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Abstract 

An experimental investigation is conducted into the damage progression and strength 

of bolted joints with fibre-reinforced composite laminates and countersunk fasteners. The 

main goal of the experimental investigation is to characterise the effect of the countersink 

geometry on the load-carrying capacity of single lap joints in comparison to the straight-

shank case. The effects of bolt torque, clearance and countersink height ratio on the damage 

progression and joint strength are also studied. Experimental tests and detailed microscopy 

studies are conducted on a bearing test specimen with a straight-edged hole, and several 

single-lap joint configurations with countersunk fasteners. It is found that introduction of 

the countersunk hole roughly halves the bearing stress, and causes delamination for some 

configurations. This delamination is primarily located at the start of the countersink region, 

though is found to be triggered by other damage mechanisms and has only minor influence 

mailto:adrian.orifici@rmit.edu.au
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on the results. Bolt torque increases the density of through-thickness damage though limits 

its extension from the hole edge, whilst bolt clearance causes localisation of the damage 

region. Increasing the ratio of the countersink depth to the laminate thickness reduces the 

extent of bearing and promotes bending, with a change to net section failure at large ratios.  

Keywords: Countersunk bolts, single-lap joints, bearing tests, progressive damage  

 

1. Introduction 

Despite the many advantages of adhesive bonding, bolted joints are still used in 

aerospace structures because of the ease of assembly/disassembly and airworthiness 

certification. However, the introduction of bolts leads to complicated three-dimensional 

(3D) stress fields near the bolt hole [1]. In the case of composite skin structures, the use of 

countersunk fasteners elevates the stress concentration above that for straight-sided holes. 

The higher stresses due to the countersunk fastener further reduce the joining efficiency of 

laminated composites. To take full advantage of fibre-reinforced composite materials in 

structural elements, it is necessary to investigate techniques to improve the structural 

efficiencies of bolted joints, particularly those involving countersunk fasteners. This in turn 

requires a thorough understanding and modelling capabilities of the effect of the 

countersink geometry and the influence of the joint parameters.  

Research in the field of bolted joints has mostly concentrated on straight shank bolts, 

with limited work on countersunk bolted joints. Various authors [2, 3] have found the 

primary failure mode in pin-bearing damage is shear cracking formed by accumulated 

compression failure in each individual ply of the laminate. Detailed microscopy has found 
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that the principal damage mechanisms of the shear cracks are fibre kinking, fibre-matrix 

shearing and matrix compression. Delamination has also been found to be a major failure 

mode in bearing damage [4], particularly in interaction with other modes.  

Research on the influence of bolted joint parameters on the joint strength and damage 

progression has also been dominated by investigations into straight-shank bolts. Bolt torque 

(BT) has been investigated by several authors for straight-shank bolts [5, 6] and found to 

increase bearing and failure loads, as well as limit delamination. Clearance (CL) in straight-

shank bolt holes has been found to reduce the bolt contact area [7-9], affecting the load 

transfer, high stress regions and joint bearing loads. With regards to countersunk joints, 

recommendations for joint design to promote bearing failure are given in an ASTM 

standard [10], and summarised in Figure 1, though the effects of variation within these 

guidelines are not covered.  

In contrast to the considerable literature available on straight-shank bolts, the 

literature with regards to countersunk joints is not as comprehensive. A few investigations 

have focused on the contact condition of the bolt [8, 11, 12], or the application with multi-

bolt joints [13]. These investigations have typically focused on describing the joint 

behaviour using the load history, and detailed microscopy of countersunk joints under a 

range of joint configurations have not been published in open literature. Further, the 

majority of literature on composite bolted joints relates to uni-directional tape material, and 

the damage mechanisms and joint behaviour of laminates manufactured using fabric plies 

have not been reported.  
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In this paper, results are presented from an experimental investigation into the 

damage progression and strength of countersunk composite single-lap joints. The 

specimens investigated are manufactured from fabric material with variations in bolt 

torque, clearance and countersink height to laminate thickness (HT) ratio h / t. A focus of 

the investigation is a detailed study of the load-carrying capability and damage mode 

initiation, progression and interaction. Results from a numerical investigation into the stress 

distributions are also presented, to provide further insight into the load paths and stress 

distributions for each configuration.  

