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Abstract

Grids are distributed systems that dynamically coordinate a large number of heterogeneous

resources to execute large scale projects involving collaborating teams of scientists, high-

performance computers, massive data stores, high bandwidth networking, and/or scientific

instruments like telescopes, and synchrotrons. Failure in grids is arguably inevitable due to

the massive scale and the heterogeneity of grid resources, the distribution of these resources

over unreliable networks, the complexity of mechanisms that are needed to integrate such re-

sources into a seamless utility, and the dynamic nature of the grid infrastructure that allows

continuous changes to happen. To make matters worse, grid applications are generally long

running, and these runs repeatedly require coordinated use of many resources at the same time.

Based on the traditional fault tolerance techniques that enable a system to complete its

function even though the system and/or the environment where the system operates are faulty,

the grid community has proposed various fault tolerance approaches for grid applications.

However, these approaches are limited in at least one of the following ways: a) the fault

tolerance support is directed to only grid applications whose execution units are independent

of each other, b) only reactive strategies are used, c) the execution of a proactive strategy is

not based on the current status of the computation and the current likelihood of failure in the

execution environment but rather on the history of grid resources or the load of the execution

environment, and d) fault tolerance strategies are applied at the application level.

In this thesis, we propose the Recovery-Aware Components (RAC) approach. The RAC

approach enables a grid application to tolerate failure reactively and proactively at the level

of the smallest and independent execution unit of the application. The approach also com-

bines runtime prediction with a proactive fault tolerance strategy. By managing failure at the

smallest execution unit, and combining runtime prediction with a proactive fault tolerance
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strategy, the RAC approach aims at improving the reliability of the grid application with the

least overhead possible. Moreover, to allow a grid fault tolerance manager fine-tuned control

and trading off of reliability gained and overhead paid, this thesis offers an architecture-aware

modelling and simulation of reliability and overhead. The thesis demonstrates for a few of a

dozen or so classes of application architecture already identified in prior research, that the typ-

ical architectural structure of the class can be captured in a few parameters. The work shows

that these parameters suffice to achieve significant insight into, and control of, such tradeoffs.

The contributions of our research project are a) the RAC approach, a prediction and an

architecture based hybrid fault tolerance support for grid applications, b) the study of the

usage of the RAC approach to improve the reliability of grid applications whose architecture

can be classified as MapReduce or Combinational Logic, c) Markov models that represent the

execution behaviour of MapReduce and Combinational Logic grid applications for reliability

and overhead analysis, d) in-depth analysis of the impact of prediction inaccuracy on the

reliability-overhead tradeoff of the RAC approach, and e) a parameterised experiment testbed

for simulating the execution of a grid application with fault tolerance support that adapts the

principles of the RAC approach.

We proposed the RAC approach, first and foremost, to improve the reliability of grid

applications with the smallest overhead possible. Since the exact reliability-overhead tradeoff

of the RAC approach depends on many factors, we evaluated the RAC approach by answering

a specific set of questions. What is the reliability-overhead tradeoff that is enabled by the RAC

approach for MapReduce and Combinational Logic grid applications? How sensitive is such

reliability-overhead tradeoff to a fault tolerance strategy and its parameters, and prediction

accuracy? Before embarking on answering these questions, we first define and formalize the

concept of the RAC approach. The results of the reliability-overhead tradeoff evaluations are as

follows. We have confirmed that, via simulated experiment, architecture based fault tolerance

support provides better reliability improvement and incurs higher overhead to grid applications

than the architecture unaware one. The degree of the superiority of the architecture aware fault

tolerance support depends on factors like the type of the fault tolerance strategy selected and

its parameters, and the accuracy of a predictor. Since runtime prediction is a central part of the

RAC approach, we also evaluated the impact of prediction accuracy on the reliability-overhead

tradeoff of the RAC approach. An increase in false positives, predicting the presence of a non-

existent failure, increases reliability improvement; whereas an increase in false negatives, not

predicting the presence of failure, decreases reliability improvement. The impact of prediction

accuracy on overhead depends on the type of the fault tolerance support.



Contents

Declaration iii

Acknowledgement iv

Credits vi

Abstract vii

Contents ix

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Overview of Our Research Methodology . . . . . . . . . . . . . . . . . 5

1.3 Thesis Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Background 9

2 Grids 10

2.1 Grid Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ix



CONTENTS x

2.1.1 The Grid Protocol Architecture . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1.1 The Fabric Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1.2 The Connectivity Layer . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1.3 The Resource Layer . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1.4 The Collective Layer . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1.5 The Application Layer . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 The Open Grid Services Architecture . . . . . . . . . . . . . . . . . . . 14

2.2 Grid Infrastructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 The Globus Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 The Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Workflow in Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Types of Grid Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Grid Workflow Management Systems . . . . . . . . . . . . . . . . . . . . 21

2.4 Grid Computing vs. Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Reliability 24

3.1 Failure, Error, Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Reliability Improvement Techniques . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Fault Tolerance Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Classification of Fault Tolerance Strategies . . . . . . . . . . . . . . . . 29

3.4 Reliability Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.2 Reliability Prediction with Markov Chains . . . . . . . . . . . . . . . . . 36

3.5 Recovery-Oriented Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Reliable Grid Software Design 40

4.1 Dwarfs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Bulk Synchronous Parallel Model . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 The BSP Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Reliable Grid Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 The Need for Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . 47



CONTENTS xi

4.3.2 The State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2.1 Application/Service-Based Fault Tolerance Solutions . . . . . . 48

4.3.2.2 Workflow-Based Fault Tolerance Solutions . . . . . . . . . . . 51

4.3.3 The Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.4 The Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Recovery-Aware Component-Based Architecture 56

5 Recovery-Aware Components 57

5.1 Recovery-Aware Component-Based System . . . . . . . . . . . . . . . . 59

5.1.1 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1.1 Recovery-aware component . . . . . . . . . . . . . . . . . . . . 60

5.1.1.2 Injector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1.3 Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1.4 Compute Manager . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1.5 Head Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.2 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.3 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.4 The RAC Approach in the Context of Grids . . . . . . . . . . . . . . . . 62

5.2 Formal RACS Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Global States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 The Reactive RACS Model . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.2.1 States and Transitions . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.2.2 Reliability Prediction . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.2.3 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.3 The RACS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.3.1 States and Transitions . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.3.2 The Simplified RACS Model . . . . . . . . . . . . . . . . . . . 71

5.2.3.3 Reliability Prediction . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.3.4 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 BSP-Based RACS Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 The Reactive RACS Model and BSP . . . . . . . . . . . . . . . . . . . . 74

5.3.1.1 States and Transitions . . . . . . . . . . . . . . . . . . . . . . . 74



CONTENTS xii

5.3.1.2 Reliability Prediction . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1.3 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.2 The RACS Model and BSP . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.2.1 States and Transitions . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.2.2 Reliability Prediction . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.2.3 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Architecture-Specific RAC 81

6.1 MapReduce Dwarf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.1 MapReduce Grid Applications . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.1.1 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.2 The MapReduce-specific RAC Approach . . . . . . . . . . . . . . . . . . 86

6.1.3 MR-specific RACS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.3.1 The MR-specific RACS Model . . . . . . . . . . . . . . . . . . 87

6.1.3.2 Reliability Prediction . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.3.3 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1.4 Evaluating the MR-specific RAC approach . . . . . . . . . . . . . . . . 90

6.2 Combinational Logic Dwarf . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Combinational Logic Grid Applications . . . . . . . . . . . . . . . . . . 92

6.2.1.1 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1.2 CL supersteps . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.2 The Combinational Logic-specific RAC Approach . . . . . . . . . . . . 97

6.2.3 CL-specific RACS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.3.1 The CL-specific RACS Model . . . . . . . . . . . . . . . . . . . 98

6.2.3.2 Reliability Prediction . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.3.3 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.4 Evaluating the CL-specific RAC approach . . . . . . . . . . . . . . . . . 102

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Evaluation 104

7 Experiment Testbed 105

7.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



CONTENTS xiii

7.1.1 Basic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1.2 Grid Infrastructure Parameters . . . . . . . . . . . . . . . . . . . . . . . 107

7.1.3 Grid Application Parameters . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1.4 Fault Tolerance Management Parameters . . . . . . . . . . . . . . . . . 108

7.2 Testbed In Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.1 Grid Application Execution . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.2 Fault Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2.3 Failure Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2.4 Fault Tolerance Management . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.5 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.5.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.5.2 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2.5.3 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Experiment Design 119

8.1 Controlled Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.1.1 MapReduce Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.1.2 Combinational Logic Experiments . . . . . . . . . . . . . . . . . . . . . 121

8.2 Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.2.1 Prediction Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.2.1.1 Prediction Interval . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.2.1.2 Prediction Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 124

8.2.2 Overhead Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.3 Experiment Runs Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9 Results 128

9.1 Reliability and Overhead under RAC Architecture . . . . . . . . . . . . . . . . 128

9.1.1 The Case of MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.1.1.1 Restart-Based RAC . . . . . . . . . . . . . . . . . . . . . . . . 131

9.1.1.2 Replication-Based RAC . . . . . . . . . . . . . . . . . . . . . . 132

9.1.1.3 Checkpointing-Based RAC . . . . . . . . . . . . . . . . . . . . 133

9.1.1.4 Comparing the RAC-based Fault Tolerance Support Types . . 134



CONTENTS xiv

9.1.2 The Case of Combinational Logic . . . . . . . . . . . . . . . . . . . . . . 136

9.1.2.1 Restart-Based RAC . . . . . . . . . . . . . . . . . . . . . . . . 136

9.1.2.2 Replication-Based RAC . . . . . . . . . . . . . . . . . . . . . . 138

9.1.2.3 Checkpointing-Based RAC . . . . . . . . . . . . . . . . . . . . 139

9.1.2.4 Comparing the RAC-based Fault Tolerance Support Types . . 140

9.2 Probability of Unrecoverable Failure . . . . . . . . . . . . . . . . . . . . . . . . 140

9.3 Cost of Checkpointing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.4 Prediction Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.5 Prediction Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.5.1 State Oblivious Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.5.2 State Aware Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.5.2.1 False Positives . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.5.2.2 False Negatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.5.2.3 The Perfect Predictor . . . . . . . . . . . . . . . . . . . . . . . 153

9.6 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

10 Conclusion 157

10.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.2 Key Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Bibliography 162

Index 177



List of Figures

1.1 Dataflow between the three elements of our research methodology . . . . . . . . . 6

2.1 The layered Grid Protocol Architecture and its relationship with the Internet

Protocol Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Equivalent Markov chain representation by a transition matrix and a transition

diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Example: Reliability model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 A superstep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 RACS Reference Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 The parameterised DTMC of a reactive RACS (GR) . . . . . . . . . . . . . . . . . 66

5.3 The parameterised DTMC of a RACS (G) . . . . . . . . . . . . . . . . . . . . . . 68

5.4 The parameterised DTMC of a simplified RACS (GS) . . . . . . . . . . . . . . . . 72

5.5 A BSP-based reactive RACS model (GRbsp) . . . . . . . . . . . . . . . . . . . . . 75

5.6 Example: a BSP-based reactive RACS model with 2 supersteps . . . . . . . . . . 76

5.7 A BSP-based RACS model (Gbsp) . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.8 A simplified BSP-based RACS model (GSbsp) . . . . . . . . . . . . . . . . . . . . 79

6.1 Idealized MapReduce Reference Architecture . . . . . . . . . . . . . . . . . . . . 83

6.2 The parameterised DTMC of an MR-specific RACS (GMR) . . . . . . . . . . . . . 89

6.3 Full Adder: CL example in hardware . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 The DAG of a CL grid application E. . . . . . . . . . . . . . . . . . . . . . . . . . 93

xv



LIST OF FIGURES xvi

6.5 The transition diagram of the refined GSbsp for E with either coarse-grain or

repeated parallelism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.6 The parameterised DTMC of a CL-specific RACS (GCL) . . . . . . . . . . . . . . 101

7.1 Execution of an activity without failing . . . . . . . . . . . . . . . . . . . . . . . 114

7.2 Execution of an activity with restart . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Execution of an activity with replication . . . . . . . . . . . . . . . . . . . . . . . 115

7.4 Execution of an activity with checkpointing-rollback . . . . . . . . . . . . . . . . 116

8.1 Benchmark DAGs for CL Experiments . . . . . . . . . . . . . . . . . . . . . . . . 122

8.2 Reliability-overhead tradeoffs from one of the benchmark runs. . . . . . . . . . . 127

9.1 The reliability-overhead tradeoff of the generic and the MR-specific RAC. . . . . 130

9.2 The reliability-overhead tradeoff of the generic and the CL-specific RAC . . . . . 137

9.3 The impact of the probability of unrecoverable failure on the reliability-overhead

tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.4 The impact of the cost of a single checkpoint on the reliability-overhead tradeoff

of the checkpointing-based RAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.5 The impact of prediction interval on the reliability-overhead tradeoff of the checkpointing-

based and the replication-based RAC . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.6 The impact of the accuracy of a state oblivious predictor on the reliability-

overhead tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.7 The impact of the probability of false positives of a state aware predictor on the

reliability-overhead tradeoff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.8 The impact of the probability of false negatives of a state aware predictor on the

reliability-overhead tradeoff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.9 The reliability-overhead tradeoff with the perfect predictor. . . . . . . . . . . . . 154



List of Tables

4.1 Examples of Architectural Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 The thirteen dwarfs of parallel applications . . . . . . . . . . . . . . . . . . . . . 43

6.1 Coarse-Grain Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Pipeline Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Repeated Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1 Parameter table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.1 The impact of the cost of a single checkpoint on the generic checkpointing-based

RAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xvii



Chapter 1

Introduction

“It is a tremendous act of violence to begin anything.

I am not able to begin.

I simply skip what should be the beginning.”

- Rainer Maria Rilke

The term “grid” was coined by Ian Foster and others in the nineties in analogy to the elec-

tric power grid [Foster and Kesselman, 1999, pp. 17−21] to designate a distributed computing

system for utility high-performance computing. Grids are concerned with “. . . coordinated re-

source sharing and problem solving in dynamic multi-institutional virtual organizations” [Fos-

ter et al., 2001]. In grids, massive resources are coordinated to execute large scale projects

involving collaborating teams of scientists, high-performance computers, massive data stores,

high-bandwidth networking, and/or scientific instruments like telescopes, synchrotrons and col-

lidors. Grid resources are geographically distributed and thus belong to various administrative

domains. Furthermore, these resources not only join and leave the grid network at any time

but also change their access policy without any notice. As grid computing enters the main-

stream and is applied in internet search, finance and banking, and large-scale engineering, the

key issues of distributed systems, such as interoperability, security and fault tolerance, grow in

importance. However, this research covers only fault tolerance.

The objective of this research is to improve the reliability of grid applications. Failure

in grids is arguably inevitable due to (a) the massive scale and the heterogeneity of grid

1
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resources, (b) the distribution of these resources over unreliable networks, (c) the complexity

of mechanisms that are needed to integrate such resources into a seamless utility, and (d) the

dynamic nature of the grid infrastructure which allows continuous changes to happen. To make

matters worse, grid applications are generally long running and involve coordinating many

resources simultaneously. Failure in such applications is therefore very costly as it requires

restarting and rerunning previously completed computations, holding many resources for a

long time repeatedly.

Various fault tolerance approaches have been proposed to increase the probability of success-

ful execution of grid applications. Traditional fault tolerance techniques such as restart [Dean

and Ghemawat, 2004], replication with/without voting [Chtepen et al., 2009, Budati et al.,

2007], checkpointing [Nazir et al., 2009], migration [Kandaswamy et al., 2008], N -version [Xu

et al., 2008], and a combination of these and other strategies [Hwang and Kesselman, 2003]

have been tried. There are also grid tools that have built-in fault tolerance support. Examples

of such tools include Condor-G, for managing a grid infrastructure [Frey et al., 2002], and

Taverna, for building a grid workflow [Oinn et al., 2006]. Yet existing fault tolerance solutions

are limited in such a way that they exhibit some of the following behaviours:

• Existing fault tolerance approaches either do not address the type of the grid application

for which they are providing fault tolerance support (e.g., [Nazir et al., 2009]) or are ex-

plicitly proposed for a grid application whose execution units are embarrassingly parallel

(e.g., [Chtepen et al., 2009]).

• Reactive strategies are primarily used for managing failure (e.g. [Dean and Ghemawat,

2004]). Reactive strategies attempt to recover a failed computation after the failure

occurs while proactive strategies attempt to either minimize or prevent the impact of

future failure on the overall computation before the failure occurs. Tolerating failure

using only a reactive fault tolerance strategy could be very costly, especially if the failure

occurs towards the end of a long running grid application execution.

• In cases where proactive fault tolerance strategies are used, existing fault tolerance ap-

proaches do not, in general, consider the current status of the computation and likelihood

of failure in the execution environment before executing a proactive strategy. Instead,

the history of grid resources and the load of the system are mainly used. For example,

multiple copies of an execution unit are simultaneously executed if the execution envi-
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ronment is known to be unreliable [Budati et al., 2007] or the load of the environment is

low [Silva et al., 2003].

• Fault tolerance strategies are employed at the application level. Though grid applications

are naturally composed of multiple and possibly long running execution units, this does

not mean that significantly many of them will fail. Therefore, since enforcing a fault

tolerance strategy at the application level will include the execution units that are not

going to fail, application level fault tolerance introduces an unnecessary overhead. Duan

et al. [2005], for example, showed the disadvantage of checkpointing the state of the entire

execution, and the intermediate output of the execution that are needed to resume the

computation in case of failure. The overhead of such type of checkpointing significantly

increases with the size of the intermediate output.

In light of the limitations, inexpensive fault tolerance support for grid applications, which

are composed of not only independent but also communicating execution units, is needed.

In this thesis, we propose the Recovery-Aware Components (RAC) approach. The RAC

approach enables a grid application to tolerate failure reactively and proactively. In order to

limit the extent of fault tolerance support overhead, which is the computational power that

would be consumed by either the application to recover from failure and/or the fault toler-

ance management, the approach handles failure at the level of the smallest and independent

execution unit of the grid application. The approach also combines runtime prediction with a

proactive strategy to further reduce the overhead of the fault tolerance support. The purpose

of the runtime prediction is to avoid an unnecessary execution of a proactive strategy. An exe-

cution unit will be replicated, for instance, only if either the unit or its execution environment

is predicted to fail.

In order to cater to the fault tolerance requirements of grid applications whose communi-

cation and computation pattern is not classified as embarrassingly parallel, the RAC approach

systematically uses the class of the architecture of the applications to provide customized fault

tolerance support. For this, the classification of parallel programs by Asanovic et al. [2006,

2008, 2009] is used. Asanovic et al. [2006] classified parallel programs into thirteen computa-

tional kernels, known as dwarfs. Each dwarf has a different kind of parallel coordination, i.e.

communication and computation pattern. For each coordination, one can assume a different

capability of utilising the parallel structure to increase reliability and decrease cost of fault

tolerance support. However, the actual reliability gain, cost reduction, and the constraints
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under which these can be achieved, if at all, are far from obvious and require some methodical

approach and evaluation.

We study the reliability-overhead tradeoff that is enabled by the RAC approach for a grid

application whose parallel coordination can be classified under either the MapReduce or the

Combinational Logic dwarf. The MapReduce dwarf represents grid applications that are ex-

ecuted in two distinct phases, identified as map and reduce. All execution units in the map

phase are embarrassingly parallel, while the executions in the reduce phase involve some com-

munication. Embarrassingly parallel grid applications are MapReduce applications without

the reduce phase. Google’s search is a notable example of a MapReduce application [Dean

and Ghemawat, 2004]. The Combinational Logic dwarf, on the other hand, represents grid

applications that involve dataflow networks of functions that operate on streams of very large

amounts of data. These applications are common in cyclic redundancy checks, weather fore-

casting, logistics or content-based network routing, e.g. [NIST, 1999, 2001, Kuntschke et al.,

2006, Wang and Rundensteiner, 2009].

The contributions of our research project are a) the RAC approach, a prediction and an

architecture-based hybrid fault tolerance support for grid applications; b) the study of the

usage of the RAC approach to improve the reliability of grid applications whose architecture

can be classified as MapReduce or Combinational Logic; c) Markov models that represent the

execution behaviour of MapReduce and Combinational Logic grid applications for reliability

and overhead analysis; d) in-depth analysis of the impact of prediction inaccuracy on the

reliability-overhead tradeoff of the RAC approach; and e) a parameterised experiment testbed

for simulating the execution of a grid application with fault tolerance support that adapts the

principles of the RAC approach.

The results of our research project are as follows. Via simulated experiment, we have con-

firmed that architecture-based fault tolerance support provides better reliability improvement,

although with higher overhead, to both MapReduce and Combinational Logic grid applications

than the architecture-unaware one. The degree of the superiority of the architecture-aware fault

tolerance support depends on factors like the type of the fault tolerance strategy selected, e.g.,

checkpointing, and its parameters, e.g., cost of a checkpoint, and the accuracy of a predictor,

i.e. false positives and false negatives. Since runtime prediction is a central part of the RAC ap-

proach, we also evaluated the impact of prediction accuracy on the reliability-overhead tradeoff

of the RAC approach. An increase in false positives, predicting the presence of a non-existent

failure, increases reliability improvement; whereas an increase in false negatives, not predicting

the presence of failure, decreases reliability improvement. The impact of prediction accuracy
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on overhead depends the type the fault tolerance support.

1.1 Research Questions

We propose the RAC approach, first and foremost, to improve the reliability of the grid appli-

cations with the smallest overhead possible. Therefore, we study the degree of the reliability

improvement that would be achieved by adapting the RAC approach, and the overhead of such

improvement by addressing the following research questions:

i. What is an adequate formal representation of the RAC approach for making reliability

and overhead analyses?

ii. What is the reliability-overhead tradeoff that is enabled by the RAC approach for

a) MapReduce grid applications?

b) Combinational Logic grid applications?

iii. How sensitive is the reliability-overhead tradeoff of the RAC approach to

a) the parameters of the fault tolerance strategy with which the RAC is paired, e.g.

the impact of the probability of unrecoverable failure and the overhead of a single

checkpoint in restart-based and checkpointing-based fault tolerance support, respec-

tively?

b) prediction accuracy, i.e. false positives and false negatives?

1.2 Overview of Our Research Methodology

Our research methodology includes three elements: modelling, simulations, and real runs.

Figure 1.1 shows the interaction between these elements and the tools that are used in each:

i. Modelling. We use Discrete Time Markov Chains (Section 3.4.1) to model the behaviour

of a grid application execution that tolerates failure according to the RAC approach. Our

formal models are parameterised and based on the concept of Bulk Synchronous Parallel

computing (Section 4.2). PRISM [Kwiatkowska et al., 2011] and Matlab [MathWorks

Website] are used for model checking.
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Model
  - Markov Chains
  - Prism
  - Matlab

Simulations
  - Experiment 
testbed

Real Runs
  - Xgrid (Mac OS X),
  - Condor (Windows, Linux)
  - Sun HPC clusters

Equivalence 

Transformations
Parameter
 values

Parameter
 values

Figure 1.1: Dataflow between the three elements of our research methodology

ii. Simulations. The reliability-overhead tradeoff of the RAC approach is evaluated using

experiments. For such evaluations, we designed and developed an experiment testbed.

The testbed executes a grid application in either virtual or real time. During execution,

the testbed provides a simulated fault tolerance support, which is based on the principles

of the RAC approach, to the grid application. When the execution of the grid application

is completed, the testbed outputs simulated reliability, simulated execution time, which

is the real time that would have been elapsed from the start to end of the computation,

and simulated overall cost of the execution, which is the total CPU time that would

have been consumed by the computation. The experiment testbed is parameterised in

order to allow the user to simulate the execution of a grid application with various fault

tolerance strategies and configurations. In our evaluation, we obtained the values of some

parameters, such as the time needed to complete an execution unit, from the output of

real runs. Chapter 8 discuses the experiment design in detail.

iii. Real runs. We execute real applications to collect data for our evaluation. The data

that we collect are the cost of communication, the time that is needed to complete an

execution unit, the execution time of the overall computation, the cost of a fault tolerance

strategy and others. These data, except for the overall execution time, are used as initial

inputs during empirical evaluations. The overall execution time is used to evaluate the

accuracy of our formal models and experiment testbed with respect to estimating the

total time that is needed to complete the execution of a grid application. Our execution

platforms are Xgrid, Condor, and Sun HPC clusters.
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1.3 Thesis Scope

The scope of the thesis is as follows:

• We limit this study to only MapReduce and Combinational Logic grid applications ig-

noring the other eleven dwarfs for simplicity. This limitation does not restrict the gen-

erality of our approach, but would require further studies to confirm the exact nature of

reliability-overhead tradeoffs for the other typical dwarfs underlying grid application not

falling into these two classes of architecture.

• Estimating the effort that is required to implement a fault tolerant grid application based

on the principles of the RAC approach is not part of the research project.

• In this thesis, as far as prediction is concerned, we focus on the impact of prediction

accuracy on reliability and overhead, given a predictor. We explicitly exclude the study

of prediction methods themselves. There exist extensive surveys about failure prediction,

for example, by Salfner et al. [2010].

1.4 Thesis Outline

The rest of the thesis is organized into three parts:

• Part I

– Chapter 2 introduces the reader to grid computing.

– Chapter 3 discusses reliability and related topics.

– Chapter 4 introduces software architecture, dwarfs, bulk synchronous parallel com-

puting, the need for fault tolerance support in grids, existing fault tolerance ap-

proaches for grids and their limitations, and finally how these limitations could be

addressed.

• Part II

– Chapter 5 introduces the RAC approach and its architecture. In this chapter, we

discuss how the different aspects of the RAC architecture are realised in a grid.

We also present the abstract representation of the behaviour of the RAC architec-

ture with respect to fault management. Such behaviour is formally modelled using

Markov Chains.
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– Chapter 6 refines the RAC architecture to incorporate the requirements of a grid

application based on the classification of the application’s architecture. We study

the customization of the RAC architecture for MapReduce or the Combinational

Logic grid applications. The behaviour of the modified RAC architecture is formally

modelled using Markov Chains.

• Part III

– Chapter 7 presents our experiment testbed.

– Chapter 8 describes our experiment design.

– Chapter 9 presents the reliability-overhead tradeoffs that are enabled by the RAC

architecture, and then shows how these tradeoffs are affected by the choice of a fault

tolerance strategy, the parameters of the selected fault tolerance strategy, and the

predictor’s accuracy and interval.

– Chapter 10 summarises our findings, and then indicates future research directions.

1.5 Summary

In this chapter, we motivated and introduced the research problem, that is, inexpensive fault

tolerance support for a grid application that is composed of not only independent but also

communicating execution units. We highlighted the limitations of existing fault tolerance

approaches for grids, and then introduced the reader to our novel fault tolerance approach,

which we refer to as the RAC approach. We also presented the research questions that we

aim to answer at the end of this thesis. We provided readers a bird’s-eye-view of our research

methodology. We defined the scope of our research project. Finally, we briefly summarized

the content of each chapter in the thesis. In the next part, Part I, we will introduce readers

to the field of grid computing, reliability, and software architecture. Then, we will discuss our

research problem and related issues in detail.



Part I

Background

“What you see is news, what you know is background, what you feel is opinion.”

- Lester Markel

In this Part, we present the background theory that is related to our research project. The

background theory is organised in three chapters. Grid computing is introduced in Chapter 2.

Reliability and related topics are presented in Chapter 3. In Chapter 4, we discuss software

architecture, dwarfs, bulk synchornous parallel model, the need for fault tolerance support in

grids, existing fault tolerance approaches for grids, the limitations of these approaches, and

finally how these limitations could be addressed.



Chapter 2

Grids

A grid [Foster et al., 2001, Foster, 2002] is a distributed system that dynamically coordinates

a large number of heterogeneous resources, which are not under centralized control, using

standard, open and general-purpose protocols and interfaces to provide desired qualities of

service. Examples of grids are DAS-4 [DAS4 Website], DataTAG [DataTAG Website], and EU

DataGrid [DataGrid Website]. Grid computing [Foster et al., 2001] is a large-scale distributed

computing paradigm that is concerned with highly controlled and dynamically coordinated

sharing of heterogeneous resources in multiple organizations.

Constituent resources of a grid, hereafter referred to as grid resources, come in many forms.

Computers with various OS, programs, data, catalogues, code repositories, networks, sensors,

HPC accelerators, and specialized equipments like synchrotrons [Australian Synchrotron, 2012]

are all grid resources. Grid resources are owned by multiple individuals and/or organizations,

and thus belong to various administrative domains. Grid resources are coordinated based on

open and general-purpose protocols and interfaces that address the issues of authentication,

authorization, resource discovery and resource access. Such protocols and interfaces enable

the sharing of grid resources among collaborative individuals and/or organizations in a highly

controlled manner.

Sharing in a grid is not limited to file exchange. Users have direct, but controlled, access

to resources. A grid arranges the sharing of resources based on the specification of resource

providers about “. . . what is shared, who is allowed to share, and the conditions under which

sharing occurs” [Foster et al., 2001]. The sharing of resources in a controlled manner among

different organizations and/or individuals, which aim to achieve a common goal, creates a

virtual organization. Despite the resources in a virtual organization residing in multiple ad-

ministrative domains, they can be discovered and accessed as though they all belong to a single

10
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administrative domain.

Examples of a virtual organization include a common computational infrastructure for as-

tronomers in multiple universities, heterogeneous and multi-organizational archival storage sys-

tems for large-scale multimedia content analysis, and a distributed platform to access weather

models in different sites by a crisis management team to respond to an emergency situation.

These and other virtual organizations differ from each other in terms of their purpose, scope,

size and type of shared resources, structure, community and duration of their existence. De-

spite such disparity, virtual organizations share the following concerns and requirements [Foster

et al., 2001]:

i. Flexible sharing relationships: In a virtual organization, sharing relationships change

dynamically. Resources may leave an organization without any notification. The type of

access to a particular set of resources or authorization methods may change. Therefore,

there is a need to develop mechanisms for recognizing the current state of the virtual

organization at any point of time.

ii. Control over the usage of the shared resources: Shared resources must be used according

to the access policies of their providers. Therefore, there should be a mechanism to

control what is shared, who is allowed to access the shared resources and in what way

the shared resources are used.

iii. Sharing of heterogeneous resources: In a virtual organization, access to different types

of resources is required. The heterogeneity in grid resources comes not only from their

types but also from their configurations, architecture, and also access policies; for instance

computers with Linux, Windows or Mac OS, and Windows laptops with AMD or intel

processors.

iv. Diverse usage mode: Some grid resources participate in multiple sharing arrangements.

Suppose a resource participates in two sharing arrangements: providing idle computing

cycles to all members of a virtual organization, and allowing only members of a particular

group a write access to its hard disk. If a resource is part of multiple sharing arrange-

ments, it is not known how the resource will be used at a particular time. Therefore,

there is a need for performance and other quality metrics to determine the exact usage

of the resource.

A grid [Foster et al., 2001] uses protocols and services to address the above concerns and

requirements of virtual organizations. Information protocols are used to learn the current
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sharing relationship in a virtual organization. Security and management protocols control

how, by whom and under which circumstances the shared resources are accessed. Job and

data management protocols enable access to computing and data resources, respectively. These

protocols ensure that the usage of a resource meets its quality metrics.

2.1 Grid Architecture

According to Foster et al. [2001], a grid architecture identifies system components that are

needed to create, manage and exploit virtual organization sharing relationships among any

potential members. A grid architecture also specifies the purpose of the components and their

interactions. In this section, we study the Grid Protocol Architecture (Section 2.1.1) and the

Open Grid Services Architecture (Section 2.1.2).

2.1.1 The Grid Protocol Architecture

The Grid Protocol Architecture is proposed by Foster et al. [2001]. The components of the

architecture are protocols, which define the basic mechanisms to manage, discover, monitor,

and access resources in a virtual organization. Figure 2.1∗ shows the Grid Protocol Architec-

ture and its relationship with the Internet Protocol Architecture. The protocols of the Grid

Protocol Architecture are divided into five layers: Fabric, Connectivity, Resource, Collective

and Application.
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Figure 2.1: The layered Grid Protocol Architecture and its relationship with the Internet
Protocol Architecture. This figure is adapted from Foster et al. [2001].

∗Figure 2.1 is reprinted from International Journal of High Performance Computing Applications, 15, I.
Foster, C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling Scalable Virtual Organizations,
200-222, 2001, with permission from Sage Publications.
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2.1.1.1 The Fabric Layer

The Fabric layer [Foster et al., 2001] provides access to grid resources that will be shared by

members of a virtual organization. The sharing of these resources is mediated by grid protocols.

Each resource is expected to at least implement enquiry and resource management mechanisms.

Enquiry mechanisms are needed to obtain information about resources’ structure and state,

which include OS version, hardware configuration, available disk space, and network load. The

resource management mechanisms control the quality of service that is provided by resources.

Grid resources are mostly administrated by local resource managers, such as SGE, PBS [Bode

et al., 2000] and Condor [Thain et al., 2005]. However, external managers are also used to add

extra capability to resources. For example, GARA (Globus Architecture for Reservation and

Allocation) [Foster et al., 1999] adds advance reservation capability to resources.

2.1.1.2 The Connectivity Layer

The Connectivity layer [Foster et al., 2001] provides communication and authentication pro-

tocols. The communication protocols are needed for exchanging data between grid resources.

Therefore, these protocols support transport, routing, and naming. The communication pro-

tocols are assumed to come from the TCP/IP protocol stack.

The authentication protocols securely confirm the identity of users and resources. Authenti-

cating users and resources in a virtual organization is characterized by single sign on: once users

successfully sign in, they should have access to multiple resources without any further authen-

tication; delegation: there should be a mechanism for users to let a program access resources

on which the users have authorization; integrations with local security solutions: grid security

solutions should find a way to seamlessly work with local security solutions; and user-based

trust relationships: if users have access to resources from different administrative domains, the

user should be able to access the resources without the need for interaction among the security

administrators of the domains.

2.1.1.3 The Resource Layer

The Resource layer [Foster et al., 2001] is concerned with individual grid resources. This layer

provides information and management protocols. Information protocols are for learning about

a resource’s configuration, load, usage policy, and other state and structure related information.

Management protocols, on the other hand, are for negotiating access to a resource based on

usage policy, instantiating sharing relationships, and monitoring and controlling the status of
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the computation on the resource. Information and management protocols use Fabric layer

functions to get information about a resource and manage the resource.

2.1.1.4 The Collective Layer

The Collective layer [Foster et al., 2001] is concerned with the global state of grid resources.

Component of the Collective layer build on Resource and/or other Collective layers. The

protocols and the services of this layer provide a range of sharing behaviours. Examples

for sharing behaviours that are enabled by the components of the Collective layer abound.

Members of a virtual organization can check the existence of resources via directory services.

Members can also request a set of resources to be assigned for a particular purpose through

co-allocation services. Monitoring and diagnostic services allow the user to oversee the health

status of resources (alive vs. dead). Accounting services are used for billing. Collaboratory

services facilitate information exchange among large groups of users.

2.1.1.5 The Application Layer

The Application layer [Foster et al., 2001] is the last and the top-most layer. This layer con-

tains a program, hereafter referred to as a grid application, that users execute on the platform

that is provided by virtual organizations. Examples of grid applications are image rendering,

simulating the flow of blood through human arteries, large-scale multimedia content analysis,

managing large datasets generated by particle accelerators, and visualizing earthquake simu-

lation data. Since grid applications are executed in a distributed environment, their execution

is naturally composed of multiple computations which potentially interact with each other.

