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Abstract 

This thesis investigates particle inhalation and its deposition in the human respiratory 

system for therapeutic and toxicology studies. Computational Fluid Dynamics (CFD) 

techniques including the Lagrangian approach to simulate gas-particle flows based on 

the domain airflow are used. The Lagrangian approach is used as it tracks each 

individual particle and determines its fate (e.g deposition location, or escape from 

computational domain). This has advantages over a Eulerian approach for respiratory 

inhalation flows as the volume fraction of the second phase can be neglected and a 

disperse phase for one-way coupling can be used. However, the very first step is to 

simulate and detail airflow structures. 

For the external airflow structures, the heat released from the human body has a 

significant effect on the airflow micro-environment around it in an indoor environment, 

which suggests that the transport and inhalation characteristics of aerosol particulates 

may also be affected since they are entrained by the air and their movement is 

dependent on the airflow field. Emphasis was put on the effect of human body heat on 

particle tracks. It was found that body heat causes a significant rising airflow on the 

downstream side of the body, which transports particles from a lower level into the 

breathing zone. The importance of body heat decreases with increasing indoor wind 

speed. Since the rising airflow exists only on the downstream side of an occupant, the 

occupant-wind orientation plays an important role in particle inhalation. The effect of 

body heat has to be taken into account when an occupant had his or her back to the wind, 

and the effect of body heat could be neglected when the occupant is facing the wind. 
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A CFD model that integrates the three aspects of contaminant exposure by including 

the external room, human occupant with realistic facial features, and the internal 

nasal-trachea airway is presented. The results from the simulations visualize the flow 

patterns at different contaminant concentrations. As the particles are inhaled, they are 

transported through the respiratory airways, where some are deposited onto 

surrounding mucus walls while others may navigate through the complex geometry and 

even reach the lung airways, causing deleterious health effects.  

The studies in this thesis demonstrated that the transport and deposition of micron sized 

particles are dominated by its inertial property while submicron and nano sized 

particles are influenced by diffusion mechanisms. Studies based on an isolated model 

of the human nasal cavity or tracheobronchial airway tree rely on idealised inlet 

boundary condition imposed at the nostril or where, were a blunt, parabolic or uniform 

profile is applied. It is apparent that an integrated model made up of: i) room and 

ventilation, ii) aspiration efficiency, iii) and particle deposition efficiencies in the 

respiratory airway is needed. This leads to a more complete and holistic set of results, 

which can greatly contribute towards new knowledge in identifying preventative 

measures for health risk exposure assessment. 

With regards to the internal airflow structures and particle inhalation, ultrafine particle 

deposition sites in the human nasal cavity regions often omit the paranasal sinus regions. 

Because of the highly diffusive nature of nanoparticles, it is conjectured that deposition 

by diffusion may occur in the paranasal sinuses, which may affect the residual 

deposition fraction that leaves the nasal cavity. Thus a nasal-sinus model was created 

for analysis. In general there was little flow passing through the paranasal sinuses. 

However, flow patterns revealed that some streamlines reached the upper nasal cavity 
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near the olfactory regions. These flow paths promote particle deposition in the sphenoid 

and ethmoid sinuses. Some differences were discovered in the deposition fractions and 

patterns for 5 and 10nm particles between the nasal-sinus and the nasal cavity models. 

This difference is amplified when the flow rate is decreased and at a flow rate of 4L/min 

the maximum difference was 17%. It is suggested that future evaluations of 

nanoparticle deposition should consider some deposition occurring in the paranasal 

sinuses especially if flow rates are of concern. 

Inhaled particles with pharmacological agents (e.g. histamine, methacholine) are 

introduced into the nasal cavity for targeted delivery. Effective nasal drug delivery is 

highly dependent on the delivery of the drug from the nasal spray device. Atomization 

of liquid spray occurs through the internal atomizer that can produce many forms of 

spray patterns and two of these, hollow-cone and full-cone sprays, are evaluated in this 

study to determine which spray pattern produced greater deposition in the middle 

regions of the nasal cavity. Past studies of spray particle deposition have ignored the 

device within the nasal cavity. Experimental measurements from a Particle Droplet 

Image Analyzer (PDIA) were taken in order to gain confidence to validate the initial 

particle conditions for the computational models.. Subsequent airflow patterns and its 

effects on particle deposition, with and without a spray device, are compared. Contours 

and streamlines of the flow field revealed that the presence of a spray device in the nasal 

vestibule produced higher levels of disturbed flow, which helped the dispersion of the 

sprayed particles. Particle deposition was found to be high in the anterior regions of the 

nasal cavity due to its inertia. Evaluation of the two spray types found that hollow spray 

cones produced more deposition in the middle regions of the nasal cavity. 
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The major findings from the different computational modeling performed include: 1) 

the influence of human body heat on particle transport and inhalation which altered 

both the flow field and the particle transport; 2) while it has been known that micron 

particles do not reach the maxilliary sinuses, it was found that the highly diffusive 

nature of nanoparticles, allowed deposition by diffusion when the inhalation rate was 

sufficiently low, e.g. 4L/min and; 3) Inhalation of toxic and sprayed particles in the 

isolated nasal model which showed that the presence of a nasal spray device altered 

the inhalation patterns, and that the nasal cavity has preferential deposition regions. 
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Chapter 1 

Introduction 

1.1 Motivation 

This thesis presents the reconstruction of the complex three-dimensional models from 

biomedical images and based on these models, investigates the airflow and inhalation 

of particles in the human respiratory system using CFD. CFD technology is the science 

of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related 

phenomena by solving the mathematical equations which govern these processes using 

a numerical methodology. CFD analysis complements testing and experimentation and 

reduces the total effort required in the laboratory. Simulations are relatively economical, 

with costs likely to decrease as computers become more powerful, can be executed in a 

short period of time, and provide the ability to theoretically simulate any physical 

condition. This technology is a powerful predictive tool, which has developed over the 

last 30 years. Nowadays, many researchers in a wide variety of research areas have 

been using CFD technology to great effect. Through advances in science and 

technology, numerical simulations have appeared due to the increase of such 

techniques. Studies of air and particle flow in the human respiratory airway have 

significant importance in many fields of study and applications, ranging from 

therapeutic drug delivery to toxicology of inhaled particles (micro or nano), especially 

in indoor environments. 
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Particle transport characterization is especially important in hospitals or densely 

populated areas during infectious disease outbreaks, for instance, the epidemic 

outbreak of influenza such as bird flu and SARS, and the H1N1-swine flu. During the 

H1N1 outbreak during March and April of 2009, international air travelers departing 

from Mexico were unknowingly transporting a novel influenza A (H1N1) virus to cities 

around the world (Green 2004). Characterizing the particle transport within the indoor 

cabin environment during the flight can help identify passengers at risk due to the 

spread of pathogens from an infected passenger. 

The transport characteristics of aerosol particles within indoor environments and their 

inhalational patterns by human occupants has great relevance to improving health 

outcomes as people spend approximately 90% of their time indoors and a number of 

health problems have been found to be associated with particle inhalation (Inthavong et 

al. 2009a). For instance, cigarettesmoke, which is a common indoor pollutant in a room 

is dangerous to people who have ever smoked, but who live with partners who smoke, 

as they are at increased risk of a range to tobacco-related diseases, since passive 

smoking is a serious health risk for both smokers and nonsmokers (Robinson et al. 

2006). 

Over the past few decades, numerous experimental and numerical investigations have 

been conducted under various conditions and many important conclusions have been 

reported. This includes work by Hinds et al. (1998) and Anthony and Flynn (2006) 

which investigated particle aspiration at the low air velocities typical of occupational 

settings whose results help to understand aerosol particle behaviour. It is generally 

accepted nowadays that the particle inhalation by a human occupant is determined by 

many factors such as the particle size, ambient wind speed, airflow pattern in the 
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breathing zone, inhalation rate, mouth inhalation or nasal inhalation, and even the 

human facial features (Li et al. 2012). 

A human body is continually exchanging energy with its environment. The average 

thermal energy generated by a human body with an ordinary activity level and at 

moderate room temperatures was found to be up to 100 Watts (Gowadia and Settles 

2001). Due to this heat, a temperature gradient is formed and drives a buoyant 

free-convection with upward velocity in the vicinity of the human body. This is 

especially true for fine and ultrafine particles as their transport is mostly controlled by 

the indoor flow field (Zhang et al. 2009a). This effect, however, has been rarely 

investigated quantitatively except for a few experimental measurements (Rim and 

Novoselac 2009a) conducted in quiescent or quasi-quiescent indoor environments, 

whose conclusions may be not applicable to realistic situations where ventilation 

systems are operating and the orientation of an occupant relative to the wind may be 

random. 

During human respiration, the inhaled air, which often contains foreign particles, is 

transported through the respiratory airways. Particles are deposited onto surrounding 

surfaces while some may navigate through the complex geometry and may even reach 

deep into the lung parenchyma, causing deleterious health effects. The inhalation of 

particulate matter (PM) is a major health and safety concern. Generally, particles in the 

ambient air can be categorised by their size as micron or sub-micron. For example 

1-1000nm particles include diesel fumes, asbestos fibres and general dust; 1-1000 µm 

particles include glass fibres and general dust (Lide 1994). These particles can be 

modelled by using CFD simulation to track and predict their transport in the large 

enclosed indoor environments and small human respiratory airways. CFD simulations 
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are an ideal method to predict the risks of contamination of particles and gases since 

particle transport and dispersion is highly associated with airflow motion and its 

turbulence. In addition, it is an inexpensive method in comparison to experimental 

measurements. A number of studies (Bogdanffy and Sarangapani 2003; Oberdörster 

2000) have provided information in relation to toxicity and health effects, however 

these studies are based on an isolated model of the human nasal cavity or 

tracheo-bronchial airway tree and as such, the inlet boundary condition imposed at the 

nostril or trachea inlets are unknown and instead a blunt, parabolic or uniform profile is 

applied (Jayarajua et al. 2008). 

When some particle types are reduced to nanoscales they have demonstrated novel and 

enhanced properties (e.g. significant increase in strength, greater chemical reactivity 

and enhanced colours). This has led to an exponential increase in the production of 

engineered nanoparticles, posing a significant health risk through exposure to these 

substances in the workplace and in our daily life. For example the presence of 

nanoscale titanium dioxide (TiO2) is massively produced and widely used in paints, 

printing ink, paper, cosmetics, car materials, and cleaning products because of its 

inherent advantages of anticorrosion and enhanced photocatalysis. Toxicity studies of 

TiO2 performed on rodents have shown potential for its translocation into the central 

nervous system via the olfactory pathway (Oberdörster et al. 2004). In the past, there 

has been extensive research involving inhalation of ultrafine and particulate air 

pollution. These studies often use cast replica models or computational models of 

separate organs of the respiratory system (i.e. nasal cavity, lung airways) to predict 

local deposition (Cheng et al. 1995; Xi and Longest 2008a). Because of the highly 

diffusive nature of nanoparticles, it is conjectured that deposition by diffusion may 
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occur in the paranasal sinuses which may affect the residual deposition fraction that 

leaves the nasal cavity. 

Delivery of drugs through aerosol particles has been used extensively to apply 

medication to the nasal area of patients. It is an effective way to treat a variety of 

respiratory ailments, particularly for members of the population who are of allergic 

constitution. Nasal delivery of medication has become a viable alternative to an oral or 

intravenous route of systemic drug therapy for a variety of diseases. The advantages of 

using the nasal cavity are its rapid action, improvement of patient compliance and 

bypassing of metabolic decomposition that orally taken drugs in the digestive system 

must undergo. These benefits have led to the medical industry pushing forward into 

researching and developing new drugs that can be delivered nasally. In fact, a 

marketing report shows that the U.S. market of advanced drug delivery systems was 

over $54.2 billion in 2004 and in 2005 it reached $64.1 billion. it was predicted that 

over 5 years, this market will continue to grow at an average annual growth rate (AAGR) 

of 15.6% to reach $153.5 billion by 2011 (Mandal and Mandal 2010). The efficiency of 

such products is measured by the amount of particles that deposit on the highly vascular 

mucous walls. More intimate knowledge of particle flow dynamics can help assess the 

likelihood of the therapeutic effects caused by the inhalation of the drug particle type 

and its targeted deposition location. Furthermore a major advantage of significance to 

the medical and pharmaceutical industries is the ability to simulate fluid-particle flows 

that are difficult to reproduce experimentally. Now, many researchers are using CFD 

technology in their research studies (Chen et al. 2010; Inthavong et al. 2011a; Longest 

and Oldham 2006; Schmehl et al. 1999; Zhao et al. 2003). 
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The human respiratory system is complex and the anatomical system that introduces 

respiratory air to the interior and performs air exchange includes the nasal cavity, 

pharynx, larynx, trachea and lung. With regards to the historical development and 

evolution of airway models, the first physical nasal cavity model was created and 

experimental measurements were made in 1951 (Proetz 1951). After nearly 40 years, 

the first CFD nasal models began to appear. The earliest realistic CFD model was 

developed by Keyhani et al. (1995). The nasal cavity is the first region where the air 

enters the respiratory system and plays a critical role in breathing; however its 

modeling can be complicated. The paranasal sinuses around the nasal cavity include the 

maxillary, sphenoid, ethmoid and frontal sinuses; which are air filled spaces that are 

connected to the nasal cavity by narrow passageways call the ostium. Each paranasal 

sinus is lined with the same respiratory mucosa found in the main nasal passage and 

therefore has the same heating and air conditioning capabilities. The paranasal sinuses 

do not have an influence on airflow (Xiong et al. 2008b), but may allow sub-micron 

particles to deposit on them. Particles can also be trapped by the mucous secretions 

produced in the sinuses, which continually flow into the nose by the ciliated surface. In 

addition, blowing of the nose helps to drain the sinuses. CFD studies of the nasal cavity 

are important in establishing the effects of airway geometry on the airflow. 

Furthermore understanding the flow dynamics caused by geometrical differences, in 

particular anatomical and pathological anomalies leads to better clinical appraisals and 

improved and informed decision-making on surgical procedures. 

This thesis intends to reconstruct a realistic respiratory airway from CT images. 

Reconstruction of 3D geometries can be performed rapidly and efficiently through 

CAD (Computer Aided Drawing) software for human respiratory airway models. The 

reconstruction is based on reverse engineering CAD technique from scans of the 
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respiratory organs via CT or MRI. The biomedical images can provide very detailed 

information to enable realistic airway geometry to be produced in comparison to cast 

models. With the numerical simulations, using CFD, a wider scope of studies based on 

realistic computational models can be applied. However, CFD technology has a 

drawback, which is the reliability of its results. This is attributed to the numerical set up, 

which includes mesh generation, discretization scheme, turbulence models, and 

boundary condition specifications. Therefore, this thesis investigates the many issues 

that relate to CFD modeling of inhalation of air and particles through the respiratory 

airway. 

1.2 Objectives 

This thesis uses practical and efficient CFD technical approaches to investigate airflow 

patterns, particle deposition region and deposition efficiency in the human respiratory 

system. The objectives can be divided into four parts: i) reconstruct 3D simulation 

models ii) analyse airflow patterns iii) track toxic particles and iv) drug application. 

Because the respiratory system is a complex structure, air flow patterns are difficult to 

measure. CFD simulations can provide detailed data that are normally difficult to 

produce through experiments, due to interventional and clinical risks for the volunteer. 

The studies are aimed to: 

• present airflow patterns around a 3D manikin model in an indoor 

environment. 

• analyse particle transport around a thermal manikin during inhalation. 

• identify major micron size particle deposition in the human respiratory from 

the external ambient air. 
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• identify nano size particle deposition regions in the nasal cavity model and 

nasal sinus cavity model. 

• compare the deposition patterns caused by different particle morphologies. 

• simulate medical application of a nasal spray device. 

The research is aimed at contributing to knowledge of particle deposition patterns and 

to assist in risk analysis of exposure to harmful particles in industry. 

1.3 Thesis Structure 

The rationale for conducting this research, the scope and outlines of this thesis are 

explained in Chapter 1. 

Chapter 2 provides a review of the background for this research. It begins with an 

introduction to the anatomy of the human respiratory airway. This is followed by a 

literature review of previous studies related to this thesis including fluid flow, particle 

transport and particle deposition studies. This chapter aims to provide the framework 

and context of where the current research has developed. 

Chapter 3 presents the method in which the 3D models are reconstructed from CT scans. 

There are four main stages: extracting CT data, image processing, surface 

reconstruction and mesh generation. The different types of CFD models include the 

nasal cavity, nasal cavity with sinuses, and integrated respiratory airway. 

Chapter 4 presents the mathematical and numerical methodology for airflow and gas 

particle flows. CFD is fundamentally based on the governing equations of fluid 

dynamics. The different turbulence models uses and related equations that are solved 

are discussed. Following this there is description of the Lagrangian particle tracking 

model. 



 

9 

Chapter 5 is the beginning of the main body of this thesis. It describes the airflow 

structures and particle tracking around the thermal human body in an indoor area. The 

effects of body heat on particle transport and inhalation are synthetically investigated 

with special consideration of various indoor wind speeds and the occupant-wind 

orientation. 

Chapter 6 extends the analysis from outside the human to the human inhalation into the 

respiratory airway. A CFD model simulation integrating the three aspects of 

contaminant exposure by including the external room, a human occupant with realistic 

facial features, and the internal nasal-trachea airway is produced. This leads to a more 

holistic set of results, which can greatly contribute towards new knowledge in 

identifying preventative measures for health risk exposure assessment. 

Chapter 7 investigates the flow patterns in the nasal cavity, in the paranasal ostium and 

its corresponding sinus, and uptake of ultrafine particles with a focus on the ostium 

region that may cause occlusion and contribute to sinusitis. Different sizes of the 

particles (micron and sub-micron) were modeled under three breathing conditions. The 

numerical results showed that a percentage of particles deposited within the maxillary 

sinuses. 

Chapter 8 moves into the simulation of drug application sprays. Effective nasal drug 

delivery is highly dependent on the delivery of drug from the nasal spray device. 

Particle deposition was found to be high in the anterior regions of the nasal cavity due 

to the spray’s inertia. Evaluation of two spray types found that hollow spray cones 

produced more deposition in the middle regions of the nasal cavity. 
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Chapter 9 summarises significant outcomes from each research section between 

Chapters five to eight. The final section of this chapter highlights the potential clinical 

significance of this study and provides recommendations for further study. 
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Chapter 2 

Literature Review 

2.1 Introduction 

Before moving into the computational methods of reconstructing the respiratory 

models and CFD simulation, this chapter provides the fundamentals of the anatomy and 

physiology the respiratory system and CFD simulation background in this field. Firstly, 

this chapter discusses the anatomy and naming conventions of the respiratory system in 

order to establish a base of knowledge for decision-making when reconstructing the 

model. Following this, the use of CFD technology in the respiratory system is 

investigated, which includes fluid flow and particle deposition studies. The primary 

aims are to summarise the important features of respiration to help with developing the 

CFD simulation settings, and how it will all be incorporated into the computational 

models. 

2.2 Human Anatomy of the Respiratory System 

The human respiratory system divides into two main anatomical parts, the upper 

respiratory tract and the lower respiratory tract. Their main function is to give humans a 

space for exchanging oxygen and carbon dioxide gases between the air and our blood. 

This occurs with each breath we take, where oxygen first enters the nose or mouth 

during inhalation. The air passes through the larynx and the trachea, which then splits 
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into two bronchi and numerous branches of bronchioles until it reaches the alveoli, the 

endpoint where gas exchange occurs. Exhalation begins after gas exchange and the air 

containing CO2 begins the return journey through the bronchial pathways and back out 

to the external environment through the nose or mouth. Secondary functions of the 

respiratory system include filtering, warming and humidifying the inhaled air. Other 

functions include sound production via the vocal cords in the larynx, control of body 

pH levels via the lungs, and smell via the olfactory bulbs in the nose. 

 

Figure 2. 1 Schematic of the respiratory system displayed by the upper and lower respiratory tract 

region. 

The respiratory system can be separated into regions based on function or anatomy 

(Figure 2. 1). The upper respiratory tract includes the organs located outside of the chest 

cavity (thorax) area (i.e. nose, pharynx, larynx), whereas the lower respiratory tract 

includes the organs located almost entirely within it (i.e. trachea, bronchi, bronchioles). 
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2.2.1 Upper Respiratory Airway 

2.2.1.1 Nose and Nasal Cavity 

The anatomy and morphology of the human nose are different amongst different 

ethnic groups. However, in general all human nose structures are for the large part 

synonymous. Air passes through the nostrils and the vestibules to enter the nasal 

cavity. The two nostril openings and consequently the two vestibules leading to two 

nasal chambers or cavities are separated by the septum. The top of the nasal cavity is 

divided from the anterior cranial cavity by the cribriform plate of the ethmoid bone, and 

the sphenoid bone (see Figure 2. 2). The cribriform plate is perforated with many small 

openings that allow the olfactory nerve branches that are responsible for the sense of 

smell to extend through to the brain.  

 

Figure 2. 2 Structure of the internal nasal cavity, and the oral cavity. The nasopharynx, oropharynx, 

and laryngopharynx, they are three main subdivisions of the pharynx. 

The lateral walls abut on either side with the maxillary bones, and the floor of the nasal 

cavity is separated from the top of the mouth by the palatal bones. From the vestibule 

the air passes through a constricted cross-sectional area which has been termed the 
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anterior nasal valve, before entering the main nasal passage. In each cavity there are 

three passageways within the main nasal passage, formed by three corresponding 

curled bony plates that project medially into the main passage way from the septum 

wall, called the superior, middle and inferior nasal turbinate (see Figure 2. 2). 

Surrounding the nasal passageways are the paranasal sinuses, which are four pairs of 

empty air spaces that open or drain into the nasal cavity. They are located in the frontal, 

sphenoid, ethmoid, and maxillary bones and as such their names are taken from where 

they are located (see Figure 2. 2). The frontal sinuses are located just above the orbit. 

The maxillary, the largest of the sinuses extends laterally on either side of the nose. The 

sphenoid sinus lies in the body of the sphenoid bone, deep in the face just behind the 

nose. The ethmoid sinuses are not single large cavities but rather a collection of small 

air pockets, located around the area of the bridge of the nose. At the posterior end of the 

main nasal passage are the oval-shaped orifices of the posterior nares, approximately 

1.5-3.0 cm in diameter. The choanae are openings that allow air to pass from the main 

nasal passage, into the pharynx (see Figure 2. 1). Once air has passed through the 

posterior nares, it has left the nasal cavity and enters the next major segment of the 

upper respiratory tract – the pharynx. 

2.2.1.2 Pharynx and larynx 

The pharynx is a tube-like structure about 12.5cm long that connects the posterior nasal 

and oral cavities to the larynx and oesophagus. It extends from the base of the skull to 

the level of the sixth cervical vertebrae. Structurally, the pharynx can be divided into 

three anatomical parts according to its location, as shown in Figure 2. 2; these are the 

nasopharynx (posterior to the nasal chambers), the oropharynx (posterior to the mouth), 

and the laryngopharynx (posterior to the pharynx). The nasopharynx is located between 
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the internal nares and the soft palate and lies superior to the oral cavity. At the base of 

the nasopharynx are the soft palate and the uvula. In the walls of the nasopharynx are 

the auditory (Eustachian) tubes connected to the middle ear. The oropharynx is located 

posterior to the mouth, inferior from the soft palate, and superior to the level of the 

hyoid bone. At this location the mouth leads into the oropharynx and both food and 

inhaled air pass through it. The laryngopharynx extends from the hyoid bone to the 

oesophagus. It is inferior to the epiglottis and superior to the junction where the airway 

splits between the larynx and the oesophagus. The larynx is commonly known as the 

voice box as it houses the vocal folds that are responsible for sound production. It 

serves as a sphincter in transmitting air from the oropharynx to the trachea and also in 

creating sounds for speech. It is found in the anterior neck, connecting the hypopharynx 

with the trachea, which extends vertically from the tip of the epiglottis to the inferior 

border of the cricoid cartilage. At the top of the larynx is the epiglottis which acts as a 

flap that closes off the trachea during the act of swallowing to direct food into the 

oesophagus instead of the trachea. The laryngeal skeleton consists of nine cartilages, 

three single (thyroid, cricoid, and epiglottis) and three paired (arytenoid, corniculate, 

and cuneiform), connected by membranes and ligaments. The hyoid bone is connected 

to the larynx but is not considered part of the larynx. 

2.2.2 Lower respiratory 

2.2.2.1 Trachea 

The trachea is a hollow tube about 11-14cm long connecting the cricoid cartilage in the 

larynx to the primary bronchi of the lungs. Its cross-sectional diameter in normal human 

adults is 1.3-2.5cm in the coronal plane and 1.3-2.7cm in the sagittal plane, while for 

females the diameters are slightly smaller (Liu et al. 2009a). The variation in the trachea 
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cross-section between the coronal and sagittal plane is due to its shape being a 

horse-shoe where the anterior side is made up of C-shaped cartilaginous rings, and 

posteriorly by a flat band of muscle and connective tissue called the posterior tracheal 

membrane, closing the C-shaped rings. There are 16 to 20 tracheal rings that hold and 

support the trachea, preventing it from collapsing in on itself, but also providing some 

flexible movement for any neck movement. Further downstream, along subsequent 

bronchi, the cartilage support becomes progressively smaller and less complete. The 

tracheal mucosa consists of pseudo-stratified, ciliated columnar epithelium, while its 

submucosa contains cartilage, smooth muscle, and seromucous glands. 

2.2.2.2 Bronchi  

The trachea divides into the main bronchi at the carina, with the right bronchus wider, 

shorter and more vertical than the left bronchus (mean lengths of ~2.2cm and ~5cm 

respectively) (Smith et al. 2001). This leads to increased chances of inhaled foreign 

particles depositing within the right bronchus. The right main bronchus bifurcates 

posterior and inferiorly into the right upper lobe bronchus and an intermediate bronchus. 

