the microcontroller

in the final experiments) and outputs the 12 volt control via the banana plug connectors at the

top. The unit comes supplied with a 12 volt power plug pack (with a US mains plug). This

was swapped for a current-limited power supply.

Given the number of input and output transducers, a simple “jiffy box” was used to house the

controller (refer to figure 6.3). This unit was designed and built by this author. This box also

housed a 5 volt regulator, and took power from a 12 volt supply. Apart from the 5 volt

regulator, the main purpose of the box is simply to tidy up some of the connections to the

microcontroller and the Lord controller. The signals to and from the microcontroller were

placed inside a shielded cable. As discussed below, the original shielding for the

potentiometer output was insufficient and more careful shielding was needed. Note that the

microcontroller has been housed separately in order to expedite reprogramming in

256

experiments, but the MCU could easily be run independently of the PC once a suspension

control algorithm has been programmed.

Figure 6.3 Control Box for Rig

The controller box from Lord Corporation was designed to handle a 5 volt signal input, and a

5 volt PWM signal from the MCU was used for control. A faint but distinct high-pitched

buzzing sound emanated from the damper under load when the raw PWM signal was used, no

doubt with a harmonic frequency of the duty-cycle rectangular wave. An attempt was made

to use active components for the PWM filter to remove the sound and supply the power

needed, but eventually a simple passive low-pass filter was found to be sufficient (

FCR 5.1,330). The sound disappeared.

According to the Lord website (Lord, 2009), “If [the damper coils] are left on too long

(perhaps 15 minutes) at 2 amps, they will get very hot. If one limits the current to say, 1 amp,

this would be better.” A current-limited power supply was purchased for the damper supply.

This was used to supply the 12 volt supply, but the current output was limited at slightly less

than 0.5 amps during experimentation. More than once during experimentation this possibly

saved the damper coils from overheating, because in the course of complex experiments it is

possible to unknowingly leave the coil on for long periods of time (the power supply’s

ammeter was never observed to read above 0.5 amps).

257

6.2. Electronics for Control

A number of options were considered for the electronics to read movement data and for

outputting to the controllable damper. A high priority for this experiment was a low time gap

between MCU input and output. As explained in section 2.10.1, the damper has a latency of

at most 10 ms under the most unfavourable conditions (claimed by Lord Corporation). The

goal was to keep MCU latency lower than this if possible. As a rule of thumb, a vehicle

travelling at 100 km/hr will traverse approximately 28mm (approximately one inch) in each

millisecond (1 ms). Latency therefore limits the size of the bump that can be responded to by

an electronic system. A latency of 10 ms corresponds to being unable to respond to a 10 inch

bump, at that speed.

The simplest options for controlling the experimental rig all seemed to involve high latencies.

A “Parallel Port Interface”, sold by Dick Smith (K2805) (Dick Smith Electronics Limited,

2006, p239), has 10 analog inputs and two analog outputs and allows direct control via a

computer, but the serial port is too slow for our purposes and, in any case, negates the

benefits discussed above of using an MCU.

Distance measuring systems suffer similar problems. For example, laser mice mechanisms

were considered for providing distance measurements. However, mice also use serial

communication with high latency. In the end a simple potentiometer was used for measuring

the distance movement between the end top arm and the base.

There are a number of possible microcontrollers (MCUs) that can be used to provide a proof

of concept for the on-board control of physical systems: the 8051 family, the Microchip PIC

range, Atmel AVRs, the Texas Instruments MSP430 family, the Rabbit Semiconductor range

of MCUs (Edwards, 2005, p16), and others. The chip used here is the ATmega644 from the

Atmel AVR range. This chip has multiple analog inputs and outputs, and it allows ISP (In-

System Programming), which is to say that it can be programmed and reprogrammed while in

the target circuit. The ATmega644 contains 64K of flash memory, which is reprogrammable

effectively indefinitely (Barnett et al., 2006). In the experiments of this thesis an STK500

development board from Atmel, shown in figure 6.4, was used as the development platform

258

for the electronic control. The board also contains a number of input and output connectors

typical of MCU development boards.

Figure 6.4 STK 500.

Any one from a large range of ATmega processors can be accommodated by this board.

Figure 6.4 shows an ATmega644 as used in the experiments. The ATmega644 contains 64K

of memory and this was sufficient to run a menu system that allowed various features to be

turned on and off without significant reprogramming, although the process of transferring the

machine code to the chip via RS232 was somewhat slow.

Programming using ISP is usually performed from a computer via an RS232 or USB serial

connection. Here, an RS232 connection was used (highlighted in figure 6.4). With ISP, the

same rig can be run with many different control algorithms; C programs are compiled on a

computer, and MCU machine code is transferred to the microcontroller via the RS232

connection dedicated to ISP (marked RS232 CTRL on the development board).

Using this technique, any processing on the PC is clearly independent of the microprocessor

control of the suspension. The suspension control is thus in an environment as close to the

target as possible, providing verification that the algorithms used are simple enough and fast

enough to apply using a microprocessor.

259

The STK has two RS232 ports, one for ISP during reprogramming and one for USART

communication as programs are running, which communicates via a standard “terminal”

program (a freeware program called “Term” was used). The USART communication was

invaluable for experimental purposes, although it has no role in the suspension control. It is

becoming more-and-more difficult to obtain a computer with two RS232 ports (also called

“com” ports). During experimentation a new computer was purchased that had no com ports,

so a card containing two com ports had to be installed.

The program on the PC for compiling C code and for transferring machine code to the MCU

is AVR Studio, which was downloaded from the Atmel website at,

http://www.atmel.com/dyn/Products/tools_card.asp?tool_id=2725

AVR Studio is an integrated development environment for developing source code in C and

transferring the compiled machine code to the AVR microprocessor. The Atmel website is

also the source of the datasheets for the ATmega range of chips, such as the ATmega644

used in the experiments.

It was necessary to become familiar with the interrupts, and the analog-to-digital conversions

of the AVR chips. A couple of texts were useful, particularly Barnett et al. (2006) and Pardue

(2005). Atmel’s website (www.atmel.com) also had useful examples, but a number of other

sites were also helpful. The following site contains useful code:

http://winavr.scienceprog.com/

Another good source is,

http://main.linuxfocus.org/common/src/article231/haraleit.pdf

The following site from Atmel has many links to useful data.

http://www.atmel.com/dyn/products/app_notes.asp?part_id=3694

The following has some very useful hints and shows a deep experience with AVR

programming.

http://www.nongnu.org/avr-libc/user-manual/FAQ.html

(Web sources were available at time of writing.) Written notes were compiled during the

process of becoming familiar with some of the range of the ATmega chip family can be

found in the appended document “AVR ATmega on the STK500”, in the word file “AVR

Notes.doc” (in the directory PhD\Experiment\Electronics\Atmel AVR\My AVR

Notes).

260

ADC (Analog to Digital Conversion) allows analog voltage values to be entered for

processing in programs on board the MCU. ADC employs a process of counting steps as a

fraction of a reference voltage. For example, if a 10-bit ADC produces the value 960, and the

reference voltage is 5 V, then the input voltage is calculated using the following equation,

V.692.40.5
1023

960
0.5

12

960
10

The highest possible accuracy is half the voltage of a single step size. In the example above

this is approximately 2.5 mV. In practice, inaccuracies are greater due to inaccuracies in the

ADC process, but they can also depend on the cleanness of the reference voltage supply used

by the ADC. Oversampling can greatly reduce error (Pardue, 2005, p217). Refer to this

author’s notes on oversampling in “AVR ATmega on the STK500”.

Analog output is achieved by using PWM (Pulse Width Modulation). A repeating rectangular

pulse is produced that has a duty-cycle fraction giving an average voltage with the desired

value. So if the required output voltage is low, the fraction of the time that the square wave

has a high voltage is proportionally low. Both PWM and ADC on the ATmega644 can have

8-, 9- or 10-bit resolution, although only one timer can cope with greater than 8-bit counting

and the number of simultaneous peripherals with 9- and 10-bit resolution is limited. In the

experiments performed here the highest output frequency required is in the low audio range,

1 kHz at the very most, and the square-wave output of the PWM is well within the

specifications required to produce a smooth output voltage at this frequency.

According to the datasheet, the on-board timers of the ATmega MCUs cannot be relied on for

accuracy, although they are very regular (with constant voltage on the VCC pin and constant

temperature). To calibrate the on-board timer a unit was built around a timer circuit from a

cheap digital clock with an analog readout. The power circuit supplying the 1.5 V to the

original clock circuit is simply a voltage divider with a capacitor across the supply. The

original clock uses such a small amount of power that no further regulation was needed. The

unit has a 1.5 V spike that crosses 2.5 V and so switches between on and off when read by the

MCU. This unit supplies a regular spike every two seconds. An oscilloscope was used to

check the timing in the finished unit.

The timer can be used to count events in the MCU over a two-second period. The code used

for this can be found in the appendix, section 8.17. This can be used then to calibrate the

261

frequency of timers in the MCU. For example, if the count is regular and 200 events are

counted in a two second period then the frequency of the timer is 100 Hz. As it happened,

experiments with the timer showed that the on-board timer was accurate enough for the

purposes of this thesis and did not require adjustment. (The program used for determining

this is contained in the directory,

PhD/Experiment/Electronics/Atmel AVR/

in the file,

Test26 Timer01 - Calibrate Timer/CalibrateTimer0.c)

6.3. Measurement Calibration

A potentiometer was employed to read the “stroke”. The “stroke” here is the displacement

between the top arm (representing the chassis) and the base (representing the wheel)

measured at the end of the arm. With small stroke and small angular arm movement, the

damper and spring extensions are effectively linearly related to the arm movement.

Fishing line was attached to the moving arm of the rig and wound round a pulley attached to

potentiometer attached to the base of the rig, as shown in figure 6.5. A second pulley is

attached to a spring which maintains tension in the wire. The potentiometer was connected as

a voltage divider with the voltage output proportional to the arm movement.

262

Figure 6.5 Stroke Measurement Setup

A “digital oscilloscope” has been used here for diagnostic purposes; it has no role in control.

The device used was a PoScope Basic (www.poscope.com) which is very affordable. The

PoScope has enough accuracy for the frequencies covered by the experiment, which are well

within the audio range (say less than 1 KHz). (Figure 8.45 shows the PoScope unit: two input

test leads feed into the BNC connectors on the front, and the USB connector on the right

provides a channel for control by the PC, and for data acquisition.)

Figure 6.6 shows an example screenshot of the PoScope software’s display on the computer

after capturing stroke movement data. This software can be used to transfer data into a text

(ASCII) file for processing by other computer programs. A portion of such a file is shown in

figure 6.7.

263

Figure 6.6 PoScope Digital Oscilloscope Screenshot

Time, ms Channel 1 Channel 2

-98 1.42

-96 1.42 0.691

-94 1.42 0.691

-92 1.463 0.777

-90 1.42 0.691

-88 1.463 0.605

-86 1.42 0.691

-84 1.42 0.691

-82 1.463 0.734

-80 1.377 0.691

-78 1.463 0.691

-76 1.463 0.734

-74 1.42 0.734

-72 1.42 0.691

-70 1.463 0.734

-68 1.463 0.691

-66 1.42 0.648

-64 1.42 0.691

-62 1.42 0.734

-60 1.42 0.734

-58 1.42 0.691

-56 1.463 0.691

Figure 6.7 Portion of a Text File of Oscilloscope Data Points

264

It is important to distinguish between voltage data being used in two places. Firstly, voltage

data is collected off-board, on the computer, via the oscilloscope; this data is used for

calibration, verification and for determining effective spring rate as well as damper

characteristics. A Java program, ProcessScope, (written by this author) was used for

processing data off-board. Secondly, voltage data is collected on-board the MCU, via the

ADC; this data is destined to be used in the on-board control algorithms. The MCU requires

velocity and acceleration measures as well as distance. C programs compiled for the ATmega

chip, are transferred to the MCU via ISP, as described earlier. These programs are used to

control the damper in the rig.

Initially, the potentiometer responsible for measuring distance was unshielded, as shown

above in figure 6.5. The potentiometer output contained a well-defined “50-cycle hum”

shown in figure 6.8. This is indicative of poor grounding (Australian mains power supply is

50 Hz). To attempt to reduce this hum, shielded boxes were employed and analog data was

transferred using balanced shielded XLR connectors as often employed for small signal audio

wiring. The shielded potentiometer setup is shown in Figure 8.46. An excellent note on the

wiring of XLR cables can be found at the following website,

http://www.rane.com/note110.html

This method very effectively eliminated interference.

Figure 6.8 50 Hz Interference on Original Potentiometer Input

http://www.rane.com/note110.html

265

6.3.1. Distance Calibration

A linear potentiometer was used for measuring displacement. Assuming linearity, the

relationship between stroke and voltage can be expressed as,

 .vs

Equation 6.1

Here, is a constant linear coefficient for converting from voltage, v, to stroke, s. As is

usual practice for suspension theory, the “zero” stroke displacement is the equilibrium

position under load. In the experiments performed later a “zero” voltage was determined

simply by reading the potentiometer output with the rig sitting still at equilibrium.

The value of the conversion parameter, , was determined by experiments that measured

voltage and displacement as the rig was loaded with different masses. The plot of actual

voltage vs. displacement is shown in figure 6.9 (the data has been collated in the Excel

spreadsheet “Volts Distance Mass” in the directory PhD\Experiment\Rig).

Figure 6.9 Voltage vs. Displacement (cm)

When regression is performed on displacement versus voltage a slope of -2.66785 is found

(with a correlation coefficient of about -0.998). This needs to be divided by 100 to convert

centimetres to metres, and multiplied by the ratio of the distance from the pivot to the mass

centre and the measuring point respectively (measuring at the mass centre is inconvenient and

more error prone). The approximate value for therefore is,

266

 01944.0 m/V.

A one volt difference corresponds to roughly a 2 cm movement.

It is convenient below to work in terms of voltage and to later convert back to physical values

using equation 6.1 if needed.

6.3.2. MCU Voltage Calibration

The analog voltage read by the MCU is converted to a digital value using ADC as described

in section 6.2. This is a straight-forward linear conversion:

.AAA xv

Equation 6.2

Here Av is the actual input voltage at the MCU terminals, Ax is the numerical reading

(integer) in the MCU, and A is the conversion factor. The subscript “A” stands for ADC.

Note that A is the voltage corresponding to a step difference of 1 in the ADC. The reference

voltage and the resolution of the ADC affect the conversion. Given that the ADC used a 10-

bit reading, and that the reference voltage is 5 volts, the theoretical resolution is,

 89.4
1023

5

1210

*

ref

A

V
 mV.

This can be used where approximate readings are required. However, it is simple enough to

determine the conversion factor experimentally. Different constant voltages can be applied by

using a potentiometer as a voltage divider. A small program for the microcontroller reported

the ADC measures via RS232 communicating to a “terminal” program on the computer. With

nine separate readings and using regression the experimentally determined resolution is,

A =4.775 mV.

Equation 6.3

(Refer to the Excel file “PhD\Experiment\Rig\Calibration Voltage and MCU 01”,

sheet 2. Note the linear graph of results, and the very high correlation coefficient.) The

267

regression showed extremely good agreement with equation 6.2, with a correlation

coefficient of 0.999997.

“Oversampling” produces higher resolution and more accurate readings at the cost of

processor time. If the voltage is oversampled n times and summed to give ,AX then the

average x value is effectively AX divided by n, and equation 6.2 produces,

 .
n

X
xv A

AAA

Equation 6.4

Output using PWM (described above in section 6.2) can also be calibrated. The PWM

rectangular wave is filtered by a simple low-pass RC filter as shown in figure 6.10. The

resistor and capacitor values used for the filter were R = 325 and C = 1.55 µF (determined

by a multimeter). Some care was used in choosing these values, and in deciding the PWM

frequency in order to ensure that the pulse frequency was filtered without affecting the

intended output. Since the intended output frequencies are quite low, in the low- to mid-audio

range, this did not present a great challenge.

Figure 6.10 RC Low-pass Filter

The PWM depends linearly on the MCU output number,

 .PPP xv

Equation 6.5

The subscript “P” stands for PWM. In this case, Px is the value used by the PWM in the

MCU to produce the output voltage .Pv Given a 9-bit output with a 5 volt rectangular wave

the theoretical conversion factor, ,P should be on the order of,

268

 785.9
511

5

129

*

ref

P

V
 mV.

Again, this factor can be determined experimentally. This author wrote a small program for

the microcontroller to output a particular PWM value. The experimentally determined value

of the resolution is,

 P 9.6 mV.

Equation 6.6

(Refer to the Excel file “PhD\Experiment\Rig\Calibration MCU to Voltage 01”,

sheet 2.) The experiment showed very high linearity, with a correlation coefficient of

0.9999993. solving for Px in equation 6.5, gives,

 .
P

P
P

v
x

This then is the numerical value required by the MCU.

For verification, a MCU program was written by the author which simply accepted voltage

input via ADC and echoed exactly the same voltage for output via PWM. Let AX represent

the numerical value input from the ADC (with oversampling) and Px the numerical value

output to the PWM. Equation 6.4 and equation 6.5 can be combined to give,

 .
n

Xvv
x A

P

A

P

A

P

P
P

Figure 6.11 shows an experiment with output voltage, generated by the PWM, copying the

input voltage, read by the ADC, verifying the conversions. The input was varied using a

potentiometer. The graphs have been shifted vertically by 0.2 volts to make the separate

graphs clear. The lower graph is the voltage from the rig and the upper graph is the echoed

voltage from the MCU. (MCU code for this is available in the file,

Experiment\Electronics\Atmel AVR\Test104 Match

OutputToInput\MatchOutputToInput.c,

or by pressing “L” in the program,

Experiment\Electronics\Atmel AVR\ Test111 Test Landing

04\TestLand04.c)

269

Figure 6.11 PWM Voltage Copies ADC

The time lag here is the step time of the MCU, and is quite small, but observable.

6.3.3. Numerical Calculation of Derivatives

Let voltage (corresponding to displacement) be represented as v. The successive derivatives,

v and ,v can be determined numerically from the measured values of v. It is important to

stress that there are two places in which numerical methods are used: they can be employed

both on-board, inside the MCU, and off-board, using computer manipulation of data collected

from the digital oscilloscope. The on-board calculation is destined to be used in the MCU for

control purposes, while the computer calculations are used for calibration, verification, and

for determining the effective spring rate and damper characteristics.

The on-board numerical methods for determining derivatives are quite different from those

used off-board. The off-board numerical methods employ a “sliding window” average. (The

Java class Smoother in the ProcessScope package performs this function.) This method

270

cannot be used effectively for on-board calculations because of the latency it induces into the

control process.

On-board signal processing in the MCU employs a moving average (as described in the

appendix, in section 8.12). All code for all methods, both on-board and off-board, was

developed and tested by the author.

For the sliding-window method in the off-board calculations, an average of a successive

number of points is used rather than individual values. An example of the effect of numerical

smoothing is shown in figure 6.12, where 13 data points are used in the sliding window. The

graph shows the smoothed line running through the actual data points. The smoothed line can

be used for the calculation of derivatives, and the derivative can be further smoothed and the

second derivative calculated, as shown in figure 6.13 (the derivatives have been scaled to be

clearly visible on the same graph).

Figure 6.12 Sliding Window Smoothing

271

Figure 6.13 Sliding Window used to Calculate Derivatives

Note that the accelerometer measures the acceleration of the top bar, not the acceleration of

the relative movement. The on-board subroutines to perform the smoothing are shown

immediately below. As discussed in section 2.3.1.2, Kalman filtering can be achieved by

three simple equations given the simple dynamics of the rig itself. Velocity and acceleration

are simple time derivatives for distance and velocity respectively. These can be used as the

time-update step, applying equation 2.6. Similarly the system dynamics is applied to provide

the time-update step for acceleration.

The state estimation steps as calculated on-board are shown in figure 8.47. The acceleration is

processed in a few more steps in order to provide control over either acceleration or jerk, as

discussed in later sections.

The estimations of acceleration of the stroke require two numerical differentiations (with

smoothing as explained in detail above) of the displacement. A further differentiation would

give the jerk of the stroke (the displacement between top and bottom arms). This is a

superfluous measure, however, as it is the reduction of chassis (top arm) jerk that is required

for the estimation of the smoothing performance. This will be estimated from accelerometer

measures, which has the advantage that it is not delayed by the latency of the numerical

smoothing, used to maintain good estimates of differentiation.

272

The various Kalman gain factors were determined by experimenting until an acceptable

compromise was found between good smoothing (low K values) and a low time lag (high K

values). This could be judged by eye from the oscilloscope output.

The estimates of smoothness are for experimental use only, and are not part of the suspension

control algorithm; the control algorithms themselves use estimates only of distance, velocity

and acceleration, and not jerk. Furthermore, it is important to emphasise that the jerk obtained

from chassis movement is responsible for ride smoothness, while stroke jerk measures are

irrelevant. Indeed, the wheel’s role is to absorb shocks and to move rapidly with the road

while the chassis remains relatively calm and smooth. As a result the stroke jerk will be high,

and probably would be corresponding difficult to estimate in any case, while the chassis jerk

only requires one numerical differentiation from a direct measure, and is not used for any

control purpose in any case, rather it is used only for experimental estimates of performance.

6.3.4. Velocity Calibration

This section describes how the velocity calculation on the MCU is calibrated against the

independent calculation of velocity from off-board oscilloscope data. The calculation of raw

velocity values on the MCU uses simple subtraction of successive distance measures, after

smoothing. The frequency of the distance measures is kept constant. Let f be the frequency

of measurement, let AX be the distance measure (oversampled n times), and let AX be the

difference in these measures from one step to the next. Thus the rate of change in AX is

approximated as,

 .AA XfX

Differentiating equation 6.4 and using the above equation gives,

 .
n

Xf

n

X

n

X

dt

d
v A

A
A

A
A

AA

In the experiments described immediately below, 100f Hz. For the purpose of verification

the velocity can be echoed to the PC via RS232. For further verification, the value can be

echoed to a PWM voltage output, using equation 6.5,

273

 .
n

Xf

n

Xvv
x

p

AA

p

AA

p

A

p

P
p

In experiment, this value is centred in the output voltage range by adding 256 to the PWM

value.

For the purpose of comparing on-board and off-board velocity measures, a constant velocity

was simulated on the MCU using a simple program to produce a triangle wave with constant

slope on the up and down portions of the wave, as seen in figure 6.15 (a). The code to set the

desired output voltage is quite simple and is shown figure 8.48. (The following lines of code

in the C program, DamperControl01.h, produce the triangle wave output when the lines

are uncommented. These lines need to be commented out again to restore the normal

operation of this program.)

This code is placed just after the actual distance measures are produced and smoothed; the

parameter “Vav” represents the smoothed distance measure. In figure 6.15 (a), this is shown

echoed to the output. The triangle wave slope can be varied programmatically. (Refer to AVR

Studio project in,

PhD\Experiment\Electronics\Atmel AVR\Test105 Test

Velocity\TestVelocity01.c.) The screenshot in figure 6.14 shows the velocity step

size being changed from the computer via RS232 communications using a “terminal”

program. The MCU also periodically reports the results of its calculations. In the example,

the calculated velocity (during a downward slope) has the same magnitude as the input value,

60, verifying the calculation.

274

Figure 6.14 Terminal Communication

The graphs in figure 6.15 part (a) and (b) show the distance (voltage) and velocity outputs.

Graph (a) shows the output of the triangle wave, and graph (b) shows the output of the slope

calculation converted to a PWM output from the MCU. In these graphs the difference in the

velocity AX has been set to 15. Applying the conversion factor of equation 6.3, and with a

frequency of 100 Hz, the rate of change of voltage should be,

V. 791.1
4

1510010775.4 3

n

Xf

n

X
v AAAA

A

As can be seen in figure (b), the MCU calculation is close to this value.

275

(a)

(b)

Figure 6.15 Constant Rate-of-Change of Voltage

276

Figure (a) shows the triangle wave output from the MCU and the off-board velocity value

calculated in the Java program. Also, two points are taken on the rising line in figure (a):

(0.969, 0.505) and (3.187, 4.433). The slope between these points is 1.771 V/s. The heights of

the rate-of-change of voltage calculated off-board in figure (a) are 1.789 V/s and -1.789 V/s.

The values calculated and output by the MCU in figure (b) are 1.778 V/s and -1.774 V/s.

These values all agree to two decimal places.

Using actual input data instead of simulated triangle waves, the on-board MCU velocity

output can be directly compared with velocity calculated off-board from oscilloscope data.

An example of such a comparison is shown in figure 6.16 (the raw data can be found in the

file testVel_Sine01.txt in the folder

PhD\Eclipse RSpace Constraint\ScopeDataFiles02). The MCU velocity was

scaled down by a factor of 5 to fit within 5 V, and then scaled up by a factor of 5 in the

graphing software. The two methods substantially agree. Note the time lag in the on-board

calculation because at this point the time update of the Kalman step did not use acceleration

for the time update step, since this is yet to be calibrated.

Figure 6.16 Comparison of Sliding Window with Moving Average

277

6.3.5. Calibration of the Accelerometer

Acceleration is measured independently by a MEMS accelerometer (see section 2.10.2)

attached to the experimental rig as shown in figure 6.17. The accelerometer used was an

ADXL210 contained on an evaluation board purchased online from Dimension Engineering

(Robotshop, 2007). Such is the pace of development with MEMS accelerometers that this

particular component became discontinued while writing, but similar and better components

are continually being developed. (The datasheet for the component can be found in the folder

PhD\Experiment\Accelerometer.) Today accelerometers generally supply digital output

using the SPI or I2C communication protocols, which would have been preferable.

Unfortunately at the time the rig was built the purchased evaluation board with analog output

was widely used.

Figure 6.17 MEMS Accelerometer attached to Rig

278

The calibration of the accelerometer readings was performed by comparison with the distance

measures taken in volts. This results in an “acceleration” in units of Vs
-2

. The following

graph, figure 6.18, shows both the distance and acceleration readings taken from the rig while

the top of the rig was being moved up and down by hand. The bottom of the rig is stationary.

As expected with a near sine wave movement, acceleration is phase shifted by π radians.

Figure 6.18 Distance and Acceleration, both from Rig

The same Java program used above to compute velocity can be used to produce a further

derivative and so provide an estimate of acceleration which can be compared to data supplied

by the accelerometer. The graph in figure 6.19 is an example of acceleration calculated in the

Java program (based on distance data input to the scope) compared with scope input from the

accelerometer. (The data file is testAcc_Wave_04.txt. All such data files are stored in the

folder PhD\Eclipse RSpace Constraint\ScopeDataFiles02.) Both the computed

acceleration and the accelerometer data have been scaled in order to be clearly visible in the

same graph just as the original distance voltage measures were, as well as to make a

comparison to verify the accelerometer scaling factor. The calculated acceleration measure

has been multiplied by 0.02.

279

Figure 6.19 Accelerometer compared with Calculated Acceleration

Let β be the parameter for conversion between the accelerometer voltage output, ,accv and

the “acceleration” (second-order derivative of displacement voltage), ,Av so that,

 .0vvv accA

Equation 6.7

Here 0v is the accelerometer voltage corresponding to zero acceleration. The value of β can

be estimated by taking the average of ./ 0vvv accA for a large number of points. With the

data as shown in figure 6.19 the average value of calculated acceleration divided by measured

acceleration was computed. The value used here is,

 .530

Equation 6.8

This is then the estimate of the acceleration multiplication factor needed to make the

accelerometer acceleration match the second-order rate-of-change of voltage. (This was

calculated in the Java program, ProcessScopeDemo.)

280

Given that the calculated acceleration was multiplied by 0.02 (set using AccMultiplier in

the Graph Parameters group in ProcessScopeDemo), for the purposes of graphical display

the accelerometer value is multiplied by,

 .6.1002.0530

(This is set as accelerometerMult in the Experimental Parameters group.) This multiplier

value was used in the graph in figure 6.19, and verifies that the conversion factor is correct.

To verify the on-board calculation of acceleration, the internally generated value is compared

with off-board calculations of acceleration. The accelerometer value is oversampled accn

times (here 2accn) and the summed ADC reading is represented below as .accX The value

of accv is then calculated in a manner similar to equation 6.4,

 .acc

acc

A
acc X

n
v

The same proportionality constant, ,A on the voltage input as in the previous section has

been used. In the MCU the measured accelerometer voltage is multiplied by the conversion

factor, β, to provide an estimate of true acceleration. Combining the previous equation with

equation 6.7 and supposing that the zero acceleration voltage corresponds to an ADC value of

0X divided by accn , produces,

 .00 XX
n

vX
n

v acc

acc

A
acc

acc

A

To maintain the output within the voltage output limits of the MCU, the acceleration needs to

be scaled down and centred. A factor of 0.02 was used for scaling. For the PWM then, the

output value is,

 .256)(
02.0

256
02.0

0 XX
n

vx acc

acc

A

PP

P

Note that the zero value of accelerometer output needs to be estimated. This may drift with

changing temperatures and other conditions. If the zero value is itself estimated using a

moving average with a very long time constant, then the acceleration measure becomes self-

zeroing. The voltage then becomes self-zeroing. The first measured voltage is used as the

initial zero estimate. Thus the rig needs to be stationary at startup, and the measurement

281

circuits need to be fully operational by the time the microprocessor starts measuring. The

equilibrium (zero position) is slowly adjusted using the moving average with an extremely

long time constant (corresponding to a low value for in the moving average calculation

given in section 8.12).

As a simple demonstration of the exponential decay to perform the self-zeroing, an inaccurate

initial estimate, ,0X can be coded. The exponentially-weighted moving average uses a long

time constant. In figure 6.20 the time constant is about 0.5 sec (α = 0.02), and the exponential

decay down to the true zero value is obvious (for the test, the rig remains at rest throughout).

In the actual code used in experiments, the initial value is determined from the initial reading

and, as for the displacement readings, the rig must be initially stationary with the

accelerometer circuits fully operational by the time the first microprocessor reading is taken.

The time constant for self-zeroing is quite long, of the order of ten seconds (α = 0.0005).

With these values there are no noticeable artefacts on the control produced by the self-

zeroing.

Figure 6.20 Self Zeroing Demonstration

In the following graph, the voltage acceleration has been computed by the MCU (and scaled

by the same factor as the calculated acceleration, 0.02). The two estimates are compared on

the one graph at the same scale. The two graphs substantially agree, and this further verifies

the method used above.

282

Figure 6.21 MCU Output compared to Calculated Acceleration

The smoothness of the jerk estimation is affected by high frequency noise. This can be

reduced by two processes, first by the low-pass filter used to limit noise on the input. The

experimental filter, as discussed in section 6.3.2 has a low-pass filter where R = 325 and

C = 1.55 µF which gives a cut-off frequency of 320 Hz, which is high enough to allow useful

data through, but which will smooth out noise at higher frequencies. Numerical smoothing on

the acceleration data using Kalman filtering has a further similar effect as an analogue filter

except that the filtering is performed at discreet points. This suggests a separate filter could

perhaps be used before accelerometer inputs used to estimate jerk. It should be noted too that

the accelerometer itself has a low-pass filter on its output to perform integration on its digital-

to-analogue converter. In order to estimate the jerk the acceleration was smoothed

numerically up to the point that the acceleration did not have undue latency but there was

little noticeable noise on the acceleration graph. This was done by running the rig with fast

top-bar oscillations and judging the best form of filtering. Jerk estimates were then simply

taken by subtracting successive top-bar acceleration measures. It should be remembered too

that jerk is not estimated for on-board calculations, it is used for experimental measures of

performance.

283

6.3.6. Calibration of Damper and Spring Forces

The datasheet for the damper supplied by Lord Corporation shows a graph of “Typical Force

vs. Velocity” (see figure 6.22). (The graph is taken from the datasheet found in the supplied

material: PhD\Experiment\Lord RD 1005 3 Damper.pdf.) The offset force at zero

stroke velocity “is due to gas precharge required for temperature compensation and to prevent

cavitation”. The spring rate of the gas precharge for this experiment is small relative to the

spring attached to the rig. Furthermore it is assumed that the precharge adds linearly to the

springing of the rig, and the experiments below will determine the combined effective spring

rate. In the graph shown in see figure 6.22 hysteresis effects are assumed negligible, and this

will also be assumed here. The voltages are missing from this graph so the actual

characteristics must be determined experimentally.

Figure 6.22 Damper Characteristics (from Supplier’s Datasheet)

At this point the damper force is estimated using the data output from the rig. It has been

assumed that the voltage measure versus displacement is linear, and so the second rate of

change of the voltage is proportional to force. It is also assumed that the damper’s effect on

284

the second rate-of-change of voltage is approximately that given by the suppliers, as depicted

in figure 6.22. Further assumptions are:

 mass is constant (so force is proportional to acceleration),

 top arm displacement is small (so rotational movement can be ignored),

 the spring is linear (including the springing of the damper’s “gas precharge”), and

 damper force depends on stroke velocity and applied voltage.

Under these assumptions, the following model can be used,

 .0),(vkVvAv eD

Equation 6.9

Here v represents the voltage measure corresponding to the displacement as above, ek

represents the equivalent “spring rate”, and DA is the damper’s characteristic function,

dependent on velocity and voltage applied to the “Wonder Box”, V. It is assumed that the

function DA has approximately the same shape as the force profile shown in figure 6.22, but

this will be examined experimentally below.

To determine the damper’s characteristics the effective spring rate, ,ek must first be

estimated (for brevity this will here be referred to as just the “spring rate”). This is

determined from the relationship between distance and acceleration with the rig under

oscillation with no damping input (and with very small damping force). Unfortunately, the rig

cannot be kept oscillating by hand since any external force will make equation 6.9 invalid,

and corrupt the data.

The simplest method is to displace the rig away from equilibrium, let it go, and record the

motion of the rig with no external force, recording the transient response of the rig. These

will be referred to as “transient” or “drop” experiments. A surprising amount of information

can be gleaned from such experiments. As expected the responses vary greatly with different

voltages applied to the damper.

The transient experiments needed to be performed carefully. The release must be quick and

clean; it is only when the rig has been released that data can be used. A belt tied around the

285

central shaft through the gym weights allowed a smoother, quicker release than simply

holding the weights by hand on either side.

Figure 6.23 Oscilloscope Data for Transient

Figure 6.23 shows a graph of data collected for a transient. (The data for this example can be

found in the file DistAcc_00_00.txt.) While the drop occurs slightly before the zero time

mark on the graph, it takes a small amount of time to fully release the rig. Therefore the first

part of the data needs to be removed (and some header lines inserted for the code used here).

The data can be zeroed by checking that the zero values match the equilibrium values, as

shown in figure 6.24. Once equilibrium has been reached, after about one second, the data

adds no useful information for regression analysis and these points can also be deleted.

286

Figure 6.24 Initial Points Removed and Zero Lines Set

To attempt to determine the effective spring rate, linear regression was first used to fit data

points to the following expression,

 .vkv e

Equation 6.10

This is used only in cases where no voltage is applied to the damper. Even though the damper

term has been removed, the damper remains attached to the rig. As discussed above, there is

some small amount of springing as a result of the pressurized gas in the damper, and keeping

the damper attached is a convenient way to remove this artefact of the damper from the

calculation; it simply includes any possible damper springing in the spring rate (this springing

is also assumed to be linear, and is in any case much lower than the rate of the coiled spring).

The zero distance is measured as the distance at equilibrium, so the small damper force offset

at zero, visible in the datasheet, is also factored into the spring equilibrium position.

Acceleration data can be collected from three sources,

 directly from the accelerometer,

 from on-board calculations of derivatives in the MCU, and

 from numerical processing off-board of oscilloscope data.

Note that the accelerometer data measures the top beams acceleration, while the other two

measure the acceleration of the top beam relative to the base. In the calibration examples, the

base is at rest and all values measure the same acceleration.

The accelerometer voltage is proportional to acceleration, but it is taken from a new device,

the accelerometer, and it therefore has a different scale from the acceleration calculated from

the potentiometer. Suppose in each of the three measurement sources, the acceleration

measure is represented as a, and the coefficient of conversion into potentiometer voltage

acceleration is representyed as . Therefore,

 .av

Equation 6.11

287

In the case where a represents the direct accelerometer voltage, the scaling factor is β, as in

equation 6.7 above. In the case of the on-board acceleration calculation, the corresponding

MCU output has been scaled down by a factor of 0.02 in order to fit the 5 volt output range of

the MCU. Thus it needs to be multiplied by 50 to give a true reading of acceleration. Finally,

the off-board calculated of acceleration is unscaled (when used in the regression calculation,

although it has been scaled down by 0.02 when shown graphically, for visual purposes). This

produces the following scaling factors for the three sources,

 direct from the accelerometer: ,530

 from the MCU: 50
02.0

1
 and,

 from numerical processing unscaled, i.e., .1

The method of least squares can be applied to the data from a transient experiment to

determine a regression coefficient for the factor acceleration against distance. If ia is a set of

acceleration measures gathered from experiment and iv is a sequence of voltage measures

representing distance, then the regression factor, K, can be experimentally determined for the

relationship,

 .ii Kva

Equation 6.12

Linear regression coefficients are determined using the least squares method (Strang, 1980,

p138). In the simple case of the linear equation 6.12, regression produces,

 .
2

i

ii

v

va
K

(Note that there is no constant in equation 6.12.) The data shown in table 9 applies regression

to acceleration data collected from a number of sources. The names of the source files for the

data are shown, and the regression values were calculated in this author’s Java program

(ProcessScopeDemo).

Combining equation 6.10 and equation 6.11 gives the following equation for the effective

spring rate:

288

 .Kke

Equation 6.13

In table 9 the effective spring rate measures are in agreement, albeit with a slightly higher

value from the off-board numerical processing.