2. Specimen Configuration 

Experimental tests were conducted in two configurations: a bearing test, and single-

lap joints with countersunk bolts. Both specimens were designed according to the 

recommendations to promote bearing failure in the ASTM standard [10]. The details of the 

specimens are given in Figure 2 and Table 1, where the bearing test was equivalent to the 

lower laminate of the single-lap joint (with no extensometer tab). The bearing test used a 

straight-edge hole, whilst all other specimens were single-lap joints with countersunk holes. 

The specimens were all manufactured using plain weave carbon/epoxy T300/970 pre-preg 

(nominal ply thickness 0.22 mm). Specimens were tested in a 100 kN MTS hydraulic test 

machine. Strain gauges (SGs) were used as shown in Figure 2, though the bearing test used 

only one strain gauge at the SG4 location. 

In the bearing test, a single laminate with a straight-edge circular hole was gripped on 

one end and loaded in bearing by a steel pin through the hole. An extensometer was placed 

between the laminate edge and the loading grip. In the single-lap joints test, the specimens 
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were gripped on the edge of each laminate and loaded in tension. An extensometer was 

placed between tabs as shown in Figure 2. Variations in the single-lap joints included 

different levels of bolt torque, bolt clearance, and countersink height to laminate thickness 

ratio h / t, each at three levels as summarised in Table 2. Bolt torque was introduced using a 

calibrated torque wrench, and clearance was introduced by increasing the diameter of the 

straight-edge portion of the bolt hole only. The specimens were loaded in displacement 

control at 0.5 mm/min until ultimate failure, though one bearing test specimen was only 

loaded until the onset of non-linearity.  

Following testing, microscopy was conducted on one specimen of each configuration, 

and for the bearing test the specimen loaded to only the onset of non-linearity was also 

inspected. Sections were taken along the loading direction (x-axis) and at 45° to the loading 

direction, where the cross-section labelling for microscopy and damage analysis is shown 

in Figure 3. Each laminate was inspected at the hole edge on the opposite side of the bolt to 

where the laminate was gripped, as this was the location of bolt contact and bearing 

damage. The microscopy images were all taken at 5× magnification using a Leica optical 

microscope. 

For each test, the bearing load was calculated according to recommendations in the 

ASTM standard [10], which involves determining the load associated with bearing 

displacement that is 4% of the bolt diameter. As the displacement was measured from tabs 

on either side of the bolt, instead of directly on the bolt as dictated by the standard [10], the 

displacement results are only indicative of bearing displacement. The applied stress was 

determined by dividing the applied load by the bearing area (D × t). In this paper, applied 
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stress versus extensometer displacement (stress-displacement) results are shown for one 

specimen of each configuration, as representative of the average of the three repetitions. 

3. Numerical Analysis 

Numerical analysis was conducted to study the stress distribution throughout the 

joints, as a means of providing further insight into the experimentally observed damage 

mechanisms. The analysis was conducted using Abaqus 6.9 [14], for both the bearing test 

and single-lap joints. The models used 3D continuum shells for the laminates and rigid 

elements for the bolt and nut, with friction-based contact implemented on all contactable 

surfaces. Bolt torque was introduced by applying an equivalent displacement of the bolt 

into the nut in a pre-loading analysis step, before the bolt-nut assembly was rigidly 

connected for the tensile loading. The in-plane and through-thickness mesh densities were 

determined using mesh sensitivity investigations, which are not included here for brevity. 

The in-plane mesh distribution is shown in Figure 4(a). In the through-thickness direction, 

the bearing test model used 32 elements, and the single-lap joint models (shown in Figure 

4(b)) used 4 elements for the lower laminate and between 2 and 4 elements for the upper 

laminate depending on the hole geometry. Further detail on the model is provided in a 

previous publication [15], and the use of the model for detailed progressive failure analysis 

will be the subject of future publications. 