This bifurcation occurs earlier on the right than on the left lung in all models. The left 

bronchus passes inferolaterally at a greater angle from the vertical axis than the right 

bronchus. It is located anterior to the oesophagus and thoracic aorta and inferior to the 

aortic arch. Each main bronchi leads to the lung of its respective side (Figure 2. 3). The 

right main bronchus subdivides into three lobar bronchi (right upper lobe bronchus, 

right middle lobe bronchus, and right lower lobe bronchus) while the left main 

bronchus divides into two (left upper lobe bronchus and left lower lobe bronchus). Each 

lobar bronchus serves as the airway to a specific lobe of the lung. The lobar bronchi 

further divide into segmental bronchi, which supply the bronchopulmonary segments of 
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each lobe. A bronchopulmonary segment may be defined as an area of distribution of 

any bronchus (Comte et al. 2008). Technically there are ten bronchopulmonary 

segments in each lung, however in the left lung some of these segments fuse and there 

can be as few as eight bronchopulmonary segments. 

 

Figure 2. 3 Schematic of the tracheobronchial airway showing the subdivisions in the first three 

generations and where the branches lead into the segments of the lung, subsequently called the 

bronchopulmonary segments. The right lung has three lobes and approximately ten segments. The 

left lung has two lobes and approximately eight segments.  

2.3 CFD Modeling History 

For the last 30 years, researchers have been using simple geometrical models for CFD 

simulations. These models were created from graphics software and their dimensions 

such as the geometric shape, perimeter, and cross-sectional area were estimated from 

literature data such as Weibel’s model (1963). The problem in advancing was how to 

get a truly realistic model. With the development of computer technology, leading to 
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advanced biomedical imaging more researchers were able to develop realistic 

geometrical models reconstructed from CT and MRI images. 

In order to convert CT images into a 3D computational model, a process called 

segmentation needs to be applied, more details in chapter 3. In the segmentation of CT 

images, several methods have been published in the literature; many of them use pixel 

based segmentation approaches, such as grey-level threshold (Pal and Pal 1993), 

region-growing (Tschirren et al. 2005), or watershed algorithms (Beare 2006). Many 

studies concerning the reconstruction of human organs have been performed based on 

the data obtained from CT. this includes human nasal cavity(Garcia et al. 2007; 

Inthavong et al. 2008c; Keyhani et al. 1995; Liu et al. 2009b; Zhao et al. 2004) and 

lung airway (de Rochefort et al. 2007; Nanduri et al. 2009; Tippe et al. 1999). 

Furthermore some commercial software packages have recently become available in 

the market for the reconstruction of bronchi. However, there are many problems in the 

geometries generated by these packages such surface overlap, small gap between two 

surfaces, miss surface data. The models generated from Segmentation Programs 

cannot be utilized in CFD study directly. Thus, extensive work must be done modify 

these models to satisfy a CFD simulation. 

The parallel development and availability of both software and hardware have enabled 

the application of CFD to study of the respiratory tract. The earliest studies focused on 

characterizing transport and uptake. As described by Elad et al (1993), the three 

dimensional simulations were conducted using a trapezoidal geometry to approximate 

the human nasal cavity. 

In another study, tracings of human nasal airways from CT scans were used by Keyhani 

and colleagues (Keyhani et al. 1995) to construct the first anatomically accurate three 
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dimensional CFD model of airflow in one side of the nose. Three dimensional airflow 

in the pharynx was studied using CFD methods by Shome et al. (1998), while a CFD 

model of a human nasal, oral , orinasal, laryngeal and tracheal airways based on casts of 

a medical teaching model was described by Yu et al. (1998). 

Recently, there has been an increase in the number of CFD simulations involving 

realistic nasal cavities, Kelly et al (2000) created a model of a nasal cavity slices from 

CT scan images captured in parallel slices spaced 1 mm apart. Lindemann et al (2004) 

created a three-dimensional model of the two nasal cavities, with CT slice thickness of 

1.3mm and an increment of 0.6mm. For more recently, Xu et al (2006) created an 

upper airway model, of three infant reconstructed from magnetic resonance images 

(MRI) obtained during quiet tidal breathing. The model is including nasal cavity and 

nasopharynx regions. Xiong et al (2008a) created two nasal cavity models, that 

include the maxilliary sinuses, from CT scans selected from thiry scans of healthy 

adults. The influence of surface smoothing on the 3D models was investigated by 

Schroeter et al (2011), who was generated three models with different smoother 

surfaces from MRI scans of one healthy adults. 

The lung model is distinct from the nasal cavity model where most experimental and 

numerical studies in the literature on flows in the human airways have been based on 

simplified and idealised, the airway models extracted from the early morphological 

studies by Weibel (1963) and Horsfield et al(1971), where was a symmetric lung 

model with three-generation created by Gradon et al (1990), while an early realistic 

lung model was reconstructed from CT scans by Perzl (1996). Calay et al (2002) 

made a three-dimensional asymmetric bifurcation model of the central airway based 

on morphological data. Two lung airway models including lower sub-segmental 
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bronchus was presented which have been present by Vial et al (2005), one is normal 

with no apparent morphological alterations, while the other is Li et al (2007b) created 

two ideal models of the features are out-of-plane configurations and cartilaginous 

rings in the trachea. A a17 generation model, including both central and lower 

tracheobronchial airways was created by Gemci et al (2008) A five-generation airway 

extracted from the trachea to segmental bronchi of a 60-year-old Chinese male patient 

was created by Luo et al (2008). A later study by Sandeau et al (2010)using CT scans 

extended CFD modelling in the respiratory tract included the pharynx and larynx. 

In summary, many of the respiratory airway regions have been reconstructed from CT 

or MRI images to create a realistic model. However, most of the models in the earlier 

studies only presented individual regions of the respiratory airway, and just a few were 

of the upper respiratory tract, lower respiratory tract or full respiratory tract. An 

integrated CFD model has not yet been developed, which integrates the upper 

respiratory region such as the nasal cavity, pharynx, largnx and the upper trachea 

bronchial airway tree. 

2.4 Fluid Flow Studies in the Respiratory Airway 

The CFD models described above were developed to study the effects of respiratory 

tract airflow patterns, on nasal uptake or deposition of particles and tissue response 

patterns in humans. The flow patterns can provide more detailed data that are relevant 

to the prediction of gas particle flows in inhaled air. Several early simplified model 

studies focused on the uptake of inhaled airflow. Tarabichi and Fanous (1993) studied 

the effects of the inferior rim of the pyriform aperture on airflow patterns near the nasal 

valve which showed an uneven distribution of airflow through the valve with most of 

the flow occurring in the ventral segment. The results show removal of flow would 
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result in a more even distribution of flow across the valve. Elad et al (1993) conducted 

airflow simulations with and without nasal turbinates in the nasal cavity, developing a 

simplified nose-like computational model, where the cross-section was trapezoidal. 

The turbinates were represented by curved plates that emerge from the lateral walls. 

The results showed that in the steady and laminar conditions, the turbinates and the 

trapezoidal shape of the cavity force more air flux towards the olfactory organs at the 

top of the cavity. Martonen et al (1993) reported an original theory, which presented 

the simulation of laryngeal and tracheobronchial fluid dynamics under various 

breathing conditions. The result showed that the fluid dynamics patterns are 

heterogeneous in the airway system, which may promote particle deposition in the 

larynx and tracheobronchial airways. 

2.4.1 Nasal Cavity Model 

From 1995 onwards, the two earliest realistic CFD studies of the nasal cavity were 

reported by Keyhani et al (1995),(1997). These two papers individually determined the 

laminar airflow patterns in the half nasal cavity at light breathing flow rates and the 

airflow effects on odorant transport in a nasal passage. Subramaniam et al (1998) 

created a 3D human nasal cavity that included the nasopharynx and investigated 

regional disposition of inhaled acidic vapours. The study steady-state and the airflow 

were streamlined in the main nasal passages, which complex flow patterns were found 

in the vestibule and nasopharynx. Swirling air currents and recirculating flow were 

predicted in the nasal vestibule, and the expansion at the nasopharynx gave rise to two 

downward, counter current, spiralling vortices. This significant lateral flow was 

observed mainly in the middle lateral meatus. In the same year, another 3D human nasal 

cavity with nasopharynx model was conducted by Shome et al (1998). In this study, 
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sleep apnoea treatment therapies were modelled and the pharynx walls were assumed to 

be passive and rigid in order to find a pressure drop in these models. The pressure drop 

in the pharynx lies in the range 200-500Pa and the airflow in the pharynx lies in the 

laminar-to-turbulence transitional flow regime. This kind of change caused by 

treatment therapies can significantly affect the airflow characteristics in patients 

suffering from sleep apnoea. 

Van Reimersdahl et al (2001) reported the flow field and compared with experimental 

data,for inspiration and expiration in a model of the human nasal cavity. A steady-state 

CFD simulation showing temperature distribution in the human nasal cavity is given 

in Lindemann et al (2004), which report relationship between airflow patterns and 

heating of inspired air. Zhao et al (2004) simulate the inspiratory and expiratory 

airflow with odorants in the nasal cavity model with the results showing airflow 

patterns and odorant transport affected by geometric shape, especially in the olfactory 

region and the nasal valve region. Understanding the olfactory region may provide 

important guidance for treatments for nasal-sinus disease. Lindeman et al (2005) 

reported the airflow in a nasal cavity that included the paranasal sinuses after radical 

sinus surgery during inspiration. Zhao et al (2006) were simulated the turbulent 

airflow in the nasal cavity where the inhalation flow rate is between 300ml/s and up to 

1000ml/s at each nostril. The results presented no difference in predicted olfactory 

odorant flux for turbulent versus laminar flow while the differences resistance between 

the mucosal nasal airway wall and the air phase, showed some with technology, models 

are becoming more advance. Croce et al (2006) reported the pressure-flow 

relationships measured in a human nasal cavity including the maxillary sinuses. The 

results showed that the major total pressure drop was localized in the nasal valve region. 

At the same time, the results provided good agreement between measured and 
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numerically computed total pressure drops observed up to a flow rate of 15L/min which 

is an important step for validating the ability of CFD software to describe flow in a 

physiologically realistic nasal model. Xiong et al (2008b) investigated airflow velocity, 

trace, distribution, and air pressure, as well as the airflow exchange between the nasal 

cavity and paranasal sinus. The significant results were that there was little pressure 

difference and flow difference exchange between the inner and outer aspects of the 

paranasal sinus and the nasal cavity during stable airflow. The flow force is strongest at 

the front end of the inferior and middle turbinate and uncinated process. In 2008, Wen 

et al (Wen et al. 2008a) developed a numerical simulation adopting a laminar steady 

flow for flow rates of 7.5 and 15 L/min to get a better understanding of the physiology 

of the nose. The general agreement of gross flow features that were found included high 

velocities in the constrictive nasal valve area region, high flow close to the septum 

walls, and vortex formations posterior to the nasal valve and olfactory regions. More 

recently Zhu et al (2011) evaluated and compared the effects of differences of nasal 

morphology among three healthy male subjects from Caucasian, Chinese and Indian 

ethnic groups on nasal airflow patterns. 

2.4.2 Lung Airway Model 

For the lung airway models, early studies of airflow in the lung airways include the 

experimental work by Proetz (1951) and Schroter et al (1969). Most experimental and 

numerical human airway flow studies have been based on idealised airway models 

extracted from the early morphological studies by Weibel (1963) and Horsfield et al 

(1971). Experimental studies include (Chang and El Masry 1982; Isabey and Chang 

1981; Isabey and Chang 1982) which produced a model of the central airway down to 

the third generation of the bifurcation, and presented few velocity profiles and flow 
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patterns Ferron et al (1991) simulated airflows in combination with heat and water 

vapour transport in 2D human lung bifurcation. The results show that CFD analysis is 

a possible tool to determine airflows. The first realistic lung model for CFD studies of 

airflow patterns and particle transport was by Perzl (1996). 

In CFD simulations, Calay et al (2002) studied the unsteady respiratory airflow 

dynamics within a human lung model of Horsfield et al. (1971). Liu et al(2002) 

studied three-dimensional air flow features for steady airflow in the 5th–7th 

generation ideal model of Weibel (1963). The same authors, extended their work to 

deal with asymmetric airway extracted from the 5th–11th branches in order to more 

appropriately model more of the human air passage(Liu et al. 2003). The results 

showed relations between the Reynolds number and overall flow patterns and pressure 

drop in the airway model. 

Van Ertbruggen (2005) studied gas flow and particle deposition in a realistic 

three-dimensional (3D) model of the bronchial tree, extending from the trachea to the 

segmental bronchi and reported flow simulations of non-fully developed flows in the 

branches due to their relative short lengths. Lin et al (2007) reported airflow modelling, 

that considered both upper and intra-thoracic airway geometry. They created two 

geometries of the human upper respiratory tract model. Their integrated model included 

a mouthpiece, the mouth, the oropharynx, the larynx, and the intra-thoracic airways up 

to six generations. The results showed that a curved sheet-like turbulent laryngeal jet is 

observed only in the integrated model with turbulence intensity in the trachea varying 

from 10% to 20%. They concluded that turbulence induced by the laryngeal jet could 

significantly affect airway flow patterns as well as tracheal wall shear stress. More 

recently, airflow simulation was performed using a realistic lung model. Nagels et al 
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(2009) where a using large eddy simulation (LES) method was used to determine 

transitional and turbulent flow within an asymmetric bifurcating model of the upper 

airway. The computational model of a human tracheobronchial airway using a normal 

breathing cycle (inspiratory and expiratory) to flow distribution was performed by 

Inthavong et al (2010). The human inhalation results showed velocity contours and 

secondary flow vectors with vortex formation downstream of the bifurcations that 

enhanced particle deposition. 

In summary, the respiratory flow has been treated as a steady or quasisteady condition 

based on the Womersley parameter for normal breathing in these studies (Womersley 

1955). The Womersley parameter is defined as: 
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where R is an appropriate length scale, ω is the angular frequency of the oscillations 

and ν,ρ,μare the kinematic viscosity, density, and dynamic viscosity of the fluid. 

Two other important parameters that influence the deposition pattern include the local 

geometry of the tracheobronchial (TB) tree, and the inhalation patterns. The numerical 

simulations have become a vital tool in understanding the nature of pulmonary airflow 

in the human respiratory model. They are able to identify vortices from in the nasal 

cavity, down to the bronchial airways and the end of the acinar regions. Furthermore 

CFD has shown airflow acceleration; flow in to the olfactory region, detailed airflow in 

the middle airways, and acceleration/deceleration in the laryngopharynx. Overall, 

almost all of the models above are of isolated regions of the human respiratory system, 

with only a few researchers using a more complex integrated model. The geometrical 

structure and detail of the respiratory airway are crucial factors that can affect airflow. 
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There have been no integrated CFD models that include the external room, human 

occupant with realistic facial features, and the internal nasal-trachea airway. 

2.5 Particle Deposition Studies for the Human 

Inhalation 

Foreign particles that pass through the respiratory airway during human respiration can 

cause many respiratory diseases, including serious conditions like lung cancer. At the 

same time, the respiratory pathway can be a route for nasal/oral drug delivery. However, 

the nature of particle deposition from a source into a human airway will affect the 

pattern of deposition, a fact that cannot be neglected for both toxicology and drug 

delivery. The transport characteristics of particles and human inhalation characteristics 

by occupants in indoor environments have great importance attached to them.  

2.5.1 External Particle 

Particle transport around a human manikin has been studied by in vivo measurements 

and numerical simulations (Anthony and Flynn 2006; Anthony et al. 2005; Baldwin 

and Maynard 1998; Bird 2005; Hinds et al. 1998; Kato and Yang 2008; Kennedy and 

Hinds 2002; Mihaescu et al. 2008; Zhu et al. 2005). An early study was performed by 

Holmberg et al (1998) which determined the flow fields and particle distributions 

around a standing person using CFD simulations. They reported that the particle 

distribution pattern from a downstream point source is strongly dependent on the 

ventilation air supply rate. Aitken et al (1999) improved the non-thermal manikins to 

thermal manikins, in order to predict the inhalability of particles of varying 

aerodynamic diameters in low air movement environments by experimental simulation. 

The results obtained indicate that human inhalability in low air movement 
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environments may be significantly greater than that in moving air conditions with a 

maximum bias of 48% being measured. 

Later Kennedy et al (2002) used experiments to better define particle inhalability by 

determing the number of particles are entering either the mouth or nose during 

breathing at 14, 20 and 37L/min, and producing the fraction of airborne particles that 

are inhaled as a function of particle size. The result showed wind velocity and breathing 

pattern had little effect on inhalability for the range of conditions examined. 

Orientation-averaged inhalability for nose breathing dropped quickly with particle size 

reaching less than 10% at 60μm. Facing-the-wind nose inhalability was slightly 

increased for particles smaller than 60μm compared to orientation averaged inhalability 

for nose breathing. 

Gao et al (2004) used experiments and CFD simulation to define micro-environment 

around seated thermal human manikin with and without personalized ventilation 

system. The results showed the personalized airflow rate is from 0 to 3l/s; the best 

inhaled air quality is achieved at the airflow rate of 0.8l/s by the experiments. The CFD 

simulation results showed detailed analysis of interaction between thermal plume 

around human body and personalized airflow, that it is clearer understands the 

mechanism of inhalation process. 

More recently，Anthony et al (2006) used CFD to investigate particle (0.3–116µm) 

aspiration at low air velocities typical of occupational settings. The simulation showed 

a realistic representation of a human head on a simpler geometric torso that was 

positioned facing wind at 0.2 or 0.4m/s, and breathing was simulated using constant 

inhalation of 1.8 or 4.3m/s. Results from the 0.4m/s free stream and 4.3m/s inhalation 

rate compared well with results from the previous literature for smaller particles. For 
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particles ≥68µm, simulations yielded smaller aspiration efficiencies than reported in 

experiments. 

2.5.2 Internal Particle Deposition Studies 

Internal particle transport studies by experiment and numerical simulations have 

recorded the particle deposition in a human respiratory airway (Cai and Yu 1988; 

Heyder and Rudolf 1977; Hounam et al. 1971; Inthavong et al. 2006; Kelly et al. 2004a; 

Kim and Fisher 1999; Kim et al. 1994; Kleinstreuer and Zhang 2010; Longest and Xi 

2007; Pattle 1961; Shi et al. 2006; Wiesmiller et al. 2003; Zhang and Finlay 2005). An 

early study by Swift et al (1991) determined micron particle (1-4µm) deposition in an 

adult and infant nasal cavity at both laminar and turbulent steady-state conditions. The 

experimental results show deposition in the child nasal passage was greater than the 

adult at the same flow rate, but was similar in efficiency for equivalent states of rest or 

exercise breathing. Guilmette et al (1994) rebuilt two replicas of the nasal airway based 

on the Swift's MRI data. Deposition efficiency of the replicas was measured for particle 

diameters between 0.005 and 0.15µm and constant inspiratory flow rates of 10 and 

20L/min. Cheng et al (1999) studied nine different sizes of particles in the range of 0.93 

± 30µm at a constant inspiratory flow rate of 15, 30 and 60L/min in the oral airway 

region. The airway replica included the oral cavity, pharynx, larynx, trachea, and 3 

generations of bronchi. 

Hofmann et al (2003) studied inspiratory deposition efficiency of ultrafine particles in 

a physiologically realistic bronchial airway bifurcation model. The model had 

approximately 3-4 airway generations and the simulation involved different particle 

sizes, ranging. from 1 to 500nm. The inhalation flow was under three different flow 

conditions, representing resting up to heavy exercise breathing conditions. Kelly et al 
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(2004a) investigated the impact of differently manufactured nasal replicas on micron 

and nano size particle deposition efficiencies. The simulation of nanoparticle 

deposition was also performed by Zamankhan et al (2006) under steady laminar 

conditions, where diffusion was the dominant deposition mechanism for the smallest 

range of particles (1-20nm). Based on the simulated results, a semi-empirical equation 

for the capture efficiency of the nasal passage for nano size particles was fitted in terms 

of Peclet number. Zhang et al (2009b) created a representative human tracheobronchial 

tree that was geometrically represented with adjustable triple-bifurcation units (TBUs) 

in order to effectively simulate local and global micron particle depositions. It is the 

first comprehensive attempt to compute micron-particle transport in a (Weibel Type A) 

16-generation model with realistic inlet conditions. The CFD model predictions were 

compared to experimental observations as well as analytical modelling results. 

2.5.3 Spray Particle Drug Delivery Studies 

In terms of spray particle deposition for drug delivery applications, various studies 

adopting human subjects or nasal cavity replicas have found relationships for particle 

deposition efficiencies with nasal spray parameters such as spray cone angle and the 

particle size distribution produced (Cheng et al. 2001; Inthavong et al. 2006; Suman et 

al. 2002). Kimbell et al (2004) simulated particle deposition by releasing particles from 

different planes in order to imitate nasal spray delivery. Another study by the same 

authors Kimbell et al (2007) showed particles were released from different locations of 

the nostrils to characterise the deposition efficiencies and patterns from nasal sprays. 

However the particles were released passively into the nasal cavity and the effects of 

the particles’ boundary conditions caused by the atomisation of the drug was not 

included. 
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Inthavong et al (2008a) performed experiments using particle/droplet image analyser 

(PDIA) and particle image velocimetry (PIV) imaging techniques. The experimental 

visualisation and results showed particle formation from a nasal spray device and this 

determined critical parameters for the CFD studies and aid in the design of effective 

nasal drug delivery devices. The reported critical parameters were particle size, 

diameter of spray cone at a break-up length and a spray cone angle to assist the 

pharmaceutical industry to improve and help guide the design of the nasal spray 

devices. 

The literature findings indicate that the experimental and numerical studies showed 

that a human’s inhalability is strongly influenced by factors such as transport 

characteristics of particles, airflow velocity in the breathing region, breathing 

conditions, and the ambient environment. Specifically these factors as follows: particle 

size, ambient wind speed, inhalation rate, and even the human facial features. However, 

the human thermal plume is also an important factor so one must include human body 

heat to the calculation. Heat affects the airflow pattern around a human body and may 

intensify inhalation particle transport. The influence of particle size is attributed to its 

aerodynamics flight, governed by forces acting on the particle. Micron sized particles 

are predominately affected by its inertial property while submicron and nano sized 

particles are influenced by diffusion mechanisms. 

In the reviewed studies, an isolated model of the nasal cavity or oral cavity or airway 

tree is used. In these isolated studies, the uptake of the ultrafine particles within the 

nasal-sinus model is not present. Along with this, the inlet boundary condition imposed 

in all previous studies is unknown and instead a blunt, parabolic or uniform profile is 

applied. This leads to some loss in achieving a holistic set of results that may be better 
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achieved with an integrated model. In the pharmaceutical industry, particle deposition 

from nasal spray devices has been investigated. Nasal spray parameters, such as spray 

cone angle and particle size and their effect on deposition were reported. These studies 

of spray particle deposition have ignored the presence of the device within the nasal 

cavity. Further investigations are needed to provide and establish more realistic drug 

delivery simulations. 
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Chapter 3 

Reconstruction of the 

Respiratory CFD Model 

3.1 Introduction 

In this thesis, the research object is in gas air and gas-particles studies of the human 

respiratory model through the use of numerical simulations. Building realistic and 

reliable three-dimensional models is imperative due to the inherent health risks 

volunteer subjects would be exposed to in an experimental setting. 

Experimental simulations can give valuable descriptive and quantitative information on 

air flow patterns and deposition rates in the respiratory system, but the methods are time 

consuming and expensive. The resolution of the measurements can also be poor 

because of the small size of the cast model and therefore scaled-up physical models are 

required. Conversely, numerical simulations are repeatable, can have a larger number 

of tests and give fine detailed solutions and greater control of variables at low cost and 

quick turnaround times.  

In 1951, Proetz was able to create a plastic replica cast model of the nasal cavity 

displaying simple inferior and middle turbinates. It was the first comprehensive 

experiments to demonstrate the streamlined field of inspiration and expiration. (Proetz 
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1951). The earliest simple nasal CFD model was created by Elad et al (1993) which 

was one half of the cavity. The nose-like cavity was constructed as a trapezoidal shape 

with a base of about 1 cm at the nasal floor and a width of 0.1-0.3 cm at the top. In 

addition, the results analyzed the processes of heat and water transport. Keyhani et al 

(1995) built on early realistic CFD model from CT scan segments using imaging 

software called VIDA (Cardiothoracic Imaging Research Section, University of 

Pennsylvania), where the model is contained 76,950 elements and 89,152 nodal points. 

In 2006, Inthavong et al (2006) created a realistic model and used an unstructured mesh 

for the nasal model.The model had a mesh size of 586,000 elements. In 2008, Doorly 

et al (2008) created the first whole face model, which connected facial features with the 

nasal cavity and presented evidence that structures outside the nasal cavity itself affect 

the flow dynamics within it. For lower airway models, the earliest lung airway CFD 

model was built by Weibel (1963). The model was a very simple pipe model with 2 

generations of bronchioles. In the 2002, an early oral CFD model was constructed by 

Zhang et al (2002) in which the diameter and length scale values of the oral cavity, 

pharynx, larynx, and trachea were based on a human cast from Cheng et al (1999). In 

2007, a realistic model of the oral cavity combined with the trachea and lung has been 

rebuilt by Lin et al (2007). It is evident that in the near last 20 years, the evolution of 

the computational model has undergone a qualitative, and quantitation change in terms 

of realistic shape, grid number and reconstruction efficiency. Numerical simulations 

are very practical and helpful for many researchers to solve problems in their project 

field. This chapter contains a description of geometric reconstruction methods using the 

CT scans of human volunteers. 
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3.2 Method 

The design and construction of a computer generated human respiratory model includes 

image acquisition and processing of the CT scan and geometry, surface and mesh 

generation. There are a series of processes involved in the model design and 

development, which must be completed prior to a CFD model being created. The 

construction of the computational model can be divided into four stages (Figure 3. 1): 

image acquisition, segmentation, surface reconstruction and mesh generation. 

 

Figure 3. 1 Computational reconstruction methodology 

In biomedical research, due to the complexity of the human respiratory system, it is 

impractical to design a model using Computer Aided Drafting (CAD). It would be a 

very time consuming exercise and the end result would most likely be an 

over-simplification of the intended design. Recent technological advancements and 

increasing interest in biomedical research have seen the development of software 

capable of building 3D models from medical images. From there, medical imaging 

processes using CT or MRI are implemented which provide a more viable and 

appropriate method of development towards a realistic model. The development of a 

computational model of the human respiratory system begins with taking data from 
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medical imaging of a human volunteer. The data comes in the form of a 3D matrix or a 

series of 2D matrices of volume elements, in which structures are differentiated from 

one another by brightness or grey scale differences. The two main imaging techniques 

are MRI and CT, with each technique having its own advantages and disadvantages. 