Data Source

File
K, ek estimate)(Kke

Direct from

Accelerometer
530

Accelerometer through

MCU
50

Numerical Processing

1

 K
ek K

ek K
ek

DistAcc_00_01.txt 0.32949 174.630 194.420 194.420
DistAcc_00_02.txt 0.33227 176.103 194.913 194.913
DistAcc_00_03.txt 0.31783 168.450 193.615 193.615
DistAcc_00_04.txt 0.31172 165.212 190.342 190.342
DistMCU_00_01.txt 3.5717 178.585 192.260 192.260
DistMCU_00_01.txt 3.5245 176.225 186.617 186.617
DistMCU_00_01.txt 3.4175 170.875 185.772 185.772
DistMCU_00_01.txt 3.4353 171.765 190.265 190.265

Table 9 Regression Estimates of Spring Rate

If acceleration, a, is graphed against velocity, as shown in figure 6.25 (based on data in the

file DistAcc_00_01.txt) a decreasing spiral is found. This results from the fact that spring

potential energy is converted into kinetic energy and back again, and is eventually dissipated

because of damping. If the calculated acceleration due to the spring is removed from this plot,

calculated as ,vke then a plot of the damper acceleration remains, which is proportional to

damper force (to be accurate, this is the damping force minus the spring force due to the

precharge that is included in the spring rate determined earlier). Refer to figure 6.26.

289

Figure 6.25 Spiral as Energy Decreases

Solving equation 6.9 for the damper function produces,

 .),(KvavkvVvA eD

A plot of Kva against velocity ,v shows a graph proportional to the damping function,

,DA for a given input voltage, V. In the case where no voltage is applied to the damper this

produces a curve for ./)0,(vAD
 Using estimates of the spring rate, K, the result is a curve

that closely corresponds to the graph of zero damper current in the datasheet in figure 6.22

(refer to figure 6.26).

Figure 6.26 Approximate Damper Force

To estimate damper characteristics, a function needs to found which approximates the shape

of the damper’s characteristics as given by the supplier (shown in figure 6.22). Such a

function is the following,

290

 .1s if 1

 1 if 1

,11 if

)(

12

12

121

xxs

xsxs

xsxsxs

xf

Equation 6.14

This has the shape of the dotted line in the graph in figure 6.27. The values of 1s and 2s are

parameters of this function.

The coefficients for the following linear function have been found using least squares

(Strang, 1980, p138) to fit data to a particular function, f. (The method of least squares is

here being used to find linear coefficients, one of which is multiplied by a linear function, as

explained in Strang.) Next the least squares fit to the following function is determined,

 ,)(iii KvvCfa

Equation 6.15

where C and K are linear coefficients, a is the measured accelerometer data, and f is the

function of equation 6.14 (with given parameters, 1s and 2s). In matrix form this can be

represented as,

 .

)(

)(111

b

a

a

K

C

vvf

vvf

Ax

nnn

To simplify expressions if is used in place of).(ivf Applying matrix regression techniques

produces (Strang, 1980),

.

1

1

2

2

222

2

2

222

1

1

1

1

2

2
1

iiiiiii

iiiiiii

iiii

ii

ii

iii

iii

iiii

n

n

n

iii

iiiTT

affvavf

avfvafv

fvvf

av

af

vfv

fvv

fvvf

a

a

vv

ff

vfv

fvf
bAAAx

K

C

291

Figure 6.27 shows an instance (taking data from the file DistAcc_00_03.txt) using a

particular curve, f, shown as a dotted line, to approximate the damper function. The

parameters of the f function are,

 0264.11 s and .0526.02 s

Using these values, the regression coefficients are,

.0.3293 and 0.03606 KC

Note that the spring rate has been used to remove the spring component from the graph of

acceleration data leaving the damper component. This has been done because rearranging

equation 6.15 produces,

 .)(iii KvavCf

(The graph below can be obtained by running ProcessScope with the file data for file

DistAcc_00_03.txt and pressing the button Damper Force. The data file is contained in

the folder, PhD\Eclipse RSpace Constraint\ScopeDataFiles02. The values of 1s

and 2s are represented in the Java program as slope1 and slope2 respectively. Running this

code produces the regression coefficients of C and K above in the “console window” in

Eclipse, or from the “DOS” window if run outside the Eclipse IDE.)

Figure 6.27 Least Squares Fit

The same process has been repeated and the data has been collected in a spreadsheet (the

Excel spreadsheet found in the file SpringWithDamperLeastSquares01 in the folder

292

PhD\Experiment\Rig\ in the first sheet, named

“SpringWithDamperLeastSquares01”). The first four rows of results in this table

produce data in exactly the same way, with zero control voltage applied to the damper.

The same process can be applied but with a constant voltage applied to the damper control.

Thus a set of curves can describe the damper response at various values of control voltage.

From the supplier’s datasheet it should be expected that roughly the same shape of curve will

result, but with larger acceleration values corresponding to larger values of applied voltage.

Thus the same experiments, producing transient responses, are performed except that a

different constant voltage is applied to the damper during the experiment (actually applied to

the control device supplied by Lord, which converts the signal level control voltage to

current, which is output to the damper’s magnetic coils, as explained above). Again, off-

board calculations determine distance and velocity, and acceleration is taken from the

accelerometer.

Because the extraction of data from transients is important for determining the damper’s

response, it is briefly described here in slightly more detail using a particular example.

Suppose that the MCU outputs voltage corresponding to a PWM value of 100 (giving 0.815

volts at the low-pass filter, under the load of the damper). The weights on the rig are then

physically lifted and dropped, giving the oscilloscope data as shown below in figure 6.28.

(The red line represents displacement taken from the potentiometer, and the blue is

accelerometer data taken from the accelerometer.)

293

Figure 6.28 Example Oscilloscope Data (PoScope Screenshot)

The scope data is then saved to an ASCII “text” file, in this case to the file

DistRawAcc_100_01.txt. The first two lines of the file are modified using an editor: the first

line contains comments pertinent to the experiment and the second line contains information

for zeroing the distance and acceleration input. This file can then be processed by the

program ProcessScopeDemo.java, in the ProcessScope package. The input can be

smoothed and graphed, as below in figure 6.29.

294

Figure 6.29 Graph of Raw Data

The zero values, the dashed lines in the figure above, are set so that they correspond with the

equilibrium location in the graph (which has been done in the file

DistRawAcc_100_01.txt). An example of the graph accelerometer data against velocity,

minus the spring acceleration, is shown in figure 6.30. Removing an estimate of the

acceleration due to the spring makes the graph clearer.

295

Figure 6.30 Accelerometer Data vs. Velocity

This graph has the expected shape for damper acceleration except for the tail at the top. It

takes a small amount of time to drop the weight and the data before the zero time is corrupted

by the fact that some external force is still being applied. (From the graph tail it can be seen

that this is a larger force at lower velocity, as would be expected from such an external force.)

Therefore these points are removed when calculating the least squares values.

Also, once equilibrium is reached, noise in the data collection is greater than the zero data

and this affects the least squares approximation, even though it is clear that the system has no

more useful data to contribute because it has reached equilibrium. Thus data is also removed

from the end of the input, after the system has reached equilibrium. In the case above, data is

dropped after 0.8 seconds (the system reaches equilibrium faster when greater voltage is

applied to the damper control). The resulting damper acceleration graph minus these data

points is shown below in figure 6.31. The f function parameters, parameters, 1s and 2s can

be adjusted in the off-board Java program, ProcessScopeDemo, until a good fit is observed,

and the regression parameters, C and K, are found by regression as described earlier.

296

Figure 6.31 Extraneous Data Points Removed for Least Squares

Graphs collected in the same manner for a number of different values of PWM output are

shown in figure 6.32. The curves are all on the same scale and show clearly that the force

applied by the damper increases with larger applied voltage. Experiments with the higher

values of control voltage were more difficult because they reached equilibrium quite quickly

and had less data points. The lines on all these graphs were fitted by eye by the author.

(a)

(b)

(c)

(d)

297

(e)

Figure 6.32 Acceleration vs. Velocity for Different Damper Control Voltages

Some 40 such transients have been recorded and processed in this way (the files can be found

in the directory PhD\Eclipse RSpace Constraint\ScopeDataFiles02, in the files

named DistAcc_X_X.txt). The various damper curves have been approximated by a

function, f, described by equation 6.14. The parameters were simply varied by hand using

sliders, varying the values of 1s and 2s to produce a good fit with the data. The values of C

and K, as in equation 6.15, were then determined by least squares. (Data is stored in the Excel

spreadsheet, SpringWithDamperLeastSquares01, in the folder

PhD\Experiment\Rig.) The raw data has been collected together below in table 10.

298

Filename

PWM
number

n

PWM
Voltage

volts s1 s2 C K
DistAcc_00_01 0 0 1.0264 0.0526 0.03375 0.3394

DistAcc_00_02 0 0 1.0264 0.0526 0.03939 0.3334

DistAcc_00_03 0 0 1.0264 0.0526 0.03606 0.3293

DistAcc_00_04 0 0 1.0264 0.0526 0.03467 0.3237

DistAcc_010_01 10 0.055 0.7106 0.0474 0.03604 0.3234

DistAcc_020_01 20 0.149 0.6578 0.0578 0.03536 0.3415

DistAcc_025_01 25 0.197 0.6578 0.0578 0.03349 0.3336

DistAcc_030_01 30 0.243 0.6578 0.0736 0.03221 0.3335

DistAcc_040_01 40 0.337 0.6578 0.0736 0.03331 0.3345

DistAcc_050_01 50 0.43 0.7368 0.1422 0.02472 0.3393

DistAcc_060_01 60 0.511 0.7368 0.1422 0.02697 0.3283

DistAcc_070_01 70 0.59 0.7368 0.1422 0.02618 0.3251

DistAcc_075_01 75 0.631 0.7368 0.1422 0.026 0.3328

DistAcc_080_01 80 0.666 0.7368 0.1422 0.02837 0.3324

DistAcc_090_01 90 0.741 0.7368 0.1422 0.03118 0.329

DistAcc_100_01 100 0.817 0.7368 0.1422 0.03075 0.3237

DistAcc_100_02 100 0.815 0.7368 0.1422 0.03401 0.2799

DistAcc_110_01 110 0.888 0.7106 0.1264 0.03936 0.3261

DistAcc_120_01 120 0.961 0.7106 0.1264 0.04565 0.325

DistAcc_125_01 125 1.001 0.7106 0.1264 0.02969 0.3219

DistAcc_125_02 125 0.997 0.7106 0.1264 0.0422 0.3094

DistAcc_130_01 130 1.033 0.7106 0.1264 0.04377 0.3324

DistAcc_140_01 140 1.105 0.7106 0.1264 0.05521 0.3279

DistAcc_150_01 150 1.179 0.7106 0.1264 0.05601 0.3327

DistAcc_150_02 150 1.177 0.7106 0.1264 0.06585 0.3457

DistAcc_160_01 160 1.251 0.6052 0.1264 0.07302 0.3171

DistAcc_170_01 170 1.331 0.6052 0.1264 0.07513 0.2397

DistAcc_175_01 175 1.365 0.6052 0.1264 0.08486 0.3809

DistAcc_180_01 180 1.402 0.6052 0.1264 0.08708 0.3791

DistAcc_190_01 190 1.472 0.6316 0.0948 0.10386 0.3826

DistAcc_200_01 200 1.539 0.6316 0.1526 0.08804 0.2933

DistAcc_210_01 210 1.608 0.6316 0.1526 0.09828 0.3455

DistAcc_220_01 220 1.68 0.6316 0.1158 0.11733 0.3704

DistAcc_230_01 230 1.753 0.6316 0.1158 0.11943 0.3293

DistAcc_240_01 240 1.824 0.5264 0.2368 0.06814 0.2683

DistAcc_240_02 240 1.822 0.7368 0.1948 0.08613 0.3184

DistAcc_250_01 250 1.888 0.7106 0.2158 0.07771 0.3183

DistAcc_260_01 260 1.97 0.8422 0.2474 0.07245 0.2878

DistAcc_270_01 270 2.041 0.8422 0.2474 0.07553 0.3045

DistAcc_275_01 275 2.077 0.8422 0.221 0.08137 0.3502

Table 10 Raw Data for Damper Acceleration Calculations

The “spring rate” in these experiments is consistent with a value of K = 0.32723. Also, the

relationship between voltage applied to the damper and the PWM output is linear, as shown

in the graph in figure 6.33. Thus the following formula is derived,

 ,00754.0 nV

where n is the PWM value and V is the damper voltage. (These values have been calculated

in the Excel spreadsheet.)

299

Figure 6.33 Voltage vs. PWM

6.3.7. Estimate of Damper Inverse Function

Using the data gleaned above, the damper acceleration profile,),,(VvAD
 can be determined

experimentally. For the purpose of control, it is desirable to invert this function and estimate

the voltage that needs to be applied for a given acceleration when the stroke velocity is,

).,(vaDV I

A few ideas were given some preliminary investigation, but it was decided to eventually use a

purely linear approximation. This section shows some of the details of how the inverse

function was derived. The most important part of this section, in the broader context, is the

inverse function as shown in figure 8.49.

In the estimate given in table 10 the slope of the initial portion of the curve is ,1Cs where C is

determined by least squares. Suppose a constant slope is assumed for the initial part of the

curve near zero that has a reasonable fit to all graphs, using ec as in the function 2f in

equation 6.16.

.0 if ,max

,0 if ,min
)(2 xvbcvc

xvbcvc
vf

ffe

ffe

Equation 6.16

300

The average value of 1Cs is approximately 0.039, but it is larger for the larger values where it

is a more significant part of the curve. After some experimentation it was thought that 0.05 is

a better fit to the data.

In equation 6.16 the value of ec is now constant but the values of fc and fb vary for

different values of PWM voltage. Values consistent with the data in table 10 are sought

where approximately Cc f and, .2Csb f From the data in table 10 acceleration values

given by,

 ,2vCsC

This can be plotted against PWM values, n, holding v constant, which allows the possibility

of finding a simple linear regression line for each of these plots. An example of such a plot is

given below in figure 6.34 for 5v volts/s. The regression line is included in this graph.

Figure 6.34 Example of Acceleration vs. PWM

The slopes and intersections of the regression lines are found to depend linearly on the

velocity giving,

. 106.222260.00026872

and, 00016961500223970

 where,

5- vb

v..c

nbca

R

R

RR

301

(See the final sheet in the Excel spreadsheet, SpringWithDamperLeastSquares01.) Here,

acceleration is represented as a. These coefficients are easily calculated for a given value of

velocity. More importantly, the function is easily inverted, giving the PWM output required

for a desired acceleration at a given velocity,

 .
)(

R

R

b

ca
n

Of course, there are other conditions in which the damper could be operating. Figure 8.49

shows the entire Java function used to represent the approximation to the damper’s inverse

function.

There are a number of modes in which the damper can be operating; these modes are given a

value in the parameter, DamperMode. This parameter can be useful for indicating the mode

of operation. Refer to the example in figure 6.35 below.

 In mode zero the damper is operating in the desired linear range.

 Mode -1 is when the damper cannot supply the desired control force because of the

passivity constraint.

 Mode 1 is when the stroke velocity is too low to supply the required force, no matter

how large a voltage is applied. In this case the damper voltage is limited to the

minimum needed for the maximum attainable force at that stroke velocity.

 Mode 2 is when the desired force is so small that even if no voltage is applied the

damper still supplies a larger force. In this case the PWM output is 0.

The mode is only important to experimenters; it has no effect on damper function.

302

Figure 6.35 Damper Inverse Approximation and Modes

A second inverse function was developed that attempted to match the observed data more

closely. Firstly, a function for acceleration in terms of PWM output and velocity was

produced. This has the form shown in figure 6.36 where an example of the function is

mapped on top of data from a recorded transient (refer to section 6.3.6). (This graph can be

produced from the ProcessScopeDemo program by pressing the button labelled “Damper

Force 2”.)

Figure 6.36 Damper Curve Fit

303

The graph has three linear sections, as in the graph supplied by LORD (see figure 6.22). The

linear section through zero is independent of supplied voltage, while the two lines parallel to

each other are linear in damper supplied voltage (PWM value) and in velocity. The curve

itself is calculated using the Java code below. There are five parameters: d, D, alphaI,

betaI and floor. The parameters were set using sliders, matching the curves to data by eye.

 private double accelerationFunction(double n, double velocity){

 double v=velocity;

 if (v<0) v=-v;

 n=n-floor;

 if (n<0) n=0;

 double acc=d+n*alphaI*(D+v)*1E-4, t1=betaI*v;

 if (t1<acc) acc=t1;

 if (velocity>0) acc=-acc;

 return acc;

 }

The section that is linear in both PWM value and velocity is most crucial to the inverse

function. This is easily inverted algebraically. The problem becomes what to do with

accelerations that are outside the line through zero: .1vacc Here the closest achievable

value of acceleration is used (given by the variable t1 in the code above).

304

The second inverse function uses the MCU code immediately below.

 double decay=5, prevN=0;

 double damperInverse02(double acc, double velocity){

 double n=0;

 DamperMode=-1;

 double velLim=0;

 if (prevN<floor*0.125) velLim=0.5;

 if ((acc>0 && velocity<-velLim)||(acc<0 && velocity>velLim)){

 double v=velocity;

 if (v<0) v=-v;

 if (acc<0) acc=-acc;

 n=((acc-d)/(alphaI*(D+v)))*1E4;

 n=n+floor;

 if (acc>betaI*v) n=betaI*v*n/acc;

 DamperMode=0;

 }

 if (n<floor){

 if (prevN>floor){

 n=floor;

 }else{

 prevN=prevN-decay;

 if (n<prevN)n=prevN;

 if (n<0) n=0;

 }

 if (DamperMode==0) DamperMode=2;

 }

 prevN=n;

 // if (DamperMode==-1) n=0; // See passivity constraint as zero

in scope

 return n;

 }

6.4. Overshoot Experiments

This section explains the overshoot experiments. These experiments demonstrate the bang-

off-bang algorithm that avoids overshoot described in section 4.7.3.7. These experiments also

provide validation of the rig input and output algorithms, and allow testing of the capacity of

the rig to adapt to given conditions given the accuracy limits of the various components, input

transducers, the damper control, the MCU ADC and PWM conversions, as well as the

computational limits of the MCU. These experiments however are of independent interest

into the viability of the controls developed in this thesis for handling overshoot.

The MCU can communicate via RS232 to a terminal program on a computer, in which

parameters can be examined and values set. A screenshot of the terminal program

305

communicating with the MCU is shown below in figure 6.37. It is important to note that the

control algorithm runs independently of the computer, and once the parameters are set, the

control will run with the computer disconnected.

Figure 6.37 Terminal Program (Screenshot)

The rig was initially tested using numerical methods without using “live” data. This served

two purposes. Firstly, it verifies that the Java code used on the computer also works in the C

programming language on the MCU. (The code generally requires minor changes, but it

needs checking. Furthermore the code in the MCU has a lower numerical accuracy.) Since

the MCU produced almost exactly the same result as found in the computer, the numerical

methods in the MCU are confirmed.

Secondly, during these initial tests, distance, velocity and acceleration data were collected

from the ADC input, even though it was not used for the numerical method. The reading and

outputting of data take time and so overall timing on the MCU itself could be tested, even

though the input data was not used.

306

In figure 6.38 below, the Newton Raphson method of section 4.7.3.6 has been used. (The

initial values are ,6.0d 063.0v and .074.1a The jerk and acceleration limits are 1

and 2 respectively.) The slowest response here is about 5 ms per step. The step size of the

example shown in figure 6.38 is 0.1 s. The oscilloscope output shows clear steps of a larger

size, indicating the speed limit of the algorithm. (The code to produce these results is to be

found in the program, TestLand02.c, in the folder,

 PhD\Experiment\Electronics\Atmel AVR\Test109 Test Landing 02.)

Figure 6.38 Landing-Surface Acceleration, using Newton Raphson

Conservatively the step size can be set at 7.5 ms (setting the 8-bit counter, TCNT0, to 197 at

the start of the interrupt routine).

(The MCU code for the following experiments is contained in the program, TestLand04.c, in

the folder,

PhD\Experiment\Electronics\Atmel AVR\Test111 Test Landing 04.)

During each 7.5 ms interrupt, the current distance, velocity and acceleration are estimated.

Next the bang-off-bang (BOB) variant of the landing-surface method is called:

jerk=processContinuousBOB(voltage, velocity, acceleration);

The goal acceleration is calculated using the jerk.

accelerationEstimate=accelerationEstimate+step*jerk;

307

The inverse function is then called (in the routine damperExperiment) to determine a control

voltage for the nonlinear damper control.

outVar=damperInverse01((accelerationEstimate-springAcc)/BETA, velocity);

This removes the acceleration that is already supplied by the spring, before calculating the

required output value for the PWM (outVar). Figure 6.39 shows a digital oscilloscope

recording of a drop experiment using this method.

Figure 6.39 Data from Drop Experiment using Landing Surface

Experiments have been performed with a number of jerk control values, ranging over five

orders of magnitude: 1 to 100,000 Vs
-3

. (The raw collected data can be found in the files

jLand_xxxxxx.txt in the folder

PhD\Eclipse RSpace Constraint\ScopeDataFiles02. All such data files in this

section are contained in this folder.) Graphs of the various results are given below in figure

6.40. Note that time to reach zero decreases with increasing jerk control limit, as expected.

With jerk values of 1 up to about 10,000 (four orders of magnitude) the method does well in

reaching zero without overshoot. Beyond this the full control strength is needed. But even at

these values the overshoot is constrained, even up to control limits of 100,000, and these

would be acceptable for some applications, such as landing gear responses.

308

1 2

10 50

100 200

500 1,000

2,000 5,000

309

7,500 10,000

20,000 50,000

100,000

Figure 6.40 Landing Surface: Distance and Control

In some of the responses, a sawtooth control patterns is noticeable, for example where the

jerk limit is 100. This is slightly different from the pure response that might be expected.

However, with only roughly estimated state values (acceleration is particular), the system is

adjusting to divergence from expected response by slowly adjusting control. Since the

method responds to current states it adjusts for errors by slowly changing the control, rather

than by making large changes.

In the cases where the control is about 500, a large control voltage is noticed as the system

approaches rest. It should be remembered that the control voltage is not the same as the

control force. The control force is affected by velocity and also by the spring force.

310

The following demonstrates a number of cases where actual acceleration is calculated off-

board (by the software developed for the calculations in section 6.3.5). Graphs are shown in

figure 6.41 (note the larger Voltage axis scaling in the last graph). The control values are 10,

100, 1000 and 10000 respectively. Acceleration (Vs
-2

) is scaled by 0.1 to fit clearly on the

same graph as displacement and control voltage. (The raw data is contained in the files

bLand_xx.txt.)

Figure 6.41 Landing Surface with Acceleration

The acceleration is consistently small for controls with slow decay, but it increases slightly

near the end for control values around 1,000. Such an increase in acceleration is part of the

method for controls with a fast return to zero, and the effect is more pronounced with larger

jerk limits. The method seems quite robust in handling the crucial final approach, even

though this is the part of the control that is most subject to the damper nonlinearities.

The peak acceleration in the case when the control jerk limit set to 1,000 is 31 Vs
-2

 (recall

that acceleration is scaled by 0.1) which is approximately 0.6 ms
-2

 (using equation 6.1) or

0.06 g. The peak acceleration in the case in which the jerk limit is 10,000 is 180 Vs
-2

 which is

approximately 3.5 ms
-2

 or 0.36 g.

311

The controls examined above are implemented as bang-bang controls. The cases below all

have a quite large jerk limit, of 8000 Vs
-3

, but with a range of acceleration limits. The graphs

below include acceleration calculated on-board. Refer to figure 6.42 (the smoothing here is

needed to calculate reliable acceleration values). The acceleration values used were 15, 50,

100 and unrestricted respectively. (The raw oscilloscope data is contained in the files

bLand_008000_xx.txt.) The peak accelerations correspond roughly with these values.

Thus the bang-off-bang control appears to be quite robust when used as a discrete method.

Figure 6.42 Bang-Off-Bang Experiments

Data collected using the second damper inverse function, damperInverse02(), is shown

below in figure 6.43. The data is very similar to that collected for the purely linear inverse

function, damperInverse01(). The graphs here show the acceleration calculated off-board

as well. (The raw oscilloscope data is contained in the files bLand2_008000_xx.txt.)

312

Figure 6.43 Using the Second Damper Inverse Function

All of the experiments above begin from rest. One way to test the adaptability of the

algorithm to various initial conditions is to only turn the damper algorithm on when a certain

acceleration has been reached (a given acceleration value is more consistent than using

velocity or distance as acceleration is the most critical parameter). Thus the next few

experiments allow the acceleration to reach a certain value before the damper algorithm

“kicks in”. In figure 6.44 the acceleration values have been set to 0 (unrestricted), 50, 100,

150, 175 and 200 respectively. (The raw oscilloscope data is saved in the files

Kick_xxx.txt.)

313

Figure 6.44 Control “Kicks In” at a Given Acceleration

The control limits on jerk and acceleration are quite low: 900 and 50 respectively. It is clear

that without “kick in” the response is quite slow. As the acceleration “kick in” value increases

however, the control responds more quickly, up until the kick in reaches 200 producing

overshoot (although the overshoot is small). Thus the one algorithm has been able to adapt its

response to the initial conditions.

The onset of overshoot at the limits of the rig’s functionality could be due to a number of

factors: transducer tolerances, the problems of implementing a non-standard jerk control, the

problems caused by subtracting spring acceleration, nonlinearities in the damper response,

hysteresis in the damper response, electrical interference, latency caused by the MCU step

size, as well as measurement latencies (and hysteresis in the accelerometer). Furthermore,

when the method was tested with values read from the rig and transferred to computer, the

numerical methods seemed to have the same similar limits as the rig. That is, even though the

rig’s response has more adjustments caused by measurement errors, it seems to reach

overshoot problems only a little earlier than the pure numerical methods. In all, given the

modestly priced components used in the rig, it performed quite well in the above tests.

314

After these experiments it was decided to experiment with a digital accelerometer. The

accelerometer was made to work but for various reasons, outlined in appendix 8.22, it was

decided to run without this device.

6.5. Suspension Algorithm Tests

The physical experiments discussed in this section verify the practicality of the controls

discussed in the numerical experiments. The controls can be implemented with even

relatively modest equipment. The parameters used have been chosen by subjective

judgement, thus the numerical performance results are suggestive rather than definitive.

Nonetheless, as a proof of concept, the experiments show that the control algorithms are

relatively easily implemented.

6.5.1. Damper Function and Inverse

The damper function and its inverse derived in section 6.3.7 do not fit the damper response

curves as well as the function developed in this section. This section uses a piecewise-linear

approximation which is still relatively easy to invert, but with scaling centred on a point,

),,(dD rather than zero. Figure 6.45 shows a portion of the function for a constant value of

PWM output. The formula for the uppermost linear portion in figure 6.45 is

),()(floor vDnnda I

where a represents acceleration, n is the PWM output, v is the velocity, and , , , DdI and

floorn are parameters. If)(floornn is negative, then a becomes d. The middle linear portion

has the formula, ,va I and is independent of input, n.

315

Figure 6.45 Damper Force Function

The parameters are adjusted by hand against graphs of acceleration versus velocity obtained

from the digital oscilloscope (an example is shown in figure 6.46 below) until a good match

is obtained across the range of PWM values. (This graph can be viewed by clicking the

button “Damper Force2” in the “ProcessScopeDemo” Java program.) Values obtained

with the new potentiometer are:

 .75 and ,0.10 ,025.0 ,1358.0 ,105526.0 floor

4 nDdII

Figure 6.46 Damper Force Aligned with Experimental Data

Inverting the outermost linear portions of the force function presents no problems. However,

the PWM value cannot produce acceleration magnitudes above ,1v and there is little control

available for forces below d. The PWM control under these conditions has been chosen to

approximate the controllable portion of the damper force curve. (Refer to the function

damperInverse02 in the program ProcessScopeDemo.java.)

316

6.5.2. Experimental Algorithms

This section explains the control algorithms used in the physical experiment with the rig

subject to stochastic road input. The algorithms chosen are the semi-active linear algorithms:

passive, skyhook, linear acceleration and linear control over jerk also including modifications

for virtual bump stops. Note that the rig is a semi-active rig and so active controls are

impossible. The target algorithms are either clipped, or are modified with crossover removal

(as described in section 4.8.3). The controls chosen here are the relatively simple ones that

have been shown in the numerical experiments of section 5.7 to perform quite well.

In the previous “drop” experiments the base of the rig has remained stationary. However, for

the experiments where the entire rig is subject to vibration, there are potentially six measures

that are needed: , , , sss and . , , yyy In fact, as shown in section 5.7, the two most crucial

measurements for jerk control, s and ,y are read directly. The next two most important are

the velocities, s (for the passive and for crossover removal) and y (needed for the skyhook

and other controls).

The value of s is estimated by smoothing the distance measure difference from one time

step to the next:

 ,)1()(11 tttt ssss

where is the smoothing factor (see section 8.12). In fact, the estimation of acceleration

improves the linear approximation (as in the scalar Kalman filter of equation 2.6). Thus the

following modified formula can be used,

),)(1()(111 tsssss ttttt

where t is the step size.

The value of ,y however, requires integration of .y Integration introduces the problem of

integration drift due to the possible zero errors in .y There is then a compromise between

latency, reducing measurement errors as well as integration drift. For the on-board integration

calculation, simple addition might seem sufficient giving,

317

 ,11 tyyy ttt

where y is the estimated velocity, y is the measured acceleration. Suppose there is a small

non-zero offset of in the acceleration measure. Exponentially weighted moving averages

(see section 8.12) could be used as in the self-zeroing algorithm of section 6.3.5, to reduce the

effects of integration drift. Small factors, and , might be applied as in the following,

 .)1()1(11 tyyy ttt

Overall drift can be estimated by solving,

 ,)1()1(tyy

giving,

 .
)1(

 t
y

Clearly, when the value of is very small, the estimate of y “blows up”. The value of

therefore requires a compromise between a small value for accurate integration, and a

relatively large value for keeping the integration from “blowing up” (changes in have little

effect and 0 can be used).

Drift from non-zero acceleration offsets is potentially aggravated by tilt. The acceleration of

gravity is quite large compared to chassis vertical accelerations, so even a small tilt can

perturb acceleration measures. Methods to help overcome this by actually measuring tilt and

calculating its effect are possible, but this level of complication was not felt warranted in the

following experiments. Efforts were taken to minimize tilt anomalies simply by minimizing

rig tilt as much as possible, although it cannot be reduced to zero altogether.

The method used for adjusting Kalman multipliers and other moving-average coefficients

was the same as that used in the physical experiments of section 6.4. The author

experimented with different values until a compromise was reached that seemed to give as

smooth a result as possible, with relatively accurate estimation and with as low a time lag as

possible. With the bottom of the rig stationary the measures for s and y should be the same.

Thus the corresponding time derivatives, s and ,y can be compared against each other, by

simply bouncing the top of the rig.

318

It was found that the first integral of the accelerometer reading gave a surprisingly good self-

zeroing integration. The drift was greater on the second integral, to determine y, as could be

expected since the first drift adds somewhat to the second. Luckily, absolute height, y, was

not crucial for any of the controls for the experiment, and indeed could be eliminated from

them entirely. In the end, decay values were found that retained good agreement with the

stroke values (with the base of the rig stationary), and which did not suffer appreciably from

drift. The values used were 025.0 for the first integral and 035.0 for the second.

The control algorithms used in the physical experiment are all based on four linear controls:

passive, skyhook, linear acceleration and linear jerk. The “virtual bump stop” modifications

to these controls (which result in strictly nonlinear controls) have been discussed above in

section 4.5.2, and fits the profile given in figure 4.7, with stiffening only on approach to the

rattlespace limit. This was shown to improve on strictly linear controls in the numerical

experiments and is a very simple to programn in the microprocessor and runs very quickly.

This modification applies to all the linear controls, doubling the number of possible controls

to eight. A further modification is to apply the crossover removal algorithm discussed in

section 4.8.3 given by equation 4.29 to equation 4.34. This is applied when the stroke rate is

close to changing direction and is further explained below. This again doubles the number of

possible algorithms to sixteen. This control also results in vast improvements in the numerical

experiments. Out of these possibilities twelve were selected for the experiment, as shown in

table 11 (the controls included are identified by their menu character in the AVR program).

Control Type Clipped Crossover Removal

Linear Bump Stop Linear Bump Stop

Passive ‘p’ ‘P’

Skyhook ‘u’ ‘U’ ‘e’ ‘E’

Linear Acceleration ‘G’ ‘Q’

Linear Jerk ‘o’ ‘O’ ‘m’ ‘M’

Table 11 Control Combinations for Experiment

One point that needs to be noted is that in the numerical experiments, semi-active systems are

assumed to use a purely linear damper control in which the damping rate, c, could be varied.

Although the supplied physical damper is usefully “linear”, it is actually piecewise linear. As

discussed in section 6.5.1, the required damper force needs to be inverted. Nonetheless, the

319

damping rates for the numerical experiments were calculated on the basis of force

(equivalently acceleration) for the controls of interest in this section.

Furthermore, the damping force function near crossover (which is where the crossover

control is supposed to apply) has been shown to be very close to that of an ideal damper, and

the potential damping rate is quite large. Thus the mechanisms that deal with crossover

should require forces that lie below the absolute controllable limits of the MR damper. There

is a subtle loss of controllability for very low forces from the damper, but these should not

adversely affect crossover. The major problem in adapting the numerical control is the

inaccuracies in the measure of stroke acceleration. This might have been helped by the use of

an extra accelerometer on the base of the rig. The double differentiation process, however,

has relatively large inaccuracies.

It is important to distinguish between the actual spring and the linear coefficient of relative

displacement, s, which can be thought of as the “virtual spring”. The skyhook damper force

can be seen to depend on a “virtual spring”, as discussed in section 2.7. In the experiments

below, the linear passive and the skyhook use the actual spring. The skyhook however can

still have crossover jerk because of clipping. Note too that the passive suspension of the rig

uses a “virtual passive damper” with force proportional to stroke rate, ,s which ideally

should not suffer crossover jerk.

At first it was thought that the experiment would use a measure of tracking that penalized

collision with the rig’s rattlespace, as would seem natural. However, for the purpose of the

experiment this is not necessary. The “rattlespace” of the experiment can lie within the

physical rattlespace of the rig. In a sense, the tracking performance of the rig is measured by

the tracking performance within a “virtual rattlespace”, smaller than the rattlespace of the rig.

This has a number of advantages, the foremost being that experiments can test the capacity of

controls to resist travel beyong rattlespace limits without risking damage to the test

equipment as it suffered violent collisions with its actual travel limits. The rig experiments

then can hit the “virtual rattlespace” limits, fully testing the algorithms without risking

damage to the rig. The measure of tracking performance can then use exactly the same

tracking performance measure as the numerical experiments.

320

Furthermore, the rig’s actual travel is quite large, and experiments that tested its actual limits

would require travel over large bumps risking the problem of tilt (risking the anomalies of

tilt, discussed above in this section). The rig’s travel is large enough that even significant

bumps can be constrained without hitting the actual rattlespace limits, while providing a

realistic and substantial test of tracking capacity within the “virtual rattlespace”.

The linear coefficients chosen were based on drop and hand bounce experiments. The method

of judging a coefficient depends on the parameter and the control. To judge the effect of the

coefficient of stroke displacement, s, on jerk control for example, it is necessary to hold the

“chassis” away from zero for some time, to allow time for the integration to have an effect.

To judge the effect of the coefficient of acceleration, it is necessary to produce relatively high

accelerations. The best way to do this seemed to be to shake the “chassis” vigorously with

relatively small but high oscillations.

A number of feedback controls have been implemented for the numerical experiments. The

passive and skyhook controls each use a coefficient of 16 applied to the stroke and chassis

velocities respectively. (The units for the velocity coefficients as used in the C program are

V
-1

s. The units for coefficients of voltage are V
-1

, and the coefficients for the double rate of

change of stroke and chassis voltage are V
-1

s
2
.)

The “virtual bump stop” controls all use the piecewise linear parameter profile as shown in

figure 4.7 and, as discussed in this section is asymmetric. The parameter values used in the

physical experiment are shown in table 12. Note that the values 1c and 2c represent fractions

of the distance from equilibrium to the “virtual rattlespace” limit. In this table, s represents

stroke and y represents chassis height (units V).

321

Control

Variable

Parameter

Coefficient

s1

(Low)

c1 s2

(High)

c2

Passive s 0 0.3 150 0.98

s 7 0.1 30 0.7

Skyhook s 0 0.3 150 0.98

y 7 0.1 30 0.7

Acc. s 100 0.1 600 0.5

s 3 0.3 17 0.7
y 50 0.2 100 0.96

y 10 0.2 25 0.7

Jerk s 500 0.5 1000 0.9

s 200 0.4 2000 0.8

y 1000 0.1 1500 0.8

y 150 0.5 200 0.7

Table 12 Skew Parameters for “Virtual Bump Stops”

Given that the road response characteristics were quite variable the control parameters were

determined by experimenting with response to hand oscillations. This was not ideal but is

within the proof of concept of the experiments performed over terrain. What would be ideal

would be to determine the parameters using evolutionary algorithms to determine the

parameters.

Crossover removal was tested with a simple “transient” experiment. The “target” damper

acceleration was,

 otherwise. 0

 ,0 if sA
ad

Equation 6.17

Here, A, is a constant. The value A = 400 was used in the experiments below. This is purely a

test target control; it allows the testing of crossover removal in exactly the same way as a

similar target rule was used in the numerical demonstration at the end of section 4.8.3, and

illustrated in figure 4.51. The simplicity of the target makes the effect of crossover removal

more obvious (and the test is relatively easy to perform). The method of section 4.8.3 was

used. (The C-code for the microprocessor is contained in the header file

semiactivecrossover01.h in the folder,

322

 PhD\Experiment\Electronics\Atmel AVR\HeaderFiles.)