In analysing the results, stresses in the radius (r) direction were considered, as shown 

in the cylindrical coordinate system in Figure 3. All models were taken to an applied load 

of 1.5 kN, and stresses were normalised using the maximum stress in the bearing test. This 

normalised radial stress is plotted as a function of the angular coordinate θ for a given ply 



 7 

location. There were two 0° ply locations studied, as shown in Figure 3, which 

corresponded to the start of the countersink region and the shear plane. 

4. Results 

4.1. Bearing tests 
 

The results for the bearing test specimens are shown in Table 3, Figure 5 and Figure 

6. The stress-displacement results in Figure 5 show a linear region and a drop in stress at 

the onset of non-linearity. The non-linear region is characterised by gradually increasing 

stress with increasing applied displacement, up to a maximum stress, which is higher than 

the stress for non-linearity onset.  

The results of the micrographs in Figure 6 show that the onset of non-linearity is 

associated with significant bearing damage. This damage is characterised by interlaminar 

and intralaminar shear cracks comprising of fibre kinking, matrix shear and matrix 

compression failure. Delamination was present at the onset non-linearity, but is not 

considered a major damage mode, and is not visible at ultimate stress due to the 

considerable edge loss and fraying of the section. Inspection of the 45° sections showed 

similar damage mechanisms but considerably less damage, as the extent of damage reduced 

around the circumference of the hole.  

4.2. Countersunk joints: Effect of countersunk hole 
 

The experimental and numerical results are summarised respectively in Table 3 and 

Table 4, numerical results comparing the bearing test with a single-lap joint are shown in 

Figure 7, and the results investigating the effect of bolt torque are shown in Figure 8 to 
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Figure 10. These results are used in this section to discuss the overall effect of introducing 

the countersunk hole geometry, and are discussed in subsequent sections with regards to the 

specific effects of the joint parameters.  

The results in Table 3 show that the introduction of the countersunk hole caused the 

bearing stress to be reduced to at least half of the bearing test value, whilst the ultimate 

stress increased by a small amount. This is also seen in Figure 8 from the stress-

displacement history for the countersunk hole with no bolt torque (BT_0), which is 

characterised by a short linear region and extended non-linear region in comparison with 

the bearing test results in Figure 5. However, the exact effect of the countersunk hole is 

difficult to quantify from the results as different specimen configurations were used, and 

the single-lap joints also involve some degree of bending.  

The numerical results in Figure 7 and Table 4 compare the radial stress distribution of 

the bearing test with the countersunk joint with no bolt torque. From these results, the 

introduction of the countersunk geometry increased the radial stress at the shear plane and 

start of the countersink region by 43% and a 67% respectively, relative to the maximum 

stress in the bearing test. This agrees with the results from other researchers [11, 16], where 

the introduction of a countersunk hole has been found to increase the stress concentration 

factor, particularly at the start of the countersunk region. 

The micrographs in Figure 9 and Figure 10 show 0° sections of the upper and lower 

laminate at BT_2.1. These show that the introduction of the countersunk hole led to an 

angular damage region in the upper laminate (Figure 9), as the bearing damage remained 
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parallel to the hole edge. Similar damage mechanisms to the bearing test were seen, and 

include intralaminar and interlaminar shear cracks within the bearing damage region and 

secondary delaminations outside of the bearing damage region and close to the free 

surfaces. Additionally, delamination was also evident at the start of the countersink within 

the bearing damage region (Figure 9), and is termed primary delamination as it is not a 

secondary effect of the shear cracks. The damage mechanisms in the lower laminate (Figure 

10) were similar to the bearing test, though bolt rotation led to an angular damage region at 

the bottom of the laminate that was not seen for the bearing test. The 45° sections indicated 

that damage reduced around the hole circumference, where in particular the primary 

delamination was not seen at the 45° locations.  