3.2.1 Image Scanning 

3.2.1.1 Computed Tomography 

Computed tomography, first made commercially viable in 1972 by Sir Godfrey 

Hounsfield (2004), is a medical imaging medium that allows doctors to scan multiple 

cross-sections of patients in order to view internal organs and structures and assist in 

diagnosing pathology. Different tissues within the human body have different levels of 

X-ray absorption and transmissivity. Thus, by applying a high sensitivity instrument to 

measure the beams of radiation, the CT machine is able to obtain measurement data that 

is inputted into a computer for processing. 

The CT scanning process involves moving a patient through the gantry (a 

donut-shaped device), which houses an X-ray tube and detector array. An X-ray 

focuses beams of radiation onto the patient to determine its internal shape and structure. 

Unlike a typical x-ray, which uses a stationary machine to direct the beams, the CT scan 

is unique in that the x-ray tube totates around the object, producing an image in cross 

section. The CT machine releases X-rays that scan a certain thickness level of the 

human body and are subsequently detected by a probe, which translates the X-rays into 

visible light. The photoelectric data is then converted into electrical signals, and then 

through a digital converter into numbers that are inputted to the computer. The scanned 

data is put through computer calculation, which obtains information of each individual 
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element of X-ray attenuation coefficient or X-ray absorption coefficient and arranges it 

in a matrix (digital matrix). Using a digital/analog converter, each number is assigned 

to a colour ranging in shade from black to white as small squares called pixels, which 

all together constitute a CT image. 

Different CT machines have its own settings producing a diverse size and number of 

the image pixels. The range in size can be 1.0×1.0mm or 0.5×0.5mm; the number from 

256×256 or 512×512. Obviously, a smaller number produces more pixels resulting in 

an image with higher resolution. 

CT is widely used in a clinical setting due to its diagnostic value. However, CT 

equipment is relatively inexpensive and examination fees are on the high side. However, 

CT scanning has some diagnostic limitations, especially qualitative diagnosis, and also 

exposes patients to relatively high levels of ionizing radiation compared to other 

imaging mediums. As a result, it is important to only use CT examination judiciously 

and only when there is a defined purpose for it. 

3.2.1.2 Magnetic Resonance Imaging (MRI) 

MRI is a relatively new type of high-tech imaging examination method and has been 

applied to diagnostic medical clinical imaging since the early 1980’s (Riederer 2004). It 

has no ionizing radiation damage, no bone artefacts, more direction (such as transverse, 

coronal and sagittal plane) and multi-parameter imaging and provides high resolution 

of soft tissue. 

During an MRI scan, the machine uses generates a powerful magnetic field to align the 

atomic nuclei in the body and then radio frequency fields to alter the alignment of this 

magnetization. The scanner is then able to detect the rotating magnetic field produced 
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by the nuclei and convert this data into accurate images. MRI is able to obtain very clear 

and precise images that they greatly improve the efficiency of the doctor's diagnosis. 

MRI can be used on any part of the body, and with its graphic imaging and high 

resolution, it can be more objective and more specific in showing the anatomy of the 

human body tissues and its relationship to adjacent structures. 

3.2.1.3 Comparison between CT and MRI 

A comparison of the two imaging techniques is show in Table 3. 1 and the 

performance comparison of the two images techniques is shown in Table 3. 2. An 

example of an MRI and CT scanned images is shown in Figure 3. 2. The scanned 

images are viewed as a series of stacked two-dimensional pixels, and they have an 

associated depth, or slice of thickness.  

Table 3. 1 Benefit comparison of CT and MRI scanning 

Benefit comparison 

 Pros Cons 

MRI •  No radiation 

•  Higher resolution 

•  High equipment costs 

•  High usage costs 

•  Less contrast, lower 
prevalence rates 

CT •  Lower equipment costs 

•  Lower usage costs 

•  Higher prevalence rates, more 
contrast 

•  Radiation occurs 

•  Lower resolution 
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Furthermore, CT images produce a matrix of CT image grey-scale values resolved by 

the voxel. Because different tissues have different attenuation characteristics, the 

resulting image distinguishes between different tissues using grey scale. This allows 

good detection of bone structure, which is an advantage over MRI. 

  

  CT image  MRI image  

Figure 3. 2 CT scan and MRI 

However, dental and metallic equipment pose a problem with CT scan quality. These 

devices can cause considerable streaks or blurring products in the nasal sinus anatomy. 

MRI is able to differentiate the nasal cavity from nasal membrane structures well, 

although the cartilage locations must be concluded from their surrounding mucosa, 

because the actual bone structures may not be visible. 
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Table 3. 2 Performance comparison of CT and MRI scanning 

Performance comparison 

Capability feature MRI CT 

Semantide NMR(Nuclear magnetic 
resonance) signal 

Through the organization 
of x-rays 

Electromagnetic 
wave 

Radio wave Continuation x-rays 

Electromagnetic 
wave frequency 

Less than 100MHz 3×1010-3×1014MHz 

Magnetic Static magnetic field and 
magnetic field gradient of 

superposition 

NA 

Fault trend Any direction Perpendicular to the body 
axis 

Each level imaging 
time 

Dependent on scanning 
sequence 

Around 1 second 

3.2.2 Image Processing and Segmentation 

The scanned images obtained from CT and MRI, are series of cross sectional images 

which contain different grey scale information. Materialise’s Interactive Medical 

Image Control System (MIMICS) (Materialise 2008) is an interactive tool for the 

visualization and segmentation of CT images as well as MRI images and 3D rendering 

of objects. Mimics forms an interface between scanned data and rapid prototyping, STL 

file format, CAD, Finite Element analysis, and CFD analysis. It allows for automated 

and semi-automated segmentation, however extensive manual clean-up is still required, 

which is a time consuming and tedious process. This research field is highly active 

(Aykac et al. 2003; Pal and Pal 1993) and a lot of manufacturing companies are 

waiting for researchers to create an automated algorithm. In relation to the human 

respiratory airway, the complexities the anatomy and imperfect images created by 
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medical imaging, it is a very difficult task for automation. A system that could achieve 

this would allow the extraction of the airway from the CT scan with minimal cleaning 

up required by the user. 

The original CT images are created as DICOM (Digital Imaging and Communications 

in Medicine) format and must be converted into STL format to ensure it is compatible 

with Mimics. The image processing begins by extracting a new volume from the initial 

image to reduce noise (undesirable regions) from the airway, (Figure 3. 3a). This action 

lessens the burden on computational resources by minimizing the number of 

calculations required to further process the image. Additional background noise is 

removed via 3D convolution, which acts as a smoothing technique. Filtering also 

provides smoothing of the image volume by alleviating the inherent discontinuities 

present due to the numerous slices and subsequent discrepancies. Segmentation of the 

image involves partitioning the digital image into multiple sets of pixels, in effect 

creating a simpler, more manageable representation (Shapiro 2001). It is used to locate 

boundaries (airway walls) by segmenting each slice one at a time. The segmentation 

process allocates each and every pixel with a label which denotes its visual 

characteristic. Data is able to be exported as a point cloud, which is a log containing the 

co-ordinate points for the nasal airway boundaries. Additionally the data distinguishes 

between the inside and outside of the nasal airway walls effectively defining its volume. 

A 2D segmentation is used to detect and extract, slice by slice, the walls of the airway. 

For the segmentation process, both the region growing and threshold algorithms used in 

this study are shown in Figure 3. 3. Some global threshold selection algorithms include 

Howarth et al (2001), which obtains the threshold values using an image histogram. 
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The region growing method found in Mimics is based on the Mumford-Shah algorithm 

(Mumford and Shah 1989). 

  

(a) region grow (b) threshold 

Figure 3. 3 (a) region grow and (b) threshold 

Regional segmentation was applied as it allows the tracking only of the domains of 

interest, even in the presence of noise. A first regional segmentation with a greater 

number of partitioning regions than necessary is performed on each single slice. This 

allows the algorithm to detect the walls even in severely disturbed images. Another 

algorithm is applied in order to remove sub-regions unrelated to the airway, which 

typically present a lower intensity value with respect to the signal due to the relatively 

low density of gas compared to other tissues.  

In this study, the threshold was empirically chosen and represents 85% of the maximum 

grey-level value of the study. The airway repository system model should exhibit some 

irregularities due to the image discretions, such as sinus, jet and harsh corners. They can 

cause severe distortion in the flow field values during CFD simulation. In order to avoid 

this, a moving average is applied to the space between all airway cavities. The number 

of average operations (n) is imposed by the user, so that the function executes n-times 
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the computations. As an optimal trade-off between removing contour irregularities and 

preserving a suitable spatial resolution, a moving average step was applied twice.  

3.2.3 Geomagic Surface Generation 

Converting a cloud point model into a realistic 3D polygonal model that can satisfy 

modelling and visualization demands is an extensive and problematic process (Fabio 

2003). Geomagic Studio software (2005) is a reverse engineering package used to 

transform 3D scan data and polygon meshes into accurate 3D digital models. Detailed 

below are the four key phases concerned, which are shown in Figure 3. 4. 

• Stage 1 – Point Cloud 

• Stage 2 – Polygon Surface 

• Stage 3 – Surface Refinement 

• Stage 4 – NURBS Surface 

 

Figure 3. 4 Model the generation process 

Point Cloud  

Polygon 
Surface 

Surface 
Refinement 

NURBS 
Surface 
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3.2.3.1 Stage 1: Point Cloud  

The point cloud model was exported from Mimics and opened in Geomagic (Figure 3. 

4). As Mimics is unable to specify the exact location of the nostrils, this selection of 

block data was required to be transferred into Geomagic. The nostrils are more easily 

identified. The block must be manually removed to reveal the outline of the nostrils and 

surrounding area. To make this process is easier; the shading can be alternated between 

point cloud and polygon phases to gain a better view of proceedings. Surrounding the 

basic model is an assortment of small isolated data points. This unwanted ‘noise’ (Red 

dots in Figure 3. 5b) can be immediately removed as they are deamed as outliers, and 

not a part of the actual geometry. Unwanted data can also exist so close to the main 

cloud caused by reflections or inadvertent background surfaces and need to be 

manually removed. Because these points are located so close to the nasal cavity model, 

care must be taken to ensure no vital sections of the airway are deleted. A brief recall of 

the human nasal cavity anatomy will ensure only the unwanted data is removed. 

  

(a) before the select outliers (b) after the select outliers 

 Figure 3. 5 Unwanted data located near model boundary to be removed with ‘Select Outliers’ 

function 

To further eliminate unwanted excess data uniform samoling is applied. This removes 

intersecting (common) points and ensures the data points are uniformly distributed. It is 
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still possible to retain excess points in areas of high curvature to maintain adequate 

geometry. Furthermore, the removing of unnecessary data streamlines the 

computational operation performance by optimizing resources including power, 

memory and overall speed. 

3.2.3.2 Stage 2: Polygon Surface  

After the completion of the cloud point data, the next stage is to produce a polygon 

surface. The polygon surface is as a triangle, which is a closed plane formed by three 

line segments that do not intersect except at vertices. A polygon object consists of 

polygons arranged in a complex mesh. The cloud points are create as a meshed surface 

based on the different mathematical algorithms such as Unorganized point clouds, 

Structured point clouds, Surface oriented and so on(Fabio 2003). Alternatively there is 

the option to modify the required surface quality and triangle count, which also 

determines the complexity and subsequent performance of the mesh. The visually 

disorganized exterior of the cloud points is transformed into a relatively smooth surface 

(Figure 3. 4b). However, the next step involves the refinement of this surface. 

3.2.3.3 Stage 3: Surface Refinement 

The subsequent the surface, many holes of varying sizes and shapes and can 

appearrandomly placed on the model. Holes are filled either as curvature-based filling 

or flat-filling based on adjacent edge. Due to the complex and highly curved form of the 

model curvature-based filling is ideally suited as it blends the hole to suit the 

surrounding area, as shown in Figure 3. 6. 

app:ds:adjacent
app:ds:edge
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(a) (b) (c) 

Figure 3. 6 (a) surface hole. (b) flat-filling (c) curvature-based filling 

However, usually when dealing with large holes, the surrounding geometry is too 

complicated for a smooth filling to be created automatically. This requires the manual 

editing in the adjacent area of each individual hole by recognizing abnormal shaped 

polygons and either deleting them to smooth the surface. Modification of the model 

should be kept to a minimum to ensure the fundamental shape is kept intact and credible. 

Upon completion of filling the large holes, small holes remain. For very small holes flat 

filling is adequate. The nasal cavity model is used as a base model to create one 

without sinuses. The relevant sinuses were removed and the operations described above 

were used to fill the gaps and refine the model. 

3.2.3.4 Stage 4: NURBS Surface  

The final stage of the surface generation is to generate a NURBS (Non-Uniform 

Rational B-Splines) surface (Piegl and Tiller 1995). Firstly a series of panels on which 

the patches lie needs to be formed to cover the entire outside surface of the model. The 

panels and patches are applied to the no sinus model initially as it has a simpler 

geometry. The number of patches, in the form of tariangles are applied automaticially, 

or a user-defined specified amount. 
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(b) 

 

(a) (c) 

Figure 3. 7 (a) manual patch layouts (b) Intersecting patches (with), contour lines (orange) and 

patch lines (black) (c) Grid permanently highlighting problem areas 

The number of patches must be increased manually until the entire model is covered 

sufficiently, as in Figure 3. 7a. The large amount of patches can improve the surface 

properties. It will also aid in the application of the mesh by reducing errors, if not 

eradicating them entirely. The computational resources available must be taken into 

account, as the larger the patch quantity on a complex model, the more need for a 

powerful computer. The key is to make a cautious balance between the two parameters. 

A later inconvenience of the complex model of the nasal airways is the existence of 

numerous intersecting patches, which must be repaired, as seen in Figure 3. 7b. Manual 

rearranging of patches is still required and is a repetitive and time consuming exercise, 

especially in the sinus model. The model is due to the complex and bunched nature of 

the geometry; and it is difficult to eradicate all the intersecting patches. When the patch 

is repositioned, the remaining highlighted problem areas can become invisible. To 
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alleviate this, the grid can be constructed in a manner that permanently highlights the 

patches that need modifying, as shown in Figure 3. 7c. The manual construction of the 

patch layout is occasionally required. Completion of a sufficient patch layout occurs 

when patches are evenly spread across the model and the grid construction exhibits no 

intersecting patches. The model is then ready for the application of the NURBS 

(Non-Uniform Rational B-Splines) (Piegl and Tiller 1995)surface shown in Figure 3. 

4d, which is based on the grids that lie in patches that lie on panels. The models are now 

ready to be imported into ANSYS ICEM.(Ansys 2007) 

3.2.4 Developing the CFD Model 

In computing CFD simulations, the mesh generation is a significant setup for attaining 

accurate computational results. For this thesis, the ICEM (ANSYS) was used. The 

reconstructed model is exported as an IGES format, from Geomagic, and is imported 

into ICEM where the surfaces generated are detected as faces. Generating a quality 

mesh requires technical knowledge as well as originality. For different flow problems, 

different techniques and strategies can be applied to generate a high quality mesh. This 

includes the importance of developing a coarse mesh to begin with for initial flow field 

testing, and implementing mesh independence test to ensure an optimum mesh has been 

used. 

3.2.4.1 Mesh Topology 

A computational mesh topology has a hierarchical system whereby higher topology 

assumes the existence of the topologies underneath (Figure 3. 8). The hierarchy for a 

mesh element from the lowest to highest topology is points, lines, faces, and then 
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volumes. The different type of mesh element used (or its combination of) determines 

whether the mesh can be set up as a structured or unstructured mesh. 

 

points lines faces volumes 

Structured cell 

 

points lines faces volumes 

Unstructured cell 

Figure 3. 8 Mesh topology hierarchs from lowest (left) to the highest (right). 

The benefits of a structured grid are the small computing memory and a better solution 

of convergence, but it is hard to apply on complicated geometric shapes such as the 

respiratory organs. Conversely, the unstructured grid has the ability to comply with 

complicated geometries, but it requires significantly more computing memory, because 

of the increased number of adjacent nodes to each individual node. For example, the 

human respiratory model is a complicated geometry that includes the nasal and oral 

cavities, pharynx, larynx, trachea and bronchi. For this kind of realistic model, it is 

more suitable to apply an unstructured mesh, whereas it would be impossible to achieve 

a computational model with a structured one. 
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3.2.4.2 Mesh Quality 

Generating a quality mesh is not a trivial exercise. The quality of a cell depends on 

factors in the grid shape, such as aspect ratio, skewness, and warp angle. The grid shape 

can be in the form of a structured or untrusted mesh as shown in Figure 3. 9 and 

Figure 3. 10. The grid aspect ratio of the cell is defined as AR = ∆y / ∆x. In the first 

boundary layer mesh, to help keep the solution accurate, this ratio should be small to 

make an AR within a suitable range. In addition, large ratios should always be avoided 

in significant flow regions inside the computation domain because they are prone to 

producing poor iterative convergence and reduce the solution accuracy in the 

computational flow solver during the numerical computations. Mesh skewness is 

measured by determining the angle θ between the mesh lines (Figure 3. 9). For minimal 

distortion, it is most desirable for the mesh lines to be at an angle θ of approximately 90 

degrees (orthogonal). If the angle is θ < 45 degrees or θ > 135 degrees, the mesh 

becomes skewed and often exhibits deterioration in the computational results or leads 

to numerical instabilities.  

 

Figure 3. 9 A quadrilateral cell having mesh spacing of ∆x and ∆y and an angle of θ between the 

grid lines of the cell. 

 

∆x 

 

∆y 

θ 
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For an unstructured mesh, special care needs to be taken to ensure that the warp angles 

measuring between the surfaces’ normal to the triangular parts of the faces are not 

greater than 75 degrees as indicated by the angle β in Figure 3. 10. Cells with large 

deviations from the co-planar faces can lead to serious convergence problems. In many 

grid generation packages, the problem can be overcome by a grid smoothing algorithm 

to improve the element warp angles. Whenever possible, the use of tetrahedral elements 

should be avoided in wall boundary layers. Prismatic or hexahedral cells are preferred 

because of their regular shape. A prism grid is often used to close the thin wall flow in 

the boundary layer. The first grid element, which is a thin layer behind the wall, then 

other grid elements above the first element until its layers cover the distance of the 

boundary layer. This allows maximum flexibility in matching appropriate cells with 

boundary surfaces and allocating cells of various element types in other parts of the 

complex flow regions. In this thesis, an unstructured mesh is used for all the models and 

a prism mesh for the boundary layer. 

 

Figure 3. 10 A triangular cell having an angle of β between the surfaces normal to the triangular 

parts of the faces connected to two adjacent triangles.  

β 

Triangle in-centres 
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3.2.4.3 Mesh Independence 

Mesh independence is performed to analyze the suitability of the mesh and to yield an 

estimate of the numerical errors in the computational simulation. In addition it is used 

to determine the minimum mesh resolution required to generate a solution that becomes 

independent of the mesh size that is used. In this thesis, each model is made with at least 

three significantly different grid resolutions, where each subsequent mesh is 

approximately doubled in each direction. A flow field variable should be checked at 

each mesh to monitor its value or profile. The mesh is considered independent when the 

flow variable does not change with an increase in the mesh size. This leads to a mesh 

that has been optimised and hence is grid independent for the flow field where a 

compromise between computational resources and accuracy has been made. 

3.3 CFD Models 

3.3.1 Nasal Cavity with Sinus Model 

For the nasal cavity, CT scans of a healthy nose from a 51-year-old Asian male, were 

obtained. The outline of the model was segmented from the CT-scans and a 

computational mesh for CFD analysis was applied. Two nasal cavity models were 

reconstructed from the same CT scans, and are labelled as NC02 (nasal cavity without 

paranasal sinuses) and NC02-S (nasal cavity with paranasal sinuses), noting that the 

difference in the labels is the character S to denote the addition of the sinuses.  

The influence of computational smoothing on airflow resistance and particle deposition 

has been discussed by Schroeter et al (2011). The developed model underwent 5% 

level of smoothing to ensure that any artificial residual artefacts persisting from the 

scanned images were omitted from the final computational model. Given that images 
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obtained from CT-scans are more prone to artefacts than other conventional 

radiographs, the level of smoothing applied allowed a compromise between retention of 

real geometry artefacts (e.g. overlying mucus) to artificially created artefacts caused by 

CT-scans and its segmentation (e.g. streaking, distortion and shading due to 

inconsistency and inaccuracy of scanner, patient movement or the presence of metallic 

materials in or on the patient) and CAD file interpretations.  

The meshing scheme used a hybrid mesh that included six-prismatic layers with an 

inner tetrahedral core. Grid independence based on velocity profiles at the outlet was 

performed where the optimum number of cells for each geometry mesh was 3million 

for NC02 and 4million for NC02-S. This means that the geometries showed less than 1% 

change in velocity profiles when the mesh was further refined. As discussed earlier, the 

mesh should change slowly and smoothly away from the domain boundary. Figure 3. 

12 shows the application of a hybrid mesh that contains tetrahedral elements inside the 

domain and prism layers along the surface or domain boundaries.  

 

Figure 3. 11 Near wall mesh that has a 6-prism layer for a nasal cavity with sinus model. 
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3.3.2 Nasal Cavity with Nasal Spray Device Model 

An existing computational model of the nasal cavity is used and for brevity, the details 

of its model construction, and verification can be found by Inthavong et al (2009b), and 

is labelled as NC01 (nasal cavity without paranasal sinuses). In earlier studies, 

Inthavong et al(2006) along with others in the literature (Kleinstreuer and Zhang 2003; 

Li et al. 2007a; Straatsma et al. 1999), the number of cells making up the mesh in the 

computational model of the nasal cavity was limited by the available computing power. 

Now with increased computing power (HPxw6600 Workstation 16GB Ram, 16 

Processors), a nasal cavity with 3.5 million cells (193Mb in computational memory size) 

was developed using unstructured tetrahedral cells with mesh refinements at the near 

wall regions and high curvature geometric features. The finer mesh, especially near the 

wall boundaries, allows better modelling of the sharp gradients found in the boundary 

layer. In addition the maximum y+ value in any cell of the model needed to be in the 

order of 1, (y+
max = 0.78) to resolve the near wall region for the low Reynolds number 

k-ω turbulence model. Grid independence was achieved for a mesh size of 1 million 

cells (Inthavong 2006), however it was found that a small percentage of adjacent wall 

cells had a y+ value greater than 1, which was addressed in the final model. 

Based on this nasal cavity model, a second model was created to include the presence of 

a nasal spray device inside the left nostril. The spray device has a head diameter of 7mm 

inserted at an angle of 10o from vertical. The computational model with nose spray is 

depicted in Figure 3. 12 and consists of 3 regions, namely Anterior Region (nasal 

vestibules), Middle Region (olfactory and turbinates) and Posterior Region 

(nasopharynx), and is labelled as NC01S (nasal cavity with spray drive) 



 

54 

 (a)  

 (b)  
(c)  

Figure 3. 12 Computational model inclusive of the nasal spray device, highlighted in red. (a) 

External tetrahedral surface mesh at the left nostril region. (b) Internal tetrahedral surface mesh of 

the nasal spray device. The blue annulus region represents the surface inlet opening space, left over 

from the spray device partially blocking the opening. (c) Computational model subdivided into three 

regions. Labels A, B, C represent three coronal slices in the left nasal cavity created for 

visualisation of airflow patterns  
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Chapter 4 

Numerical Methodology 

4.1 Introduction 

In this chapter, the general numerical models and mathematical equations used for the 

numerical simulations in this thesis are provided. The turbulent models, k-ε and Shear 

Stress Transport (SST) models, that are in the framework of Reynolds averaged 

Navier-Stokes (RANS) model, are used to describe the gas phase modelling. For the 

particle phase modelling, the numerical models used the Lagrangian particle tracking 

and Eulerian diffusion model. For different sized the particle, used different modelling 

methods are needed and this is discussed in the separate chapters (chapter 5, 6 and 7). 

4.2 Gas Phase Modelling 

The governing equation of fluid flow is represented through infinitesimal small control 

volume to conserve mass and energy from the basic conservation principles. It can be 

shown that these equations conform to a generic transport equation. Fundamentally the 

transport equation describes the inertial movement by the local acceleration and 

convection of a fluid variable, which is opposed by the diffusion which acts against the 

flow of the fluid variable. 
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4.2.1 Governing Equations for Fluid Flow 

CFD is fundamentally based on the governing equations of fluid flow, and heat transfer 

which are the conservation laws of physics. The equations are: 

 Continuity equation 

 Three momentum equations, and  

 Energy equation 

which are solved numerically for the incompressible gas phase flow in the 

computational domain. These equations form what is called the full Navier-Stokes 

equations.  The full set of equations can be found in Appendix A. 

4.2.2 Turbulence Modelling 

4.2.2.1 Reynolds Averaged Navier-Stokes Equations (RANS) 

The Reynolds Averaged Navier Stokes (RANS) based turbulence models gets its name 

from the decomposition of the flow variables into the average and fluctuating 

components within the governing equations resulting in time averaged equations with 

the turbulent features encapsulated by the Reynolds stress. This is achieved by adopting 

a suitable time-averaging operation on the momentum equations to yield the RANS 

equations as: 
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where g
iu and iu′  are gas phase mean velocity and gas phase fluctuating velocity, 

respectively. The ijτ  is the mean viscous stress tensor component: 
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The time-averaged equations can be solved if the unknown Reynolds stresses, jig uu ′′ρ  

in Equation (4.8) can be related to the mean flow quantities. It was proposed that the 

Reynolds stresses could be linked to the mean rates of deformation (Hinze, 1975): 
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where tg ,µ  is the eddy viscosity or turbulent viscosity. Since the complexity of 

turbulence in most engineering flow problems precludes the use of any simple formulae, 

it is possible to develop similar transport equations to accommodate the turbulent 

quantity kg and other turbulent quantities such as the rate of dissipation of turbulent 

energy εg. Here, kg and εg can be defined and expressed in Cartesian tensor notation as: 
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From the local values of kg and εg, a local turbulent viscosity tg ,µ can be evaluated as: 

`
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By substituting the Reynolds stress expressions in Equation (4.10) into the governing 

Equation (4.7) and (4.8), and removing the overbar that is indicating the time-averaged 

quantities, one obtains the following equations can be obtained. 
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4.2.2.2 Re-Normalization Group Model (RNG) 

In the 1984, Yakhot and Orszg (1984) developed Re-Normalization Group model 

(RNG), the kinetic energy (k) and dissipation (ε) are solved by two additional 

differential equations, are obtained from the following transport equation: 
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The coefficient of thermal expansion, , is defined as 
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The degree to which ε  is affected by the buoyancy is determined by the constant 3C ε . 