Hereafter, we refer to the smallest and independent computation unit of a grid application as

an activity of a grid application.

2.1.2 The Open Grid Services Architecture

The Open Grid Services Architecture (OGSA) [Foster et al., 2002, 2005] is a service-oriented

architecture that combines grid and Web Services technologies to define a set of service in-

terfaces which are needed to create a standard-based grid. OGSA also defines semantics to

specify the basic behaviours of a service, which include service creation, service naming, life-

time management, and communication. OGSA, however, does not impose the use of a specific

programming language or execution environment during the implementation and execution
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of services. We refer to a service whose interface and semantics are defined by OGSA as an

OGSA service.

OGSA services integrate and manage heterogeneous resources within an organization and

across multiple organizations. They also ensure that the desired quality of services are met

during grid application execution in the presence of distributed and diverse resources. OGSA

services are broadly categorised into six groups: execution management, data, resource man-

agement, self-management, security, and information.

Execution Management Services (OGSA-EMS) are concerned with managing computations.

OGSA-EMS are in charge of finding and selecting resources that are suitable for the compu-

tation, setting up the execution environment, and initiating and overlooking the computation.

OGSA data services are concerned with managing data access and movement. These ser-

vices use a virtualization interface, which obscures the difference between heterogeneous en-

tities, to manipulate diverse data resources. OGSA data services transform data from one

format to another, provide mechanisms to update data resources, and ensure a certain level

of quality of service with respect to data delivery and integrity are met. OGSA data services

also put an effort to minimize unnecessary data movement and duplication.

The Resource Management Services (OGSA-RM) look after grid resources in three ways.

First, each resource is managed as an independent entity; for instance rebooting a computer.

Second, resources are managed for being part of a grid. Under this management, OGSA-RM

monitors and controls resources, and enables advance reservations whenever possible. The last

management is concerned with the OGSA infrastructure; OGSA-RM monitors OGSA services

like a registry service.

The Security Services are used for verifying the identity of users, identity mapping, con-

trolling access to resources, ensuring privacy, and recording security-related events.

The purposes of Self-Management Services are to minimize the cost of owning grid resources

and to simplify resource administration. These services are needed to make grid resources

self-configuring: adapt to dynamic changes in their environment, self-healing: identify and

resolve problems without disrupting their environment, and self-optimizing: adjust themselves

to perform at a level where they can satisfy users’ constraints.

The Information Services, the last category of OGSA services, are used for obtaining infor-

mation about grid applications, grid resources and services. According to Foster et al. [2005],

information refers to any logged data, and dynamic data and events that reveal the status of

computations, resources and services.

Overall, OGSA services work together to provide a highly secured, controlled and seamless
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environment for executing grid applications.

2.2 Grid Infrastructures

A grid Infrastructure is an environment where heterogeneous resources that reside on different

administrative domains are dynamically shared in a highly controlled manner. Various tools

are available in academic institutions, industries and other organizations for building a grid

infrastructure. In this section, we highlight selected grid infrastructure tools, discuss the Globus

Toolkit [Foster, 2006], which is arguably the most popular grid infrastructure tool, and finally

define the Grid.

Tools like Alechmi, ALiCE, JCGrid, Condor-G, Nimrod/G, Oracle Grid Engine and Xgrid

build a grid infrastructure where only computing power is shared. Alchemi [Luther et al., 2005]

based grid infrastructures coordinate the sharing of computers with Windows OS. ALiCE [Teo

and Wang, 2004] and JCGrid [Bucciarelli, 2012] are Java-based tools that build platform inde-

pendent grid infrastructures. Condor-G [Frey et al., 2002] and Nimrod/G [Abramson et al.,

2000, Buyya et al., 2000] are extended from their respective predecessors, Condor [Litzkow

et al., 1997, Thain et al., 2005] and Nimrod [Abramson et al., 1995], by services that securely

discover, access and manage resources in multiple administrative domains. Condor-G manages

computation based on the mechanisms of its predecessor. Nimord/G [Abramson et al., 2000,

Buyya et al., 2000] manages computation based on computational economy. In Nimrod/G,

users are able to specify the deadline for completing the execution of their application and/or

the price the users are willing to pay for the computation. Open Grid Engine [Ora, 2010]

uses Service Domain Manager software to enable the sharing of computational resources among

multiple administrative domains. In Open Grid Engine, computers with Windows OS, Mac OS

X and Linux OS can be shared. Xgrid [App, 2009] provides an environment where computers

with Mac OS X can be shared. Some works has been done to include non-Mac computers in

Xgrid managed virtual organizations [Cote, 2004, Campbell, 2005].

DSpace, Gfarm, iRODS and OODT are tools for building a grid infrastructure for se-

cure and controlled sharing, management and access of data across multiple collaborators.

DSpace [The DSpace Developer Team, 2011] enables data sharing among collaborators over

the web. Gfarm [Tatebe et al., 2010] based grid infrastructure coordinates local file systems on

computers to enable data sharing. In order to improve I/O performance during the execution

of data-intensive applications, Gfarm ensures that data access is either from local file system or

from the nearby data storage. iRODS [iRODS Website] facilitates policy-based organization,
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sharing, protection, and preservation of up to hundreds of millions of files. It also supports

high-performance network data transfer. iRODS infrastructure can be built on Windows (with-

out logical name-space), Linux, Unix, and Mac computers. OODT [OODT Website] based

grid infrastructure enables collaborative data management and archiving. The infrastructure

enables users to store data, and then search, retrieve and/or analyse the stored data. OODT

is used in projects like the Early Detection Research Network [EDR, 2008], NASA’s Planetary

Data System [Jet, 2010] and the Orbiting Carbon Observatory [Crisp et al., 2003].

GLIDE and Globus are used to build grid infrastructures where multiple types of resources

can be shared. GLIDE [Mattmann et al., 2005], which is the successor of OODT, allows build-

ing a grid infrastructure where both data and computational resources are shared. Globus,

which provides de facto standard for building a grid infrastructure, creates an environment

where computational, data and specialized resources are shared among multiple organizations.

2.2.1 The Globus Toolkit

The Globus Toolkit [Foster, 2006, Globus Website] is a collection of software libraries and

services that provide support for developing grid applications, building grid infrastructures,

and producing other support services. The Globus Toolkit is widely used in many successful

projects like visualizing data at the Southern California Earthquake Center, simulating the

flow of blood through human arteries at Brown University, and managing data at CERN and

the Earth System Grid. The latest version of the Globus Toolkit, GT 5.2, was released on

December 15th, 2011.

Services in the Globus Toolkit follow the principles of OGSA. The core roles of these services

include providing access to and managing computational and data resources, discovering re-

sources that satisfy users’ requirement, monitoring resources for detecting problems, controlling

specialised equipments, transferring large data, authentication, authorization, and delegation.

The libraries and the services of the Globus Toolkit are categorized as job management compo-

nents, data management components, information services components, security components,

and common runtime components.

Job management components are concerned with providing access to resources, and manag-

ing and monitoring executions on those resources. The Grid Resource Allocation and Manage-

ment (GRAM) service, the Work Management Service (WMS), and the Grid Teleoperations

Control Protocol (GTCP) service are job management components. GRAM provides interfaces

for enabling access to, initiating executions on, and managing computational resources that
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are located on remote sites. WMS provides the capability to dynamically generate execution

sandboxes. GTCP provides interfaces for controlling specialised equipments like wave tanks.

Data management components are concerned with providing access to and transferring large

datasets. Data management components of the Globus Toolkit are GridFTP, the Reliable File

Transfer (RFT) service, the Replica Location Service (RLS), the Data Replication Service

(DRS) and Data Access and Integration (OGSA-DAI) tools. GridFTP transfers large data

between local and remote data storages at a high speed securely and reliably. RFT provides

interfaces for reliable administration of more than one GridFTP transfer. RLS looks after

and provides access to information about the storage sites of replicated data. DRS provides

interfaces to manage data replication using GridFTP and RLS. OGSA-DAI provides a set of

tools for accessing and processing relational and XML data.

Information services components, also known as the Monitoring and Discovery System

(MDS), are concerned with providing information about the status and availability of grid

resources. Index service, Trigger service, and WebMDS are information components. Index and

Trigger services are aggregators that monitor resource and collect information. The two services

differ the way they make information accessible. While Index service publishes the collected

information at a specific location, Trigger service is event-driven and thus provides information

only if the collected information satisfies a specific rule. WebMDS presents information via a

web browser.

Security components, also known as the Globus Security Infrastructure (GSI), provide tools

like MyProxy, GSI-OpenSSH and SimpleCA, and services like the Delegation service and the

Community Authorization Service (CAS) for authentication, authorization, message protec-

tion, and delegation. These components provide message-level and transport-level security

based on X.509 credentials. Message-level security is also provided using username-password

combination. MyProxy enables users to securely get credentials whenever the need arises. GSI-

OpenSSH facilitates the use of proxy credentials for single sign-on and file transfer. SimpleCA

implements a certificate authority that issues X.509 certificates to users as well as services of

the Globus Toolkit. The Delegation service is for delegating resources on the user’s behalf and

for credential renewal. CAS enables members of a virtual organization to make fine-grained

policy about the usage of resources that are located in multiple sites.

The last set of components are common runtime components. These components are used

for constructing containers that host Java, C, and Python web services.

Though the Globus Toolkit provides numerous tools for constructing a grid infrastructure,

it is limited with respect to coordinating computations, data transfers and other activities.
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However, higher-level coordination tools, which use the components of the Globus Toolkit for

laying the foundation of the grid infrastructure, can be built. Nimrod/G and Condor-G are

examples of such tools.

2.2.2 The Grid

Grid infrastructure development tools mostly use open and general-purpose but not standard

protocols to build a grid. Due to the lack of standard “InterGrid” protocols, grids that are

built using different technologies do not interoperate. Though Globus Toolkit protocols are

considered de facto standard due to their widely usage, the issue of interoperability is not yet

fully resolved. The grid community, in particular the Open Grid Forum [OGF], is actively

working on the standardization of grid protocols. Once such standardization is completed,

as Foster [2002] pointed out, any interested party that can speak standard grid protocols can

join the Grid in the same way any computing machine that speaks internet protocols can be

on the Internet. The Grid is, therefore, a distributed system that coordinates grid resources,

which are under multiple administrative domains, using open, general-purpose and standard

protocols to provide desired qualities of service.

2.3 Workflow in Grids

Some occasions necessitate the execution of multiple grid applications or services in a certain

sequence, as requested by the user, to achieve a given goal. We refer to the execution of

each grid application or service in such arrangement as a task. The output of a given task

may be used as an input to another task. Some tasks are mutually exclusive, hence they

run in parallel. The rest depend on one or more tasks, hence they run when the tasks on

which they depend on are completed. The partially or fully automated execution of multiple

tasks, where data is transferred between tasks when necessary, to reach the target goal is

known as a Workflow [Hollinsworth, 1994]. By taking into consideration the current state of

scientific workflows, which are described using sophisticated tools rather than complex shell

scripts, and the current context of a grid, where services are increasingly being used to build

its infrastructure, Fox and Gannon [2006] define a Grid Workflow as follows:

“The automation of the processes, which involves the orchestration of a set of grid

services, agents and actors that must be combined together to solve a problem or

to define a new service”.
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Suppose a scientist wishes to render satellite images. In addition to executing the task

that renders images, pre-rendering and post-rendering tasks need to be executed. The pre-

rendering tasks include collecting images from satellite, filtering the images, and moving the

filtered images to an accessible storage. Once the images are stored, they will be rendered.

After rendering is completed, post-rendering tasks, such as data analysis and visualization,

are executed. In this scenario, the grid workflow starts by collecting images from the satellite

and ends by visualizing the rendered images. It is important to note that the scientist should

explicitly specify which tasks are needed to achieve her goal, and in what order the tasks

should be executed. The scientist may use either scripts or grid workflow management tools,

like DAGMan [Couvares et al., 2007] and Taverna [Oinn et al., 2006], to express the dependency

between her tasks.

2.3.1 Types of Grid Workflows

Grid workflows are classified into five groups based on their complexity [Fox and Gannon, 2006]:

i. Linear workflows: This is the least complex workflow. Tasks in this workflow are

executed one after another. When a task is completed, its output will be transferred to

the next task. If the execution time of all tasks in the workflow is small, simple scripts

can be used to describe the workflow.

ii. Acyclic graph workflows: Acyclic graph workflows describe the execution order of

tasks using graphs. The nodes of a graph represent tasks. The edges of a graph represent

the execution order dependency between tasks. Some tasks are independent of other

tasks, while others need to wait for one or more tasks to complete before they can be

executed. Tools like DAGMan [Couvares et al., 2007] are used to describe an acyclic

graph workflow. Since acyclic graph workflows represent the execution order of tasks,

they are sometimes referred to as composition in time.

iii. Cyclic graph workflows: Cyclic graph workflows describe the dataflow dependency

between services or component instances using graphs. It is possible for the services or

component instances to stream data iteratively. Hence, the workflow is represented by

cyclic graphs. The nodes of a cyclic graph represent a service, a component instance or

an abstract model. The edges of a cyclic graph represent the message or the data to be

passed between the nodes. Tools like Taverna [Oinn et al., 2006] are used to describe
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a cyclic graph workflow. Due to the structuring of the workflow based on dataflow

dependencies, a cyclic graph workflow is also referred to as composition in space.

iv. A workflow of workflows: If the structure of a workflow is too large and/or complex,

describing the workflow using a graph may not be efficient. One way of representing a

large and complex workflow is to decompose the workflow into smaller connected work-

flows, and then use a graph to show the dependency between the smaller workflows.

The nodes and the edges of such graph represent a workflow and the (computation or

data) dependency between the decomposed workflows, respectively. DAGMan and Ke-

pler [Ludscher et al., 2006] allow the construction of a workflow of workflows. As pointed

out by Fox and Gannon [2006], the complexity of workflows may arise due to change

in the workflow during runtime, for instance removing a service (a node) in autonomic

systems for optimization. Thus, mechanisms to intelligently deal with such situations are

needed.

v. Implicit graph workflows: Implicit graph workflows are expressed in terms of desired

outcomes. Any computational and/or data movement can be followed as long as the

intended outcome is achieved.

2.3.2 Grid Workflow Management Systems

Grid Workflow Management Systems are software systems that coordinate the execution of

multiple tasks on a grid infrastructure. These systems enable users to describe the dependency

between the tasks using either plain text (e.g., DAGMan) or visual representation (e.g., Kepler).

DAGMan [Couvares et al., 2007], Askalon [Fahringer et al., 2005], Pegasus [Deelman et al.,

2005], Kepler [Ludscher et al., 2006], Taverna [Oinn et al., 2006], GridAnt [Amin et al., 2004],

Triana [Taylor et al., 2007], and Gridbus workflow [Pandey et al., 2009] are examples of grid

workflow management systems. In this section, we discuss DAGMan and Taverna.

DAGMan (Directed Acyclic Graph Manager) is a software system that manages the exe-

cution order of tasks, which correspond to either computation or data placement, on Condor

infrastructure. While Condor and Stork are responsible for managing computational and data

tasks, respectively, DAGMan ensures that each task is scheduled in an order as specified by

the user. Users describe the dependency between tasks using scripts. DAGMan is suitable to

manage plain and nested acyclic graph workflows. During the execution of a workflow, DAG-

Man records the progress of the computation. This enables users to monitor the execution
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of their workflow from the log files. Similar to Condor and Condor-G, DAGMan is from the

University of Wisconsin-Madison.

Taverna is a Java-based workflow management system, from the myGrid Project [myGrid

Website], that provides a domain independent platform to design, build and execute scientific

workflows. Taverna enables users to build a workflow which is composed of services with

iteration, and thus it is suitable to manage cyclic workflows. Taverna provides command-line

tools, and a rich and sophisticated graphical user interface for performing a wide range of

activities, which include describing dependencies between services, validating and debugging

dependencies, compositing multiple workflows, and pausing/resuming and tracking the progress

of a workflow execution. Taverna is widely used in life science applications.

An extensive survey about more than a dozen grid workflow management systems is con-

ducted by Yu and Buyya [2005]. The study compares and contrasts each system based on issues

like workflow design, information retrieval, scheduling, fault tolerance and data movement.

2.4 Grid Computing vs. Cloud Computing

It has been and still is a hot topic, grid computing vs. cloud computing. People are still

stumbling to understand the difference between the two worlds. Blogs, panel discussions (IEEE

e-Science 2010 Conference), and peer-reviewed papers [Foster et al., 2008, Brandic and Dustdar,

2011] are dedicated to clarify what each world promises and delivers.

Both grid computing and cloud computing represent a large-scale distributed computing

paradigm. They have a shared vision and common concerns. The ultimate goal behind these

technologies is minimizing the cost of computing, data access, and data storage. Since both

technologies enable multiple users to access a common pool of resources, they need to deal with

privacy, confidentiality and resource management issues. Though grid computing and cloud

computing are similar because of the paradigm they represent, the vision they share and the

issues they are concerned with, as extensively discussed by Foster et al. [2008], each have their

own business model, architecture, application model, security model, resource management,

and programming model. Of the areas that separate the two technologies, we believe, the core

difference between the two comes from their business models.

Grid computing is about controlled and coordinated dynamic resource sharing among mul-

tiple organizations, while cloud computing [Armbrust et al., 2010] is about providing highly

scalable resources on-demand. In grid computing, the resources that are shared by users are

owned by either the users or the organizations that the users represent; and each resource is
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shared according to the usage policy of its owner. If new users (organizations) wish to access

the resources in a given virtual organization, they are expected to bring new resources into

the virtual organization. This way, the existing members of the virtual organization will have

access to the resources of the new members, and vice versa. In cloud computing, however, an

independent party, such as Amazon [EC2] and Google [Google App Engine], provides resources

to users. All that is required to access resources is a credit card and an email address. Since

users are charged based on their usage, they are free to either increase or decrease their usage at

any time. In cloud computing, resources appear to be ‘infinite’. Thus, no advance reservations

are needed for provisioning.

The President and the CEO of the Open Grid Forum, Craig Lee, while responding to the

untimely publication of the obituary of grid computing, summarised the difference between

the two technologies as “To sum it all up in one phrase - grids are about federation; clouds are

about provisioning”.

2.5 Summary

In this chapter, grid computing is introduced. We distinguished between a grid, grid computing

and the Grid. We discussed the grid user concerns requirements that are addressed by grids. We

presented two grid architectures, the Grid Protocol Architecture and the Open Grid Services

Architecture (OGSA). Following this, we defined a grid infrastructure, gave some examples,

and discussed the Globus Toolkit. We then introduced grid workflows, and briefly discussed

workflow management systems. Finally, we presented the similarity and difference between

grid computing and cloud computing.
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Reliability

Reliability is one of the attributes for measuring the degree to which a system can be trusted

to carry out its intended function [Avizienis et al., 2004]. Reliability is a well-studied quality

of a system. Reliability, according to the IEEE Standard Glossary of Software Engineering

Terminology [IEEE, 1990], is

“The ability of a system or component to perform its required functions under

stated conditions for a specified period of time.”

The quantitative definition of Reliability is as follows:

“Software reliability is the probability of failure-free operation of a computer pro-

gram for a specified time in a specified environment.” [Musa et al., 1990, pp. 15],

The reliability of a software and a hardware system is affected by the environment under

which each system operates. However, the principal cause that affects the reliability of each

system is not the same. Design faults in a software system, and physical deterioration in a

hardware system lead to reduced reliability. Despite the difference between the two systems,

Musa [1998, pp. 35−36] argued that one can develop equivalent reliability theory for both

systems. This is why the reliability of a software system can be measured using standard

hardware combinatorial techniques.

3.1 Failure, Error, Fault

Failure, error and fault are dubbed as the “threats” to reliability of a system [Avizienis et al.,

2004]. Despite the significance of these terms in reliability theory, they are sometimes sources

24
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of confusion. Therefore, we distinguish these terms from each other using the standard IEEE

definitions [IEEE, 1990], and the discussion of Avizienis et al. [2004].

A failure is the behaviour of a system that represents the deviation of the system from

performing its required functions. Avizienis et al. [2004] defined failure as “. . . an event that

occurs when the delivered service deviates from correct service”. An error is the difference

between the observed condition of a system when a failure occurs, and the correct condition

of the system. Avizienis et al. [2004] defined error as the deviation of “. . . at least one (or

more) external state of the system . . . from the correct service state”. A fault is a defect

whose execution triggers an error. Avizienis et al. [2004] defined fault as the “. . . adjudged or

hypothesized cause of an error”. Failure is a user-oriented concept, and fault is a developer-

oriented concept.

Here, we use an example to understand the difference between failure, error and fault.

Suppose a robot should take five steps forward whenever a button is pressed. However, when

the button is pressed, the robot takes only three steps. Since the robot does not move according

to the specification, then pressing the button leads to a failure. The error in this scenario is

the missing two steps. The fault is the line of code where the number of steps of the robot is

incorrectly calculated.

3.2 Reliability Improvement Techniques

Numerous techniques are available to improve the reliability of a system. These techniques are

broadly classified into four groups: fault prevention, fault tolerance, fault removal, and fault

forecasting [Avizienis et al., 2004]. These techniques are also used to improve other system

quality attributes like availability and safety.

Fault prevention techniques [Avizienis et al., 2004] are concerned with preventing the

introduction of faults into a system. Fault tolerance techniques [IEEE, 1990] enable a system

to perform its required function despite the presence of faults either in the system or in the

environment where the system operates. Fault removal techniques [Avizienis et al., 2004]

aim to remove as many exiting faults of a system as possible. Finally, fault forecasting

techniques [Avizienis et al., 2004] predict existing and future faults of a system, and their

consequences.

Each reliability improvement technique is broad and deserves to be explored further. How-

ever, since the main focus of the thesis is on fault tolerance, we investigate only fault tolerance

techniques in detail.
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3.3 Fault Tolerance

Fault tolerance is concerned with enabling a system to complete its function even though the

system and/or the environment where the system operates are faulty. The goal of fault toler-

ance is, in other words, to avoid the failure of a system despite the presence of faults [Jalote,

1994, pp. 7]. According to the IEEE Standard Glossary of Software Engineering Terminol-

ogy [IEEE, 1990], fault tolerance is

“The ability of a system or component to continue normal operation despite the

presence of hardware or software faults.”

We refer to a system that performs its required function despite failure in some of its parts

as a fault tolerant system. In general, any fault tolerant system manages faults in four phases:

error detection, damage confinement and assessment, error recovery, and fault treatment and

continued system service [Jalote, 1994, pp. 8−17].

i. Error detection [Jalote, 1994, pp. 8−14]: The first activity of a fault tolerant system

is to detect an error. Error detection implies the presence of fault either in the sys-

tem or in the environment where the system operates, and the failure of one or more

components of the system. This is why the error detection phase is also known as the

fault/failure detection phase. An error is detected by, for instance, comparing the out-

puts of equivalent system components, checking whether the time constraints are met,

examining the internal structure of data, and checking whether the value of the output of

a component is within an acceptable range. The effectiveness of a fault tolerant system

highly depends on how good the error detection mechanism is. An ideal error detection

mechanism should use the specification not the internal design of the system for detecting

errors, detect all errors that the fault tolerant system intends to handle, never detect a

non-existent error, and have a failure mode independent of the system. In practice, error

detection mechanisms do not fully exhibit the characteristics of the ideal error detection

mechanism.

ii. Damage confinement and assessment [Jalote, 1994, pp. 14]: Once the error is

detected, the next phase is identifying the extent of its damage to the overall system

computation. Since there is a delay between the time the system has failed and the time

the error is detected, the error might propagate to other system components. In addition

to the component from which the error is originated, the computation of other system
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components could be jeopardized. Therefore, the extent of error propagation should be

assessed either dynamically or statically. Dynamic assessment involves examining the

information flow between components. Static assessment assumes the system to have

barriers, beyond which no information flows. For instance, if an error is detected, then

the extent of the damage is confined within two barriers.

iii. Error recovery [Jalote, 1994, pp. 15−16]: Once the error is detected and the extent of

its damage is known, the next phase is to reach an error-free system state. This is achieved

by removing the detected error by using either backward or forward recovery techniques.

Backward error recovery restores the system to a known stable state. Forward error

recovery, on the other hand, takes the computation forward by correcting the damage

that is caused by the error to the overall system computation. If the cause of the error

is a transient fault, a fault that exists for a bounded time, then it is expected that the

fault will be gone by the time the error is successfully removed. On such occasions, no

further fault tolerance management activities, such as fault treatment, are needed.

iv. Fault treatment and continued system service [Jalote, 1994, pp. 16−17]: The

activities in this phase should be carried out if the cause of the error is a permanent

fault, a fault that exists for unlimited duration. Even though the erroneous state of the

system is corrected and the system is restarted from error-free state, if the cause of the

error is a permanent fault, the error will re-occur unless the component which “hosts”

the fault is bypassed. Therefore, in this phase, once the exact location of the fault is

identified, the system will be repaired. System repair involves either not using the faulty

component at all or substituting the faulty component by another component that could

carry out the functions of the faulty component.

All activities in each phase should be done on-line. If there is manual intervention, then

the system is not a fault tolerant system. The computation of a fault tolerant system could

potentially be interrupted, especially when the system is being repaired in the fourth phase.

Nonetheless, upon the completion of the fourth phase, or the third phase if the cause of the error

is a transient fault, the system will continue its computation as if nothing had happened [Jalote,

1994, pp. 16].
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3.3.1 Fault Tolerance Strategies

A fault tolerance strategy is a technique that a fault tolerant system uses either for error recov-

ery, system repair or minimizing the impact of future failure on the overall system computation.

We discuss widely-used fault tolerance strategies below.

• Restart: This is the simplest fault tolerance strategy. Restart resets a computation

from the beginning when an error is detected. Restart can be applied locally or globally.

Local restarts reset only the computation of system components that are affected by the

error, while global restarts reset the entire computation of the system.

• Checkpointing: Checkpointing [Jalote, 1994, pp. 15] regularly saves the state of a

system computation on a stable storage at predetermined intervals. This strategy is

usually combined with other strategies like roll-back and migration.

• Roll-back Roll-back is used in conjunction with checkpointing. If the state of a system

computation is checkpointed before an error is detected in the computation, then the

computation will be rolled-back to the last stable checkpoint [Jalote, 1994, pp. 15].

• Roll-forward: Roll-forward takes the computation of a failed system forward by correct-

ing the damage that is caused by an error(s) to the overall system computation [Jalote,

1994, pp. 15−16]. Roll-forward is also known as forward error recovery.

• Migration: Migration is combined with checkpointing and roll-back. When an event

that may lead to error is detected in a checkpointed system, then the computation of the

system will be migrated to a new execution environment [Litzkow et al., 1997]. In the new

environment, the computation of the system will be restored from the last checkpoint.

• Rejuvenation: Rejuvenation is concerned with gradually terminating the computation

of a system and then restarting or rolling-back the system immediately at potentially

fault-free state [Huang et al., 1995]. The objective of rejuvenation is to minimize the

impact of transient faults on the computation of a system.

• Replication: Replication is concerned with simultaneously executing multiple identical

replicas of a system [Guerraoui and Schiper, 1997]. Replication serves two purposes: it

almost guarantees at least one of the replicas will complete, and it enables voting based

error detection mechanism by comparing the results of multiple replicas.
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• Redundancy: Redundancy manages failure using primary-backup approach. Each sys-

tem, usually a service or hardware, has a primary replica, and one or more backup repli-

cas. During computation, the primary replica regularly sends its status to the backup

replicas. In the event of the primary replica failure, one of the backup replicas takes

the role of the primary replica. Redundancy is also known as primary-backup replica-

tion [Guerraoui and Schiper, 1997],

• Standby spare: Standby spare uses alternative or standby system components to ensure

the computation of a system ends in success [Jalote, 1994, pp. 16]. If a system component

fails, then it will be replaced by a component that can carry out the functions of the failed

component.

• N-version: In the N -version fault tolerance strategy, the function of a system is im-

plemented using N different methods [Avizienis, 1985]. All versions of the system are

executed simultaneously. Then, the outputs of all or a subset of these executions will be

examined to determine whether the system completes successfully or not.

3.3.2 Classification of Fault Tolerance Strategies

Fault tolerance strategies are broadly classified into reactive and proactive [Huang et al., 1995].

• Reactive fault tolerance strategies attempt to recover a failed system after the failure

occurs. Restart and rollback are reactive fault tolerance strategies.

• Proactive fault tolerance strategies attempt to either minimize or prevent the impact of

future failure on the overall system computation before the failure occurs. Checkpointing,

replication, migration, and N -version are proactive fault tolerance strategies. These

strategies are not executed to recover a failed system: checkpointing the state of a system

minimizes the loss of computation time if the system fails later; replication and N -version

increase the chance of successful system computation by executing multiple instances of

the system, and migration takes the system to a new environment where the system could

potentially complete its execution in success.

Redundancy and standby spare have both reactive and proactive elements. In redundancy,

the backup replicas are executed to tolerate possible future failures. This action is a proactive

technique. However, taking the role of the primary replica by one of the backup replicas is a

reactive technique. This is because such activity occurs after the failure of the primary replica.
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Similarly, in standby spare, incorporating alternative components into the fault tolerant system

is a proactive action; however executing one of the alternatives in place of a failed component

is a reactive action.

3.4 Reliability Prediction

Predicting the reliability of a software system has been studied for quite a while [Moranda, 1975,

Cheung, 1980, Schmidt, 2003, Reussner et al., 2003, Brosch et al., 2011]. A software system

is a collection of logically independent entities, known as components, that perform certain

tasks [IEEE, 1990, Szyperski, 2002]. Components of a system are composed and coordinated

solely via their interfaces or service contracts, which are accessible at run-time and distinguish

required and provided services. Components have replaceable and independently deployable

realizations.

Reliability prediction is concerned with estimating the reliability of a system under the

context of certain usage profile and/or execution environment. The usage profile of a system

describes the input parameters to the components of the system, how frequently each compo-

nent is executed, and the interaction between the components [Reussner et al., 2003, Brosch

et al., 2011]. If a component that is prone to failure is used frequently, for instance, then the

likelihood of system failure increases. In addition to the usage profile, the reliability of a system

is affected by its execution environment. Any external party, hardware or software, which the

system interacts with could potentially cause failure in the system.

For predicting the reliability of a system, the operational behaviour of the system needs

to be represented in a certain way. It is common to model the behaviour of a system using

Markov chains [Cheung, 1980, Reussner et al., 2003, Wang et al., 2006, Cheung et al., 2008] or

UML-like notations [Cortellessa et al., 2002, Brosch et al., 2011]. We refer to a system model

that is primarily designed to predict reliability as a reliability model. If the reliability model of

a system is a Markov chain (Section 3.4.1), then formal reliability analysis is performed using

equations which describe the various behaviours of Markov chains. If the reliability model is

a UML diagram [Booch et al., 2005], then the model is first transformed into an equivalent

formal model, like Markov models, and then the reliability analysis is done using the formal

model. The transformation of a UML-based reliability model to an equivalent formal model

is in large part hidden from the user. Tools, such as PRISM [Kwiatkowska et al., 2011],

Matlab [MathWorks Website] and RADL [Schmidt, 2003, 2007, Peake and Schmidt, 2011],

provide an environment for analysing system reliability.
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Due to the popularity of Markov chains for modelling system reliability and the need to

ultimately transform UML-based models to equivalent formal models, we chose Markov chains

for modelling the behaviour of a fault tolerant grid system in Chapters 5 and 6. Therefore, we

introduce Markov chains to the reader in Section 3.4.1, and then discuss how Markov chains

are used for reliability analysis in Section 3.4.2.

3.4.1 Markov Chains

A Markov chain is a stochastic process that has a discrete state space, and possesses the Markov

property [Stewart, 2009, pp. 193−195].

Definition 3.1 (Stochastic process). A collection of random variables {Xt, t ∈ T} that are

defined on some probability space is called a stochastic process [Stewart, 2009, pp. 194]. The

set T is called the index set or the parameter space of the process, and T ⊆ R. The parameter t

represents time. Xt is the state of the process at time t.

Definition 3.2 (Discrete state space). In a stochastic process {Xn, n ∈ R}, the set of all

possible states creates the state space of the stochastic process. If all states in the state space

are discrete, then the process is called a chain and the state space is called a discrete state

space [Stewart, 2009, pp. 194]. The elements of a discrete state space are identified by natural

numbers. Let S denote a discrete space, S ⊆ N0.

Definition 3.3 (The Markov property). The Markov property [Stewart, 2009, pp. 193] states

that, given the current state of a process, the future state of the process is conditionally

independent of the previous states of the process. The future state of the process depends only

on the current state of the process.

Definition 3.4 (Discrete-Time Markov Chains). A Markov chain in which a transition between

two states occurs or fails to occur at discrete time steps, which are considered to be one

unit apart, is called a Discrete-Time Markov Chain (DTMC) [Stewart, 2009, pp. 195]. The

parameter space of a DTMC, denoted by T , is discrete, and thus T = {0, 1, 2, . . . }.
A DTMC is, therefore, a stochastic process {Xn, n ∈ N0} that has a discrete state space

S = {s0, s1, s2 . . . }, and satisfies the Markov property. Let Xn = sin denote a DTMC in state

si at time n, thus the Markov property of the DTMC is expressed as follows:

P{Xn+1 = sin+1 |Xn = sin , Xn−1 = sin−1 , . . . , X0 = si0} = P{Xn+1 = sin+1 |Xn = sin} (3.1)
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Definition 3.5 (Time-Homogeneous Markov Chains). A Markov chain is said to be time-

homogeneous if the transition probability between two states is independent of the time the

transition is started. The transition probability from state si to state sj in a time-homogeneous

Markov chain is expressed as follows:

P{Xn+1 = sjn+1 |Xn = sin} = P{Xn+m+1 = sjn+m+1 |Xn+m = sin+m},

for n = 0, 1, 2, . . . and m ≥ 0
(3.2)

Notation:

• We assume time-homogeneous DTMCs for modelling the behaviour of a fault tolerant

system in Chapters 5 and 6. Therefore, unless otherwise specified, any reference to a

Markov chain is a reference to a time-homogeneous DTMC throughout the thesis.

• Since our models contain a finite number of states, we limit our discussion to Markov

chains with finite state space.

• Hereafter, a state of a Markov chain is identified by a single letter like i instead of by si.

Definition 3.6 (Transition Matrix). The transition probabilities between the states of a

Markov chain are arranged in a matrix. The ijth element of such matrix represents the tran-

sition probability from state i to state j. This matrix is called the transition matrix [Stewart,

2009, pp. 195].

Let P be the transition matrix of a Markov chain. The ijth element of P is given by

Equation (3.3).

P (i, j) = P{Xn+1 = j|Xn = i} (3.3)

P has the following two properties:

i. The entries in the transition matrix are probabilities. Therefore, 0 ≤ P (i, j) ≤ 1.

ii. Each row in the transition matrix represent the transition probability distribution of a

state in the Markov chain. Therefore, for all i,
∑

all j P (i, j) = 1.

Equation (3.4) shows the transition matrix of a Markov chain with m states, m ≥ 1.

Definition 3.7 (Transition Diagram). A transition diagram [Stewart, 2009, pp. 197] depicts a

Markov chain in a graphic form. The states of the Markov chain are represented by circles with

labels, and the transitions between the states are represented by arrows, which are decorated

with transition probabilities. Figure 3.1 shows equivalent representation of a Markov chain by

a transition matrix and a transition diagram.