4.3. Countersunk joints: Effect of bolt torque 
 

The results of the single-lap joints investigating the effect of bolt torque are shown in 

Table 3, Table 4 and Figure 8 to Figure 10. The results in Table 3 show that the application 

of 2.1 N m of bolt torque (BT_2.1) from the finger-tight case (BT_0) led to a significant 

increase in bearing stress (33%), whilst only a minor increase (3%) in the ultimate failure 

stress. Doubling the amount of bolt torque did not show any further improvement, with 

only marginal changes in bearing stress and ultimate stress. This is also evident from the 

stress-displacement history in Figure 8, where increasing bolt torque increased the length of 

the linear region. The insensitivity of ultimate failure load to bolt torque has also been 

reported by other authors [17-19], over similar bolt torque ranges. 
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The micrographs in Figure 9 and Figure 10 show 0° sections of the upper and lower 

laminate at BT_2.1. From these, and the micrographs not shown at 45° and at other BT 

levels, a detailed study of the effect of bolt torque on through-thickness damage profile was 

conducted. The introduction of bolt torque reduced the length of the bearing damage region 

away from the hole, but increased the density of shear cracks through the thickness. Bolt 

torque also prevented fraying of the laminate as seen in the bearing test (Figure 6(b)) and 

BT_0. Instead, bulging was promoted at the outer surfaces of the laminate as shown in 

Figure 9 and Figure 10. Despite this, primary delamination was seen at all levels of bolt 

torque at the same location.  

The numerical results in Table 4 compare the radial stress for the countersunk joints 

with varying bolt torque. From these results, the application of moderate bolt torque caused 

a small increase in radial stress at the countersink location, whilst high torque was seen to 

reduce the radial stresses in both locations. These results agree in part with the 

experimental results in terms of increasing bolt torque leading to an improvement in joint 

performance, the occurrence of delamination at the start of the countersink region, and the 

reduction in the extent of bearing damage.  

4.4. Countersunk joints: Effect of bolt clearance 
 

The results of the single-lap joints investigating the effect of bolt clearance are shown 

in Table 3 and Figure 11 to Figure 13. The results in Table 3 show that the introduction of 

220 µm of clearance led to a significant (17%) reduction in the bearing stress, though only 

a slight reduction in the ultimate stress. Doubling the clearance only reduced the bearing 
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stress by 7%, with a further slight reduction in ultimate stress. From the stress-displacement 

history in Figure 11, the introduction of clearance caused a shift towards larger 

displacements and introduced multiple stages in the linear region. Both of these effects are 

attributed to the sequence of loading of the joint with clearance, as shown in Figure 12, 

where the bolt first contacts one laminate, then rotates to contact the other laminate. The 

small reduction in ultimate stress as a result of introducing clearance agrees with results 

from other authors investigating countersunk joints [8, 9], though is in contrast to the large 

influence of clearance reported by other researchers studying straight-edge holes [7, 20].  

The micrographs in Figure 13 and those not shown at 45° and other CL levels were 

used to study the through-thickness damage profile. For these images, the locations 

correspond to those indicated in Figure 3, and match those shown in Figure 9 and Figure 

10, where the labelling in these latter two figures applies equally though has been omitted 

for clarity. The introduction of clearance increased the damage close to the shear plane, or 

interface between the upper and lower laminates. This is seen at the bottom of the upper 

laminate in Figure 13(a), and the top of the lower laminate in Figure 13(b), in comparison 

with the neat fit hole damage shown in Figure 9 and Figure 10. This changed the straight-

edge damage regions to angular damage regions, so that both laminates contained two 

intersecting angular damage regions. This damage pattern also suppressed the occurrence of 

primary delamination, which was not seen in any joint with clearance. The increase in 

damage is explained schematically in Figure 12 by the sequence of loading in a clearance 

joint leading to high stress regions at the shear plane. These locations also had a higher 
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density of through-thickness cracks, though the length of damage away from the hole was 

reduced with increasing clearance.  

Furthermore, the normalised radial stress results in Table 4 demonstrate the 

significant increase in stresses at the shear plane with the introduction of clearance. From 

these results, the introduction of clearance is seen to increase the stress in the central 

section by almost four times. However, further increasing the clearance does not continue 

to increase the radial stresses. Stresses at the start of the countersink region also drop 

dramatically with the introduction of clearance, further highlighting the localisation of 

stresses at the shear plane. These results demonstrate the mechanism for the increased 

damage at the shear plane, and also explain the large difference in joint behaviour between 

the no clearance and moderate clearance cases. 