In ANSYS FLUENT is not specified, but 3C ε  is instead calculated according to the 

following relation: 

u
C υ

ε tanh3 =                4. 18 

Where υ is the component of the flow velocity parallel to the gravitational vector and u 

is the component for the flow velocity perpendicular to the gravitational vector. The 
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Prandtl number (Prt) is the turbulent Prandtl number for energy and gj is the component 

for the gravitational vector in the i th direction, Prt is 1/α, where α is given by equation: 
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α0=1.0. in the high Reynolds number limit (µmol/µeff<<1),αk=αε ≈1.393. The RNG 

turbulence model is the turbulent viscosity. The scale elimination procedure in RNG 

theory results in a differential equation for turbulent viscosity effµ :  
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where 
g

effv µ
µ

=
∧

 and Cv=100.  

The RNG k-ε model includes an additional strain rate term R in the ε-equation (4.18) 

for the RNG k-ε model. The term is modelled as: 
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Here, β and ηo are constants with values of 0.015 and 4.38. The significance of the 

inclusion of this term is its responsiveness towards the effects of rapid rate strain and 

streamlines curvature, which cannot be properly represented by the standard k-ε model. 

According to the RNG theory (Yakhot and Orszag 1986), the constants in the turbulent 

transport equations are given as: 

σk = 0.718, σε = 0.718, C1ε = 1.42 and C2ε = 1.68 Cµ = 0.09, 
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4.2.2.3 Shear Stress Transport Model (SST) 

The shear-stress transport (SST) k-ω model was developed by Menter (1994) to 

accomodate for a wider class of flows. The modifications include the addition of a cross 

diffusion term in the ω equation and a blending function to ensure that the model 

equations behave appropriately in both the near wall and far field zones. To achieve this, 

the k-ω-SST model is converted into a k-ω-SST formulation. The k-ω-SST model is 

similar to the standard k-ω model, which are obtained from the following transport 

equation: 

  4. 22 

     4. 23 

The coefficient α* and α damps the turbulent viscosity. For a in a low-Reynolds-number 

flow aαis given by: 

 and        4. 24 

There are same components for the dissipation of k and ω; in dissipation of k 
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where S is the strain rate magnitude in 4.23 and 4.24 and 
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the blending functions, F1 and F2, are given by 
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where y is the distance to the next surface and is the positive portion of the cross 

diffusion term.  
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According to the theory, F(Mt) is the compressibility function, the constants in the 

turbulent transport equations are given: 

 

4.2.2.4 Transition Shear Stress Transport Model 

The transition SST model is based on the coupling of the SST k-ω transport equations 

with two other transport equations, one for the intermittency and one for the transition 

onset criteria, in terms of momentum-thickness Reynolds number. Langtry and Menter 

(2006) have been developed the model to cover standard bypass transition as well as 

flows in low free-stream turbulence environments. The transport equation for the 

intermittency γ is defined as 
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The transition sources are defined as follows:  
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where S is the strain rate magnitude. Flength is an empirical correlation that controls the 

length of the transition region. The destruction/relaminarization sources are defined as 

follows:  
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where Ω is the vorticity magnitude. The transition onset is controlled by the following 

functions:  
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Reθc is the critical Reynolds number where the intermittency first starts to increase in 

the boundary layer. This occurs upstream of the transition Reynolds number Re tθ  and 

the difference between the two must be obtained from an empirical correlation. Both 

the Re tθ  and Flength correlations are functions of Reθc. The constants for the 

intermittency equation are:  

 

Coupling of the transition model to the SST transport equation occurs as fllows:  
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k eff kP Pγ=                 4. 39 

( )( )min max ,0.1 ,1.0k eff kD Dγ=            4. 40 
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Where Pk and Dk are the original production and destruction terms for the SST model 

and F1orig is the original SST blending function. Note that the production term in the 

ω-equation is not modified. The rationale behind the above model formulation is given 

in detail in Menter et al (2003). In order to capture the laminar and transitional 

boundary layers correctly, the mesh must have a y+ of approximately one. If the y+ is 

too large (i.e. > 5), then the transition onset location moves upstream with increasing y+. 

It is recommended to use the bounded second order upwind based discretization for the 

mean flow, turbulence and transition equations. 

4.3 Particle Phase Modelling 

Particle dynamics, its motion transport and deposition in a flow domain can be 

described in either the Lagrangian or Eulerian perspective. This selection has a 

significant influence on the modelling requirements and the results produced. For 

example in the Lagrangian method, individual particle deposition can be visualised, 

while in the Eulerian, an approach volume fraction or concentration representing the 

particle phase in each cell on the surface walls is used to describe the particle phase 

deposition. This difference in perspectives leads to different coupling approaches of the 

particle equations to the governing equations of fluid flow. In this research, only the 

Eulerian-Lagrangian and Eulerian species (or component) model is used. 
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4.3.1 Micron Particles 

A Lagrangian formulated micron particle equation of motion is solved using FLUENT 

(used in chapter 5, 6 and 8). The trajectory of a discrete particle phase is determined by 

integrating the force balance on the particle. This force balance equates the particle 

inertia with the forces acting on the particle. Appropriate forces such as the drag and 

gravitational forces are incorporated into the equation of motion. Particles are 

individually tracked under the Lagrangian approach by integrating the force balance 

equations on the particle as follows:  
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where Fs is other possible forces such as virtual mass force, Basset force and pressure 

gradient force, which are not applicable for micron particles with ρp >> ρg. 

)( pgD uuF − is the drag force per unit particles mass, and FD is given by: 
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where ρp denotes the density of particle material and dp is the particle diameter. pu

presents the particle velocity. Rep is the relative Reynolds number defined as: 
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CD is drag coefficient as correlated as a function of the Rep: 
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The treatment of one-way turbulent particle dispersions can be performed through a 

stochastic methodology. The simplest approach and the one available in FLUENT is 

the eddy-interaction model (EIM), which is also called the discrete or discontinuous 

random walk model, (DRW). The DRW model is widely used in turbulent particle 

flows for its conceptual simplicity and uncomplicated reconstruction of the local eddies 

whose scales are deduced from local mean flow quantities. The fluid velocity in the 

particle motion equation (Equation 4.44) becomes 'uuug +=  where u  is the 

mean velocity and 'u  is the fluctuating velocity component. The flow field is then 

assumed to consist of random discrete eddies, each of which are defined by a lifetime, 

length, and velocity scale. From the model of Gosman and Ioannides (1981) the eddy 

scales for homogeneous isotropic stationary turbulence are determined from the fluid 

turbulence model as: 
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Graham and James (1996), suggests that these same representative scales should be 

doubled for non-homogeneous turbulence as the length and time scales is expected to 

under-estimate particle dispersion. The fluctuating velocity components '
iu  that prevail 

during the lifetime of the turbulent eddy are sampled by assuming that they obey a 

Gaussian probability distribution. The fluctuating velocity is then: 

2''
ii uu ζ=                 4. 49 

where ζ  is a normally distributed random number. Assume the local root mean square 

(RMS) velocity fluctuation is isotropy, it can be obtained by: 
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3
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The interaction time between the particles and eddies is smaller of the eddy lifetime eτ  

and the particle eddy a crossing time crossτ . The characteristic lifetime of the eddy is 

defined as: 
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The particle interacts with the fluid eddy over the interaction time. When the eddy 

lifetime is reached, a new value of the instantaneous velocity is obtained by applying a 

new value of ζ  in 4.49. Small micron particles have been shown to be sensitive to the 

near wall anisotropy. When using a RANS turbulence model such as the k-ω model that 

is based on the isotropic assumption ( ( ) 5.0''' 3/2kwvu === ), the deposition of the 

micron particles (1-10μm) is overpredicted. The overprediction is primarily caused by v’ 

which is much smaller in comparison with the other fluctuating components, u’ and w’. 

This can be accounted for through a damping function (Matida et al. 2004; Wang and 

James 1999) applied in the near wall region of y+ < 60 given as: 

new simulatedk  [1- exp(-0.02y+)] k         for  y+ < 60=        4. 54 
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4.3.2 Sub-Micron Particles 

For sub-micron particles, the effects of Brownian random force generated by the impact 

of gas molecules on the particle can be included as an additional force term and 

included as part of Fs in the particle equation of motion given by Equation (4.44): 

For submicron particles, FD takes the form of Stokes' drag law (Ounis et al. 1991) that 

is 
24
ReDC = , convert it with Equ4.47 becomes: 
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where Cc is the Cunningham correction factor to Stokes' drag law, which can be 

calculated from,  

( )( )λλ 21.14.0257.121 pd

p
c e

d
C −++=           4. 56 

λ is the mean free path of air, assumed to be 65 nm. Amplitudes of the Brownian force 

components are of the form,   

t
SFB ∆
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where ζ  is a zero mean, unit variance independent Gaussian random numbers. ∆t is 

the time-step for particle integration, and So is a spectral intensity function, 
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which is directly related to the diffusion coefficient. 
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Saffman's lift force, or lift due to shear (Li and Ahmadi 1992), is a generalisation of the 

expression originally provided by (Saffman 1965) and is applied here as:  
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K is a constant and is equal to 2.594 while dij is the deformation tensor. This form of the 

lift force is intended for small particle Reynolds numbers. Also, the particle Reynolds 

number based on the slip velocity must be smaller than the square root of the particle 

Reynolds number based on the shear field.  

Small particles suspended in a gas that exhibits a temperature gradient experiences a 

thermophoretic force in the direction opposite to that of the gradient. This effect is 

included in the thermophoretic force term,  
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where DT is the thermophoretic coefficient given by Talbot et al (1980).  

An alternative for the Lagrangian approach in nanoparticle modelling is to use the 

Eulerian species approach. This involves modelling the nanoparticle diffusion with a 

single mixture component fluid with the nanoparticles treated as a chemical component 

or species. A scalar c, representing the concentration of the nanoparticles is applied to 

the transport equation as: 
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which neglects the effects of particle inertia. Longest et al (2007) showed that the 

effects of particle inertia plays a minor role in ultrafine aerosol deposition. 
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4.4 Numerical Solution and Procedure 

4.4.1 Solution Procedure  

To summarise the CFD solution process, Figure 4. 1 shows the interconnections of the 

three main elements of a CFD analysis (Ansys 2007). In the Pre-processor stage, 

geometry for analysis and defining the computation domain, the fluid properties and 

physics, is needed. This stage determines the analysis type that can be steady flow or 

transient flow, and at laminar or turbulent state. The transport of heat may be included 

into the analysis if it contributes significantly to the fluid flow process. The three heat 

transfer modes are conduction, convection and radiation. In terms of modelling the 

particle phase, there are two methods that can be used: Lagrangian discrete phase, and 

a fully coupled Eulerian multiphase. The complex nature of the fluid flow behaviour 

has important implications in which boundary conditions are prescribed for the flow 

problem. The appropriate conditions selected need to mimic real physical 

representation of the fluid flow. At inflow and outflow boundaries of the flow domain, 

suitable fluid flow boundary conditions are required to accommodate the fluid 

behavior entering and leaving the flow domain. The flow domain may also be 

bounded by open boundaries. Appropriate boundary conditions are also required to be 

assigned for external stationary solid wall boundaries that bound the flow geometry 

and the surrounding walls of possible internal obstacles within the flow domain. 
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Figure 4. 1 Flow process of the three main elements within a CFPD analysis framework. 

The numerical methods and solution is the basis of the second main element of a CFD 

simulation. The selection of an appropriate numerical soluation method is imperative 

to obtain reliable results. These methods include discretisation schemes (equations 

applied onto the mesh), pressure-velocity coupling schemes, particle tracting schemes, 

and convergence criteria. 

The steps in a solver can be shown in Figure 4. 2. Values of flow properties such as the 

velocity, pressure, temperature and other transport parameters of interest are defined at 

every computational cell before calculations can begin. During the actual numerical 

calculations the user should undertake solution monitoring which involves checking for 

convergence of the iterative process and performing grid independence. The last step is 

Post-processing, which involves the conversion of raw data into meaningful results. 

CFD has the ability to produce colourful graphics, and precise detailed data such as 

streamline, contour, and vector plots as well as particle tracking. 
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Figure 4. 2 Overview of the segregated solver solution steps 

4.4.2 Numerical Solution Schemes 

4.4.2.1 Fluid Flow Discretisation 

Almost all commercial CFD codes adopt the finite volume discretisation of the 

Navier-Stokes equation with different schemes to obtain numerical solutions. There a 

number of fluid flow discretisation schemes, which can be categorised by their 

accuracy. The first order scheme is the least accurate, and is susceptible in producing 

incorrect results. The second order accurate upwind schemes reduce some of the 

errors found in first order schemes, and accounts for upstream flow effects by taking, 

the value of a cell face to equal to the value at the upstream node. Furthermore, the 

effect of a mesh refinement is far more influential under a second-order scheme in 

comparison to a fist-order scheme. The third order accurate Quadratic Upstream 
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Interpolation for Convective Kinetics (QUICK) scheme, that uses a quadratic 

approximation across two variable points at the upstream and one at the downstream 

and it was based on a weighted average of upwind and central interpolation of the 

variables. This provides accuracy for a larger range of flows, over the first order and 

Upwind schemes, although it can be difficult to obtain a converged solution if the 

CFD problem is complicated. 

A popular scheme for pressure-velocity coupling for an incompressible flow is 

typically iterative methods, which is embodied in a scheme called SIMPLE. It is a 

widely used scheme developed by Patankar (1980) and can be found in nearly all 

CFD codes. The SIMPLE scheme provides a method of calculating the pressure and 

velocities for an incompressible flow. When coupled with other governing variables, 

the calculation needs to be performed sequentially since it is an iterative process. 

When the CFD model has highly skewed cells or the physical problem is complicated, 

the discretised equations may encounter difficulties in converging, and in fact can 

diverge, and the solution is not achieved. The under-relaxation factor is a value between 

0 and 1 which aims to reduce large changes in the variable which can help reduce the 

likelihood of divergence in the solution. However the value should not be set too small 

as this will slow down the solution. Therefore there is an optimal value that is low 

enough to prevent divergence in the solution but still high enough to provide rapid 

convergence. The selection of a suitable under-relaxation factor is flow dependent and 

different for each case, and so a single value cannot be used. 

4.4.2.2 Lagrangian Particle Phase 

The particle tracking equation is in the form of an ODE. Solution methods to the ODE 

include implicit, analytic, trapezoidal and runge-kutta. The first two methods are low 
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order schemes, while the latter two methods are high order scheme. The implicit 

method and analytic method use different integration (implicit Euler integration and 

analytic integration) at same equation (Equation 4. 44). The implicit method is 

unconditionally stable for all particle relaxation times. Instead, the analytical 

integration method is force held constant during the integration. The analytic method 

is very efficient; however it can become inaccurate for large steps and in situations 

where the particles are not in hydrodynamic equilibrium with the continuous flow. In 

the high order scheme, the trapezoidal method uses a semi-implicit trapezoidal 

integration as a fourth order scheme. The runge-kutta method is fifth order scheme 

and it derived by Cash et al (1990). The runge-kutta scheme is suggested of non-drag 

force changes along a particle integration step. 
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Chapter 5 

The Effect of Human Thermal 

Plume on Particle Transport 

and Inhalation 
5.1 Introduction 

The transport characteristics of aerosol particles and their inhalation characteristics by 

human occupants in indoor environments have had a great deal of importance attached 

to them as people spend approximately 90% of their time indoors and a number of 

health problems have been found to be associated with particle inhalation (Inthavong et 

al. 2009a). During the past decades, numerous experimental and numerical 

investigations (Aitken et al. 1999; Anthony and Flynn 2006; Anthony et al. 2005; Hinds 

et al. 1998; Hsu and Swift 1999; King Se et al. 2010) have been conducted under 

various conditions and many important conclusions have been reported. It is generally 

accepted nowadays that the particle inhalability by a human occupant is subjected to 

many factors such as the particle size, ambient wind speed, airflow pattern in the 

breathing zone, inhalation rate, inhalation pattern (mouth or nasal inhalation), and even 

human facial features. 
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However, most of the previous investigations on particle inhalation failed to take into 

account the effects of the metabolic heat released from a human body. In fact, a human 

body is continually exchanging energy with its environment. The average thermal 

energy generated by a human body with an ordinary activity level and at moderate room 

temperatures was found to be up to 100Watts (Gowadia and Settles 2001). Due to this 

heat, a temperature gradient is formed and drives a buoyant free-convection with 

upward velocity in the vicinity of the human body, which is known as the human 

thermal plume (Craven and Settles 2006). Homma et al (1988) measured the free 

convection around a person standing in quiescent air using smoke wire photography 

and hot-wire anemometry. It was found that the thermal boundary layer was 

approximately 50mm thick at the face level and its velocity was up to 0.25m/s. Using a 

laser Doppler anemometer, Johnson et al (1996) measured the airflow around a human 

body standing with its back towards the free stream (0.2m/s). A significant upward 

airflow was observed in the downstream of the human body and the upward velocity 

was found to be approximately 0.19m/s at the nose level. A synthetic literature survey 

demonstrated that the human thermal plume can produce vertical air velocities of 0.1 to 

0.25m/s in the breathing zone (Craven and Settles 2006; Homma and Yakiyama 1988; 

Johnson et al. 1996; Rim and Novoselac 2009b) This vertical velocity induced by body 

heat is roughly equal to the average wind speed in most indoor environments 

(0.05~0.25m/s according to Baldwin et al (1998) and Schmees et al (2008), it is 

therefore reasonable to expect that the buoyancy-driven convection may significantly 

change the airflow pattern and play an important role in transporting aerosol particles in 

the vicinity of a human body. This is especially true for fine and ultrafine particles as 

their transport is mostly controlled by the indoor flow field (Longest and Kleinstreuer 

2004). 
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During the past years, the effects of human thermal plume on aerosol particle transport 

and inhalation have been investigated by few researchers in quiescent air. For example, 

using a sedentary thermal manikin (the surface area was 1.5m2 and the total heating 

power was 85W), Rim et al (2009b) investigated experimentally the effects of human 

thermal plume on the inhalability of fine/ultrafine particles (0.03, 0.77 and 3.2 microns 

in diameter) in stratified indoor air. It was found that when the particle source was at 

floor level and in near proximity to an occupant, the inhaled particle concentration by 

the manikin was up to 4 times higher than the ambient concentration. This implies that 

the thermal plume plays an important role in transporting pollutants and particles from 

the floor level to the breathing zone. However, the conclusions based on quiescent or 

quasi-quiescent indoor air conditions may not be quantificationally applicable to 

realistic situations where ventilation is operating and the orientation of an occupant 

relative to the free stream may be random. Therefore, for the purpose of accurate 

description of the effects of human metabolic heat on particle transport and inhalation, 

some important factors including the wind speed and the occupant orientation have to 

be taken into account. In fact, few experimental investigations have been conducted to 

study the human thermal plume under low-speed wind conditions. For example, Heist 

et al (2003) measured the airflow around a child-size thermal manikin (80cm in height, 

facing to or back to the free stream, and with a constant surface temperature of 33°C) in 

a wind tunnel. It was found that the presence of body heat dramatically changed the 

airflow pattern by causing an upward airflow on the downstream side of the manikin, 

which was believed to be capable of transporting particulates into the breathing zone 

form near the floor. This is especially true when the occupant was downstream facing. 

Unfortunately, the authors only measured the airflow field but failed to include 

particles in the experimental measurements. To the best of our knowledge, the effects 
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of human metabolic heat on particle transport and inhalation in a realistic indoor 

environment have rarely been investigated. Therefore in this chapter, the effects of 

human metabolic heat on particle transport and inhalation are synthetically investigated 

using CFD, with special consideration of various indoor wind speeds and the 

occupant-wind orientation. 

5.2 Numerical Procedure 

5.2.1 Computational Model 

The computational domain of this study was a rectangular wind tunnel containing a 

1.65m tall human manikin standing in its middle plane, as illustrated in Figure 5. 1a. 

The dimensions of the wind tunnel (4m-width× 7m-depth× 3m-height) were created 

large enough so that the flow field near the manikin was free from the effects of the 

no-slip condition of the stationary surrounding walls. Two slightly different manikin 

models were created in this study, namely one with its legs closed (Figure 5. 1b) and the 

other with its legs open (Figure 5. 1c). The former was used for model validation and 

the latter stood for more realistic situations. In order that the detailed airflow pattern 

and particle transport characteristics in the breathing zone could be captured, the 

manikin head was carefully built in terms of the anthropometric data of Tilley (1993) to 

represent the 50th percentile of a human male aged between 20 and 65 years. 
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(a)Layout of the computational domain 

     

(b) Manikin model No. 1   (c) Manikin model No. 2 

Figure 5. 1 The computational domain and human manikins 

Unstructured tetrahedral and prism meshes were adopted to discretise the 

computational domain, with fine meshes around the manikin to capture the geometric 
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features of the manikin and the effects of human thermal plume, as illustrated in Figure 

5. 2. The grid sensitivity test proved that the mesh independence was achieved at 4.0 

million cells, with the skewness of the cells and y+ value on the walls dropping below 

0.8 and 0.78 respectively. 

 

Figure 5. 2 Refined meshes around the manikin model 

5.2.1 Boundary Conditions 

This manikin-wind orientation effect was taken into account in this study by applying 

an evenly distributed air inflow at the either tunnel end and a zero pressure boundary 

condition at the other end, which thereby produced a facing-the-wind and back-to-wind 

situation, respectively. The free stream velocity at the tunnel inlet was chosen to be in 

the range of 0.05 to 0.25m/s, which represents the typical indoor wind speeds (Schmees 

et al. 2008). The periodic respiration activities of the human body were neglected and 

the inhalation was assumed to be steady according to Horschler et al. (2010). A constant 

inhalation rate of 15 liters per minute (L/min) representing light human breathing at 

light activity conditions (Mihaescu et al. 2008; Snyer 1975) was equally applied at the 
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manikin nostrils, namely 7.5 L/min for each nostril. For heat transfer modelling, a 

constant free stream temperature of 26ºC, which is a typical air-conditioning ventilation 

temperature in summer seasons, was applied at the tunnel inlet and a constant 

temperature of 31ºC was applied at the manikin surface, as recommended by Gao et al. 

(2004). Particles with density of 1000kg/m3 were released in a circular plane with a 

diameter of 1.6m and located 1.5m upstream of the manikin. The particle size was 

chosen to be small enough, (at 1.0µm), so that the effect of gravitational settling could 

be safely neglected and the transport of particles was mostly controlled by the airflow 

field (Jiang and Zhao 2010). A uniform particle concentration assumption to satisfy the 

“negligible bluff-off effects” criteria was used which is in line with the work by Chung 

et al (1994).This is achieved by releasing particles at the same velocity as that of the 

free stream. The assumption is needed to ensure consistent results regardless of the 

particle source location and to have a well-mixed condition. Finally, computations were 

also conducted using the isothermal conditions for the purpose of comparison. 

Sensitivity analysis proved that when the number of particle tracks turned over 100,000, 

the numerical results were independent of the particle track number. 

5.3 Results and Discussion 

5.3.1 Model Validation 

The predicted air flow field was validated using Heist et al’s (2003) experimental data. 

In their experiments, they investigated the airflow pattern around a child-size manikin 

(80cm in height, leeward, without breathing) standing with its back towards the coming 

free stream in a wind tunnel using laser Doppler anemometry. Particle transport was not 

included in the experiments; therefore, only airflow equations were solved in the 

validation computations. The airflow visualization experiments were conducted under 



 

82 

isothermal and thermal conditions, respectively. In the isothermal condition, both the 

free stream and the manikin had the same temperature (21ºC) while in thermal 

conditions, the temperatures of the free stream and the manikin surface were 

maintained at 21ºC and 33ºC, respectively, as listed in Table 5. 1. In order to achieve 

hydrodynamic and thermodynamic similarities with the experimental setup, the 

manikin model with its legs closed (Figure 5. 1b) was employed and the boundary 

conditions of the CFD model were carefully chosen to produce an equal Reynolds 

number for the isothermal case and an equal Richardson number for the thermal case, 

respectively, as listed in Table 1 as well. The Richardson number is defined by, 

( )
2 2

GrRi
Re

s refg T T H

u

β −
= =               5. 1 

where, Gr and Re are the Grashof number and Reynolds number, respectively. sT is the 

manikin surface temperature and refT  is the reference temperature, which takes the 

value of the free stream temperature (21ºC). H is the manikin height and u is the 

velocity of the free stream.  

Table 5. 1 Experimental conditions and boundary conditions of validation computations 

 u (m/s) refT (ºC) sT (ºC) H (m) Re Ri 

Experiment-Isothermal  0.1 21 21 0.8 5481 -- 

Simulation-Isothermal 0.051 21 21 1.6 5481 -- 

Experiment-Thermal  0.1 21 33 0.8 -- 1.27 

Simulation-Thermal 0.051 21 22.6 1.6 -- 1.27 

The predicted airflow fields around the manikin under the isothermal and thermal 

conditions are compared against the experimental results in Figure 5. 3 and Figure 5. 4. 

For the convenience of comparison, the coordinates in the figures are normalized with 
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the manikin height (H). It was found that the simulated airflow fields generally agree 

well with the experimental results. The difference in the local vector distributions may 

be due to the different geometric shape of the manikins. 