Reliability Prediction 33

P =



0 1 2 . . . . . . m− 1

0 P(0,0) P(0,1) P(0,2) . . . . . . P(0,m-1)
1 P(1,0) P(1,1) P(1,2) . . . . . . P(1,m-1)
2 P(2,0) P(2,1) P(2,2) . . . . . . P(2,m-1)
...

...
...

...
. . .

...
...

...
...

...
. . .

...
m− 1 P(m-1,0) P(m-1,1) P(m-1,2) . . . . . . P(m-1,m-1)


(3.4)

P =


0 1 2 3

0 0 0.45 0.35 0.2
1 0.3 0 0 0.7
2 0 0 1 0
3 0 0 0 1


0

3

10.45

0.3

0.70.2

1
2

0.35

1

Figure 3.1: Equivalent Markov chain representation by a transition matrix and a transition
diagram

Definition 3.8 (k-step transition probability). The transition probability of entering state j

from state i after k intermediate transitions is called the k-step transition probability [Stewart,

2009, pp. 204]. Let P be the transition matrix of a Markov chain. P (i, j)(k) is the k-step

transition probability from state i to j, and is shown in Equation (3.5).

P (i, j)(k) = P{Xn+k = j|Xn = i}, for k > 0 (3.5)

P (i, j)(1), or just P (i, j), is called the single-step transition probability.

Example 3.1 (Weather Prediction). Suppose the daily weather pattern of Melbourne is mod-

elled using a Markov chain. The weather in Melbourne has three types, i.e. windy, chilly and

sunny, and we assume each weather type is observed for full day. Therefore, the state space is

S = {windy, chilly, sunny}. The transition matrix, denoted by P , with single-state transition

probabilities is shown in Equation (3.6).

P =


windy chilly sunny

windy 0.25 0.4 0.35
chilly 0.3 0.3 0.4
sunny 0.2 0.05 0.75

 (3.6)
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From P , we observe that a windy day is followed by another windy day with 0.25 probability,

or a chilly day with 0.4 probability, or a sunny day with 0.35 probability. However, what if we

would like to know the probability of the weather to be sunny after two days, given today is

windy? In order to answer questions like this, the Chapman-Kolmogorov Equations are used.

Definition 3.9 (Chapman-Kolmogorov Equations). The Chapman-Kolmogorov equations [Stew-

art, 2009, pp. 202−206] provide a method, shown in Equation (3.7), to compute the k−step

transition probabilities.

P (i, j)(k) =
∑
all r

P{Xl = r|X0 = i} × P{Xk = j|Xl = r}

=
∑
all r

P (i, r)(l) × P (r, j)(k−l), for 0 < l < k
(3.7)

Let P (k) be the transition matrix of a Markov chain after k transitions. The matrix notation

of the Chapman-Kolmogorov equations is given in Equation (3.8).

P (k) = P k, for 0 < k (3.8)

Recall our question in Example 3.1, what is the probability of the weather to be sunny after

two days, given today is windy? To answer this question, we set k = 2, and compute P (2). The

result is shown in Equation (3.9). The answer is 0.51.

P (2) =


windy chilly sunny

windy 0.25 0.24 0.51
chilly 0.245 0.23 0.525
sunny 0.22 0.13 0.65

 (3.9)

Definition 3.10 (Transient and Recurrent States). Let F (j, j) be the probability of ever re-

turning to state j after leaving it. If F (j, j) < 1, then state j is called a transient state. If

F (j, j) = 1, then state j is called a recurrent state [Stewart, 2009, pp. 208−209].

There is a non-zero probability for the Markov chain to never to return to a transient state.

Therefore, transient states are visited finite number of times, Equation (3.10). In Figure 3.1,

states 0 and 1 are transient.
∞∑
k=0

P (j, j)(k) <∞ (3.10)
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The Markov chain certainly returns to a recurrent state. Therefore, recurrent states are

visited infinitely often, Equation (3.11). In Figure 3.1, states 2 and 3 are recurrent.

∞∑
k=0

P (j, j)(k) =∞ (3.11)

Definition 3.11 (The Potential Matrix). Consider matrix R. The ijth element of R is the

expected number of times that the Markov chain visits state j, provided that state i is the first

state of the Markov chain. R is called the potential matrix [Stewart, 2009, pp. 218−221].

Suppose T denotes the transition matrix of a Markov chain, and the ijth element of T

denotes the transition probability from transient state i to transient state j, for all transient

states i and j in the Markov chain. The expected number of visits to the transient states of

the Markov chain is computed as shown in Equation (3.12).

R = (I − T )−1 (3.12)

T and R of the Markov chain in Figure 3.1 are given in Equations (3.13) and (3.14).

T =

( 0 1

0 0 0.45
1 0.3 0

)
(3.13)

R =

( 0 1

0 1.16 0.52
1 0.35 1.16

)
(3.14)

Consider R(i, j). If state j is a recurrent state, the expected number of visits to state j

from state i is shown in Equation (3.15).

R(i, j) =

∞, if P (i, j)(k) > 0 and k > 0

0, otherwise
(3.15)

Definition 3.12 (Absorbing States). An absorbing state [Stewart, 2009, pp. 207] is a recurrent

state in which the Markov chain remains forever after the initial visit. Given an absorbing

state i, P (i, i) = 1. In Figure 3.1, states 2 and 3 are absorbing states.

Definition 3.13 (The Absorption Probability Matrix). Consider matrix A. The ijth element

of A is the probability of ever reaching absorbing state j from transient state i. A is called the

absorption probability matrix [Stewart, 2009, pp. 223−226].

Suppose B denotes the transition matrix of a Markov chain, and the ijth element of B

denotes the transition probability from transient state i to absorbing state j, for all transient

states i and all absorbing states j in the Markov chain. The probability of ever reaching an
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absorbing state from transient states of the Markov chain is computed as shown on Equa-

tion (3.16).

A = R×B, for R in Equation (3.12) (3.16)

B and A of the Markov chain in Figure 3.1 are given in Equations (3.17) and (3.18).

B =

( 2 3

0 0.35 0.2
1 0 0.7

)
(3.17)

A =

( 2 3

0 0.4 0.6
1 0.12 0.88

)
(3.18)

3.4.2 Reliability Prediction with Markov Chains

Markov chains are one of the methods for modelling the behaviour of a system. Here, we use a

classical reliability model, which was proposed by Cheung [1980], to discuss how the behaviour

of a system with respect to reliability can be constructed and analysed using Markov chains.

The properties of the Cheung reliability model are given below:

• The reliability model represents the components of a given system by transient states.

For a system with n components, there are n transient states. The execution of the

system commences in the entry state, and ends in the exit state.

• The reliability model has two absorbing states C and F . State C represents successful

execution of the system, while state F represents failure in the execution. If any of the

components fails, the entire system computation is considered as failed.

• The arrow between states represents the direction of the flow of the computation.

• For all states i and j, let Pij be the probability of executing the component in state j

right after the component in state i completes execution, and Ri be the reliability of the

component in state i. The probability of transiting from state i to state j is Pij ×Ri.

• For all states i, since the failure of one component is suffice for the entire system to fail,

there is a transition from state i to state F with the probability of 1−Ri.

• Given an exit state j, the system enters state C from state j with the probability of Rj .

• The reliability of the system is the probability of transiting from the entry state i to

state C in the absorption probability matrix of the reliability model.
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Example 3.2 (The Cheung Reliability Model). Suppose a system has four components, and

the behaviour of this system with respect to reliability is modelled using a Markov chain. The

reliability model of the system, denoted by M , has the properties of the Cheung reliability

model. Figure 3.2 and Equation (3.19) show the transition diagram and the transition matrix

of M , respectively.

0.35 x R1 0.2 x R2

1-R1

0.65 x R1

1-R2

0.8 x R2

1-R0

0.5 x R0

0.5 x R0 R3

1-R3

2 31

F

C0

Figure 3.2: Example: Reliability model

M =



0 1 2 3 F C

0 0.5×R0 0.5×R0 0 0 1−R0 0
1 0 0.65×R1 0.35×R1 0 1−R1 0
2 0 0.8×R2 0 0.2×R2 1−R2 0
3 0 0 0 0 1−R3 R3

F 0 0 0 0 1 0
C 0 0 0 0 0 1

 (3.19)

• The transient states of M are states 0, 1, 2 and 3. States 0 and 3 are the entry and the

exit states, respectively.

• The absorbing states of M are states C and F . The selfloop transition of the absorbing

states is removed, and these states are represented with double circles.

• The reliability of state i is denoted by Ri. For all states i and j, the probability of

executing the component in state j right after the execution of the component in state i

is given with concrete numbers. For example, the probability of transiting from state 1

to state 2 is 0.35×R1.

• All of the transient states of M transit to state F .
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• The successful execution of the system is represented by the transition from state 3 to

state C.

• Let R0 = 0.95, R1 = 0.98, R2 = 0.96 and R3 = 0.99. The reliability of the system,

which is the transition from state 0 to state C in the absorption probability matrix of M ,

is 0.59. The absorption probability matrix of M is shown in Equation (3.20).

A =


F C

0 0.41 0.59
1 0.35 0.65
2 0.31 0.69
3 0.01 0.99

 (3.20)

3.5 Recovery-Oriented Computing

The last reliability topic we introduce the reader to is Recovery-Oriented Computing (ROC).

Despite the topic not being directly related to reliability, ROC focuses on system availability,

the principle behind ROC is valuable and could be used to improve system reliability with

relatively small cost.

Availability is the probability that a system is operational and accessible when it is needed

[IEEE, 1990, Jalote, 1994, pp. 37−38]. Equation (3.21) shows the availability of a system,

which is computed from the mean time to failure (MTTF) and the mean time to repair (MTTR)

of the system.

Availability =
MTTF

MTTF +MTTR
(3.21)

Recovery-Oriented Computing is concerned with increasing the availability of a system by

decreasing the mean time to repair [Patterson et al., 2002, Fox and Patterson, 2005]. As

evidenced by Equation (3.21), the availability of a system can be improved by either increasing

the mean time to failure or decreasing the mean time to repair. The reason for the ROC to

focus on MTTR rather than on MTTF is the belief that “. . . hardware faults, software bugs,

and operator errors are facts to be coped with, not problems to be solved” [Patterson et al.,

2002]. No matter how big MTTF is, system failure is inevitable.

Fast recovery after failure, in addition to increasing system availability, decreases revenue

lost due to downtime. Furthermore, fast recovery reduces total cost of ownership of systems.
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Patterson et al. [2002] argued that, since system administrators spend significant amount

of time repairing systems, being able to repair failed systems quickly decreases the cost of

administration.

3.6 Summary

In this chapter, reliability and related topics are presented. We defined reliability; distinguished

between failure, error and fault; and then presented the four techniques for improving the

reliability of a system. The four techniques are fault prevention, fault removal, fault tolerance

and fault forecasting. We then dived deep into fault tolerance. We discussed the four phases

that a fault tolerant system goes through to manage failure. We presented the common fault

tolerance strategies and their classifications, i.e., reactive and proactive. We also showed

fault tolerance strategies, such as redundancy, that have both reactive and proactive aspects.

Following this, we discussed how to predict system reliability, introduced Markov chains, and

presented the Cheung reliability model. Finally, we presented Recovery-Oriented Computing.
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Reliable Grid Software Design

Software architecture was recognised as being one of the fundamental disciplines of software

engineering in the 1990s [Garlan and Shaw, 1994]. This discipline is concerned with high-level

organization of the components of a software system. Such high-level system description allows

study of the behaviour of a system with respect to, for instance, performance, reliability, and

availability [Gokhale et al., 1998, Reussner et al., 2003, Brosch et al., 2011].

Garlan and Shaw [1994] and the IEEE Recommended Practice for Architectural Description

of Software-Intensive Systems [IEEE, 2000] define Software Architecture as follows:

“a collection of computational components—or simply components—together with

a description of the interactions between these components—the connectors”

Garlan and Shaw [1994]

“The fundamental organization of a system embodied in its components, their

relationships to each other, and to the environment, and the principles guiding its

design and evolution.” [IEEE, 2000]

Software architecture is in particular needed in systems in which a large number of compo-

nents are integrated to complete certain tasks. This is because the main design challenges of a

complex system come from neither algorithms nor data structures, but rather from the struc-

turing of the components of the system. Such challenges include, but are not limited to, iden-

tifying components and their interactions, selecting communication and data access protocols,

integrating components in a scalable manner, avoiding performance bottlenecks, and selecting

the right design pattern from available architectural choices [Shaw and Garlan, 1996, pp. 1].
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Architectural
Style

Computational Model Component Connector Invariant Advantages Disadvantages

1. Pipes and
Filters [Garlan
and Shaw, 1994]

A component reads streams of
data, processes the data
incrementally, and then
outputs the (partial) result.
Example: Unix programs,
parsing in traditional compilers

Filters Pipes - Filters are independent units,
and are oblivious about the
identity of other filters;
- The correctness of execution
output is independent of the
order of filters’ incremental
processing

- Understanding the overall
system behaviour is possible
due to the simplicity of filter
composition;
- Adding new filters or
substituting old filters with
new ones is easy,
- Support reuse and concurrent
execution.

- Not good for interactive
programs
- Performance loss if filters
maintain communication
between related streams or
data transmission is based on
the lowest common
denominator protocol.

2. Data
Abstraction
and Object-
Oriented
Organiza-
tion [Garlan
and Shaw, 1994]

A component encapsulates
data and procedures, provides
interfaces though which other
components can invoke its
procedures.
Example: Enterprise
JavaBeans (EJB), CORBA

Objects Function
and
procedure
invocation

- An object manages its
internal structure;
- The internal structure of an
object is not visible to other
objects.

- Changing the internal
structure of an object will not
affect other objects.

- An object must know the
identity of other objects in
order to interact with them
- Change in the identity of an
object necessitates the
modification of all other objects
that interact with the object.

3.
Event-based,
Implicit
Invocation
[Garlan and
Shaw, 1994]

The invocation of a procedure
is associated with a specific
event. When a component
announces an event, all
procedures that are associated
with that event will be invoked.
Example:
Model-View-Controller

Modules
with a set
of events
and
procedures

Procedure
calls, event
and
procedure
call
bindings

- Event announcers are oblivi-
ous about which and how other
modules will be affected by the
announced event

- Reuse. Any module can be
part of the system by
registering to a specific event.
- Replacing a module by
another one does not affect
other modules in the system.

- An event announcer does not
have any control over the order
of procedure invocation, and
does not know when a
procedure is completed.
- Sharing a repository among
modules has performance and
resource handling implications

4. Layered
Systems [Gar-
lan and Shaw,
1994]

Components are placed on top
of each other. A component
provides a service to the
adjacent component above, and
is served by the adjacent
component below.
Example: Grid protocol
architecture, OSI protocol suite

Layers Protocols - Layers interact only with
adjacent layers (top and
bottom).

- Enable to decompose complex
problems, and rearrange in
order of increasing complexity
- Modifying a layer affects only
its adjacent layers.
- Changing the internal
implementation of a layer does
not affect other layers

- Hard to structure systems in
layered style
- Hard to find the right
abstraction. Higher level
functions, when implemented,
may span multiple layers.

Table 4.1: Examples of Architectural Styles
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Some systems have similar types of components, and component interactions—and there-

fore share common architectural design. A family of systems that share a set of components,

connectors, and constraints, which define the interactions among components, is called an

architectural style [Garlan and Shaw, 1994]. In addition to components, connectors and con-

straints, an architectural style is identified by its underlying computational model, invariants,

advantages, disadvantages, and common examples and specializations [Garlan and Shaw, 1994].

Some software systems have heterogeneous architecture, which is composed of more than one

architectural style. Pipes and filters, data abstraction and object-oriented organization, event

based implicit invocation, and layered systems are examples of architectural styles. Table 4.1

summarizes the properties of these architectural styles.

4.1 Dwarfs

A dwarf, also known as a motif [Asanovic et al., 2008], is a high level algorithmic abstraction

that captures the pattern of communication and computation of parallel applications [Asanovic

et al., 2006]. Parallel applications that belong to a specific dwarf have similar structure of

computation and data movement, but possibly different implementations and computations.

Inspired by the work of Phil Colella [Colella, 2004], who identified seven numerical methods for

scientific computing, researchers at the UC Berkeley categorized existing parallel applications

into thirteen dwarfs. The researchers proposed the use of these dwarfs to evaluate future

parallel programming models and hardware architectures instead of traditional benchmarks

such as SPEC (Standard Performance Evaluation Corporation) [SPE] or SPLASH (Stanford

Parallel Applications for Shared Memory) [Woo et al., 1995]. Each dwarf is briefly explained in

Table 4.2, which is based on discussions by Asanovic et al. [2006] and in Dwarf Mine Website.

Note that the word “Grid” in the context of this section refers to a set of lines that cross with

each other to form rectangles.

Some parallel applications are composed of multiple dwarfs [Asanovic et al., 2006]. Route

lookup, for instance, is composed of the Graph Traversal and the Combinational Logic dwarfs.

For an application with multiple dwarfs, the computation is distributed either temporally or

spatially. In temporal distribution, computation is done as a sequence of dwarfs. The dwarfs

are executed one after another, and all available resources are allocated to the currently run-

ning dwarf. In spatial distribution, the dwarfs communicate while running concurrently. On

such scenarios, available resources are divided among the dwarfs. A dwarf could be executed

using both types of distributions, for instance pipeline parallelism in the Combination Logic
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dwarf (Section 6.2.1.1.2).

Table 4.2: The thirteen dwarfs of parallel applications. This table is based on discussions

by Asanovic et al. [2006] and in Dwarf Mine Website.

Dwarf Description Example

1. Dense Linear

Algebra

- Data are dense matrices or vectors in 3 levels: vector-vector,

matrix-vector and matrix-matrix. Row and column data are read

using unit-stride memory accesses and strided accesses, respectively.

Video

compression

2. Sparse Linear

Algebra

- Matrix-based applications with many zeros; data can be compressed

by removing the zero entries for efficient use of storage and bandwidth.

Spring

models

3. Spectral

Methods

- Data are in frequency domain; use multiply butterfly stages; some

stages are local while others are global with all-to-all communication.

Spectral

clustering

4. N-Body

Methods

- Computations depend on interactions between discreet points in a

grid. In particle-particle methods, every point depends on every other

point on the grid; and in hierarchical methods, forces are combined

from many, but not from all, points.

Molecular

dynamics

5. Structured

Grids

- Data are arranged in a regular grid. Points are updated together

using values from their immediate neighbours. Updates could be

in-place, 2 version or alternate like red-black pattern. Has spacial

locality; a subgrid can be executed on a separate processing element.

Finite element

methods

6. Unstructured

Grids

- Data are arranged in a mesh, which is composed of points, edges,

faces and/or volumes. Each mesh element is updated together.

Updating a mesh element necessitates identifying its neighbours and

loading the neighbour’s values. Due to the diversity of mesh elements,

each element should be represented unambiguously.

Belief

propagation

7. MapReduce - MapReduce applications have two sets of computations: map,

processes input data and produces an intermediate data, and reduce,

processes the intermediate data and produces the final output.

Computations are embarrassingly parallel.

NB: Asanovic et al. [2009] reclassified MapReduce as a structural

pattern, rather than a computational pattern.

Google’s search

8. Combinational

Logic

- Carry out simple functions, such as boolean operations, on a large

set of data. Resembles Multiple-Instruction-Single-Data of Flynn’s

Taxonomy [Flynn, 1972]

Route lookup

9. Graph

Traversal

- Main functionality is to walk through elements of a dataset and

inspect the features of the elements. Minimal computations.

Decision trees

continued . . .
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. . . continued

Dwarf Description Example

10. Dynamic

Programming

- Build the optimal solution to a problem from the optimal solutions of

simpler overlapping subproblems.

Query

optimization

11. Backtrack and

Branch-and-

Bound

- The goal is to find a globally optimal solution by searching

intractably large spaces. Divide and conquer is used to partition the

search space, and explore each region independently.

Chess

12. Graphical

Models

- Construct graphs, where the nodes and the edges represent random

variables and conditional dependencies, respectively.

Bayesian

Networks

13. Finite State

Machine

- Consists of a set of states. Computation progresses by transiting from

one state to another. Computations are embarrassingly sequential.

Text

processing

4.2 Bulk Synchronous Parallel Model

Inspired by the von Neumann model of sequential computation, Valiant [1990] proposed the

Bulk Synchronous Parallel (BSP) model, which serves as a bridge between software and hard-

ware, for parallel computation. As the von Newmann model was able to unify the diverse

software and hardware world of sequential computing, the purpose of the BSP model is to

achieve such unity in the world of parallel computing. This way, hardware manufacturers can

focus on developing BSP computers without being concerned about the type of programs that

run on their machines. Likewise, software developers write parallel programs without explicitly

considering the type of hardware on which their program runs, other than the hardware being

a BSP computer.

Valiant [2011] extended the basic BSP model, which does not impose any memory restric-

tions, to include multiple memory and cache levels. Nonetheless, further discussions are based

on the basic BSP model.

A BSP computer has three attributes: components that engage in processing and memory

functions; a router that transports messages between components; and synchronising facilities

that coordinate all or some of the components at a regular interval. In a BSP computer, a

computation is modelled as a sequence of supersteps. Each superstep, as shown in Figure 4.1, is

composed of local computations, global communications and a barrier synchronisation [Valiant,

1990, Skillicorn et al., 1997].
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Local Computations

Global Communicaitons

Barrier Synchronisation

 Virtual Processors 

Figure 4.1: A superstep. This figure is adapted from Skillicorn et al. [1997].

The local computations in a superstep are independent of each other, and therefore can

be executed in any order. During execution, the BSP components use only the data that is

locally available to them. Therefore, before the start of a superstep, the required data for the

local computations should be stored in a place to which the BSP components have access.

Once all of the local computations in a superstep are completed, then the BSP compo-

nents communicate and exchange information, as needed. Each BSP component has incoming

and outgoing messages. In a superstep, if the maximum number of messages that are either

incoming to or outgoing from a BSP component is h, then the communication pattern of the su-

perstep is known as an h-relation. The superstep in Figure 4.1∗ has a 2-relation communication

pattern.

The last element of a superstep is a barrier synchronisation. The barrier synchroniser,

upon the completion of all global communications, makes the data that is needed for the next

superstep available in the local memory of the BSP components.

4.2.1 The BSP Cost Model

The execution time of a BSP program, as shown on Equation (4.1), is the sum of the execution

time of its supersteps. The execution time of a superstep, as shown on Equation (4.2), is

∗Figure 4.1 is reprinted from Scientific Programming, 6, D. Skillicorn, J. Hill, and W. McColl, Questions
And Answers About BSP, 249-274, 1997, with permission from IOS Press.
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constructed from the execution time of the longest local computation, the cost of the global

communication of an h-relation, and the cost of the barrier synchronisation [Skillicorn et al.,

1997].

Let

• S: the total execution time of a BSP program

• si: the execution time of superstep i

• wi,j : the execution time of a local computation j in superstep i

• hi: the h-relation of superstep i

• g: the transmission capacity of the network to deliver data

• b: fixed (amortised) cost of synchronisation

S =
k∑

i=1

si

for k total supersteps in S

(4.1)

si =
n

max
j=1

wi,j + hi × g + b

for n local computations in superstep i

(4.2)

Equation (4.2) shows the standard BSP cost model. However, other cost models are also

available. For example, in Equation (4.3), local computation is merged with the cost of com-

munication. However, Skillicorn et al. [1997] argued that using such finer cost models would

not change the final result by more than a small constant factor.

si =
n

max
j=1

(wi,j , hi,j × g) + b

for n local computations in superstep i, and

hi,j is h-relation of local computation j in superstep i

(4.3)

4.3 Reliable Grid Computing

In a grid, a large number of computational and data resources are dynamically coordinated

to execute large scale projects involving collaborating scientists, high-performance computers,

massive data stores, and large scale scientific instruments. Grids such as those run by CERN
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and other flagship research environments today routinely process terabyte to petabyte-scale

event data. As grid computing enters the mainstream and is applied in internet search, finance,

large-scale engineering design and other domains, key issues like interoperability, security, and

fault tolerance grow in importance. Since the objective of this research is to improve the

reliability of grid applications, further discussions are limited to fault tolerance.

4.3.1 The Need for Fault Tolerance

Failure in grids is arguably inevitable due to

• the heterogeneity and the massive scale of grid resources,

• the distribution of such resources over unreliable networks,

• the complexity of mechanisms that integrate these resources into a seamless utility, and

• the dynamic nature of the grid infrastructure which allows continuous changes to happen.

Hundreds and thousands of machines are coordinated to execute a grid application. Even

when a grid infrastructure is composed of highly reliable resources, which is not always the

case, due to the sheer scale of grid resources, it is highly likely for some of these resources to

fail while a computation is in progress.

Grid resources that are exchanging a bulk of data should be able to establish and maintain

a network session for an extended period of time. For this, many network components are

involved in routing data from the source to destination. Due to the size of the transferred data

and the involvement of many network components, failure during data transmission does not

come as a surprise in grids.

The core grid services play a vital role in enabling highly secure and dynamic sharing of

thousands of heterogeneous resources among multiple collaborators. However, the complexity

of the responsibilities of such services, coupled with the services not being 100% reliable, is yet

another reason for a failure to occur in grids.

In grids, constant change is the norm rather than the exception. Grid resources may join

and leave the resource pool of a virtual organization at any time, or an administrative domain

may change its security policy without notifying any concerned parties. If any of these or

other similar events happen during the execution of a grid application, the execution fails. For

example, if a resource which is assigned to execute an activity of a grid application suddenly

disappears from the resource pool, the application will be waiting forever to get the output of
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that activity. Similarly, if access to specific files is blocked during execution or a major software

upgrade is performed that might cause incompatibility with the current execution, then the

execution will fail.

The cause of failure in grids comes not only from grid resources and services but also from

grid applications themselves. Grid applications are often long running. Since the activities of

a grid application and their execution environment are not necessarily fault free, the longevity

of a grid application execution increases the chance for some of the faults to cause errors before

the execution is completed.

Multiple factors almost make the occurrence of a failure during the execution of a grid

application a practical certainty. Therefore, fault tolerance support is needed to guarantee the

successful completion of a grid application execution in the face of many threats.

4.3.2 The State-of-the-Art

The grid community has proposed various fault tolerance approaches, which are based on

traditional fault tolerance techniques (Section 3.3), to increase the probability of successful

execution of grid applications. Many of these approaches are focused on either improving

the reliability of a single grid application or the reliability of multiple grid applications in a

workflow. Therefore, we broadly classify fault tolerance solutions for grids into two categories:

application/service-based and workflow-based. In Sections 4.3.2.1 and 4.3.2.2, we discuss the

the general direction that is taken to provide fault tolerance support to grid applications in

each category.

4.3.2.1 Application/Service-Based Fault Tolerance Solutions

Checkpointing and replication are popular fault tolerance strategies that are used extensively

for providing fault tolerance support to grid applications and services. These strategies are

used as foundations of many grid-based fault tolerance researches [Silva et al., 2003, Budati

et al., 2007, Nazir et al., 2009, Chtepen et al., 2009]. The difference between these researches

mainly comes from how each research exploits the parameters of the fault tolerance strategies,

such as checkpointing interval and the number of replicas, to achieve highly reliable compu-

tation. Other fault tolerance strategies like N -version [Xu et al., 2008] and restart [Dean and

Ghemawat, 2004] are also used.

Nazir et al. [2009] and Chtepen et al. [2009] proposed adaptive checkpointing to manage

the failure of activities during the execution of a grid application. Both researches, though in a
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different manner, use the performance of grid resources to adjust checkpointing interval. Nazir

et al. [2009] evaluates the performance of a resource based on how often the resource completes

the execution of an activity within the deadline. If a resource is known to be prone to failure,

i.e., the resource does not complete activity execution within the deadline more often than

not, then the activities that are executed on the resource will be checkpointed frequently, and

vice versa.

Chtepen et al. [2009], on the other hand, combines the failure frequency of a resource with

the execution time of an activity to adjust checkpointing interval or determine the need to

checkpoint at runtime. If the resource is either stable or the activity is about to complete, then

the checkpointing interval is increased to minimize checkpointing frequency, and vice versa.

On occasions when the checkpointing interval is fixed, activities are checkpointed only if their

execution environment is considered to be unstable. Otherwise, the checkpointing is skipped.

Chtepen et al. [2009] also proposed adaptive replication. The execution of the replica of an

activity is determined based on the load of the grid infrastructure. If resources are not available

to execute all replicas of an activity, for instance during peak hours, then the execution of some

or all of the replicas will be postponed. .

Earlier works, such as by Li and Mascagni [2003], Silva et al. [2003] and Budati et al. [2007],

also proposed replication-based fault tolerance approaches for grids. Li and Mascagni [2003]

assumed computational grid resources to be unlimited, and thus they proposed replicating

each activity of a grid application n times irrespective of the current status of the execution

environment. However, they acknowledged that using arbitrarily large number of replicas

would not necessarily lead to a better reliability, and the execution of unnecessary replicas

would significantly increase system workload. Therefore, they proposed an analytical model,

which takes into account the performance and the availability of grid resources, to determine

the minimum number of replicas that could satisfy performance requirements.

The replication-based fault tolerance support by Silva et al. [2003], unlike by Li and

Mascagni [2003], does not assume ‘infinite’ grid resources. Once all activities of a grid ap-

plication are allocated an execution environment, each activity is replicated up to a threshold

only if there are idle resources to execute the replicas. This replication approach is similar

to the one proposed by Chtepen et al. [2009], the difference being Chtepen et al. [2009] do

not wait until all activities of the grid application are allocated an execution environment

before replicating activities. All of the replication-based fault tolerance approaches that we

have discussed, when one replica completes successfully, terminate the executions of all other

replicas.
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Chtepen et al. [2009], Li and Mascagni [2003] and Silva et al. [2003] use replication to

guarantee the completion of the execution of an activity. Nevertheless, Budati et al. [2007]

replicate activities not only to increase the chance of completion but also to ensure that the

output of each execution is correct. For this, they combine replication with voting. The

execution of an activity is completed when the required number of replicas reach consensus on

the final result. In this work, the performance of resources is used to determine the number of

required replicas that guarantee correct and timely execution of activities. The performance

of each resource is evaluated by the correctness of the output of activities that the resource

hosted, and the ability of the resource to complete execution within expected time frame.

Xu et al. [2008] took advantage of the opportunity that is presented by the Service-Oriented

Architecture [Papazoglou and Heuvel, 2007] for dynamically locating multiple equivalent ser-

vices, and proposed N -version with voting to manage failure of grid services. For this, they

provide the FT-Grid service that searches multiple equivalent services to achieve a given goal.

The FT-Grid service invokes services that are selected by its client, collects the outputs from

these services, and finally returns the consensus result to the client. Other research work for

managing failure of grid services include by Zhang et al. [2004], Jurgen and Thomas [2008]

and Cesario and Talia [2011]. Zhang et al. [2004] and Cesario and Talia [2011] manage failure

by primary-backup approach, while Jurgen and Thomas [2008] focus on tolerating the failure

of a grid service due to a byzantine fault, a fault that causes the service to behave arbitrarily.

The last research work that we will discuss is concerned with MapReduce applications

from Google Inc. Though Dean and Ghemawat [2004] did not explicitly state whether the

MapReduce applications at Google are executed on a grid infrastructure or not, the work is

highly relevant to our research due to its focus on one of the dwarfs that we will study later

in detail. According to the discussion by Dean and Ghemawat [2004], the failure of map and

reduce activities are tolerated mostly by restart and on occasion by replication. If the execution

environment of map activities fails, all map activities that are allocated to that resource will

be re-executed. Even though some of the map activities may complete before the failure of

their execution environment, they will be re-executed. This is because the output of each

map activity is kept in a local disk, which becomes inaccessible when the resource fails. If the

execution environment of reduce activities fails, on the other hand, only the ones that have

not completed will be restarted. This is because the output of reduce activities are kept in a

global file system. When the majority of the activities are completed, the rest, also knows as

the stragglers, are replicated to speed up their completion. Though the primary purpose of

the replication is not to tolerate failure, it serves a double purpose especially if some of the
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stragglers fail.

4.3.2.2 Workflow-Based Fault Tolerance Solutions

Workflow-based fault tolerance solutions aim to improve the reliability of a grid workflow

execution. Research works by, for example, Hwang and Kesselman [2003], Kandaswamy et al.

[2008] and Zhang et al. [2009] focus on tolerating task failures at the workflow and task levels.

There are also workflow management systems, such as DAGMan, ASKALON, Taverna and

Kepler, that provide fault tolerance support to grid workflows. Below, we discuss representative

research works and workflow management systems that give the overall picture about workflow-

based fault tolerance handling in grids.

The Grid Workflow System framework (Grid-WFS) was proposed by Hwang and Kesselman

[2003] for handling task failures during the execution of acyclic grid workflows. Grid-WFS pro-

vides fault tolerance support using restart, checkpointing, replication, standby spare, N -version

and the combination of these strategies (e.g., replication with restart). The framework also en-

ables users to define what a task failure is in their workflow, which is referred to as user-defined

exception, and how to handle that failure.

Zhang et al. [2009] proposed combining existing scheduling algorithms with replication

and checkpointing to tolerate task failures in an acyclic grid workflow. In this work, tasks

on which other tasks depend are replicated multiple times. The number of replica of each

task is determined by performance and reliability constraints. Upon the completion of a task

execution, the output of the execution is checkpointed. Zhang et al. [2009] also proposed

replicating the entire workflow onto several clusters.

Kandaswamy et al. [2008] introduced a fault tolerance and recovery service (FTR) for

improving the reliability of grid workflows using replication or migration. The decision of

which fault tolerance strategy to use is based on parameters such as estimation of task execution

time on a particular resource, expected queue and data transfer times, deadline and success

constraints of the user, reliability models and availability of core grid services.

DAGMan [Couvares et al., 2007] uses a rescue file to tolerate failure of workflows. During

the execution of a workflow, the status of each task, completed or failed, is recorded. In the

event that the workflow fails, the user is able to recover the workflow using the rescue file.

The rescue file ensures that only the tasks that are failed will be re-executed. Successfully

completed tasks will not be re-executed. DAGMan can be configured in such a way that a

failed task is repeatedly restarted up to a threshold before the status of the task is recorded as
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failed.

ASKALON [Duan et al., 2005] checkpoints the state of the workflow as a whole and all

intermediate data. Therefore, the executions of all tasks are suspended when a workflow is

checkpointed. ASKALON checkpoints a workflow at predefined events, for example, when one

of the tasks in the workflow fails or when a portion of the workflow execution is completed.

In ASKALON, the failure of a task is tolerated by restart, while the failure of the entity that

oversees the execution of the workflow is tolerated by redundancy.

Kepler [Crawl and Altintas, 2008] handles the failure of tasks during the execution of a

workflow in similar manner as exception handling. If a task failure is detected, which is based

on user-defined criteria, the recovery of the failed task is attempted either locally or at a higher

level. Kepler uses restart and standby spare strategies to manage the failure of tasks. Kepler

repeatedly attempts to restart the failed task or initiate the execution of the substitute task

up to a threshold.