4.5. Countersunk joints: Effect of height ratio 
 

The results of the single-lap joints investigating the effect of height ratio are shown in 

Table 3, Figure 14 and Figure 15. The largest height ratio (HT_0.76) specimens failed in 

bending, with behaviour distinctly different from all other countersink joint configurations. 

This is illustrated in the stress-displacement history in Figure 14, and the net tension failure 

mode associated with bending shown in Figure 15(b). From Table 3, the bearing stress for 

the HT_0.76 specimen also shows a large coefficient of variation (33%), indicating the 

difficulties in applying this measure of bearing performance to joints failing in bending. 

Very limited work is available in literature on the effects of countersunk height ratio for 

single lap composite bolted joints, though similarly large reductions in ultimate strength at 

high height ratios have been reported [21]. 
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For the specimens that failed in bearing, increasing the height ratio had a negligible 

effect on the bearing stress, and only a minor (5%) reduction in ultimate stress. The stress-

displacement data shown in Figure 14 also illustrates the close comparison for theses two 

levels of height ratio. Increasing the height ratio increased the bending displacement, or 

displacement in the through-thickness direction. This is associated with a smaller straight-

edge region, which produces larger load eccentricity as it carries the majority of the load. 

Inspection of the micrographs at 0° and 45° at the two bearing failure HT levels also 

showed similar levels of damage. The micrographs did show that increasing the height ratio 

increased the extent of through-thickness damage close to the shear plane in both laminates, 

with the upper laminate showing an angular damage at the straight edge. Furthermore, no 

primary delamination occurred at increased height ratios, including HT_0.76 where 

bending failure was seen.  

The micrograph findings are reinforced by the radial stress results shown in Table 4 

for the specimens that failed in bearing. In these results, increasing the countersink height 

ratio increases the radial stress by almost four times whilst halving the stress at the start of 

the countersink, which explains the increased density of shear cracks seen at the shear 

plane. The radial stress results do not explain the relative insensitivity of the bearing and 

ultimate stress to the height ratio, which is likely due to these parameters being more 

closely related to the use of the same laminate, instead of the change in hole geometry.  

5. Discussion 

The results of this investigation are informative when viewed in the context of 

various recommendations relating to joint design. The maximum shear-off torque for the 
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bolt-nut assembly is from 4.5 N m to 5.6 N m [22], so that the bolt torque levels 

investigated represent approximately 0%, 41% and 83% of this value. The results in this 

work showed that whilst no torque involves lower load-carrying capacity, only mild levels 

of torque are required for higher bearing stresses. However, the reduced length of bearing 

damage and increased density of through-thickness cracks, in particular those under the 

countersunk bolt head, are problematic from an inspection point of view.  

With regards to clearance, current aerospace guidelines recommend a maximum of 

1% of the bolt hole diameter [9]. The configurations in this investigation represent 5% and 

9% of the bolt hole diameter. A 17% reduction in bearing stress at a clearance of 5% hole 

diameter (CL_240) was seen, which highlights the importance of avoiding clearance for 

design purposes. Despite this, the effect on the ultimate strength was minimal. This may be 

due to the beneficial effects of bolt torque, where other researchers investigating clearance 

with pin connections have reported significant influence of clearance [7, 20]. Although 

negligible difference was seen in the overall load-carrying capacity, the addition of 

clearance both localised and increased the density of damage, which can be important for 

damage tolerance considerations. 

For height ratio, Ref. [10] recommends a range from 0.0 (no countersink) to 0.7 to 

promote bearing failure. The configurations in this work cover the upper end of this range 

where the effects of bending are more prominent, with the highest ratio of 0.76 falling 

outside the recommended range. As such, the highest ratio configuration showed the largest 

amount of bending, and failed in net section failure due to excessive bending stresses. For 

the configurations that failed in bearing, the difference in bearing stress and ultimate stress 
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were negligible, confirming the performance of countersunk joints within this 

recommended range.  