Figure 6.47 shows the effect of the target control as the system approaches crossover. The

chassis displacement is shown in the upper red graph. The blue line shows the damper control

build-up on approach to crossover, as the damper stiffens up in an attempt to maintain the

acceleration. There was also an audible jolt with this “control”.

Figure 6.47 Test Target with No Crossover Removal

The parameter ALPHA represents a correction for stochastic road movement (as explained in

section 4.8.3). This value was set to 2 as it always seemed to become this value in the

numerical evolutionary algorithms. The main parameter affecting crossover removal is

JERK_CROSS, which is the jerk rate at which acceleration is dropped on approach to

crossover. When this limit is high (about 30,000 or above in the numerical experiments) there

was little effect. However, as this value is made lower (15,000) crossover removal can be

observed, as shown below in figure 6.48 (a). Figure 6.48 (b) shows the effect when the

crossover jerk limit is 6,000. (The value 6,000 was used in the experiments.)

(a)

(b)

323

Figure 6.48 Crossover Removal with Test Target

Another parameter that can be used for crossover removal is to simply apply a maximal value

for the damping rate. That is to say, limit the force that can be applied by the damper to,

 ,max scad

Equation 6.18

for some value of .maxc An example using damping rate limit only is shown below in figure

6.49. This seems to have a smoother profile, possibly due to the fact that stroke rate is

somewhat better estimated than stroke acceleration. For the physical experiment the value

50max c was used and the target damper force magnitude was kept below the minimum of

both the values as given in equation 6.17 and equation 6.18.

Figure 6.49 Crossover Removal using Damping Rate Limit

In the end, the entire code was contained in a very small C header file. (Contained in

SemiActiveCrossover01.h in the folder

PhD\Experiment\Electronics\Atmel AVR\HeaderFiles.)

The code used for the crossover itself is extremely simple. The code is shown in appendix

8.24.

6.5.3. Implementation & Results

For the purpose of testing, a program was written by the author for the AVR microcontroller

which could change controls types and run each control for a set period of time calculating

324

comfort and tracking scores, as well as recording maximum jerk magnitude and maximum

stroke magnitude. The program could be run without anyone attending to the rig. Once

complete, data stored in arrays would be sent to the laptop via an RS232 connection. The

controls run on the AVR microcontroller independently of the laptop, which is simply used to

collect data and send instructions to initiate the data collection.

Given the small step size, 0.75 ms, and the fact that the step sizes were equal, the integrals of

the penalties for comfort and tracking were calculated using a simple sum. Thus the comfort

measure was calculated using,

 ,
4

1 ii yy

which is the numerical equivalent of equation 3.3. And the tracking score was calculated

using,

 ,)(is

which is the numerical equivalent of equation 3.6. The penalty function, , is exactly the

same as used in the numerical experiment, given by equation 3.7. The limits of the “virtual

rattlespace” were set at 0.35 V above and below equilibrium. As described earlier, the

measures from the potentiometer and the accelerometer are self-zeroing. (The routines to

calculate the performance scores and to save the results for display are contained in the C

header file, PerformanceCalculation.h, in the folder,

PhD\Experiment\Electronics\Atmel AVR\HeaderFiles).

In the end, the code used about 60% of the code space and 80% of the data space. The AVR

controller is a 64 K byte device, but this includes code for RS-232 communication, data

collection, etc. The amount of memory needed for the actual control logic for the damper

controls is extremely small.

Previously the XLR connector, power in, rig connectors, scope connectors, and the STK500

development board (containing the AVR MCU) had been connected using a couple of

breadboards on a bench separate from the development board. A box was built mainly to

house the STK500 development board and the associated wiring. The box is shown below in

figure 6.50. Once connected, slightly different values were needed for the damper function

(refer to section 6.5.1) and it was recalibrated. The new values are,

325

 .35 and ,29.13 ,03.0 ,0726.0 ,107368.1 floor

4 nDdII

Figure 6.50 Box for MCU Connections

The rig was then placed into a truck with a separate compartment for the rig and electronics,

as shown in figure 6.51. This rig was then taken on a rough dirt road and data was collected

while running over the road at approximately 35 kph.

326

Figure 6.51 Test Track, Truck and Rig

The various algorithms were run for 20 seconds each, with results recorded for each

algorithm. There were some algorithms that were run while the vehicle was turning, and

seemed to have less rough conditions. The results are summarised below in table 13. The first

column shows the menu character that is used to select the control from the RS 232

connection. The second shows the basic type of control: passive, skyhook, control over

acceleration, and control over jerk (refer to section 4.5.1). The next column indicates whether

or not “virtual bump stops” were used (refer to section 4.5.2.2). The next column refers to

whether or not virtual crossover was employed. Note that the performance measures are

sums, so lower scores indicate better performance.

327

Menu

Character

Basic

Control

Type

Virtual

Bump

Stop

Cross-

over

Removal

Comfort

Performance
3

10

Tracking

Performance

Max

Jerk

Max

Stroke

s

‘p’ Passive No No 37.8 2,072 162 1.15

‘P’ Passive Yes No 26.9 1,606 137 0.81

‘u’ Skyhook No No 114.1 1,198 196 0.88

‘U’ Skyhook Yes No 215.9 828 205 1.307

‘e’ Skyhook No Yes 9,203 26.3 624 0.455

‘E’ Skyhook Yes Yes 1,812 219 471 0.826

‘G’ Acc. Yes No 2,252 101 448 1.015

‘Q’ Acc. Yes Yes 17,511 0.0423 561 0.327

‘o’ Jerk No No 16,251 67.0 619 1.649

‘O’ Jerk Yes No 3,595 93.7 534 1.436

‘m’ Jerk No Yes 483 4
1075 229 0.287

‘M’ Jerk Yes Yes 2,627 1.692 667 0.400

Table 13 Results of Run on Road

There are suggestive patterns that emerge from the data. Firstly it can be seen that the passive

control is quite soft, resulting in low comfort scores (low values are desirable here) but

relatively high tracking scores. The skyhook is not as soft, and improves greatly on the

tracking for the version with the virtual bump stop. The use of crossover removal with the

skyhook does not produce a lower comfort measure but produces a better tracking

performance, perhaps indicating that the system has a better mix of strategies overall.

Similarly, crossover produces better tracking with the acceleration control.

The results however should not be viewed as conclusive without further investigation. There

are two main reasons for this. Firstly, the control parameters were determined subjectively,

and the final control parameters were not tuned to the roughness of the conditions

encountered. Secondly, it was impossible under the test conditions to run the controls over

the exact same bumps for each control type. Nonetheless, as proof of concept they show that

the controls suggested by the numerical studies bear up to first-order physical

experimentation.

In the case of jerk control the inclusion of the virtual bump stop produced improvement in

tracking as expected. Indeed the control over jerk with bump stop and crossover removal had

the best tracking measure of all, 1.692, at the cost of a little comfort due to the bump stop.

These experiments taken alone indicate that control over jerk is effective as a control, and

that bump stops and crossover removal may be effective.

328

A record of the stroke measures and the chassis height measures of a short section of road

(about 5 seconds) are shown below in figure 6.52. This clearly shows that the chassis height

and stroke are different. Thus, for example, the skyhook, which responds to chassis velocity,

will respond differently to the passive, which responds to stroke velocity.

Figure 6.52 Chassis and Stroke

329

7. Summary and Conclusions

This chapter summarizes the theory and results of the thesis. Also, conclusions arising from

the research are presented.

7.1. Overview

Passive suspension control has in the past rested mainly on linear theory. With the virtually

unlimited flexibility of electronic systems, a much greater range of control laws becomes

viable. As noted by Ross, “a critical part of designing a practical control system is … getting

the problem formation right in the first place!” (2009, p51) In particular, it has been shown

that the most often used performance measures for comfort, least squares acceleration, is

fundamentally flawed. In fact, it is necessary when dealing with controlled suspensions to

reassess performance measures in general. This thesis has attempted a very general first-order

overview of suspension control laws and their performance goals, using analytical and

numerical techniques, and with a number of novel approaches.

The main focus of the thesis is on limited-stroke suspensions, with constrained suspension

travel limits, concentrating particularly on the goals of comfort and tracking. The central

example of such a suspension is a road-going passenger vehicle, but all suspensions have

limited stroke, and some elements of the theory could be applied even more generally.

The control dealing with the problem of coming to rest with constrained jerk and no

overshoot may particularly have application in other areas. This control has the potential to

reduce settling time and it could also be applied to control systems with similar performance

goals, such as robotic arms movement, the parking of hard drive heads, heavy door closing,

an elevator’s approach to a floor, satellite rotation or possibly even to the control of airplane

landing gear (this control is discussed in section 4.7.3 and has been investigated physically in

section 6.4).

330

A large number of electronic suspension control algorithms, including many new heuristic

controls developed by this author, were investigated numerically in this thesis. Systems were

compared by modelling different controls in a consistent environment using evolutionary

algorithms. Highly scoring controls were chosen for implementation in a simple physical

experimental rig.

7.2. Numerical Modelling Investigation

As described in chapter 5, the control parameters for various controls were coded as genes

and were optimized using evolutionary algorithms. Thus the algorithm can be conveniently

identified by the name of the gene used in the EAs.

The effect of evolutionary temperature (see section 2.12.2) on numerical evolution was

apparent. In preliminary tests a “hot and fast” evolutionary schedule, HotQuickGenDB, could

be used. This confirms the viability of the control, but it is too “hot” (refer to section 2.12.2)

to produce reliable optimality. For the final tests, a schedule which began very “hot” and

which cooled very slowly, LongGenDB, produced much better results at the expense of time.

The final run of the evolutionary algorithms took almost 10 days to complete, with an

average of 2 hours for each control. This was judged to be about the minimum time needed to

produce reliable results.

What is immediately clear is that the skyhook benchmark control, ActivePureSkyhookGene,

performs quite well despite the fact that it is one of the simplest algorithms tested. The linear

skyhook was implemented very early in the research and has been included in a number of

papers published by the author during the research. It was consistently found to perform well.

It certainly outperforms the linear passive control. There were only 12 controls that

outperformed the skyhook, some being semi-active controls, and some performing very much

better. In contrast, there were 81 controls that outperformed the benchmark linear passive

control.

331

During the course of the research, evolutionary algorithms were implemented and presented

for conference and journal papers. The various results showed consistency where there was

overlap. The ordering of the final results was reasonably representative of the relative

performance of the different control algorithms. Even so, in interpreting numerical results

there are qualifying factors to consider.

Firstly, the evolutionary process does not find optimal results, rather it produces suboptimal

results (refer to section 2.12.1). There always exists the possibility of higher performing

results. This should to be balanced against the fact that controls produced by evolutionary

algorithms have a degree of inherent “robustness”, in the sense that the resulting systems

generally have a reasonable degree of tolerance to variations in control parameters, and they

can be resilient to changes in external conditions (refer to section 2.3.2).

Optimization using Pareto fronts has been implemented in the experiments as a means of

increasing genetic variation. With multi-objective performance measures there may be a

different ordering when the separate performance elements are weighted differently,

corresponding to intersecting Pareto fronts. Raw scores for the separate factors have been

included in the results. Note however, that this is with particular weights of the separate

factors; final Pareto fronts have not been found.

It is important to distinguish between active and semi-active controls, since active controls

are free from the passivity constraint. However, comparing both active and semi-active

controls in the same modelled environment produces a reasonable indication of the relative

strengths of the controls. One point is clear: an active control that is outperformed by a

number of semi-active controls has little chance of being a viable suspension control.

Taking into account all the qualifications discussed above, the controls that perform well in

the numerical experiments are good candidates for practical electronic controls and are

worthy of further investigation. The results provide good comparative data on candidate

suspension control systems.

As noted in section 5.7 the linear controls perform quite well, including the linear skyhook.

Small modifications improved the linear controls. “Virtual bump stops”, for instance,

improved suspension performance in numerical experiments (refer to section 5.7). The term

332

is used here to generally describe control modifications that increase control strength with

approach to the rattlespace limit. It should not be inferred that “Virtual bump stops” are just

controls that model actual bump stops.

The numerical results show that controls over jerk generally outperformed controls over

acceleration. It was difficult at the outset to anticipate this result because jerk control is less

direct and “slower” than control over acceleration. It is a strong recommendation of this

thesis that controls over jerk be considered for future investigation.

There were two input transducers on the physical rig. An accelerometer was placed at the end

of the top arm (“chassis”), and a potentiometer registered the relative movement between the

top arm and base (between the “chassis” and “wheel”). If the accelerometer were to be placed

on the “wheel” rather than the “chassis”, there would have been a higher measurement error

because of the greater vibration of the “wheel”.

The numerical experiments with linear controls confirmed that this was a good arrangement

for the collection of data, in the sense that it was higher derivatives of the chassis movement

and lower derivatives of relative stroke movement that were given higher linear coefficients.

In the linear control over jerk, the numerical experiments indicated that the chassis

acceleration coefficient, ,y should be quite high. This measure can be estimated directly

from an accelerometer on the chassis.

Semi-active suspensions suffer from a problem that active systems do not: the damper can

only supply force in one direction. For example, if the damper is compressing, then the

damper can only supply an upward force on the chassis. This is known generally as the

“passivity constraint” (explained in section 2.6). It becomes a problem for controllable

dampers when designers try to adapt a semi-active control to follow a desirable control law.

The obvious thing to do is to clip the control within the passivity constraint, but this produces

enormous jerk when the stroke changes direction (discussed in section 4.8.1). For the sake of

discussion, this problem is here termed “crossover jerk”.

In regard to semi-active suspensions one result of this thesis is clear: some form of crossover

jerk removal is necessary. An early method to address the problem, called the “no-jerk

333

skyhook”, has been known since 1997 (Reichert, 1997; Ahmadian et al., 2004). In fact, the

no-jerk skyhook performed quite badly in the numerical experiment, obtaining a score of 221,

even lower than the passive with 321.

This author’s “lo-jerk skyhook” removes the jerk that can accompany a change in the

direction of stroke velocity (refer to section 4.8.1). This idea was made explicit in the paper

of 2006 and 2008 (Storey et al., 2006; Storey et al., 2008). The notion that a high performing

control could be used outside the period when stroke rate changes was discussed in the 2006

paper, and made explicit in the paper of 2008. Thus a crossover removal method can work in

tandem with a high-performing “target” control, with the crossover removal method cutting

in when crossover is imminent.

After looking carefully at the physics of the problem of “crossover removal”, a method was

developed that performed very well in numerical experiments (see section 4.8.3). In fact, it

outperformed other previous methods of addressing the problem developed by the author.

The highest performing semi-active control used this crossover removal method combined

with a distinct high performance “target” control, namely the linear control over jerk with

virtual bump stop (also confirming the high performance of the target control: the linear

control over jerk with virtual bump stops).

Over time, subtly different forms of crossover removal were developed. One of the problems

is that different forms of crossover removal make it difficult to judge the relative impact of

the target control. However the same crossover removal method was used for the following

(including the highest performing semi-active control):

FlatLinearJerk01SkewSemiCross, FlatLinearJerk01SemiCross,

FlatLinearAcceleration01SkewSemiCross, PureSkyhookSemiCross,

xMinTimeHardenSemiCross, xLandingEdgeCenterSemiCross, and

FlatLinearAcceleration01SemiCross.

These show roughly the same relative order of success as the active controls on which the

target controls are based.

“Rattlespace constraint” controls performed very highly given their complexity and given the

fact that their development for suspension control occurred relatively late in the research.

file:///D:/Data/PhD/Java/SuspensionTest302/Help/genesHTML/Genes.html%23FlatLinearJerk01SkewSemiCross
file:///D:/Data/PhD/Java/SuspensionTest302/Help/genesHTML/Genes.html%23FlatLinearJerk01SemiCross
file:///D:/Data/PhD/Java/SuspensionTest302/Help/genesHTML/Genes.html%23FlatLinearAcceleration01SkewSemiCross
file:///D:/Data/PhD/Java/SuspensionTest302/Help/genesHTML/Genes.html%23PureSkyhookSemiCross
file:///D:/Data/PhD/Java/SuspensionTest302/Help/genesHTML/Genes.html%23xMinTimeHardenSemiCross
file:///D:/Data/PhD/Java/SuspensionTest302/Help/genesHTML/Genes.html%23xLandingEdgeCenterSemiCross
file:///D:/Data/PhD/Java/SuspensionTest302/Help/genesHTML/Genes.html%23FlatLinearAcceleration01SemiCross

334

RCollisionAvoidSemi03 achieved a score of 815 while the

xMinTimeHardenSemiCross and xLandingEdgeCenterSemiCross both achieved a

score of roughly 807 (compared to the highest performing semi-active score of 824). In this

author’s estimation, this approach will probably eventually derive the highest performing

suspension controls.

7.3. Physical Experiments

There were two main types of experiments performed for this thesis. The first are the “drop”

or “transient” experiments performed without a moving base. The second are the experiments

with the rig placed on a moving platform.

The initial transient experiments permitted the collection of data on the rig’s parameters, most

importantly on the damper control force vs. voltage control function. The damper’s control

was verified by applying the control technique of section 4.7.3.7 for bringing the top arm

smoothly to rest without overshoot. The landing-surface method proved effective over a wide

range of parameter values in physical experiments.

The experiments on the truck platform, explained in section 6.5, verify the viability of control

over jerk. The experiments demonstrate that the controls used in the numerical experiments

are practical. These controls have been implemented in a cheap, modest system showing that

they are more than simple enough to be used with modern microprocessor control. The

experiments also show that virtual bump stops can be effective in improving the compromise

between comfort and tracking, and that crossover removal improves comfort.

7.4. Original Contribution

Linear controls have proven very successful in the numerical experiments. Linear systems

include the traditional linear passive suspension and the “linear skyhook control” (refer to

section 2.4). Linear controls can depend more generally on any linear combination of stroke

file:///D:/Data/PhD/Java/SuspensionTest302/Help/genesHTML/Genes.html%23RCollisionAvoidSemi03
file:///D:/Data/PhD/Java/SuspensionTest302/Help/genesHTML/Genes.html%23xMinTimeHardenSemiCross
file:///D:/Data/PhD/Java/SuspensionTest302/Help/genesHTML/Genes.html%23xLandingEdgeCenterSemiCross

335

displacement and absolute chassis displacement, as well as the first and second time

derivatives of these (see equation 4.6 and equation 4.7).

Evolutionary algorithms have been used to determine linear coefficients for a general linear

control over acceleration. The results show that the optimization process favoured the

skyhook in the sense that the linear coefficients chassis velocity and stroke displacement

were much higher than the coefficients of chassis displacement and stroke velocity.

Controls over jerk generally outperformed controls over acceleration (refer to section 5.7).

This is strong evidence for the practicality of control over jerk. Indeed, such controls can be

conveniently implemented because they employ direct measures of chassis acceleration,

which are readily collected using accelerometers (as discussed in section 7.2).

Nonlinear adjustments in the form of “virtual bump stops” (refer to section 4.5.2.2) led to

improvements on purely linear controls. The term “virtual bump stop” here refers to controls

that employ a deliberate stiffening of the suspension as it approaches the rattlespace limit.

The analogy with actual bump stops should be obvious except that some virtual bump stop

force profiles cannot be achieved with neoprene or rubber bump stops. These have been

investigated in the case of controls using jerk, as well as controls over acceleration. In both

cases virtual bump stops brought performance improvement.

Throughout the research linear controls consistently performed well. Some of the modified

linear systems are quite complex: the FlatLinearJerk01SkewSemiCross gene for

example (the highest performing semi-active control based on a linear method) had 30 real-

number components in the genome (compared with just 2 genes each for the two benchmark

controls).

The purely linear skyhook described in section 2.4 is not optimal in any mathematical sense,

although the damper in the nonlinear and very uncomfortable on-off skyhook is optimal for

energy absorption, as shown in section 4.2. There were a number of controls that performed

much better than the linear skyhook in the numerical experiments. Nonetheless, it performed

very well and was consistently at the high end of the performance range.

336

The skyhook’s success can be explained to a great extent by comparing its transmissibility

with that of the passive suspension (see section 2.4), and by the fact that it has good energy

absorbing characteristics, as described in section 4.2. Furthermore the pure skyhook does not

produce sharp jerks over road slope discontinuities, as discussed in section 4.3.

Section 4.3 explores the general issue of the susceptibility of a suspension control to produce

high jerk over road discontinuities. This matter is worthy of a short section in the thesis

because it not only points out an easily characterized theoretical superiority of such controls,

but it also highlights some practical problems with them. For instance, such controls require

extremely fast control responses, because they have to react to instantaneous changes in road

slope or height. In the absence of very fast control response, a semi-active control will

perform best over road slope discontinuities if the damper is generally soft when such

discontinuities are encountered.

Section 4.2 critiques the claim that “since the semiactive damper does not add any energy

into the system, the system is stable” (Song et al., 2003, p227). In fact a very uncomfortable

semi-active system could be designed with the damper deliberately employed to increase the

kinetic energy of the chassis where possible. The energy could effectively “ratchet upwards”

because of the damper. It is not strictly correct to say that such a damper is dissipative, and it

is not strictly the case that such a damper “cannot input energy into the controlled system”

(Dyke et al., 1996, p565).

Chapter 3 contains a theoretical investigation of comfort and tracking measures and provides

justification for the performance measures used in the experiments. Ironically, the virtually

limitless flexibility of electronic control and of numerical optimization creates its own set of

problems. Perhaps the most important example of this is the suspension control defect of

“acceleration discontinuities” (sudden changes in acceleration, which are spikes in jerk).

These deleterious artefacts are masked by least squares measures of acceleration.

There are a number of ways in which acceleration discontinuities can be produced. The on-

off skyhook has the property of absorbing chassis kinetic energy at the maximum rate for a

semi-active suspension (see section 4.2), but it has been shown to produce acceleration

discontinuities (McLellan, 1998, p55; Guglielmino et al., 2008, p71). Controls that are

switched between full on and full off are generally more convenient to engineer than controls

337

with a continuous range of output. This control defect could also arise from the use of

minimum-time bang-bang control over acceleration (refer to section 2.3.2.3). Sliding-mode

control is known to produce chattering if the control is not modified near equilibrium

(discussed in section 2.3.2.4).

Force discontinuities are also produced by clipped semi-active controls, as discussed in

section 4.8, and the discomfort caused by this has been shown experimentally (Ivers and

Miller, 1991, p337). The necessity of crossover removal, so obvious in physical experiments,

might be masked altogether if least squares acceleration is used as the performance measure

of smoothness.

One of the major theoretical conclusions of this thesis is that jerk is a more appropriate

measure of comfort than acceleration. This notion has been defended at length in chapter 3.

The matter is complex and a number of factors need to be taken into consideration (as

discussed in section 3.1). Perhaps the most conclusive evidence for the superiority of jerk

over acceleration as a measure of comfort is to be found in experiments into human

movement. These indicate that jerk and perhaps even higher-order derivatives of motion are

used by human biological systems for the control of motion (Flash and Hogan, 1985; Harris,

2004).

Just as comfort performance measures should reflect true suspension goals so should tracking

performance measures. What seemed at first to be a relatively simple matter emerged as a

complex and intriguing theoretical problem. This matter has been discussed in detail in

section 3.2.

Hitting very hard against the limits of the suspension travel is damaging to a vehicle and is

extremely uncomfortable, and travel beyond the suspension travel limits is clearly infeasible.

A real suspension has failed catastrophically once the chassis has smashed through the

rattlespace limit. So how can travel outside the rattlespace be allowed in the model? Surely,

optimization techniques that allow travel outside the rattlespace limits are unrealistic?

Tracking performance measures that involve penalties for rattlespace travel limits have not

been proposed previously, to the best of this author’s knowledge.

338

The matter is further complicated by an inconvenient fact: in the real world, drivers slow

down when they approach large and potentially uncomfortable bumps. Indeed this

phenomenon is purposefully exploited by speed bumps.

It seems at first possible to include the discomfort of hitting hard against rattlespace limits as

a component of the performance measure, unifying, as it were, comfort and tracking into one

performance measure. This would seem at first to be an elegant method that also solves the

problem of travel outside the rattlespace. The problem is that drivers respond to large jolts,

especially the threat of rattlespace collisions, by slowing down, altering the road vertical

height profile as a function of time. Without driver slowdown these jerks have effects on

optimization that are irrelevant to the suspension problem because they are not experienced in

real driving.

An important aspect of this problem then is the fact that vehicle suspension models are

unrealistic if they do not include driver slowdown. Even the worst suspensions (within

reason) can be made smooth and comfortable simply by going slowly enough. On the other

hand, even the best suspensions can be made uncomfortable over soft bumps, simply by

going fast enough. Changing forward speed changes the bump profile as a function of time.

One consequence of this is that real drivers avoid excessively rough conditions by slowing

down. They do this to avoid both discomfort and vehicle damage. This effect can be readily

observed by watching cars as they pass over speed bumps, which are of course specifically

designed for this purpose.

Including rattlespace limits in the model and using a “unified” measure of both comfort and

tracking may be an elegant solution, but it is ultimately also unrealistic. And it is likely to

produce anomalous results in evolutionary algorithms (refer to section 3.2).

It would seem then that the most “accurate” approach would be to realistically model driver

slowdown in the evolutionary algorithms. Frustration at having to slow down would then be

at least a factor in a measure of tracking. However, the method is untried. The method itself

needs research.

On balance it was felt best to proceed with another method that did not diverge too greatly

from standard methods. This measure penalizes travel near and beyond the rattlespace travel

339

limits, as explained in section 3.2. This method has the advantage that it deviates only slightly

from traditional techniques.

Nonetheless, an outline for a method for modelling driver slowdown was proposed. Rather

than model a host of complex psychological factors, driver slowdown could be approximated

by making simplifying assumptions about driver behaviour. In particular, it can be assumed

that only under the roughest conditions would an experienced driver allow the suspension to

hit violently against the rattlespace limits. An iterative method could be used to approximate

this behaviour.

Although driver slowdown was not modelled in the numerical experiments, it is an important

factor in the theoretical issue of tracking measures, and the entire discussion of section 3.2 is

needed in order to fully explain the reasoning behind the compromise tracking performance

measure used in this thesis.

It is clear that electronic suspension controls cannot be properly tested in evolutionary

algorithms unless there are road surfaces that threaten to create collisions with the rattlespace

limits; at least a small proportion of bumps should be at least one half the rattlespace in

height. If such bumps do not occur with reasonable frequency, then the optimization process

can produce softer and softer suspensions, at the extreme producing the softest possible

suspension: the “flat” control, which simply keeps the chassis flat (refer to section 3.2). The

random roads used in the numerical experiments erred perhaps on the side of being rougher

than necessary.

It is certainly true that “the Linear Quadratic Regulator (LQR) has been used as one of the

main control techniques for dealing with active suspension design” (Camino et al., 1999,

p3168). The LQR control has been the basis of controls developed by a number of authors

(Yedavalli and Liu, 1994; Tseng and Hendrick, 1994; Giorgetti et al., 2006; Takahashi et al.,

2000; Johnson and Erkus, 2002). For the sake of discussion it was even dubbed by Wagner

and Liu, the “optimal control” (2000, p568) , although of course it is optimal only for the

particular case of the LQ problem (MacCluer, 2005, p151). LQR control has been extended

above to control over jerk (refer to section 4.5.1).

340

The minimum-time control of section 2.3.2.3 can also be extended to controls over jerk (refer

to section 4.6). The minimum-time control over acceleration was used by Pontryagin as a first

example of optimal control with control constraints (Pontryagin et al., 1986), and the control

has a long history. This author found the minimum-time, bang-bang control to return a

system to rest (including zero acceleration) using jerk and proved this method using

Pontryagin’s Principle (in section 4.6).

A simple, closed-loop, discretised version of the control (i.e. a real-time optimal control,

RTOC) for implementing this bang-bang control was found by the author (see section 4.6.1),

although, as described in section 2.3.2.3, a literature search revealed that this method seems

to have been applied by Koh et al. in the area of mechatronics (1999) although it is not

analysed.

The theory for a separate, novel category of suspension controls has been developed for this

thesis in section 4.7. These are termed “rattlespace constraint” controls, in which the

trajectory of the chassis is controlled to remain within the rattlespace limits, at the same time

applying smooth movements to do so. This category of controls is distinguished by the fact

that they are based on models of chassis trajectories as well as some kind of “prediction” of

the future rattlespace trajectory, as described in section 4.7.

Two broad variants of this kind of control are identified: firstly, controls that stiffen when

they determine that the maximum travel is likely to hit or come close to a rattlespace limit,

termed here “variable hardness” controls, and secondly, controls that plot a trajectory as they

approach a given limit, called “edge constraint” controls.

The second subcategory is more complex. These controls require a projection of the likely

future movement of the suspension rattlespace. This is a complex stochastic system with

constraints on two sides. It can be difficult to distinguish whether a momentary change in

road height signals a large bump or is merely part of a small corrugation. Ultimately, this is a

matter of road height statistics, but simple heuristic methods have been developed above for

anticipating future road movement.

341

The problem of rattlespace constraint is naturally associated with the problem of approaching

a limit curve without overshoot. This “displacement constraint” problem (refer to section

4.7.3) is of some interest in its own right.

It soon became clear that in this problem there is a trade-off between smoothness and

“rebound”. Suppose for the sake of argument that the chassis approaches the bottom

rattlespace limit and manages just to skim the limit with zero relative velocity, but there is

some residual acceleration. How is this acceleration to be handled? The acceleration cannot

be suddenly dropped to zero without causing a spike in jerk. A smooth jerk will need to be

applied to reduce this residual acceleration. But if the residual acceleration is too large, a

smooth decrease in acceleration may not be sufficient, because the chassis will rebound back

towards the opposite rattlespace limit. The residual acceleration “pushes” the chassis back

towards the other rattlespace limit.

In section 4.7.3.1, if the initial instant is ignored, it has been shown that rebound acceleration

can be reduced at the price of larger control force at the start. In this preliminary analysis it is

shown that constant energy absorption can produce a considerable rebound force,

contributing potentially to instability. About one-and-one-half to two times this initial force

(depending on the method of force decay) is required to produce a smooth, controlled

response later. This seems to suggest that larger control forces than are necessary for energy

absorption alone are needed to produce stability. Finding a more definitive solution to this

problem that did not ignore the acceleration of the initial instant became an important focus

of the research.

Over many months of experimentation, a number of controls were developed for reaching

rest (zero distance and velocity, as well as zero acceleration) from arbitrary initial conditions.

The initial controls worked as open-loop, planned controls (with pre-planned movement), but

they failed when adapted as feedback controls. These preliminary investigations are briefly

explained in section 4.7.3.2. A control was initially found that seemed to work in all initial

conditions, but it was very complex and highly inelegant (as is readily evident in the example

at the end of section 4.7.3.2).

Minimum-time controls over jerk were also being investigated at this time. These controls do

not suffer from acceleration discontinuities, either at the initial time or at the time they reach

342

zero. The problems of bringing a system to zero in minimum time using constrained

acceleration or jerk are solved using the bang-bang minimum-time controls of sections

2.3.2.3 and 4.6. However, the added constraint that the trajectory should not overshoot

complicates the optimization problem.

What seemed at the time to be a quite startling and curious phenomenon was observed while

experimenting with a graphical computer program (written by this author during the course of

the PhD research) that implemented the bang-bang control over jerk with arbitrary initial

conditions (arbitrary initial distance, velocity and acceleration at time zero). No matter what

initial conditions were used, the minimum-time bang-bang control that returned to zero using

least jerk without overshoot was always the control that has only one intermediary control

switch (instead of two in the general case). This was observed again and again, with a wide

range of initial conditions. An illustrative example can be seen above in figure 4.29 (b) in

section 4.7.3.3. This method also provides a simple and elegant feedback control as discussed

below, neatly solving a problem that consumed many hours of investigation.

A mathematical proof was found by this author that this is indeed the minimum-time control

using least jerk to reach zero without overshoot (refer to section 4.7.3.4). For the purposes of

discussion this control was termed the “landing surface control” (because the initial point is

on the landing surface). The proof involved equations that later were employed in

implementing a feedback version of the control.

Other controls were also found that could reach zero without overshoot and with even lower

jerk values, but all these involved some amount of rebound. These have generally been

termed “skim” controls for the sake of this discussion, because they “skim” the time axis as

explained in section 4.7.3.5. The absolute minimum jerk is achieved by the “minimum-jerk

skim” control, as proven in section 4.7.3.5.

An example using a jerk limit intermediate between the landing-surface and the minimum

jerk skim is illustrated in figure 4.37. These also have intermediate rebound between the zero

rebound of the landing-surface method and the maximum rebound of the minimum-jerk skim

control. Thus there is a trade-off between smoothness and rebound.

343

Showing that the general skim controls are minimum-time, or at least are local minima,

requires showing that small perturbations (as employed in the proof of Pontryagin’s theorem)

produce only increases in overall control time. This is explained in more detail in the

appended section 8.16 and is outlined in section 4.7.3.5. Such increases have been shown in

numerical testing.

To complete the range of minimum-time controls for jerk constraint limits that are larger than

the landing-surface control requires just the standard minimum-time controls that are

unconstrained by displacement, since these do not overshoot in any case.

This type of control and bang-off-bang variants developed above (refer to section 4.7.3.7)

may be of independent interest. Since acceleration is smoothly released and brought to zero,

there is good reason for thinking that movement at the completion of the control is not subject

to lingering vibrations, and settling time should be reduced. As remarked by Koh et al., “the

anti-vibration is the key factor for determining the life cycle of the mechanism. In robotic

systems, the jerk constrained motion guarantees a smooth and stable motion” (1999, p273).

Thus a smoother settling control can also reduce wear and tear on the mechanism.

The control of satellite rotation investigated by Zadeh (2004) was developed and tested

numerically using the evolution of fuzzy logic controls, and it was found to decrease costly

settling time (Kirk, 1970). The control force tails off at the end in a way that has some

similarities with the landing-surface control. By decreasing or removing vibrations at the end

of the control movement, the satellite is ready for use in shorter time; the system becomes

operational almost immediately after the rotational movement is complete rather than having

to wait for extraneous vibrations to die out.

The landing surface control has a wide range of applications where a fast movement is

followed by a precise target positioning without residual vibrations. Such applications include

robotic arm approach to another machine (Constantinescu and Croft, 2000), the closing of a

heavy door, lift control (Peters, 1995), parking a hard-drive head (Chang and Hori, 2006),

rotation of satellites (Zadeh, 2004), or even for aircraft landing gear (Krüger, 2002).

The landing-surface control is simple, elegant and stable when used as a closed-loop control

(refer to section 4.7.3.3), and it seems to resolve all the problems of the heuristic controls

344

developed in section 4.7.3.2. The main reason for this is Bellman’s principle of optimality

(Kirk, 1970, p54) (refer also to the discussion in section 2.3.2.3); “If [control] u is optimal on

],,[21 tt it is optimal on every subinterval” (MacCluer, 2005, p121). The control then is a

perfect candidate for a real-time closed-loop control, using only state estimations as in

conventional feed-back systems controlled by a microcontroller.

The algebra for the control algorithm requires the solution of a fourth-order polynomial, and

while such equations do have a closed-form solution (Dixon, 2008, pp385-91), an iterative

method using Newton Raphson was employed here (as discussed in section 4.7.3.6). The

discretised control was tested in a relatively slow microprocessor (18 MHz) and with cheap

input transducers in the physical test rig and was found to operate comfortably at around 7.5

ms intervals (refer to section 6.4).

The “landing surface” control can be used as the final stage of a closed-loop control that

includes other constraints. The extremes of the control are easily calculated in real time; the

maximum distance, velocity and acceleration are found by very simple algebra. By

calculating these extremes and only switching to this control when needed, it can be adapted

to deal with what is generally the most difficult part of such a movement: the final “docking”

movement, as demonstrated in section 4.7.3.7.

This results in “bang-off-bang” controls. A “bang-off-bang” control was also developed that

applied acceleration limits, although this requires further research as discussed in section

4.7.3.7. A bang-off-bang control was implemented in the physical rig, as shown in section

6.4.

Assuming the conjectured optimality of the general “skim” controls developed in section

4.7.3.5, these provide a theory for using constrained jerk for achieving equilibrium in a

rattlespace constraint, shown at the end of that section. The details of the control (especially

the rate of control decay when moving from one rattlespace edge to the other) depend on the

relative importance of smoothness compared to settling time.

Because of the passivity constraint (see section 2.6) there is a propensity for a semi-active

suspension to produce sudden changes of acceleration when the stroke rate changes direction.

345

This problem has been known since at least 2004 when Ahmadian et al. proposed a global

control law that alleviated the problem (2004). In 2006 the author published a paper which

explained that the problem was manifested specifically when the stroke rate approaches zero

(Storey et al., 2006). For the sake of the discussion, the point at which the stroke rate reaches

zero is here termed “crossover”: the stroke rate “crosses” between negative and positive, or

vice versa.

A number of methods for anticipating and removing “crossover jerk” were developed over

time. Eventually a method was produced which assumes that a controlled near-constant jerk

can be used to bring the damping force to zero smoothly (Storey et al., 2008). The physical

analysis of this method has been explained in section 4.8.3. The method produced vast

improvements for semi-active controls in the numerical experiments, and was clearly the best

method found for removing “crossover jerk”.

Evolutionary algorithms have been used in this thesis for the optimization of candidate

suspension control algorithms, and also to test and compare the controls in a consistent

environment. In this way evolutionary algorithms are being used as a first-order general

design tool, comparing a range of radically different controls.

The use of evolutionary algorithms as a first-order design tool has strengths and weaknesses.

A positive is the fact that evolutionary algorithms are robust, in the sense that the controls

that survive evolution tend to cope well with minor environmental variations and deviations

in control parameters, as described in section 2.3.2. Most importantly, evolutionary

algorithms are quite capable of deriving useful results for problems that are intractable with

analytical approaches. Balanced against this is the fact that evolutionary algorithms derive

suboptimal results, in the sense defined in section 2.12.1.