Similar to Kepler, Taverna [Oinn et al., 2006] uses restart and standby spare strategies to

manage failure during a workflow execution. Taverna uses multiple restarts, with increasing

delay intervals between restarts, to recover a failed task. If an alternative task is available,

then the failed task will be substituted by its alternative. In Taverna, alternative tasks can be

supplied statically before the execution of the workflow commences or dynamically while the

execution is in progress.

Overall, workflow-based fault tolerance solutions, whether they are proposed by researchers

or they are already part of workflow management systems, mainly apply fault tolerance strate-

gies at the task level. Even the ones that provide workflow-level fault tolerance support also

handle failures at the task level. For instance, ASKALON checkpoints at the workflow-level

but restarts at the task level.

4.3.3 The Gap

Existing fault tolerance solutions offer various techniques for managing failure in grid applica-

tions, and services and workflows. However, these solutions lack one or more of the following

features:

• Architecture consideration. Architecture-based fault tolerance support for grid applica-

tion is not a well-studied subject. Despite the existence of numerous research effort for

providing fault tolerance support in grids, we observe the lack of exploitation of the archi-

tecture of the application to improve reliability. Existing fault tolerance approaches are
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either do not address the type of the grid application for which they are providing fault

tolerance support (e.g., [Nazir et al., 2009]), or explicitly proposed for grid applications

whose activities are embarrassingly parallel (e.g., [Chtepen et al., 2009]).

• Proactive fault tolerance support. Proactive fault tolerance strategies minimize the impact

of the failure of an activity on the overall computation. They are especially useful if the

failure occurs towards the end of a long running computation. Restarting such computa-

tion could be very costly. Although the fault tolerance support that is discussed by Dean

and Ghemawat [2004] considers the architecture of the application, (i.e., MapReduce),

failure of a map or reduce activity is in large part managed by restart.

• Runtime prediction. In cases where proactive fault tolerance strategies are used, existing

approaches do not assess the current status of the computation or the current likelihood

of failure in the execution environment at runtime before executing a proactive strategy.

Instead, the history of grid resources and the load of the system are used in some of the

approaches. Multiple copies of an activity are simultaneously executed, for instance, irre-

spective of the current status of the computation and the execution environment [Hwang

and Kesselman, 2003], if the execution environment is known to be unreliable [Budati

et al., 2007] or if the load of the environment is low [Silva et al., 2003].

• Activity-level fault tolerance support. This is commonly observed among workflow-based

fault tolerance solutions. Recall that the tasks in a grid workflow represent grid appli-

cations or services (Section 2.3). Grid applications are naturally composed of multiple

activities. Therefore, the cost of applying a fault tolerance strategy at the task level

could be very high depending on the number of activities of the grid application, which

is represented by the task, the execution time of each activity, and also the size of the

intermediate output of each activity. In our workflow example in Section 2.3, restarting

the image rendering task is potentially very expensive, especially if the failure occurs after

most of the images are rendered. Since the overhead of workflow-level checkpointing sig-

nificantly increases with the size of the intermediate output of a workflow execution [Duan

et al., 2005], checkpointing the entire computation, as in the case in ASKALON, may

introduce an unacceptably high cost.
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4.3.4 The Solution

Each fault tolerance solution, whether application/service based or workflow based, plays a

significant role in making grids reliable computing environment. However, in light of our

discussion about the limitations of existing fault tolerance approaches in grids, a new com-

plementary approach that addresses these limitations, if possible fully otherwise partially, is

needed:

i. The new approach should systematically consider the architecture of grid applications.

Since there are thousands of grid applications, it is tedious, if not impossible, to consider

the architecture of all grid applications. Therefore, as a compromise, the class of a grid

application should be taken into account to provide architecture-specific fault tolerance

support. The class of a grid application can be determined by examining its commu-

nication and computation pattern. Luckily, based on such criterion, we will have only

thirteen classes of grid applications (Section 4.1).

ii. The new approach should use both proactive and reactive strategies, as needed. Further-

more, proactive fault tolerance strategies should be executed based on runtime prediction.

Other than on occasions when correctness validation is needed [Budati et al., 2007], ex-

ecuting multiple replica of an activity will most certainly waste resources. Though some

claims about grid resources being infinite, for example by Li and Mascagni [2003], this

is simply not the case. Resources are limited and some type of cost is associated with

their usage. Therefore, the fault tolerance approach should make all possible effort to

limit unnecessary resource utilisation. One way of doing this is, instead of using fixed

number of replicas, an activity should be replicated only if the failure of the activity

is imminent. Similar approach is taken by Chtepen et al. [2009] to dynamically omit

unnecessary checkpointing.

iii. The new approach should execute a fault tolerance strategy at the activity level. As

discussed in Section 4.3.3, the workflow-based solutions are penalized with respect to

performance and cost for applying a fault tolerance strategy at the workflow-level, or

at the task level provided that each task is composed of multiple activities. Even if a

grid environment is prone to failure, it does not necessarily mean that significantly many

activities will fail. Therefore, the target should be to limit recovery actions to failed

activities, and proactive actions to activities that are likely to fail.
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Using the above three points as guidelines, we propose a novel fault tolerance approach for

grid applications. We refer to this approach as the Recovery-Aware Components approach.

4.4 Summary

This chapter presents the background theory that is related to design and reliable grid com-

puting. We first defined software architecture. We discussed architectural styles, and then

described four architectural styles in detail. For each architectural style, we presented the

computational model, components, connectors, invariants, advantages, disadvantage and ex-

amples. Following this, we introduced the thirteen dwarfs, highlighted the unique features of

each dwarf, and presented the Bulk Synchronous Parallel (BSP) model. In Section 4.3, the last

section of this chapter, we discussed the need for fault tolerance support in grids, existing fault

tolerance approaches for grids, the limitations of these approaches, and how these limitations

could be addressed. Finally, we briefly introduced our novel fault tolerance approach for grids,

the Recovery-Aware Components approach.



Part II

Recovery-Aware Component-Based
Architecture

“I had a mother who taught me there is no such thing as failure.

It is just a temporary postponement of success.”

- Buddy Ebsen

In this Part, we propose a novel fault tolerance approach, known as the Recovery-Aware Compo-

nents approach, for grids. The Recovery-Aware Components approach is an architecture-based

fault tolerance approach that is concerned with managing failure in a grid application execution

reactively, and proactively—based on runtime prediction, at the activity level. In Chapter 5, we

discuss how the different aspects of the approach are realized in a grid, and formally model the

behaviour of a fault tolerant grid system that realizes the approach. In Chapter 6, we study how

to manipulate the structural, computational and communicational pattern of a grid application

to provide higher reliability improvement. Of the thirteen dwarfs, we study the customization of

the Recovery-Aware Components approach for grid applications whose architecture is classified

as either MapReduce dwarf or Combinational Logic dwarf.



Chapter 5

Recovery-Aware Components

The Recovery-Aware Components (RAC) approach is an architecture-based fault tolerance

approach that is concerned with managing failure in a grid application execution reactively,

and proactively—based on runtime prediction, at the activity level. The RAC approach is

influenced by the principle of Recovery-Oriented Computing, which increases system availabil-

ity and decreases cost of system ownership by decreasing the recovery time of failed systems

(Section 3.5). The RAC approach aims to improve the reliability of a grid application execu-

tion and decrease the overhead of fault tolerance support by managing failure reactively and

proactively at the smallest execution unit of the grid application.

The fundamental principles of the RAC approach are as follows.

i. Faults are identified and impending failures are predicted at runtime.

ii. The impact of the impending failures on the currently running grid application is either

averted or minimized by proactive fault tolerance strategies.

iii. Where impending failures are not predicted or the failure aversion attempt is unsuccessful,

failed activities are recovered by reactive fault tolerance strategies.

iv. Both reactive and proactive strategies are executed at the activity level: recovery actions

are limited to failed activities while proactive actions are limited to activities that are

predicted to fail.

v. The class of a grid application’s architecture is taken into consideration, whenever possi-

ble, to provide customized fault tolerance support.

57
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Runtime prediction plays an important role to provide a cost effective fault tolerance sup-

port to grid applications. In the RAC approach, a proactive fault tolerance strategy is executed

only if the failure of activities is predicted to be imminent. By limiting the frequency a proac-

tive strategy execution, we expect the overhead of the fault tolerance support to decrease

without compromising reliability.

During a grid application execution, the hosts of the activities of the grid application are

monitored for possible failure. If a host is predicted to fail, then a proactive strategy, such as

checkpointing, migration and replication, is executed to tolerate the failure of the activities on

that host. It is important to note that neither predicting all impending failures nor successfully

averting the predicted ones all the time is a realistic expectation. Despite the pairing of runtime

prediction with a proactive strategy, there is a non-zero probability for some activities to fail.

On such occasions, failed activities are recovered by a reactive strategy like restart.

On occasions when a proactive strategy is successfully executed, the impact of the im-

pending failure is either fully avoided or minimized. For example, if the activities are either

migrated to or replicated on a different host, then the impending failure is fully averted. On

the other hand, if the activities are checkpointed, the activities will fail along with their host.

However, since checkpointed activities are rolled-back to their last stable state, and not started

from the beginning, the impact of the failure is minimized due to the checkpointing strategy.

The RAC approach provides cost-effective fault tolerance support to grid applications by

not only pairing proactive strategies with runtime prediction but also managing failure at the

activity level. Handling failures at the activity level presents an opportunity to confine failure

locality, extent of recovery actions and thus fault tolerance overheads at user-defined granular-

ity. Despite grids being failure prone execution environment, it does not necessarily mean that

significantly many activities of a grid application will fail. Therefore, in the RAC approach, re-

covery actions are confined to failed activities, and proactive actions encompass only activities

that are vulnerable to failure. We refer to a component that encapsulates the functionality of

an activity of a grid application and has an interface through which fault tolerance support can

be projected to the activity as a recovery-aware component. Fault tolerance managers monitor

and interact with activities of grid applications via component interfaces. A grid application

that is composed of recovery-aware components is referred to as a RAC-based grid application.

The RAC approach also provides customized fault tolerance support by manipulating the

structural, computational and communicational pattern of grid applications. Further discus-

sion about customized fault tolerance support is available in Chapter 6.
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5.1 Recovery-Aware Component-Based System

A Recovery-Aware Component-Based System (RACS) is a fault tolerant grid system that real-

izes the RAC approach. A RACS provides fault tolerance support to RAC-based grid applica-

tions. It also provides an experiment testbed for evaluating the reliability of RAC-based grid

applications. Figure 5.1 shows a UML [Booch et al., 2005] component diagram of a RACS refer-

ence architecture, which describes not only the structural relationship between the components

of a RACS but also their mappings into a grid infrastructure. The components of a RACS are

Head Manager, Compute Manager, Predictor, Injector, and Recovery-aware component. The

roles of these components, their interactions, and their deployment on a grid infrastructure are

discussed in subsequent sections.
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Figure 5.1: RACS Reference Architecture

In the RACS reference architecture, a grid infrastructure is depicted as being an execution

environment with one head node and multiple compute nodes. By representing a grid infras-

tructure in this way, we are implying neither the compute nodes are under the management

of the head node nor the compute nodes are homogeneous. The head node represents an en-

tity, such as Xgrid controller, that is in charge of allocating the required grid resources to the

activities of a grid application. A compute node represents any computing grid resource.

5.1.1 Roles

The roles of the components of a RACS are as follows.
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5.1.1.1 Recovery-aware component

A recovery-aware component, as introduced previously, is a normal grid application component

that has an additional interface for controlling some aspects of its fault tolerance affairs.

5.1.1.2 Injector

An injector introduces simulated and real faults into recovery-aware components and their

execution environment. The injector is activated if a RACS is to be used as a fault tolerance

testbed. The scope of fault injection is limited by the required type of failure simulation.

For simulating a host crash, for example, the injector kills all currently running recovery-

aware components on a given compute node. On the other hand, a CPU failure in a multi-core

compute node is simulated by randomly choosing and terminating a recovery-aware component

that is being executed.

5.1.1.3 Predictor

A predictor assesses the health of the currently running grid application and its environment,

and then forecasts impending failures. A prediction has four possible outcomes (the sum of

the probability of the prediction outcomes is 1):

i. True Negative: Failure is not imminent and is predicted to be non-imminent.

ii. False Negative: Failure is imminent but is predicted to be non-imminent.

iii. True Positive: Failure is imminent and is predicted to be imminent.

iv. False Positive: Failure is not imminent but is predicted to be imminent.

5.1.1.4 Compute Manager

A compute manager is responsible for starting predictors and injectors, and deciding when and

how to take action to recover from or proactively prevent failure. The compute manager sets

the frequency of failure prediction and fault injection, and notifies injectors the scope of fault

introduction (simulating node failure vs. CPU failure). When a predictor makes a positive

failure prediction, the compute manager either warns affected recovery-aware components to

take necessary action or executes a proactive fault tolerance strategy on their behalf. The

compute manager expects regular health updates from the recovery-aware components that
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are under its management. If some of the recovery-aware components fail to send health

updates, the compute manager marks those components as failed and executes a reactive fault

tolerance strategy.

5.1.1.5 Head Manager

The head manager is responsible for starting compute managers. It also prepares detailed fault

tolerance policies based on which compute managers make fault tolerance decisions. A fault

tolerance policy includes the types of reactive and proactive strategies to be executed, the fre-

quency of prediction and heart beat monitoring, and other fault tolerance related instructions.

These policies can either be provided during the configuration of the head manager, system

FT policy, or the submission of a grid application for execution, user FT policy.

5.1.2 Interactions

The head manager is the starting point for activating all parties that are involved in making a

grid application fault tolerant. There are different ways to start the head manager: the head

node starts the head manager whenever there is a submission of a RAC-based grid application,

or the application itself directly initializes the head manager. Either way, the head manager

commences execution and starts compute managers. The head manager sends a fault tolerance

policy to the compute managers during their initialization.

Once the initialization of all available compute managers is completed, the grid application

execution starts. During execution, one might choose for compute managers to send infrequent

health updates to the head manager. This way, the head manager will be able to track any

failed compute managers. If a particular compute manager fails to submit its health update,

for example, the head manager assumes the compute manager has failed and attempts to

recover it.

Predictors send warning messages to their respective compute managers when they predict

failure in the near future. Depending on how accurate each predictor is, predictors make false

positive predictions from time to time. This may subsequently lead compute managers to

execute a proactive strategy unnecessarily.

If the injection interval and scope are included in the fault tolerance policy, compute man-

agers pass this information to injectors when they initialize their respective injectors. However,

if the value for these parameters is not provided, injectors use the default values of injection

interval and scope.
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Recovery-aware components register with their local compute manager prior to executing

their main task. If a recovery-aware component fails to register, its manager does not provide

any fault tolerance related service to the component either in the event of failure prediction

or failure of the component. Recovery-aware components send regular health updates to their

local compute manager until their execution is successfully completed or terminated. If the

execution is completed successfully, they notify their local compute manager the end of the

computation so that the manager no longer inspects these recovery-aware components. If a

registered recovery-aware component does not notify the completion of its computation, its

manager will wrongly conclude the component has failed (since health updates are no longer

sent once a computation is completed) and then execute a reactive FT strategy.

5.1.3 Deployment

The head manager resides only on the head node. The primary role of the head manager

is to configure and initialize compute managers when a grid application is submitted to the

head node (see Section 5.1.1.5). The head manager does not have an active role during the

execution of the grid application except when compute managers are required to send health

updates. Thus, we argue, if the head manager fails, using reactive fault tolerance strategies

such as restart is an acceptable way of handling its failure. Nevertheless, if compute managers

need to send health updates, one might choose to place a redundant head manager on the head

node.

On each compute node, there is at most one compute manager, one predictor, and one

injector. A compute manager can oversee recovery-aware components deployed on many com-

pute nodes. Since it is not unusual for a grid application to be executed in more than one

cluster, a compute manager could be assigned to look after all recovery-aware components

that run on a specific cluster. We expect deploying a predictor on each compute node to

be useful since this allows provision of proactive fault tolerance support to all recovery-aware

components. Each available core is allocated a maximum of one recovery-aware component.

5.1.4 The RAC Approach in the Context of Grids

The RAC approach is specifically applicable to the grid context through its design for local

failure management, which addresses issues relating to heterogeneity and dynamic change. The

activities of a grid application are executed on distributed resources, which potentially reside

in multiple organizations. Since one of the key features of a grid is controlled sharing, some
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resources may be off-limit for any purpose, other than regular activity execution, to non-local

grid users. Therefore, it becomes difficult to provide fault tolerance support to activities that

are being executed on such resources. However, such type of problems are bypassed in the RAC

approach. The RAC approach advocates local failure management. As shown on the reference

RACS architecture, Figure 5.1, and also discussed in Section 5.1.1.4, the compute managers

are the ones that will do the heavy lifting, and the expectation is that each organization will

have at least one compute manager. These local managers are, of course, not subjected to the

same condition as the external ones.

5.2 Formal RACS Models

We formally model the global behaviour of a RACS by a finite-state DTMC (see Section 3.4.1).

The RACS model is a parameterised Markov model. The parameterisation of the RACS model

is in line with parameterised contracts and protocols aiming at providing accurate analysis

about reusable components for specific deployment environments [Reussner et al., 2002]. There-

fore, the RACS model is used to predict the reliability improvement a grid application would

gain by adapting the RAC architecture, under various execution scenarios at a higher architec-

tural level. The model is also used to estimate the overhead of such reliability improvement.

The global behaviour of a RACS is defined by the behaviours of individual predictors

and recovery-aware components. In our RACS model, we exclude the behaviour of the head

manager, compute managers and injectors. This is because the roles of the head and the

compute managers are limited to facilitating the fault tolerance support, and therefore they

are idle for the large part of the computation. The compute manager, for example, initiates the

execution of a proactive strategy. Of course, the initialisation takes time; however, we assume

that the time that is needed for such initialisation is significantly less than the execution of the

proactive strategy itself. Therefore, for the sake of simplicity, we do not include such state in

the RACS model. We followed the same reasoning to exclude the head manager’s initialisation

of compute managers and preparation of a fault tolerance policy. As for the injectors, their

main purpose is to aid experiments, and thus are not the functional part of a RACS.

The current state of all recovery-aware components and predictors together define the

current global state of a RACS. An individual RAC or predictor is in exactly one state at any

given time. A predictor has two states, either it is predicting an impending failure, predict

state, or doing nothing, idle state. A RAC, on the other hand, has seven states: compute,

failed, react, tp avert, fp avert, success and fatal error. When the execution of a RAC is in
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progress, the RAC is said to be in compute state. If the execution ends successfully, then the

RAC is said to be in success state. Otherwise, the RAC is considered to be in failed state.

Whenever a RAC fails, a recovery attempt is made. While the recovery attempt is in progress,

the RAC stays in react state. If the recovery is successful, then the RAC returns to compute

state. Otherwise, the RAC is assumed to fail beyond recovery, and this is called fatal error

state, hereafter referred to as error state. During the execution of a RAC, a positive prediction

will make the RAC be in tp avert state if the prediction is true or fp avert state if the prediction

is false.

In the RACS model, failed and idle states are omitted. A recovery attempt will eventually

be made to recover a failed RAC. Therefore, in the model, this is equivalent to transiting from

failed state to react state with the transition probability of 1. Since such transition will not

affect the reliability analysis, failed state is removed. With regards to idle state, this state

is indirectly represented in the RACS model. If the RACS model is in any state other than

predicting state, then it is effectively in the idle state. Therefore, there no need to explicitly

include the idle state in the RACS model.

5.2.1 Global States

A RACS is modelled based on a strict reliability assumption. The execution of a RAC-based

grid application is successful, i.e., the RACS is in a global success state, only if all of the

recovery-aware components in the application complete their execution. If all uncompleted

recovery-aware components are computing, no predictions are being made, and there are no

failed recovery-aware components, then the system is considered to be in a global compute state.

If any of the recovery-aware components fails, the system is in a global react state. In the react

state, an attempt is made to recover the failed recovery-aware component(s). If the recovery

attempt is successful, then the system will once again be in the compute state. Otherwise,

the system is considered as failed beyond recovery, and this behaviour is referred to as a global

error state. If predictions are being made and there are no failed recovery-aware components,

then the system is said to be in a global predict state. After the prediction, if a proactive fault

tolerance strategy is executed due to true positive prediction, then the system is said to be in

a global tp avert state. However, if the prediction is false positive, then the system is said to

be in a global fp avert state.

The global behaviour of a RACS is formally defined below.

• For every recovery-aware component x in a RACS, the DTMC states for x are labelled
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as follows: x.e for error state, x.s for success state, x.c for compute state, x.r for react

state, x.t for tp avert state, and x.f for fp avert state.

• For every predictor y in a RACS, the DTMC state for y is labelled as y.p for predict

state.

• Suppose g be a RACS, the DTMC states for g are labelled as follows: g.e for global error

state, g.s for global success state, g.c for global compute state, g.r for global react state,

g.t for global tp avert state, and g.f for global fp avert state. Equation (5.1) defines the

global state interpretation of g.

g =



g.e iff ∃x x.e
g.r iff ∀x ¬x.e ∧ ∃x x.r
g.t iff ∀x ¬x.e ∧ ∀x ¬x.r ∧ ∃x x.t
g.f iff ∀x ¬x.e ∧ ∀x ¬x.r ∧ ∀x ¬x.t ∧ ∃x x.f
g.p iff ∀x ¬x.e ∧ ∀x ¬x.r ∧ ∀x ¬x.t ∧ ∀x ¬x.f ∧ ∃x y.p
g.c iff ∀x ¬x.e ∧ ∀x ¬x.r ∧ ∀x ¬x.t ∧ ∀x ¬x.f ∧ ∀x ¬y.p ∧ ∃x x.c
g.s iff ∀x x.s

(5.1)

5.2.2 The Reactive RACS Model

We first introduce a simple RACS model in which failure is managed by only reactive fault

tolerance strategies. We refer to this model as the Reactive RACS model. The reactive RACS

model has only compute, react, error and success states. Therefore, the global state interpre-

tation of a RACS in Equation (5.1) is updated by Equation (5.2).

g =


g.e iff ∃x x.e
g.r iff ∀x ¬x.e ∧ ∃x x.r
g.c iff ∀x ¬x.e ∧ ∀x ¬x.r ∧ ∃x x.c
g.s iff ∀x x.s

(5.2)

The global behaviour of a reactive RACS is modelled by a parameterised DTMC. The model

is a matrix of rank 4, and is denoted by GR. Figure 5.2 and Equation (5.3) show the transition

diagram and the transition matrix of GR, respectively. On the diagram, solid arrows represent

a parameter entry in the underlying symbolic transition matrix. Non-absorbing states have

exactly one outgoing dashed arrow, representing the symbolic probability (expression) enforcing

that row sums of GR equal 1. The labels of the transition diagram map states and transitions
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to GR. Each state label i : a indicates its index 0 ≤ i < 4 in the transition matrix, and also

an abbreviation a for the full state name: s for success, c for compute, r for react, and

e for error.

σ ρ ε
c ers

Parameters σ, ρ, ε ∈ [0, 1]

(i)→ (j) Description

GR(i, j) is a free variable

GR(i, j) = 1−
∑

k(k 6=j) GR(i, k)

Figure 5.2: The parameterised DTMC of a reactive RACS (GR)


e s c r

e 1 − − −
s − 1 − −
c − σ 1 - σ - ρ ρ
r ε − 1 - ε −

 (5.3)

The parameters of GR are σ: probability of successful completion, ρ: probability of failure

and ε: probability of unrecoverable failure, under the given constraint. To be more pre-

cise, the parameterised Markov model is GR(σ, ρ, ε) and returns a concrete Markov model

when a concrete combination of probabilities (constants) is substituted for the parameters.

Thus, GR acts as a function from actual parameter values (within the parameter constraints

specified) to concrete a Markov model (with constant probability matrices). For example in

GR(0.0001, 0.00001, 0.001), the grid application has a low termination probability (i.e. long run-

ning) together with a five-nine reliability in its deployment resource context and a three-nine

reliability of recovering from failure.

5.2.2.1 States and Transitions

The functional behaviour of a RAC-based grid application can be considered as a refinement

state machine of compute. With probability σ, the execution of the application completes

successfully in state success. A failure occurs during the execution with probability ρ, and
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this causes the transition of GR from compute to react. If the recovery attempt in react is

successful, then GR returns to compute. Otherwise, with probability ε, GR terminates with a

catastrophic failure in error.

If a failure occurs during execution, we assume that the fault tolerance management always

gets control on failure and attempts recovery. Hence, there is no direct transition from compute

to error. In a sequential setting, this is not always realistic. A hardware failure, for example,

could end the entire computation including the ability to manage faults. However, for a

distributed grid application, without loss of generality, we assume that failures are recognised,

and at least a recovery attempt is possible, such as bypassing faulty hardware or software.

5.2.2.2 Reliability Prediction

We use GR to predict the reliability of a RAC-based grid application to which a reactive RACS

provides fault tolerance support. The properties of GR are given below:

• compute and react are transient states.

• compute is the entry and the exit state.

• success and error are absorbing states.

• The reliability of the grid application is the transition probability of GR from compute to

success in the underlying absorption probability matrix.

We used MATLAB [MathWorks Website] to symbolically derive the absorption probability

matrix of GR. Equation (5.4) shows the reliability of a reactive RACS, denoted by RelR.

RelR =
σ

σ + ε× ρ
for (σ + ε× ρ) > 0 (5.4)

5.2.2.3 Overhead

We use GR to estimate the overhead of the fault tolerance management of a reactive RACS.

In the reactive RACS, the overhead comes from executing a reactive strategy. Therefore, the

overhead of a reactive RACS is the product of the total number of times GR visits react

during the course of the grid application execution, and the overhead of a single visit to react.

The total number of visits to react is the transition of GR from compute to react in its

potential matrix.
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Let PR be the potential matrix of GR, and O.r be the overhead of a single visit to react.

Equation (5.5) shows the overhead of a reactive RACS, denoted by OR.

OR = PR(c, r)×O.r (5.5)

5.2.3 The RACS Model

The global behaviour of a RACS is modelled by a parameterised DTMC. The model is a

matrix of rank 12, and is denoted by G. G includes all states of GR and additional states that

represent the proactive extension of GR: p for predict, TN for true negative, FN for false

negative, TP for true positive, and FP for false positive; and intermediate computations:

c1 for compute1, c2 for compute2, and c3 for compute3. Figure 5.3 and Equation (5.6) show

the transition diagram and the transition matrix of G, respectively.

σ ρ ε

π

1 α

θ

ϕ1 ϕ0

τ11

ρ 1

c ers

p

TP

FP

TN

FN c2

c3c1

1

Parameters σ, ρ, ε, π, τ 1 , φ1 , φ0 , α, θ ∈ [0, 1]

(i)→ (j) Description

G(i, j) is a free variable

G(i, j) = 1−
∑

k(k 6=j) G(i, k)

Figure 5.3: The parameterised DTMC of a RACS (G)

The parameters of G extend those of GR by π: the probability of prediction, τ 1 : the probabil-

ity of true positive prediction, φ1 : the probability of false positive prediction, φ0 : the probability

of false negative prediction, α: the probability of the impending failure not occurring while

proactive strategy execution is in progress, and θ: the probability of successful failure aversion.
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

e s c r p TN FN TP FP c1 c2 c3

e 1 − − − − − − − − − − −
s − 1 − − − − − − − − − −
c − σ 1-σ-π-ρ ρ π − − − − − − −
r ε − 1-ε − − − − − − − − −
p − − − − − 1-φ0-τ 1-φ1 φ0 τ 1 φ1 − − −
TN − − − − − − − − − 1 − −
FN − − − ρ − − − − − − 1-ρ −
TP − − − 1-α − − − − − − − α
FP − − − − − − − − − 1 − −
c1 − − 1 − − − − − − − − −
c2 − − − 1 − − − − − − − −
c3 − − θ 1-θ − − − − − − − −



(5.6)

5.2.3.1 States and Transitions

success, compute, react and error states are discussed in Section 5.2.2.1. A RACS makes

prediction in predict. The prediction is either true negative, false negative, true positive

or false positive (Section 5.1.1.3). After each respective prediction, G transits from predict

to true negative with 1- φ0-τ 1- φ1 probability, false negative with φ0 probability, true

positive with τ 1 probability, and false positive with φ1 probability.

In G, normal computation is represented by four states: compute, compute1, compute2,

and compute3. The need to add three more states to represent computation arises due to

the impact of prediction outcomes on subsequent transitions and the memoryless property of

Markov models. When G enters compute state for the first time after visiting predict, the

next transition depends on the most recent prediction outcome. For example, if the prediction

is false negative, the next transition after compute state is react. However, if the prediction

is true negative, G stays in compute state. Since the next transition depends not only on

the current state but also on a previous state, this behaviour violates the Markov property.

The next transition should depend only on the current state, i.e. compute state, not on any

previous state, i.e. any of the prediction outcomes states. Therefore, we add intermediate

compute states to clearly show the subsequent transitions of G after visiting predict without

violating the Markov property. We discuss how the transition proceeds after negative and

positive predictions in Sections 5.2.3.1.1 5.2.3.1.2, respectively.
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5.2.3.1.1 True and False Negative Predictions

When negative failure predictions are made, the fault tolerance management of a RACS will not

intercept the computation of a grid application to execute a fault tolerance strategy. Therefore,

no actual computation occurs in both true negative and false negative states. These

states are there to show how the computation proceeds after either a true or a false negative

prediction is made.

A true negative prediction confirms absence of failure before the next prediction. When a

true negative prediction is made, G transits to compute1with probability 1. Since there is no

impending failure, G then transits to compute with probability 1, i.e., the system by definition

will continue computing.

A false negative prediction confirms the presence of failure before the next prediction. When

such prediction is made, the fault tolerance management of a RACS will not have a chance to

initialise a proactive strategy execution. If the failure occurs right after the prediction, then

G directly transits from false negative to react. Otherwise, G first transits to compute2,

i.e. the computation will continue for a while, and then when the computation fails, G transits

from compute2 to react. Either way, when a false negative prediction is made, G eventually

transits to react with probability φ0 .

5.2.3.1.2 True and False Positive Predictions

Regardless of the correctness of the predictor, if a positive prediction is made, the fault tolerance

management of a RACS intercepts the computation of a grid application and initialises a

proactive strategy execution. The proactive strategy execution is carried out in either true

positive for a correct prediction or false positive for an incorrect prediction.

After a true positive prediction, the impending failure will occur with 1 − α probability

while the proactive strategy is being executed—G(TP, r). If the proactive strategy execution is

completed before the impending failure occurs—G(TP, c3), the impact of the impending failure

on the overall computation will successfully be minimized or averted with θ probability.

Despite the absence of an impending failure, a false positive prediction causes a proactive

strategy execution. Since there is no impending failure, after the completion of a proac-

tive strategy, the transition probability distribution of G is the one after a true positive pre-

diction. Therefore, after a proactive strategy is executed—G(FP, c3), the system continues

computing—G(c3, c).
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5.2.3.2 The Simplified RACS Model

The RACS model provides a detailed information about what the behaviour of a RACS looks

like, in particular after a prediction is made. However, since the main motivation for con-

structing the model is to analyse the reliability improvement a grid application would gain by

adapting the RAC architecture and the overhead of such improvement, this level of detail is

unnecessary. Therefore, some of the states can be removed without affecting the reliability and

cost analyses, provided that their transition probabilities are preserved.

The simplified RACS model is constructed by removing true negative, false negative,

compute1, compute2, and compute3 from G. These states play an important role in clearly

showing the possible transitions of G after a prediction. However, keeping the states in the

model does not add any value for reliability and cost analysis as long as the transitions from

and to these states are preserved. The preservation of the transition probabilities ensures G

and its simplified model give identical reliability and cost analyses.

The simplified RACS model is a parameterised DTMC. The model is a matrix of rank 7, and

is denoted by GS. Note that in order for their names to reflect the behaviour of the RACS when

GS transits to true positive and false positive, the corresponding states are renamed

as tp avert and fp avert, respectively. For the sake of uniformity, i.e. labelling all states

with a single letter, the abbreviations of these states are changed from TP and FP to t and

f, respectively. Figure 5.4 and Equation (5.7) show the transition diagram and the transition

matrix of GS, respectively. In addition to the type of arrows in Figure 5.3, the transition

diagram has a dotted arrow whose transition probability is expression in free variables. The

states of GS are identical to the ones introduced in Section 5.2.1. For π = 0, GS and GR are

identical.

5.2.3.2.1 Preserving Transition Probabilities

The transition probabilities of the removed states are preserved in GS as follows.

• Suppose a true negative prediction is made. Equation (5.8) shows the probability of GS

to transit from predict to compute.

GS(p, c) =G(p, TN)× G(TN, c1)× G(c1, c)

=(1− φ0 − τ 1 − φ1)× 1× 1
(5.8)
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π

σ ρ ε

ϕ1
τ1

ϕ0

c ers

pf

t1

Parameters σ, ρ, ε, π, τ 1 , φ1 , φ0 , α, θ ∈ [0, 1]

(i)→ (j) Description

GS(i, j) is a free variable

GS(i, j) = 1−
∑

k(k 6=j) GS(i, k)

GS(i, j) is an expression in free variables

Figure 5.4: The parameterised DTMC of a simplified RACS (GS)



e s c r p f t

e 1 − − − − − −
s − 1 − − − − −
c − σ 1-σ-ρ-π ρ π − −
r ε − 1-ε − − − −
p − − 1-φ0-τ 1-φ1 φ0 − φ1 τ 1

f − − 1 − − − −
t − − αθ 1− αθ − − −


(5.7)

• Suppose a false negative prediction is made. Equation (5.9) shows the probability of GS

to transit from predict to react.

GS(p, r) =G(p, FN)× (G(FN, r) + G(FN, c2)× G(c2, r))

=φ0 × (ρ+ ((1− ρ)× 1))

=φ0

(5.9)

• Suppose a true positive prediction is made. Equations (5.10) and (5.11) show the prob-

ability of GS to transit from tp avert to compute and react, respectively.

GS(t, c) =G(TP, c3)× G(c3, c)

=α× θ
(5.10)
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GS(t, r) =G(TP, c3)× G(c3, r) + G(TP, r)

=α× (1− θ) + (1− α)

=1− θ × α

(5.11)

• Suppose a false positive prediction is made. Equation (5.12) shows the probability of GS

to transit from fp avert to compute.

GS(f, c) =G(FP, c1)× G(c1, c)

=1× 1
(5.12)

5.2.3.3 Reliability Prediction

We use GS to predict the reliability of a RAC-based grid application to which a RACS provides

fault tolerance support. The properties of GS are given below:

• compute, react, predict, fp avert and tp avert are transient states.

• compute is the entry and the exit state.

• success and error are absorbing states.

• The reliability of the grid application is the transition probability of GS from compute to

success in the underlying absorption probability matrix.

We used MATLAB [MathWorks Website] to symbolically derive the absorption probability

matrix of GS. Equation (5.13) shows the reliability of a RACS, denoted by RelH.

RelH =
σ

x

for x =σ + ε× ρ+ ε× φ0 × π + ε× π × τ 1 − α× ε× π × θ × τ 1 ,

x >0

(5.13)

5.2.3.4 Overhead

We use GS to estimate the overhead of the fault tolerance management of a RACS. In the

RACS, the overhead comes from executing a reactive strategy, a proactive strategy and making

predictions. Therefore, the overhead of a RACS is the weighted sum of the expected number of

visits from compute to react, predict, tp avert and fp avert. The total number of visits

to each of these states is weighted by the overhead of a single visit to each state. The expected

number of visits are obtained from the potential matrix of GS.
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Let PS be the potential matrix of GS, and O.i be the overhead of a single visit to state i.