The investigation in this work was focused on studying the effect of joint parameters, 

so that the experimental program covered specimens focusing on changing each of these 

parameters one at a time. As such, the complete database of test results does not provide 

enough experimental evidence to assess whether there is any interaction between the 

various joint parameters. For example, the results for changing clearance were studied at 

one bolt torque ratio, and whilst obviously being influenced by this level of bolt torque, any 

interaction with the degree of bolt torque is unable to be assessed. A more broad 

experimental program would be required to assess whether the results from varying 

multiple joint parameters differ from results seen when the parameters are individually 

varied. 

With regards to the use of fabric material, the results do not indicate any specific 

damage mechanism or behavioural aspect that is unique, or has not been generally reported 

in other publications for UD ply laminates. Comparing the damage mechanisms of 

delamination and matrix shear cracking between these results and others mentioned 

throughout this paper, there is nothing to suggest that the fibre architecture of the fabric 

plies makes a significant contribution to bearing damage. Whilst it is well known that the 

fabric architecture leads to reduced in-plane stiffness, amongst other effects, the results in 

this paper suggest that the initiation and progression of bearing damage is similar between 

fabric and UD plies.  
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The experimental results in this work provide valuable insight and detailed 

information on the damage mechanisms and load-carrying capability of composite 

countersunk joints. This information is critical for developing a validated numerical 

modelling approach. Such a validated methodology can provide further insight and more 

detailed information on the damage and strength characteristics of countersunk joints. This 

is the subject of ongoing research.  

6. Conclusion 

An experimental investigation has been conducted into the damage progression and 

strength of bolted joints with countersunk and straight-edge fasteners. The following 

conclusions can be drawn from the experimental tests and detailed microscopy studies: 

• Introduction of the countersunk hole causes an offset of the local bearing 

damage region such that it remains parallel to the hole edge. The bearing 

stress is roughly halved with only slight increase in ultimate stress. 

• The introduction of the countersunk hole can also cause delamination. This is 

primarily located at the start of the countersink region, though has only minor 

influence on the joint behaviour. 

• Bolt torque increases the density of through-thickness damage whilst limiting 

its extension from the hole edge, and only mild bolt torque is required to 

increase the bearing stress. 
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• Bolt clearance causes the damage region to become more localised and 

reduces the bearing stress, though has minimal effect on the ultimate stress. 

• Increasing the h / t ratio reduces the extent of bearing damage and promotes 

bending. This has only a small effect on the joint load-carrying capacity, 

except at high ratios where the failure mode changes to net section failure.  
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Figure Captions 

Figure 1:  Specimen design guidelines to promote bearing failure (adapted from Ref. [10]) 

Figure 2:  Countersunk joint geometry and dimensions (mm), strain gauge locations and 

extensometer tabs 

Figure 3:  Cross-section labelling 

Figure 4:  Numerical model. (a) In-plane mesh. (b) Single-lap joint. 

Figure 5:  Bearing test, stress-displacement (test #2) 

Figure 6:  Bearing test 0°sections (a) Undamaged (b) Non-linearity onset (c) Ultimate stress 

Figure 7:  Normalised radial stress for the bearing test and countersunk joint with no bolt 

torque 

Figure 8:  Countersunk joints, stress-displacement, bolt torque investigation 

Figure 9:  Countersunk joint 0° section, BT_2.1 upper laminate 

Figure 10:  Countersunk joint 0° section, BT_2.1 lower laminate 

Figure 11:  Countersunk joints, stress-displacement, bolt clearance investigation 

Figure 12:  Countersunk joint, load sequence with clearance 

Figure 13:  Countersunk joint 0° section, CL_2 

Figure 14:  Countersunk joints, stress-displacement, height ratio investigation 

Figure 15:  Countersunk joint upper laminate (countersink side) following ultimate failure 
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Table 1:  Specimen dimensions (mm) 
 

 t Fabric ply layup D A 

Bearing 3.52 [0,45]4S 6.35 n/a 

BT (all) 3.52 [0,45]4S 4.76 9.56 

CL (all) 3.52 [0,45]4S 4.76 9.56 

HT_0.56 3.52 [0,45]4S 4.76 9.56 

HT_0.64 3.08 [(0,45)3,0]S 4.76 9.56 

HT_0.76 3.52 [0,45]4S 6.35 12.71 

 