Figure 5. 3a and Figure 5. 3b are shown under the isothermal conditions, with a wake 

region containing two counter-rotating vortexes forming on the downstream side of the 

manikin. One of the vortexes is located near the breathing zone while the other is 

located at a lower height (near the legs). The former vortex entrains air flowing around 

the head into the breathing zone. This suggests that the air and contaminants that may 

be inhaled by an occupant are released from a source located at a height of the breathing 

zone. In addition, vortexes are also observed in horizontal planes. Figure 5. 3c and 

Figure 5. 3d show the airflow vectors in the horizontal plane of Z/H=0.6, where two 

counter-rotating elliptic vortexes are distributed symmetrically on the downstream side 

of the manikin. However, both the experiments and the numerical simulations using the 

thermal conditions present a totally different figure of the airflow pattern.  
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(a) Experiment (b) Simulation 

  

(c) Experiment, / 0.6Z H =   (d) Simulation, / 0.6Z H =  

Figure 5. 3 Airflow velocity vectors under isothermal conditions 

In Figure 5. 4a and Figure 5. 4b, when heat transfer between the manikin and the air is 

included, the vortex region on the downstream side of the manikin (Figure 5. 3a and 

Figure 5. 3b) is replaced by an upward rising airflow. Because of this rising airflow, the 

air in the breathing zone was observed to come from a lower height, especially from 

near the floor level, which indicates that the air and contaminants that may be inhaled 

are released from a source located near the floor. Furthermore, the counter-rotating 

vortexes in the horizontal plane of Z/H=0.6 (Figure 5. 3c and Figure 5. 3d) are 

significantly suppressed, as shown in Figure 5. 4c and Figure 5. 4d. 
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(a) Experiment (b) Simulation 

  

(c) Experiment, / 0.6Z H =   (d) Simulation, / 0.6Z H =  

Figure 5. 4 Airflow velocity vectors under the thermal condition 

It is clear that due to the heat transfer between a human body and its surroundings, there 

actually exists a distinct upward rising airflow (the human thermal plume) on the 

downstream side of the body. Because of this rising airflow, air and particulate 

contaminants in the breathing zone that may be inhaled by a human occupant actually 

come from a lower level than the breathing zone. Therefore, for the purpose of effective 

assessment of particle transport and inhalation, the effect of human body heat has to be 

taken into account, which will be discussed in the following sections. 
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5.3.2 Effects of Thermal Plume on Particle Transport & 

Inhalation 

Further simulations were conducted with various boundary conditions to investigate the 

effects of human body heat on particle transport and inhalation. In the following 

simulations, a more realistic manikin model that is open legs in Figure 5. 1c 

representing a human occupant standing with its legs open was employed. In addition, 

as demonstrated in the above paragraph, the airflow field on the downstream side of the 

manikin is significantly changed by its body heat while that on the upstream side is 

invisibly affected. This indicates that the inhalation characteristics of particles may be 

different with varying orientation of the manikin relative to the free stream. As 

illustrated previously, due to the obstacle of the manikin, the affected region is located 

at the downstream side of it. This indicates that when the manikin is facing the wind, 

the effect of body heat on particle inhalation is not significant since the airflow field in 

the breathing zone is not obviously changed. Figure 5. 5 shows that for the 

facing-the-wind cases, despite the total different airflow field on the downstream side 

of the manikin, the tracks of inhaled particles are almost the same for both the 

isothermal and the thermal conditions.  
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 (a) Isothermal                         (b) Thermal 

Figure 5. 5 Typical tracks of inhaled particle under facing-the-wind conditions (0.1 m/s) 

However, computations using the back-to-the-wind conditions produced a completely 

different picture. The images on the left side of Figure 5. 6 show the airflow field 

around the manikin and the inhaled particle tracks under the back-to-the-wind situation. 

Firstly, it was found that the airflow field on the downstream side of the manikin was 

significantly affected by body heat. However, due to the gap between the open legs 

which allows air flowing through, the size of the affected region is smaller than that in 

the closed-legs situation (See Figure 5. 3(b) and Figure 5. 4(b)). Similar to what has 

been discussed in the validation part, a vortex region containing two counter-rotating 

vortexes was predicted using the isothermal conditions and a significant upward 

airflow velocity was predicted using the thermal conditions in Figure 5. 6. 
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(a) 0.05 m/s Isothermal Condition (f) 0.05 m/s Thermal Condition 

  
(b) 0.10 m/s Isothermal Condition (g) 0.10 m/s Thermal Condition 

  

(c) 0.15 m/s Isothermal Condition (h) 0.15 m/s Thermal Condition 
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(d) 0.20 m/s Isothermal Condition (i) 0.20 m/s Thermal Condition 

  
(e) 0.25 m/s Isothermal Condition (j) 0.25 m/s Thermal Condition 

Figure 5. 6 particle inhalation into the human  

For the isothermal condition, the vortex region was elongated with increasing free 

stream speed. The airflow field on the downstream side of the manikin was found to be 

significantly affected by body heat. However, due to the gap between the open legs 

which allows air flowing through, the size of the affected region is smaller than that in 

the closed-legs situation. Similar to what has been discussed in the validation part, a 

vortex region containing two counter-rotating vortexes was predicted using the 

isothermal conditions and a significant upward airflow velocity was predicted using the 
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thermal conditions. For the isothermal condition, the vortex region was elongated with 

increasing free stream speed. However, for the thermal condition, the upward airflow 

velocity was gradually suppressed with increasing free stream speed and a big vortex 

was formed on the downstream side of the manikin (Figure 5. 6h). Similar to that of the 

isothermal situation, the size of the vortex was also elongated with increasing free 

stream speed (Figure 5. 6i and Figure 5. 6j). 

The comparison is in Figure 5. 6, that the most significant difference between the 

thermal and isothermal situations exists in the tracks of inhaled particles. When the 

body heat is not considered, the inhaled particles come from a higher level, which is 

slightly lower than that of nose. The images on the left side of Figure 5. 6 illustrate that 

the particles are elevated to avoid the obstacle when approaching the manikin and some 

particles going around the manikin head are inhaled. The number of inhaled particles 

decreases with increasing free stream speed. However, the inhaled particles have totally 

different tracks when body heat is included in the computations. As shown in the 

images on the right side of Figure 5. 6, due to the rising airflow on the downstream side 

of the manikin, the inhaled particles come from a lower level than that in the isothermal 

situation. In particular, the air flowing through the leg gap entrains particles into the 

breathing zone. With increasing wind speed and vortex region size (Figure 5. 6g to 

Figure 5. 6j); particles go a further distance before being inhaled. The comparison 

demonstrates that taking body heat into account in the computations would lead to a 

totally different prediction of the tracks of inhaled particles. When the pollution sources 

are located at different height levels, the inhaled particles may be different due to this 

effect. Therefore, it is critical to consider the effects of body heat when modelling 

particle transport around a human body and its inhalation by a human occupant. 
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5.3.3 Effects of the Human Critical Area 

Further analysis was conducted to quantify the effects of body heat on particle 

inhalation. Figure 5. 7 shows the so-called “critical area”, which is defined by Anthony 

et al (2006) as a finite area upstream of the breathing person where particles are inhaled. 

For this study, the critical area is located in the plane of particle injection (1.5 m 

upstream of the manikin). It is found that the critical area shrinks with increasing wind 

speed under both the isothermal and thermal conditions. In Figure 5. 7a, the shape of 

critical area s not many rules can be found at isothermal condition and the particle 

trajectory is around the head into the nostril, since the area form is based on the 

human head shapes. On the other hand, the critical area shape is delta at a low wind 

velocity of 0.05m/s to 0.15m/s. At high wind velocity, the delta shape turns into a flat 

disc. However, the critical areas of the isothermal cases are located much higher than 

those of the thermal cases. The height range of the critical area is 1.08m to 1.42m and 

0.58m to 0.82m, and they are split between isothermal and thermal conditions. In 

addition, it is also interesting to find that the critical area is a vertical narrow region. In 

the isothermal condition, it is more obvious as the width of smallest narrow region is 

less than 0.005m. 
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(a) Open leg Isothermal condition   (b) Open leg Thermal condition 

Figure 5. 7 Critical areas (back-to-the-wind) 

For the purpose of further comparison, the central heights of the critical areas under 

various conditions, including thermal and isothermal, as well as facing-the-wind and 

back-to-the-wind cases, are shown in Figure 5. 8. It is found that when the manikin is 

facing-the-wind and heat transfer is not included in the model, the wind speed has no 

effect on the central height of critical areas. When heat transfer is included in the 

facing-the-wind computations, the central height of the critical area decreases gradually 

with increasing wind speed and finally approaches that of the isothermal cases. This is 

in a good agreement with the experimental observation of Vincent et al (2008), who 

found that for a thermal manikin in a low-speed wind tunnel, the rising airflow caused 

by the body heat reaches the channel top and then causes a vortex flow (in the red circle 

in Figure 5. 9). This vortex suppresses the oncoming airflow and causes a downward 

velocity. As a result, the stream lines upstream of the vortex are observed to descend. 

This vortex is gradually suppressed with increasing free stream speed and the central 

height of critical area is therefore observed to decrease. 
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Figure 5. 8 Central height of the critical area vs. wind speed  

When the manikin is back-to-the-wind and heat transfer is not considered, the predicted 

central height of critical area is still around the nose level. The central height of critical 

area increases with the increasing wind speed. This is because increasing wind speed 

increases the particle inertia, which makes particles from lower levels unable to be 

inhaled so only particles passing around the manikin head could be inhaled, as shown in 

Figure 5. 6. However, when heat transfer is included in the computational model, the 

predicted central height of the critical area is much lower and also decreases with 

increasing wind speed. This further demonstrates that the body heat plays an important 

role in transporting particles into the breathing zone from a lower level. Therefore, for 

an indoor human occupant standing with its back to the wind, it is critical to take into 

account its body heat when modelling particle transport and inhalation. 
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Figure 5. 9 Comparison of predicted and experimental stream lines 

 

 

Experimental observation (Vincent et al. 

2008) 
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Chapter 6 

Integrated Modeling of Room & 

Human Airway for Inhalation 

6.1 Introduction 

Following chapter 5, this chapter studies particle transport and inhalation into the 

internal airway from the external room. The study of exposure to airborne particles is an 

important problem in the interest of public and occupational health. The particles are 

mainly transported by the ventilated space, and its transport and dispersion within a 

room is important for understanding exposure risk as well as determining optimal 

ventilation designs. Recently CFD simulations have been performed to investigate and 

visualize the flow patterns and contaminant concentrations, with all the studies based 

on an isolated model such as the human nasal cavity or tracheobronchial airway tree. 

Studies have shown that localised concentrations and preferential flow regions are 

primarily caused by the room geometry (Gao and Niu 2006; Tian et al. 2008b), and 

ventilation systems (Longest et al. 2008). Other CFD studies have incorporated a 

human figure into the room Popiolek et al (2006) which is a step towards a more 

integrated and realistic modeling approach to particulate exposure. Khoo et al (1998) 

placed a human occupant in a room to show the effects of contaminant inhalation, 

although the human face was simplified. However it has been shown that the actual 
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inhalation of particles from the external surroundings, referred to as the aspiration 

efficiency is influenced by facial features (Anthony et al. 2005; Mihaescu et al. 2008) 

and that it is recommended that CFD simulations should incorporate the complex 

features of the human face to adequately account for particle aspiration in low velocity 

environments. As the particles are inhaled, the particles are transported through the 

respiratory airways where some are deposited onto surrounding surfaces while others 

may navigate through the complex geometry and may even reach the lung airways, 

causing deleterious health effects. Internal respiratory studies have been previously by 

(Inthavong et al. 2011b; Ishikawa et al. 2009) and (Liu et al. 2007; Schroeter et al. 2006) 

which has found that the transport and deposition of micron sized particles are 

dominated by its inertial property while submicron and nano sized particles are 

influenced by diffusion mechanisms. 

Therefore this chapter presents an integrated CFD model simulation that integrates the 

three aspects of contaminant exposure by including the external room, human occupant 

with realistic facial features, and the internal nasal-trachea airway. Air and particle flow 

patterns in the free stream and proximal to the nostrils are shown. Identification of 

upstream airborne particle locations that are likely to be inhaled (aspiration efficiency) 

are found. Results for the inhalation and particle profile at the nostrils are presented 

with its corresponding curve-fit equation. These results may be applied to CFD studies 

of the nasal cavity that neglect the surrounding environment. 
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6.2 Numerical Procedure 

6.2.1 Computational Model  

A CT scan of the upper respiratory airway consisting of the nasal cavity, pharynx, 

larynx, and upper trachea from a 51 year old non smoking Asian male provided the 

basis for reconstruction of a computational model. Segmentation of the desired airway 

was performed to extract a contiguous airway path from the nostril inlets to the upper 

trachea. In addition to the nostrils, a partial region of the external nose, proximal to the 

nostrils was included. 

Table 6. 1 Model geometry and flow condition details 

Human occupant details Facial details 

Dimension Present 
study 

50th % man 
Huston (2008) 

Dimension Present 
study 

50th % man Zhuang 
et al (2010) 

occupant 
height 

170.0 175.9 head length 18.3 19.5 

mid shoulder 
height 

139.7 144.4 head 
circumference 

56.3 56.8 

head width 13.5 15.5 face length 9.1 11.8 

head depth 18.3 19.6 face width 13.5 14.1 

top of head to 
chin 

19.2 22.1 nose length 4.13 5.0 

top of head to 
mouth centre 

15.2 18.0 nose 
protrusion 

1.56 2.1 

top of head to 
eyes 

9.2 11.5 nose breadth 3.79 3.4 

The three-dimensional (3D) head contained detailed facial features, such as shaped 

eyes, nose, mouth, and ears. Details of the facial features are given in Table 6. 1 and is 

compared with the 50th percentile of a caucasian male as described in the literature. The 
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comparisons show that the CFD model used in this study is slightly smaller than the 50th 

percentile for caucasian males.The realistic head was placed onto a simple human body 

shape, and this model was placed into an empty room to simulate the ambient air. The 

three submodels (respiratory airway, human body, and surrounding room) were 

combined by importing the models into a CAD (Computer Aided Design) software 

modelling program and merged together. The final CAD model is shown in Figure 6. 1. 

 
(a) 

 
(b) 

Figure 6. 1 (a) 3D CAD model incorporating the external surrounding room, human occupant, and 

the internal nasal-pharynx-larynx-trachea respiratory airway model. (b) Front view showing the 
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detailed facial features. Geometry dimensions and details of the room and human occupant are 

given in Table 6. 1. 

It is apparent that the model geometry spans over multiple length scales from metre 

lengths of the room down to millimetre lengths within the airway bronchi. This presents 

a challenge when it comes to producing a quality computational mesh for CFD analysis. 

This step was also the most exhaustive stage in the CFD simulation process. Meshing 

the model involved isolating the internal respiratory airway from the external 

surroundings. Prism layers were applied to the boundary respiratory walls and a 

tetrahedral unstructured mesh filled the airway passage. The respiratory airway 

consisted of 11 million cells. From the nostril openings out towards the surrounding air, 

the mesh was slowly grown so that the fine mesh resolving length scales in millimetres 

was gradually expanded out to length scales of centimetres to resolve the outer air. 

Figure 6. 2 shows the different sections and aspects of the meshing as well as some 

cross-sectional outlines of the internal respiratory airways. The final mesh size was 16 

million cells which used up 912Mb in storage size. Earlier studies by the authors have 

found that a mesh in excess of 2million provided grid independence for the nasal cavity 

region (Inthavong et al. 2011a), Due to the large variation in length scales of the flow 

and geometry there is a greater demand on the computational mesh to minimise false 

diffusion caused by rapid changes in the mesh size. To ensure quality of results, and a 

high level of mesh integrity, a mesh independence test was performed by investigating 

the velocity profiles at a number of different locations until the profiles converged. 

Figure 6. 3 shows two such velocity profiles which were taken along lines at the 

cross-sections a-a’ and b’b’ inside the nasal cavity. The mesh became convergent at 8 

million cells. As a conservative estimate, the final computational model used the model 

with 16 million cells. The visualisation and generation of the mesh was possible on a 
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PC computer with 32GB Ram, 2GB video card, and 8 processor cores. The simulations 

were computed by HPC cluster, which has 268 processor cores. 

 
nostril opening       head       body 

(a) 

 
(b) 

Figure 6. 2 (a) 3D CAD model incorporating the external surrounding room, human occupant, and 

the internal nasal-pharynx-larynx-trachea respiratory airway model. (b) Front view showing the 

detailed facial features. Geometry dimensions and details of the room and human occupant are 

given in Table 6. 1 



 

101 

6.2.2 Boundary Condition 

A steady oncoming freestream of air towards the human occupant was applied in order 

to investigate the ‘worst case scenario’ for particle inhalability. This is confirmed by 

Kennedy et al (2002) which showed that the ‘facing-the-wind’ orientation produces an 

upper limit for inhalability compared with an averaged orientation which is produced 

by equally weighting particle inhalation over all angles from 0 to 360 orientation. The 

selection of the airflow speed was based on the comprehensive survey of airflow speeds 

in indoor workplaces by Baldwin et al (1998) which found a mean value of 0.3 ms−1 

(ranging from 0.04 to 2.02 ms-1) over all work places, however this value is skewed by 

measurements made in a wood drying shed that had a value of 1.79 ms-1, and that 

excluding this measurement produces a mean of 0.2 ms-1 (ranging from 0.04 to 0.72 

ms-1). More specifically for different workplace environments the mean values are: 

office 0.011 to 0.164 ms-1; wood turning 0.064 to 0.119 ms-1; heavy steel industry 0.063 

to 1.737 ms-1. In this study we aim to look at the influence of airflow speeds on the 

respiration and particle locations entering the nasal cavity via the nostrils. 
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Table 6. 2 Inhalation and Room Flow Details 

Inhalation details Room and ventilation 
details 

 Present Study  Geometry Dimension 

Nostril openings Right 

Area = 1.52cm2 
Perim = 4.72 

Dh = 1.288 cm 

Left 

Area = 1.31cm2 
Perim = 4.62cm 

Dh = 1.134 cm 

Length 

Width 

Height 

250 cm 

200 cm 

350cm 

Mouth openings Area = 2.25 cm2 

Perim = 

Dh = 1.288 cm 

 Room air 
velocity 

0.2 m/s 

Dynamic similarity Present study Anthony et al.   

Refreestream (room inlet) 48000 50250   

Rehead 1850 1909   

Head hydraulic 
diameter 

14cm 9.6cm   

Vfreestream (ms-1) 0.2m/s 0.3   

Reynolds number matching over the head of the humanoid was applied in order to 

obtain dynamic similarity between the CFD simulation with existing experimental data 

in the literature by Anthony (2005). For indoor airflows, reported results have shown 

much better flow separation and reattachment based on the k-ε Renormalization Group 

model (RNG) (Edwards et al. 1997; Hofmann et al. 2003) which is an expected flow 

feature of the flow passing over the head. But in the human respiratory system, many 

researchers have used k-ω turbulent model with Shear Stress Transport (SST) 

developed by Menter (1994) to analyse airflow in the nasal cavity model (V. N. 

Riazuddin 2011; Wen et al. 2008a; Zhang and Chen 2007) which combines the 

advantages of both the k-ω turbulence and k-ε turbulence. Similarly, the inhalation 

conditions through the mouth were also matched by the Reynolds number (see Table 2). 
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Two inhalation rates of 15 and 40 litres per minute (LPM) were studied for the 

aspiration efficiency through nasal and oral inhalation which represent light and heavy 

activity. 

The particles were released from a diameter of 0.1m vertical plane which is 0.2 m 

distance away from the manikin face at eye level. The particles were tracked through 

the air using the Lagrangian approach and the modelling process of the one way 

coupling particle dispersed from the external space, through the human respiratory 

system from the nostril and out of the trachea. The flow field analysis was performed 

first to establish the surrounding environment. The number of particles tracked was 

checked for statistical independence since the turbulent dispersion is modelled based on 

a stochastic process. Independence was achieved for 50,000 particles since an increase 

of particles to 80,000 particles yielded a difference of 0.1% in the inhalation efficiency. 

6.3 Results and Discussion 

6.3.1 Validation and Grid Independence 

In the airflow region of large gradients, as the external flow region compares with the 

internal flow region, the mesh should be fine enough to reduce the errors in the flow 

variables from cell to cell. The mesh has been optimised and hence is independent for 

the flow field where a compromise between computational resources and accuracy has 

been made. The early coarse model with around 4 million unstructured tetrahedral cells 

was initially used to solve the air flow field at a flow rate of 15L/min and wind velocity 

of 0.05m/s. Subsequently three models were produced with 8 million, 12 million and 16 

million cells. A grid independence test is shown in Figure 6. 3. Results for Y-velocity 

were found at lines A and B, which form cross sections in the right nasal cavity. These 
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results became consistent as the mesh resolution approached 8million cells. Thus. in 

order to make a compromise between the result’s accuracy and computational cost, a 

model with 8 million elements was used in this chapter. 

 

(a) cross-section a-a’      (b) cross-section b-b’ 

Figure 6. 3 Mesh independence for two velocity profiles from lines taken at the cross-sections a-a’ 

and b’b’. 

Velocity vectors in the y-z plane at the centreline of the humanoid (x = 0 cm) are 

compared with the experimental data reported by Anthony et al. (2005) and 

computational data from (King Se et al. 2010) shown in Figure 6.4. The flow field 

reported by the Particle Image Velocimetry (PIV) data in the near breathing region 

shows slight vertical direction caused by the presence of the torso where the airstream 

diverges as it flows past the body. As the inhaled air approaches the face, the vectors 

converge towards the mouth or pass over the nose and the upper regions of the face. The 

CFD simulation shows good qualitative comparisons with reported data in the literature. 

The normalized velocity profiles taken just upstream of the face at 1cm and 1.5cm are 

shown in Figure 6.4b and Figure 6.4c respectively. 
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Experimental-mouth (PIV) Simulation-mouth (RNG) 

  

Simulation-mouth (laminar) Simulation-mouth (SST) 

  

1cm-mouth  1.5cm-mouth  

Figure 6. 4 Velocity vector plots for (a) CFD oral inhalation and (b) PIV experimental 

measurements from Anthony et al. (2005). (c) CFD mouth inhalation. 
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Inhalation vectors that are directed downwards towards the mouth occur earlier (y = 1.0 

cm) in the horizontal plane for the CFD model and the realistic facial feature model in 

comparison with the cylindrical human form (y = 0.5 cm). Locally, the oncoming 

airflow bifurcates at the nose tip as well as at the chin. Downwards flow is found in the 

philtrum (space between the nose and the upper lip). In contrast, the same flow for nose 

inhalation is directed upwards towards the nostril openings. The effect of the vertical 

flow across the closed mouth region can enhance the inhalability of the particles if 

breathing through the mouth was to occur midway through a breath taken through the 

nose. Such case studies involving both the nose and mouth inhalations under different 

breathing situations were not investigated in this paper but would be interesting for 

future studies. 

The other flow difference found between mouth inhalation and nose inhalation is the 

higher stagnation point (flow bifurcation) near the chin for the nose inhalation. 

Comparisons of the velocity profiles from the vector plots in Figure 4a and b in the near 

breathing regions at y = 1.0 cm (the nose tip) and y = 1.5 cm are shown in Figure 6. 5. 

There is good agreement between the profiles, especially at y = 1.5 cm. Minimum 

velocities near the stagnation point at the nose tip height are found at the vertical 

distance of z = 2.0 cm for both cases. Maximum velocities occur at the mouth at z = 0 

cm and just below the mouth region where the flow accelerates from the chin region. 

Slight differences are found in the chin region below the lower lip and also in the 

philtrum, which may be attributed to some differences in the exact facial features. 
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King Se-nose (RNG) 

  

Simulation-nose (Laminar) Simulation-nose (SST) 

  

1cm-nose 1.5cm-nose 

Figure 6. 5 Velocity vector plots for (a) CFD oral inhalation and (b) PIV experimental 

measurements from Anthony et al. (2005). (c) CFD mouth inhalation. 
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6.3.2 Influence of Ambient Flow Rate 

Particle aspiration efficiency has been defined as the fraction of particles that are 

inhaled through the nose or mouth during breathing (Vincent et al. 1990), which is also 

referred to as ‘inhalability’. Factors that influence particle aspiration efficiency include 

the particle size and the external ambient air flow around the human body. In the cases 

presented in this study, the human body is facing the oncoming air, which transports the 

particles from upstream towards the breathing region. Figure 6. 6 shows the oncoming 

air diverging at the torso as it approaches the body and thus the air that is inhaled comes 

from underneath the face, rather than above. This implies that airborne particles that are 

present below the breathing region are more likely to be inhaled. Furthermore, the 

inhalation streamlines show that at a lower ambient air flow rate, a larger region of air is 

inhaled, in comparison to a higher ambient air flow rate. Under both conditions the 

inhaled air is being pulled from below the breathing region. 

The air flow accelerates around the head of the body and the boundary layer separates at 

the rear, producing a wake, with a recirculation region forming just behind the head. An 

increase in the ambient air flow rate produces a recirculation region that is further from 

the body. The presence of the wake can influence a person’s exposure to toxic airborne 

contaminants, particularly if the contaminant source is in the vicinity of the breathing 

region. The scope of this study is the inhalability of particles from a source upstream 

from an oncoming flow, however the results of the wake flow shown in Figure 6. 6 

indicate that if the ambient air flow was coming from behind the body, particles form a 

contaminant source in front of the body that may be disturbed and induced into the 

breathing region, thus enhancing the inhalability of the particles. The wake region can 

induce a well-mixed scenario through the presence of vortices that can entrain air. 
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wake flow caused by human body 

 

inhalation streamlines 

a)  ambient flow rate 0.05m/s 

 

wake flow caused by human body 

 

inhalation streamlines 

b)  ambient flow rate 0.35m/s 
Figure 6. 6 Inhalation through nostrils at 15LPM  

Contours of velocity magnitude at both nostrils are shown in Figure 6. 6. The velocity 

magnitude contour is at 15L/min breathing rate with different wind speeds. When wind 

velocity is at 0.05m/s, the 2D contours confirm flow acceleration occurring in both 

nostrils with peak velocities of 1.7m/s and 1.5m/s; the average velocities at the right 

recirculation 
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recirculation 
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side and the left side are 1.2m/s and 1.12m/s, respectively. The right side has a slightly 

higher velocity than the left side. The difference of the average mass flow rate is only 

0.31E-4kg/s. The main flow is at the bottom of the cross section and pockets of low 

velocity are found at the top and bottom of the slice. The low flows at 1m/s are found in 

Figure 6. 7. When wind velocity increases and the breathing rate is fixed, there is little 

change in the contours, the 2D streamlines and the average velocity are not invisibly 

changed. These indicate that the effect of the outside wind velocity is not significant to 

change the inlet flow field. 