Equation (5.14) shows the overhead of a RACS, denoted by OS.

OS = PS(c, r)×O.r + PS(c, p)×O.p

+ PS(c, t)×O.t + PS(c, f)×O.f
(5.14)

5.3 BSP-Based RACS Models

The previous RACS models represent the entire grid application execution by one state, i.e.,

compute. Here, we modify the reactive and the simplified RACS models to provide a high-

level abstraction of a grid application execution according to the principles of Valiant’s BSP

model (Section 4.2). We assume a grid application as being a sequence of supersteps. There-

fore, we refine compute into three states that represent local computation (cl), global commu-

nication (cg), and barrier synchronisation (cb).

5.3.1 The Reactive RACS Model and BSP

We first refine the reactive RACS model (Section 5.2.2) based on the principles of the BSP

model. We refer to the refined reactive RACS as the BSP-based reactive RACS model. The

BSP-based reactive RACS model is a parameterised DTMC. The model is a matrix of rank 8,

and is denoted by GRbsp. In GRbsp, each new compute state (cl, cg, and cb) has a corresponding

react state (rl, rg, and rb). The parameters of GRbsp are σb , ρl , ρg , ρb , εl , εg , and εb .

Figure 5.5 and Equation (5.15) show the transition diagram and the transition matrix of

GRbsp, respectively.

5.3.1.1 States and Transitions

GRbsp transits from cl to rl with probability of ρl in the event of failure in the local computa-

tions, and from cl to cg when all local commutations successfully complete. Once in cg, GRbsp

transits to cb if all communications are carried out with success. Otherwise, with probability

of ρg , GRbsp transits from cg to rg. After transiting to cb, there is ρb chance for GRbsp to

transit to rb. Otherwise, GRbsp return to cl to commence the next superstep. This continues

until all supersteps are successfully completed. Upon successful completion of all supersteps,

GRbsp transits from cb to s with the probability of σb . The transitions between cl and cg, cg

and cb, and cb and cl represent the selfloop compute state transition of GR (see Figure 5.2).

For simplicity, we assume that the failure probability of each component of a superstep

is similar in all supersteps. For instance, the probability of transiting from cl to rl is ρl in
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cb

cl

cg

rb

rl

rg

es
σ b

ρ l ε l

ρ g

ρ b

ε g

ε b

(i)→ (j) Description

GRbsp(i, j) is a free variable

GRbsp(i, j) = 1−
∑

k(k 6=j) GRbsp(i, k)

= a transition to the next superstep, and
GRbsp(i, j) = 1−

∑
k(k 6=j) GRbsp(i, k)

Figure 5.5: A BSP-based reactive RACS model (GRbsp)



e s cl cg cb rl rg rb

e 1 − − − − − − −
s − 1 − − − − − −
cl − − − 1-ρl − ρl − −
cg − − − − 1− ρg − ρg −
cb − σb 1-ρb-σb − − − − ρb
rl εl − 1-εl − − − − −
rg εg − − 1-εg − − − −
rb εb − − − 1-εb − − −


(5.15)

all supersteps. However, one might unfold the current model without difficulty and assign

to the three components of a superstep different transition probabilities in each superstep.

Figure 5.6 shows the BSP-based reactive RACS model of a grid application execution that

has two supersteps. The model transits from cl to rl with the probability of ρl1 and ρl2 in

supersteps 1 and 2, respectively.

5.3.1.2 Reliability Prediction

We use GRbsp to predict the reliability of a RAC-based grid application to which a reactive

RACS provides fault tolerance support. The properties of GRbsp are given below:

• cl, cg, cb, rl, rg and rb are transient states.
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ρ l1 ε l1

ρ g1

ρ b1
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ε b1
cb

cl

cg

rb

rl
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s

ρ l2ε l2

ρ g2

ρ b2

ε g2

ε b2

Superstep 1 Superstep 2

(i)→ (j) Description

= a transition to the next superstep, and
GRbsp(i, j) = 1−

∑
k(k 6=j) GRbsp(i, k)

Figure 5.6: Example: a BSP-based reactive RACS model with 2 supersteps

• cl is the entry state and cb is the exit state.

• s and e are absorbing states.

• The reliability of the grid application is the transition probability of GRbsp from cl to s

in the underlying absorption probability matrix.

We used MATLAB [MathWorks Website] to symbolically derive the absorption probability

matrix of GRbsp. Due to the size of the reliability equation, we do not show the equation here.

5.3.1.3 Overhead

We use GRbsp to estimate the overhead of the fault tolerance management of a reactive RACS.

In the reactive RACS, the overhead comes from executing a reactive strategy. Therefore, the

overhead of a reactive RACS is the weighted sum of the expected number of visits from cl to

rl, rg, and rb. The total number of visits to each of these states is weighted by the overhead

of a single visit to each state. The expected number of visits are obtained from the potential

matrix of GRbsp.

Let PRbsp be the potential matrix of GRbsp, and O.i be the overhead of a single visit to

state i. Equation (5.16) shows the overhead of a RACS, denoted by ORbsp.

ORbsp = PRbsp(cl, rl)×O.rl + PRbsp(cl, rg)×O.rg

+ PRbsp(cl, rb)×O.rb
(5.16)
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5.3.2 The RACS Model and BSP

We refine the RACS model (Section 5.2.3.2) based on the principles of the BSP model. The

refined model is called The BSP-based RACS model. The BSP-based RACS model is a pa-

rameterised DTMC. The model is a matrix of rank 17, and is denoted by Gbsp. Gbsp extends

GRbsp by predict, tp avert and fp avert. In Gbsp, each new compute state (cl, cg, and

cb) has a corresponding react state (rl, rg, and rb), predict state (pl, pg and pb), tp avert

(tl, tg or tb) state and fp avert state (fl, fg and fb). The parameters of Gbsp are σb , ρl , ρg ,

ρb , εl , εg , εb , πl , πg , πb , τ 1 , φ1 , φ0 , α and θ. Figure 5.7 shows the transition matrix of Gbsp.

π l

ϕ0

σ b

ρ l ε l

ρ g

ρ b

ε g

ε bcb

cl

cg

rb

rl

rg e

s

pf t

pf t

pf t

ϕ0

ϕ0

ϕ1 τ1

ϕ1 τ1

ϕ1 τ1

π b

π g

1

1

1

(i)→ (j) Description

= a transition to the next superstep, and
Gbsp(i, j) = 1−

∑
k(k 6=j) Gbsp(i, k)

Figure 5.7: A BSP-based RACS model (Gbsp)
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5.3.2.1 States and Transitions

When a prediction is made, Gbsp transits from the current compute state (cl, cg, or cb) to

corresponding predict state (pl, pg or pb). If the prediction is correct, Gbsp transits from

predict to respective tp avert state (tl, tg or tb). Otherwise, Gbsp transits to respective

fp avert state (fl, fg or fb). The transitions between cl and cg, cg and cb, and cb and cl

represent the selfloop compute state transition of GS (see Figure 5.4).

Gbsp is simplified by the following assumptions:

i. Proactive fault tolerance strategies are provided only for local computation. Thus, failure

prediction is required only when Gbsp is in cl.

ii. Failure in communication and barrier synchronisation is tolerated by only reactive fault

tolerance strategies. Therefore, pg, pb, tg, tb, fg, and fb are removed.

iii. The failure probability of each component of a superstep is similar in all supersteps.

Figure 5.8 and Equation (5.17) show the transition diagram and the transition matrix of

the simplified Gbsp, respectively. The simplified Gbsp is denoted by GSbsp. For πl = 0, GSbsp

and GRbsp are identical.

5.3.2.2 Reliability Prediction

We use GSbsp to predict the reliability of a RAC-based grid application to which a RACS

provides fault tolerance support. The properties of GSbsp are given below:

• cl, rl, pl, fl, tl, cg, rg, cb and rb are transient states.

• cl is the entry state and cb is the exit state.

• s and e are absorbing states.

• The reliability of the grid application is the transition probability of GSbsp from cl to s

in the underlying absorption probability matrix.

We used MATLAB [MathWorks Website] to symbolically derive the absorption probability

matrix of GSbsp. Due to the size of the reliability equation, we do not show the equation here.
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(i)→ (j) Description

GSbsp(i, j) is a free variable

GSbsp(i, j) = 1−
∑

k(k 6=j) GSbsp(i, k)

GSbsp(i, j) is an expression in free variables

= a transition to the next superstep,
GSbsp(i, j) = 1−

∑
k(k 6=j) GSbsp(i, k)

Figure 5.8: A simplified BSP-based RACS model (GSbsp)

5.3.2.3 Overhead

We use GS to estimate the overhead of the fault tolerance management of a RACS. In the

RACS, the overhead comes from executing a reactive strategy, a proactive strategy and making

predictions. Therefore, the overhead of a RACS is the weighted sum of the expected number

of visits from cl to rl, rg, rb, fl, tl and pl. The total number of visits to each of these states

is weighted by the overhead of a single visit to each state. The expected number of visits are

obtained from the potential matrix of GSbsp.

Let PSbsp be the potential matrix of GSbsp, and O.i be the overhead of a single visit to

state i. Equation (5.18) shows the overhead of a RACS, denoted by OSbsp.

OSbsp = PSbsp(cl, rl)×O.rl + PSbsp(cl, rg)×O.rg + PSbsp(cl, rb)×O.rb

+ PSbsp(cl, fl)×O.fl + PSbsp(cl, tl)×O.tl + PSbsp(cl, pl)×O.pl
(5.18)
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

e s cl cg cb rl rg rb pl fl tl

e 1 − − − − − − − − − −
s − 1 − − − − − − − − −
cl − − − 1-ρl-πl − ρl − − πl − −
cg − − − − 1-ρg − ρg − − − −
cb − σb 1-σb-ρb − − − − ρb − − −
rl εl − 1-εl − − − − − − − −
rg εg − − 1-εg − − − − − − −
rb εb − − − 1-εb − − − − − −
pl − − 1-φ0-τ 1-φ1 − − φ0 − − − φ1 τ 1

fl − − 1 − − − − − − − −
tl − − αθ − − 1-αθ − − − − −



(5.17)

5.4 Summary

In this chapter, we proposed the RAC approach. We then introduced a RACS, a fault tolerant

grid system that realizes the RAC approach. We discussed the RACS based on its conceptual

framework; we presented the roles of the framework’s components, their interactions and their

deployment in a grid infrastructure.

The second half of this chapter is focused on modelling the global behaviour of the RACS

using Discrete Time Markov chains. We first modelled a RACS without prediction and proac-

tive fault tolerance support. Then, we modelled the full behaviour of a RACS. We later refined

these models based on the principles of Valiant’s BSP model. For each model, we have shown

how to compute the reliability of a grid application and the overhead of the fault tolerance

management in a RACS.



Chapter 6

Architecture-Specific RAC

In Chapter 5, we proposed the RAC approach. We discussed all aspects of the RAC approach,

except the exploitation of our knowledge about the behaviour of a grid application execution

to provide better fault tolerance support, in detail. We refer to the RAC approach that does

not take into account the architecture of a grid application as the generic RAC approach.

The generic RAC approach makes minimal assumptions about the architecture (activities

and their interactions) of a grid application. The approach assumes the activities of a grid ap-

plication to be the same for the purpose of fault tolerance management, and be embarrassingly

parallel. The generic RAC based fault tolerance managers treat all activities equally irrespec-

tive of the degree of the impact of their failure on the overall computation. Furthermore,

these managers attempt to recover a failed activity, except on certain circumstances, only if

the activity is independent of all other activities. If the failed activity depends on previously

completed activities, then the activity is usually considered as failed beyond recovery and no

recovery attempt is made. The only exception when such activity can be recovered is if the

failure of the activity is predicted and the state of the activity is successfully checkpointed. On

such an occasion, the failed activity is rolled-back to the last saved state.

The generic RAC approach provides limited fault tolerance support to a grid application

with activities that communicate, and/or in which the failure of each of its activities has vari-

able impact on the overall computation. If there are dependencies between the activities of

the grid application, an additional feature is needed to recover the failure of activities whose

computation depends on other activities. Furthermore, since the failure of an activity on

which other activities depend affects the overall computation more severely than an indepen-

dent activity, activities that have severe impact on reliability should be given extra attention.

Therefore, in order to address the issues in the generic RAC approach, i.e., recovering the

81
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failure of dependent activities and providing additional care to guarantee the completion of

important activities, one has to understand the interactions between the activities of a grid

application and the significance of the role of each activity with respect to reliability.

Clearly, studying the architecture of all grid applications is impossible, due to, among other

things, time constraints and the impracticality of locating all grid applications. Therefore, as a

compromise, we consider the class of grid applications. For our study, we use the classification

of parallel applications by Asanovic et al. [2006] to provide customized fault tolerance support

to a class of grid applications rather than to a specific grid application. We refer to the RAC

approach that manipulates the class of the architecture of grid applications to provide better

fault tolerance support as the architecture-specific RAC approach.

Asanovic et al. [2006] classified parallel programs into thirteen computational kernels,

known as dwarfs (Section 4.1). Each dwarf has a different kind of parallel coordination, i.e.,

communication and computation pattern. For each coordination, one can assume a different

capability of utilising the parallel structure to increase reliability, and decrease cost of fault

tolerance support. However, the actual reliability gain, cost reduction, and the constraints

under which these can be achieved, if at all, are far from obvious and require some methodical

approach and evaluation.

In this thesis, we study the reliability-overhead tradeoff that is enabled by the architecture-

specific RAC approach for a grid application whose architecture can be classified under either

the MapReduce (Section 6.1) or the Combinational Logic dwarf (Section 6.2). An analysis

of all dwarfs was not feasible in the timeframe and so it was decided early on to focus on

these dwarfs, which are both widely used and supported each on different open-source parallel

platforms.

6.1 MapReduce Dwarf

The MapReduce (MR) dwarf represents parallel applications that are executed in two distinct

phases; all execution units in the first phase are embarrassingly parallel, while the executions

in the second phase involve some communication. Asanovic et al. [2006] defined the MR dwarf

as “. . . the essence is a single function that executes in parallel on independent data sets, with

outputs that are eventually combined to form a single or small number of results.”

The MR architecture is a well-known pattern in the functional programming paradigm

[Field and Harrison, 1988, pp. 48−52]. This architecture is composed of two parameterised

components: map and reduce. An idealized MR reference architecture is given in Figure 6.1.
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The map component accepts a unary function m, and a collection of data type A and size d;

where a0, a1, . . . ad−1 ∈ A, and produces an intermediate collection of data type B; where

b0, b1, . . . bd−1 ∈ B. The map component applies m to each element ai and outputs bi. This is

represented by level l in Figure 6.1. The signatures of m and map are shown below.

m : A→ B

map : m # collection(A)→ collection(B)

The reduce component accepts an associative (possibly commutative) binary function r©
and collection of type B that was returned by map. The reduce component successively

applies r© to combine the collection into a single object C. This is represented by levels [0, l-1]

in Figure 6.1. The signatures of r© and reduce are shown below, where the initial value of C

is null.

r© : B # C → C

reduce : r© # C # collection(B)→ C

. . .
r r

r

r

r

r

r

level l

level l-1

level 1

level 0

barrier. . .

. . .

Figure 6.1: Idealized MapReduce Reference Architecture

Example 6.1 (Counting the occurrences of “jovial”). We use a simple example to illustrate

how the map and reduce components work. In this example, we count the number of occur-

rences of the word “jovial” in a set of files.

• m scans a given file, and outputs the frequency of the word “jovial” in the file. Let F be

a file, and N be the total number of “jovial” in F . The signature of m is shown below.

m : F → N
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Suppose the word “jovial” occurs four times in a file named File1.txt. Thus,

m : File1.txt→ 4

• The map component applies m to a set of files.

map : m # collection(F )→ collection(N)

• After all files are scanned, the reduce component successively applies r© on collection(N)

to get the final sum, denoted by T . When reduce applies r© for the first time, the value

of T is 0. The signature of reduce is shown below.

reduce : r© # T # collection(N)→ T

• r© accepts N and T . Then, r© adds N and T and replaces T with the sum.

r© : N # T → T

Suppose “jovial” occurs 11 times in the first i files, and 8 times in the i+ 1st file. Thus,

r© : 8 # 11→ 19

6.1.1 MapReduce Grid Applications

MapReduce grid applications are grid programs that are composed of map and reduce com-

ponents. These applications are wide-spread and span a variety of domains such as machine

learning, data mining, search, and image and video rendering. Some MR applications are dis-

cussed in Dean et al. [2008], Chen et al. [2009], Pantel et al. [2009], Karimzadehgan et al. [2011],

GM et al. [2011], Suri and Vassilvitskii [2011], Chen et al. [2011], Rui Li et al. [2011] and Logo-

fatu and Dumitrescu [2011]. Google’s search is a notable example of an MR application [Dean

and Ghemawat, 2004].

Recall, that components encapsulate activities, and these activities are protected against

failure by fault tolerance mechanisms outside these components, but gracefully interoperating

with components by appropriate interfaces (Chapter 5). The common feature of MR grid

applications is that these applications are executed in two distinct phases, identified as map and

reduce. All executions in the map phase are embarrassingly parallel. This means, the physically

independent processors that execute separate parallel activities do not need to communicate
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or synchronise. In contrast, the executions in the reduce phase involve some communication.

Embarrassingly parallel grid applications are MR applications without the reduce phase. We

refer to an activity that is executed during the map phase as a map activity, and the reduce

phase as a reduce activity.

The difference among MR grid applications is that each application has its own, possibly

unique, set of map and reduce activities. The degree of complexity of each map and reduce

activity varies from one application to another. For example, in a Monte Carlo simulation, the

map activity can be a random simulation that, depending on the data set or parameters, has

highly variable long execution times. In other contexts, the map activity may simply be a linear

scan through a given document whose execution time depends on the length of the document,

e.g., a small file vs. a very large corpus of documents. Likewise, the reduce activity may be

a simple addition in one case and a complex join in some very large global data structure in

another.

The other important difference among MR grid applications is the way reduce activities

are executed. Reduce activities could be executed sequentially, hierarchically, asynchronously,

or randomly. The order of reduce activities execution has an impact on the performance of the

overall computation. We will now discuss this issue in detail.

6.1.1.1 Parallelism

An idealized execution order of map and reduce activities is shown in Figure 6.1, where all

map activities are executed first (level l), and then their outputs will successively be reduced

by taking logarithmic steps (levels [0, l-1]). In practice, the execution of MR grid applica-

tions on a dynamic grid environment does not necessarily honour the static structure shown in

Figure 6.1. Depending on the number of available resources, the type of messaging implemen-

tation (Hadoop [Had] vs. MPI [The Open MPI Development Team, 2011] vs. Xgrid [Xgr]),

and/or the use of barriers between successive reduction steps, the order of execution activities

could vary from one execution to another.

Map activities are embarrassingly parallel, therefore schedulers will find it easy to schedule

these activities independently. Maximal parallelism among map activities is possible if the

number of available cores, denoted by c, is at at least the same as the number of map activities,

denoted by m. However, if c < m, assuming equal load distribution, each core is allocated m/c

activities. Each core executes its allocated map activities sequentially, and then optionally

reduces their outputs. We refer to the sequential execution of reduce activities by a core to
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combine the outputs of its allocated map activities as a local reduction.

Reduce activities depend on map and previously completed reduce activities. Therefore, it

is not possible to concurrently execute all reduce activities. These activities could be executed

sequentially, hierarchically, or asynchronously. Local reduction is a sequential reduction. Once

all cores complete their respective local reductions, their outputs will be further reduced one

after another. We refer to such reduction as a global sequential reduction. The MPI Reduce

routine is an example of a global sequential reduction.

A hierarchical reduction is similar to what is depicted from level l−1 to level 0 in Figure 6.1.

Once all of the cores complete the execution of map activities and local reductions, the outputs

of the local reductions will be globally reduced in log2c reduction steps. In each reduction

step, maximal parallelism is possible. This is because executing the reduce activities in the

first reduction step requires half of the cores that are used during the execution of the map

activities; and the execution of reduce activities in each subsequent reduction step requires

only half of the cores that are being used in the current reduction step.

The other form of parallelism among the activities of an MR application is achieved by

interleaving the execution of map and reduce activities. If two cores, for instance, complete

the execution of their allocated map activities and local reductions ahead other cores, then

their output can be immediately reduced without having to wait for the other cores to finish

their computations.

6.1.2 The MapReduce-specific RAC Approach

The MapReduce-specific (MR-specific) RAC approach is a RAC approach that provides cus-

tomized fault tolerance support to grid applications whose communication and computation

pattern falls under the MapReduce dwarf. MR-specific fault tolerance managers understand

the role of map and reduce activities, and the dependency between the activities as defined by

the type of parallelism that is used during the computation.

The MR-specific fault tolerance managers know that map activities are embarrassingly

parallel, and the executions of these activities do not depend on the output of previously

completed computations. Therefore, these managers do not need any other information other

than the preferred fault tolerance strategy to handle the (impending) failure of map activities.

The MR-specific fault tolerance managers understand that the execution of a reduce activity

depends on the output of previously completed map or reduce activities. These managers

handle the (impending) failure of a reduce activity in two ways. First, if a reduce activity
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fails, all activities on which the failed activity depends will be re-executed to get the input of

the failed activity. If the re-execution is completed successfully, then the managers restart the

failed activity. Second, the managers save the output of previously completed activities and

meta-data that identifies the activity that produces a given output, on a persistent storage.

If a reduce activity fails or is predicted to fail, then the MR-specific managers access the

required data from the storage to execute either a reactive or a proactive strategy. Since

the checkpointing strategy saves the current state of computation, if the proactive strategy

is checkpointing, the managers do not need the output of previously completed activities.

However, if the proactive strategy is replication, for example, executing a replica of an activity

necessitates access to the input data that is needed for the computation.

Since the MR-specific fault tolerance managers identify the activities in an MR grid appli-

cation as either map or reduce, the managers are able to use various kinds of fault tolerance

strategies to handle the failure of each type of activity. For example, failure in map activities

could be managed using restart while failure in reduce activities is managed by replication;

the number of maximum retries to recover a failed map or reduce activity could be different;

or the number of maximum retries to recover failed reduce activities could be increased as the

overall computation gets closer and closer to completion in a hierarchical reduction.

6.1.3 MR-specific RACS

An MR-specific RACS is a fault tolerant grid system that realizes the MR-specific RAC ap-

proach. The reference architecture of an MR-specific RACS is similar to the one discussed

in Section 5.1. The only difference between a RACS that is introduced in Section 5.1 and

an MR-specific RACS is the head manager and compute managers of the MR-specific RACS

are specifically designed to provide fault tolerance support to MapReduce grid applications.

Since the behaviours of the head manager and compute managers are excluded from the formal

models, the global behaviour of MR-specific RACS is also as explained in Section 5.2.

6.1.3.1 The MR-specific RACS Model

We modify GSbsp, the BSP-based RACS model shown in Figure 5.8, to reflect how an MR

application execution would be carried out on a BSP computer. For such modification, we

make the following simplifying assumptions:

• In the abstraction (and different from the concrete implementation), the execution of all

map activities must be completed before any of the reduce activities begins. Therefore,



MapReduce Dwarf 88

MapReduce application execution is represented by a sequence of two supersteps: map

and reduce.

• Since all map activities are executed locally without requiring any communication, failure

of a map activity is most likely caused by core or memory failure, not communication

failure. Therefore, in the map superstep, the global communication is assumed to be

failure free.

• Reduce activities are considered to be dominated by communication. Therefore, failure

in reduce activities is caused by core, memory failure and communication failure.

• In both map and reduce supersteps, we assume the barrier synchronisation to be failure

free.

The global behaviour of an MR-specific RACS is modelled by a parameterised DTMC. The

model is a matrix of rank 17, and is denoted by GMR. Figure 6.2 shows the transition diagram

of GMR. Except for states e and s, the states in the transition diagram are labelled as xi, where

x is the corresponding state in GSbsp (Section 5.3.2), and i is an initial for the name of the

superstep, i.e. m for a state in the map superstep, and r for a state in the reduce superstep.

For example, clm is a compute state that represents local computations in the map superstep.

The parameters of GMR are ρl , ρg , εl , εg , πl , τ 1 , φ1 , φ0 , α, and θ.

In the map superstep, GMR transits from clm to cgm if all map activities are successfully

completed. A failure will occur during the execution of map activities with probability of ρl .

This makes GMR transit from clm to rlm. The failed map activities will, with probability of εl ,

never recover. During the execution of map activities, a prediction is made with probability

of πl— GMR(clm, plm). The prediction will be positive with probability of τ 1 +φ1 . In such cases,

GMR transits from plm to either tlm or flm, depending on the correctness of the prediction. For

negative predictions, a true negative prediction causes the transition of GMR from plm to clm

while a false negative prediction causes the transition of GMR from plm to rlm (see Section 5.2.3

for a detailed discussion about the behaviour of a RACS after a prediction is made).

In line with assumptions stated in Section 6.1.3, after the successful execution of all map

activities—GMR(clm, cgm), GMR transits to clr with probability of 1. All the states and the

transitions in the map superstep are also present in the reduce superstep. However, the reduce

superstep has an additional state, rgr, along with the state’s outgoing and incoming transitions,

and one more outgoing transition from the barrier synchronisation state, GMR(cbr, clr).
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Figure 6.2: The parameterised DTMC of an MR-specific RACS (GMR)

• Since the execution of reduce activities involves a lot of communication, there is ρg

probability for a failure to occur during communication, and cause the transition of GMR

from cgr to rgr. The failed communication can never be re-established with probability

of εg .

• Depending on the type of parallelism, the reduce superstep could be iterated multiple

times—GMR(cbr, clr). For example, in hierarchical reduction, GMR transits from cbr to clr

as many times as log2c−1, where c is the number of cores that executed the map activities,

provided that the overall computation completes successfully.

6.1.3.2 Reliability Prediction

We use GMR to predict the reliability of a MapReduce grid application to which an MR-specific

RACS provides fault tolerance support. The properties of GMR are given below:



MapReduce Dwarf 90

• clm, rlm, plm, flm, tlm, cgm, cbm , clr, rlr, plr, flr, tlr, cgr, rgr and cbr are transient

states.

• clm is the entry state and cbr is the exit state.

• s and e are absorbing states.

• The reliability of the MapReduce grid application is the transition probability of GMR

from clm to s in the underlying absorption probability matrix.

We used MATLAB [MathWorks Website] to symbolically derive the absorption probability

matrix of GMR. Due to the size of the reliability equation, we do not show the equation here.

6.1.3.3 Overhead

We use GMR to estimate the overhead of the fault tolerance management of an MR-specific

RACS. In the MR-specific RACS, the overhead comes from executing a reactive strategy, a

proactive strategy and making predictions. Therefore, the overhead of an MR-specific RACS

is the weighted sum of the expected number of visits from clm to rlm, rlr, rgr, plm, plr, flm,

flr, tlm and tlr. The total number of visits to each of these states is weighted by the overhead

of a single visit to each state. The expected number of visits are obtained from the potential

matrix of GMR.

Let PMR be the potential matrix of GMR, and O.i be the overhead of a single visit to state i.

Equation (6.1) shows the overhead of a RACS, denoted by OMR.

OMR = PMR(clm, rlm)×O.rlm + PMR(clm, rlr)×O.rlr + PMR(clm, rgr)×O.rgr

+ PMR(clm, plm)×O.plm + PMR(clm, plr)×O.plr + PMR(clm, flm)×O.flm

+ PMR(clm, flr)×O.flr + PMR(clm, tlm)×O.tlm + PMR(clm, tlr)×O.tlr

(6.1)

6.1.4 Evaluating the MR-specific RAC approach

We evaluate the reliability-overhead tradeoff that is enabled by the MR-specific RAC approach

to MapReduce grid applications in Chapter 9. The empirical evaluation of the approach is

presented in Section 9.1.1.
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6.2 Combinational Logic Dwarf

Asanovic et al. [2006] defined the Combinational Logic (CL) dwarf as dataflow networks of

functions, where functions are logical and have stored state, more specifically: “Combinational

Logic generally involves performing simple operations on very large amounts of data often

exploiting bit-level parallelism.”

In fact, CL is a well known pattern for digital circuits involving interconnected boolean

functions that process streams of binary data [Wakerly, 2000]. The outputs of these functions

depend only on the current inputs. The dataflow in such computation is represented by logic

gates, a mathematical expression, a truth table, and/or a schematic diagram.

Figure 6.3 shows bit level addition of two binary numbers, denoted by X and Y , using the

Full Adder circuit. For each bit-pair addition, the initial inputs of the circuit are xi, yi, and

a carry in, denoted by zi. The final outputs are the sum of xi, yi and zi, and a carry out. Full

Adder repeats this computation until the last bit-pair of X and Y is added.

XOR2

AND2

XOR1

AND1

X
Y

Carry In

OR3

Sum

Carry Out

(a) Logic Gates

Input Output

X Y Carry In Carry Out Sum

0 0 0 0 0

1 1 0 1 0

1 0 1 1 0

0 0 1 0 1
...

...
...

...
...

(b) Truth Table

Figure 6.3: Full Adder: CL example in hardware

The functions in Full Adder can be executed in parallel using the principle of Multiple-

Instruction-Single-Data of Flynn’s taxonomy [Flynn, 1972]. Whenever a new bit-pair of X and

Y arrives, XOR1 and AND1 are executed in parallel. Once the computations in XOR1 and AND1

are completed, the outcome of the computations is fed to the next functions; the output of

XOR1 is an input to XOR2 and AND2, and the output of AND1 is an input to OR3. Then, XOR2 and

AND2 will be executed in parallel to produce the sum of the bit-pair, and the input to the last

function, respectively. Finally, OR3 is executed to produce the carry out.
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6.2.1 Combinational Logic Grid Applications

The principles of CL at a hardware parallelism level can be exploited for higher-level software

coordination in grid applications through the CL dwarf. Combinational Logic grid applications

are, therefore, grid programs that are composed of dataflow networks of functions that operate

on streams of very large amounts of data. In CL hardware, binary bits are streamed, whereas

in CL grid applications, streams include bits, numerical figures, satellite images and other rich

datasets. The functions in CL hardware are simple binary operations, while functions in a CL

grid application could be simple like XOR or complex like rendering digital graphics.

CL applications are available in embedded computing, machine learning and databases

[Asanovic et al., 2006]. Examples for CL applications abound, [NIST, 2001, 1999, Peterson

and Brown, 1961, Garotte and Bras, 1995, Wang and Rundensteiner, 2009, Kuntschke et al.,

2006]. Computing Cyclic Redundancy Codes (CRC) and RSA encryption for data integrity and

security. High-performance computing of satellite/radio signal streams for weather forecasting,

environmental modelling or air/border control exhibits the CL pattern. Data streams from

large widely distributed sensor networks, such as RFID, in transport and logistics, or in content-

based routing systems are another example where increasingly vast amounts of real-time data

require parallel processing.

We view CL grid applications as directed acyclic graphs (DAGs) of processing steps. A

processing step represents the concurrent execution of mutually exclusive functions. The partial

order of the DAG represents the control and dataflow dependencies, i.e. both synchronisation

and communication. Each vertex in the DAG represents a function, hereafter referred to as a

CL activity. CL activities are connected by streams. The minimal elements of the DAG are

fed by input streams and the maximal elements generate the output streams of the dataflow

network. The dataflow network represents the highest level of coordination abstraction in the

CL pattern.

Figure 6.4 shows the DAG of a CL grid application. The CL grid application, denoted by E,

is our running example. E has three processing steps, two input streams, {I0, I1}, two output

streams, {O5, O6}, and seven CL activities, {a0, a1, a2, a3, a4, a5, a6}. For each element of the

input streams, computation begins in processing step 1, and ends in processing step 3. When

data arrives via I0 and I1, the CL activities in processing step 1, a0 and a1, begin execution.

The outputs of a0 and a1 are inputs to activities in processing step 2, i.e. a2, a3 and a4.

CL activity a2 depends on both a0 and a1, while a3 and a4 depend only on a1. Upon the

completion of a2, a3 and a4, the outputs of the activities is used to commence the execution
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input streams 
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Figure 6.4: The DAG of a CL grid application E: the minimal elements a0 and a1 form the first

processing step, followed by {a2, a3, a4}, and finally {a5, a6}. The input streams to the DAG are shown

at the top of the figure, the outputs at the bottom. The dependencies (direct partial ordering) between

processing steps are implicitly associated with input and output streams. For example the dependency

a1 → a3 is associated with O1 and I3.

of a5 and a6 in processing step 3. CL activity a5 depends on a2 and a3, while a6 depends on

a3 and a4. The computation ends when a5 and a6 produce O5 and O6, respectively.

6.2.1.1 Parallelism

The execution of a CL grid application involves one or more of the following parallelism types:

Course-Grain, Pipeline, Repeated and Stream. Though two or more parallelism types can be

used during CL application execution, our discussion is focused on the use of a single type of

parallelism at a time.

6.2.1.1.1 Coarse-Grain Parallelism

Course-Grain parallelism is a type of parallelism that facilitates the concurrent execution of

mutually exclusive activities. Such parallelism type is used to execute CL activities in a single

processing step. Table 6.1 shows the execution of E using coarse-grain parallelism. When the

nth data element of I0 and I1 arrives, activities in processing step 1 are concurrently executed

to process the data. This is followed by the concurrent execution of activities in processing

step 2, and then the concurrent execution of activities in processing step 3. Once the output

is produced, the computation is repeated for the n + 1st data element, and for n + 2nd data

element, and so on.
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Table 6.1: The execution of E using coarse-grain parallelism. Activities in each row are executed
in parallel.

Input stream

element

Processing

step
CL Activities CL Superstep

nth 1 a0n , a1n 1

nth 2 a2n , a3n , a4n 2

nth 3 a5n , a6n 3

n+ 1st 1 a0n+1 , a1n+1 4

n+ 1st 2 a2n+1 , a3n+1 , a4n+1 5

n+ 1st 3 a5n+1 , a6n+1 6
...

...
...

...

6.2.1.1.2 Pipeline Parallelism

Pipeline parallelism is a type of parallelism that executes all processing steps of a CL grid

application concurrently, provided that the activities in each processing step work on different

elements of the input stream. This type of parallelism is possible due to the streaming nature

of the CL dataflow network. While CL activities in processing step i are working on the nth

element of the input stream, CL activities in processing step i+1 can already start working on

the n− 1st element of the input stream, CL activities in processing step i+ 2 can already start

working on the n− 2nd element of the input stream, and so on. Table 6.2 shows the execution

of E using pipeline parallelism.

Table 6.2: The execution of E using pipeline parallelism. Activities in each row are executed
in parallel.

Input stream

element

Processing

step 1
Processing step 2

Processing

step 3

CL

Superstep

nth a0n a1n a2n−1 a3n−1 a4n−1 a5n−2 a6n−2 1

n+ 1st a0n+1 a1n+1 a2n a3n a4n a5n−1 a6n−1 2

n+ 2nd a0n+2 a1n+2 a2n+1 a3n+1 a4n+1 a5n a6n 3

n+ 3rd a0n+3 a1n+3 a2n+2 a3n+2 a4n+2 a5n+1 a6n+1 4
...

...
...

...
...

...
...