In the numerical experiments performed here, a wide variety of controls, of varying degrees

of sophistication, could be compared against the two benchmarks: the passive and the linear

skyhook. These were tested over random road surfaces, containing a high proportion of very

rough roads with bumps larger than half the rattlespace width. The relative performances of

the various controls in the numerical experiments show some clear and compelling results,

discussed above.

346

As for the evolutionary algorithms themselves, it was observed that if the evolution was too

“hot” (with large numbers of large mutations) genes tend to exploit “easy advantages”. For

example, controls that had jerk or acceleration limiting parameters tended to set those

parameters low, easily allowing the control to be soft. This has the effect of masking higher

performing parameter combinations. To avoid this, cooling must be done slowly.

If a particular road surface, or a particular set of road surfaces, was used for the modelling,

the evolutionary algorithm might be biased towards controls that handle particular features of

those surfaces. To avoid any source of bias, the road inputs used for the EAs in this thesis

were randomized. However, randomizing road inputs slowed down the numerical evolution.

This is because some roads were smoother than others and so in some cases, “worse” genes

outperformed “better” ones. To compensate for this required a much longer period of

evolution than might be the case with a particular road input set. In this author’s estimation

this precaution of producing random input was probably not warranted. It may have sped up

evolution considerably if a given large set of roads had been employed right throughout the

evolutionary process, with the genes all competing under exactly the same conditions.

Overall, high performing suspension controls in the numerical experiments are deserving of

further research. Given the inherent robustness of EAs and the fact that test road conditions in

the numerical experiments were very rough, the controls that performed well in those

experiments should be highly tolerant of parameter variation.

7.5. Further Investigation

This thesis aims at a first-order understanding of the factors involved in developing an

electronic control for suspension systems. The thesis itself is intended as a basis for further

research.

While the numerical experiments do not constitute formal proofs, they provide a useful guide

to the relative superiority of any given control technique. For a control adapted for a given

application, further investigations would be needed. This could entail either further computer

modelling or physical prototyping.

347

The rattlespace constraint controls developed for the numerical experiments performed quite

well, especially the semi-active variants. The theory for these controls came somewhat late in

the research. The theory developed here provides a basic set of methods for targeting distance

limits and anticipating possible future rattlespace movement. These controls have immediate

application to control problems beyond suspension control, as outlined in section 4.7.3.

The question of how to approach a rattlespace limit that is undergoing stochastic movement

has been discussed and simple algorithms have been investigated. Smoothed targets slightly

inside the rattlespace edge allowed smoother and improved control in some of the

experiments (see section 4.7.4). The problem of distinguishing potential large bumps from

small corrugations needs further investigation: over-react to potential bumps and the

suspension becomes uncomfortably hard, under-react and the suspension becomes

dangerously soft. Simple heuristics applied to these problems produced highly performing

controls. There is enormous scope for further research.

The minimum-time “skim” controls of section 4.8 go a long way to providing a toolbox of

controls that allow fast bang-bang and bang-off-bang triple-integrator controls to be

employed for moving a suspension smoothly between rattlespace limits. They provide a

theory for controlling the rebound which contributes to instability. As shown in section

4.7.3.5 a control that produces a trajectory on the boundary of the state space for the distance

constraint problem can be broken into sections that “skim” the time axis. Each section can be

analysed using Pontryagin’s theorem unconstrained by distance.

As described in section 4.7.3.6 the landing-surface control can be implemented as a real-time

optimal control. The control brings a system to rest without overshoot in minimum time and

with minimum jerk. Physical experiments should be performed to investigate the effects of

such controls on settling time.

Furthermore, the landing-surface control can be used as a part of a variety of possible

controls that use it to handle the final, delicate “docking” movement, as discussed in section

4.7.3.7. Such methods can include set jerk limits, acceleration limits and even velocity limits.

Further investigation into these possibilities is needed.

348

One control technique that requires further investigation is how to recognize different road

types and respond accordingly. Thus a control could recognize highway conditions, for

example, and become smoother, but they could stiffen over patches of rough terrain. The

suspension could adjust to various road conditions: freeway, inner city streets, off road etc.

Look-ahead sensors also offer exciting possibilities, especially for the rattlespace constraint

controls of section 4.7, since these can potentially target more certain trajectories.

The reasons for considering jerk to be a better measure of comfort than acceleration are

examined in full in section 3.1. Empirical evidence to show that jerk is more “natural” rests

on a few small experiments. Indeed, these experiments suggest that even higher order

derivatives than jerk might be better indicators of comfort, especially for low frequencies, as

explained in section 3.1. On the other hand, the empirical evidence for least squares

acceleration as an appropriate comfort measure rests on a large experimental sample (refer to

section 2.9.1), but it was performed well before the advent of electronically controlled

suspension, and it did not even consider jerk as an alternative.

There is room for further investigation into the performance measures. All else being equal, it

is clear that jerk provides a much better measure of smoothness and comfort than

acceleration, and there are empirical experiments which support this claim. As explained in

section 3.1, a jerk measure will also indicate high accelerations, but an acceleration measure

can mask extremely rough acceleration “discontinuities”. However, when accelerations are

extremely rough, as when discomfort is caused by resonance in body tissue (refer to section

2.9.1) the energy input into the body is extremely uncomfortable. At high frequencies, a

mixture of jerk and acceleration may provide a more accurate measure of comfort. Further

testing is required, but the arguments of section 3.1 indicate that, all else being equal, jerk is a

better indicator of comfort than acceleration.

Tracking performance is a complex matter, and the discussion in section 3.2 raises a number

of new issues requiring further investigation. Tracking involves a mixture of road holding,

which also requires a smooth chassis movement and an associated smooth road normal force,

as well as the capacity for the suspension to minimize damaging collisions with the

rattlespace limits. There is a complex interplay between the avoidance of rattlespace edge

collision, reducing damage, reducing high force and jerk, and improving comfort. And all

349

these are related to driver slow down. This thesis has raised a number of important issues for

tracking measures, but there have also been practical suggestions for ways of proceding with

further investigations.

A simple, iterative numerical method for modelling driver slowdown has been proposed

above in section 3.2, although it has not been used here. This method does not require

psychological modelling and it may be somewhat simplistic, but it allows the modelling of a

factor that could not be accounted for otherwise. It would be interesting to see if optimization

using driver slowdown produces superior results.

Tracking is highly sensitive to the rate of occurance of very large bumps (at least half the

rattlespace height, as explained in section 3.2). Without such bumps in the EAs, optimization

will settle on absurdly soft suspensions. The rate at which such bumps occur needs

investigation. The models in this thesis have almost certainly erred on the side of having too

high a rate of large bumps, to ensure that the suspensions do not produce extremely soft

suspension. Even so, this author is of the opinion that road discontinuities and road sloped

discontinuities form the major source of driver irritation for most “large bumps” and these

bumps are rarely more than half the rattlespace height. Driver slow down is a factor here as

well.

Generally speaking, the smoother the chassis trajectory, the smoother the road normal force.

Also, with constant forward velocity the impact of road normal force on braking and

acceleration is irrelevant. Thus road normal force considerations have been subsumed under

the comfort and tracking measures used here. There are many ways however that a

suspension control might alter its response to improve normal force smoothness under

acceleration, braking and cornering. The effect of tyre resonance on road normal force also

needs to be included in such an analysis.

As noted in section 4.1 the use of the center of the rattlespace as the suspension equilibrium

position has been mathematically convenient and was felt to be sufficient for the high-level

investigation of this thesis. However, heavily loaded vehicles generally will have a lower

equilibrium position, and can cause great damage when bottoming. This matter requires

further investigation.

350

Independent suspension has historically produced great benefits to suspension ride so there

are ad hoc considerations that might lead us to suppose that independent electronic control

will have similar benefits. Certainly, independent smooth jerk control of absolute chassis

height at each corner will tend to reduce overall displacement including rotational

movements: roll and yaw in cornering, and pitch during braking and acceleration.

Nonetheless, investigation employing models with a larger number of degrees of freedom,

including rotations, is needed.

One method of improving the responsiveness of a semi-active suspension might be to

increase the crossover jerk limit near rattlespace limits, further increasing the subtlety of

“virtual bump stop” control. This could be relatively easily carried out with the programs

produced for the numerical experiments.

As discussed in section 7.2, results from evolutionary algorithms might have been derived

much more quickly if random roads had not been used in each case. It is worth investigating

the question of what is the minimal amount of data needed to avoid biasing results, as this

could drive an enormous speed up in evolution.

It is hoped that the work of this thesis will contribute to future electronic suspension control

and related control problems by providing a basic overview of control techniques. Some of

the controls discussed above are simple modifications of basic linear systems that have a

legacy in traditional mechanical engineering, while others are developed from theory that has

been applied in aerospace engineering. It is anticipated that the more sophisticated

“aerospace” techniques will have more and more application as transducers become cheaper

and more accurate, and as microprocessors become faster, with more memory.

351

8. Appendix

The first section of the appendix discusses terms used throughout the thesis. In some cases

alternative terms are available. The term “rattlespace” for example is also known as the

“working space”. The term “jerk”, used for the rate of change of acceleration, is of central

importance to the thesis and is defined in detail in the text and is not discussed here (refer to

the discussion in section 3.1).

The remainder of the appendix covers some details of mathematical proofs, program code

and physical experiment details that would distract from the explanations contained in the

thesis.

8.1. Basic Nomenclature

There is a wide variation in the use of terms for the description of parts of a suspension

system. For example, the amount of extension of the main spring and damper is known by a

number of terms: stroke, extension, relative displacement, rattlespace, working space, etc.

“Stroke” generally refers to displacement about equilibrium, which is equivalent to the term

“relative displacement”. The term “rattlespace”, on the other hand, will generally refer to the

range of the suspension travel.

“Relative velocity” is a commonly used term for rate-of-change of stroke (Ivers and Miller,

1991, p337; Ahmadian et al., 2004, p580). In this thesis the suspension travel limits will

generally be referred to as the “rattlespace limit”, and the term “stroke” will be reserved as a

convenient term for suspension displacement around the zero, equilibrium position.

The damper in a vehicle suspension system is commonly known as a “shock absorber”. But

“the implication that shocks are absorbed is misleading.” (Dixon, 2008, p2) The term

“damper” is used throughout the thesis.

352

8.1.1. Road and Chassis Height

Figure 8.1 illustrates the typical quarter-car model with two degrees of freedom.

Figure 8.1 Schematic of the Two DOF Quarter-Car Model

In this model the suspension and the tyre are both represented as spring and damper systems,

but other models can be placed here such as hydraulic actuators in the case of active systems

or more accurate tyre models (Lee et al., 2006, p7; Lot and Massaro, 2006; Lehtonen et al.,

2006). If the tyre is not included in the model, then the unsprung mass is neglected and the

road height, r, becomes the height of the bottom of the suspension.

The unsprung mass is centred at the tyre hub and represents the mass of the wheel as well as

other masses that move with the wheel, such as portions of the axle and wheel mounting. It

has also been referred to as the “axle mass” (Ivers and Miller, 1991, p337).

In most models in the literature the various height measures, r, u and y, are centred about the

static equilibrium position (Meirovitch, 1985, p97) which simplifies the equations. However,

diagrams can often be made more intuitive if the chassis is offset from the road and shown in

figure 8.2.

353

Figure 8.2 Graphs with the chassis above the road are more easily interpreted

Also road height is often modelled as a function of time, whereas road height is generally

visualised as a function of distance along the road. Where the forward velocity of the car is

constant the graphs are proportional. For the purposes of this thesis, road height is expressed

as a function of time: r(t), u(t) and y(t).

The stroke (or suspension extension) is the difference between the chassis height and the

road, or the between the chassis and the “unsprung mass”, made up of the tyre and axle if this

is included in the model. Thus the stroke is given as,),()()(trtyts (using the variables of

figure 2.1a). It is convenient mathematically to zero the stroke and represent vehicle height

centred on zero, as in the second diagram below. More precisely, the road height and vehicle

height, x and y, are translated so that and when the system is at equilibrium.

This leads to diagrams in which the chassis crosses the road, which can be confusing for

those who are not used to employing this technique.

Road heights are modelled here as a function of time. Since the vehicle might not be moving

forward with a constant speed, the road-height profile as a function of time will be

0x ry

354

correspondingly different from the road-height profile as a function of distance. This is also

slightly unintuitive and is, again, simply a mathematical convenience. When presenting

models for public demonstration it can be much more convincing to model the suspension as

travelling at a height above the road and moving at a constant speed along the road.

8.1.2. Stroke, Rattlespace

The term “stroke” here refers to the extension of the sprung portion of the suspension. It is

the distance between the chassis and the unsprung portion of the suspension (Redfield and

Karnopp, 1988). Stroke will be symbolized by the symbol s, and it is equal to the difference

between the equilibrium positions of the chassis height and the unsprung portion of the

suspension. The distance of the compression and extension of the suspension and is given by

the formula,

For the single DOF model the road forms the base of the spring and damper portion of the

suspension,

The stroke velocity is sometimes referred to as the “relative velocity”, the “absolute velocity”

being the vertical velocity of the body (Ivers and Miller, 1991, p337; Ahmadian et al., 2004,

p580). Stroke velocity is also referred to as “rattle velocity” (Lauwerys et al., 2004, p1482).

The term “stroke velocity” is used throughout this thesis. Just as the stroke velocity is

sometimes called relative velocity, the stroke is sometimes referred to as the “relative

displacement” (Wagner and Liu, 2000, p567).

The suspension travel has set limits and it cannot extend outside a finite range. The term,

“rattlespace” (Burton, 1993; Hrovat and Hubbard, 1981; Hyvärinen, 2004; Takahashi et al.,

2000), refers to the space within the limits of the vertical movement of the suspension,

between the point of suspension compression where the tyre mounting collides with the car

chassis, and the point at which it stretches and the tyre mass jolts down violently on the

chassis. McLellan defines the rattlespace as “… the space provided between the axle and

vehicle body for the suspension; this rattlespace must not be exceeded by compression of the

).()()(tutyts

).()()(trtyts

355

suspension or else very jarring impacts will occur” (1998, p27). Takahashi et al. refer to the

“required rattlespace, i.e., the range of the relative body to axle displacement” (Takahashi et

al., 2000). This is the sense of the term “rattleaspace” as used in the thesis.

The term “working space” is also used (Sims and Stanway, 2003). Note that the suspension

vertical travel limits are the true limits of travel before destruction of the suspension: if there

are bump stops the true limits are at the very limit of the bump stop compression.

For basic mathematical models, it is convenient to assume that the zero, resting point of the

suspension is half way between the rattlespace limits. Thus, if the resting point of the stroke

is zero, the limits of the rattlespace can be conveniently represented algebraically as,

Here R is half the full rattlespace travel distance. This will not be the case in a real vehicle,

and in fact the equilibrium position will change with the loading of the vehicle.

One of the objectives of a suspension system is to stay within the rattlespace (within the

vertical travel limits). Hitting up hard against the rattlespace limits has been called “topping”

and “bottoming” (Lord, 2006). Presumably topping occurs when the unsprung mass hits up

hard against the sprung mass, and bottoming occurs when the damper reaches the “top” of its

full extension.

The extremes of the rattlespace can also be modelled with a critically damped or overdamped

extremely stiff spring and damper. This will be referred to as the “bump stop” (Lee et al.,

2006, p8). This was used in some experiments with the stiffness set at a nominally high

value.

8.1.3. “Damping Coefficient” and “Damping Constant”

If the D.E. of a general second-order system is,

then the term, damping coefficient, is defined as,

(Distefano et al., 1997)

.)(RtsR

,2 22 uyyy nnn

.n

356

For a single degree-of-freedom suspension the equation of motion is,

which gives,

The value c in this equation is sometimes known as the damping constant. With semi-active

systems the damping rate is not in fact constant and so the term “damping rate” will be used

throughout this thesis.

A number of other terms covering second-order systems are standard:

 is the undamped natural frequency,

 is defined as the damping ratio,

 is referred to as the damped natural frequency and,

 the time constant, is the inverse of the damping coefficient.

8.1.4. Soft and Stiff Suspensions

The terms “soft”, “stiff” and “hard” in general indicate the level of force applied by a

suspension. A stiff or hard suspension tends to apply a greater force than a soft one. In a

passive system, a stiffer spring is one that has a larger spring constant, and a stiffer damper

has a higher damping coefficient. Where the level of jerk (rate of change of acceleration) that

can be applied indicates “stiffness”, of course the higher levels of jerk are characteristic of a

stiff suspension.

Perhaps intuition has become attuned to thinking of “soft” suspensions in terms of passive

components. A suspension that is soft in terms of acceleration or jerk may in fact need to

increase damping force: a semi-active system under breaking may need to stiffen in order to

stop the car from dipping over the front tyres. This stiffening reduces car-body acceleration

and so is “softer” in terms of acceleration.

Even though there is this ambiguity in usage the terms stiff and soft are often useful as a

descriptive aid. Of course the ambiguity must be resolved by context.

,0 kyycym

.
2m

c

n

21 nd

,

357

8.1.5. Sigmoid Function

A sigmoid function is an s-shaped function (see figure 8.3) that is often used in neural

networks as a form of threshold function. It is used instead of a simple step function. It is here

used in some EAs as a way to switch between one response and another.

Figure 8.3 Sigmoid Function

The sigmoid function can be implemented in a number of ways. The following formula has

been used,

(Singh, 2001)

The hyperbolic tan function, tanh, is also used (Galkin, 2006). The sin function can also be

used,

Clearly, each of these functions can be magnified and translated and evolvable parameters

can be used to determine the parameters of the sigmoid functions.

8.1.6. Fitness Function

The measure of performance in various optimization problems is given a number of different

names depending on context. In the use of evolutionary algorithms the measure of

.
1

1
xe

otherwise sin(x)

2/ if 1

2/ if 1

)(

 x

x

x

358

performance is usually referred to as the objective function or the fitness function. The term

objective function is also used mathematically to refer to measures of performance in

variational calculus or mathematical programming. The terms performance index or cost

function (Song et al., 2003) are also used, although the later term generally occurs in

economic applications.

The cost function often takes the form of a functional, so the cost function can sometimes

also be referred to as the cost functional (Camino et al., 1999; Takahashi et al., 2000).

8.2. Maple Derivation of LQR Coefficients

The Maple mathematical software package (Maple 7) was used to derive the LQR linear

feedback control coefficients for the linear control problem using control over acceleration of

section 2.3.1, and the similar problem using control over jerk of section 4.5.1. Both problems

can be expressed in the form of the cost functional of equation 2.3 for the linear system

described by the matrix equation of equation 2.4.

In the case of the single DOF control over acceleration (also known as the double-integrator)

the following matrix values are substituted into equation 2.3 and equation 2.4:

 ,
00

0
,

1

0
,

00

10

QBA and .1R

 The following Maple code will solve the Riccati equation,

> restart:

with(plots):

with(linalg):

with(LinearAlgebra):
Warning, the name changecoords has been redefined

Warning, the protected names norm and trace have been redefined and

unprotected

Warning, the assigned name GramSchmidt now has a global binding

> A:=<<0,0>|<1,0>>;

#<<a,d>|<b,e>|<c,f>>

B:=<<0,1>>;

Q:=<<alpha,0>|<0,0>>;

R:=<<1>>;

S:=<<a,e>|<e,b>>;

359

> Z1:=MatrixAdd(Multiply(Transpose(A),S),Multiply(S,A));
Z2:=-

Multiply(Multiply(Multiply(S,Multiply(B,MatrixInverse(R))),

Transpose(B)),S);

Z:=MatrixAdd(MatrixAdd(Z1,Z2),Q);

>

> #e:=sqrt(beta);
Z;

> e:=b*b/2;
Z;

> b:=sqrt(2)*alpha^(1/4);

> S;
Multiply(Multiply(MatrixInverse(R),Transpose(B)),S);

>

This gives the coefficients as shown in equation 2.5. (This can be found in the file “Maple

Experiments\LQR\LQR acc.mws”)

 := A

0 1

0 0

 := B

0

1

 := Q

 0

0 0

 := R []1

 := S

a e

e b

 := Z1

0 a

a 2 e

 := Z2

e2 e b

e b b2

 := Z

 e2 a e b

a e b 2 e b2

 e2 a e b

a e b 2 e b2

 := e
1

2
b2

1

4
b4 a

1

2
b3

a
1

2
b3 0

 := b 2
()/1 4

a

 2
()/1 4

[] 2
()/1 4

360

In the case of control over jerk (the triple-integrator) the following matrix values are used,

 ,

000

000

00

,

1

0

0

,

000

100

010

QBA and].1[R

The following Maple code (which can be found in the file “Maple Experiments\LQR\LQR

jerk.mws”) solves the Riccati equations,

> restart:

with(plots):

with(linalg):

with(LinearAlgebra):
Warning, the name changecoords has been redefined

Warning, the protected names norm and trace have been redefined and

unprotected

Warning, the assigned name GramSchmidt now has a global binding

> A:=<<0,0,0>|<1,0,0>|<0,1,0>>;

#<<a,d>|<b,e>|<c,f>>

B:=<<0,0,1>>;

Q:=<<alpha,0,0>|<0,0,0>|<0,0,0>>;

R:=<<1>>;

S:=<<a,d,e>|<d,b,f>|<e,f,c>>;

> Z1:=MatrixAdd(Multiply(Transpose(A),S),Multiply(S,A));

Z2:=-

Multiply(Multiply(Multiply(S,Multiply(B,MatrixInverse(R))),

Transpose(B)),S);

Z:=MatrixAdd(MatrixAdd(Z1,Z2),Q);

>

 := A

0 1 0

0 0 1

0 0 0

 := B

0

0

1

 := Q

 0 0

0 0 0

0 0 0

 := R []1

 := S

a d e

d b f

e f c

361

> f:=c*c/2;
Z;

> #e:=-sqrt(beta);
#Z;

> d:=c^4/8; simplify(Z);

>
e:=c^3/8;

Z;

> F:=-Multiply(Transpose(B),S);

 := Z1

0 a d

a 2 d e b

d e b 2 f

 := Z2

e2 e f e c

e f f2 f c

e c f c c2

 := Z

 e2 a e f d e c

a e f 2 d f2 e b f c

d e c e b f c 2 f c2

 := f
1

2
c2

 e2 a
1

2
e c2 d e c

a
1

2
e c2 2 d

1

4
c4 e b

1

2
c3

d e c e b
1

2
c3 0

 := d
1

8
c4

 e2 a
1

2
e c2

1

8
c4 e c

a
1

2
e c2 0 e b

1

2
c3

1

8
c4 e c e b

1

2
c3 0

 := e
1

8
c3

1

64
c6 a

1

16
c5 0

a
1

16
c5 0

3

8
c3 b

0
3

8
c3 b 0

 := F

1

8
c3

1

2
c2 c

362

> c:=(alpha)^(1/6)*2;

Z;

F;

>

This then is the derivation of the coefficients of equation 4.4.

8.3. Maple Derivation using Euler-Lagrange

The following code uses the Euler-Lagrange equations to find the coefficients of the linear

method that optimizes the quadratic cost function for control over acceleration. The meaning

of the code should be clear from explanations in section 2.3.1. (This following code can be

found in the file PhD\Maple Experiments\DESolution\Acceleration01.mws).

Find the solution to the Euler-Lagrange equation for the probelm where

J = integral (d2 y^2 + y''^2) from zero to infinity

The E-L equation becomes

fy + d2^2 fy''/(dx)^2 = 0

i.e

2 d2 y + 2 y(4)=0

The characteristic equation is

v^4 = d2

Thus we have solutions

y(t)=A exp(-bt)sin bt + B exp(-bt) cos bt

where b is the fourth root of d2 on root 2. I(n the evolutionary algorithm b can be the evolved

parameter.)

We solve:

y(0)=d, y'(0)=v and find y''(0)
> restart;

with(plots):
Warning, the name changecoords has been redefined

 := c 2
()/1 6

0 a 2
()/5 6

0

a 2
()/5 6

0 3 b

0 3 b 0

[] 2
()/1 3

2
()/1 6

363

> ## Define y

y:=A*exp(-b*t)*sin(b*t)+B*exp(-b*t)*cos(b*t);

dy:=diff(y,t);

> ## Solve for initial conditions given y(0)=d and y'(0)=v

t:=0;

y;

dy;

solve({y=d,dy=v}

,{A,B});

unassign('t'):

> ## Set these values for A and B and find y''(0)

A:=(d*b+v)/b; B:=d;

d2y:=diff(dy,t);

t:=0;

check

y;

dy;

Now the value we want

d2y;

unassign('t');

> simplify(d2y+2*b^2*y+2*b*dy);

>
>

364

8.4. Transmissibility for Passive and Skyhook Suspensions

The following Maple code derives the transmissibility for the purely linear passive and the

skyhook suspensions. (This code can be found in the file PhD\Maple

Experiments\Passive Skyhook Transmissibility.mws.)

Transmissibility for passive and skyhook

> ######## Initialize ########
restart:

with(plots):

with(DEtools):
Warning, the name changecoords has been redefined

> # Passive single DOF system
P:=2*zeta*(w);

Q1:=1-(w)^2;

TP:=simplify(sqrt((1+P^2)/(Q1^2+P^2)));

>

> # Skyhook single DOF system
P:=2*zeta*(w);

Q1:=1-(w)^2;

TA:=simplify(sqrt((1)/(Q1^2+P^2)));

> zeta:=0.2;

Passive01:=plot(TP, w=0..5, color=black):

zeta:=0.6;

Passive02:=plot(TP, w=0..5, color=black):

zeta:=1.0;

Passive03:=plot(TP, w=0..5, color=black):

zeta:=0.4;

Passive04:=plot(TP, w=0..5, color=black):

display(Passive01, Passive02, Passive03, Passive04);

 := P 2 w

 := Q1 1 w2

 := TP
1 4 2 w2

 1 2 w2 w4 4 2 w2

 := P 2 w

 := Q1 1 w2

 := TA
1

 1 2 w2 w4 4 2 w2

[],10.96978202 -5.992819231

 := .2

 := .6

 := 1.0

 := .4

365

> zeta:=0.2;

Active01:=plot(TA, w=0.01..5, color=black):

zeta:=0.6;

Active02:=plot(TA, w=0..5, color=black):

zeta:=1.0;

Active03:=plot(TA, w=0..5, color=black):

zeta:=0.4;

Active04:=plot(TA, w=0..5, color=black):

#zeta:=0.7071;

#Active05:=plot(TA, w=0..5, color=red):

display(Active01, Active02, Active03, Active04);

 := .2

 := .6

 := 1.0

 := .4

366

> unassign('zeta','w'):
D2:=simplify(diff(TA,w));

solve(D2=0,w);

> # two-state feedback on body acceleration
(Savaresi et al., 2003, 2266)

TAcc:=simplify((alpha-w^2)/(1-w^2));

> alpha:=1;
ActiveAcc01:=plot(TAcc, w=0.01..5, color=black):

display(ActiveAcc01, Active02, Active03, Active04);

 := D2 2
w () 1 w2 2 2

1

 1 2 w2 w4 4 2 w2
() 1 2 w2 w4 4 2 w2

2

, ,0 1 2 2 1 2 2

 := TAcc
 w2

 1 w2

 := 1

367

>

8.5. RMS Acceleration in “Elevator Example”

Refer to figure 3.2. The following analysis compares two methods, each covering the same

distance, D, over the same time period, T. The algebra is greatly simplified by the symmetry

of the examples. The bang-bang acceleration control, of figure (a), switches at time T/2. The

bang-bang jerk control switches at T/4 and 3T/4. The distance covered by the acceleration

control, using an acceleration of A is,

 .
42

2
22

2
1

ATT
AD

The distance covered by the jerk control, using a jerk of J is,

.
32

444444
2

3

3

6
1

2

2
1

2

2
1

3

6
1

JT

T
J

TT
J

TT
J

T
JD

Equating these distances and solving produces,

368

 .8AJT

Equation 8.1

Now the RMS acceleration from the bang-bang control over acceleration is simply A. The

bang-bang control over jerk has an RMS acceleration of,

 .
34

4 4

0

2 JT
dtJt

T

T

Using equation 8.1, the RMS acceleration for the jerk method is,

 .1547.1
3

2

34

8

34
A

AAJT

Thus there is an RMS acceleration difference of only about 15 %, while the acceleration

control has three infinite jerk spikes.

8.6. LQ Problem over Jerk with Finite Time

In section 4.5.1 it is claimed that the LQ problem over finite time requires a control that is

quadratic with respect to time. The problem is similar to the analogous problem of control

over acceleration as presented in Ross (2009, p42). The problem can be stated as:

Minimize the
2L norm for control using,

,)(2

0

2

1 dttuJ

T

 where u represents control over jerk.

The equations of motion are,

),,(

)(

)(

)(

)(

)(

)(

u

tu

ta

tv

ta

tv

tx

dt

d
xfx

where x, v and a represent displacement velocity and acceleration respectively. The control

Hamiltonian as in Ross (2009, p43) is given as,

 .. 2

2

12

2

1 uavuuH avx fλ

369

Applying Pontryagin’s principle this must be minimized with respect to the control, u, and

since the control is constrained, the formula 0/ uH can be applied, giving,

 .au

Equation 8.2

The costate equations,

 ,
x

λ

H

produce the DEs,

 . , ,0 vaxvx

Solving these gives,

 ,32

2

12

1 ctctca

for constants ,1c
2c and .3c Together with equation 8.2 this produces the desired result.

 3-D Plot of Landing Surface

Matlab was used for the generation of the three-dimensional plot of the landing surface. The

code calls a function, distToSwitchingPlane, which is essentially the same as the function

shown in section 8.8, except with Matlab syntax. The MATLAB code to generate the graph is

shown directly below.

% Set up the parameters
clear
jerk=2;
accLim=5;
velLim=8;
numPts=60;

VEL=linspace(-velLim,velLim,numPts);
ACC=linspace(-accLim,accLim,numPts);
% Set up the mesh
[v,y]=meshgrid(VEL,ACC);

% calculate the points
z=eye(numPts);
for c=1:numPts
 for j=1:numPts
 vel=VEL(c); acc=ACC(j);
 z(j,c)=-distToSwitchingPlane(0,vel,acc,jerk);
 if z(j,c)<0
 z(j,c)=z(j,c);
 end
 end
end

370

% show the 3D plot
surf(v,y,-z), xlabel('velocity'), ylabel('acceleration'),

zlabel('distance');
%shading interp

hold on
t=linspace(0,accLim/jerk,200);
a=jerk*t;
v2=jerk*(t.^2)/2;
d=jerk*(t.^3)/6.0;
p1=plot3(-v2,a,-d);
p2=plot3(v2,-a,d);

set(p1,'Color','blue','LineWidth',3);
set(p2,'Color','blue','LineWidth',3);
hold off

In order to make the zero level obvious, the positive values have been offset in figure 8.4

below. Note the region between the final switching curve and the plane where distance equals

zero.

Figure 8.4 3-D Plot with Offset at Zero

371

8.7. Alternative Proof for Minimum-Time Control

The method for the proof presented here is the same as that used in Hermes and LaSalle

section 13 (1969). The method first translates the problem into a simpler version involving an

expanding symmetrical, convex and compact subset. Firstly the method is applied to the

problem of control using acceleration.

Let the control be u and the distance be x. Control over acceleration is expressed as,

 ,xu

and in matrix notation as,

 .
1

0

00

10
BuAu

y

x

u

y

y

x

 xx

The following matrices can be defined,

 ,xy ,
00

10

A and .

1

0

B

Since ,02 A

 ,
10

1

t
AtIeX At

and the inverse is given as,

.
10

1
1

t
AtIeX At

This is translated into the simpler problem of finding a control,

),()(tutYy

using the same u as for the non-translated problem where,

.
11

0

10

1
1

tt
BXY

The time-optimal control is of the form,

372

 ,sgn
1

sgn)sgn(1221 tnn
t

nnYu T

Equation 8.3

where,

 ,
2

1

n

n

is constant and the sgn function is such that sgn is positive one when the argument is positive

and minus one when the argument is negative. Without loss of generality, the control is

constrained to lie between plus or minus one. From equation 8.3 it is readily seen that there is

at most one switch of control since the argument, ,12 tnn can only cross zero once.

The case of control over jerk is then almost exactly the same as the proof for the case of

control over acceleration above. The control has the form,

 ,xu

which in matrix notation is represented as,

 .

1

0

0

000

100

010

BuAu

z

y

x

u

z

y

z

y

x

 xx

This employs the following definitions,

 ,xy ,yz ,

000

100

010

A and .

1

0

0

B

Because ,03 A the exponential is simplified giving,

 ,

100

10

1 2

2
1

2

2
1

 t

tt

AtAtIeX At

and the inverse is given as,

,

100

10

1 2

2
1

2

2
11

 t

tt

AtAtIeX At

This can be translated into the simpler problem of finding a control,

373

),()(tutYy

using the same u as for the non-translated problem where,

.

11

0

0

100

10

1 2

2
12

2
1

1

 t

t

t

tt

BXY

The time-optimal control is of the form,

 ,sgn

1

sgn)sgn(2

12
1

23

2

2
1

321 tntnnt

t

nnnYu T

Equation 8.4

where,

 .

3

2

1

n

n

n

Since the argument of the sgn function in equation 8.4 is a quadratic it can cross zero at most

twice and so there are again at most two switches in the control. The rest of the proof is the

same.

8.8. Java Code for Iterative Minimum-Time Algorithm

A test program was developed that would run the switching algorithm and provide

verification of its veracity. The code is embedded in a test program that the author wrote for

experimenting with various algorithms altering the initial conditions. A screen shot of the

program running is shown below, in figure 8.5. The “chassis” parameters are used to set

different initial values of displacement, d, velocity, v, and acceleration, a.

374

Figure 8.5 Screenshot of Test Program for the Jerk-Switching Algorithm

The following code is used to produce the plots for acceleration, velocity and distance.

The Overshoot package in the Eclipse workspace in

PhD\Eclipse RSpace Constraint\Edge Overshoot

contains the class SwitchingPlaneX.java. This class contains many of the methods

discussed below. The following is the subroutine that calculates the distance travelled:

distToSwitchingPlane(). The parameters before the function definition are accessible to

other methods of the class.

public static double dEnd, dH, vH, aH, tH, tEnd, JPlane1;

public static double controlJerk;

public static double distToSwitchingPlane(double d, double v, double

a, double jerk){

 double dt=d, vt=v, at=a;

 JPlane1=jerk;

 //*** is the first jerk positive or negative?

 int phase=0, prevPhase=-1;

 if (a>=0){

 if ((v+a*a/(2.0*jerk))>=0) JPlane1=-JPlane1;

 }else{

 if ((v-a*a/(2.0*jerk))>=0) JPlane1=-JPlane1;

 }

 //*** velocity at intersection with y''=0

 double vZ=v-a*a/(2.0*JPlane1);

 double tZ=-a/JPlane1;

 //*** tH is the time of final switch

375

 // Velocity here is half velocity when y''=0

 vH=vZ/2;

 tH=tZ+Math.sqrt(-vZ/JPlane1);

 aH=JPlane1*(tH-tZ);

 double tSquared = tH*tH;

 dH=d+v*tH+a*tSquared*0.5+JPlane1*tSquared*tH/6;

 tEnd = tH+aH/JPlane1;

 double tHEnd = tEnd-tH;

 double tHEnd2=tHEnd*tHEnd;

 dEnd = dH + vH*tHEnd + aH*tHEnd2*0.5 - JPlane1*tHEnd2*tHEnd/6;

 if (dEnd<0){

 JOut=jerk;

 }else{

 JOut=-jerk;

 }

 return dEnd;

}

This program can be demonstrated by running the OvershootDemo.java in the

OvershootControl Package. Press buttons “Min-Time Jerk” and “Cts. Min-Time Jerk”.

The first runs the method using precalculated parameters. The second runs the method

iteratively, as discussed above in section 4.6.1. The code for drawing the graphs are contained

in the methods processJerkTest() and processcontinuous JerkTest().

8.9. Java Code for Time to Landing Surface

As discussed in section 4.6.3, the iterative algorithm, while simple, does not compute

the trajectory of the minimum-time response. In order to find the maximum and minimum

distance travelled, it is necessary to first find the time taken to reach the landing surface. The

Java code for this algorithm is shown below. This code can be found in the Overshoot

package in the Eclipse workspace in

PhD\Eclipse RSpace Constraint\Edge Overshoot

in the PhD directory. The class SwitchingPlaneX.java contains the code for the method

timeToSwitchingPlane() shown immediately below, which in turns calls the method

distToSwitchingPlane() given above in section 8.8.

private static double V_TOLERANCE=1E-6;

private static double timeToSwitchingPlane(double d, double v,

double a, double jerk)

376

 throws SuspensionTestException{

 double dEnd=distToSwitchingPlane(d,v,a,jerk);

 double time=0;

 if (Math.abs(dEnd)>DIST_TOLERANCE){

 double dEndFirst=dEnd;

 double J=JOut;

 //**** Keep doubling until different

 double tLo=0, t=1;

 boolean endLoop=false;

 int count=0;

 do{

 double dt=d+v*t+a*t*t/2.0+J*t*t*t/6.0;

 double vt=v+a*t+J*t*t/2.0;

 double at=a+J*t;

 dEnd=distToSwitchingPlane(dt,vt,at,jerk);

 endLoop=(dEnd>=0 && dEndFirst<0)||(dEnd<=0 &&

dEndFirst>0);

 if (!endLoop) {

 tLo=t;

 t=2*t;

 }

 count++;

 if (count>MAX_COUNT) throw new

SuspensionTestException("count in

timeToSwitch()="+count+"\n>MAX_COUNT="+MAX_COUNT+"\nin

RattlespaceCollisionXXX.timeToSwitchingPlane()");

 //System.out.println("t="+t+" dEnd="+dEnd+"

dEndFirst="+dEndFirst);

 }while(!endLoop);

 time=t;

 // Now tLo<t and on either side of switching plane

 //**** Keep dissecting till tolerance

 double tHi=t;

 do{

 t=(tLo+tHi)*0.5;

 //System.out.println("t="+t);

 double dt=d+v*t+a*t*t/2.0+J*t*t*t/6.0;

 double vt=v+a*t+J*t*t/2.0;

 double at=a+J*t;

 dEnd=distToSwitchingPlane(dt,vt,at,jerk);

 if ((dEnd>=0 && dEndFirst<0)||(dEnd<=0 &&

dEndFirst>0)){

 //** t is too big

 tHi=t;

 }else{

 //** t is too low

 tLo=t;

 }

 // Maybe loop until these are the same - or

contradict end conditions

 // because of numerical inaccuracies

 //System.out.println("t="+t+" dEnd="+dEnd+"

tLo="+tLo+" tHi="+tHi+" tHi-tLo="+(tHi-tLo));

 }while(tHi-tLo>=TIME_TOLERANCE);

 time=tLo;

377

 }

 return time;

}

8.10. Maple Derivation of Jerk for Distance Constraint

The following is the Maple code (contained in submitted files, PhD/Maple

Experiments/This Side/ConstantJerkExponentialDecay.mws) used to derive the

value for jerk that will result in velocity, distance and acceleration satisfying equation 4.14,

which allows the system to decay exponentially to rest with zero distance, velocity and

acceleration without overshoot. Maple 7 was the version of the algebraic software used.