 

 

 

 

 

 

Figure 6. 7 Comparison of airflow pattern on the nostrils with different wind velocity at 15L/min. 

 

Right nostril        Left nostril 
Right nostril flow rate= 2.43E-4kg/s Left nostril flow rate=2.11E-4kg/s 

Right nostril velocity=1.20m/s Left nostril velocity=1.12m/s 

0.05m/s condition 

Right nostril        Left nostril 
Right nostril flow rate= 2.43E-4kg/s Left nostril flow rate=2.11E-4kg/s 

Right nostril velocity=1.20m/s Left nostril velocity=1.12m/s 

0.20m/s condition 

Right nostril        Left nostril 
Right nostril flow rate= 2.43E-4kg/s Left nostril flow rate=2.11E-4kg/s 

Right nostril velocity=1.20m/s Left nostril velocity=1.12m/s 

0.35m/s condition 
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6.3.3 Particle Profile and Deposition Pattern 

6.3.3.1 Particle Inhalation Trajectory 

Trajectories of particles originating from a plane located at a distance of 0.2m upstream 

from the nose tip are shown in Figure 6. 8 for ambient air flow rates of 0.05m/s and 

0.35m/s. The vertical distance coordinate is set to y = 0m at the nostril levels, so that the 

trajectories of nasal inhaled particles converge to this point. The trajectories show that 

for 40μm and 80μm sized particles, gravitational settling dominates, where the particle 

source originates from a much higher vertical position in relation to the nostril 

openings. 

 

 (a) U∞ =0.05m/s, Inhalation = 15LPM   b) U∞ =0.35m/s, Inhalation = 15LPM  

Figure 6. 8 Trajectory of inhaled particles released at 20 cm upstream for different particle sizes 

and ambient air flow rates of 0.05m/s and 0.035m/s. The inhalation rate is 15LPM through both 

nostrils. 

The trajectory of these particles is linear until they reach the nose, where acceleration 

towards the nostril occurs due to nasal inhalation. This linearity means that the location 

of the particle source for large particles can be easily identified for a given upstream 

distance through extrapolation. The further upstream the distance, the higher the 



 

112 

vertical distance should be for the particles to descend towards the nose. At higher 

ambient air flow rates the vertical distance needed for 40μm and 80μm particles to 

overcome gravitational settling is reduced significantly from 0.65m down to 0.05m. 

Smaller particles such as 1μm-20μm all possess much lighter masses and its inertia is 

more influenced by the surrounding flow field. These particles tend to follow the flow 

streamlines more and the upstream location of the particle source is at a vertical 

distance of approximately 0.05-0.1m below the nostrils, since it was shown earlier that 

the flow streamlines diverge at the torso region as the flow approaches the human body. 

At the higher ambient air flow rate the trajectories of the smaller particles do not change 

significantly. 

6.3.3.2 Comparison of Critical Area 

The critical shape area and size are compared with the different wind velocity at two 

kinds of breathing rate conditions and these are shown in Figure 6. 9. The area size 

decreases as the wind velocity increases with each breathing rate. Comparing the 

critical area size in the same wind velocity with a different breathing rate, we find that 

when the breathing rate is higher, the area is larger. In addition, despite the different 

wind velocity and breathing rate, the shape of the critical areas is very similar when the 

particle size is less than 15um; except for the 80um case results. In the 80um cases, the 

shape of areas is comparable at the same breathing rate with different wind velocity. 

When the wind velocity is much lower such as at 0.05m/s and the shape is slightly 

different. These results indicate that smaller particles have less gravity force; the effect 

of wind velocity does not significantly change the shape of the area, only the area size. 

If the gravity force is large, the effect of wind velocity can significantly change the 

shape of the area.  
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(a) 1 micron size condition 

15Lpm with 0.05m/s wind velocity 40Lpm with 0.05m/s wind velocity 

15Lpm with 0.20m/s wind velocity 40Lpm with 0.20m/s wind velocity 

15Lpm with 0.35m/s wind velocity 40Lpm with 0.35m/s wind velocity 
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(b) 80 micron size condition 

Figure 6. 9 Comparison of critical area in integrated model at different wind speed 

15Lpm with 0.05m/s wind velocity 40Lpm with 0.05m/s wind velocity 

15Lpm with 0.20m/s wind velocity 40Lpm with 0.20m/s wind velocity 

15Lpm with 0.35m/s wind velocity 40Lpm with 0.35m/s wind velocity 
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From each critical area, it is interesting to find that area of right side is larger than the 

area of left side. The nostril opening area of the left side is smaller and thus got a higher 

velocity flow (see the Table 6. 2 and Figure 6. 6). These results demonstrate that the 

critical area is not related to the nostril opening size, or, more accurately, dependent 

upon the main velocity inside the nostril 

6.3.3.3 Particle Deposition Patterns 

Figure 10 shows the comparisons of particle deposition pattern in a whole model with 

different wind speeds at light breathing (15Lpm). The particle deposition pattern in the 

critical area is relative to the internal airway region, which defines where particles are 

inhaled and where they are deposited. (Blue: nasal region. Green: pharynx, Red: 

trachea and Gray: within the lung). At 1µm and light berthing condition with three 

kinds of wind velocity, the proportion of particles going through the respiratory airway 

into the lung is around 93%. When the particle size is increased to 15µm, the escape to 

the lung of particles is significantly decreased to 40% - 65%. For 80µm particles, which 

exhibit the highest inertial properties of the three particles presented, maximum 

deposition occurs in the anterior regions of the nasal cavity and no particles reach the 

lung region. Overall for the light breathing condition, 1µm particles exhibited the most 

inferior deposition in the respiratory region, while for the different wind velocity 

condition, all the wind velocities resulted in the same deposition efficacy in the airway 

regions. For 15µm particles, if the wind velocity is lower, there is increased particle 

transport into the lung region. When the particle size becomes 80µm, the number of 

escaped particles is very small. These findings show that as wind velocity, breathing 

rate and the particle size increase, the gravity face and particle inertia also increase to 
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yield greater deposition efficacy. The gravity face is an especially important factor as it 

significantly increases the particle deposition efficiency. 

Comparison of the particle deposition pattern results in different wind conditions, 

which are monochromatically distributed in the critical area. For 1μm particles, there is 

no real discerning pattern that can allow confident predictions of where a particle may 

deposit within the respiratory airway. For 15μm particles nearly all the particles that 

deposit in the trachea region originate from the left side of the critical area, which may 

suggest that these particles that enter one side of the nasal chamber, travel through that 

airway geometry with a different air flow pattern that may be experienced if the 

particles had entered the other side of the nasal chamber. During normal nasal 

physiology, the nasal cavity is normally asymmetrical where one nasal passage is 

usually more patent than the other. This asymmetry is referred to as the nasal cycle, 

which is a result of congestion (swelling) of the erectile tissue (cavernous tissues of the 

mucosa) in one nasal cavity while at the same time decongestion (shrinking) occurs to 

the erectile tissue in the other cavity. The airflow through each nasal cavity is then 

governed by the resistance caused by the cross-sectional area of each airway. This 

asymmetry may explain the bias for those particles that exist in the lower left region of 

the critical area to deposit in the trachea region. Each second pattern that emerges from 

the 15μm critical area is that the blue coloured particles (depositing in the nasal cavity 

region) exist in the upper half of the critical area, compared with the red coloured 

particles (depositing in the trachea) which exist in the lower half of the critical area. It 

has been established that for 15μm sized particles early deposition in the nasal cavity is 

attributed to inertial deposition (Chung and Kim 2008; Worth Longest and Hindle), 

whereby particles that exhibit high momentum will not be able to stay entrained with 

the air flow streamlines. In Figure 6. 10 it was shown that as the particles approached 
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the nostrils, they were accelerated due to the inhaled air that complements the 

oncoming airflow. In addition, particles originating from above the nostrils are further 

accelerated by the gravitational pull which becomes more influential as the particles 

become larger in size. These two contributing factors cause the particles to exhibit 

higher inertia as they enter the respiratory domain, when compared to those particles 

that originate from below the nostrils. A further investigation found that a large number 

of those particles that deposited in the nasal region (total = 23.2%, 39.5%, 48.1%, 

respectively) are concentrated at or near the nostril inlet. For 80μm particles, the larger 

mass of the particle means that it is highly influenced by gravitational settling, and 

therefore the critical areas at the upstream location are located at a much higher vertical 

distance from the nostril inlets. Similar to the 15μm particles, the 80μm particles are 

further accelerated due to the inhaled air that complements the oncoming airflow, 

thereby increasing its inertial properties even further. This creates regions of high 

concentration of particles depositing at or near the nostril inlets. The shape of the 

critical area is that of two narrow teardrops where a larger concentration of particles is 

found near the bottom of the critical area.  
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(a) Light breath with different particle size at 0.05m/s wind velocity 
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(b) Light breath with different particle size at 0.20m/s wind velocity 
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(c) Light breath with different particle size at 0.35m/s wind velocity 

Figure 6. 10 Comparison of particle deposition pattern in intergrade model in different wind speed 

at light breathing (15Lpm) (a) the wind velocity is 0.05m/s, (b) the wind velocity is 0.20m/s, (c) the 

wind velocity is 0.35m/s 
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6.3.3.4 Particle Deposition Efficiency 

Figure 6. 11 shows comparison of deposition efficiencies with previous using the 

inertia parameter. Under an inhalation flow rate of 15L/min and 40L/min, 100000 

microparticles for each particle size of 1, 5, 15, 40, and 80μm were tracked in the 

respiratory model. The inertial deposition of micron particles in the nasal cavity was 

normalized by using the inertial parameter, I=Qd2, where Q is the air flow rate (cm3/s) 

and d is the equivalent aerodynamic diameter (μm). It is a convenient parameter that 

compares deposition against different flow rates and particle sizes at aerodynamic 

diameters. It is widely used for presenting particle deposition efficiencies, especially 

for in vivo data, where it is difficult to determine an adequate characteristic length for 

realistic human airways. The total deposition efficiency for the region spanning from 

the anterior nostril opening conducting airway to the trachea was determined and 

compared with boundary condition data. The comparative data comes from different 

forms of nasal cavity deposition studies which includes in-vivo human volunteers by 

Pattle (1961) and Cheng et al (2001), replicate cast models by Kelly et al. (2004a), and 

computational models by Inthavong et al (2008b). The deposition efficiency profile 

exhibits the ubiquitous increasing trend as particle size increases for the diffusion 

deposition of ultrafine particles. For IP between 250 and 5000 and IP>150000, the 

deposition efficiency dates are much the comparative data in Figure 6. 11. For 

5000<IP<150000, the simulation results significantly underestimate particle deposition. 

For the 40L/min case, the efficiency difference results for three different wind conition 

the are 20% to 25% and these data are lower than the previous data, and there is a 10% 

deposition efficiency of difference among the three cases. Comparisons between heavy 

breathing (40L/min) and light breathing (15L/min) and at the highest wind condition 

gives closer matching to existing literature data. With a decreased in wind velocity, the 



 

122 

difference between 26% and 58% is an increase of up to 35%. These indicate that the 

external environment significantly affects the efficiency when the particle is neither too 

big nor too small a size. 

 

Figure 6. 11 Comparison of deposition efficiencies with previous using the inertia parameter 
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Chapter 7 

Particle Deposition in a Human 

Nasal-Sinus Cavity 

7.1 Introduction 

Studies into ultrafine particle deposition caused by inhalation through the nasal cavity 

have been performed using i) CFD methods (Schroeter et al. 2006) ii) replicate casts of 

a nasal cavity (Cheng et al. 2001; Lin et al. 2011; Schroeter et al. 2011) or iii) in-vivo 

human subjects (Cheng et al. 1995; Cheng et al. 1996). The resulting data obtained 

from these first two methods are often used to compare and validate the particle 

deposition obtained in the nasal cavity of in-vivo experiments. However, deposition 

data on a human subject is inclusive of the paranasal sinuses and it is unknown to what 

extent this influences the total and local deposition fractions in the nasal cavity. 

According to Cheng et al. (1996) aerosol deposition in the human respiratory airways is 

strongly influenced by three major factors: physical (particle diameter, shape, and 

density), physiological (respiratory ventilation and pattern), and morphological (airway 

size and shape). Deposition of micron particles is largely due to the particle inertia, and 

is significant for particles with aerodynamic diameters greater than 5µm. Studies have 

shown that the sharp curvatures in the nasal cavity airway that change the airflow 

direction are responsible for inertial deposition of micron particles (Inthavong et al. 
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2011a; Worth Longest and Hindle 2010). This is particularly significant at the entrance 

to the main nasal passage and at the nasopharynx where the flow exhibits 90o curvatures. 

Inertial deposition mechanisms rely on flow convection, which transports the particles 

before a sharp curvature is present. With regards to micron particle deposition in the 

maxillary sinus, Xiong et al (2008b) indicated that little flow exchange occurred 

between the inner and outer aspects of the paranasal sinuses. This suggests that it is 

unlikely that micron particles will be lost to the sinus regions and omitting the sinus 

regions in CFD and replicate cast studies is acceptable. 

On the other hand, ultrafine particles are dominated by diffusion and its deposition onto 

surfaces is reliant on a low convection to diffusion ratio (i.e Peclet number). If the flow 

rate through the nasal cavity is sufficiently low, it is hypothesised that the diffusion 

transport of ultrafine particles may be significant enough for the particles to pass into 

the paranasal sinuses. This suggests that ultrafine particles may be lost to the sinus 

regions and that CFD and replicate cast studies omitting the sinus regions may be 

invalid for describing the remaining deposition fraction entering airway regions 

downstream, such as the trachea and bronchial region. 

The paranasal sinuses (maxillary, sphenoid, and frontal) are air-filled spaces connected 

to the nasal cavity by narrow passageways called the ostium. The exact biologic 

function of the sinuses is uncertain but is thought to contribute to the following: 

reduction of the weight of the front of the skull; act as a resonating chamber for voice 

production; humidifying, heating, and filtering of inhaled air through mucus secretions; 

and absorption of any force impacting on the face or skull (Keir 2009). To date, nearly 

all CFD studies of particle deposition through the nasal cavity have neglected the 

paranasal sinuses, although there have been two studies of air flow distribution through 
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the nasal cavity that include the paranasal sinuses (Lindemann et al. 2005; Xiong et al. 

2008b). 

This chapter investigates the flow patterns in the nasal cavity, in the paranasal ostium 

and its corresponding sinus, to determine the uptake of ultrafine particles with a focus 

on the ostium region that may occlude due to deposition. The uptake of ultrafine 

particles within the nasal-sinus model and in a nasal cavity model for different particle 

sizes is given. In addition, special attention is made to the modelling of the Brownian 

diffusion process to ensure that the predictions of the ultrafine particles are reliable. 

Therefore, a secondary aim of this chapter is to study the applicability of the Gaussian 

white noise Brownian diffusion model commonly used in the commercial CFD 

software Ansys-FLUENT v12.1, since it has been shown that the same model in Fluent 

v6.3 failed to predict nanoparticle deposition (Inthavong et al. 2011b; Longest and Xi 

2007). 

7.2 Numerical Procedure 

7.2.1 Computational Models 

Four geometries were created for this study – a straight pipe, a 90o bend pipe, a human 

nasal cavity with paranasal sinuses included, and the same nasal cavity model without 

sinuses (Figure 7. 1) which it already present in the previous period at chapter III. 
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(a) straight pipe        (b) 90o bend pipe 

 

(c) nasal cavity model highlighting the maxillary sinus 

Figure 7. 1 CFD geometries used in this study for (a) straight pipe (b) 90o bend pipe and (c) nasal 

cavity with sinus model. 

Two nasal cavity models were reconstructed from the same CT scans, and are NC02 

and NC02-S, The geometry of the NC02-S model is shown in Figure 7. 1c. Table 7. 1 

summarizes the geometries detailing significant dimensions and the computational 

boundary conditions that are applied. The pipe models are used to validate the 

Brownian model and to ensure it is reliable before applying it to the more complex 

nasal cavity.  
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Table 7. 1 Dimensions and details of the geometries considered in this study 

 
Inlet 

Hydraulic 
Diameter (Dh) 

Radius of 
curvature, 

Rb
 

Inlet Flow 
Rate 

(L/min) 

Inlet Re 
number Mesh size 

Straight pipe 0.45 cm - 
1 

10 

322 

4840 
750,000 

90o bend 
pipe 0.46 cm 1.43 cm 1.052 305 550,000 

Nasal cavity 
without sinus 

(NC02) 
1.0 cm - 

4 

10 

255 

642 
3.0million 

Nasal cavity 
with sinus 
(NC02-S) 

1.0 cm - 
4 

10 

278 

705 
4.0million 

The length from the anterior most regions to the posterior nasopharynx region is 

approximately 9cm, while the height from the main nasal passage floor to the superior 

tip of the frontal sinus is approximately 7cm. This is summarised along with some 

dimensions and details of the model in Table 7. 2. 

Table 7. 2 Summary of geometric characteristics of the nasal cavity. 

 

Without sinus cavity model Sinus cavity model 

Present 
study 

Doorly et al. (2008) Present 
study 

Xiong et 
al. (2008) Model 1 Model2 Model3 

Overall cavity 
length (cm) 9.7 10.5 10.6 11 9.7 9.1 

Overall cavity 
width (cm) 3.9 - - - 7.3 6.6 

Surface area 
(cm^2) 199 106* 107* 109* 290 NA 

Volume (cm^3) NA 13.8 14.2 22.4 NA NA 

*right nasal chamber only  
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7.2.2 Boundary Conditions 

In order to achieve a fully developed flow for the straight and 90o bend pipes, an 

additional separate pipe 5-Diameters in length with the same cross-section and mesh 

were simulated with periodic boundaries applied. When the flow reached a fully 

developed state, the velocity profile from the periodic straight pipe model was extracted 

and used as the inflow condition at the inlet of the 90o bend pipe and the straight pipe. 

Two flow rates were considered for the straight pipe, 1 L/min, and 10 L/min. For the 

nasal cavity, inhalation is induced through a pressure difference between the nostril 

inlets (Pin = 0Pa) and the nasopharynx outlet (Pout), which is set to a negative pressure 

relative to atmospheric pressure, caused by the movement of the diaphragm. This 

method presents a more realistic approach to earlier modelling approaches, which used 

a uniform or developed velocity inlet at the nostrils (Inthavong et al. 2006; Keyhani et 

al. 1995). 

Particles in the pipe simulation were released from an evenly dispersed circular region 

0.01m from the inlet to prevent any spurious data occurring due to random particles 

exiting the inlet upon immediate release. Furthermore, a particle was located at no less 

than 0.1mm away from the wall to eliminate artificial immediate deposition on the 

walls due to the stochastic nature of the Brownian motion model. Turbulent dispersion 

is not considered in this study to isolate the effects of the Brownian motion at the higher 

flow rate and instead the so-called mean flow particle tracking approach (i.e. laminar 

tracking) is used. In the Lagrangian tracking scheme, g
iu  found in the slip velocity 

( )g p
i iu u−  in the chapter IV (Equation 4.46) is defined from the cell centre and a 

particle within any part of that cell takes g
iu  from the cell centre. For cells adjacent to 

the wall boundaries, the velocity profile should approach zero at the wall rather than be 



 

 129 

uniform throughout the cell. Therefore a near wall interpolation (NWI) is applied to 

account for the diminishing velocity that approaches zero at the wall. Therefore a near 

wall interpolation (NWI) scheme defined by, 

31 2 4

1 2 3 4

1 2 3 4

1 1 1 1i

g

UU U U
L L L LU
L L L L

+ + +
=

+ + +
           7. 1 

is applied to all wall adjacent cells and is shown in Figure 7. 2. The NWI takes into 

account the influence of the zero velocity at the wall boundary as well as the convective 

fluxes of the surrounding cells. 

 

Figure 7. 2 Near wall interpolation scheme applied to all wall adjacent cells. 

.7.3 Results and Discussion 

7.3.1 Geometry and Pressure Drop in the Nasal-Sinus Cavity 

Thirteen evenly distributed coronal cross-sectional slices were created to allow analysis 

of geometry and flow characteristics. Figure 7. 3 show a sample of the cross-sections 

for the nasal and nasal-sinus computational models. The obvious difference is the larger 
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cross-sectional areas created by the inclusion of the sinuses. There are four pairs of 

sinuses; the maxillary sinuses, located in the cheekbones under the eyes; the frontal 

sinuses, located in the forehead above the main nasal passages and eyes; the ethmoid 

sinuses, located between the eyes and the nose and the sphenoid sinuses, located in the 

centre of the skull, behind the nose and the eyes. 

 

(a) nasal-sinus cavity model (NC02-S). Shaded region is the maxillary sinus. 

 

(b) nasal cavity model (NC02) 

Figure 7. 3 Coronal slices of the airway comparing a (a) nasal cavity with sinus model highlighted 

by the maxillary sinus and (b) a nasal cavity model with the sinuses omitted.  



 

 131 

The cross-sectional area versus distance from the anterior tip of the nose to the posterior 

nasal passage is compared with other nasal cavities published in the literature (Figure 7. 

4). The NC02 model (without sinus) has a slightly greater cross-sectional area than 

other models in the anterior (x < 4 cm) and posterior (x > 6 cm) region. It is noted that 

the data from Cheng et al (1996) comes from four adult non-smoking male volunteers 

(ages 36-57 yr), Subramaniam et al (1998) from a 53-yr-old, non-smoking Caucasian 

male, and Wen et al (2008b) from a 25-year old Asian male. The NC02-S model (with 

sinus) shows a significant increase (up to 300%) in the cross-sectional area, mainly 

contributed to by the maxillary and frontal sinus. This begins at x = 0.0187cm with the 

frontal sinuses that protrude superiorly over the nasal passages. Further downstream the 

presence of maxillary and ethmoid sinuses also contributes to the cross-sectional area. 

 

Figure 7. 4 Coronal cross-sectional areas from the nostrils to the posterior nasopharynx in a linear 

axial vector. The distance from the nostrils at x=0cm is taken as the anterior most tip of the nostril 

opening. Arrow (a) is at = 0.0187 cm and signifies the beginning of the frontal sinus (b) is at x = 

0.0288 cm signifying the anterior beginning of the maxillary sinus, and (c) is at x = 0.0566 cm 

signifying the posterior end of the maxillary sinus 
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The pressure drop between the nostril inlets and the posterior nasal wall at the 

nasopharynx for different inhalation rates is shown in Figure 7. 5. Comparisons are 

made with other published data for nasal cavity (no sinuses) geometries. Currently 

there are inconsistencies in the representation of the inhalation using CFD in regards to 

the boundary condition settings for the inlet and outlets. One method is to use pressure 

inlet and outlet boundary conditions where the nostril inlets are set to gauge pressure, 

i.e. P = 0 Pa and the nasopharynx outlet set at a relative negative pressure value 

corresponding to the inhalation effort created by the contraction of the diaphragm and 

expansion of the lungs. This setting is referred to as ‘pressure’ conditions. This differs 

to a forced flow applied at the nostril inlets to drive the inhalation. In terms of the 

numerical boundary conditions, this is produced by setting the nostril inlets with equal 

mass flow distribution (i.e. 5L/min per nostril for an inhalation rate of 10L/min) using 

the mass flow rate or velocity boundary condition, and the nasopharynx outlet as an 

outflow or opening boundary condition. This setting is labelled as ‘forced’ conditions 

and its results are compared with the pressure conditions method and also published 

data in Figure 7. 5. The forced method produces less resistance than the pressure 

method given that an even distribution of flow passes through both the left and right 

nasal chambers while the pressure method produces an asymmetric distribution of flow 

based on the resistance caused by the left and right nasal chamber geometries. A 

comparison with other nasal cavity geometries shows that the forced method produces 

less resistance per flow rate. This implies that smaller respiratory effort is required to 

produce an equivalent inhalation flow rate. 
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Figure 7. 5 Comparison of the pressure drop for nasal cavity model NCO2 without sinus inclusion. 

Comparisons of the pressure drop per inhalation flow rate with other models shows that 

the NC02 model has a flatter profile, meaning that it has a lower flow resistance. This is 

expected given that the cross-sectional area profile of NC02 shown in Figure 7. 4 is 

larger than the comparative models. The addition of the paranasal sinuses to the nasal 

cavity produces additional holes or slits in the geometry in the form of the nasal ostium 

that connects the sinus to the main nasal cavity chambers. Pressure losses in any pipe 

system are found at openings, especially if part of the opening is aligned with the flow 

streamlines. As a consequence, additional effort is needed to overcome any pressure 

that may be lost through the nasal ostia. The pressure difference profile for the NC02-S 

model shows a steeper curve, which implies a larger pressure difference, and hence 

greater inhalation effort, is required to produce an equivalent inhalation flow rate. 
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7.3.1 Flow Patterns and Streamlines 

Flow streamlines were released from the left and right nostrils in order to trace the flow 

patterns. In both instances the streamlines initially accelerate near the nostril opening 

before passing mainly through the main nasal passage at mid-height. Some streamlines 

travel along the floor of the nasal cavity, while some reach the olfactory regions, and up 

towards the sphenoid and ethmoid sinuses, but these exhibit low velocity ≈ 0.1m/s, as 

highlighted in Figure 7. 6.These streamlines, based on 100 release points uniformly 

released across the nostril inlets, do not show any paths leading into the maxilliary nor 

the frontal sinus as the release points were uniformly released across the nostril inlets. 

To determine if any flow will actually pass into the maxillary sinus, we track some path 

streamlines in reverse from points inside the maxillary sinus. 

 

 

(a) left nasal chamber 
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(b) right nasal chamber 

 

velocity magnitude [m/s] 

Figure 7. 6 Streamlines passing through the nasal cavity that originate from the (a) left and (b) right 

nostrils at 10L/min. Magnified inset highlights the flow streamlines that reach the sphenoid and 

ethmoid sinus regions. 