...
...
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6.2.1.1.3 Repeated Parallelism

Repeated parallelism is a type of parallelism that simultaneously processes k sets of input

streams using k identical CL applications. Many practical CL computations exhibit multiple

repeated occurrences of the same CL processing pattern. For example in transport, image

streams of toll gates come from more than one camera. Thus, the streaming of images from

different sections of a freeway will occur in parallel. The subsequent processing of these multiple

image streams can utilise the logical parallelism by repeated parallel processing steps. Therefore,

an independent CL computation can be scheduled to process each image stream. Table 6.3

shows the execution of E using repeated parallelism when there are two sets of input streams.

Since there are two sets of input streams, the activities in each processing step will have

duplicates. For example, in processing step 1, the activities whose input comes from r are a0r

and a1r, while the ones whose input is provided by p are a0p and a1p. Under the assumption

that data size and arrival rate in all k sets of input streams are roughly the same, the execution

of all k CL applications be in the same processing step at any given time. For example, when

the nth element arrives from r and p, then a0rn , a1rn , a0pn and a1pn are concurrently executed.

Table 6.3: The execution of E using repeated parallelism with 2 sets of input streams. Activities
in each row are executed in parallel.

Input

stream

element

Processing

step
Input stream set r Input stream set p

CL

Superstep

nth 1 a0rn , a1rn a0pn , a1pn 1

nth 2 a2rn , a3rn , a4rn a2pn , a3k2n , a4pn 2

nth 3 a5rn , a6rn a5pn , a6pn 3

n+ 1st 1 a0rn+1 , a1rn+1 a0pn+1 , a1pn+1 4

n+ 1st 2 a2rn+1 , a3rn+1 , a4rn+1 a2pn+1 , a3pn+1 , a4pn+1 5

n+ 1st 3 a5rn+1 , a6rn+1 a5pn+1 , a6pn+1 6
...

...
...

...
...

6.2.1.1.4 Stream Parallelism

Stream parallelism is a type of parallelism that divides a single set of input stream into m slices

and executes each slice using m identical CL applications. For stateful CL activities, there are

generally bounds on their history sensitivity. This means, one can divide an input stream into
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successive slices of the same size, such that any two slices can be reordered, while the order

of elements in a slice is significant. In practice, this is done by windows or markers. For

example, in some pattern recognition algorithms the size of a pattern match may be bounded

and an input splitter keeps feeding fixed-length substrings from the input stream to different

buffers used by parallel pattern matchers, starting from successive position j, j + 1, j + 2, etc.

In other algorithms, markers define boundaries where such reordering can occur due to the

independence of the data.

We note the similarity and the difference between stream and repeated parallelism types.

Both exploit the independence of data to provide logical parallelism. The difference between

the two arises in the way the data independence is achieved. In stream parallelism, the data

independence is achieved by dividing a single stream into chunks of data elements. Each chunk

of data is processed simultaneously. In repeated parallelism, data is streamed from multiple

sources. The data from each stream source is computed simultaneously. Since, other than the

way how the data is feed to the system, the style of the computation in both parallelism types

is similar, stream parallelism will not be discussed further.

6.2.1.2 CL supersteps

The type of parallelism, along with the dependency structure (DAG), determines the group

of CL activities that should be executed in parallel. For instance, activities of a single pro-

cessing step are concurrently executed using coarse-grain parallelism, whereas activities of all

processing steps run in parallel using pipeline parallelism. Inspired by the BSP model (see Sec-

tion 4.2), we refer to the concurrent execution of a group of mutually exclusive CL activities

as a CL superstep. See the CL supersteps of E in Tables 6.1-6.3.

Under the following simplifying assumptions, without loss of generality, we view a CL

computation as a sequence of CL supersteps:

• CL activities are relatively uniform in execution time.

• Alternatively, where there is large variation in execution times, the number of activities

in a CL superstep is considerably larger than the number of available cores. This allows

grid schedulers to randomly distribute CL activities to cores giving statistically uniform

global behaviour in execution time.

• Data types are uniform and data sizes are roughly equal. This allows to make reasonably

accurate characterization of the cost of collective communication that involves global
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data transfers, and local peer-to-peer communication.

• If more than one set of input streams are used, which is the case in repeated parallelism,

data arrival rate from all sets of input streams is roughly the same.

6.2.2 The Combinational Logic-specific RAC Approach

The Combinational Logic-specific (CL-specific) RAC approach is a RAC approach that provides

customized fault tolerance support to grid applications whose communication and computa-

tion pattern falls under the Combinational Logic dwarf. CL-specific fault tolerance managers

understand that a CL computation is a sequence of CL supersteps, and thus exploit superstep

barriers to provide improved reliability without a heavy penalty on the cost of the overall com-

putation. Unlike MapReduce grid applications, whose activities are identified either as map

or reduce components, CL grid applications do not have a fixed number of component types.

Therefore, CL-specific managers do not provide component type based fault tolerance support.

CL-specific managers use superstep barriers to save the outputs of CL activities in the

current superstep on a persistent storage. The saved data is used to recover a failed CL

activity. Suppose E is executed using coarse-grain parallelism. When the activities in CL

superstep 1 complete working on the nth data element, the outputs of a0n and a1n are written

in a disk. Then, during the execution of activities in CL superstep 2, suppose a2n fails, and

no proactive strategy is executed to avert the failure. In order to recover a2n , the CL-specific

manager needs to identify the activities on which a2n depends. This is achieved using the DAG

of E. Once the manager identifies the activities on which a2n depends, i.e., a0n and a1n , the

manager retrieves their outputs from the storage and restarts a2n . It is important to note that

if the outputs of completed CL activities on which a failed CL activity depends are not saved,

CL-specific managers will re-execute the failed activity as well as the activities on which the

failed activity depends.

CL managers also use superstep barriers to remove any information that is no longer needed.

The objective of discarding unwanted data is to prevent any potential storage problem. Since

a CL grid application execution involves large streams of data, it is a matter of time before the

available disk fills up if all the data that are saved are left untouched. Suppose E is executed

using coarse-grain parallelism. When the activities in CL superstep 2 complete working on

the nth data element, the CL managers save the outputs of a2n , a3n and a4n and discard any

information about a0n and a1n . An alternative approach to this is to delete all information

that is associated with the computation of an element of an input stream when the compu-
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tation of the element reaches its final stage. As shown in Table 6.1, the processing of the

nth element of the input stream reaches its final stage in CL superstep 3. Therefore, when

the activities in CL superstep 3 complete execution, all data that is saved in relation to CL

activities a0n , a1n , a2n , a3n and a4n will be removed.

If a CL application is executed with coarse-grain parallelism, then CL-specific managers

need to keep track of computational information about one data element. In pipeline paral-

lelism, for a CL application with d processing steps, the managers save information about d

data elements at a time. In the case of repeated parallelism, the amount of information to

be saved depends on the number of the set of input streams. The CL-specific managers keep

such information until the processing of the data elements is either successfully completed or

irrecoverably failed.

6.2.3 CL-specific RACS

A CL-specific RACS is a fault tolerant grid system that realises the CL-specific RAC approach.

The reference architecture of a CL-specific RACS is similar to the one discussed in Section 5.1.

The only difference between a RACS that is introduced in Section 5.1 and a CL-specific RACS

is the head manager and compute managers of the CL-specific RACS are specifically designed

to provide fault tolerance support to CL grid applications. Since the behaviours of the head

manager and compute managers are excluded from the formal models, the global behaviour of

CL-specific RACS is also as explained in Section 5.2.

6.2.3.1 The CL-specific RACS Model

We unfold GSbsp, the BSP-based RACS model shown in Figure 5.8, to represent the execution

of a CL grid application as a sequence of CL supersteps on a BSP computer. In the model,

each CL superstep has

• local computations, which represent the execution of CL activities of the CL superstep,

• global communications, which represent the transfer of outputs of from the CL activities

in the current superstep to the CL activities in the next CL superstep, and

• a barrier synchronisation, which ensures that no computation in the next superstep

commences before the completion of all local computations and global communications

in the current superstep.
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In order to unfold GSbsp, the total number of the CL supersteps during the execution of a

CL grid application should be known. Unfortunately, due to the involvement of data streams

in CL computations, there are infinite CL supersteps. For E, this is shown in Tables 6.1-6.3.

Nonetheless, we observe that, starting from arbitrary CL superstep n, the type of activities in

all CL supersteps that are identified by d× n, for some natural number d, are the same. The

difference between these supersteps is that the activities in each superstep will be working on

different elements of the input stream. In coarse-grain and repeated parallelism, d is the depth

of the DAG of the CL application, while in pipeline parallelism, d = 1. For example, if the

execution of E involves either coarse-grain or repeated parallelism, starting from an arbitrary

CL superstep, every third superstep will contain a similar type of CL activities. This is because

the depth of the DAG of E is three. As shown in Table 6.1, supersteps 1 and 4 contain a0 and

a1, where the activities in the respective supersteps work on the nth and n + 1st elements of

the input stream. If E is executed using pipeline parallelism, all CL activities are executed in

every CL superstep. This is shown in Table 6.2.

Despite the execution of a CL application having infinite number of CL supersteps, since

similar computation pattern is repeated, it is possible to unfold GSbsp using finite number of

CL supersteps as long as the depth of the DAG of the application and/or the type of parallelism

is known. For example, since we have established that executing E with either coarse-grain

or repeated parallelism is equivalent to executing three unique CL supersteps repeatedly, with

different data element each time, the refined GSbsp that represents such computation will

consist of three CL supersteps. The transition diagram of the refined model is shown in

Figure 6.5. On the other hand, if E is executed with pipeline parallelism, since there is only

one unique CL superstep, no further refinement of GSbsp is needed, as GSbsp already represents

a grid computation with a single superstep.

The transition diagram of the refined GSbsp for any CL application execution, denoted by

GCL, is shown in Figure 6.6.

6.2.3.2 Reliability Prediction

We use GCL to predict the reliability of a RAC-based CL grid application to which a CL-specific

RACS provides fault tolerance support. The properties of GCL are given below:

• cl1, cl2, . . . , cld; rl1, rl2, . . . , rld; pl1, pl2, . . . , pld, fl1, fl2, . . . , fld; tl1, tl2, . . . , tld;

cg1, cg2 . . . , cgd; rg1, rg2, . . . , rgd; cb1, cb2, . . . , cbd; rb1, rb2, . . . , rbd are transient states,

where d is total number of unique CL supersteps.
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Figure 6.5: The transition diagram of the refined GSbsp for E with either coarse-grain or
repeated parallelism.
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Figure 6.6: The parameterised DTMC of a CL-specific RACS (GCL)

• cl1 is the entry state and cbd is the exit state.

• s and e are absorbing states.

• The reliability of the grid application is the transition probability of GCL from cl1 to s

in the underlying absorption probability matrix.
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We used MATLAB [MathWorks Website] to symbolically derive the absorption probability

matrix of GCL. Due to the size of the reliability equation, we do not show the equation here.

6.2.3.3 Overhead

We use GCL to estimate the overhead of the fault tolerance management of a CL-specific RACS.

In the RACS, the overhead comes from executing a reactive strategy, a proactive strategy and

making predictions. Therefore, the overhead of a CL-specific RACS is the weighted sum of the

expected number of visits from cl1 to rlj, rgj, rbj, flj, tlj and plj, for all superstep j. The

total number of visits to each of these states is weighted by the overhead of a single visit to

each state. The expected number of visits are obtained from the potential matrix of GCL.

Let PCL be the potential matrix of GCL, and O.i be the overhead of a single visit to state i.

Equation (6.2) shows the overhead of a CL-specific RACS, denoted by OCL.

OCL =
d∑

j=1

(PCL(cl1, rlj)×O.rlj + PCL(cl1, rgj)×O.rgj + PCL(cl1, rbj)×O.rbj)

+
d∑

j=1

(PCL(cl1, flj)×O.flj + PCL(cl1, tlj)×O.tlj + PCL(cl1, plj)×O.plj)

where d is total number of unique CL supersteps

(6.2)

6.2.4 Evaluating the CL-specific RAC approach

We evaluate the reliability-overhead tradeoff that is enabled by the CL-specific RAC approach

to Combinational Logic grid applications in Chapter 9. The empirical evaluation of the ap-

proach is presented in Section 9.1.2.

6.3 Summary

In this chapter, the architecture-specific RAC approach was introduced. We also presented

the generic RAC approach and its limitations. We precisely characterised MR and CL grid

applications. Along with the characterisation of MR applications, we discussed local reductions,

global sequential reductions, hierarchical reduction and interleaving parallelism. Likewise, in

CL, we discussed coarse-grain, pipeline, repeated and stream parallelism. We also discussed

how to manipulate the architecture of MR and CL application to provide better fault tolerance

support via the MR-specific and CL-specific RAC approaches, respectively. Further, we showed
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that, along with reliability prediction and overhead equations, the adaptation of the BSP-based

RACS model to accurately represent the MR-specific RACS and the CL-specific RACS.



Part III

Evaluation

Friend to Groucho Marx: “Life is difficult!”

Marx to Friend: “Compared to what?”

In Part II, the generic and the architecture-specific RAC approaches were introduced. We stud-

ied how to provide customized fault tolerance support to MapReduce (MR) and Combinational

Logic (CL) grid applications in-depth. We now evaluate the RAC approach with respect to re-

liability and overhead. We first describe our experiment testbed in Chapter 7, and then present

our experiment design in Chapter 8. In Chapter 9, we report the reliability-overhead tradeoffs

that are enabled by the generic, the MR-specific and the CL-specific RAC architectures, and

show how these tradeoffs are affected by the choice of a fault tolerance strategy, the parameters

of the selected fault tolerance strategy, and the prediction interval and accuracy. Our evaluation

is based on simulations and real runs.



Chapter 7

Experiment Testbed

We designed an experiment testbed to answer our research questions (Section 1.1). The testbed

provides a platform to evaluate the reliability-overhead tradeoff of the generic, the MR-specific

and the CL-specific RAC architectures, and to analyse the sensitivity of such tradeoffs to

prediction accuracy, the choice of a fault tolerance strategy, and the parameters of the selected

fault tolerance strategy. In the testbed, each RAC architecture can be paired with restart,

checkpointing-rollback or replication fault tolerance strategy.

The testbed executes a grid application in either virtual-time or real-time. During such

execution, the testbed provides simulated fault tolerance support, which is based on the princi-

ples of the RAC approach, to the grid application. When the execution of the grid application

is completed, the testbed outputs simulated reliability, simulated execution time, which is the

real time that would have been elapsed from the start to end of the computation, and simulated

overall cost, which is the total CPU time that would have been consumed by the computation.

Suppose a computation has two embarrassingly parallel activities, which each runs for three

seconds. Assuming the two activities are executed concurrently, the total execution time of the

computation is three seconds, while the cost of the computation is six seconds.

The experiment testbed is parameterised in order to allow the user to explore a repre-

sentative set of scenarios reflecting the space of all possible grid fault tolerance scenarios.

Not all input parameters of the testbed are used in every experiment run. The use of a

parameter depends on the type of the grid application to which fault tolerance support is pro-

vided (MapReduce or Combinational Logic), and the required type of fault tolerance support

(prediction-based, reactive-only, proactive-only, and/or hybrid).

105
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Table 7.1: Parameter table

Type Name Values Experiments Variables

Basic

Type of execution virtual-time,
real-time

Shared
parameters in all

experiments

Controlled∗

Failure seed Z
Recovery seed Z
Experiment size Z+

Grid
Infrastructure

No. nodes Z+

No. cores per node Z+

Grid
Application

Global communication overhead Q+

Barrier synchronisation overhead Q+

Probability of activity failure [0, 1]

Type of global reduction sequential,
hierarchical Parameters used

only in MR
experiments

No. map activities Z+

Map activity execution time Q+

Reduce activity execution time Q+

CL activity execution time Q+

Parameters
used only in CL

experiments

Dependency structure text file

Type of parallelism pipeline,
course-grain,
repeated

No. sets of input streams Z+

No. stream elements Z+

No. maximum retry Z+

Shared
parameters in all

experiments

Fault
Tolerance

Management

Type of RAC architecture generic,
MR-specific,
CL-specific

Independent†

Type of fault tolerance strategy restart,
replication,
checkpointing-
rollback

Probability of unrecoverable failure [0, 1]

Probability of false negatives [0, 1]

Prediction
Based

Probability of false positives [0, 1]

Prediction interval Q+

Prediction overhead Q+

Replica overhead Q+ Replication

Checkpointing cost Q+

Checkpointing
Rollback cost Q+

Restart overhead Q+ Restart

∗ A variable whose value is held constant in all equivalent experiments.
† A variable whose value is varied in equivalent experiments.
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7.1 Parameters

The parameters of the experiment testbed are broadly divided into four types: basic, grid

infrastructure, grid application and fault tolerance management. Table 7.1 shows the list of

parameters, the type and possible values of each parameter, and in which experiment each

parameter is used.

7.1.1 Basic Parameters

The basic parameters of the testbed are type of execution, failure seed, recovery seed and

experiment size. These parameters are needed in all experiments. The type of execution

determines whether the grid application is executed in virtual-time or real-time. The failure

and the recovery seeds, on the other hand, are integer numbers that initialize two random

number generators, which we refer to as failure generator and recovery generator, respectively.

The failure generator produces a sequence of numbers that are used to check whether a given

activity fails or not. The recovery generator also produces a sequence of numbers that are used

to check whether the failed activity can be recovered or not. The last basic parameter of the

testbed, the experiment size, specifies the number of times an experiment is run, each run with

unique failure and recovery seeds.

7.1.2 Grid Infrastructure Parameters

The parameters of the testbed that are related to the grid infrastructure are number of nodes

and number of cores per node. These parameters are needed in all experiments.

7.1.3 Grid Application Parameters

The grid application parameters describe the structure and the behaviour of a grid application.

Some of these parameters are shared by all grid applications. The rest are applicable to either

MR or CL grid applications.

For all grid applications, the overhead of global communication and barrier synchronisation,

and the probability of activity failure should be given. The global communication overhead

is the time that is needed to transfer the output of one activity to another. The barrier

synchronisation overhead is the total time that is needed to ensure the completion of a given

superstep. The probability of activity failure is the likelihood of an activity of a grid application

to fail.
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The parameters of an MR grid application include number of map activities, type of re-

duction, map activity execution time, and reduce activity execution time. The number of map

activities and the type of reduction should be given if an MR grid application is executed in

virtual-time. The type of reduction notifies the testbed whether the map activities are reduced

sequentially or hierarchically. Map or reduce activity execution time is the time that is needed

to complete the execution of a map or a reduce activity without failing. We refer to such

execution time as the failure free execution time of an activity.

The parameters of a CL grid application are dependency structure, type of parallelism,

number of sets of input streams, number of stream elements, and CL activity execution time.

The testbed uses the dependency structure of a CL grid application to identify how data

flows between the activities of the application. The testbed expects the dependency structure

to be expressed using the syntax of the DAG generator that is known as Task Graph for

Free (TGFF) [Dick et al., 1998]. In order to identify the CL supersteps, the testbed also

expects the user to explicitly state the type of parallelism that is used during the computation.

The testbed recognises coarse-grain, pipeline and repeated parallelism. If repeated parallelism

is used, the number of the sets of input streams is required. Despite input streams ideally never

stopping, our evaluation assumes bounded length of streams. Therefore, the total number of

stream elements should be given. The last parameter, CL activity execution time, is the failure

free execution time of a CL activity.

7.1.4 Fault Tolerance Management Parameters

The fault tolerance management parameters describe the behaviour of the fault tolerance

support in a RACS. Some parameters are needed in all experiments, while others only in

specific scenarios.

The type of the RAC architecture, the type of fault tolerance strategy, the number of

maximum retry, and the probability of unrecoverable failure are required in all experiments.

The selection of a RAC architecture is made via the type of RAC architecture parameter. The

testbed recognises generic, MR-specific and CL-specific RAC architectures. The selected RAC

architecture can be combined with restart, checkpointing-rollback or replication fault tolerance

strategy. The user specifies her preferred fault tolerance strategy via the type of fault tolerance

strategy parameter. The number of maximum retry is the utmost number of attempts to either

recover a failed activity or avert the impending failure of an activity by replication. The

maximum number of retry in restart, replication and checkpointing fault tolerance strategies



Testbed In Action 109

is referred to as the maximum number of restarts, replicas and rollbacks, respectively. The

probability of unrecoverable failure is the likelihood of a failed activity to never recover.

In a typical RAC architecture, the execution of a proactive strategy is based on a runtime

prediction. Thus, unless the user selects either no or reactive only fault tolerance support; the

prediction interval, the prediction overhead, the probability of false positives, and the proba-

bility of false negatives should be given. The prediction interval is the duration between two

successive predictions, while the prediction overhead is the time that is needed to make a single

prediction. The user also has an option to opt-out of using a runtime prediction.

The remaining fault tolerance management parameters are concerned with the overhead of a

fault tolerance strategy. Replica overhead, checkpointing cost, rollback cost and restart overhead

represent the time that is needed to initiate the execution of the replica of an activity, to save

the current state of an activity, to restore a failed activity to a stable state, and to restart a

failed activity, respectively.

7.2 Testbed In Action

An experiment run commences after the values of the input parameters, which are needed for

the experiment run, are given. During the run, the testbed engages in the following tasks: grid

application execution, fault injection, failure prediction, fault tolerance management, and data

collection. Upon the completion of these tasks, the testbed outputs the simulated reliability,

execution time and cost of the grid application execution.

7.2.1 Grid Application Execution

The testbed executes a grid application in either real or virtual-time. In a real-time execution,

the testbed submits the application to Xgrid or Condor. In a virtual-time execution, the

testbed advances the execution without actually running the activities of the grid application.

Suppose the failure free execution time of an activity is x. Given the activity completes

execution without failure, virtually executing this activity is equivalent to adding the activity’s

execution time to the total execution time of the application, i.e. T = T + x, where T is the

execution time so far. The testbed also simulates the transfer of data between activities. This

is done by adding the global communication overhead, denoted by y, to the execution time so

far, i.e., T = T+y. The testbed assumes equal load distribution during virtual-time executions.

For a virtual-time execution, the testbed requires information about the grid infrastructure

and the grid application. The number of nodes and the number of cores per node should
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be given to the testbed regardless of the class of the grid application. If the class of the

grid application is MapReduce, the testbed expects the number of map activities, the type of

reduction, and the failure free execution times of map and reduce activities. Since the testbed

assumes equal load distribution, the map activities will be equally distributed among the

available cores before execution begins. Then, the cores concurrently execute their allocated

map activities. If each core is allocated two or more map activities, the outputs of the map

activities on each core will be locally reduced. Upon the completion of all of map activities

and local reductions, the testbed commences global reductions, which are either sequential or

hierarchical. When the global reduction is completed, so is the execution of the MR application.

If the class of the grid application is Combinational Logic, then the testbed expects the

dependency structure, the type of parallelism, the number of stream elements, the number of

the sets of input streams, and the failure free execution time of CL activities. The testbed

uses the dependency structure and the type of parallelism to identify all CL supersteps of the

computation. Since the testbed assumes bounded streams, the number of CL supersteps is

finite. The testbed commences the CL computation by executing the activities in the first CL

superstep. When these activities complete execution, the testbed then executes the activities in

the next superstep. This continues until the execution of the activities in the last CL superstep

is completed. Similar to MR activities, before the execution of activities in a CL superstep

commences, the activities are equally distributed among available cores.

7.2.2 Fault Injection

The testbed injects real and simulated faults during the execution of a grid application. If the

application is executed in real-time, then activities are randomly killed. If the application is

executed in virtual-time, then simulated faults are injected to terminate virtually running ac-

tivities. The testbed estimates the time of fault injection based on an exponential distribution.

The execution time of an activity, which is killed by a simulated fault, is the total time the

activity would be running until the time of the fault injection. The testbed injects faults at

the node level. Thus, all activities that are running on the node, where the fault is injected,

are assumed to fail.

7.2.3 Failure Prediction

The testbed regularly checks the presence of an impending failure. The testbed uses a random

uniform distribution, along with the probability of false negatives and false positives, to de-
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termine the presence of an impending failure before the next prediction. Further, the testbed

uses the prediction interval parameter to determine the time to make the next prediction.

At the time of any prediction, there are two mutually exclusive events: failure is impending

or failure is not impending. Given failure is impending, the testbed will either correctly predict

the presence of a threat in the near future, i.e. true positive, or not, i.e., false negative. The

prediction outcome under this scenario depends on the probability of false negatives. Given

failure is not impending, the testbed will either recognize the absence of a threat in the near

future, i.e., true negative, or send an unnecessary warning, i.e., false positive. The prediction

outcome under this scenario depends on the probability of false positives.

In the testbed, a prediction is made at the node level. Therefore, whenever an impending

failure is predicted, the testbed executes a proactive strategy to avert the impact of the im-

pending failure on all activities that are running on the node. For example, if the proactive

strategy is replication, then a replica of all activities will be instantiated.

7.2.4 Fault Tolerance Management

The testbed provides fault tolerance support to grid applications that are executed in virtual-

time. The fault tolerance support is simulated, and thus the selected fault tolerance strategy

is executed in virtual-time.

The testbed can be configured to follow the principles of the RAC approach as well as

existing alternative fault tolerance approaches. For instance, instead of replicating an activity

based on positive failure prediction, which is the case in the RAC approach, the testbed repli-

cates all activities n times before the execution of the application commences. The testbed

also offers an option to execute a grid application without any fault tolerance support. Fur-

ther discussions focus on describing the behaviour of the testbed when the RAC-based fault

tolerance support is provided.

The type of the fault tolerance support depends on the selected RAC architecture and fault

tolerance strategy. Therefore, we identify each support using the type of the RAC architecture

and the fault tolerance strategy with which the architecture is paired. For example, if the

managers in MR-specific architecture handle failure using replication, then the fault tolerance

support is referred to as the MR-specific replication-based RAC.

• Restart-based RAC: The restart-based RAC manages failure only reactively. The

generic restart-based RAC restarts a failed activity whose computation does not depend

on previously completed activities, whereas both the MR-specific restart-based RAC and
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the CL-specific restart-based RAC can restart any failed MR and CL activity, respec-

tively.

• Replication-based RAC: The replication-based RAC manages failure only proactively.

If an activity is predicted to fail, then the replica of the activity will be executed. If the

impending failure of the activity is not predicted prior to the activity’s failure, no attempt

is made to recover the activity. In the replication-based RAC, at most two replicas of

an activity are simultaneously executed. If a positive prediction is made while the two

replicas are being executed, no more replica is instantiated even if the maximum replica

limit is not reached. The generic replication-based RAC can replicate an activity only

if the activity does not depend on other activities, whereas the MR-specific replication-

based RAC and the CL-specific replication-based RAC can replicate any MR and CL

activity, respectively.

• Checkpointing-based RAC: The checkpointing-based RAC manages failure proac-

tively and reactively. The checkpointing-based RAC saves the current state of an activ-

ity whenever the activity is predicted to fail. If/when the activity fails, the activity is

rolled-back to the last checkpoint. Unlike the restart and the replication counterparts,

the generic checkpointing-based RAC can recover the failure of any type of activity pro-

vided that specific conditions are met. If an activity that depends on a previously com-

pleted activity fails and the activity is checkpointed before its failure, then the generic

checkpointing-based RAC recovers the failed activity. The MR-specific checkpointing-

based RAC and the CL-specific checkpointing-based RAC can, with no restriction, man-

age the failure of any MR and CL activity, respectively.

The testbed restarts, replicates and rolls-back an activity a fixed number of times. If

the activity is unable to successfully complete its execution after the maximum retry limit is

reached, the activity is considered to fail beyond recovery. All other activities that depend on

the failed activity will be marked as failed beyond recovery. The testbed can also be configured

to execute a fault tolerance strategy an unlimited number of times. However, such configuration

should be used cautiously as there is a possibility for an activity to continuously fail and never

be able to successfully complete its execution.

The testbed uses the probability of unrecoverable failure along with a random uniform

distribution to determine whether a failed activity can be recovered or not. The testbed

performs this type of check only in the restart-based RAC and the checkpointing-based RAC.
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Since the restart-based RAC and the checkpointing-based RAC attempt to recover a failed

activity, it is essential to determine whether the failed activity is recoverable or not. If the

failure is unrecoverable, then no attempt is made to recover the activity.

7.2.5 Data Collection

While the execution of a grid application is in progress, the testbed records the execution time

and the cost of the application so far. At the end of each execution, the testbed outputs the

status of the execution (completed or failed), the execution time and the cost of the application.

The status of a grid application execution is used to determine the reliability of the application

under the given conditions. In Sections 7.2.5.1, 7.2.5.2 and 7.2.5.3, we discuss how the testbed

estimates the reliability, the total execution time and the cost of a grid application execution,

respectively.

7.2.5.1 Reliability

Every experiment is run multiple times with unique failure and recovery seeds. At the end

of each run, the testbed records the status of the execution. In line with the discussion in

Section 5.2.1, all of the activities of a grid application must successfully complete in order for

the execution of the application to be regarded as a success. Otherwise, if any of the activities

fails beyond recovery, then the execution is considered as a failure. Once the multiple executions

of a given experiment are completed, the testbed reports the reliability of the grid application

execution under the given constraints according to Equation (7.1).

Reliability =
Number of successfully completed runs

Number of all runs
(7.1)

The reliability estimation of a CL grid application is slightly different from what is discussed

above. During a CL computation, each experiment run involves multiple executions of a CL

application. In each CL experiment, a CL application is executed as many times as the total

number of the stream elements. Therefore, when an experiment run is completed, the testbed

records the number of the stream elements that are successfully processed. Then, when all

of the experiment runs are completed, the testbed reports the reliability of CL application

according to Equation (7.2), provided that n be the total number of experiment runs, m be

the total number of stream elements, and xi be the number of successfully processed stream

elements in experiment run i.

Reliability =

∑n
i xi

n×m
(7.2)
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7.2.5.2 Execution Time

The testbed either records or estimates the execution time of a grid application. If the appli-

cation is executed in real-time, then the execution time is recorded. Otherwise, the execution

time is estimated. Hereafter, our discussion focusses on estimating the execution time of a grid

application.

The execution time of a grid application depends on the architecture of the grid application,

the execution time of the application’s activities, the number of available cores, the type of

the scheduler, and the data transfer overhead. The testbed assumes that the distribution of

the initial input data and executable files to the cores is already taken care of. Therefore, the

testbed does not include the time that is needed to distribute these files in the total execution

time. The testbed also assumes the scheduling policy to be equal load distribution. Before

presenting how the execution time of a MapReduce and a Combinational Logic grid applications

are estimated in Sections 7.2.5.2.2 and 7.2.5.2.3, Section 7.2.5.2.1 discusses the estimation of

the execution time of an activity under various scenarios.

7.2.5.2.1 Execution Time of an Activity

The execution time of an activity depends on what happens to the activity and/or its execution

environment during execution. In this section, we present four selected scenarios that show

how the testbed estimates activity execution time. The execution time of an activity in all

other scenarios can be constructed from the discussions below. When the execution time of an

activity is estimated, the testbed does not include the duration between activity failure and

failure detection in the total execution time of the activity.

Scenario 1 (Failure Free Execution). Suppose an activity completes execution without failing.

The execution time of the activity is the same as its failure free execution time, Figure 7.1.

E

FF

Legend E: total execution, FF: failure free execution

Figure 7.1: Execution of an activity without failing

Scenario 2 (Execution with Restart). Suppose an activity fails, and then successfully com-

pletes execution after restart. The total execution time of such activity is equal to the time
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the activity spent on an uncompleted execution, the restarting overhead, and the failure free

execution time of the activity, Figure 7.2.

x

failed

E

UNC FF
|

restarting

Legend E: total execution, FF: failure free execution, UNC: uncompleted execution

Figure 7.2: Execution of an activity with restart

Scenario 3 (Execution with Replication). Suppose the impending failure of an activity is pre-

dicted, the activity is replicated before its failure, and the replica of the activity is successfully

executed. The execution time of such activity is the sum of the activity’s failure free execution

time, the replication overhead, and the time the activity spent on the original execution before

the failure prediction, Figure 7.3. Though the original execution continues until it fails, the

duration between failure prediction and failure occurrence in the original execution does not

contribute towards the total execution time of the activity. This is because the computation

in this duration overlaps with the execution of the activity’s replica.

x

failed

E

UNC
|

failure
predicted

FF
Replica|

replicating

Legend E: total execution, FF: failure free execution, UNC: uncompleted execution

Figure 7.3: Execution of an activity with replication

Scenario 4 (Execution with Checkpointing-Rollback). Suppose an activity is checkpointed be-

fore its failure, and then the activity successfully completes execution after rollback. The total

execution time of such activity is the sum of the failure free execution time of the activity, the

time the activity spent on computing after the checkpoint but before its failure (uncompleted

execution), and the time that is needed to checkpoint and rollback the activity Figure 7.4.
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x

failed

E

FF
|

failure
predicted

FF

checkpointing

UNC
| |

rollingback

Legend E: total execution, FF: failure free execution, UNC: uncompleted execution

Figure 7.4: Execution of an activity with checkpointing-rollback

7.2.5.2.2 Execution Time of a MapReduce Application

The execution time of a MapReduce application is the time that is needed to complete the

map phase with optional local reductions, the transfer of data between activities, and a global

reduction. The execution time of the map phase is determined by the core whose allocated

map activities take the longest time to complete and be locally reduced.

The total data transfer time from either map or local reduce activities to global reduce

activities, or from one global reduce activity to another in hierarchical reduction depends on

the type of the communication channel. If the output data can be sent in parallel, the data

transfer time is g × log2 c; where g is the global communication overhead and c is the number

of cores that are used during the map phase. If the communication channel is shared, however,

the total data transfer time will be g × (c − 1). The testbed assumes shared communication

channel.

The execution time of a global reduction depends on its type, i.e., sequential or hierarchical.

The execution time of a sequential global reduction is the sum of the execution times of all

global reduce activities. For a hierarchical global reduction, the execution time is the sum of

the execution time of the longest reduce activity in each level (see Figure 6.1). Suppose c cores

are used during the map phase, the map activities are reduced in log2 c levels.

7.2.5.2.3 Execution Time of a Combinational Logic Computation

As discussed in Section 7.2.1, the testbed identifies all CL supersteps of a CL computation.

Since a CL computation is a sequence of CL supersteps, the testbed adapts Valiant’s cost

model, as shown in Equation (4.1), to estimate the execution time of a CL computation. The

execution of CL activities in a CL superstep is equivalent to local computation in Valiant’s
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superstep. Transferring the outputs of these activities to the activities in the next superstep

represents Valiant’s global communication. Finally, the time the testbed adds at the end of

global communications, before executing activities in the next CL superstep, is equivalent to

Valiant’s barrier synchronisation.

The adaptation of Valiant’s model is needed to incorporate the assumption of the testbed

about communication channel being shared, and to include scenarios where the number of CL

activities in a superstep is greater than the number of allocated cores for the computation.

The adapted Valiant’s model is shown in Equation (7.3).

Let

• S: the total execution time of a CL computation

• si: the execution time of CL superstep i

• wi,j,k: the execution time of CL activity j in superstep i on core k

• hj : the h-relation of activity j

• g: the transmission capacity of the network to deliver data (bandwidth)

• b: fixed (amortised) cost of synchronisation (conceptual barrier)

S =
m∑
i=1

si

for m total CL supersteps in S

(7.3)

si =
c

max
k=1

( n/c∑
j=1

wi,j,k

)
+

n∑
j=1

(hj × g) + b

where c : total cores allocated for CL superstep i

n : total CL activities in superstep i

(7.4)

7.2.5.3 Cost

The cost of a grid application execution is the total CPU time that is spent on executing the

activities of the application, fault tolerance management and prediction.