The important point to note is that the result is found by solving for jerk, j, where distance,

velocity and acceleration (y,
1y and

2y) satisfy the relation,

 .1
2

2

1
yy

y

At the end of time t, exponential decay can be applied.

> restart;

with(plots):
Warning, the name changecoords has been redefined

Constant jerk is applied for a given time.
Warning, the name changecoords has been redefined

> # Main Function
y:=d+v*t+ a*t^2/2+j*t^3/6;

y1:=simplify(diff(y,t)); # velocity

y2:=simplify(diff(y1,t)); # acceleration

y3:=simplify(diff(y2,t)); # jerk

Test - should give d, v, a, j

t:=0;

y; y1; y2; y3;

unassign('t');

> # Example Plot

d:=4: v:=-3: a:=-1: j:=0:

plotY:=plot(y, t=0..5, color=black):

plotY1:=plot(y1, t=0..5, color=blue):

plotY2:=plot(y2, t=0..5, color=red):

plotSurd:=plot(y1^2-y*y2, t=0..3, color=yellow):

display(plotY,plotY1,plotY2, plotSurd);

378

unassign('d','a','v', 'j');

> # Find T when v^2/d=a
Eq2:=simplify(y1^2-y*y2);

Eq3:=solve(Eq2, j);

simplify(Eq3[1]);

simplify(Eq3[2]);

 := y d v t
1

2
a t2 1

6
j t3

 := y1 v a t
1

2
j t2

 := y2 a j t

 := y3 j

 := t 0

d

v

a

j

 := Eq2 v2 v a t
1

2
a2 t2 1

3
a t3 j

1

12
j2 t4 d a d j t

Eq3
1

2

 4 a t2 12 d 2 2 a2 t4 12 a t2 d 36 d2 12 t2 v2 12 t3 v a

t3
, :=

1

2

 4 a t2 12 d 2 2 a2 t4 12 a t2 d 36 d2 12 t2 v2 12 t3 v a

t3

 2 a t2 6 d 2 a2 t4 12 a t2 d 36 d2 12 t2 v2 12 t3 v a

t3

379

>

The Maple code shown below (contained in submitted files, PhD/Maple Experiments/This

Side/ConstantJerkConstantJerkDecay.mws) finds the value for initial jerk that will result in

velocity, distance and acceleration satisfying equation 4.16. Once this is satisfied, constant

jerk can be used to bring the system to rest with zero distance, velocity and acceleration.

Again, the equations are solved for jerk, j, where distance, velocity and acceleration (,y ,y

and y) satisfy the relation,

 .
2

32

yy

y

At the end of time t, constant jerk decay can be applied.

> restart;
with(plots):
Warning, the name changecoords has been redefined

Constant jerk is applied for a given time.
Warning, the name changecoords has been redefined

> # Main Function

y:=d+v*t+ a*t^2/2+j*t^3/6;

y1:=simplify(diff(y,t)); # velocity

y2:=simplify(diff(y1,t)); # acceleration

y3:=simplify(diff(y2,t)); # jerk

Test - should give d, v, a, j

t:=0;

y; y1; y2; y3;

unassign('t');

> # Example Plot
d:=4: v:=-3: a:=-1: j:=0:

plotY:=plot(y, t=0..5, color=black):

plotY1:=plot(y1, t=0..5, color=blue):

plotY2:=plot(y2, t=0..5, color=red):

plotSurd:=plot(y1^2-y*y2, t=0..3, color=yellow):

display(plotY,plotY1,plotY2, plotSurd);

unassign('d','a','v', 'j');

 2 a t2 6 d 2 a2 t4 12 a t2 d 36 d2 12 t2 v2 12 t3 v a

t3

 := y d v t
1

2
a t2 1

6
j t3

 := y1 v a t
1

2
j t2

 := y2 a j t

380

> # Find T when v^2/d=3*a/2
Eq2:=simplify(y1^2-3*y*y2/2);

Eq3:=solve(Eq2, j);

>

The java code used to find these values is given below. This can be found in the

RattlespaceCollisionX.java class definition in the JerkControl package. The main

program that runs and calls this code is JerkDemo.java in the same package. (The code for

the second method below is also used in the EdgeTargetAncestorX class in the

Overshoot package.)

 := y3 j

 := t 0

d

v

a

j

 := Eq2 v2 1

2
v a t

1

2
v j t2 1

4
a2 t2 3

2
d a

3

2
d j t

 := Eq3
1

2

 4 v2 2 v a t a2 t2 6 d a

t ()v t 3 d

381

 /**********************

 Outputs the jerk needed to reach target E=v^2/(ad) in time input,

t.

 Outputs zero if no jerk needed.

 These formulas are based on calculations in Maple

 **********************/

 //**** Exponential decay

 public double findJTillAccOKExp(double d, double v, double a, double

t){

 double J=0;

 double t2=t*t, t3=t2*t, t4=t3*t;

 double surd=-2*a*a*t4-12*a*t2*d+36*d*d-12*t2*v*v-12*t3*v*a;

 //System.out.println("surd="+surd);

 double temp=-1;

 if (surd>=0){

 surd=Math.sqrt(surd);

 double j1=(-2*a*t2+6*d+surd)/t3;

 double j2=-(2*a*t2-6*d+surd)/t3;

 //if (j1>j2){ double temp1=j1; j1=j2; j2=temp1;}

 //System.out.println("j1="+j1+" j2="+j2);

 if (d>0){

 // find least J>0

 if (j1>0) J=j1;

 if ((j2>0) && (j2<J)) J=j2;

 }else{

 // find greatest J<0

 if (j1<0) J=j1;

 if ((j2<0) && (j2>J)) J=j2;

 }

 }

 return J;

 }

 //***** Find the jerk in the first stage for constant jerk decay in

second

 public double findJerk1ForConstantJerkDecay(double d, double v,

double a, double t){

 double t2=t*t, t3=t2*t, t4=t3*t;

 double J=0.5*(4*v*v+2*v*a*t+a*a*t2-6*d*a)/(t*(v*t+3*d));

 //System.out.println("surd="+surd);

 return J;

 }

8.11. Java Code for Distance without Overshoot Method

The following is the java code that implements the “landing-plane” method discussed in

section 4.7.3. The code finds the time for the first stage that gives an equal jerk in the

382

opposite direction for the second stage. These methods can be found in the

EdgeTargetAncestorXX class in the Overshoot package.

 /**********************

 "Landing-plane" method, uses 2 eaual jerks

 This method varies timing to find equal jerk,

 rather than varying jerk to put the system on the landing plane

 **********************/

 public double T, jerk1, jerk2, TBack; // output values

 public double ReverseJerkFactor=1;

 public boolean isEqualJerkTime=false;

 private static double TOLERANCE=1E-6, TTop_MAX=100, a_MIN=3E-5;

 private static int MAX_NUM_LOOPS = 35;

 private boolean isLowTime(double d, double v, double a, double T1){

 //*** Take care of the case that a==0

 // find jerk1

 T=T1;

 // Find the jerk in the first stage for constant jerk decay in

second

 jerk1=findJerk1ForConstantJerkDecay(d,v,a,T);

 // find second stage values

 findSecondStageValues(T, d, v, a, jerk1);

 jerk2=jBack;

 // compare and output

 //System.out.println("T="+T+" jerk1="+jerk1+" jerk2="+jerk2+"

TBack="+TBack);

 if (d>0){

 return ReverseJerkFactor*jerk1>-jerk2;

 }else{

 return ReverseJerkFactor*jerk1<-jerk2;

 }

 }

 public void findParamsForTwoEqualJerksJerkCalc(double d, double v,

double a)throws SuspensionTestException{

 // The algorithm is stable ifn a==0 but not if a is too small

 if (Math.abs(a)<a_MIN) a=0;

 T=0; jerk1=0; jerk2=0; TBack=0;

 //*** Try to find the larger T

 // Find the turning point for jerk1

 double surd=4*v*v-6*a*d;

 isEqualJerkTime = (surd>=0 && d!=0);

 //System.out.println("surd="+surd);

 double TTop=0;

 if (isEqualJerkTime){

 //*** Try to find an upper T

 surd=Math.sqrt(surd);

 if (a==0){

 TTop=-1;

 if ((d>0 && v<0)||(d<0 && v>0)){

 TTop=-d/v;

 }

 //System.out.println("a=0 TTop="+TTop);

 }else{

 TTop=(-2*v+surd)/a;

 double t2=(-2*v-surd)/a;

 //System.out.println("TTop="+TTop+" t2="+t2);

383

 if (t2>0){

 if (TTop<=0){

 TTop=t2;

 }else{

 if(t2<TTop){

 TTop=t2;

 }

 }

 }

 //System.out.println("TTop="+TTop);

 }

 if (TTop<=0) {

 // No value of T to start with found

 T=-1; jerk1=0; TBack=-1; jerk2=0;

 }else{

 //**** Halve until a candidate for TBot is found

 // There are stability problems if TTop is too

large

 // especially if a is very low

 if (TTop>TTop_MAX) TTop=TTop_MAX;

 double TBot=TTop*0.5;

 int count =0;

 while (!isLowTime(d,v,a,TBot)) {

 count++;

 if (count>MAX_NUM_LOOPS) throw new

SuspensionTestException("Looping too many times\nTTop="+TTop+"

TBot="+TBot+"\nd="+d+" v="+v+" a="+a+

 "\nEdgeTargetAncestorX.findParamsForTwoEqualJerksJerkCalc() - divide

by 2");

 TTop=TBot;

 TBot=TBot*0.5;

 //System.out.println("TBot="+TBot);

 }

 //System.out.println("TTop="+TTop+" TBot="+TBot);

 //**** Keep using averages until tolerance

difference is reached

 count =0;

 while (Math.abs(TTop-TBot)>TOLERANCE){

 count++;

 if (count>MAX_NUM_LOOPS) throw new

SuspensionTestException("Looping too many

times\nEdgeTargetAncestorX.findParamsForTwoEqualJerksJerkCalc()\n"

 +"d="+d+" v="+v+" a="+a+"\n TTop="+TTop+"

TBot="+TBot+" TTop-TBot="+(TTop-TBot)+" finding average");

 double TMid=(TBot+TTop)*0.5;

 if (isLowTime(d,v,a,TMid)){

 TBot=TMid;

 }else{

 TTop=TMid;

 }

 }

 }

 }

 }

384

This code calls the following two methods. The first method simply finds jerk using equation

4.18.

 //***** Find the jerk in the first stage for constant jerk decay in

second

 public double findJerk1ForConstantJerkDecay(double d, double v,

double a, double t){

 double t2=t*t, t3=t2*t, t4=t3*t;

 double J=0.5*(4*v*v+2*v*a*t+a*a*t2-6*d*a)/(t*(v*t+3*d));

 //System.out.println("surd="+surd);

 return J;

 }

The following method calculates the time and jerk used in the second stage. This is easily

calculated since the jerk applied is known.

 /**********************

 For the constant jerk, E=3/2 method,

 find back jerk and back T, TBack and jBack,

 given forward T and initial conditions

 **********************/

 public double jBack=-1;

 public double dTJerk=0, vTJerk=0, aTJerk=0;

 public void findSecondStageValues(double T, double d, double v,

double a, double j){

 TBack=-1; jBack=0;

 if (T>=0) {

 dTJerk=d+v*T+a*T*T/2+j*T*T*T/6; vTJerk=v+a*T+j*T*T/2;

 aTJerk=a+j*T;

 jBack=aTJerk*aTJerk/(vTJerk*2);

 TBack=-aTJerk/jBack;

 }

 //System.out.println("T="+T+" j="+j+" jBack="+jBack+"

TBack="+TBack);

 }

8.12. Exponentially-Weighted Moving Average

The simple numerical technique outlined below is applied at a number of points in this thesis.

This uses the following formula in each step of the algorithm,

,)1(

,

11

00

nnn sxs

xs

where is the smoothing factor and, 10 (Wikipedia, 2009). This method is also

known as moving averages (Weisstein) and it can be derived from the Kalman filter (as

discussed in section 2.3.1.2). Here the values of x are given, and the values of s are the

385

moving averages. The method is taken from statistics but it is related to the z-transform for

the low-pass filter (Distefano et al., 1997; Papoulis, 1980).

The most important point for this thesis is the relationship between the smoothing factor, ,

and the rate of decay. Suppose the exponential decay rate is . The decay rate is deduced

from the case that 10 x and 0ix for all .1i Here,

 ,)1()1(01

hess

where h is the step size of the method. Thus,

 .1 he

Equation 8.5

When h is small this can be approximated by,

 111
2

2
1 hhhe h

If this is applied iteratively and the stepsize varies then this approximation to can be

applied at each step, otherwise the value of alpha can be precalculated from equation 8.5.

The moving average is used for state estimation and has an effect similar to the a posterior

step of a Kalman filter (Simon, 2006) without using the system dynamics for the a priori,

time-update step. Rather than estimate the process and measurement noise, a practical method

is to vary the filter gain until an acceptable response is obtained, reducing noise without

having too great a latency.

8.13. Independent Test Programs for Complex Algorithms

Figure 8.6 shows a screenshot of a test program running in Java. This example is the test

program AntCollision.java in the directory ThreeJerksMinTime04, which

implements various suspension controls employing minimum-time control over jerk. This

program accesses a control algorithm which has code placed in a separate class defined in the

file RattlespaceCollision05.java. The test bed allows the checking of various

features of the code, such as checking that the maximum and minimum values found are

correct, as shown in the screenshot in figure 8.6. This facility seems to have saved a great

386

deal of time in debugging complex controls. Once debugged, these algorithms could then be

employed in the evolutionary algorithms (in the SuspensionTest program).

Figure 8.6 Test bed for a Particular Suspension Control (Screenshot)

Some time was taken to develop code that generated the panels containing sliders, also shown

in figure 8.6. In testing code it was sometimes useful to be able to control a slider and observe

the effect immediately in the simulation. The panels are driven automatically from a text file,

SliderControl.dat, containing the metadata for these panels. Part of the

SliderControl.dat file that generated the panels in figure 8.6 is shown below.

// This is the data file for the groups

// The order of the lines determines which elements are in which group

// and what lines they appear on

//******************* CHASSIS & ROAD

Group = Chassis and Road, 900, 7, 408, 361, show, processDraw

Label = chassis, chassis

DoubleSlider = d, 0.884, distance, -3, 3, 1000

DoubleSlider = v, 0.947, velocity, -3, 3, 1000

387

DoubleSlider = a, -0.253, acceleration, -3, 3, 1000

Label=Road, road

DoubleSlider = r, 0.379, road height, -3, 3, 1000

DoubleSlider = rv, 0, road velocity, -3, 3, 1000

DoubleSlider = ra, 0, road acceleration, -3, 3, 1000

//******************* CONTROL STRENGTH and LINEAR COEFFICIENTS

Group = Control Strength, 4, 742, 409, 207, show, processDraw

LogSlider = controlStrength, 0.057, Jerk/acceleration/Linear strength

value, 0.001, 15

LogSlider = accConstraint, 0.01, Constraint on acceleration on landing

surface, 0, 10

Label = Linear Coefficients, Coefficients - in Proportion for v and a

(coefficient for d=1)

LogSlider = CoeffV, 0.44, Coefficient of velocity, 0, 2

DoubleSlider = CoeffA, 0.58, Coefficient of acceleration, 0, 3

//******************* TARGET RATTLESPACE

Group = Target Rattlespace, 880, 697, 417, 355, show, processDraw

Label=Target, Rattlespace Target

Boolean = useDvDa, true, Use dv da etc.

DoubleSlider = dv, -0.63, edge velocity added, -4, 4

DoubleSlider = da, 1.18, edge acceleration added, -4, 4

DoubleSlider = propVR, 0.19, proportion of road edge velocity used, 0, 1

DoubleSlider = propVY, 0.25, proportion of chassis edge velocity used, 0, 1

Label=Edge Smoothing, Smoothing Decay

DoubleSlider = SMOOTH_BETA, 1.32, Decay rate for smoothed edge (0=no

decay), 0, 10

DoubleSlider = propSmooth, 0.72, Minimum distance between smoothed edges-as

a proportion, 0, 1

This allowed needed parameters to be quickly added or deleted to the testing software by

simply editing the metadata file. The only extra step was the inclusion of the declaration of a

matching parameter in the main Java source program. The code that parses this file, produces

the sliders and other input controls, and processes the input was developed by the author for

this thesis and can be found in the file SliderGroupControl.java. The documentation

for the syntax of the metadata file can be found at the top of SliderGroupControl.java.

8.14. Landing-Surface Lemma

The following section proves the lemma used in showing that the landing-surface method has

the least jerk of all minimum-time methods that do not suffer overshoot (in section 4.7.3.4).

Without loss of generality the initial distance, d, is assumed positive. Let the initial velocity

388

and acceleration be represented as v and a respectively. Refer to figure 4.33 above. There is

only one intermediate switch in jerk, and jerk is positive and constant, j, from time zero to

some intermediate time ,1t and is negative, ,j from 1t to the final time, ,Et at which point

it reaches rest, simultaneously achieving zero distance, velocity and acceleration. The value,

j, is a positive parameter of the particular landing surface.

Suppose the initial velocity and acceleration are held constant, and the jerk found is the jerk

required by the landing-surface method as a function of initial conditions:).,,(avdjL Thus, if

jerk),,(avdjL is applied with the initial conditions given by d, v and a, then the minimum-

time response will have only one switch and will begin on the landing surface. This is defined

where d, v and a are such that there is overshoot if no control (zero jerk) is applied.

In this section it will be shown that),,(avdjL is a continuous, monotonically decreasing

function in d. Furthermore,

 .0lim

L
d

j

The proof breaks down into cases depending on the sign of a and v.

It can be shown that,

.2

and ,

,

1

2

1

2

2
1

3

13
13

6
1

jtjta

jtjtv

jtjtd

E

E

E

Equation 8.6

(This is shown in the Maple file PhD\Maple Experiments\Landing

Plane\Landing Plane04.mws. Refer also to PhD\Maple Experiments\ Landing

Plane\Landing Plane07.mws.)

The two time values must be positive: .0 1 Ett

To simplify the algebra, first define,

389

.
4

2)(
2

def

a

vj
j

Equation 8.7

The value under the square root, , must be non-negative. Solving for j gives,

 .2
4

2

v

a
j

Next equation 8.6 is solved for v and a, and 1t and Et are found in terms of).(j There are

two cases,

 Case 1: 1 and 2
2

1
j

a
t

j

a
t E or

 Case 2: .1 and 2
2

1
j

a
t

j

a
t E

Equation 8.8

Using these substitutions, 1t and Et can be eliminated from the expressions for d, a, and v,

deriving d as a function of a, v, and j. The following result is found for case 1.

 ,12

v

ad

Equation 8.9

where,

.
)2(3

)364(2
)(

22

32def

1
x

xx
x

Equation 8.10

In case 2,

 ,22

v

ad

Equation 8.11

where,

.
)2(3

)364(2
)(

22

32def

2
x

xx
x

390

Equation 8.12

These equations allow the derivation of the landing surface jerk given the initial conditions,

but they exclude the special cases, 0v or ,0a which are very easily dealt with

independently.

Figure 8.7 Case 1 Delta Function

The function 1 is shown above in figure 8.7. Note that this is greater than zero. In case 1,

,0a otherwise 0
2

v

ad
 under the assumption that ,0d contradicting the fact that 01

and noting equation 8.10.

Case 1 also implies .0v Since ,0a there is no collision with zero if the initial velocity is

positive and no control is applied: .0j Thus the following results also from equation 8.7,

 .0
4

a

v

dj

d

Equation 8.13

Furthermore .4 This follows from the fact that 0a and 01 t (and j is assumed

positive).

391

It is clear from figure 8.7 that 1 is monotonic decreasing for .2x And so,

 .0
)(1

d

d

Using this and equation 8.9 gives the following,

 .0
)(1

2

dj

d

d

d

a

v

dj

dd

(In the middle expression, the first term is positive, the second term is negative, and the final

term is positive.)

Next turn to case 2. The graph of 2 is shown in figure 8.8.

Figure 8.8 Case 2 Delta Function

Case 2 implies 0a because 0a and 0Et implies ,01 which implies that

:1 a contradiction.

Equation 8.6 implies that,

,
2

1
 0

3

1
Et

t
d and,

392

 .
2

1
 0 1

Et

t
v

In general, in case 2, equation 8.8 implies that,

,
12

22
 1

Et

t
 where 0Et and .

2
1

Thus the fact that 0d gives,

 ,702414.0

and it can be shown that at this value, .0)(2 Thus 2 is always non-positive under

the conditions of the proof.

Case 2 is slightly more complicated than case 1 since v can be positive or negative. It can be

shown that,

 . 2
2

1
 0 1

Et

t
v

Note that 2 is asymptotic at .2 Thus there are two subcases of case 2: 0v corresponds

to the portion of 2 where ,2 and 0v corresponds to the portion,

 .27021414.0

Consider the subcase where .0v This occurs when ,2 and 2 has a positive slope.

Also, recalling that ,0a

 ,0
4

a

v

dj

d

and so from equation 8.11,

 .0
)(2

2

dj

d

d

d

a

v

dj

dd

(The first term is negative, and the last two are positive.)

Next, consider the subcase where .0v This occurs when ,2 and 2 has a negative

slope. Also,

 ,0
4

a

v

dj

d

393

and again,

 .0
)(2

2

dj

d

d

d

a

v

dj

dd

(All three terms are negative.)

Thus d as a function of j is continuous, monotonic decreasing in all cases and subcases for

initial non-zero values of a and v where collision would occur with zero control. Thus, the

inverse function),,,(avdjL is also continuous and monotonic decreasing in d:

 .0

d

jL

Furthermore it can be shown that in all cases,

 .0lim

L
d

j

This is shown below in the case 0a (case 2); the other case is similar.

 .)(lim)(lim 2

2

20

 a

v
jd

j

Inverting this result, and given that Lj is continuous, monotonic decreasing, it is clear that

the limit of Lj is zero as displacement approaches infinity.

8.15. Numerical Methods

All algorithms used one of two numerical methods, with different algorithms producing

different control values being applied in a consistent manner as explained above. The active

algorithms produce force values, and the semi-active algorithms produce damper stiffness

values. The author wrote a Java program to test the accuracy of numerical methods (refer to

figure 8.9). Methods for developing approximations were tested against known solutions.

Step-size values could be tested for accuracy.

The predictor-corrector numerical method was tried but was rejected in favour of the methods

using a fixed step size since the control algorithms themselves are timed to run with a fixed

step size. It was found that the step size for the numerical method with both active and semi-

394

active techniques was accurate with the step size of 10 ms, which is the step size nominated

for a reasonable control of an electronically controlled damper. Furthermore, this stepsize

resulted in a reasonably efficient method that did not accumulate numerical errors (a problem

that can arise if the step size is too small).

Figure 8.9 Screenshot of Numerical Test Program

In figure 8.9 the Runge-Kutta method (red dashed curve) is being compared with the

analytical solution (black solid curve) in the graph on the left. The two solutions overlap each

other closely in this diagram. The program being run here is defined in the following file:

Java/DEsRoad2Springsx/Main.java.

(Here “x” represents the version number.) This test was performed with a passive suspension.

The graph on the right can show the numerical error plotted against a wide range of

parameters (the screen shot shows the graph of error versus the damping rate, c). The error is

calculated by taking the difference between the numerical and analytical solution. Average

and maximum errors are also shown.

395

As discussed above, the main suspension test bed program also opened a form that ran a

comparison of the solution with the current step size against a solution with a step size ten

times smaller; see figure 8.10. Variations between the two can test the accuracy of the

numerical method applied. The screen shot below shows the numerical test form, with the

numerical step size of 10 ms.

Figure 8.10 Numerical Test Frame

In the graph on this form the two solutions are indistinguishable. Graphs can be “zoomed” by

clicking the mouse on a section of the graph (as part of the FunctionGraph program written

by the author). The screen shot in figure 8.11 shows a portion of the graph in figure 8.10

expanded a number of times. The difference between the two approximations after 30

seconds is approximately 0.3 mm. This is accurate enough to provide a fair representation of

a suspension’s functionality.

396

Figure 8.11 Expansion of Two Solutions – The bottom graph is the more accurate

The fourth-order Runge-Kutta method was used where this improved accuracy. The method

was implemented using the code shown below in figure 8.12.

 /**

 Runge Kutta

 **/

 public boolean next(double c){

 this.c = c;

 double k1a=v;

 k1b=acc(t, y, v);

 double k2a=v+h*k1b/2;

 k2b=acc(t+h/2,y+h*k1a/2,v+h*k1b/2);

 double k3a=v+h*k2b/2;

 k3b=acc(t+h/2,y+h*k2a/2,v+h*k2b/2);

 double k4a=v+h*k3b;

 k4b=acc(t+h ,y+h*k3a ,v+h*k3b);

 y=y+h*(k1a+2*k2a+2*k3a+k4a)/6.0;

 v=v+h*(k1b+2*k2b+2*k3b+k4b)/6.0;

 acc=acc(t, y,v);

 t+=h;

 if (t>tEnd) {

 return false;

 }else{

 return true;

 }// end if

 }

Figure 8.12 Code for the Runge-Kutta Numerical Method

397

8.16. Conjectured Optimality of Skim Control

As discussed above in section 4.7.3.5 the “no overshoot” problem is constrained in the state-

space: .0)(ty The invariance of the Hamiltonian (Mesterton-Gibbons, 2009, p180;

MacCluer, 2005, p120) applies in the case of control constraints but not for constraints in the

state-space. The investigation requires checking the optimality of cases that are on the border

of the admissible state-space when rebound occurs, in “a form of integer programming”

(Ross, 2009, p64) extended to functionals. (If rebound does not occur the solution is the same

as the minimum-time solution unconstrained by distance.) In the case that the minimum-time

method overshoots, an admissible, locally optimal control will be on the border of the state

space. The following only examines the case that is assumed to be optimal (refer to figure

8.13).

The following is not a proof of the conjecture but indicates what may be required for a proof,

as well as showing numerical experiments that have not yet found a counter-example.

The time from 0t up to Ett is the “first stage” of the control. At the end of this stage, the

state trajectory “skims” the time axis with both distance and velocity equal to zero,

 .0)()(EE tyty

Equation 8.14

The acceleration at the point of skim is important in this analysis and is designated as the

“rebound acceleration”,

).(
def

ER tya

Equation 8.15

After this point, from time
Et to T, will be designated the “rebound”. The time taken by the

rebound is .Rt Thus the total time T is given as .RE ttT The solution being sought is an

admissible control to minimize T.

398

Figure 8.13 General Skim Control

The response during the first stage is unconstrained by distance up to the final point, as is the

response during the rebound stage. Bellman’s principle of optimality (Kirk, 1970, p54)

stipulates that the two sections of the curve that are not on the boundary, before and after

skim, must separately be optimal for their end conditions without state constraints: “If

[control] u is optimal on],,[11 tt it is optimal on every subinterval” (MacCluer, 2005, p121).

The rebound trajectory, between time Et and time T, is easy to describe since it is a special

case of the minimum-time constrained jerk control with zero initial distance and velocity.

Following equation 4.21 there is a simple relationship between time taken and residual

acceleration,

 .
2

0000247.2
j

a

j

a
t RR

R

The first stage, time zero up to Et is less easily dealt with.

The period between time zero and Et is also a minimum-time control, but it terminates in the

condition given by equation 8.14 and equation 8.15: zero distance and velocity, but a non-

zero acceleration, .Ra This problem has exactly the same adjoint equations as equation 4.12.

Thus the same conclusion can be drawn, that there are at most two intermediate switches of

control jerk.

A perturbation of the conjectured one-intermediate-switch control, that results in a two-

intermediate switch control will require small changes in switching time. These small

changes in switching time, albeit with finite changes in control value, are viewed as

399

“perturbations” in the generalized proof of Pontryagin’s theorem (Mesterton-Gibbons, 2009,

p169; Pontryagin et al., 1986, p87). The only way for a perturbed control to be of the form

proposed in the previous paragraph (with two intermediate switches) is if there is a switch of

jerk introduced either close to the end or the start of the time period).,0(Et

Next turn to the case of a control switch a small period of time after the start, .0tt Note

that 00 t has no physical meaning. Refer to the graph in figure 8.14. This plot was

produced by the author’s software, which calculated the various switching times to 10-digit

accuracy.

The introduction of the initial switch produces small changes in the intermediate switching

time, which is designated as ,1t and the final time, ,Et giving ,11 tt and .EE tt The

values,
1t and

Et can be determined from 0t because skim occurs at ,EE tt

 .0)()(EEEE ttytty

It is important to find the concomitant change in residual acceleration as a result of the small

time interval .0t

Figure 8.14 Perturbed Control

Since ,RE ttT and using equation 4.21, the variation in T is given as,

400

 .
0000247.2

RER

R

R
E a

j
ta

da

dt
tT

A first-order estimate of this value can be produced by ignoring second-order infinitesimal

terms, and using the fact that distance and velocity must be zero at the end. The following has

been derived in this manner,

 .
)2)((

))(0000247.240000247.22(2

111

1111

0 EE

E

tjtvattt

ttjtvatt
T

td

d

(Refer to the Maple file ConstantJerkSmallTimeChangeOneMainSwitch02.mws in the

folder PhD\Maple Experiments\ConstantJerkSmallTimeChangeOneMainSwitch.)

This value is close in practice.

Using modelled examples, as shown in figure 8.14, a plot of T against 0t is derived, at least

for particular cases of initial distance, velocity and acceleration, as well as a given value of

control jerk, as shown in figure 8.15. Here the accuracy in timing is to 10 decimal places.

(Press the button labelled “Skim Test1” in OvershootDemo.java.)

The graph in figure 8.15 is typical for all values input by the author. From the graph
Et tends

to decrease, but smaller values of
Et produce larger values of residual acceleration, ,Ra and

the overall effect is that the total time, T, increases with increasing values of .0t The initial

conditions for the results shown in figure 8.15 are,

,7.1d ,75.4v ,75.6a .5.5615j

This result is typical for all initial values input by the author. Of course, in order to prove the

conjecture, all possible cases must be shown, and perturbations at the end of the control need

to be examined.

Figure 8.15 Overall Time vs Perturbation Time

401

8.17. Code for Two-Second Timer Counter

The following code is used in the ATmega644 to count a number of events in a two second

period. The output of the timer described in section 6.2 needs to be connected to pin C0. To

perform the count, run the method, twoSecClockStep().

/***********************************

 Header file for timer calibration

 Ian Storey

 First written: 15 Dec 2009

 Last changed: 15 Dec 2009

 Tested with the Atmega644 at 8 MHz

 The two second timer should be connected to pin C0.

 This goes high and low every 2 seconds.

 The counter counts in one phase 2 second cycle and

 displays the count in the other (otherwise the count is affected)

 The cycle is started with a one and ends on the next one.

 Experiments show that debouncing is unnecessary.

 The phase is set by the variable

 calibratePhaseCounter

 This has the values:

 -1: before count

 Counting:

 0: start of count - pin C0 is high

 1: ending of count - pin C0 is low

 Displaying:

 2: start of display - pin C0 is high

 3: end of display - pin C0 is low

 The count is contained in the variable twoSecondStepCounter

 which can just be incremented in code

 When there is a change in pin C0 call the function

 twoSecClockStep(unsigned short)

 The parameter is the value of pin C0.

 A change is recognized when

 previousPinC0

 is not equal to the current value

 This assumes an 8MHz clock

***********************************/

unsigned long twoSecondStepCounter=0;

short calibratePhaseCounter=-1;

unsigned short previousPinC0=0xFF;

402

// perform a step

// Note this does NOT count

void twoSecPhaseChange(unsigned short pinC0){

 pinC0 = pinC0 & 1;

// printf("pinC0=%d calibratePhaseCounter=%d twoSecondStepCounter=%u\n",

// pinC0,calibratePhaseCounter,twoSecondStepCounter);

 switch (calibratePhaseCounter){

 case(-1):

 if (pinC0==0){

 calibratePhaseCounter=3; // end of display - ready

for start

 }

 break;

 case(0):

 if (pinC0==0){

 calibratePhaseCounter=1; // ending of count - ready

for display

 }

 break;

 case(1):

 if (pinC0==1){

 calibratePhaseCounter=2; // do display

 }

 // ***** Display the result

 printf("twoSecondStepCounter=%u\n",

twoSecondStepCounter);

 break;

 case(2):

 if (pinC0==0){

 calibratePhaseCounter=3; // end of display - ready

for start

 }

 break;

 case(3):

 if (pinC0==1){

 calibratePhaseCounter=0; // do count

 }

 // ***** initialize count variables

 twoSecondStepCounter=0;

 }

 previousPinC0=pinC0;

 PORTB = ~pinC0;

}

void twoSecClockStep(){

 unsigned short val = PINC;

 twoSecondStepCounter++;

 if (val!=previousPinC0) twoSecPhaseChange(val);

}

8.18. Overview of Test Bed Program Design

The test bed program uses object-oriented design principles. Thus an object of a child class

can inherit properties from a parent class; for example, all the genes containing the

403

suspension control algorithms inherit properties of the gene class, and this allows them to be

processed by the routines that run the evolutionary algorithm processes (selection, mutation,

and crossover) in a consistent manner.

In object-oriented terminology, functions, subroutines and procedures are known generically

as “methods”. A convention often used in object-oriented programming is to name methods

or variables by use of the class name followed by a dot, then the method or variable name.

For instance the displayParameters() method in the RoadParametersDialog class

could be written as,

 RoadParametersDialog.displayParameters().

In some cases, more than one class has been defined in a single file. For example the

RoadParametersDialog class and the PhysicalParameters class are defined in the file

Parameters.java, along with a number of other classes related to the setting, saving and

reading of parameter values. All genes are defined in the file Gene.java.

The class names of the various genes are used throughout to distinguish the various kinds of

suspension control algorithms. For example, the term ActivePureSkyhookGene has been

used throughout to name the purely linear skyhook algorithm applied to an active suspension,

and this gene has been defined in the class of the same name.

An HTML file has been written to briefly describe the algorithm applied by most genes

developed during the course of the PhD research:

SuspensionTestx/Help/genesHTML/Genes.html. This can be accessed from a central

page, SuspensionTestx/Help/Help.html, which also contains links to gene

performance statistics and class documentation for many classes in the main EA program.

From the main window, the “Start” button runs a series of generations using the same

mutation control parameters. During the process of development for this thesis, this was a

useful testing feature but for the main numerical results quoted below, a system of cooling the

evolutionary process was developed.

404

The “Auto-Evolution” option from the “Tools” drop-down menu, shown in figure 8.16, runs

a number of generations of evolution allowing a slow cooling process (see section 2.12.2).

The cooling process is controlled by mutation parameters stored in one of a number of

databases contained in the subdirectory SuspensionTestx/GenDB. The auto-evolution

process also has an option for running evolutionary algorithms on a number of genes, one

after the other. With a large number of genes this process can take days. The process is

assisted by the fact that the process can be stopped and restarted; stopping in the middle of an

auto-evolution did not requiring starting again from the beginning. The various gene types

that are run in this way are specified in the file,

SuspensionTestx/GenDB/AutoEvolutionList.txt, explained in more detail below.

This allowed the test bed to run evolutionary schedules on a large number of different types

of genes using the exact same process with exactly the same road types, the results of which

could be used for comparing the genes. Sequences of separate tests for a range of genes

showed consistent results across different tests with only minor variations in the final

ordering of the fitness of the various gene types.

Figure 8.16 “Tools” Drop-Down Menu

The following is a brief outline of the main Java classes used in the project:

 SuspensionTest is the main class that sets up the user interface, initializes data

and handles user requests.

 Generation contains a number of genes of the one type.

 Gene is an abstract superclass for all the different types of genes. Different genes

will have different controls and different parameters.

 EAController is called by SuspensionTest and controls the running of the

evolutionary algorithm through a number of generations.

 GenerationPanelController has the role of looking after the display during a

run of the EA. It contains the main graph of fitness, and a display of a run of the

405

algorithm. The display of individual suspension runs can be switched on or off from

the menu item View, Plot Road versus Genes. This should be turned off when

running a long evolutionary algorithm.