Figure 7. 7 shows that the flow inside the maxillary sinus occurs at a very low velocity 

and exhibits typical recirculation of near stagnant flows. Analysis of the geometry and 

airflow showed that the minimum ostium diameter is 4.6mm and 3.78mm, and the 

pressure difference between the ostium entrance and inside the maxillary sinus are 

0.056Pa and 0.0026Pa for the left and right sides respectively. The mass flow rate 

through the left and right ostium is 11.4e-9 kg/s and 6.77e-9 kg/s, which are < 0.006% 

of the total inhalation flow rate. This small percentage of flow is not conducive for 

convective transport of particles into the maxillary sinus and that if any deposition was 

to occur in this region, and then it would be caused by Brownian diffusion. On the other 

hand, the flow streamlines in the sphenoid and ethmoid sinuses are not recirculating but 

instead convect through with a discernible direction. This suggests that some 
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submicron particles may be transported to this region by convection, enhancing the 

likelihood of deposition onto the surfaces by diffusion. 

  

(a) left maxillary sinus (b) right maxillary sinus 

velocity magnitude [m/s] 

 

Figure 7. 7 Streamlines passing through the nasal cavity that originates from the (a) left and (b) 

right nostrils at 10L/min 

Contours of velocity magnitude at slices A, B, D, and E (defined in Figure 7. 3) are 

shown in Figure 7. 8. Slice C is not shown as it produced a similar profile to that of slice 

D. The 2D contours confirm flow acceleration occurring in the anterior nasal cavity 

where a peak velocity of 1.8m/s is found at slice-A. The main flow is centred on the 

cross section and pockets of low velocity are found at the top and bottom of the slice. 

As the flow travels downstream the peak velocity decreases to a value of 1.3m/s found 

in slice-D. This is due to the airway passage expanding in cross-sectional area, resulting 

in lower velocities. The contours show that the bulk flow regions occur mainly through 

the mid-height region and close to the nasal septum, which separates the two cavities. 
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The contour at slice-E shows a well-mixed pattern, which is caused by the airflow from 

the left and right sides of the nasal cavity merging together. Very low flows of < 0.1m/s 

are found in the sinus regions.  

velocity 
magnitude 

[m/s] 

 

 

Slice A 

 

Slice B 

 

Slice D 

 

Slice E 

Figure 7. 8 Velocity magnitude contours at 10L/min  

7.3.2 Particle Deposition 

7.3.2.1 Preliminary Analysis 

To test the accuracy of the particle tracking procedure, the flow and particle transport in 

the entrance region of a pipe and a 90o bend pipe are simulated and the results compared 

with experimental and analytical solutions. The number of particles tracked through the 

pipe and nasal cavity geometries was 80,000 (up to 300,000 particles were checked), 

which was statistically independent from the stochastic nature of the Brownian motion 
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model. The deposition efficiency of ultrafine particles in the range of 1-100nm was 

simulated in a straight pipe for flow rates of 1L/min and 10L/min, and 5-12nm particles 

for a 90o bend pipe. As discussed earlier, the Brownian motion model from Fluent v6.3 

fails to predict the diffusion transport of ultrafine particles and this is evident in Figure 

7. 9, where a discrepancy of up to two orders of magnitude are found in comparison 

with the experimental results from Wang et al (2002) and the analytical correlation 

from Ingham (1975). 
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7. 2 

On the other hand, the Brownian model with a NWI using FLUENT v12.1 is able to 

handle the diffusion transport in a straight and 90o bend pipe. The Eulerian species 

model which accounts for pure diffusion (i.e. particle inertia effects are excluded), also 

shows satisfactory results. The Eulerian species simulation is valid for small 

nanoparticles, but with increased flow rate and particle size, the particle inertia 

becomes important (Xi and Longest 2008b). The deposition efficiency results for a 

straight pipe with a flow rate of 1L/min gives a similar trend to that of the 10L/min flow 

rate and therefore is not shown for brevity. It must be noted that the model for Brownian 

motion that are available in FLUENT v6.3 and v12.1 is the same model based on a 

Gaussian white noise process. Therefore it appears that the error occurring with 

Brownian model in FLUENT v6.3 is due to a computational bug, which has been 

rectified in the newer release. 
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Figure 7. 9 Comparison of deposition efficiency results using the Eulerian species model, Brownian 

model- FLUENT 6.3, and Brownian model- FLUENT 12.1 in (a) straight pipe 10L/min, and a (b) 

90o bend pipe. 

7.3.2.2 Diffusion Deposition in the Nasal Cavity and Sinus 

Under an inhalation flow rate of 10L/min, 70000 nanoparticles for each particle size of 

1, 5, 10, 40, and 100nm were tracked within the two nasal cavity models. The total 

deposition efficiency for the region spanning from the anterior nostril opening 

conducting airway to the oropharynx was determined and compared with existing data 

(Figure 7. 10). The comparative data comes from different forms of nasal cavity 

a) 

b) 



 

 140 

deposition studies which includes in-vivo human volunteers by Cheng et al. (1996), 

replicate cast models by Kelly et al. (2004a), and computational models by Wang et al. 

(2009) and Zamankhan et al. (2006). The deposition efficiency profile exhibits the 

ubiquitous decreasing trend as particle size increases for the diffusion deposition of 

ultrafine particles. For 1nm particles, there was 99.9% deposition within the nasal 

cavity. For 10nm particles the deposition decreases to 24% (NC02) and 30% (NC02-S). 

At 40nm the deposition decreases to 6% (NC02) and 9% (NC02-S) and remains at that 

level as the particle size increases to 100nm. The decreasing deposition efficiency trend 

is due to the decreased Brownian excitation of the nanoparticle. A smaller Brownian 

excitation produces a smaller dispersion, and hence reduces the potential for the 

particles to diffuse into the ostia and sinus regions. The hypothesis proposed suggests 

that the deposition efficiency for a nasal-sinus cavity model should have a higher value, 

due to diffusion transport of particles out to the nasal ostia and its sinuses. 

 

Figure 7. 10 Comparison simulation data for nasal without sinus deposition efficiency for 10L/min 
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The results show that there is no difference between a nasal-sinus and nasal only model 

for a 1nm particle as both models predict near 100% deposition, while for 10nm the 

difference is 6%; 40nm the difference is 3% and; 100nm the difference is 2%. 

Therefore the maximum deposition difference occurs at 10nm and this difference 

reduces as the particles size increase to 100nm. Larger particles will experience a 

heightened state of inertia, which convect the particles though the computational 

domain. The critical value above which inertia significantly influences deposition and 

transport has been found to be St > 1.0 x 10-5 (Xi and Longest 2008b). While the 

deposition for 1nm is the same for both models, the deposition may in actuality be 

different. Further analysis by visualisation is provided later to elucidate this. 

The maximum difference in deposition efficiency between the two nasal cavity models 

that occurs is relatively low, when considering the variations between other deposition 

data, and therefore it may appear that omitting the sinuses for evaluating ultrafine 

particles may be acceptable. To ensure this, it is necessary to present the deposition 

efficiency between the two models under a lower flow rate of 4L/min. From the Pe 

number, which describes the rate of convection to the rate of diffusion by  

DLUPe h
~/0=                  7. 3 

where U0 is the characteristic velocity, Lh the characteristic hydraulic length, and D~  

the diffusion coefficient based on the Stokes-Einstein equation, that a reduction in flow 

rate by 2.5x increases the influence of diffusion by the same amount for a given particle 

size. Figure 7. 11 shows the deposition efficiency for both nasal models where the red 

colour and open symbols represent the sinus NC02-S model. The lines represent the 

additional 15L/min case. The black colour represents the no sinus NC02 model. The 

difference in deposition efficiency between the two models at a flow rate of 4L/min is 
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most significant for 5nm and 10nm particles (17% and 16% difference respectively). 

As the particle size increases the difference between the two models diminishes. For 

1nm particles, the difference is not discernable since the deposition efficiency is nearly 

at 100%. While the quantifiable difference is not noticeable it is expected that the 1nm 

particle diffusion will be much stronger at the lower flow rate of 4L/min, and that the 

deposition pattern locally will be different to that at a flow rate of 10L/min. For 

completeness, the particle deposition efficiency was also evaluated at a flow rate of 

15L/min, which shows that the deposition values remain close to a flow rate of 10L/min 

for both models. Thus the differences caused by the sinus geometry remain similar as 

the flow rate increases from 10L/min to 15L/min. 

 

Figure 7. 11 Comparison simulation data for nasal without sinus deposition efficiency for 4L/min 

and 10L/min breathing rates 
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7.3.2.3 Visualization 

To confirm that the 1nm excitation due to diffusion is much stronger at a lower flow 

rate, it is necessary to track each individual particle and record its spatial coordinates 

after impaction onto the surrounding surfaces. The coordinates are plotted and coloured 

by residence time as shown in Figure 7. 11. The distribution of 1nm shows that earlier 

deposition occurs where a large proportion of the particles persist for less than 

0.022secs in the nasal-sinus cavity. The strength or influence of the Brownian diffusion 

increases as the flow rate decreases, and at a flow rate of 4L/min, deposition is found 

within the anterior half of the nasal-sinus cavity while at a flow rate 10L/min deposition 

is a little more dispersed with deposition sites found in the posterior half.  

The deposition pattern for 10nm particles shows a more random and even distribution 

pattern. The residence time is ten times as great as that for 1nm, which suggests that the 

particles are transported with the inhaled flow field for longer and hence has the ability 

to travel deeper into the nasal cavity and perhaps down towards the lung region. The 

particle residence time is important for nanoparticle (NP) deposition studies as it gives 

an indication of the likelihood of deposition in different regions of the nasal cavity. For 

example, the shorter residence time of 1nm means that deposition occurs nearly 

immediately and the deposition zone is restricted to the nasal cavity and further 

deposition downstream is unlikely. This protects the sensitive lung airways from those 

NPs that exhibit dangerous properties for respiratory health. Conversely the ability to 

deposit particles in the middle regions of the nasal cavity or even deeper into the lung 

airways with high deposition, can be important for therapeutic drug delivery. 
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4L/min (99.7%)         10L/min (99.5%) 

(a) 1nm particle, NC02-S 

 

 

4L/min (42.16% deposition)      10L/min (29.9% deposition) 

10nm particle, NC02-S 

  

4L/min (25.9% deposition)      10L/min (24.6% deposition) 

10nm particle, NC02 

Figure 7. 12 NP deposition pattern in the nasal-sinus cavity for (a) 1nm - resulting in 98% 

deposition and (b) 10nm - resulting in 29.8% deposition. Particles are coloured by trajectory time 

within the nasal cavity before impacting onto the surfaces at 10L/min. 
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Figure 7. 12 is the visual representation of Figure 7. 11. Here we see that the slower 

flow rate allows increased potential for particle deposition. The comparisons between 

the two nasal cavity models, NCO2 and NC02-S show that the additional deposition 

caused by the difference in geometry (i.e. additional paranasal sinuses) occurs in the 

ethmoid and sphenoid sinus region, and negligible amounts deposit in the maxillary 

sinus. A possible reason for this particle transport phenomena can be referred back to 

the convective flow streamlines presented in Figure 7. 6, which showed clear 

directional stream paths reaching the ethmoid and sphenoid sinuses, albeit at low 

velocities. This would transport the particles to the superior regions of the nasal cavity 

and then allow for the diffusion process to occur – a phenomenon that allows for the 

physiological function of olfaction. 

Deposition in the maxillary sinus is so low that the hypothesis that the diffusion process 

is dominant enough for particles to pass into the paranasal sinuses appears to only be 

supported if there is some convection involved (e.g. deposition sites in the sphenoid and 

ethmoid sinuses). In the maxillary sinuses the ostium protrudes at nearly right angles to 

the main flow field. To further investigate this we examine the maxillary ostium and 

locate the deposition of individual 1nm, 10nm and 40nm particles within the region as 

shown in Figure 7. 13. In the right maxilliary sinus, inclusive of the ostium, a small 

percentage of particles <0.04% are deposited. At a flow rate of 4L/min there are no 1nm 

particles deposited due to its early deposition in the main nasal passage. For both 

models, 10nm and 40nm particles are found concentrated within the ostium. Thus it 

appears that despite a lower flow rate, there is a lack of particle deposition within the 

maxillary sinus. 
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(a) Right maxillary sinus  4L/min  (b) Left maxillary sinus 4L/min 

  
(c) Right maxillary sinus 10L/min  (d) Left maxillary sinus 10L/min 

Figure 7. 13 Frontal view showing the NP deposition in the maxillary ostium and sinus for the (a) 

right nasal cavity, and (b) the left nasal cavity at 10L/min. Different sized particles are coloured as 

follows: 1nm red circle; 10nm blue square; 40nm black triangle. 

For a flow rate of 10L/min it can be seen that 1nm particles are captured within the 

narrow ostium and in fact don't make it through to the maxilliary sinus. For the left 
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maxilliary sinus, no particles were able to pass through the ostium, but a larger 

percentage of particles <0.5% deposited within the ostium alone. This is mainly due to 

the curved geometry and longer ostium length providing a narrow tube passageway for 

the particles to diffuse onto. These results support the report by Hood et al (2009), that 

ostium sinus ventilation is limited (unless the ostium is very large) and that the gas 

exchange of nitric oxide (NO) between the air in the maxillary sinus and the nasal air 

does not contribute greatly to the overall NO concentration. 
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Chapter 8 

Nasal Drug Delivery with a 

Nasal Spray Device 

8.1 Introduction 

Nasal drug delivery has long been used for local treatment of the common cold and 

allergic rhinitis. The nasal route also provides a great opportunity when considering 

systemic treatment through the delivery of new drug formulations or molecules, such as 

nicotine to assist in smoking cessation, calcium for osteoporosis, or insulin for diabetes. 

Therefore, studies into local droplet deposition becomes of great significance in the 

delivery of drugs via the nasal airway. Various studies adopting human subjects or 

nasal cavity replicas have found relationships for droplet deposition efficiencies with 

nasal spray parameters, such as spray cone angle and the droplet size distribution 

(Cheng et al. 2001; Suman et al. 2002). However in-vivo and nasal cavity replica 

methods are limited in providing detailed results due to the intrusive, time consuming 

and expensive nature associated with experimental implementation. In recent studies 

the authors (Inthavong et al. 2006; Tian et al. 2008a) sprayed droplet deposition in the 

nasal cavity was performed based on the characteristics of the atomised drug particles 

released from a nasal spray. It was found that for a flow rate of 20 L/min, 10-20µm the 

deposition of particles was sensitive to initial injection velocity, insertion angle, and 
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spray cone angle as its size increased. Larger particles exhibiting high Stokes numbers 

caused it to be insensitive to these spray parameters. In the previous studies the nasal 

spray device within the nasal cavity was absent from the computational model, while 

the experimental data did not provide a range of particle sizes. 

In this chapter, which is a step towards establishing more realistic drug delivery 

simulations, two computational models of a human nasal cavity model were 

reconstructed from CT-scans, where the difference between the two models was the 

presence of the nasal spray device to account for the airway blockage at one of the 

nostrils. Past studies of spray particle deposition have ignored the device within the 

nasal cavity. The airflow field was also induced from a negative pressure flow 

condition applied at the pharynx instead of constant flow rates between the left and 

right nasal cavities. The subsequent airflow patterns and its effects on particle 

deposition, with and without a spray device are firstly compared for two typical types of 

nasal spray nozzles (hollow spray cone and full spray cone). Following the flow field 

analysis, the atomisation of the liquid from a nasal spray device is visually presented to 

elucidate the external spray characteristics. Additional analysis using a PDIA was 

performed in order to get the Sauter mean particle size near the spray nozzle region. 

This data is important as it will provide confidence for setting up the initial particle 

conditions of the computational model. 

8.2 Numerical Procedure 

8.2.1 Experimental Setup 

The experimental setup employed for this study is shown in Figure 8. 1 which includes 

a test chamber, a pressurised water supply system, a liquid collection system and a 
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visualization system. Water was stored in a pressure tank and was fitted with a pressure 

line at one end and a pressure regulator was used to monitor a constant pressure in the 

system. The maximum pressure was applied upstream and a pressure regulator was 

used to monitor a constant pressure in the system. A PDIA digital image analysis 

technique by Oxford Lasers® was used, which was capable of determining the 

properties of individual droplets such as its velocity, size, shape and concentration over 

a finite region of interest in the flow. For capturing of the spray, a double-pulsed Nd: 

YAG laser was used as the illumination source with pulse duration of 5 ns. Droplet 

images were acquired with a non-intensified 12-bit digital camera (PCO Sensicam) and 

a long distance microscope lens with a magnification of 2.46. This provided a 1280 × 

1024 pixel array to capture a physical region of 3.85mm x 3.08mm. A long distance 

microscope lens provided a magnification of 2.46 offering a resolution of 

approximately 3.01 µm/pixel. The camera was mounted on a traversing unit which 

allowed precise movements in all three coordinates (+/- 17µm precision) to reposition 

the camera in order to capture the spray in full. A constant upstream pressure of 600kPa 

was applied and the water was released through a pressure regulator-valve and allowed 

to reach steady conditions before the images were taken. A single run was limited to 

approximately three minutes in order to avoid pressure variations associated with a 

decreasing liquid volume within the pressure tank. The spray nozzle used in the present 

study was a nasal spray device kindly provided by Saint-Gobain®/Calmar®, Product 

Number 43110-016. 
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Figure 8. 1 Schematic of the experimental setup for spray particle measurements 

8.2.2 PDIA and Particle Diameters 

The principle of PDIA is to use an automated segmentation threshold algorithm for the 

quantitative analysis of droplet images (Lide 1994). This method is based on the 

original approach adopted by (Kiely and McNicholas 2000), using the degree of image 

focus determined from the edge intensity gradient of a droplet or droplet image to 

determine the distance of the droplet from the focal plane. The diameter and sphericity 

of a droplet is determined from an estimate of the pixel area of the droplet image with a 

correction for out-of-focus effects. Out-of-focus droplets typically appear up to 30% 

larger than they actually are. The PDIA technique uses two thresholds, one to measure 

the grey out-of-focus border area, and the other to measure the dark core area. From the 

ratio of these two areas, the true droplet size and its distance from the plane of best 

focus can be deduced. Additionally, the PDIA algorithm also corrects the bias 

introduced by droplets that touch the edges. 
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In the experiment, diameter measurements in PDIA are based on an area estimate of 

the shadow image of an individual droplet (straightforward for a perfect sphere). Four 

commonly used statistical mean diameters are: the number mean diameter, D10; the 

volume mean diameter, D30; the Sauter (or surface weighted) mean diameter, D32, and 

the volume weighted mean diameter, D43. The various diameters are defined using the 

equation: 

)(
1

3

3 nm

i
n
i

i
m
i

mn Vd
Vd

D
−

−

−












=
∑
∑

             8. 1 

where Vi is the relative volume of droplets with diameter, di, and m and n are integer 

values that describe the mean being used. Thus the Sauter mean diameter, D32, is 

defined by the equation: 
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The Sauter mean diameter was selected to represent the mean diameter of droplets 

within the flotation cell and is particularly relevant to hydrodynamics and mass 

transfer, since both drag and reaction rates are proportional to the droplet area. 

8.2.3 Computational Boundary conditions 

For this study, the computational model is displayed in the chapter III Figure 3. 12, 

which is the nasal cavity with the spray drive. Inhalation through the nasal cavity is 

induced through the pressure difference caused by the movement of the diaphragm 

compressing and decompressing the lung. Therefore the outlet of the nasal cavity 

(pharynx) was set as a negative pressure equivalent to 20 L/min relative to the 
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atmospheric pressure at the nostril inlets. This method presents a more realistic 

approach to nasal cavity modelling when compared with a prescribed inlet velocity set 

at the nostrils. Inducing the flow from the pharynx considers the geometrical factor of 

the nostrils, as well as the inner structure of the nasal cavity. The wall boundary 

condition for the particles was set to ‘trap’, so that all particle trajectories ceased once 

they touch a wall and the effects of accretion and erosion of particles at the walls are not 

considered. The sprayed particles adopted the properties of spherical water particles, as 

most drug formulations are diluted with water. Other assumptions include no particle 

rebounding off the walls/surfaces, no particle break-up or coagulation, and no particle 

deformation. 

8.3 Results and Discussion 

8.3.1 Sprayed Particle Characteristics 

Figure 8. 2a shows the internal spray nozzle, which was scanned from a microscope 

after cutting away the exterior. It reveals three tangential slots for the liquid to pass 

through with a small orifice at the vertex which is common in pressure-swirl type 

atomisers. Theory of pressure-swirl type atomisers suggests that the swirling liquid 

spreads out of the orifice under the action of both axial and radial forces, forming a 

tulip-shaped or conical sheet beneath the orifice (Lefebvre 1989; Liu 2000). From the 

images, it is uncertain whether the liquid exiting from the nozzle is a hollow/annular or 

full solid cone or is partially solid since the designs of pressure-swirl atomizers can be 

typically hollow coned or a solid cone (Yule et al. 2000). However, the use of tangential 

slots presumes that it is a hollow cone type. For a hollow-cone spray, the spray pattern 

varies depending on the injection pressure. At very low pressures, liquid dribbles from 

the nozzle orifice. With sufficient pressure a conical liquid sheet forms with radial and 
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axial velocity. As the radial distance from the centerline to the sheet increases, the 

rotation decreases, as indicated by conservation of angular momentum. As the sheet 

extends, its thickness diminishes, due to instabilities on the liquid sheet, until it 

becomes unstable and breaks into ligaments and then droplets. The interaction 

between the air and the liquid is not well understood but it is generally accepted that an 

aerodynamic instability such as the Kelvin-Helmholtz instabilities on the liquid, causes 

the sheet to break up (Schmidt et al. 1999).Using a traversing system, the camera with a 

field of view of 3.082mm x 3.853mm is moved into ten different positions in order to 

capture the full range of the spray field (Figure 8. 2b) In the near nozzle region the nasal 

spray produces a continuous stream of liquid. Figure 8. 2b shows images of the 

near-nozzle region. In Figure 8. 2c the liquid appears to oscillate and roll downstream in 

waves. Further downstream, the liquid becomes critically unstable and breaks up into 

ligaments before further breakup into droplets. The two separate images show the 

destructive change on the liquid sheet as a consequence of the instability growth on the 

liquid surface. This initial stage of breakup is called the primary breakup of atomisation. 

The distance at which clearly formed particles are observed is called the breakup length, 

which occurs just after the ligament breakup region, (between the second and the third 

row (Figure 8. 2b). At this location, the particles are not necessarily located at a single 

point (i.e. at the nozzle/orifice point) but rather the particles are dispersed over a 

diameter. This is an important feature for the numerical setup since the particle 

initialisation in the computational model needs to be defined at the break-up length 

rather than as a point source at the nozzle exit. Additional parameters measured for this 

particular nasal spray, include nozzle diameter (~0.5mm), spray cone angle (~30o), 

initial particle velocity (~15m/s) and break-up length (~5mm). 
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(a) 

 

(b) 
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Near nozzle region, T1     T1 + 0.2s 

Separate snapshots of the liquid spray in the near nozzle region 

 
Ligament breakup region, T2     T2 + 0.2s 

Separate snapshots of the liquid spray atomization in the ligament break region 

(c) 

Figure 8. 2 (a) Microscope scan of the internal spray atomiser nozzle.(b) Instantaneous images with 

field of view (FOV) of 3.853-mm x 3.082-mm of the external spray characteristics taken at ten 

locations and collated together (c) Two sets of images separated by in time showing the spray 

particle formation at the near-nozzle region and at the ligament breakup region 

The Sauter mean diameter was also measured for the bottom two rows of images 

(Figure 8. 2b) that were captured by the camera (obviously the first two rows were not 

able to be analysed because the liquid had not yet been atomised). Eight mean 

diameters, three along the fourth row and five across the fifth row are shown in Figure 8. 

3. Larger Sauter mean diameters are located centrally near the bulk spray flow region. 

In the centre panel at y=7.705mm the largest diameters measured in range of 10µm, 
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which was statistically significant (having at least 0.1% number count) at 291-301µm, 

while the smallest diameter was 11-21µm, having a number count of 49%. Further 

downstream the diameters continue to breakup into smaller particles. This stage of 

breakup is called the secondary atomisation breakup. In the outer periphery, smaller 

Sauter mean diameters are found. In the far left and right panels (x= +/- 7.706mm, y= 

10.787mm) the largest diameter range having at least 0.1% number count was 

131-141µm while the smallest diameter range of 11-21µm had a number count of 

77.86µm.  

 

Figure 8. 3 Sauter mean diameter D32, taken for each FOV section or the fourth (y = 7.705mm) and 

fifth rows (y = 10.787mm) as depicted in Figure 8. 7b. 

These measurements provide confidence in setting a realistic range of values 

initialising the particle boundary condition in the computational modelling. In addition, 

a more effective parametrical study can be performed in order to provide better 

guidance in the design and development stages of nasal sprays for improving nasal drug 
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delivery. The spray device was included in the model by placing it into the left nasal 

chamber at an insertion angle of 10o to the vertical axis. The dispersion of the particles 

is represented by the spray cone angle, which was set at an angle of 30o, and the swirl 

fraction was 0.5, which is only applicable for a hollow spray cone type. Initial tests of 

particles with the nominal mean diameters suggested by the experimental data (e.g. > 

80µm) found that all the particles deposited immediately in the anterior nasal cavity 

region Sprayed particles were introduced into the nasal cavity from a breakup length, 

Lbu of 4mm. The spray cone diameter at the breakup length, dbul was 3mm, while the 

initial particle velocity was 15m/s, which were both determined from the PDIA 

measurements (Figure 8. 2). 

8.3.2 Computational Model Validation 

Validation of the computational model may be checked through comparisons of the 

reported pressure drop across the nasal cavity under different flow rates. In this study 

the flow field is induced by the negative pressure boundary condition set at the 

nasopharynx, caused by the dilation of the lungs during inhalation. Therefore the 

pressure drop becomes the dependent variable and a series of pressure values at the 

nasopharynx exit were simulated. Figure 8. 4 shows the mass flow rates obtained from 

the average pressure drop between the nostril and nasopharynx ranging from 5Pa to 60 

Pa (Figure 8. 4). At these pressure drops, the corresponding range of Reynolds numbers 

at the inlets is 981 to 3951. The numerical results show good agreement with reported 

experimental data, especially at flow rates of 20L/min or less where the flow is laminar.  
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Figure 8. 4 Flow rate through the nasal cavity as a function of a pressure drop between the nostril 

and the nasopharynx 

Particle deposition efficiencies have been reported in the literature for particles released 

into the nasal cavity (Cheng et al. 2001; Kelly et al. 2004b; Shi et al. 2006). The 

deposition of particles as a function of the inertial parameter (da
2Q) is shown in Figure 

8. 5, which displays the characteristic curve associated with inertial deposition. 