We use the cost of a grid application, instead of the total execution time, for our reliability-

overhead analysis. The user of a grid service is either allocated a specific resource usage quota

if the service is free, or is billed based on the amount of resources she uses to execute her
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application, which is standard especially in service providers like GoGrid [GoGrid Website]

and Amazon [Amazon Website]. Therefore, since the total execution time only reflects the

length of the computation, we chose the cost of a grid application, which shows the area of

the computation. The area of the computation, as represented by time, is the total computing

power that is consumed by the application and the fault tolerance support.

Suppose p be the cost of the execution of a grid application without fault tolerance support,

and q be the cost of the execution of a grid application with fault tolerance support. The

unscaled overhead of the fault tolerance support is q− p. For the reliability-overhead analysis,

we normalize the unscaled overhead according to Equation (7.5).

Normalised Overhead =
q

p
− 1 (7.5)

7.3 Summary

In this chapter, we introduced our parameterised experiment testbed that is designed to empir-

ically evaluate a given RAC architecture with respect to reliability and overhead. The testbed

can be configured in many ways through its grid application, grid infrastructure and fault

tolerance management parameters. During an experiment run, the testbed engages in grid

application execution, fault injection, failure prediction, fault tolerance management, and data

collection. Upon the completion of these tasks, the testbed outputs the simulated reliability,

execution time and cost of the grid application execution.



Chapter 8

Experiment Design

The objective of our experiment runs is to answer our research questions (Section 1.1). There-

fore, we design various sets of experiments to analyse

i. the reliability-overhead tradeoff that is enabled by the generic, the MR-specific and the

CL-specific RAC architectures (Sections 9.1.1 and 9.1.2),

ii. the impact of the parameters of a fault tolerance strategy, which is paired with a given

RAC architecture, on the tradeoff (Sections 9.2 and 9.3), and

iii. the sensitivity of the tradeoff to prediction interval (Section 9.4), and false negative and

false positive predictions (Section 9.5).

For each set of experiments, we assign a single value or a range of values to the parameters

of the testbed. As shown in Table 7.1, we recognise the testbed parameters as controlled and

independent variables. The value of a controlled variable is held constant in all experiments,

while the value of an independent variable is changed from one experiment to another. In all

experiments, the dependent variables∗ are reliability and cost. The experimental setup of the

controlled and independent variables is discussed in Sections 8.1 and 8.2, respectively.

Our experiments are based on simulation. We aim to evaluate the RAC approach for a range

of independent variables settings, where the value of each independent variable is uncertain and

the impact of an independent variable is defined not necessarily in isolation but in its complex

interactions with others. Real data for such combinations of conditions are hard to get by, and if

∗Generally in a scientific experiment, the experiment aims to establish the dependency of certain observa-
tions, which are the dependent variables; and the factors that these observations depend upon, which are the
controlled and the independent variables [Welkowitz et al., 2012].
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we measure them in a real cluster or grid within a real application run or even thousands of runs,

these ‘real’ contexts are still only few samples in the sea of so many applications, frameworks

and architectures combinations that we are interested in. Consequently, how well the ‘real’

data represents the part of the ‘sea’ we are interested in, is entirely uncertain. Likewise, when

we look at dependent variables in these ‘real’ runs, it remains very uncertain, what kind of

generalisations we can make about the dependency measured. Therefore, simulation is the

only option we have in general for this type of wide-ranging problem [Zurell et al., 2010].

8.1 Controlled Variables

The results of all experiments depend on type of execution, failure seed, recovery seed, experi-

ment size, number of nodes, number of cores per node, global communication overhead, barrier

synchronisation overhead, and probability of activity failure. These are the shared controlled

variables. The remaining controlled variables in Table 7.1 are specific to either MR or CL

related experiments; therefore we discuss these variables separately in Sections 8.1.1 and 8.1.2,

respectively.

For all experiment runs, a grid application execution and fault tolerance management are

carried out in virtual-time. In order to minimise noise from the data, an experiment run is

repeated 103 times, each time with unique failure and recovery seeds. We allocate 32 dual-core

compute nodes to each experiment run, and thus, upto 64 activities can be executed in parallel.

The overheads of global communication and barrier synchronisation are obtained from

the Pallas MPI Benchmarks (PMB) suite [PMB, 2000]. The Ping Pong and the Barrier

benchmarks of the PMB suite are used to measure the overhead of global communication and

barrier synchronisation, respectively. We run the benchmarks on our HPC cluster of 32 nodes

with 8 cores each. The global communication overhead depends on the size of the data to be

transferred, while the barrier synchronisation overhead depends on the number of activities

to be synchronised. For example, the global communication overhead of transferring 2MB of

data is 8.45µsec, and the barrier synchronisation overhead for synchronising 64 activities is

638.52µsec.

We assume individual activities of a grid application to be highly reliable, and thus we

limit the probability of activity failure within the range of {0, 0.005, 0.01, 0.015,. . . , 0.2}. The

fact that failure in a grid application execution being highly likely, when compared to non-grid

applications, does not necessarily imply that the failure probability of the individual activities

of the application is very high. The high likelihood of failure in a grid is due to factors like the
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massive number of grid components, which have non-zero probability of failure, the longevity

of grid computations, and the like (see Section 4.3.1 for details).

8.1.1 MapReduce Experiments

The controlled variables that are needed in MR experiments are number of map activities, map

execution time, reduce execution time, and type of global reduction.

Our simulated MR grid application is inspired by 4CareK [Peake et al., 2009], a parame-

terised large scale distributed lattice generator. 4CareK allows the user to specify, among other

things, the number of map activities and the execution time of each activity via its parameters.

For our experiment, we assume a simulated 4CareK grid application with 256 map activities;

therefore, each of the 64 cores will be allocated four activities. Since the execution time of each

map activity of 4CareK can be configured, we assume each map activity to take 15 minutes

in one set of experiments and 1 hour in another. Inspired by the MPI REDUCE routine and

4CareK, we assume global sequential reduction. We measured the execution time for reducing

the map activities of 4CareK on our Xgrid. The execution time is roughly 1500 msec, which is

very small. Therefore, in order to study MR grid applications with expensive reduce activities,

we also set the execution time of each reduce activity to be the same as and significantly more

than the execution time of a map activity.

8.1.2 Combinational Logic Experiments

The controlled variables that are needed in CL experiments are dependency structure, type

of parallelism, number of sets of input streams, number of stream elements, and CL activity

execution time.

We execute a randomly generated and two real CL applications during CL experiment runs.

We refer to the randomly generated application as Tgff since the application is generated by

the TGFF tool (Section 7.1.3). Tgff has 26 CL activities and 7 processing steps. The other CL

applications are Spatial Matching [Kuntschke et al., 2006], an astrophysics application that is

required to determine Spectral Energy Distributions (SEDs), and FilterBank [Gordon, 2010],

a multi-rate signal decomposer in, for example, image processing. Spatial Matching has 11

CL activities and 4 processing steps, while FilterBank has 67 CL activities and 10 processing

steps. The DAGs of Tgff, Spatial Matching and FilterBank are shown in Figure 8.1. We assume

pipeline and repeated parallelism during the execution of these CL applications. The number of

input stream sets is 2, while the number of stream elements is 50. In-line with our assumption
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Figure 8.1: Benchmark DAGs for CL Experiments
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in Section 6.2.1.2, each CL activity of a CL computation is assigned equal execution times.

For each CL computation, the execution time of its CL activities are randomly generated.

The randomly generated execution times represent small and long execution times, in their

respective experiment runs.

8.2 Independent Variables

The independent variables that are needed in all experiments are type of RAC architecture, type

of fault tolerance strategy, number of maximum retry, and probability of unrecoverable failure.

The rest of the independent variables are related to prediction, and the overhead of the selected

fault tolerance strategy. We discuss the values of these variables in Sections 8.2.1 and 8.2.2.

In MR experiments, the fault tolerance support is based on the generic and the MR-specific

RAC architectures. Likewise, in CL experiments, we use the generic and the CL-specific RAC

architectures. Each RAC architecture is paired with restart, replication or checkpointing-

rollback fault tolerance strategy. These strategies represent reactive only, proactive only and

hybrid failure handling. As discussed in Section 3.3.1, there are other fault tolerance strategies

that a RAC architecture could be paired with; however, such strategies are represented by the

selected strategies at an abstract level. Redundancy, standby spare and N -version are similar

to replication; despite the difference in the actual implementation, all of them advocate the

use of more than one instance of an activity to manage failure. The reason checkpointing is

combined with rollback rather than with migration is that checkpointing-rollback is a hybrid

strategy while checkpointing-migration is a proactive strategy; a proactive strategy is already

represented by replication. Rejuvenation is also not considered due to its purely proactive

nature.

We leave the number of maximum retries unbounded and determine the bound (if any) by

experiment. We assume a non-zero probability for an activity to never recover after its failure.

Possible causes of an unrecoverable failure include internal software bug, data corruption during

execution, memory leak, CPU crash, and others. Though there are multiple events that could

trigger such failure, they are not necessarily frequent. Therefore, we set the probability of

unrecoverable failure to be low, i.e. 0.01. Later, in Section 9.2, we study the general impact of

the probability of unrecoverable failure on the performance of a RAC architecture. For such

study, the values of the probability of unrecoverable failure are 0, 0.01, 0.05, 0.1, 0.3, and 0.75.
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8.2.1 Prediction Variables

The independent variables that are specific to prediction are prediction interval, probability of

false negatives, probability of false positives, and prediction overhead. We discuss the prediction

overhead, along with other fault tolerance overheads, in Section 8.2.2.

8.2.1.1 Prediction Interval

We set the prediction interval to be 5% of the failure free execution time of an activity. In MR

experiments, since map and reduce activities could have different execution times, the MR-

specific RAC architecture adjusts the prediction interval for each type of activity. Suppose the

execution time of a map and reduce activity is 2000 and 50, respectively. During the map phase,

a prediction is made every 100 units of time, while in the reduce phase, a prediction is made

every 2.5 units of time. The generic RAC architecture does not change the prediction interval

as the architecture assumes all activities to be the same for the purpose of fault tolerance

support. Later, in Section 9.4, we study the general impact of the prediction interval on the

performance of a RAC architecture. For such study, the values of the prediction interval are

5%, 15%, 25%, . . . , 95% of the failure free execution time of an activity.

Note that, in the checkpointing-based RAC, the prediction interval should be greater than

the overhead of a single checkpoint. Suppose positive predictions are made during the nth

and n+ 1st predictions, for some natural number n. If the prediction interval is less than

the overhead of a single checkpoint, then the second checkpointing begins while the first is in

progress. Since the activity to be checkpointed is still suspended when the second checkpointing

begins, the second checkpointing does not save an advanced state of the activity. Such scenario

can be avoided by using a prediction interval that is larger than the overhead of a single

checkpoint.

8.2.1.2 Prediction Accuracy

The probabilities of false positives and false negatives determine the accuracy of a predictor.

In an ideal predictor, which knows the state of the system and makes perfect prediction all

the time, these probabilities are zero. In the other extreme, a predictor will have no access

to the state of the system, and therefore, ‘guesses’ the current status of the system by, for

example, tossing a coin. We refer to such a predictor as state oblivious. All other predictors lie

between these two. These predictors have limited or full access to the system. However, since
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“prediction is very difficult, especially about the future”†, their predictions are not necessarily

correct all the time. We refer to these predictors as state aware. An ideal predictor is a state

aware predictor that makes perfect predictions.

We use state oblivious predictors to set the baseline for the quality of state aware pre-

dictors. Since state aware predictors take into account the current condition of the execution

environment, these predictors must be more accurate than the state oblivious ones. Otherwise,

it is not worth putting any effort to develop these predictors. In all experiments, except where

stated otherwise, we assume a state oblivious predictor. This is because we would like to study

how a RAC architecture performs despite the available predictor being the least accurate one.

Our state oblivious predictor is randomised, i.e., the predictor makes a prediction based on a

random constant k, where k ∈ [0, 1]. k is the probability of making positive prediction regard-

less of the current status of the execution environment with respect to an impending failure.

At the time of prediction, this predictor generates a random number i, where i ∈ [0, 1), and

then compares i to k. If k ≥ i, then a positive prediction is made. Otherwise, a negative

prediction is made.

In our experiment testbed, k cannot be directly used. The testbed expects the probability

distribution of a predictor’s outcomes to be expressed by the probabilities of false positives

and false negatives (Section 7.1.4). However, the probability distribution of a state oblivious

predictor is given in terms of positive and negative predictions. Even though there are two

mutually exclusive events at the time of prediction (Section 7.2.3), failure is impending and

failure is not impending, a state oblivious predictor does not intrinsically recognise these events.

Therefore, the probability of positive predictions remains the same irrespective of the current

event. Following is summarised the probability distribution of a state oblivious predictor.

• Given an impending failure at the time of prediction, the probability of true positives

is k and the probability of false negatives is 1− k.

• Given no impending failure at the time of prediction, the probability of true negatives

is 1− k and the probability of false positives is k.

Let the probability of false positives given no impending failure be x, and the probability

false negatives given an impending failure be y. From the probability distribution of a state

oblivious predictor, we observe that x + y = 1. In our experiment, k = 0.5, and thus, the

probabilities of both false positives and false negatives are 0.5. Later, in Section 9.5, we will

†The source of the quote is disputed. However, we attribute the quote to Niels Bohr.
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discuss how the performance of a RAC architecture is affected by the accuracy of a state

oblivious predictor, where k ∈ [0, 1], and a state aware predicator.

8.2.2 Overhead Variables

The independent variables that are related to overhead are checkpointing cost, rollback cost,

replica overhead, restart overhead, and prediction overhead.

For our evaluation, we assume system level checkpointing, and therefore measure the time

that is needed to take a memory dump. The checkpointing cost of a 4CareK activity on NFS

is 131 msec, and the size of the checkpoint is 2MB. Since the overhead of checkpointing an

activity depends on the complexity of the activity, the size of the information to be saved, the

location of the checkpointing storage (local disk vs. NFS), and the network bandwidth [Plank

et al., 1999], we therefore study the impact of the cost of checkpointing on checkpointing-based

RAC in Section 9.3 in detail. According to Nurmi et al. [2005], the overheads of checkpointing

and rollback are roughly the same in long running jobs on Condor. Therefore, we assign equal

values for the rollback cost and the checkpointing cost.

We measure restart and replication overheads. Since restart and replication create a new

instance of an activity, they both need the same input values. In 4CareK, for example, the

overhead of reading the input values of an activity from NFS is 0.66 msec. We also measure

the overhead of making prediction by a state oblivious predictor, and it is 0.014 msec. All our

measurements are done using YourKit Java Profiler [YourKit Website].

8.3 Experiment Runs Presentation

For each evaluation, we only show the most significant portions of the data, and elide other

redundant portions that show essentially the same thing. The outputs of all experiment runs

will be provided on request.

Figure 8.2 shows the reference graph notation, which subsequent graphs in this thesis will

follow. Each graph is divided into two, each half representing reliability and overhead. For

the value of a given variable in the x-axis, the reliability of a grid application whose failure is

managed by a specific fault tolerance support type is plotted on the Reliability half, and the

overhead of the fault tolerance support is shown on the Overhead half.

The graph has an additional dimension based on color to represent a fault tolerance support

type. RPL-g, CHK-g and RST-g denote generic replication-based RAC, checkpointing-based

RAC and restart-based RAC, respectively; and their respective architecture-specific equivalents



Summary 127

are RPL-s, CHK-s and RST-s. Finally, NoFT shows a grid application execution without any

fault tolerance support.

Figure 8.2: Reliability-overhead tradeoffs from one of the benchmark runs.

8.4 Summary

In this chapter, we presented the design of our experiment. We described the values of the

controlled and the independent variables in Table 7.1. Finally, we provided a reference graph

notation that will be used throughout the thesis.



Chapter 9

Results

In this chapter, we answer our research questions (Section 1.1): What is the reliability-overhead

tradeoff that is enabled by the RAC approach for MapReduce and Combinational Logic grid

applications? How sensitive is such reliability-overhead tradeoff to a fault tolerance strategy

and its parameters, and prediction accuracy? We answer the first question by presenting

the reliability-overhead tradeoff that is enabled by the generic, the MR-specific and the CL-

specific RAC architectures. We then answer the second question by discussing the impact of an

unrecoverable failure on the reliability-overhead tradeoff, how the cost of checkpointing affects

the performance of the checkpointing-based RAC, and the sensitivity of the checkpointing-

based and the replication-based RAC to prediction interval and accuracy. These discussions

are based on the scenario presented in Figure 9.1c. Nonetheless, the knowledge is transferable

to other scenarios as well.

9.1 Reliability and Overhead under RAC Architecture

The generic and the architecture-specific RAC approaches improve the reliability of MR and CL

grid applications. Such reliability improvement, nevertheless, comes at the expense of increased

cost of execution. The extent of the reliability improvement and the overhead of providing such

improvement depend on the type of the RAC architecture (generic, MR-specific, CL-specific),

and the fault tolerance strategy with which the RAC architecture is paired. We present the

reliability improvement that MR and CL grid applications would gain by adapting the RAC

approach and the associated cost of the reliability improvement in Sections 9.1.1 and 9.1.2.
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9.1.1 The Case of MapReduce

Under the default parameter settings, the execution of an MR grid application without fault

tolerance support almost always leads to failure at application level. In such situations, the

reliability of the execution is almost zero if the probability of activity failure is greater than

0.04. This is shown in Figure 9.1. According to our reliability definition (Section 7.2.5.1),

the failure of one activity suffices to consider the entire execution as failed. Combining either

generic or MR-specific fault tolerance support with an MR execution improves the reliability

of the execution up to a limit.

We evaluated the reliability-overhead tradeoff of the generic and the MR-specific RAC

architectures for MR grid applications. In summary,

• Result 1: MR-specific fault tolerance support provides a more reliable MR application

execution than generic fault tolerance support. Figure 9.1.

• Result 2: Given the execution time of a map activity is significantly higher than the

execution time of a reduce activity, the overhead of MR-specific fault tolerance support

is almost the same as the overhead of its generic counterpart. Figures 9.1a and 9.1b.

• Result 3: Given the execution time of a reduce activity is at least equal to the execu-

tion time of a map activity, the overhead of MR-specific fault tolerance support, with

the exception of the checkpointing-based RAC, is significantly higher than the over-

head of generic fault tolerance support. The generic and the MR-specific variants of the

checkpointing-based RAC incur roughly the same overhead. Figures 9.1c and 9.1d.

• Result 4: The MR-specific restart-based and the MR-specific checkpointing-based RAC

provide almost equally reliable execution of an MR grid application. Figure 9.1.

• Result 5: Given the failure of some activities requires reactive fault tolerance manage-

ment, the MR-specific restart-based and the MR-specific checkpointing-based RAC pro-

vide a more reliable execution of an MR grid application than any of the other fault

tolerance support types. Figures 9.1a, 9.1c and 9.1d.

• Result 6: Given a proactive strategy can be executed prior to the failure of any activity

and the cause of the failure is a transient fault, the MR-specific replication-based RAC

provides the most reliable MR computation. Figure 9.1b.
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(a) Long running map and short running reduce.
Failure at any time.

(b) Long running map and short running reduce.
Failure towards the end.

(c) Equal execution time for map and reduce.
Failure at any time.

(d) Short running map and long running reduce.
Failure at any time.

Figure 9.1: The reliability-overhead tradeoff of the generic and the MR-specific RAC.

• Result 7: Given the probability of activity failure is non-zero, of the MR-specific fault

tolerance support types, the replication-based RAC introduces the highest overhead,

followed by the restart-based RAC and then the checkpointing-based RAC. Figure 9.1.
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9.1.1.1 Restart-Based RAC

The MR-specific restart-based RAC provides a more reliable execution of an MR gird appli-

cation than the generic restart-based RAC, Figure 9.1. This is due is to the fact that the

MR-specific restart-based RAC can manage the failure of both map and reduce activities,

whereas the fault tolerance support by the generic restart-based RAC is limited to map activ-

ities. The inability of the generic restart-based RAC to recover a failed reduce activity makes

it provide a less reliable execution of an MR grid application than its MR-specific counterpart.

The superiority of the MR-specific restart-based RAC over the generic restart-based RAC

becomes more pronounced than before as the probability of activity failure increases. As

shown in Figure 9.1a, for example, if the probability of activity failure is 0.01, the generic

restart-based RAC and the MR-specific restart-based RAC guarantee a reliability of 0.72 and

0.98, respectively. In this case, the MR-specific RAC provides 0.26 more reliability than the

generic RAC. However, if the probability of activity failure becomes 0.03, the difference in the

reliability of the computation reaches 0.6; while the MR-specific RAC achieves 0.94 reliability,

the generic RAC guarantees only 0.34 reliability. The key reason behind the widening of the

gap with an increase in the probability of activity failure is that as the probability of activity

failure increases, the likelihood of the reduce activity to fail increases as well. Since the generic

restart-based RAC does not have a mechanism to deal with reduce failures, such increase highly

impacts its performance.

The MR-specific restart-based RAC introduces more overhead than its generic counterpart.

Nonetheless, the degree of the overhead difference depends on the relative execution time of

reduce and map activities. When the execution time of a map activity is considerably higher

than the execution time of the reduce activity, as shown in Figures 9.1a and 9.1b, the overhead

of the MR-specific restart-based RAC is only marginally larger than the overhead of the generic

restart-based RAC. In this scenario, the majority of the overhead is incurred during the map

phase. Since both types of fault tolerance support put equivalent effort to handle the failure

of map activities, they introduce more or less comparable overhead. The additional attempt

to restart failed reduce activities by the MR-specific restart-based RAC will not introduce

significant overhead as the execution time of the reduce activities is very small, especially

when compared to the execution time of the map activities.

In the scenario when the execution time of a reduce activity is at least the same as the

execution time of a map activity, as shown in Figures 9.1c and 9.1d, the overhead of the

MR-specific restart-based RAC is significantly higher than the overhead of the generic restart-
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based RAC. Since only the MR-specific restart-based RAC attempts to recover a failed reduce

activity, which in this case is very expensive, we observe a significant gap between the overhead

of the two types of fault tolerance support.

9.1.1.2 Replication-Based RAC

Both the generic and the MR-specific variants of the replication-based RAC improve the re-

liability of an MR grid application up to a limit. The performance of these types of fault

tolerance support is limited by the lack of any mechanism to recover a failed activity. This, as

shown in Figures 9.1a, 9.1c and 9.1d, becomes apparent as the probability of activity failure

increases. With an increase in the probability of activity failure, more and more activities

will fail before their impending failure can be predicted, all other things kept constant. If the

failure of activities is not predicted, then no replica will be instantiated.

Despite an increase in the probability of activity failure, if a proactive strategy can be

executed prior to the failure of any activity and the cause of the failure is a transient fault, then

the MR-specific replication-based RAC guarantees a 100% reliable computation. Under the

default parameter settings, if an activity fails only towards the end of its execution, a positive

prediction will be made at some point during its computation, and consequently the activity

will be replicated. Such execution is shown in Figure 9.1b. As long as the cause of the failure

is a transient fault and a replica is instantiated before the failure of the activity, the activity

eventually completes successfully. If the cause of the failure is a permanent fault, regardless

of how many times the activity is replicated, it will not complete successfully. The generic

replication-based RAC does not guarantee a 100% reliable computation as its performance is

limited by its inability to not only recover a failed activity but also initiate a replica of a reduce

activity.

The relationship between the generic and the MR-specific variants of the replication-based

RAC with respect to overhead is similar to that of the restart-based RAC. Given the execution

time of a map activity is considerably higher than the execution time of a reduce activity,

as shown in Figures 9.1a and 9.1b, the MR-specific replication-based RAC introduces almost

equivalent overhead as the generic replication-based RAC. However, if the execution time of

the reduce activity is at least the same as the execution time of the map activity, as shown on

Figures 9.1c and 9.1d, then the overhead of the MR-specific replication-based RAC becomes

significantly higher than that of its generic counterpart.
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9.1.1.3 Checkpointing-Based RAC

The MR-specific checkpointing-based RAC provides a more reliable execution of an MR grid

application than the generic checkpointing-based RAC, Figure 9.1. The generic and the MR-

specific variants of the checkpointing-based RAC save the current state of both map and

reduce activities after a positive prediction. The difference between the two comes at the time

of rolling-back a reduce activity. If the reduce activity is not checkpointed before its failure,

unlike the MR-specific checkpointing-based RAC, the generic checkpointing-based RAC cannot

recover it. This is why the MR-specific checkpointing-based RAC provides a more reliable

computation than its generic counterpart.

The extent of the reliability of an MR computation, whose failure is managed by the generic

checkpointing-based RAC, depends on the relative execution time of map and reduce activities.

In the scenario when the execution time of a map activity is considerably higher than that of

a reduce activity, the reliability of the computation is low. Otherwise, the reliability of the

computation is relatively high. This is due to the way the prediction interval is configured

during the execution of an MR grid application.

The prediction interval in the generic checkpointing-based RAC is set up with respect to

the activity that has the longest execution time. Suppose the respective execution time of a

map and a reduce activity are 104 and 5 units of time, and the prediction interval be 5% of the

failure free execution time of an activity. Thus, the prediction interval will be 500. Since, such

prediction interval is larger than the execution time of the reduce activity, no prediction will be

made during the execution of a reduce activity; and consequently none of the reduce activities

will be checkpointed. In this scenario, the reliability of the MR grid application, whose fault

tolerance support is provided by the generic checkpointing-based RAC, will be low due to the

inability of the generic RAC to recover a failed reduce activity that is not checkpointed. This

scenario is shown in Figures 9.1a and 9.1b.

In the scenario when the execution time of a reduce activity is higher than that of a map

activity, the performance of the generic checkpointing-based RAC will not be affected by the

prediction interval. By reversing our previous example, let the execution time of a map and

a reduce activity be 5 and 104, respectively. Since the longest activity execution time is used

to set the prediction interval, the prediction will still be 500. Due to the large difference

between the execution time of a map activity and the prediction interval, no prediction will

be made during the map phase. Nonetheless, since the generic checkpointing-based RAC can

recover a failed map activity even if the activity is not checkpointed, the performance of the
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generic checkpointing-based RAC will not be affected due to the prediction interval setting.

In such scenario, as shown in Figure 9.1d, the generic and the MR-specific variants of the

checkpointing-based RAC provide a comparably reliable MR computation.

The extent of the reliability of an MR computation, whose failure is managed by the MR-

specific checkpointing-based RAC, does not depend on the relative execution time of map

and reduce activities. This is because the prediction interval in the MR-specific checkpointing-

based RAC is set up based on the execution time of each activity type. In the previous example,

where the execution time of a map activity is 104 and the execution time of the reduce activity

is 5, the prediction interval is 500 during the map phase and 0.25 during the reduce phase.

Therefore, there will be prediction during the execution of all activities.

The overhead of the MR-specific checkpointing-based RAC is marginally higher than that

of the generic checkpointing-based RAC irrespective of the relative execution time of a map and

a reduce activities. As discussed in Section 9.1.1.2, if the execution time of the map activity is

significantly higher than that of the reduce activity, the bulk of the overhead comes from the

map phase. As the result, both fault tolerance support types introduce marginally the same

overhead. If the execution time of the map activity is not significantly higher than that of the

reduce activity or if the execution time of the reduce activity is at least the same as that of the

map activity, the overhead comes from both the map and the reduce phases. Since such scenario

leads to favourable prediction interval settings to the generic checkpointing-based RAC, the

generic checkpointing-based RAC puts almost as equal effort as its MR-specific counterpart

to handle the failure of both map and reduce activities. As the result, both fault tolerance

support types introduce comparable overhead.

9.1.1.4 Comparing the RAC-based Fault Tolerance Support Types

In Sections 9.1.1.1-9.1.1.3, we established that MR-specific fault tolerance support provides a

more reliable execution of MR grid applications than generic fault tolerance support. Therefore,

in this section, we will focus on only the MR-specific fault tolerance support types. The overall

relationship among the MR-specific fault tolerance support types is as follows:

• The MR-specific variants of the restart-based and the checkpointing-based RAC provide

almost equally reliable execution of an MR grid application. This is because, unless an

activity fails due to an unrecoverable failure, both fault tolerance support types repeat-

edly restart/rollback the activity until it completes successfully. Despite the similarity

in behaviour with respect to repeated retries, the MR-specific checkpointing-based RAC
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sometimes provides a more reliable computation than the MR-specific restart-based RAC.

Since a rolled-back activity generally has shorter execution time than a restarted activity,

the rolled-back activity stands a better chance of avoiding an unrecoverable failure, and

subsequently completing successfully than the restarted one. The longer the execution

time, the more likely to fail.

• The MR-specific restart-based and the MR-specific checkpointing-based RAC provide a

more reliable computation than the MR-specific replication-based RAC, provided that

the failure of some activities requires reactive fault tolerance management. This is due to

the fact that the MR-specific replication-based RAC being a purely proactive fault tol-

erance support. However, there are scenarios in which the MR-specific replication-based

RAC provides equally or more reliable computations than its checkpointing and restart

counterparts. Examples of such scenarios include when the probability of unrecoverable

failure is more than 0.05 (Section 9.2), when the probability of false positives is more

than 0.8 (Section 9.5), and when the predictor is perfect.

• The MR-specific replication-based RAC introduces the highest overhead of all. Since a

replica is instantiated due to both true and false positive predictions, the MR-specific

replication-based RAC almost always doubles the cost of the execution. The next costly

fault tolerance support is the MR-specific restart-based RAC. Whenever an activity fails,

the computation is started from the beginning. In fact, the MR-specific restart-based

RAC is equivalent to the MR-specific replication-based RAC, provided that the MR-

specific replication-based RAC replicates an activity based on only true positive predic-

tions. Since the MR-specific replication-based RAC unnecessarily replicates an activity

because of false positive predictions, it is more costly than its restart counterpart. Under

the default parameter settings, given the probability of activity failure is non-zero, the

MR-specific checkpointing-based RAC introduces the least overhead. Since the computa-

tion that will be lost is the one from the last checkpoint, it is expected for the MR-specific

checkpointing-based RAC to be relatively less costly than the others. This is especially

evident from Figure 9.1b, on which the overhead of the checkpointing-based RAC is

shown to be almost one order of magnitude less than the restart-based RAC. When the

probability of activity failure is zero, unnecessary checkpointings due to false positive pre-

dictions make the MR-specific checkpointing-based RAC introduce more overhead than

the MR-specific restart-based RAC.
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9.1.2 The Case of Combinational Logic

We evaluated the reliability-overhead tradeoff of the generic and the CL-specific RAC archi-

tectures for CL applications. In summary:

• Result 8: CL-specific fault tolerance support provides a more reliable execution of a CL

application than generic fault tolerance support. Figure 9.2.

• Result 9: The overhead of CL-specific fault tolerance support, with the exception of the

checkpointing-based RAC, is notably higher than the overhead of generic fault tolerance

support. Figure 9.2.

• Result 10: Given a proactive strategy can be executed prior to the failure of any activity,

the generic and the CL-specific variants of the checkpointing-based RAC provides almost

equally reliable computation of a CL application. Figure 9.2b.

• Result 11: The CL-specific restart-based and the CL-specific checkpointing-based RAC

provide almost equally reliable execution of a CL grid application. Figure 9.2.

• Result 12: Given the failure of some activities requires reactive fault tolerance manage-

ment, the CL-specific restart-based and the CL-specific checkpointing-based RAC provide

a more reliable execution of a CL grid application than any of the other fault tolerance

support types. Figure 9.2a.

• Result 13: Given a proactive strategy can be executed prior to the failure of any activity

and the cause of the failure is a transient fault, the CL-specific replication-based RAC

guarantees 100% reliable execution. Figure 9.2b.

• Result 14: Given the probability of activity failure is non-zero, of the CL-specific fault

tolerance support types, the replication-based RAC introduces the highest overhead,

followed by the restart-based RAC and then the checkpointing-based RAC. Figure 9.2.

9.1.2.1 Restart-Based RAC

The CL-specific restart-based and the generic restart-based RAC improve the reliability of a

CL application execution. The CL-specific restart-based RAC provides, as shown in Figure 9.2,

a more reliable execution of a CL grid application than the generic restart-based RAC. This

is the result of the CL-specific RAC being able to handle the failure of any activity, and the
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(a) FilterBank. (b) FilterBank. Failure towards the end.

(c) Tgff. (d) Spatial Matching.

Figure 9.2: The reliability-overhead tradeoff of the generic and the CL-specific RAC: The inset

figures magnify selected data to show the relationship between the plotted fault tolerance support types

whose plots are overlapped on the scale of the outer figure.

inability of the generic RAC to manage the failure of an activity whose execution depends

on previously completed computations. Hereafter we refer to an activity whose computation

depends on previously completed activities as a successor activity.

The superiority of the CL-specific restart-based RAC over its generic counterpart becomes

more pronounced than before with an increase in the probability of activity failure, and/or the

complexity of a given CL application, i.e., the size and the degree of communication among the
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activities of the application. As the probability of activity failure increases, the likelihood of a

successor activity to fail increases as well. This disadvantages the generic restart-based RAC

as the generic RAC does not have a mechanism to deal with the failure of a successor activity.

As the complexity of a CL application increases, so does the number of successor activities,

e.g., Spatial Matching vs. Tgff. The more the successor activities, the less the degree of the

fault tolerance support by the generic restart-based RAC.

The CL-specific restart-based RAC introduces more overhead than its generic counterpart.

The extent of the difference in overhead depends on the complexity of a given CL application.

As the complexity of a CL application increases, so does the overhead difference between the

two variants of the restart-based RAC. Since the generic restart-based RAC does not handle

the failure of successor activities, its overhead is limited to the management of CL activities

in the first processing step only; whereas the overhead of the CL-specific restart-based RAC

is incurred in all processing steps as the CL-specific RAC can manage the failure of any CL

activity. The overhead difference between the generic RAC and the CL-specific RAC, for

instance, is significantly higher in Tgff than in Spatial Matching. This is expected since Tgff

has more activities, more communication among its activities and more processing steps than

Spatial Matching. In Tgff, as shown in Figure 9.2c, the increase in the cost of execution is up to

175% by the CL-specific RAC and only 50% by the generic RAC. However, in Spatial Matching,

as shown in Figure 9.2d, we observe a relatively small gap between the two. The increase in

the cost of execution is up to 50% by the CL-specific RAC and 30% by the generic RAC.

9.1.2.2 Replication-Based RAC

The CL-specific replication-based and the generic replication-based RAC improve the reliability

of a CL application execution. However, their performance is limited by their inability to

recover a failed activity. With an increase in the probability of activity failure, as shown in

Figures 9.2a, 9.2c, and 9.2d, more and more activities fail before their impending failure can

be predicted. Unless a prediction is made, the replica of an activity will not be instantiated.

Despite an increase in the probability of activity failure, as shown in Figure 9.2b, if a proactive

strategy can be executed prior to the failure of any CL activity and the cause of the failure is a

transient fault, the CL-specific replication-based RAC guarantees a 100% reliable computation.