 NumericalControl controls the numerical methods used. It is initialized with the

method, initialize(). Each numerical step is performed with the method,

findNextValues(). This returns a true when the run of the algorithm is

complete. For efficiency, this class is instantiated once only and then run for each

gene in a generation.

 Breeder is the main class for breeding one generation from the previous. The

major method of this class is breed(), which performs copying, mutation and

crossover and returns a new generation object containing the next generation. This

class employs a couple of helper classes to perform the copying, mutation and

crossover: Genome and GenomeConverter.

 Genome contains the genome information simply as a vector of real numbers (Java

double data type). The genome class is only needed for mutation and crossover.

When mutation or crossover occur, the gene is converted to a genome using

GenomeConverter.geneToGenome() and converted back using

GenomeConverter.genomeToGene().

 GenomeConverter contains three main methods: the two converter methods,

geneToGenome() and genomeToGene(), as well as a copy() method. These

methods are all static i.e., they can be called without an instantiated

GenomeConverter object.

 RoadSet contains a set (Java Vector class) of superposed roads to be used by a

gene and controls the creation of roads.

 SuperposedRoad is a road formed from the superposition of roads.

 Road is the main template (Java Interface) for a number of road types that

extend it, SinRoad (sinusoidal), SquareBumps, RoundBumps and Triangular.

 AutoEvolution controls the process of cooling

SuspensionTest calls AutoEvolution which sets up an EAController object when an

evolutionary algorithm is initiated. The genes are supplied through a generation object, which

contains a set of genes of the one type that is iteratively tested and scored for fitness. The

EAController.runControler() method runs through a number of generations.

406

Simulations are run using the runSimulation() method, and fitness measures of the genes

are produced. After this the EAController object calls the breeder object to perform the

selection, mutation, and genetic crossover of the evolutionary algorithm.

Routines in the breeder object perform selection, mutation and crossover. Whenever a

mutation or crossover event occurs, genes are converted to “genomes”. The genomes are

composed of a vector of numbers (actually a Java Vector data type). Mutation and crossover

are performed directly on the genomes. The genome class contains the methods mutate()

and crossover(). The GenomeConverter class performs the conversion between gene

and genome and back again, after mutation or crossover.

A number of parameters control the running of the program. Parameters are persistent and are

stored in a file SuspensionTextX/Parameters.dat. Data capture forms such as the one

shown in figure 8.17 can be used to view and set parameters. These are opened from the

“Parameters” menu. The various different data-capture forms cover the following groups of

parameters: physical, fitness, mutation, road, rattlespace, generations, auto-evolution and

graphical parameters. If the file Parameters.dat does not exist, a warning is given and

default values are loaded.

407

Figure 8.17 Example of a Parameter Data-Capture Form

The last-used generation data for each different kind of gene is contained in a separate data

file (streamed object data for each gene type). For example, the generation for the

ActivePureSkyhookGene is stored in the file

Generations/ActivePureSkyhookGene.dat. When a generation is changed to a new

gene type, the saved data is used, if it can be found, otherwise a fresh generation will be

formed.

The two main parameters to control the auto-evolution are contained in the AutoEvolution

class:

 The boolean variable, useListOfGenes, determines if the currently selected gene is

to undergo an evolutionary algorithm or if a list of genes is to be processed.

 The String variable, fileName, is the name of the database file containing the

evolution schedule.

There are a number of different Access database files that provide for different types of

evolution:

408

 Very quick evolution for testing, HotQuickGenDB.

 Moderately quick evolution for determining strong algorithms, GenDB.

 Long evolution for careful determination of gene parameters, LongGenDB.

The results from the last type of evolution are used in the numerical experiments.

The list of names of the genes to be used in the auto-evolution process is stored in the flat

ASCII file, GeneDB/AutoEvolutionList.txt. A simple example of this file is shown in

figure 8.18. Any lines up until the line containing “<start>” are ignored and can be used as

comments. Following this in the file is the list of names of genes that are to be tested.

This file is used for auto evolution

It contains the list of genes to be tested.

<start>

MinJerkActive01Gene

ActiveAdaptiveJerk01Gene

HardPassiveGene

ActiveAdaptiveJerkFilter01Gene

PassiveGene

LoJerkConstantKAdaptiveJerkFilterGene

Figure 8.18 Simple Example of Contents of ASCII file, GeneDB/AutoEvolutionList.txt

Statistics for a generation are stored with the generation data, which is itself saved on hard

disc. The statistics form, shown in figure 8.19, is produced from data in the generation data

files. A graphical overview of the data is also placed in HTML files that can be viewed in a

web browser. Also, there is a statistics summary file, which is generated when the user

presses the “All Stats Summary” button in the Statistics form, as shown in figure 8.20.

409

Figure 8.19 Statistics Form

Pressing this button generates a HTML page containing a list of the basic statistics on all

tested control algorithms, including the median performance index of the genes in the final

generation of evolution. This final list provides an overview of the performance of the

various suspension types represented by the corresponding genes.

Figure 8.20 Statistics Summary Form

410

8.19. Road Surfaces

This section contains details on the road simulations. The details do not affect the thesis as a

whole and the main concepts of this section can be gleaned by examining the figures

containing graphs of the various types of road surfaces that are combined for test roads in the

experiments.

As discussed in section 3.2, in this thesis the vehicle’s forward velocity is assumed constant

so road height functions can be represented purely as functions of time.

All simulated road surfaces used in the EAs contained a mixture of corrugations to test

comfort as well as larger bumps that test the suspension’s capacity to track the road surface.

The various road surfaces that are combined in the final roads can be broken into four groups:

sinusoidal corrugations, trapezoidal bumps, square bumps, and corrugated bumps.

Bumps are generated randomly using parameters explained in this section. If only one road

surface was used for all the roads and all steps of the evolutionary process, the resulting

suspensions might optimize only for some particular property of that road surface, or could

exploit some property of the given road. On the other hand, too much variation in the road

surfaces greatly slows the evolutionary process, since some genes will achieve higher scores

simply because they encounter smoother road conditions. Even with sets of random roads

there needs to be some uniformity in the roughness of the road surfaces encountered in the

evolutionary process.

Sinusoidal bumps are pure sinusoids or mixtures of pure sinusoids, as depicted in figure 8.21.

Figure (a) has a single sinusoidal function and figure (b) is a sum of two sinusoidal functions

of different amplitude, frequency and phase shift. The derivative is also calculated and is

shown as a dotted line (the derivative will be shown similarly in all examples in this section.).

411

(a)

(b)

Figure 8.21 Example Sinusoidal Road Surfaces

Amplitudes, frequencies and phase shifts are based on the following parameters from the

RoadParameters class (defined in the file Parameters.java):

 minHeightSinusoidal – minimum amplitude,

 maxHeightSinusoidal – maximum amplitude,

 minHz – minimum frequency (Hz),

 maxHz – maximum frequency (Hz),

 power – amplitude reduction factor (integer).

The number of sinusoidal functions are selected as uniform random variables between

minimum and maximum values. The following two Java routines select either floating point

(double) values or integer (int) values randomly between minimum and maximum limits.

 private double uniformRandom(double min, double max)throws

SuspensionTestException{

 if (min>max) throw new

SuspensionTestException("min="+min+">max="+max+"\nin

RoadSet.uniformRandom()");

 double temp=min;

 if (min!=max){

412

 temp=min+Math.random()*(max-min);

 }

 return temp;

 }

 private int uniformRandomInt(int min, int max)throws

SuspensionTestException{

 if (min>max) throw new

SuspensionTestException("min="+min+">max="+max+"\nin

RoadSet.uniformRandom()");

 int temp=min;

 if (min!=max){

 temp=min+ (int)(Math.floor(Math.random()*(max-min+1)));

 }

 if (temp>max) temp=max;

 return temp;

 }

The frequency is determined from a logarithmic random variable (by using a uniform random

variable over the range of the logs of the maximum and minimum frequency and then taking

the exponential). Because the spectral power density rises with frequency, the maximum

amplitude that can be chosen decreases with frequency. This is achieved by making the

effective maximum amplitude a fraction of the maximum amplitude, minHeightSinusoidal,

using the following formula,

 ,max
min

max H
f

f
h

n

where minf is the minimum frequency (minHz), f is the randomly chosen frequency, n is a

power parameter (either 0, 1, 2 or 3, set by the user), and maxH is the maximum amplitude at

the lowest frequency (maxHeightSinusoidal in the RoadParameters class). If maxh is less than

the minimum amplitude set in the parameters, then the height is maxh , otherwise the height is

chosen uniformly randomly between minHeightSinusoidal and maxh .

The Java routine for manufacturing a single random sinusoidal road is shown immediately

below.

 private Road makeSineRoad(double HeightMin, double HeightMax, double

freqMin, double lnFreqMin, double lnFreqMax, int power)throws

SuspensionTestException{

 double u=uniformRandom(lnFreqMin, lnFreqMax);

 double freq=Math.exp(u);

 double f=freqMin/freq;

 double HeightMaxOmega=HeightMax;

 for (int i=0; i<power; i++){

 HeightMaxOmega*=f;

413

 //System.out.println("i="+i);

 }

 double Height=HeightMaxOmega;

 if (HeightMaxOmega>HeightMin) Height=uniformRandom(HeightMin,

HeightMaxOmega);

 double delta=6.28319f*Math.random();

 //System.out.println("Height="+Height+" delta="+delta);

 return new SinRoad(freq*6.28319, delta, Height);

 }

The logs of the minimum and maximum frequencies, lnFreqMin and lnFreqMax, are pre-

calculated to avoid the time cost of recomputing these values for each road. The SinRoad

constructor takes angular frequency in rads/s as a parameter, as well as the phase shift,

“delta”, in radians. Hence the frequency is multiplied by .2

Trapezoidal bumps are depicted in figure 8.22. Figure (a) shows a single bump and figure (b)

shows two bumps summed.

(a)

(b)

Figure 8.22 Trapezoidal Bumps

The length of the bump is taken from the beginning of the first slope to the beginning of the

final slope. The bump length is determined by the following two parameters in the

RoadParameters object:

 minBumpLength and maxBumpLength.

The bump length is chosen uniformly between these limits.

The other parameters affecting trapezoidal bumps are:

 minHeightTrapezoidal – minimum bump height,

maxHeightTrapezoidal – maximum bump height,

minSlopeTrapezoidal – minimum slope of leading or trailing edge,

414

maxSlopeTrapezoidal – maximum slope of edge.

The height can be negative, but the absolute value of the bump height is taken uniformly

between minHeightTrapezoidal and maxHeightTrapezoidal. The slopes of the ramps are

taken uniformly from the range minSlopeTrapezoidal to maxSlopeTrapezoidal. The slopes

for the ramps at the beginning and the end of the bump are determined independently.

The Java routine for manufacturing a single random trapezoidal bump road is shown

immediately below.

 private Road makeTrapezoidalBumpRoad(double lengthMin, double

lengthMax, double heightMin, double heightMax, double slopeMin, double

slopeMax, double totalTime)throws SuspensionTestException{

 double bumpLength = uniformRandom(lengthMin,lengthMax);

 double T=totalTime-bumpLength/2;

 double bumpStart = Math.random()*T;

 double height = uniformRandom(heightMin, heightMax);

 if (Math.random()>0.5) height=-height;

 double slope=uniformRandom(slopeMin, slopeMax);

 double gapStart=Math.abs(height/slope);

 slope=uniformRandom(slopeMin, slopeMax);

 double gapEnd=Math.abs(height/slope);

 return new TrapezoidalBumpRoad(bumpStart, bumpLength, height,

gapStart, gapEnd);

 }

“Square bumps” actually have rounded ends. Examples of square bumps are shown in figure

8.23. Figure (a) has a single square bump and figure (b) is a sum of two bumps, with different

heights, lengths and begin and end slopes.

(a)

(b)

Figure 8.23 Square Bumps

415

The bump length for a square bump must be at least long enough that the up and down ramps

do not overlap (this is to ensure the slope continuity of the bump). The Java routine for

manufacturing a single random square bump is shown immediately below.

 private Road makeSquareBumpRoad(double lengthMin, double lengthMax,

double heightMin, double heightMax, double slopeMin, double slopeMax,

double totalTime)throws SuspensionTestException{

 double bumpLength = uniformRandom(lengthMin,lengthMax);

 double T=totalTime-bumpLength/2;

 double bumpStart = Math.random()*T;

 double height = uniformRandom(heightMin, heightMax);

 if (Math.random()>0.5) height=-height;

 double slope=uniformRandom(slopeMin, slopeMax);

 double gapStart=Math.PI*Math.abs(height/slope)/2;

 slope=uniformRandom(slopeMin, slopeMax);

 double gapEnd=Math.PI*Math.abs(height/slope)/2;

 return new SquareBumpRoad(bumpStart, bumpLength, height,

gapStart, gapEnd);

 }

The ramps at the start and the end of the bumps are segments of a sine wave. The height

function for a given road is calculated as in the Java function below. The code for the

sinusoidal segment is shown in bold.

 public double height(double t){

 double temp=0;

 if (t>bumpStart && t<bumpStart+gapStart &&

t<bumpStart+bumpLength) {

 temp+=height*(Math.sin(omegaStart*t+deltaStart)+1)*0.5;

 }else{

 if (t>bumpStart+bumpLength &&

t<bumpStart+bumpLength+gapEnd){

 temp+=height*(Math.sin(omegaEnd*(t)+deltaEnd)+1)*0.5;

 }else{

 if (t>bumpStart && t<bumpStart+bumpLength)

temp+=height;

 }

 }

 return temp;

 }

The values for omegaStart, deltaStart, omegaEnd and deltaEnd, are pre-calculated during the

construction of the SquareBumpRoad object.

The function that calculates the road slope is given by the following code.

 public double heightPrime(double t){

 double temp=0;

 if (t>bumpStart && t<bumpStart+gapStart &&

t<bumpStart+bumpLength) {

 temp+=height*omegaStart*Math.cos(omegaStart*t+deltaStart)*0.5;

 }else{

 if (t>bumpStart+bumpLength &&

t<bumpStart+bumpLength+gapEnd){

416

 temp+=height*omegaEnd*Math.cos(omegaEnd*(t)+deltaEnd)*0.5;

 }

 }

 return temp;

 }

The square bumps do not have slope discontinuities (refer to section 4.3) and so should

produce much less discomfort than trapezoidal bumps of comparable shape, especially for

suspension algorithms that produce spikes in jerk over slope discontinuities, such as the linear

passive suspension.

Another kind of bump called a “corrugated bump” is also used. Pure sinusoids were not used

across the entire run. Instead, sinusoids were multiplied by “square bumps”, as defined

above, to produce sinusoidal corrugations that exist only for a period of time. Examples of

corrugated bumps are shown in figure 8.24. Figure (a) shows a single corrugated bump and

figure (b) shows two bumps summed.

(a)

(b)

Figure 8.24 Corrugated Bumps

Corrugated bumps are essentially square bumps multiplied by sine bumps. The parameters

that determine corrugated bumps, in the RoadParameters class, are the following:

 minHeightSinBump – minimum amplitude,

maxHeightSinBump – maximum amplitude,

417

minSlopeSinBump – minimum slope for ramp (not for the sinusoidal factor)

maxSlopeSinBump – maximum slope for ramp

minHzSinBump – minimum frequency of corrugation

maxHzSinBump – maximum frequency of corrugation

 powerSinBump – amplitude reduction factor (integer).

The first four parameters determine the square bump. The last three (and the amplitude)

determine the sine function. Suppose the square function is represented as),(tS and the sine

function is represented as).sin(t Suppose that)(tS has the overall amplitude, although it

is irrelevant which is of unit height and which has the overall height. The height of the

corrugated bump can then be represented as,

),sin()()(ttSth

The differential requires the product rule;

).cos()()sin()()(ttSttSth

The same amplitude reduction scheme as used for sinusoidal bumps, described above, was

used with corrugated bumps.

Java routines were used to calculate both the road height and the height velocity. The

functions for calculating the road height and the derivative of road height are defined in the

functions height() and heightPrime() in the SinBumpRoad class located in the file

Road.java. These functions use values omega, omegaStart, omegaEnd, deltaStart and

deltaEnd, which are calculated during construction to save recalculation.

The various kinds of bumps can be summed, as for example in figure 8.25. A RoadSet

object is used to hold a vector (Java Vector) of Road objects (each instance of one of the

various kinds of bumps). The example of figure 8.25 contains four trapezoidal bumps, five

square bumps and four corrugated bumps. The numbers of the different types of bumps are

determined by the following integer variables from the RoadParameters class:

 minNumberSinusoidal, maxNumberSinusoidal,

 minNumberSquare, maxNumberSquare,

 minNumberTrapezoidal, maxNumberTrapezoidal,

 minNumberSinBump, maxNumberSinBump.

418

The numbers for each type of bump in a particular RoadSet are chosen to be equally likely

from within the minimum to maximum values.

Figure 8.25 Combined Road

There is also a boolean parameter in the RoadParameters class, decreaseWhenSuperpose,

which activates a routine to decrease bump heights when they overlap. When this boolean is

false, overlapping bumps are not changed. Each road class has routines that report the bump

height and the start and end times of the bump, getMaxHeight(), getBumpStart() and

getBumpEnd(). There is also a routine to reset the height, setMaxHeight(). (These are

declared in the Road Interface and must be supplied by each Road subclass.) For each pair of

Roads in a RoadSet, heights are compared against maximum allowed heights for these road

sets. Consider a pair of roads, road A and road B. Suppose also that road A has bump height

Ah and a maximum allowed height ,AH while road B has bump height Bh and a maximum

allowed height .BH A factor is calculated from the ratios of these values,

 .
B

B

A

A

H

h

H

h
H

(If one of the roads is a Sinusoidal road, the absolute values of the separate ratios are

summed.) If the factor H is greater than one, each of the two road heights is divided by this

factor.

The RoadParameters class also contains a boolean parameter, randomizeEachGene, which

determines if a new set of road surfaces is used for each genome tested. If this is false, the

same set of roads will be used for each gene in a generation, but a new set will be chosen for

the next generation. In early generations, using the same set of road surfaces can help to

speed the evolution by testing the genomes under the same conditions. However, in the later

stages, a larger numbers of roads in the road sets produces a better statistical mix of road

surfaces and a statistical measure of the overall performance of a generation.

419

Road Parameters used for generating random roads in the SuspensionTest program are set in

the Road Parameters dialog, shown in figure 8.26.

Figure 8.26 Road Parameters Dialog

Samples of roads that this process produces can be viewed by clicking the View menu item

and selecting “Sample Random RoadSet...”. This produces a road set and the user can view

the various roads by selecting a road from the drop-down list or by using the “Previous” and

“Next” buttons.

420

8.20. Fitness Measures

The code for calculating the fitness measures is contained in the class Fitness. The three main

methods for setting up the fitness measures are all static methods (static methods can be

called without an instantiated object): initialize(), incrementSums() and

finalizeIntegrals(). The same fitness routines and measures are used for all numerical

controls and genes. The integrals for both the comfort and rattlespace objectives are

calculated using Simpson’s method (Kreyszig, 1993, p961).

Once the fitness values are calculated they are used in the instantiation of FitnessData

objects. The FitnessData class is declared in the file, Fitness.java. The FitnessData

instantiation occurs after the jerk and rattlespace integrals are calculated. These are then

passed into the Gene, using code as in figure 8.27 contained in the NumericalControl

class. By maintaining both the comfort and rattlespace performance measures, the

FitnessData object allows both weighted sums and Pareto comparisons to be made.

double JInt =Fitness.getIntegralJerk();

double RattleInt =Fitness.getIntegralRattleSpacePenalty();

FitnessData fitData=new FitnessData(JInt, RattleInt, 0d,

 parameters.getFitnessParameters());

gene.setFitnessData(fitData);

Figure 8.27 Calculation of Fitness and Setting of Gene Fitness

8.21. Genes and Evolutionary processes

This section explains the processes by which genes are selected from one generation to the

next, and how mutation and crossover are applied to genes. The process used in the test bed

program was to have the program rewrite itself. This was done for a number of reasons

explained below. This is a complex, non-standard process and warrants explanation in some

detail, in order to justify the process and to verify its method.

421

8.21.1. Genes

“Genes” represent suspension control parameters and these are tested in simulation over a

large number of roads. Different gene types are responsible for representing the different

suspension control algorithms; each gene class represents a different control algorithm. The

gene class thus contains the crucial logic of the control algorithm. Furthermore, the code in

the gene class is similar to the control logic in the microprocessor that would control the

suspension.

The class hierarchy for the Gene class (defined in the Gene.java file) is depicted in figure

8.28. The Gene class that is the ancestor of all Gene classes (an abstract class) is defined at

the beginning of the file Gene.java. The QuarterCarGene class is a subclass of the Gene

class and is defined in the file QuarterCarGene.java. All genes that represent active

control algorithms are subclasses of QuarterCarGene. The SingleSpringGene is the

immediate parent class of all the semi-active controls, and it is itself a subclass of

QuarterCarGene.

Figure 8.28 Gene Class Structure

422

The active numerical class, NumericalControlActive, contains the method

findAccFromGene(), which returns the acceleration value of every type of active gene

(and hence each active suspension control algorithm). This class is defined in the file

NumericalControlActive.java. In the findAccFromGene() procedure, all active

genes return the acceleration using a method called getAcc(). The findAccFromGene()

method determines the type of gene and uses the getAcc method appropriate for this gene.

For example, the SlidingMode01 gene is called using the statements in the listing below

(the procedure call is bolded).

 if (gene instance of SlidingMode01){

 found=true;

 acc=((SlidingMode01)gene).getAcc(t==t0, m, h, t, y, v,

acc, road,

 isGraphUsed, colorMode);

 }// if

Each active gene class contains a method getAcc() that contains the code for the particular

control logic of that gene.

Similarly, the numerical method using semi-active suspensions calls the procedure

findCFromGene() from the NumericalControl class, defined in the file

NumericalControl.java. Each semi-active gene contains a method getC() that is called

inside findCFromGene(). An example of a call to getC() for the semi-active control gene,

SlidingModeSemi01, is shown below.

 if (gene instanceof SlidingModeSemi01){

 found=true;

 //System.out.println("NumericalControl: v="+v);

 c=((SlidingModeSemi01)gene).getC(t==t0,

rattlespaceParameters, m, h, t, y, v, numericalData1.getA(), road,

 isGraphUsed, colorMode);

 }// if

Each semi-active gene class definition contains a call to the method getC(), which contains

the code for the control logic of that gene.

Once the numerical test bed is written and tested, it is a matter of supplying the control logic

for either getAcc() or getC() for each gene. For example the control logic for the active

gene ActivePureSkyhookGene is contained in the code listing below.

423

 // #ActivePureSkyhookGene

 public double getAcc(double m, double h, double t,

 double y, double v, double prevA,

 SuperposedRoad road){

 double s=y-road.getHeight(t);

 double acc=-(kSus*s+cSky*v)/m;

 return acc;

 }

The method getC() in the semi-active gene NoJerkSkyhookGene is shown below.

 /*

 NoJerkSkyhookGene

 Ahmadian's no-jerk skyhook

 */

 public double getC(double m, double h, double t,

 double y, double v, double a,

 SuperposedRoad road){

 double sPrime=v-road.getHeightPrime(t);

 double c=Kj*v;

 if (sPrime<0){

 c=-c;

 }

 if (c<0) c=0; // c cannot be negative

 return c;

 }

These are quite simple examples. Most genes are more complex, but each gene will call one

of these two functions, getAcc() or getC(), and this is where the control logic for that

gene is contained. The code for all genes can be found in the file Gene.java, in the class

definition for that gene.

8.21.2. Generations

A Generation object (defined in Generation.java) can store a collection (Java Vector) of

Gene objects representing the various genes of a generation. The number of genes in a

generation is variable, typically in the tens or hundreds. Any one generation holds genes of

only one type, each with different parameters. The Generation object is typically saved to

hard disk under the name of the gene type. Thus the ActiveAdaptiveJerkFilterGene is

saved in the file ActiveAdaptiveJerkFilterGene.dat, the

FilterWithStiffening01 gene is saved in the file

FilterWithStiffening01.dat, and so on. These are contained in the subdirectory,

 Java/SuspensionTestX/Generations.

424

The Generation class also calculates and holds various statistics on the generation, such as

the mean and median weighted scores and the standard deviation of the weighted scores. It

stores this data for previous generations. These results are displayed in the statistics forms

discussed in the appendix (section 8.18). The various HTML pages holding the gene statistics

are contained in the subdirectory,

 Java/SuspensionTestX/stats.

8.21.3. Genomes and Conversions of Algorithmic Parameters

Genetic mutation and crossover require that suspension parameters change from generation to

generation. The suspension control algorithms are most naturally represented as Java

variables. In the numerical experiments performed here the data is represented as collections

(actually Java Vectors) of Java floating-point values (Java double variables), although

some complex data structures were developed (as seen in the class definitions in the files

FuzzyLinearFunction.java and FuzzySplineFunction.java).

Originally, in the numerical programming of the genomes, genes were represented by arrays

of binary values (zero or one), as in Golberg (1989). But when real-valued numbers were

used directly as the “genes”, as described in Dumitrescu, Lazzerini et al. (2000) and in

section 2.12.2 above, the evolution became much more efficient.

When the parameters are to be altered for mutation or crossover, the gene variables are

converted to a collection of floating-point values that represent the “genome” of the gene.

The Java variables that represent the suspension parameters are placed in a collection of

floating-point values (the Java Vector class has been used).

When a gene is involved in mutation or crossover, its parameter variables (the “phenotype” in

this analogy) are first converted to a “genome”, and then mutated. After mutation and

crossover, the “genome” is converted back to Java variables. This conversion was done for

efficiency.

425

Without the process described below, or something similar, the variable names in the

algorithms would be quite unnatural and difficult to decipher, or they would require a

complex, error-prone process of hand-coded conversion; for example a variable named “k”

for spring rate, say, must be determined by its position in an array or vector (or collection of

some kind). Without the conversion, the crucial algorithmic code would be as completely

dissimilar to the code used in the microprocessor (refer to section 6.2).

The process of converting between Java variables and a data structure representing the

“genome” was designed so that simple HTML-like code added to the variable declarations

facilitated the setting up the genome parameters and their limits, and at the same time uses

descriptive variable names that double as standard Java variables. The syntax of this structure

is quite simple and is perhaps best explained with an example (refer to figure 8.29).

/********* End of automatically generated code *********

</geneCodeInsert>

 <numericalControlClass>NumericalControlSingleSpring

 </numericalControlClass>

 <variable> <name>*/

 private double ca;

 /*** </name>

 <min>0</min>

 <max>2E7</max>

 <initial>700E3</initial>

 </variable>

 <variable> <name>*/

 private double cm;

 /*** </name>

 <min>0</min>

 <max>2E7</max>

 </variable>

 <variable> <name>*/

 private double cb;

 /*** </name>

 <min>0</min>

 <max>2E7</max>

 </variable>

 <variable> <name>*/

 private double k;

 /*** </name>

 <min>0</min>

 <max>2E7</max>

 </variable>

 </geneParameters>

*/

426

Figure 8.29 Section of Gene.java defining Genome Variables

Figure 8.29 shows a small section of code taken from the Gene.java file that defines a

particular gene. The standard java code in this example is shown bolded. All the rest of this

code is simply treated as a comment by Java, and is not parsed by the Java compiler. In the

example above, four java variables are declared, and the minimum and maximum values for

the genomic variables are also declared.

Another piece of code processes this file and parses it for conversion into the genome

collection. The HTML-like code is parsed by this separate program and it generates Java

code to convert to and from genomes. This processes source files and then changes them,

after which the Java source code needs to be recompiled.

The process involves an unusual step, but it has a number of advantages. It creates data

structures that are independent of the phenotype for mutation and crossover, and most

importantly it leaves standard Java variables intact in the algorithmic code; the code in the

numerical experiments is as close to microprocessor code as possible. Because of the

separation of suspension algorithmic code from the code for processing the genome, genome

selection, mutation and crossover are all carried out independent of the phenotype (the

suspension algorithm). Furthermore, once the process is automated and debugged it is error

free. If conversion code had to be written by hand for each class, errors would inevitably

accumulate. Similarly, non-descriptive variable names generate confusion, waste time, and

are responsible for buggy code. Once the process above is automated, the process is relatively

quick, convenient and error free.

In the SuspensionTest program, the conversion is activated by clicking on the “Tools” menu

and selecting the “Make Automatic Gene Class Definitions” in the main menu (refer to figure

8.30). The GUI control is defined in the file MakeAutoGeneClassDefinitionsFrame.java. The

frame controlling the conversion process is opened and the conversion is activated by

pressing the button “Start Conversion”. This then runs through the Gene.java file taking all

gene definitions and creating the code needed to generate the genome, as well as convert to

and from the genome. Some code is then created in the Gene.java file, and there is extra

427

code created in the GenomeConverter.java file. Once this is finished, the code for the

entire program needs to be recompiled.

Figure 8.30 Dialog for Automated Production of Genomic Conversion Code

The routines that produce the “genome” from Java variables and vice versa is contained in

GenomeConverter.java. This is used in the evolutionary algorithms for purposes of

handling mutation and crossover. This class contains two methods, geneToGenome() and

genomeToGene(). The code below is a section in the geneToGenome() method that

creates a genome from an instance of the FlatLinearJerkSimpleSemi04 gene. The code

instruction gene2.getBetaY0() below, in bold, retrieves the double value of the gene

variable betaY0. The function getBetaY0() has been automatically generated by the

process outlined above.

 if (gene instanceof FlatLinearJerkSimpleSemi04){

 found=true;

 genome.setOriginalGeneType("FlatLinearJerkSimpleSemi04");

 FlatLinearJerkSimpleSemi04 gene2=(FlatLinearJerkSimpleSemi04)

gene;

 genome.addDouble(gene2.getBetaY0(), 0.0, 50000.0);

 genome.addDouble(gene2.getBetaY1(), 0.0, 50000.0);

 genome.addDouble(gene2.getBetaY2(), 0.0, 50000.0);

 genome.addDouble(gene2.getBetaS0(), 0.0, 50000.0);

 genome.addDouble(gene2.getBetaS1(), 0.0, 50000.0);

 genome.addDouble(gene2.getBetaS2(), 0.0, 50000.0);

 genome.addDouble(gene2.getK(), 0.0, 5.0E10);

 genome.addDouble(gene2.getKLim(), 0.0, 5.0E10);

 genome.addDouble(gene2.getKPrime(), 0.0, 5.0E10);

 }

428

The code section below shows the conversion of a genome back into a gene of the type

FlatLinearJerkSimpleSemi04. Note that this passes control back to the gene itself.

 if (originalGeneType.equals("FlatLinearJerkSimpleSemi04")){

 found=true;

 gene=new FlatLinearJerkSimpleSemi04(genome);

 }

This in turn calls a constructor which sets the Java variables from the genome, as below.

 // Constructor for Gene from Genome

 public FlatLinearJerkSimpleSemi04(Genome genome)

 throws SuspensionTestException{

 genome.formGeneData(this);

 getDataFromGenome(genome);

 }

The getDataFromGenome() method, shown below, contains code for finally converting

genome floating-point values into Java variables used by the suspension control algorithm.

This code is automatically generated. Note that the variable, betaY0() is retrieved using the

instruction doubleElementAt() in the Genome class, which retrieves a value from a given

position on the genome.

 //**** Get the gene's data from a Genome

 public void getDataFromGenome(Genome genome)

 throws SuspensionTestException{

 int i=0;

 betaY0=genome.doubleElementAt(i++);

 betaY1=genome.doubleElementAt(i++);

 betaY2=genome.doubleElementAt(i++);

 betaS0=genome.doubleElementAt(i++);

 betaS1=genome.doubleElementAt(i++);

 betaS2=genome.doubleElementAt(i++);

 k=genome.doubleElementAt(i++);

 KLim=genome.doubleElementAt(i++);

 KPrime=genome.doubleElementAt(i++);

 }

The major code for the genome itself is contained in Genome.java. The genome object

references the vector containing the genomic data. Each floating-point (double) variable in

the genome is contained in a DoubleDataPoint object. This is an inner class of Genome,

defined near the bottom of the Genome.java file. This also contains the minimum and

maximum allowed values for the floating-point value.

429

8.21.4. The Mechanics of Mutation and Crossover

In each generation, each gene is given a performance score that is the average of all the

performance scores for that one gene run over a number of random road surfaces. Once all

the genes have been scored, selection, mutation, and crossover occur. The class responsible

for forming the new generation from the old is the Breeder class, defined in the file

Breeder.java. This class has a method, breed(), which takes a generation as a parameter

and returns a new generation. In the runController() method of the EAController

class, for example, the breed() function is called using the following code:

Generation tempGeneration=

 breeder.breed(currentGeneration);

In the method breed() new genes are selected from the old generation and then mutation

and crossover occur. The selection process is described in section 8.21.5 below. The method

doMutations() controls the mutation process and doCrossovers() controls the

crossover process.

The number of mutations is set as a given factor of the number of genes in a generation

(possibly greater than one). This factor is determined by the MutationParameters class

attribute, mutationRate. The number of mutations for a generation is determined by the

code line shown below.

 int numMutations=

 (int)(mutationRate*gen.getNumGenes()*numDoublePerGene);

The number of mutations performed is calculated by multiplying the mutation rate by the

number of genes and the number of floating-point values per gene. This gives a uniform

mutation rate across all the floating-point values in the genome.

Genes are chosen at random for mutation. When chosen, the genome of that gene is formed

using the geneToGenome() method. Mutation is performed on the Genome using the

method, Genome.mutate(), defined in the file Genome.java. The Genome.mutate()

method has a boolean parameter, doDouble. This ensures a certain number of large

mutations, even in the cooler parts of the evolution. The mutate() method randomly

determines a floating-point value to mutate and then calls the mutate() method in the class

DoubleDataPoint to perform the mathematics of the mutation on that floating-point value.

The method DoubleDataPoint.mutate() is shown in the code listing in figure 8.31.

430

 public static final double PROP_HIGH=0.4, HIGH_MULT=1.945,

LOW_MULT=0.37;

 /********

 Perform a mutation on a single floating-point

 data element in the gene

 ********/

 public void mutate(boolean doDouble)throws

SuspensionTestException{

 double x = value;

 if (doDouble){

 //**** Perform a large set mutation

 // This ensures some large mutation even

 // when the evolution is cooling

 //System.out.println("DoubleDataPoint.mutate():

mutationParameters.getTemperature()="+mutationParameters.getTemperature()+"

doDouble="+doDouble);

 if (Math.random()<PROP_HIGH){

 x=HIGH_MULT*x;

 //System.out.print(">");

 }else{

 x=LOW_MULT*x;

 //System.out.print("<");

 }

 }else{

 //*** Perform the "multiplicative lognormal

perturbation" mutation

 double temp=mutationParameters.getTemperature();

 x = x*Math.exp(temp*NormRandom.random());

 //System.out.print("-");

 }

 //**** If the range endpoints are of opposite sign, then

flip to negative

 // every so often

 if (lowFactor*highFactor<0 &&

Math.random()<mutationParameters.getProbFlipToNegative()){

 System.out.println("Swap to negative");

 if (x<0){

 x=x*(highFactor/lowFactor);

 }else{

 x=x*(lowFactor/highFactor);

 }// if

 }// if

 //**** Ensure that the mutations are within setlimits,

lowFactor and highFactor

 if (x<lowFactor) {

 x=lowFactor;

 }

 if (x>highFactor) x=highFactor;

 setValue(x);

 }

Figure 8.31 Code for Mutation using Gaussian Distribution

In order to generate a normal distribution of values, Sun’s Random.nextGaussian()

method is used. Sun’s web documentation states that this method “returns the next

pseudorandom, Gaussian (‘normally’) distributed double value with mean 0.0 and standard

431

deviation 1.0 from this random number generator’s sequence” (Sun). This was tested by the

author in a program Java/Random/Demo.java. This was not a rigorous mathematical test,

but, at first appearance, it produced results that were consistent with the Gaussian distribution

claimed. In the line bolded in the listing in figure 8.31 the mutation procedure follows the

“multiplicative lognormal perturbation” method of equation 2.12 (Dumitrescu et al., 2000).

In the Breeder class, the method doCrossovers() has similarities to doMutations().

The number of crossovers are determined by multiplying the crossover rate by the number of

genes in the generation, as in the code below. Two distinct genes are chosen at random in

Breeder.doCrossovers(). The genome for each of these is created and the

Genome.crossover() method is called to perform the crossover on the two genomes. The

listing of Genome.crossover() is shown in figure 8.32.

 /** Performs crossover between random bit-points **/

 public void crossover(Genome genome2)

 throws SuspensionTestException{

 int s = numDataPoints();

 for (int i=0; i<s; i++){

 DoubleDataPoint DP1 = getDataPoint(i);

 DoubleDataPoint DP2 = genome2.getDataPoint(i);

 double v1=DP1.getValue(), v2=DP2.getValue();

 if (v1!=v2){

 //System.out.print("DP1="+DP1+" DP2="+DP2);

 double a= Math.random();

 double y1 = a*v1 + (1-a)*v2;

 double y2 = a*v2 + (1-a)*v1;

 DP1.setValue(y1);

 DP2.setValue(y2);

 //System.out.println(" => a="+a+" DP1="+DP1+"

DP2="+DP2);

 }

 }

 }

Figure 8.32 Listing of Genome.crossover()

The main code section that performs the mathematical steps of the crossover algorithm is

shown in bold font in figure 8.32. Continuous crossover as discussed in section 2.12.2 was

used. For each data point a random fraction is chosen and the corresponding data points on

the separate genomes are mixed according to this fraction.

432

8.21.5. Selection

The first step in the selection process is the sorting of genes. Genes are sorted in the

sortGenes() method defined in the Generation class. In the case of weighted sum

optimization, the genes are simply sorted by fitness measure. In the case of Pareto

optimization, the genes are sorted by dominance. The genes that are dominated the least

number of times come first in the ordering.