Differences in deposition may be attributed to the inter- subject variability between the 

nasal cavity models obtained by (Kelly et al. 2004b) (53 year-old Caucasian male) with 

the model used in the present study (25 year-old Asian male) while (Häußermann et al. 

2001) also states that nasal cavity replicate casts with wider airways can cause less 

deposition due to secondary flow. The DRW model significantly overestimates particle 

deposition for an inertial parameter (IP) < 10,000. The modification to the model by 

dampening the turbulent kinetic energy allows the normal fluctuating velocity to be 
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reduced, bringing it closer to the correct value. The effect on particle deposition is a 

better agreement to the reported data for IP < 10,000. 

 

Figure 8. 5 Inertial deposition efficiency for micron particles in the left cavity side of a human nasal 

cavity compared with reported data. 

8.3.3 Airflow Field 

The total flow and its distribution between the left and right nasal chamber as a result of 

the airway geometry resistance with and without the nasal spray device are plotted in 

Figure 8. 6. In both cases the right nasal chamber shows a greater proportion of flow 

distribution. Further calculations show that the volume of the left cavity is smaller by 

about 13% than the right cavity, which explains the biased distribution between the 

left and right airway, which is 44%–56% without the nasal spray and 32–68% with the 

presence of the nasal spray.  
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Figure 8. 6 Flow rate distribution between the left and right nasal chamber. Comparison is also 

made with the presence of the nasal spray device. White symbols –model without the spray device; 

Black symbols –model inclusive of the spray device; Triangles – left cavity; Circle – right cavity. 

Path streamlines that track the fluid motion from the nostril inlet are shown in Figure 8. 

7 (a) for a plain nasal cavity model and (b) a nasal cavity including the spray device. 

For the plain nasal model, the flow streamlines are generally undisturbed as it flows 

from the nostril inlet into the nasal valve. The main feature of the flow appears in the 

nasal valve region where the flow accelerates through the narrowest cross-section of the 

airway. This region of flow also exhibits some vortical flow proximal to the airway 

floor as the flow changes direction from a vertical flow to a horizontal flow due to the 

90o-like bend at the nostril. This flow feature is similar to the flow characteristics found 

in a forward-facing step configuration. The bulk flow passes mainly through the middle 

of the cross-section and then partitions into the upper, middle, and lower flow. The 

presence of the spray device taking up space in the nasal vestibule shows an increase in 

disturbance within the flow. The effective area of the nostril to the open air is reduced 
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and within the narrow air spaces, the flow is accelerated through. At the top of the spray, 

the streamlines separate and begin to swirl through the nasal valve region. 

velocity 

[m/s] 

 

Magnified view of internal nostril region 

 

Path streamlines throughout the left nasal chamber 

(a) Plain nasal cavity model 

velocity 

[m/s] 

 

 

Magnified view of internal nostril region 

 

Path streamlines throughout the left nasal chamber 

(b) Nasal cavity model with spray device 

Figure 8. 7 Path streamlines in the anterior region of the nasal cavity affected by the presence of the 

nasal spray device. 
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Contours of velocity magnitude with streamwise and crossflow velocities 

superimposed were applied to cross-sectional slices (Figure 8. 8) taken at the three 

locations (x=0.6cm, 1.6cm and 2.5cm from the nose tip) as depicted in Figure 3. 12. 

The presence of the spray device causes high velocities in the confined space of the 

nostril periphery as shown in the path streamlines. The vertical streamlines reflect the 

inhalation being induced through the nostrils and travelling vertically. At the spray 

head, the flow field experiences flow separation and two recirculating vortices are 

found at the edge of the spray device. Particles are produced at a breakup distance from 

the nozzle head and therefore would experience the downstream effects of the disturbed 

flow. At the cross-section B, x=1.6cm, vortices are present in the lower corners due to 

the elevation of the geometry. The streamlines show the flow still rising vertically. At 

cross-section C, x=2.5cm, the flow patterns are quite different for the two models which 

suggests that the influence of the spray nozzle inside the nasal cavity is prevalent up to 

x=2.5cm.  
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axial 
velocity 
contour 

[m/s]

 
   

Cross-section A 

Ave Vel=1.5 m/s 

Cross-section B 

Ave Vel=1.99 m/s 

Cross-section C 

Ave Vel=1.32 m/s 

 (a) Plain nasal cavity model 

axial 
velocity 
contour 

[m/s]

    

Cross-section A 

Ave Vel=2.2 m/s 

Cross-section B 

Ave Vel=2.06 m/s 

Cross-section C 

Ave Vel=1.24m/s 

 (b) Nasal cavity model with spray device 

Figure 8. 8 Crossflow streamlines superimposed onto contours of velocity magnitudes at different 

coronal cross-sections as defined in Figure 3. 12. 
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8.3.4 Particle Deposition 

Sprayed particle depositions in each region (A – Anterior region; M – Middle region; 

and P – Posterior region) from the two spray types (solid and hollow cones) are shown 

in Figure 8. 9. In general there are small differences between the hollow and solid spray 

cones. For 5µm particles, hollow spray cones provide greater deposition, which may be 

due to the radial distribution of the particles caused by the swirling component. As the 

particle size increases so does the particle inertia. For 15µm particles, the atomised 

hollow spray achieves 12% deposition in the middle region of the nasal cavity, whereas 

a solid sprayed cone achieves 100% deposition in the anterior region, and therefore 0% 

in the middle region. The radial velocity component of the hollow spray cone allows a 

horizontal component in directing the initial particle trajectory. This helps direct the 

particles towards the nasal valve region, leading to increased particle flow through to 

the middle nasal cavity. For 50µm particles, which exhibit the highest inertial 

properties of the three particles presented, maximum deposition occurs in the anterior 

regions and no particles reach the middle region. Overall for the solid cone spray, 5µm 

particles exhibited greatest deposition in the middle region, while for the hollow cone, 

both the 5µm and 15µm particles deposited in the middle regions. It should also be 

noted that a large number of 5µm particles escaped through the nasaopharynx. This will 

lead to deposition later downstream in the respiratory tract, and may even deposit deep 

in the lungs, which may have an adverse health response. 
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(a)               (b)      (c) 

Figure 8. 9 Sprayed particle deposition from a hollow and a solid spray cone. The x-axis labels, A, 

M, P represent Anterior, Middle, and Posterior regions respectively. 

The deposition pattern along with the initial particle trajectories for 5µm and 15 µm 

particles is shown in Figure 8. 10 and Figure 8. 11 respectively. In addition, the particle 

velocity as it impacts onto the surface walls was recorded and an average value was 

taken. Note that this average particle impaction velocity, (Vpi), is not the same as the 

deposition velocity, ( )outin
ave NN

xPu
AU

V /log
* ∆

=+  (Kallio and Reeks 1989) used to 

characterize the rate of deposition, but rather a way to determine the influence of the 

initial particle conditions imparted as the particles are introduced into the airflow 

stream during atomisation.  
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(a) Solid Cone (b) Hollow Cone 

 

 

Deposition - 28.4% 

 

 

Deposition - 24.3% 

Time [s] 

 

Ave Particle Impaction Vel: Vpi = 2.78m/s 

Time [s] 

 

Ave Particle Impaction Vel: Vpi = 0.74m/s 

Figure 8. 10 Deposition patter of 5µm in the nasal cavity for a solid and hollow spray cone. The 

particle trajectories are coloured by residence time. 
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(a) Solid Cone (b) Hollow Cone 

 

 

Deposition - 96.1% 

Time [s] 

 

 

 

Deposition - 85.5% 

Time [s] 

 

Ave Particle Impaction Vel: Vpi = 9.61 m/s Ave Particle Impaction Vel: Vpi = 6.80 m/s 

Figure 8. 11 Deposition of 15µm in the nasal cavity. The particle trajectories are coloured by 

residence time. 
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The deposition patterns for the 5µm particle for the two spray types are similar and this 

is evident in the particle trajectories which show similar flow paths. The small 

differences between the two sprays include a greater number of particles immediately 

above the spray nozzle, and the higher Vpi for the solid spray cone. This Vpi value 

suggests that the solid spray cone has a larger proportion of particles impacting 

immediately above the spray nozzle, since the initial particle velocity of an atomized 

spray is 15 m/s. The lower Vpi suggests that more particles have become entrained in the 

airflow. The particle trajectories are coloured by particle residence time, which helps 

explain the looping motion of the particle near the spray nozzle. Some particles which 

are directed away from the main nasal passage lose enough of their initial velocity to 

re-orient their direction and get close to the spray nozzle. 

15µm particles exhibit an increase in inertial properties from a 5µm particle, and this 

highlights the effect of the initial particle conditions further. The deposition patterns for 

the two spray types above the spray nozzle show the formation of the spray type. While 

this simulation does not account for particle splattering onto the surface and eventual 

and smearing along the nasal walls, it demonstrates the influence of the initial particle 

conditions (such as the swirl component and the insertion angle) on higher inertial 

particles. The hollow spray cone allows a small proportion of particles to squeeze 

through the nasal valve region. It is then inferred that these particles are entrained in the 

flow before depositing downstream when the particle can no longer follow the flow 

streamline. The Vpi for the solid cone shows that on average the initial particle velocity 

has decreased from 15m/s to 9.61m/s over the small distance from particle injection to 

the upper walls. Improvements to the spray atomizer during its design stage may 

involve atomizing the particles at a slower velocity, and to achieve a much finer particle 

size distribution. For the user, it may be instructed that aligning the spray device more 
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horizontally to the main nasal passage could enhance deposition downstream from the 

anterior region. This may involve tilting of the head backwards to allow better 

alignment. 

Further parametrical studies were investigated by determining the effects of the swirl 

fraction (Figure 8. 12) and the spray cone angle (Figure 8. 13). The swirl fraction 

controls the amount of radial velocity component, and therefore mimics the design of 

the slots within the swirl atomiser. A higher swirl fraction will lead to a greater radial 

component and increasing the time taken to travel in the axial distance. This helps to 

reduce the particle inertia and can provide much longer residence times for the particle. 

This is evident in the particle trajectories which show very high levels of radial motion, 

leading to a reduction in the deposition efficiency, mainly within the anterior nasal 

cavity. More particles are then distributed further downstream, with an increase in 

deposition in the middle and posterior regions. The average Vpi is also reduced, 

indicating that more particles have become entrained with the flow field. Similarly, the 

spray cone angle can provide a wider dispersion, but this time the radial velocity 

component is fixed. The wider spray angle allows more particles to be closer aligned to 

the horizontal axis, in which the main nasal passage lies. This effect is important since 

the insertion of the spray device into the nasal cavity is naturally vertical or close to it. 

The effect on the deposition efficiency for 15µm particles is not very significant. For 

larger particles the influence of the spray cone angle to re-alignment of the particles in 

the airway will be more significant since the higher particle momentum will force the 

particle through without any external influences from the flow field. Conversely, for 

smaller particles the spray cone angle is less significant.  
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(a) Swirl fraction 0.1 (b) Swirl Fraction 0.8 

 

 

Deposition - 91.0% 

Time [s] 

 

 

 

Deposition - 80.3% 

Time [s] 

 

Ave Particle Impaction Vel: Vpi = 8.05m/s Ave Particle Impaction Vel: Vpi = 5.73 m/s 

Figure 8. 12 Effect of the swirl fraction on the deposition of 15µm in the nasal cavity with a hollow 

cone spray with a cone angle of 30o. The particle trajectories are coloured by residence time 

.  
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 (a) Spray Cone Angle 15o (b) Spray Cone Angle 50o 

 

 

Deposition - 84.8% 

Time [s] 

 

 

 

Deposition - 74.1% 

Time [s] 

 

Ave Particle Impaction Vel: Vpi = 7.12 m/s Ave Particle Impaction Vel: Vpi = 6.79 m/s 

Figure 8. 13 Effect of the swirl fraction on the deposition of 15µm in the nasal cavity with a hollow 

cone spray with a swirl fraction of 0.5. The particle trajectories are coloured by residence time 

.  
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8.4 Discussion 

Two computational models of nasal cavity were created and analysed, where the 

difference between the two models was the presence of a nasal spray device inserted 

into the left nasal chamber. Firstly, the airflow distribution and patterns between the 

two models was compared. It was found that the presence of the nasal spray device 

creates additional resistance, obstructing the inhaled air, and reducing the flow rate. 

While the percentage breakdown is similar throughout the pressure drop range, the flow 

rate distribution is most similar when the pressure drop is low but the difference (due to 

the geometry) is magnified as the pressure drop increases. During the respiration cycle, 

the airflow through the nasal passage is normally asymmetrical, where one nasal 

passage achieves greater airflow. This asymmetry is referred to as the nasal cycle, 

which is a result of congestion (swelling) of the erectile tissue (cavernous tissues of the 

mucosa) in one nasal cavity while at the same time decongestion (shrinking) occurs to 

the erectile tissue in the other cavity. The airflow through each nasal cavity is then 

governed by the resistance caused by the cross-sectional area of each airway. 

Streamlines of secondary flows found that that vortices are present in regions of low 

velocity magnitudes (blue contours), and in regions where the geometry expands, such 

as the nasal valve and the spray head regions. 

Experimental images were then obtained to establish a better understanding of the nasal 

spray device characteristics. It was deduced that the internal spray atomiser was that of 

a pressure-swirl type, which is distinguished by the ability to produce greater spray 

cone angles. This can range from 30° to 180°, depending on the relative magnitude of 

the radial and axial velocity components at the nozzle exit, which can be controlled by 

adjusting these variables (Liu 2000). The droplet size produced was considerably high 



 

 174 

having D32 in the order of 100µm in the centre plane of the spray while at the periphery 

D32 was approximately 30µm. The particle size produced is a function of liquid 

pressure and swirl chamber dimensions where the smaller the swirl chamber is, the 

finer the resultant droplets can become, but a greater back pressure is needed to force 

the liquid through the atomiser. The decisions undertaken during the design of the spray 

atomiser are therefore critical to achieve high efficacy for targeted drug delivery, since 

the initial conditions of the atomised particles play an important role as boundary 

conditions for the particle trajectory. 

It is well recognized that one of the functions of the nose is to filter out foreign 

particulates during inhalation, which is mainly thought to be attributed to cilia (nasal 

hairs) movement within the nose. The filtering curvature in the frontal sections along 

with the constricting nasal valve region is most significant for therapeutic drug delivery 

as it prohibits larger particles to penetrate into the middle cavity region for deposition 

onto the highly vascularised mucosal walls. The initial particle conditions from the 

experimental data showed that the atomised particles are large in size, leading to early 

deposition in the anterior nasal cavity. The particles that are introduced into the airway 

therefore need to have their inertia stripped away. The swirling fraction, which 

represents the radial component from the swirl atomizer, presents the most effective 

method to reduce the axial velocity. In addition to this spray parameter are other 

parameters that have an effect on the deposition. This includes, the spray cone angle, 

insertion angle, particle size distribution, initial particle velocity and the location of 

injection, where these variables need to be integrated together to obtain a better 

prediction of deposition efficiency. 
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Finally, some limitations and improvements of this study need to be noted. In this study 

one-way coupling is used, which assumes that the flow of particles does not affect the 

fluid flow. This assumption is valid where the volume fraction of the particles is 

relatively low (<10%). This occurs downstream as the particles disperse through the 

nasal cavity. However, near the spray nozzle region (i.e. dense spray region), where the 

particles are atomising, the volume fraction is much higher. The flow field in this region 

is therefore expected to be under predicted in the direction that the spray is aligned (10o 

from the vertical). From the spray images, the two-way coupling influence for 

momentum exchange is limited to approximately 6 mm from the spray nozzle. 

Turbulence modulation is therefore also not included, which requires an additional loop 

in the numerical iteration within the current methodology. This is left for a future study 

which will incorporate an unsteady breathing profile. Other assumptions include no 

particle break-up or coagulation, no particle deformation, and evaporation. 
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Chapter 9 

Conclusion & 

Recommendation 

 

This thesis has presented isolated nasal cavity models; a nasal cavity model with 

paranasal sinuses included; a human body model with detailed facial features and an 

integrated model, which includes a human body, facial features and internal airways. 

These were obtained through CT scans of the human respiratory airway of two healthy 

and non-smoking Asian male volunteers. They became the basis of fluid dynamics 

analysis in order to investigate the inhalation of micron and submicron particles for 

toxicological and therapeutic cases. In this chapter, major findings, problems solved 

and research methods that were developed will be summarised. 

9.1 Toxic Particles around the Human Body 

9.1.1 Transportation of Toxic Particles 

The computational model used in this study combined detailed facial features with a 

simplified human body to better understand the effects of ambient human body heat on 

particle transport and inhalation by a human manikin in an indoor environment. . 

Computations were conducted under both facing-the-wind and back-to-the-wind 
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conditions, as well as isothermal and thermal conditions, respectively. Satisfactory 

agreement was obtained between the numerical results and the experimental data 

available in the literature. First of all, body heat causes a significant rising airflow 

velocity in the downstream side of the manikin. This rising velocity plays an 

important role in transporting particles from the lower level into the breathing zone. 

Secondly, the occupant-wind orientation plays another important role in particle 

inhalation. When the occupant is facing the wind, the critical area is located at the 

nose level, while it is located at a lower level when the occupant has his back to the 

wind. Finally, the importance of body heat on particle transport and inhalation 

decreases with increasing free stream speed. Therefore, the effect of body heat has to 

be taken into account when the indoor wind speed is low. 

9.1.2 Inhalation of Toxic Particles 

The integrated CFD model simulation was performed to better understand the air and 

particle flow patterns in human exposure to indoor air pollutants. A realistic upper 

respiratory airway model based on CT-scans was created and integrated into a human 

body. During inhalation, the flow patterns near the face show vertically aligned flow 

streams which transport the particles towards either the nose during nasal inhalation 

or mouth during oral inhalation. The influence of the ambient air flow rate on the flow 

patterns is the increased acceleration of flow that begins as the air flow diverges at the 

torso. Flow separation occurs at the rear of the human head and there is a shift in the 

recirculation region, and different wake effects are found. This indicates that if the 

ambient air flow was coming from behind the body, particles forming a contaminant 

source in front of the body may be disturbed and induced into the breathing region. 

Trajectories of the inhaled particles found that the source of large inhaled particles 
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(e.g. 40μm and 80μm) that are originating from upstream must be above the nose as 

gravitational settling is significant for these particles. For the smaller particles, 

(1μm-20μm) particles tend to follow the flow streamlines and their original upstream 

location must be below the nostrils. The critical area shapes were determined by 

reverse tracking the particles to their origins and colour coding their positions in order 

to determine if a pattern could be deduced for predictions of local respiratory region 

deposition. It was found that only the 15μm particle size produced a discernible 

pattern. This studied improved the understanding of particle inhalability and enhanced 

state of the art CFD modeling towards a holistic simulation for exposure of airborne 

particles. 

9.2 Inhalation of Toxic and Sprayed Particles in the 

Isolated Nasal Model 

9.2.1 Nasal Cavity with Paransal Sinus 

A nasal model with paranasal sinus was created in order to determine if any 

nanoparticles would deposit within the paranasal sinuses given that these particles are 

transported through the nasal cavity mainly by diffusion. Under a flow rate of 

10L/min it was shown that 1nm particles deposited early and in the anterior half of the 

nasal cavity with a deposition efficiency of 99%. As the particle increased in size to 

10nm the diffusive nature of the nanoparticle decreased and the deposition efficiency 

reduced to 30%. However a more evenly distributed deposition pattern was found for 

10nm particles. The effect of including the sinus compartments with the nasal 

geometry on the deposition efficiency was most significant for 10nm particles. This 

difference is further amplified when the flow rate is decreased, which allows the 
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diffusion to be more influential. These results aimed to identify the possible 

differences that may occur when evaluating particle inhalation for toxicology or drug 

delivery using cast or computational models that exclude the sinus regions. This is 

particularly important for the case where flow rates are low and particle sizes are 

around 5-10nm and comparative studies between human subjects and nasal cavity 

casts or CFD models that neglect the sinus airways should consider the diffusion 

effects of nanoparticles. 

9.2.2 Nasal Cavity with Spray Device 

Two computational models of the human nasal cavity without paranasal sinus were 

created in this study, where the difference between the two models was the presence 

of a nasal spray device. This was coupled with experimental data, which was used to 

provide realistic initial particle boundary conditions. The experimental data was 

obtained from PDIA measurements, which provided visualisation of the spray 

development as well as the Sauter mean diameter at different sections of the spray. 

Important features of the spray characteristics include the spray cone angle, particle 

size, diameter of the spray cone and break-up length from the nozzle. The measured 

values provided a basis for setting appropriate initial particle conditions for the 

computational model. The two nasal cavity models were first simulated to investigate 

the differences in the air flow field caused by the presence of the nasal spray head. 

Increased levels of disturbed flow were found where the spray device was placed in 

the nasal vestibule. The increase in vortices can have two effects: i) the swirling 

vortices, which have radial and tangential velocities, may in fact slow down the linear 

velocity of the sprayed particles thereby reducing the particle inertia, and ii) the 

dispersion of the particles is increased due to the vortices. 
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Droplet deposition was found to be high in the anterior regions of the nasal cavity 

caused by the particle inertia, which is a major stumbling block for particles to get 

through the narrow nasal valve region to the middle regions where the drugs are 

absorbed. Evaluation of the two spray cone types found that hollow spray cones 

produced more deposition in the middle regions of the nasal cavity for 5µm and 15µm 

particles. For increased efficacy in nasal drug delivery design, issues such as 

atomisation for finer particle size distribution and slower initial particle velocity is 

suggested. In addition, instructing the user to align the spray with the main nasal 

passage may also help. These results demonstrate the use of CFD to provide insight 

into design issues related to the spray atomiser performance for nasal drug delivery. In 

addition this work is a step forward towards a more integrated drug delivery 

simulation, which currently still lacks additional physics such as unsteady inhalation, 

and further complex physics such as multiphase turbulence and fluid structure 

interactions. 

9.3 Recommendations for Further Study 

There are several further studies that can be performed to continue this research in the 

aspects of simulation. 

Firstly, in the numerical model technique, there are several turbulence models that 

need to be tested for comparison in future work, such as the Direct Numerical 

Simulation (DNS) model and the Large Eddy Simulation (LES) model. Turbulence 

state is the typical motion of fluids when at larger Reynolds number conditions. The 

governing equations used for both laminar and turbulent flows are the same in the 

Navier-Stokes equations, the difference is use different variable such as the kinetic 

energy (k) and dissipation (ε). Turbulence state is the typical motion of fluids when at 
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larger Reynolds number conditions. Huge computational resources are needed to 

proceed to their direct solution without any model. This approach is Direct Numerical 

Simulation (DNS). DNS is important to provide data for the development and 

validation of turbulence models (both Large Eddy Simulation (LES) and Reynolds 

Averaged Navier-Stokes (RANS) models) and also to be directly applied to certain 

types of flows. 

Secondly, in the integrated model of a human manikin within the space of a room, this 

current study investigates the influence of different wind velocities on only one 

particle size. In the further work, it will be necessary to analyse results with different 

conditions by changing specific parameters (e.g. inlet velocity and particle size). 

Another possible simulation to test and validate would involve a number of manikins 

in a room with different orientations such as face to face, face to back and back to 

back, which would be very helpful to understand exposure risk as well as determine 

ideal ventilation designs in public and occupational health.  

Additionally, for the internal respiratory model, these studies in total used two 

subjects’ patent airways; one nasal cavity with paranasal sinuses is among the models. 

The individual model including the paranasal sinus has limitations due to the 

inter-subject variability in anatomy between different people. Further studies may 

examine the differences in a wide range of subjects (age, sex, ethnicity etc.) and with 

a larger sample size. However in general, gross flow features and overall particle 

deposition can provide sufficient insight into the trends that are consistent among 

different geometries. On the assumption that the subject within this study is without 

pathology and representative of an ‘average’ patient, the preliminary results from this 

study will aid in gaining an appropriate understanding of the effect of paranasal 
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sinuses on nano-particle deposition. Chronic sinusitis is a common problem in our 

population with a prevalence in the United States of 14.6% and results in significant 

morbidity, costing the US health care system approx. $3.4–5 billion annually (Pleis 

and Lucas 2009). There is potential in future work to speculate the implications of 

sinusitis and obstruction of paranasal sinuses on particle flow and deposition in the 

nasal airways. These results may be applicable to improving novel delivery of 

therapies to treat conditions like chronic sinusitis. 

The final recommendation involves running the simulations under transient flow. 

Since data has been established for steady simulations, an unsteady simulation will 

provide important comparisons into airflow structures and particle dynamics. The 

unsteady simulations may provide insight into different types of inhalation such as at 

high levels (sniffing) and the holding of breaths, which influence particle flow 

dynamics. Different breathing patterns may also be investigated by using unsteady 

simulations. The type of inhalation affecting the deposition patterns of particles will 

then determine whether one form of inhalation is more effective than another for drug 

delivery. Studies of abnormalities to the nasal cavity can also be performed to 

investigate possible surgical interventions. The simulations can provide 

cause-and-effect results from ‘virtual surgery’ where walls and sections of the nasal 

cavity can be modified in the computational model to explore the effects on airflow 

and heat transfer. This concept is also highly applicable to sleep apnoea where the 

influence of airway geometries plays a critical role in the breathing ability of patients. 
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Appendix A 

Fluid Equations 
The equations forms are given as: 
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energy equation 
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The governing equations have the same generic form, and for a fluid propertyφ, the 

equation can be written as 
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  4. 6 

This is otherwise referred to as, the scalar transport of φ, By setting the transport 

property φ equal to 1, u, v, w, T, and selecting appropriate values for the diffusion 

coefficient Γ and source terms Sφ, the continuity (φ=1), momentum (φ=u, v, w) or 

energy (φ=T) equations can be produced. The transport equation includes the local 

acceleration and convection terms on the left hand side which is respectively equivalent 

to the diffusion term (Γ = diffusion coefficient) and the source term (Sφ) on the right 

hand side sources. Source terms can represent gravity that influences the fluid motion, 

or in the case of ST in the energy equation may contain heat sources or sinks within the 

flow domain. 
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