Such behaviour is also shared by the MR-specific replication-based RAC, and therefore see

Section 9.1.1.2 for further discussion, all reference to reduce activity and MR shall be understood

to mean successor activity and CL, respectively.
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The CL-specific replication-based provides a more reliable CL computation, and introduces

a higher overhead than the generic replication-based RAC. The relationship between these fault

tolerance support types is similar to the one between the generic and the CL-specific variants

of the restart-based RAC. Therefore, see Section 9.1.2.1 for further discussion.

9.1.2.3 Checkpointing-Based RAC

Both variants of the checkpointing-based RAC improve the reliability of a CL application

execution. The CL-specific checkpointing-based RAC generally provides a more reliable CL

computation than the generic checkpointing-based RAC. This is due to the inability of the

generic checkpointing-based RAC to recover a successor activity that was not checkpointed

before its failure. However, if the activities of a CL application fail only towards the end of

their computation or if the application is not complex, then both fault tolerance support types

provide almost equally reliable CL computations.

In the case when a successor activity fails only towards the end of the computation, the

likelihood of the activity to have been checkpointed is high. Given an activity fails after

completing 95% of its computation, under the default parameter settings, where the prediction

interval is 5% of a CL activity execution time and the probability of positive predictions is

0.5, there will be 19 predictions before the activity fails. Roughly half of these predictions will

be positive, and therefore cause the activity to be checkpointed. Once a successor activity is

checkpointed, the generic checkpointing-based RAC can manage its failure.

The complexity of a CL application is a good indicator of the extent of the presence of

successor activities in the application. As the complexity of a CL application increases, from

Spatial Matching to FilterBank, the number of successor activities in the application increases

as well. The more complex the application is, the less manageable its failure will be by the

generic checkpointing-based RAC, and vice versa.

The overhead of the CL-specific checkpointing-based RAC is marginally higher than the

overhead of the generic checkpointing-based RAC, even when the reliability gap between the

two is significant. Figure 9.2a, for example, shows that as the probability of activity failure

increases, the difference between the two fault tolerance support types with respect to reli-

ability increases at a faster speed than with respect to overhead. As long as an activity is

checkpointed, the generic and the CL-specific RAC put equivalent effort to handle its failure.

Under the default parameter settings, many of the activities of the benchmark CL applications

are checkpointed more often than not, and thus we observe marginally equal overhead. How-
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ever, due to the non-zero probability of false negative predictions, there are successor activities

that will fail before they can be checkpointed. As discussed previously, the presence of such

activities deteriorates the overall reliability of the application whose failure is managed by the

generic checkpointing-based RAC.

9.1.2.4 Comparing the RAC-based Fault Tolerance Support Types

See Section 9.1.1.4, all reference to MR shall be understood to mean CL.

9.2 Probability of Unrecoverable Failure

The probability of unrecoverable failure is one of the independent variables that affects the

performance of the restart-based and the checkpointing-based RAC. In summary:

• Result 15: As the probability of unrecoverable failure increases, the restart-based and

the checkpointing-based RAC provide less and less reliable execution of an MR grid

application, all other things being equal. The reliability of the computation eventually

becomes smaller than the execution of the application with the replication-based RAC.

Figure 9.3.

• Result 16: With an increase in the probability of unrecoverable failure, the overhead

of the restart-based and the checkpointing-based RAC becomes less and less, all other

things being equal. Figure 9.3.

• Result 17: Given the cause of the unrecoverable failure is not an internal software fault,

an increase in the probability of unrecoverable failure does not have a notable impact on

the replication-based RAC, all other things being equal.

The restart-based and the checkpointing-based RAC perform at a peak level when the

probability of unrecoverable failure is 0. As the probability of unrecoverable failure increases,

the performance of these fault tolerance support types deteriorates, all other things being equal.

For instance, as shown in Figure 9.3, if the probability of unrecoverable failure is more than

0.05, the restart-based and the checkpointing-based RAC provide less reliable computation

than the MR-specific replication-based RAC. By the time the probability of unrecoverable

failure reaches 0.3, the restart-based and the checkpointing-based RAC will at best be as good

as the generic replication-based RAC. The minimum value of the probability of unrecoverable

failure that makes the restart-based and the checkpointing-based RAC perform less than the
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(a) Probability of activity failure 0.035 (b) Probability of activity failure 0.175

Figure 9.3: The impact of the probability of unrecoverable failure on the reliability-overhead
tradeoff: The overhead of the replication-based RAC is not plotted. The overhead is already shown

in Figure 9.1c to be significantly higher than the other fault tolerance support types. Including such

overhead in the plot obscures the impact of the probability of unrecoverable failure on the overhead of

the restart-based and the checkpointing-based RAC, which is negligible for the replication-based RAC.

The inset figures magnify selected data to show the relationship between the plotted fault tolerance

support types whose plots are overlapped on the scale of the outer figure.

replication-based RAC is application and execution environment dependant. For example,

as shown in Figure 9.3, for the probability of activity failure 0.035 and 0.175, the respective

minimum value is 0.3 and 0.1.

With an increase in the probability of unrecoverable failure, as shown in Figure 9.3, the

overhead of the restart-based and the checkpointing-based RAC decreases. Since no attempt is

made to recover an activity that has failed beyond recovery, (Section 7.2.4), the more activities

fail beyond recovery, the less time is spent on executing a fault tolerance strategy.

The probability of unrecoverable failure does not have a notable impact on the performance

of the replication-based RAC, provided that the cause of the failure is not an internal software

fault. When a replica of an activity is initiated due to a true positive prediction, the new replica

is assumed to execute in a new environment. Despite the failure of the original activity beyond

recovery, the event that triggered the unrecoverable failure on the original activity might not

exist in the new environment. Thus, the new replica stands a good chance of terminating

successfully. The restart-based and the checkpointing-based RAC, on the other hand, attempt

to recover (restart/rollback) the failed activity on the same environment. Thus, no matter how
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many times the attempt is made, the activity will keep failing.

9.3 Cost of Checkpointing

In this section, we evaluate the impact of the cost of checkpointing on the reliability-overhead

tradeoff that is enabled by the checkpointing-based RAC. For such evaluation, we set the cost of

checkpointing to be 0.01%, 0.1%, 1%, 10%, 20%, and 40% of the failure free activity execution

time. Due to the requirement that the prediction interval must be greater than the cost of

a single checkpoint (Section 8.2.1.1), we need to adjust the value of the current prediction

interval, which is 5% of activity execution time, for some of the experiment runs. The current

prediction interval is valid only for experiment runs whose cost of checkpointing is less than

5% of activity execution time. Since a prediction interval that is valid for a given experiment

could be invalid for another, instead of fixing the prediction interval in each experiment run,

we use a range of values. In each experiment run, we vary the prediction interval between

5% and 95% of activity execution time. Then, for the given cost of checkpointing, we choose

the prediction interval that enables the checkpointing-based RAC to provide the most reliable

computation with the least overhead possible. In summary:

• Result 18: As the cost of a single checkpoint increases, the reliability of the computa-

tion whose failure is managed by the checkpointing-based RAC either stays the same or

decreases. Figure 9.4.

• Result 19: Provided that the reliability of a grid application computation remains almost

constant, an increase in the cost of a single checkpoint generally increases the overhead

of the checkpointing-based RAC. Table 9.1.

As the cost of a single checkpoint increases, the reliability of a grid computation either

stays the same or decreases, all other things being equal. If an increase in the cost of a

single checkpoint does not require to increase the prediction interval, then the reliability of the

computation will be almost constant. This is because if there is no change in the prediction

interval, the level of the proactive fault tolerance support provision would remain the same.

For instance, Table 9.1 shows the absence of a change in the prediction interval despite an

increase in the cost of a single checkpoint from 0.01% to 1% of activity execution time. This

is why the reliability of the computation remains at approximately 0.83.

In the scenario when the increase in the cost of checkpointing necessitates a change in

the prediction interval, we observe a significant drop in the reliability of the computation.
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(a) Probability of activity failure 0.075. (b) Probability of activity failure 0.075.

(c) Probability of activity failure 0.195. (d) Probability of failure 0.195.

Figure 9.4: The impact of the cost of a single checkpoint on the reliability-overhead tradeoff
of the checkpointing-based RAC.

Increasing the prediction interval implies more spread out predictions than before. Therefore,

unless the predictor is highly accurate and can predict the status of the computation over

an extended period of time, there is a good chance to overlook the presence of an impending

failure before the next prediction point. This increases the number of activities that fail before

being checkpointed. As the result, the performance of the checkpointing-based RAC will be

affected. The performance degradation is more severe on the generic than on the MR-specific

RAC due to the inability of the generic checkpointing-based RAC to recover an uncheckpointed
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successor activity. For example, as shown in Table 9.1, if the cost of a single checkpoint is 10%

of activity execution time, the prediction interval will be increased to 15% of activity execution

time, and consequently the reliability of the computation will drop from 0.83 to 0.6.

Table 9.1: The impact of the cost of a single checkpoint on the generic checkpointing-based
RAC. Probability of activity failure is 0.075. Equivalent data is shown in Figure 9.4a

Cost of a single
checkpoint

Prediction
Interval

Reliability Overhead

0.01% 5% 0.833 0.31

0.1% 5% 0.83 0.33

1% 5% 0.824 0.46

10% 15% 0.66 0.96

20% 35% 0.41 0.8

40% 75% 0.21 0.76

An expensive checkpointing strategy may make the checkpointing-based RAC provide less

reliable computation than the restart-based RAC. Figure 9.4b, for example, shows that when

the cost of a single checkpoint is 20% and 40% of activity execution time, the reliability of

the computation is higher with the MR-specific restart-based RAC than with the MR-specific

checkpointing-based RAC. Whenever a positive prediction is made, the execution time of the

activity is extended by the time that is needed to complete the checkpoint (Section 7.2.5.2).

Expensive checkpointing mechanisms make the execution time of the activity be significantly

longer than before. The longer the execution time, the more likely the activity to fail due to

an unrecoverable failure.

Overall, if the reliability of the computation is not changed due to the increase in the cost of

a single checkpoint, the overhead of the checkpointing-based RAC generally increases. This is

because the user is paying extra when she uses the expensive checkpointing without the benefit

of increased reliability. Table 9.1 shows that when the cost of a single checkpoint increases

from 0.01% to 1%, the reliability stays almost constant, but the overhead increases.

9.4 Prediction Interval

The prediction interval affects the reliability improvement of the replication-based and the

checkpointing-based RAC offer to grid applications. In summary:
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(a) Cost of a single checkpoint 0.01%. (b) Cost of a single checkpoint 10%.

(c) Cost of a single checkpoint 20%. (d) Cost of a single checkpoint 40%.

Figure 9.5: The impact of prediction interval on the reliability-overhead tradeoff of the
checkpointing-based and the replication-based RAC. Probability of activity failure 0.02

• Result 20: With an increase in the prediction interval, the replication-based RAC provides

less reliable computation and requires less overhead than before. Figure 9.5.

• Result 21: With an increase in the prediction interval, the checkpointing-based RAC

increasingly provides more reliable computation than before, up to a limit. Once the

limit is reached, the reliability remains roughly constant in the MR-specific checkpointing-

based RAC, but decreases in the generic checkpointing-based RAC.



Prediction Interval 146

As discussed in Section 9.3, an increase in the prediction interval decreases the degree of

proactive fault tolerance support provision, and increases the reliance on reactive strategies for

failure management. As the result, an increase in the prediction interval affects the performance

of fault tolerance support types that rely on proactive fault tolerance strategies to manage

failure. The replication-based RAC and the generic checkpointing-based RAC are among

these fault tolerance support types. As the prediction interval increases, since the replication-

based RAC manages failure only proactively, its engagement in fault tolerance management

becomes increasingly limited. As the result, it provides less reliable computation, and incurs

less overhead than before.

In the checkpointing-based RAC, an increase in the prediction interval optionally increases

reliability at first, and then the reliability stays roughly constant or decreases. This is shown

in Figures 9.5c and 9.5d. An increase in the reliability of the computation is observed if the

difference between the prediction interval and the cost of a single checkpoint is relatively small.

In such configuration, whenever a positive prediction is made, a given activity completes only a

fraction of its computation before the next prediction point. Consequently, a string of positive

predictions significantly increase the execution time of the activity. The longer the execution

time, the more chance to fail. Increasing the gap between the prediction interval and the cost

of checkpointing enables activities to complete more computation between predictions than

before, and subsequently shortens their execution time. Figure 9.5c, for example, shows that

when the prediction interval is 25% of activity execution time, the generic checkpointing-based

RAC guarantees 0.5 reliability. However, by increasing the prediction interval to 35% of activity

execution time, up to 0.8 reliability can be achieved.

Once the prediction interval that guarantees the most reliable computation is achieved,

which we refer to as the optimal prediction interval, increasing the prediction interval is nei-

ther necessary nor advisable practice. As a given prediction interval deviates from the op-

timal prediction interval, more and more activities will fail before being checkpointed. As

discussed in Section 9.3, long prediction interval deteriorates the performance of the generic

checkpointing-based RAC. Using longer prediction interval than the optimal one does not have

a notable impact on the performance of the MR-specific checkpointing-based RAC. This is

because the MR-specific checkpointing-based RAC can recover any activity, checkpointed or

uncheckpointed, as long as the failure is recoverable.
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9.5 Prediction Accuracy

The accuracy of a predictor, which is expressed by the probabilities of false positives and false

negatives, influences the performance of the replication-based and the checkpointing-based

RAC. Since the restart-based RAC does not use prediction for fault tolerance management, it

is insensitive to the accuracy of a predictor. In this section, we discuss how the accuracy of

a state oblivious predictor and a state aware predictor affect the reliability-overhead tradeoffs

that are enabled by the replication-based and the checkpointing-based RAC.

9.5.1 State Oblivious Predictors

We discuss the impact of the accuracy of a state oblivious predictor based on a change in the

probability of false positives only. The probability of false negative is 1 − x, where x is the

probability of false positives (Section 8.2.1.2). Therefore, studying the impact of an increase

in false positive predictions is equivalent to studying the impact of a decrease in false negative

predictions, and vice versa.

We evaluated the sensitivity of the reliability-overhead tradeoff to the probability of false

positives of a state oblivious predictor. In summary,

• Result 22: As the probability of false positives increases, the replication-based and the

checkpointing-based RAC increase the reliability of an MR grid application execution up

to a limit, all other things being equal. Figure 9.6.

• Result 23: With an increase in the probability of false positives, the overhead of the

replication-based RAC and the generic checkpointing-based RAC increases, but the over-

head of the MR-specific checkpointing-based RAC decreases up to a limit, all other things

being equal. Figure 9.6.

Given failure is not impending, an increase in the probability of false positives increases

the reliability that is provided by both replication-based and checkpointing-based RAC. The

advantage of increasing the probability of false positives comes in two fold:

i. The execution of a proactive strategy increases with an increase in the probability of false

positives. Though the rise in an unnecessary proactive strategy execution is generally

considered as a waste of resources, there are circumstances when such event pays off.

Suppose a proactive strategy is executed to manage the failure of an activity due to a

false positive prediction. If this activity fails later in the execution and the impending
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(a) Probability of activity failure 0.01. (b) Probability of activity failure 0.01. Magnified
CHK-s, CHK-g, RST-s, RST-g.

(c) Probability of activity failure 0.195. (d) Probability of activity failure 0.195. Magnified
CHK-s, CHK-g, RST-s, RST-g.

Figure 9.6: The impact of the accuracy of a state oblivious predictor on the reliability-overhead
tradeoff: the impact of an increase in the probability of false positives is read from left to right, and

the impact of an increase in the probability of false negatives is read from right to left.
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failure of the activity is not identified at the most recent prediction, then the previously

executed proactive strategy presents an opportunity to successfully complete the failed

activity.

ii. In a state oblivious predictor, if the probability of false positives increases, so does the

probability of true positives (Section 8.2.1.2). Increasing the probability of true positives

is a desirable property since it presents an opportunity to take an action that potentially

minimises the impact of the impending failure on the overall computation.

Overall, increasing the probability of false positives progressively increases the use of a

proactive strategy and decreases the use a reactive strategy. This property is advantageous for

both replication-based and checkpointing-based RAC:

• The replication-based RAC manages failure solely proactively. Since increasing the prob-

ability of false positives decreases the reliance on a reactive strategy to manage failure,

the replication-based RAC gains a performance boost as the probability of false positives

gets higher and higher.

• In the checkpointing-based RAC, increasing the probability of false positives results in

more activities being checkpointed than before. If/when activities fail, provided that the

failure is recoverable, they will be rolled-back to the last checkpoint. Since rolled-back

activities generally have shorter execution time than restarted ones, they have a better

chance of completing successfully.

The extent of the performance gain due to increased positive predictions depends on the

type of the fault tolerance support and the behaviour of the computation. Given failure is not

impending, if the probability of false positives is 1, the cause of an activity failure is a transient

fault and an activity does not fail before the first prediction is made, then the MR-specific

replication-based RAC guarantees 100% reliable computation. In this scenario, the predictor

always sends warning, and subsequently all activities are protected at all times irrespective of

their status of computation. However, this is not the case for the generic replication-based

RAC. Even though the predictor sends warning all the time, the generic replication-based

RAC does not know how to replicate an activity (e.g., reduce) that depends on a previously

completed activity (e.g., map). Once the point, where the failure of all independent activities

can be handled, is reached, increasing the probability of false positives will not yield any

significant reliability gain. Figure 9.6a shows that, for example, the generic replication-based
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RAC increases the reliability of an MR application execution considerably until the probability

of false positives reaches 0.7. Once such point is reached, reliability remains almost constant.

Similar to the replication-based RAC, for the checkpointing-based RAC, with increasing

probability of false positives, reliability increases. However, as Figure 9.6 shows, reliability

approaches a limit asymptotically. This limit seems to represent a residual amount of unre-

coverable failure, which cannot be managed by checkpointing. For example, Figure 9.6c shows

that the generic checkpointing-based RAC asymptotically approaches 0.68.

Despite an increase in the probability of false positives having a desirable impact on re-

liability, it increases the overhead of all, except the MR-specific checkpointing-based RAC.

Though the execution of a proactive strategy due to a false positive prediction is acceptable

in some circumstances, it wastes resources in large part. This is why, in general, an increase

in the probability of false positives leads to increased overhead. The extent of the overhead

increment, however, is bounded. In the replication-based RAC, as discussed in Section 7.2.4,

there are at most two copies of a given activity that are running at the same time. Thus, no

matter how many times a predictor sends a warning, which will be frequent when the proba-

bility of false positives is high, an activity will not be replicated as long as two copies of the

activity are being executed.

In the checkpointing-based RAC, with an increase in the probability of false positives, the

overhead of the generic fault tolerance support increases, but the overhead of the MR-specific

one decreases. When the probability of false positives increases, so does the probability for the

activities to be checkpointed before their impending failure. Since the generic checkpointing-

based RAC can manage the failure of checkpointed activities, including the ones whose compu-

tation depend on others, the more activities are checkpointed before their failure, the more the

overhead of the generic checkpointing-based RAC will be. In the MR-specific checkpointing-

based RAC, activity failure is managed by rollback if the activity is checkpoined, and by restart

if the activity is not checkpointed. The more activities are checkpointed, the more the failure

of activities is managed by rollback. Therefore, under the default parameter settings, since

rollback is cheaper than restart, the overhead of the MR-specific checkpointing-based RAC

decreases. If the cost of a single checkpoint is very expensive, of course, the total time that

is saved by rolling-back instead of restarting a failed activity could be eclipsed by the total

checkpointing overhead.
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9.5.2 State Aware Predictors

We discuss the impact of the accuracy of a state aware predictor on the reliability-overhead

tradeoff. In a state aware predictor, the probabilities of false positives and false negatives do not

have the same relationship as they do in a state oblivious predictor. Therefore, we separately

examine how each variable affects reliability and overhead. Finally, we highlight what the

reliability of a grid computation looks like if the replication-based and the checkpointing-based

RAC are fitted with the perfect predictor. In summary:

• Result 24: As the probability of false positives in a state aware predictor increases,

the replication-based and the checkpointing-based RAC progressively increase the re-

liability of an MR application up to a limit. Nonetheless, except for the MR-specific

checkpointing-based RAC, they incur more and more overhead. Figure 9.7.

• Result 25: As the probability of false negatives in a state aware predictor increases,

the replication-based and the checkpointing-based RAC provide less and less reliable

execution of MR applications. However, except for the MR-specific checkpointing-based

RAC, they require less and less overhead. Figure 9.8.

• Result 26: With the perfect predictor, under the default parameter settings, the MR-

specific replication-based RAC achieves the highest reliable computation, followed by the

MR-specific checkpointing-based, the generic checkpointing-based, and finally the generic

replication-based RAC. Figure 9.9.

9.5.2.1 False Positives

Suppose n be the probability of false positives given failure is not impending, and m be the

probability of false negatives given failure is impending. In this evaluation, n ∈ [0, 1] and

m = 0.2. The impact of the probability of false positives of a state aware predictor is similar to

that of a state oblivious predictor. As shown in Figure 9.7, as the probability of false positives

in a state aware predictor increases, the replication-based and the checkpointing-based RAC

increase the reliability of an MR grid application up to a limit. However, these fault tolerance

support types, except for the MR-specific checkpointing-based RAC, require higher and higher

overhead. See Section 9.5.1 for further discussion.
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(a) Probability of activity failure 0.195. (b) Probability of activity failure 0.195. Magnified
CHK-s, CHK-g, RST-s, RST-g.

Figure 9.7: The impact of the probability of false positives of a state aware predictor on the
reliability-overhead tradeoff.

9.5.2.2 False Negatives

Suppose n be the probability of false positives given failure is not impending, and m be the

probability of false negatives given failure is impending. In this evaluation, m ∈ [0, 1] and

n = 0.2.

As the probability of false negatives increases, as shown in Figure 9.8, the checkpointing-

based and the replication-based RAC provide less and less reliable execution of an MR appli-

cation. With an increase in the probability of false negatives, the number of impending failures

that will be predicted decreases. As the result, the number of activities whose failures should

be handled by a reactive strategy increases. If the given fault tolerance support can manage

the failure of such activities, like the MR-specific checkpointing-based RAC, then its perfor-

mance with respect to reliability will not be significantly affected. Otherwise, the reliability

of the computation will significantly decrease. Due to the absence of a reactive a strategy in

the replication-based RAC, and a mechanism to recover an uncheckpointed successor activity

by the generic checkpointing-based RAC, as shown in Figure 9.8, the performance of these

fault tolerance support types with respect to reliabilty deteriorates as the probability of false

negatives increases.

As shown in Figure 9.8, an increase in the probability of false negatives decreases the

overhead of the replication-based and the generic checkpointing-based RAC, but increases the
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(a) Probability of activity failure 0.195. (b) Probability of activity failure 0.195. Magnified
CHK-s, CHK-g, RST-s, RST-g.

Figure 9.8: The impact of the probability of false negatives of a state aware predictor on the
reliability-overhead tradeoff.

overhead of the MR-specific checkpointing-based RAC. The decrease in overhead occurs due

to the fault tolerance support types not putting any effort to recover the failed activities

whose impending failure was not predicted. The increase in the overhead of the MR-specific

checkpointing-based RAC is the result of reactive handling of the failure of activities whose

impending failures are not predicted. The extent of the overhead increase depends on the

number of the failed activities. If significantly many of the activities of the application fail,

the overhead will be significantly high. For instance, as shown in Figure 9.8b, an increase in

probability of false negatives incurs up to 10% more overhead than before.

9.5.2.3 The Perfect Predictor

In an ideal prediction world, where there are no false positives and false negatives, under the

default parameter settings, the MR-specific replication-based RAC achieves the highest reliable

computation, followed by the MR-specific checkpointing-based, the MR-specific restart-based,

the generic checkpointing-based, and the generic replication-based RAC. The least reliable

computation is provided by the generic restart-based RAC.

As discussed in Section 9.1.1.4, due to the non-zero probability of unrecoverable failure,

the MR-variants of the restart-based and the checkpointing-based RAC provide less reliable

computation than their replication counterpart. If the probability of unrecoverable failure is
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(a)

(b) Magnified CHK-s, RST-s and CHK-g (c) Magnified RPL-g and RST-g

Figure 9.9: The reliability-overhead tradeoff with the perfect predictor.

zero, as discussed in Section 9.2, they do provide 100% reliable computation.

The MR-specific checkpointing-based RAC provides marginally higher reliability than its

generic counterpart, as shown in Figure 9.9b. Despite the predictor being perfect, some succes-

sor activities may fail before the first prediction is made. This makes the generic checkpointing-

based RAC not provide equally reliable computation as its MR-specific counterpart.

The generic replication-based RAC has absolutely no mechanism to handle the failure

of successor activities. As the result, even though the predictor sends a warning about the

impending failure of a successor activity, no action will be taken. As for the generic restart-

based RAC, since such fault tolerance support does not assume prediction, the accuracy of
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the predictor has no influence on its performance. This, of course, is true for the MR-specific

restart-based RAC as well.

9.6 Reflection

We demonstrated in Sections 9.1-9.5 that there is no single best reliability-overhead tradeoff

that characterises the performance of a given RAC architecture in all scenarios. Our data shows

that the choice of a good tradeoff depends on the classification of the architecture of the given

grid application, the type of the fault tolerance strategy with which the RAC architecture is

paired, the values of the parameters of the fault tolerance strategy and/or the accuracy and the

interval of predictions. A small change in the value of a parameter may significantly affect the

reliability-overhead tradeoff, for example, consider the impact of a change in the probability of

false negatives from 0 to 0.1 on the replication-based RAC (Figure 9.8a). On another scenario,

a change in the parameter value may not have a notable impact on the reliability-overhead

tradeoff, for example, consider the impact of using checkpointing mechanisms whose overheads

are 0.01% and 1% of activity execution time on the checkpointing-based RAC (Figure 9.4d).

Even for a given architecture type, there may not be a single best tradeoff of reliability and

overhead. The best tradeoff may depend on user requirements, or the cost of resources available

to the user. Hence, the results and methods presented in this thesis may be useful in making

such tradeoffs. Suppose an application programmer develops an MR application that resembles

the scenario depicted in Figure 9.1b, the probability of activity failure is roughly 0.12, and the

parameter settings of the execution environment resembles the default parameter settings of our

experiment design. As shown in the figure, six fault tolerance support types are available. Since

all of the generic ones do not improve reliability, they will not be further investigated. Now,

the choice of three MR-specific RAC rests on the requirements of the application programmer.

If the requirement is to achieve the highest reliability, then the choice is clearly the replication-

based RAC. The replication-based RAC guarantees almost 100% reliability, but increases the

cost of the computation by 100%. If the requirement is to achieve at least 80% reliability

with the least overhead possible, then the choice is the checkpointing-based RAC. Both the

checkpointing-based and the restart-based RAC guarantee the required reliability; but restart

incurs 10% overhead while checkpointing incurs only 1% overhead.

Even though checkpointing incurs the smallest computational overhead, adapting check-

pointing requires more effort than restart. In this thesis, we did not evaluate the developmental

cost of a RAC-based grid system. However, it is reasonable to expect that the developmental
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cost of the restart-based RAC will be cheaper than the checkpointing one. Developing check-

pointing requires identifying what to checkpoint, the type of checkpointing, the location for

saving the checkpointed data, how to access the data during rollback, and how to rollback. In

contrast, restart only needs access to the input data of the computation and the executable file

of the computation. Now, the question is is it worth to go through all the trouble of developing

checkpointing-based RAC to save 9% computational overhead? If not, then the best choice that

satisfies the requirement becomes the restart-based RAC.

The result of our experiments offers insight into the diversity of fault tolerance support

configurations and their respective reliability-overhead tradeoff. The results support grid ad-

ministrators, service managers, and/or grid software developers in making decisions to improve

reliability or to decrease overhead of reliability improvement or both.

9.7 Summary

In this chapter, we evaluated the reliability-overhead tradeoffs that are enabled by the generic,

the MR-specific and the CL-specific RAC architectures. We paired these architectures with

restart, replication and checkpointing-rollback fault tolerance strategies. We have shown the

tradeoff of each architecture under the default experimental settings, and then explored the

impact of unrecoverable failure, the cost of a single checkpoint, and the accuracy and the

interval of a predictor on the tradeoff. We finally reflected on what we have learnt at the end

of this project.
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Conclusion

“Now this is not the end.

It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.”

- Winston Churchill

This PhD project contributes the RAC approach, which is a fault tolerance approach that

manages failure at the component level, combines reactive and proactive fault tolerance strate-

gies, assumes runtime prediction with proactive failure management, and provides customized

fault tolerance support based on the classification of the architecture of a grid application.

Further, the project provides parameterised Markov models and testbed for reliability and

overhead analyses. We have used the testbed for evaluating the reliability-overhead tradeoff of

the RAC approach. Via simulated experiment, we have confirmed that the architecture-specific

fault tolerance support provides higher reliability improvement and incurs higher overhead to

grid applications than the architecture-unaware one. The degree of the reliability improvement

of the architecture-specific support over the architecture-unaware one depends on factors like

the type of the fault tolerance strategy selected and its parameters, and the accuracy of a pre-

dictor. In this chapter, we summarize our contributions, the key research results, and finally

future work.

157
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10.1 Contributions

This research project contributes the following [Yusuf et al., 2009, 2011, Yusuf, 2010]:

i. The RAC approach, a novel prediction and architecture-based fault tolerance approach

that enables grid applications to tolerate failure reactively and proactively at the com-

ponent level.

ii. A new formal Markov-chain based model that marries assumptions of the so-called Bulk-

Synchronous Parallel model with specific classes of application architectures known as

dwarfs. Specifically, the MapReduce and Combinational Logic dwarfs are modelled for-

mally in this framework for the first time.

iii. Thorough and detailed reliability-overhead analyses of the RAC approach under varying

assumptions and conditions.

iv. In-depth analyses of the impact of unrecoverable failure, checkpointing cost, prediction

interval and predictor accuracy on the reliability-overhead tradeoff of the RAC approach.

v. A parameterised experiment testbed that enables a grid fault tolerance expert to evaluate

diverse fault tolerance support configurations, and then choose the one that will satisfy

the reliability and cost requirements.

10.2 Key Results

This thesis offers insight into providing customized, but not application-specific, fault toler-

ance support to a wide range of grid applications. By considering a small set of parameters

that are shared among many grid applications, the thesis demonstrated that fine-grained and

flexible fault tolerance support leads to significant reliability improvement. We also showed

the increased overheads associated with such reliability improvement.

The thesis explored the nature of the reliability-overhead tradeoff for grid applications that

are classified under the MapReduce and the Combinational Logic dwarfs. We learnt that the

exact reliability-overhead tradeoff depends on many factors. However, one can use either the

RACS models or the experiment testbed to find out which combination of parameter values

leads to the desired level of reliability improvement, and the overhead of the improvement on

the overall computation. The key factors that determine the nature of the reliability-overhead

tradeoff, and their impact on the tradeoff, are as follows:
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• Type of RAC architecture: The architecture-specific fault tolerance support provides a

higher reliability improvement to MapReduce (MR) and Combinational Logic (CL) grid

applications than the generic one, all else being equal (Results 1 and 8). The architecture-

specific fault tolerance support incurs higher overhead to the overall computation than

the generic fault tolerance support, except when the execution time of the map activity is

significantly higher than the execution time of the reduce activity (in MR only) and when

failure is managed by checkpointing-rollback (Results 2, 3 and 9). In these situations, the

overhead of the architecture-specific and the generic fault tolerance support is similar.

• Type of fault tolerance strategy: Of the architecture-specific fault tolerance support types,

checkpointing and restart provide equally reliable grid computation (Results 4 and 11).

Furthermore, given that the failure of some activities requires reactive fault tolerance

management, these fault tolerance support types provide more reliable grid application

execution than the replication-based architecture-specific fault tolerance support (Re-

sults 5 and 12). Given that a proactive strategy can be executed prior to the failure of any

activity and the cause of the failure is a transient fault, the replication-based architecture-

specific fault tolerance support guarantees 100% reliable execution (Results 6 and 13).

Given that the probability of activity failure is non-zero, replication introduces the high-

est overhead among the architecture-specific fault tolerance support types, followed by

restart and then checkpointing (Results 7 and 14).

• Probability of unrecoverable failure: As the probability of unrecoverable failure increases,

the reliability improvement that is provided by the restart-based and the checkpointing-

based fault tolerance support types decreases, all else being equal (Result 15). Likewise

for overhead (Result 16). When the cause of the unrecoverable failure is not an internal

software fault, an increase in the probability of unrecoverable failure does not have a

notable impact on the replication-based fault tolerance support, all else being equal

(Result 17).

• Cost of single checkpoint: As the cost of a single checkpoint increases, the reliability of

the computation whose failure is managed by the checkpointing-based fault tolerance

support either stays the same or decreases, provided that the selected prediction interval

enables the checkpointing-based support to provide the most reliable computation with

the least overhead possible (Result 18). Given that reliability remains almost constant,
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an increase in the cost of a single checkpoint generally increases the overhead of the

checkpointing-based fault tolerance support (Result 19).

• Prediction interval: With an increase in the prediction interval, the reliability of a compu-

tation whose failure is managed by the replication-based fault tolerance support decreases

(Result 20). An increase in the prediction interval decreases the degree of proactive fault

tolerance support provision, and increases the reliance on reactive strategies for fail-

ure management. Since replication-based fault tolerance support manages failure only

proactively, the increasing reliance on a reactive strategy to manage failure limits its

performance. With an increase in the prediction interval, the reliability of a computation

whose failure is managed by the checkpointing-based fault tolerance support increases

(Result 21). The increase in the reliability continues until the prediction interval reaches

its optimal value. The optimal prediction interval enables the checkpointing-based fault

tolerance support to provide the highest possible reliability improvement to a grid appli-

cation, under the default parameter settings. If the prediction interval is larger than the

optimal value, the reliability of the computation remains constant in the architecture-

specific fault tolerance support, but decreases in the generic fault tolerance support.

• Prediction accuracy: As the probability of false positives increases, the replication-based

and the checkpointing-based fault tolerance support progressively increase the reliability

of a grid application up to a limit, all else being equal (Results 22 and 24). As the proba-

bility of false negatives increases, the restart-based and the checkpointing-based fault tol-

erance support provide less reliable execution of grid applications than before (Result 25).

Given a non-zero probability of unrecoverable failure, the cause of failure is a transient

fault, a relatively cheap cost of checkpointing, optimal prediction interval and the per-

fect predictor, the replication-based architecture-specific fault tolerance support achieves

the highest reliable computation, followed by checkpointing-based architecture-specific,

restart-based architecture-specific, checkpointing-based generic, and finally restart-based

generic fault tolerance support (Result 26). With an increase in the probability of posi-

tives, the replication-based and the generic checkpointing-based fault tolerance support

incur more and more overhead (Results 23 and 24); whereas an increase in the probability

of false negatives leads to less and less overhead from these fault tolerance support types

(Result 25).
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10.3 Future Work

In the future, it is interesting to explore whether the RAC approach enables similar reliability-

overhead tradeoff in grid applications other than MapReduce and Combinational Logic, and to

confirm the exact nature of reliability-overhead tradeoffs for the other typical dwarfs underlying

grid applications. Clearly, not all dwarfs are well suited to be executed on a grid infrastructure.

For example, the Finite State Machine dwarf represents applications that are embarrassingly

sequential. Thus, perhaps, a grid is not needed for such a computation. However, it is still

worthwhile to study how one might leverage the knowledge about the dwarfs to guarantee

highly reliable computations irrespective of the computing environment.

አለቀ።
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