Dominance is determined by Pareto ordering, as described in section 2.12.2, and so one gene

dominates another if both its performance measures for “jerk” (comfort measure) and

“rattlespace” (measure of capacity to stay within rattlespace limits) are greater than the

others. There is an exception to this rule in the program used in this thesis: a gene with a

negative value for either rattlespace or jerk is dominated by one that has positive values for

rattlespace and jerk. (This reflects the notion that a negative score is “infeasible” and feasible

systems are given preference to infeasible ones.) In determining dominance, the function

FitnessData.dominates() is called, defined in the file Fitness.java. The listing of

this routine is shown in figure 8.33.

 /**

 Determines Pareto dominance

 **/

 public boolean dominates(FitnessData fit){

 boolean b=(fit==null);

 if (!b) {

 double j2=fit.getJerk(), r2=fit.getRattleSpace();

 if ((jerk<=0 || rattle<=0) && j2>0 && r2>0){

 b=false;

 }else{

 if ((j2<=0 || r2<=0) && jerk>0 && rattle>0){

 b=true;

 }else{

 b=(

 (jerk>=j2 && rattle>=r2));

 if (b && jerk==j2 && rattle==r2) b=false;

 }

 }

 }// if

 return b;

 }

Figure 8.33 Listing of the dominates() Method

433

The ordering within genes that are dominated the same number of times is weighted sum

ordering. Figure 8.34 for example, shows 20 genes in a sample run producing the ordering

shown. Here, “j:” precedes the jerk score and “r:” precedes the rattlespace score. The number

of times a gene is dominated by other genes is shown as “front:”. (Binary insertion sort was

used to perform weighted sum and Pareto sorting.)

######## Ordering ########

0: (j:989.6, r:1000.0) front:0

1: (j:991.0, r:991.9) front:0

2: (j:991.3, r:987.2) front:0

3: (j:991.6, r:932.2) front:0

4: (j:993.1, r:928.0) front:0

5: (j:987.1, r:1000.0) front:1

6: (j:992.3, r:926.8) front:1

7: (j:992.6, r:200.6) front:1

8: (j:986.8, r:1000.0) front:2

9: (j:989.7, r:964.6) front:2

10: (j:992.2, r:870.2) front:2

11: (j:982.4, r:997.7) front:3

12: (j:987.7, r:967.6) front:3

13: (j:992.1, r:862.2) front:3

14: (j:991.3, r:918.2) front:4

15: (j:989.9, r:914.7) front:6

16: (j:990.4, r:913.0) front:6

17: (j:992.3, r:-518.8) front:17

18: (j:997.5, r:-18700.8) front:17

19: (j:949.6, r:-16514.0) front:18

#########################

Figure 8.34 Example of Pareto Sorting

The screenshots in figure 8.35 show examples of Pareto fronts for a passive and a skyhook

suspension. Each point on the graph represents the response of a particular suspension. It is

clear that the skyhook dominates the passive. For the example, the same set of roads was used

with each of the separate genes. When random road sets are used, the Pareto fronts are less

distinct.

Passive Skyhook

Figure 8.35 Examples of Pareto Fronts

434

After sorting, control is passed to the Breeder.breed() method, in the file

Breeder.java. This method performs selection before mutation and crossover. The

following parameters of the MutationParameters class control the selection process:

numberPerGeneration, the number of genes in a generation,

proportionKept, a factor that retains a certain proportion of a generation,

weightedFreqBottom is used in scaling the frequency weightings for selection

(described below).

Of these, the values numberPerGeneration and proportionKept are varied in the

AutoEvolution scheme as part of the “cooling” process over a number of generations.

Following the elitist approach, as defined in section 2.12.2, a certain proportion of the highest

scoring genes from the previous generation are included in the next (this is why sorting is

needed, but sorting is also useful when displaying a graphical snapshot of the previous genes’

performance). The parameter proportionKept contains this proportion, and it diminishes

as the evolutionary process cools.

Before selection, genes are given a weighting that determines their frequency in the next

generation. The probability of selecting the i
th

 gene is given by equation 8.16, which is

similar to equation 2.11 except that weightings, w, are used instead of pure fitness values.

.

1

n

j

j

i

i

xw

xw
p

Equation 8.16

The weightings are calculated from fitness scores but are modified (as explained in the next

paragraph) to give a better spread of frequency weighting between the top and bottom scoring

genes. The Java method that calculates the probability weightings is

Breeder.findFrequencies(). This function calls in turn one of two methods: in the case

of Pareto optimization, findFrequenciesUsingPareto() is used, and

findFrequenciesForWeightedSum() is called if weighted sums are used for the

optimization. The probability weighting, once calculated, is placed in a gene object, using the

gene.setFrequency() method.

435

The code for calculating the probability weightings in the case of weighted sum selection is

shown in figure 8.36. First the following factor is calculated,

 .1
1000

)(

i

i

xf
F

The function f is the fitness score of gene .ix This calculation is shown in bold in the listing

in figure 8.36. Since the highest fitness score is 1000, the maximum value of F is 0. This

value is then weighted according to the following function:

 .Lew iF

i

The value of L is the least value of
iF

e minus a certain small value, weightedFreqBottom

(in the MutationParameters class). If this is negative, then L is zero. This “normalizes”

the weightings so that the lowest weighting is less than weightedFreqBottom.

 /*******

 Find the frequencies to use for selection using weighted sum

 *******/

 private double findFrequenciesForWeightedSum(int

numToChooseFrom)throws SuspensionTestException{

 //*** This determines the relative weights of the positive and

non-positive genes

 double

weightedFreqBottom=parameters.getMutationParameters().getWeightedFreqBottom

();

 //**** Perform the transformation of fitness values

 //**** First find exp(-1+fit/1000) and least

 double least=300, sumFrequencies=0;

 //System.out.println("numToChooseFrom="+numToChooseFrom);

 for (int i=0; i<numToChooseFrom; i++){

 Gene gene = (Gene) currentGeneration.getGene(i);

 double fit = gene.getFitnessData().weightedFitness();

 double F=Math.exp(-1d+fit/1000d);

 gene.setFrequency(F);

 if (F<least) least=F;

 sumFrequencies+=F;

 }// for

 //**** Find the bottom, and subtract from weights - if >0

 double bottom=least-weightedFreqBottom;

 //System.out.println("

least="+MakeNumberString.DoubleToString(least,2)+"

bottom="+MakeNumberString.DoubleToString(bottom,2));

 if (bottom>0){

 sumFrequencies=0;

 for (int i=0; i<numToChooseFrom; i++){

 Gene gene = (Gene) currentGeneration.getGene(i);

 double F=gene.getFrequency();

 F=F-bottom;

 sumFrequencies+=F;

 gene.setFrequency(F);

 }

 }

 //*** show results

436

 //showFrequencies(numToChooseFrom);

 //*** return the sum of the frequencies

 //System.out.println("sumFrequencies="+sumFrequencies);

 return sumFrequencies;

 }

Figure 8.36 Code Listing for Frequency Weighting Calculations for Weighted Sum Method

In the case of Pareto optimization the calculation of weightings is based on a factor, F, which

is simply calculated as,

 ,
1)(

1

ii
xdom

F

where)(ixdom is the number of times that a gene is dominated by other genes. A value, L is

found, which results by subtracting weightedFreqBottom from the weight of the least

scoring gene. If this is negative, then L is zero:

 0,minmax BFL i
i

where B represents weightedFreqBottom. The probability weightings are then calculated

as,

 .LFw ii

After this, if the rattlespace or the jerk factor is negative, the weighting is further discounted.

The complete code for the calculations of the Pareto weightings can be found in

Breeder.findFrequenciesUsingPareto().

Except for a small number of highly scoring genes, most genes in a generation are chosen.

(Note that the number of genes in the next generation may be larger or smaller than the

number of genes in the previous.) The line that determines this number of genes chosen using

elitism is shown in bold in figure 8.37.

 /**************************

 Main control routine for

 SELECTION, MUTATION, and CROSSOVER

 This routine takes a Generation as a parameter

 and returns a new generation with selection applied,

 followed by mutation and crossover.

 **************************/

 public Generation breed(Generation currentGeneration)

 throws SuspensionTestException{

 //********* SELECTION

 this.currentGeneration = currentGeneration;

 // Set up data that will hold the new generation

437

 Generation tempGeneration=

 new Generation(currentGeneration, parameters,

version);

 // Number in the old generation

 int numInOldGeneration=currentGeneration.getNumGenes();

 double ProportionMustInclude=

 parameters.getMutationParameters().getProportionKept();

 int mustInclude=(int)

 (ProportionMustInclude*numInOldGeneration);

 /**

 The number in the new generation

 may be different from the number in the previous.

 This number is a parameter in MutationParameters

 **/

 numGenes=

 parameters.getMutationParameters().getNumberPerGeneration();

 //System.out.println("***** mustInclude="+mustInclude+"

numGenes="+numGenes+" numInOldGeneration="+numInOldGeneration);

 //** Form frequency weightings for genes.

 // This calls a method that forms different weightings

depending on whether

 // Pareto optimization or weighted sums are used.

 findFrequencies(numInOldGeneration);

 //** Make a new generation

 /**

 Perform SELECTION.

 This calls a routine that does the selection,

 either Pareto or weighted sum.

 mustInclude = number that must be copied, for elitism

 numGenes = number of genes in the next generation

 tempGeneration = new Generation - formed from old

 **/

 randomSelectionUsingFrequencies(mustInclude, numGenes,

tempGeneration);

 //********* MUTATION

 doMutations(tempGeneration);

 //********* CROSSOVER

 doCrossovers(tempGeneration);

 //tempGeneration.printCurrentGeneration();

 return tempGeneration;

 }

Figure 8.37 Main Calling Routine for the Breeding Processes: selection, mutation and crossover

The routine that calculates the probability weightings is, findFrequencies(), and the line

that calls this method has been highlighted in figure 8.37. This calls the methods to create the

frequencies as already explained.

The routine shown in figure 8.37 also calls the procedure to perform selection,

randomSelectionUsingFrequencies(). The listing for this routine is shown in figure

8.38. This begins by copying the highest performing genes directly. The number of genes

copied is given by the variable, mustInclude. These are simply copied from the highest

438

scoring genes in the previous generation. Next, the weights are summed, and a cumulative

sum is placed in an array. This assists with the selection process. A uniform random variable

is generated and is used for selecting an element from the array corresponding to equation

8.16. This code has been tested using test routines to display cumulative sums and selected

values to the “DOS window”.

439

 /**

 Random Selection using frequencies.

 mustInclude is number from top that must be included - for

elitism

 numGenes, is the number in the new generation

 **/

 private void randomSelectionUsingFrequencies(int mustInclude,int

numGenes,

 Generation

tempGeneration)throws SuspensionTestException{

 //System.out.println("Current Generation:");

currentGeneration.printCurrentGeneration();

 //** Copy some of the highest performing genes directly.

 // This copies mustInclude number

 int numInGen=currentGeneration.getNumGenes();

 //System.out.println("numInGen="+numInGen+ "

mustInclude="+mustInclude);

 for (int i=0; i<mustInclude; i++){

 Gene gene=currentGeneration.getGene(i);

 Gene gene2=GenomeConverter.copy(gene);

 if (i<mustInclude) tempGeneration.addGene(gene2);

 }

 //**** Find cumulative sums and total sum.

 // The cumulative sum is placed into an array: cumulative.

 double[] cumulative=new double[numInGen];

 double totalSum=0;

 for (int i=0; i<numInGen; i++){

 double freq=currentGeneration.getGene(i).getFrequency();

 totalSum+=freq;

 cumulative[i]=totalSum;

 //System.out.println("i:"+i+" freq="+freq+"

totalSum="+totalSum);

 }

 int size=cumulative.length;

 //showCumulative(cumulative);

 //**** Select for all

 for (int i=mustInclude; i<numGenes; i++){

 //**** Find a random number within 0 to totalSum

 double r=totalSum*Math.random();

 //**** Binary search for the relevant gene number

 int geneNum=binarySearch(r, cumulative, size);

 //System.out.println("r="+r+" geneNum="+geneNum);

 //**** Add the gene to tempGeneration

 Gene

gene=GenomeConverter.copy(currentGeneration.getGene(geneNum));

 //System.out.println("\ncurrentGeneration.getGene("

+geneNum+ ")=" + currentGeneration.getGene(geneNum).toFullString());

 gene.isFitnessDetermined();

 tempGeneration.addGene(gene);

 }

 //System.out.println("Next Generation:");

tempGeneration.printCurrentGeneration();

 }

Figure 8.38 Main Selection Routine

440

8.22. Calibration of Digital Accelerometer

The most difficult factor to measure accurately is “chassis” movement, and this factor is

crucial in some control algorithms. The potentiometer only measures the relative movement

of the “chassis” and “wheel”. In an attempt to improve the accuracy of the measure of chassis

movement it was decided to add a digital accelerometer to the rig.

An ADXL345 was chosen. These are extremely small and a “breakout board” made the

soldering and experimentation feasible (SEN-09156 from sparkfun electronics,

http://www.sparkfun.com/commerce/product_info.php?products_id=9156). The breakout

board is shown in figure 8.39. It is somewhat odd that despite the sophistication of these

devices, much of the code found for their application does not perform full error trapping

and/or uses timing loops rather than flag reading to determine timing. While code for the

Arduino could be found, this did not work on the ATmega644 on the STK500 development

board. Code was eventually developed that successfully communicated with the

accelerometer. (Refer to the word file “AVR Notes.doc” in the directory

PhD\Experiment\Electronics\Atmel AVR\My AVR Notes).

Figure 8.39 Accelerometer Breakout Board

http://www.sparkfun.com/commerce/product_info.php?products_id=9156

441

Digital communication was performed using the I
2
C protocol. I

2
C stands for “Inter-Integrated

Circuit” which is an industry standard developed by Philips. The AVR version is called the

“2-wire Serial Interface” (TWI). I
2
C is designed for short communication on a single board.

Long wires connected to sensors off-board may malfunction due to signal degradation. It was

found that the board would not run at 400 Hz with a 1.5 m ribbon used between the MCU and

the accelerometer. It was decided therefore to use a high-frequency video cable for the

connection and surround the accelerometer with a Faraday cage, as done with the

potentiometer above.

The ADXL345 is a 3 V device and therefore presents problems when connecting to a 5 V

MCU. Devices that are perfect for this purpose are “bi-directional level shifters”. These

devices allow the MCU to run at 5 V.

A small program was developed to test the statistical properties of the ADXL readings. The

main factor affecting the reading is the supply voltage to the accelerometer. If this is not

clean the reading will not be clean. When an off-board box was used for readings the

readings consistently had a high standard deviation, of about 5 (with a sample of size 1,000).

When a large capacitor was placed across the 3 V to the board, this reduced to about 1.2. The

problem, of course, is that a large capacitor takes a long time to charge up. (A 10 µF

capacitor was also placed across the 5 V power pins of the analog accelerometer.) The device

ran successfully on the rig with a connecting line of about 5 m at 100 kHz. The device was

placed on the rig at the end of the upper arm, as shown in figure 8.40.

Figure 8.40 ADXL345 Housed on the Rig

442

For this setup a new, slightly more accurate potentiometer was used and the approximate

value for in equation 6.1 with the new setup is,

 01690.0D m/V.

(Refer to the data file Volts Distance Mass Digital Accelerometer.xlsx in the folder

PhD\Experiment\Rig.)

The input ADC and PWM conversion equations are still given as in equation 6.2 and

equation 6.5 with the same conversion factors (see equation 6.3 and equation 6.6).

The two accelerometers need to be calibrated. The same steps as used before for the analog

accelerometer can be used again to calibrate both accelerometers. The same accelerometer

experiments as performed in section 6.3.5 were carried out using the digital accelerometer

output converted to a voltage so that the data could be read using the digital oscilloscope.

This produces the following version of the equation for conversion of the accelerometer

output,

),()(00 vxvvv DPDaccDA

where D is the digital accelerometer conversion factor and Dx is the digital accelerometer

output value . By visual alignment of graphs (using data file DigitalAcc01.txt) a

conversion factor of 205.7 was found, while the calculated average of the proportions was

198. Thus a conversion factor of 200D was used. From visual examination of the graphs

the accelerometer latency seems to be very roughly of the order of 10 ms, and is comparable

to the latency of the analog accelerometer. This verifies at least the accelerometers against

each other.

As a check on this value, the conversion factor was calibrated against the new distance

measure (by multiplying by
D /), giving ,610 and the acceleration value from the

analog accelerometer was compared with the digital. The two signals were superimposed on

the oscilloscope, verifying the calibration of both accelerometers (as shown in figure 8.41,

with slight offset to clarify graphs).

443

Figure 8.41 Analog Accelerometer (Blue) Compared with Digital (Red)

As described in section 6.3.6, the effective spring rate can be estimated from a graph of

acceleration minus a constant times velocity versus velocity. The rate that allows the graph to

most closely resemble a straight line is an estimate of the spring rate (in this case, the spring

rate times the factor used to keep the acceleration graph within the 5 V range). The effective

spring rate is estimated at 205 s
-1

.

In the end it was determined that the digital accelerometer did not improve on the accuracy

enough, and introduced too much extra latency to warrant inclusion in the final test rig.

Perhaps if the digital accelerometer was on the same circuit board and hence able to run

faster, or if a faster communication protocol is used, the digital accelerometer might have

warranted inclusion. No doubt these properties will improve over time and digital

accelerometer readings will be superior but, in this experiment, the digital accelerometer was

dropped for later test runs.

One benefit, however, of the digital accelerometer is the verification of the analog

accelerometer by comparing signals produced. The output voltage to the damper however

must be scaled according to the voltage vs distance factor, of equation 6.1, because of the

new potentiometer, and the inverse function needs to be reworked.

444

8.23. Physical Experiment Components and Some Code

Figure 8.42 Peter Tkatchyk with the Physical Rig

Figure 8.43 RD-1005-3 Damper

445

Figure 8.44 Lord Controller, RD-3002-0 (Lord, 2008)

Figure 8.45 PoScope Input Hardware

446

Figure 8.46 Shielding with XLR Cable

float prevVoltage=0;

void KalmanVoltage(double x){

 if (firstTimeV){

 Vav=x; prevVoltage=x;

 Vav0=x; // or could use Vav0=x; assuming equilibrium at

start

 checkDistVoltage();

 firstTimeV=0;

 }else{

 Vav=alphaV*x+(1-alphaV)*(Vav+VelVAv);

 Vav0=alphaV0*x+(1-alphaV0)*Vav0;

 prevVoltage=x;

 }

}

void KalmanVel(double x){

 if (firstTimeVel){

 VelVAv=x;

 firstTimeVel=0;

 }else{

 // Combine measure, x, with prediction based on near

constant acceleration

 // Acceleration adjustment - as per Kalman filter

 VelVAv=alphaVelV*x+(1-alphaVelV)*(VelVAv+(XAcc-

XAcc0)*step*530.0*2.0*step);

 }

}

void KalmanAcc(double x){

 if (firstTimeAcc){

 XAcc=x;

 XAcc0=x; //(4*x+XAcc0)/5; // or could use XAcc0=x;

assuming equilibrium at start

 checkAccVoltage();

 firstTimeAcc=0;

447

 }else{

 XAcc=alphaAcc*x+(1-alphaAcc)*XAcc;

 XAcc0=alphaAcc0*x+(1-alphaAcc0)*XAcc0;

 }

}

Figure 8.47 On-Board State-Estimation Code

 //***** Velocity Test **************

 //***** Comment out in final version **************

 // Note that this overwrites the voltage measure - Vav

 // This code must be commented out in the final version

 Vav=prevVoltage+VavStep;

 if (Vav>4000){

 Vav=4000;

 VavStep=-fabs(VavStep);

 }

 if (Vav<100){

 Vav=100;

 VavStep=fabs(VavStep);

 }

 prevVoltage=Vav;

 //****************************

Figure 8.48 Code for Generating Triangle Wave

 private static double damperInverseInterceptInt=0.022397,

damperInverseInterceptSlope=-0.000169615,

 damperInverseSlopeInt=0.00026872, damperInverseSlopeSlope=6.22226E-5;

 public int DamperMode=0;

 /**

 * Finds the n value for a given velocity and acceleration

 * Using simply a linear approximation

 *

 * Note that the class attribute, DamperMode,

 * returns the condition:

 * 0 in linear portion

 * -1 outside passivity constraint

 * 1 acceleration cannot be reached - too large

 * least value n to supply closest available acceleration is

used

 * 2 acceleration cannot be reached - too small

 * output is zero - some damping force is supplied anyway

 * @param acc input acceleration

 * @param vel input rate of change of voltage

 * @return PWM value

 */

 private double damperInverse01(double acc, double vel){

 DamperMode=0;

 if (acc>0){

 if (vel<0)DamperMode=-1;

 }else{

 if (acc<0){

 if (vel>0){

 DamperMode=-1;

 }else{

448

 acc=-acc; vel=-vel;

 }

 }

 }

 double num=0;

 if (DamperMode==0){

 double

intercept=damperInverseInterceptInt+damperInverseInterceptSlope*vel;

 double

slope=damperInverseSlopeInt+damperInverseSlopeSlope*vel;

 double accComp=C_E*vel;

 if (acc>accComp) {

 DamperMode=1;

 acc=accComp; // mode 1

 }

 num=(acc-intercept)/slope; // inverse - slope is never 0

if vel positive

 if (num<0){

 DamperMode=2;

 num=0; // mode 2

 }

 }

 return num;

 }

Figure 8.49 Damper Inverse Function

8.24. AVR C Code for Crossover Removal

The following shows the AVR C code for the crossover removal, as discussed in section

6.5.2.

/**

Ian Storey

Handles crossover jerk reduction

copyright 26-Jan-2011

**/

 double cMax=50; //spring constant was 35

 double JERK_CROSS=4000, ALPHA=2;

 /*********************

 Find the jerk required by crossover reduction

 Finds TC, JX

 *********************/

 double crossoverLimitAcceleration(double targetDamperAcc, double sv,

double sa, double prevDamperAcc){

 double outputAcc=targetDamperAcc;

 //***** Calculate TC and TX

 double TX=0;

 if (sa!=0){

 TX=-sv/(ALPHA*sa);

449

 }

 if (TX>0){ // There IS a damger of impending crossover

 double JX=-prevDamperAcc/TX; // jerk needed for crossover

 //*** Damper acc <0

 double jerk=(targetDamperAcc-prevDamperAcc)*invStep;

 if (JERK_CROSS<=JX){

 if (jerk<JX){

 jerk=JX;

 outputAcc=prevDamperAcc+jerk*step;

 //printf("."); // for testing

 }

 }

 //*** Damper acc >0

 if (-JERK_CROSS>=JX){

 if (jerk>JX){

 jerk=JX;

 outputAcc=prevDamperAcc+jerk*step;

 //printf("*"); // for testing

 }

 }

 }

 return outputAcc;

 }

 double prevSpringAcc;

 //***********************

 // public jerkForStep

 //double prevS=0, prevSV=0;

 double accWithCrossoverReduction(double sv, double sa, double

prevDamperAcc, double targetDamperAcc){

 double jerk=0;

 response = 0;

 //**** This force must be opposite in sign to stroke velocity

 // in order to lie inside the passivity constraint

 if ((targetDamperAcc>=0 && sv>=0) || (targetDamperAcc<=0 &&

sv<=0)){

 // Target is outside outside passivity constraint

 // just output zero force

 targetDamperAcc=0;

 }else{

 //**** find the crossover jerk

 targetDamperAcc=crossoverLimitAcceleration(targetDamperAcc, sv, sa,

prevDamperAcc);

 if ((targetDamperAcc>0 && sv>=0) || (targetDamperAcc<0 &&

sv<=0)){

 // outside passivity constraint

 targetDamperAcc=0;

 }else{

 // check inside range of maximum damping rate

 // this is a separate crossover removal that can be

dispensed wth

 if (cMax!=0){

 double maxDampAcc=-cMax*sv;

 // the following works because

 // targetDamperAcc and sv are of opposite

sign,

 // therefore targetDamperAcc and maxDampAcc

are of the same sign

 if (fabs(targetDamperAcc)>fabs(maxDampAcc)){

450

 targetDamperAcc=maxDampAcc;

 }

 }

 }

 }

 return targetDamperAcc;

 }

451

References

Ahmadian, M. and Simon, D. E. Improving Roll Stability of Vehicles with High Center of

Gravity by using Magneto-Rheological Dampers, in 2002 International Mechanical

Engineers Conference. 2002. New Orleans, Louisiana.

Ahmadian, M., Song, X. and Southward, S. C. (2004), No-Jerk Skyhook Control Methods for

Semiactive Suspensions, Journal of Vibration and Acoustics, 126(4), pp.580-4.

Ahmadian, M. and Vahdati, N. An Analytical Evaluation of the Transient Dynamics of

Semiactive Dampers, in International Mechanical Engineers Conference. 2003.

Washington, DC.

Ahmadian, M. and Vahdati, N. (2006), Transient Dynamics of Semiactive Suspensions with

Hybrid Control, Journal Of Intelligent Material Systems And Structures, 17, pp.145-

53.

Ahn, K. K., Truong, D. Q. and Islam, M. A. (2009), Modeling of a Magneto-rheological

(MR) Fluid Damper using a Self Tuning Fuzzy Mechanism, Journal of Mechanical

Science and Technology, 23(5), pp.1485-99.

Arechavaleta, G., Laumond, J.-P., Hicheur, H. and Berthoz, A. (2008), An Optimality

Principle Governing Human Walking, IEEE Transactions on Control Systems

Technology, 24(1), pp.6-14.

Ashari, A. E. Sliding-Mode Control of Active Suspension Systems: Unit Vector Approach, in

IEEE International Conference on Control Applications. 2004. Taipei, Taiwan.

Atray, V. S. and Roschke, P. N. Design, fabrication, testing, and fuzzy modeling of a large

magnetorheological damper for vibration control in a railcar, in Rail Conference,

2003. Proceedings of the 2003 IEEE/ASME Joint. 2003.

Barak, P. (1991), Magic Numbers in Design of Duspensions for Passenger Cars, SAE

Transactions, 100(6), pp.1698-733.

Barnett, R., Cox, S. and O'Cull, L. (2006) Embedded C Programming and the Atmel AVR,

Thomson Delmar Learning., New York.

Bastow, D., Howard, G. and Whitehead, J. P. (2004) Car Suspension and Handling, SAE

international, Warrendale, PA, USA.

Bellman, R. (1966) Adaptive Control Processes: A Guided Tour, Princeton University Press,

Princeton, New Jersey.

Bellman, R. E. (2010) Dynamic Programming, Princeton University Press, 41 William Street,

Princeton, New Jersey.

Bellman, R. E. and Dreyfus, S. E. (1962) Applied Dynamic Programming, Princeton

University Press, Princeton.

Ben-Itzhak, S. and Karniel, A. (2008), Minimum Acceleration Criterion with Constraints

Implies Bang-Bang Control as an Underlying Principle for Optimal Trajectories of

Arm Reaching Movements, Neural Computation, 20(3), pp.779-812.

Best, M. C., Newton, A. P. and Tuplin, S. (2007), Parametric Identification of Vehicle

Handling using an Extended Kalman Filter, International Journal of Vehicle

Autonomous Systems, 5(3-4), pp.256 - 73.

Blijleven, R. (2010) On the Buses: Alternatives to USB and I2C, Elektor.

452

Bose (2007) The Bose Suspension System: Resolving the Conflict between Comfort and

Control, Bose,

http://www.bose.com/controller?url=/automotive/bose_suspension/index.jsp,

26/May/2007, 2007.

Bourmistrova, A., Storey , I and Subic, A. Multiobjective Optimisation of Active and Semi-

Active Suspension Systems with Application of Evolutionary Algorithm, in

MODSIM05 16th Congress of the Modelling and Simulation Society of Australia and

New Zealand. 2005. Melbourne.

Breese, D. G. and Gordaninejad, F. (2003), Semi-Active, Fail-Safe Magneto-Rheological

Fuid Dampers for Mountain Bicycles, International Journal of Vehicle Design, 33(1-

3), pp.128-38.

Brinker, D., Wagner, J. T. and Ravenna, P. Metaldyne Suspension System, in Fisita, 2006.

2006. Yokohama, Japan.

Bui, L. T., Abbass, H. A. and Essam, D. Fitness Inheritance for Noisy Evolutionary Multi-

Objective Optimization, in Genetic and Evolutionary Computing Conference. 2005.

Washington DC, USA.

Burton, A. W. (1993), Active Vibration Control in Automotive Chassis Systems, Computing

& Control Engineering Journal, 4(5), pp.225-32.

Butz, T. and von Stryk, O. (2002), Modelling and Simulation of Electro- and

Magnetorheological Fluid Dampers, ZAMM - Journal of Applied Mathematics &

Mechanics, 82(1), pp.3-20.

Camino, J. E., Zampieri, D. E. and Peres, P. L. D. Design of a Vehicular Suspension

Controller by Static Output Feedback, in American Control Conference. 1999. San

Diego, California.

Cao, B., Dodds, G. I. and Irwin, G. W. Constrained Time-efficient and Smooth Cubic Spline

Trajectory Generation for Industrial Robots, in Control Theory and Applications.

1997. IEEE.

Caponetto, R., Diamante, O., Fargione, G., Ristano, A. and Tringali, D. (2003), A Soft

Computing Approach to Fuzzy Sky-Hook Control of SemiActive Suspension, IEEE

Transactions on Control Systems Technology, 11(No. 6).

car-accidents.com (2011) Rollover Accidents, http://www.car-accidents.com/rollover-auto-

accidents.html, 21 April, 2011.

Chang, Shih-Lang , Wu, C.-l. and Lee, D. T. A Muscular-Like Compliance Control for Active

Vehicle Suspension, in 1999 EEE International Conference on Robotics &

Automation. 1999. Detroit, Michigan.

Chang, B.-H. and Hori, Y. (2006), Trajectory Design Considering Derivative of Jerk for

Head-Positioning of Disk Drive System With Mechanical Vibration, IEEE/ASME

TRANSACTIONS ON MECHATRONICS, 2(3).

Cho, Y., Song, B. S. and Yi, K. (1999), A Road-Adaptive Control Law for Semi-Active

Suspensions, KSME International Journal, 13(10), pp.667-76.

Cole, D. J. (2001), Fundamental Issues in Suspension Design for Heavy Road Vehicles,

Vehicle System Dynamics, 35(4-5), pp.319-60.

Constantinescu, D. and Croft, E. A. (2000), Smooth and Time-Optimal Trajectory Planning

for Industrial Manipulators along Specified Paths, Journal of Robotic Systems, 17(5),

pp.233-49.

Crosby, M. J. and Karnopp, D. C. (1973), The Active Damper - A New Concept for Shock

and Vibration Control, The Shock and Vibration Bulletin, 43(3), pp.119-33.

Deb, K. (2005) Practical optimization using evolutionary methodsKanGAL.

http://www.bose.com/controller?url=/automotive/bose_suspension/index.jsp
http://www.car-accidents.com/rollover-auto-accidents.html
http://www.car-accidents.com/rollover-auto-accidents.html

453

Deb, K. and Saxena, V. Car Suspension Design for Comfort Using Genetic Algorithm., in 7th

International Conference on Genetic Algorithms. 1997. East Lansing, MI, USA.

Morgan Kaufmann.

Deprez, K., Maertens, K. and Ramon, H. Comfort improvement by passive and semi-active

hydropneumatic suspension using global optimization technique, in American Control

Conference, 2002. Proceedings of the 2002. 2002.

Dick Smith Electronics Limited (2006) Dick Smith Annual Catalogue, Chullora, NSW.

Distefano, J. J. I., Stubberud, A. R. and Williams, I. J. (1997) Feedback and Control Systems,

Schaum's Outline of Theory and ProblemsMcGraw-Hill, Sydney.

Dixit, R. K. and Buckner, G. D. (2005), Sliding Mode Observation and Control for

Semiactive Vehicle Suspensions, Vehicle System Dynamics, 43(2), pp.83-105.

Dixon, J. C. (2008) The Shock Absorber Handbook.

Donahue, M. D. (2001) Implementation of an Active Suspension, Preview Controller for

Improved Ride Comfort, Department of Mechanical Engineering, University of

California at Berkeley.

Dorf, R. C. and Bishop, R. H. (2005) Modern Control Systems, Pearson Pentice Hall, Upper

Saddle River, NJ 07458.

DOTARS (2004) Certification of Road-Friendly Suspension Systems, Australian

Government, Department of Transport and Regional Services,

http://www.infrastructure.gov.au/roads/vehicle_regulation/bulletin/pdf/vsb_11.pdf, 10

Aug 05, 2005.

Dumitrescu, D., Lazzerini, B., Jain, L. C. and Dumitrescu, A. (2000) Evolutionary

Computation, CRC Press.

Dyke, S. J., Spencer, B. F., Sain, M. K. and Carlson, J. D. (1996), Modeling and Control of

Magnetorheological Dampers for Seismic Response Reduction, Smart Materials and

Structures, 4, pp.565-75.

Dyke, S. J., Spencer, B. F., Sain, M. K. and Carlson, J. D. (1998), An Experimental Study of

MR Dampers for Seismic Protection, Smart Materials and Structures, 7, pp.693-703.

Ebau, M., Giua, A., Seatzu, C. and Usai, G. Semiactive suspension design taking into account

the actuator delay, in Decision and Control, 2001. Proceedings of the 40th IEEE

Conference on. 2001.

Edwards, L. (2005) Open-Source Robotics and Process Control Cookbook Newnes-Elsevier,

Burlington, MA 01803, USA.

Elbeheiry, E. M. and Karnopp, D. C. (1996), Optimal Control of Vehicle Random Vibration

with Constrained Suspension Deflection, Journal of Sound and Vibration, 189(5),

pp.547-64.

Els, P. S., Uys, P. E., Snyman, J. A. and Thoresson, M. J. (2005), Gradient-Based

Approximation Methods Applied to the Optimal Design of Vehicle Suspension

Systems Using Computational Models with Severe Inherent Noise, Mathematical

and Computer Modelling, 43, pp.787-801.

Ericksen, E. O. and Gordaninejad, F. (2003), A Magneto-rheological Fluid Shock Absorber

for an Off-road Motorcycle, International Journal of Vehicle Design, 33(1-3), pp.139-

52.

Fathy, H. K., Bortoff, S. A., Copeland, G. S., Papalambros, P. Y. and Ulsoy, A. G. Nested

Optimization of an Elevator and its Gain-Scheduled LQG Controller, in ASME

International Mechanical Engineering Congress and Exposition. 2003a. Washington,

DC, USA.

Fathy, H. K., Papalambros, P. Y. and Ulsoy, A. G. Integrated Plant, Observer and Controller

Optimization with Application to Combined Passive/Active Automotive Suspensions,

in Proceedings of the 2003 ASME. 2003b. Washington, D.C., USA.

http://www.infrastructure.gov.au/roads/vehicle_regulation/bulletin/pdf/vsb_11.pdf

454

Flash, T. and Hogan, N. (1985), The Coordination of Arm Movements: an Experimentally

Confirmed Mathematical Model, J. Neurosci., 5(7), pp.1688-703.

Fleming, W. J. (2001), Overview of Automotive Sensors, Sensors Journal, IEEE, 1(4),

pp.296-308.

Fonseca, C. D. (1995) Multiobjective Genetic Algorithms with Application to Control

Engineering Problems, Department of Automatic Control and Systems

EngineeringThe University of Sheffield, Sheffield, p. 182.

Fonseca, C. D. and Fleming, P. J. Genetic Algorithms for Multiobjective Optimization:

Formulation, Discussion and Generalization, in Genetic Algorithms. 1993. San

Mateo, CA.

Galkin, I. (2006) Crash Introduction to Artificial Neural Networks,

http://ulcar.uml.edu/~iag/CS/Intro-to-ANN.html, 17-Jan-2006, 2006.

Gandhi, F., Wang, K. W. and Xia, L. (2001), Magnetorheological Fluid Damper Feedback

Linearization Control for Helicopter Rotor Application, Smart Materials and

Structures, 10, pp.96-103.

Gao, B., Darling, J., Tilley, D. and Williams, R. A. Modelling and Simulation of a Semi-

Active Suspension System, in 18th International Conference on Systems Engineering,

ICSE 2006. 2006. Coventry University.

Gehm, R. (2001), Delphi Improves Cadillac's Ride, Automotive Engineering International,

109(10), pp.32-3.

Gen, M. and Cheng, R. A Survey of Penalty Techniques in Genetic Algorithms, in

Evolutionary Computation, 1996., Proceedings of IEEE International Conference on.

1996.

Giorgetti, N., Bemporad, A., Tseng, H. E. and Hrovat, D. (2006), Hybrid Model Predictive

Control Application towards Optimal Semi-Active Suspension, International Journal

of Control, 79(5), pp.521-33.

Giua, A., Melas, M. and Seatzu, C. Design of a control law for a semiactive suspension

system using a solenoid valve damper, in Control Applications, 2004. Proceedings of

the 2004 IEEE International Conference on. 2004.

Giua, A., Seatzu, C. and Usai, G. (1999), Semiactive Suspension Design with an Optimal

Gain Switching Target, Vehicle System Dynamics, 31(4), pp.213-32.

Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison Wesley Publishing Company, Inc., Reading, Massachusetts.

Goncalves, F. D. and Ahmadian, M. In Search of a Suitable Control Policy for Intelligent

Vehicle Suspensions, in ASME IMECE 2002: Intelligent Systems - III. 2002. New

Orleans, Louisiana.

Goncalves, F. D., Koo, J. and Ahmadian, M. Experimental Approach for Finding the

Response Time of MR Dampers for Vehicle Applications, in ASME Design

Engineering Technical Conferences and Computers and Information in Engineering

Conference. 2003. Chicago, Illinois USA.