Table 2:  Specimen details 
 
 Bolt torque (N m) Clearance (µm) h / t Number of specimens* 

Bearing n/a n/a n/a 4 

BT_0 0 (finger tight) 0 0.56 3 

BT_2.1 2.103 0 0.56 3 

BT_4.2 4.206 0 0.56 3 

CL_0 2.103 0 0.56 3 

CL_240 2.103 240 0.56 3  

CL_440 2.103 440 0.56 3 

HT_0.56 2.103 0 0.56 3 

HT_0.64 2.103 0 0.64 3 

HT_0.76 2.103 0 0.76 3 

* BT_2.1, CL_0 and HT_0.56 all represent the same configuration and the same specimens 
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Table 3:  Experimental results, average stress (coefficient of variation in parentheses) 
 
 Bearing Stress (MPa)  Ultimate Stress (MPa)  

Bearing 409 (5%)  571 (3%)  

BT_0 142 (4%)  624 (0.5%)  

BT_2.1 190 (10%)  646 (3%)  

BT_4.2 184 (5%)  669 (0.5%)  

CL_0 190 (10%)  646 (3%)  

CL_240 158 (4%)  636 (2%)  

CL_440 147 (11%)  615 (2%)  

HT_0.56 190 (10%)  646 (3%)  

HT_0.64 192 (10%)  613 (0.4%)  

HT_0.76 107 (33%)  565* (4%)  

* Net tension failure mode (all other configurations failed in bearing) 
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Table 4:  Numerical results, radial stress concentration factor, 0° ply at hole location θ  = 0 
 
 Shear plane  Start of countersink  

Bearing 1.0  −  

BT_0 1.43  1.67  

BT_2.1 1.39  1.83  

BT_4.2 -0.17  0.94  

CL_0 1.39  1.83  

CL_240 3.95  -0.27  

CL_440 3.84  -0.27  

HT_0.56 1.39  1.83  

HT_0.64 4.16  0.90  

HT_0.76 2.27  -0.37  
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Figure 1:  Specimen design guidelines to promote bearing failure (adapted from Ref. [10]) 
 

 

 

Figure 2:  Countersunk joint geometry and dimensions (mm), strain gauge locations and 
extensometer tabs 
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Figure 3:  Cross-section labelling 
 
 

 

Figure 4:  Numerical model. (a) In-plane mesh. (b) Single-lap joint. 
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Figure 5:  Bearing test, stress-displacement (test #2) 
 

 

 

Figure 6:  Bearing test 0°sections (a) Undamaged (b) Non-linearity onset (c) Ultimate stress 
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Figure 7:  Normalised radial stress for the bearing test and countersunk joint with no bolt 
torque 
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Figure 8:  Countersunk joints, stress-displacement, bolt torque investigation 
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Figure 9:  Countersunk joint 0° section, BT_2.1 upper laminate 
 

 

Figure 10:  Countersunk joint 0° section, BT_2.1 lower laminate 
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Figure 11:  Countersunk joints, stress-displacement, bolt clearance investigation 
 

 

Figure 12:  Countersunk joint, load sequence with clearance 
 

 

a) Initiation of bolt contact b) Bolt contact on both sides 

High stress region 
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Figure 13:  Countersunk joint 0° section, CL_240 
 

 

0

100

200

300

400

500

600

700

0 1 2 3 4 5
Displacement (mm)

St
re

ss
 (M

Pa
)

HT_0.56
HT_0.64
HT_0.76

 

Figure 14:  Countersunk joints, stress-displacement, height ratio investigation 

b) Lower laminate a) Upper laminate 
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Figure 15:  Countersunk joint upper laminate (countersink side) following ultimate failure 
 

 

b) h / t = 0.76 a) h / t = 0.56 