Google (2011) Audi TT Roadster,

http://www.google.com.au/imgres?imgurl=http://motorcarhome.com/wp-

content/uploads/2010/05/audi-

TT.jpg&imgrefurl=http://www.motorcarhome.com/2010/05/24/new-2010-audi-tt-

roadster-interior-and-exterior-design-

variations/&h=480&w=640&sz=57&tbnid=VYWyDa89MJB5JM:&tbnh=103&tbnw

=137&prev=/search%3Fq%3DAudi%2BTT%2BRoadster%26tbm%3Disch%26tbo%

3Du&zoom=1&q=Audi+TT+Roadster&usg=__o19aB0FIUn0WZcJEMlZpMv9hgyE

=&sa=X&ei=4_CvTY6eHpGmugOso5yHBw&ved=0CC0Q9QEwAQ, 21 April,

2011.

http://ulcar.uml.edu/~iag/CS/Intro-to-ANN.html
http://www.google.com.au/imgres?imgurl=http://motorcarhome.com/wp-content/uploads/2010/05/audi-TT.jpg&imgrefurl=http://www.motorcarhome.com/2010/05/24/new-2010-audi-tt-roadster-interior-and-exterior-design-variations/&h=480&w=640&sz=57&tbnid=VYWyDa89MJB5JM:&tbnh=103&tbnw=137&prev=/search%3Fq%3DAudi%2BTT%2BRoadster%26tbm%3Disch%26tbo%3Du&zoom=1&q=Audi+TT+Roadster&usg=__o19aB0FIUn0WZcJEMlZpMv9hgyE=&sa=X&ei=4_CvTY6eHpGmugOso5yHBw&ved=0CC0Q9QEwAQ
http://www.google.com.au/imgres?imgurl=http://motorcarhome.com/wp-content/uploads/2010/05/audi-TT.jpg&imgrefurl=http://www.motorcarhome.com/2010/05/24/new-2010-audi-tt-roadster-interior-and-exterior-design-variations/&h=480&w=640&sz=57&tbnid=VYWyDa89MJB5JM:&tbnh=103&tbnw=137&prev=/search%3Fq%3DAudi%2BTT%2BRoadster%26tbm%3Disch%26tbo%3Du&zoom=1&q=Audi+TT+Roadster&usg=__o19aB0FIUn0WZcJEMlZpMv9hgyE=&sa=X&ei=4_CvTY6eHpGmugOso5yHBw&ved=0CC0Q9QEwAQ
http://www.google.com.au/imgres?imgurl=http://motorcarhome.com/wp-content/uploads/2010/05/audi-TT.jpg&imgrefurl=http://www.motorcarhome.com/2010/05/24/new-2010-audi-tt-roadster-interior-and-exterior-design-variations/&h=480&w=640&sz=57&tbnid=VYWyDa89MJB5JM:&tbnh=103&tbnw=137&prev=/search%3Fq%3DAudi%2BTT%2BRoadster%26tbm%3Disch%26tbo%3Du&zoom=1&q=Audi+TT+Roadster&usg=__o19aB0FIUn0WZcJEMlZpMv9hgyE=&sa=X&ei=4_CvTY6eHpGmugOso5yHBw&ved=0CC0Q9QEwAQ
http://www.google.com.au/imgres?imgurl=http://motorcarhome.com/wp-content/uploads/2010/05/audi-TT.jpg&imgrefurl=http://www.motorcarhome.com/2010/05/24/new-2010-audi-tt-roadster-interior-and-exterior-design-variations/&h=480&w=640&sz=57&tbnid=VYWyDa89MJB5JM:&tbnh=103&tbnw=137&prev=/search%3Fq%3DAudi%2BTT%2BRoadster%26tbm%3Disch%26tbo%3Du&zoom=1&q=Audi+TT+Roadster&usg=__o19aB0FIUn0WZcJEMlZpMv9hgyE=&sa=X&ei=4_CvTY6eHpGmugOso5yHBw&ved=0CC0Q9QEwAQ
http://www.google.com.au/imgres?imgurl=http://motorcarhome.com/wp-content/uploads/2010/05/audi-TT.jpg&imgrefurl=http://www.motorcarhome.com/2010/05/24/new-2010-audi-tt-roadster-interior-and-exterior-design-variations/&h=480&w=640&sz=57&tbnid=VYWyDa89MJB5JM:&tbnh=103&tbnw=137&prev=/search%3Fq%3DAudi%2BTT%2BRoadster%26tbm%3Disch%26tbo%3Du&zoom=1&q=Audi+TT+Roadster&usg=__o19aB0FIUn0WZcJEMlZpMv9hgyE=&sa=X&ei=4_CvTY6eHpGmugOso5yHBw&ved=0CC0Q9QEwAQ
http://www.google.com.au/imgres?imgurl=http://motorcarhome.com/wp-content/uploads/2010/05/audi-TT.jpg&imgrefurl=http://www.motorcarhome.com/2010/05/24/new-2010-audi-tt-roadster-interior-and-exterior-design-variations/&h=480&w=640&sz=57&tbnid=VYWyDa89MJB5JM:&tbnh=103&tbnw=137&prev=/search%3Fq%3DAudi%2BTT%2BRoadster%26tbm%3Disch%26tbo%3Du&zoom=1&q=Audi+TT+Roadster&usg=__o19aB0FIUn0WZcJEMlZpMv9hgyE=&sa=X&ei=4_CvTY6eHpGmugOso5yHBw&ved=0CC0Q9QEwAQ
http://www.google.com.au/imgres?imgurl=http://motorcarhome.com/wp-content/uploads/2010/05/audi-TT.jpg&imgrefurl=http://www.motorcarhome.com/2010/05/24/new-2010-audi-tt-roadster-interior-and-exterior-design-variations/&h=480&w=640&sz=57&tbnid=VYWyDa89MJB5JM:&tbnh=103&tbnw=137&prev=/search%3Fq%3DAudi%2BTT%2BRoadster%26tbm%3Disch%26tbo%3Du&zoom=1&q=Audi+TT+Roadster&usg=__o19aB0FIUn0WZcJEMlZpMv9hgyE=&sa=X&ei=4_CvTY6eHpGmugOso5yHBw&ved=0CC0Q9QEwAQ
http://www.google.com.au/imgres?imgurl=http://motorcarhome.com/wp-content/uploads/2010/05/audi-TT.jpg&imgrefurl=http://www.motorcarhome.com/2010/05/24/new-2010-audi-tt-roadster-interior-and-exterior-design-variations/&h=480&w=640&sz=57&tbnid=VYWyDa89MJB5JM:&tbnh=103&tbnw=137&prev=/search%3Fq%3DAudi%2BTT%2BRoadster%26tbm%3Disch%26tbo%3Du&zoom=1&q=Audi+TT+Roadster&usg=__o19aB0FIUn0WZcJEMlZpMv9hgyE=&sa=X&ei=4_CvTY6eHpGmugOso5yHBw&ved=0CC0Q9QEwAQ

455

Gordaninejad, F. and Kelso, S. P. (2000), Fail-Safe Magneto-Rheological Fluid Dampers for

Off-Highway, High-Payload Vehicles, Journal of Intelligent Material Systems and

Structures, 11, pp.395-406.

Gordon, T. J. and Best, M. C. Dynamic Optimization of Nonlinear Semi-Active Suspension

Controllers, in Control '94. 1994.

Guglielmino, E., Sireteanu, T., Stammers, C. W., Ghita, G. and Giuclea, M. (2008) Semi-

active Suspension Control, Springer-Verlag, London.

Harrer, M., Pfeffer, P. E., Johnston and Nigel, D. Steering Feel - Objective Assessment of

Passenger Cars

Analysis of Steering Feel and Vehicle Handling, in Fisita, 2006. 2006. Yokohama, Japan.

Harris, C. M. (2004), Exploring Smoothness and Discontinuities in Human Motor Behaviour

with Fourier Analysis Mathematical Biosciences, 188(1), pp.99-116.

Hashiyama, T., Furuhashi, T. and Uchikawa, Y. Design of fuzzy controllers for semi-active

suspension generated through the genetic algorithm, in Artificial Neural Networks

and Expert Systems, 1995. Proceedings., Second New Zealand International Two-

Stream Conference on. 1995.

Hermes, H. and LaSalle, J. P. (1969) Functional Analysis and Time Optimal Control,

Academic Press, New York

Hicks, B., Medland, A. and Mullineux, G. (2006), The Representation and Handling of

Constraints for the Design, Analysis, and Optimization of High Speed Machinery,

Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 20(4),

pp.313-28.

Hiromatsu, T., Inaba, T. and Matsuo, Y. Development of an electromechanical active-cab-

suspension, in Industrial Electronics, Control, and Instrumentation,. 1993. Maui HI

USA.

Hönlinger, M. and Glauch, U. Mobility Analysis of a Heavy Off-Road Vehicle using a

Controlled Suspension, in 15th European ADAMS Users' Conference. 2000. Rome

Italy.

Hrovat, D. and Hubbard, M. (1981), Optimum Vehicle Suspensions Minimizing RMS

Rattlespace, Sprung-Mass Acceleration and Jerk, Journal of Dynamic Systems

Measurement & Control-Transactions of the ASME, 103(3), pp.228-36.

Hrovat, D. and Hubbard, M. (1987), Comparison between jerk optimal and acceleration

optimal vibration isolation, Journal of Sound and Vibration., 112(2), pp.201-10.

Hudha, K., Jamaluddin, H., Samin, P. M. and Rahman, R. A. (2005), Effects of Control

Techniques and Damper Constraint on the Performance of a Semi-active

Magnetorheological Damper, International Journal of Vehicle Autonomous Systems,

3, pp.230-52.

Hyvärinen, J.-P. (2004) The Improvement of Full Vehicle Semi-Active Suspension Through

Kinematical ModelFaculty of Technology, Department of Mechanical Engineering,

University of Oulu, Oulu, Finland, p. 159.

Isermann, R. (2001), Diagnosis Methods for Electronic Controlled Vehicles, Vehicle System

Dynamics, 36(2-3), pp.77-117.

Ivers, D. E. and Miller, L. R. (1991) Semiactive Suspension Technology: An Evolutionary

View, ASME.

Jalili, N. (2002), A Comparative Study and Analysis of Semi-Active Vibration-Control

Systems, Journal of Vibration and Acoustics, 124(October), pp.593-605.

Jansen, L. M. and Dyke, S. J. (2000), Semi-Active Control Strategies for MR Dampers: A

Comparative Study, ASCE Journal of Engineering Mechanics, 126(8), pp.795-803.

Johnson, E. A. and Erkus, B. Structural control with dissipative damping devices, in

American Control Conference, 2002. Proceedings of the 2002. 2002.

456

Jolly, M. R., Bender, J. W. and Carlson, J. D. (1998), Properties and Applications of

Commercial Magnetorheological Fluids, Journal of Intelligent Material Systems and

Structures, 10(1), pp.5-13.

Karkoub, M. A. and Zribi, M. (2006), Active/semi-active Suspension Control using

Magnetorheological Actuators, International Journal of Systems Science, 37(1),

pp.35-44.

Karnopp, D. C. (1995), Active and Semi-Active Vibration Isolation, Journal of Mechanical

Design, 117, pp.177-85.

Karnopp, D. C. and Crosby, M. J. (1974) System for Controlling the Transmission of Energy

between Spaced MembersLord Corporation, U.S.

Kasprzak, E. M., Lewis, K. E. and Milliken, D. L. Tire Asymmetries and Pressure Variations

in the Radt/Milliken Nondimensional Tire Model, in SAE 2006 Automotive Dynamics,

Stability and Controls Conference and Exhibition. 2006. Novi, MI, USA.

Kavanagh, R. J. and Ramanathan, R. Computer Simulation of Road Surface Profiles for a

Four-Wheeled Vehicle, in 14th conference on Winter Simulation. 1982. San Diego,

California.

Kavlicoglu, B., Gordaninejad, F., Evrensel, C. A., Cobanoglu, N., Xin, M., Heine, C., Fuchs,

A. and Korol, G. A High-Torque Magneto-Rheological Fluid Clutch, in SPIE

Conference on SmartMaterials and Structures. 2002. San Diego, USA.

Kim, H. M., Rideout, G., Papalambros, P. Y. and Stein, J. L. Analytical Target Cascading in

Automotive Vehicle Design, in 27th Design Automation Conference. 2001. Pittsburgh,

Pennsylvania.

Kirk, D. E. (1970) Optimal Control Theory: An Introduction, Prentice-Hall, Inc., Englewood

Cliffs, New Jersey.

Knothe, K. and Bohm, F. (1999), History of Stability of Railway and Road Vehicles, Vehicle

System Dynamics, 31(5-6), p.183.

Koh, K. C., Aum, H. S. and Cho, H. S. A Minimum-time Motion Planning Method based on

Phase Space Analysis, in IEEE International Conference on Control Applications.

1999. Hawai’i, USA IEEE.

Koo, J.-H., Ahmadian, M., Setareh, M. and Murray, T. M. Experimental Dynamic Analysis of

Magneto-Rheological Tuned Vibration Absorbers, in ASME 2003 Design Engineering

Technical Conferences and Computers and Information in Engineering Conference.

2003. Chicago, Illinois USA.

Koo, J.-H., Goncalves, F. D., Ahmadian, M. and Wang, K.-W. Investigation of The Response

Time of Magnetorheological Fluid Dampers, in Damping and isolation. 2004. San

Diego CA.

Kreyszig, E. (1993) Advanced Engineering Mathematics, John Wiley & Sons, Inc.,

Singapore.

Krüger, W. (2002), Design and Simulation of Semi-Active Landing Gears for Transport

Aircraft, Mechanics of Structures and Machines, 30(4), pp.493-526.

Kyriakopoulos, K. J. and Saridis, G. N. Minimum Jerk Path Generation, in IEEE

International Conference on Robotics and Automation. 1988.

Larson, H. J. (1982) Introduction to Probability Theory and Statistical Inference, John Wiley

& Sons, New York.

Lauwerys, C., Swevers, J. and Sas, P. Design and Experimental Validation of a Linear

Robust Controller For An Active Suspension of a Quarter Car, in American Control

Conference. 2004. Boston Massachusetts.

Lee, H. J., Jung, H. J., Cho, S. W. and Lee, I. W. (2008), An Experimental Study of

Semiactive Modal Neuro-Control Scheme using Mr Damper for Building Structure,

Journal of Intelligent Material Systems and Structures, 19(9), pp.1005-15.

457

Lee, T. S. and Lin, Y. J. (May 1998) An Improved Sculptured Part Surface Design with Jerk

Continuity for a Smooth Machining, IEEE International Conference on Robotics and

Automation, Vol. 3, pp. pp.2458-63.

Lee, U., Lee, S., Suh, J., Choi, S., Webb, J., Hoppenot, S. and Català, A. On Furthering the

Understanding of Vehicle Rollover Through State of the Art Test and Simulation, in

Fisita 2006. 2006. Yokohama, Japan.

Leen, G., Heffernan, D. and Dunne, A. (1999), Digital Networks in the Automotive Vehicle,

Computing & Control Engineering Journal, 10(6), pp.257-66.

Lehtonen, T., Kaijalainen, O., Pirjola, H. and Juhala, M. Measuring Stiffness and Damping

Properties of Heavy Tyres, in Fisita. 2006. Yokohama, Japan.

Li, R., Chen, W. M., Yu, M. and Liu, D. K. Fuzzy intelligent control of automotive vibration

via magneto-rheological damper, in Cybernetics and Intelligent Systems, 2004 IEEE

Conference on. 2004.

Lin, J.-S. and Kanellakopoulos, J. Road-Adaptive Nonlinear Design of Active Suspensions, in

American Control Conference, 1997. Proceedings of the 1997. 1997.

Liu, H., Nonami, K. and Hagiwara, T. (2005), Semi-active Fuzzy Sliding Mode Control of

Full Vehicle and Suspensions, Journal of Vibration and Control, 11(8), pp.1025-42.

Longhurst, C. (2007) The Suspension Bible,

http://www.carbibles.com/suspension_bible.html, 25/May/2007, 2007.

Lord (2006) Motion Master Ride Management System, Lord Corporation,

http://www.lord.com/tabid/3362/Default.aspx, December 2006, 2006.

Lord (2008) LORD Wonder Box™ Device Controller Kit (RD-3002-03),

http://www.lord.com/Home/MagnetoRheologicalMRFluid/Products/WonderBoxDevi

ceControllerKit/tabid/3367/Default.aspx.

Lord (2009) Selecting and Using LORD MR Fluids and Devices,

http://www.lord.com/Home/MagnetoRheologicalMRFluid/FAQs/SelectingUsingMR

FluidsDevices/tabid/3798/Default.aspx.

Lorenz, M., Heimann, B., Tschimmel, J. and Hartel, V. (2003) Applying semi-active friction

damping to elastic supports for automotive applications, Advanced Intelligent

Mechatronics, Vol. 1 Hannover Univ., Germany, pp. 377-82.

Lot, R. and Massaro, M. A Combined Model of Tire and Road Surface for

the Dynamic Analysis of Motorcycles Handling, in Fisita 2006. 2006. Yokohama, Japan.

Lu, J. and DePoyster, M. (2002), Multiobjective Optimal Suspension Control to Achieve

Integrated Ride and Handling Performance, IEEE Transactions on Control Systems

Technology, 10(6), pp.807-21.

MacCluer, C. R. (2005) Calculus of Variations: mechanics, control, and other applications,

Prentice Hall, Upper Saddle River, NJ.

Macfarlane, S. and Croft, E. A. (2003), Jerk-bounded Manipulator Trajectory Planning:

Design for Real-time Applications, IEEE Transactions on Robotics and Automation,

19(1).

Majjad, R. Estimation of Suspension Parameters, in Procedings of the 1997 IEEE

International Conference on Control Application. 1997. Hartford CT.

McLellan, N. S. (1998) On the Development of a Real-Time Embedded Digital Controller for

Heavy Truck Semiactive Suspensions, Electrical EngineeringVirginia Tech,

Blacksburg, Virginia, USA.

Meirovitch, L. (1985) Introduction to Dynamics and Control, John Wiley & Sons, U.S.

Mesterton-Gibbons, M. (2009) A Primer on the Calculus of Variations and Optimal Control

Theory, American Mathematical Society, Providence, Rhode Island.

Miller, L. R. Tuning Passive, Semi-active, and Fully Active Suspension Systems, in

Proceedings of the 27th Conference on Decision and Control. 1998. Austin, Texas.

http://www.carbibles.com/suspension_bible.html
http://www.lord.com/tabid/3362/Default.aspx
http://www.lord.com/Home/MagnetoRheologicalMRFluid/Products/WonderBoxDeviceControllerKit/tabid/3367/Default.aspx
http://www.lord.com/Home/MagnetoRheologicalMRFluid/Products/WonderBoxDeviceControllerKit/tabid/3367/Default.aspx
http://www.lord.com/Home/MagnetoRheologicalMRFluid/FAQs/SelectingUsingMRFluidsDevices/tabid/3798/Default.aspx
http://www.lord.com/Home/MagnetoRheologicalMRFluid/FAQs/SelectingUsingMRFluidsDevices/tabid/3798/Default.aspx

458

Milliken, W. F. and Milliken, D. (1995) Race Car Vehicle Dynamics, SAE International,

Warrendale, PA.

Muenchhof, M. and Singh, T. (2003), Jerk Limited Time Optimal Control of Flexible

Structures, Journal of Dynamic Systems, Measurement, and Control, 125(1), pp.139-

44.

Nader, R. (1972) Unsafe at Any Speed: the Designed-In Dangers of the American

Automobile, Grossman, New York.

Nawa, N. E., Furuhashi, T., Hashiyama, T. and Uchikawa, Y. (1999), A Study on the

Discovery of Relevant Fuzzy Rules Using Pseudobacterial Genetic Algorithm, IEEE

Transactions on Industrial Electronics, 46(6), pp.1080-9.

NHTSA (2007) Rollover - FAQs, NHTSA, http://www-nrd.nhtsa.dot.gov/pdf/esv/esv19/05-

0450-O.pdf, 25/January/2007, 2007.

Okada, Y. and Harada, H. Regenerative Control of Active Vibration Damper and Suspension

Systems, in 35th Conference on Decision and Control. 1996. Kobe, Japan.

Paddison, J. E., Macleod, C. and Goodall, R. M. State variable constraints on the

performance of optimal Maglev suspension controllers, in Control Applications,

1994., Proceedings of the Third IEEE Conference on. 1994.

Palkovics, L. and Fries, A. (2001), Intelligent Electronic Systems in Commercial Vehicles for

Enhanced Traffic Safety, Vehicle System Dynamics, 35(4-5), pp.227-89.

Papoulis, A. (1980) Circuits and Systems: A Modern Approach, Holt-Sanders Japan, Ltd.,

Tokyo.

Pardue, J. (2005) C Programming for Microcontrollers Featuring ATMEL's AVR Butterfly

and the free WinAVR Compiler, Smiley Micros, Knoxville, TN.

Peters, R. D. Ideal Lift Kinematics, in ELEVCON 1995. 1995. Hong Kong.

Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V. and Mishchenko, E. F. (1986) The

Mathematical Theory of Optimal Processes, Gordon and Breach Science Publishers,

New York.

Predko, M. (2008) Programming and Customizing the PIC Microcontroller, McGraw-Hill.

Purshouse, R. C. and Fleming, P. J. (2001) The Multiobjective Genetic Algorithm Applied

To Benchmark Problems - An AnalysisDepartment of Automatic Control and

Systems Engineering, University of Sheffield, Sheffield, S1 3JD, UK, pp. 1-43.

Redfield, R. C. and Karnopp, D. C. (1988), Optimal performance of Variable Component

Suspensions, Vehicle System Dynamics, 29, pp.231-53.

Reichert, B. A. (1997) Application of Magnetorheological Dampers for Vehicle Seat

Suspensions, Mechanical EngineeringVirginia Polytechnic Institute and State University,

Blacksburg, Virginia.

Rideout, D. G. (1998) Dynamic Testing and Modelling of the Interconnected Moulton

Hydragas Suspension System, Department of Mechanical EngineeringQueen's

University, Kingston, Ontaxio, Canada.

Robotshop (2007) http://www.robotshop.ca/home/suppliers/dimension-engineering-

en/dimension-engineering-de-accm.html, 2007.

Robotshop (2011) ±1.2g Dual Axis Accelerometer Breakout Board (ADXL213AE),

http://www.robotshop.com/ca/spark-fun-accelerometer-adxl213ae.html, 22 April,

2011.

Robson, J. D. and Dodds, C. J. The Response of Vehicle Components to Road Undulations, in

Fisita Congress. 1970.

Rogala, J. A. (2002) Regenerative Suspension for an Off-Road VehicleHusco International,

Inc., Waukesha, WI (US), USA.

Ross, I. M. (2009) A Primer on Pontryagin's Principle in Optimal Control, Collegiate

Publishers, 225 Crossroads Blvd., Carmel, CA.

http://www-nrd.nhtsa.dot.gov/pdf/esv/esv19/05-0450-O.pdf
http://www-nrd.nhtsa.dot.gov/pdf/esv/esv19/05-0450-O.pdf
http://www.robotshop.ca/home/suppliers/dimension-engineering-en/dimension-engineering-de-accm.html
http://www.robotshop.ca/home/suppliers/dimension-engineering-en/dimension-engineering-de-accm.html
http://www.robotshop.com/ca/spark-fun-accelerometer-adxl213ae.html

459

Sadati, S. H., Malekzadeh, S. and Ghasemi, M. (2008), Optimal control of an 8-DOF vehicle

active suspension system using Kalman observer, Shock and Vibration, 15(5), pp.493-

503.

Sam, Y. M. and Hudha, K. Modelling and Force Tracking Control of Hydraulic Actuator for

an Active Suspension System, in IEEE Conference on Industrial Electronics and

Applications. 2006. Singapore.

Sammier, D., Sename, O. and Dugard Luc. H-Infinity Control of Active Vehicle Suspensions,

in 2000 IEEE International Conference on Control Applications. 2000. Anchorage

Alaska USA.

Savaresi, S. M., Silani, E., Bittanti, S. and Porciani, N. On performance evaluation methods

and control strategies for semi-active suspension systems, in Decision and Control,

2003. Proceedings. 42nd IEEE Conference on. 2003.

Sayers, M. W. and Karamihas, S. M. (1996) Interpretation of Road Roughness Profile

DataFederal Highway Administration

Contract DTFH 61-92-C00143.

Scheffer, C. and Girdhar, P. (2004) Practical Machinery Vibration Analysis & Predictive

Maintenance, Newnes, Oxford.

Schick, B., Gimmler, H., Rauh, J., Dr. and Witschass, S. 3d-Track - Give the Simulation the

Chance for a Better Work! Mobile, High-Resolution Topology and Roughness

Measuring of Road Surfaces to Create 3d Track Models, in Fisita 2006. 2006a.

Yokohama, Japan.

Schick, B., Resch, S., Yamamoto, M., Kushiro, I. and Hagiwara, N. Optimization of Steering

Behavior through Systematic Implementation of Customer Requirements in Technical

Targets on the Basis of Quality Function Deployment, in Fisita 2006. 2006b.

Yokohama, Japan.

Schurter, K. C. and Roschke, P. N. Fuzzy Modeling of Magnetorheological Damper using

ANFIS, in The 9th IEEE International Conference on Fuzzy Systems. 2000. San

Antonio, TX.

Segel, L. An overview of Developments in Road-Vehicle Dynamics: Past Present and Future,

in International Conference on Vehicle Ride and Handling. 1993. Birmingham, UK.

Sergio M. Savaresi, Enrico Silani, Sergio Bittanli and Porciani, N. On Performance

Evaluation Methods and Control Strategies for Semi-Active Suspension Systems, in

Conference on Decision and Control. 2003. Maui, Hawaii USA.

Shi, G., Skelton, R. E. and Grigoriadis, K. M. An Algorithm to Integrate Passive and Active

Control, in The 1996 IEEE Symposium on Computer-Aided Control System Design.

1996. Dearborn MI.

Simon, D. (2006) Optimal State Estimation: Kalman, H-Infinity, and Nonlinear Approaches,

Wiley, Hoboken, New Jersey.

Simon, D. and Ahmadian, M. (2001), Vehicle Evaluation of the Performance of Magneto

Rheological Dampers for Heavy Truck Suspensions, Journal of Vibration and

Acoustics, 123, pp.365-75.

Sims, N. D. and Stanway, R. (2003), Semi-Active Vehicle Suspension Using Smart Fluid

Dampers: A Modelling And Control Study, International Journal of Vehicle Design,

33(1-3), pp.76-102.

Singh, H. (2001) Neural Networks: Artificial Intelligence,

http://www.seeingwithc.org/topic5html.html, 17-Jan-2006, 2006.

Smith, C., McGehee, D. and Healey, A. (1978), The Prediction of Passenger Riding Comfort

from Acceleration Data, Dynamic Systems, Measurement and Control, 100, pp.34-41.

Smith, D. R. (1998) Variational Methods in Optimization, General Publishing Company,

Ltd., Toronto, Canada.

http://www.seeingwithc.org/topic5html.html

460

Smith, W., Jeyakumaran, J. and Zhang, N. Transient Performance of a Hydraulically

Interconnected Suspension System, in Fisita 2006. 2006. Yokohama, Japan.

Song, X. and Ahmadian, M. Study of Semiactive Adaptive Control Algorithms with Magneto-

Rheological Seat Suspension, in 2004 SAE World Congress. 2004. Detroit, Michigan.

Song, X., Ahmadian, M. and Southward, S. An Adaptive Semiactive Control Algorithm for

Vehicle Suspension Systems, in ASME IMECE 2003: 2003 International Mechanical

Engineers Conference. 2003. Washington, D.C.

Soong, T. T. and Spencer, B. F. (2002), Supplemental Energy Dissipation: State-of-the-Art

and State-of-the-Practice, Engineering Structures, 24(3), pp.243-59.

Spencer, B. F., Dyke, S. J., Sain, M. K. and Carlson, J. D. (1997), Phenomenological Model

for Magnetorheological Dampers, Journal of Engineering Mechanics, 123(3), pp.230-

8.

Sprott, J. C. (1997), Some Simple Chaotic Jerk Functions, American Journal of Physics,

65(6), pp.537-43.

Stamatov, S., Yost, S. and Krishnan, M. (2008) Low Jerk Predictive Force Modulation for

Semi-Active Suspension Control, SAE World Congress & ExhibitionDetroit, MI,

USA.

Stembridge, N., Levesley, M., Crolla, D., Sims, N. and Burnett, M. Real Time Control of a

Magnetorheological Damper for Vehicle Suspension Systems, in Fisita 2006. 2006.

Yokohama, Japan.

Storey, I., Bourmistrova, A. and Subic, A. Multiobjective Optimisation of Control of Active

and Semi-Active Suspension Systems Using Jerk as a Measure of Comfort, in Fisita

2006. 2006. Yokohama, Japan.

Storey, I., Bourmistrova, A. and Subic, A. (2008), Performance Measures of Comfort and

Rattlespace Usage for Limited-Stroke Vehicle Suspension Systems, The International

Journal of Acoustics and Vibration, 13(2, June), pp.82-90.

Storey, I., Bourmistrova, A. and Subic, A. (2009) Control over Limited-Stroke Suspensions

using Jerk, 18th World IMACS / MODSIM CongressCairns, Australia pp. 838-43.

Strang, G. (1980) Linear Algebra and Its Applications, Academic Press, Inc., New York.

Stubberud, A., DiStefano, J. and Williams, I. (1994) Schaum's Outline of Feedback and

Control Systems, McGraw-Hill, Inc., New York, NY, USA.

Sun Class Random, http://download.oracle.com/javase/1.4.2/docs/api/java/util/Random.html,

21 April, 2011.

Sung, J. and Jang, J. An Integrated Approach for the Ride Shake Analysis & Test, in Fisita,

2006. 2006.

Takahashi, R. H. C., Camino, J. F. and Zampieri, D. E. (2000), Multiobjective Weighting

Selection for Optimization-Based Control Design, Journal of Dynamic Systems,

Measurement, and Control, 122(3), pp.567-9.

Tan, P., Dyke, S. J., Richardson, A. and Abdullah, M. (2005), Integrated Device Placement

and Control Design in Civil Structures using Genetic Algorithms, Journal of

Structural Engineering, 131(10), pp.1489-96.

Teixeira, R. L., Neto, F. P. L. and Ribeiro, J. F. (2006), Modelling and experimental

investigation of an active damper, Shock and Vibration, 13(4-5), pp.343-54.

Tibaldi, M. and Zattoni, E. Robust control of active suspensions for high performance

vehicles, in Industrial Electronics, 1996. ISIE '96., Proceedings of the IEEE

International Symposium on. 1996.

Toda, Y. and Kageyama, I. Fundamental Study on Driving Pleasure based on Driver's

Operation, in Fisita 2006. 2006. Yokohama, Japan.

Tseng, H. E. and Hendrick, J. K. (1994), Semi-Active Control Laws - Optimal and Sub-

Optimal, Vehicle System Dynamics, 23, pp.545-69.

http://download.oracle.com/javase/1.4.2/docs/api/java/util/Random.html

461

UMTRI (2000) Rollover of Heavy Commercial Vehicles, University of Michigan

Transportation Research Institute, http://www.umtri.umich.edu/content/rr31_4.pdf, 23

April, 2011.

Unsal, M., Niezrecki, C. and Crane, C., III. Two Semi-Active Approaches for Vibration

Isolation: Piezoelectric Friction Damper and Magnetorheological Damper, in IEEE

International Conference on Mechatronics, 2004. 2004. Istanbul, Turkey.

Uys, P. E., Els, P. S. and Thoresson, M. J. (2006), Criteria for Handling Measurement,

Journal of Terramechanics, 43(1), pp.43-67.

Vaughan, J. E. (2004) Active and Semi-Active Control to Counter Vehicle Payload

Variation, The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of

Technology, Atlanta, Georgia.

Voelcker, J. (2008), The Soul of a New Mercedes, IEEE Spectrum.

Wagner, J. and Liu, X. Nonlinear Modeling and Control of Automotive Vibration Isolation

Systems, in American Control Conference. 2000. Chicago, Illinois.

Wang, F.-C. (2001) Design and Synthesis of Active and Passive Vehicle SuspensionsQueens'

College Control Group Department of Engineering University of Cambridge,

Cambridge UK.

Weisstein, E. W. Moving Average, http://mathworld.wolfram.com/MovingAverage.html, 9

May 2009, 2009.

Westbrook, M. H. and Turner, J. D. (1994) Automotive Sensors, Institute of Physics

Publishing, Philadelphia.

Wikipedia (2006) PIC microcontroller, http://en.wikipedia.org/wiki/PIC_microcontroller,

Dec. 26 2006, 2006.

Wikipedia (2007a) Atmel AVR, http://en.wikipedia.org/wiki/Atmel_AVR, 31 Jul 2007, 2007.

Wikipedia (2007b) Moose test, Wikipedia, http://en.wikipedia.org/wiki/Moose_test,

25/January/2007, 2007.

Wikipedia, C. (2009) Exponential Smoothing, Wikipedia, The Free Encyclopedia.,

http://en.wikipedia.org/w/index.php?title=Exponential_smoothing&oldid=285681147

9 May, 2009.

Williams, R. A. and Best, A. Control of a low frequency active suspension, in Control, 1994.

Control '94. Volume 1., International Conference on. 1994.

Williams, R. A., Burnham, K. J. and Webb, A. C. Developments for an Oleo-Pneumatic

Active Suspension, in Proceedings of the 1996 IEEE International Symposium on

Computer-Aided Control System Design. 1996. Dearborn, Mich. Institute of Electrical

and Electronics Engineers.

Wired (2005) Bose Suspension Takes On Potholes, Wired,

http://www.wired.com/cars/energy/news/2005/11/69692, 26/May/2007, 2007.

Woods, D. E. and Jawad, B. A. (1991), Numerical Design of Racecar Suspension Parameters,

SAE Technical Paper Series.

Yagiz, N. (2005), Robust Sliding Mode Control of a Full Vehicle Without Suspension Gap

Loss, Journal of Vibration and Control, 11(11), pp.1357-74.

Yagiz, N., Yuksek, I. and Sivrioglu, S. (2000), Robust Control of Active Suspensions for a

Full Vehicle Model Using Sliding Mode Control, JSME international journal. Series

C, Mechanical systems, machine elements and manufacturing, 43(2), pp.253-8.

Yamakado, M. and Abe, M. Examination of Voluntary Driving Operational Timing by using

Information Obtained with the Developed Jerk Sensor, in Fisita 2006. 2006.

Yokohama, Japan.

Yan, G. and Zhou, L. L. (2006), Integrated Fuzzy Logic and Genetic Algorithms for Multi-

Objective Control of Structures using MR Dampers, Journal of Sound and Vibration,

296(1-2), pp.368-82.

http://www.umtri.umich.edu/content/rr31_4.pdf
http://mathworld.wolfram.com/MovingAverage.html
http://en.wikipedia.org/wiki/PIC_microcontroller
http://en.wikipedia.org/wiki/Atmel_AVR
http://en.wikipedia.org/wiki/Moose_test
http://en.wikipedia.org/w/index.php?title=Exponential_smoothing&oldid=285681147
http://www.wired.com/cars/energy/news/2005/11/69692

462

Yedavalli, R. K. and Liu, Y. Active Suspensions Control Design for Optimal Road Roughness

Isolation and Ride Comfort, in American Control Conference. 1994. Baltimore,

Maryland.

Yi, K. and Song, B. S. (1999), Observer Design for Semi-Active Suspension Control, Vehicle

System Dynamics, 32, pp.129-48.

Yokoyama, M., Hedrick, J. K. and Toyama, S. A model following sliding mode controller for

semi-active suspension systems with MR dampers, in American Control Conference,

2001. Proceedings of the 2001. 2001.

Yoshihiko, I., Hiroshi, M., Tsuyoshi, F. and Seiji, F. Super-Slim Automotive Acceleration

Sensor Applied MEMS Technology, in Fisita 2006. 2006. Yokohama, Japan.

Yoshimura, T., Ananthanarayana, N. and Deepak, D. (1987), An Active Lateral Suspension

to a Track/Vehicle System using Stochastic Optimal Control, Journal of Sound and

Vibration, 115(3), pp.473-82.

Youn, I., Im, J. and Tomizuka, M. (2006), Level and Attitude Control of the Active

Suspension System with Integral and Derivative Action, Vehicle System Dynamics,

44(9), pp.659 - 74.

Young, K. D., Utkin, V. I. and Özgüner, Ü. (1999), A Control Engineer’s Guide to Sliding

Mode Control, IEEE Transactions on Control Systems Technology, 7(3), pp.328-42.

Yu, F., Zhang, J. W. and Crolla, D. A. Proceedings of the Institution of Mechanical

Engineers 2000.

Yu, M., Liao, C. R., Chen, W. M. and Huang, S. L. (2006), Study on MR Semi-active

Suspension System and its Road Testing, Journal of Intelligent Material Systems and

Structures, 17(8-9), pp.801-6.

Zadeh, H. S. (2004) Multivariable Optimisation of Fuzzy Logic Control in Nonlinear

Aerospace Systems, School of Aerospace, Mechanical and Manufacturing

Engineering in the Science, Engineering and Technology Portfolio, Vol. PhD RMIT,

Melbourne, Australia, p. 227.

Zitzler, E., Deb, K. and Thiele, L. (2000), Comparison of Multiobjective Evolutionary

Algorithms: Empirical Results, Evolutionary Computation, 8(2), pp.173-95.

Zribi, M. and Karkoub, M. (2004), Robust Control of a Car Suspension using

Magnetorheological Dampers, Journal of Vibration and Control, 10, pp.507-24.

